University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Status based resource discovery in computational grids.

Mohammad Aktaruzzaman
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Aktaruzzaman, Mohammad, "Status based resource discovery in computational grids." (2005). Electronic
Theses and Dissertations. 3584.

https://scholar.uwindsor.ca/etd/3584

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3584?utm_source=scholar.uwindsor.ca%2Fetd%2F3584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Status Based Resource Discovery in Computational Grids

by

Mohammad Aktaruzzaman

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada
2005

© 2005 Mohammad Aktaruzzaman

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04972-3
Our file Notre référence
ISBN: 0-494-04972-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Resource discovery is an important aspect of Computational Grids. Locating resources in
a Grid environment is difficult because of the geographic dispersion and dynamic nature
of its resources. Issues such as large numbers of users, heterogeneous resources and
dynamic status of resources over time in a large distributed network make resource
discovery more difficult than the case of traditional networks. In the case of
Computational Grids, additional issues such as different operating systems, different
administrative domains and lack of portability between platform dependent applications
make resource discovery even more difficult. Further to all these difficult issues,
knowledge of the current status of the resources adds an extra challenge to the problem of
finding resources in the Grids. An ideal Computational Grid environment should contain
a resource discovery infrastructure that includes heterogeneous resource monitoring
capabilities. These capabilities will save time and the risk of selecting inappropriate
resources.

In this thesis work, we propose a resource discovery infrastructure in the form of an
automated status monitoring model. The model consists of two fundamental aspects, a
portable data model and a set of executable monitoring components. Our approach
adheres to principles of software design, is well structured and platform independent. The
portable data model, which conveys the status of the resources, must be understandable
by any application software, agent or scheduler on any platform. In turn, the monitors
must be able to acquire necessary status information from various, diverse systems and
maintain the data model. We developed appropriate interfaces that provide
straightforward connectivity between our infrastructure and other Grid middleware

components being developed elsewhere.

Key words: Computational Grids, resource discovery, status discovery,

heterogeneous environment, small world, distributed computing

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To my lovely wife Lisa, my lovely and magnificent son Aryan, and my mom and dad.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to gratefully acknowledge the wonderful and enthusiastic supervision of
Dr.Robert Kent. I would like to thank Dr.William Baylis, Dr. Boubakeur Boufama, and
Dr. Dan Wu for their valuable comments and support. I am grateful to all of my friends

for their endless support and co-operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

ADSIIACE ...ttt ettt ettt see ettt st b et et e ettt st et e saeteseneaban ii
DEAICAION ...ttt ettt skttt et enesan et iv
ACKNOWIEAZGEMENLS.......cceirriereriieieirireetentesese e s e seee e siee st aseses et estsseesseseessesasansans \%
LISt OF TaDIES ..ottt sttt st e e ae st e s st e sat et sns e e s sesatasnnenns X
LiSt Of TTTUSITALIONSeuveureieieeteitietesieiesee ettt ee ettt be st r et sne e et esaaessnennes X

1 INFOQUCTION....couteiieieiriccritee ettt st et aese e st ss e et e e eoeenanens 1
1.1 The PIODIEI....c.viiieiiriieieieeer ettt ettt 2
1.2 The Challengeccccvverueenieririienereeenireeeieeiesieessesaeeeeesreesseseneseeessesssensesseesseesnes 3
1.3 CONIIIDULIONcoviereriieieeieercte et sit et ettt eee s e st eensesnse s e s snessesseeseseanesncs 3
1.4 Chapter OrganiZation..........ccccververiueerieeenerrsereseeesenesseessuessueseresssesssnessseesseessanes 4
2 Previous / Related WOrKcoceiiiieniinirieeenteeeeete st 5
2.1 General DiSCUSSIONS.....c..cecvereervesreennenns e eeteeeterrentee e et e rt et e e be e resra et eaneesresaaeenrens 5
2.1.1 Computational Gridcccevceeviriiereereniercnetee et 5
2.1.2 Virtual Organization (VO)cocueeeverrienirnienieenieerteesee e seceee e 7
2.13 Components of Resource DiSCOVETY.......cceourreririirnneenienienenreirneesneeonens 7
2.14 Models for grid resource managementc.ccoeeevvereinninnineeneenncnennninnns 9
2.2 PrOtOCOIS cvveiieieiiieicetet ettt s s 10
2.2.1 Grid Information Protocol (GRIP)........cecueeviriiiiieniiieicererirenecieee e 10
22.2 Grid Registration Protocol (GRRP)......ccovceeverivcvenecenininiiccicniicis 11
223 Lightweight Directory Access Protocol (LDAP).........cccvvviiiiiniiiinnnnnn. 11
2.2.4 Common Indexing Protocol (CIP)ccccevveevieicriienciniiiniiiinieciccnicineenns 11
225 Z39.50 e ueiieneireeete ettt sttt et e e s e n e s st 12
2.2.6 Network-Efficient Vast Resource Lookup At Edge (NEVRLATE)......... 12

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.7 TXTA ettt ettt s 12

2.2.8 Simple Object Access Protocol (SOAP).......ccveeeevicveiiectieeeeeeveee, 13
2.3 APPIOACKES ...cueiiiiciiiiicestere ettt ettt sttt e e be e ebseraean 13
2.3.1 Peer-to-Peer APProach........ccccevcvieveeeeeceeeeieesietestec e esie e e sae e sae e 13
2.3.2 De-Centralized APproachcccceeeieeieieriieceeeereeceees e sae e 14
2.3.3 Agent-Based Approach.......c.coocceveiiirieneeiiininieseneeeeet et 15
2.34 Ontology Description- Based Approach..........ccccoceevvevcviviecinnveceeiecenenne, 15
2.3.5 Routing Transferring Model-Based Approachccceceeveceneneninennenens 16
2.3.6 Parameter-Based Approachc.ccceceeveeneeiennvnneninieninece e 16
2.3.7 Quality of Service (QoS)-Based Approach.........cccecuevveveeriieneeeneencnnuennne, 17
2.3.8 Request Forwarding Approachc.eeceeevevievevineiseeeeee s sieeeeveeeens 18
2.4 FrameworKS/ATCHItECIUTESce..vveeereeeressesesseeeeeeeeseeessesesessseseeesesessessesesenes 19
24.1 GIODUS ..ottt 19
242 WED SEIVICE ...cuiiiiiiieiteeieteete ettt ettt sttt et st be e sane s s e eeane s 20
243 OGSA. .ottt ettt bttt e e n e n e n e nea 21
244 WSDA .ttt sttt sttt ettt et a et e e et se e e 22
245 NIMIOA/G .ottt ettt ettt ae e et 23
2.4.6 RDF ...ttt ettt ettt st ettt st et an e sas b n s anse o 23
2.4.7 UDDL..itteieeteteteeerteseresi et et sae ettt sresesa e ssaenae 25
2.5 A General COMPATISON ..c..eevueevueirrerreeeenrerrreetenetenteseresreetessessesanssssaesasesssssnns 27
2.6 AlGOTIHIIMS ..ottt 27
2.6.1 AlGOTIRIMS vttt 27
2.6.2 Classification of Different Algorithmsccoceereeencrerenenniinnncnine, 31
2.7 Limitations of Previous Worksccocvivevneninnininiiinnncnniineceene, 32
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Status Based Resource Discovery Modelcccoovevrieeieneniecieeeieeeeee e e 33

3.1 Preliminary......coceveeiirniieieeeee ettt e s 33
3.2 ASSUIMPLIONS...cotiriirtieierreiereteseeeteseeseeses e teesseaessseseesseessesssssaessasssesssesnses 34
3.3 The Proposed MOdelcccooerirririiiniinericiressie ettt et 35
3.3.1 SYSLEM OVEIVIEW ..ccuvereeiiriererierereeesieereeiesteeeesseessesssesssessesssesseessesssesssessses 37
3.3.2 Implementation DetailS........cceecveevirieriniieiieeseeceeie e 37
WML .ottt e sttt ettt b ba e s s st e s s st e s besba st e b antenbesntensaentens 38
WOL: ...ttt ettt st see st ettt sttt et e r e b s bbb sae et e b eme e 39
 Perfmon:ooeevenecenenenne. .. 40
Linux System APPLICATIONS:ccevueevcuiireiireerieeiiesieeesesscrssessssssessteestesaseesesnesssneens 40

4 Experimentation and ReSulf..........cocevviiiniiiniiinienienieereneceeeeeeseesee e 43
4.1 L0 1 OO SRR UOUOPORPOROP PP 43
4.2 CASE 2.ttt st s ar e s aas 48
4.3 RESUIS.ccuieeieteceet ettt et ra e 49
4.4 Technical diffiCultiescccceoeriereeieieiieiirneeeeceee et seneens 49
4.4.1 MEMOTY USAZE: . eeeeuverereeeeieeeeiieretteenttesreesreeesreessrneessaassssaesssraaeessnanaeeen 50
442 Instability of MySQL Connector for Windows Platform: 50
443 Interaction between a Scheduler and Reporting Agent..........ccccoecviinnnnen. 50

5 Summary and Future WorK.........cccceeeeiirrieniinieinieiiesientctinteseesrsns st 51
5.1 SUIMIMIATY ..ttt s st e ae s sas e s an e s bbb er b e e anaeennes 51
5.2 FUUIE WOTK ..ottt s 52
5.2.1 Communication among Different Virtual Organizationscccceeuvenen. 52
522 Real Time Interruption Monitoring ToOl.........cccceverviirviiiiniiineiinienieenn 53
523 Behaviour of Resources.......c..coeeevuennnene. e s esees e 53

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RETETEIICES ..o iiivetiteie ettt et et ettt ssseessesrsestsseresassssassssssssrssnsnssenesreesnssssannreseesnes

VLA A TCEOTIS ae e i eeeee e e eesereeeeeeesesesesessssssabaeseetebesesetaesesessasasasasasassesesesasasasassasseseessresaasanes

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1: Comparison among different frameworks/Architecturesc.cccevereereeiernnnene. 27
Table 2: Classification of algorithms...........ceceereeveeiieeeeriececreceeere et eeeas 31
Table 3: CPU and Memory Consumption of the system and the application................... 45

List of Hlustrations

Figure 1: Globus architecture at a glance. [Globus]ccceeiivieciriiccieecceceeeeeeeeeee, 20
Figure 2: A general scenario of a Web Service’s request processing [WSA04] 21
Figure 3 : OGSA architecture. [OGSA].....cccuirerermmireneneneeienteste st sresesssessesseseessenes 22
Figure 4 : High level view of UDDI. [UDDIOO]ccccocirererienenrinienenenieneneesrereeseeeenne 25
Figure 5: UDDI architecture at a glance [UDDIOO]cccoooevieveeniniieiinieieeieneeee e 26
Figure 6: High level architecture view of UDDI [SUNUDDI.....cc.cccccevvinimcieneerneeenen. 26
Figure 7: Random Pointer Jump ([Huan02], 1999, page: 232).....ccccvreerereveneenienneeneeeneen 29
Figure 8: Random Pointer Jump with Back Edge ([Harc99], 1999, page: 233)............... 29
Figure 9: Name Dropper ([Harc99], 1999, page: 235) .ccveeeeiereniecreririreeciesneneenene 30
Figure 10: Status monitoring system in a virtual organization..........cc.ceeceevvevrerrucecenenennen 33
Figure 11: Possible place for Status Monitoring System in a network.........cccceeeecvniinens 35
Figure 12: System architecture and flowchartcocceereniniinieniiiiiiiic, 36
Figure 13: Monitoring agent is in the action..........ccccoeevveeuirenienrtencnienicccrreseccnen 44
Figure 14: Monitoring agent is in its sleeping State..........ccccvcvevievirieiirinicninniiniinennens 44

Figure 15: Comparison of the CPU usage between the total CPU usage and CPU usage
DY the apPPliCAtION ..c..eiuiiiiieieiiriite ettt e 47
Figure 16: Comparison of the memory usage between total memory usage and memory

usage by the application...........ccocviiiiiiiiiiii 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 17: Definition of Profile table........c.ccecvvirinineniinieneneenteieccte e 48
Figure 18: Web-based search interface...........cceceeiriivenereeniiniceninereseneneseeeeneesnenens 48
Figure 19: Query result in XML format after passing the query string “select * from

PROFILE” ...ttt st ettt et steseae s s eose st bbb et bs st bs st sesesaeneseon 49

Figure 20: Resource Discovery in multiple virtual organizationscceceeceeeveriennenne. 53

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction

A computational Grid is a new class of infrastructure, which can provide scalable, secure,
high performance solutions for discovering and accessing remote resources across the
globe [Fost02a] . Generally Computational Grid is a collection of different resources
across the world and the foundation blocks of such systems are mainly personal
computers, desktops, and the need of sharing resources of the resource providers. The
need of building a Computational Grid is to achieve something which is not possible to
achieve for a low end machine. Since Computational Grid is a large distributed network,
it is not easy to find desired resource, because of the heterogeneous nature of the
resources, large number of users, different administrative domains, and different
operating systems.

Current status of the resources also plays an important role in Computational Grid
in order to avoid choosing an occupied resource. It would be nice if the service requestor
gets a list of all service providers along with the current status of the resources for a
specific task. Here status of the resources refers to the current CPU usage, total memory,
available memory, type of operating systems, and a list of available services. The
conventional resource discovery solutions do not deal with status monitoring of the
resources properly. A conventional resource discovery solution only discovers the
resource, not the status of the resource. But if the service requestor knows the status of
the desired resources before hand, it would be easier to complete a specific task.

An ideal Computational Grid environment should contain a resource discovery
infrastructure along with heterogeneous resource monitoring capabilities. These

capabilities can reduce the risk of choosing a wrong resource and also can reduce the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

completion time of a given task. The capabilities also should be user friendly in nature,
because a large portion of the Grid community is end-users and most of them do not have

expert technical knowledge to operate different complicated systems.

1.1 The Problem

Grid Computing is a new idea in distributed computing. The success of grid computing
depends on the collaboration of different resources across the globe. Not only the
collaboration among resources brings the success to Grid Computing, appropriate
resource discovery technique plays the very important role in connecting different
resource providers. The general members of a Computational Grid are low end
computers, personal computers which are owned by regular users. We have to remember
one thing that member computers are not fully dedicated to the grid community. These
resources are meant for regular use and they are available for grid community during
their idle time.

As an owner of such system, nobody wants any interruption in the middle of their
work in the name of searching for an appropriate resource. Because an interruption in
middle of work can slow down the processing time of the desired task, it may also freeze
the computer. In the resource discovery techniques, which are available for Grid
Computing, normally resource requestors search for the resource directly in the resource
providers. But recent internet security concern makes this technique complicated.
Therefore, using a firewall has become a very popular technique of protecting the
computer from the outside world. But firewall is very conservative about most of the

incoming traffic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 The Challenge

The main challenge of existing grid technology we are facing now is lack of availability
of a well engineered software infrastructure. Grid technology is for the people not only
for dedicated computer expert. As for example, if we consider the example of Globus
[Fost97], which is one of the most popular but least user friendly infrastructure available
in the Grid arena. In order to use this system, a user has to be very expert in Linux, and
this is available only for Linux platform.

The second big challenge we are currently facing is portability among different
platforms, in other words the homogeneous - heterogeneous issue. Because we have
windows users, we have Linux users, we have UNIX users, and we have Mac users.
Although they have different names, and different file systems, the users who use these
platforms their needs are pretty much same; their work has to be done. This is something
like we speak different languages, but we eat food to keep us healthy, and what kind of
foods we eat that is a different issue. In the same way, if a user needs to do a job, that
user does not care which system hosts the resource, windows, Linux, UNIX and in order
to complete the job if different platforms need to communicate, they should be able
communicate without any communication overhead.

In this thesis work a portable, platform independent and well engineered system is

presented.

1.3 Contribution

The main contributions of this research work are given below:

a) Well-engineered, heterogeneous resource monitoring architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b) In this system, the resource provider will provide the information about
resources in timely manner. So the service provider will not be getting interrupted
when he/she is busy with his/her work.

¢) CPU/Memory friendly solution: the application consumes less CPU and less
memory.

d) The maintenance and production of the system is reasonable.

e) This architecture may be integrated with other existing Grid architecture.

1.4 Chapter Organization

The thesis is divided into five main chapters, as follows. Chapter 2 presents some related
works. Chapter 3 presents the various design decisions made, implementation strategies,
implementation details and their justification. Chapter 4 presents the experimentation and

results. Chapter 5 concludes the thesis with a summary and the discussion of future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Previous / Related Work

This chapter explores selected research efforts related to resource discovery in Grid
computing. Several resource discovery architectures, several protocols have been

presented in this chapter.

2.1 General Discussions

The following terms, components, and theory have been reviewed to conduct this thesis

work:

2.1.1 Computational Grid

As stated in [Fost02a], and [Fost98] the computational grid is “a new class of
infrastructure, which provides scalable, secure, high-performance mechanisms for
discovering and negotiating access to remote resources, the Grid promises to make it
possible for scientific collaborations to share resources on an unprecedented scale, and
for geographically distributed groups to work together in ways that were previously
impossible.” According to [Fost98], in 1965, Fernando Corbato and other designers of
the Multics operating system from MIT had foreseen a computer system, which is similar
to a power grid or a water grid. In 1968, J. C. R. Licklider and Robert W. Taylor
predicted a Grid-like infrastructure in their paper “The Computer as a Communications
Device”.

According to [Tamn01], the resources are computers, cluster of computers, online
instruments, storage space, data, application and a resource discovery mechanism returns
the identity (may be location address(es)) of matching resources for a given description

of desired resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A large number of users, heterogeneous resources, dynamic status of resources
(over time) in a large distributed network make resource discovery more difficult than
that of traditional network. In a Computational Grid, Different operating systems,
different administrative domains, lack of portability between platform dependent
applications make resource discovery more difficult. So, appropriate resource discovery
mechanism is an important aspect of Grid Computing. Success of a Computational Grid
mainly depends on locating appropriate resources for a specific task.
As stated in [Fost02¢] , a Grid is a system, which has following three

characteristics:

" “coordinates resources that are not subject to centralized control ...

A Grid integrates and coordinates resources and users that live within different

control domains—for example, the user’s desktop vs. central computing; different

administrative units of the same company; or different companies; and addresses the

issues of security, policy, payment, membership, and so forth that arise in these

settings. Otherwise, we are dealing with a local management system.”

" “using standard, open, general-purpose protocols and interfaces

A Grid is built from multi-purpose protocols and interfaces that address such

fundamental issues as authentication, authorization, resource discovery, and

resource access..”’
" “to deliver nontrivial qualities of service
A Grid allows its constituent resources to be used in a coordinated fashion to deliver
various qualities of service, relating for example to response time, throughput,

availability, and security, and/or co-allocation of multiple resource types to meet

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complex user demands, so that the utility of the combined system is significantly

12

greater than that of the sum of its parts.

2.1.2 Virtual Organization (VO)

As stated in [Fost01], Virtual organization refers to “secure, flexible, coordinated

resource sharing among dynamic collections of individuals, institutions, and resources.”

2.1.3 Components of Resource Discovery

[Tamn02c], and [Tamn02a] identify four different architectural components for a general
resource discovery solution, “Membership protocol”, “Overlay construction”, ‘“Pre-
processing”, “Request processing”. [lamn02a] also identifies four environment parameter
factors, which dominate the performance and design strategies for a resource discovery
solution. These four factors are “Resource information distribution and density”,
“Resource information dynamism”, “Request popularity distribution”, “Peer

participation”.

2.1.3.1 Architectural Components

According to [ITamn02c], and [lamn02b], the following architectural components are

identified:

2.1.3.1.1 Membership Protocol

It refers to how a new node becomes a member of an unstructured network and how a
member learns about other members in such network. It is responsible for collecting and

updating information about currently active members.

2.1.3.1.2 Overlay Construction Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Overlay construction function refers to select the active members from the local
membership list. This selected member list depends on bandwidth availability, network
load, administrative policies, and topology specifications. It is responsible for searching

the best match for a given request.

2.1.3.1.3 Pre-processing

Pre-processing refers to off-line preparations for achieving better search performance. An
example of pre-processing is an advertisement for a local resource to other networks. It is

responsible for efficient searches.

2.1.3.1.4 Request Processing

It is responsible for searching resources. It has two components:

Local Processing:

It facilitates looking up local resource information for a requested resource.

Remote Processing:

It refers to send the request to other networks through different mechanism for

appropriate resources.

2.1.3.2 Architectural Modeling

According to [Tamn02c][Iamn02a], [lamn02a], the following four environment parameter

factors are identified:

2.1.3.2.1 Resource Information Distribution and Density

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It refers to different load of information sharing on different nodes. As for example, some
nodes share a large number of resource information, on the other hand, a home computer

shares just a few. Some resources are very common and some are very unique and rare.

2.1.3.2.2 Resource Information Dynamism

It refers to different attributes of resources, which are dynamic and static in nature. For
example, CPU load, memory availability are two highly variant attributes. On the other

hand, operating systems, type of CPU are two nearly static attributes.

2.1.3.2.3 Requests Distribution

It refers to possible closer uniform distribution of popular requests. L. Breslau and others
showed in their paper “Web caching and zipf-like distributions: Evidence and

implications” that HTTP requests follow zipf distributions.

2.1.3.2.4 Peer participation

The peer participation depends on different type of networks. For example, peer

participation in p2p networks significantly varies as in Computational Grid.

2.1.4 Models for grid resource management

[BuyyO00b] discusses three different management models for grid resource management
mainly hierarchical model, abstract owner model and (computational) market model.
Hierarchical model contains different active and passive components for grid computing.
As for example “Domain Control Agents” is an active component, which can provide
state information through publishing in an information service or through direct query.
Abstract owner model refers to an order and delivery and result gathering approach. The

(computational) market model refers to mixture of both hierarchical and abstract owner
9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model and it refers to a computational economy development in grid resource
management. The authors believed that one or more of the discussed models could be
mapped with existing or future grid systems.

[Krau00] identifies some key resource management approaches to design a
comprehensive resource management system. In this paper, the authors presented
resource management system as the core component of a network computing system
(NCS). The authors discussed different aspects of resource management such as mainly
quality of service (QoS) issue, different heterogeneity issues, different scheduling
approaches, resource discovery technique, different resource distribution approaches. The
authors suggest that a resource management system can maintain a replicated network
directory, which may contain resource information, and then the resource discovery

function queries the “resource dissemination function” for a particular resource.

2.2 Protocols

The following protocols are identified in [Alle01], [Alle99], [Chan02], [Czaj01],

[Czaj98], [Fost97], [Lars01], [Rosz98], [Fost01], [Fost02b], [Verb02] :

2.2.1 Grid Information Protocol (GRIP)

According to [CzajO01], Grid Information Protocol (GRIP) is used to retrieve information
of entities in virtual organization [Alle01],[Fost01] .According to [Czaj01], this protocol
is one of the main building blocks of VO. [Alle01] proposes an adaptive resource
selection mechanism to facilitate autonomous application migration for better resources
due to degradation of resources during the execution, and they use Grid Registration
Protocol (GRRP) of Globus Monitoring and Discovery Service (MDS) to discover the

resource.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Grid Registration Protocol (GRRP)

According to [Czaj01], Grid Registration Protocol (GRRP) is responsible for notifying
the aggregate directory services which refer to VO-specific resources, which are found by
GRIP protocol. Both GRIP and GGRP are used by the Globus metacomputing toolkit
[Fost97]. [Alle01] uses GRIP protocol of Globus Monitoring and Discovery Service
(MDS) to discover the resource in the proposed adaptive resource selection mechanism.
[AlleO1] claims that this service queries appropriate aggregate (e.g. GRRP) to discover a
“potentially interesting” resource and it uses GRIP to locate that resource during the

execution of the application.

2.2.3 Lightweight Directory Access Protocol (LDAP)

LDAP protocol is used for retrieving and updating information in a X.500 (to store
information in a directory based on certain regulations) model based directory. According
to [Fost01], a LDAP server speaks LDAP protocol, and it also makes a response to the
query. [Czaj98] shows how a Lightweight Directory Access Protocol (LDAP) enabled
Globus Monitoring and Discovery Service (MDS) can be used as an information service,
that is responsible for providing current availability and capability of resources. “Project
Isaac”, also uses a Lightweight Directory Access Protocol (LDAP), that was introduced

by [Rosz98].

2.2.4 Common Indexing Protocol (CIP)

According to [Alle99], the Common Indexing Protocol (CIP) is used to pass indexing
information from server to server to facilitate query routing or redirecting to a client.

Project Isaac also uses common Indexing Protocol (CIP) [Rosz98] .

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.5 Z39.50

According to [Lars01], Z39.59 is an information retrieval protocol, which was developed
by the American National Information Standards Organization (NISO). [Lars01] presents
a development technique of developing a cross-domain resource discovery database using
the Z39.50 protocol and they use Z39.50 “Explain Database” to select the databases and
to search the “Explain Database” to extract the server information using a probabilistic

algorithm to retrieve and rank the collection of information to the user for selection.

2.2.6 Network-Efficient Vast Resource Lookup At Edge (NEVRLATE)

[Chan02] proposes a protocol called NEVRLATE (Network-Efficient Vast Resource
Lookup At Edge) that facilitates a scalable resource discovery service, and it is used for
vast resource discovery. NEVRLATE organizes the directorjy service mainly in two-
dimensional Grids: registration to the resources is stored in one horizontal dimension and

lookup is performed in vertical dimension. The main specialty of this protocol is to
organize n servers into a flexible structure takes an O(\/n—) message complexity mainly

for registration and discovery of the resource. They claimed that NEVRLATE service

could provide a scalable worldwide “semantic” and “extended web” infrastructure.

2.2.7 JXTA

As stated in jxta.org [JXTA], “JXTA protocols are a set of protocols, which are designed
for ad hoc, pervasive, and multi-hop peer-to-peer (P2P) network computing. Using the
JXTA protocols, peers can cooperate to form self-organized and self-configured peer
groups independent of their positions in the network (edges, firewalls, network address

translators, public vs. private address spaces), and without the need of a centralized

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

management infrastructure.” [Verb02] presents a framework for large-scale computations
for “coarse-grained” parallelization. The components of this proposed framework are
based on JXTA protocol, which can facilitate a dynamic and decentralized organization
of computation resources. In this framework, JXTA protocol facilitates dynamic aspect of

grid through peer discovery where nodes are added or removed during the job execution.

2.2.8 Simple Object Access Protocol (SOAP)

According to [Fost02b], SOAP is an enveloping mechanism for carrying XML payloads.
This protocol provides a message passing mechanism to exchange information between
service provider and requestor. SOAP payload can be carried HTTP, FTP, IMS (Java

Messages Service), etc.

2.3 Approaches

Following resource discovery mechanisms are reviewed in [Hosc02b], [Harc99],
[Huan02], [Tamn01], {lamn02b], [Ilamn02a], [Jun00], [Li02], [Ludw02], [Mahe00],

[Rana0l1], [Wols99]:

2.3.1 Peer-to-Peer Approach

[lamn01], [[amn02b], and [lamn02a] discuss peer-to-peer resource discovery in detail.
[Tamn01] proposes peer-to-peer resource discovery architecture for a large collection of
resources. [ITamn01] claims that this decentralized resource discovery architecture could
lessen huge administrative burden as well as it can also provide very effective search-
performance result. They analyzed this resource discovery mechanism on up to 5000

peers based on the assumption that every peer provides at least one resource.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Iamn02a] discusses different resource discovery problems in a large distributed
resource-sharing environment specially in a grid environment. In this document, author
identified four different architectural components called “Membership protocol”,
“Overlay construction”, “Pre-processing”, and “Request processing”. Author also
identified four environment parameter factors, which dominate the performance and
design strategies for a resource discovery solution. These four factors are “Resource

2

information distribution and density”, “Resource information dynamism”, “Request
popularity distribution”, “Peer participation”.

[lamn02b] gives a brief description of different resource discovery approaches in
peer-to-peer networking. The authors claimed that using four axes framework [lamn02a],
it is possible to design any resource discovery architecture in a grid.

[Hosc02b] proposes a general purpose query support enabled “Unified Peer-to-
Peer Database Framework (UPDF)” for large distributed systems. UPDF can be
identified as a peer-to-peer database framework for a general purpose query support
which is unified because it supports arbitrary query languages, random node topologies,

different data types, different query response modes, different neighbour selection

policies for expressing specific applications.

2.3.2 De-Centralized Approach

[famn01] and [Rana01] discuss this approach. [Rana01] describes a de-centralized
resource management and discovery architecture based on interacting software agents
where agents can represent as a service, an application, a resource or a matchmaking
service. The authors of [Rana01] shows that this proposed approach could provide

dynamic registration of resources and user task. According to this paper, this approach is

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a matchmaking approach, which can facilitate dynamic resource management and
resource discovery in a grid environment. It also provides the resource availability,

resource capability.

2.3.3 Agent-Based Approach

[Jun00] presents a distributed resource discovery method for a large wide area distributed
system. This paper presents different resource discovery algorithms mainly flooding
algorithm, swamping algorithm, random pointer jump algorithm, and name dropper
algorithm. After analyzing all these algorithms the authors proposed a new agent-based
resource discovery algorithm called “Distributed Awareness Algorithm” and they also
proposed a framework for dynamic assembly of agents based on this algorithm.
Distributed awareness refers to a learning mechanism in which a node gets awareness
about other nodés in a network. In this algorithm, each node has an awareness table and
each node exchanges the information of this awareness table with other nodes. A typical
awareness table entry contains location of the node (IP address), when last heard from
that node, when last time the awareness information was sent to the node.

They also claimed that this agent based resource discovery system can provide
better discovery services using its agents’ autonomous behaviour and some other existing
technology including “Bond agents”, and some existing JPython written resource

monitoring software.

2.3.4 Ontology Description- Based Approach

Ontology refers to a description of a service (resource); [Ludw02] proposes a semantic

service discovery framework in a grid environment. They propose a service matchmaking

mechanism based on ontology knowledge and they claimed that this matchmaking
15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

framework can provide a better service discovery and also can provide close matches.
The main idea behind this approach is the advertisement of the resource. In this approach,
service provider registers its service description into the service registry database. When
a Grid application sends a request to service directory, matchmaker returns the matches to

the service requester. Requester chooses the best resource based on the specific need.

2.3.5 Routing Transferring Model-Based Approach

[Li02] proposes a resource discovery technique called the Routing-Transferring Model.
This model consists of three basic components - resource requester, resource router and
resource provider. The provider sends the resource information to a router and router
stores that information in a router table. After that, when the requester sends a request to
the router, router checks its routing table for an appropriate resource provider and after
finding that entry router forwards that request to the service provider or another router.
The authors formalized this model and they analyzed the complexity of Shortest Distance
Routing Transferring (SD-RT) algorithm based on this formalization. They claimed that
resource discovery time depends on topology and they also showed that SD-RT could
locate a resource in the shortest time, if the topology and distribution of resources are
explicit. They examined their proposed model in Vega Grid project and their experiment
shows that higher frequency and more location of resources can reduce the resource

discovery time.

2.3.6 Parameter-Based Approach

[Mahe00] examines different approaches for resource discovery in a grid system. A new
concept “Grid potential” is proposed in this paper, which encapsulates the processing

capabilities of different resources in a large network. The authors also proposed an

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm called “Data Dissemination Algorithm”. This algorithm follows swamping
approach [Harc99] for message distribution. When a message comes to a node, that
message gets validated. The validation process depends on three types of dissemination,
universal awareness that permits all incoming messages, neighbourhood awareness that
allows messages from a certain distance, and distinctive awareness, which discards
messages if it finds out that the less Grid potentiality at the local node in remote node, is
less than that of the requestor node. The authors also measured the performance of
“universal awareness”, ‘“neighbourhood awareness”, and “distinctive awareness”
dissemination schemes. The authors claimed that universal approach is more expensive in
terms of message complexity than that of neighbourhood and distinctive approach. The

authors also claimed that this new class of dissemination could reduce the communication

overhead during the resource discovery.

2.3.7 Quality of Service (QoS)-Based Approach

[Huan02] proposes an algorithm to discover the occasionally available resources in a
multimedia environment. In this paper, the authors defined different policies for a QoS
based resource discovery service for a given graph theoretic approach. They introduced a
generalized version of Discovering Intermittently Available Resources (DIAR) algorithm
based on occasionally available resources. They evaluated the performance of QoS
policies based on different time-map strategies in a centralized system. Through the
experiment they found out randomized placement strategies and increased server storage

can facilitate better performance to discover a particular resource.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.8 Request Forwarding Approach

According to [lamn02b], and [Tamn02a], following four-request forwarding approaches

are reviewed:

2.3.8.1 Random Walk Approach

In this approach, to forward the request, the node is chosen randomly.

2.3.8.2 Learning-Based Approach

As discussed in [[amn02b], and [Tamn02a], a request is forwarded to a node who
answered the similar request before. If no similar answer is found, the request is

forwarded to a randomly chosen node.

2.3.8.3 Best-Neighbour Approach

The number of received answer is recorded without recording the type of requests. The

request is forwarded to that node which answered highest number of requests.

2.3.8.4 Learning-Based + Best-Neighbour Approach

This approach to identical to learning-based approach except when no similar answer is
found, request is forwarded to the best neighbour.

In [Tamn02b], and [ITamn02a], the authors analyzed this resource discovery
mechanism in an “emulated” grid, which is a large grid network (for this case up to 5000
peers) based on the assumption that every peer provides at least one resource. The
authors measured performance evaluation of a simple resource discovery technique based
on “request propagation”. The authors found that learning-based approach performs

better among four request propagation approaches. The authors also claimed that best-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

neighbour approach works well in an unbalanced distribution, and although random walk
approach performs well in equally distributed resources, but it performs satisfactory in all

cascs.

2.4 Frameworks/Architectures

2.4.1 Globus

[Fost97] describes a metacomputing infrastructure toolkit called Globus, which was
originally developed to integrate geographically distributed resources including
supercomputer, cheap desktop, large databases, storages, scientific tools and together
they can form distributed virtual supercomputers. In Globus toolkit, basic low level
mechanism such as network information, communication, authentication are provided
along with high level metacomputing services such as parallel programming tools(MPI)
and different schedulers (DUROC). The authorsvpresented this work as an initiative to
achieve a large target mainly developing an Adaptive Wide Area Resource Environment
(AWARE), which was described as a set of high-level services, an appropriate
infrastructure for dynamically changing behaviour of metacomputing environments.

Globus uses GRRP and GRIP protocols to discover the resources in VO.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Globus Architecture

Figure 1: Globus architecture at a glance. [Globus]

2.4.2 Web Service

As stated in [WSAO04], “a Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP messages,
typically conveyed using HT'TP with an XML serialization in conjunction with other Web-
related standards”

“A Web service is an abstract notion that must be implemented by a concrete
agent. The agent is the concrete piece of software or hardware that sends and receives
messages, while the service is the resource characterized by the abstract set of
functionality that is provided. Although the agent may have changed, the Web service

remains the same.”

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y. Partios "become known" to sach ather

4. Interact

PR

_____ Requester Enfity & A Provider Entity

; , — Ll -
: E Sem T : i
E Requester i - - N : Yy E . i
' Human - i"'i 2. Agree on semantics & WS . Eromder :
: & E : & vman
i 3. input E i 3. bpput
| Semantics’ E : Semantics |
& WSD % ! i & WsD !

Figure 2: A general scenario of a Web Service’s request processing [WSA04]

243 OGSA

[Hosc02a] proposed a unified and modular service discovery architecture for Grid
computing, called Web Service Discovery Architecture (WSDA), which can be used in
run time to discover and adapt appropriate remote services. WSDA facilitates an
interoperable web service discovery layer by defining industry standard appropriate
services, interfaces, and protocol bindings. The communication primitives facilitate

service identification, retrieval of service description in a Grid computing environment.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OGSAAected Sondeas.

fasainral Serwites

Figure 3 : OGSA architecture. [OGSA]

WSDA and OGSA are developed for fulfillment of almost same set of targets but they
are both independent in nature. The main difference between OGSA and WSDA is
OGSA is restricted to map a Grid Service Handle (GSH) to a Grid Service Reference
(GSR) and in OGSA it is not obvious that every legal HTTP URL is a GSH; on the other

hand in WSDA every legal HTTP link is a valid service link.

2.4.4 WSDA

[Hosc02a] proposes a unified and modular service discovery architecture for Grid
computing, called Web Service Discovery Architecture (WSDA), which can be used in
run time to discover and adapt appropriate remote services. WSDA facilitates an
interoperable web service discovery layer by defining industry standard appropriate
services, interfaces, and protocol bindings. The communication primitives facilitate
service identification, retrieval of service description in a Grid computing environment.
WSDA and OGSA [Fost02b] are proposed for fulfillment of almost same set of targets
but they are both independent in nature. The main difference between OGSA and WSDA

is OGSA is restricted to map a Grid Service Handle (GSH) to a Grid Service Reference

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(GSR) and in OGSA it is not obvious that every legal HTTP URL is a GSH; on the other

hand in WSDA every legal HTTP link is a valid service link.

2.4.5 Nimrod/G

[Buyy00a] proposes a “component based architectural design for Nimrod-G” which is
implemented using different middleware services. Nimrod/G is a grid-enabled resource
management service, which is an extended version of their previous “Nimrod” resource
management architecture. This new Nimrod/G uses Globus Resource Allocation Manager
(GRAM) to allocate the resource, Monitoring and Discovery (MDS) service to monitor
and discover the resource, Grid Directory Information services for resource sharing.

[Buyy00a] claimed that Nimrod/G could make good scheduling decisions.

2.4.6 RDF

According to [RDF], RDF stands for Resource Description Framework. This framework
refers to describing and interchanging web metadata. As stated in [RDF-FAQ],
“Resource Description Framework is a universal format for data on the Web. Using a
simple relational model, it allows structured and semi-structured data to be mixed,
exported and shared across different applications. RDF data describe all sorts of things,
and where XML schemas just describe documents, RDF and OWL schemas
("ontologies”) talk about the actual things. This gives greater re-use. Where XML
provides interoperability within one application (e.g. bank statements) using a given
schema, RDF provides interoperability across applications (eg import your bank
statements into your calendar). RDF metadata can be used in a variety of application
areas. For example: in resource discovery to provide better search engine capabilities,

in cataloging for describing the content and content relationships available at a

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

particular Web site, page, or digital library; by intelligent software agents to facilitate
knowledge sharing and exchange; in content rating; in describing collections of pages
that represent a single logical "document”; for describing intellectual property rights of
Web pages, and in many others. RDF with digital signatures will be key to building the
"Web of Trust" for electronic commerce, collaboration, and other applications.”

According to [RDFO01], RDF is the core Metadata activity of W3C (World Wide
Web Consortium). RDF can be used by various metadata applications of W3C; digital
signatures, privacy preference management, PICS (Platform for Internet Content
Selection) are some of them. The main concern of PICS is filter out unwanted contents
from the web, e.g. filter out pornography, and other controversial contents.

According to [RDF], in RDF a resource is anything which has a Unified
Resource Identifier (URI), a property is a resource which has name and which can be
used as a property, a statement is a combination of resource, statement and value where
resource, property, and value are known as “subject”, “predica';e”, “object” respectively.

A simple RDF syntax [RDF]:

<rdf:Description about="hitp://www textuality.com/RDF/Why-RDF.htm|'>
<Author>Tim Bray</Author>

<Home-Page rdf:resource="http://www.textuality.com' />
</rdf:Description>

RDF can be used in HTML[RDF-FAQ)] :

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://doc"

dc:creator="Joe Smith"
dc:tittle="My document”
dc:description="Joe's ramblings about his summer vacation."
dc:date="1999-09-10" />

</rdf:RDF>

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.7 UDDI

According to [UDDI00], UDDI is a specification for distributed web-based information
registers for web services. UDDI is a specification to publish and discover information of
“Web services”. According to this technical paper, Web service is an internet-based
service, which can provide a specific service to another company or a software program
to complete a particular task. XML based UDDI business registration service publishes

information about a service for other interested party though “white pages”, “yellow

pages” and “green pages” components.

gfi%cms The UDDI specifications
o and schema ars used to
-1 bulld discovery services
- onthe Intemet. These
| discovery sevices
provide a consistent
publishing inerface and
allow programmatic
discovery of services.

)
| APISchema

Figure 4 : High level view of UDDI. [UDDI00]

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Advarced Discovery ia Porals & Manceplaces ‘ ﬁ e
w \ / R
¥ ' ’ DD+ Regesries & Praocal
Markeliace '
e
]

/ \/

Soge
Busineser 28 / Search Portal \ N

s () o W/ Tenica
= o/ bses
Figure 5: UDDI architecture at a glance [UDDI0O] Figure 6: High level architecture view of

UDDI [SUNUDDI]

According to [UDDI], The UDDI uses Worldwide Web Consortium (W3C) and
Internet Engineering Task Force (IETF) standards ﬁainly XML, and HTTP and Domain
Name System (DNS) protocols. Cross platform programming capabilities are added to
UDDI using Simple Object Access Protocol (SOAP). The UDDI protocol is mainly used
for finding web services quickly and efficiently.

Currently UDDI is a widely used resource discovery mechanism in distributed
network. IBM, Microsoft, and Sun Microsystems have been using UDDI for discovering
the services. IBM offers a UDDI service called “IBM UDDI Registry” [IBMUDDI]
service, where service provider can register his/her business and services, on the other
hand a consumer can search that service thorough a web portal. In order to use this
registry service one needs IBM userid and password. Currently this registry service is
free to use. Microsoft also offers a free UDDI service called “UDDI Business Registry
node” [MicroUDDI]. Similar to IBM approach, people can also register their businesses
along with services to UDDI Business Registry node and interested consumer can find

that specific service. Microsoft heavily uses UDDI in Windows 2003 Server, Office XP,

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and Visual Studio .Net. “Sun also sees UDDI as an important project to establish a

registry framework for business-to-business e-commerce”[SUNUDDI].

2.5 A General Comparison

Based on user friendliness, platform dependency, cpu/memory usage, cost (production
cost/ management cost), possibility of integrating with other existing framework,

publication of status of resources, following comparison table is established:

Platform CPU/Memory | Cost Possibility | Status of
dependency | friendliness of the
integrating | resources
with other
existing
architecture
Globus Yes: Linux | Under Very Very No
based development difficult to | difficult
operate, so
need help of
technical
expert
Web service | No Yes low Yes No
WSDA No N/A High Yes No
OGSA No N/A High Yes No
JIXTA No No medium Yes No
protocol
UDDI No N/A high Yes No

Table 1: Comparison among different frameworks/Architectures

2.6 Algorithms

2.6.1 Algorithms

The following algorithms have been reviewed in [Harc99], [Huan02], [Jun00], [Kutt01],

[Kutt02], [Ludw02], [Law00], [Li02], [Mahe00].

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6.1.1 Flooding Algorithm

According to [Jun00] and [Harc99], this algorithm is widely used by internet routers and
where every node acts as a transmitter and receiver and every node tries to send every
message to every node of its neighbour, a newly added new edge is not used for any
communication, direct communication exists only in between initially existing set of
neighbouring edges of the network. The required number of rounds of this algorithm is
equivalent to the diameter of the graph. [Harc99] claims that this algorithm can be very

slow if not started with a graph, which has small diameter.

2.6.1.2 The Swamping Algorithm

According to [Jun00] and [Harc99], swamping algorithm is similar to flooding algorithm
except this algorithm allows a node to connect with all of its current neighbours, not only
with the set of initial neighbours. [Harc99] suggests that the main advantage of this
algorithm needs O(logn) rounds to converge to a complete graph and which is
irrespective to the initial configuration. According to [Harc99], the disadvantage of this

algorithm is communication complexity, this algorithm grows very quickly.

2.6.1.3 The Random Pointer Jump Algorithm

In this algorithm, in each round, each node contacts a random neighbour, and then this
random neighbour sends all of its neighbours to the sender node. Finally sender
neighbour and random neighbour’s neighbours get merged. According to [Jun00] and

[Harc99], a strongly connected graph with n nodes needs Q(n) complexity time to

converge to a complete graph.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7: Random Pointer Jump ([Huan02], 1999, page: 232)

(i) Before the Random Pointer Jump. Node A chooses at random one of its neighbours and opens a
connection with it. Here B is the chosen neighbour (ii) After the Random Pointer Jump Node B has passed
to node A all of its neighbours, and now A also points to them. The dashed lines indicate newly formed
edges

2.6.1.4 The Random Pointer Jump with Back Edge Algorithm

®
Figure 8: Random Pointer Jump with Back Edge ([Harc99], 1999, page: 233)
(i) Before the Random Pointer Jump with Back Edge. Node A chooses at random one of its neighbours and
opens a connection with it. Here B is the chosen neighbour (ii) After the Random Pointer Jump Node B has

passed to node A all of its neighbours, and now A also points to them. Node B is also given a pointer to
node A. The dashed lines indicate newly formed edges

According to [Harc99] , this algorithm is almost identical to Random Pointer Jump

algorithm except every time adding a back edge after performing the pointer jump.

2.6.1.5 Name Dropper Algorithm

This algorithm is proposed for querying resources in a weakly connected network where

it is assumed that all machines already know each other. [Harc99]

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o (i)

Figure 9: Name Dropper ([Harc99], 1999, page: 235)

(i) Before Name-Dropper. Node A chooses a random neighbour; here B is the chosen neighbour (ii) after
one round of the Name-Dropper algorithm. A has passed to B all of its neighbours and B has added edges
to these neighbours. In addition, B learns about A. The dashed lines indicate newly formed edges.

2.6.1.6 Distributed Awareness Algorithm

After analyzing different algorithms of [Harc99], [Jun00] proposes a new agent-based
resource discovery algorithm called “Distributed Awareness Algorithm” and also they
proposed a framework for dynamic assembly of agents based on this algorithm.
Distributed awareness refers to a learning mechanism by which a node gets awareness
about other nodes in a network. According to [Jun00], in this algorithm, each node has an
awareness table and each node exchanges the information of this awareness table with
other nodes. A typical awareness table entry contains location of the node (IP address),
when last heard from the node, when last time the awareness information was sent to the
node. The authors claimed that this agent based resource discovery system could provide

better discovery services using its agents’ autonomous behaviour.

2.6.1.7 Data Flooding Based Data Dissemination Algorithm

[Mahe00] proposed an algorithm called “Data Dissemination Algorithm” which follows
swamping approach [Harc99] for message distribution. When a message comes to a node,
that message gets validated. This validation process relies on three types of

dissemination, universal awareness that permits all incoming messages, neighbourhood

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

awareness that allows messages from a certain distance, and distinctive awareness, which

discards messages if it finds out that the less Grid potentiality at the local node in remote

node, is less than that of the requestor node.

In [Mahe00], the authors also measured the performance of “universal

1 4

awareness”, “neighbourhood awareness”, and

“distinctive awareness’ dissemination

schemes. The authors claimed that universal approach is more expensive in terms of

message complexity than that of neighbourhood and distinctive approach. The authors

also claimed that this new class of dissemination could reduce the communication

overhead during the resource discovery.

2.6.2 Classification of Different Algorithms

After reviewing all these algorithms we can classify them in following different groups:

Group Name

Algorithm

Centralized

Distributed Awareness Algorithm,
Flooding Based Data Dissemination

Algorithm

De-centralized

Flooding Algorithm, Swamping Algorithm,
Random Pointer Jump Algorithm, Random
Pointer Jump with Back Edge Algorithm,

Name Dropper Algorithm

Table 2: Classification of algorithms

In Flooding Based Data Dissemination Algori

thm, they concentrate on the “resource

status database” in this algorithm, but our proposed model is little different than theirs. In

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this research work we concentrate on the actual resource status which includes memory
status, CPU status, available services, etc. On the other hand their “resource status” refers
to the grid potentials, “the Grid potential at a point in the Grid can be considered as the

computing power that can be delivered to an application at that point on the Grid”.

2.7 Limitations of Previous Works

This above background reading suggests that no single approach and framework can
solve all the problems and provide well engineered, platform independent, cpu/memory
friendly, cost effective, and portable solution; some limited approaches or few
frameworks provide the current status of the resources, but they are not well engineered
or platform independent in nature. It would to be easier for an interested party to choose

the particular resource, if the status of the resource is known or predicted before.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Status Based Resource Discovery Model

The ultimate goal of this system as described in Chapter 2 is to present a scalable,
portable, easy to use resource status monitoring system in Computational Grids context.
In this proposed model, all computers in a virtual organization should be able to update

the status information database with their current status.

Database

Secured Area

Virtual organization

Figure 10: Status monitoring system in a virtual organization

3.1 Preliminary

First of all, we need to distinguish between two models: “resource status in Grid
potential” [Mahe(00] and resource status in our proposed model, although they seem
similar from the out side. According to [Mahe00], “Grid Potential” refers to the
computing power which includes, CPU speed, FLOP rating, sustained memory access

rate, persistent disk access rate, which are almost static in nature. But in our proposed
33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model, we are interested to know the static information as well as the dynamic status of
the resources. For example, total memory, and total power of the CPU are two main static
resources in our model. In addition, we also retrieve the dynamic information of the
resources which includes current CPU usage, current available memory, and current
available services.

The work done by [Czaj01] is similar to our approach.[Czaj01] describes issue and
solution of monitoring of services and resources; they implemented the Grid Information
Service for Globus system, which is another platform dependent solution. In addition to
that, in their work they totally ignored the existence of platforms other than UNIX based

system. But in our work, we propose an architecture which works in multiple platforms.

3.2 Assumptions

In order to accomplish our goals we need to make following assumptions:
e The resources we are considering are mainly low end desktop computers
e They are connected to networks (such as the web) preferably with static IP.
e These resources are not used for completely personal use. As for example,
watching movies, listening to music, running downloading software all the

time (Kazaa, iMesh, Napster, etc).

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 The Proposed Model

Resoturce Discovery Status Monitoring

Communication-
Mechanishm

Collaporation

Figure 11: Possible place for Status Monitoring System in a network

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“—Checking the view-—-ue

Status View
no
XML format

Allocation gueye

If yes:::

Status Storage

ommunicatiy
0 Delails

/
e

S

o

Statu
..
i

Figure 12: System architecture and flowchart

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 System Overview

In this thesis work, we propose a resource discovery infrastructure in the form of an
automated status monitoring model. The model consists of two fundamental aspects, a
portable data model and a set of executable monitoring components. Our approach
adheres to principles of software design, is well structured and platform independent. The
portable data model, which conveys the status of the resources, must be understandable
by any application software, agent or scheduler on any platform. In turn, the monitors
must be able to acquire necessary status information from various, diverse systems and
maintain the data model.

There are four main components available in this system: central status monitoring
repository, interested resource provider and consumer, network connection, and self -
executable resource monitoring and reporting agent.

The main target of our research work is to present a resource discovery

architecture based on monitoring capabilities.

3.3.2 Implementation Details

3.3.2.1 Tools being used

In order to implement this proposed model, the following components, tools, operating
systems, programming languages, frameworks are used.
¢ OS Environment:
o Linux (Red Hat 7.3)
o Windows (Windows XP)
e Programming Language

o C for Linux
37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o C# for windows
o PHP for the web
e Database
o MySQL Server (v 1.4)
o MySQL ODBC Driver for windows
o Pro*C
o Windows Management Instrumentation (WMI)
o Windows Management Instrumentation Query Language (WQL) to query
the status in Windows environment
e Tools
o Existing Linux Tools: top, vmstat, fd
o Existing Windows Tool: perfmon
e Publication Tools:
o XML
o PHP
In this section we are not going to discuss about all of them, only WMI, WQL, Perfmon,

Linux system applications are discussed below:

WMmiI:

As stated in [WMI]:

“The WMI infrastructure is a Microsoft® Windows® operating system component that
moves and stores information about managed objects. The WMI infrastructure is made of
two components: the Windows Management service, and the WMI repository. The

Windows Management service acts as an intermediary between the providers,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

management applications, and the WMI repository, placing information from a provider
into the WMI repository. The Windows Management service also accesses the WMI
repository in response to queries and instructions from management applications.
Finally, the Windows Management service can pass information directly between a
provider and a management application. In contrast, the WMI repository acts as a
storage area for information passed in by the various providers.

Windows Management Instrumentation (WMI) is a component of the Microsoft®
Windows® operating system and is the Microsoft implementation of Web-Based
Enterprise Management (WBEM), which is an industry initiative to develop a standard
technology for accessing management information in an enterprise environment.
Windows Management Instrumentation (WMI) provides access to enterprise control and
WMI provides security measures to restrict access. The WMI infrastructure provides
security by using identification, impersonation, and namespace access. The WMI
infrastructure provides security by positively identifying a user. After identifying a user,

the WMI infrastructure validates user credentials before a user can log on to WML ”

WQL:

According to [WQL], WQL stands for Windows Management Instrumentation Query
Language, a subset of ANSI SQL (American National Standards Institute Structured
Query Language). With the minor semantic changes from ANSI SQL, it is used to
support WML

A complete list of supported SQL keywords can be found at

http:/msdn.microsoft.conylibrary/default.asp?url=/librarv/en-

us/wmisdk/wmi/sql for wmi.asp

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perfmon:

"Perfmon"[Perfmon] is a built-in Windows Operating System tool which is used to
monitor the performance of the system, mainly cache, memory, objects, paging file,
physical disk, process, processor, server, system, thread.

Linux System Applications:

We use two Linux applications in order to gather system information in a Linux
environment: “fop”, “fd”, and “vmstat”. According to [LinuxCommand], "fop”
command displays the system information such as average load, CPU usages, uptime and
processes. "vmstat"” displays information about processes, memory, paging, block 10,

traps, and CPU activity. “fd” displays the storage and partition information.

3.3.2.2 Design

We have already mentioned above that four main components are required to construct
this system: central status monitoring repository, interested resource provider and
consumer, network connection, self — executable resource monitoring and reporting
agent.

Central status monitoring repository: This is one of the man components of this
system. The central status monitoring repository is a central location where the current
status of the resources are stored in order to help the requestor’s agent to choose the
appropriate resources according to the needs of the requestor.

Resource provider and consumer: In this system, resource providers play the main role
of resource sharing. A resource provider is a volunteer entity who wants to share his/her

resources with the other members at the network. On the other hand, a consumer wants to

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

use the resources from a resource service provider. In any resource sharing-distributed
environment a resource provider can be a consumer and vice versa.

Network connection: In section 3.3, we have already assumed that all members of the
systems are connected through a network; preferably members have the static IP address
in order to maintain the connection.

Resource monitoring and reporting agent: A resource monitoring agent is responsible
for monitoring the system. A reporting agent is responsible for updating the central
repository with the latest status of the local system. It also updates the queue manager
with the situation of the system, if any interruption occurs. For example, when service
provider’s resources provide the consumer with the service, if service provider’s
computer needs to do something for its own, the reporting agent will notify the queue
manager and queue manager keeps the current progress of the work, and forwards the

request to another service provider or connect the same provider after a certain time.

3.3.2.3 Implementation

The implementation of this architecture has been designed for multiple operating
systems, mainly Windows 2000, and Windows XP operating system and Linux based
operating system which is tested in RedHat 7.3 Kernel version 2.4.18-3. For the windows
based environment the implementation has been achieved by Net’s “C#” programming
language with the support of WMI and WQL. For the Linux based operating systems the
implementation has been completed by “C” language with the support of existing Linux
applications (top, vmstat, free, fd). Open source database solution “MySQL v. 4.0.18-

standard” is used to achieve the central status monitoring repository support.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The client application has been tested on Intel Pentium, PII, PIIIL, PIV processors
with the support of at least 64Mbs of RAM. The database server has been configured on
an Intel PIV machine with 256 Mbs of RAM support.

The network between different machines is provided by regular high speed
internet connection.

During the operation, behaviour of the members’ machines is closely monitored.
Especially, the CPU and memory consumption by the client application are monitored.
On average 5.676377% CPU consumption and 11.84928 Mbs of RAM consumption are
observed. In both of the Windows and Linux environments, the client program takes
more RAM in its starting phase than the regular phase. Since, the monitoring program
monitors the status of the resource machine periodically, thread management technique is
used to make the activities idle when there is no need to monitor.

This architecture also has on demand a reporting mechanism. For example, if the
owner of the resources needs the resources for himself/herself during an execution of an
operation, the reporting agent captures this exception and sends the status of the job to
scheduler and the scheduler may store this incomplete work in the queue and assigns this

job to another available resource(s) if needed.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Experimentation and Result

In this chapter two experiments are designed and executed to determine the feasibility
and the effectiveness of this proposed architecture. These experiments have been
conducted on Windows environment.

The experiments are conducted based upon two different scenarios. Case 1 presents
how to monitor the system and Case 2 presents how to search for a resource.

In section 4.1 case 1 is presented. In section 4.2 Case 2 is presented. In section 4.3,

test results are summarized. In section, 4.4 technical difficulties are discussed.

41 Case 1

The status monitoring application is easy to run. Anybody who is a member of a
networked community can download the application based on the operating system. In
this case, when the application starts running, it captures the status of the machine in a
timely fashion; in this case the interval is 5 minutes. That means, in every 5 minutes, it
takes a snapshot of the resource, mainly the CPU utilization and the memory usage. After
getting the status, it passes this information to a central repository system. The process
goes to “sleep” when there is no work do. The central repository system stores the data
and when an interested party needs the resource for a task, the application agent can
query this status database table for a matching result. After finding a matching result, the
application can send a request to the service provider computer and finish the job. But, if
any interruption occurs during the execution, “Reporting Agent” can contact with the
“Scheduler Queue Agent” and the Queue agent may store this information and pass the

request to another service provider.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 13: Monitoring agent is in the action

wWindows Task Manager &

. jusched.exe

| Isass.exe

1 msnappau.exe

| msnmsgr.exe
ninates.exe
notepad.exe
ntaskldr.exe
PDVDServ.exe
Photoshop.exe

progech_thesis
gttask.exe

realsched.exe
SearchUpgrader....
SErvices.exe

SMss.exe
spoolsv.exe

| svchost.exe

{ svchost.exe
sychost.exe

ser Name

Administyator
SYSTEM
Administrator
Administrator
Administrator
Administrator
Administrator
Administrator
Administrator
Scdriristrator
Administrator
Administrator
Administrator
SYSTEM
SYSTEM
SYSTEM
SYSTEM
NETWORK SERVICE
SYSTEM

Figure 14: Monitoring agent is in its sleeping state

The following table has been constructed with real data over 6 hours period of time span.
Here, we try to capture the behaviour of the application and service provider’s machine.
Processor: Intel Pentium III processor 535 MHZ

Total Memory: 318 Mega bytes
Operating System: Windows XP

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3: CPU and Memory Consumption of the system and the application

Time CPU usageby | Memory usage | Free CPU (%) | FREE Memory
the application | by the
(%) application
12:31:35 AM 10.67 21 Mbs 78.33 158 Mbs
12:36:21 AM 4 10 Mbs 89 129 Mbs
12:41:22 AM 5 12 Mbs 92.61 111 Mbs
12:46:22 AM 6 4.9 Mbs 91.98 101 Mbs
12:51:22 AM 9 5.2 Mbs 91.99 100 Mbs
12:56:22 AM 7 10 Mbs 91.69 94 Mbs
1:01:23 AM 5 12 Mbs 92.22 86 Mbs
1:06:23 AM 4 6 Mbs 91.33 85 Mbs
1:11:23 AM 8 5.2 Mbs 90.77 86 Mbs
1:16:24 AM 6 15 Mbs 91.66 86 Mbs
1:21:24 AM 4 23 Mbs 91.93 87 Mbs
1:26:24 AM 9 22 Mbs 91.91 86 Mbs
1:31:24 AM 4 10 Mbs 91.64 87 Mbs
1:36:25 AM 3 12 Mbs 91.33 85 Mbs
1:41:25 AM 4 4.9 Mbs 91.26 84 Mbs
1:46:25 AM 7 5.2 Mbs 91.86 84 Mbs
1:51:26 AM 8 10 Mbs 91.67 84 Mbs
1:56:26 AM 4 12 Mbs 91.67 84 Mbs
2:01:26 AM 5 6 Mbs 91.63 84 Mbs
2:06:26 AM 7 5.2 Mbs 91.62 84 Mbs
2:11:27 AM 8 15 Mbs 91.60 84 Mbs
2:16:27 AM 4 23 Mbs 91.56 84 Mbs
2:21:27 AM 8 21 Mbs 91.66 84 Mbs
2:26:27 AM 3 10 Mbs 91.98 84 Mbs
2:31:28 AM 4 12 Mbs 91.19 84 Mbs
2:36:28 AM 9 4.9 Mbs 91.89 84 Mbs
2:41:28 AM 8 5.2 Mbs 91.32 78 Mbs
2:46:28 AM 8 19 Mbs 91.99 73 Mbs
2:51:29 AM 6 12 Mbs 91.65 72 Mbs
2:56:29 AM 6 6 Mbs 91.79 72 Mbs
3:01:29 AM 4 5.2 Mbs 90.66 72 Mbs
3:06:29 AM 5 15 Mbs 91.69 72 Mbs
45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3:11:30 AM 5 23 Mbs 91.54 72 Mbs
3:16:30 AM 3 21 Mbs 91.74 72 Mbs
3:21:30 AM 6 10 Mbs 89.59 72 Mbs
3:26:30 AM 7 12 Mbs 90.37 72 Mbs
3:31:31 AM 2 4.9 Mbs 91.59 72 Mbs
3:36:31 AM 3 5.2 Mbs 91.53 72 Mbs
3:41:31 AM 6 10 Mbs 91.69 69 Mbs
3:46:32 AM 2 12 Mbs 90.89 72 Mbs
3:51:32 AM 4 6 Mbs 92.34 72 Mbs
3:56:32 AM 6 15 Mbs 93.48 72 Mbs
4:01:32 AM 5 15 Mbs 94.94 72 Mbs
4:06:33 AM 5 23 Mbs 91.99 72 Mbs
4:11:33 AM 3 21 Mbs 90.65 71 Mbs
4:16:33 AM 5 10 Mbs 91.34 71 Mbs
4:21:33 AM 6 12 Mbs 91.91 71 Mbs
4:26:34 AM 3 4.9 Mbs 91.39 71 Mbs
4:31:34 AM 4 5.2 Mbs 90.63 71 Mbs
4:36:34 AM 6 15 Mbs 91.25 71 Mbs
4:41:34 AM 5 12 Mbs 91.39 72 Mbs
4:46:35 AM 8 6 Mbs 91.57 72 Mbs
4:51:35 AM 4 5.2 Mbs 91.35 72 Mbs
4:56:35 AM 5 15 Mbs 91.51 72 Mbs
5:01:35 AM 7 23 Mbs 91.97 72 Mbs
5:06:36 AM 5 21 Mbs 91.35 72 Mbs
5:11:36 AM 7 10 Mbs 89.99 72 Mbs
5:16:36 AM 7 12 Mbs 89.99 72 Mbs
5:21:36 AM 5 4.9 Mbs 90.39 71 Mbs
5:26:37 AM 7 5.2 Mbs 91.35 72 Mbs
5:31:37 AM 5 10 Mbs 91.95 73 Mbs
5:36:37 AM 6 12 Mbs 91.38 72 Mbs
5:41:37 AM 8 6 Mbs 91.11 72 Mbs
5:46:38 AM 8 5.2 Mbs 91.56 72 Mbs
5:51:38 AM 8 15 Mbs 91.73 72 Mbs
5:56:38 AM 6 23 Mbs 91.19 71 Mbs
6:01:38 AM 4 12 Mbs 91.78 72 Mbs
6:06:39 AM 9 17 Mbs 91.79 73 Mbs
46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6:11:39 AM 4 18 Mbs 91.71 73 Mbs

CPU Consumption

25
T 20
= e CPU usage by
g. 15 the application
10 g JOtal CPU
2 usage
& 5
0
8 R 8§85 8 B
" T b ¥ 8 = o
g - - N 9¢] w ©
Time

Figure 15: Comparison of the CPU usage between the total CPU usage and CPU usage by the application

Memory consumption

_. 300
250 —e— Total Memory
200 usage
150 M
—a&— Memory usgae
100 by the
50 application
0
8 3 8 8 & 3 &
n €8 8 § 8 «
N v N N & ¥ I
N
Time

Figure 16: Comparison of the memory usage between total memory usage and memory usage by the
application

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Case?2

In this section, we present how to search for a resource and the final matching result.
Since, the definition of “PROFILE” table is open to the public, anybody can search for
the resources in the repository system or can use the web interface to search for the

resources.

nysqgls desc PROFILE;

+————J= ————————— e el e S el e e e +
| Field | Type | ‘Mull |"Eey | Default | Extra |
o i R e S Rt e o +
MEMBER ID	int{ll)		PRI	0 1	
MEMBER. IP	warchar{30)	¥YE§	-MUL	NULL I	
MEMBER NaME	varchar{l00)	YES		-NULL	
SERVICE:LIST	text	¥ES		NULL }	
DATE TIME	warchar (100}	¥YES		WULL]	
TIME Z0ONE	warchar(100) [.¥YES		NULL]	
EPU	warchar (100}	YES		NULL	
0S	wvarchar{lpD0)	YES		NULL	
TOTAL MEMORY	warchar {20}	YES		NULL	
TOTAL SWAP	warchar (20}	¥ES	I NULL		
FREE: MEMORY	warchar (20} L ¥ES		WULL		
FREE SWAP	warchar{z0y [YE3		NULL 1		
FREE. CPU	warchar{20)	YES		NULL	
DISK] text [YES	I "NULL l 1				
e T T oo e T o o +

14 rows in zet (0.00. sec)

Figure 17: Definition of Profile table

3

Search for the Resource

1P Address (If known)
Name-of the Machine (If

Known)

Services (keywards, etc)

CPrU

Operating System

Total Memory axpression (=, > < 1) !
Free Memory expression (=, » <, 1) " 1
Total Swap Memory expression {=, &, D ‘ 1
Free Swap Memaory expression (=; > < 1) | |
Free CPU exprassion (=, > < ;1] | y

Figure 18: Web-based search interface

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<sml Yersian="1,0" encodng="UTF-8" %
- <IESOUICRS?
<resources_founds2¢/resources. founds
- <IBS0UITE?

<nameskent2¢/narres

¢ip>137.207.234.170¢/in>

¢servicexBubble sort in C,Bubble sort in Java</services

<cpuGenuinelntelPentium 111 {Coppermine) 797.438 MHz</cou>

<operating_system>Red Hat Linux 7.3 2.96-110¢/aperating systems

¢storagesName : C: Total Disk Size in Mbytes:1941 Free Disk Size in Mbytes:226 Name : D: Total Disk Size in
Mbytes:11613 Free Disk Size in Mbytes:4147 Name : E: Total Disk Size in Mbytes:5032 Free Disk Size in
Mbytes:3711 Name : F: Total Disk Size in Mbytes:5017 Free Disk Size in Mbytes:1138 Name : G: Total Disk
Size in Mbytes:4988</starage>

<total_memory_mb»249.664062</total_memory_mh>

<free_memary_mb>10.535136¢/free_memory_mb>

<total_swap_memory_mb>996.207031</total_swap_memary_mbs

<free_swap_memory_mb />

<ftes_cpu_percentage>99.699997¢/free_cpu_percentages

<time_zone /»

¢/resaurces
Figure 19: Query result in XML format after passing the query string “select * from PROFILE”

4.3 Results

From this result we can see that resource consumption by the application is stable, and it
uses a reasonable amount of resources. So, we can conclude that from the CPU and
memory consumption point of view, running this application is not expensive. Since, we
keep the definition of “PROFILE” table for the public, searching for a specific resource is

well- engineered in nature.

4.4 Technical difficulties
We have faced the following technical difficuities during the implementation.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.1 Memory usage:

Most of the time, the application consumes more resources than at the beginning of the
execution of the client’s application. For example, in a general cases, the application
takes less than 10 Mbs of RAM (lowest 255 Kbs was observed) to continue the process,
but at the beginning the highest RAM consumption was observed 25 Mbs. But over the

life span of the application the RAM consumption becomes lesser up to a certain limit.

4.4.2 Instability of MySQL Connector for Windows Platform:

In order to implement this effort, MySQL database server was deployed in a Linux box.
A MySQL database connector or ODBC connector (ODBC 3.51 has been used) was
needed to create a bridge between Windows based application and the MySQL server.
Connection drop out was observed in some instances. We also use MySQL client for
connecting the Linux based application and the database server; so far, no drop out has

been recorded.

4.4.3 Interaction between a Scheduler and Reporting Agent

In our proposed model, we propose a reporting agent, which can monitor any interruption
during an execution and can report to the scheduler if needed. In this case, reporting
agent is not implemented programmatically, so there is no real interaction between the

proposed reporting agent and the scheduler.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Summary and Future Work

5.1 Summary

In this thesis, we dealt with the issues related to resource monitoring and discovery in
Computational Grids. After reviewing the different existing Grid architectures, we have
found that grid computing can be more meaningful with a proper resource discovery
architecture based on the current status of the systems.

In this thesis work, we designed, implemented and tested a discovery infrastructure
in the form of an automated status monitoring model. The model consists of two main
fundamental aspects, portable data model and a set of executable monitoring components.
Our approach adheres to principles of software design, is well structured and platform
independent. The portable data must be understandable by any application software,
agent or scheduler on any platform. In turn, the monitors must be able to acquire
necessary status information from various, diverse systems and maintain the data model.
We developed appropriate interfaces that provide straightforward connectivity between
our infrastructure and other Grid middleware components being developed elsewhere.

This research work aims to tackle the issue of resource discovery along with the
status of the system on any platform, any operating system.

In short, the main contributions of this research work are given below:
a) Currently we can collect different status information of a resource provider,
which includes storage capacity, memory capacity, SWAP information, time
zone, available software, operating system information, CPU usage information.
This list can be extended in the future.
b) Well engineered heterogeneous resource monitoring architecture

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c¢) In this system, the resource provider will provide the information about
resources in a timely manner; thus service provider will not be interrupted when
he/will is busy.

d) CPU/Memory friendly solution: the application consumes less CPU and less
memory

f) The output of this system can be easily integrated with other system. For
example, another student of our research group has done a research on scheduler
based on genetics algorithm. The input of that system is IP address and free CPU
usage of a computer. Currently, static input is used for that system, but we can

easily supply that input from our program.

5.2 Future Work

In the course of conducting this research effort we came across some issues that we

believe make for good research opportunities to implement the whole architecture.

5.2.1 Communication among Different Virtual Organizations

In this thesis, we have implemented the resource discovery mechanism for a single virtual
organization. But it is possible to connect multiple virtual organizations. To achieve this
target, we can use one of the algorithms we have described in section 2.6.1 such as the
Data Flooding Based Data Dissemination Algorithm as a communication model. For the
decision making purpose we can use one of the approaches among Peer-to-Peer
Approach, De-Centralized approach, Agent-Based Approach, Ontology Description-
Based Approach, Routing Transferring Model-Based Approach, Parameter-Based
Approach, Quality of Service (QoS)-based Approach, and Request Forwarding

Approach, which we have already discussed in the section 2.3.
52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

el

RTINS
s

Virtaal Organization

Wirtual Qrganization n

Figure 20: Resource Discovery in multiple virtual organizations

5.2.2 Real Time Interruption Monitoring Tool

We have identified a need for having a real time Interruption Monitoring tool which
could be useful to capture any interruption during any execution of a task and report to
the scheduler or to a job allocating agent. We believe that it could be a good research

opportunity and using this tool, the execution of a task could be completed successfully.

5.2.3 Behaviour of Resources

We believe that it is possible to select a resource based on the colleted data along with
other criteria for a period of time, say 1 Month or 2 Months. Since, activities over a
computer are dependent on the habits of its user’s usage. For example, if the user likes to
work during the day, his/her computer is almost free in the night. So, we can isolate this

resource before making any query.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. [Alle01]

2. [Alle99]

3. [Buyy00a]

4. [Buyy00b]

5. [Chan02]

6. [Czajol]

References

G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E.
Seidel, J. Shalf. The Cactus Worm: Experiments with Dynamic
Resource Discovery and Allocation in a Grid Environment. A

technical Report: TR-2001-28,University of Chicago, 2001

J.Allen, M. Mealling. The Architecture of the Common Indexing
Protocol (CIP). RFC-2651, 1999

R. Buyya, D. Abramson, J. Giddy. Nimrod/G: An Architecture for
a Resource Management and Scheduling System in a Global
Computational Grid. Proc. of the HPC ASIA 2000, the 4th
International Conference on High Performance Computing in Asia-
Pacific Region, Beijing, China, IEEE Computer Society Press, pp:
283-289, USA, 2000

R. Buyya, S. Chapin, D. DiNucci. Architectural Models for
Resource Management in the Grid. The First IEEE/ACM
International Workshop on Grid Computing (GRID 2000), Springer
Verlag LNCS Series, pp: 18-35, 2000

A.Chander, S. Dawson, P. Lincoln, D. Stringer-Calvert.
NEVRLATE: scalable resource discovery. Cluster Computing and
the Grid 2nd IEEE/ACM International Symposium CCGRID2002, pp:
382, 2002

K. Czajkowski, S. Fitzgerald, I. Foster, C.Kesselman. Grid
Information Services for Distributed Resource Sharing. Proc. of
the Tenth IEEE International Symposium on High-Performance
Distributed Computing (HPDC-10), pp: 181, IEEE Press, 2001

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. [Czaj98]

8. [Fost01]

9. [Fost02a]

10.[Fost02b]

11.[Fost02c]

12.[Fost97]

13.[Fost98]

14.[Globus]

K.Czajkowski, I. Foster, N. Karonis, C. Kesselm an, S. Martin,
W.Smith, S.Tuecke. A resource management architecture for
metacomputing systems. 7he 4th Workshop on Job Scheduling
Strategies for Parallel Processing, pp: 62—82.Springer-Verlag LNCS
1459, 1998

L. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid -
Enabling Scalable Virtual Organizations. Proc. of First IEEE/ACM

International Symposium on Cluster Computing and the Grid, pp: 6 -
7, 2001

I. Foster. The Grid: A New Infrastructure for 21st Century
Science. Physics Today, 55(2), pp: 42-47, 2002.

L.Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed

Systems Integration. Open Grid Service Infrastructure WG, Global
Grid Forum, 2002

I. Foster. What is the Grid? A Three Point Checklist. GRIDToday,
July 20, 2002

I. Foster, C. Kesselman. Globus: A metacomputing infrastructure
toolkit. International Journal of Supercomputer Applications,11(2),
pp: 115-128, 1997

I Foster, C. Kesselman (eds.). Computational Grids”, The Grid:
Blueprint for a New Computing Infrastructure. Morgan-Kaufman,

San Fransisco,1998

Globus Architecture. Retrieved November 10, 2004, from
http://www.globus.org/presentations/cactus/sld003.htm

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15.[Harc99]

16.[Hosc02a]

17.[Hosc02b]

18.[Huan02]

19.[Iamn01]

20.[lamn02a]

21.[Iamn02b]

22.[Tamn02c]

M. Harchol-Balter, T. Leighton, D. Lewin. Resource Discovery in
Distributed Networks. 18th ACM Symposium on Principles of
Distributed Computing, pp: 229-237, 1999

W. Hoschek. The Web Service Discovery Architecture. Proc. of the
2002 ACM/IEEE conference on Supercomputing,2002

W. Hoschek. A Unified Peer-to-Peer Database Framework for
Scalable Service and Resource Discovery. Proc. of Third
International Workshop on Grid Computing: GRID 2002, Baltimore,
MD. , pp: 126-144, Springer, 2002

Y. Huang, N. Venkatasubramanian. QoS-based resource discovery
in intermittently available environments. Proc. of 11th [EEE
International Symposium on High Performance Distributed

Computing, pp: 50 -59, HPDC-11, 2002

A. Tamnitchi and I. Foster. On Fully Decentralized Resource
Discovery in Grid Environments. /EEE International Workshop on
Grid Computing, Denver, CO, 2001.

A.Jamnitchi. Resource Discovery In Large-Scale Distributed
Environments. Doctoral thesis proposal, University of Chicago,
2002

A. Tamnitchi, I. Foster, D. Nurmi. A Peer-to-Peer Approach to
Resource Discovery in Grid Environments. Proc. of the 11th
Symposium on High Performance Distributed Computing, Edinburgh,
UK, 2002

A Tamnitchi, I. Foster, Daniel C. Nurmi. A Peer-to-Peer Approach
to Resource Discovery in Grid Environments. Proc. of the 11th
Symposium on High Performance Distributed Computing, Edinburgh,
UK, 2002

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23.[IBMUDDI]

24.[Jun00]

25.[JXTA]

26.[Krau00]

27.[Kutt01]

28.[Kutt02]

29.[Lars01]

30.[Law00]

31.[Li02]

Web Services and UDDI. Retrieved December 1, 2004, from

http://www-306.ibm.com/software/solutions/webservices/uddi/

K. Jun, L. Bolon, K. Palacz, D. Marinescu. Agent-based resource
discovery. Proc. of IEEE Heterogeneous Computing Workshop, 2000.
(HCW 2000), pp: 43 -52, 2000

JXTA v2.0 Protocols Specification. Retrieved December 1, 2004,
from http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html

K. Krauter, R. Buyyaa, and M. Maheswaran. A Taxonomy and
Survey of Grid Resource Management Systems. Technical Report:
Manitoba University (Canada) and Monash University (Australia),
2000

S. Kutten , D. Peleg , U. Vishkin. Deterministic resource discovery
in distributed networks. Proc. of the thirteenth annual ACM

symposium on Parallel algorithms and architectures , pp: 77-83 2001

S. Kutten, D. Peleg. Asynchronous resource discovery in peer to
peer networks. Proc. of 21st IEEE Symposium on Reliable
Distributed Systems, pp: 224 -231, 2002

R. Larson. Distributed resource discovery: using z39.50 to build
cross-domain information servers. Proc. of the first ACM/IEEE-CS

joint conference on Digital libraries, pp: 52-53, 2001

C. Law , Kai-Yeung Siu. An O(log n) randomized resource
discovery algorithm. Thel4th International Symposium on
Distributed Computing, Technical Report, Technical University of
Madrid, pp: 5-8, Oct. 2000

W. Li, Z. Xu, F. Dong, J. Zhang. Grid Resource Discovery Based on
a Routing-Transferring Model. Proc. of Third International
Workshop on Grid Computing: GRID 2002, Baltimore, MD. , pp:145-
156, Springer, 2002

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32.[LinuxCommand] Linux Shell Command Library. Retrieved December 1, 2004, from

33.[Ludw02]

34.[Mahe00]

35.[MicroUDDI]

36.[0GSA]

37.[Perfmon]

38.[Rana01]

39.[RDF]

40.[RDF01]

http://www linuxforum.com/shell/top/43-17.php

S. Ludwig, P. Santen. A Grid Service Discovery Matchmaker
based on Ontology Description. Euroweb 2002 — The Web and the
GRID: from e-science to e-business, 2002

M. Maheswaran and K. Krauter. A Parameter-based approach to
resource discovery in Grid computing systems. /st [EEE/ACM
International Workshop on Grid Computing (Grid 2000), pp:181-190,
2000

Microsoft UDDI. Retrieved December 1,2004, from
http://uddi.microsoft.com/

A visual tour of Open Grid Services Architecture. Retrieved
December 5, 2004, from http://www-
106.ibm.com/developerworks/grid/library/gr-
visual/index.html?ca=dgr-Inxw02TourOGS A

Perfmon. Retrieved November 5,2004, from
http://www.microsoft.com/resources/documentation/windows/xp/all/p

roddocs/en-us/nt_command perfmon.mspx

O. Rana, D. Bunford-Jones, D. Walker, M. Addis,M. Surridge, K.
Hawick. Resource discovery for dynamic clusters in
computational grids. IEEE Proc. of 15th International Parallel and
Distributed Processing Symposium, pp: 759 -767, 2001

RDF and Metadata. Retrieved December 5, 2004, from
http://www.xml.com/pub/a/2001/01/24/rdf.html

Understanding RDF. Retrieved November 5, 2004, from
http://www.ilrt.bris.ac.uk/discovery/2001/01/understanding-rdf/

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41.[RDF-FAQ]

42.[R0sz98]

43.[RSS]

44.[SUNUDDI]

45.[UDDI]

46.[UDDIO0]

47.[Verb02]

48.[WMI]

49.[Wols99]

Frequently Asked Questions about RDF. Retrieved November
5,2004, from http://www.w3.0rg/RDF/FAQ

M. Roszkowski and C. Lukas. A Distributed Architecture for
Resource Discovery Using Metadata. D-Lib Magazine: ISSN 1082-
9873, Internet Scout Project, Computer Sciences Department,

University of Wisconsin-Madison, 1998

RSS. Retrieved November 5, 2004, from
http://blogs.law.harvard.edu/tech/rss

SUN Microsystems UDDI. Retrieved November 5, 2004, from

http://wwws.sun.com/software/xml/developers/uddi/

UDDI. Retrieved November 5, 2004, from http://www.uddi.org

Universal Description, Discovery and Integration (UDDI):
Technical White Paper 2000. Retrieved November 5, 2004, from
http://www.uddi.org/pubs/Iru_UDDI Technical White Paper.pdf

J. Verbeke, N. Nadgir, G. Ruetsch,I. Sharapov. Framework for Peer-
to-Peer Distributed Computing in a Heterogeneous, Decentralized
Environment. Proc of Third International Workshop on Grid
Computing — GRID 2002, Baltimore, MD, USA, , LNCS 2536, pp: 1
ff,Springer-Verlag, 2002

WMI Architecture. Retrieved November 5, 2004, from
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wmisdk/wmi/wmi_architecture.asp

R. Wolski, N. Spring, J. Hayes. Predicting the CPU availability of
time-shared Unix systems on the computational grid. Proc of
IEEE Eighth International Symposium on High Performance
Distributed Computing, pp: 105 -112, 1999

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50.[WQL] Querying with WQL. Retrieved December 5, 2004, from
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wmisdk/wmi/querying_ with_wql.asp

51.[WSA04] Web Services Architecture. W3C Working Group Note 11 February
2004. Retrieved November 5, 2004, from http://www.w3.org/TR/ws-
arch/

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

Name: Mohammad Aktaruzzaman
Place of Birth: Bhola, Bangladesh
Year of Birth: 1979
Education:
North South University
Dhaka, Bangladesh
1997 — 1999
University of Windsor

Windsor , Ontario
2000 - 2001 B.Sc.

University of Windsor
Windsor , Ontario
2002 — 2004 M.Sc.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Status based resource discovery in computational grids.
	Recommended Citation

	tmp.1619033064.pdf.xszBh

