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ABSTRACT

CMOS analog multiplier is a very important building block and programming element in 

analog signal processing. Although high-performance multipliers using bipolar transistors 

have been available for 40 years, CMOS multiplier implementation is still a challenging 

subject especially for low-power and low-noise circuit design.

Since the supply voltage is normally fixed for analog multiplier structures, we use the 

total current to represent the power dissipation. Our basic idea for low power design of 

analog multipliers is to fit most o f the transistors into the linear region, while at the same 

time keeping the drain-to-souree voltage as low as possible to decease the drain current. 

And also, we use PMOS transistors for the devices working in the saturation region to 

further decrease the drain current and improve the linearity performance.

Two low power CMOS analog multiplier designs have been proposed in this thesis. We 

gave detailed performance analysis and some design considerations for these structures. 

Cadence Hspice simulation verified our analysis.

To ensure a fair comparison, we also simulated the performance o f a previous multiplier 

structure, which was considered to be one o f the best multiplier structures with low 

power and low noise performance. Extensive experiments and comparison for these 

structures show that the proposed CMOS analog multipliers have much less power 

dissipation than that o f previous structures, while at the same time, satisfying other 

performance requirements.

The proposed analog multipliers would be good choices in the applications where low 

power dissipation is an important consideration.
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CHAPTER 1 

INTRODUCTION TO ANALOG INTERGRATED CIRCUIT DESIGN

With the development of VLSI (very large scale integration) technology, digital signal 

processing is proliferating and penetrating into more and more applications. Many 

applications that have been traditionally implemented in analog domain have been moved 

to digital field. However, as we will see later, even though digital signal processing 

techniques have been introduced in more applications, analog circuits are still required.

Actually analog circuit designers are still in strong demand today. Even though many 

signal processing functions have been implemented in digital, some functions can not be 

replaced by digital signal processing, such as analog-to-digital and digital-to-analog 

conversion, anti-alias and reconstruction filtering and so on. These functions are 

fundamentally required to implement in analog domain, independent o f technology 

improvement.

1.1 Why is Analog Signal Processing Required?

While many types o f signal processing have indeed moved to the digital domain, analog 

circuits have proved fundamentally necessary in many of today’s complex, 

high-performance systems. Let’s consider a few applications where it is very difficult or 

even impossible to replace analog functions with their digital counterparts regardless o f 

advantages in technology [52].

Processing of Natural Signals: Naturally occurring signals are analog-at least at a
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macroscopic level. Since all of these signals must eventually undergo extensive 

processing in the digital domain, we observe that these systems consist o f an 

analog-to-digital converter (ADC) and a digital signal processor (DSP). The design of 

ADCs for high speed, high precision, and low power dissipation is one o f the difficult 

challenges in analog design.

Digital Communication: When binary data generated by various systems, this signal 

must often be transmitted over long distances. Therefore, the signal would experience 

some attenuation or distortion. We need multi-level receiver to improve the quality of 

communication. Utilized extensively in today’s communication systems, multi-level 

signal necessitates a digital-to-analog converter (DAC) in the transmitter to produce the 

multi-levels and an ADC in the receiver to determine which level has been transmitted.

Disk Drive Electronics: When the data stored in the hard disk is read by a magnetic

head, the noise content is quite high, and the bits experience substantial distortion. 

Therefore, the analog filter and amplifier are needed to remove the distortion. The design 

o f these building blocks poses great challenges as the speed o f computers and their 

storage media continues increase every year.

Wireless Receivers: The signal picked up by the antenna o f a radio-ffequency (RF) 

receiver exhibits small amplitude and the signal is accompanied by large interferes. Some 

analog circuit is needed to amplify the low-level signal with minimal noise and withstand 

large unwanted components.

Optical Receivers: For high-speed data transmission, optical receivers are needed,

where the data is converted to light and transmitted over an optical fiber. The receiver 

must process low-level signal at very high speed, requiring low-noise, broadband analog
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circuit design.

Microprocessors and Memories: Today’s microprocessors and memories draw upon a 

great deal o f analog design expertise.

Basically, we need analog-to-digital converters (ADC) to digitize the input signal, and 

digital-to-analog converters (DAC) to reproduce the analog signal after digital signal 

processing. And also, analog pre-processing (before the ADC) and post-pressing (after 

the DAC) are needed, such as amplification, filtering and equalization.

Ph^ical World 
(in An

A ra log  > 
Pro- < A.'D D i^ a l Sipriai - *

Conversion f%ocessing
^rocessin#

Analog
Post-

rocessi

amplification, 
filtering, and etc

amplification, 
filtering, and etc

Fig. 1.1 ADCs, DACs, and pr-/post- processing analog circuits are required to interface the DSP core 

and the physical world
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1.2 The Difference of Digital Circuits and Analog Circuits

Table 1.1 The difference of digital circuits and analog circuits

Analog Circuits Digital Circuits

Signals are continuous in amplitude 
and can be continuous or discrete in 
tim e

Signal are discontinuous in 
amplitude and time - b inaiy  signals 
have two am plitude states

D esigned at the circuit level Designed at die system s level

Com ponents m ust have a continuum  
o f  values

Com ponent have fixed values

Customized Standard

CA D  tools are difficult to apply CAD tools have been extrem ely 
successftil

Requires precision m odeling Tim ing m odels only

Perfonnance optim ized Program m able by softw are

IiTegnlar b lock Regular blocks
D ifficult to route autom atically Easy to route autom atically

Dynam ic range lim ited by pow er 
supplies and noise (and linearity)

Dynam ic range unlim ited

We use the table above as a summary o f the difference between the analog and digital 

circuits [57].

1.3 Integrated Circuit Technologies

Integrated circuits were invented in late 1950s, at Texas Instruments, Inc. In 1970s, 

Gordon Moore, one o f the founders o f Intel, predicted that the number o f transistors per 

chip doubles every one and half years. The minimum channel length o f MOS transistors 

dropped from 25um in 1960s to 90nm in the year o f 2002, with the benefit o f much 

higher complexity, smaller volume and higher speed. Without integrated circuit
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technologies, computers might still be as huge as ENIC, and mobile phones would be as 

big as suitcases [56].

With the continued scaling 
down of semiconductor 
technology, more and more 
devices could be integrated 
onto a single chip.

Feature O.e^m 0.35j.im 0 .18pm
size

System on a chip 
integratiai--^ DOSDBnBBDaDB

M)C DAC
RAM ) Filter

RAM

t r

Fig. 1.2 Mixed-signal system-on-chip integration

Nowadays, most o f the integrated chips have both analog and digital circuits. This is 

called mixed-signal integration, which penetrating into every comer o f our everyday life, 

from supercomputers, space probes and medical diagnostic equipment, to printer, DVD 

players, cellular phones and children’s toys. Digital circuit design is mostly automated 

from logic synthesis to placement and routing, while analog circuit design remains as an 

almost all-handcrafted art.

1.4 CMOS, Bipolar and BiCMOS Technologies

CMOS and Bipolar in silicon are the two mainstream semiconductor technologies. 

BiCMOS is the combination o f the above two, which has both CMOS and Bipolar 

transistors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CMOS technologies have the advantages o f [56]

•  Very large scale integration of both high-density digital circuits (such as DSP and 

memory) and analog circuit (including amplifiers, filters and A/D-D/A converters) 

for low cost.

•  Ideal properties o f MOS switches for high accuracy sample-data circuits, such as 

switch-capacitor filters and A/D-D/A converters.

•  New CMOS technologies with smaller feature sizes (such as 0.25um and 0.1 Sum) 

can operate at increasingly high speed (5GHz) comparable to some bipolar 

technologies.

Bipolar silicon technologies have the advantages o f [56]

•  Bipolar transistors can operated at higher frequencies than CMOS with relatively 

smaller power consumption.

•  Suitable for pure analog integration with relatively high operating speed (such as RF 

circuits) or relatively high power (such as ADSL line drivers) applications.

•  Digital circuits in bipolar are power hungry, prohibiting very larger scale integration.

BiCMOS technologies have most advantages o f both CMOS and Bipolar technologies

but at the expense o f higher manufacturing cost due to required extra processing steps.

Thus CMOS technologies become mainstream technologies for mixed-signal integration

due to the advantages o f low cost and high integration density.

1.5 The Analog IC Design Process

The analog circuit design would be a very complex work, which requires deep

understanding o f the transistor models, experience and kinds o f talents. While, most of
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the design work should follow the process as below [57]:

1 f

Physicai deflflttton

asJOc extracBon

Physical veritlcalSon

ConcepOon o f the Idea

DeBnttlon of the dsRilgn

Comparison 
with design 

speciOcatloiis

Fig. 1.3 The analog IC design process
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CHAPTER 2 

FUNDAMENTAL TO CMOS ANALOG MULTIPLIERS

Real-time analog multiplication o f two signals is one of the most important operations in 

analog signal processing. The multiplier is used not only as a computational building 

block but also as a programming element in systems such as filters, neural networks, and 

as mixers and modulators in a communication system. Although high performance 

bipolar junction transistor multipliers have been available for a long time, the CMOS 

multiplier implementation is still a challenging subject especially for low-power and 

low-noise circuit design. Despite the large number o f papers proposing new MOS 

multipliers, they can be roughly grouped into a few categories. This chapter will provide 

a complete survey o f previous CMOS multipliers, and use it as the basis o f our research 

work in this field.

2.1 Analog Multiplier Introduction

Multipliers perform linear products of two signals x and y, yielding an output as z=Kxy, 

where K is a multiplication constant with suitable dimension. Multipliers are often 

categorized as single-quadrant (x and y are uni-polar), two-quadrant (where x or y can be 

bipolar), and four-quadrant (where both x and y can be bipolar). Modulator and mixer are 

particular cases o f multipliers that are designed with noise and frequency constraints. The 

history o f the analog multipliers is originated from its use as a mixer and as an amplitude 

modulator that involves a multiplication o f two signals.
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=: /net7 =: /net?

i: /nets : /net5

(a) Frequency doubler

Ouput z

Input X

Input y

(b) Signal modulator

Fig. 2.1 The example of analog multiplier application (a) frequency doubler and (b) signal modulator

The basic idea o f the multiplier implementation is illustrated in Fig 2.2. Two signals 

Vj(0 and are applied to a nonlinear device, which can be characterized by a

high-order polynomial function. This polynomial function generates terms like vf(/),

Vj (0 , vf ( 0 ,  Vj ( 0 ,  vf (t)v^ (t) and many others besides the desired Vj {t)v^ ( t ) . Then it

is required to cancel the undesired components. This is accomplished by a cancellation 

circuit configuration.

A multiplier could be realized using programmable transconductance component. 

Considering the conceptual transconductance amplifier of Fig 2.3, where the output

current is simply given by ig =  and
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vi(0

V2 0 )

Nonlinear Device
Nonlinear

cancellation

Ground

Fig 2.2 Basic idea of multiplier implementation (1=1,2...,n)

bias

V8

Fig. 2.3 Transconductance model

Vu

bias

= G^, {Ifjias) for bipolar tranconductance, we have

where is the thermal voltage ( k T / q ) .

Next, a small signal ^  is added to the bias current. The second input signal Vj can be 

converted in to a current (0 =  (0 • Then, the output eurrent yields [52]

= (2 .1)
2V, ' 2V,2V, 2V,

or i„ ( 0  =  ,̂Vj (OV2 ( 0  +  ^2^1 ( 0

Thus, lo ( 0  represents the multiplication of two signals v,(0 and V2(0 , and an

10
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unwanted component ( t ) . This component can be eliminated by some cancellation

structure. This is the basic operation principle o f a Gibert Cell [1-2]. Operational 

transconductance amplifier based implementations are reported in [3-4].

As the digital technology dominates in modem electronics, analog circuits are required to 

share the same standard CMOS process for low-cost fabrication. Thus, the popular BIT 

Gibert Cell is not suitable in a standard digital process, and the designers must address 

low power supply voltage requirements. One problem the designers often encounter is 

how to select the best multiplier architecture for their application. Here, in this chapter, 

we will talk about the existing multiplier stmctures, and also their cons or pros.

2.2 Operation Modes and Circuit Topologies

Despite o f many reported circuits, all cancellation methods can be categorized as two 

groups (single-quadrant multipliers and square law device) [52]. Since the single-ended 

configuration cannot achieve complete cancellation of nonlinearity and has poor supply 

rejection ration (PSRR), a fully differential configuration is necessary in a sound 

multiplier topology. The multiplier has two inputs, therefore there are four combinations 

o f two differential signals, i.e., (x,y), (-x,y), (x,-y), and (-x,-y).

The topology o f Fig 2.4(a) is based on single-quadrant multipliers, while Fig 2.4(b) is 

based on square law device. These topologies achieve multiplication and simultaneously 

cancel out all the higher order and common-mode components (X and Y) based on the 

following equalities

[(X + x){Y + y)  + ( X -  x)(Y -  y)] -  [(X -  x)(Y + y) + ( X  + x)(Y - y )  = 4xy (2.2)
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4xy

- X

Fig. 2.4(a) Multiplier topology based on single-quadrant

x + y

- x  + y  

- x - y  

x - y

x  ̂+ 2xy + y Sxy

x  ̂-  2xy + y

Fig. 2.4(b) M ultiplier topology based on square law device

or

l [ (X + x) + (r + y ) f + [ ( X - x )  + ( Y - y ) f ] -

{ H X - x )  + a  + y ) f + l ( X  + x ) + ( Y - y ) f }  = Sxy (2.3)

respectively. Note that, lower case letters represent small signals and higher case letters 

represent DC bias (common-mode components).

MOS transistors can be used to implement these cancellation sehemes and the

12
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fundamental operation in transconductance multiplier because the MOS FET is a 

transconductance device. The simple MOS transistor model is expressed as

K\V^V„ - ids
2

when

1
- 2 V ^ K - V t ]

when r ^ > K ,,a n d  V ^ > V „ - V ,ds gs T

(2.4)

(2.5)

for NMOS transistors in its linear and saturation regions, respectively. Here, 

W
K  = —  and Vj. are the conventional notation for transconductance parameter and

the threshold voltage o f the MOS transistors, respectively.

±x

±x

± v  (e)

+ x

0
i i

+
1

(c)

O

±x +

± x  ± y

±x

^ ( d )

±y (h)

Fig. 2.5 Voltage signal injection methods

Fig 2.5 shows the application methods o f two signals (x and y) in a MOS FET. The small 

circle on the transistor terminal represents a fixed biasing voltage, x and y are

13
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time-variable voltage signals, disregarding the bias. The first three methods are used for 

operation in their linear region and the rest are for transistors working in the saturation 

region. The signal injection methods (b), (d) and (g) in Fig 2.5 require a voltage summing 

circuit, but this extra circuit could affect the total power consumption.

We use the following table 2.1 as a summary of all 8 kinds of signal injection methods.

Table 2.1 Summary of operation modes

Operation region Signal injection 

method

Active term CanceUation

method

Comment

Linear Fig 2.5 (a) V V .gs as
Single-quadrant Practical

Linear Fig 2.5 (b) Square

device

Not practical

linear Fig 2.5 (c) Single-quadrant Not practical

Saturation Fig 2.5(d)
<

Square

device

Not practical

Saturation Fig 2.5(e)
<

Square

device

Practical

Saturation Fig 2.5(f)
^gs^T H

Single-quadrant Not practical

Saturation Fig 2.5 (g)
<

Sqnare

device

Practical

Satnration Fig 2.5 (h)
<

Square

device

Practical

14
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2.3 Multipliers Operation in the Linear Region

We can cluster all transconductance multipliers into two groups based on the MOS 

operation region, linear [5-21] and saturation [22-49].

Y + y

X  +  X

M2

Ml

^ds S r X g s l  

^ds\ ^on^ds

Fig. 2.6 Linear transconductance

Linear transconductance:

First we introduce a programmable linear transconductance and show how it can be used 

to yield a multiplier. In Fig 2.6 [5], M l works in the linear region while M2 operates in 

the saturation region when proper bias voltage X and Y are provided. For small signal 

model, we have the relationship as follow:

"̂ dsi -  K J  and i  =  g m i y

Therefore, we have Vds\ ~  ^ o n S m iy

We could use signal y to control o f transistor M l. That is the basic idea o f linear 

transconductance.

15
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Using '^gs^ds :

There are different structures to implement the multipliers operating in linear region 

based on the linear transconductor in Fig 2.6. The structure below is an example [14].

Y + y

M3M l M 2

X - x

Y - y

X  + x

Fig. 2.7 Four-quadrant analog multiplier using V Vg s  ds

In Fig 2.7, we combine two linear transconductance to implement the multiplier. For the 

4 columns currents, we have

I , = K ( X  + x - V „ - ^ ) y

I , = K ( X - x - V „ - ^ ) y  

I , = K ( X  + x - V „ + ^ ) ( - y )

I , = K ( X - x - V „ + ^ ) ( - y )

Then, w e have I ^ = ( I ^ + I ^ )  —(12+ 14) = 4Kxy  (2 .6)

which is the multiplication o f two signals, where K is a constant. Some work has been 

done to optimize the current-efficiency with this kind of multipliers [55].

16
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Using Vds

Y + y

Ground

Fig. 2.8 Multiplier using Vds

The MOS transistors working in the linear region has a square term . This term can be

used to realize the cancellation method in (2.2). In Fig 2.8, sum and difference o f two 

input signals are applied to the gate o f source followers M2 and they control the drain 

voltage o f M l that operates in the linear region [50]. However, the linearity o f this 

configuration is poor.

2.4 Multipliers operation in the saturation region 

Using with gate and source injection:

A four-quadrant multiplier working in the saturation region can be implemented by four 

cross-coupled transistors as shown in Fig 2.9 [22-23]. The output current yields

17
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Ig — /„] — Ig2 — ^ K x y  based on (2.3) and (2.5).

o2

■X +  X

Y  + yY - y

Fig. 2.9 Multiplier using with gate and source injection

Using Ygs with voltage adders:

X - x

Y+ y

Ground

Fig. 2.10 Multiplier using 3^^ with voltage adders

This multiplier architecture is based on the nonlinearity cancellation o f Fig 2.4 (b) and

18
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voltage summing circuits. Four cross-couplcd transistors with voltage summer realized a 

four-quadrant multiplier as shown in Fig 2.10. The output current can be obtained based 

on (2.3) and (2.5). Reference [41] provides a summary o f this multiplier type. A recent 

paper [54] provides a couple o f structures that use low supply voltage. As they require 

additional transistors, they do not have any advantage over other types.

Using Vth with substrate terminals:

The substrate o f MOS transistors can be used as an additional input terminal as long as 

the substrate-source junction is kept reverse biased. The substrate potential controls the 

threshold voltage for the NMOS transistor as

K h = Vtho + - ^ / ^  (2.7)

7 - t F  +  j;

Fig. 2.11 Using with substrate terminals
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where VjfjQ is the threshold voltage when =0, Y  is the body effect coefficient and

Op is the Fermi potential [52 ]. Substitute in (2.5) with (2.7), the configuration

shown in Fig 2.11, based on (2.3), gives

y  3̂Y + A]x-- 4 K y -xy
2 \ ^ , \ - Y + s

The approximation is valid only if  2|Op | -  7  4- 5' » y .  This kind o f analog multipliers is 

shown in Fig 2.11. However, the linearity of this configuration is poor.

Using MOS Gilbert Ceil:

o2

7  +  7

Ground

Fig. 2.12 MOS Gilbert Cell multiplier

MOS Gilber Cell comes from the Bipolar Gilbert Cell [1], and it is the earliest 

implementation o f multiplier with CMOS technology. The differential output currents 

fi'om two differential pairs are subtracted, yielding
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The output current, is generated by another differential pair as

= ■sĴ K̂ y . Thus, the MOS Gilbert multiplier shown in Fig 2.12 yields

~ 7̂ 2 = 2yj2KK^xy where x and y are both voltage signals. As its linearity is poor, 

several modified versions have been reported [44-49].

2.5 Comparison of Different Multiplier Structures

Some limited qualitative comparisons are summarized in table 2.2. From this table, we 

could observe that the circuits in Fig 2.7 and Fig 2.9 have the properties above the 

“average multipliers”. Therefore, we try to do some simulation for these two structures 

about the linearity, power dissipation and noise in order to find a topology with the best 

average performance as a reference for our future research work.

Table 2.2 Comparison of different multiplier structures

Structure Worse than Rem ark

Fig 2.7 Good linearity 

Low supply voltage

Fig 2.8 Fig 8 Require additional circuitry 

Poor linearity

Fig 2.9 Good linearity

Fig 2.10 Fig 10 Require additional circuitry

Fig 2.11 Fig 10 Poor linearity

Fig 2.12 F igs Poor linearity 

High supply voltage
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Fig. 2.13 The comparison of total current for Fig 2.7 and Fig 2.9
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Fig. 2.14 The comparison of input noise for Fig 2.7 and Fig 2.9
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We compare these two structures with simulation result. The linearity o f x signals in Fig 

2.7 is better than that in Fig 2.9. The linearity o f signal y in Fig 2.9 is better than that in 

Fig 2.7. The power supply current can be explained as power consumption supposing the 

same supply voltage. The total current in Fig 2.7 is lower than the total current in Fig 2.9 

(see Fig. 2.13). The input noise o f Fig 2.7 is much lower than that o f Fig 2.9 (see Fig. 

2.14). We can see, that from our analysis, the circuit in Fig 2.7 has best performance.

Although a large number o f analog multipliers are reported, they fall into eight categories 

described in this chapter and summarized in Table 2.1. Several multiplier architectures do 

not have any clear advantage over others. As the current trend of circuit design is low 

power and low noise, the circuit in Fig 2.7 seems to be the one o f the most attractive 

high-performance multiplier structure [51], which provides us a basis for our further 

research.
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CHAPTER 3 

BASIC IDEA OF ANALOG MULTIPLIER DESIGN

In this chapter, we talk about our basic idea for the CMOS analog multiplier design. This 

idea comes from our deep research over 70 multiplier structures in the literature survey. 

And also, we talk about the basic performance metrics that we have to consider during 

our design o f structures.

3.1 The Performance Metrics of Analog Multipliers

Linearity: As we know, the basic building block of analog multipliers is the 

transconducance amplifier. The input-output characteristic o f transconductance amplifier 

is generally a nonlinear function that can be approximated by polynomial over some 

signal range:

i { t )^  a^+a^x{t) + ........+ a^x"{t) (3.1)

For a sufficient o f narrow range o f x, we could have

i { t)~a^ + a^x{t) (3.2)

where CIq can be considered the operating (bias) point and Cl\ the small signal gain. 

So long a&a^x{t)«  , the bias point is disturbed negligibly. The higher order terms

are insignificant. In other words, Af =  a, Ax indicating a linear relationship between the 

input and output.

For an analog multiplier, which is the combination o f some amplifiers, there should have 

some linear relationship between the input and output as
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z  =  K x y

This relationship can be gotten from equation (3.1) for all working transconductance 

amplifier by canceling the higher orders and bias voltages. We could see that the linearity 

between the input and output is the most important performance and it is the basis of 

analog multiplier design. As this linear relationship is gotten from the approximation in 

(3.1), sometimes, in order to get accurate relationship, we have to infer to the large-signal 

analysis.

Input Range: We hope the analog multipliers we designed can be used in different 

environment, that is, the input signal could have very large magnitude or very small 

magnitude. But on the other hand, in order to keep the transistors in the suitable working 

region (linear or saturation), we have to limit the magnitude o f the input signal. In general, 

the linearity would be degraded if  the input range increases. Therefore, the input range 

(voltage swing) is one o f the important performance metrics we have to consider.

Power Consumption: With the nowadays’ trend to the low voltage and low power 

design in the analog field, we try to decrease the power consumption in our design, which 

is the main aim o f our research work presented in this thesis.

Noise Performance: Noise is also an important consideration in analog multiplier design, 

especially for the small-signal application. Noise limits the minimum signal level that a 

circuit can process with acceptable quality.

Analog signals processed by integrated circuits are corrupted by two different types o f 

noise; device electronic noise and “environmental” noise. In this thesis, we will focus on 

the electronic noise. The electronic noise consists o f thermal noise and flicker noise 

mainly.
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MOS transistor exhibits thermal noise, which is because of the resistor component in the 

transistors. It can be proved [52] that for long-channel MOS devices operating in the 

saturation, the channel noise can be modeled by a current source connected between the 

drain and source terminals as; i l  = AKTyg^df. Here the coefficient Y  is derived to be

equal to 2/3 for long-channel transistors and may need to be replaced by a larger value for 

small size transistors. For transistors working in the linear region, we have

l l  = A K T g J f m .

Flicker noise is another important source o f electronic noise for MOS transistors. When 

charge carriers move at the interface between the gate oxide and the silicon substrate, 

some are randomly trapped and later released, introducing “flicker” noise in the drain 

current. The flicker noise is more easily modeled as a voltage source in series with the 

gate and roughly given by k  i [52], that is, the noise spectral density is inversely
“  "  C^^WL f

proportional to the frequency.

The natural approach to measure the noise is to set the input to zero and calculate the 

total noise at the output due to various sources o f noise in the circuit. While intuitively 

appealing, the output-referred noise does not allow a fair comparison of the performance 

o f different circuits because it depends on the gain. To overcome the above quandary, we 

usually specify the “input-referred noise” o f circuits. The idea is to represent the effect of

all noise sources in the circuit by a single source, at the input such that the output 

noise is equal to the input-referred noise times the gain.

In addition, speed, gain, input and output impedance may be important for specific 

applications. In practice, most o f these parameters trade with each other, making the
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design a multi-dimensional optimization challenge. Illustrated in the “analog multiplier 

design octagon” o f Fig 3.1, such tradeoff provides many challenge in analog design, 

requiring intuition and experience to arrive at an acceptable compromise.

Noise Linearity

Power dissipation Gain

Input/output impedance Supply Voltage

Speed ^ .......► Voltage swings

Fig. 3.1 Analog multiplier design octagon.

3.2 Differential Structure

The differential structure is among the most important circuit inventions, and has become 

the dominant choice in today’s high-performance analog and mixed-signal circuits.

A single-ended signal is defined as one that is measured with respect to a fixed potential, 

usually the ground. A differential signal is defined as one that is measured between two 

nodes that have equal and opposite signal excursions around a fixed potential. In the strict 

sense, the two nodes must also exhibit equal impedances to that potential. Fig 3.2 

illustrates the two types o f signals conceptually.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



outin Viini Voutl Vout2

I L
Viin2

(a) (b)

Fig. 3.2 (a) single-ended signals and (b) differential signals

An important advantage o f differential operation over single-ended signaling is higher 

immunity to “environmental” noise. Supposing that two adjacent lines in a circuit carry a 

small, sensitive signals and a large clock waveform, transitions on one line will corrupt 

the other line. If we use the differential structure, and the clock line is placed midway 

between the two, the transition disturbs the differential phase by equal amount, leaving 

the difference intact.

Another useful property o f differential signaling is the increase in maximum achievable 

voltage swings. Other advantage o f differential circuits over single-ended counterparts 

includes simpler biasing and higher linearity.

While it may seem that differential circuits occupy twice as much area and power 

consumption as single-ended alternatives, the advantage it brings us outweighs the 

disadvantage we suffer. Therefore, we will use the differential structure in our analog 

multiplier design.

3.3 The Basic Idea of Low Power Design

For previous CMOS analog multiplier design, most transistors are biased to operate in the
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saturation region where the drain current Id of the device is given by [52]

h  + (3.3)

where K  ^  ^C ox W/L and Vm  are the transconductance parameter and the threshold 

voltage o f the device, respectively, and X represents the charmel-length modulation effect 

for long channel devices.

Because the power consumption o f an analog circuit can be expressed as

P  =  (3.4)

while supply voltage is normally fixed for a certain circuit, we could use the total current 

to represent the power consumption. It can be seen that in the saturation region, the low 

power consumption requires a small Vqs that leads to the reduced input range. A simple 

example is shown in Fig. 3.2 where two signals are injected to the two transistors in 

series (see Fig. 3.2 (a)) or in parallel (see Fig. 3.2 (b)). The series structure has less power

consumption, but with a smaller input range since Vos must satisfy Ok V^^-

for the transistors to operate in saturation region. In contrast, the parallel structure as 

shown in Fig. 3.2 (b) has a bigger input range while the two devices would draw more 

current from the power supply.

Therefore, there is a tradeoff between the input range and the power consumption, which 

provide a real challenge to the analog multiplier designers.

At the same time, we realized that by biasing the transistors to operate in the linear region, 

we could reduce the drain current while keeping a relatively large input range. The drain 

current in linear region is given by [52]

(3.5)
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(b)(a)

Fig. 3.3 Power consumption and input range for (a) series structure and (b) parallel structure

Since in the linear region, the overdrive voltage can be biased to

increase the input range. The drain current could remain a proper value by decreasing the 

Vds, keeping the power dissipation at the same level.

Our basic idea for low power design of analog multiplier is to fit most o f the transistors 

into the linear region, and also keep the V ds as low as possible to decease the drain 

current. Actually, some o f designers have tried to design the analog multipliers with most 

transistors working in the linear region, but nobody has given the basic design idea for 

this type o f analog multipliers. And another problem we have to solve is that the 

multipliers in this type have worse linearity compared with most multipliers working in 

the saturation region. We try to design some multipliers with less total current, thus less 

power consumption, and with less noise, if  applicable, while at the same time, keep good 

linearity.
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The basic design flow o f our structure can be shown as below in Fig 3.4. We should do 

the theoretical computation and analysis first to find an analog multiplier with good 

performance. Then we do the simulation by Hspice simulator in the schematic level about 

the performance o f power consumption, noise and linearity, to verify our analysis before. 

After that, we transfer to the layout level to implement the circuit with more details. In 

order to help us to do good job in this level, we should make the layout verification by 

the DRC, TVS and Extraction. And also, we have to do the simulation in this level by 

Hspice to verify that the performance has no big change in this level. When all o f this 

work has been done, we would send the design data to CMC to get the circuits fabricated 

and after we get the chip we will do the test to give the final verification.

Theoretically Computation and Analysis

Simulation in he Schematic Level and Verification

1
Layout

i
Layout Verification (DRC, LVS and Extraction)

i
Simulation in the Layout Level and Verification

i
Fabrication and Testing

Fig. 3.4 Design flow of our structures
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CHAPTER 4 

FIRST ANALOG MULTIPLIER STRUCTURE

In this chapter, we present a low power and low noise analog multiplier operating with 

1.5V supply voltage. The eore structure consists of only 6 transistors and brings in the 

benefits in terms o f power eonsumption, noise performance and linearity. Some design 

considerations are also provided. The extensive experiments with Hspice simulation 

show that this new structure is particularly attractive for low power and low noise 

applications. We hope we could summarize our design idea by the practice o f this design.

4.1 Circuit Topologies and Theoretical Analysis

Fig 4.1 shows the proposed CMOS analog multiplier structure, whieh consists o f 4 

NMOS transistors (M1-M4) operating in the linear region and 2 NMOS transistors 

(M5-M6) working in the saturation region. The drain current U  o f the NMOS transistors 

in the linear region is expressed as [52]

I o=K{ { Vas - Vr H) Vus - kv ^Ds ]

Assuming that all transistors in Fig 4.1 are biased to operate in a proper (linear or 

saturation) region, we show, in the following, that this topology achieves multiplication. 

We suppose that (a) all transistors in Fig 4.1 have same threshold voltage V th, (b) the 

M1-M4 have same transconductance parameter Ki (i.e., Ki=K2=K3=K4=Ki) and (c) the 

M5-M6 have the same transconductance parameter K„ (i.e., K5=Ke=Ku), we have
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VDD=1.5V

Vbias=lV
M5 M6

Vol Vo2

X+x X+x
M l M2 M3

X-x

Y+y Y-y

Fig. 4.1 Our first multiplier structure

where

i ^ = K , [ X  + X - Y

i , = K , [ X  + x - Y  + y - V , , ) V , , , - ^ V l , , ]

i , = K X X - x - Y  + y - V , , ) V , , , - ^ V l , , ]

^ D S x = ^ o x - ^ - y

^ D S 2 = ^ o 2 - Y - y

^ D S 3 = K x - Y + y

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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^ D S A = K i - Y  +  y  (4.8)

The drain current in the saturation region can be shown as

I o = \ K ( V c ! , - y T j i l  + ^ y m )  (4-9)

Ignoring/I in (4.9) since it is very small, the drain current of M5 and M6 are

(4.10)

(4.11)

respectively. By solving the above equations for small signals x and y, the differential 

voltage Voi-Vo2 can be approximated as

(4.12)

whieh represents the multiplication o f two signals. Thus, for a given DC bias, the input 

range of the multiplier can be influenced by . However, there is a minimum value o f

K, in order to keep M1-M4 operating in the linear region. While it exhibits a strong

ability o f canceling nonlinearity, the approximation in (4.12) still introduces a linearity

error if: (a) the difference of Vth for transistors in saturation region and in linear region 

has to be considered, (b) the higher-order effects of the devices (such as body effect and 

channel-length modulation) need to be taken into account, or (e) other issues such as 

temperature and possible device mismatch are not ignored.

To realize multiplication, proper bias arrangements for all transistors in Fig 4.1 are 

required. The bias condition can be written as:
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r

<

Y ± y <  K M K , )  <

K>i ’ K>2 ^ — ^ ~ ^ m  (4.13)

-  0 < r ± y < X ± x - V ^ ^  

where and are determined by (4 .1)-(4 .11). If K i I K  increases, K„,(or 

y j  would decrease, leading to the increased input range for x and reduced input range

for y since (or V̂ 2 ) ''^^st meet: Y + y  <V^^,V^2 < ^ ~ ^ ~ K h  ■ However, increasing

X-Y can improve the input range for both x and y. Typical values to be used are:

V dd=1 .5V, X=1.3V, Y=0.2V, V th = 0 .6 V , and Voi=Vo2 = 0.22V (when x=y=0, Vb=l .OV and 

K,=Ku).

One disadvantage with the structure in Fig 4.1 is that the input range for signal y is 

limited. To solve this problem, one can add two signal attenuators at the input terminals 

o f y, as shown in Fig 4.2. The signal attenuators consist o f 4 NMOS transistors (i.e., 

M7-M10) operating in the linear region. The aim of the attenuators is to transfer the large 

signal in the input terminals into a small signal for increased input swing. The M7-M10 

should be biased properly such that z=cy, where c is a constant (c<l).

M 9 M M

- z

M 7

CSrm tnd

Fig. 4.2 Multiplier structure with signal attenuators
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However, the use o f attenuators introduces more power consumption and device noises. 

Therefore, this structure can be used in the application where the input range is an 

important consideration while the power and noise are not. In the following, we will 

present the performance analysis and discussion on the core structure in Fig 4.1 only.

4.2 Perfonnance Analysis

The perfonnance metrics for the multipliers include the linearity, input range, chip area 

cost, power consumption, frequency range, and noise. Some of them can he more 

important than others, depending upon applications. It is not uncommon that some 

measurements are contradictory. When this happens, a reasonable tradeoff has to he 

made.

In this section, we give a quantitative analysis on power dissipation and noise for the 

proposed multiplier. The other metrics will he discussed together with experiments in the 

next section.

Power Dissipation: As we have talked before, normally the supply voltage for certain 

circuit is fixed. Therefore, we could use the total current in the structure to represent the 

power consumption. For the proposed structure in this chapter (Fig 4.1), the total current 

is given by

^total ~  h h  h  h

from (4.1)-(4.4) and (4.10)-(4.11), we have

+i ,  = 2 K , ( X - Y - V „ ) ( V , , - r )  + 2K, (x + y ) y  (4.14)

! , + : , = 2 K , ( X - Y - V , „ ) ( y ^ , - Y )  + 2 i : , ( - x + y ) y = ^ K „ ( V , - V „ , - F „ r  (4.15)

and
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L , . ^ = 2 K , ( X - Y - K , ) ( K , + K , - 2 Y )  + 4 K y  (4.16)

This implies that the power dissipation can be reduced if  any o f X-Y, Ki or y decreases. 

But too low values o f X-Y and K| could negatively affect the input range. Note that even 

though (4.16) is not directly related to K„, the increased Ku could raise both Voi and Vo2 , 

resulting in more power dissipation. Also, the output current is less sensitive to x, 

suggesting that the smaller signal o f the two inputs be applied to y for more power 

savings.

Noise Performance: Noise is another important consideration in designing multipliers, 

especially for small-signal applications. The total output noise o f Fig 4.1 is given by

1
C  = 4 i ; * ,+ 2 C „  +  (4.17)

where

g ,= 2 ^ K ,K ^ (X -Y -V r M - Y )

It can be shown from (4.1)-(4.11) that the transconductance o f the multiplier is 4Ki, and 

hence the input-referred noise voltage is

oc ! ^ [ ( x - + - Y - V , „ X K  -  ^" 16 :̂; K, ° 3^ a:,

This suggests that / X, should be increased to improve the noise performance. We

should make a tradeoff between power dissipation and noise by selecting a proper value 

ofKi.
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4.3 Experiment and Discussions

In order to estimate the performance o f the proposed structure, we used the Cadence 

Hspice simulator to conduct the experiments on linearity, power dissipation and noise etc. 

We simulate the circuit in Fig 4.1 using standard 0.35um CMOS technology with supply 

voltage 1.5 V. Unless otherwise specified, all transistors use the identical size 

W/L=0.7u/0.35u. Circuit is biased to have the typical values (i.e. X=1.3V and Y=0.2V) 

with input range o f ±0.2 V for signals x and y (i.e. 2x=2y=0.4V).

Linearity: First we take a look at the DC transfer characteristics o f E>, -  versus x

and y for this structure with X=1.3V and Y=0.2V. The results are plotted in Fig 4.3 (a) for 

signal X and (b) for signal y. Comparing this two graphs, the linearity o f signal x is better 

than that o f signal y, because it has a more linear curve by the DC response.

90m

50m

-30m

-70m
1.4 1,51.2 1.3

Fig. 4.3 (a) DC response for signal x (with body effect)

When we talk about the linearity, we have to consider the body effect, which is because 

that the substrate o f the MOS transistors is not tied to the source.

Actually, the threshold voltage o f the transistor is a function o f the total charge in the 

depletion region (Qa) as the gate charge must mirror the charge Qa before the inversion
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layer is formed. Thus, as Vb, the substrate voltage drops and Qd increase, V th  also 

increase. It ean be proved [52] that with body effect, we have

^TH ~  ^mo "*■ — .y/|20^|) (4.19)

90m

30m

-30m

-90m
0.00 100m 200m 500m 400m

Fig. 4.3 (b) DC response for signal y (with body effect)

Therefore, because o f the body effect, the linearity would become worse. Fig 4.4 shows 

the linearity error o f signal x and signal y with and without body effect when the 

measured signal increased from 0 to 0.2V. And also, from the two graphs, we see that the 

linearity error o f y is more than that o f x.

Linearity Error [%] 

0.5

0.25

^ ---------1
With body effect

Witnout body ettect

0.2 0.3 0.4 2x [V]

Fig. 4.4 (a) The linearity error of signal x with and without body effect.
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Linearity Error [%] 

3

1

0

With body effect

Without body effect

0.2 0.3 0.4 2y [V]

Fig. 4.4 (b) The linearity error of signal y with and without body effect.

Power Consumption: As we know that we could use the total current to represent the 

power consumption, we do the simulation with different parameters and see what 

happens about the total current. In Fig 4.5 (a), with the increase o f the DC bias o f (X-Y), 

the total current increased, which verifies our analysis in the power performance analysis 

in section 4.2, equation 4.16.

I total

30u

20u

lOu

0.9 1.1 1.3 X-Y0.7 V]

Fig. 4.5(a) Total current versus X-Y

From the Fig 4.5 (b), with the increase of transconductance o f the NMOS transistors in 

the low level, Ki, the total current also increased. Supposing that we have two input 

signals which have different magnitudes, how do we distribute them, that is, which is
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to ta l

30u

20u

lOu

0
1 2 3 4 Ki ( norm alized)

Fig. 4.5(b) Total current versus K,

used as x and which is y? From the analysis in the last section, we know that the total 

current has no relationship with signal x, so we could use the signal with bigger 

magnitude as x and the other as y (distribution 1) in order to decrease the total current. 

Fig 4.5 (c) shows us this characteristic by different distribution.

18.0U

16.0U

14.0U

12.0U

■ total

I \
I

/

Distribution 2

Distribution 1

0.0 5.0U 10U 15u 20U
Fig. 4.5(c) Total currents for different signal distribution

Noise Performance: From our previous discussion, we know that the input-referred 

noise have relationship with the DC bias o f (X-Y) and the ratio o f parameters K ^ l  K^.

By the simulation o f noise analysis, we find that in Fig 4.6(a), with the increase o f  (X-Y),
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the input-referred noise increased. And also, in Fig 4.6(b), the noise response increased if 

we increase the ration ofK^^ / K , .

Input-noise [aV /Hz]

80

so
so

30

■10
o

■ X

0,25 0.33 0.5 1

Fig. 4.6(a) The input-referred noise voltage of Fig. 4.1 versus Ku/K 1

Input-noise [aV^/Hz]

1000
900

800

700

600

500

400

300

200

100

0.7 0.9 1.1 1.3 1.5 (X-Y) V

Fig. 4.6(b) The input-referred noise voltage of Fig. 4.1 versus X-Y

4.4 Layout and Extractions

Today’s analog circuit design is heavily influenced by layout. The layout o f an analog 

multiplier circuit defines the geometries that appear on the masks used in fabrication. The
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geometries include n-well, active, polysilicon, n* and implants, interlayer contacting 

windows, and metal layers.

V„,

X+x
- ► i

^bias

V„2

vmt

X-x

Y+y Ground Y-y

Fig. 4.7 The layout of structure Fig 4.1

For general layout consideration of multiplier structure, we note that: (a) the n-well 

surrounds the device with enough margin to ensure that the transistor is contained in the 

well for all expected mislignments during fabrication; (b) each active area (S/D regions

and n* contact to the well) is surrounded by a proper implant geometry with enough 

margin; (c) from the fabrication steps, the gate requires its own task; (d) the contact
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windows mask provides connection from active and poly regions to the first layer o f 

metal.

For the layout o f the strueture in Fig 4.1, we consider to (1) decrease the distance among 

the transistors as long as we could pass the DRC; (2) try to decrease the length o f the 

metal or polysilicon to decrease the parasitic resistors and capacitors involved; (3) for the 

differential structure, try to make involved parasitic resistors and capacitors symmetric.

We use 0.35um CMOS technology for our layout design. 6 nfet cells from the pcell 

library are used as transistors. The estimated area cost is only 12u*12u. The substrate of 

the circuit is connected to the ground. The total layout o f this structure is shown above in 

Fig 4.7.

^ e - 0 7 / 3 , 5 e - 0 7

274. »a

Fig. 4.8 The extracted structure of Fig 4.1
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When we design the layout o f the structure, we have to do the DRC (design rule check) at 

every step o f the design to guarantee that our design comforts the design rules for CMOS 

0.35u technology. In the schematic level, we only consider the devices that we used in the 

structure, and we suppose that there are no involved resistors or capacitors due to the 

connection. But in the layout level, we use all kinds o f metals and polysilicons to connect 

devices in the circuit, which will apparently change the performance o f the circuit. We 

would get different result in the layout level tfom that in the schematic level. By the 

extractor tool in cadence, the computer can find the involved resistors and capacitors for 

us automatically and we could get a new model o f the circuit in the layout level and have 

more accurate simulation result.

Fig 4.8 is the extracted structure o f Fig 4.1. We could find that, after the extraction, more 

resistors and capacitors are added to the previous layout structure. We have to use this 

changed structure to do the simulation for different performance analysis to see what is 

the difference.

The difference o f total current has been shown in Fig 4.9. We could see that after the 

layout and extraction, the total current increased because o f the involved resistors and 

capacitors.

total
28.0U

24.0U

20 .0U

16.0u 

12.0u

After layout

Before layout

ikij
0 .0  5.0U 10U 15u 20U

Fig. 4.9 The comparison of total current before and after layout
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And also, when we do the simulation o f AC analysis after layout. We find that the 

bandwidth o f AC response decreased a little bit. That is the result o f the parasitic 

capacitors from the polysilicons and metals for connection in the layout level. We could 

find this characteristic from Fig 4.10.

100

900 m

800 m

700m

600 m

After layout

Before layout

10K 1M 100M 10G

Fig. 4.10 The comparison of AC response before and after layout

Now we talk about a very important performance parameter, THD (total harmonic 

distortion). THD is the ratio o f the sum of the powers o f all harmonic frequencies above 

the fundamental frequency to the power o f the fundamental frequency. We use it to 

calculate the distortion of AC signal not only for the DC linearity, but also for the AC 

linearity. Fig 4.11 (a) shows the THD of signal x with the increase o f frequency before 

layout and after layout, while Fig 4.11 (b) is for the THD of signal y with the increase of 

frequency before layout and after layout. We find that, after the layout and extraction, the 

THD increases for both input signals. But we realized that this increase has no influence 

for low frequencies (0-1OOK) and has no big influence for middle frequencies 

(lOOK-lOM). However, in the high frequency region, the THD deteriorates apparently 

after the layout, which make this multiplier structure a bad choice for high frequency 

application.
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0.1

0

After layout

Before layout

lOOK IM  lOOM IG  Frequency

Fig. 4.11 (a) The comparison of THD for signal 2x=0.4V before and after layout with frequencies.

1,5

1

0.5

0

— After layout

/

. / Before layout

lOOK IM  lOOM IG Frequency

Fig. 4.11 (b) The comparison of THD for signal 2y=0.4V before and after layout with frequencies

Input-noise [aV /Hz]

100a
After layout

Before layout
40 .0a

0.00
IK IM IG IT

Fig. 4.12 The comparison of input-noise before and after layout with frequencies
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For the input-noise simulation, we find that the noise increased after layout, which is 

shown in Fig 4.12. That is because in the layout level, we have to consider the involved 

resistors and capacitors due to the connection, which deteriorates the noise performance. 

But the increase o f input-noise in the layout level has no big influence on the circuit 

performance since normally the input signals could not be very small.

Generally, after the layout, most performance o f circuit might be degraded. But fi-om our 

simulation and experiments, the performance o f our circuit in the layout level still 

satisfies our expectation.
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CHAPTER 5 

SECOND ANALOG MULTIPLIER STRUCTURE

In chapter 4, a low power and low noise analog multiplier was introduced. We only use 6 

NMOS transistors for that structure, which guaranteed very small area for the fabrication. 

But from the simulation result, we found that the linearity error o f signal y was as high as 

2.6 % maximum when y=0.2V, Y=0.2V with body effect considered. The high linearity 

error involved would be a problem, especially in the application where high accuracy is 

needed.

That high linearity error, as we found from our analysis, is because o f the body effect. 

With the change o f signal y, the threshold voltage Vth also changed, which deteriorates 

the linearity o f signal y.

And also, we try to do more work to decrease the total current, as the low power design is 

the latest trend. We realized that the transconductance parameter o f PMOS transistors is 

much smaller than that o f NMOS. Therefore, with the same input range, if  we use the 

PMOS transistors, we could have much smaller total current. But the use o f PMOS also 

brings us the worse linearity, which verified the tradeoff between the power consumption 

and linearity again. Since the MOS transistors working in the saturation region can bring 

more current compared with the transistors operating in the linear region, we consider to 

use the PMOS transistors, when saturation region operation is needed, while put others in 

the linear region, in order to get a good equilibrium between linearity and power 

dissipation.
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5.1 Circuit Topologies and Theoretical Analysis

VDD=1.5V

X-x
7>4

X+x

P2 .P 3 .P I
P4N2 N3IN I

P4P I'

Y-y
M2M l

Ground

Fig. 5.1 Our second CMOS analog multiplier

In this chapter, we talk about a new analog multiplier structure. Fig. 5.1 shows the 

proposed CMOS multiplier structure, which consists o f 4 PMOS transistors (P1-P4) 

operating in the saturation region and 8 NMOS transistors (N1-N4 and M1-M4) in their 

linear region. Assuming that all transistors in Fig. 5.1 are biased to operate in a proper 

(linear or saturation) region, we show in the following that this topology achieves 

multiplication.

Assuming that (a) the transistors in Fig. 5.1 have same threshold voltage, i.e., Vthn for 

NMOS and Vthp for PMOS, and (b) the P1-P4, N1-N4, and M1-M4 have 

transconductance parameter Kp, and Km, respectively, we have

(5.1)

(5.2)

/, =K,[(Y+y-V,, - F ^ ) ( F ^ . ~V^f]

i, = K ,[(Y-y-Va-V thpW p,-V a )~ (V n  -F^,)']
1
2'
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h ^ K „ [ ( r - y - V „ - V „ ) ~ ( V „ - V j ]  (5.3)

h = K , [ ( Y + y -V o , - v „ , ) ( v „ - r ^ )~ ( v „ - v ^ f ]  (5.4)

For the 4 PMOS transistors, we have

‘m = \ K , ( V ^ ^ - X - x - \ V „ , \ f P  + MV^^-V„)] (5.5)

i . 2 = j K , ( V ^ ^ - X  + x - \V „ , \n U Z {V ^ -V ^ , ) ]  (5.6)

i„  = I  a:, ( r „  -  Z  -  X -  |F„,|)= [1 + i ( F „  -  F„)] (5.7)

' - \ k , ( V , ^ - X  + x -\V„,\)'11 + Z(V , , -V„)]  (5.8)

The transistors M1-M4 can be considered as the resistors with resistance approximately 

equal to

Ron-  ---------  (5-9)K (V - V  i^ M V D D  ' ^THNJ

This leads to an almost linear relationship between the drain current and voltage for the 

M1-M4. And also, we have

ipi + / j  — ( 5 .1 0 )

^P2 ~ h  ~  ^M2 (5-11)

P̂3 h ~  (5-12)

'̂p4 ~ h  — (5.13)

Solving the equations above with =  I2 and gives the following approximate

result:

V o ^ - V o 2 - ^ f - ^ y  (5-^4)

which is a multiplication o f two input signals, x  andy.

The advantage o f this strueture is that only PMOS transistors operate in saturation region.

Therefore, we can achieve a larger input range. In other words, given same input range, a

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lower supply voltage can be applied. The transistors P1-P4 in saturation region push the 

Vpi-Vp4 down, increasing the input ranges for the signal y.

For a given DC bias, the output range of the multiplier is influenced by Kp/(KnKm ). 

However, there is a maximum value for Kp/(KnKm) in order to keep M1-M4 and N1-N4 

operating in the linear region. While the circuit exhibits the ability o f canceling 

nonlinearity, the approximation in (5.9) introduces a linearity error. The body effect of 

transistors N1-N4 has been ignored in the above analysis. Other issues such as 

temperature and possible device mismatch are also a contributing factor to the linearity 

error.

To realize multiplication, proper bias arrangements for all transistors in Fig. 5.1 are 

required. The bias conditions for Fig. 2 can be written as:

V p - '^ m p \-^ -^ -^ D D ~ ^T H p \  fo rP l-P 4  (5.15)

Y ± y > V o +  for N1-N4 (5.16)

The bias voltage o f M1-M4 is chosen to be Vdd in order to make Vp as low as possible, 

allowing P1-P4 for a higher input range. Typical values to be used are: Vdd = 1-5 V , X  

==0.5 V, 7 =  1.5 V, Vthp = 0.7 V and Vthn = 0.6 V . When all transistors use the same size 

o f lF/Z=0.7|im/0.35p.m with x = y ~ 0 ,  Vqi and V0 2  turn out to be 16.1 mV.

5.2 Performance Analysis

In this section, we give a quantitative analysis on power consumption and noise for the 

proposed multiplier. The other metrics will be discussed in next section.
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Power Consumption: Given a constant supply voltage, power consumption of Fig. 5.1 

can be estimated by looking at the total output current which is given by itotai ~ ipi + ip2 + 

ip3 + ip4- It is interesting to see that the currents ii-i4 have nothing to do with the total 

output current. From equations (5.5)-(5.8), we have

(5.17)

Since Vpi~Vp4 is very small compared with the input signals (when the circuit is properly 

biased), we have the following approximate result:

(5.18)

We see that the power dissipation has nothing to do with the signal y  and DC bias Y for 

transistors N1-N4. But if  Kp increases, the eurrent would increase. A large value o f y, 

however, will degrade the linearity, as can be seen in the next section.

Noise Performance: Noise is another important eonsideration in designing multipliers. 

The total output noise o f Fig. 5.1 is given by

= Kjin  + Ksa> + \ 6 k T g ^ ^ ,d f + ^ k T g J f  (5.19)

where we notice that

g .,2 = K ^ iV ^ -V p -V ^ )

Then, the total input noise would be
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Kl 32 _  C
(5.20)

This suggests that Km , Kn  should be increased and Kp should be decreased to improve

the noise performance. Also, we realized that if  we increased the difference o f DC bias 

(Y-X), because the value o f gdsi and gm changed, the input -referred noise would also be 

changed.

5.3 Experiment and Discussions

In order to estimate the performance o f the proposed structure in Fig 5.1, we used the 

Cadence Hspice simulator to conduct the experiments on linearity, power dissipation and 

noise etc. We simulate the circuit by using standard 0.35um CMOS technology with 

supply voltage 1.5 V. Unless otherwise specified, all transistors use the identical size 

W/L=0.7u/0.35u. Circuit is biased to have the typical values (i.e. X=0.5V and Y=1.5V) 

with input range o f ±0.2 V for signals x and y (i.e. 2x=2y=0.4V).

Linearity: First we look at the DC transfer characteristics of E,, -  versus x and y for

this structure with X=0.5V and Y=1.5V. The results are plotted in Fig 5.2 (a) for signal x 

and (b) for signal y.

Fig 5.3 shows the linearity error o f signal x and signal y with and without body effect 

when the measured signal increased from 0 to 0.2V. We notice that there is no body effect 

for signal x. Therefore, the linearity o f signal x keep in a good level. But for signal y, the 

linearity error increased because o f the body effect.
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1,0nn
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1 .0m

7 0 03 0 0 m 4 0 0 m

Fig. 5.2 (a) DC response for signal x (with body effect)

1 . 0 m

0.0

— 1, 0 m

- 2 , 0 m
1.5 1,71.3 1.4 1.6

Fig. 5.2 (b) DC response for signal y (with body effect)

Fig 5.3 shows the linearity error o f signal x and signal y with and without body effect 

when the measured signal increased from 0 to 0.2V. We notice that there is no body effect 

for signal x. Therefore, the linearity o f signal x keep in a good level. But for signal y, the 

linearity error increased because o f the body effect.

Linearity Error [®/o]

0.6

0.4

0.2

0

--------------------------------------------------
With and without body effect

0.2 0.3 0.4 2x[V ]

Fig. 5.3(a) Linearity error of signal x with 2y=0.4V (with and without body effect)
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Linearity Error [%]

0.2

0.1

0

With body effect

Without body effect

0.2 0.3 0.4 2y[V]

Fig. 5.3(b) Linearity error of signal y with 2x=0.4V (with and without body effect)

Power Dissipation: From our previous analysis about the total current, we know that the 

Itotai would increase if  the size o f Kp (the transconductance parameter o f PMOS 

transistors) increases. And also, the total current will decrease if  we increase the DC bias 

o f signal x. Fig 5.4 and Fig 5.5 show us these characteristics.

^total a=W/L=0.35/0.7u

80

60

40

20

2a 3a 4a Size o f Kp

Fig. 5.4 The total current versus K p

But on the other hand, as we can see from the equation (5.18), the total current has no 

relationship with DC bias Y (see Fig 5.6) and signal y (see Fig 5.7). This is a very 

important characteristic for this structure. If, because of the requirement o f specific
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Fig. 5.5 Total current versus X
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Fig. 5.6 Total current versus Y

I  , [uA] when X=0.5V and Y=1.5V, 2x=0.4V
^  total ‘ * ’
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Fig. 5.7 Total current versus 2y

2y [V]
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application, we have to change some parameters to get good performance, we could 

change the DC bias o f Y or even the magnitude o f signal y, but this change will not 

deteriorate the performance o f total current, which give us more freedom for our design 

in different application.

Input-noise [aV^/Hz]

180
160
140
120
100
80
60
40
20

0
2 3 4 51

Fig. 5.8 The input-referred noise voltage of Fig. 5.1 versus Kp, Am and Kn

Noise Performance: As we know from our analysis in last section, if  we increase Kp 

(when keep Km and Kn the same), the input-noise will increase; however, if  we increase 

Km or Kn when keeping other sizes unchanged, we could decrease the input-referred 

noise. Simulation results of noise analysis in Fig 5.8 verified our analyses.

Input-noise [aV^/Hz]

128
127
126
125
124
123

122
121
120
119

0.95 1.00 1.05 1.10 Y -X (V )

Fig. 5.9 The input-referred noise voltage of Fig. 5.1 versus Y-X
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Fig 5.9 tells us that if  we increase (Y-X), the input-referred noise increase, which is 

exactly what we predicted in last section’s analysis.

5.4 Layout and Extractions

The layout o f Fig 5.1 is shown in Fig 5.10. 4 PMOS are put in the n-well and other 8

NMOS are put in the substrate directly. 4 input terminals are

connected to the edge of the circuit by polysilicon. The substrate o f the PMOS is

connected to the supply voltage (V dd), while the bodies of NMOS are connected to the

ground.

+x

+y

Ground
Fig. 5.10 The layout of structure in Fig 5.1

After the extraction, we find that more parasitic resistors and capacitors added to the 

circuit. Therefore, the performance o f the circuit in the layout level could be different
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from the circuit in the schematic level, where we suppose all the parasitic devices from 

the cormection is zero. Fig 5.11 shows us the extracted circuit.

a

Fig, 5.11 The extracted circuit of our second analog multiplier

Now we give the comparison o f total current before layout and after layout by Hspice 

simulation in Fig 5.12. There is no remarkable increase o f the total current, as the 

increase o f parasitic resistors has no big influence to the whole circuit.

22.0U 

20.0U 

18.0u 

16.0u

total

I \ ; \
/ I / \

\ /

0.0 5.0U

■>tf

10U

Currents before and after layout

15u 20U

Fig. 5.12 The comparison of total currents before and after layout
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In Fig 5.13, the AC response o f the circuit changed after the layout compared with the 

circuit before layout. And also, after the layout, the bandwidth decreased a little bit.

114,80m 

114,90m 

115,00m 

115,10m 

115,20m

115,30m

------------vS---------------iSh-------- Before layout

After layout

100 10K IM 100M

Fig. 5.13 The comparison of AC response before and after layout 
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Fig. 5.14 (a) The comparison of THD for signal 2x=0.4V before and after layout with frequencies
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Fig. 5.14 (b) The comparison of THD for signal 2y=0.4V before and after layout with frequencies
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For the total harmonic distortion (THD), we find from Fig 5.14 (a) and (b), that the 

linearity error increased in the high frequency domain, make the structure unsuitable for 

HF application when high accurateness is needed.

For the input-noise simulation, we find that the noise increased after layout, which is 

shown in Fig 5.15. That is because in the layout level, we have to consider the involved 

resistors and capacitors due to the connection, which deteriorates the noise performance. 

But the increase o f input-noise in the layout level has no big influence on the circuit 

performance since normally the input signals could not be very small.

Input-noise [aV /Hz]

160a

After layout120a

Before layout80.00

40.0a

IK IM IG IT

Fig. 5.15 The comparison of input noise before and after layout with frequencies

Generally speaking, after the layout, most performance o f circuit might be degraded. But 

from our simulation and experiments, the performance o f our circuit in the layout level 

still satisfies our expectation.
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CHAPTER 6 

PERFORMANCE COMPARISON OF DIFFERENT STRUCTURES

In order to estimate the performance o f the proposed two structures, we have used 

Cadence's HSPICE simulator to conduct the experiments on linearity, power 

consumption and noise etc. To ensure a fair comparison, we also simulated the most 

recommended structure o f eight multipliers provided in [51], which was considered to be 

one o f the best multiplier structures as low power and low noise design.

VDD=1.5V

Vbias=lV

Vol

X-xX+x

Y+y
Ground

Fig. 6.1 The most recommended multiplier structure by [51]

Actually, we have talked about this structure in section chapter 2, section 3 (Fig 2.7). 

According to our comparison of most previous structures in this field, we believe this 

structure is one o f the most attractive high-performance multiplier and can be the 

reference o f our research work. For convenience, this structure is redrawn in Fig. 6.1,

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where we use 10 NMOS transistors to constitute an analog multiplier. 4 transistors work 

in the linear region, while another 4 transistors operate in the saturation region and 2 

NMOS transistors working in the saturation region in order to get output voltages. For all 

three circuits in Fig. 4.1, Fig. 5.1 and Fig 6.1, a standard 0.35|am CMOS technology was 

used with the supply voltage o f 1.5 V. Unless otherwise specified, all transistors use the 

identical size with W/L = 0.7|jni/0.35|tm. The circuit is biased to have the tj^ical values 

(in Fig. 6.1, X -  1.3 V and T -  1.0 V were used) with the input range o f ± 0.2 V for both x  

and y  (i.e., 2 x ~ 2 y  = 0.4 V).

Linearity Error: First we look at the linearity error o f signal x for all the three structures 

(Fig 4.1, Fig 5.1 and Fig 6.1) in Fig 6.2(a). We find that the linearity error increase with 

the increase o f input range o f signal x. Structure in Fig 4.1 and Fig 5.1 have smaller 

linearity error compared with the structure in Fig 6.1, which is the most recommended 

one by paper [51]. From this comparison, we could say that our two proposed multiplier 

structures have less linearity error o f x than that one in Fig 6.1.

Linearity Error [%]

1.2

0.8

0.4

0.2 0.3 0.4

Fig 6.1

Fig 5.1

Fig 4.1

2x [V]

Fig. 6.2(a) The comparison of 3 structures for signal x

However, for the linearity error o f signal y o f the 3 structures, we have different result.
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Fig 6.2(b) shows that our first proposed structure (Fig 4.1) has the worst linearity error of 

signal y. But our second proposed structure (Fig 5.1) still has better performance o f 

linearity than that o f the most recommended one in Fig 6.1

Linearity Error [%]

Fig 4.1
2

1

Fig 6.1

0 Fig 5.1

0.2 0.3 0.4

Fig. 6.2(b) The comparison of 3 structures for signal y

Total Harmonic Distortion (THD): Fig 6.3 (a) and (b) show that with the increase o f 

frequency, the THDs of signal x and y increase and deteriorate the linearity. For signal x, 

the 3 structures have the similar values and trends in low and middle frequency region. 

While for signal y, our two structures have less THD than the structure in Fig 6.1.

THD[%]

Fig 5

Fig 6

Fig 4

lOOK IM lOOM IG Frequencies

Fig. 6.3(a) The comparison of 3 structures for signal x
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THD[%]

3. 5

3

2. 5

1
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0

Fig 5
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Fig 4
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Fig. 6.3(b) The comparison of 3 structures for signal y

Total current: We do the simulation o f the total currents o f the 3 structures with 

appropriate bias voltage and input signal x=y=0.2V sine wave in frequency lOOK. The 

result in Fig 6.4 shows us that our proposed 2 structures (Fig 4.1 and Fig 5.1) have only 

one third o f total current o f the most recommended one in Fig 6.1. That means if  we use 

the same supply voltage, our 2 structures have mueh less power dissipation than the 

structure in Fig 6.1. Therefore, our two struetures are low power analog multipliers.

I,total

70U
Fig 6.1

50U

Fig 5.1

30U

Fig 4.1
10U

lOuOn 5u 15u 20n time (s)

Fig. 6.4 The comparison of total current of 3 structures
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Noise Performance: We also do the noise analysis by the Cadence Hspice. From Fig 6.5, 

we find that the structure in Fig 4.1 has less input-referred noise than the other two 

structures, so it is low noise design of analog multiplier. However, the input-referred 

noise o f structure in Fig 5.1 is more than that in Fig 6.1. I hope 1 could do more to 

improve the performance o f noise for this structure in the future.

Input-noise [aV /Hz]

1 6 0 0

1200

8 0 ,0 0

0.00

Fig 5.1

..MC.
Fig 6.1

------►
4 0 .0 0 - Fig 4.1

1 0 0  100K  100M  100G

Fig. 6.5 The input -referred noise for 3 structures in different frequencies

We use table 6.1 as a summary o f comparison o f the 3 structures.

Table 6.1 The different performance comparison of 3 structures

Our first structure Our second structure Recommended by [52]

Linearity error of x 0.5% 0.6% 1.3%

Linearity error of y 2.6% 0.23% 0.5%

THD of X 0.43% 0.4% 0.4%

THD o fy 0.51% 0.8% 1.1%

Power dissipation 22.65uW 27.15uW 68.31uW

Input-referred noise 76aV*V 128aV*V 109aV*V

Band width 4.22G 1.98G 1.86G

Number of transistors 6 12 10

Estimated area 12u*12n 27u*16u

Technology CM OS 0.35 CM OS 0.35 CM O S 0.35
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CHAPTER 7 

CONCLUSIONS AND SUGESTIONS FOR FUTURE WORK

In this thesis, we talked about our design work of two analog multiplier structures. Hspice 

simulator was used to do the simulation about several performance metrics. The 

simulation results have shown that our multipliers have better performance in terms o f 

power consumption. With the same input range and relatively small input-referred noise, 

the power dissipation o f our two structures is only one third o f that o f the structure, the 

most recommended by [51]. Further power reduction could be achieved by fine-tuning 

design parameters. Therefore, we can say that our two structures are very suitable for 

application where low power is important consideration.

Throughout the whole design process, we have gotten some experience for analog 

multiplier design:

• By Biasing the transistors in the linear region and decreasing the drain-source voltage, 

we could get low current while at the same time, keeping a relatively wider input range. 

This is the basic idea of our low power design.

• Proper use o f the PMOS transistors can help us decrease the body effect, therefore 

improve the linearity performance, and bring us less drain current as the 

transconductance parameter o f PMOS are much smaller than that o f NMOS.

• Body effect is an important second-order effect which we have to consider for good 

linearity.

•In the layout level, for the differential structure, try to make involved parasitic resistors 

and capacitors symmetric.

• Post-layout simulation is important for performance verification.
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As we have found from our simulation results, our first proposed structure (Fig 4.1) has 

more linearity error o f signal y, which degrades it from the excellent analog multiplier. 

Therefore, it is not recommended that we use it in the application where good linearity is 

the most important consideration.

Our second proposed structure has better linearity and lower power dissipation compared 

to others. We realize that its noise performance is not as good as the most recommended 

one in [51], But considering 20% high input-noise has no remarkable influence on the 

total performance o f multiplier in the actual application, we used it as our most proposed 

structure and sent the design of this circuit to the CMC for fabrication. The complete 

physical layout graph can be seen in the appendix (next page). Physical testing will be 

done when manufacture o f this circuit has been finished.
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APPENDIX

The design as ICDWRAMR sent to CMC for Fabrication 
(The Second Proposed CMOS Analog Multiplier)

[ '  J  1

I.....
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