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ABSTRACT -

,

A study of the geometric nonlinear behaviour N

-
=
e

of structures is performed in this research. The methed

(41

of analysis reported is applicable to planar frame .struc-
tures under -any loading conditions. . R

qSing an Eulerian moving coordinate svstem and a

nonlinear strain-displacement relationship, nonlinear Zinite

element formulations .2re developed. and emploved to calculate.
the total potential energy of the structure which 1is then,

minimized using a scaled unconstrained conjucgate gradient
algorithm to vield the solution to the structural analvsis

’

Y
problem.
The various degrees of gecometric nonlinearity
inciude finite deflections, bifurication buckling .,and snap-
- » rs Ll

through buckling and thesé applications demonstrate the

potential ¢f the methcd deweloped. Special, attention is

given to the.analvsis of guyed transmission towers as a
practical example of geometrically,nonlinear .structures.
. Comparison with linear solutions indicates that 'in

certain structures, considerations of the geometric nonlinrear

4spects are essential, otherwise the analysis could be

misleading. The results using the present Iformulation are
- ) *

compared with previous analvtical solutions and experimental

test results and excellent- agreement is obtained; in
. Ty
- ¢’

general, the method presented gjives improved accuracy
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as

compared tQ other solution procedures.
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to the minimum of the function.
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- LIST OF SYMBOLS

crosshgectlonal area of a frame discrete
element. : ‘

+

integration constants of the transverse

displacement 1n case of bendlng COmDre551on

counllng

integration constants of -the transverse
displacement in case ©of bending only.

integration constants of the trarsverse

-displacement in case of bendlng tensxon

coupllng

two values bounding the minimum of the .
functicon in the minimization linear search
routine.

absolute value of an off-diagonal element
of the Hessian Matrix. .
3 th global éisplacement in the displacement
vector of the strucihure.

global displacement vector of the structure.

initial glooal cdisplacement vector emmlovea
in- the minimization routine.

i,J th element in the matrix describing

the relationship between the alsolacements

u 5 & and the constants k2 or k2.
g’ %o fg tant 7

strain energy density.
modulus of elasticity.

estimate to. the value that corresooncs

P

absolute error specified by the user in
Fletcher~Reeves minimization subroutine.

gradient vector of the element strain
energy with respect to the displacement
components in the Eulerian' coordinates.

vii .



o

oGt

GH
s

o4

-

bl

g
St

—~

-~
el
s

gradient vector of the element strain
energy with respect to the displacements.
components defined in the undeformed - '
local coordinates.

gradient vector of the element strain

energy with respect to the displacements
. components defined in the global reference
coordinates. - Cr : '
two dimensional function cdefining the )
linear search in the minimization process.

gradient of the linear search function
g(Gi) with respect to Z,.
number of elements comprising the stric-
ture. :

th

number of degrees of freedem of the
structure.

coupling constant i
case.

.
.

the bending-tensicn

. . .
coupling constant in.the bending~compression
case.

i, j th element in the element stiffness
matrix defined in the Eulerian coordinates..

the linear stiffness matrix.
+he scaled linear stifiness matrix.

estimate of the location of the function's
minimum in the linear seaxrch.
andeformed length of the frame discrete
element.

direction cosines of the x axis witn
respect to the X, ¥ coordinates.

the load corresponding tc the ] th
component of the global édisplacement
vector.

+he unscaled load vector.

+he scaled lcocad vector. «

viii
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- end forces developed at end g im the
deformed configuration. . h

in
- local undeformed coordinates at’end 2.

+
»

subscripts denoting nodal points of 2
frame discrete element.

.
.

end forces developec at end » in the
deformed configuration.
L]

integration constant of +the displacement
function in the axial x ‘direction.
. )

diagonal scaling transformation matrix.

j th diagonal element in the [R] matrix.

chord length of the deformed frame
element.

conjugate direaction.

nonlinear transformatian matrix.

linear transformation matrix

4, 3 th element in the nonlinear trans-

formation L[T] matrix.

total strain energy of the structure.

element strain energy.

element displacement components in the’

Eulerian coordinates at enéd o.

element displacement components in the
Eulerian coordinates at ené d.

element displacement components

element clsnlacement components in the
jocal undeformed coordinates at end <.
elemen* displacement commonents in the
reference clobal coordinates at ené 2.

element displacement compenents in the
reference global ccordinates, at end q.

element voléme.

potential of the applied loads acting on
the structure.

ix



a

votential of the forces develoved at the

s N j'enas of the element.
X, ¥ Eulerian moving ;oordinaﬁes
x,l§ ST local undeformed (Lagrangian) cqgrdinafes;_
X, ¥ reference global coordinates.
{z} - scaled displacement vector.

.

Greek Letters

~
(o4

lthe axis along which the- ‘unctlon is
minimized in the linear search routlne.

2%

the distance along the o3 axis that
corresponds to the minimum of the
function in the linear search.

logation of the minimum of the function
alohg the & axis that corresponcs to - -
the minimum of the fitted third degree
polyvnomial. :

2

Yy . *  wind load parameter relating the actual
; wind intensity 'to the working wind
intensity.

A .deflection.

—— . . 4

Vo vector defining the gradient o, the total
s notentlal energy function.

e(x,v) +otal strain at .anv point on the frame
element defined by the x,y ccordinates.

M

prestrain induced in the element.

o)

€ , - stzain of deformation due 'to applied
loads. '

. . . s R .. . .
Eor B3 absollte error value defining the exit
criterion in the minimization process.

3 , 8 - relative rotation at ends p ané 4,
respectively. o

= rigid body rotaticn.

i element pokential energy.



total potential énergy of the
system. ’

4

stress corresponds. to strain €.

.
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.~ . CERPTER I =
: INTRODUCTION ,
1.1 General N R '

" The. need for de§endable geémetric nonlinear methods h'
of anélysis is evident in the design of flexible iight—
weight structures. In this tvee of Structqre; situations
involving gebmeﬁriq nonlineaiitf, but restricted to
linear material beﬂaviéur, constitute a-significant class

of analysis problems. Moreover, the structural design

H

of such structures is often éoverned by elastic stability
fequirements. This concern in realistic design situations
has pfovided strong motivation for extending the finite
element‘analysis.method in order to accommodate geomeitric
_nonlinéarities. Accordingly, many research efforts have

been devoted to this objective and several analysis pro-

cedures have emerged.

1.2 Literature Review : //’_*’/

i
In the International Symposium for the use of

electronic computers in Civil Enginéerihg which was held

at Lisbon in Portugal on October 1962 (Ref. 1), Saafan

and Brotton presented'a method for the analysis of geo-
metrically nonlinear rigid frame structures. In this
method, a finite deflection scheme was proposed for the
analysis to account for large deflections, but the instabi-

lity effects caused by the axial loading as well as the

"



bowing effects were neglected. - . B

.

Shortly after, Saafan [(Ref. 2) extended his previous
work with Brotton and proposed a modifieé finité'défleciion
method where the effect of axial force on the flexural-
stiffness was included in the form of bowing fundtions.

ccofqing_to Saafan's method, éach joint of the frame was
provided with'a system of spring festraints'to takérthe_
unbalanced forces bet@eén the applied load and:the actuai-
member forces meéting at a jqiht. The solution was
defined-aé.the displacement pattern which causes the forceé
in the spring rgstraints to be egual to zero. Saafan

- presented some important recommendations which include the

following:

(1) Endé shorting due to fliexure %(%%)2 may be of
the same order of magnitude as tihe linear
extensicnal term g%. | .

(2) The stability and bowing functions may play an

'important part in the estimation of the
theoretical carryving capacity of the struétufe. i
- ‘ Despite.some'incoﬂsistencies tpat'were noticed,
Saffan's attempt opened the way to further investigators. -
Poskitt (Ref. 3) proved that Saafan'é metgod is
applicable only to the analysis of structures with low
levels of geometric nonlinearity since the method oscillates

.without reaching a solution at higher levels of gecmetric

nonlinearity.. Poskitt attributed the oscillat




\ - -

to the fact that Saafan emploved a first order iterativ
scheme in finding the solution to the. geometrically non-

. ’ T .
linear problem. In the same pdper, Poskitt proposed another

itefative finite displacement method which involved a
_second orde:.iterativs schene, 5ut only the scolution to a
three-jointed sim?ls A truss -was reported.
Tezcan (Ref. 4) in a discussion'to Poskitt's paper B

(Ref. .3), derived a tangent stiffness matrix for frames-
exhibiting.geometric nonlinearity. ‘Tezcanfs'stiffness
matrix came out to be unsymmetric and the unsymmetric
‘character was attributed to ths fact that the reciprocal
theorem dses not appl§ o structures with large deformations.
Later, Oran.(Ref. 5) proved that Tezcan's interprstatisn
‘concern@né the symmetry and non;symmetry of the stiffness
matfix was higﬁly misleading. Orén'reportedhthat the
unsymmétric character of Tezcan's stiffness matrix.was due
to tﬁe inconsistent approximations embodied in Tezcan's
formulations. Osan proved that the tangent stiffness
matrix is always symmetric by defining the‘elements of the

tangent stiffness matrix as the second partial derivatives

of the strain energy. .

-
. -

ef. &) proposed

il

In 1968, Lee, Manuel and Rossow (
an incremental method for the analysis of geometrically
nonlinear rigid frames where the critisal loa@ was also
predicted. The writers investigsted both the bifuricaticn

and snap-through types of instability as well as the



pdst;buckling behaviour of framed structures. The method
nrooosed in that paper was-formulated .as a svstem of -

lmultaneous nonlinear equations.obtaiaed by combining the
general sblution of the éxact.nonlinear diiferentiai
equation of bendlng and the eculllorlum eguations cbtained
for each ot he segments between loaa oomnts ‘and/or ooxnts
éf inflectxon,'wlth ‘the prescribed bounaarv conditions.
The resultlng system of ecuatlons was then solved bv the
Newton-Raphson iterative method.

~

Przemieniecki (Ref. 79 discussed the coﬁcept of
geometric nonlinearity and employed an initial stress
(geometric 'stiffness) matrix te be used in conjunction with
a load increhentation Process. The nonlinear term —(%%)2
was included in the s+ train~displacement relationskh ip and
first énd third degree volvnomials wete used to describe
the axial and the transverse displacements, respectively.,.
The Lagrangian ({(initial uncdeformed) coordinates were used
to formulate the egquilibrium eguatio in each step and

the elastic as well as the gecmetric ; tiffness matrices
were updated after each step to account for the change in
the geometry due to the incremental deformations. In the
same reference, the concept of the elastic stability of
Structures was discussed in light of the geometric stiffness
matrix developed.

Connor, Logcher and Chan ({(Ref. 8) also presented

nonlinear formulations for tie analysis of rigid frames.



The effect-of flexure and chord rotation on the axial-
stiffness was included in the analysis. The dppropriate

‘ . e Lot s .
equations for solution by successive ‘substitution and

Newton-Raphson iteration were also given. A linearized -

incremental solutich technigue which can be described as

—--r

a one-cvcle Newton-Raphson method was alsc described. Due
to employing Lagrangian coordinates in .formulating the
stiffness eguations, the writers limited the use of the

formulations to the cases of small rotations (where the

squares of the rotation angles are negligible compared to

unitv). In the same paper, the effect of initial prestrains

- . -

was included but an inconsistency in defining the axial
force was noted. A shallow frame, which is asscale model

of a large radome,~was solved and the results were given in

>
+he form of a load-deflection curve. Two porital Zrames

were also solved with successful prediction to the buckling

load.

. An excellent review to the problem of geohetric )
nonlinearity is given by Mallett and Marcal (Ref. 9). 1In
that paper, t;ree alternative mathematical.models anéd com-
pﬁtational procedures were devéloped for the nonlinéar,
pre—- and post—bucklin@ analvses. The proposed method was
essentially. a load incrementing procedure where the non-

el
e

. dws . . . . .
linear term %(EE) was retained in the strain-displacement

relationship; a first and a third degree’ polynomial were

employed to define the axial and the transverse displacements,

.



‘respectively. The element strain energy 'was split-into

*

-

three terms. . The first term is that.asSociared with the

usual linear formulation, the -second term reflects ‘the

coupling effects between the axlal and the transverse

st___nesses while the third terﬂ lnvolves'ehe nenlinear

LA

éffects due to bending. The stabilitv ¢ritical situation

‘was ewslalned as the mutual degradation of the initial

axlal and rletural stif nesses which :lnall leads to

Duckling. The equilibrium equations were/formulated with

-

respect to a system of fixed local coo€dinates (Lagrangian) .
which is inaccurate in handling. cases of large rotations
unless relatively small load increments are considered.

First and second order incremental formulations were also (/f\
given; it was emphasized that the nonlinear incremental

Tormulations have to be used whenever the strain-dis placement
relationship contain% nonlinear terms. In the same vaper,

a rational classification to the-degrees of ggometric non-
linearity was presented stariing with structures exhibiting

linear behaviour up to the point of general instability

and ending with the snap-throucgh phenomenon in structures -

a . s . . .
as the lowegt and highest degrees of geometric nonlinearity,
respectively. The writers reported +that incremental methods.
are not directly applicable to the prediction of the post-
. T S . .
buckling behaviour if it involves the traversing of an
unstable region of the load-deflection curve, while the

potential energy minimization analysis procedure is uniguely

-



suited to this pufpose. Despite the iack of"numen%gal .
examplee, the pager‘ie one of the best references dealing‘
with the problem ef geometfic nonlinearity. B
-Al;ew vears .later, . Baron and Venkatesan oubllshed

a paper - {Ref. 10} deallng with +he nonlinear analvsms of
beam—colu%n elements where the undeformed (Lagranglan)
axes were‘used in formulating the stiffness eguations.
Two aéproximate formulations; describiﬁg two alternetive

- solutions, one based on a third degree polynomial, and

" another baeed on a Fourier series expression for the trans-
fverse displacement were given. Finally,.a closed form -
solution to the traﬁsve*se c;snlacement was presented in’
the form of erlgonometrlc and nvne*bollc functions. The ¥
. writers also orooosed a series as well as a closea form
solution to account for the lnfluence oF'lateral loads

between nodes hut no metnod of analv515 1or 1llu9trat1ve

examples were given. Oran (Ref. 5) ralsed the gquestion

of whethex the formulations given by Baron and Venkatesan

(Ref. 10}, 1in spite of‘their EOleexiEy, have any super-
lority to the formulations obtained from the conventional
A
beam~column theory.
A valuable assessment of the solution technigues
which are applicable to the solution ef the nonlinear
algebraic or differential equations characterizing the

geomptrically nonlinear behavicur of structures, was given

by isler, Stricklin and Stebbins in Ref. 11. The



writers presented a coﬁpleté reviéw.to the methods of solv;
ing the problem of géometric honlinearity-starting.with
 the lncremental stxffness procedure as flrst proposed by
Turner, Dill, Martln and Meloche (Ref 12) and ending w1th
the self-correcting initial value-formulatlpns'LReht 13).
Martln (Ref. 14) oresented a general theéry to the
problem of gedmetric nonllnearltv .based on én incremental
load approach. Martin applied thg-;heofy to various
elements, amongst which was the beam—éblumn elément._ The
element was assumed sﬁraight at the initial state so that
the axial fofce‘and the bending effects are‘u;coupled.
The nonlinear term l(du was included in addition to the
nonlinear term %(é; : a svstem of Lagrangian coordinates
to formulate the stifiness eguations was used. First and
third degree polynomials were assumed for thg.axial and the
transverse displacements, respectlvelv. ‘. ] .
In 1973, Oran publlsheq two consecutive oapers
(Réfs. 5 and 15) £for the developmenﬁ of consistent tangent
stiffness matrices for both £he planar and the space £rame
elements, respectively. In Ref. 5, Oran presented a
valuable discussion to the previous research dene in the
area of geome£r;c nonlinearity in”skeletai structures.
The explicit definition of the’'element tangent stifiness
matrix was éiven with respect to a system of Eulerian
(deformed) coordinates; a transformation was then applied

4 . .
to Ytransfer from a local to an arbitrary global reference

@_ -



coordinate system. The formulations given by Oran reflects

the inherené_symmetry'df the geometrically nonlinear problem,:

x =

with respect to the end rotations while other investigators

(Ref.. 8) failed in reélécting this svmmetrv.. Basically,
the use of the StabllltV and bomgng functlons was demon—
strated +o couple the transverse: and the axial stlffnesses.
Oran neglected the dlfference in length between the chord

’

and the undeformed member when passing. from the local to

the global coordinates. The effect of such an appro:-_:n.mation~
ié guestionnable in the analysis of flexible structures.

No method of analvs;s'was given, but it ls uncers_ood that
the ;ormulatlons are to be usé& wltnin the framework of an
lncrementa; load procedure.  In Ref. 13, Oran ettended his
previous work to account for thg gpalysig of space frameg._
The concept was, esseﬁﬁially, the'samé but the transformation
involved more complications. In that paper, Oran outlined

two solution procedures, one using a load incremental method

and another using Newton-Raphson jteration bu%f no numerical

- -

examples were repbrted.

Yang (Ref. 16) used an incremental procedure to
pré%ict the behaviour of geomefrically noniineér structures.
Although hh.e wrlter emploved the same stiffness matrix
previously developed by Prezem;enxeckl (Ref. 7), he described
the use of a new linearized midpoint tangent increment tal
approach to reduce the errors included in the conventional'

linear ifcremental method. Some comparative examples were
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solved and the agreement w1t1-orior work was.éood.

' " Young {(Ref. l:) recallied the geometrmc stiffness
matrix prev1ouslv developed by Martin in Ref 18, but
instead of using approximate coefficients to :efledt_the

bending-axial interaction, the exact hvperbolic end tri-
gouémetric functions were used to get accurate expressions
for those coef icierts. Young showed that the customary
assumptlon-that the de:lectlon curve is a cublc is exrro-
.ﬂeous in the cases where the value of the axial load 1is
lerge.; |

Recently, Bouchet and Biswas {Ref. 19} presented
a method for the analysis of cantilever structures. The
method of analysis presented in ehat paper emploved a
beam-column finite element in conjunction with transfer
matrices and an incremental loading procedure te/girectly
generate the totai moments as well as the axial and trans-
verse displacements. Moreover, with the ei& of a standard
Southwell plot, the transverse deflections generated by
the compressive axial loads (in the presence of a small
perturbing transverse force) were plotted to yieléd the
critical Buckling load. The method was restricted to the
analysis of cantilevefs and stacks where the sclution pro-
eeeds from the free end without the necessity of computing
global elastic and geometric stiffness matrices. Three

examples for the analysis of three different stacks were

esented with fair agreement with prior work.

o N

. An important reccmmendation about the effect of
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tﬁe nonlinear terms whlch are usuallv neglected ln the
‘nonllnear analv515 was glven ln-Ref 20. The wrlters
showed that the term —(——) ~has to be retalned in the
stramn—alsplacement relatlonshla if Lagrangian coordinates
are used in Lormulatlng the stlfeness equatlons, otherw1se,
sSome flctltlous stralns qeveloo under rlgld body motion.

It was also suggested that the omission of this nonlinear
term can only be justlflec if Eulerian cooralnaeee are
used with relatively small load increments. The snap-
through buckling of a truss'dome was studied to illustrate

-

the writers' opirnion.

The energy search method ie another approach‘to
solve the structural analysis‘problem ané was proposed in
1965 by Bogner, Mallett, Minich andrSchmit in Ref. 21.

Iq this method; the structural analysis problem is viewed

as a mathematical programming problem where the total
potential‘eneréf of the structure is minimized using
optimization technigues to vield the displacement vecktor
which corresponds to the eguilibrium position of the
structure. The‘method'is apprlicable to the nonlinear as
well as the linear analvses. In the case of ceometric
nonlinear analysis, a nonlinear strain-displaceﬁent
relationship is emploved and expressed with respect te’a
noving local‘(Eulerian) coordinat€s to base the equilibrium

on the deformed configuration. The method was applied to

the nonlinear analysis of one and two dimensional elements.
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In Ref. 22, a comoaVLSOn between the analvtlcal solutlon,
Droooeed in Ref 21, and some exnerlmental test results
to some model skeletal structures was reported. Hallett

(Ref. 23) discussed the basis of 1ntroduc1ng the mathe-
matical programming techniques into the structeral'analyeis
problem. Mallett and Berke (Ref. 24) employed the erergy
search formulations, as originally reported in Ref. 21, :
to solve more examples covering both the truss and the
‘freme'discrete elements showing reasonablelegreement with
the solution obtained using other methods.

Bogner (Ref 25) refined the previous work done

-

(Ref. 21} for pin ended truls element by incorporating the
elgenvalue approach to detect the bucklxqg oF compression
members which enabled following the behaviour of the truss
structure in the stt—buckling zone. A numerical example
was gilven ehowiné the elastic behaviour of a truss structure
where the post-buckling as well as the change in the
"structural configuratien due to the slackening of tension
elements were demonstrated. The interpretation of the
boundarv conditions, as well as the force-deformation
relatianships, are debatable and are discussed and corrected
in the éresent study.

Recently, Bogner's previous work (Ref. 25} was
extended in Ref. 26 ©O aecount for the material noniinearity

besides the geometric nonlinearity. The complete load-

4 - - N - L]
deflection history of a shallow truss-dome supported by a
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-

net 6ffcables waé demonstrated.
- Moré_reéeﬁtly, Holzer and Somers publiéhed a paper
{Ref. é?) dealing,with-the analvsis of frame étructures
using the function minimization technique. -The use of a
third degree polynomial, as proposed by Holzer and Somers,
+o represent the deflection curve is questlonnable in
describing the‘actual deflection of the beam—column,
especially'at large values.of the axlal load as 1nq1cate&
in Ref.'l?.v The eéuilibrium equations were hormulateq with
respect to the deformed geométry by emploving Eulerian
coordinates in the analysis. Static stability ifjestigations
were restricted to the stéble domain of thé potentiél energy
function since the method is not suited to predict the
unstable post-buckling behaviour. Hol:zer e#tended the
function minimization to include material nonlinearity as

well as dvnamic analysis problems.

1.3 Objectives Of The Present Study

The basic purpose of this study is to develop &
consistent'formulation and method for the geometrical non-=
iinear analvsis of planar frame structures. The sources of
+he geometric nonllnear benav;our as -thev pertain to the
present sfudy can be‘summarized as follows:

1. Large deflections and rotations of the nodes

comprising the structure which necessitate con-

sidering the eguilibrium in the final deformec

>

configuration. Emploving an gfficient Eulerian
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moving local coordinates automatically'considers

R the eguilibrium-in the deformed state. A

logical explanation and interpretation to the

-~

concept of moving coordinatgs'is given which
makes it possible "to extend. the application of
‘the moving coordinates to more complicated tvpes
- of elements. - -

2. The coupling between the axial énd'the transyerse
stiffnesses. The introduction of nonlineaf terms
into the strainﬂdeformation relationship reflects

- this coupling:‘ Moreover, the gtrain due to
prestressing is directly inéorporated into\Eﬂe
train-deformation relatiénship to include the
prestraining effects.

3. Changes in the stfuctu;al éonfiguration under
certain loading eonditions, {tension elements
suéh as cables may go slack and do not contribute
to the strain energy of the structure). Fortunately,
the flexibility of the emploved funétion minimi-
zation technigue enables cansidering such situations
with relative ease.

A by-product of the present studv is +o investigate

the effect of adding the nonligear term %(%% 2, which is
usually neglected, to the strain-disélacement relationship

to show the effect of retaining this term in the formulations.

Chapter II presents the nonlinear formulations used



to'caiculate the strain energy of planar frame element as
well as,the analytic gradient components of the element
strain energy with respectftb the element end g;obal

displacements. The concept of the Eulerian coordinates is

explained aﬁd'the effect of the different.nonlinear terms
in the. strain-displacement relationship-is also éemonstrated:
" A discussion to Bogner's formulétioné‘(Ref. 25),‘which‘ére
only applicable to'tHe pin ended truss eiemént, is presented
to point out some qpestionnable‘interpretaﬁigns which cause
some inaccuracf in satisfying the equilibriﬁm in the deformed
configuration.

‘ Chapter III expléins the logic behind the introduction
of the minimization technigues into the structural,anaiysié
. problem to create the energy search method. The Fletcher-—:
Reeves conjugate gradient method is explained as the algorithm
emploved for the function minimization. The concept of
scaling transformation is also discussed as applied in'thq
rpresent work.

Chapter IV is devoted to the numerical evaluation of

the formulations developed in order to assess the efficiency
and accuracy of the proposed formulations. The numérical.

examples were carefullv selected to cover the various degrees
of geometric nonlinearity in frame structures.
Chapter V considers the problem of gecmetric non-

linearity as it pertains to the analysis of tall guyved.

ransmnission towers. An example tower is solved to show



.the nonllnear behav;our of. these towers and also‘to
predict the lnstabllltv llmlt under 1ncrea5lng wxnd loads.

In Chapter VI, conclaSLOns are drawn to show tne'
efficiency and merit of the proposed formulatlons and ‘method
of analysié. The difficulties encountered durlng the research
. are also mentloned as a gulde for further studles. Recom;
mendations and arogectlons are finally glven ‘for future

investigations.



CHAPTER II

- GENERAL FORMULATIONS . .

2.1 General-
In the following, the formulations‘necessary for
the nonllnear analysis of the general planar frame element

-

are presented within tneALramework of the energv search

.

method. Expressions for the element strain energy, as well’
as its analytic gradient, are obtained since both are
required for the implementation of the emploved function
~minimization techniqﬁe. The displaeement functions are
also given to describe the geometry of the fiﬁite element
in the flnal deformed state. ‘

A nonllqear straxn—dlsnlacement relaelonsnzn is
employed tp,reflect the coupling between the transverse aﬁd
she axial stiffnesses. The prestressing effect 1s also
included in the seme relationship. In ordexr to study the

effect of retaining the nonlinear term_%u; in the strain-
Geformation relationship, the fofmulations are first pre-
sented including this term, then the necessary changes to
exclpde the effect of the term %u; are reported. The use
of Eulerian meoving local coordinates is introduced to
formulate the eguilibrium equations in terms of the final

deformed geometry.

2.2 Eulerlan Local Coor 'qaees {(x,v), FPig. 1

The concept of employing moving local coordinates

d
!

attacﬁ?d +0 the element is introduced 1n order to serve °

17



the following ourposes:

a)’

b)

<)

fu

18 .

Lemm e

Allows formulétingAthe elément_strdin energf.with‘
respéc; to the deformed configuration which .
insures sat;sfacfion of equilibrium in terms of
the'deforméd position of the structure. -
Separates the contribgtion of rigid body movement. ' .
from'stiain-inducing‘movement._ |

Justifies the use of the small rotation strain-
displacemént relationship in the cases of large

nodal displacements. This can be illustrated

by compéring the rotations with respect to the .
x, v axes (Fig. 1)} with the corresponding

rotations with respect to the X, ¥ axes. It is

clear that however large the nodal rotations are
with resvect tc the i,.§ axes, they :emain small
with respect to the moving x, Yy coordinates so

that the strain-displacement relaticnship, which

is based on the assumption of small rotations,
remains valié. If required, the accurac§ can be
improved by increasing the number of elements

comprising the frame member.

Allows retaining less nonlinear terms in the

strain-displacement relationship. It was proved

in the case of a truss-element that the nonlinear

1.du, 2 , :
term 3 3;)2 has to be retained in the strain-

displacement relationship if Lagrangilan (undeformed)
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coordinates are used in Formulatlng the stiffness
;_equatlons, otnerwise, some fictitious strains will
develop_unde: rigid body ro;ations. \If‘éulerian
¢oordinatés are ‘used,
l(du

Figure 1 shows the frame discrete element before and

the dmission of  the non-="

linear term is justified.

after deformations. The X, ¥ axes are the-reference global

‘coordinates where the displacement E, v are measured along

X and

fining the direction of tne elemen*\.ﬁ'tne undeforﬂ

respectively.

¥ The X, ¥ are the loecal coordlqates

-

Qe

=
.

pOSlthn. The undeformed length of the element, &, is

-

expressible as

2 [R, - R+ (&, - 81" (2.1)

¥

where Xo’ YD define the position of end ? while X _,

- -

1

7
, ¥

»

cdefine the position of end ¢ with respect to the axes.

Note that x, v are =he emploved Eulerian coordinates where

the displacements u, v are easured along the x and v axes,

a
~

respectively. SD and

o

and g with respect

12

o) the x axis.

at to

u_ <defines the movement of end g along

distance. between the element tegminals
State defines the chord length s which

follows

Tepresent the slope of the tangent

The displacement
the x axis. The

P and ¢ in the deformed

may be expressed as



'

P v, ané M, are the end forces at ené p while P_, V and

ﬁq ieptesént the end forces at end Q.
In light oﬁ employing‘Eulerian meving gpordinates,'

yeferring to Fig. 1, & discussion of the develooment of

the element strain energy is now in order. Beforelépplying

» r

the external loadgé,the element is straight and oriented
in thé undeforﬁed state. At that stage. the elément‘ -
potential energy is mihihuﬁ or zéro depending on whether

the structure is_prestr;séed or not, respectively. As the
external ds are applied, the element undergoes two basic
tyvpes of deformations classified as rigié body aeformations
and strain-inducing deforﬁaﬁions. During the rigid body
motion; +he element rotates tﬁrough an angle Gr with respect
+to the % axis. The Eulérién tocal coordinates move with

' the element in the deformed éosition. Positively; no
additional strains are induced in the element due to this
rig}d body motion. Besides the rigid podyv motion, the
element 1is deformed withrrespect to the %, ¥y axes o satisiy

the geometrical admissibility with the rest of the noces

and elements comprising the physical structure.. Three

D

basic degrees of freedom, namely U, 8 and 8 (Eig.'l),

are assigned o the element in order to absorb +he potential

-

energy of the end forces via inducing strain energy along

+he fibers. The other displacements, namely U, : Vg and V.

- =

characterize the rigid body motion and are imposed to be

-ero with respect to the x and ¥ coordinates; rherefore the
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corresponding end forces Po' VD and Vq do not appear in

the formulations.

'

2.3 Strain-Displacement Relationship
The strain‘in the frame element can be generally

expressed as
(2.3)
where c(x,v} is the strain at any point in the element,

s is the initial centric prestrain due to prestressing,

€4 1s the strain of deformation which is given as (Ref. 32)

£, = 1 = VvV + %(Vi‘+ ul) (2.4)

”
a X XX X

The first and seconé terms in Eg. 2.4 represent

.

the conventional linear terms g¢giving the strain due to
the direct axial and bending deformations, respectively.

. . . 1 .
The introduction of the nonlinear term 3 i, besides

-

accounting for relatively large rotations, reflects the

coupling between the transverse and the axial stiffnesses

as will be shown when deriving the governing equilibrium

equations. It is also well known that the mere presence

. ~

of this term, without regard to magnitude, has a decisive

influence on the behaviour predicted in stability critical:

situations. The nonlinear term %ui is retained to avoid
the possibility of ﬁictitious strains associated with the
rigid body motion. Meanwhile, it is also intended to
investigate the effectiveness of employing Eulerian

coordinates in compensating for the comission of the
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nonlinear term %ux in future studles. - .

2.4 'Frame‘Elemént'Total Potential Energy

The following general assumptiqné will be considered
'iﬁ the analysis: . | ‘

a) glements are strgight and prismatic between
nodes in the undeformed state. |

b) -Stressing the elements ddés not apprgciably
change their qréss-sectidnal area.

c) The external loads are applied at the nodes and
are assumed to 5e conservatige in thét their
d;redtfoné remain unaléered as the strﬁcture
defoims. | |

d) ‘The final resulting stresses.aﬁe within the
elastic range'dnd:tﬁé“matqrial is lineafly

elastic, i.e.,

s = E& : . (2.5)

e) The elements ‘are rigidly connected at the
joints unless- otherwise specified.
. - The strain energy density of a general prestraineé
frame eléﬁéﬁt.induged due ts the application of external

loads is defined as (Fig. 2). e 4 €
- é

M
g

éu = o de +.. g de . (2.6)

Under the assumption of ideal linear elastic material

behaviour (Eg. 2.5), and ubon integrating Eg. 2.6, the

.,,", ]
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following relationship, results, . -

E,..

. au = 3y + &) L(2.7)
or 7 g
av=2e (2.8)
- > . . . -

'where § is the total strain in the element defined aé
é-ﬁ g_ -+ ﬁ. - vV + i{vz + ut) - (2.9) A
o 2V 'x X ' ‘

P - XX

Integrating Eq. 2.8 over theﬁvblﬁme V results in the

-
-

strain energy stored in the element:

' _ B ci o ' :
US——Z-/- av | ‘(2.103

: . % i :
Integrating Eq. 2.10 over the cross;section and by

substituting Eg. 2.9 into Eg. 2.10 results in-the‘nonlinear
integral form of the prestrained frame element strain
energy s : , o
. EA ‘ 1 2 2y 72 I 2 \

= = + + Z(v> + + = v

Us 2 jn{[Ep Ux 2(vx ux)] A Vxxj dx

L . O ~ -

In light of the interpretation of the development

of the element strain energy discussed in Section 2.2, the

work done bv the element end forces is expressible as

W_ =P § :
W Poug + M S+ M S, (2.12)

= = 3

under the assumption ofr small rotation with respect to the

X axis, SD and Sc may be replaced by V. and'vx , respectively;

e
8]

therefore, Eg. 2.12 reads
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i - | ‘ N -
. The total potential energy of a structural element

is simply the strain energy of the element minus the

potential -of the loads acting -on the element:

‘ T, = Uy - W S 2

Therefore, Egns. 2.1l and 2.13 give the integral form of’
the frame element potential energy as expressed with
respect to the.moving x, v axes, which can be written as
< , . )
EA

- -= = = a - 2 E N \"'
P\ 2 {[?P e T3l +'uY)] TR Vi ¥

oMV } (2.35)
o] - q’/-

-

C- {P u + M v‘
g d X

B * . . - - . . i . o s .
The variational ae%xvatlon-of the governing differential
. ) - n .
equations as well as the boundary conditions are presented-
in Appendix A and the interpretation of the boundary’

conditions is discussed in a subseguent section.

-

2.5 Field Eguations and Boundary Conditions

The following set of field equations and boundary

conditions are obtained after performing the variaticnal.

N

process on the total potential energy integral expression

shown in Eg¢. 2.15.

Field Ecuations

. 1,2 . .2 . 1.2 Lz -
{[€; +ou t S(vy A ux)] + ux[ep + ou, + Slvg *+ ux)]} =0

Qﬂl u
"

. (2.16)



Boundary Conditions Egquations

X

-
-

_fr ' 1 . ' . 1, .
AE([E + u + (v +'u 1) +u [¢ +u + (v + u- )])
‘ X 2 X 2 x 2573 X
] P Xg : Xg Yq X P Xg Xg X
- Pq squ =0 (2.18.a)
-AE(FE +u. o+ v o+ eyl +u. [e +u + =(vi o+ ol )ﬁ
3 : o 2Ny ¥ ¥p f *o > T
sOup = 0 ‘2.18.b)
hY -
-~
I * 2 s ' -
—AE(E- e~ Vool Ful o+ (vE o+ o )])é dv_ = 0 (2.18.¢c)
i % nxn_ hq = xq‘ .2 Xq xq g :
ae (X v - v, [ +u. o+ = + uy] {ov (2.18.4)
y A U Xoo B o oUx_ 0 2% > V"o T
B 2 P B2 2P
EIv.. =~ M_|3dv. =0 ‘ (2.18.e)
? RGN TS -
EIv + M (Gv =0 , (2.18.£)
j e Py O%

Equations 2.16 through 2.18 were obtained with the nonlinear
l:.s P . . . R -
term Eu; retained in the strain-deformation relationship (Eg.

.9). A similar set of eguations is obtained when +he +term

[STEE N
B

is omitted from the strain-deformation eguation as follows:

Field Egquations

) =0 {(2.198)
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I A . l 2y o o . .
7 Vxoxx dx(“p Tut 2Vx??x 0 o (2.20)

'Boundary Conditions Eguations

;L_ 2 _ . - -. . . . )
{ ameg v+ 3] By} dug = O | (2.21-2)
a . < ;
{ ~AE(s_ + u + Iy? )} du_ = 0 - (2.21 5)
P X 2'xX TP : T i
: P P ‘
I l '\l . - .
{ -AElz v . - (e + u, + FV )]}‘ov =0 (2:21.¢)
A XXX Xq P X 2 Xgq g /
{ AE[Z v R R RN 1] Vev, =0 (2.21.8)
TR T X. D x 2'x f "o ceess
' NS P - e ( 2
) { Evax - Mq} v - = a (2.21.e)
‘ 3
- { EIv . + M.}av, =0 | (2.21.5)
XX o) Xy .

Equation 2.16 describes the governing differential eguation

in the x directidén which may be rewritten as
-~

4 i,..2 2 _
Eﬁ{(l + ux)[ap+ux+5(vx+ux}]} = 0 (2.22)

L

In order to simplify the solution of the governing &ilifferen-
tial eguations (Egns. 2.16 and¢2.17), the assumption that
the direct axial strain u  1s negligible compared to unity
is applied. Therefore, 'Edn. 2.22 reduces to

%E[ep ru v swieud)] =0 (2.23)
which is. the final form of the governing diffdrential

equatign in the,%ongitudinal x direction in case of retaining
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. o Lo s e o ' .
the nonlinear term 3u. in the strain-displacement relation-

A

ship. Equation 2.19 gives the governing differential

b ol
W

equatLOn in the X direction when the term zu’ is omitted;

2
" the assumption that a. is ﬂegllglble comsared to unltv‘
needs not be apéiied in this case. | |
Equation 2.17 shows the governing differential _
equation in the v dlrectlon when the term %ut is retained
in the straln-deeormatlon relatlonshlp Incorporating:
Egn. 2.23 into Egn. 2. 17, the final form of the gove*nlng
differential equetion in the{y direction is obtained as ,
Lo m (g o * dh s sbdvg =0 @2

2
In case of omitting the term %u

From Figure 1, the following imposed boundary condéi-

tions apply

99 = 0 0{2.26.a)
vP = Q (2.26.b)

v_ = . - 2.26.
g 0 _ { 6.¢)

‘Therefore

. Oup = 0 ‘ (2.27.a)
) cvp =0 (2.27:b)
v =0 (2.27.¢)



On the other hand, u,, v and v are not prescribed a

. P a _
priori and can take any arbitrary values; therefore, the

following set of natural boundary conditions applies:

u = s =& E (2.28.a)
= . , )
v, =19p (2.28.b)
X
P
v, =3gq (2.28.¢)
Xy .
Uor Vo and Ve need not be zero which automatically
= i) g : '

implies that the expressions betweeén the braces {‘} in
Eqns. 2.18.a, 2.18.e, 2.18.% and also in Egns. 2.2l.a,.
2.21.e, 2.2i.f have to be equai to zero.

| At thi? pdint, the writer would like t§ draw
attention to the questionnable interpretation of the
boundary condition (Egn. 2.28.a) given by Bogner 'in £, -
25.l Bognexr, who limited the formulations to the analysis
of pin ended éruss—type structures, classified‘the bouﬁdary
condition given in Eg. 2.28.a as an imposed boundary con-
dition. It is the writer's opinion that there is no
justification to classify th.l2.28.a as an imposed bouncdary
lcondition, ince it was always found that when the struc-
ture's total potential energy is minimum, the expression
between the braces { } in Egns. 2.18.a or 2.21.a is equal
to zero in the limit when the direction of the tangent at
of coincides with the difection of the chord defined by the

X axis. Meanwhile, the variable s, defining the chord
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<
lengﬁh, which appears on the right—handﬁside of Egn. 2.28.a
is a function of the unknown displacements at-the end of |
' the element. Thérefoﬁe,_the vglﬁe of s may not> be prescribed
a priori and impoéed‘oﬁ the element. As will be seén later
the misleading interpretation of'ghat boundary condition

(Baqn. 2.28.a) affects the,force—deformation relationship

" in the axial direction.

2.6 Axial-Bending Ccupling Constant (k%)

IntegrQPing Eqn. 2.23 with respect to x results in

e+ u_ + l(vi + u;) = constant (2.29)

D x 2
Multiplying both sides by % results in the axial-bending:
coupling constant, k?, defined as

-

k- =

H|

. L1, 2 2 ' )
L-"p Tug f(vx * ux)] o (2.30)

In case of omittirig the nonlinear term %ui £rom the strain-
deformation relationship, the constant k® takes the form

2 _ A 1.z
k° = f(Ep + u + ZVX) (2.31)

At this stage the’formulations are split into three divisions
according to the value of the constant k? being negative,

zero or positive, respectively.

5.6.1 Compression-Bending Coupling (k2<0)

~

In this case, the numerical value of k?, as defined
in Eq. 2.30 or Eg. 2.31 is ;egative which implies compressivé
strains along the deformed controidal axis of the element.

Substituting Eqn. 2.30 into Egn. 2.24, the governing



tion in the transverse direction is
= 0. (2.32}
Dgfining . ki = -k° (2.33)
Equation 2.32 reads
L .kl vxx_=-0 (2.34)
The solution to Eqn. 2.34 takes the form
V(xXE = A151n klx + Blco§ klx +.Clx + Dl (2.35)

The constants of integration Al, Bl’ Cl andé Dl are deter-

mined from the following imposed and

30

ditions.

at x =0 ;
, v

v
X
at x = s .
., v
v
. x

' The expressions for the four

natural beoundary con-

=0 (2.36.2)
=8, - (2.36.b) .
=0 (2.36.c)
= eq {(2.36.4)

integration const®ants are listed

‘helow. ‘
- ; - T o & - .
. - EP(l kls sin kls cos kls) + uq(cos kls 1) (2.37.a)
1 kl(2—2 cos kls - kls sin kls)
g ; .y - s}
. VEESln kls kls cos kls) + Bquls sin kls) $(2.37.b)
1 tkl(2—2,cos kls - kls sin kls)
-~ — -~ 1 - ‘
. - sp(l cos kls) + Ua(" cos kls) 3.37.0)
1 (2-2 cos k.;s - k.s sin k.s) v -
1 1 177
. cp(kls cos kls - sin kls) + UG(Sln kls - xls) (2.37.4)

kl(2—2 cos Xk

ls - kls sin kls)



A linear displacement function ‘is assumed for the displace- - ' '

ment in the axial directidn as follows -

u(x) = §§5 x o (2.38)

The constant k, is calculated from the following relationship

T

uq pll 0 0 W uq W ) ‘
-I k: ' ‘ ' . \\
L= ¢ o D D sV (2.39)
5 \r 22 23 1% ¢ 27
‘g 0 Dy, Ps3 *q
where
1 {s—l o L,s=%, "\ ' .
D = 2 22 &5 4+ =(==) (2.40.2)
= 3 )
11 ug S D 2 s f .
— 3 2 iy L . ,
D22 = {(kls) + (kls} } sin kls Cos.kls 2sin kls) +

(% s)( 4cos <ls + 2cos kls + 2) +

{2sin k s cos kls - 251n k s)%//

{4kls(2 - 2¢ces kls - kls %ln kls)*} (2.40.b)

_f s ey s 2 ‘
D23 = i(kls) S cos “lS) ; (kls) (351q kls) +
(kls)(—s + BCOSs kls) 4 (Z%ln kls - 2sin kls cOoSs kls%y/

{4k s(2 - 2cos-k.s - k,s sin kls)z} : (2.40.¢)

g 17 T
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also 032 =‘D23.-
and D33 = Dy :
due to the symmetry of the problem with raspect to the end
‘rotations &_ and 38 . . ' | .

2 g ~ . e

In case of omitting the nonlinear term %u“,.the
texm D,,, only, will be cﬁanged and.réaas
.1 s=2 " . .
D, = Ecz;{ =+ ;p} _ . ©(2.41)

When the term %u; is omitted, the constant ki may be found
by obtaining the exact displacement function imthe axial

direction and satisfyving the axial end conditions as follows:
Susstituting Eg. 2.33 into Eg. 2.31 results in
o

-A 12

K =1 g Fu + 3 . (2.42.2)
rearranging terms .
I <12
ux = _i kl g? 2Vx (2.42-b)

integrating . both sides with respect to x results in

u(x) = :% kix - e.x -]/%v;dx + R

where R is the integration constant. The value of the inte-
gral )[%v;dx is obtained from E§ 2.35. Thé two constants

k; and R are determined from the two boundary c0ndifiops
shown in Egns. 2.26.a and 2.28.a. The resulting expression

2 . . . . g g - ’ .
for kl 1s identical to the expression shown in Eg. 2.39 with



Dll shown in Eg. 2.4l-and‘D22 e D33 and D23 = D32 glven in

Egns. 2.40.b and 2.40.c, resoectlvelv. T
Votlce that the Parameter kl appears on eoth siées
of Eq. 2.39 ‘and it is VL*tually 1ﬁpossible to separate it
on one side of the equation. Therefore, an iterative
proeedure is employed to find the value of the parameter
kl. The starting value fof the iteration is based on’
'assuming a eubed polynemial for the transverse displacement

instead of the‘trigOnometric displacemeht functidn (Eg.
'é.357. More details aﬁout finding the'compression—bending
coupling parameter kl are given in Appendix B.
Substituting éq. 2.30 for Eg. 2.31 in case of
1

omittimg the term Zug) into Eg. 2.11, the element strain
iRg P

N ]

_2°x
energy can be rewritten as : a 2
. s .
ks I* ' ,
_ EA 1 I = -
Us = = { e + I vxx)qx ‘ (2.43)
-0
The expressions for v(x) as well as ki have already been

defined in Egns. 2.35 and 2. 39, respectivelyv. Therefore,

-

the element strain energy, as calculated with respect to
the Eulerian ccordéinates x and v, is
@

uq kll C .G ) u

fie]

@
o
~
Py

>

\8]

32 "33

W2



where . : . - I .

' E s ki T° ;T -

kll = TT:— . L4 - (2-45-3-)._
3ug |

-
-

= ‘ ‘ 3 - ' g - -
k22 EI kl L‘kl y© o+ (kls) (=2sin kls + sin kls cos kls) + (kls)

—n 2 e (et edm L . Vel
(-2cos kys + 2c0s kys) + (_251n ks co; ks + 2sin klsﬁ

- - ' 2 ‘ : 2.4
//;(2 zggs‘kls kls s}n kls) H ‘ (2.45.b)

- - I . 2
k23.'— E‘I kl {{]\15) {=cos le) + (kls) {sin kls) -

N . ‘ _ 2 _ B ) ) N .-1
(kls)(zcos kls 2C0s kls) + 2s;n kls + 251; kls cos kls%

//;(2 - 2cos kls - kls sin Kls)? (2.45.;)
Again k33 = ko5 -
Ky = K33

which shows the inherent{symmetry of the pr%blem with respect

to the end rotations.

-

2.6.2 Case Of No Axial Force (k2=0}

Tn this case the numerical evaluation of the constant
x* vields a zero (or a negligible) quantity which implies
zero (or very small) strains along the Seformed central
txis of Ehe elemen£, respectively.

The governing diéferential eguation (Eg. 2.32)

reduces to the form
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v =0 : C (2-48)
XXX - - . :

Thé.soiutisn to Eg. 2.46 is
o3 2 5
X +.§2k + Cpx + D, (2.47) .

The constants Az, Bz} C2 and D2 can be determinedffrom the’
same boundarv condltlons glven -in Eqns. 2.36.a through.

2.36.4d and the resultlng constants are

eD + § : d
A, = 2 (2%48.a)
: 283 * ec '
] Bz. = = -—-"-——S——" . : (2.48.b)
c, = cp | (2.48.c)
' | f
Dy = 0 - _ (2.48.4)
The integral form of the strain energy (Eg. 2.43)
reduces to s
ZEA [ I
Ug > 3 vgxdx (2.49) .
; . 0 ,
and the expression of the element strain energy 1s
L T pur i’ ”
uq} Kyq 0 0] uq}
o = Lt 0 X X s L (2.50)
s 2 } D 22 *23 3e .
’ s | 0 13 k §
53 | 32 ' 33_ | g

where



| o 4EI -

' Kt 0 25l
. ' : _.ZEI N
- . . . k23 - S - ) . . (2f51..C)
Also . e ] :
‘ k33.% %22
o IR PRt

*2.6.3 Bending-Tension Coupling (k*>0)

In this case the numerical ﬁalue of the constant k:
is nos;tlve, meanlng tensxle stralns eYlSt along the <deformed
centromdal axis of the element.

The governing- dlfferentlal equation is shown in, Eg.
2.32. The solution of this governing differential.equation

is’

Lvix) = Ab sinh kx + 53 cosh kx +,Céx + D3 (2.52)

-

The constants of integration are determined from the
four boundary conditions shown in Egns. 2.36.a through 2.36.4

and are defined below

. e (cosh ks - ks sinh ks - 1) + 8_(1 - cosh ks)
By = k (2 cosh ks - 2 - ks 51nh ks) ; (2.53.2)

S {ks cosh ks - sinh ks) + e {(sinh ks - ks) .
B3 = - k(2cosh ks - 2 - ks 51nh ks) (2.53.b5)

8 (éosh ks - 1) + 6 _(cosh ks - 1)
- P g (2.53.¢)
3 (2cosh ks - 2 - ks sinh ks) e
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8, (sinh ks - ks cosh ks) + 3 (ks - sinh ks) .
p. = -B g T (2.53.4) ¢
3 k(2cosh ks - 2.~ ks sinh ks) . T

_ The constant k is evaluated u51ng the same orocedure
prevxouslv emoloved in the case of. compress;on—bendlng ‘
coupl;ng and its numerical value is obtalned from the

following relationship,

~ !T e — -
uq Dy 0 0 uq <
Ik _ _ .
A - <ep > 0 Das Doy qep > (?.54)
& 0 P32 D33 s '
where
1 s~ 1 1
P11 = &= {'E‘ ey v 35 f (2.55.a)
q .
Dy, = {(ks)’(—l) + (ks)®(sinh ks cosh ks + 2 sinh ks) + )

(ks) (-4cosh® ks + 2cosh ks + 2) +
(2sinh ks cosh ks - 2 sinh ks% // r

{4ks(-2 + 2cosh ks - ks sinh ks)z} ' (2.55.5)

Dyy = {;ksja(cosh ks) + (ks)?(-3sinh ks) +
(ks}) (-6 + 6cosh ks) +
(2sinh ks - 2sinh ks cosh ks)}//

{4ks(—2 + 2 cosh ks - ks sinh ks)z} {(2.55.¢)
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o+

| Also D3, D5 N
. P33 = Dy
In case of omitting the term %ut from the strain-deformation

relatlonshlp, the expression of Dll reads

D, =.%3.{§§£ + s } (2.56)
S} P

Notice that the parameter k has to be obtalne via
emploving an lteratlve procedure, as was dene in determining
'kl,Sane lt apprears on both sides cof Eq. 2. 54. The starting
value for the lte*atlon as well as the iterative scheme
employved a;e shown in Appendix 3.

The strain energy in that case is

rué'T .-Eil, 0 0| ruq-
Us = % 1% f o K2 X%y3 m 1% 1 (257
) 8 | _o Ky, kB%_ eqj
Where‘
- BS k* 1% | , (2.58.a)

k =
11 A ué

-

ky, = zzk{(ks)3 + (ks)? (-2 E:;;\$s + sinh ks cosh ks) +

(ks)(zcosh ks - 2cosh?® ks) + (2sinh ks cosh ks - 2sinh ks#

/2(~2 + 2cosh ks - ks sinh ks)2 : (2.58.Db)
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-

-

k23_=1EIk{(ks)3(—cosh ks) + (ks)®(sinh'ks) +

(ks) (-2cosh' ks +.2cosh® ks) '+
(2sinh ‘ks - 2sinh ks :cosh ks)}

-
-

//2(—2 + 2cosh ks - ks sinh ks)

Also k33'= k22
Kip = Koy

2.7 Analvtic Gradient Components

The analytic gradient comﬁonents of the.element strain

energy with respect to the element end global displacements

E 4

- - * .

&,% ,i_, 8,7 and?d
up, o’ ' Bqr Vg and g’ are reguired to gormulatelthe

" gradient vector of the total potential energy function of

the 'structure. This will be accomplished in three steps

as follows. _ .

2.7.1 Gradient Vector Defined in the Euleriaq/%x[y)

Coordinates
The vector {Ge} defines'the analytic gradient com-
-pPonents of the element strain:energy with respec£ to‘the

displacements u_, 8_ and € .
g’ P g

-~

{(2.58.c) -

—

-



' Py

“ . =

oy

-
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(2.59)

While the'sﬁrain energy would idealy be éxpressed as

=l

-

a.function of uq, g and'eq only, the particular expressions

of the strain energy derived herein, Egns. 2.44 and 2.57,

avolve kl or k, respectively, as a féukth variable subject,

however, t© a constraint, Egns. 2.39 and 2.54, respectively.

However, the vector {Ge}-dan ke obtained as-follows

a) for k2«0

r
sU
[~}
‘\us +
=B, q
alb
s
G = < +
{ e} aep
/ oUs N
aeq

“

Qr
=
|

(3]
i
«Q

Q>
E
Lo B [ o]

Q»
D

Lo}
~

W
@
e}

o

(2.60)

where the partial derivatives on the right hand side are

obtained from Egns. 2.44 and 2.39.

b) for k=0

In this case, the vector {Ge} is directly obtained’

as shown in Eg. 2.59 where the partial derivatives on the

[N



41
right hand side in-Eq._z;SB‘aré evaluated from the strain
energy expression, Eg. 2.50: 3

: ‘ -
¢} for k*»0
; :
355 . s o |
uq k uq
" 3u 3U L
- S gk
{Gq Poo= o LEM MR TR (2.61)
aUs N Vs ax
38 3k av
q q

The partial derivatives on the right hand side are

evaluated from Egns. 2.54 and 2.57.

}2.7.2 Gradient Vector Defined in the lLocal X,V

Coordinates

The gradient vector {Ge} of the element strain energy

with respect to the six displacement components GD;'GE,_KD,

B, Gq and kq is obtained by transforming the gradient

vector {Ge} from the x,vy Eulerian coordinates to the local

Lagrangian c¢oordinates X,v using the following relationships,

Fig. 1.
L ag = s - & (2.62)
ep = ip -8, (2.§3)
5= Tg ~ 0, | (2.64)

Notice that both of the chord length s and the rigid body

rotation §_ are, in turn, nonlinear functions of the four

[}



. , S a2

displacements.ﬁb, Ga' Gq and Gé according to the foliowing,

-

redationships,

S

- “ . oot .

= L - = - i ‘
{( + O 8%+ (P - V) } ,(2.65{
6 = einlla " » - .. (2.66)
r . - s ‘ .

The gradient vector {ée}'oi the element sfgain energy can.'

be obtained via the following multiplication operation

R ] R CH

6x1 " 6x3 . 3xi

(8]
.

h
-~}

~where {G_lis definéd in Eg. 2.59.

3‘QT AU, BU_. BU_. 3U_ SU,  3U
S| =(

3d v_ . 3d v 3
cP Bp Blp oqach

-

The nonlinear transformation matrix [T] is given as



T 38 3¢+ |
i 3u ‘Bu- 3 o
. Ju 3 3

g % °q

Sﬁp aﬁ- aﬁa »
au‘ BQP aea
BAP GKP Skp
[T _ 3 2%y 39

6x3 3a aua 30

< T g
3y 38 38,
v 'avq an
' Euc 3ea BGG
: L qu Skq qu

(2.68)

The elements of the [T] matrix are given, explicitly, in

Appendix C.

2.7.3 Gradient Vector Defined in the Global X,¥

F
Coordinates

Finally, the {Ge} vector, given in Eg. 2.67 is trans-

formed from the local X,y coordinates to the global R%,%

coordinates via the linear transformation matrix as shown

in the following relaticnship.

(.} <Lz ] Jat

6xl 6x6 pxl

(2.69)
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where (é”e} is defined in Eq. 2.67.

represents the analytic gfadient components of the element

strain energy with respect to the six global displacements
uP, vP. N uq, vq,_and g [T] is the linear transforma :
tion matrix. The elements of this matrix are the direction’

cosines of. the undeformed frame member with respect to the

.global X,¥ axes. The [T] matrix is given in Appendix C.’

2.8 TForce-Deformation Relationships

The total potentiél energy of the frame element 1is

basically expressible as

+

where Ug is the strain eneféy expression and is given in
either of Egns. 2.44, 2.50 or 2.57 dependéing cn the value
of the constant k‘ being negative, zero or vositive,
respectively. W_ is the work done.by the developed end
force defined with respect'to +he (x,v) EBulerian coordiéates.
W is explicitly given in BEg. 2.12.

Applying the principle of stationary potential\energy

£o +the discrete element, the following relationships result:

cﬁo SUS
-éTl‘- = T - Pq = 0 Y (2.70.2)



which iméliés that

Alternatively, the value of

vid Egns. 2-18.e, 2.18.% as
F.J

M
D

ey

M
<

which yield the same values

expressions shown in Egns. 2

be noticed that the agreemen

force components M:'

- =

¢y expressions given in Zgns. 2

- 45
aU -
—= - M =0 (2.70.b)
3s, o « ST
BUS‘ .
—= - M =0 2.70.
e, @ (2-79.2)
33U .
- .ru_é (2.71.a)
q
3y
- P
L3U . -
= ﬁi . (2.71.¢)
q
MQ and Mc can also be obtained
\\)J
—Evax (2.72.a)
EIV (2.72.b)

v b

obtained for the and Ma

-

.71.b and 2.71l.c. It should

t between the value of the

M_ as’ obtained using either of the

“

.71.k and 72.a and Egns.

2.7l.c anéd 2.72.b, respectively, is expected since the

orocedure is basically the s
2.72.8, the variational prin

integral form of the element

anme.

In Egns. 2.72.a and

ciple was applied to the

potential energy function.
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‘ﬁeannhlle, the exoressrons shown in Eqns. 2.7l.b ang 2.71;c
were obtained by mlnlml lng the element ootentlal energv
expression ‘orm (Eqns. 2. 44, _.50 or 2-37). Equatlon
2.?1.a_g1ves the axial force along the chord llne defined

by the X axis (Fig. l). ,If the natural boundary condltlons
shown in Eq. _.18 a (oxr Eg. 2.2l.a) aré emploved to obtarn
the value of Pq, the resultlng force represents the component
of axial force as given by Eq. 2.:l.a along the tangent at
lqi In’the imit, when the nnmbeg of eleﬁents'comprisinq

_xhe frane member is increased, the value of P obtalnec

T ‘ g
from either Eg. 2.71.a ox Eq. 2.18.a (or Eg. 2.21.2) will

be the same. For small deflection problems, the difference
between P _ as obtainec from Eq. 2.7l.a er Eq..Z.lS,a (ox
Eg. 2.21.a) is negllglble.

Bogner in Ref. 25 gives a force-deformation
relationship which 1s questlonnable es‘to whether static
equilibrium in +he deformed configuratiOn in the cases of
large deflection problems of trusses can be satisfiec. The
suggested formulatione when applied to the truss element
exactly satisfied equilibrium in the oeformeo configuration.
In order for Bogner's formulations to satisfy tne equilibrium
inq the deformed state, the axial force must be obtained by

differentiating the strain energy expression given by Bogner

with respect to the displacement u_; +he numerical value of

-

the resulting expression gives the value of the axial force

-

which satisfies the equilibrium in +he deformed configuration.
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< . .
Since the displacements Q. Vp and Vq are imposed
to be zero with respect to the Eulerian coordinates (Fig..
1), therefore .the corrésponding force components Plr
and Vq are obtained from the static eguilibrium of the
discrete element as follows: .
P = -D 5 =
. | s Py o (2.73.a)
Vo= S+  (2.73.m)
© s p Q _
Vo= TRen o+ om) (2.73.¢)
q SR q - )
. ('- '



¢ ' CHAPTER IIT.
METHOD OF ANALYSIS : i

3. l General

. -

ThlS chapter descrlbes the. energv search method as
- applied in th%koresent work. ’The'lntrOdUCthn of the
optlmlzatlon techniéues into the structural analysis ﬁiobieﬁ“
through Fhé principle of stationary potential energy is
'explained.f | R | ‘

The energy search method reﬁains the flexibility of
dispréte element idealizations while impr;ving the Dredicﬁion
of the structural behaviour by avoiding some of the customarv.
llnear121ng assumotlons. The flexibility of the energy search
method in accountiq Zor elements going out of service under
loading “is illustrateé. The relative ease of handling the
situgkions where somé of the displacements are preSéribéd is
also shown. ' - -

The method of Flefcher—Reeves is explained as the
algorithm used to minimize the total potential energy function.

' Detailed fé&mplations of the method are given in Appendix D.
| The concept of scaiing the wvariables defining the'.
space of-search is explained in +this chapter with the necessarv

formulations given in Appendix D.

3.2 Total Potential Enercgv of a.Structural Svsten

-

For a structural system of I elements, the strain

energy is, simply, the scaler sum of the individual element

-

48 .
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strain energies:

U(i)

| U ©(3.1)

., U=
- : i

W1

-

‘Where I.is the total number of elements contributing to the

o (1)

total strain energy of the structure and Ug is the strain

-energy oI the i th frame element given .in Egns. 2.44, 2.50

-

or 2.57, depending on whether the element is in compression-— : -
bending ‘coupling, only bending or tension-bending cougling,
respectivelyv. .

If any element goes out of service during the search

' process, the contribution of that element into the structural
- .

strain energy is simply neglected. This situation is usually

o

" encountered when tension elements, which exhibit no stiffness -

in compression (e.g., cables) slacken under certain loading
~

conditions. It should be mentioned that since the strain
energy is a scalar guantity, it can be numerically evaluated
with respect to any: system of coordinates. For simplicity,
the element strain energy, in the present studv, is calculated
with respect to the Eulerian moving coordinates (x,¥) shown -
in Fig. Il.
The work term is, basically, thé scalar sum of the
external loads times the, corresponding displacements which

. »
can be expressed as.

Jd
W= L -P. D. , (3.2)

where J is the total number of independent non-zero displacements



- . .

whlch represents the structure s degrees of freedom.. P;

. 3
andJDj are the_.j th load and the corresponclng j th dis-

olacement, respectlvelv. Notice that the work ‘term ls -
llnear functlon of the dlsplacements while the strain

energy 'is generallv a nonllnear functlon of the displacements.’

v

Expression 3.1 deflning~the total structure's strain
' energy when coupled with Eq 3. 2 which gives the work done

bv the erternal loads, describes’ the total potential energv
.

of the structure whlch can be cast in the following form:

: .3
SIS 3 (3.3)
1 B e

Notice that Ep is firallv a direct function oI the

-

glecbal dié@lacements defined by the gldbal displacements

vector {D}} The J components of the independent degrees

. 0f freedom together with tfe potential energy function
itselsf, HP, are considered coordinates in a J+1 dimensional

space. ' The potential energy expression (Eg. 3.3) defines a .
- ’ . . ' ‘
hypersurface in this space.

3.3 Function Minimization ~ 1 .
- The principle of stationary potential energy (Ref. ¥a

23) states that, . T SRS . ¥
! : :
. i * »

“ nof all displacementestates’ {D} wnlch satisfy
geometric admisibility, that which makes the
potential NI stationary satisfies the equili-
brium conaltlons and is the actual displace-
ment state {D}*."

»

The above.principle can be stated mathematically, as

-

\ - T
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IF

sn_{{D}). o o |
55 | =0 ; 3=1,2,...,3 _ = (3.4)
+* . -

{p} = {D}

Then
' x . o T %
HP({D})‘is stationary at {D}.

Furthermore, if

HP({D;) <EIP(€D}) ' (3.5)
for all {D} in the vicinity of {D;, then tﬁe'assoéiated_
équilib;ium position is stable. The principle of stationary
potent;al energy is eqﬁivalent—to theﬂdisplacement method.

According to the principle of stationary potential

energy, the structural analysis problem is viewed as a
C -

'special case of the mathematical programming problem known

as unconstrained minimization where the variables can take

any arbitrary values to minimize the potential energy func—

tion IIP. The structural analysis prc&lem, as described

from the mathematical programming standpoint-is described

as, ‘
GivenIIp({D}) ‘ 1§

’ Find {D}

. sueh that T _({D}) is minimum:

. . p . - . L

The necessary condition for the occurrence of a
%k

local minimum at {D} = {D} is
ann({D?)
—_— = 0; < ] = 1,2,...,0 (3.6)

SD.

J
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Since Té,.ghen derived for geometrically nonlinear

structures is a_highly nonlinear function of‘the'disp;ace>

ment (D}, therefore Eg. 3.6 is simply é‘set oﬁ'J nonlinear

L

. equations representing. the first deriéat;ve of the potéftial

v

energy function witﬁ°respe¢t to each of the génerali;ed
coordinates {D}. ‘The most obvious approach to finding the
minimum of 15 is to éoive Eg. 3.6. Unfortunately, the

task of solving a lérge se?,of nonlinear eq ‘idns m&y_bé
very difficult. The function HD may be so compiex, such ‘-
as the kind encountered in the present study, tha£ it 1is
_virtually.impossiple‘to write it out in a-.closed fofﬁ. The
use bf-the mathematical programming tecﬁniques in minimizing
the potential eneréy-function alloﬁs powerful numerical

methods of unconstrained minimization to be -used.

3.4 Ufconstrained Minimization Technigues -

Several methods -are includeg under the unconstraiﬁéé
minimization category. ‘Some.of these methods are known as
non-gradient methods. (Ref. 28)'wﬁ§§é only the numerital

- value of the function is regquired|during the se%Fch to-@étect
_the function minimum. Other mefhods are classified as
gradient methods where both the function value as well as
its first derivative with respect to each of the unknown
variables are rgquired numerically for the minimization
process. Box in Ref. 29 presented a comparison between

'\sgyeral gradignt and non-gradient optimization methods.

Box came to the conclusion that the method developed by
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Fletcher and Poﬁell tﬁef. 30). is the most consisteetiy 
successful. In thelseme Paper, Box feécmmended‘the methedi
of Fletcher‘and Reeves (Ref. 31) as the second choice. .
It is worth mentiening ﬁhat both of the two previously
mentloned methods possess quadratic convergenee,a;.e., the
propertv that thev Wlll converge to- the ﬁinimum in a finite
numbex of_steps iZ applied to a gquadratic function (4if
‘linea;izedlformulat;dﬁs are used to Qb;ain the potential
energv function; then the energv‘function is a guadratic
and the mlnlmum wmll be - found in a flnlte number of itera-

tlons)

3.5 'Fletcher—Reeves Method

This is a quadratically convergent method which is

guaranteed, apart from round-off errors to detect the

minimum of a guadratic function of J variables in at most

~

J steps. The algorithm is explained in Ref. 31 and was

sqscessfullJ used in the analysis ©f nonlinear truss-type

‘_“ [T

structures (Ref 26) and is recalled again in the present

analysis. Both the function value T,({D}) as well as the
35 ({D})

first derivative 3
’ a

must be numerically available.
The first step during the minimization is taken

from the starting point {Do} along the steepest descent

=305 ({Dg})
6 Do

ravel are taken along the Tonjugate &irections which are

direction defined by Further directions of

a system of linearly independent directions generated

according to certain relationships. The details of FPletcher
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Reeves, method are given in Apoendlx D. In this wo*k, sub-

+

routlne DFMCG from the IBM svstem/360 sc1ent1f1c subroutlne

package was used to locate the minimum of the total . - T

:otentlal energv functlonal

3.6 Gradleﬁt Vector of the Structure

A basic requ;rement‘eor the method of Fletcher-

. Reeves is the evaluation of the analytic graident of the

total poﬁential_energy of the structure defined as,

({D}) .
—‘g—- where 3 = l,2,...,J

with respect to each of the J degrees of freedem. Since
the total potential energy of the structure is expressible
as

I =.: g . D. - (377

where I is the number of elements and is the number of

the non-zero degrees of freddom defin ng the space of

-

search, therefore the ar ly;ic.gradien vector of the

’

total potential energy function is expressible

-
-
-

I ‘ .
aM_({ph .
{—%’B—-—} ="z {G(l)} - {pP} (3.8).
, j Txl i=] .6x1 Jxl
Notice that {G } is the element straln energy gradient

vector with respect to the six-end displacements defined

-

in the global coordinates. Evaluating {Ee(l)} has -been

explained in Chapter II. The vectorial-summation -
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él{ﬁé%)} islgccomplished via the yari;ble correlatién
scheme wﬂich is explained in.Réf. 32.

The relativé‘easg in handling the problems where
some of the displacements are prescribéd - priori is
apparent when using a gradient function minimization
technigue.  The‘procedu£e is to set.the gradient component,
that correspohds to the prescribed displacement, to zero
in_the global'gradient ve;tpr defired in Eg. 3.8 to keep

the value of the prescribed displacement unaltered during

the search.

3.7 Scaling Transformation

The-method of Fletcher-Reeves, which is used in
the present work, élthpugh requiring modest storage is
sometimes characterized with convergence difficulties.
Fortunafely, the'incorpo}ation of a scaling transformation
technigue proved to effectively improve the converéencefof
the honiinear potentiél energy function of the structure.
| The scéliné transférmation, és applied in this work,
was first proposed by Fox and Stanton (Ref. 33) and was
successfully used 1in the cases of linear and nonlinear -
analysis in references 33, 26, respectivelyv.

v .
ThHe scaling transformation can be accomplished by

a simple multiplication )£t tHe individual degrees of
freedom by appropriate constaxts to rescale the coordinates

defining the search space to reduce the eccentricity of the
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objective function. The variance of the'eigenvalues,

and cousecuently, the diagonal elements,'of the Hessian

matrlx of the objectlve functlon glves a good idea of the

pPerformance of the ‘unctlon when minimizing u51ng a

closer the conditioning'number of the matrix.of second

"partials to unity, the better are the c0nvergence charac~-

teristics of the objective functlon.
The concept of scaling transformation ae given'in

Ref. 33 is based en Gerschgoiin's theorem which guarantees
that every eigenvalue of the Hessian matrix lies in at
least one of the d;sks_cehtered at a,; and of radii =
igj[aij[' Figure 3 giﬁesla graphical description of the -
possible range of the eigenvalues for an'unscaled and
scaled matrix. In the unscaled case, the circles are not

/
oﬁiw large, but are centered at widely different pointé.
The circles of the scaled matrix are all centered at the
same point and their racdii are tightly bounded above.
This can be achieved bv the scaling eransformation cdescribed
in the following. ) |
- Consider the linearized form of the ‘potential

€énergy ‘function,
1]

1_({D}) = %{D}T [x] {0} - {(D}F {P} (3.9)

. ) ‘ ..
where .{D} is the unscaled vector~of independent degrees

of freedom, {P} is the work eguivalent load vector and

j [X] is the conventlonal unscaled linear stiffness matrix .



+ ,now introduce the transformatien defined by

{g} = [R]"MD} . (3.10)

[R] = [RIT[KI[R] (3.11)

Ry = RITRy (3412)

where | - [R] = (rjj) ' (3.13)
- - _ ) l N _‘
and _ rjj.—— T}E-jj—)-g . (3-1‘%)

In this case, the matrix of second partials of the
total potential energy is simply the mééter-stiffnegs matrix
of the linear structure. |

The potehtial energv in the scaled coérdinates is
definéé by

To(zh = 32T [R] {2} - {27} (B} (3.15)

Notice thaﬁgthe value of the potential energv is
the same whether it is calculated with reference to the
scaled or the unscaled coordinates. Inside the minimiza-
tion subroutine, used in the present study, the value of
the poténtial‘energy was calculated using the unscaled
displacementrvector, while the unknown diéplacements as
well as the gradient components were always refe;red to
the scaled coordinates.

| In the nonlinear formulaﬁions, the elements of the
matrix of second partials (stiffness matrix in linear
‘formulationg) are still functions of the displacements;
however, previous experience (Refs. 22,26) revealed that
linearizing the magrix of.SECond-partials-is sufficient

to significantly improve the convergence of the potential
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energy function. Derivation of the scaling factors for the

frame element is shown.in Appendix D.



CﬁAPTgR Iy
NUMERICAL EVALUATION
General
Tt ‘ . /

This chapter is devoted to the numerical evaluation
of the” developed formulations and method oﬁ‘analysis.
Different gnalysis examples are solved and compared with .
other énalytical solutions and experimental test results to
show the potential and capability of the developed method.

The examplés were selected to cover the various
degrees of geometric nonlinearity aslclassified»by Mallett
. and Marcal in Ref. 9. The analysis of structures exhibiting
1inear‘5ehaviour up to the point of instability represents
_ the Basic class of geometri¢ nonlinear behaviour;. On the-
other hand, the analysis of'structures having snap-through
type buckling, where the structure jumps from a stable
position to another Stable‘configuration traversing a region

of unstable eguilibrium, represents the highest degree of

geometric nonlinearity.

Example 1

-

. This example investigates the problem of stability of
frames in light of the present method and formulations. Two
portal frames, one hinged and another fixed, are emploved
in the analysis. The dimensions as well as the material

properties are all given in Figs. 4-a and 4-b.

Two reference solutions are given, one by Timoshenko
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instability limit. a : -

and Gere (Ref. 34) who' predicted the buckling'lCaé of the

hinged frame and another by Connor,:pégdher and Chan in

" Ref. 8 who analyzed the fixed portal.frame up to the

The efample aims to chéckpthe capability of the
developed method‘of analgsié'EO'predict.the'buckling léad.
ofrfraﬁg structures. Meanwhile, it also shows the agreément
betwgen;the solution obtaiqed by the preseﬁt méfhoa and the
solution using previéus-methQ@s of analysis. Moreover, the

post-buckling behaviour is investigated in.the cases where

the structure possesses some post-buckling stiffness. In

. the following, the analysis of the hinged frame will be

discussed, then the analysis of the fixed frame will be
covered.

(a) The Hinged Frame

[

Tg cbtain the.buckliqg load‘using the present formu-
lations, 2 lateral displacement of & = O.l’inches was Y.
prescribed at the top of the left column as shown in Fig.

5. The axial force was incremented in tﬂ; presence of the
prescribed displaceﬁent and the horizontal transverse force
at'ihe left corner was calculated at the end of the analysis.
The vertical load was plotted versus the célculatéd,hori-
zontal force (Fig. 5) which is found to be decreasing as

the axial load increases. The_bu;kling icad is defined as
the axial load which produces a lateral displacement, equal

to A in the presence of no lateral force. The value of the

L

I
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buckllng load obtained using the present method is shown

in ?ig._S and is equal to 1110 Kips - Tnstability, as it’

. pertains to this frame, 1S descrlbed as the mutual degra-

dation of the bendiné‘and membrane stlffnesses as a result
of incréasing'the axial lecad up to the buckllng "load. At
the critical point. defihing the buckllng load, even & aero
lateral load, will theoretlé‘ilw produce & lateral dlsplace-
ment.

The StabllltV analysis of pin;ended-portal.frames
was ;nwestlgated by ;lnoshenko and Gere in ref. 34. The
sqution by,Timoshenko ano Gere lS based on stuéying the ~
equiliooiuﬁ in theldeformeo conzlguratlon while 1eglect1ng
axial.deformations, and then satisfying the compatlbllxtw
condition at the corner joint beoween rhe column and the
horizontal beam: <The value of the buckling load, aa
predicted by Timoshenko and Gere is- equal to'117§ Kips.which
is in good agreement with the value obtaineé?by using the
present method. The small discrepancy is simply attributad
ro neglecting the axial Geformations in the éolution by
mimoshenko and Gere.

(b)  The Fixed Frame

The solution using the present method is based on
applying & small aerau*blng horlzontal force in the oresence
of the axial load. The axial ioad 1is increased gradually,
and the corresponding norizontal displacement is calculated.

The plot 1in Tig. 6 shows the load—deflection curve of the
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-

fixed frame. It is clear that the ‘rame exhlblts consxder*
.able bendlng stleeness in ehe ;eglon A-B,. after whlch_the
structure loses. its bend#ng stiffness at a2 fast rate and
finally buckkés. VB selutidn'ﬁas obtained at -'an axial lead
of 4700 nlps which is consxdered as the buckllﬁg load for
the fixed frame. IncreaSLng the axial load bevond the- -
buckling load shows some post—bugkllng stleeneSS»represented
by part C-D in Fig. 6 which is characterized by a considerable
increaée in the defiection for a small increase in the axial
load; notice the cnange ‘in the horleontal scale in :lg. 6.

In Ref. 8, Cownor Logchar and Chan Dreseneea non-
linear formulations for the rigid joint space frame which
we&e'applied o the stability analysis of the same fixed
‘portal framel‘ The nonlinear term _(d:) wae retained in

the strain-displacement relationship, but Lagrengian
{(initial state) coordinateelwere used iﬁ the arnalysis. The
resulting nonlinear eguations were solved by the method of
successive substitution which is eharacterized b§ £irst-
order convergence. The predicted behavicur according to
Connoxr, Logchar and Chan (Ref. 8) is shown in Fig. 6 byv

the dotted curve and the buckling loaé was found to be &\
4800 Kips which is in good agreement with the value predicted

using the present method (4700 Kips). - The small discrepancy
between the two solutions is simply attributed to the fact

that Connor, Logchar and Chan formulated the eguilibrium

_equations with respect to the undeformed local coordinates



and therefcre'the-use of'the‘formulatiOns'QES‘reStricted

to the casés where the squares of the rotation aﬁgles.ére
negllglble compared to unity. Also the definition of the
‘axlal force as gIVen by Connqr, Logchar and Cham apéears
to be anonSLStent. ' ‘ " b

| The present method of analysis pfoved to be capable

to handle the stability of frames. The Dost—buckllng
. behaviour'was-also predlcted wnenever the seructure possesses

a considerable post—buckllng stiffness. The comparison,

with\?revicus analytlcal ‘solutions showed good agreement.

Example .2 . : ‘.

This example investigates the beheviour of a fixed-
fixed bean under an increasing central'vertical loaé and a
uniform axlal tenSLle Drestraih. Figure 7 shoﬁs the beam
dlmenSLOns and the necessery data for the analysis.

By means of this example, the solution obtained,
using the formulatioﬁs deveieped'in tﬁe present study, is
compared with +he experimental test results. At the same
time, this example shows the capability of the method of
~analysis in considering the cases where initial orestralns
are induced in the structure. The effect of including and
excludlng the nonllnear term —u; is also studied~in this
example. Finally, the linear soiutLOn is also given to
show the erroneous pehaviour obtained by the linear for-
mulations when compared with the behaviour obtained

experimentally,
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. In the experimental analvsis ,a;the edges of the beam. '

. were welded to two very rlgld steel blocks '“d thenﬁa

-
unlform prestrain of approximately SOHS was applled. The

ends were tlghtlv bolted to the loadlng frame, then the
external load was applled graduallv in 20 lbs. i crements
up to a load of-lOO-lbs.~ It proved extremely lmportant to

J'guarantee the complete flxltv of the beam ends in tnef
horizontal direction sincem very small sllpoage at the
beam ends 1is enough to cancel the tensmon—bendlng coupling
which is the main reason of the nonlinear behaviour in this
partlcular etample. The straln throughout the beam was
monitored by means of four strain gauges at the two quarter
points near the beam edges as shown in Fig. 7. The vertical
defleotion was measured by means of a dial gauge located

at the beam centre. -The beam was also unloaded gradually

; to make eure that the &nitial prestrain did not change while
'1oading.which impliee}that'no slippage took place and also
+o assure that the heam is st%ll in the elastic range {\qjthe

dotted curve in Fig.. 8 fepresents the dial gauge readings

for the central deflection at the different loading levels.
The makimim deflection, as measured under .the load of 100

. +
1bs. was found to be.0.66 inches.

.ow v ' . iy
* The dash—dot line in Fig. 8 shows the behaviour

predlcted usxng the conventlonal linear analysis based on
‘53." -

thé undeformed geometrv (1 e., there is no“contribution

force on the traﬂsverse pefrecglon and a




llnear straln-dlsplacement relatlonshlp which lmplles that
the straln along the centromdal axis due to bending rota—';
tlon is negllglble. Accordlng to the conventional linear

analys;s, the vertlcal deflectlon under a- load of 100 lbs. -~

was found to be 2. 88 lnches.
The solid contlnuous line in F;g. 8'represents‘the
analytical solution'ogtaineo by the formulations presented
in -Chapter 2  where only the nonlinear term %v; was
‘retained in the basic strain-deformation relationship (Eq.
2.4). ‘A vertical deflection of p.54-incnes was obtained -
corresponding to a vertical load of 100 1bs. The circled
points on the.same plot (Fig. 8) were obtained by adoing
the nonlinear term %u; to thé strain-deformation reiationship

as shown in Egq. 2.4~

The comparison between the exoerlmennal results and
the analvtlcal solutlon, using the p;esent method and |
formulations, shows good agreement as can be noticed from
Fig. 8. The two(?nrves, ébrresponding to the experimental
-4nd the present analyses, Eave almost the same trend,
although the theonzéical model always ove}estimates the
rigidity which is attributed to the following two reasons:

Y, 1. although care was taken to prevent the horizontal

. slippage by tightening the end block's nuts with
the loading frame; there is a possibility of a
very slignt slippage of tﬁé end blocks duelto

' <4
the high tensile force deve;oped at the beam ends.

<
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2. The inaccuracy in determining the real préétréiﬂ
was evident due to‘tﬁeAdifficuity-in_estimating
;hengriginal prestrain due to the effect of the
weight of the beam. - |

Eurthermore,'the'finite element‘method generally

1ead§ to stiffer behaviour which canfbe remediéd by u#ing

_more elements. Of special interest is the relative ease of

the é&esent formulations in considering the effeét of the- h

initial axial prestrains on the behaviour of the.structuré.

The initial prestrain is simply one of the element properties

in the input data to the compﬁter program.

The comparison between the linear'sglution and the
.experimenﬁal test results demonstrateﬁ.clearly the errér .
that may be obtained from the lineér ralysis, even-at very
loy load vaiueé._ Also, it_is the.writer's opinion that any
nénlinear analysis emploving a tﬁrrd &egree polynomial as
an apprS;imation té the deflection curve (Refs. 21, 27), will
give an ;naccurate\éétimate to the béhayiour of that pafti-
‘cular beam, especially at high vertical load values. This
claim-is supported Sy Young's paper (Ref. 17) which showed
th¥t the customary assumption of a cubed polynomial to the
true deflection curve is highly misleading in the cases of

- large axial force. In this particular example, the value

of the axial force which corresponds to a vertical load of

".i00 1bs. was found to be equal- to approximately 1608 1bs.

(tension); the non-dimensional factor ¢, defined by Young
« = &
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-

as. PEZ/EI,.lS equal to 147.5 whlch is very large, and even
transcends the *ange glven in Young $ paper, and results 1n.
'significant error if. the assumotlon of a cubed Dolvnomlal

is used to descrlbe the transverse dlsolacement curve.

. Finally, tne lntroductlon of the nonlinear term

-

5 “

% % lnto the stra1n~dlsolacement relatlonshln, even in
this case of very large axial force, has a negllglble effect
on the behaviour of the bean, this is believed to be due to

the use of the efficient Eulerian coordinates system in the -
: . -

present study The same conclusion was obtained in the

c\al case of pin ended (truss) elements by gJagannathan

}eaqwand Christiano in Ref. 20.

Example 3 T

The A frame shown in Fig. 9 was solved using the

present formulations'and method of analysis. The structural
4 >
dlmenSLOns, as well as tie sectlon Properties, and the

material constants are shown in Fig. 9.

The basic purpose of this example is to demonstrate
the.capability of the preseﬂt'method and'formuldtiens to
analyze structures exhibiting snap-threugh buckling which
is accompanied by large rotations and deflections. According
to the ClaSSl;lcathn given bv Mallet and %arcal in Ref 9,
this class of problams is consmdered the hlgnest degree in

the hierarchy of geometrlc noqllnearltv JMeanwhile, the

3

results obtained by using tne'present method of anaiys;s is
( .

compared witH ‘the solution obtained by Mallett and Berke in

r -~
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. Ref. 24 who solved the same A frame. Finally the merit of

.calculating the corresponding vertical displacement usipg

68

z

- T - o - - . . 2’ - ' L) --
retaining the nonlinear .term %px in the strain-displacement
relationship is also investigated.

The continuous solid curve in Fig. 10 represents

4

the solution obtained by prescribing the vertical ldad and

the proposed function minimization methed. Paﬁt A-B shbws
the ﬁgplineér behéviouf of the structure in the §re-buckling
—zone. The deformat%oﬁs are still in the small deflection
range, but thé nonlirearity is basically attributed to the
bending-compression coupling which is completely ignored in
the linear anélysis. The structure buckles at a vertical

load of 3.8 Kips when the vertical deflection was 2.98 inches.

A small increment of 0.1 Kip in the vertical load causes the .

vertical displacemgnt‘under the load to jump a distance of
13.6 inches. This charaé;erizes the snap-through of the -
frame apex to traverse the‘région of ‘the unstable eguilibrium
to another stable equilibrium zone indicated by the curve

C-E in Fig. 10. The structural deformed geometry before and
after buckling is shown in_Fig. 9 which indicates the dramatic
change in the geometry as the frame snaps—through. It is
interesting to realize that the snap-through was accompaﬁied
bfka sudden chanée from the compression—bending_coupling
state to the.tension—bending coupling state as the load is
increase%.beyond point i (Fig. 10). The part of the curve

4 - 4 -
in the unstable region (dash-dot curve), was abtained by

i .
- - . '
. ’ I’

¥
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prescribing the‘displacemeht and éaiéulatigg the load using

the same function mlnlmlzatlon technique. .
éallett and Berke in Ref - 24 solved the same frame.

The agreemént bé@ﬁ%en the behaviour oredlcted using both

Mallett and Berke solution and the aresent formulatlons is \>[

exact in hhe‘reglon A=B. Mallett and Berke overestlmated

(;L;:?e buckling load Bv about 0.4 Xips and the reason is

elieved to be due to the artmf;c;al stiffness lncluded ;n
their formulations because of employlng assumed dlsolacement
modes .

T In the posﬁ—buckling region, it is apparent that the
solution by Mallett and Berke overestimates the structural
rigidity and thgs vields smaller displacements. . The reason
is again the artificial stiffness due to both the ;pproximate
displacement functions as well as the system of the Bulerian .
cooréinates'employed by'Mallett and Berke. 1In thé next h
example, the effectiveness of Maf%étt and Berke Eulerian
coordinaies will be discussed in more detail. |

The differencerbetween the results obtalned using
the present method én? the method proposed by Mallett and

1

Berke (Ref. 24) in the Enstable region, is basically

attributed to the difference in the force-deformation
. I 4
. relationships employved in both formulations. Worthy of
special mention, is that the‘force,equilibriﬁm was exactly

¥ satisfied at each'loading level using the force-deformation

relationship developed in the present study.



The effecﬁ of ;ntroducing the nonlinear term‘%u;,
besidgs éhe hohlinear term %vi, into the Strain—displacemédt
felatiOnship is investigated. The-circled dots in Fig. 10
éhow‘;he_effect of retéining the Qonlinear tgrm‘%u; in the

formulations. It is apparent that the effect is very small

and can be' ignored in this case of bending-compression
"coupling which agrees with:the recommendation given 4in
Ref. 20 concerning the truss element.

-

Example 4

. The analysis of the diamond square frame shown in

N

Fig. ll-a is considered. The geometry as well as the
.section properties are shbwn.inlthe saﬁe figure.

Fig. 11-5 shows the structure after deformations
‘as éﬁe load is increased ué to 60 lbs. The problem
represents a very large deflectiqn‘case where the ratio

of the deflections to the original dimension, in the

direction of the .displacement, reaches a value of 0.45 &t

a 1$ad OF 60 1bs. i

»

1 ﬂhe analySLS of thls example \s presented to check
the c¢onsistency of the formulatlons developed for the
bénding—tension coupling case, sincé~thé frame is subjected
to this type of coupling under the specified tensile-.load’
(Fig. 1l-b). . Moreover, this example is emploved éo clearlv
demonstrate the difference between tne formulat;ons developed
in the oresent analvs;s and the formulations develooed in

3
Ref. 21, and were used to analvze the _same frame #*n Ref. 24

-
-

g
S
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by Mallett and Berke; The same fﬁame waé §olvedéusin§'an,l
§x§ct_analysis‘by Jenkins and Seitz in Ref. 35, therefore,
a comparigon will be pgrformed between the solution using
the présent formuiations and the.Solqtidn by qeﬁkins and
Seit?; The example also demonstrates the reliability of
the present method of analysis in handling problems of
larée defprﬁations and rotations (a ;Otatioh_of aboﬁt 30° &
was repofted at a load level of éo/lbs.i.- | ' '
The exact solution by Jenkins aﬁd.Seitz (Ref.‘35)

is given as the reference solution. Jenkins and Seitz used

the exact moment rotation relationship ‘to express the

-

moment equilibrium equatiohs and the resulting complicated
ihtegral was solved using elliptic integral forms after ’
E@tisfying the end conditions. The solution by Jenkins

and Seitz, although lengthy and coyplicgted, is restricted
to the analvsis of the simple geometryv of the diamond

f2ame considered herein with the.simple loadings (axial
tension or compression). Exact agreement .was found between
Jenkins and Seitz' solution and tﬁe solution obtainéed by

" the present analysis®as shown in Fig. 12.

Thé same frame was analyzed by Mallett énd Berke
in-Ref. 24 who employgd the ,energy search éppfoach iﬁ the -
analysis® It is cleérE%rdg/Fig. 12 that the solution by
Mallett ané Berke deviates from thg solution obfained)using
the exact analyéis (Ref. 35) and the deviatién increases as

the load increases which is attributed to the following

-

s
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.feasons:

‘1. The baéic modes used by Mallett and Berke.(i.é.,-
cpbed polyndmial)'do not accurately reflect the
coupling betkeen-the.transverse and the axial
stiffnesée§. .

2. The Eulerian axes proposed by Mallett in Ref. .
24 are shown in Fig. .13-a; it is believed that
the Eulerian coordinates émployed bv Mallett

" and Berke do not justify the use of the small
rotation strain-displacement relationship (Eqﬁ
2.4) unless‘a larger nuﬁber of elements is
emploved to model tﬁe frame member.
The two foregoing hQPdicaps in Mallett and Befke‘s solution
were avoided in the present study bv using'tﬁe exact
displacement funétions to describe the transverse and axial

. ‘ L
deformations; this minimized the artificial stiffness which
A . N

might be included Af assumed disp}acement modes were used.
Also, the Euierian axes employed in the present w&;k and
shown in Fig.113—b were specifically chosen 'in order to
justify the use.of the small rotatioh strain—displaéement
\;elatioﬁship Eg. 2.4. The saﬁe“number of elements (8
elements) to model the squaré frame was used in both of ’

the two solutions.using the present formulations and the

solution bg?Mallett'and Berke (Ref. 24).

Exanple 5
-

The proposed -formulations and method of analysié'are‘
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‘applled to predict the complete-behaﬁiour.of'shalidw ercﬁes,
under increasing‘central vertical load.‘ Tﬁe circule;_
aiuminlum arch shown in. Fig. 14 a was solved using the
present :ormulatlons and was also tested experlmentally
(Ref 36) ‘as well as analyvzed usmng nonllnear flnlge ele%\nts
formulatlons by Marcal (Ref. 37). Theé dlmenSLOns aS'well
.as the material properties are all.shown in Fig-. l4-a.

The present example alms to show the caoabllltv o).
+the developed formulations and method of analvsis to azédlct
+he buckling load of f£lexible shal;ow arches -under increasing
vertical load. The pehaviour of the arch in the unstable |
region after buckling was also predicted using t¥e ?resent
method of analvsxs. The formﬁlations were also used to
follow +the behaviour of the arch in thefpestébuckling zone;

Tn order to solve the arch . using the present
formulations, the circular‘arch'was modeled as elght stralght
frame elements as shown in Fig. 14-b. The solla continuous
line in Fig. 16 represents the so;ution obtained, by the
"present analysis. 1In the portion A-B of the curve, the
load was gradually increased and the correspendin verticel
displacement was calculated and plotted. As can be notficed
from Fig. 16, the arch possesses considerable stiffness in
that portion of the curve. Increasing the load bevond point
"B 1is cha:acferized bg a §ignificant decrease in the arch
stiffness which finally &eads tp buckllng at a load of 33

/
1bs. Increasing the load beyon% DOlnt B was also characterized

/ :
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b}

by convergence problems and the solutlons weré then obtalned
by orescrlblng the dlsplacement of the axrch anex and
calculatlng the correspondlng‘loaa., nxperlence lndicated
that any lteratlve solution wlll have convergence oroblems
. as the load is lncreased near the “Peak“ carrying

capac;tv. This conclusxon was reported v Zienkiewicz in
Ref. 88 and a convenlent‘solution then ij\to proceed ¥
immediately prescribing dlsplhcements and computing the
corresoondlng loads.. The wrlter would ‘like to emphasize
the relative ease of the emploved gradient function'mini;
mization techniéqe in considering the siteetions where’
seme of the displacements are'p;esc;iged a priori. Figs.
15-a} 15-b represent the arch before and after bﬁckling,i
‘respectivelv

| The c1rcular arch was tested etperlmentallv bv
Gjelsv1k and Bodner and the results are reported in Ref;
36. The detalls of the experimental set up as well as the
technique emplo?ed to obtain the unstable region of the -
load—deflectlon curve are glven in the same paper. Accord-
lng to the experimental analysis, buckling occurs at a
vertical load of 31 lbs. The comnlete exberlmental load-
deflectlon curve is reoresented by the dotted curve in

Fig. lé.-
The dash-dot curve in Fig. 16 represents the finite
element solution.by Marcal (Ref. 37). Marcal introduced

an initial displacement matrix in addition to the initial
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N _ _
stress matrix. Marcal Showed that the initial displacement

matrlx was found to be or the same order as the lnltlal

stress matrlx, but appears- not to have been prev10usly
recogmized in flnlte element analy51s. The initial dlelace-"
ment matrix, 1is. basmcally, obtained as a result of writing
the nonllnear straln—dlsplacement relatlonshln in &#n incre-

me%tal form.. ILn the finite element solution bv Marcal,

, the arch was represented by SLKteen straight beam—column

¥
elements and the buckllng was oredlcted to take Dlace at a

vertlcal'load of 27.2 1lbs. whlch is in reasonable agreement

with the wvalue obtained experimentally- No behawviocur -was

predicted in the'post—buckling,region sinee the procedure’

was a load-controlled type of analysis. |
The.éresent method of -analvsis and formulations

proved re/be capable to predict tne pehaviour of flexible

arches under increasing vertical loads. The buckling load

oﬁtained by using the present analysis is in good agreement

with the nuckling ‘load obtained experimentally. The small

discrepancylbeé%een the present finire element solution and

the experimerntal analysis is attributed to the\fist that

the theoretical model usually overestimates the real rlgiditv

of the structure as a result of the approxim tlonghembodled

§${h\the formulations.

S
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CHAP.TER v
GUYED TOWERS

5.1 Geﬁeral

A guyed tower is a practical §tru;ture that may
‘exhibit geoﬁetricaliy hon;inear behavioqu Such towérs_
are ffequently designed to heights of 1300 ft..to transmit
and/or ;eceive high frequency signals for va;%ous elgctronic
communication‘systems. More recently,'tail_tdﬁers are
being designed and utilizéd fo; supperting collectors’ in.
solar energf applications and.have been éroéggéd for off-
shore 0il operations: The nonlinear behaviour of a guyved
tdwér may significantly complicate the analysis of this
structural ;ystem: it is this nonlinear aspect which
generates the interest in the problem.

The mathematical model for a guyéd tower 1s essen-
tially a flexible beam-column with ‘elastic supports.
Guved towers exhibit most, if not all, of the geomeprically
nonlinear aspects. -The amplification of deflections and |
bending stresses due to thé beam-column action is evident.
At the same time, the tower may undergé large @eflections
under severe wind conditions, which may necessitate s;uay_
ing the eguilibrium in the deformed configuration. The
towexr 1s usualiy prestressed in the unloaded state due to
preténsioning‘the guys. Finally the'chénge in the(struc-
tur®l configuration due to the slackening of some guys on

t§§ deeward. side, may have tc be taken into. consideration. -

-

‘ . . - <%
' 7
< 7 6
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Several studles have been publlshed towards an

adequate analysms of guyed towers. The following dlscuSSLOn
glves a brief outllne of the state—of —-the-art of guyed
tower analysis and desxgn,- In Ref. 39, Rowe lnvestlgated
tﬁe’ampiificatioQ of stresses and displacements in guyved’
towers when changes in the‘geometry are included in the
anelvsis. :Analyticel charés were.included in the same
reference whlch show lmmedlatelv when reflned methods of
‘analvsis are necessary in the des;gn and what modlflcatlons
'should be made so that the ordinary methods of structural
analysis give adequate results. |

.Dean in Ref. 40 gave the necessary'fofmuletions
to consider the sag of the hanging cable which takes the
form of the ceteeery under its own weight. |

A stability anaiysis_of guyed towers was pfesehted :

in Ref 41 by Hull who tried to f£ind the mast critical
moment of inertia that corresponds.to specxfled wind forces..-
An interpretation tc the influence of the mast moment of
inertia and the stiffness of the supporting guys on the
tower stability was given in the same paper. Hull sug-
gested thaé increasing the stiffness of the guys is the
most efficieﬁt means bf'increasing the'buckling‘capagity a

of the tower up to the limit when the tower starts to I

buckle into a number of sine waves with nodes at the

supporting points. At that s;age,,increesiag'the quys

stiffness will be ineffective and the'only way ‘arincrease

-



the buck%ihq capacitf,is to increase.the moment of ;ﬁerti;
. of the. mast itseif.i S
‘épldberg'aqd Mevers in Ref. 42 presented-é method
- of anaiysis for guyed tdweis wheré the nﬁniinear behaviour
wés considered and ‘the effect of the\ﬁind on thé cable
stiffnessiwas also infestigated. The-techniéue emploved
“was based on transforming the nonlinear algebraic équili-
brium eguations into a_corresponding set of ordinary
diffefentialAequations which Qére then integrated numericglly.
Reference 43 covered ﬁhe coﬁplete anglysis and construction
aséeétsrqf ;he cylind:ical tglevision mast which has.been
“built for the Independent Télevision Authority at ﬁinter
Hill, Emley Moor and Selmont in Great Britain. Unfortun%tely,
the structﬁre collapsed\i/;é;,years latérfand was replaced
by ;vhigh:concrete'téle?is;on tower of 1084 ft. whose
description is given in Ref. 44; The failure of the

-

previously mentioned cvlindrical mast was discussed by

$

/fglliamson (Ref. 45) in a stability study of guved towers ‘

under ice loads.

= Miklofsky and Abegg (Ref. 46) presentel a simpliified
systematic procedure for the design ¢f guved towers using

o

interaction diagrams which provide the designer with a

! graphical visualization of the desi range without resort-
grag .

ing tc a trial ané error procedure. -,

-

In a good attempt to analyvze guved towers; O&ly in

Ref. 47 présented a method of solution in which some



secondary effects such as the effect of ice loads and

insulators located on -the gquys, shear deformations, initial

= ~

imperfections in tower shaft, eﬁc.}‘weﬁe inciuded. 0dly
started the sdlﬁtion bv assumiﬁg a set of displacements at
each joiht to calculate the spring‘constants of“thé gays
which wg?e then used to obtain the.toﬁerrdeflectiopé.‘ The
procedure was repéated\uhtii;ail assumed and computed

values of deflections were in satisfactory agreémentﬂ_

In a study of shear effects in the @ésign of guyed
towers (Ref. 48)'ﬁilliamson andé Margolin.stfessed the fact
that in the cases where the ‘seccondary moments and'deflectioné,
due to the beam-column action, significantly aifect the
final moments and deflé&tions, the shear deéormatiqns should

e considered to achieve a safe design. The writezs also

presented a means for modifving the conventional moment

Gistribution factors when the axial thrust and web Elexibi-

lity are considered. Finélly a formula was given to find
+he thickness of the ficiious solid web which has'the same
shear rigiditg as a flexible trufsed web.

Livesley in Ref. 49 attributed the nonlinearity in
guved towers to both the stiffening of the guy cables with
#hcreasing tension and to the destabilizing effects oI the
axial thrust onche mast itsell. In the same paper, a
procedure was gescribed for calculaﬁin the guy ;ension in
the cases where specifiied deflections are not to be exceeded

under a number of different loading conditions.



Goldberg and Gaunt in Ref.‘SO'presentea a method
v for détefmining'the'rgsponse of guved towers to in¢reasin§
lateral wind loadé until the conditions of instability are
reached. The criterion for buckling was the occurrence of
relatively large increase in deformations Zfor small in;reasé'
in the applied loads. A valuable study waé also éiven‘to
illustrate the influence of certain system parameters on
‘thé critical load of thé tower. - ‘

Williamson in Ref. 45 examined the icing eZfects on
special typés ¢f tall guved communication terr calied
"top-loaded" towers where the upper most level of guvs
-consists of an array of conductiﬁg cables which serve as ;-
radiating element for an antenna system. The result of the
study is expressed as a critical ice thickness which
corresponds to the occurrence of the instability conditions
in the tower.

More recently, Romstad and Chiesa in Ref.?.51 pro-
posed an equ}valent one cdimensional beam element to replacé“

the actual truss tower element. which dramatically reduced

the number of the degrees of freedom included in the analysis.

5.2 Numerical Example ' . s

7

The nonlinear analysis of a planar three level guved

tower 1s presented toc demonstrate the response of the tower

under increasing wind loads (Fig. 17). The tower is modeled

using three beam-column elements, pinned at the base and

_supLOited at the three levels by elastic guys. 2s far as



the tower, shaft' is concerned, the different geometric non-

linear aspects are considered. The tower shaft is assumed °

to have infinite shear rigidity to justify neglecting the

shear strains. The guys are considered straight elastic

»

string elements (i.e. having no ‘compressive stiffness).

The effect of the large nodal dis?lacement is considered

by emploving Eulerian moving coordinates to formulate the
g

‘guy eguilibrium ecuatipns. The formulations given by

Bogner in Ref. 25 were used for the string element with
the modifications suggested in Chapter II concerning the
force—-deformation relationship. K

The dimerisions and material properties of the tower

.shaft are given.in Table 1 for each ¢f the three spans.

TheAstructural Droperties o: the guys, as weli'as the
initial pretension in each guy, are given in Table 2.

The shaft is initially subjected to compressive prestrains
due to pretensioning the guys. The prestrain in each span
of the tower is given in Table i: The complete structure
under thé working load is shown in Fig. 17 whefe the verti-
cal loads :epresént the weight of the tower shaft as well
as any equipment that may be mounted on the toWer. The
horizontal_ioads represent the working wind loads acting
on the structd;e. The vertical loads were kept constant’
throughout tﬁe analysis since they represent the dead load.
The hgrizontal loads were gradually increased .to simulate

the effect of increasing wind velocity. & load parameter
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Y is used as a multiplier to relate the current wind

inténsity to the working wind intensity. The three curﬁés

in Fig. 18 represent ﬁhé load-deflection curves for the -
three guyeé levelsL The vertiqal.axis in Fig.,ls represents
the values of the load paraheter v while the horizontal
axis gives the‘valués_bf the deflection at the‘direction.of 2
the wind. The tower nas a considerable stiffness until Y
- reaches the valﬁe'of approximatély 8 after which the struc;-
'Eu:e loses ifs stiffness at a fast rate.which is characterized

by large increments in deflections for relatively small.

» .

increments in loads. No solution was obtained at v eguals
10 and the instability limit is estimated to lie between v
equals 9.75 and 1l0.

The load-deflection curves were also plotited in the

range from vy equals 0 ¢ 1 which represents the working

o=

conditions. Figure 19 shows the load-deﬁlection curves in
this range. The sudden change in the direction of the load-
deflection curﬁe 0f level 1 is attributed to the slackening
0f the leeward guys at the £first and second levels which
takes placé at Yy equals approximately 0.37. The load-
deflection curves ¢of the second and the third levelils abruptly
change their directions at Y eguals approximately 0.37 due
to the slackening ¢f the leeward guvs at the first and the
second levels and again change their direct;ons at v equals
approximately 0.31 due to the slackening of the leeward guvs
at the third level.

In the working range, the nonlinearity is attributed
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to ﬁhe”dhange i#lthe sﬁructu;al tdnfiguraticd-due to the
fac;‘thgt Ehe cabiés lose their.pretension and no longér
effectivelf‘contribute to the stiffnéss of the structure.
At higher ioéd levels the noniinearity is‘attributed-to-
ﬁhe beam-column acti&nias well as the iérge deformations

which necessitate studying the equilibrium in the deformed

Position.

.

More research is needed to cover the remaining

\

nonlinear aspects in guved towers, especially the nonlinear

behaviour of the supporting cables. Generally, the cables

.

are not straight in the undeformed state; they usuallv take

the shape of a catenary. Also, the effect of blowing wind
on the stiffness of the cables has been shown to be signi-

ficant (Ref. 530) and should be considered.

>



CHAPTER VI .
. ) SUMMARY AND CONCLUSIONS

6.1 Géneral

‘ In this chapter, the conclusiOns; as well as an

overall evaluétion of ﬁhe Droposed forﬁulations and methed

of analysis are givén. The difficulties enéountered during

the research are mentioned in order that they may be

avoided or remedied in future investigations. Tinally,

the prbjéction of the present study is given so that the

concepts developed may be exﬁended tb other more general

sStructures.

6.2 Summary C.

It has been shown that a geqmetric nonlinear analysis
of some structures, esvecially when thé.value of the axial
force is large, is essential since the linear solution for
- these structures may give misleadiﬁg results. In this
research, the exact displacement functions have been used
in order to describe the transverse displacements. Moving

' —~— ,
Eulerian coordinates were used and proved to be’'a very
effective and powerful means to consider the problém of
large deflections in structures. As a by-product, the
Eulerian coordinates used in the present study were shown
to allow retaining only the nonliﬁear second order bending
train term (%v;) without the need of inéluding the second

. : . 1 . . . ..
order axial strain term {Eui) in the strain-displacement

34
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relationship. " Initidl prestressing effects were considered

by directly incorpor&ting‘the_prest:ai; into the stfﬁin*
displacement eduation; The variouS‘t;pes of geometrié"
ﬂonlineérity,:as well as inétability analyseé, wére,
invesﬁigated iﬂéluding finite de%lections, bifuricaé@on
and snapfthroagh;ﬁuckling and the method was found to be
valuable in following thelbehaviour of certain structures
in the post-buckling zone. -

Generally, the finite element formulations developed
and the. function minimization technique emploved proved to
be a powerful flexible means for the geometric nonlinear
analysis 0f structures. The method is a direct prccédd:e
in that there is no need to increment the aéplied loads;
meanwhile, the general static equilibrium of the structure
at any stage andé under anvy coﬁbination of loading was

.exactly satisfied. When plotting the load-deflection curve
'fo; some structures, it was found more convenient to use
the displacement vector of the last step as the startiné
displacement vector in the coming step. This does not
imply that the procedufe is incremental; it is simply an
efficient means to reduce computer time, especially for
highly geometric nonlinear problems.

One of the main difficulties encountered in the
oresent study involved finding the value of the parameters

k* and ki given in Egns. 2.39 and 2.54, respectivelwv.

Since these cannot be obtained in a closeé form, iterative
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‘schemes have to be emoloved TWO different-iterativé
proceaures were used to Flnd the value of k* and ki_acéord—
lng to the rahlo I/A. It is also suggested that more

_research is needed toO studv the nature of the k* and ki

functions. . .

As pre&iously mentioned, whenever the minimum of
Ehe function is detected, the formulations guarantee the
exaci satisfact;on of the equilibrium in the d?formedr
configuration, but in a few cases the eguilibrium was not
.exagtly satisfied due to iroblems concerning the convergence
of the_potential energy function. Some of the convergence
problems were due to .the failure in detecting the value of
the parameters k° and ki while other convergence problems
are believedi§Po be due to the procedure employed in Fletcher-
Reeves algorithm. Employing the sowerful Fletcher-Powell

minimization methdd may compensate £or the convergence pro-—

blems encountered.

§.3 Projection

The natural extension for the present work is to
include the necessary formulations to consider the analysis

of space structures. Moreover, material nonlinearity, as

it pertains to skeletal structures, coulé be investigated:
it is strongly believed that the concept of the plastic
hinge, as a change in the.structural configuration, could

be best handled using «he energy search method. In the

present formulations, the loads were assumed applied at the
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‘nodes, therefore the procedure should be extended to con-

"sider the effect of distributed loads between the nodes.

also, eccent*lc orestre551ng would be worth' 1nveselga_1ng

S:.nce mOSt of the o*estressea COI'ICI'E;E Frame structures . .

are subjected(gb this kind of prestfessing. 'Elements

possessing initial curvature (e.g., curved beams, cables

-under their own weight, etc.) could be reconsidered in

light of the moving coordinates concept developed in this

research.

Finally, the gecmetric nonlinearity due to

dvnamic effects using function minimization is an important

subject for extensive studies.

6.4 Ceonclusions

The following concliusions are derived from the

'

present study:

1.

The method and formulations presented ensure
that equilibrium is exactly satisfied w1tn

respect to the deformed geometry.

The moving Eulerian coordinates used. in the
study is a poweriful means to consider the
effects of large deformations in structures.

The Eulerian coordinates used justifies neglect-
ing the second order axial strain term (%ug) in
the strain-displacement egquation.

The method proposed is valid for the analvsis
of plane frames exhibiting large displacements
and can be used to predict buckling loads as
well as post-buckling behaviour (including
snap-through buckling). . )

When the axidl £force is relatively large, the
exact hyperbolic (k% 0) and trigonometric (k<)
transverse displacement functions used herein
glive accurate results. :



6.

The enefgy search method used in the study
proved to be an efficient powerful, vet

,d\flexible, solution procedure for the geo-
metrical nonlinear analysis of structures.

“ay

s
,;f’



'y

uoijews
ojeg ®
Uy -
peutero :___T.c.m
v
av

luawe
|3 @10
125)
23]

(TP

Bwely

| >
| o=




Stress v

E(¢g+ey)

Fig.2

.———————.——_——-————-———_—

d U, l
|»
|
I
|
Strain ¢
—_— : o ——
Fe ‘p+ 9 o

Strain Energy Desity in a Prestrained Frame Element’

2

90



‘ Uhséalad Case

Scaled Cas'e
-

§\
@

Fig. 3

Gerschgorin Circles

91

-

iz



e 120 0. ]

—uy ozl—’{ ' |

A‘P ?#

For A!ll Members

Fig. 4-a . ~ "
Hinged Portal Frafe = . A=11.77 in.

4

1=310.1 in’
E=3x10" ksi.

f—uy gz, —

Fig- 4-b

Fixed Portal Frame

: . 2
(1 in.= 25.4 mm. ; 1 ksi.= 6.8 MN/m )

y



83

( "NW Gy tv=d ¢ F "ww T GZ="ul ()

awesqy pafuiy oyy ioy peoq Gugpyang

- o - o PO N S o P Fy N o
Asdiy) AT _ . — ) 0'0
00
/
/
T~
) //
,.‘....../ 008 o
/ \m
. o
' . ./i o«
E._.“ oh._.—\ feo] Buljyang oxudjsowi] —- o.cm._..
N 1
. ...vﬂ S . 0091
| . m _.ouqs
vy c ’ . u'._\ ‘ur
. ‘ ¥ )
d n.:| 0002




("NW Spv = dpy [ wwpgzEul 1)
owiks4 pax14 ay) 10§ 8AINY u01328148(Q"PEL]

T | . g-61

(sdiy) d

ﬂuv. Ior .09 pes »Or er - . <
M M M M o ol o Y a re o nvc.o
. v
. |2
- —E
(8-joy) ueyd pue seyslio]‘jouuoy —-—-—-= ju
o | :
sishjeuy uesay = z
5
5 0002
]
B
L
44 o
_ . S .
1 |0001 . q
. L.lfq \m \\
: d al | . — / -
~d1j ~g0ap | peo[ @ J8puog :
L &\ , _ 0009




(/MW 69 S isyg f wwyigzErull )

dn jeg _fceE_:ﬁ._x.u_ oyy jo Guimesq allBWAYIS

L By
(TIZ====]
speoj m -2 T =70 _

swel}

fiuipeo| / E.m fiulpeoy

7,

B

: | | safienD / . /

weaol| . : |
paisol ﬁ UIEIlS :
. L .u.mw,...x - : / m:__”___uk,w%m_n
Ul : apen \\ etp
.¢\+ MM @ |
_.Al..c_._ ol | o -u1 ‘09 _

d

DU e S



(Ibs. )

P

100
/
/
/
! n e
/ -
/ j=o=8°uz1 12
/ A A, F
80, FA T
/ —60 in-—]
- / .
/
60 ]1
/ a—.— linear Solution
/
// - ——-Experimental Resuits
/ Present Analysis
/ oo L uf Included
40 / 2 _ .
: | // A
/ L
/ I
. v
/ 1A
20 ,,/
//
)‘/
/
4 7
v
o/
0-0 :
Y o . e o ] =)
< =] o o & -

Fig.8 Load_Detlection Curve of the Fixed_Fixed Beam

(Tin.= 25.4 mm.

1 Ib, =4.45 N)

96

a (in)



97

Lo 100 in.
T
"2 in,
Sec L_L _#_
) Z in

.4
E=10x10 -ksi

- 2
~Az1.0 ° in
|=1.066 in

P=3.8 kips :

| i g =2.98in.
= = E
i

T

Deflected Structure { Buckiing Imminent )

=TT

P=3.9 kips
t. a-16.48 in.

—
——
T— —

Deflected Structure { After Buckling)

Fig.9. A Frame and Deflecte’d Geometries

|
{1in.=25.4mm. ., 1 kip.= 4.45 MN.

1 ksiz 6.9 MN/m2)



98

(Nw Sp v =dy | cww gz )

jo aang uellda|jag-peoy gt “fir g

o aluel{ y
P > 2 3 3 - o R y -
= o o o o o S o " Y
g N
| apnjau| x:.wl 0000
A P z |
{ d Poquasaid)sishjeuy Jussalg. —
- | ) .NI.
(9 poqssssard)sysheiy wassrg - — —
0yieg B .._m_._,m.s_ - . | .
. T e | A 0
Y \\ .\. ..Il.lly.-
\hu\ .Iaﬂ/
v. AN
. lnN /m?./ .N
o~ <,
s ///.
~ /J . k
, .!..r.l th lum..
ll.l...‘l.\ .v
o -



99

E=18000 ksi

Sec.m.m ———— %0-0525 in.

Fig.1i.a Diamond Frame Befare Deformation

£

Figil.b Diamond Frame After Deformation ' N

L

(1in. =25.4 mm. ,11b=445N 1 ksi=§. g Mm/m2 )



100

uj g

aluel puoweiq 10j gf:u uo01323] jagpeo] .N_._f.

«

U NSyYEq 1 Cww pGzE cur )

@ < o v o 2 ®
S . ‘o S <. o = =)
.c‘
<0l
sisAjeuy Juasaly
iorynjog jaexy ——————
aysag Wue|eEN ~— "~~~
. Jiag le 02
L ‘0E
\.\ / -
, -, eu,..
7
7 —1-0p
/
. \\
-/
7 0§
/
L : 09




101



102

g | R R e N LA )
- © yuy pamespl Uyl B
- S )
. |

| . | | N N
e gezvetrun vz vt s6z- vt ur 92y~ u gz yteounise A NATA BRI A

o |

g0 1 B
1 1v44 3 Saa llan
urf1g 0
i gE°0 =

(1% 0104 =13 ) o yoay agnany ety bo
£

- : T . | : Y] em.. - : | i

" {1 EEE|

‘up 0L F0sY

bom-

.T_L.:_ -—
| .cb: C 1
‘uy 5181 T |

171 "988



183

("ww ¢gz =-ul | )

Buipjong 1014y yary eyl qgL By

( juatutw)

RUN N Y

Guipyang )

yory 8yl m.-mﬁ.m_”_




Ibs. |

36-

104

: ‘ —.— -finite element (Marcal, ]

: AN - experimental data - ,
“I~ ' .

// N — present analysis |

e

) Fig.16

{1
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\\ . [/
//
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N/
N
P 7
S IA\f-
T

Ldad_Deerction Curve of the Shallow Arch
in.= 254 mm , 1-lb. = 4.45 N)
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A
}o— 3600 in. —}e— 3600 in. —]
) . . ) ' .
Fig. 17
Guyed Tower under.'Working Loads {7v=1.0)

(1in.=25.4mm. , 1 kip= 4.4 5MN)

—}e—— 3600 in. —vfo— 3600 in.
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Table (1) Mast Properties (E = 30,000 ksi) .-

Span No. Area Moment of Inertia Initial Prestrain.
_‘-(;nz} \ (in*) : " in/in
1 s0° ' 300000 - | -1.6 (1) T
2 6 - 300000 ous2s (a0i
3 60 . 3oboqo '. | Z0.527 (10)"%

Table-(Z) Guys Properties (= =-20,000 ksi)

Level No. Area Initial Prestrain

(in?) in/in
: -2
B 1 1.0 +0.15  (10)°
- : - -2
2 1.5 + 0.13 (10)
-2
3 2.0 + 0.125 (10}

(1 in = 25.4 mm, 1 ksi

I

6.9 MN/m*) .
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APPENDIX A

VARIATIONAL ANALYSIS

It was shown in Chapter II that the frame element

potential energy.is expressibie‘as {(Eq. 2.15): -

S . - T

‘

_|EA. | ' l,.,2° 2,72 I .2
nP _[2 {[Ep Tue T Z(Vx‘+ ux)] T3 Vxx} ax

.

J

-P_u_-MvVv, -Mv, L (A.1)
aa ¥ aq} | .

T+ is assumed that the element is in equilibrium under the

forces P, M
a |2

arbitrary small virtual displacements du, dv and évé.to :

and M_ acting at the ends p anéd g. Applying

the element, from the principle of wvirtual work, the
incremental work done by the external forces is equal to

the increment in strain energy.
Since . T =U_ -~ W : (A.2)
Therefore dn_ = 8U_ - &W | (&.3)

The principle of virtual work implies that

oUs = 6Ws (A.4)
or - _ .
. ) . oﬂp =0 (A.5)

i.e., the variation of the element total potential energy
with respect to the three virtual displacements (éu, Swv,/ évx)

is zero, which can be expressed as
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3m CEIN LI '
-a—u“- cu:+ W— eV + a—v:{- va = 0 {A.6)
When the-operator fi— du + e Sv -+ 2 Sv 3 operates on the
: . su - v §vx X N : '
element potential energy functional given in Eg.-A.l, the
following variation form results:
§qa_ =
D -
s .
- AE ‘2_{[3 + u o+ L(vz +u)] +u (g +u + i(v2 + uz)j}dudx
< dx =3 x - 2 X X X p x. 2 X X
0 -
' S - ) (&)
+ AE i-{v = v.[e_+u_ + Fv o+ w?) ] evax H (B)
. dx i xxx x-"p X 2'Vx X :
0 : 7
(AE [e, + u, +%(v +ui)]+u-[é + +%(vi,+uz_ )])—.P
*q ¢ g “q %q 9 Fg /¢
(C}
1. .2 2 2
-{AE [e_+u, + (vl +ul )] +u; [e  +u  + (v, + u] )]}Du
{ = kp 2 -hp xp kp 5 xp 2 xp o
(D)
-{AE % Vexx_ TV [Eo Tu T %(vz *toug )]}6vc ()
XXX o Xg Xg Xg °f
— = - : = - 2 - o™
A.:.{ Vosex + V. (e + U + =(v + U ):I}ovD (F)
L D = D [ D -
+ {Elv - M }év (G)
XX o x
q - d
- {sz + M }Gv = 0 (H)
XX o X .
B - B

Since 6u, dév and 6vx are arbitrary ncn-zero virtual displace-
ments, therefore, each of the expressions (&) through 1@5
should individuallv equal zero. Expressions A and B are

-

valid for any point along the element, therefore they represent
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the field-equations given.by T=‘<:_:,ns.-2.16 ana 2.17.
Expressmons (C) through (H) describe the end’ condltLOns
which are shown in Egns. 2.l18.a through 2.18.f. The
interpretatioﬁ of the boundary éondi;}ons is thoroughly

discussed in Chapter II.
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APPEVDIX B

EVALUATION OF COUPLING PARAMLTERS (k AND k)

Y

As indicated in ChapﬁerAII,'the velue of- the
éarameters kl and k must be obtalned by using iteration
since it is virtually 1mpossmble to obtain their values in
a’ closed form. The paremeter kX is defined accqrding:to

rhe following differential eguation (1 e., Eg. 2.30).

= A re. Lol
kD=7 [bp +u, *+ 3l

+ ul)] : (B.1)
In order to get a starting value for k to start the

- lteratlon, first and third cegree Delvnomials are assumed
fOr the axlal and the itransverse clsalacemenes, respectively.
The two integration constants for the axial direction's first
degree polynomial afe determined from the two boundary
conditions shown in Eagns. 2.26.a and 2.28.a. The resulting

rl

displaeement_function is in the form
= 2
ui{x) = —/ X. (B.2)

The four integration constants for the transverse direction's
third degree polynomial are determined from the four
boundary conditions shown in Egns. 2.26.Db, 2.26.c, 2.28.b

and 2.28.c. The resulting displacement takes the form

GD + EG -280 - ec
V(X) = —-——?_——"‘ ‘C + ———-—é———"" }CZ + eox (3-3)

+

" Back substltutlng into Eg. B.1l, the following relationship

is obtained ‘which defines the approximate value of the
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?arémeterik‘ )
p T — - -
- uEI Dll . 0 q_ uq
Ikz - ' - ' . | |-
= = {858 0 Drs  Da3| 5? - (B.4)
) 3
q O D3 Di3 °q
where | .
_ 1 rs- - 1,s-%.2
Dll —‘Gg —S— + uP + E( ) ) ] (3-5-,3-)
! ) _

922 =1z (B.5.b)
_ -1 .
523 o {(B.5.¢)

Also
P33 = 0p;
D3z = D3 .

In case of omitting the nonlinear term %ui from the basic
strain-displacement relationship (Eg. 2.4) the term Dyy
reads
P '
D., = ==+ = .
117 = (= p) (B.6)

In case of compression-kending coupling the starting value

of kl'is +aken as

k, = |5 | (B.7)
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while for tension-bending boupling the starting value of

k is taken as

+

wﬁeie'kz has already béen defined in ﬁq. B.4:

Two iterative p%ocedures’are gﬁplpyed accordihg_£o
the'value of the ratio I/A. Por-I/Aiiess-than or egqual to
10, an incremental lteratlve Drocedure is used, whlle for -
‘I/A greater than 10, a succe551ve substltutlon scheme is
employved. In the incremental procedure, a step size equal
to kZLO (where k is given by Eq. B.4) is taken énd the
gengrated value of kl (ér k) is-obtainéd according'to_the
exp?essions given in Eg. 2.39 (or Eg. 2.54). The iteratien
Btops 1f the'diﬁfgrgnce between the absolute falue of ki
(or k2) in two consécut;ve cyéies is less than (10)-6.
In the suéceséive substitution procedﬂre, the starting
value of k, given-by‘édr B.4, is used to obtain a better
value for k; (or k)‘throﬁéh‘qu 2.39 (or Eq.u2.54).l The
géqgrated value oftki (or’ki'is then used to get an improyed
value fof,kl (OF‘k)' The procedure is repeated until the
absolute véiﬁe of the difference between any two consecutive

values of k, {or k) is less than k/100000 (where k is given
>

- -

by Eg. B.

k:{}éz . . (3.8)

'fl“."‘"f



: NON;LINEAR AND LINEAR TRANSfORMATION

-APPENDIX C

C.1 . Non-Linear Transformation

B

To transform the gradient components of the element

Strain energy from the Eulerian (x,y) coorxdinates to the

'~ lagrangian local (X,¥) coordinates, Fig. 1, a nén-linear
transformation matrix [T)]

of the [T] matrix are shown below.

6x3

6x3

L]é’

i8]

a | ar
> l =
W e}

- 120

a’
ot
1}

Q)
<
No|

Ql
lm
4]
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te}

is emploved.
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~The £following relationshipé are.used to determine -

the elements of the [T] matrix.
u_=s - ¢ : . - R c.2
a - | o (C.2)

8 = A - 8 ~ . ' . (C.3)

8 =X -6 ‘ ' (C.4)

C i+ 5 —g° - )2 |

s He o+ uq up) + (Qq vp) } ‘ -(CTS)
-1 v_ - v . T

8; = gin = S__ 2 < D | _ v (C.6)

Fig. (1) illustrates the above geometrical relation-

o

ships.

The elements of the [T ] matrix are listed helow: .

E(1,1) = -2 (& = ﬁg - ﬁp) ‘
2,1 = -3 (F, - ¥

£(3,1) = 0

£(4,1) = -E(1,1)

£(5,1) = -€(2,1)

£(6,1) = 0

£(1,2) = 2
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i
~—
B £ %
T
b
A
]
I
Ned]
[
-~
INE
o

£(3,3) = 0

I
i
i
~—
-
s .

£(4,3)
£(5,3) = -£(2,3)

£(6:3)

Il
N

Linear Transfocrmation

To transform the gradient components from +he local

coordinates to the global X,Y reference axes, Fig.

following linear transformation matrix is emploved.

1,
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2 ,

1 ml ':0 0 0 0

2

, m, 0 0 0 0
0 -0 1 0 o of
[56] = | ._,,9."- - - (c.7)

x6 S0 0 0 1 m1 o, o
0 0 0 %, my, O -
0 - 0 0 - 0 o - 1
— ’ —/

where'il, m, are the“direction cosines of X axis with
respect to the global X,Y axes, resFectively., Similarily,
. %,, m, are the direction cosines of ¥ axis with respect to

the global X,¥ axes, respectively.



APPENDIX D
FLETCHER-REEVES METHOD. AND SCALING

TRANSFORMATION FORMULATIONS

" D.l1 Fletcher-Reeves Method

The methoé of'Fletcher—Reévés‘employs conjﬁgate RS
directions as the directions of travel to detect the mini-
mum of the function. The'formﬁlations are thoroughly
explained in Ref. 31 and a gooéldiscussiOn.is also preﬁgnted“‘

in Ref. 52. The conjugate directions are generated according

"to the following relaﬁionship;

= VI + 8. S. (D.1)
s = =Vl - . ) .
+ .
3+l Pisl 3 73
where
o is the conjugate direction defined in the j th
) step.
— 3 - -
Sj+l is the generated conjugate direction in the j#l th
step.
_ - - - 0
Vilg is the vector defining the partial derivatives of
Parl ,

the +total potential energy of the structure in the
j+1 th step with respect to each of the J generalized

coordinates, which can be expressed mathematically as,
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(D.2)

J

B. = __=;iil__ . . {D.3)

The starting vector {Do} is usually taken as the {0}
vectof, but genefally the starting poiht which legds as
quickly as possible to the bottom of the minimization valley
is "the best choice. Finding {Dj+l} alOng_Eg whén starting
from {Dj} is, essentially, a linear minimization of the
ootential energy function along the-E; direction. -The
overall.efficiency of the minimization technigue depends,
mainly., on the linear minimizatioﬁ routine; The linear

minimization can be cast in the followlng eguations:

a) given

) g (@) =1, (35 * oy s3) (D.4)

b) required

*
aj,such +hat
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” *' . ’
g(Gj) =0 7 S (D.5)
'~ Notice that ‘/(& ) E‘T v (Bh + a, s5.) (D 6)>
h . = . ] . . . : -
| LA R A R TR T . |

Determining aj is accoﬁélished in three stages. The -
first obtains a étep size for_ﬁsé by the secong étage and
thé.sgcond staée establishes bounds on E.; the third
stage interpolates its_valué. ‘Discussion of the three

stages follows.

-

Stage 1° T ' ’

It is assumed that the value of the minimum of the

-
o+

quadraﬁic function is Xnown a priori as an estimate (Est.)
- l 0 . ) —- # . ’ 3

and that it lies on the line Dj + cj Sj' Therefore, it

follows that the value of a which detects the minimum is

- obtainable exactly as ko where,

T o . o_m T oo -
k, = 2(Est Hp{nj})/sj VII.Pj . (D.7)

Eguation D.7 is obtainable by'studying the gecometrical
properties of a parabola. In fact, the minimum onID will
' - . ) . ‘ —— —fi = :
generally not lie on the line (D. + aj sj), 50 Eg. D.7
will be in error. One way to overcome this is to limit

_—"
the value ¢ to be less than or equal tc one.

7T ~3
ko if 0<ko<(sj Sj) (D.8)
*
c =
(s s.)-z'i otherwise _ (D.9)
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"$or linear ahalysis_where the.sFrain enérgy function is a
éuaératic-function.of the diéplacements {D}{ the value of
ai-coui& be obtained ‘in a closed form (Eq. D.7). The
iterative solution is‘oniy needed in ﬁon;quadratic functions.
Staqe‘Z

- Evaluate g, E(Qj) at the points 0, h, 2h, 4h,i..;a,b
where b is the ;irst value of the cj at -which & is non-
negative or g has not decreased which implies that

a<'cj <p ‘ (D.10)

Stage 3

A third degree polvnomizl is then fitted between a
and b. The four integration constants of the polynomial

are determined from the boundary conditions g_, §a' =

and.és. The ae which corresponds to the minimum of the

third degree polynomial is determined according to the
L) . .

following relationships.

J
- W - Gb) + w ~ z -
/\ e = b (,g(b) — ){b a)  (D.11)

-"g(a)

_ 3iq(a) - g

S + §(a) + g(b) (D.12)

- §(a) §o}T (D.13)

el
-

w = iz

If neither g(a} nor g(b) is less than g(aé), then Cq

is accepted as the estimate of the minimum along s.;
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otherwise} according- to 5(3') is positive or negative,‘the
1nternolat10n is reoeated ‘over the sub-interval [a,OL 1 or
[a ,bl. respectlvely.

?arlv experienée in the ootimization of some .special

functlons Droved that the Drocedure should revert perlodlcally

to: the steeoest descent dlrectlon deFlnea as (-VT } in place

et
of the customary sj. Such restarts are not more frequent\

'~

than every (J#l) jiterations. Although this method is o
supposed to minimize a guadratic of J variables in J
iterations, it is found that an additional iteratioﬁ is
beneficial in compensating for the aécumuleﬁion of rounding-

O0ff errors in the first J iterations.

‘The iteration stops 1if

|

VI =0 (D.14)

This condition is unlikely +0 be realized in practice *
" because of the round-of errors; therefore, the iteration

. continued for one more cycle of (J+1) lteraelons starting
£rom the steepest descent and the last value of {pl until

either of the two following criteria is satisfied.

- .
a) Hp({D}) - Hb({p}) < e, . (D.13) -

. .
p) (D} - (D} < g4 (D.186)

Some general remarks about tne anullcaelon of the
Pletcher-Reeves method Whlch are obtalnea frem the emnlovec

IBM lYibrary subroutine, are reported herein,

o\
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1. The'function-should be decreasing along ﬁhe‘
conjugate dlrec lOP if for anv reason the-
function increases by stepping;élong the con-
'jugate direction, the linear searchn *outine'wiil
be sklsoed and <he steo will be taken along, uhé
steepest descent. )

- . “* -
‘2. The exit criterion for accepting {D} as the

.

minimum is . e
J, ' _
Z{ fD}l Ep - (D.17
< g1 3 ' o

where Eps is a2 predetermined value by the user.
| = (10y°6 Ceid ey
A value of (10) was specified in the present

analysis. -

D.2 Scaling Transformation Formulations

]

in Chapter III, the diagonal matrix [R] was defined

as.

. ?k—l)j; 3=L2,...,0 C (p.1g
33 '

H.

The matrix [kjj] is the matrix of second-partials of the
Potential energy fﬁnction. In the caée of linear anaiysis,
the matrix of second partials is ‘the stiffness matrix of
the structure. 1In case of nonlinear analysis, linearizing
the matrix of second :arblals proved to be efficient in

order to improve the convergence of the potential energy

function. The following linearizations were introduced to
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-

obtain the elements of the diagonal matrix [X].

1)

2)

3y

A third degree pqunomial for the transverse
dispiacemen; was assumed.

The.bowing effects in calculating the couplinq
coeffigiénts k® were neglected.

The deformed length é was #epla;ed by.undeformed

length %-

Therefore, the elements of the diagonai matrix [X] for the

frame

11

22

33

element are . B !

55

44

T _F T _F 32 : 2
_EA 1 (YCr YD) (2 4 26y 4 2(YCT YE) . 12EIm
2 L 23 P P

66

23

(D.19)

2

23 I
{(D.20)

T ' : : (D.21)
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