
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2006

Using X+V to construct a non-proprietary speech browser for a Using X+V to construct a non-proprietary speech browser for a

public-domain SpeechWeb public-domain SpeechWeb

Xiaoli Ma
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ma, Xiaoli, "Using X+V to construct a non-proprietary speech browser for a public-domain SpeechWeb"
(2006). Electronic Theses and Dissertations. 4488.
https://scholar.uwindsor.ca/etd/4488

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4488?utm_source=scholar.uwindsor.ca%2Fetd%2F4488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Using X+V to Construct a Non-Proprietary Speech

Browser for a Public-Domain SpeechWeb

By

Xiaoli Ma

A Thesis

Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science at the University of Windsor

Windsor, Ontario, Canada

2006

© 2006 Xiaoli Ma

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

39 5 W ellington Street
O ttaw a O N K1A 0N 4
C anada

Your file Votre reference
ISBN: 978-0-494-17031-1
Our file Notre reference
ISBN: 978-0-494-17031-1

Direction du
Patrimoine de I'edition

395, rue W ellington
Ottaw a O N K1A 0N 4
C anada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A SpeechWeb is a collection of hyperlinked speech applications that are

distributed over the Internet. Users access the speech applications through

remote browsers, which accept human-voice-input and return

synthesized-voice-output. In previous research, a new architecture (LRRP)

has been proposed, which is ideally suited for building a Public-Domain

SpeechWeb. However, a non-proprietary speech browser is needed for this

architecture. In this thesis, we have solved several limitations of X+V, a

programming language for developing Multimodal applications, and we have

used X+V to build a viable Public-Domain SpeechWeb browser. Our browser

has the following properties: real-time human-machine speech interaction;

ease of installation and use; acceptable speech-recognition accuracy in a

suitable environment; no cost, non-proprietary, ease of distribution; use of

common communication protocol - CGI; ease of creation of speech

applications; possibility to deploy on mobile devices.

[Keywords: SpeechWeb, Public-Domain, LRRP architecture, speech

recognition, SpeechWeb browser, X+V, XHTML+Voice, Opera, Multimodal,

distributed system, mobile speech application.]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank my advisor Dr. Richard A. Frost for helping me to find this

thesis topic, giving me invaluable guidance, encouragement, and generous

help.

I would also like to thank Dr. Kai Hildebrandt, Dr. Dan Wu and Dr. Jianguo Lu

for reading my thesis report and giving me their valuable comments and

suggestions.

And a special thanks to my parents for their love and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

Table of Contents

Abstract iii

Acknowledgements iv

List of Tables ix

List of Figures x

Chapter 1: Introduction 1

1.1 A Public-Domain SpeechWeb 1

1.2 The LRRP Architecture 1

1.3 Shortcomings of VXML for a SpeechWeb Browser 2

1.4 X+V 3

1.5 Thesis Statement 3

1.6 Why proof of the thesis is important? 3

1.7 Why the thesis is not obvious? 4

1.8 How the thesis is proven by demonstration 4

Chapter 2: Requirements For a Public-Domain SpeechWeb

Browser 6

2.1 Overview 6

2.2 Requirements for a Public-Domain SpeechWeb Browser 6

Chapter 3: The LRRP Architecture 9

3.1 Overview 9

3.2 Existing architectures 9

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Speech Interfaces to Conventional HTML Web Pages 9

3.2.2 Networks of Hyperlinked VXML Pages 10

3.2.3 Telephone Access to Remote Speech Applications 11

3.3 The LRRP architecture 12

3.4 Advantages of LRRP architecture 13

Chapter 4: Problems in the Previous VXML SpeechWeb

Browser 15

4.1 Overview 15

4.2 The VXML-Java SpeechWeb Browser structure. 16

4.3 Shortcomings of using VXML to build a SpeechWeb Browser 17

Chapter 5: A Novel Use of X+V to Create a Browser 19

5.1 Introduction to X+V 19

5.2 Limitations of X+V 20

5.3 New solution to some of the X+V limitations 21

5.3.1 Limitation 1: Some important VXML elements are missing,

such as the ‘goto’ element 21

5.3.2 Limitation 2: No iterated dialog-control, or recursive

methods 30

5.3.3 Limitation 3: Difficulties in using JavaScript, XHTML, and

VXML objects together 32

5.4 Conclusion of X+V usability 40

Chapter 6: Investigation of X+V for a Browser 41

6.1 Overview 41

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Single-Page Design 41

6.2.1 Components and workflow of Single-Page Design

SpeechWeb Browser 42

6.2.2 Problems in Single-Page Design 44

6.2.3 Single-Page Design conclusion 44

6.3 Multiple-Page Design 44

6.3.1 Components of Multiple-Page Design SpeechWeb

Browser 45

6.3.2 Multiple-Page Design structure 47

6.3.3 Comparison of a SpeechWeb Browser building as a single

and multiple X+V pages 48

6.3.4 Multiple-Page Design conclusion 50

Chapter 7: The New SpeechWeb Browser 51

7.1 Overview 51

7.2 End user interface 51

7.3 A sample session user input/computer response 54

Chapter 8: Analysis of the New SpeechWeb Browser 57

8.1 Overview 57

8.2 Clarity in design 57

8.3 Ease of installation and use for end users 58

8.4 Ease of distribution 58

8.5 Use of common communication protocol 59

8.6 Ease of creation and deployment for SpeechWeb

applications 59

v ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.7 Capabilities 60

8.8 Efficiency and speed 60

8.8.1 Network communication cost 61

8.8.2 Speech-recognition accuracy 61

8.8.3 Time complexity 62

8.8.4 Speed 62

Chapter 9: Use, Implementation and Documentation 65

9.1 New SpeechWeb Browser user manual 65

9.2 Manual for creating SpeechWeb Applications 65

9.3 New SpeechWeb Browser Website 65

9.4 Program code 65

Chapter 10: Conclusions and Future Work 66

10.1 What has been achieved? 66

10.2 Suggestion for future work 67

Bibliography 68

Appendix I, SpeechWeb Browser User Manual 70

Appendix II, Developer Manual for Creating SpeechWeb

Applications 79

Appendix III, New SpeechWeb Browser Website 90

Appendix IV, Program Code 91

VitaAuctoris 164

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1: Comparison of Single-Page design with Multiple-Page

Design 49

Table 2: SpeechWeb Browser Speed Experiment Result 64

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1: The LRRP SpeechWeb Architecture 13

Figure 2: The structure of the Multiple-page Design 47

Figure 3: GUI of the SpeechWeb Browser Menu Page. 52

Figure 4: “Judy” is loaded 53

Figure 5: A Sample Conversation with Judy. 54

Figure 6: A Sample Conversation Session with SpeechWeb

Applications 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

Chapter 1: Introduction

1.1 A Public-Domain SpeechWeb

According to Frost [Frost05], a SpeechWeb is a collection of hyperlinked

speech applications that are distributed over the Internet. A SpeechWeb is

similar to the conventional web in many ways. However, it differs in that users

access the speech applications through browsers, which accept

human-voice-input and return synthesized-voice-output. Rather than “clicking”

on hyperlinks, users issue spoken requests to be transferred to hyperlinked

applications.

Frost [Frost05] has made a case for a Public-Domain SpeechWeb to be

constructed by non-expert of computer science, using non-proprietary or freely

available software, common communication protocols, and conventional web

servers.

1.2 The LRRP Architecture
Frost and Su [FAB04] have developed an architecture that claimed to be well

suited for the development of a Public-Domain SpeechWeb. The architecture

is called Local Recognition Remote Processing (LRRP) architecture. Users

begin a session with the SpeechWeb by opening the local speech browser and

asking to be connected to a remote application. A grammar is downloaded

from the application and is used to tailor the local speech-recognizer for that

application. The user speaks a question or command, which is recognized

locally and then transmitted as text to the remote application. The application

processes the question/command and returns a response as text, which is

converted to synthesized voice that is output on the end-user device. It is

claimed that the LRRP architecture has a number of advantages compared to

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing architectures for distributed speech applications. More description

about these advantages are in Chapter 3.

1.3 Shortcomings of VXML as a SpeechWeb Browser
Frost and Su [FAB04] have shown how a browser for a Public-Domain

SpeechWeb can be built as a single VXML page (VXML is a standard

programming language for developing speech applications). The page, which

is executed on end-user devices using freely available VXML interpreters,

takes care of local speech recognition, the sending of recognized input to

remote applications, and the synthesis of the voice output. The advantage of

using VXML is that recent developments in speech-recognition technology,

which are incorporated into VXML interpreters, are available to SpeechWeb

users. In addition, VXML has the capability to send text and receive responses

from applications running on remote servers. However, VXML has three

shortcomings which limit its use in SpeechWeb:

• Grammars cannot be changed dynamically in a single VXML page.

Consequently Su and Frost had to integrate the page with Java objects to

fetch grammars from remote applications and rewrite the VXML page

locally after every execution of a hyperlink. This requires the Java runtime

environment to be available locally, precluding the use of the SpeechWeb

Browser on lightweight end-user devices such as handheld PCs or cell

phones.

• Even without the Java runtime environment, VXML interpreters are

relatively demanding of resources and none are yet available for

lightweight end-user devices.

• The freely available VXML interpreters that were accessible in the first few

years of VXML’s existence are no longer supported.

Consequently, we decided to investigate the use of the newer X+V protocol as

a mechanism for building the browser for a Public-Domain SpeechWeb.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 X+V
The X+V protocol is a relatively new protocol. It was developed by IBM and

Opera, and accepted by W3C in December 2001. X+V includes a subset of

VXML elements and supports multi-modal interaction with computers and

lightweight end-user devices. X+V is currently supported by the Opera web

browser that is freely available, and can be installed on PCs, and handhelds

such as Sharp Zaurus 5500-5600.

1.5 Thesis Statement

The thesis to be investigated is that:

“A viable speech browser for a Public-Domain SpeechWeb can be

implemented using X+V.”

By “viable” we mean -

• Real-time human-machine speech interaction.

• High speech-recognition accuracy in a suitable environment.

• Ease of installation and use.

• Completely free availability to all users.

• Ease of implementation for speech applications.

• Possible to be deployed on handheld devices after small changes;

• Implements the LRRP architecture so that it is ideally suited for

building a Public-Domain SpeechWeb.

1.6 Why proof of the thesis is important?
The thesis is important because it will facilitate the creation of a Public-Domain

SpeechWeb and allow browser for the SpeechWeb to execute on lightweight

end-user devices with freely available software.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.7 Why the thesis is not obvious?
X+V is a very new protocol and very little is known about it. The demonstration

applications from IBM are very simple and do not include examples in which

grammars are changed dynamically. The speech-recognition accuracy of the

Opera X+V interpreter cannot be determined from the demonstration

applications from IBM as the example languages are very small.

1.8 How the thesis is proven by demonstration

Various designs were investigated. These included, first, a “Single Page”

design which is similar to that of Frost and Su [FAB04] in which the X+V page

is rewritten whenever a hyperlink is followed and the speech-recognition

grammar needs to be changed. However, instead of using Java objects, which

require the runtime environment, the new single-page design uses

client-cookies to store small amounts of data. The X+V page is reloaded when

connecting to a new CGI interpreter. It has to reload the page, because the

parser in Opera environment only parses the VXML parts of X+V once, at the

first time it loads the page. Looping through a single page cannot change

anything, even though variables may appear to have been reset. Unfortunately,

the Single-Page design did not work properly in all situations because of a

problem with concurrency between updating the changes to variables in the

X+V page and the VXML parsing. This concurrency problem is beyond the

control of the application (See details in Chapter 6).

Second, a “Multiple Page” design was investigated in which an X+V browser

page is associated with every remote application. These pages are identical

for all applications except for the location of the recognition grammar and an

application-dependent initial greeting which is spoken when the application is

first contacted (See details in Chapter 6).

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The “Multiple Page” design was successful and allowed the SpeechWeb

Browser to execute on end-user devices with only one requirement - that the

Opera browser had to be installed.

The Multiple-page X+V SpeechWeb Browser was tested with a number of

applications. Response times and recognition-accuracy levels were

documented.

Since Opera is freely available, and can be installed on lightweight end-user

devices, and that response times and recognition-accuracy were acceptable,

the thesis has been proven by successfully demonstrated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

Chapter 2: Requirements For a Public-Domain

SpeechWeb Browser

2.1 Overview
A public-domain SpeechWeb is “a collection of hyperlinked speech

applications, developed by individuals, which are distributed over the Internet

and which are accessible by spoken commands and queries that are input

through remote end-user devices” [FAB04].

A SpeechWeb is based on the Internet, and it is similar to a conventional web.

Users can access SpeechWeb applications using a SpeechWeb Browser

residing on their computers or lightweight devices.

2.2 Requirements for a Public-Domain SpeechWeb

Browser

A number of requirements need to be satisfied for a Public-Domain

SpeechWeb Browser to be widely employed in order to provide speech access

to distributed hyperlinked knowledge sources on SpeechWeb:

1. Ease of installation and use

A SpeechWeb Browser needs to be easy to install and execute on

conventional PCs, laptops, cellphones, and other available lightweight

end-user devices. The SpeechWeb Browser should be designed for users

who may only have basic knowledge about using computer software. The

installation and execution process should be as easy as using regular

software.

2. Acceptable accuracy in the speech recognition process

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Speech-recognition accuracy should be good in most environments. This

requires close attention to choosing the speech-recognition engine for the

SpeechWeb Browser.

Most of today’s speech-recognition engines cannot be deployed on

lightweight devices such as cell phones, because the recognition process

has relatively high demands on the resources (CPU power and memory).

VoiceSignal Company provides voice-dial and voice-message services in

today’s cellphones, where the speech-recognition engine is installed

locally in the user’s cell phone. Unfortunately, the engine is not

grammar-based and not identical for all speech applications, which results

in it being unsuitable for a SpeechWeb Browser.

3. Common protocols in the data transmission.

A common protocol, such as CGI (Common Gateway Interface) protocol

should be used to support the data transmission between the SpeechWeb

Browser and hyperlinked knowledge sources. This is necessary in order to

share the knowledge sources with other applications, even with those

applications that are not providing services on the SpeechWeb. In addition,

CGI is supported by most web server software.

4. Easy to build speech applications.

As indicated in the paper “Call fora Public-Domain SpeechWeb” [Frost05],

one of the reasons constraining the growth of a public-domain SpeechWeb

is the difficulty that non-experts have in creating their own speech

applications, and then hyperlinking them in a SpeechWeb.

In today’s conventional web, many people can build their own HTML

websites easily. Our SpeechWeb Browser should allow non-experts to

create their speech applications and access them with our SpeechWeb

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Browser, a process as easy as building HTML pages.

5. Non-proprietary or freely available software.

In a consideration for it to be widely used by all users, the SpeechWeb

Browser needs to be completely free, and only contain non-proprietary

components.

Most companies ask for several hundred US dollars to provide a

speech-recognition server engine, which is too expensive for a single

SpeechWeb user. Moreover, using proprietary components in SpeechWeb

Browser may cause a problem if the company changes its policies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

Chapter 3: The LRRP Architecture

3.1 Overview

The paper “Call for a Public-Domain SpeechWetf [Frost05] shows that “the

technology is available to build a public-domain SpeechWeb, and that if

existing architectures for distributed speech processing are augmented with a

slight variation of one of them, then all that remains is required participation of

the public.”

In this chapter, I briefly discuss some existing architectures, and then introduce

a well-suited architecture for a public-domain SpeechWeb which is proposed in

[Frost05].

3.2 Existing architectures

In the last several years, speech applications have been used in some areas,

such as call centers, website commercial advertisements, among others.

Different architectures and technologies have been developed to provide

speech interaction between users and distributed speech applications.

The following discussion of the architectures and their shortcomings follows in

[Frost05], and summarized in [Su05]:

3.2.1 Speech Interfaces to Conventional HTML Web Pages

These interfaces run on end-user devices and allow users to scan downloaded

web pages and follow hyperlinks through spoken commands [HT95]. More

sophisticated versions process the downloaded web pages and provide

spoken summaries and allow some limited form of content querying.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, the architecture has four shortcomings as listed in [Frost05]:

1. Most HTML pages are constructed for visual browsing, and pages are

usually structured to take advantage of the users’ ability to scan the page

in two dimensions.

2. Keyword and phrase-matching techniques are not well-suited to speech

access owing to the large number of words and phrases that could be

input by the user. This results in low speech-recognition accuracy.

3. The architecture does not facilitate the development of applications in

which a computation is required in response to a user’s spoken input.

4. Speech-grammar is unable to be derived from the HTML page directly.

Developers are difficult to implement.

3.2.2 Networks of Hyperlinked VXML Pages.

The second architecture involves the use of networks of hyperlinked VXML

pages. VXML [LucasOO] is similar to HTML except that it is used to create

hyperlinked speech applications. VXML pages, which are executed on VXML

browsers, include commands for prompting user speech input, for invoking

recognition grammars, for outputting synthesized voice, for iteration through

blocks of code, for calling local Java scripts, and for hyperlinking to other

remote VXML pages that are downloaded and executed in a manner similar to

the linking of HTML pages in the conventional web.

However, two factors needs to be considered:

1. Many speech applications require some degree of natural-language

processing as it is difficult for users to speak formal languages such as

SQL. Natural language processors and their associated knowledge

sources can be very large and are best executed on high-powered remote

servers rather than VXML browsers running on lightweight end-user

devices.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Developers should be able to create their speech applications in whatever

language they like and not have to embed their application in a VXML

page.

3.2.3 Telephone Access to Remote Speech Applications

This architecture is often used in today’s call centers. Users phone in and

speak to applications running on the center server machines. Speech

recognition and application processing is carried out at the call center. VXML is

emerging as the standard for implementing call-center applications. Some

recent technologies use software to translate VXML pages that are stored on

the call-center web servers to speech dialogues that are accessed by remote

client telephones.

However, as [Frost05] noted, the call-center architecture has three limitations

that constrain its use as basis for the development of a public-domain

SpeechWeb:

1. In order to obtain adequate speech-recognition accuracy for applications

with large input languages, user voice profiles would have to be stored at

each call center, or stored at the user site and transferred to the call center

every time that the user contacts a remote speech service. Neither of

these options is practical owing to the fact that voice profiles are very

large.

2. Application providers have to employ specialized software to allow their

applications to be accessed from remote telephones.

3. Call centers have to provide speech-recognition capabilities including

maintenance of user voice profiles for sophisticated applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 The LRRP architecture.
Given the physical location for doing speech-recognition and data-processing

for the existing architectures, we may summarize them into two categories:

Local Recognition and Local Processing (LRLP), and Remote Recognition

and Remote Processing (RRRP).

Frost [FAB04] has proposed a new architecture which is claimed to be

well-suited for a public-domain SpeechWeb. It is called Local Recognition and

Remote Processing (LRRP) architecture.

As described in [Frost05]: “In the LRRP architecture, speech applications and

their associated recognition grammars are stored on regular web servers.

Speech browsers, that include a speech-recognition engine, reside on PCs or

lightweight end-user devices. 1.) When a user first accesses a remote speech

application through the speech browser, a speech-grammar is downloaded to

the local device, and used to tailor the speech recognizer for that application.

2.) When a user speech utterance is recognized to a text string by the

speech-recognition engine, 3.) it is sent to the remote server application for

processing. 4.) The result is returned to the local device, 5.) and output in

synthesized voice. Speech recognition is local and application data processing

is remote. When a user asks to be connected to another speech application,

the web address of that application is returned to the browser which begins by

downloading the new speech-grammar. “

Figure 1. the structure of the LRRP architecture for SpeechWeb:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x t fliKWgrOR ,>t n>.w npplim lm n
Interpretercommunication manager

3. text query OR hyperlink request

GrammarRecognition Engine
. grammar to tailor recognizer

Application
on Web Server

SpeechWeb Browser

Application Application

Server
n ii ii i ii n urn

server
 IIIIII11III

2. User Voice Input 5. Synthesized Speech Output
Hyperlinked Applications Residing on

Conventional Web Servers

(The numbers indicate the process order in a simple speech interaction.)

Figure 1. The LRRP SpeechWeb architecture [FAB04]

3.4 Advantages of LRRP architecture.
The LRRP architecture is designed to cover shortcomings in the existing

architecture to build a public-domain SpeechWeb. As described in [Frost05],

the LRRP architecture has the following advantages:

1. Service providers can maintain their applications on conventional web

(Internet) servers.

2. Applications can be written in any language provided that input and output

conform to the web communication protocol being used.

3. Non-experts can create simple applications as scripts that return canned

answers to user queries, whereas more advanced developers can create

complex applications that make use of natural-language processors and

database residing on powerful server-side machines.

4. Client-side speech-recognition accuracy is improved through the

downloading of application-specific grammars and the use of locally

maintained user voice profiles.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Can be readily integrated with the conventional web: speech applications

reside on conventional web servers, communication uses conventional

web protocols, and client-side speech browsers could be implemented as

stand-alone interfaces on lightweight devices or as plug-ins to

conventional web browsers running on PCs.

6. Communication is through text, which is efficient and appropriate when

users access the SpeechWeb through a commercial wide-area wireless

network.

7. SpeechWeb Browsers can execute on ultra-lightweight devices.

All that is required for LRRP architecture is two components residing on

end-user devices: a grammar-based speech-recognition engine and a dialog

manager (speech browser), both of which control human-machine speech

interaction, communication of text to remote severs, and transfer from one

remote speech-application to another.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Chapter 4: Problems in the Previous VXML

SpeechWeb Browser

4.1 Overview

VoiceXML (VXML) has been around for several years. VXML 1.0 was released

on May 7th, 2000 [W3C00] and VoiceXML 2.0 was first released on October

23rd, 2001 [W3C01] and recommended by W3C on March 16th, 2004[W3C04],

VoiceXML 2.1 was released recently on the VoiceXML Forum, but is still

working as a draft in W3C. VXML has become a standard language for

building speech applications, and is often used in call-centers.

In the past 2 years (2004-2005), Frost and Su have conducted research on

using VXML to build a speech browser for a public-domain SpeechWeb. They

have successfully built a speech browser as a single VXML page together with

three Java objects, which is freely downloadable from their website

(http://sol.cs.uwindsor.ca/~speechweb/oldversion.htmt. In Order tO distinguish from Other

versions of the SpeechWeb Browser, it is called VXML-Java version in this

thesis report, since it requires Java objects to support it.

This VXML-Java version SpeechWeb Browser has been successfully tested,

with distributed sample speech-applications on PCs and laptops using wired

and wireless connections to local and wide-area networks [Frost05j.

The VXML-Java version SpeechWeb Browser takes advantage of all of the

benefits of VXML including the ready availability of VXML interpreters for a

wide range of devices, and improvements in speech-recognition technology

that are being quickly integrated into new versions of VXML interpreters.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sol.cs.uwindsor.ca/~speechweb/oldversion.htmt

4.2 The VXML-Java SpeechWeb Browser structure.
Su [Su05] has investigated three different approaches before coming to the

final one. He was trying to achieve the dynamic change of speech-grammars

in a single VXML page, which is a very difficult technical problem in VXML

version 2.0 and earlier. The three approaches are: 1) Using multiple VXML

forms in the single VXML page. 2) Rewrite the speech-grammar file and reload

it. 3) Using subdialogs in VXML pages. Unfortunately, all of these three

approaches failed. This problem has resulted in the final design of the browser

which must use three Java objects to support it.

The following is the detailed structure of the VXML-Java version of

SpeechWeb Browser described in [Su05].

“The SpeechWeb Browser consists of a VXML browser and three Java objects. It

works in the following way:

1. The SpeechWeb Browser starts by running an initial VXML page in the VXML

browser.

2. This page calls a Java object which provides a graphic user interface to the user.

3. The user enters or chooses the correct remote application URL and clicks “Go”

button.

4. As soon as the “Go” button is clicked, the remote application information is

gathered by the Java object and calls another Java object Rewrite then passes the

application information to it.

5. Based on a VXML template page, the Java object Rewrite uses the given

application information and writes a new VXML page which contains the application

grammar and interpreter URL addresses. This page is called VXML page 1.

6. After the new VXML page is created, the initial page transits to page 1.

7. The VXML Browser starts the page by downloading the recognition grammar

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the remote application and initiates speech.

8. The user interacts with the remote application by using voice. If a user voice input

is recognized, it is translated into text format and passed to the Java object

communication manager along with the application interpreter URL address. The

communication manager follows the address and posts the text input to the

application interpreter using the CGI-BIN protocol. The remote interpreter receives

the input, processes it, and returns the answer. Then the communication manager

gets the answer back using the same protocol. The VXML browser outputs the

answer as synthesized voice using a text-to-speech engine. The SpeechWeb

Browser repeats this step as the user gives more input and gets answers back.

9. If the user input is a request to follow a hyperlink to another application. The

application interpreter returns the URL address of the new application in text format

back to the VXML browser. The browser then calls the Java object Rewrite and

passes the new application URL address information to it.

10. The Java object Rewrite writes a new VXML page using the given application

address. The page is called VXML page 2.

11. Page 1 then transits to page 2.

12. The grammar is then downloaded from the new application server, and the user

interacts with the new application. The process repeats step 8 for more user input. It

repeats steps 9 to 11 for new application requests while creating more VXML

pages."

4.3 Shortcomings of using VXML to build a SpeechWeb

Browser
There are a number of shortcomings in using VXML to build a SpeechWeb

Browser.

l. VXML version 1.0/2.0 does not support a dynamic change of

speech-grammars. In order to achieve this goal, Su had to use other

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components to support the browser, such as a database grammar system

or Java objects. In the VXML-Java version of SpeechWeb Browser, it

requires three Java objects, and these Java objects require a JVM

environment to run. This means that a Java runtime environment has to be

installed in the end-users local device before running the speech browser

system. This demands more resources on the device, which is not suitable

for handheld devices such as cell phones.

2. VXML interpreters are relatively demanding of resources and none are yet

available for lightweight end-user devices. Most of these VXML

interpreters are designed to work on a high-resource web server machine

and provide services over the network, which is suitable for the RRRP

architecture (call centers), but not for the LRRP architecture.

3. Free downloadable VXML interpreters are no longer available. A VXML

server will cost several hundreds to thousands of dollars depending on the

facilities. It is impossible to install a copy for every user.

The above shortcomings have greatly constrained the ability of VXML in

building a LRRP speech browser for SpeechWeb, and make the VXML-Java

LRRP speech browser impossible to deploy in lightweight devices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Chapter 5: A Novel Use of X+V to Create a

SpeechWeb Browser

5.1 Introduction to X+V

The X+V stands for XHTML+Voice, which is a markup language for developing

multimodal applications. It has been developed by researchers from IBM,

Opera Software, and Motorola, and is designed for building web clients to

support visual and spoken interaction. The first X+V version 1.0 was approved

by W3C at Dec. 21, 2001 [XV01]. The latest version is 1.2.

X+V combines XHTML and a subset of useful elements from VoiceXML 2.0.

XHTML is essentially HTML 4.0 adjusted to comply with the rules of XML,

which is the current standard for building Web pages. VoiceXML was one of

the first XML-based languages developed in W3C, which provides an easy,

standardized format for building speech-based applications. In X+V, the subset

of elements from VXML gives it a great ability to do some basic control of the

speech interaction between the user and application.

X+V version 1.1 is supported by two freely available multimodal browsers --

Opera and NetFront, which both have a build-in speech-recognition engine

from IBM. Some versions of Opera and NetFront are supported in lightweight

devices such as Sharp Zaurus 5500 - 5600. The X+V interpreters in Opera and

NetFront, have relatively low demands on resource compare to a complete

VXML interpreter, and are available to be deployed into mobile devices as the

mobile provider requested, which is the greatest advantage of using X+V.

Multimodal access is the ability to combine multiple modes or channels in the

same interaction or session. The methods of input include speech recognition,

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

keyboard, touch screen, and stylus. Depending on the situation and the device,

a combination of input modes will make using a small device easier [IBM]. X+V

is designed for building multimodal applications.

Section 4.3 has discussed that VXML cannot be used to build a viable

Public-Domain SpeechWeb Browser. But by using X+V, with the ability of

developing multimodal access applications, support from low-resource

demand and completely freely available interpreters (Multimodal browsers), it

is possible for us to build one.

5.2 Limitations of X+V

X+V is a useful language to build multimodal applications. It seems, with the

multimodal access ability, X+V should be already widely known and used by

today. However, a search for X+V papers on the Internet will find only few

groups of people who are using it. Why has X+V not been widely used by

current developers especially considering how quickly they adapt to new

technologies? Some problems in difficulties of using X+V could be one reason.

The following is a list of limitations of X+V I have found:

Limitation 1. Some important VXML elements are not supported in X+V,

such as the VXML ‘goto’ element.

Limitation 2. All voice dialogs in X+V are executed in a pre-defined

sequence order. There is no available build-in element to

perform an iterated dialog-control action. The recursive method

is also not available in X+V.

Limitation 3. X+V supports JavaScript in coding, but there are some conflicts

in use of JavaScript, VXML elements, and XHTML objects

together. Some code normally works fine in regular

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JavaScript-XHTML environment, but has problems in

JavaScript-XHTML-VXML (X+V).

Limitation 4. X+V only supports a few types of speech-grammar languages.

Limitation 5. There is a lack of documentation, and there is no

well-organized forum for public X+V application developers on

the Internet.

5.3 New solution to some of the X+V limitations
In Section 5.2, a list of problems in the current version of X+V has been given.

However, some of these problems are possibly solvable. The following are my

solution to some of these limitations:

5.3.1 Limitation 1: Some important VXML elements are missing, such as

‘goto’ element.

Some of the missing elements from VXML can actually be replaced by other

elements directly. Even for those ones which cannot be replaced, we can still

try to achieve the same goal and functionality in logic by combining use of

other elements and tools.

The ‘goto’ element is one of the most useful elements in VXML that are missing

from X+V. In VXML 2.0, it is used to 1) transition to another form item in the

current form, 2) transition to another dialog in the current document, or 3)

transition to another document. It also normally used to perform an iterated

dialog-control.

The following is my solution to achieve the same goal as using the ‘goto’

element.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solution:

The solution can be separated into 2 situations: transition to another

form/dialog in the current document, and transition to another document.

Situation 1: Go to another dialog within the same document

The solution uses the ‘reprompt’ element as the key, and uses ‘throw’ and

‘catch’ elements to perform an event control which handles the goto action.

Notice, the ‘reprompt’ element will push out the next available voice message

from the circular-queue, which will force the VXML parser go to the dialog

(which has the next available voice message). To do this:

1. Declare a boolean variable for each dialog field that you have, and use it in

the ‘concf attribute. You can either declare these variable in a JavaScript or

VXML code, since javascript variables shared with VXML in X+V. Also please

note that for each dialog there, it must contain an available ‘prompt’ voice

message element used at the beginning, but the message could be empty.

In sample code 1, there are three voice dialogs -- dialogA, dialogB, dialogC in

the document, and their corresponding declared variables -- ‘runA’, ‘runB’,

‘runC’.

Please note that all necessary coding statements in the current step of the

solution are highlighted in the sample code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<script type=”text/javascript>
var nmA=true;
var runB=true;

var runC=true:
</script>

<vxml:field name=”dialogA” cond=”run.A==true”>
<vxml:prompt>messageA</vxml:prompt>

</vxml:field>

<vxml:field name=”dialogB” cond=”ranB==true”>

<vxml:prompt>messageB</vxml:prompt>

</vxml:field>

<vxml:field name=”dialogC” cond=”runC==true”>
<vxml:prompt>messageC</vxml:prompt>

</vxml:field>

Sample code 1, ‘goto’ another dialog within the same document, step 1.

In sample code 1, three boolean variables -- runA, runB, runC are declared

and assigned to be true in a JavaScript. And a conditional check on them is

done for every VXML dialog (VXML ‘fielcf element).

2. Use “throw’ element to throw an event at where ‘goto’ element would

normally be used, and catch this event in the upper level VXML form. Notice,

any event name can be used, but suggested to be ‘goto.DialogName’ since it

has clearly indicated the event-action purpose.

For example: After processing the dialogA, the program want to jump to

dialogC, instead of going to dialogB then dialogC in the sequential order. Then

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

add the event throw and catch coding statements to the program as in the

sample code 2:

<script type=”text/javascript>
var runA=true;
var runB=true;
var runC=true;

</script>

<vxml:field name=”dialogA” cond=”runA=true”>

<vxml:prompt>messageA</vxml:prompt>

<vxml:filled>

<vxml:throw event=”goto.dialogC'7>
</vxml:filled>

</vxml:field>

<vxml :catch event=”goto.dialogC”>

</vxml:catch>

<vxml:field name=”dialogB” cond=”runB=true”>

<vxml:prompt>messageB</vxml:prompt>

</vxml:field>

<vxml:field name=”dialogC” cond=”runC==true”>

<vxml:prompt>messageC</vxml:prompt>

</vxml:field>

Sample code 2, ‘goto’ another dialog within the same document, step 2.

In sample code 2, an event - ‘goto.dialogC’\s thrown from the dialogA, and it is

caught in upper lever VXML form.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Within the catch event block, set the values of the dialog corresponding

conditional boolean variable to false for all the dialogs located before the ‘goto’

destination dialog, but set to true for itself. Then use ‘clear'element to clear the

‘goto’destination dialog if it has been processed before. Finally, use ‘reprompt’

element to go to the dialog.

After the step 3, the code would be written as in sample code 3:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

<script type=”text/javascript>

var runA=true;

var runB=true;
var runC=true;

</script>

<vxml:field name=”dialogA” cond=”runA==true”>

<vxml:prompt>messageA</vxml:prompt>

<vxml:filled>

<vxml:throw event=”goto.dialogC”/>

</vxml:filled>
</vxml:field>

<vxml:catch event=”goto.dialogC”>
<vxml:assign name=’'runA" expr="false’7>
<vxml:assign name='’ruiiB” expr=”false”/>
<vxml:assign name=”nmC" expr=”true'7>
<vxml:clear namelist=”dialogC’7>
<vxml: repromp t/>

</vxml:catch>

<vxml:field name=”dialogB” cond=”runB=true”>

<vxml:prompt>messageB</vxml:prompt>

</vxml:field>

<vxml:field name=”dialogC” cond=”runC=true”>

<vxml:prompt>messageC</vxml:prompt>

</vxml:field>

Sample code 3, ‘goto’ another dialog within the same document, step 3.

In the sample code 3, the variables - runA, runB are set to be false, so that

dialogA and dialogB won’t be able to available to run. But the variable - runC is

assigned to be true, and the dialogC will be the only available dialog to

process.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Situation 2: Go to the dialog in another document.

The solution to this situation is a little more complicated, we have to pass

variables to another document. The key used to solve this problem is

JavaScript and cookie objects.

1. Call a JavaScript function to save the dialog name (which is located in

another document) into a cookie before going to the next document.

In the following sample code 4, the JavaScript function gotoDialogQ has saved

the dialog name(dialogC) into a cookie named ‘gotoDialog’, then load the new

page - voicePage_next.xml.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

<script type=”text/javascript>

var runA=true;

function gotoDialog()

{
setCookie(“gotoDialog", “dialogC”. expireTime);

/* Loads the next document. */
windo\v.location=”voicePage_next.xml”;

return

}

function setCookie(c_name,value,expiredays)

{
var exdate=new Date();

exdate.setDate(expiredays);

document.cookie=c_name+ "=" +escape(value)+ ((expiredays==null) ? ""
expires="+exdate);

}

</script>

<vxml:form>

<vxml:field name=”dialogA” cond=”runA==true”>

<vxml:prompt>messageA</vxml:prompt>

<vxml:filled>

<vxml:throw event=”goto.dialogC”/>

</vxml:filled>
</vxml:field>

<vxml:catch event=”goto.dialogC”>

<vxml:prompt><vxml:value expr=’’gotoDialog()”/></vxml:prompt>

</vxml:catch>
</vxml:form>

Sample code 4, ‘goto’ a dialog within another document, step 1.

2. Within the next page, execute a javascript to load the dialog name from the

cookie, and set its dialog running condition check variable to true, but other

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dialogs to false. Continue with the previous example, inside of

voicePage_next.xml would be as in sample code 5:

<script type=”text/javascript>

var runC=false;
var runB=false:
var dialogName = getCookie(“gotoDialog"):
if(dialogName==”dialogB")

mnB=mie;

else if(dialogName==’'dialogC”)
runC=true;

function getCookie(c_name)

{
if (document.cookie.length>0)

{
c_start=document.cookie.indexOf(c_name +

if (c_start!=-l)

{
c_start=c_start + c_name.length+l ;
c_end=document.cookie.indexOf(";",c_start);

if (c_en d = -l) c_end=document.cookie.length

return unescape(document.cookie.substring(c_start,c_end));

}
}
return null;

}
</script>

<vxml:form>

<vxml:field name=”dialogB” cond='’runB==true”>

</vxml:field>

<vxml:field name=”dialogC” cond=”runC==true’>

</vxml:field>
</vxml:form>

Sample code 5, ‘goto’ a dialog within another document, step 2.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2 Limitation 2: No iterated dialog-controi, or recursive methods.

Without a build-in iterated dialog-control element, in X+V, all dialogs will be run

in a pre-defined sequential order. The order is the place order they are in the

document, dialogs run from the top to the bottom of the document. After it

finishes processing the last dialog (the bottom one), all vxml-voice processes

are done. This is impropriate when building a more complex application. This

limitation of X+V must be solved before X+V can be used.

Solution:

In section 5.3.1, a solution has been provided to achieve VXML ‘goto’ element

by using other elements and tools. The solution to Limitation 2 becomes quite

easy by updating the solution from Section 5.3.1, Situation 1. The following are

the steps to achieve iterated dialog-control:

1. Declare a variable to control the entry of loop, set it to false to exit from the

loop.

2. After finishing all the processes in the last dialog (the bottom one), perform

a true-false check on loop-entry control variable. If it has value true, then throw

an event which forces the voice process to go back to the first dialog (the top

one).

In sample code 6, three voice dialogs - dialogA, dialogB, dialogC - will be

iterated running until ‘continueLoop’ set to be false.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<script type=”text/javascript>

var runA=true;
var runB=true;
var runC=true;

var continueLoop=true;
</script>

<vxml:form>

<vxml:field nam e-’dialogA” cond=”runA==true”>

<vxml:prompt>messageA</vxml:prompt>

</vxml:field>

<vxml:field name=”dialogB” cond=”runB==true”>

<vxml:prompt>messageB</vxml:prompt>

</vxml:field>

<vxml:field name=”dialogC” cond=”runC==true”>

<vxml:prompt>messageC</vxml:prompt>

<vxml:filled>

< vxml: if cond=”continueLoop==true”>
<vxml: throw event='’loop.dialogA’7>

</vxml:if>
</vxml:filled>

</vxml:field>

<vxml:catch event=’*loop.dialogA”>
<vxral:assign name="runA'’ expr="true”/>

<vxml:clear namelist=”dialogA dialogB dialogC’V>

<vxnd: reprompt'>
</vxml:catch>
</vxml:form>

Sample code 6, solution to achieved an iterated dialog control

In sample code 6, a loop entry variable has been declared in the JavaScript.

And a ‘loop.dialogA’ event will be thrown when the dialogC is about to be

finished. The event will be caught in the upper level catch statement and force

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the process to goto the dialogA again.

5.3.3 Limitation 3: Difficulties in using JavaScript, XHTML, and VXML

objects together

In X+V, the VXML part has a very strong process control based on JavaScript

and XHTML, but JavaScript and XHTML are not really designed for working

with this subset of VXML. There are some difficulties to using them together

with VXML. In some cases, the program code does not work properly as it

normally would when using JavaScript and XHTML alone.

Problem 1:

VoiceXML has no element designed for calling a JavaScript function. Although

Var’and ‘assign’elements may used to call JavaScript, they can only be used

inside of ‘filled’ or ‘catch’ elements. They cannot be used to call a JavaScript

function directly at the beginning of a dialog.

Solution:

The key to solve this problem is the VXML ‘prompt’ element (or ‘block’ element)

and ‘value’ element. The ‘prompt’ element is used to output a voice message

to the user. It can be used almost anywhere within a VXML form (except within

a speech grammar definition), ‘value’ can be a child of ‘prompt’element, and it

can call a JavaScript in its attribute. Notice, the JavaScript function has to

return an empty string, otherwise it will be uttered.

Sample code 7 has provided a call to JavaScript functions - fun1(), fun2(), at

the beginning of a VXML form(within ‘block’ statement); at the beginning of a

dialog(the first prompt voice-output within dialogA)-, at the end of a dialog

process (within the ‘filled’ statement in dialogA)-, and within an event

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thrown/catch or subdialog process.

<script type=”text/javascript>

function funlO

{

return

}

function fun2()

{

return

}
</script>

<vxml:form>
<block><vxml:value expr=”funl ()’7></block>

<vxml:field name=”dialogA”>
<vxml:prompt><vxml: value expr="fun2()'7></vxnil:prompt>

<vxml:grammar>.. .</vxml:grammar>
<vxml:filled>

<vxml:pronipt><vxnil:value expi-,,fun l()’'/></\;xml:prompt>

</vxml:filled>
<vxml:catch event=”help nomatch noinput”>

<vxm 1: pro rnp t >< vxm 1:value expr='’fun2()’7></vxml:prompt>

</vxml:catch>
</vxml:field>

<vxml: subdialog name=”subdialogA”>

<vxml:prompt><vxml:value ecpr=”funl ()”/x/vxnil:prom pt>

</vxml:subdialog>
</vxml:form>

Sample code 7, calls a JavaScript function within VXML part

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Problem 2:

In X+V, the VXML part can access a JavaScript variable directly, but JavaScript

cannot see or access a variable which is declared in VXML. This is a problem

because some variables can only be declared in X+V, such as the important

VXML ‘field’ variables.

Solution:

Declare a JavaScript variable which corresponds to the VXML variable, then

use the VXML ‘assign’element to pass the value to it.

<script type=”text/javascript”>
var dialog_AA;

</script>

<vxml:form>

<vxml:field name=”dialogA”>
<vxml:filled>

<vxml:assign name="dialog_AA'’ expr=”dialogA'7>

</vxml:filled>
</vxml:field>

</vxml:form>

Sample code 8, access a VXML declared variable within a JavaScript code

In sample code 8, the value of VXML declared variable dialogA has been

passed to a JavaScript variable dialog_AA.

Problem 3:

In X+V, when using DOM function (JavaScript) ‘innerHTMU to assign any

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HTML tag (e.g. ‘
’>) to another variable, it does not work properly as it

does on a regular DOM and XHTML web page. As sample code 9, in X+V, the

statement - objTabie.mws[0].ceiis[0].innerHTML="
” will not change a line in

the table (objTable.rows[0].ceiis[0]), as ‘
’ should normally do:

<html>

<script type=”text/javascript”>

showMsg(“Welcome”);
showMsg(“
”) ;

showMsg(“How are you today?”);
showMsg(“
”);

function showMsg(msg)

{
var objTable=document.getElementById(“textMsg”);
objTable.insertRow(0);

objTable.rows[0].insertCell(0);

if(msg== “
”)

objTable. rows[0] .cells[0]. innerHTML=”
”;
else

objTable.ro ws[0] .cells[0] ,innerHTML=” ”;

}
</script>

<body>
<table id=”textMsg”>
</table>

</body>
</html>

Sample code 9, problem of using
 tag within an innerHTML assignment

Solution:

We have to avoid using ‘innerHTML’ in this case. In the above example,

instead of using ‘innerHTML’ to assign ‘
’ to ‘objTabie.mws[0].ceiis[0r object,

we should create an ‘br’object, and then append it to ‘objTable.rows[0].cells[0J

as a child. Sample code 10 has highlighted the code to avoid use innerHTML

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statement.

<script type=”text/javascript”>

showMsg(“Welcome”);
showMsg(“
”);
showMsg(“How are you today?”);
showMsg(“
”);

function showMsg(msg)

{
var objTable=document.getElementById(“textMsg”);
objTable.insertRow(O);
objTable.rows[0] .insertCell(O);

if(msg== “
”)

{
var objBR = document.createElement("br");
objTable.rovvs[0].cells[0].appendChild(objBR);

}
else

objTable.rows[0] .cells[0] .innerHTML=” ”;

}
</script>

<body>

<table id=”textMsg”>

</table>
</body>

Sample code 10, solution to avoid use of
 tag within an innerHTML assignment

Problem 4:

In X+V, the only function which supports a dynamic speech output is ‘<prompt

src=”#_id” />’. But the source of the speech has to point to an existing HTML

tag in the file which has the id, such as ‘<p id=”_id”>data</p>’, and most likely

the speech data will be shown on the screen and visible to the user. It cannot

point to a variable directly.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Solution:

Point to a JavaScript variable indirectly by the following:

1. Do not use ‘<prompt src=”#Jd"/>, but regular ‘<prompt></prompt>’, and

keep inside of it empty.

2. Use ‘<value expr~”var_name”> ’to point to a variable, and use it inside (as

a child of) the above ‘<promptx/prompt>’.

In sample code 11, the voice-output message from the prompt is linked to a

JavaScript variable - output.

<script type=”text/javascript”>

var output=”hello”;
</script>
<vxml>

< p ro m p tx value expr='’output’7></prompt>

</vxml>

Sample code 11, solution to dynamic voice-output message

Problem 5:

The voice output from VXML cannot suspend the processing of JavaScript,

XHTML, and even VXML itself. They all run simultaneously with the voice

output. This is good in efficiency in the most of situations. But, consider this

situation, we want to output a voice to the user first, then go to another

document. Unfortunately, you will find out that, you can only hear the beginning

part of the voice output, which is then interrupted because Javascript has

called to load another document.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In a program written as sample code 12, the user will not be able to hear a

complete voice-output sentence: “ We are going to next page”: The program

calls a JavaScript function - loadNextCnextpage.xml”) to load a new page

before finishing the VXML voice-output process.

<vxml:form>

<vxml:field name=”dialogA”>

<vxml:filled>

<!— Comments: Speech output —>

<vxml:prompt>We are going to next page</vxml:prompt>

<!— Comments: Call JavaScript function to load nextpage.xml —>
<vxml:value expr ’̂loadNextf‘nextpage.xml’)"/>

</vxml:filled>
</vxml:field>

</vxml:form>

<script type="text/javascript">
function loadNext(nextPage)

{
window.location=nextPage;
return

}

</script>

Sample code 12, complete VXML process before going to another page

Solution:

The key of this problem is to use the VXML event - “vxmldond', which is the

only one can be catch by XHTML listener, “vxmldond’ is an event generated

automatically by the X+V interpreter when the whole VXML part, which

including voice output process, is done.

Solution steps:

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Using XHTML uev:listener object to register the Javascript for handling the

“vxmldone” event. As the above example, this Javascript will call to load the

next document (nextpage.xml).

2. Throw an exception to exit from all VXML dialogs, which will generate the

‘vxmldone’ event automatically by X+V interpreter, instead of calling Javascript

directly right after the voice output element ‘<prompt>’.

Sample code 13 is the solution code to solve this problem. The program would

throw a self-declared VXML event (finish.all) in the case that it wants to call a

JavaScript function to go to another page, but do nothing (exit from all VXML

dialogs) in its catch statement. Then, use a JavaScript to catch X+V build-in

VXML event - “vxmldone”, and to go to another page.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

<html>

<vxml:form>
<vxml:field name=”dialogA”>

<vxml:filled>

<vxml:prompt>We are going to next page</vxm]:prompt>

<vxml:throw event="finish.aIl"/>
</vxml:filled>

</vxml:field>

<vxml:catch event="finish">
<! — Do NOT need to do anything in here! —>

</vxml:catch>

</vxml:form>

<script type="text/javascript" id="gotoNextPage" declare="declare”>

window.location = ’’nextpage.xmP';
</script>

<body id="page.body">

<ev:listener ev:observer="page.body" ev:event="vxmldone" ev:handler="#gotoNextPage"

ev:propagate="stop" />

</body>
</html>

Sample code 13, solution to complete VXML process before going to another page

5.4 Conclusion of X+V usability

X+V has several limitations that make it difficult to use for application

developers. However, the solutions in Section 5.3 show, these limitations are

fixable, and do not reduce the great value of X+V. It is still the best tool to build

a speech browser for a Public-Domain SpeechWeb.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6: Investigation of the Use of X+V for a

SpeechWeb Browser

6.1 Overview
We have investigated several approaches toward using X+V to build a speech

browser for a Public-Domain SpeechWeb. At the beginning, we were trying to

build the browser as a single X+V page. Unfortunately, the Single-Page design

did not work properly in all situations because of a concurrency problem that is

beyond the control of X+V application developers.

From the problem which appeared in the implementation of the Single-Page

design, we have figured out that based on today’s technologies, it is

impossible to build a SpeechWeb Browser as a single X+V page which works

reliably in all situations. Consequently, we developed a Multiple-Page design.

We begin with a short description of the Single-Page design followed by a

detailed description of the successful Multiple-Page design.

6.2 Single-Page Design
The most difficult problem in building a SpeechWeb Browser as a single X+V

page is the runtime dynamic change of speech-grammars. A single page

SpeechWeb Browser has to change the speech-grammar dynamically

everytime it connects to another remote application. After investigation and

questions to the Opera company, there is a fact that the Opera X+V interpreter

only parses the static VXML parts of X+V once, including the speech-grammar,

and it is at the first time it loads the page. After this one-time load, the

speech-grammar is parsed and saved into flash memory. Everytime the dialog

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

needs the speech-grammar, the X+V interpreter just goes to the memory and

picks it up directly without looking at the document page again. Looping

through a single page cannot change the grammar, even though the attribute

of grammar element has been reset. This leaves no choice but to save the

changes (new speech-grammar file location) somewhere (client’s cookies) and

reload/refresh the whole X+V page, then try to change the VXML data (the

attribute of the grammar element) before the interpreter loads it.

6.2.1 Components and workflow of a Single-Page Design SpeechWeb

Browser

A Single-Page design SpeechWeb Browser system has following components:

1. A single X+V page which contains following subcomponents:

a) One iterated VXML dialog to recognize human-voice-input and to give

synthesized-voice-output.

b) XHTML objects to provide visual access to the browser for users.

c) JavaScript functions to perform data checking, logical processing,

control of cookies, and AJAX-technology powered Internet

communication. Both VXML part and XHTML part performances

greatly rely on these JavaScript functions.

2. Remote applications distributed over the SpeechWeb. Each remote

applications contains the following four subcomponents:

a) The knowledge source of the application; it could be program(s) or

knowledge/data base system(s).

b) A Common Gateway Interface (CGI) script to handle the

communication between the local server application knowledge

sources and remote user single X+V page.

c) A speech-grammar file for the application.

d) A small ‘.sihlo’ file, which provides the basic information about the

application: 1) a greeting message of the application as text string, 2)

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the location of the CGI script, and 3) the location of the

speech-grammar file.

3. A high speech-recognition accuracy, low-resource demands, completely

freely available Opera X+V interpreter from Opera Software, which is the

pre-required environment to run the browser.

Briefly, a Single-Page SpeechWeb Browser works as follows:

1. The user loads the browser in Opera Gust like loading an HTML page in

Netscape), and connects to a remote application possibility distributed over

the SpeechWeb. JavaScript functions will validate the input and network

communication to avoid a cross-domain security error from Opera.

2. The browser downloads the speech-grammar from a remote server, and

uses it to tailor the interaction with the user. The user’s voice-input is

recognized and transmit to a text string locally by the speech-recognition

engine that is build-in within Opera. Using the latest network

communication technology - AJAX, the text string is sent to the remote

application to do the data processing, and retrieve returned data and

provide it to the user using synthesized-voice-output. Both

speech-recognized user’s input and remotely returned

synthesized-voice-output are displayed on the browser page, which is

clearly visible to the user.

3. When the user requests connecting to another remote application, the

browser will save the Internet location of the new application and its

speech-grammar files into cookies, then reload the browser and connect to

the new application.

4. When reloading the browser, JavaScript changes the VXML grammar

attribute right after the page document load, and tries to complete this task

before the X+V interpreter parsed the VXML part of X+V. Then the whole

process goes to step 2 again.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. The user can terminate the session at anytime by closing the browser page

on Opera

6.2.2 Problems in the Single-Page Design

As described in the workflow step 4 from section 6.2.1, we can see a

concurrency problem in the Single-Page Design SpeechWeb Browser. Both

the JavaScript code and VXML part interpreter will automatically start running

right after the page document is loaded. If JavaScript successfully makes the

change before the VXML part is parsed by the interpreter, then the process

works as desired. Otherwise, the browser will load the speech-grammar file

from the incorrect location (actually, it will try to load it from the browser

pre-defined default location).

6.2.3 Single-Page Design conclusion

Unfortunately, Single-Page Design has failed to work in all situations. Even

though the possibility of its success may be increased by a good order of the

location of the VXML part code in the X+V document, but it still related to other

uncertain factors in Opera and X+V. The result of the Single-Design is

unacceptable.

6.3 Multiple-Page Design

During the investigation of the Single-Page Design, we have found out that by

today’s technology, it is impossible to build a speech browser for a

Public-Domain SpeechWeb as a single X+V page. Therefore, we investigated

a Multiple-Page design:

Instead of using a single X+V page, and dynamically changing the value at

runtime for all application dependent variables, we are going to have a copy of

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the X+V page associated with and located with each remote application. The

size of the copy of the X+V page is less than 18.5KB. Most of the data on these

copies of the X+V page are identical to each other except 3 lines which give

the greeting message, the Internet location, and the speech-grammar file

location for the associated application.

6.3.1 Components of Multiple-Page Design Speech Web Browser

A Multiple-Page Design SpeechWeb Browser contains the following

components:

1. An optional browser menu X+V page located in the user local device, which

can help the user to connect to a remote application. Users may also

connect to the remote application associated X+V page directly if they

know its location (URL address). This optional browser menu X+V page

contains the following subcomponents:

a) One iterated VXML dialog to recognize human-voice-input and to give

synthesized-voice-output.

b) XHTML objects to provide visual access to the browser for the user if

required.

c) JavaScript functions to perform data checking, logical processing,

control of cookies, and AJAX-technology powered Internet

communication. Both VXML part and XHTML part performances

greatly rely on these JavaScript functions.

2. Remote applications distributed over the SpeechWeb. Each remote

application contains four subcomponents:

a) The knowledge source of the application. It could be a program or a

knowledge/data base system.

b) A Common Gateway Interface (CGI) script to handle the

communication between the local server application knowledge

sources and remote user single X+V page.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c) A speech-grammar file for the application.

d) A single copy of the identical X+V browser page with the three lines

changed on it for the application. These X+V pages for remote

applications are very similar to each other except that each containing

3 specific information about the application: 1) a greeting message for

the application as a text string, 2) the location of the CGI script, and 3)

the location of the speech-grammar file. Other identical

subcomponents are similar to the Single-Page Design (section 6.2.1)

version, except that there are no cookies used; and no data requesting

on ‘.sihlo’ file when connecting to a new application. The file size is

less than 18.5KB.

3. A high speech-recognition accuracy, low-resource demands, completely

free available Opera X+V interpreter from Opera Software, which is the

pre-required environment to run the browser.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

6.3.2 Multiple-Page Design structure

The following is the structure of Multiple-Page design SpeechWeb Browser:

2 . Loads application

X+V page and speech

g r a m m a r ________

4 . Question query send

to A ppl as a string

X + V page

CGI

3. User voice input

question to A ppl.

Other applications

1. Loads SpeechWeb Browser

in Opera, and requests

connection to A ppl.

Knowledge

sources

6 . Syuthesized-voice speak out returned

message to the user. I f the returned message

contains a 1 to another application, then go

there as in step 2.

x+v
SpeechWeb

Browser

Opera

User local Device

A p p l

A Public-Domain SpeechWeb

Figure 2. The structure of the Multiple-page Design

A simple Multiple-Page design SpeechWeb session will have following steps:

1. Open Opera. Then either visit the SpeechWeb Browser Menu page or give

the location to a remote X+V page to it.

2. It will automatically download the startup X+V page and speech-grammar

file to the local device. The user may start talking now.

3. The user gives a question/request to SpeechWeb Browser.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. The SpeechWeb Browser will recognize and convert user’s voice-input to a

string query, and send it to the remote application CGI script.

5. The CGI script will do the data processing and return a response message

to the SpeechWeb Browser as a string.

6. The SpeechWeb Browser speaks out the returned message to the user as

a synthesized-voice-output.

7. If the returned message contains a link to another remote application, the

SpeechWeb Browser will connect to the new application as in step 2.

Otherwise, the user can keep asking questions as in step 3.

6.3.3 Comparison of a SpeechWeb Browser built as a single and

multiple X+V pages

Our Multiple-Page Design SpeechWeb Browser has successfully passed the

performance test, which can provide a reliable service in all circumstances.

The following is a comparison of a SpeechWeb Browser building as a single

X+V page and as multiple application associated X+V pages:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Table 1: Comparison of Single-Page design with Multiple-Page design

A single X+V page Multiple X+ V pages

General

performance

Unreliable. Reliable.

Required

components on

user’s local

device

1. Opera

2. A single X+V page

(<21,3KB)

Opera only.

Required

components for

remote

application

1. Knowledge sources.

2. CGI script.

3. Speech-grammar file.

4. A “.sihlo” file. (<1KB)

1. Knowledge sources.

2. CGI script.

3. Speech-grammar file.

4. An application associated

X+V browser page.

(< 18.5KB)

Network

communication(s)

when connecting

to a new

application

1. Retrieves data from

remote “.sihlo” file.

2. Reloads and connects

to the new application.

One step only: Connects

and loads the new

application X+V page

directly.

Client Cookies Required Not required.

From the comparison of the single X+V page design and the multiple

application-associated X+V pages design, it has clearly shown that the

Multiple-Page Design is a better design to build SpeechWeb Browser, except

that the copy of the X+V browser page has to be downloaded each time the

user hyperlinks to a new application. However, the page size is less than

18.5KB, so the download time is negligible.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.4 Multiple-Page Design conclusion

Our Multiple-Page Design SpeechWeb Browser has successfully passed all

performance tests (See chapter 8). It has accomplished everything we wanted

it to do. The Multiple-Page Design was successful and allowed the new

SpeechWeb Browser to execute on end-user devices with only one

requirement - that the free Opera be installed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Chapter 7: The New SpeechWeb Browser

7.1 Overview

Our new SpeechWeb Browser is built based on Multiple-Page design (section

6.3). The new SpeechWeb Browser can execute on end-user devices with only

one requirement - that the free Opera be installed.

We now describe the new browser in detail.

7.2 The end user interface

The new SpeechWeb Browser takes the advantage of multimodal access,

which allows users’ access through both XHTML graphical user interface and

VXML speech interface.

After using Opera to load the SpeechWeb browser menu page, sighted users

can see a graphical interface as regular conventional website. However, visual

access is not required as all functionality can also be achieved through

speech.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. Pub 11 1: D o i a i n S p e e c h f r b B erm P a p r

£ i l « g d i t ¥x«w g oe lona rkx l * i l l o o l s H * lp

40 ^ ^ h t t p : / / l u n * . cs . u i in d s o r . c * / 'vsp»echw eW p_d- speechw eb /B «n ti,}# l:

Welcome to our new Public-Domain SpeechWeb Browser!

L oad your ow n speech application : (http://luna.es.uwindsor.ca/~speechiweb/p_d_speechwei

I, Validate flafetgGpJ

Choose the Sililo to start talking:

Judy M onty Solar M an

Installation Document and User Manual:

Pubhc-dom am SpeechW eb Brow ser U ser M anual

L i j R j f x j

Iz j 6 d

Figure 3. GUI of the SpeechWeb Browser Menu Page.

At the same time, the browser will speak a voice introduction: “Please say the

name of the Sihlo that you wanna talk to, or input the URI for your own

SpeechWeb application.”

Users may choose a sample application (Sihlo) to connect to by either clicking

on the link or just saying it. They could also load any other SpeechWeb

application by typing the URL into the “Load your own speech application:” text

field. We have not yet provided the ability to “speak” a URL for a starting

application.

After connecting to a remote application, a Graphical User Interface will be

loaded. And the greeting message from the application will be both said and

displayed to the user. The following is the GUI shown after connected to one of

the sample application (Judy). The greeting message “hi, my name is judy” is

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://lun*
http://luna.es.uwindsor.ca/~speechiweb/p_d_speechwei

spoken and displayed to the user at the same time.

£ ile £ d i t View RooJonarks t a i l Zools

00? _ J h t t p : / / l u n * . cs. W in d s o r . c a /~ s p « « c b w e b /p _ d _ s p **c h w e b /ju d y ^ [Q] , ^ 6 d

Welcome to our new voice browser!

L o a d your own speech application: ihttp:/yiuna.cs.uwindsor.ca/~speechweb/p_d_speechwe;

i Validate Before Go y & A m e d d M iU , SpeechW eb Menu P a g t 4

S a y y o u r q u estio n o r ty p e i t in h e re :

G R E E T IN G : hi, my name is judy.

Figure 4. “Judy” is loaded

Now, users can start the conversation. They can ask their question by

speaking it, or by typing it into “say your question or type it in here:” text field.

Either way, the input question query will be displayed on the page and sent to

the remote Judy application immediately. The response message returned

from the remote application will also be displayed on the page. The following is

a sample conversion with Judy:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://lun*

, P u b l ic - D o m a in S p ee c h W e b - O p e r a ; « ij uJ l[X j

Fil« Jd it Vittff E o o fa a tfks ■ til l o o l s H . lp

: m » cs . u v in d s o r . c * /~ s p « * c tw .b /p _ d _ * p . * c i» e fe / ju d y / j , id v . , [C j] ’ . . Id- 6 d

Welcome to our new voice browser!

L o ad your ow n speech application ■ http://luna.cs.uwindsor.ca/~speechweb/p_d_spe8chwe

; Validate Before Go , [G o Immediately ; SpeechW eb >tenu,Page 1

S a y y o u r q u estio n o r ty p e i t in h e re :

R E S P O N S E : no problem

Q U E S T IO N : thanks

R E S P O N S E ;
the dark clouds, lingered, as he lay. Then, the strong winds, blew them both
away.

Q U E S T IO N : tell me a poem

R E S P O N S E :
I only know one poem just now. M y collegue, Dr. F rost is looking for someone
to teach me some m ore poems.

Q U E S T IO N : w hat do you know

R E S P O N S E : G ood, so am L In feet I feel great.

Q U E S T IO N : fine thanks

R E S P O N S E : hi, how are you?

Q U E S T IO N : hello judy

G R E E T IN G . hi, my name is judy.

Figure 5. A Sample Conversation with Judy.

Note that the order displayed above is the reverse time-order of the session

due to the fact that the page scrolls down.

7.3 A sample session user input/computer response
The following is another sample session user input / computer response with

the SpeechWeb, which involves transition from one application to another:

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_spe8chwe

Please note that, as we mentioned before, if the user knows the X+V page

URL location of a remote speech application (Sihlo), then he/she can connect

to it directly by type the URL into Opera, without going through the browser

menu page. Note that this session is described in an ascending time order.

The user begins by opening Opera, and loads the SpeechWeb Browser menu page.

Browser menu page: Please say the name of the sihlo that you wanna talk to. Or input the
URL. for your own speechweb application.

Browser menu page introduction message is spoken to the user right after it is loaded.

User: I wanna talk to Monty.
The user’s voice input is recognized by menu page speech-grammar.

Browser menu page: You are transferring to Monty now.
The location o f the X +V page for Monty is pre-stored in the browser menu page, so connects

to it immediately.

Monty Sihlo: hi, I am Monty, I know a joke.
Greeting message from Monty is spoken to the user right after its X+V page is downloaded

(The speech-grammar file comes with the X +V page).

User: how old are you
The user’s voice input is recognized using the Monty speech-grammar and send it to remote

Monty Sihlo.

Monty Sihlo: Eighteen or nineteen. But I am not sure if that is years or days.
Response message from Monty Sihlo is returned and spoken to the user.

User:........ (No speaking.)
User gives no input.

The browser: Sorry, I don’t understand, can you say it again?
The browser catches no-input event, and output a message to the user.

User: tell me a joke.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Monty Sihlo: Did you hear about the two professors? They were walking through the
forest, when they saw some tracks. Moose tracks, yelled one of them. Deer
tracks, yelled the other. Moose tracks. Deer tracks. They argued for an hour.
Then the train hit them.

User: can I talk to solar man
User requests a transfer to another Sihlo (remote application) called solar man. This change is

similar to following a hyperlink on a regular web page.

Monty Sihlo: yes, here he is.
When the user requested a transfer to another Sihlo, the response returned actually contains

two parts: 1) the response message that w ill be spoken to the user (“yes, here he is”), and 2) a

link to the new Sihlo’s X+V page, which is used to connecting to the new Sihlo right after
spoken the response message.

Solarman Sihlo: hi, I am solar man

User: what do you know

Solarman Sihlo: Not much I am afraid. I am just beginning to learn. I know a bit about
the planets, the moons, and the people who discovered them. My master will teach me
some more when he gets another grant

User: how many moons orbit mars

Solarman Sihlo: 2

User: do you like Chinese food

The browser: Sorry, I don’t understand, can you say it again?
The user’s input has no match with any choices in the speech-grammar definition. A no-match

error is caught by the browser, and a help message is output to the user.

User: who discovered Titania

Solarman Sihlo: Herschel.

Etc.

Figure 6, a sample conversation session with SpeechWeb applications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8: Analysis of the New SpeechWeb

Browser

8.1 Overview

Our goal is to prove a viable speech browser, which meets the SpeechWeb

Browser requirements, and can be constructed using X+V. In this chapter, we

analyze our new X+V SpeechWeb Browser with respect to the properties

required in a Public-Domain SpeechWeb:

1. Clarity in design.

2. Ease of installation and use.

3. Ease of distribution.

4. Use of common communication protocol.

5. Ease of creation and deployment for speech applications.

6. Capabilities.

7. Efficiency and speed.

8.2 Clarity in design

As we described in Chapter 3, the LRRP architecture is ideally suited for

building a Public-Domain SpeechWeb. From the comparisons with other

existing architectures, it shows that LRRP architecture resolves several of their

limitations. By using this architecture in the design, our new SpeechWeb

Browser improves performance in efficiency and capabilities.

Another issue in design is whether we should construct the SpeechWeb as a

single X+V page or multiple application-associated X+V pages, to achieve the

best performance. During our investigation as described in Chapter 6, we have

proved that a reliable X+V SpeechWeb Browser can be built as multiple

application-associated pages, by demonstration.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3 Ease of installation and use for end users
There’s only one component required to be installed on the end-user’s device

- Opera, which is completely free and downloadable from the Internet. Thanks

to the Opera Software company, after downloading Opera to their device,

users may install and enable its voice-features in a few simple steps (Please

check the SpeechWeb User Manual document [Appendix I] for details.). Any

person with basic knowledge of software downloading and installation can do it

easily. After installing Opera, users can open our SpeechWeb Browser

immediately.

Our new SpeechWeb Browser has provided Multimodal access to SpeechWeb

applications. Users may either say or type their question, then hear and see

the response message from the remote application. All the interaction

processes are done by the browser automatically, including speech recognition,

network communication, remote data processing, voice-output &

message-display, transition to another application, etc.

8.4 Ease of distribution.

With the benefits of ease of installation and use of our SpeechWeb Browser,

plus the complete free available environment (Opera), we can guarantee the

ease of its distribution. This is not only for PC users, but also for mobile users.

Our current version of X+V SpeechWeb Browser is designed for Windows OS

Opera, but it only requires a few changes before deploying it on a mobile

version of Multimodal browser (Opera v7, NetFront), which is also free and

downloadable from the Internet.

Our new SpeechWeb Browser can be distributed freely as it contains no

proprietary components.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.5 Use of common communication protocol
In our new SpeechWeb Browser, JavaScript AJAX objects are used to

implement network communication manager. AJAX is a new technology that

allows sending HTTP requests to and receiving responses from a remote

server/application without refreshing the page. Our browser currently uses the

CGI-BIN protocol to communicate with remote applications. The CGI-BIN

protocol is easy to implement, is widely used in most web-based applications,

and is supported by most web server software.

8.6 Ease of creation and deployment of SpeechWeb

applications
Because our SpeechWeb browser uses the CGI-BIN protocol, the remote

application can be deployed on any Internet web server as long as it supports

the CGI-BIN protocol. Also, the remote application knowledge-source

(data-processing program) can be coded in any language as long as it is able

to receive a request and return a response as text string, which means it is

able to communicate with its CGI script through the CGI-BIN protocol.

An application-tailored X+V page is also needed for every application. As we

described in Section 6.3.1, the X+V pages are identical to each other except

each contains 3 specific lines of information about the application: 1) a

greeting message of the application as text string, 2) the location of the CGI

script, and 3) the location of the speech-grammar file.

Please see Appendix II for more details about how to create your own

SpeechWeb application.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.7 Capabilities
As we described in Chapters 5, 6, 7, our new SpeechWeb browser has

following properties:

1. Non-proprietary software.

2. Uses common communication protocol.

3. Free distribution.

4. Possibility of deployment on handheld devices.

5. Ease of installation and use.

6. Ease of implementation for SpeechWeb applications.

7. Multimodal access.

8. Real-time human-machine speech interaction.

9. Acceptable speech-recognition accuracy in a suitable environment.

The only restriction on the browser is that it has to obey the JavaScript

cross-domain security issue on Opera. The issue requires that all AJAX

network communication must done within same Internet domain, which means

the application-associated X+V browser page must be located in the same

Internet domain with its associated CGI script file. This restriction is not a big

problem since the X+V browser page file size is less than 18.5KB, which is

extremely small comparing to today’s web-server hard-disk capability. This

restriction can be solved by applying a Digital Certificate for our browser

program, which will unlock the cross-domain security issue on Opera.

8.8 Efficiency and speed
Our browser is designed for high performance in efficiency and speed. The

LRRP architecture has a great potential in reducing the communication cost

and improving speech-recognition accuracy.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our browser uses AJAX, which is the latest web-application technology, to

control the network communication. AJAX technology provides a great

improvement in reducing the redundancy of network communication, which

only updates the minimum required information for every communication.

Our SpeechWeb Browser provides a real-time human-machine interaction,

with high speech-recognition accuracy in a suitable environment.

8.8.1 Network communication cost

By using the LRRP architecture, our SpeechWeb Browser has the lowest

network communication cost compared to most other speech applications (text

transmission comparing to voice transmission). The speech-recognition

process is done locally on the user’s device, and only the recognized text

string will be sent to the remote server to process. The number of words in the

text depends on the definition given in the speech-application grammar, but

normally it is about 1-10 words.

8.8.2 Speech-recognition accuracy

The accuracy of the speech-recognition process is difficult to measure. It

depends on the user’s accent, the environment noise, and the quality of

speech-input microphone. Our SpeechWeb Browser uses Opera which has a

built-in speech-recognition engine developed by IBM. The speech-recognition

engine in Opera is very accurate as we used in a regular room environment.

More information about the speech-recognition accuracy of Opera can be

found from Opera Software [OperaS].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.8.3 Time complexity

To start the browser with a new remote application:

Time complexity = 0(size of X+V page + size of speech-grammar for the

application);

= 0(constant + size of speech-grammar);

= 0(size of speech-grammar)

Recognition of user’s speech:

The time complexity is affected by two factors: the size of speech-grammar

and the length of user’s input.

■ 0(size of grammar)

■ 0(length3), for an ambiguous grammar

Transmission of text query to a remote sever and return of the answer:

Time complexity = 0(length of query + length of answer)

Please check the program code in Appendix IV.

8.8.4 Speed

Our SpeechWeb Browser has been tested on a laptop with the following

specification:

CPU: Pentium M ,1.6MHz,

Memory: 512M

Operation system: Windows XP SP2

Microphone: IBM ThinkPad T40 built-in

Internet connection: a stantard high-speed cable Internet connection with

upload-speed up to 640Kbps and download-speed up to 7 Mbps [Cogeco

Cable, 2006]

SpeechWeb application: Solarman Sihlo, which has the largest

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

speech-grammar file and knowledge source program in our samples.

Speech-recognition speed:

Speech-input:

The longest question tested with the Solarman Sihlo was: “Who discovered

Titania and Titania and Titania and Titania and Titania and Titania and Titania

and Titania and Titania and Titania”.

Result:

The speech-recognition process appears to be instantaneous. The process

time is extremely fast and cannot be measured with a clock.

SpeechWeb Browser speed:

We have calculated the browser start-up speed and human-machine speech

interaction speed by running the SpeechWeb Browser 20 times on 2 different

days. Table 2 contains the experimented results:

“Load SpeechWeb End User Interface” is: the period from user start to load a

X+V page on Opera, until the SpeechWeb interface is fully loaded (the first

sound of the welcome voice message). Time measured using a regular timer.

“Speech Interaction” is: the period start from the user’s input (request) is

recognized, until the answer is returned from remote and uttering to the user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2: SpeechWeb Browser Speed Experiment Result (in seconds)

Load SpeechWeb End User Interface Speech Interaction

Average 0.92 0.218

Minimum 0.7 0.150

Maximum 1.4 0.291

From Table 2, we can see that it takes about 1 second to load the X+V browser

page. This result is acceptable, because we only need to load the X+V page

when we are connecting to a new SpeechWeb application. After the

application’s X+V page is loaded, a user-Sihlo speech interaction can be done

in about 0.2 sec, which is very fast comparing to human response.

Please note that the speed for application transition (the process to transfer

from current Sihlo to another SpeechWeb application) is the speech interaction

time + the time to load a new application X+V page.

Overall, our X+V SpeechWeb Browser runs at a very fast speed on an

average-configured PC equipped with a home standard high-speed Internet

connection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9: Use, Implementation and

Documentation

9.1 New SpeechWeb Browser user manual
A “User Manual” for our new SpeechWeb Browser is provided in Appendix I. It

includes all information about where and how to install Opera, how to enable

the voice-feature in Opera, and how to use our SpeechWeb Browser.

9.2 Manual for creating SpeechWeb applications.

A manual on how to create a SpeechWeb application in few steps, together

with an example, is given in Appendix II.

9.3 New SpeechWeb Browser website
The introduction to our new SpeechWeb Browser website is given in Appendix

III. This website was recently created by Dr. Frost and Xiaoli Ma, and welcome

to have more visitors. [SpeechWeb]

Copies of the manuals, the X+V browser, and X+V browser introduction page

are available at the website.

9.4 Program code

Appendix IV shows the complete program code of our new SpeechWeb

Browser in both the single-page version and the multiple-page version. Please

note that the single-page version does not work reliably in all situations as we

described in Section 6.2.2. All code is original and was written by the author of

this thesis.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10: Conclusions and Future Work

10.1 What has been achieved?

The Thesis Statement was that:

“A viable speech browser for a Public-Domain SpeechWeb can be

implemented using X+V.”

The thesis statement has been proven in demonstration by:

1. Investigating the new Multimodal programming language X+V.

2. Solving several limitations of X+V.

3. Investigating the LRRP architecture.

4. Investigating different potential designs for a new speech browser.

5. Identifying a design with good potentials.

6. Successfully implementing and testing the new design, and the

resulting browser.

7. Analyzing the new SpeechWeb Browser with respect to its “viability”,

showing:

• Real-time human-machine speech interaction.

• High speech-recognition accuracy in a suitable environment.

• Ease of installation and use.

• Completely free availability to all users.

• Ease of implementation for speech applications.

• Possibility of deployment on handheld devices after small

changes.

• Compatibility with the LRRP architecture which is ideally suited for

building a Public-Domain SpeechWeb.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.2 Suggestions for future work
As we discussed in Chapter 8, our current SpeechWeb Browser could be

updated to work on mobile version of Multimodal browsers - Opera v7 and/or

NetFront, and distributed to mobile users.

In Section 8.7, we have discussed the restriction that our browser must obey

the cross-domain security issue on Opera. This problem can be solved by

applying for a Digital Certificate for our SpeechWeb Browser program, which

could unlock the restriction.

Also, our current SpeechWeb Browser does not have the ability to let the user

to speak the URL. This could be implemented in our browser, or constructed

as a SpeechWeb application.

We can also extend the current simple browser start-up page with list of useful

SpeechWeb sites/pages when the SpeechWeb has grown, so that the user

can be familiar with SpeechWeb easily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Bibliography

[CC06] Cogeco Cable, High Speed Internet - Packages and Pricing - Cogeco
Cable - Ontario - Canada,
http://wvmcoaeco.ca/en/hiah-speed-internet- o.html

[FAB04]. Frost, R. A., N. Abdullah, K. Bhatia, S. Chitte, F Hanna, M. Roy, Y.
Shi and L. Su, “LRRP SpeechWebs”, IEEE CNSR Conference (2004) 91-98.

[Frost05] Frost, Richard, “A Call for a Public-Domain SpeechWeb”,
Communication of the ACM, Volume 48, Issue 11 (2005) 45-49

[HT95] Hemphill, C.T. and Thrift, P. R. ’’Surfing the Web by Voice”.
Proceedings of the third ACM International Multimedia Conference (San
Francisco 1995) 215-222.

[IBM] IBM “Multimodal Overview” IBM’s Multimodal Website
http://www-306.ibm.com/software/pervasive/multimodal/

[LucasOO] Lucas, B., “VoiceXML for web-based distributed conversational
applications”, Communications of the ACM 43 (9), 2000, 53-57.

[Manuals] Xiaoli Ma, “User and Developer Manual of new SpeechWeb
Browser”
http://sol.cs.uwindsor.ca/~speechweb/p d speechweb/Multi-paae Version
Public-domain SpeechWeb Browser.pdf

[OperaS] Opera Software, “Opera Software Website” http://www.opera.com

[Su05] Su, Li, “Using VXML to Construct a Speech Browser for a
Public-Domain SpeechWeb”, Master’s Thesis, School of Computer Science,
University of Windsor, ON, Canada, 2005.

[SF05] Li Su, and Richard A. Frost, “A Novel Use of VXML to Construct a
Speech Browser for a Public-Domain SpeechWeb” Canadian Conference on
A! 2005, 401-405

[SpeechWeb] Xiaoli Ma and Richard A. Frost, ‘Website of New X+V
Public-Domain SpeechWeb Browser”
http://sol.cs.uwindsor.ca/~speechweb/p d soeechweb/

[W3C00] W3C, “Voice extensible Markup Language (VoiceXML.) version 1.0”

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wvmcoaeco.ca/en/hiah-speed-internet-
http://www-306.ibm.com/software/pervasive/multimodal/
http://sol.cs.uwindsor.ca/~speechweb/p
http://www.opera.com
http://sol.cs.uwindsor.ca/~speechweb/p

W3C Recommendation 05 May 2000, httD://www.w3.ora/TR/voicexml/, 2000.

[W3C01] W3C, “Voice Extensible Markup Language (VoiceXML) Version 2.0”
W3C
Working Draft 23 October 2001,
http://www.w3.org/TR/2001/WD-voicexml20-20011023/, 2001

[W3C04] W3C, “Voice Extensible Markup Language (VoiceXML) Version 2.0”
W3C Working Recommendation 16 March 2004,
http://www.w3.ora/TR/voicexml20/. 2004

[XV01] Axelsson, J. Cross, C. Ferrans, J. McCobb, G. Raman, T.V. Wilson, L.
“XHTML+Voice Profile 1.0”, W3C Note 21 December 2001,
http://www.w3.ora/TR/xhtml+voice/. 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

http://www.w3.ora/TR/voicexml/
http://www.w3.org/TR/2001/WD-voicexml20-20011023/
http://www.w3.ora/TR/voicexml20/
http://www.w3.ora/TR/xhtml+voice/

APPENDIX I

User Manual
Of Our New Public-Domain

SpeechWeb Browser

March, 2006

Supervisor: Dr. Richard A. Frost

Student: Ma Xiaoli (William)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents
I. Installation Instructions

1.1 System Requirement

1.2 Install Opera 8 for Windows

1.3 Install Voice Feature for Opera 8

II. User Manual

2.1 Start the SpeechWeb Browser

2.2 Use the SpeechWeb Browser

2.3 List of Available Speech Input on Our Sample

applications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

I. Installation Instructions

1.1 System Requirement

This X+V voice browser needs an “Opera for Windows” version 8 or higher to

be installed on the user’s windows system.

Recommended computer system requirements:

Operating System: Windows 2000 or XP.

CPU: Pentium 166MHz processor.

Memory: 32 MB of RAM.

Hard disk: 50 MB free disk space.

A speaker and a microphone, which are compatible with your

computer system.

These system requirements may be updated without additional notification.

1.2 Install Opera 8 for Windows

Steps to install Opera 8 into your Windows system:

1. Go to the download page at httD://oDera.com/download/.

2. Select Opera 8 for Windows to download.

3. Double click on the Opera installation file you downloaded

4. The welcome screen tells you that: "You are about to install Opera".

Press "Next >"

5. Accept the software license agreement. Press “I Accept"

6. Install Opera in the suggested directory. Press "Next >"

7. Create icons and shortcuts. Press "Next >"

8. The information is complete and the installation will begin. Press

"Install" (Files are copied to your hard drive.)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. Opera can start automatically after installation. Press "Finish"

If you have any trouble installing Opera 8 on your Windows system, please go

to Opera Forum at http://mv.opera.com/communitv/forums/forum.dml?id=2.

1.3 Install Voice Feature for Opera 8

Steps to install voice feature for Opera 8:

1. Download Opera 8 at http://opera.com/download/. Install Opera 8 for

Windows into your computer.

2. Select “Tools” > “Preferences” > “Advanced” > “Voice”. Enable the voice

option.

3. After enabling the option, you will be asked to confirm that you want to

install the voice libraries. Select confirm.

4. Voice is available after downloading Opera voice libraries.

5. To initiate a voice command, Press the “Voice” button on the View

toolbar, or press the Scroll Lock key on your keyboard. Then say your

command or query. After issuing, release the button.

6. You can also customize the “Voice key to talk”, and “Talk key mode” in

‘Tools” > “Preferences” > “Advanced” > “Voice”.

If you have any trouble to set up the voice feature into Opera, please go to

Opera Voice Forum at httP.7/mv.opera.com/communitv/forums/forum.dml?id=95.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://mv.opera.com/communitv/forums/forum.dml?id=2
http://opera.com/download/

II. User Manual
2.1 Start the SpeechWeb Browser

Notice, Opera 8 for Windows with enabled voice feature has to be installed

before using our X+V SpeechWeb Browser.

Steps to start the X+V SpeechWeb Browser:

1. Start your pre-installed Opera 8 for Windows. Make sure you have

enabled voice feature.

2. Input the following URI into your Opera 8 web browser:

http://luna.cs.uwindsor.ca/~speechweb/p d speechweb/menu/demo me

nu.xml Then Opera 8 will load the X+V SpeechWeb Browser Menu Page

for you.

3. Make sure you have opened your sound speaker and set the volume high

enough. You will hear a greeting voice message after you have

successfully started the X+V SpeechWeb Browser.

Please note that SpeechWeb Browser also requires a microphone to allow

the user to talk to the voice page.

2.2 Use the SpeechWeb Browser
In our SpeechWeb Browser, you can either talk to one of our sample voice

pages (Sihlos), or ask SpeechWeb Browser to load your own voice page.

2.2.1 Talking to sample voice pages.

After successfully starting the SpeechWeb Browser, it loads the menu page of

SpeechWeb Browser. You can choose one of the sample Sihlos to talk to. You

may choose the Sihlo by clicking on their link, or simply saying it to menu

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p

page(Please refers to Section 2.3 for the list of queries you can say in

SpeechWeb Menu Page.) After you have chosen from one of the sample

Sihlos, SpeechWeb will transfer you to that Sihlo, and you can start talking to it.

You can also find the list of available speech input for Judy, Monty and

Solarman in Section 2.3

Notice, you need to hold the “Voice” button on the Opera View toolbar or the

Talk Key (‘Scroll Lock’ key by default) on your keyboard when you are

speaking. Release the button after speaking.

2.2.2 Talking to your own SpeechWeb application.

If you have your own SpeechWeb application, you can input the URI of its X+V

page into the text input-field, to load and talk to it. The text input-field is at the

top of the SpeechWeb Menu Page and every sample Sihlos (judy, monty,

Solarman). Please refer to the Developer’s Manual (in the Appendix II) for how

to create your own SpeechWeb application in 4 easy steps.

2.3 Available Speech Input List

There is one menu page and three interpreters in the SpeechWeb Browser

default sample application that you can talk to.

2.3.1 SpeechWeb Menu Page

In the menu page, you can say a choice from Judy, Monty, or Solarman to start

talking. The possible query you can say is much more flexible.

For example:

“Can I talk to Judy”

“I wanna speak to Monty, please”

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Could you please transfer me to Solarman.”

“I would like to speak with Judy, please.”

“Please transfer to Monty, thanks”

“Judy, please”

There are more queries you can say. Simply try it by yourself. But, please note

that, you have to include the name of the Sihlo you would like to talk to in your

query, which means you have to say Judy, Monty, or Solarman in your query.

2.3.2 Judy

List of available speech input for Judy:

I hello

I hello there

I hello judy

I goodbye

I goodbyejudy

I fine thanks

I thanks

I thanks judy

I yes please

I what is your name

I who are you

I where do you live

I what do you know

I how old are you

I who made you

I what is your favorite band

I who is the vice president at the university of Windsor

I who is the president at the university of Windsor

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I who is the president of sun microsystems canada

I who is the executive dean of science at the university of Windsor

I who is the dean of science at the university of Windsor

I tell me a poem

I know any poems

I tell me a joke

I know any jokes

I who is monty

I can I talk to monty

I can I talk to judy

I who is solar man

I can I talk to solar man;

2.3.3 Monty

List of available speech input for Monty:

hello

I hello there

I hello monty

I goodbye

I goodbye monty

I fine thanks

I thanks

I thanks monty

I yes please

I what is your name

I who are you

I where do you live

I what do you know

I how old are you

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I who made you

I what is your favorite band

I who is the vice president at the university of Windsor

I who is the president at the university of Windsor

I who is the executive dean of science at the university of Windsor

I who is the dean of science at the university of Windsor

I tell me a poem

I know any poems

I tell me a joke

I know any jokes

I who is judy

I can I talk to judy

I who is solar man

I can I talk to monty

I can I talk to solar man;

2.3.4 Solarman

Solarman can answer much more complicated question compare to Judy and

Monty. You can ask question about the planets, the moons, and the people

who discovered them in the solar system.

For example:

“How many moons orbit Mars”

“Which moons orbit Jupiter”

“Who discovered Titania”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX II

Developer Manual
Of Our New Public-Domain

SpeechWeb Browser

May, 2006

Supervisor: Dr. Richard A. Frost

Student: Ma Xiaoli (William)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I. Components needed for your SpeechWeb application

1. Original knowledge source / program.

2. A CGI script.

3. A speech-grammar file.

4. A X+V page.

(Sometimes, we also refer to a SpeechWeb application as "Sihlo”. Just make it

different from other applications.)

III. How to create your own SpeechWeb application

The following is the four steps to create a SpeechWeb application:

1. Create a knowledge source / program.

You can use any programming language to create your knowledge source

program. The program has only one requirement: it can receive a request and

return a response as a string, no matter how the data processing is done

inside the program. You can easily create it by modifying your conventional

web application knowledge sources.

For example, the following is a small program written in Miranda, judy.m:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interpret "hello" = "hi there. M y name is Judy"

interpret "hello there" = "Hello, how are you?"

interpret "hello judy" = "hi, how are you?"

interpret "goodbye" = interpret "goodbye judy"

interpret "goodbye judy" = "goodbye. Who do you want to talk to?"

interpret "fine thanks" = "Good, so am I. In fact I feel great."

interpret "thanks" = "no problem"

interpret "thanks judy" = "no problem at all"
interpret "yes please" = "yes please? What did you say? I was working on a new poem."

interpret "what is your name" = "My name is Judy."

interpret "who are you"

= "My name is Judy. I know about poems."

interpret "where do you live"

= "I live in a warm computer. "

++ "In good old Lambton Tower. University o f Windsor."

interpret "what do you know"
= "I only know one poem just now. M y collegue, Dr. Frost"

++ " is looking for someone to teach me some more poems."

interpret "how old are you"
= "What? That is a bit cheeky. I am younger than stuffy old Solar man."

interpret "who made you"

= "I. B. M . and Opera Software made my ears and vocal chords. William Ma connected

my"

++ "ears to my brain, and Doctor Frost, my colleague, made "
++ "my brain"

interpret "what is your favorite band"
= "ARE. E. EM. They are a really cool band"

interpret "who is the vice president at the university o f Windsor"

= "No idea, never been outside o f Lambton Tower."

interpret "who is the president at the university o f Windsor"
= "How should I know, this is the first time I have ever got to meet"

++ " anyone important."

interpret "who is the dean o f science at the university o f Windsor"
= "I know. Dr. Fryer. He helped get me more space for my memory."

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interpret "tell me a poem"
= "the dark clouds, lingered, as he lay."

++ " Then, the strong winds, blew them both away."

interpret "tell me a joke" = "do not know any jokes. But my friend, Monty, does"

interpret "know any jokes" = "No, but my friend, Monty does."

interpret "who is monty"
= "Monty is my friend. He is a student"

++ " at the university o f Windsor."

interpret "can I talk to judy"
="LINK=yes. here she is;"

++

"SIHLO=http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml;"

interpret "can I talk to monty"
="LINK=yes. here he is;"

++

"SIHLO=http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.xml;"

interpret "can I talk to solar man"
="LINK=yes. here he is;"

++
"SIHLO=http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.xml;"

interpret x = "sorry, got no poem for that one"

sh_answer x = interpret (drop 9 x)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml
http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.xml
http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.xml

2. Create a CGI script.

You will need to create a CGI script to handle the communication between your

knowledge source program with the outside. This CGI script file needs to

recieve users’ HTTP-request, and pass it to the program; also pass the

returned response (from the program) back to the user.

For example, the following is the CGI script file (Judy.cgi) for Judy:

#!/bin/csh - f

setenv HOME 'luna.cs.uwindsor.ca/fac3/richard/public_htinl/judy:$HOME'

setenv PATH 'luna.cs.uwindsor.ca/lappsl/mira:$PATH'

echo "Content-Type:text/plain"

echo "

setenv v "'luna.cs.uwindsor.ca/bin/cat'"

luna.cs.uwindsor.ca/lapps 1 /mira/bin/mira
luna.cs.uwindsor.ca//stu2/xing4/public_html/compile/judy.m « zzz

(sh_answer "$v")

/q
zzz

3. Create a JSGF speech-grammar file for your application.

You can find many tutorials about how to create a JSGF speech-grammar file

from the Internet, here is one of them:

http://iava.sun.com/products/iava-media/sDeech/forDeveloDers/JSGF/.

The easiest way to create this speech-grammar file is to simply list all of the

possible input for your program. The following is the speech-grammar file used

for "Judy Sihlo":

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://iava.sun.com/products/iava-media/sDeech/forDeveloDers/JSGF/

grammar vxmljudy;

public <s> = <simple>;

<simple> = yes

| no
| go back

| hello

| hello there

| hello judy

|goodbye

|goodbyejudy

| fine thanks

| thanks

| thanks judy

| yes please

| what is your name

| who are you

| where do you live

| what do you know

| how old are you

| who made you

| what is your favorite band

| who is the vice president at the university o f Windsor

| who is the president at the university o f Windsor
| who is the president o f sun microsystems Canada

| who is the executive dean of science at the university o f Windsor
| who is the dean of science at the university o f Windsor
| tell me a poem

| know any poems

| tell me a joke

| know any jokes

| who is monty

| can I talk to monty

| can I talk to judy

| who is solar man

| can I talk to solar man;

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If you are a skillful speech application developer, then you can create a more

complicated JSGP speech-grammar. The following is the speech-grammar file

used in our SpeechWeb Browser menu page; it can recognize 549 different

combinations of speech-input sentences.

grammar speechweb;
public <speechweb> = <start> <name> [please | thanks] {$= Sname;};

<start> = <sub_i> <action>
| <sub_you> [please] <transfer_to>
| NULL;

<sub_i> = i wanna

| i want to

| i like to

| i hope to

| i would like to

| cani

| may i
| shall i;

<sub_you> = could you

| would you

| NULL;

<action>= talk to | speak to | talk with | speak with | <transfer_to>;

<transfer_to>= transfer [me] to;

<name> = judy | monty | solarman;

Here are some possible sentences that the menu page can recognize:

“Can I talk to Judy”

“I wanna speak to Monty, please”

“Could you please transfer me to Solarman.”

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“I would like to speak with Judy, please.”

“Please transfer to Monty, thanks”

“Judy, please”

4. Create the X+V page.

Before starting to create the X+V page, you need to have a copy of the

identical X+V page, "voicepage.xml". It can be downloaded at

http://luna.cs.uwindsor.ca/~speechweb/p d speechweb/voicepaae.xml (Furthermore,

you also need to know the URL of your CGI script and speech-grammar file.)

The following are the 3 changes that need to be done on your copy of

"voicepage.xml

1.) Greeting message.

At the beginning of the “voicepage.xml”, you can find the following code:

<!-- Please modify the value of variable sv_greeting, and cgiLink to fit your application. —>

<script type="text/javascript">

/* * The greeting message that w ill say to the user, only at the first time the user visits this

page. * * /
var sv_greeting
/* * The link to your CGI interpreter location. Notice, you have to place the CGI interpreter
program with this page in the same domain to prevent a cross-domain security error.**/

var cgiLink="http://";
</script>

Change the value of the sv_greeting variable to your application greeting

message. This message will be uttered automatically after the page is loaded.

The following is the sample code on Judy.xml after the change:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p

<!-- Please modify the value of variable sv_greeting, and cgiLink to fit your application. —>

<script type="text/javascript">
/* * The greeting message that w ill say to the user, only at the first time the user visits this

page. * * /
var sv_greeting ="hi, my name is judy.";
/* * The link to your CGI interpreter location. Notice, you have to put the CGI interpreter
program with this page in the same domain to prevent a cross-domain security error.**/

var cgiLink="http://";
</script>

2.) CGI script location.

Just next to the sv_greeting variable (the greeting message), you will find the

variable called cgiLink. You should assign your CGI script URL to this variable.

The following is the judy.xml after changing the greeting message and the URL

of its CGI script:

<!— Please modify the value o f variable sv_greeting, and cgiLink to fit your application. —>

<script type="text/javascript">
/* * The greeting message that w ill say to the user, only at the first time the user visits this

page. * * /

var sv_greeting - 'hi, my name is judy.";

/* * The link to your CGI interpreter location. Notice, you have to put the CGI interpreter
program with this page in the same domain to prevent a cross-domain security error.**/

varcgiLink="http://luna.cs.uwindsor.ca/~-speechweb/p_d_speechweb/jud>7judy.cgi";
</script>

3.) Speech-grammar file location.

There’s only one dialog-field (‘vxml:field’) inside of VXML form (‘vxml:form’) in

the voicepage.xml document. You only need to change the ‘src’ attribute of the

‘vxml:grammar’ element which is the first child element of ‘vxmkfield’. You can

easily find it at the beginning of the document and next to the sv_greeting and

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~-speechweb/p_d_speechweb/jud%3e7judy.cgi

cgiLink variables’ declaration.

The following is the voicepage.xml before the change:

<!-- VoiceXML form. -->
<vxml:form id="vxml_fonn">
<vxml:field name="st_field" xv:id="voice_input" modal="true">

<!— NO TICE!!! PLEASE M O DIFY THE VALUE OF 'src' ATTRIBUTE IN THE NEXT

LINE <grammar> ELEMENT TO YOUR GRAMMAR FILE LO CATIO N.->
<vxml: grammar type="application/x-jsgf'

src "http: ; " />

The following is the code after the change for Judy, judy.xml:

<!-- VoiceXML form. -->
<vxml:form id="vxml_form">
<vxml:field name="st_field" xv:id="voice_input" modal="true">

<!— N O TIC E!!! PLEASE M O D IFY THE VALUE OF 'src' ATTRIBUTE IN THE NEXT

LIN E <grammar> ELEMENT TO YOUR GRAMMAR FILE LO CATIO N.->

<vxml:grammar type="application/x-jsgf'
src="hdp://luna.cs.uwmdsor.ca/~speechweb/p_d_speediweb/judy'judy.jsgf/" />

111. Aware issues

Please also be aware of the following issues:

1. The knowledge source program should be an executable file, not a

non-compiled source code file.

2. Make sure you give a read and execute permission to the public for your

CGI script file. The UNIX command to change the permission is: chmod

(e.g. chmod 755judy.cgi)

3. Avoid using similar-sounding words to be the starting word of possible

input choices in the knowledge-source program and the speech-grammar

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file. For example, you can use "what time" and "which place" instead of

"when" and "where".

4. You have to place your X+V page together with the knowledge-source

program under the same Internet domain.

5. You can rename the X+V page "voicepage.xml" to any name you want but

keep the extension to be ".xml".

6. If you have heard that “there is an error in this application” right after the

browser is loaded, then it means you have given an incorrect

speech-grammar file URL. Make sure you have “http://” a\ the beginning of

the URL.

7. If a SYSTEM ERROR message appears after you have given your first

question/request to the browser, then it could be caused by one or more of

the following reasons:

a) No Internet connection. Please double-check your Internet connection,

and make sure your firewall does NOT block it.

b) Invalid cross-domain connection m. To fix this problem you have to

place your X+V page within the same Internet domain of your CGI

script file. If you don’t know what is meant by “same Internet domain”,

then simply place the X+V page and the CGI script file in the same

folder/directory on your server.

c) Either an incorrect CGI script URL or the CGI script file in that URL

does not exist. Double-check the spelling of the CGI script URL

(cgiLink), and make sure it starts with a “http://”.

[1], “About Cross-Frame Scripting and Security”

http://msdn.microsoft.com/workshop/author/om/xframe scripting securitv.asp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%e2%80%9da/
http://%e2%80%9d
http://msdn.microsoft.com/workshop/author/om/xframe

APPENDIX III New Public-Domain SpeechWeb

Browser Website

We have created an Internet website for our new Public-Domain SpeechWeb

Browser. It is the first place you should visit if you really want to try our

SpeechWeb Browser. In there, you can find all the information about it,

including the instruction to how to install it, links to sample SpeechWeb

applications, and both User Manual and Developer Manual.

You are always welcome to visit our website, and give us any comments to our

work. Our new Public-Domain SpeechWeb Browser website is at

http'.//sol.cs.uwindsor.ca/~soeechweb/p d speechweb/. You can use any

regular web browser to open it, such as Microsoft IE, Firefox, Opera, etc.

The following is the URL to our SpeechWeb home page, which has links to

both old and new version of our SpeechWeb Browser:

http://sol.cs.uwindsor.ca/~speechweb/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sol.cs.uwindsor.ca/~speechweb/

APPENDIX IV

Multiple-Page Version

Identical X+V page, voicepage.xml:

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC ''-//VoiceXML Forum//DTD XHTML+Voice 1.2//EN"
"http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd”>
<html xmlns="http://www.w3.org/1999/xhtml“

xmlns:vxml="http://www. w3.org/2001/vxml''
xmlns:ev=“http://www.w3.org/2001/xml-events“
xm lns:xv="http://www.voicexm l.org/2002/xhtm l+voice"
xml:lang="en-US">

^ | _ _ *

Date: May. 2006
Developer: Ma, Xiaoli(William)
Architecture: LRRP (Dr.Frost, University of Windsor, Canada)
f t * __

_ _ *

Note:
This is an incompleted SpeechWeb voice page, which is not associated with any speech
applications.
In order to complete, you need to edit three variables - 'sv_greeting', 'cgiLink', and 'src'
attribute in the 'vxmkgrammar'.
Please read the "Developer's Maual" document for details, downloadable at our website
http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/index.html
* _

<head>

<!-- Please modify the value of variable sv_greeting, and cgiLink to fit your application. -->

<script type=''text/javascript">
I** The greeting message that will say to the user, only at the first time the user visits this
page. **/
var sv_greeting
/** The link to your CGI interpreter location. Notice, you have to place the CGI interpreter

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd%e2%80%9d
http://www.w3.org/1999/xhtml%e2%80%9c
http://www
http://www.w3.org/2001/xml-events%e2%80%9c
http://www.voicexm
http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/index.html

program with this page in the same domain to prevent a cross-domain security error.**/
var cgiLink="http://";
</script>

<!-- VoiceXML form. -->
<vxml:form id=''vxml_form">
<vxml:field name="st_field" xv:id=“voice_input" modal="true“>

< !- NOTICE!!! PLEASE MODIFY THE VALUE OF 'src' ATTRIBUTE IN THE NEXT
LINE <grammar> ELEMENT TO YOUR GRAMMAR FILE LOCATION.->

<vxml:grammar type=“application/x-jsgf" src="http://“ />
<!-- The following greeting will only speak out when user connects to a new interpreter.

— >

<vxm I: prom pt cond=''sayG reetings==true"xvxm I :break
time=“500ms7xvxml:value expr="sv_greeting7xvxml:value
expr="updateShowFrame('GREETING: '+sv_greeting);7x/vxml:prompt>

<vxml:filled>

This “filled” element will be run after user speech input has recognized.
Inside this element, first step, i have assign the user input to the variable 'question',

because VoiceXML code can access a JavaScript defined variable, but JavaScript can not
see a VoiceXML defined variable.

Then, in the next step, i call a JavaScript function ''runCode()' to proceed AJAX submit
process.
************************************ ^

<vxml:assign name=“question" expr=''st_field"/>

Calls to javascript mainControl() function to do the logical process based on user
voice input.

************************* ^

<vxml:assign name="javacode" expr="mainControl();7>
<vxm l:promptxvxml:break time=''300ms"/xvxml:value

expr=''answer"/x/vxml:prompt>
<!-- If the answer is not a link to next interpreter, then repeat the voice dialog. ~>

<vxml:if cond=''isLink==false">
<vxml:throw event=“repeat.st_field"/>

</vxml:if>
</vxml:filled>
<vxml:catch event="nomatch noinput“>

<vxml:prompt>Sorry, I don't understand, can you say it again?</vxml:prompt>

<vxml:reprompt/>
</vxml:catch>
<vxml:catch event="help">

No help is available! Restart the dialog!
<vxm kclear namelist=“st_f ield"/>

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%e2%80%9c

<vxml:reprompt/>
</vxml:catch>

</vxml:field>

<!-- Catch the 'repeat.stjield' event. - >
<vxml:catch event=,,repeat.st_field“>

<vxml:clear namelist="st_field7>
<!-- Restart the voice form without change the speech grammar. -->

<vxm I: reprom pt/>
</vxml:catch>
</vxml:form>

<script type="text/javascript“>
[******* Dec|are global variables shared by JavaScript and VoiceXML *********i
var sayGreetings=true;
var defaultGreetingMsg="Hi, i'm ready to talk now.”;
/*** The location of next remote speech-application/CGI-application interpeter. ***/
var nextPage="";
/*** Question query recognized from user's speech (request). ***/
var question="";
/*** Answer query returned from remote CGI interpter (response). ***l
var answer=“";
var answerRecieved=false;
/*** Answer query contains a link to next CGI interpreter. ***/
var isLink=false;
var gotoNext= false;
/*** This variable needed for VXML to call JavaScript code. ***/
var javacode='"';
/*** menu page of the demo public-domain speechweb. ***/
var
startPage="http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xm

I";

if(sv_greeting==“")
sv_greeting=defaultGreetingMsg;

^ * - *

This is the main control function to the whole question submit and answer retrived
procedures.
It will call submitReq() method to send the question to the CGI program.
then it will check the answer whether it is a link to new CGI program or a simply answer
string.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xm

if it is a link to another interpreter, then retrieve the data from there,
and call the 'changeData' function to change the neccessary information for the next
round dialog.

function mainControl()

{
updateShowFramefQUESTION: “+question+"
");

answer="";
answerRecieved=false;
isLink=false;
sayGreetings=false;

/* call submitReqO method to send the question to the CGI program. 7
submitReq("POST", cgiLink);
/** Cannot recieve data from CGI interpreter. Network problem. *7
if(answerRecieved==false)

return "-1
answer = getAnswer(xmlhttp.responseText);

/..**.** Qheck whether the recieved answer is a link or not. And, assign the result to the

global variable isLink. ******/
checkAnswer(xmlhttp.responseText);

/****** if the answer is not a link, then show the answer to the user and return. ******/
if (I isLink)

{

gotoNext=false;
updateShowFrame("RESPONSE: "+answer+''
“);
return "1

}

nextPage=getNextlnterpreter(xmlhttp.responseText);

updateShowFrame("RESPONSE: “+answer+"

");

if(gotoNext==true)
window.location=nextPage;

return "1

}

^***

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText
http://http.responseText
http://http.responseText

This function returns the substring that has to be spoken as a result of the user's question.
Same procedure is applied for extracting the content to be spoken out.

function getAnswer(answer)

{
var ex=answer;
var index;
if((ex.indexOf('LINK=',0)) == -1)

return ex;
ex= ex.slice(5);
index = ex.indexOf(“;“,0);
ex = ex.substring(0,index);
return ex;

}

This function uses AJAX, it will submit the question to the given URI if it use a 'POST'
method.
Or, it will retrieve data from the given URI if it use a 'GET' method.

function submitReq(method, url)

{

/***** Initialize AJAX XMLHttpRequest object. ****/
xmlhttp=new XMLHttpRequest();
^******

Assign a event listener to the 'onreadystatechange' event.
Different listerner assigned depends on a 'GET' or a 'POST' method.

if (m ethod=="G ET")
xmlhttp.onreadystatechange=stateChange_GET;

else
xmlhttp.onreadystatechange=stateChange_POST;

/** Check whether the url involves a cross-domain security error before send the
request. **/

if(isCrossDomain(url)==true)

{

/** if method is 'GET', it means this function is called from loadPage() function to
validate a user input URL. *7

if(method==''GET")
alertfCannot validate input URL since it involves a cross-domain security issue.

Load URL immediately.'');

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** if method is not 'GET', which means 'POST' method, it means this method is called
from main control to submit a question query to the interpreter. *7

else
updateShowFrame(''SYSTEM ERROR: An error which against the web browser

cross-domain security issue. Your CGI interpreter has to be placed in the same domain

with this voice page."+
"Please contact to your application provider to fix this problem.

Nn'VYour CGI interpreter location: “+ url+“ Current voice page host domain:
"+window.location.host);

answerRecieved=true;
answer="An error which against the web browser cross-domain security issue has

occured. Please check the error message to continue.'';
return;

}

/** Open the connect, sychronized. ***/
xmlhttp.open(method,url,false);

if(method==“GET“)
xmlhttp.sendO;

else

{
xmlhttp.setRequestHeader("Content-Type", “application/x-www-form-urlencoded'');
xmlhttp.send("question=“+question);

}

}

function stateChange_POST()

{
I******* jf xm ihttp shows loaded ******/

if (xmIhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp.responseText =

}
}

}

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.sendO
http://http.responseText

function stateChange_GET()

{
/******* if xm Ihttp shows loaded ******/
if (xmIhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp.responseText ="";

}

}
}

/** Validate the given url with the current page domain(hostname), to see whether they are
in the same domain or cross-domain(different domain). *7
function isCrossDomain(url)

{
var domain = url;
var i = domain.indexOf(7/");

if(i==-1)
return false;

domain = domain.slice(i+2);

var k = domain.indexOf(T);
if(k!=-1)

domain = domain.slice(0, k);
else

return true;

var host = window.location.hostname;

if(host==domain)
return false;

else
return true;

}

^**

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText

Check whether there is a occurrence of '=' character in the answer, which means a link
existed in it.
And, assign the result to the global variable 'isLink'.

* * j

function checkAnswer(answer)

{
if((answer.indexOf('LINK=',0))== -1)

isLink=false;
else

isLink=true;

return isLink;

}

j *

if the answer is a link, this function will return the next interpreter's URI as a string.
Otherwise, return "-1".

* * * * * * * * * * * * * j

function getNextlnterpreter(answer)

{
var loc;
var ex = answer;
var index;

/****** Check if the answer is a link to next speech application interpreter. It should never
be evaluated as true, otherwise error. ******/

if(lisLink)
return ''-1";

j *

If the answer is a link, then its formation should be: "LINK=_answer;SIHLO=_location;".
e.g. Question send to judy.cgi: “can i talk to solar man".

Answer recieved from judy.cgi: "LINK=yes. here he
is;SIHLO=http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml"

* * * * * * * * * * * * * * * * * j

!****** extracts LINK= substring from the string and assigns it to the variable ex
* * * * * * j

ex = ex.slice(5);

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml

/****** gets the index position o f ******/
index = ex.indexOf(";“,0);
index = index+1;

^**

The string after the ‘=‘ and u p t o a r e eliminated because this is the content which is the
answer-query of the user's input.

* * * * * * * * * * * * * * j

loc = ex.substr(index);
y *

eliminating 'SIHLO=' from the loc variable.
SIHLO contains the server address starting right after '=' and ended by the delimiter
« * y

ex = loc.slice(6);
index = ex.indexOf(”;'',0);
loc = ex.substring(0,index);

return loc;

}

/** Update the text area in the HTML and show message on it. *7
function updateShowFrame(message)

{
var objTable = document.getElementByldflogFrame");

objTable.insertRow(O);
objTable.rows[0].insertCell(0);
objTable.rows[0].insertCell(1);
var cellO = objTable.rows[0].cells[0];

var celU = objTable.rows[0].cells[1];
celU .align=“left";
cell0.align="ieft";
cell0.width="105";
if(message.indexOf("SYSTEM ERROR: ")!=-1)

{
var objFont = document.createElement("font");
obj Font.color=“red";
objFont.size=',-1";
objFont.appendChild(document.createElement("b“));
objFont-firstChild.innerHTML = message.slice(0, message.indexOf(":")+1);
cellO.appendChild(objFont);

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

var objFont2 = document.createElement(''font“);
var objlta = document.createElement(“i");
objFont2.color="black";
objFont2.size="-1";
objFont2.appendChild(objlta);
celU .appendChild(objFont2);
objlta.innerHTML=message.slice(message.indexOf(":")+1);

}else

{
var index = message.indexOf(":");
var ex=message.slice(0,index+1);
var objFont = document.createElement(“font");
if (ex. indexOf ("QU ESTION:")! =-1)

objFont.color= "blue";
else if(ex.indexOf(“RESPONSE:")!=-1)

objFont.color="green“;
else

obj Font.color=“purple";

objFont.appendChild(document.createElement("b"));
cellO.appendChild(objFont);
objFont.firstChild.innerHTML = ex;
cell1.appendChild(document.createElement(''font"));
celU .firstChild.innerHTML = message.slice(index+1);

}
/****** Insert a table row as an empty line after a response and greeting message.

* * * * * * * * * * * J

if (m essage. indexOf ("QU ESTION")— -1)

{
objTable.insertRow(O);
objTable.rows[0].insertCell(0);
objTable.rows[0].colspan="2";
objTable.rows[0].cells[0].innerHTML = "
 ";

}

return

}

I** Load user's application. **/
function loadPage(checklnput)

{
/** Get user's input. **/
var loc = document.getElementByld("id_nextPage").value;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I** if user's input is empty, then return a error message. **/
if(loc=="")

{
updateShowFrame("SYSTEM ERROR: Please input the URL to your voice page in

the above text field. It can not be empty!");

}

/** if user input is not empty, and user asked to validate URL before go. *7
else if(checklnput==true)

{
submitReq("GET'', loc);
/** if the valicating process return a false as result, which means invalid URL. *7
if(answerRecieved==false)

{

if(xmlhttp.status==404)
updateShowFrame("SYSTEM ERROR: Unable to load your voice page. File

does not exist a t:"+ loc);
else

updateShowFrame("SYSTEM ERROR: Unable to load your voice page. Network
problem, error code: "+xmlhttp.status+“. Please check your internet connection.");

}
/** if user's input is not empty, it is a valid URL to next page. *7
else

window.location=loc;

}
/** if user's input is not empty, and user asked to load URL page immediately. *7
else

window.location=loc;

}

function menuPage()

{
window.location=startPage;

}

function processQuestion()

{

gotoNext = true;
question = document.getElementByld("id_questionField'').value;
document.getElementByld("id_questionField").value="";
mainControlO;

}

</script>

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following script will only be run after a 'vxmldone' event is thrown after the
VoiceXML form finish all its process.

It also means that the answer returned from interpreter contains a link to next interpreter,
so it needs to go there.
* _ _ ^

<script type="text/javascript“ id="gotoNextPage" declare="declare">
window.location=nextPage;

</script>

<title>SpeechBrowser</title>
</head>
<body id="page.body">
<centerxh2>Welcome to our new voice browser!</h2x/center>

<center>
<table>
<trxtd colspan="6">Load your own speech application : cinput type="textn
id=”id_nextPage" size=''50"
value=''http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xml"/>
<br/xbr/x /tdx/tr>
<!-- Call loadPage() function to setup the interprter and speech-grammar location
according to the above input text field value; -->
<trxtd colspan=''2"xinput type="button" name="submitValidate" value="Validate Before

Go" onclick="loadPage(true)7x/td>
<td colspan="2“xinput type=”button" name=“submitGo" value=''Go Immediately"
onclick="loadPage(false)"/x/td>
<td colspan="2"xinput type="button" name="menuGo" value=''SpeechWeb Menu Page"
onclick="menuPage()7x/tdx/tr>
<trxtd colspan="6"xbr/xbr/xbr/xb>Say your question or type it in
here:</bx/tdx/tr>
<trxtd colspan="6“xform onsubmit="processQuestion(); return false;"xinput
type="text" size="70" name="questionField" id="id_questionField"
value="7x/form x/tdx/tr>
</table>
<br/xbr/>
<table id="logFrame" width="600"x/tablexbr/>
<b r/xb r/xb r/>
</center>
</body>
<!-- Call a script to reload the vxml form when the current vxml form has done its process.
- - >

<ev:listener ev;observer="page.body“ ev:event="vxmldone" ev:handler="#gotoNextPage"
ev:propagate="stop" />

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sol.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xml%22/

<!-- Load 'vxmLform' when the page.body loaded. -->
<ev:listener ev:observer="page.body“ ev:event=“load" ev:handler="#vxml_form"

ev:propagate="stop” />
</html>

Speech Web Menu Page, “demo_menu.xml”

<?xml version="1.0“?>

<!DOCTYPE html PUBLIC "-//VoiceXML Forum//DTD XHTML+Voice 1.2//EN"

"http.V/www.voicexrnl.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd“>

<htm I xm lns=''http://www.w3.org/1999/xhtm I"

xm lns:vxm I="http://www.w3.org/2001/vxml"

xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xv="http://www.voicexml.org/2002/xhtml+voice“

xml:lang="en-US">

**

Date: March. 2006

Developer: Ma, Xiaoli(William)

Architecture: LRRP (Dr.Frost, University of Windsor, Canada)
***__^

<head>

< !- VoiceXML form. -->

<vxml:form id="vxml_form“>

<vxml:var name="sayit" expr="true"/>

<vxml:field name="st_field" xv:id="voice_input" modal="true">

<!-- The following grammar contains 549 different combinations of possible

speech-input. 549=(8*6+3*2*2+1)*3*3; -->

<vxml:grammar>

<![CDATA[

#JSGF V1.0;

grammar speechweb;

public <speechweb> = <start> <name> [please | thanks] {$=

$name;};

<start> = <sub_i> <action>

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.V/www.voicexrnl.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd%e2%80%9c
http://www.w3.org/1999/xhtm
http://www.w3.org/2001/vxml
http://www.w3.org/2001/xml-events
http://www.voicexml.org/2002/xhtml+voice%e2%80%9c

| <sub_you> [please] <transfer_to>

| NULL;

<sub_i> = i wanna

| i want to

| i like to

|i hope to

| i would like to

| can i

| may i

| shall i;

<sub_you> = could you

| would you

| NULL;

<action>= talk to | speak to | talk with | speak with |

<transfer_to>;

<transfer_to>= transfer [me] to;

<name> = judy | monty | solarman;

]]>
</vxml:grammar>

<vxml:prompt cond="sayit==true">Please say the name of the sihlo that you wanna

talk to.

<vxml:break time="500ms"/>Or input the U. R. L. for your own speechweb

application.</vxml:prompt>

<vxml:filled>

<vxml:assign name=''name" expr="st_field" />

<vxml:if cond=,,st_field=='judy'">

You are transfering to Judy now.

<vxml:elseif cond="st_field=='monty"V>

You are transfering to Monty now.

<vxml:elseif cond=',st_field=='solarman,"/>

You are transfering to Solarman now.

</vxml:if>

<A/xml:filled>

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<vxml:catch event="nomatch noinput“>

<vxml:assign name="sayit" expr="false"/>

<vxml:prompt>Please choose from Judy,<vxml:break time="200ms"/>

Monty, <vxml:break time="200ms"/> or Solarman!</vxml:prompt>

<vxml:prompt>For example, say <vxml:break time="500ms7>i wanna talk to

Judy</vxm I: prom pt>

<vxml:reprompt/>

</vxml:catch>

<vxml:catch event="help">

<vxml:assign name="sayit" expr=”false"/>

<vxml:prompt>Who do you wanna talk to? Please choose from Judy,<vxml:break

time="300ms"/> Monty,

<vxml:break time=“300ms"/> or Solarman!</vxml:prompt>

<vxml:prompt>For example, say <vxml:break time="500ms7>i wanna talk to

J udy</vxm I :prom pt>

<vxml:reprompt/>

</vxml:catch>

</vxml:field>

</vxml:form>

<script type=“text/javascript">

var name="";

var loc="";

function loadPage(checklnput)

{

/** Get user's input. *7

loc = document.getElementByld("id_nextPage").value;

I** if user's input is empty, then return a error message. *7

if(loc=='"')

{

alert("SYSTEM ERROR: Please input the URL to your voice page in the above text

field. It can not be empty!");

}

/** if user input is not empty, and user asked to validate URL before go. *7

else if(checklnput==true)

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

submitReq(“GET", loc);

/** if the valicating process return a false as result, which means invalid URL. **/

if(answerRecieved==false)

{

if(xm lhttp.status==404)

alert("SYSTEM ERROR: Unable to load your voice page. File does not exist at:

"+ loc);

else

alert("SYSTEM ERROR: Unable to load your voice page. Network problem, error

code:"

+xmlhttp.status+". Please check your internet connection.");

}

I** if user's input is not empty, and it is a valid URL to next page. *7

else

window.location=loc;

}

/** if user's input is not empty, and user asked to load URL page immediately. *7

else

window.location=loc;

}

y *

This function uses AJAX, it will submit the question to the given URI if it use a 'POST'

method.

Or, it will retrieve data from the given URI if it use a 'GET' method.
* j

function submitReq(method, url)

{

/***** Initialize AJAX XMLHttpRequest object. ****/

xmlhttp=new XMLHttpRequest();
^******

Assign a event listener to the 'onreadystatechange' event.

Different listerner assigned depends on a 'GET' or a 'POST' method.
* * * * * * j

if(method=="GET")

xmlhttp.onreadystatechange=stateChange_GET;

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else

ximlhttp.onreadystatechange=stateChange_POST;

/** Check whether the url involves a cross-domain security error before send the

request. **/

if(isCrossDomain(url)==true)

{

alert("Cannot validate input URL since it involve a cross-domain security issue. Load

URL immediately.");

answerRecieved=true;

return;

}

/** Open the connect, sychronized. ***/

xmlhttp.open(method,url,false);

if(method=="GET")

xmlhttp.send();

else

{

xmlhttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

xmlhttp.send("question=''+question);

}

}

function stateChange_POST()

{

/******* if xm Ihttp shows loaded ******/

if (xmIhttp.readyState==4)

{

if (xmlhttp.status==200 || xmlhttp.status==304)

{

answerRecieved = true;

}

else

{

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

answerRecieved = false;

alert("SYSTEM ERROR: Network problem. Unable to retrieve data from:" + loc+".

Error code:'1

+ xmlhttp.status);

xmlhttp.responseText =

}
}

}

function stateChange_GET()

{
/******* if xm Ihttp shows loaded ****** I

if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;

alert("SYSTEM ERROR: Problem retrieving data from:” + loc+".\n Error code:" +

xmlhttp.status);

xmlhttp.responseText =

}
}

}

j**

Validate the given url with the current page domain(hostname),

to see whether they are in the same domain or cross-domain(different domain).
* * j

function isCrossDomain(url)

{
var domain = url;

var i = domain.indexOf("//");

if(i==-1)

return false;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.status
http://http.responseText
http://http.status
http://http.responseText

domain = domain .slice(i+2);

var k = domain.indexOf("/");

if(k!=-1)

domain = domain.slice(0, k);

else

return true;

var host = window.location.hostname;

if(host==domain)

return false;

else

return true;

}

</script>

<script type="text/javascript" id="gotoNextPage" declare="declared">

window.location=“http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/"+name+"/''+n

ame+".xml'';

</script>

<title>Public-Domain SpeechWeb Menu Page</title>

</head>

cbody id="page.body“>

<centerxh2>Welcome to our new Public-Domain SpeechWeb Browser!</h2x/center>

<center>

<table>

<trxtd colspan=“6">Load your own speech application :

cinput type=“text" id="id_nextPage" size="50"

value=''http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml"/>

< b r/x b r/x /td x /tr>

<!-- Call loadPage() function to setup the interprter and speech-grammar location

according to the above input text field value; -->

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/%22+name+%22/''+n
http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml%22/

ctrxtd colspan="3"xinput type="button" name="submitValidate“ value=“Validate Before

Go" onclick="loadPage(true)'Vx/td>

<td colspan="3"xinput type="button" name="submitGo“ value="Go Immediately"

onclick=''loadPage(false)"/x/tdx/tr>

<trxtd co lsp an ="6"xb r/xb r/xb r/xb r/x /td x /tr>

<trxtd colspan="6" align=“left">

<h3>Choose the Sihlo to start talking: </h3>

</tdx/tr>

<trxtd colspan=,'2“x a

href=''http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml">Judyc/ax/t

d>

<td colspan="2"xa

href='‘http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.xml">Monty<

/ax/td>

<td colspan="2"xa

href=''http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.xml">

Solar M an</ax /tdx /tr>

ctrx td co lsp an ="6 ''xb r/x b r/xb r/xb r/x /td x /tr>

ctrx td colspan="6" align="left">ch3>lnstallation Document and User

Manual:c/h3x/tdx/tr>

ctr>ctd colspan="6"xa

href="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/doc/Multi-page Version

Public-domain SpeechWeb Browser.pdf>

Public-domain SpeechWeb Browser User M anualc/ax/tdx/tr>

c/table>

cbr/>cbr/>

ctable id="logFrame" width="60%“>c/tablexbr/>

cbr/>cbr/>cbr/>cbr/>

c/center>

c/body>

c!-- Call a script to goto next page when the current voice page is done. -->

cev:listener ev:observer="page.body“ ev:event="vxmldone“ ev:handler="#gotoNextPage"

ev:propagate="stop" />

c!-- Load 'vxmLform' when the page.body loaded. -->

cev:listener ev:observer=''page.body" ev:event="load" ev:handler=“#vxml_form"

ev:propagate=”stop" />

c/html>

no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml%22%3eJudyc/ax/t
http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.xml%22%3eMonty%3c
http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.xml
http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/doc/Multi-page

Multiple-Page version SpeechWeb Browser, sample

application-associated X+V page:

Judy Sihlo, “judy.xml”

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC ''-//VoiceXML Forum//DTD XHTML+Voice 1.2//EN"
"http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:vxml="http://www.w3.org/2001/vxml''
xmlns:ev=''http://www.w3.org/2001/xml-events“
xm lns:xv="http://www.voicexm l.org/2002/xhtm l+voice"
xml:lang=''en-US">

^| __**

Date: March. 2006
Developer: Ma, Xiaoli(William)
Architecture: LRRP (Dr.Frost, University of Windsor, Canada)

<head>

<!-- Please modify the value of variable sv_greeting, and cgiLink to fit your application. -->
<script type="text/javascript”>
/** The greeting message that will say to the user, only at the first time the user visits this
page. **/
var sv_greeting =‘‘hi, my name is judy.”;
/** The link to your CGI interpreter location.
Notice, you have to place the CGI interpreter program with this page in the same domain
to prevent a cross-domain security error.**/
varcgiLink="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.cgi";
</script>

<!-- VoiceXML form. -->
<vxml:form id="vxml_form''>
<vxml:field name="st_field" xv:id=“voice_input" modal="true">

<!— NOTICE!!! PLEASE MODIFY THE VALUE OF 'src' ATTRIBUTE IN THE NEXT
LINE <grammar> ELEMENT TO YOUR GRAMMAR FILE LOCATION.->

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/2001/vxml''
http://www.w3.org/2001/xml-events%e2%80%9c
http://www.voicexm
http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.cgi

<vxml:grammartype="application/x-jsgf"
src="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.jsgf" />

< !- The following greeting will only speak out when user connects to a new interpreter.
-->

<vxml:prompt cond="sayGreetings==true"xvxml:break

time="500ms"/xvxml:value expr=“sv_greeting'7>
<vxml:value expr=“updateShowFrame(‘GREETING:

'+sv_greeting);7x/vxml:prompt>
<vxml:filled>

|̂ __***********************************
This "filled" element will be run after user speech input has recognized.
Inside this element, first step, i have assign the user input to the variable 'question',
because VoiceXML code can access a JavaScript defined variable, but JavaScript can

not see a VoiceXML defined variable.
Then, in the next step, i call a JavaScript function "runCode()' to proceed AJAX submit

process.
************************************ ^

<vxml:assign name="question“ expr="st_field"/>
__*********************

Calls to javascript mainControl() function to do the logical process based on user
voice input.

*************************_

<vxml:assign name="javacode" expr="mainControl();"/>
<vxm l:prom ptxvxm I :break time=''300m s'Vxvxm I :value

expr=“answer“/x /vxm I :prom pt>
<!-- If the answer is not a link to next interpreter, then repeat the voice dialog. -->

<vxml:if cond="isLink==false“>
<vxml:throw event=“repeat.st_field"/>

</vxml:if>
</vxml:filled>
<vxml:catch event="nomatch noinput">

<vxml:prompt>Sorry, I don't understand, can you say it again?</vxml:prompt>
<vxml:reprompt/>

</vxml:catch>
<vxml:catch event="help">

No help is available! Restart the dialog!
<vxml:clear namelist="st_field"/>
<vxml:reprompt/>

</vxml:catch>
</vxml:field>

<!-- Catch the 'repeat.st_field' event. -->
<vxml:catch event="repeat.st_field">

<vxml:clear namelist=“st_field"/>

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.jsgf

<!-- Restart the voice form without change the speech grammar. -->
<vxm I: reprom pt/>

</vxml:catch>
</vxml:form>

<script type=,ltext/javascript">
/******* Declare global variables shared by JavaScript and VoiceXML *********/
var sayGreetings=true;
var defaultGreetingMsg=''Hi, i'm ready to talk now.";
/*** The location of next remote speech-application/CGI-application interpeter. ***/
var nextPage="";
/*** Question query recognized from user's speech (request). ***/
var question="";
/*** Answer query returned from remote CGI interpter (response). ***/
var answer=“";
var answerRecieved=false;
/*** Answer query contains a link to next CGI interpreter. ***/
var isLink=false;
var gotoNext= false;
/*** This variable needed for VXML to call JavaScript code. ***/
var javacode="";
/*** menu page of the demo public-domain speechweb. ***/
var
startPage="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.x
ml";

if(sv_greeting=="")
sv_greeting=defaultGreetingMsg;

*********** ***

This is the main control function to the whole question submit and answer retrived
procedures.
It will call submitReqO method to send the question to the CGI program.
then it will check the answer whether it is a link to new CGI program or a simply answer
string.
if it is a link to another interpreter, then retrieve the data from there,
and call the 'changeData' function to change the neccessary information for the next
round dialog.
***j

function mainControl()

{
updateShowFrame("QUESTION: "+question+"
");

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.x

answer=“";
answerRecieved=false;
isLink=false;
sayGreetings=false;

I* call submitReqO method to send the question to the CGI program. 7
submitReqfPOST", cgiLink);
!** Cannot recieve data from CGI interpreter. Network problem. *7
if(answerRecieved==false)

return "-1
answer = getAnswer(xm Ihttp. responseText);

j * * * * * * *

Check whether the recieved answer is a link or not.
And, assign the result to the global variable isLink.
* * * * * * j

checkAnswer(xmlhttp.responseText);

/****** if the answer is not a link, then show the answer to the user and return. ******/
if (! isLink)

{
gotoNext=false;
updateShowFramefRESPONSE: “+answer+"
");
return "1“;

}

nextPage=getNextlnterpreter(xmlhttp.responseText);

updateShowFrame("RESPONSE: ,,+answer+"

“);

if(gotoNext==true)
window.location=nextPage;

return "1";

}

^**

This function returns the substring that has to be spoken as a result of the user's question.
Same procedure is applied for extracting the content to be spoken out.
**^

function getAnswer(answer)

{

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText
http://http.responseText

var ex=answer;
var index;
if((ex.indexOf(‘LINK=',0)) == -1)

return ex;
ex= ex.slice(5);
index = ex.indexOf(";",0);
ex = ex.substring(0,index);
return ex;

}

^***

This function uses AJAX, it will submit the question to the given URI if it use a 'POST'
method.
Or, it will retrieve data from the given URI if it use a 'GET' method.

function submitReq(method, url)

{
/****, |njtja|jze a ja x XMLHttpRequest object. ****/

xmlhttp=new XMLHttpRequest();
^******

Assign a event listener to the 'onreadystatechange' event.
Different listerner assigned depends on a 'GET' or a 'POST' method.
★★★★★■ay

if(method=="GET")
xmlhttp.onreadystatechange=stateChange_GET;

else
xmlhttp.onreadystatechange=stateChange_POST;

I** Check whether the url involves a cross-domain security error before send the
request. *7

if(isCrossDomain(url)==true)

{
/** if method is 'GET', it means this function is called from loadPage() function to

validate a user input URL. **/
if(method=="GET")

alertfCannot validate input URL since it involves a cross-domain security issue.
Load URL immediately.");

j * *

if method is not 'GET', which means 'POST' method,
it means this method is called from main control to submit a question query to the

interpreter.
* * j

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
updateShowFramefSYSTEM ERROR: An error which against the web browser

cross-domain security issue."
+" Your CGI interpreter has to be placed in the same domain with this

voice page."+
"Please contact to your application provider to fix this problem.

\n"
+"Your CGI interpreter location:"+ url+" Current voice page

host domain:"
+window. location .host);

answerRecieved=true;
answer="An error which against the web browser cross-domain security issue has

occured. Please check the error message to continue.'1;
return;

}

/** Open the connect, sychronized. ***/
xmlhttp.open(method,url, false);

if(method==“GET")
xmlhttp.send();

else

{
xmlhttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded“);
xmlhttp.send("question="+question);

}
}

function stateChange_POST()

{
/******* if xmlhttp shows loaded ******/
if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp. responseText =

}
}

}

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function stateChange_GET()

{
/******* if xmlhttp shows loaded ******/
if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp. responseText =

}
}

}

/** Validate the given url with the current page domain(hostname), to see whether they
in the same domain or cross-domain(different domain). *7
function isCrossDomain(url)

{
var domain = url;
var i = domain.indexOf (7/");
i f (i~ 1)

return false;

domain = domain.slice(i+2);

var k = domain.indexOf(T);
if(k!=-1)

domain = domain.slice(0, k);
else

return true;

var host = window.location.hostname;

if(host==domain)
return false;

else
return true;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^**

Check whether there is a occurrence of '=' character in the answer, which means a link
existed in it.
And, assign the result to the global variable 'isLink'.

* * j

function checkAnswer(answer)

{
if((answer.indexOf('LINK=',0))== -1)

isLink=false;
else

isLink=true;

return isLink;

}

^**

if the answer is a link, this function will return the next interpreter's URI as a string.
Otherwise, return "-1“.
ft**-**
* * * * * * * * * * * * * j

function getNextlnterpreter(answer)

{
var loc;
var ex = answer;
var index;

^******

Check if the answer is a link to next speech application interpreter.
It should never be evaluated as true, otherwise error.
* * * * * * j

if(lisLink)
return "-1";

^**

If the answer is a link, then its formation should be: "LINK=_answer;SIHLO=_location;".
e.g. Question send to judy.cgi: "can i talk to solar man".

Answer recieved from judy.cgi: "LINK=yes. here he
is;SIHLO=http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml"

7

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml

/****** extracts the LINK= substring from the string and assigns it to the variable ex
* * * * * * j

ex = ex.slice(5);
/****** gets the index position o f ****** I

index = ex.indexOf(";",0);
index = index+1;

y *

The string after the '=' and upto are eliminated because this is the content which is the
answer-query of the user's input.

* * * * * * * * * * * * * * j

loc = ex.substr(index);
y *

eliminating 'SIHLO=' from the loc variable.
SIHLO contains the server address starting right after '=' and ended by the delimiter
* j

ex = loc.slice(6);
index = ex.indexOf(";",0);
loc = ex.substring(0,index);

return loc;

}

/** Update the text area in the HTML and show message on it. *7
function updateShowFrame(message)

{
var objTable = document.getElementByldflogFrame");

objTable.insertRow(O);
objTable.rows[0].insertCell(0);
objTable.rows[0].insertCell(1);
var cellO = objTable.rows[0].cells[0];

var celH = objTable.rows[0].cells[1];
celH .align=“left“;
cell0.align="left";
cell0.width="105";
if(message.indexOf("SYSTEM ERROR: ")!=-1>

{
var objFont = document.createElement("font”);
objFont.color="red";
objFont.size=“-1";
objFont.appendChild(document.createElement("b"));

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objFont.firstChild.innerHTML = message.slice(0, message.indexOf(":")+1);
cellO.appendChild(objFont);

var objFont2 = document.createElement("font");
var objlta = document.createElementfi");
obj Font2 .color=“black";
objFont2.size=”-1";
objFont2.appendChild(objlta);
celH .appendChild(objFont2);
objlta.innerHTML=message.slice(message.indexOf(":")+1);

}else

{
var index = message.indexOf(":");
var ex=message.slice(0,index+1);
var objFont = document.createElement("font");
if (ex. indexOf ("Q U EST ION:") !=-1)

objFont.color= "blue";
else if(ex.indexOf(“RESPONSE:")!=-1)

objFont.color="green";
else

objFont.color="purple";

objFont.appendChild(document.createElement("b"));
cellO.appendChild(objFont);
objFont.firstChild.innerHTML = ex;
cell1.appendChild(document.createElement("font"));
celH .firstChild.innerHTML = message.slice(index+1);

}
/****** insert a table row as an empty line after a response and greeting message.

* * * * * * * * * * * j

if(message.indexOf(“QUESTION")==-1)

{
objTable.insertRow(O);
objTable. rows[0]. insertCell(O);
objTable.rows[0].colspan="2";
objTable.rows[0].cells[0]. innerHTML = "
 ";

}

return

}

/** Load user's application. *7
function loadPage(checklnput)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I** Get user's input. *7
var loc = document.getElementByld(“id_nextPage").value;

/** if user's input is empty, then return a error message. *7
if(loc=='"')

{
updateShowFrame("SYSTEM ERROR: Please input the URL to your voice page in

the above text field. It can not be empty!");

}
/** if user input is not empty, and user asked to validate URL before go. *7
else if(checklnput==true)

{
submitReq(“GET", loc);
/** if the valicating process return a false as result, which means invalid URL. *7

if(answerRecieved==false)

{
if(xm lhttp.status==404)

updateShowFrame("SYSTEM ERROR: Unable to load your voice page. File
does not exist a t:"+ loc);

else
updateShowFramefSYSTEM ERROR: Unable to load your voice page. Network

problem, error code:"
+xmlhttp.status+". Please check your internet connection.");

}
/** if user's input is not empty, it is a valid URL to next page. *7
else

window. location=loc;

}
/** if user's input is not empty, and user asked to load URL page immediately. *7
else

window.location=loc;

function menuPage()

{
window.location=startPage;

}

function processQuestion()

{
gotoNext = true;
question = document.getElementByld(''id_questionField").value;
document.getElementByld("id_questionField").value="";
mainControl();

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

</script>

The following script will only be run after a 'vxmldone' event is thrown after the
VoiceXML form finish all its process.

It also means that the answer returned from interpreter contains a link to next interpreter,
so it needs to go there.
***__^

<script type="text/javascript" id="gotoNextPage" declare="declare">
window.location=nextPage;

</script>

<title>Public-Domain SpeechWeb</title>
</head>
<body id="page.body">
<centerxh2>Welcome to our new voice browser!</h2x/center>

<center>
<table>
<trxtd colspan="6">Load your own speech application :
cinput type=“text" id="id_nextPage" size=“50“
value=,'http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xml"/
>
< b r/x b r/x /td x /tr>
<!-- Call loadPage() function to setup the interprter and speech-grammar location

according to the above input text field value; -->
ctrx td colspan=''2''xinput type=“button“ name="submitValidate" value=''Validate Before

Go" onclick="loadPage(true)''/x/td>
<td colspan="2"xinput type="button“ name="submitGo" value="Go Immediately"
onclick=''loadPage(false)"/x/td>
<td colspan="2"xinput type=“button" name="menuGo" value="SpeechWeb Menu Page"
onclick="menuPage()"/x/tdx/tr>
<trxtd colspan="6“x b r /x b r /x b r /x b > S a y your question or type it in
here:</bx/tdx/tr>
<trxtd colspan="6"xform onsubmit="processQuestion(); return false;">
<input type="text" size=“70" name="questionField" id=“id_questionField"
val ue='"7x/f orm ></tdxAr>
</table>
<br/xbr/>
<table id="logFrame" width="600"x/tablexbr/>
< b r/xb r/xb r/>
</center>

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xml%22/

</body>
<!-- Call a script to reload the vxml form when the current vxml form has done its process.
—>
<ev:listener ev:observer="page.body“ ev:event="vxmldone" ev:handler="#gotoNextPage"

ev:propagate=“stop" />
<!-- Load 'vxmLform' when the page.body loaded. -->
<ev:listener ev:observer="page.body" ev:event="load" ev:handler=“#vxml_form"
ev:propagate="stop" />
</html>

Monty Sihlo, “monty.xml”

<?xml version="1.0"?>
clDOCTYPE html PUBLIC ''-/A/oiceXML Forum//DTD XHTML+Voice 1.2//EN"
"http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xm Ins:vxml=“http://www.w3.org/2001/vxm I"
xm lns:ev="http://www. w3.org/2001/xm l-events“
xm lns:xv="http://www.voicexm l.org/2002/xhtm l+voice"
xml:lang="en-US">

^| __**

Date: March. 2006
Developer: Ma, Xiaoli(William)
Architecture: LRRP (Dr.Frost, University of Windsor, Canada)
*** ^

<head>

<!-- Please modify the value of variable sv_greeting, and cgiLink to fit your application. -->
<script type="text/javascript“>
/** The greeting message that will say to the user, only at the first time the user visits this
page.*7
var sv_greeting =“hi, I am monty, i know a joke.";
r * The link to your CGI interpreter location.
Notice, you have to place the CGI interpreter program with this page in the same domain
to prevent a cross-domain security error.*7
varcgiLink="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.cgi";
</script>

<!-- VoiceXMLform. -->
<vxml:form id="vxml_form">

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.voicexml.org/specs/multimodal/x+v/12/dtd/xhtml+voice12.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/2001/vxm
http://www
http://www.voicexm
http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.cgi

<vxml:field name="st_field" xv:id="voice_input" modal="true">
< !- NOTICE!!! PLEASE MODIFY THE VALUE OF 'src' ATTRIBUTE IN THE NEXT

LINE <grammar> ELEMENT TO YOUR GRAMMAR FILE LOCATION.~>
<vxm l:grammar type="application/x-jsgf"

src="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.jsgf" />
<!-- The following greeting will only speak out when user connects to a new interpreter.

—>
<vxml:prompt cond=”sayGreetings==true"><vxml:break

time="500ms"/><vxml:value expr=“sv_greeting"/>
<vxml:value expr="updateShowFrame('GREETING:

'+sv_greeting);"/x/vxm kprom pt>
<vxml:filled>

This "filled" element will be run after user speech input has recognized.
Inside this element, first step, i have assign the user input to the variable 'question',
because VoiceXML code can access a JavaScript defined variable, but JavaScript can

not see a VoiceXML defined variable.
Then, in the next step, i call a JavaScript function "runCode()‘ to proceed AJAX submit

process.
ft***********************************

<vxml:assign name="question" expr="st_field7>

Calls to javascript mainControl() function to do the logical process based on user
voice input.

<vxml:assign name="javacode" expr=''mainControl();"/>
<vxml:promptxvxml:break time="300ms"/xvxml:value

expr="answer"/x/vxml:prompt>
<!-- If the answer is not a link to next interpreter, then repeat the voice dialog. ~>

<vxml:if cond="isLink==false">
<vxml:throw event="repeat.st_field"/>

</vxml:if>
</vxml:filled>
<vxml:catch event="nomatch noinput">

<vxml:prompt>Sorry, I don't understand, can you say it again?</vxml:prompt>
<vxml:reprompt/>

</vxml:catch>
<vxml:catch event=“help">

No help is available! Restart the dialog!
<vxm l:clear namelist="st_field"/>
<vxml:reprompt/>

<A/xml:catch>
</vxml:field>

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/monty/monty.jsgf

<!-- Catch the 'repeat.st_field‘ event. ~>
<vxm licatch event="repeat.st_field“>

<vxml:clear namelist=“st_field"/>
<!-- Restart the voice form without change the speech grammar. -->

<vxm I: reprom pt/>
</vxml:catch>
</vxml:form>

<script type="text/javascript">
/******* Declare global variables shared by JavaScript and VoiceXML *********/
var sayGreetings=true;
var defaultGreetingMsg="Hi, i'm ready to talk now.";
/*** The location of next remote speech-application/CGI-application interpeter. ***/
var nextPage=“";
/*** Question query recognized from user's speech (request). ***/
var question="";
/*** Answer query returned from remote CGI interpter (response). ***/
var answer="";
var answerRecieved=false;
/*** Answer query contains a link to next CGI interpreter. ***/
var isLink=false;
var gotoNext= false;
/*** This variable needed for VXML to call JavaScript code. ***/
var javacode='"';
/*** menu page of the demo public-domain speechweb. ***/
var
startPage="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.x
ml";

if(sv_greeting=="")
sv_greeting=defaultGreetingMsg;

This is the main control function to the whole question submit and answer retrived
procedures.
It will call submitReq() method to send the question to the CGI program.
then it will check the answer whether it is a link to new CGI program or a simply answer
string.
if it is a link to another interpreter, then retrieve the data from there,
and call the 'changeData' function to change the neccessary information for the next
round dialog.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.x

function mainControlQ

{
updateShowFramefQUESTION: "+question+"
");

answer="“;
answerRecieved=false;
isLink=false;
sayG reetings=false;

I* call submitReq() method to send the question to the CGI program. 7
submitReqfPOST", cgiLink);
I** Cannot recieve data from CGI interpreter. Network problem. *7
if(answerRecieved==false)

return "-1
answer = getAnswer(xmlhttp.responseText);

!******* check whether the recieved answer is a link or not. And, assign the result to the

global variable isLink. ******/
checkAnswer(xmlhttp.responseText);

/****** if the answer is not a link, then show the answer to the user and return. ******/
if (! isLink)

{
gotoNext=false;
updateShowFramefRESPONSE: "+answer+"
");
return "1

}

nextPage=getNextlnterpreter(xmlhttp.responseText);

updateShowFrame(“RESPONSE: "+answer+"<br/xbr/>");

if(gotoNext==true)
window.location=nextPage;

return "1

}

This function returns the substring that has to be spoken as a result of the user's question.
Same procedure is applied for extracting the content to be spoken out.

function getAnswer(answer)

1 2 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText
http://http.responseText
http://http.responseText

{
var ex=answer;
var index;
if((ex.indexOf('LINK=,,0)) == -1)

return ex;
ex= ex.slice(5);
index = ex.indexOf(“;",0);
ex = ex.substring(0, index);
return ex;

}

y *

This function uses AJAX, it will submit the question to the given URI if it use a 'POST'
method.
Or, it will retrieve data from the given URI if it use a 'GET' method.
* y

function submitReq(method, url)

{
I***** |njtja|jze AJAX XMLHttpRequest object. ****/

xmlhttp=new XMLHttpRequest();
^******

Assign a event listener to the 'onreadystatechange' event.
Different listerner assigned depends on a 'GET' or a 'POST' method.
* * * * * * j

if(method==''GET“)
xmlhttp.onreadystatechange=stateChange_GET;

else
xmlhttp.onreadystatechange=stateChange_POST;

/** Check whether the url involves a cross-domain security error before send the
request. *7

if(isCrossDomain(url)==true)

{
r * if method is 'GET', it means this function is called from loadPage() function to

validate a user input URL. *7
if(method=="GET")

alertfCannot validate input URL since it involves a cross-domain security issue.
Load URL immediately.");

j**

if method is not 'GET', which means 'POST' method,
it means this method is called from main control to submit a question query to the

interpreter.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it it I

else
updateShowFrame("SYSTEM ERROR: An error which against the web browser

cross-domain security issue."
+" Your CGI interpreter has to be placed in the same domain with this

voice page."+
“Please contact to your application provider to fix this problem.

\n"
+"Your CGI interpreter location:"+ url+" Current voice page

host domain: "+window.location.host);
answerRecieved=true;
answer="An error which against the web browser cross-domain security issue has

occured. Please check the error message to continue.";
return;

}

/** Open the connect, sychronized. ***/
xmlhttp.open(method,url,false);

if(method=="GET")
xmlhttp.send();

else

{
xmlhttp.setRequestHeader("Content-Type", “application/x-www-form-urlencoded");
xmlhttp.send("question=“+question);

}
}

function stateChange_POST()

{
/******* if xmlhttp shows loaded ******/
if (xmlhttp.readyState==4)

{

if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp.responseText ="";

}
}

}

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText

function stateChange_GET()

{
/******* jf xmlhttp shows loaded ******/
if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp.responseText ="";

}
}

/** Validate the given url with the current page domain(hostname),
to see whether they are in the same domain or cross-domain(different domain). **/
function isCrossDomain(url)

{
var domain = url;
var i = domain.indexOf("//");

if(i==-1)
return false;

domain = domain.slice(i+2);

var k = domain.indexOf(T);
if(k!=-1)

domain = domain.slice(0, k);
else

return true;

var host = window.location.hostname;

if(host==domain)
return false;

else
return true;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText

* * * ★

Check whether there is a occurrence of '=' character in the answer, which means a link
existed in it.
And, assign the result to the global variable 'isLink'.
* *

* * j

function checkAnswer(answer)

{
if((answer.indexOf('LINK=',0))== -1)

isLink=false;
else

isLink=true;

return isLink;

}

y *

if the answer is a link, this function will return the next interpreter's URI as a string.
Otherwise, return "-1".
*

* * * * * * * * * * * * * j

function getNextlnterpreter(answer)

{
var loc;
var ex = answer;
var index;

y * * * * * *

Check if the answer is a link to next speech application interpreter.
It should never be evaluated as true, otherwise error.
* * * * * * j

if(lisLink)
return "-1";

y *

If the answer is a link, then its formation should be: "LINK=_answer;SIHLO=_location;“.
e.g. Question send to judy.cgi: "can i talk to solar man".

Answer recieved from judy.cgi: "LINK=yes. here he
is;SIHLO=http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml"

* * * * * * * * * * * * * * * * * j

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml

/****** extracts the LINK= substring from the string and assigns it to the variable ex
* * * * * * j

ex = ex.slice(5);
/****** gets the index position o f ******/

index = ex.indexOf(";",0);
index = index+1;

^**

The string after the '=' and u p t o a r e eliminated because this is the content which is the
answer-query of the user's input.

* * * * * * * * * * * * * * j

loc = ex.substr(index);
— * * * * * * * * * * * * * *

eliminating 'SIHLO=‘ from the loc variable.
SIHLO contains the server address starting right after '=' and ended by the delimiter
* y

ex = loc.slice(6);
index = ex.indexOf(";'',0);
loc = ex.substring(0, index);

return loc;

}

/** Update the text area in the HTML and show message on it. **/
function updateShowFrame(message)

{
var objTable = document.getElementByldO'logFrame");

objTable.insertRow(O);
objTable.rows[0],insertCell(0);
objTable.rows[0].insertCell(1);
var cellO = objTable.rows[0].cells[0];

var celH = objTable.rows[0].cells[1];
celH .align="left";
cell0.align=''left";
cell0.width="105";
if(message.indexOf(“SYSTEM ERROR: ")!=-1)

{
var objFont = document.createElement(”font");
objFont.color="red";
objFont.size=,'-1";
objFont.appendChild(document.createElement(“b''));

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

objFont.firstChild.innerHTML = message.slice(0, message.index0f(":")+1);
cellO.appendChild(objFont);

var objFont2 = document.createElement("font");
var objlta = document.createElement("i");
obj Font2.color="black”;
objFont2.size=''-r;
obj Font2 .appendCh i ld(obj Ita);
celH .appendChild(objFont2);
objlta.innerHTML=message.slice(message.indexOf(":")+1);

Jelse

{
var index = message.indexOff:");
var ex=message.slice(0,index+1);
var objFont = document.createElement("font");
if(ex.indexOf("QUESTION:")!=-1)

objFont.color= “blue";
else if(ex.indexOf("RESPONSE:“)!=-1)

objFont.color="green“;
else

objFont.color="purple“;

objFont.appendChild(document.createElement("b"));
cellO.appendChild(objFont);
objFont.firstChild.innerHTML = ex;
cell1.appendChild(document.createElement("font"));
celH .firstChild.innerHTML = message.slice(index+1);

}

/****** insert a table row as an empty line after a response and greeting message.
* * * * * * * * * * * j

if(message.indexOf("QUESTION")==-1)

{

objTable.insertRow(O);
objTable.rows[0].insertCell(0);
objTable.rows[0].colspan=“2";
objTable.rows[0].celis[0].innerHTML = “
 ";

}

return

}

/** Load user's application. **/
function loadPage(checklnput)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/** Get user's input. *7
var loc = document.getElementByld("id_nextPage").value;

/** if user's input is empty, then return a error message. *7
if(loc=="")

{

updateShowFrame("SYSTEM ERROR: Please input the URL to your voice page in
the above text field. It can not be empty!");

}
/** if user input is not empty, and user asked to validate URL before go. *7
else if(checklnput==true)

{
submitReqfGET", loc);
/** if the valicating process return a false as result, which means invalid URL. *7
if(answerRecieved==false)

{
if (xm lhttp.status==404)

updateShowFrame("SYSTEM ERROR: Unable to load your voice page. File
does not exist a t:"+ loc);

else
updateShowFrame(''SYSTEM ERROR: Unable to load your voice page. Network

problem, error code:"
+xmlhttp.status+". Please check your internet connection.");

}

/** if user's input is not empty, it is a valid URL to next page. *7
else

window.location=loc;

}

!** if user's input is not empty, and user asked to load URL page immediately. *7
else

window.location=loc;

}

function menuPage()

{

window. location=startPage;

}

function processQuestion()

{

gotoNext = true;
question = document.getElementByld("id_questionField").value;
document.getElementByld("id_questionField").value='"';
mainControl();

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

</script>

* *

The following script will only be run after a 'vxmldone' event is thrown after the
VoiceXML form finish all its process.

It also means that the answer returned from interpreter contains a link to next interpreter,
so it needs to go there.
*** ^

<script type=”text/javascript" id="gotoNextPage'' declare="declare">
window.location=nextPage;

</script>

<title>Public-Domain SpeechWeb</title>
</head>
<body id="page.body">
<centerxh2>Welcome to our new voice browser!</h2x/center>

<center>
<table>
<trxtd colspan=“6">Load your own speech application :
cinput type="text“ id="id_nextPage" size=“50"
value="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xml"/
>

< b r/x b r/x /td x /tr>
<!-- Call loadPage() function to setup the interprter and speech-grammar location
according to the above input text field value; -->
c trx td colspan=“2"xinput type="button" name="submitValidate" value="Validate Before

Go" onclick=''loadPage(true)"/x/td>
<td colspan="2"xinput type="button" name="submitGo" value="Go Immediately"
onclick="loadPage(false)"/x/td>
<td colspan="2"xinput type="button" name="menuGo" value="SpeechWeb Menu Page"
onclick="menuPage()"/x/tdx/tr>
ctrx td colspan=,,6 "x b r/x b r /x b r /x b > S a y your question or type it in
here:</bx/tdx/tr>
ctrx td colspan="6">cform onsubmit="processQuestion(); return false;“>
cinput type=“text" size="70" name="questionField" id="id_questionField"
value=""/>c/form>c/td>c/tr>
c/table>
cbr/>cbr/>
ctable id="logFrame" width="600">c/table>cbr/>
cbr/>cbr/xbr/>
c/center>

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xml%22/

</body>
<!-- Call a script to reload the vxml form when the current vxml form has done its process.
- - >

<ev:listener ev:observer="page.body" ev:event="vxmldone" ev:handler="#gotoNextPage"
ev:propagate=''stop'' />
<!-- Load 'vxml_form' when the page.body loaded. ->
<ev:listener ev:observer="page.body“ ev:event=“load" ev:handler="#vxml_form"
ev:propagate=“stop" />
</html>

Solarman Sihlo, “solarman.xml”

<?xml version=”1.0"?>
<!DOCTYPE html PUBLIC "-//VoiceXML Forum//DTD XHTML+Voice 1.2//EN"
"http://www. voicexm I .org/specs/m u ltimodal/x+v/12/dtd/xhtm l+voice 12.dtd ">
<htm I xm lns="http://www.w3.org/1999/xhtm I"

xm Ins:vxml="http://www.w3.org/2001/vxm I"
xmlns:ev="http://www.w3.org/2001/xml-events"
xm lns:xv=“http://www. voicexm l.org/2002/xhtm l+voice“
xml:lang="en-US">

** ************* ******* ******************************** ** ****************************

Date: March. 2006
Developer: Ma, Xiaoli(William)
Architecture: LRRP (Dr.Frost, University of Windsor, Canada)
* _ _ ^

<head>

<!-- Please modify the value of variable sv_greeting, and cgiLink to fit your application. ->
<script type="text/javascript">
/** The greeting message that will say to the user, only at the first time the user visits this
page. **/
var sv_greeting ="hi, I am solar man.1';
!** The link to your CGI interpreter location.
Notice, you have to place the CGI interpreter program with this page in the same domain
to prevent a cross-domain security error.**/
var
cgiLink="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.cgi"

i

</script>

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www
http://www.w3.org/1999/xhtm
http://www.w3.org/2001/vxm
http://www.w3.org/2001/xml-events
http://www
http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.cgi

<!-- VoiceXML form. -->
cvxmkform id="vxml_form“>
<vxml:field name="st_field" xv:id="voice_input“ modal="true">

<!-- NOTICE!!! PLEASE MODIFY THE VALUE OF 'src' ATTRIBUTE IN THE NEXT

LINE <grammar> ELEMENT TO YOUR GRAMMAR FILE LOCATION.->
<vxml:grammartype="application/x-jsgf“

src="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.jsgf />
<!-- The following greeting will only speak out when user connects to a new interpreter.

—>
<vxml:prompt cond=“sayGreetings==true"xvxml:break time=,,500ms'7>
<vxml:value expr="sv_greeting7><vxml:value

expr="updateShowFrame('GREETING: '+sv_greeting);7x/vxml:prompt>
<vxml:filled>

* *

This "filled" element will be run after user speech input has recognized.
Inside this element, first step, i have assign the user input to the variable 'question',
because VoiceXML code can access a JavaScript defined variable, but JavaScript can

not see a VoiceXML defined variable.
Then, in the next step, i call a JavaScript function "runCode()' to proceed AJAX submit

process.
* *

<vxml:assign name="question" expr="st_field"/>
_ _ *

Calls to javascript mainControl() function to do the logical process based on user
voice input.

* *

cvxmkassign name="javacode" expr=“mainControl();"/>
<vxm I: prom ptxvxm I :break time="300m s"/xvxm I: value

expr="answer''/x/vxml:prompt>
<!-- If the answer is not a link to next interpreter, then repeat the voice dialog. -->

<vxml:if cond=''isLink==false">
<vxml:throw event="repeat.st_field"/>

</vxml:if>
</vxml:filled>
<vxml:catch event="nomatch noinput">

<vxml:prompt>Sorry, I don't understand, can you say it again?</vxml:prompt>
<vxml:reprompt/>

</vxml:catch>
<vxml:catch event="help">

No help is available! Restart the dialog!
<vxm kclear namelist="st_field"/>
<vxml:reprompt/>

</vxml:catch>
</vxml:field>

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/solarman/solarman.jsgf

<!-- Catch the 'repeat.stjield' event. -->
<vxml:catch event="repeat.st_field">

<vxml:clear namelist=''st_field7>
<!-- Restart the voice form without change the speech grammar. -->

<vxml:reprompt/>
</vxml:catch>
</vxml:form>

<script type="text/javascript“>
/******* Declare global variables shared by JavaScript and VoiceXML *********/
var sayGreetings=true;
var defaultGreetingMsg=”Hi, i'm ready to talk now.";
/*** The location of next remote speech-application/CGI-application interpeter. ***/
var nextPage="";
/*** Question query recognized from user's speech (request). ***/
var question="";
/*** Answer query returned from remote CGI interpter (response). ***/
var answer="";
var answerRecieved=false;
/*** Answer query contains a link to next CGI interpreter. ***/
var isLink=false;
var gotoNext= false;
/*** This variable needed for VXML to call JavaScript code. ***/
var javacode='"';
/*** menu page of the demo public-domain speechweb. ***/
var
startPage="http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.x
ml";

if(sv_greeting==“")
sv_greeting=defaultGreetingMsg;

j i t *

This is the main control function to the whole question submit and answer retrived
procedures.
It will call submitReq() method to send the question to the CGI program.
then it will check the answer whether it is a link to new CGI program or a simply answer
string.
if it is a link to another interpreter, then retrieve the data from there,
and call the 'changeData' function to change the neccessary information for the next
round dialog.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.x

function mainControl()

{
updateShowFramefQUESTION: "+question+"
");

answer="";
answerRecieved=false;
isLink=false;
sayGreetings=false;

/* call submitReq() method to send the question to the CGI program. */
submitReq("POST", cgiLink);
/** Cannot recieve data from CGI interpreter. Network problem. **/
if(answerRecieved==false)

return ''-1
answer = getAnswer(xmlhttp.responseText);

/******* Check whether the recieved answer is a link or not. And, assign the result to the
global variable isLink. ******/

checkAnswer(xmlhttp.responseText);

/****** if the answer is not a link, then show the answer to the user and return. ******/
if (! isLink)

{
gotoNext=false;
updateShowFramefRESPONSE: ”+answer+"
");
return "1";

}

nextPage=getNextlnterpreter(xmlhttp.responseText);

updateShowFrame(“RESPONSE: "+answer+"<br/xbr/>");

if(gotoNext==true)
window.location=nextPage;

return "1

}

^ *

This function returns the substring that has to be spoken as a result of the user's question.
Same procedure is applied for extracting the content to be spoken out.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText
http://http.responseText
http://http.responseText

function getAnswer(answer)

{
var ex=answer;
var index;
if((ex.indexOf('LINK=',0)) == -1)

return ex;
ex= ex.slice(5);
index = ex.indexOf(";",0);
ex = ex.substring(0,index);
return ex;

}

This function uses AJAX, it will submit the question to the given URI if it use a 'POST'
method.
Or, it will retrieve data from the given URI if it use a 'GET' method.
i t * J

function submitReq(method, url)

{
/***** Initialize AJAX XMLHttpRequest object. ****/
xmlhttp=new XMLHttpRequest();
J * * * * * *

Assign a event listener to the 'onreadystatechange' event.
Different listerner assigned depends on a 'GET' or a 'POST' method.

if(method=="GET")
xmlhttp.onreadystatechange=stateChange_GET;

else
xmlhttp.onreadystatechange=stateChange_POST;

/** Check whether the url involves a cross-domain security error before send the
request. *7

if(isCrossDomain(url)==true)

{
/** if method is 'GET', it means this function is called from loadPage() function to

validate a user input URL. *7
if(method=="GET")

alert("Cannot validate input URL since it involves a cross-domain security issue.
Load URL immediately.");

j * *

if method is not 'GET', which means 'POST' method,
it means this method is called from main control to submit a question query to the

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interpreter.
**/

else
updateShowFramefSYSTEM ERROR: An error which against the web browser

cross-domain security issue."
+" Your CGI interpreter has to be placed in the same domain with this

voice page.“+
"Please contact to your application provider to fix this problem.

\n"
+"Your CGI interpreter location:"+ url+" Current voice page

host domain: "+window.location.host);
answerRecieved=true;
answer=''An error which against the web browser cross-domain security issue has

occured. Please check the error message to continue.'';
return;

}

/** Open the connect, sychronized. ***/
xmlhttp.open(method,url,false);

if(method==''GET")
xmlhttp.send();

else

{
xmlhttp.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
xmlhttp.send(''question=''+question);

}
}

function stateChange_POST()

{
!******* xm||-|ttp Shows loaded ******/

if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp. responseText =

}
}

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

function stateChange_GET()

{
/******* jf xmlhttp shows loaded ******/
if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = false;
xmlhttp.responseText =

}
}

j * k

Validate the given url with the current page domain(hostname),
to see whether they are in the same domain or cross-domain(different domain).
* * j
function isCrossDomain(url)

{
var domain = url;
var i = domain.indexOf(''/r);

if(i==-1)
return false;

domain = domain.slice(i+2);

var k = domain.indexOf(T);
if(k!=-1)

domain = domain.slice(0, k);
else

return true;

var host = window.location.hostname;

if(host==domain)
return false;

else
return true;

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText

}

J *

* * * *

Check whether there is a occurrence of '=' character in the answer, which means a link
existed in it.
And, assign the result to the global variable 'isLink'.

* * j

function checkAnswer(answer)

{
if((answer.indexOf('LINK=',0))== -1)

isLink=false;
else

isLink=true;

return isLink;

}

j *

* * * * * * * * * * * *

if the answer is a link, this function will return the next interpreter's URI as a string.
Otherwise, return "-1".

«*«««««/
function getNextlnterpreter(answer)

{
var loc;
var ex = answer;
var index;

J * * * * * *

Check if the answer is a link to next speech application interpreter.
It should never be evaluated as true, otherwise error.
******!

if (! isLink)
return "-1";

I *

If the answer is a link, then its formation should be: "LINK=_answer;SIHLO=_location;".
e.g. Question send to judy.cgi: "can i talk to solar man".

Answer recieved from judy.cgi: "LINK=yes. here he

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is;SIHLO=http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml"

* * * * * * * * * * * * * * * * * j

/****** extracts the LINK= substring from the string and assigns it to the variable ex
« — !

ex = ex.slice(5);
/****** gets the index position o f ******/

index = ex.indexOfCV'.O);
index = index+1;

y *

The string after the '=' and u p t o a r e eliminated because this is the content which is the
answer-query of the user's input.

* * * * * * * * * * * * * * j

loc = ex.substr(index);
^**

eliminating 'SIHLO=' from the loc variable.
SIHLO contains the server address starting right after '=' and ended by the delimiter
* j

ex = loc.slice(6);
index = ex.indexOf(";",0);
loc = ex.substring(0,index);

return loc;

}

/** Update the text area in the HTML and show message on it. *7
function updateShowFrame(message)

{
var objTable = document.getElementByldflogFrame");

objTable.insertRow(O);
objTable.rows[0].insertCell(0);
objTable.rows[0].insertCell(1);
var cellO = objTable.rows[0].cells[0];

var celH = objTable.rows[0].cells[1];
celH .align=''left";
cell0.align="left";
cell0.width=‘,105'1;
if(message.indexOf("SYSTEM ERROR: ")!=-1)

{
var objFont = document.createElement("font");

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/judy/judy.xml

objFont.color="red";
objFont.size=''-1";
objFont.appendChild(document.createElement(“b"));
objFont.firstChild.innerHTML = message.slice(0, message.indexOf('':")+1);
cellO.appendChild(objFont);

var objFont2 = document.createElementC'font");
var objlta = document.createElement("i");
objFont2 .color="black";
objFont2.size="-1“;
obj Font2.appendCh ild(obj Ita);
celH .appendChild(objFont2);
objlta.innerHTML=message.slice(message.indexOf(":")+1);

}else

{
var index = message.indexOf(":");
var ex=message.slice(0,index+1);
var objFont = document.createElementC'font");
if(ex.indexOf("QUESTION:'')!=-1)

obj Font.color= "blue";
else if(ex.indexOf("RESPONSE:")!=-1)

objFont.color="green";
else

objFont.color="purple";

objFont.appendChild(document.createElement("b"));
cellO.appendChild(objFont);
objFont.firstChild.innerHTML = ex;
cell1.appendChild(document.createElement("font"));
celll .firstChild.innerHTML = message.slice(index+1);

}
/****** Insert a table row as an empty line after a response and greeting message.

* * * * * * * * * j

if(message.indexOf("QUESTION")==-1)

{
objTable.insertRow(O);
objTable.rows[0].insertCell(0);
objTable. rows[0] ,colspan="2";
objTable.rows[0].cells[0].innerHTML = "
 ";

}

return

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I** Load user's application. *7
function loadPage(checklnput)

{
r Get user's input. *7
var loc = document.getElementByld("id_nextPage").value;

/** if user's input is empty, then return a error message. *7
if(loc=='"')

{
updateShowFrameC'SYSTEM ERROR: Please input the URL to your voice page in

the above text field. It can not be empty!");

}
/** if user input is not empty, and user asked to validate URL before go. *7
else if(checklnput==true)

{
submitReqfGET", loc);
/** if the valicating process return a false as result, which means invalid URL. *7
if(answerRecieved==false)

{
if(xm lhttp.status==404)

updateShowFrameC'SYSTEM ERROR: Unable to load your voice page. File
does not exist a t:"+ loc);

else
updateShowFrameC'SYSTEM ERROR: Unable to load your voice page."
+"Network problem, error code: "+xmlhttp.status+". Please check your internet

connection.");

}
I** if user's input is not empty, it is a valid URL to next page. *7
else

window.location=loc;

}
/** if user's input is not empty, and user asked to load URL page immediately. *7
else

window.location=loc;

}

function menuPage()

{
window.location=startPage;

}

function processQuestion()

{
gotoNext = true;

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

question = document.getElementByld("id_questionField").value;
document.getElementByld("id_questionField'').value="“;
mainControl();

}

</script>

The following script will only be run after a 'vxmldone' event is thrown after the
VoiceXML form finish all its process.

It also means that the answer returned from interpreter contains a link to next interpreter,
so it needs to go there.

<script type="text/javascript" id="gotoNextPage'' declare="declare">
window.location=nextPage;

</script>

<title>Public-Domain SpeechWeb</title>
</head>
<body id=''page.body">
<centerxh2>Welcome to our new voice browser!</h2x/center>

<center>
<table>
<trxtd colspan="6">Load your own speech application :
<input type="text" id=''id_nextPage'' size="50"
value=''http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xmr7
>
< b r/x b r/x /td x /tr>
<!-- Call loadPage() function to setup the interprter and speech-grammar location
according to the above input text field value; -->
c trxtd colspan="2"xinputtype=“button'' name=''submitValidate" value="Validate Before
Go" onclick="loadPage(true)“/x /td >
<td colspan="2“xinput type=“button" name="submitGo,' value="Go Immediately"
onclick="loadPage(false)"/x/td>
<td colspan="2"xinput type="button“ name="menuGo" value="SpeechWeb Menu Page"
onclick="menuPage()"/></tdx/tr>
<trxtd colspan="6“x b r /x b r /x b r /x b > S a y your question or type it in
here:</bx/tdx/tr>
<trxtd colspan="6''xform onsubmit=“processQuestion(); return false;“>
<input type=''text" size^'70” name="questionField" id=“id_questionField”
val ue="7x/f orm x /td x /t r>
</table>
<br/xbr/>

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~speechweb/p_d_speechweb/menu/demo_menu.xmr7

<table id="logFrame" width="600"></tablexbr/>
<b r/xb r/xb r/>
</center>
</body>
<!-- Call a script to reload the vxml form when the current vxml form has done its process.
—>
<ev:listener ev:observer="page.body" ev:event="vxmldone" ev:handler="#gotoNextPage"
ev:propagate=''stop" />
<!-- Load 'vxmljorm' when the page.body loaded. -->
<ev:listener ev:observer=”page.body" ev:event="load" ev:handler="#vxml_form“
ev:propagate=”stop" />
</html>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

Single-Page Version SpeechWeb Browser:

A single X+V page loaded in end-user’s device, “single_page_version.xml”:

<?xml version="1.0"?>
dDOCTYPE html PUBLIC "-//VoiceXML Forum//DTD XHTML+Voice 1.2//EN"
"http://www.voicexm l.org/specs/multimodal/x+v/12/dtd/xhtm l+voice12.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xm Ins: vxm l="http://www. w3.org/2001 /vxm I"
xmlns:ev="http://www.w3.org/2001/xml-events"
xm lns:xv="http://www.voicexm l.org/2002/xhtm l+voice"
xml:lang=''en-US''>

Date: Feb. 2006
Developer: Ma, Xiaoli(William)
Architecture: LRRP (Dr.Frost, University of Windsor, Canada)
* *

<head>
<!--’ **** Ask browser that do not cache any of page, grammar, document, and vxml object.

<vxml:property name=“grammarfetchhint" value=''safe''/>
<vxml:property name="documentfetchhint'' value="safe"/>
<vxml:property name="objectfetchhint" value="safe"/>

<script type="text/javascript“>
/********* Load data if there's anything saved in the cookie. ***************/
var gmr = getCookie("grammar");
if(gmr!=null)

if(gmr!="")

{
var objgrammar = document.getElementsByTagName("grammar")[0];
objg ramm ar.setAttribute("src", “solarm an .jsgf'');
if(objgrammar==undefined)

{
window.location.reload();

Jelse
objgrammar.setAttributeC'src", gmr);

}

var sv_greeting = getCookie("greeting");

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.voicexm
http://www.w3.org/1999/xhtml
http://www
http://www.w3.org/2001/xml-events
http://www.voicexm

if(sv_greeting==null)
sv_greeting="hi, my name is judy.";

var cgiLink = getCookieC'interpreter");
if(cgiLink==null)

cgiLink=“http://luna.cs.uwindsor.ca/~richard/judy/judy.cgi";

/******* Declare global variables shared by JavaScript and VoiceXML *********/
var sv_loc =
var grammar=,",;
var cgiLinkPrev=“";
var question="“;
var answer='"';
var answerRecieved=false;
var sayGreetings=true;
var isLink=false;
var sihloLoc =
var logMsg='"'
var javacode=“";
var error="";

^***

This is the main control function to the whole question submit and answer retrived
procedures.
It will call submitReq() method to send the question to the CGI program.
then it will check the answer whether it is a link to new CGI program or a simply answer
string.
if it is a link to another interpreter, then retrieve the data from there,
and call the 'changeData' function to change the neccessary information for the next
round dialog.

function mainControl()

{

if (sayG reetings==true)
updateShowFrame(''GREETING: "+sv_greeting+,,
“);

updateShowFrame("QUESTION: "+question+"
");

answer='"‘;
answerRecieved=false;

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~richard/judy/judy.cgi

isl_ink=false;
error=“";

I* call submitReq() method to send the question to the CGI program. */
submitReq("POST'', cgiLink);
answer = getAnswer(xmlhttp.responseText);

/******* Check whether the recieved answer is a link or not. And, assign the result to the
global variable isLink. ******/

checkAnswer(xm Ihttp. responseText);

/****** if the answer is not a link, then return quickly to speak out the answer to the user.
* * * * * * j

if (I isLink)

{
updateShowFrame("RESPONSE: "+answer+"
“);
return "1

}

cgiLinkPrev=cgiLink;
cgiLink="http://"+getSihlo(xmlhttp.responseText);

submitReq("GET", cgiLink);

changeData();

updateShowFramefRESPONSE: ,,+answer+"

“);

// alert("grammar:"+grammar+" answer:"+answer+" greeitng:"+sv_greeting+"
cgi:''+cgiLink);

setCookie("grammar“, grammar, 365);
setCookie("greeting“, sv_greeting, 365);
setCookie("interpreter", cgiLink, 30);

// alert(getCookie("grammar")+" "+getCookie("answer")+" "+getCookie(“greeting")+“
"+getCookie("interpreter''));

return “1";

}

function setCookie(c_name,value,expiredays)

{
var exdate=new Date();

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText
http://%22+getSihlo(xmlhttp.responseText

exdate.setDate(expiredays);
document.cookie=c_name+ "=" +escape(value)+ ((expiredays==null) ? "":

expires="+exdate);

}

function getCookie(c_name)

{
if (document.cookie.iength>0)

{
c_start=document.cookie.indexOf(c_name +
if (c_start!=-1)

{

c_start=c_start + c_name.length+1 ;
c_end=document.cookie.indexOf('';'',c_start);
if (c_end==-1) c_end=document.cookie.length

return unescape(document.cookie.substring(c_start,c_end));

}
}
return null;

^***********-***

This function returns the substring that has to be spoken as a result of the user's question.
Same procedure is applied for extracting the content to be spoken out.

function getAnswer(answer)

{
var ex=answer;
var index;
if((ex.indexOf('LINK=',0)) == -1)

return ex;
ex= ex.slice(5);
index = ex.indexOf(";",0);
ex = ex.substring(0,index);
return ex;

}

This function uses AJAX, it will submit the question to the given URI if it use a 'POST'
method.
Or, it will retrieve data from the given URI if it use a 'GET' method.
* j

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function submitReq(method, url)

{
/***** Initialize AJAX XMLHttpRequest object. ****/
xmlhttp=new XMLHttpRequest();
y * * * * * *

Assign a event listener to the 'onreadystatechange' event.
Different listerner assigned depends on a 'GET' or a 'POST' method.
* * * * * * j

if(method=="GET")
xmlhttp.onreadystatechange=stateChange_GET;

else
xmlhttp.onreadystatechange=stateChange_POST;

/** Open the connect, sychronized. ***/
xmlhttp.open(method,url,false);

if(method==“GET")
xmlhttp.send();

else

{
xmlhttp.setRequestHeader(''Content-Type", "application/x-www-form-urlencoded");
xmlhttp.send("question="+question);

}
}

function stateChange_POST()

{
!******* xmihttp shows loaded ******/

if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{

answerRecieved = true;

}
else

{
answerRecieved = true;
alertfNetwork Error: Problem retrieving data from:'1 + cgil_ink+".\n Error code:" +

xmlhttp. status);
xmlhttp.responseText =
error="critical";

}

}

}

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText

function stateChange_GET()

{
/.***.** jf xm|t-!ttp Shows loaded ******/

if (xmlhttp.readyState==4)

{
if (xmlhttp.status==200 || xmlhttp.status==304)

{
answerRecieved = true;

}
else

{
answerRecieved = true;
alertfProblem retrieving data from:” + cgiLink+".\n Error code:" + xmlhttp.status);
xmlhttp.responseText =
error="critical";

}
}

}

y*

Check whether there is a occurrence of '=' character in the answer, which means a link
existed in it.
And, assign the result to the global variable 'isLink'.

* * j

function checkAnswer(answer)

{
if((answer.indexOf('LINK=',0))== -1)

isLink=false;
else

isLink=true;

return isLink;

}

j *

This function will return the sihlo link as a string, if the answer is a link. Otherwise, return
ii ̂ii

************* J

function getSihlo(answer)

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.status
http://http.responseText

{
var loc;
var ex = answer;
var index;

/****** Check if the answer is a link to a sihlo file.******/
if(lisLink)

return "-1";

^**

If the answer is a link, then its formation should be: "LINK=_answer;SIHLO=_location;''.
e.g. Question send to judy.cgi: “can i talk to solar man".

Answer recieved from judy.cgi: "LINK=yes. here he
is;SIHLO=luna.cs.uwindsor.ca/~richard/solarman/solarman.sihlo;"

* * * * * * * * * * * * * * * * * j

/****** extracts the LINK= substring from the string and assigns it to the variable ex
* * * * * * y

ex = ex.slice(5);
/****** gets the index position o f ******/

index = ex.indexOf('';",0);
index = index+1;

^**

The string after the '=' and u p t o a r e eliminated because this is the content which is the
result of the user's input.

********— **/
loc = ex.substr(index);

y *

eliminating 'SIHLO=' from the loc variable.
SIHLO contains the server address starting right after '=' and ended by the delimiter
***^

ex = loc.slice(6);
index = ex.indexOf(";",0);
loc = ex.substring(0,index);
return loc;

}

^***

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* * * j

function changeData()

{

Sihlo file formation example:
GREETING=Hi, I am Monty. I know a joke;
SERVER_NAME=luna.cs.uwindsor.ca;
SIHLOJNTERPRETER=/~richard/monty/monty.cgi;
SIHLO_GRAMMAR=/~richard/monty/h.cgi?monty.gram;

* * * * * * * * * j

I** Retrieve the greeting message from the response, and say it in next round dialog. *7
sv_greeting=getGreeting(xmlhttp.responseText);
if(sv_greeting==-1)

{
updateShowFrameC'SYSTEM ERROR: Wrong formation in the file:" +

cgiLink+"\nPart: GREETING\nCorrect formation: GREETING=_yourGreetingMsg;");
sv_greeting = "Hi, i'm ready to answer your question now.";
error=''non-critical-lowestlv";

}
else if(sv_greeting==-2)

{
updateShowFrameC'SYSTEM ERROR: No greeting message is available in the

SHILO file.");
sv_greeting = "Hi, i'm ready to answer your question now.1';
error="non-critical-lowestlv";

}

var server_name=getServerName(xmlhttp.responseText);
if(server_name==-1)

{
updateShowFrameC'SYSTEM ERROR: Wrong formation in the file:" +

cgiLink+'ViPart: SERVER_NAME\nCorrect formation:
SERVER_NAME=_yourServerLocation;\n Example: luna.cs.uwindsor.ca\n Note: No
'http://1 needed");

updateShowFrameC'SYSTEM ERROR: Attempting to use current server host for next
interpreter :"+sv_loc);

error=“non-criticar';
}else

sv_loc=server_name;

var tmp = getlnterpreter(xmlhttp.responseText);
if(tmp==-1)

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://http.responseText
http://http.responseText
http://1
http://http.responseText

{
updateShowFrameC'SYSTEM ERROR: Wrong formation in the file:” +

cgiLink+"\nPart: SIHLOJNTERPRETERYiCorrect formation:
SIHLO_INTERPRETER=_yourlnterpreterLocation;\n Example:
SIHLO_INTERPRETER=/~richard/judy.cgi;");

cgiLink = cgiLinkPrev;
answer="Next interpreter is not available, stay in the current interpreter.";
error="non-critical";

}else
cgiLink="http://"+sv_loc+tmp;

if(changeGrammarLink(xmlhttp.responseText)==-1)

{
updateShowFrameC'SYSTEM ERROR: Wrong formation in the file:" +

cgiLinkPrev+"\nPart: SIHLO_GRAMMAR\nCorrect formation:
SIH LO_G RAM MAR=_you rG ram marLocation ;\n Exam pie:
SIHLO_GRAMMAR=/~richard/judy.jsgf");

updateShowFrameC'SYSTEM ERROR: Continue use current grammar file for next
interpreter.'1);

error=''non-critical";

}
}

This function returns ServerName if it existed in the response message, otherwise return
- 1 .

* j

function getServerName(response)

{
var ex=response;
var start=ex.indexOf('SERVER_NAME=',0);
if (start == -1)

return -1;
ex=ex.slice(start+12);
var end=ex.indexOf(';',0);
ex=ex.siice(0, end);
return ex;

}

/******** get speech grammar location and assign it to 'grammar' global variable *******/
function changeGrammarLink(response)

{
vartmpGrammar=getGrammarLink(response);
if(tmpGrammar==-1)

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%22+sv_loc+tmp

return tmpGrammar;
else

grammar=''http://"+sv_loc+tmpGrammar;

r * Next line is used in application testing only, should be deleted from final product. **/
grammar = modify(grammar);

return

}

/** This method is used for application testing only, it should be deleted from final product/
* * j

function modify(grammar)

{
if(grammar.indexOf("monty'')!=-1)

return "monty.jsgf";
else if(grammar.indexOf(“solar',)!=-1)

return "solarman.jsgf'';
else

return "judy.jsgf";

}

/****** Get next speech grammar link URI from response and return it. *******/
function getGrammarLink(response)

{
var ex=response;
var start=ex.indexOf('SIHLO_GRAMMAR=',0);
if (start == -1)

return -1;
ex=ex.slice(start+14);
var end=ex.indexOf(';',0);
ex=ex.slice(0, end);
return ex;

}

/** Get next interpreter URI from response and return it. *7
function getlnterpreter(response)

{
var ex=response;
var start=ex.indexOf('SIHLO_INTERPRETER=,,0);
if (start == -1)

return -1;
ex=ex.slice(start+18);
var end=ex.indexOf(‘;',0);

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%22+sv_loc+tmpGrammar

ex=ex.slice(0, end);
return ex;

}

/** Get next interpreter's greeting message from response and return it. **/
function getGreeting(response)

{

var ex=response;
var index;
if((ex.indexOf('GREETING=',0)) = -1)

return -1;
ex= ex.slice(9);
index = ex.indexOf('';",0);
ex = ex.substring(0,index);
/****** if greeting message is an empty string then return -2 as an error inditifier ********/
if(ex=="")

return -2;
return ex;

}

I** Update the text area in the HTML and show message on it. **/
function updateShowFrame(message)

{

logMsg +=message;

var objTable = document.getElementByldC'logFrame");

objTable.insertRow(O);
objTable.rows[0].insertCell(0);
objTable.rows[0].insertCell(1);
var cellO = objTable.rows[0].cells[0];

var celh = objTable.rows[0].cells[1];
celh .align="left";
cell0.align="left";
cell0.width="105'';
if(message.indexOf(“SYSTEM ERROR: “)!=-1)

{
var objFont = document.createElementC'font");
objFont.color=“red'';
objFont.size=''-1";
objFont.appendChild(document.createElement("b"));
objFont.firstChild.innerHTML = message.slice(0, message.indexOf(":")+1);
cellO.appendChild(objFont);

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

var objFont2 = document.createElementC'font");
var objlta = document.createElement("i");
objFont2.color="black";
objFont2.size=“-1
objFont2.appendChild(objlta);
celh .appendChild(objFont2);
objlta.innerHTML=message.slice(message.indexOf(":")+1);

Jelse

{
var index = message.indexOf(":");
var ex=message.slice(0,index+1);
var objFont = document.createElementC'font");
if(ex.indexOf(“QUESTION:")!=-1)

obj Font.color= "blue";
else

objFont.color=''green“;

objFont.appendChild(document.createElement("b“));
cellO.appendChild(objFont);
objFont.firstChild.innerHTML = ex;
cell1.appendChild(document.createElement("font"));
celh .firstChild.innerHTML = message.slice(index+1);

}
/****** Insert a row as an empty line after a response message. ***********/
if(message.indexOf("RESPONSE:")!=-1)

{

objTable.insertRow(O);
objTable.rows[0].insertCeli(0);
objTable.rows[0].colspan="2";
objTable.rows[0].cells[0].innerHTML = "
 ";

}

}

/** Setup the URI link for next interpreter, speech grammar from user input. And, setup
default greeting message. *7
function setupLinks()

{
setCookiefgrammar", document.getElementByld("id_grammarLink").value, 1);
setCookie("greeting", "Hi, I'm ready to answer your question now.1', 1);
setCookie("interpreter", document.getElementByld("id_cgiLink").value, 1);

reloadVoiceForm (false);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return

}

/** Reload VXML voice form. Check error messages if asked. **/
function reloadVoiceForm (errorCheck)

{
if(errorCheck==true)

{
if(error=="non-critical")

alert(''Some non-critical errors occured in the process. Please look at the error
message and press ok to continue.");

else if(error=="critical")

{
alert("Some critical errors occured in the process. Voice browser will continue from

the default page.'1);
setCookie("grammar“, 0);
setCookie("greeting",0);
setCookieC'interpreter",0);

}

else if (error!='"')

{

setTimeout(''window.location.reload()", 2000);

}

}

window.location.reloadO;

return

}

</script>

<!-- VoiceXML form. -->
<vxml:form id="vxml_fomn">
<vxml:field name="st_field“ xv:id="voice_input" modal=“true">

<vxml:grammar type=''application/x-jsgf" src="judy.jsgf" />
<!-- The following greeting will only speak out when user connects to a new interpreter.

- - >

<vxml:prompt cond="sayGreetings==true"xvxml:break
time="500ms"/xvxml:value expr="sv_greeting"/x/vxml:prompt>

<vxml:filled>
★*★★**★★★*****★★*******************

This "filled" element will be run after user speech input has recognized.
Inside this element, first step, i have assign the user input to the variable 'question',

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because VoiceXML code can access a JavaScript defined variable, but JavaScript can not
see a VoiceXML defined variable.

Then, in the next step, i call a JavaScript function "runCode()' to proceed AJAX submit
process.
* *

<vxml:assign name="sayGreetings" expr=“false7>
<vxml:assign name="question“ expr=''st_field7>
<1 —*********************

Calls to javascript mainControl() function to do the logical process based on user
voice input.

★★★★it******************** ^

<vxml:assign name="javacode“ expr="mainControl();7>
<vxml:promptxvxml:break time="300ms7xvxml:value

expr="answer"/x/vxml:prompt>
<!-- If the answer is not a link to next interpreter, then repeat the voice dialog. -->

<vxml:if cond="isLink==false">
<vxml:throw event=''repeat.st_field7>

</vxml:if>
</vxml:filled>
<vxml:catch event=''nomatch noinput“>

<vxml:prompt>Sorry, I don't understand, can you say it again?</vxml:prompt>
<vxml:reprompt/>

</vxml:catch>
<vxml:catch event=''help">

No help is available! Restart the dialog!
<vxml:clear namelist="st_field"/>
<vxml:reprompt/>

</vxml:catch>
</vxml:field>

<!-- Catch the 'repeat.st_field' event. -->
<vxml:catch event="repeat.st_field">

<vxm kclear namelist="st_f ield"/>
<!-- Restart the voice form without change the speech grammar. -->

<vxml:reprompt/>
</vxml:catch>

</vxml:form>

The following script will only be run after a 'vxmldone' event is thrown after the
VoiceXML form finish all its process.

It also means the answer returned from interpreter contains a link to next interpreter, so
it needs to reload the voice form in order to reload the speech-grammar file.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<script type=”text/javascript" id="reloadVoiceForm" declare=''declare,,>

reloadVoiceForm (true);

function reloadVoiceForm(errorCheck)

{

if(errorCheck==true)

{
if(error==“non-critical")

alert("Some non-critical errors occured in the process. Please look at the error
message and press ok to continue.");

else if(error=="criticar)

{
alertfSome critical errors occured in the process. Voice browser will continue from

the default page.'1);
setC ookiefgram m ar",0);
setCookie("greeting",0);
setCookie(" in terpreter" ,0);

}

else if (error!='"')

{

setTimeout("window.location.reload()", 2000);

}

}

window, location. reload();

return

}
</script>

<title>SpeechBrowser</title>
</head>
<body id="page.body“>
<centerxh2>Welcome to our new voice browser! </h2x/center>

<center>
<table>
<trxtd>CGI link:</td>
<tdxinput type="text“ name="cgiLink" id="id_cgiLink" size="30"
value="http://luna.cs.uwindsor.ca/~richard/judy/judy.cgi7x/tdx/tr>
<trxtd>Grammar link:</td>
<tdxinput type="text" name="grammarLink" id="id_grammarLink" size="30"

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://luna.cs.uwindsor.ca/~richard/judy/judy.cgi7x/tdx/tr

value=“http://luna.cs.uwindsor.ca/~xing4/judy.jsgf7x/tdx/tr>
<!-- Call setupLinks() function to setup the interprter and speech-grammar location
according to the above input text field value; -->
<trxtd colspan="2"xinput type="button” name=“submit“ value="Go"
onclick="setupLinks()"/x/tdx/tr>

</table>
<br/xbr/>
<table id=“logFrame" width=“60% "x/tablexbr/>
<b r/xb r/xb r/>
</center>
</body>

<!-- Call a script to reload the vxml form when the current vxml form has done its process.
- - >

<ev:listener ev:observer="page.body" ev:event=''vxmldone''
ev:handler="#reloadVoiceForm" ev:propagate="stop" />
<!-- Load 'vxmljorm' when the page.body loaded. -->
<ev:listener ev:observer="page.body“ ev:event="load" ev:handler="#vxmLform"
ev:propagate="stop" />

</html>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

http://luna.cs.uwindsor.ca/~xing4/judy.jsgf7x/tdx/tr

VITA AUCTORIS

Xiaoli Ma was bom in 1981 in the district of ShenYang city, People’s Republic of China. He

earned his B.Sc. in Computer Science with option in Software Engineering in 2004 from

University of Windsor, Ontario, Canada. Xiaoli Ma is currently a candidate for the Master’s

degree under the supervision of Dr. Richard A. Frost in the School of Computer Science at the

University of Windsor, Ontario, Canada and expecting to graduate in Summer 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

	Using X+V to construct a non-proprietary speech browser for a public-domain SpeechWeb
	Recommended Citation

	tmp.1619622082.pdf.Kei1H

