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A bstract

The docum ent image analysis has been intensively studied  in the last decades, while H idden M arkov 

Model (HMM) tu rn s  ou t to  be the  m ainstream  m ethod in image processing and  com puter vision. In 

th is paper we strive to  im plem ent HMM in th e  m ost critical two steps of docum ent image analysis: 

B inarization and O ptical C haracter Recognition(O CR). We propose a HMM based binarization 

m ethod, whose efficiency is dem onstrated  th rough  the  sim ulation results of docum ent images w ith 

different degradations. A t th e  sam e tim e we also introduce an edge based binarization m ethod, 

which has lower com putational burden and higher perform ance th an  other sim ilar m ethods. Test 

results for O C R  applications show 77% correct ra te  for HM M  based binarization m ethod and  67.3% 

for the  edge based b inarization  m ethod, while the  best perform ance for o ther reference techniques 

is 57%.

T he conventional HMM based classifier is a causal system , which m eans the  deduction of the  

hidden sta tes is unidirectionally obtained along a  single path . Thereby, th e  perform ance of the  HMM 

classifier can be degraded by the  noise mixed in the  signals, which is inevitable for th e  real world 

applications. Here we propose a new non-causal Self-Adaptive Hidden M arkov M odel(SAHM M ) for 

O ptical C haracter R ecognition(O CR) application. The experim ent results prove th a t it has stronger 

im m unity to  the  noise th an  th e  conventional m ethods. We also extend the  1-D SAHMM into 2-D, 

where some new feature ex traction  m ethods and new architecture for th e  nodes in th e  model are 

introduced. T he proposed 2-D SAHMM O C R  engine achieves recognition ra tes of up to  96% on the  

M NIST database, which is higher th a n  any reported  single HMM based O C R  engine.
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L is t o f  Symbols

The no ta tion  used in th is  thesis is as follows. In general, Bold face upper case le tte rs designate 

m atrices, bold face lower case le tters designate vectors, and scalers are designated by italics. A 

scaler elem ent of a vector is denoted u* £  v , which is read as “th e  i th elem ent of vector v ,” w ith 

indexing of vectors sta rtin g  a t i — 1 and ranging to  the  length of the  vector. All vectors are assum ed 

to  be colum n vectors. T im e is denoted in parenthesis for m atrices, vectors, and  scalers; for exam ple, 

Vi{n) is in terpreted  as the  aith” elem ent of vector v (n ) a t tim e instan t “n ” . However, the  tim e 

indication in parenthesis is typically dropped for scaler quantities since the  vector index of m ost 

scalers is equivalent to  th e  tim e index. Some commonly used symbols are listed below.

N otation  Definition

A C om pact no tation  of all of the  param eters in a  model.

T he m ean vector of the  gth G aussian kernel in th e  Xth genone N x .

TTi In itial s ta te  probability  in the  conventional 1-D HMM.

T he m ean of the  gth G aussian com ponent in the  observation P D F  of th e  s ta te  Sj.  

a ^  T he variance of the  gth G aussian com ponent in the  observation P D F  of the  s ta te  S j .

a t (i) The forward variable; a t (i) is the  jo in t probability  th a t  the  p artia l observation sequence

O i, O 2, ■ ■ • , Ot occurs and th a t  th e  s ta te  S,  is the  current active s ta te  qt in th e  m odel A. 

/3t(i) T he jo in t probability  th a t the  partia l observation sequence Ot, Ot+i,  • • • , O f  occurs and

th a t the  s ta te  Si  is the current active s ta te  qt in the model A.

7 t (i)  T he probability  of the  s ta te  of index i to  be th e  active s ta te  a t th e  tim e t  under the

conditions of given observation sequence and model param eters.

X V
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LIST  OF SY M B O LS

6t(>)
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Chapter 1

In troduction

1.1 D o cu m en t Im age A n a lysis

Docum ent image analysis refers to  algorithm s and techniques th a t are applied to  images of docum ents 

to  obtain  a com puter-readable description from pixel da ta . D ata  in a  paper docum ent are  usually 

captured by optical scanning or cam era and  stored  in a file of picture elem ents, called pixels, th a t  

are sam pled in a grid p a tte rn  th roughout the  docum ent. These pixels m ay have values: O F F  (0) or 

ON (255) for b inary  images, from 0 to  255 for gray-scale images, and 3 channels of 0 to  255 colour 

values for colour images. In any case, it is im portan t to  understand th a t  th e  image of th e  docum ent 

contains only raw d a ta  th a t  m ust be fu rther analysed to  process the  inform ation.

In the next stage some further procedures are required, which include: Thresholding to  con

vert a grayscale or colour image to  a binary  image, reduction of noise to  reduce extraneous data , 

segm entation to  separate  various com ponents in the  image and th inn ing  or boundary detection  to  

enable easier subsequent detection of pertinen t features and objects of interest. T hereafter objects 

of interest, such as characters or pictures in th e  image, will be recognized and  saved for fu rther 

process.

For gray-scale images w ith inform ation th a t  is inherently  binary such as tex t or graphics, bi

narization is usually perform ed first. T he objective of binarization is to  autom atically  choose a 

threshold th a t  separates the  foreground and background inform ation. Considering th e  com plexity 

of real world images, selection of a good threshold is always difficult.

1
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1. IN TR O D U C T IO N

Docum ent image noise is caused by m any sources, including degradation due to  aging, photo

copying, or during d a ta  capture. M any image and signal processing m ethods have been proposed 

to  reduce noise. After binarization, docum ent images are  usually filtered to  reduce noise. Salt and 

pepper noise (also called impulse and speckle noise, or ju s t d irt) is a prevalent a rtifac t in poor quality  

docum ent images. This type  of noise appears in images as isolated pixels or pixel regions of ON 

noise in O F F  backgrounds or O FF  noise (holes) w ithin ON regions, or as rough edges on character 

and graphics components.

Skew detection is usually necessary to  ro ta te  the  image to  zero skew angle before layout analysis 

is performed. S tructu ra l layout analysis is perform ed to  ob tain  a physical segm entation of groups 

of docum ent com ponents. D epending on the docum ent form at, segm entation can be perform ed to  

isolate words, te x t lines, and stru c tu ra l blocks (groups of te x t lines such as separated  paragraphs or 

table of contents entries). Functional layout analyses use dom ain-dependent inform ation consisting 

of layout rules of a particu lar page to  perform  labeling of the  stru c tu ra l blocks giving some indication 

of the function of th e  block.

Segm entation occurs a t two levels. A t the  first level, if the docum ent contains bo th  te x t and 

graphics, these are separated  for subsequent processing by different m ethods. A t the  second level, 

segm entation is perform ed on tex t by locating columns, paragraphs, words, and characters; and on 

graphics, segm entation usually includes separating  symbol and  line com ponents.

There are two m ain types of analysis th a t  are applied to  tex t in docum ents. One is optical 

character recognition (OCR) to  derive the  m eaning of the  characters and words from th e ir b it

m apped images. The o ther is page-layout analysis to  determ ine the form atting  of the  tex t, and  from 

th a t to  derive m eaning associated w ith the  positional and functional blocks (titles, subtitles, bodies 

of tex t, footnotes etc) in which the  tex t is located.

O ptical C haracter Recognition (OCR) usually lies a t the  core of docum ent image analysis, whose 

objective is to  in terp ret a sequence of characters taken  from an  alphabet. T he big challenge is th a t  

characters of the  alphabet are usually rich in shape. In  fact, the  characters can be sub ject to  m any 

variations in term s of fonts and handw riting styles. Despite these variations, there  is perhaps a  basic 

abstraction of the  shapes th a t identifies any of the ir instantiations. Developing com puter algorithm s 

to  identify th e  characters of the  alphabet is the  principal task  of OCR.
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1. IN TR O D U C T IO N

1.2 H id d en  M arkov M od el

T he H idden M arkov Model(HM M ) was a  result of the  a ttem p t to  model speech generation s ta tis ti

cally. T he m ain reason for th is success is its wonderful ability  to  characterize th e  speech signal in a 

m athem atically  trac tab le  way.

Typically the  HMM stage is proceeded by the  preprocessing (feature extraction) stages. Thus 

the  input to  th e  HMM is a discrete tim e sequence of feature vectors. T he feature vectors can 

be supplied to  th e  HMM either in vector quantized form, which is called D iscrete HMM, or in 

raw continuous form, which, therefore is called Continuous HMM. HMM expertizes in handling 

th e  stochastic n a tu re  of the  am plitudes of th e  feature vectors which are superim posed on the  tim e 

stochasticity. The H idden M arkov M odel is a  finite set of states, each of which is associated w ith  a 

(generally m ultidim ensional) probability  d istribution. T ransitions am ong the  s ta tes are governed by 

a  set of probabilities called transitio n  probabilities. In a particu lar s ta te , an  outcom e or observation 

can be generated according to  the  associated probability  d istribution. It is only th e  outcom e (not 

th e  s ta te) visible to  an ex ternal observer, therefore sta tes are hidden to  the  outside; hence th e  nam e 

’H idden M arkov M odel’.

After several decades of research and developm ent, HM M  becomes the  predom inant approach to  

th e  au tom atic speech recognition. At th e  sam e tim e the  applications of HMM are expanded to  every 

field of signal processing, such as image processing, bioinform atics, etc. In  th is  thesis, we focus on 

th e  application of D iscrete H idden M arkov M odel in docum ent image analysis.

1.3 T h esis O b jectives

Though docum ent image analysis has been intensively studied in th e  last decades, there  a re  still 

big m argins for us to  fu rther improve th e  perform ance a t every stage. No system  can process the  

docum ent as well as hum an being. In th is thesis we will focus on b inarization  and classification 

stages. F irs t of all, because of th e  variation of lighting condition, image acquasition m ethods, it 

is always difficult to  binarize different kinds of real world images w ith  a m ethod. B inarization is 

th e  challenge we try  to  solve in the  thesis. A t the  same tim e though num erous classifiers have 

been achieved and developed by now, the  m ost used s tra tegy  is to  te s t those m ethods w ith some 

benchm ark databases and com pare the ir perform ances a t different aspects, such as recognition ra te  

and speed. For the  real world applications, i t ’s norm al th a t  signals have more noises and d istortions 

th an  th e  benchm ark database. Tolerance to  noises should be another criterion for the  classifier. 

Here we will proposed a system  who is m ore to leran t to  the  noise and  d istorta tions. A new test

3
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m ethodology is also introduced in the following chapters.

The m ajor them e of th is  study  focuses on how to  expand the  im plem entation of HMM in doc

um ent analysis fields and how to  improve their perform ance. F irst, HMM is im plem ented in the  

binarization problem  and satisfactory results are reported. For such pixel characteristics based bina

rization m ethods, high com putation cost is alway required, which results in unbearab ly  slow speed. 

In  the  proposed m ethod we strive to  reduce the  com putation  cost w ithout degrading th e  perfor

mance. We also address an  alternative edge based b inarization m ethod in th is  thesis. Because the 

conventional HMM is a causal system, for HMM th e  observations in a signal sequence are supposed 

to  be generated in series, which is un true in m any cases. There are some draw backs in th is  model, 

especially when it is utilized as a classifier. To improve th e  perform ance of th e  HMM in th e  field of 

classifiers, we propose a new noncausal HMM which is m ore to leran t to  the  noise and degradation  

imposed to  the  signals. T he 1-D Self A daptive H idden M arkov Model(SAHMM) is also successfully 

expanded into two dim entional, where high perform ance is obtained.

1.4 T h esis O rganization

This thesis is organized as follows: C hapter 2 details the  problem s involved in docum ent image 

analysis. C hap ter 3 gives in depth  introduction  of conventional HMM; some variation of HMMs are 

also m entioned here. C hap ter 4 introduces th e  HM M  based binarization m ethod, some experiem ent 

results are also provided here. In chapter 5 an edge based binarization m ethod and  its m echanism  

are dem onstrated . C hap ter 6 gives the  brief review of th e  technologies in th e  procedure of OCR. 

C hapter 6 proposes a  new noncausal Self-Adaptive HMM system. An O C R  engine based on the 

proposed model is tested  on th e  M NIST and com parative study  of perform ance of proposed m ethod 

and conventional HMM are carried out. In C hap ter 7 a  2D SAHMM system  is in troduced and its 

im plem entation in th e  O C R  engine is com pared w ith o ther O C R  engines in the  term  of recognition 

rate. C hap ter 8 provides concluding rem arks and details fu ture work.
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Chapter 2

In troduction  o f  docum ent analysis and  

optical character recognition

2.1 In trod u ction

Digital image analysis is continuously expanding its applications in m any areas of science and in

dustry, including medicine, microscopy, rem ote sensing, astronom y, defense, m aterials science, m an

ufacturing, security, robotics, etc. Each of these application areas has spawned separate  subfields 

of digital image analysis, w ith a large collection of specialized algorithm s and concepts. D ocum ent 

image analysis is a small division of digital image analysis. I t refers to  algorithm s and techniques 

th a t are applied to  images of docum ents to  ob ta in  a com puter-readable description from pixel da ta . 

The objectives of image analysis vary according to  the  different applications. Generally, th e  te x t 

com ponents or picture com ponents in docum ent images should be ex tracted  and analyzed separately. 

Therefore, docum ent image analysis consists of the  techniques in the  fields of image processing and 

p a tte rn  recognition. In general the  procedure of docum entim age analysis can be divided into several 

steps:

1. D ocum ent acquisition.

2. Pre-processing.

3. B inarization.

5
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4. Page Segm entation(Layout Analysis).

5. C haracter recognition or O bject Recognition.

6. Post-Processing

2.2 D o cu m en t A cq u isition

D ata  of a docum ent image are usually cap tured  by optical scanning and stored  in a file of picture 

elements, called pixels, which are sam pled in a grid p a tte rn  th roughou t th e  docum ent. Each of 

th e  pixels th a t  represents an  image stored inside a  com puter has a pixel value which describes how 

bright th a t  pixel is, an d /o r w hat color it should be. In the  case of b inary  images, the  pixel value is 

a 1-bit num ber indicating either foreground or background. For a greyscale image, th e  pixel value 

is a single num ber th a t  represents th e  brightness of the  pixel. T he m ost common pixel form at is 

th e  byte image, where th is num ber is stored as an 8-bit integer giving a range of possible values 

from 0 to  255. Typically zero is taken  to  be black, and 255 is taken  to  be white. Values between 

0 and 255 make up the  different shades of gray. To represent color images, independant red, green 

and blue com ponents m ust be specified for each pixel (assuming an  RGB colorspace), so the  pixel 

‘value’ is actually  a  vector of th ree  num bers. O ften the  th ree different com ponents are stored  as 

three separate  channels, which have to  be recombined when displaying or processing.

W ith  the  developm ent of new hardw are, more approaches are available for images acquisition 

besides the  scanners, such as cam eras, video cam eras, and other sensors. In such cases th e  resolution 

of images are usually sm aller th an  th e  ones from scanners and some m ore degradation will be imposed 

in the images, which are caused by environm ent lighting, angle of the  lenses, etc. Consequently, 

the  quality  of images will be degraded greatly  and tasks of image processing will be much m ore 

challenging.

2.3 P rep rocessin g

D uring th e  image acquisition process, noises are unavoidably mixed in th e  raw image d a ta . Some 

o ther degradations, such as noise caused by the  distortions from the  lenses or non-uniform  lighting 

sources, also increase th e  difficulty of docum ent analysis. Some preprocessing, such as image en

hancem ent and restoration  techniques, are im plem ented in th is stage to  make th e  image m ore robust 

which is a critical to  th e  whole perform ance. Preprocessing generally consists of a series of image-to- 

image transform ations. I t  does not increase our knowledge of the contents of the  docum ent image,

6
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bu t it m ay help to  ex trac t it. Such technologies include noise removal[l], image enhancem ent[2], 

deblurring, skew detection and correction. In  some cases it is necessary to  reduce the  resolutions 

of images to  improve th e  speed of the  whole process, where the low-pass filters and sub-sam pling 

m ethods are usually utilized.

2.4 B in ariza tion

B inarization is the  process of separating  the  foreground, such as tex ts  or some other objects of 

interest, from the  background in an image. The binarization process will convert a grey image 

into an image w ith only two levels. T he first level will indicate foreground objects, such as tex t, 

logos or others, while th e  com plem entary level will correspond to  th e  background. T he foreground 

is usually represented by 0 and th e  background by 255, which is th e  highest lum inance for 8-bit 

images. The ex traction  of tex tu a l content from digital images, which is done in the  binarization and 

page segm entation stages, has received the  m ost attention.

The binarization process is very critical stage of docum ent analysis since th e  quality  of binarized 

images greatly  determ ines the  final result. For example, it is well known th a t  th e  perform ance 

of O C R  will be degraded greatly  if the  characters in the  binarized image are broken, blurred  or 

overlapping. T here are m any uncertain  factors th a t affect the  perform ance of b inarization, such as 

complex signal-dependent noise and variable background intensity, which are caused by non-uniform  

illum ination, shadow, sm ear, smudge or low contrast.

One can notice th a t  th e  definition of foreground is very subjective. In general, th e  grey levels 

of pixels th a t  belong to  th e  object are substan tia lly  different from the  grey levels of pixels in the  

background, so thresholding becomes straightforw ard and the  m ost effective tool to  ex trac t objects 

from background. H istogram  based thresholding m ethods have been intensively studied since the 

1960s[105] [106] and are th e  m ost applied m ethods. In th is m ethod, the  optim al threshold of the  

entire image or p a rt of th e  image is determ ined according to  the  characteristics of th e  im age’s 

histogram . Thereby a 2-D pixel classification problem  is converted into an easier 1-D digital signal 

processing problem. If th e  histogram  of an image is bim odal, then  th is m ethod can efficiently ex trac t 

the  foreground from the  background. However, th is is un true for m any real world digital images 

due to  the ir inherent complexity. Besides th e  histogram  based m ethods, m any alternative m ethods 

have been proposed, such as the  attribute-based[lll][112][113][114][115][116], neural networks based 

binarization[164], etc. These algorithm s are reported  to  produce robust perform ance, however, they  

are com putationally  expensive. In m any cases, because of the  high efficiency of th e  histogram
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based thresholding algorithm s, they  are combined w ith o ther m ethods to  improve speed. Thereby, 

histogram  based algorithm s always get the  a tten tion  of scholars. In th is  thesis we will introduce two 

novel b inarization m ethods w ith different strategies. O ur sim ulation results prove the  efficiency of 

these m ethods.

2.5 P age  S egm en tation

After the  discrim ination of th e  objects from th e  background, a t the  next stage th e  objects in the  

forground will be separated  from each other for fu rther classification. Segm entation occurs a t two 

levels. A t the  first level, if th e  docum ent contains b o th  tex t and graphics, these are separated  for 

subsequent processing by different methods[142][17]. A t the  second level, segm entation is perform ed 

on tex t by locating columns, paragraphs, words, and characters; and  on graphics, segm entation 

usually includes separating  symbol and line com ponents. Until now an image is typically broken 

down into its basic com ponents such as an individual character or a graphic element.

Previous work on page segm entation can be broadly divided into th ree  categories: bottom - 

up[18][19], top-down[20], and hybrid[21]. In a typical bottom -up approach such as the  D ocstrum  

algorithm  proposed by 0 ’Gorman[19], connected com ponents are ex trac ted  first and then  m erged 

into words, lines, zones, and columns hierarchically based on size and  spatia l proximity. Bottom - 

up m ethods can handle docum ents w ith complex layouts, however, th ey  are tim e consuming and 

sensitive to  noise.

A typical top-dow n m ethod, such as th e  X-Y cuts proposed by N agy et a l.[20], s ta rts  w ith  the 

whole docum ent and splits it recursively into columns, zones, lines, words, and characters. Top- 

down m ethods are effective for docum ents w ith regular layouts, bu t fail when th e  docum ents have 

a  non-M anhattan  structure.

A nother problem  w ith X-Y cuts is th a t  the  global param eters for optim al segm entation are often 

difficult to  find if prior knowledge is not available. A hybrid m ethod which s ta rts  from the  to p  is 

proposed[21]. F irst, they  oversegment a docum ent into small zones using th e  X-Y cut a lgorithm [20]. 

Then, they  use the  bo ttom -up m ethod which groups oversegmented small zones w ith th e  same 

properties into a single zone.

All of the  above m ethods are based on the  analysis of foreground (black pixels). As an a lter

native, w hite stream  m ethods based on the  analysis of background (w hite pixels) are presented in 

[22] [23]. In these m ethods, rectangles covering w hite gaps (white pixels) between foreground are 

extracted . Foreground regions surrounded by these w hite rectangles are ex trac ted  as zones. A more
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comprehensive survey is presented in [24],

2.6 O ptical C haracter R eco g n itio n (O C R ) or O b ject R ecog

n ition

2.6.1 Introduction

O ptical C haracter Recognition (OCR) stands for the  techniques designed to  tran sla te  images of 

handw ritten  or m achine-printed characters into m achine-editable tex t, or to  tran s la te  pictures of 

characters into a stan d ard  encoding scheme representing them  (e.g. ASCII or Unicode). I t  is one 

of the well studies topics in p a tte rn  recognition, since it was assum ed to  be the  easiest task  in the 

optical p a tte rn  recogtion, which is realized untrue by scholars.

After segm entation, th e  images of characters or objects are ready to  be sent into classifiers for 

the  classification. A t th is  stage, p a tte rn  recognition tu rns ou t to  be the  m ajor ta sk  of th e  process. 

P a tte rn  recognition has long been studied in relation to  m any different applications. In th e  docum ent 

image analysis field th e  optical p a tte rn  recognition is the  im plem entation of p a tte rn  recognition in 

the  optical or im age/video inform ation. C haracter or object recognition usually is th e  ultim ate 

purpose of docum ent image analysis, a t th e  sam e tim e it is also the  m ost challenging step  of the  

whole process. In th is  thesis, we will focus on character recognition, since the  m ethods used for 

O C R  can be easily expanded to  o ther shape recognition applications. Here we will give an in-depth 

introduction of technologies used in OCR.

According to  the variation of input m ethods, character recognition can be categorized into on-line 

character recognition and off-line character recognition. Online recognition is based on th e  p a tte rn  of 

w riting the  characters w ith  th e  aid of hand-held com puters such as Personal D igital A ssistant(PD A s) 

or o ther hum an-m achine interfaces. This m ethod has lim ited num ber of applications because of the 

constrain ts of m achine-m an interface. T he signals of off-line O C R  are any docum ent images w ith 

characters. In  general, th e  perform ance of online O C R  is higher th an  the  offline ones. F irs t of all, 

m ost of th e  noise existing in the  docum ent images will not occur in th e  online recognition, such as the  

degradations caused by th e  lenses, complex background or nonuniform  illum inations. Secondly, some 

ex tra  inform ation, such as th e  sequence of strokes is available in th e  online character recognition, 

while it is very difficult for th e  offline O C R  to  ex trac t such inform ation. Generally, segm entation 

of the  characters from the  neighbors is easier for the  online OCR. According to  different objects, 

the  O C R  can be categorized into handw ritten  character recognition and machines p rin ted  character
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recognition. Since there are fewer variations, m achine printed character recognition is much more 

easier th an  handw ritten  character recognition,

Offline O C R  can be fu rther subcategorized into character recognition, word recognition, where 

only lim ited vocabulary are perm itted . In character recognition, th e  characters in a string  are 

recognized separately. Since in character recognitions, especially in th e  cursive character recognition, 

m ost of the  characters are connected w ith th e  neighbors, character segm entation is an  essential step 

to  separate th e  individual characters from the  string. T he survey of the  character segm entation 

algorithm s can be found in paper [25]. After segm entation the  individual character will be inpu tted  

into a character recognition classifer.

W ord recognition is im plem ented in some applications such as recognition of addresses on the 

envelops and  bank check recognition. In such cases the  classifiers are m ade to  recognize the  in

teg ra ted  whole word instead of every character. Since th e  segm entation of characters is om itted , 

the  errors caused by th is stage are avoided. T he m ajor drawback of th is  m ethod is th a t  th e  size 

of the  vocabulary is lim ited, which ham pers im plem enting this m ethod in m any o ther real world 

applications.

In  general, the  process occurring in O C R  can be divided into three parts: preprocessing, feature 

extraction, classification.

2.6.2 Preprocessing

T hough it is no t essential, in m ost cases preprocessing technologies are proven useful to  make the 

images of the  characters m ore robust to  improve the  whole perform ance of the  OCR. Various kinds of 

m ethods are available for preprocessing. Though some grey image based O C R  engines are proposed, 

in m ost of the  cases, the  character images are binary after binarization. Therefore, here we focus on 

introducing binary  images based techniques, such as norm alization, th inning, binary  morphology.

N orm alization is a term  w ith m ultiple meaning. In the  preprocessing of the  O CR, they  usually 

include size norm alization, skew norm alization, stroke w idth  norm alization, and some o ther nonlinear 

norm alizations, e.t.c.

In m any cases, it is essential to  unify the  sizes of the  characters before the  feature extraction, 

because the  features ex tracted  usually are sensitive to  the  sizes of the  characters. Im age size norm al

ization a ttem p ts  to  obscure scale variations of images presented to  a recognizer. I t  is a transform ation  

of an inpu t image of a rb itra ry  size into an ou tp u t image of a fixed pre-specified size, while a ttem p t

ing to  preserve struc tua l detail. M any size norm alization m ethods[172] [173], such as Simple-Scaling 

M ethod, R atio-based, M ultirate-based are proposed.
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Though there  are a few ro ta tion  invariant features available for the  OCR, some features are not 

suitbale for every application, because of com putation  cost issue or o ther reasons. Skew norm aliza

tion is used in some of preprocessings in the  OCR. F irst of all, a skew detection algorithm  is imposed 

to  the  digital image of a character and it determ ines the  angle (possibly zero degrees) by which it 

was skewed. T hereafter, the  character image will be ro ta ted  proper angle to  remove th e  skew.

In  the  stroke w idth norm alization, run-length m ethod is usually used to  m easure th e  w idth of the  

strokes [174]. Erosion and dilation which will be introcuded in next session are utilized to  norm alized 

the  stroke w idth. Stroke w idth  norm alization sounds like a trival issue, actually  from  th e  images in 

figure 2 .1, one can find the  shape(feature) from the  two images are different from each other, though 

the  structu res of the  strokes are the  same.

A A
Figure 2 .1: Same character w ith different stroke w idth

T he language of m athem atical m orphology is th a t  of set theory. Sets in m athem atical morphology 

represent the  shapes th a t are m anifested on binary  or gray images. T he set of all th e  black pixels 

in a b inary  image constitu tes a com plete description of th e  binary image. Two sets are invloved in 

th e  process of binary morphology, one is the  image; the  o ther is the  kernel of th e  convolution, which 

is called a structu ring  element and has a defined origin. I t  is a nonlinear convolution-like operation  

between two such sets. B inary m orphology is extrem ely im portan t for fast, low-level im age m atching 

operations. T he m ost common binary  m orphology includes dilation, erosion, opening, closing.

D ilation is the  morphological transform ation  th a t combines two sets using vector addition  of set 

elements. If A  and B  are sets in N-space E N w ith  elements a =  (ai, <22, ■■■, c l n ) and b =  (61, 62,..., bn),  

respectively, then  the  dilation of A by B is the  set of all possible vector sum s of pairs of elements, 

one coming from A  and one from B.

T he dilation of A by B is be noted by A© B and defined by

A ® B  =  c 6  E n \c = a + b f o r  s o m e  a £  A  and b £ B  (2.1)

11
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Erosion is the  m orphological transform ation  which is opposite to  dilation. If A and B are sets in 

N-space E N w ith  elem ents a = (ai,a,2 , ..., ©v) and b = (b\, 62, &jv)> respectively, then  th e  erosion

of A by B is the  set

The erosion of A by B is noted by A© B and defined by

A q  B  = c £ E n \c + b £ A  f o r  every b £ B  (2.2)

T he opening is defined as an erosion followed by a dilation using th e  sam e s tructu ring  elem ent 

for bo th  operations. O pening an image w ith  a disk-structing element sm ooths th e  contours, breaks 

narrow  isthm uses, and elim inates small islands and sharp  peaks or capes.

A o B  = { A Q B ) ® B  (2.3)

O n the con trary  to  opening operator, the  closing is defined as an dilation  followed by a erosion 

using the  sam e s tructu ring  elem ent for b o th  operations. Closing an  im age w ith  a  d isk-structing 

element sm ooths the  contours, fuses narrow  breaks and long th in  gulfs, and  elim inates small holes, 

and fills gaps on th e  contours.

A » B  = ( A ® B ) q B  (2.4)

2.6.3 Feature Extraction

Few O C R  algorithm s carry  ou t recognition by m atching the raw b itm ap  of character images, be

cause th is m ethod is obviously sensitive to  th e  variation of illum ination, w ritten  style, fonts, size 

and some other issues. Feature extraction  m ethod is usually utilized to  improve th e  perform ance. 

Feature ex traction  is a dim ensionality reduction m ethods for signals to  be processed in the  p a tte rn  

recognition; in th e  case of O C R  the  signal is th e  character image. T he feature  is required th a t  after 

th e  reduction of dim ensionality it should be able to  describe the d a ta  sufficiently. A ctually for clas

sification purpose, th e  feature should minimize the  within-class p a tte rn  variability  while enhancing 

the  between-class p a tte rn  variability.

Enorm ous feature ex traction  m ethods have been studied and proposed[175][176]. A feature 

extraction  m ethod th a t proves to  be successful in one application dom ain m aybe tu rn  ou t not to  be 

very efficient in another dom ain. Here we only briefly introduce the  m ost used feature extraction  

m ethods. According to  th e  object, th e  feature extraction  m ethods can be divided into grey image 

based and b inary  image base. There are various feature extraction m ethods available for grey scale 

images. I t includes:

12
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1. Tem plate matching[177][178], w here the  character image itself is used as a feature  vector. In 

th is m ethod some reference images will be saved as tem plate, distances of th e  ta rg e t image 

w ith the  references will be m easured in form ula 2.5 to  find the  nearest tem plate . Here x,y  are 

the  pixel indexs in th e  2D image; th e  Z(x,  y) is the  pixel value of th e  ta rg e t image; Tj(x,  y) is 

th e  pixel value of th e  j t h  tem plate  image.

M  N

(2-5)
i=i j =i

2. Deformable template[179]. In  th is way th e  deformed character skeletons will be used to  find 

the  best m atch.

3. U nitary  transform ation  including Karhunem -Loeve(K L) Fourier[183], Cosine, Sine and  Slant 

transform s.

4. Zoning: In th is  m ethod the  image of character will be divided into grids. Any simple features, 

such as averaye value of the  grey values in the  grid, DCT, G radient values, will be ex tracted  

based on every grid.

5. G eom etric m om ent invariants. [180] [181] [182] Various kinds of m om ents are  available, such as 

Hu, Bamieh,Zernike,Teague-Zernike, and pseudo-Zernike mom ent invariant.

The only difference of a binary  character image and grey charactere image is th a t  th e  pixel values 

in binary images are either zero or the  m axim um  pixel value, which is usually 255. If th e  b inarization 

m ethod is good enough, th e  features taken  from binary  images should be m ore robust th a n  from 

grey images. One can tell th e  feature ex traction  m ethods used for th e  grey images m entioned in last 

section are all available to  the  b inary  images, since binary  image can be regarded as a special case 

of grey image. Some ex tra  feature m ethods which are only available for binary  images are:

1. P ro jection  histograms[184], which is to  m easure the  histogram  of the  run len th  of strokes in 

vertical, horizontal, or some other diagonal directions.

2. C ontour profiles[185]: T he closed outer contour curve of a character is a closed piecewise 

linear curve th a t  passes th rough the  centers of all th e  pixels which are 4-connected to  the 

outside background, and  no o ther pixels. Following the  curve, the  pixels are visited in counter

clockwise order, and the  curve m ay visit an  edge pixel twice a t locations w here the  ob ject is 

one-pixel wide. Each line segm ent is a stra igh t line between the  pixel centers of two 8-connected 

neighbors. Chain code is usually used to  describe th e  contour of an object.
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3. Spline curve approxim ation[186], where the  outer character contour will be divided sline by 

breakpoints. A nd the  spline curve param eter are used as feature.

4. E lliptic and  other Fourier descriptors[187][188], where the contour of th e  character will be 

transform ed into o ther dom ains, where the  feature can be more explicitly expressed.

Selection of a feature extraction  m ethods is the  m ost im portan t factor in achieving high recog

nition perform ance. Different m ethods yield different perform ance w ith different com putation  cost 

and  m em ory requirem ents. How to  find th e  m ost prom ising m ethods for a specific application is not 

in the  scope of th is thesis.

2.6.4 Classification

N um erous techniques for character recognition have been investigated based on four general ap

proaches of classification, as suggested by Jain[26]: tem plate  m atching, s ta tis tica l techniques, struc

tu ra l techniques, and neural networks. Such approaches are neither necessary independent nor 

disjointed from  each other. Occasionally, a technique in one approach can also be considered to  be 

a  m em ber of o ther approaches.

Tem plate m atching operations determ ine th e  degree of sim ilarity between two feature vectors 

in the feature space. M atching techniques can be grouped into th ree classes: direct m atching [27], 

deform able tem plates and elastic m atching [28], and relaxation m atching [29].

S tatistical techniques are concerned w ith sta tistical decision functions and  a  set of optim al cri

teria , which determ ine the  probability  of the  observed p a tte rn  belonging to  a  certain  class. Several 

popular handw riting recognition approaches belong to  th is domain: The k-N earest-N eighbor (k-NN) 

rule is a popular non-param etric recognition m ethod, where a  posteriori probability  is estim ated  from 

the  frequency of nearest neighbors of the  unknown pa tte rn . Compelling recognition results for hand

w riting recognition have been reported  using th is approach[199]. The draw back of th is  m ethod is 

the  high com putational cost when th e  classification is conducted. To surpass such a problem  some 

researchers have proposed faster k-NN m ethods, where some tricky search strategies such as search 

tree  are utilized. A com parison of fast nearest neighbor classifiers for handw riting  recognition is 

given in [31].

The Bayesian classifier assigns a p a tte rn  to  a class w ith the m axim um  a  posteriori probability. 

Class proto types are used in the  tra in ing  stage to  estim ate the  classconditional probability  density 

function for a feature vector [32].

The polynom ial discrim inant classifier assigns a p a tte rn  to  a class w ith th e  m axim um  discrim inant
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value which is com puted by a polynom ial in th e  com ponents of a  feature vector. T he class models 

are im plicitly represented by th e  coefficients in the  polynom ial [33].

H idden M arkov Model (HMM) is a doubly stochastic process, w ith an underlying stochastic 

process th a t  is no t observable, bu t can be observed through another stochastic process th a t  produces 

th e  sequence of observations. Because of its two layer architecture, it is suitable to  process highly 

variable spatio tem poral d a ta  sequence. Its  application has been expanded to  alm ost every field of 

image processing and m achine vision[51] [52] [80]. T hrough our study, we have found there  are  some 

drawbacks in th e  conventional HMMs. In th is thesis we will focus on some m odifications of HMM 

based classifier to  overcome some of the  shortcom ings.

Support Vector M achine (SVM) is based on the  sta tistica l learning theory[34] and  quad ra tic  pro

gram m ing optim ization. A SVM is basically a binary  classifier and m ultiple SVMs can be combined 

to  form a system  for m ulti-class classification. In the  past few years, SVM has received increasing a t

ten tion  in th e  com m unity of m achine learning due to  its excellent generalization perform ance. More 

recently, some SVM classification system s have been developed for handw ritten  digit recognition, 

and  some prom ising results have been reported  in [35] [36] [37].

In s tru c tu ra l techniques the  characters are represented as unions of s tru c tu ra l prim itives. I t  is 

assum ed th a t  th e  character prim itives ex trac ted  from handw ritten  are quantifiable, and  one can 

find the  relationship among them . Basically, s tru c tu ra l m ethods can be categorized into two classes: 

g ram m atical methods[38] and graphical methods[39].

A N eural Network (NN) is defined as a com puting s tructu re  consisting of a massively parallel 

interconnection of adap ta tive  neural processors. The m ain advantages of neural netw orks lies in 

the  ability  to  be tra ined  autom atically  from examples, good perform ance w ith  noisy d a ta , possible 

parallel im plem entation, and  efficient tools for learning large databases. NNs have been widely used 

in this field and  promising results have been achieved, especially in handw riting  digit recognition. 

The m ost widely studied and used neural netw ork is the  M ulti-Layer P erceptron  (M LP) [40]. Such 

an architecture tra ined  w ith back-propagation [41] is among the  m ost popular and versatile forms 

of neural netw ork classifiers and is also am ong th e  m ost frequently used trad itio n a l classifiers for 

handw riting recognition. See [42] for a review. O ther architectures include Convolutional Network 

(CN) [43], Self-Organizing M aps (SOM) [44], R adial Basis Function (RBF)[40], Space D isplacem ent 

Neural Network (SDNN)[45], Tim e Delay N eural Network (TDNN)[46], and Hopfield N eural Network 

(HNN)[47],

The above review indicates th a t  there  are m any recognition techniques available for handw riting 

recognition system s. All of them  have the ir own advantages and drawbacks. In th e  recent years,
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m any researchers have combined such techniques in order to  improve the  recognition results. Various 

classifier com bination schemes have been devised and it has been experim entally dem onstrated  th a t 

some of them  consistently outperform  a single best classifier [48].

O bject recognition has the  sam e s tra tegy  as character recognition except the  ob ject can be more 

th an  characters, and some steps of the  recognition process, such as feature ex traction , have to  been 

changed. This them e is ou t of the  scope of th is thesis.

2.7  P o st-P ro cess in g

Recently, the  m ajority  of research in handw ritten  word recognition has in tegrated  th e  lexicon as 

constrain t to  build lexicon-driven strategies w ith character recognition opposite to  handw ritten  

word recognition. The lexicon is a list of possible words th a t could possibly occur in an  image. 

This lexicon is usually determ ined by the  application. It aims a t decreasing th e  com plexity of the  

problem  since th e  am biguity makes m any characters unidentifiable w ithout referring to  context. One 

can notice th a t  such a  m ethod is much m ore flexible th a n  word recognition. Generally th e  string  

m atching algorithm s between candidate words and a lexicon are used to  rank the  lexicon, often using 

a variant of th e  Koch et a l[49] to  combine contextual inform ation for recognition of handw ritten  

words ex trac ted  from real incoming mail docum ents. The word recognition process is based on th ree 

different sources of inform ation: o u tpu ts  of a character classifier, contextual inform ation ex tracted  

from word shapes and some a priori knowledge. T he experim ents have shown the  benefit of the 

additional inform ation on word recognition rates.

Koerich e t al[210] proposed a fast two level HMM decoding algorithm  to  deal w ith large vocab

ulary handw riting. The authors propose a nonheuristic, fast decoding algorithm  which is based on 

a hidden M arkov model representation of characters. T he decoding algorithm  breaks up th e  com

p u ta tion  of word likelihoods into two levels: s ta te  level and character level. Given an  observation 

sequence, the  two level decoding enables the  reuse of character likelihoods to  decode all words in the 

lexicon, avoiding repeated  com putation of s ta te  sequences. In an 80,000 word recognition task , the 

proposed decoding algorithm  is abou t 15 tim es faster th an  a  conventional V iterbi algorithm , while 

m aintaining th e  sam e recognition accuracy.
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2.8 C onclusion

We presented a brief sum m ary of basic building blocks th a t comprise a docum ent analysis system . 

Some m ainstream  solutions for every stage of th e  procedure are num erated  here. Though every 

step is critical for th e  whole process, until now th e  bottlenecks for the  docum ent im age analysis 

are b inarization and  p a tte rn  recognition. F irs t of all, because of the  infinite variation of real world 

images, it is nearly  impossible to  find a real universal binarization m ethod to  sufficiently segment 

any kinds of docum ent images. In th e  follwoing chapters we will in troduce two proposed m ethods 

which are capable of handling m any kinds of degraded images. Though enorm ous m ethods have 

been proposed for O CR, th is problem s rem ains open for b e tte r solutions. Some methods[43] report 

high perform ance w ith  unbelievable com putational burden, and hugh m em ory storage requirem ent. 

Some[43] can efficiently recognize characters in good conditions, while failing when there  is slight 

noise mixed w ith images. Classification is the  m ajor subject of O C R  and different of classifiers are 

general introduced in th is chapter. We will also present improved HM M  based classifiers in the 

thesis.
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Chapter 3

R eview  o f  H idden  M arkov M odel

3.1 H id d en  M arkov M od el

The 1-D H idden M arkov M odels(HM M ) were proposed in the  1960s by B aum  et al. [93] [94] [95] [96]. 

HMM has the  capability  of capturing s ta tis tica l properties of a wide spectrum  of nondeterm inistic 

signals, or pseudo-properties from real random  signals. Because of its efficiency and flexibility, in 

recent decades, it has become the  predom inant approach to  autom atic speech recognition[98], gesture 

and body m otion recognition [51], optical character recognition [80] [205], m achine transla tion  [52], 

bioinform atics and genomics [53],

A M arkov chain is a collection of random  variables X t  (where th e  index t runs th rough  0, 1, ...) 

w ith the  property  th a t  th e  probability  of variable X t  occurring depends on its h istory  s ta tes(past 

states). In m ost cases the  present variable is only directly effected by the  last one, thereby  it is 

called first order M arkov chain. I t  can be form ulated as below:

P ( X t = j \X o  — io, X i  = i \ , ..., X t_ i  = i t - 1) =  P ( X t = j \ X t~i = i t - i) (3.1)

In a M arkov model, the  s ta te  is directly visible to  the  observer, therefore, th e  s ta te  transition  

probabilities are th e  only param eters. In  a HMM, the  s ta te  is not directly  visible, however, observa

tions which can be influenced by the  sta te  are visible. Each sta te  has a probability  d istribu tion  over 

the  possible o u tp u t observations. So the  sequence of observations generated  by an  HMM give some 

inform ation abou t the  sequence of hidden states. Since its two layers arch itecture  makes it capable
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of handling m ore complex signals, HMMs are more powerful and much more broadly utilized in real 

world applications th a n  M arkov models.

3.1.1 A rchitecture of H idden Markov M odel

Different from the  M arkov chain, the  architecture of HMM can be divided into two layers, observa

tions and states, which are illustrated  in F igure 3.1. Observations are the  d a ta  (signals) collected 

for modeling the  HMM, which are visible to  external observers; while s ta tes are hidden behind th e  

observations and the  relationship of hidden s ta tes are the  same as M arkov chain, hence, it is called 

Hidden M arkov Model. Here, another im portan t no tation , th a t is ’tim e’ in th e  HM M  has to  be 

mentioned. Tim e here is used to  anno ta te  th e  progressive dimension of th e  signal. W ithou t loss 

of generality, under th e  assum ption, it is a  tem poral signal. For any other signal, th e  tim e dim en

sion is replaced w ith the  proper a lternative dimension. A t any given tim e slot one s ta te  is active, 

which generates th e  observation corresponding to  th a t  instan t according to  th e  probability  function 

d istribution  of the  em itting  sta te .

Observations: □ □ □ □ □ □ □ □
States:

.t-i t + i .

Figure 3.1: A rchitecture of H idden M arkov Model

In general, a HMM is sufficiently defined by the  th ree  param eters: transition  m atrix  A,  obser

vation probability  m atrix  B , and initial model probability  7T. The num ber of param eters should 

be predefined as the  num ber of sta tes of the  model, N ,  and the  num ber of observation symbols in 

the alphabet, M .  I t  should be m entioned th a t  there  is not an universal m ethod  to  determ ine the  

’op tim al’ N  and M  for a  specific application, though in m any cases em pirical num bers are very 

helpful to  choose th e  optim al values.

T he possible s ta te  transitions are denoted by path s  as shown in F igure 3.1. Each p a th  is asso

ciated w ith a transition  probability, o ^ , which expresses the  probability  of s ta te  S 3 occurring after
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s ta te  Si in th e  model. Similar to  a M arkov chain, th e  probability  for a s ta te  Sj  to  be th e  active 

s ta te  qt a t the  tim e t  is dependent only on q t - i ,  th e  active sta te  a t tim e t — 1, therefore, HMM is 

also a causal system . A s ta te  transition  probabilities is form ulated as:

a-ij = p{qt+1 =  j\qt  =  *}, l < i ,  j < N (3.2)

where qt denotes the  current s ta te  and  qt+i denotes th e  next state.

T he transition  probabilities am ong the  sta tes in the  model are usually expressed in a m atrix  

form. The m atrix  th a t contains all transition  probabilities of a  model is called transition  m atrix , A.

(

A  =

a i i  

021

012

022

0(jV—1)1 0(jV—1)2

0JV1 OJV2

O l(J V -l )

fl2 ( A f - l )

diN

021V

\

a ( N - l ) ( N - l )  0(7V-1)JV

a N ( N - l )  a N N  )

HMMs can be categorizied into D iscrete HMM and Continuous HM M  according to  th e  observa

tion probability  d istribution. T he sim plest type  is th e  discrete HMM whose s ta tes possess discrete 

probability  distributions as functions of discrete observations. In th is case, th e  observations are 

quantized to  discrete values using a predefined finite-length codebook and m apped to  its M  entries. 

The probability  d istribu tion  of observations in each of the  sta tes is B  = {bj(k)}.

bj(k) = p{O t = vk \qt = j } ,  1 <  j  < N,  1 < k  < M (3.3)

where qt denotes the  current state; O t denotes the  observation in s ta te  t; vk m eans th a t  observation 

is k t h  symbol in the  codebook.

From  the  above equation one can find th a t  the  present s ta te  should be deduced by the  form er one. 

However, th e  first tim e slot is the  s ta r t point of the  whole deduction and there  are no sta tes before it, 

so the  probabilities of sta tes in tim e slot 1 can not be derived from the  form er sta tes anym ore. This 

problem  can be solved by the  definition of a new param eter, the initial s ta te  d istribu tion  n  =  {7r,}, 

which is th e  probability  of the  sta tes occurring in th e  first tim e slot. I t is form ulated as:

m  = P[qi = Si\, l < i < N  (3.4)

One com pact no tation  A is usually used to  combine all of the  param eters m entioned above,

A =  (A, B,  7r) (3.5)

to  indicate the  com plete param eter set of the  model.
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3.2 T h e prob lem s o f H id d en  M arkov M od el

For a given sequence of observation O  =  Oi, 02, o t , th e  relationship of the  sequence w ith  a  HM M  

is subject to  a  certain  m easure, e.g. likelihood. The likelihood of a process model to  generate the  

observation sequence O  indicates to  w hat extent the  model fits the  modeled process. Hence, the 

evaluation of th e  likelihood m easure becomes an essential p a rt of th e  model learning and  evaluation. 

In general, HM M  learning is an adaptive process to  m axim ize th e  likelihood of th e  tra in ing  d a ta  

generated by a HMM. D eterm ining the  optim al s ta te  sequence by which th e  model generates the  

observation is referred to  as decoding process. For any given HMM, th ree  problem s should be solved 

before it can be utilized it in any applications, which are:

1. Evaluation Problem .

2. Decoding Problem .

3. Learning Problem .

In the  following sections the  details abou t th e  th ree problem s will be addressed.

3.2.1 Evaluation Problem:

This problem  is to  estim ate the  probability  of the  observation sequence O  to  be generated by a  given 

model A, P (0 \X ) .  Given a model A, observation sequence O  can be generated by any s ta te  sequence 

Q = <?i> Q2 , ■■■, Q t  of all the  possible s ta te  sequences; qt is the  active s ta te  in tim e slot t and  T  is the  

length of the  sequence. T he probability  P ( Q |A) which is a s ta te  sequence Q  occurring in a given 

model A depends only on the  transition  m atrix , A,  and th e  initial model probability, 7r, and can be 

form ulated in equation  3.6.

-P(Q|A) ’̂ 0,q1q2^Q2Q3 > ^QT-lQT (3.6)

The probability  of the  observation a t th e  tim e t, Ot , to  be generated by a given active s ta te  a t 

the  same tim e in stan t t, qt corresponds to  the  param eter bqt{Ot). This probability  depends on the  

observation probability  distribution , therefore, th e  probability  of th e  observation sequence produced 

by a s ta te  sequence and the  model can be expressed as:

T

P (0 \Q ,  A) =  Y l  P(Ot\qt, A) =  bqi (O r)bq2( 0 2)...&w (Or ) (3.7)
t= 1
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Hence the  probability  of th e  observation sequence O generated by model A can be:

P (0 |A ) =  £ P ( 0 |Q ,A ) P ( Q |A ) ,  Q = q i ,q 2 ,: . ,< tr ,0  = 0 1, 0 2, . . , 0 T (3.8)
allQ

From equation  3.8, one can tell th a t it is required to  add the  product over all possible s ta te  

sequences to  calculate the  probability  P (0 |A ). The num ber of available s ta te  sequences is N T , 

which grows exponentially w ith th e  length of the  observations sequence. In m ost of th e  cases the  

com putational cost will be prohibitive and it is not practically  feasible to  calculate th e  likelihood in 

th is  way. A much more efficient m ethod, called the  Forw ard-Backw ard a lgorithm [93], was proposed. 

A recursive stra tegy  is utilized in th is m ethod and it will be introduced in th e  next section.

Forward-Backward A lgorithm

Before dem onstrating the  details of the  Forw ard-Backw ard algorithm , two new auxiliary variables 

should be introduced: Pt(i). &t(i) is the  jo in t probability  th a t the  p artia l observation sequence

0 U 0 2, - . .  , Of occurs and th a t  th e  s ta te  S t is the  current active s ta te  qt in th e  model A.

a t (i) = P ( 0 1, 0 2, . . . , 0 t ,qt = Si\X) (3.9)

The backw ard variable /3t (i) is defined as the  jo in t probability  th a t  th e  p artia l observation se

quence O t,O t+ 1 , • • • ,O t  occurs and th a t  the  s ta te  S', is the  current active s ta te  qt in th e  model 

A.

f t ( i )  =  P (O t+1, Ot+2, Or \qt =  Si, A) (3.10)

Forward Phase:

In the  forward phase, th e  forward variable cq(i) can be deduced in 3 steps:

Initialization:

c*i(*) =  Kibi(Oi), 1 < i < N  (3-11)

Induction:
N

a t+ \( j ) =  [ '5 2 a t {i)a ij]bj (Ot+1), 1 < i < N ,  1 <  t  <  T  -  1 (3.12)
1 = 1

Term ination:
N

P (0 |A ) =  5 > T (i) (3.13)
2 = 1

The process of forward phase can be illustra ted  in Fig. 3.2.

Backward Phase:
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S,

S2

S„

t t+1

a,(i) a,+1 (j)

Figure 3.2: Illustra tion  of the  com putation  of the  forward variable a t+ i( j )

In a sim ilar m anner, th e  backward variable (5t {i) is recursively com puted as follows: 

Initialization:

/M O  =  1, 1 <  * <  N  (3.14)

Induction:
N

Pt(i) = 1 <  i < N  (3.15)
i= 1

The (3 is com puted in a la ttice  s truc tu re  sim ilar to  th a t  of Fig. 3.2, except the  propagation  

direction is different. From  equation  3.13, the  ta rg e t of evaluation problem  P ( 0 \ \ )  can be easily 

obtained. Thereby, th e  forward phase of the  forward-backward algorithm  is enough to  solve the  

evaluation problem, while backward phase helps in solving the  decoding problem  as shown in next 

section.

3.2.2 D ecoding problem:

For a given observation sequence O,  the  decoding problem  is to  find th e  optim al s ta te  sequence, Q*.  

in the  model A. Due to  different optim al criteria, various definitions of the  optim al s ta te  sequence 

can be given. Though there  are m any a lternative m ethods available, forw ard-backw ard algorithm  is 

th e  one m ost used. This can be achieved by using the  forw ard-backw ard algorithm  to  find th e  s ta te  

th a t is m ost likely to  be th e  active s ta te  a t each tim e in stan t t, qt, as follows:

F irst, we define a tem poral variable 7t(i):

7t ( 0  = P{qt = S l \0,'y)  (3.16)
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This is the  probability  of th e  s ta te  of index i to  be the  active s ta te  a t the  tim e t under the  

conditions of given observation sequence and model param eters.

The 7 t(i) can be com puted w ith the  forw ard-backw ard algorithm  as:

=  a t (i)/3t(i)

" E f = i “t(0 A (0

W ith  the  aid of equation 3.17, qt is the s ta te  th a t  yields m axim um  7 t (i) value.

7t(i) = (3.17)

qt =  argm ax[cq(i)], 1 <  t  < T  (3.18)
l< i< iV

Through equation 3.18, it is easy to  find th e  optim al sta te  sequence. This m ethod have two 

drawbacks:

F irst, to  ob tain  an  optim al s ta te  sequence by forward-backward algorithm , approxim atelly  N 2T  

tim es m ultiplications and  N 2T  tim es additions are needed. The com putation  com plexity is still 

com parably high. Second, even every obtained s ta te  in every tim e slot is optim al, there  is still 

potential risk th a t  in some cases some probabilities of transitions between two neighbor ’op tim al’ 

s ta tes are 0, which m eans th a t  th is  s ta te  sequence is invalid and the  result is wrong. T his is because 

th a t optim al s ta te  is calculated independantly  and the  probability of occurrence of sequences of 

sta tes is not regarded. T he V iterbi algorithm[79] is proposed to  solve th e  above two problems.

Let th e  s ta te  score 5t(i) be the observation likelihood maximized over the  past s ta te  sequence

term inating  w ith S* a t tim e t. Thus, 5t (i) can be defined as:

5t (i) =  m ax P[q1, q2, ...., qt = i, O i0 2- A |A ]  (3.19)

T hen  5t+ i(z) can be com puted by induction as follows:

<*t+iC?) =  [max 7t (i)dij]bj (O i+ i) (3.20)
i

E quation  3.20 is th e  core of th e  V iterbi algorithm  which chooses th e  s ta te  Si th a t  results in the  

highest score when a transition  occurs from Si a t tim e t — 1 to  S3 at tim e t. A pointer should be 

kept to  such a s ta te  so th e  whole path , i.e., active s ta te  sequence, can be retrieved la te r on. A 

predecessor param eter ipt{j) is defined in order to  store th e  index of the  best predecessor s ta te  of 

the  curren t s ta te  Sj  a t tim e t , i.e.:

ipt+iU) =  argm ax[7t(i)ay ] (3.21)
l< i < i V

The algorithm  can be scripted as follows:

Initialization:

7 i (i) =  TTibi(Oi), 1 <  i < N  (3.22)
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Recursion:

7 t (j ) = m ax [jt-i(i)a,ij]bj(Ot ), 1 < i  < N  2 < t  < T  (3.23)
l < i < N

Term ination:

i p t { j )  =  a r g m a x [ 7t _ i ( i ) o y ] ,  l < i < i V 2 < t < r  (3.24)
l < i < N

P* =  m ax [7T (i)\ (3.25)
1 < i < N

qT * =  argmax[7T(i)] (3.26)
l < i < N

Backtracking:

qt * = il>t+i(qt+i*), t =  T  -  1, T  -  2, ....1. (3.27)

where Q* is the  optim al s ta te  sequence.

After the  accom plishm ent of the  search for the  best s ta te  sequence path , the  highest likelihood 

of the  observation generated by the  s ta te  sequence is usually used as approxim ate solution to  the  

evaluation problem , which can be form ulated in equation 3.28. This approxim ation is m ostly used 

in two dimensional(2D) HMM systems[100][61]. In  m any cases, such as in bioinform atics[53], the  

search of the  optim al p a th  is th e  m ajor goal of the  whole process.

P(0 \X)  = m a x P ( 0 , Q \ X )  =  P { 0 ,  Q * |A) (3.28)
A ll  X

3.2.3 Learning problem:

In the problem s of the  HMMs, th e  m ost challenging and critical one is th e  learning algorithm , where 

param eters of the  model th a t maxim ize the  likelihood of th e  train ing  set is determ ined. T he train ing  

set are a set of observation sequences, and th e  sum m ary of the  likelihoods of all of the  sequences 

to  a model is usually calculated as th e  criterion. There is no known way to  analytically  determ ine 

th e  optim al param ters of a model to  produce the  observation sequence, however, a local m axim um  

can be reached. Because of its guaranteed convergence, B aum  Welch algorithm[97] has become the 

dom inant HMM tra in ing  m ethod. A detailed in troduction  of the iterative procedure is presented 

here.

In th is m ethod an auxiliary param eter £ is introduced, which is th e  probability  of S, to  be active 

sta tes a t tim e t, and s ta te  Sj  occurring a t tim e t  +  1.

=  P{qt =  S i ,q t + 1 =  S j \ 0 ,  A) (3.29)
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It can be com puted in th is way:

p ( ° M  " E ^ E J L i A j

A nother param eter (i) is added here to  describe the  probability  of being in s ta te  S t a t tim e t, 

given the  observation sequence and the  model; hence we can relate 7 t (i) to  £ t ( h j )  by sum m ing over 

j ,  giving:
N

7t(*) =  $ > ( t , . 7 ‘) (3-31)
3 = 1

If 7 t(i) is sum m ed over the  tim e index t, a quan tity  of the  expected num ber of transitions m ade 

from sta tes Si  can be obtained. A t the  sam e tim e, sum m ation of £t ( i , j )  over t  can be in terpreted  

as the expected num ber of transitions from sta te  Si to  s ta te  Sj.  T h a t is:

T - l

7t (i) = expected num ber o f  t r a n s i t io n s /r o m S i  (3.32)
t=1

T - 1
y ;  f t i h  j )  =  expected num ber  o f  tra ns i t ions  f r o m  Si to Sj  (3.33)
t= 1

W ith  the  above formulas we can give a m ethod for re-estim ation of the  param eters of a HMM. 

Hence th e  estim ated  n, A and B are

?f =  expected fre q u e n c y  (number o f  t im es)  in  state Si at t im e  (t =  1) =  71(1) (3.34)

_ _  expected num ber o f  tra n s i t io n s  f r o m  state Si to state S j  Ylt= 1 At ( i , j ) 
13 expected num ber  o f  tra n s i t io n s  f r o m  state Si Y l ' t- i  £t(*)

expected num ber o f  t im e s  in  state  j  and observing symbol Vk
expected num ber o f  t im e s  m  s ta te  j  

In th is way, the  updated  param eter A can be obtained easily. If we iteratively use A as estim ated

param eters and repeat the  reestim ation calculation, we can then  improve the  probability  of O  being

observed from the  model, which is proved in [97]. T he train ing stop  until some criteria  are m et,

such as th e  P (0 |A ) is bigger th a n  th e  predefined threshold or the  tim e of iteration  is bigger th a n  a

threshold.

3.2.4 Phases o f H idden Markov M odel

Hidden M arkov Models are extensively im plem ented in various fields, such as p a tte rn  recognition, 

d a ta  mining, d a ta  modeling, etc. W hen used as a recognizer in p a tte rn  recognition field, which is 

the  m ajor concern of th is thesis, HMM works in two phases: tra in ing  phase and evaluation phase:
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T he Training P hase

Generally, the  tra in ing  phase is to  ad just the  HMM param eters A (which are presented in the  equa

tions 3.1.1, 3.3, 3.4), so th a t  the  given set of observations O(called the  training set)  are represented 

by the model in the  best way for th e  intended application. This problem  can be solved w ith the 

Baum-W elch algorithm  as m entioned in the  last section.

W hen HMM im plem ented as a classifier, a m ultiple classes problem  should be handled. Assuming 

there are to ta l I  classes to  be discrim inated, first of all, I  HMMs should be established and initialized. 

Training set labeled w ith different classes will be sent to  corresponding m odels for train ing. Various 

advanced tra in ing  m ethods have been studied recently. These m ethods not only maximize the  

likelihood th a t  train ing  d a ta  belong to  the  corresponding classes, th e  discrim ination between the  

models of the classifiers is also increased. These algorithm s include: M axim um  M utual Inform ation 

(MMI)[54], M axim um  A Posteriori (M AP) [55], M inimum Classification E rro r [56], O ptim izing the 

model s truc tu re  using Bayesian model merging[57], Model merging and  sp litting  according to  an a 

priori knowledge[58], and model selection based on D iscrim inative Inform ation C riterion  (DIC)[59]. 

In depth  discussion of these m ethods are ou t of the  range of this thesis.

T he E valuation  P h ase

Assuming there  are I  classes in a recognition system , the  param eters of every m odel A j =  (A,, B l , n t ) 

have been obtained in the  tra in ing  phase. In th is  evalution phase given a sequence of observations 

O =  O], o-2, . . . ,  ot . our aim  is to  find th e  m axim um  P{ A j|0}.

A =  a rg m ax P (A j|0 ) (3.37)
1 < i < I

Therefore, the  B a y s’ rule  is used to  ob tain  M axim um  A  Postriori Probability.

P (0 |A i )P (A i )
A =  a rg m a x ------- ——------  (3.38)

l < i < 7

Generally, P(A) is regarded as equal for all As, since all of the  classes have an equal chance to  occur 

in a system . Obviously for a specific observation sequence O, the P { 0 )  should be th e  same for every 

model. Thereby, the  equation 3.37 can be transform ed into:

A =  a rg m a x P (A ,|0 )  =  a rg m ax P (0 |A ,)  (3.39)
l  < i < i  i < i < i

The forward a lgorithm [95] is usually utilized, which is described in th is  section 3.2.1. Through

th e  equations 3.11 3.12 3.13, the  probability  of the  observation sequence belonging to  every class
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P i{0 \A i}  can be easily calculated. The com putational burden can be:

C * h l  =  (iV (IV +  1)(T  — 1) +  N )  x I  M ultip l ica tion (3.40)

C * h l  = N ( N  — 1)(T  — 1)1 Addition (3.41)

3.3  V ariations o f H id d en  M arkov M od el

In  the  above sections we have introduced some fundam ental knowledge of HMM. W ith  th e  de

velopm ent of HMM, various HMMs are proposed to  optim ize their im plem entations in different 

applications. HM M s can be categorized into different types in different aspects. In th e  following we 

will address sevaral of the  m ost common variations of HMM.

3.3.1 Ergodic and Left-Right

According to  the  characteristics of transition  m atrix  A,  HMMs are divided into two types, one of 

which is ergodic HMM and the  o ther is left to  right HMM. An HMM is said to  be ergodic if every 

s ta te  is reachable from any other s ta te  in a  finite num ber of transitions. T he transitio n  of th e  hidden 

sta tes in a fully-connected HMM is an exam ple of th e  ergodic HMM in which every s ta te  is reachable 

from any o ther s ta te  directly. T he left to  right model is characterized by its transition  m atrix  th a t 

has a zero lower-left triangle. T he left to  right type of HMM has the  desirable p roperty  th a t  it can 

readily model signals whose properties change over time-e.g., speech. T he fundam ental p roperty  of 

all left to  right HMMs is th a t the  s ta te  transition  coefficients have th e  property:

o-ij =  0 j  < i (3.42)

A  is characterized as below:

a l ( i V - l )

®2(7V-1)

flliV

0 022 d2N

A  =

0 O.NN /

One can notice th a t  the  initial s ta te  probabilities have the property:
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0 i ^ l

1 i — 1

In m any cases, such as speech recognition and character recognition, additional constrain ts are 

imposed abou t the  s ta te  transition  coefficients to  ensure th a t  large s ta tes transition  do no t occur, 

which means:

cnj =  0 j  < i or j  >  i +  A (3.43)

For instance, when A  =  1:

(

A  =

On ^12 

0 022

0 

\  0

0

0

0

0

\

O - N - l N - l  Qn - i n  

0 ojvjv J

Such constrains are try  to  make th e  m odels m ore precise in describing th e  characteristics of real 

world signals, such as speech or character. In  such cases, th e  sequence of th e  segm ents (states) in a 

signal should rarely be changed, and  it is possible th a t lim ited num ber of th e  segm ents(states) are 

skipped.

3.3.2 D iscrete and Continuous

HMMs are also classified according to  the  s ta te  probability  d istribution type. We have introduced 

th e  discrete HMM whose sta tes possess discrete probability  distributions as functions of discrete 

observations. In th is case, the  observations are quantized to  discrete values using a predefined 

finite-length codebook and quantized to  its M  entries. The probability  of a s ta te  Sj  generating  an 

observation, O t , is the  probability  of it generating the  associate codebook en try  14 whose index is 

k. This probability  is w ritten  as:

bj (Ot ) =  P { V k \qt = Sj } ,  l < j  < N ,  \ < k < M  (3.44)

A nother HMM type is th e  continuous probability  d istribution  HMM whose s ta tes have continuous 

probability  density d istribu tions which, in tu rn , are functions of continuous observation param eters. 

In  m ost cases, the  general continuous probability  function is approxim ated by a weighted sum  of finite 

num bers of G aussian d istributions. Thus, th e  probability  of a s ta te  Sj  to  generate an  observation 

Ot , is:
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G

bj(Ot)  = £ c j s)G[Ot , /4 9) ,a f ] ,  1 <  j  < N  (3.45)
9 = 1

In th is thesis we will only focus on the  im plem entation and im provem ent of D iscrete H idden 

M arkov Model. I t should be m entioned th a t  all of the  HMM based m ethods in troduced la te r can 

be converted into corresponding continuous HMM w ith sim ilar performance.

3.3.3 Other HM M s

Besides the  categories m entioned above, o ther variation  of HMMs proposed by scholars. For example, 

2D HMM[100], pseudo 2D HMM[61], autoregressive HMMs[79], Null transitions and tied  states[79], 

factorial HMMs[62] e.t.c. Every model has its unique advantage and specific applications. Here we 

will no t describe the  details of the  different models further, as they are no t focus of th is thesis.

3.4  C onclusion

In th is chapter we present the  basic theory  of hidden M arkov models from the  simple concepts to  

complex variations of HMMs. The arch itecture  and  the  mechanism of th e  HMM are discussed in 

detail. T hree basic problems of HMM, including the evaluation problem , decoding problem  and 

learning problem , are discussed here along w ith the  form ulated solutions. How to  im plem ent the 

HMM in th e  p a tte rn  recognition field is highlight of th is thesis. In the  following chapters we will 

introduce how to  expand the application of HM M  into binarization and  new HM M  arch itec tu re  is 

proposed to  solve the drawbacks of the  conventional m ethods.
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Chapter 4

H M M -B ased  B in ar iza tion  M ethod

4.1 In trod u ction  o f  b inarization  a lgorithm s

Separating th e  foreground from the  background of an  image is a critical process in image analysis. 

Its  purpose is to  acquire some useful inform ation in th e  image for fu rther processing. In m any cases 

for the  images to  be processed, th e  gray levels of pixels of th e  object are substan tia lly  different from 

th e  gray levels of the  pixels belonging to  the  background. Therefore, in some cases it is possible 

to  discrim inate the  objects from th e  background w ith a simple and effective thresholding m ethod. 

Such m ethods are broadly im plem ented in docum ent image analysis such as character extraction, 

form extraction, as well as some applications for m edical images, for exam ple endoscopic images, 

laser scanning and confocal microscopy. I t  should be m entioned th a t  the  threshold  base m ethod is 

only one of the  feasible b inarization m ethods.

After th is operation  an image will be divided into two states: one s ta te  will indicate th e  fore

ground objects, while the  com plem entary p a rt will correspond to  the  background, which will be 

ignored. D epending on the  application, the  foreground can be represented by gray-level 0, th a t 

is, black as tex t, and the  background by the  highest lum inance for docum ent paper, th a t  is 255 

in 8-bit images, or conversely the  foreground by w hite and the background by black. Hence th is 

process is usually called binarization. Various factors, such as nonstationary  and  signal dependent 

noises, nonuniform  illum ination, am biguity of gray levels w ithin the  object and its background, low 

contrast, and unknown shape and orien tation  of the  objects com plicate the  binarizing operation.
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M any m ethods have been reported  abou t the  binarization. The survey of relevant studies can be 

found in [103] [104]. We will briefly introduce them  in the  following sections.

4.2 S urvey  o f  b inarization  tech n iq u es

T he binarization  m ethods reported  in the  literatures can generally be categorized into four different 

types, which are:

1. H istogram  based m ethods [105] [106].

2. C lustering-based methods[107][109].

3. O bject a ttribu te-based  m ethods[lll][112].

4. D iscrim ination based on local pixel’s characteristics[164][162].

H istogram  based m ethods are fu rther divided into two types: histogram  entropy based algorithm s[126] 

and histogram  shape based algorithm s[135]. H istogram  entropy based algorithm s consider certain  

m easures of th e  entropy of the  original image and  th a t of the  binarized image. Various types of en

tropy  based b inarization  have been proposed, which include entropic thresholding[126][127], fusion 

of three different entropies[128], co-occurrence m atrix  for second order entropies[129], norm alized 

entropy[131], u tilization of inform ation measure[132], entropic thresholding block source model[133], 

and m inim um  cross entropy[130] [134]. I t should be noted th a t although all of the  entropies addressed 

above cannot be m athem atically  proven to  be efficient for the  real world images, in m any cases they  

are still available.

T he shape of th e  histogram  can be used to  determ ine the  threshold level for th e  b inarization of the 

images. These m ethods use peak detection[135], valley-seeking threshold selection[136], histogram  

concavity analysis[137], histogram  shape analysis[138], valley detection using wavelet tran sfo rm [139], 

histogram  m odification by enhancing the concavity[140], and histogram  m odification via partia l 

differential equations[141]. The bim odality  of th e  histogram  of th e  image is required for such kind 

of m ethods, which is un true for m ost of th e  real world images. Therefore the  m ethods have lim ited 

applications too.

T he above m ethods are regarded as global thresholding m ethods, which yield good perform ance 

when th e  histogram  of th e  image is clearly bim odal. U nfortunately, th is  a ttr ib u te  can be missing 

for images w ith nonuniform  backgrounds or when images are degraded by noise. For these types 

of images, local histogram  analysis m ethods have been proposed[142]. Local h istogram  m ethods
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divide an  image into different zones th rough  layout analysis so th a t the  pixels in one zone are 

homogeneous. These m ethods are known to  outperform  th e  global m ethods. The m ajor drawbacks 

of the  local approaches are th a t  it is difficult to  determ ine the correct window size and  th e  block effect. 

Some additional algorithm s w ith higher com plexity have also been proposed, such as adaptive[143], 

iterative[144][145] and multi-level thresholding m ethods [146][147],

In th e  clustering-based m ethods, the  gray-level sam ples are clustered in two p a rts  as background 

and foreground, or alternatively  are modeled as a m ix ture of two G aussians iterative thresholds. The 

O tsu method[107] is the  m ost referenced thresholding m ethod. In  th is m ethod th e  weighted sum  

of w ithin-class variances of the  foreground and  background pixels should be m inimized to  establish 

an  optim um  threshold. The m inim ization of w ithin-class variances is equivalent to  th e  m axim iza

tion of between-class scatter. This m ethod gives satisfactory results when the  num ber of pixels 

in background and foreground are similar. A dditional m ethods include iterative thresholding[147], 

m inim um  error thresholding[109][110][148][149] and fuzzy clustering threshold ing[150], In [123] the  

cluster is based on the  inform ation contained in a  small window around each pixel.

O bject a ttribu te-based  m ethods search for a  m easure of sim ilarity between th e  gray-level and 

the  binarized image. T he threshold value is based on some a ttrib u te  quality  or sim ilarity  m easure 

between the  original image and  the  binarized version of the  image. These a ttrib u tes  can take 

the  form of edge m a tch in g [lll] , shape compactness[151][152] or gray-level moments[153][154][155]. 

O ther algorithm s directly  evaluate the  resem blance of th e  original gray-level image to  b inary  image 

w ith fuzzy measure[157][158][159] or resem blance of the  cum ulative probability  distributions[160], 

or in term s of th e  quan tity  of inform ation revealed as a result of segm entation [161],

For local pixels adaptive algorithm s, a th reshold  is calculated a t each pixel, which depends 

on some local sta tistics like range, variance, or surface-fitting param eters of th e  neighboring pix

els. A surface fitted to  the  gray-level landscape is used as a local threshold, as in Yanowitz and 

Bruckstein[162] and Shen and Ip[163]. Conventional classifiers such as Neural Networks[164] are 

introduced to  discrim inate th e  pixels into background and foreground according to  the  characteris

tics around every pixel. T he m ajor draw back of such a  m ethod is th a t  b inarization  is based on the  

feature around every pixel in an image, therefore th e  com putational cost is much higher th an  others.

I t should be m entioned th a t  all of the  algorithm s described above are based on th e  hypothesis 

th a t the  foreground is much darker th an  th e  background, which is tru e  in m ost of th e  cases. Though 

much effort has been devoted to  the  b inarization, b inarization  from noisy docum ent images is still 

a  big challenge because of the  com plexity of real world images.
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4.3  T h e P ro p o sed  B in ariza tion  M eth o d

Here we will in troduce a new HMM based binarization  m ethod, which belongs to  local pixel char

acteristics based m ethod. Since O C R  oriented docum ent analysis technique is the  m ajor concern of 

th is thesis. T he b inarization  m ethod focuses on ex tracting  the characters from background, even 

when the  background is noisy, which is difficult for o ther binarization m ethods.

This m ethod is called pixel’s characteristics based m ethod. A fter features are ex trac ted  from 

every pixel’s neighborhood, the  feature will be inpu tted  into a classifier to  clarify the  pixel belong

ing to  foreground or background. Consequently, th e  com putational cost will be extrem ely high in 

com parison w ith histogram  m ethod, therefore how to  reduce the com putational burden is th e  m ajor 

concern of th is algorithm .

The proposed algorithm  is composed of two stages. In the  first stage, a coarse global thresholding 

m ethod is used to  discrim inate the  brighter p a rt of th e  whole image from th e  foreground pixels which 

have lower values. Thus p a rt of th e  background pixels are elim inated. T hereafter, th e  rem aining

pixels are supposed to  be the  m ixture of all of th e  foreground and p a rt of the  background. In

th e  second stage, th e  rem aining pixels are applied to  th e  HMM based pixel classifier to  ob tain  the  

a ttrib u te  of each pixel. In doing so, only p a rt of the  whole image pixels are needed for fu rther 

testing, so the  whole processing tim e will be minimized w ithout sacrificing quality.

4.3.1 The first stage

Since the  first stage of the  proposed technique is regarded as a pre-processing of the  b inarization, 

the  speed issue is the  m ajor concern in th is stage instead of accuracy. T he only requirem ent to  

this stage is th a t  the  threshold should be high enough to  avoid misclassifying some foreground 

into background. T he m ean value can be regarded as the  prelim inary threshold value of th e  whole 

process, and calculated for 8 bits gray-level images as:

M e a n  = (4.1)

where h ( i )is the  num ber of pixels in the  image w ith grey-level i where

0 <  i <  255 (4.2)

Since this m ethod does no t take into account h istogram  shape, the results are obviously subop- 

tim al. For docum ent images, the  num ber of pixels in the  objects of th e  foreground is usually much
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smaller th a n  th e  num ber of pixels in th e  background. Thus, the m ean value will result in under 

thresholding, which is required in th is case.

4.3.2 T he Second Stage 

Feature E xtraction

Instead of only considering the  pixel value as the  feature in the conventional h istogram  based bi

narization m ethod, in th e  pixel classification strategy, binarization is based on th e  features around 

each pixel, such as range, variance, or surface-fitting param eters of the  pixel neighborhood. A proper 

feature is critical for the  perform ance of classification algorithm s. Selected features utilized by other 

researchers [166] [167] for classification include intensities, s ta tistical features, feature  from gradient 

and com pass operators, local con trast feature and m om ent.

In th is chapter we will propose a  novel feature ex traction  m ethod suitable for HM M  based image 

binarization. Inside a window of N  by N ,  we take four feature vectors Vf, V2 , V3, V4 around every 

candidate pixel from four directions: horizontal, left up to  right down, vertical, right up to  left 

down, around each of which contains N  elements. Various sizes of windows have been tested . O ur 

sim ulation results show sm aller window sizes yield sm oother strokes w ith less com putation  cost. 

However, it does not elim inate some specks in the  background and makes the  m ethod  vulnerable to  

noise. For th e  value of N  = 7, the  window is shown in Table 4.1.

In the  first vector, the  7 elem ents are obtained as below:

^ ( 0 , - 1) ) / z  ~  -00 ,0) 

D(0,0)

v i ( 0 ) =  ( P ( 0 , - 3 )

V l ( l ) =  ( P ( 0 , - 2 )

« i ( 2 ) =  P ( 0 - 1 )  -

u i ( 3 ) =  -P (0,0)

u i ( 4 ) =  P ( 0 ,1 )  -

u i ( 5 ) =  (P ( 0 ,1 )  4

v i ( 6 ) =  ( p ( 0 , i )  4

P (0,0)

Similar features using th e  o ther 3 directions can be ex tracted  as follows. Except the  center 

element in which the  original pixel value is used, o ther elements are chosen as th e  difference of the 

average value of the  sliding window to  the  central pixel. T he general expressions are shown as in 

equations (4.3-4.6), where j  begins from 1 when i >  3, and j  begins from —1 when i < 3. B y taking
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Table 4.1: D em onstration of feature extraction
P(-3,-3) P(-3,-2) P (-3 ,-l) P(-3,0) P (-3 ,l) P(-3,2) P(-3,3)

P(-2,-3) P(-2,-2) P (-2 ,-l) P(-2,0) P (-2 ,l) P(-2,2) P(-2,3)

P (-l,-3 ) P (-l,-2 ) P(-l.-l) P(-1,0) P ( -P l) P (-l,2 ) P (-l,3 )

P(0,-3) P(0,-2) P(0,-1) P(0,0) P(0,1) P(0,2) P(0,3)

P (l,-3 ) P (l,-2 ) P ( l r l ) P(1,0) P(U) P (l,2 ) P (l,3 )

P(2,-3) P(2,-2) P (2 ,-l) P(2,0) P (2 ,l) P(2,2) P(2,3)

P(3,-3) P(3,-2) P (3 ,-l) P(3,0) P (3 ,l) P(3,2) P(3,3)

th is  approach the  com putation  cost is reduced in com parison w ith the  conventional m ethods such 

as variance[124] and moments[143].

M * ) =  E  r = 4 - p <0,0). - 3 < i < 3 ,  (4.3)
K—31

■ , 1 l * - 3 lj = l o r — 1 1 1

p

v^  = E F 3 ? i - p (o,o). - 3  < * < 3 ,  i ^ 3  (4.4)
j = \ o r - l  ^

K-3|
« 3 ( i)=  E f z ? i - p (0,0). -  3 <  z <  3, z / 3  (4.5)

P UA)

j = l o r —l

U4W =  E f e l l  ~ P (o,ob - 3 < i < 3 ,  i ^ 3  (4.6)

| i - 3 |

■ ^  i H — 3|j = l o r —l  '

To make the  features m ore independant of the  illum ination variation, we can find the  range of 

candidate pixel values after th e  thresholding to  be between a m inim um  value in th e  given image 

M in i  to  the m ean value of th e  image pixels M ean .  In th is case:

Vi(3) G [Mini, Mean], i =  [1,4] (4.7)

An enhancem ent process is proposed as follow:

/ 255
».(3) =  ( » , ( 3 ) - M m i ) 2 x { M e a n _ M i n i ?  (4.8)

N oting th a t  255 is the  largest pixel value.

Through the  observation of Fig. 4.1-Fig. 4.3, one can deduce th a t  th e  3D surface around  pixels

in a stroke shown in Fig. 4.3 is com pletely different from pixels in the  background (see Fig. 4.1
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Fig. 4.2). Since the  features from th e  foreground and background are different from each o ther, it is 

possible for th e  HM M  based recognizer to  discrim inate between them .

Figure 4.1: Pixel values in a noisy background

Figure 4.2: Pixel values in a dark  background 

H id d e n  M a rk o v  M o d e l  b a s e d  b in a r iz a t io n

After taking th e  features around the  pixels, we can easily pu t the features into HMM based classifiers 

to  check th e  a ttr ib u te  of every pixel th rough  the  classification result . The HMM based recognizer 

works in two phases, tra in ing  phase and evaluation phase.
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300.

200 ,

100 ,

Figure 4.3: Pixel values in one segment of a stroke of a character.

T he Training Phase

In the previous section we have explained how features from a pixel should be com puted using 

equations (4.3-4.6). We have scanned images from various sources such as new spaper and  magazines 

to  setup a database. Tw enty images from th e  database are random ly selected. From  these images 

40,000 pixels are selected and the ir feature vectors are ex tracted  for train ing. H alf of th e  pixels are 

in strokes of the  characters in th e  foreground, while the  o ther half are from various backgrounds. 

Each pixel is assigned to  four feature  vectors, therefore 160,000 vectors are generated to  form a  code 

book.

The K-M ean algorithm[165] is used to  segment th is vector space into 10 partitions represented 

by a set of cluster centers. T hen  the  4 feature vectors for each pixel can be quantized into one 

observation sequence w ith  4 elem ents according to  their distances to  the  10 cluster centers. All of 

the  observation sequences will be inpu tted  into the  HMM to  estim ate the  param eters of the  HMM 

w ith the  Baum-W elch algorithm [93]. Here we select the  num ber of observations M  to  be 10; the  

num ber of hidden s ta tes N  is 4 and  the length of the  sequence is 4 as m entioned before.

For the  conventional HMM, during the  evaluation phase the observation sequence for every 

pixel should be inpu tted  to  th e  HM M  to  calculate the probability  of the  sequence belonging to  a 

class. In th is application the  length of the  sequence is only 4 and the  num ber of observations is 10, 

therefore the  to ta l num ber of the  possible observations is 10000. T he observation sequences vary 

from [0 0 0 0 ] to  [9 9 9 9]. A t th e  sam e tim e there  are only two classes to  be identified - background 

and foreground. Therefore it is possible to  im plem ent some stra tegy  to  speed up th e  whole process,
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which is explained as below:

All o f the  observation sequences from [0 0 0 0] to  [9 9 9 9] are inpu tted  into th e  tra ined  HM M  

engine and the  classification results will be saved in a reference set w ith 0 representing the  background 

and 1 the  foreground. T he size of the  reference set is only 10K bits, which is affordable for m ost of 

th e  applications.

T he E valuation  P hase

To binarize an inpu tted  image, first of all features of every pixel will be ex tracted . T hen th e  feature 

vectors are quantized into 10 observations th rough com parison of the ir distances to  the  centers of 

th e  10 clusters determ ined in the  tra in ing  stage. Instead  of calculating th e  probability  for each 

observation sequence, the  recognition result can be looked up in th e  reference set to  ob ta in  the  

recognition result w ith an efficient com putational cost. W ithout th e  look up table, from equations 

3.40 3.41, one can find th e  com putation  cost for each pixel’s classification is 64 m ultiplications and  

36 additions. Assuming th e  size of a processed image is 1024 by 768 and  half of th e  pixels have been 

elim inated in th e  first stage (coarse thresholding), th e  to ta l HMM based classification in th is  stage 

would need 25,165,824 m ultiplications and 14,155,776 additions.

W ith  the aid of th e  Look Up Table(LU T) saved in the  reference set, all of the  calculations 

can be skipped. T hrough th is m ethod, only feature extraction and quantization  are required in 

th e  evaluation phase, while th e  classification tim e is ignorable, since they  can be looked up in the  

reference set. T he function of th e  HMM is to  set up the  reference set th rough lim ited num ber of 

tra in ing  samples.

4.4  S im u lation  R esu lts

To test the perform ance of the  proposed b inarization  technique, a  com parative study  is carried 

out. In our experim ent, O tsu  global thresholding[107], local adaptive thresholding[108] and K ittle r 

thresholding algorithms[110] are utilized as benchm arks for this com parison, because these th ree 

m ethods are reported  to  have stable and good perform ances a t various applications[103][121].

O ur sim ulation results show the  HMM based segm entation m ethod can provide the  satisfying 

results in all of the  tested  images while others fail to  provide acceptable results for some of the  images 

in our database. To te s t the  robustness of th e  proposed algorithm  in presence of noise sources we 

have conducted th e  sam e com parative studies w ith the  th ree binarization techniques.
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4.4.1 Database used

To test the  efficiency of the  proposed algorithm , three kinds of noisy images were tested . T he first 

picture in Fig. 4.4 is a  historical docum ent image w ith  blurred strokes, complex signal-dependent 

noises and low contrast. The histogram  is shown in Fig. 4.5.

Figure 4.4: An original historical docum ent image w ith low contrast and  signal-dependent noise

12000 
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0
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Figure 4.5: The histogram  of a gray historical docum ent image w ith low con trast and signal- 

dependent noise

The other image shown in Fig. 4.6 has inhomogeneous and complex background. From  the  

histogram  shown in Fig. 4.7, one can note the  lack of bim odality which is a fundam ental requirem ent 

for a global thresholding algorithm s.

40

O riginal H istogram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. H M M -BASED BIN ARIZATIO N  M ETH O D

Figure 4.6: An original docum ent image w ith an inhomogeneous background

O riginal H istogram

1500

Figure 4.7: The histogram  of a  gray docum ent image w ith an inhomogeneous background

T he picture in Fig. 4.8 is an image taken  by cam era w ith varying illum ination in different p a rts  of 

the  image. We can find the  d istribu tion  of th e  histogram  in Fig. 4.9, which is obviously not bimodal.
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Figure 4.8: An original docum ent image under bad illum inating condition

O riginal H istogram

Figure 4.9: The histogram  of a gray docum ent image under bad  illum inating condition

4.4.2 Comparison of the binarization results

For the  image in Fig. 4.4, the  K ittle r algorithm  com pletely failed. T he binary  images obtained w ith 

the  O tsu  and  Local thresholding algorithm  are shown in Fig. 4.10, Fig. 4.11, which are too  noisy 

for any character recognition scheme. From  Fig. 4.12 we can see th a t  the  binary  image from HMM 

based b inarization algorithm  is clearer.

T he b inarization  results of the  image in Fig. 4.6, which has a complex background, is shown in 

Fig. 4.13, Fig. 4.14, Fig. 4.15 and Fig. 4.16. We can observe th a t th e  K ittle r algorithm  and HMM 

based binarization  have identical perform ance, while others yield unsatisfactory  results. A ctually
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Figure 4.10: B inary  docum ent image ex tracted  w ith the  O tsu  algorithm  from the  original image of 

Fig. 4.4

Figure 4.11: B inary  docum ent image ex tracted  w ith the  local thresholding algorithm  from the  

original image of Fig. 4.4

the  K ittle  always over-thresholds the  images, therefore it gets com parable good result in such images 

w ith noisy background.

The binarization results of image in Fig. 4.8, which has non-uniform illum ination is shown in 

Fig. 4.17, Fig. 4.18, Fig. 4.19 and Fig. 4.20. One can clearly observe th a t  th e  proposed algorithm  

perform ed be tte r th a n  others.
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Figure 4.12: B inary docum ent image ex tracted  w ith  the  HMM based thresholding algorithm  from 

th e  original image of Fig. 4.4
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Figure 4.13: B inary  docum ent image ex tracted  w ith the  O tsu  algorithm  from the  original image of 

Fig. 4.6

4.4.3 Q uantitative Study

A handful of b inarization  perform ance criteria[168] [169] [170] have been proposed, w here O C R  based 

criteron is one of the  m ost acceptable m ethods. To further prove the  efficiency of the  proposed 

binarization m ethod, we random ly selected 42 images from the  database of ICDAR[171] for our test. 

I t  should be m entioned th a t  all of the  m ethods used here work on gray images and the  foreground
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Figure 4.14: B inary docum ent image ex tracted  w ith Local thresholding from th e  original image of 

Fig. 4.6
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Figure 4.15: B inary  docum ent image ex tracted  w ith the  K ittler algorithm  from th e  original image 

of Fig. 4.6

pixel values are considered to  be darker th a n  the  background, thus color images are converted into 

gray images before binarization.
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EUROPE AWAY FROM IT ALL
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Figure 4.16: B inary  docum ent image ex tracted  w ith  the  HMM based thrsholding algorithm  from 

the  original image of Fig. 4.6
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Figure 4.17: B inary  docum ent image ex tracted  w ith  the  O tsu algorithm  from th e  original image of 

Fig. 4.8

After binarization  the  binary  images are sent to  the  commercial O C R  software Readiris 10.04 

Professional, th e  recognition results can be regarded as a reliable criterion to  evaluate th e  perfor

m ances of different binarization m ethods. There are a to ta l of 1078 characters in th e  tested  images. 

T he O C R  test results are reported  in tab le  4.2.
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Figure 4.18: B inary  docum ent image ex trac ted  w ith the Local thresholding algorithm  from the 

original image of Fig. 4.8
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Figure 4.19: B inary docum ent image ex trac ted  w ith the  K ittler algorithm  from th e  original image 

of Fig. 4.8

4.5 C onclusion

For th e  local pixel’s characteristics based b inarization  m ethod, the  m ajor draw back is th a t  the  

com putation  cost is extrem ely high, which ham pers the  im plem entation of these m ethods in real 

world applications. In th is proposed algorithm , two critical strategies are utilized to  minimize 

th e  processing time. A fter th e  preprocessing in the  first stage, m ost of the  background pixels are 

identified and it is unnecessary to  send them  to  a classifier. In the  classification s ta te , after feature 

ex traction  and quantization , the  feature sequence of every tested  pixel can be looked up in the
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Figure 4.20: B inary docum ent image ex trac ted  w ith  the  HMM based thresholding algorithm  from 

the  original image of Fig. 4.8

Table 4.2: O C R  results from different binarized images

M ethod HM M  based binarization K ittle[l 10] Local[108] Otsu[107]

O C R  recognition ra te 77% 25% 48% 53%

reference set, which is established in th e  tra in ing  stage. It only takes approxim ately 2 seconds to  

binarize an  image w ith the  size of 1280 by 768, though  the  processing tim e varies from im age to  

image according to  the  variation of the  num ber of pixels elim inated in th e  first stage. T his m ethod 

is feasible for m ost of the  real world applications because of its low com putatio  cost and  accuracy. 

The size of the  reference set is only 10k bits, which is also acceptable to  real world applications too.

In term s of perform ance, th e  te s t results conducted on num ber of noisy images yielded satisfactory  

results. A com parative study  of th e  proposed technique w ith th ree different binarization scheme 

was also carried out. The result of th e  ex tracted  characters from all binarization  techniques were 

applied to  a commercial O C R  engine and shows th a t  the  proposed m ethod  outperform s some of the  

referenced m ethods. This can be a ttrib u ted  to  th e  fact th a t in th is m ethod local features around 

every pixel are selected for binarization. As can be seen, the  characteristics of a  neighborhood around 

a pixel in the  background illustra ted  in Fig. 4.1 and Fig. 4.2 are com pletely different from th e  pixels 

in strokes shown in Fig. 4.3. This makes it easy to  distinguish between background and pixels in 

characters. We also notice when the  con trast of an  image is too  low, our m ethod fail to  ob tain  

the  characters. In some cases the  touching characters can not be recognized by th e  O C R  engine. 

As a  result, a recognition ra te  of 77% is ob tained using the  proposed technique while the  closest
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perform ance was th a t of O tsu ’s which yielded 53% correct ra te . All program s for com parison of 

different m ethods w ith our proposed HMM based b inarization  m ethod were w ritten  w ith  MATLAB. 

Since no optim ization of the  processing tim e was carried out, we did not include com puter tim e for 

each technique in the  tab le  4.2.
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Chapter 5

Edge-Based B in ar iza tion  M ethod

5.1 P ro p o sed  M eth o d o lo g y

In  the last chapter we introduced a  classification based binarization m ethod whose high efficiency 

has been dem onstrated . In  m any cases simple h istogram  based (thresholding) m ethods are  required, 

because of its low com putation  cost and zero m em ory storage requirem ent. However such m ethods 

are based on th e  hypothesis th a t the  histogram  of the  handled image is bim odal, which is un true  for 

m ost of the  real world images. Therefore, it is com parably difficult to  choose a proper threshold  to  

separate  the  foreground from a complex background. T hrough observation, one can notice th a t  no 

m atte r how complex the  backgrounds are, th e  values of pixels around th e  boundary  of th e  foreground 

and  background change abruptly. O ur sim ulations show th a t  any simple edge detector can easily 

distinguish th e  boundary  of the  objects from an  inhomogeneous background. A lthough in some 

conditions the  boundaries are not complete and some edges are derived from variable backgrounds, 

it has little  negative effect to  our application since dom inant edges are still from the  boundary  of 

th e  foreground objects. Since the  edges are th e  transitions from the  foreground to  background, 

th e  neighbor pixels around every edge are the  m ix ture of th e  foreground and background. W ith  a 

simple process we can locate the foreground and background pixels around th e  edges. T hrough the  

histogram s of th e  foreground pixels and background pixels in an image, an optim al threshold  to  the  

entire image can be obtained. L ater, in th is way we can find th a t we have a m uch be tte r chance to  

get a bim odal histogram  no m atte r how complex the  background is. In some sense th is algorithm
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Table 5.1: H orizontal orientational kernel of P rew itt filter
-1 -1 -1

0 0 0

1 1 1

Table 5.2: Vertical orientational kernel of P rew itt filter
-1 0 1

-1 0 1

-1 0 1

can be regarded as histogram  enhancem ent technique.

5.2 T h e P ro p o sed  E d ge B ased  B in ariza tion  M eth o d

According to  the  above analysis, we here propose an edge based b inarization  m ethod. In  th is m ethod 

edges in an image are extracted; then  pixels around boundaries of the  objects will be taken  to  select 

pixels representing the  foreground and background pixels. The histogram  of the  representative pixels 

will be processed to  find th e  proper threshold. T he outline of the process is as shown below:

1. Edge detection.

2. Foreground and background pixels localization.

3. Analysis of histogram s of foreground and background.

5.2.1 Step 1: Edge detection

In this algorithm  the  edge detection is perform ed base on P rew itt detector[156], whose kernels as 

shown in tab le  5.1 and tab le  5.2. Since all of th e  nonzero coefficients in the  kernels are Is, no 

m ultiplications are required for th is process. Consequently, th is  edge detection has th e  high efficiency.

Therefore, the  algorithm  is sum m arized by th e  following notation; let I[i, j) denotes the  image. 

The gradient of th e  image I[i, j] can be com puted using th e  first-difference approxim ations to  produce 

two arrays P[i,  j] and Q\i , j ]  for the  x and y p artia l derivatives:
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p \ i , j  J =  ^ - 1! - S i —  /[ i +  fc.j +  i]) ( w )

g | . .] = S i - i J [ i - l . j  + * ] - £ L - i J [ i + l . j  + *l) (5 2)

The m agnitude of the  gradient can be com puted from th e  standard  form ulas for rectangular-to- 

polar conversion.

M[ i , j \  = y / P [ i , j }2 + Q[ i , j ]2 (5.3)

Thereby, the  problem  of finding locations in the  image array  where there  is rap id  change has

merely been transform ed into the  problem  of finding locations in the  m agnitude array  M[i , j ] ,  which

are local m axim a. A proper threshold is essential to  determ ine the  edges in an  image according to  

their m agnitude. M any thresholding m ethods in edge detection have been discussed in [156]. Here 

the  sim plest roo t m ean square(RM S) value is utilized as shown in equation 5.4.

edge y w id th  * height

In spite of its low con trast and stroke-dependent noises, from the original image shown in Fig. 5.1, 

we can explicitly ab strac t the  edges from the  blurred image as shown in Fig. 5.2.

>¥ A m *

: / / / •  - <"2m -

JfatX'-fa ^ - a . y

Figure 5.1: An original historical docum ent image w ith low contrast and signal-dependent noise
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Figure 5.2: Edges detected by th e  P rew itt detector from Fig. 5.1 

Table 5.3: H orizontal orientational kernel

I( i- ld - l) I(i- ld )

I( iJ - l) I ( i j ) I(i,j+1)

I ( i+ l , j - l ) I(i+1  J)

5.2.2 Step 2: Foreground and background pixels localization

The edges found in the  last stage are supposed to  be the  boundaries between th e  foreground and 

background, therefore the pixels around the  edges belong to  the foreground and  background sepa

rately while some have am phibolous a ttribu tes. The purpose of th is stage is to  identify th e  pixels 

to  represent the  foreground and background. For an edge pixel I ( i , j ), the  8 neighbor pixels around 

the  edge pixel can be shown as below in tab le  5.3.

Theoretically, the  pixels along the  direction of the  edge separately belong to  th e  foreground and 

background. Here we propose a novel m ethod to  identify the  background and foreground around an 

edge:

A fter edge detection and thresholding, we can find edge pixels I ( i , j )  w here th e  M ( i , j )  are bigger 

than  th e  threshold Tedge• Here, another 2 corner detection approxim ation m asks shown in tab le  5.4 

5.5 are used. Thereby we can get the  gradient m agnitude of neighbor pixels around th e  edge pixels 

along 4 directions.

We can find the  m axim um  gradient m agnitude in the  four directions around th e  edge
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Table 5.4: Corner kernel 1
-1 -1 0

-1 0 1

0 1 1

Table 5.5: Corner kernel 2
0 -1 -1

1 0 -1

1 1 0

We will then  select th e  m inim um  value in th is  edge or corner w ith lower values as th e  foreground 

and the  m axim um  value in the  edge or corner w ith higher values as background. In  th is  way we 

can sam ple a foreground and a background pixel around every edge in an  image. For the  image in 

the  Fig. 4.4, th rough  such a process, we can get the  foreground and  background pixels as shown in 

Fig. 5.3 and Fig. 5.4.

F igure 5.3: The foreground pixels ex tracted  from th e  Fig. 4.4

Through our observation we can find, no m atte r how complex the  background is, only the 

pixels around th e  boundary  of foreground, which can dram atically  improve the  perform ance of 

the  histogram  based thresholding.
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Figure 5.4: The background pixels ex tracted  from the  Fig. 4.4

5.2.3 Step 3: A nalysis o f histogram  of selected pixels

As m entioned earlier, th e  m ajor draw back of the  histogram  based thresholding is th a t  th e  histogram s 

of the images are required to  be bimodal; O therw ise th e  result will be degraded or it is impossible 

to  obtain  a  proper threshold. Considering the  variance of the  real world images, such a  require

ment heavily constrains th e  im plem entation of these m ethods, though they  are still th e  m ainstream  

techniques of b inarization for docum ent analysis. For example th e  h istogram  of th e  Fig. 4.4 is 

shown as Fig. 4.5. I t  is impossible to  ex trac t th e  characters from th e  im age th rough  conventional 

histogram  based m ethods. However from the  histogram s of the selected pixels from the  image as 

shown in the  Fig. 5.5, it is easy for us to  calculate the  optim al th reshold  to  separa te  th e  objects 

from the  background. Because m ost of the  un im portan t pixels in th e  background are  skipped, our 

sim ulation results prove th a t  in th is way we can always get th e  bim odal histogram s from any kinds 

of noisy images, even though th e  background is very complex, it has little  effect to  th e  extraction  

of the foregrounds. In th is way the  histogram  of the  processed im age is enhanced. Because the  

m ajor inhomogeneities in an  image are the  relationship between th e  foreground and  background, 

the  dom inant edge pixels are the  boundary  pixels from foreground.

T he principle of obtain ing optim al threshold is to  minimize th e  errors of misrecognizing the  

foreground into background and vice versa. After we count the two histogram s of th e  background 

and foreground as H j orr, and Hback, for every threshold value varying from 0 to  255 there  are 

foreground error ra te  E f ore and background error ra te  Eback, which can be calculated as below:
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Figure 5.5: T he histogram  of th e  selected pixels in the  Fig. 4.4

Eback(j) — 'y  ̂Hback(i)
i=0

Efore{j) — y  " H fore(i)

(5.5)

(5.6)
2=255

T hen th e  general error Etotal can be calculate as:

Etotali^) — E fore(i) Ebackii ĵ (5.7)

T he errors can be illustra ted  as in Fig 5.6. Obviously the  optim al th reshold  is the  value which 

corresponds to  th e  m inim um  errors.

Since these noises or inhomogeneous backgrounds can be skipped a t the  edge detection stage, we 

can explicitly separate th e  pixels in th e  foreground from the  background w ithou t the  interference 

of these pixels w ith th is  m ethod. Even though in some cases some edges in th e  fast changing 

background will be misrecognized as the  boundaries of the  foreground a t th e  edge detection stage, 

th e  num ber of edges from the  foreground are still big enough to  suppress th e  negative effect of the 

fake edges. T he b inarization  result for the  Fig. 4.4 is shown in Fig. 5.7.
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Figure 5.6: The num ber of errors corresponding to  different thresholds
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Figure 5.7: T he binary docum ent image ex tracted  w ith proposed global threshold  from  th e  image 

shown in th e  Fig. 4.4

5.2.4 Local thresholding

Test results show th is m ethod succeeds in m ost of the images, some of which even have low contrast 

and inhomogeneous background, which are  hard  for m ost of the  o ther histogram  based m ethods. 

However, for the  global histogram  based m ethods there  is an inherent draw back th a t  for th e  image 

w ith nonuniform  illum ination such as image shown in Fig. 5.8, one single threshold  cannot binarize 

th e  whole image properly. T he binarization  result is shown in Fig. 5.9. Obviously, because of the 

deficiency of the  global m ethod, it is not good enough to  handle such problems.
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Figure 5.8: An original docum ent image under bad illum inating condition
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Figure 5.9: The binary  docum ent image ex tracted  w ith proposed global threshold from th e  image 

shown in the  Fig. 5.8

To improve the  perform ance the  local histogram  analysis is im plem ented here. F irst, an image 

will be divided into different non-overlapped zones. The threshold is ob tained for every zone. Since, 

for every zone, only the  vector of h istogram  which has 256 elements is to  be processed. T he ex tra  

processing tim e is short enough for m ost of applications. Here we set the  num ber of zones as eight 

by eight and th e  result is shown in the  Fig. 5.10. I t should be noted th a t th e  division of th e  images 

to  8 x 8 can not be generalized as different applications m ay require different num ber of subimages. 

W ith  th e  application we had in hand  th e  best result was obtained by divided into 8 x 8  subimages.
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5. E DG E-BASED BINARIZATION M E T H O D

Thereby, th e  nonuniform  illum ination problem  can be easily overcome. If th e  illum ination is uniform, 

there are little  differences between th e  global threshold and the local thresholds. In th e  following 

sections, th e  im plem ented edge based algorithm  m eans the  local thresholding m ethod.
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Figure 5.10: The binary  docum ent image ex tracted  w ith proposed local threshold  from the  image 

shown in the  Fig. 5.8

5.3 S im ulation  R esu lts  and conclusion

We have tested  O tsu  global thresholding[107], local adaptive thresholding[108], K ittle r thresholding 

algorithm s [110] and our proposed edge based thresholding for a num ber of docum ent images w ith 

poor quality  caused by bad illum ination, non-stationary  backgrounds, and  signal dependent noises. 

O ur sim ulation results show th a t  only the  edge based segm entation m ethod  can provide th e  satis

factory results in all of the  images, while o thers fail in some of the images. To te s t the  feasibility of 

proposed algorithm s in different noisy images, we would like to  dem onstrate  th e  b inarization  results 

of the  th ree  reference algorithm s and edge based algorithm s.

5.3.1 Test results

To tes t th e  feasibility of the  proposed algorithm  in various applications, th e  th ree noisy images 

shown in figure Fig. 5.1, Fig. 5.8, Fig. 5.11 are considered, which are also used in last chapter.

T he histogram s of the  selected pixels in th e  th ree images in Fig. 5.1, Fig. 5.8, Fig. 5.11, can
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5 . EDGE-BASED BINARIZATION M E T H O D

Figure 5.11: An original docum ent image w ith an inhomogeneous background

be found in Fig. 5.5, Fig. 5.12, Fig. 5.13 respectively. All of the histogram s of th e  selected pixels 

in an image from the  images are bim odal. T he enhanced histogram s can be utilized to  get the 

proper threshold. These histogram s are dem onstrated  here to  show th e  bim odality  of the  selected 

pixels in tested  images. Actually, all of th e  histogram s used in the  binarization  are the  histogram  of 

independant zones in an  image as described in 5.2.4, instead of the  whole image.
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Figure 5.12: T he histogram  of the  selected pixels of Fig. 5.8
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Figure 5.13: The histogram  of th e  selected pixels of Fig. 5.11

5.3.2 Comparison of the binarized images

For the  image of an ancient docum ent as shown in Fig. 5.1, from Fig. 5.7 we can tell th a t  the  binary  

image from edge based b inarization algorithm  is clear and robust. Except th e  K ittle r and O tsu 

algorithm s com pletely fail, the  binary  image obtained w ith  Local thrsholding algorithm  as shown in 

Fig. 5.14 is not acceptable to  any existing O C R  engine.

F igure 5.14: B inary docum ent image ex tracted  w ith th e  local thresholding algorithm  from the  

original image of Fig. 5.1

T he b inarization  results of the  image in Fig. 5.8 which has non-uniform  illum ination is shown
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in Fig. 5.15, Fig. 5.16, Fig. 5.17 and Fig. 5.10. We can find th a t the  binary image from  edge based 

algorithm  is more clear th an  th e  others.
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Figure 5.15: B inary  docum ent image ex tracted  w ith  the  O tsu  algorithm  from the  original image of 

Fig. 5.8
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Figure 5.16: B inary docum ent image ex tracted  w ith the  Local thresholding algorithm  from the  

original image of Fig. 5.8

The binarization results of the  image in Fig. 5.11, which has complex background is shown in 

Fig. 5.19, Fig. 5.20, Fig. 5.21, Fig. 5.22. We can find except the  K ittle r algorithm  has identical 

perform ance as the  edge based binarization, and  th e  o ther algorithm s partia lly  fail.
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Figure 5.18: B inary  docum ent image ex trac ted  w ith the  edge based thresholding algorithm  from the 

original image of Fig. 5.8

5.3.3 Q uantitative Study

To fu rther prove th e  efficiency of the  proposed binarization m ethod, we carry  ou t the  sam e exper

im ent as last chapter. 42 images are random ly selected from the database  of ICDAR[171]. After 

b inarization the  b inary  images are sent to  th e  commercial O C R  software Readiris 10.04 Professional, 

the  recognition results can be regarded as a reliable criterion to  evaluate the  perform ances of differ-
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Figure 5.19: B inary  docum ent image ex tracted  w ith  the  O tsu  algorithm  from the  original image of 

Fig. 5.11

Figure 5.20: B inary docum ent image ex tracted  w ith  Local thresholding from the  original image of 

Fig. 5.11

ent b inarization  m ethods. There are a to ta l of 1078 characters in the  tested  images. T he O C R  test 

results are reported  in tab le  5.6. One can find the  recognition ra te  based on the  binarized image
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Figure 5.21: B inary  docum ent image ex trac ted  w ith the  K ittler algorithm  from th e  original image 

of Fig. 5.11
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Figure 5.22: B inary docum ent image ex tracted  w ith the  Edge based thrsholding algorithm  from the 

original image of Fig. 5.11

from proposed m ethod is much higher th a n  the  reference ones.
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Table 5.6: O C R  results from different binarized images

M ethod Edge based b inarization K ittle[l 10] Local [108] Otsu[107]

O C R  recognition ra te 67.3% 25% 48% 53%

5.3.4 Conclusion

In this chapter, we have presented a novel thresholding m ethod based on edge inform ation to  binarize 

seriously degraded and  very poor quality  gray-scale docum ent image. O ur m ethod can threshold  

gray-scale docum ent images w ith complex signal-dependent noise, variable background intensity  

caused by nonuniform  illum ination, shadow, sm ear or smudge and very low con trast w ithout obvious 

loss of useful inform ation. From  th e  tests  of th e  various styles of noisy images, we can say th a t  the  

proposed algorithm  provides robust results for all of th e  tested cases. T he m ajor reason for th e  

robustness of the  proposed algorithm  is th a t our m ethod extracts the  threshold  based on th e  pixels 

around the  edges. In  th is way th e  trem endous am ount of useless inform ation contained in th e  

background can be ignored. From  the  above sim ulation it can be found th a t  the  histogram s of the  

selected pixels are real bim odal. Its  com putational efficiency is much higher th an  o ther algorithm s 

such as connectivity-based thresholding or local adaptive m ethods [153][162] [163]. T he quan tative 

test shows its recognition ra te  is 67.3%, which is 14.3% higher th an  the  best reference binarization 

methods. In com parison w ith o ther histogram  based algorithm s, only one m ore edge detection 

process is added, which is fast enough for m ost of th e  real world applications.
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Chapter 6

1-D Self-Adaptive  H M M  and its  

application to O C R

6.1 C onvention al H M M  and its  draw back

C hapter 3 has provided th e  detailed introduction  to  HMM and its applications in different fields. 

Some variants of stan d ard  HMMs are conceived as extensions of th e  in ternal s tru c tu re  of th e  model. 

However, the  d a ta  interface tow ards the  external world essentially rem ains the  sam e and  th e  basic 

d a ta  objects being processed are still single sequences. One can notice th a t  there  are some drawbacks 

in the  theory  of th e  conventional HMMs.

F irs t of all, the  hidden M arkov model is a causal system . The probability  of s ta te  a t tim e ( t + 1) 

is derived from s ta te  t  and affected by the  present observation (t  +  1). For classifiers based on 

Hidden M arkov Models, all of the  observation elem ents are parallelly inpu tted  into the  model. The 

hypothesis th a t the  hidden s ta te  is only derived from the  former one is untrue. If s ta te  t could be 

determ ined by the  sta tes and observations a t t-1 and t+ 1 , the  model should be m ore accurate  th an  

the unidirectional M arkov chain.

Secondly, HMM is a one p a th  chain, which m eans th a t  w ith the  presence of noise the  whole 

propagation p a th  of th e  hidden s ta tes after the  noise will be changed dram atically. For example, 

there  are a sequence of observations, V i, as shown in figure 6.1, and according to  equations 3.22 

3.23 3.24, the  optim al p a th  S 1S 2 S 2 S 3 S 1S 4 can be easily obtained. W hen there  is noise interferring
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w ith the  signal and the  obervation V3 is replaced by noise V3 as shown in figure 6 .2, th e  calculated 

probabilitis of sta tes in location t =  3 m ay be com pletely different from th e  correct one. Therefore, 

th e  following induction from t  + 1  to  T  will easily detour to  a  wrong pa th . For exam ple, in th is  case 

the  new optim al p a th  will be as illustra ted  in figure 6.2 .

W hen HMM is utilized as a classifier, to  simplify the  calculation, in m any cases the  probability  

of P( 0 \ X)  is substitu ted  by th e  P ( 0 , Q *  |A), where Q*  is the  optim al path . T he w rong estim ation of 

optim al p a th  will yield a wrong conclusion. In the  norm al evalution m ethod as shown in equations 

3.11 3.12 3.13, th e  mem berships of th e  hidden sta tes should be estim ated from the  form er tim e s lo t’s 

hidden sta tes and present observation. W ith  the  presence of noise, the  perform ance of the  HM M  

based classifiers will be degraded.

V1 -------- *V2  ► V3  *V4 ------- ► V5 *V6

S1 v S1

S2S2 S2 S2

S3 S3S3 S3

S4S4 S4 S4

52 S2

53 S3

54 S4

Figure 6.1: O ptim al pa th  search in noise free signal

V1 --------------  ► V3   V4 ► V5 ► V6

81 \
52

53

54

Figure 6.2: O ptim al p a th  search in noise free signal

S2 S2 S2

S3. S3 S3 S3

S4 S4 S4 S4
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6.2 T h e P ro p o sed  S elf-A d ap tive  H idden  M arkov M od el

6.2.1 Elem ents o f the proposed m odel

In this section we will propose a new Self-Adaptive H idden M arkov Model. Like th e  conventional 

HMM, in th is  model th e  following elem ents are introduced: N ,  num ber of hidden sta tes and M , 

num ber of observation symbols in the  alphabet.

H ypotheses about th e  relationships of the  elements are proposed and  th e  model is characterized 

by the following:

1) S tates com bination probabilities Lij .

2) P robability  of d istribu tion  of observations to  every s ta te  B  — bj(k).

3) T he d istribu tion  probability  of sta tes in every tim e slot of the  observation sequence Dt( j ) .

4) P robability  of th e  s ta te  j  occurring in the  model C j .

Li j  is the  probability  of the  neighbor sta tes com bination. T he m ajor difference between the  

proposed m ethod to  the  conventional HM M  is th a t instead of considering th e  probability  of the  

transition  from one tim e slot to  the  next, a bi-directional com bination of th e  neighbour sta tes  will 

be checked. In th is way th e  proposed model is not a causal system  anym ore and the  drawbacks 

m entioned in last section will be elim inated. L tJ can be expressed as below:

L ij = P(<lt = i,qt+  i =  j ) ,  1 < i , j  < N  (6.1)

It should be m entioned th a t  we have assum ed th a t  th is  com bination is a non-skip them e, hence:

L tj  =  0 when j  < i or j  > i + 1 (6.2)

B  =  bj(k)  is the  sam e as conventional HMM:

bj(k) = P (O t = Vk \qt -  j ) ,  1 < j < N ,  1 <  k  < M  (6.3)

D t (j)  is th e  d istribu tion  probability  of sta tes in every tim e slot of th e  observation sequence.

A ( j )  =  P(qt =  j ) ,  1 <  t  < T , 1 <  j  < N  (6.4)

In the conventional HM M  there  is a corresponding param eter 7r, which is only available to  th e  hidden 

sta tes in location 1, th e  m em berships of th e  sta tes a t o ther locations can only be deduced by the  

equation 3.11 and 3.12, usually from left to  right. In the  new model every location has an  inherent 

sta tes d istribu tion  probability. Consequently, the  mem berships of th e  s ta tes in every location will
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depend less on the  neighbors. Therefore, noise will have less effect on th e  estim ation of th e  sta tes 

a t other tim e slots.

T he probability  of th e  s ta te , j ,  occurring in th e  model C j is a newly in troduced concept in th is 

model, its usage will be dem onstrated  later.

Instead  of beginning to  estim ate th e  hidden sta tes from the  two ends of th e  M arkov chain, in th is 

model the  estim ation of sta tes will be sta rted  from every tim e slot in th e  sequence simultaneously. 

Hence the  influence of noise in the  sequence will be minimized. The detailed procedure of th e  m odel 

will be addressed in th e  following section.

6.2.2 Evaluation stage

The evaluation process of th e  proposed model consists of the  following steps:

1) Single node sta tes  estim ation.

The estim ation of th e  sta tes in every tim e slot will only be sta rted  from every single obervation. 

The m em berships are  decided by two issues: the  location of the  tim e slot and  the  observation a t 

this tim e slot. The first one can be looked up from the  D t (k),  while the  second one depends on 

observation symbol probability  d istribu tion  bj(k).  The general probability  can be calculated  as 

below:

Pt{Ot\Si) = bj (Ot ) Dt ( j ) ,  1 <  t < T,  1 <  j  < N ,  1 <  Ot < M  (6.5)

2) Coupled nodes s ta te s  estim ation.

After independantly  obtaining th e  s ta te s’ mem berships of every slot in th e  sequence, the  influence 

from neighbour slots are  considered here to  fu rther estim ate the m em berships a t every tim e slot. 

F irst of all, we have to  prove the  linearity  of th is model:

Assuming th a t  we have a d a ta  set of sta tes, after a sta tis tic  audit, besides probabilities of 

the neighbor sta tes com bination L ^ ,  we can obtain  two ex tra  conventional forward and backward 

transition  param eters where:

a tj =  P(Qt+1 =  j \ q t  = i ) ,  1 < i , j  < N  (6.6)

bji =  P { q t =  i \qt+ 1  =  j ) ,  l < i , j  < N  (6.7)

The probability  of every sta te  i existing in the  model Ci can also be obtained, where 1 <  i  < N  

Obviously one can get:

Li j  — Cidij — Cjbji (6 .8 )

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. 1-D SE LF -A D A PTIV E  HM M  A N D  IT S A P PL IC A T IO N  TO  O C R

Hence L t] is conditionally independent. T he probability  of sta tes i and  j  occuring in slot t  and 

t+ 1  is Lij\  in general, it should be regarded th a t  c[° \  = Ci and Ct+i3 — cj- T he superscrip t 0 here 

is the iteration  tim e and th e  0 m eans it has no t yet been processed. If the  probability  of s ta te  i

occurring in location t is q  t , and  c)+ 1 . =  cj:

  ( i )  ( i )

= ct 1}ia ij =  ^ —Lciaij =  % -T L i:j (6.9)
Cj Cj

J 1) JO) 
h

then:

In a sim ilar way, if the  probability  of sta te  j in tim e slot t  +  1 is changed to  cj+ 1 ., and  ct ’i =  c*,

  JD JD
rF )  _  .̂l1) h  _  t + 1 i  r  u  _  t + 1 J  t  16 101L t i j  —  Ct + 1 *  0 j ,  —  C0O3% — i v y  ( O . I U J

Cj Cj

If the c[° \  is changed from c% to  ct l> t , and c j^ , ̂  is changed from Cj to  sim ultaneously, we can 

get:
( ! )  C (1)

L(t )ij =  ^ - ± LlJ^ ± l < t < T - l  (6 .11)
Cj Cj

Thereby, the  linearity of the  probability  of combined sta tes is proven. From equation 6.11 the

probability  of s ta te  i and j  happening in slot t  and t +  1 will be:

Z,(1} =  p t ( ° t \si)_L  p (t+i) ( 0 (t+i)\sj)  (6 il2 )
v '-j n  ■ n  •t-'l *-j

The m em bership can be norm alized as:

z / 1)
1 <  t <  T  -  1, 1 <  i, j  <  N  (6.13)

l ^ i= \  2^ j = l  ij

Based on the  link inform ation form ulated as above, we can get the  new m em bership of sta tes in t 

and f +  1 as:
N

P ? \  = J 2 L t2)ij l < t < T - l , l < i , j < N  (6.14)
3 =  1

N

P(Sd,- =  E L t2)ij l < t < T - l ,  l < i , j < N  (6.15)
i = i

The superscrip t (2) m eans th e  la test updated  inform ation.

3) P ropagation  of sta tes inform ation:

In a given chain, every node w ith  the  exception of the  end nodes are connected to  two neigh

bours. T here are two sets of m em berships of sta tes  derived from th e  two neighbours, while the  

two sets of m em berships are no t guaranteed to  be identical in m ost of the  cases. How to  solve
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th is conflict is critical for th e  model. Several solutions were proposed to  solve such noncausal prob

lems, such as R ecurrent Neural Network(RNN) [86] and B idirectional Inpu t O u tp u t H idden Markov 

M odel(BIOHM M ) [87].

Here we propose a new asynchronous m ethod to  solve the noncausal problem . T he process 

consists of following steps:

Observations:
□

1

1

□ □ □ □ □ □
States: o

|

o| o o o o o o
1

i
2 . .J . . ...t-1 • t+1 t+2 ...„ ..j ....T -l T

Observations: □ □ □

51

!□
I

□ ! ! □
1 j
1 |

□ ! □

States: o o
1

0 b o
1 t 
1 1no o O

1 2 3 . . . i . , j . . . t t+1 \ ! T-2
i t

T-l I  T

Figure 6.3: Asynchronous sta tes estim ation m ethod

Step 1: As shown a t the  to p  of figure 6.3, the  combined probabilities of sta tes  in location 

{1,2}, {3,4}, { T  — 1 ,T }  (W ithout loss of generality, T  is assum ed to  be even) are calculated w ith 

the  m ethod shown in th e  last section. Then, we can get the  combined probability: L t( i j ) ,  w here t  

is odd. After norm alization, we can get th e  m em berships of sta tes in every node in th e  sequence.

Step 2: As shown a t the  bo ttom  of figure 6.3, the  combined probabilities of s ta tes in location 

(2 ,3 } , {4,5}, {T — 2, T  — 1} w ith updated  mem berships are calculated in th e  sam e way as the  last 

step. Then we can get the  combined probabilies:Lt ( ij) , where t  is even, and th e  la test m em berships 

in every node except the  two ends.

Step 3: R epeat above process. A fter each iteration , the  inform ation abou t s ta tes contained in a 

tim e slot can be tran sm itted  into neighbour slots in two directions. T he optim um  num ber of iteration
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will vary according to  different applications. In the  case of handw ritten  character recognition our 

sim ulation results show th a t we can get the  best result when the process is repeated a t least one 

fifth of th e  length of the  sequence. This will be dem onstrated  in section 6.3.

4) Special cases:

For ideal clean signal sequence, it is easy for the  m em bership inform ation to  be tran sm itted  along 

the  path . However, in th e  presence of noise one gets:

N  N

(6.16)
*= l j =i

Observations: j | [ j | j j | | | j □  □ □  □

States: o o o ot
|

o o o o
j 1 2 .. ..... t-l t I t+1...................... ...................T

Figure 6.4: A synchronous sta tes estim ation m ethod

This indicates th a t  th e  hidden sta tes a t the  two ends of this link are no t continuous. Then, 

according to  equation 6.14 and 6.15, all of the  m em berships of hidden sta tes a t node t  and  t  +  1 

will be 0, which is obviously wrong. To solve th is problem , we ignore the  new m em berships which 

are 0 and will not upd a te  them . In  the  m eantim e, the  original sequence is split into two sequences 

as shown in figure 6.4. Therefore, th e  influence of degradation will be removed; th is was m ade 

possible because s ta te  inform ation is not tran sm itted  further. W hen there  are m ore th a n  one severe 

degradations in th e  sequence, th e  sequence will be divided into more th a n  two segm ents while every 

segment is considered independently.

5)O bjective functions:

A fter th e  above iterations, we can ob tain  the  estim ate of the  m em berships of sta tes in every 

node. T he probability  of every node in the  sequence generating the  corresponding observation can
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be calculated as below:
N

j{n) _  ST p i " )Pt{n> = P t i ^ b ^ O t )  l < t < T  (6.17)
i—l

n  is the  iteration  tim e, t is the  tim e slot, P^n\ i )  is the probability  of s ta te  i occurring in tim e slot 

t after n  in teration  and 6, (Ot ) is the  probability  of observation Ot occurring in s ta te  i.

Then, the  general probability  of every node in each mode in the  given sequence is:

T

Pnode = Y [ P tin) (6.18)
t= 1

Besides th e  probability  observed in every node, the  chance of th e  com bination of every two 

neighbour hidden sta tes can be calculated between node t  and t +  1 as below:

r  ̂ P {n) P ( S i )  -
L t i j  = ~ — -  1 <  t < T  — 1 (6.19)

Ci Cj

We can therefore get the  general probability  of link between node t  and  t  +  1 as:

N  N
Lt  =  ^ < t < T - l ,  l < i , j < N  (6.20)

i = l  j=l

T hen, all of th e  links(Com bination of neighbour sta tes) existing in th e  sequence will be:

T - l

Punk =  Lt (6 ‘21)
t = l

T he com bination of above two equations 6.18 and 6.21 will yield th e  final probability  as:

Pfinal = PlinkPnode (6 .22 )

It is possible th a t probabilities of some nodes or links become 0. Therefore, after m ultiplication 

the  general result will be 0. In  such a case, we will substitue the 0 w ith  a small positive value to  

avoid a  rigid result.

W hen the  model is im plem ented in th e  classification phase, the self-adaptive model based recog

nizer aims to  determ ine the  model th a t  is m ost probably th e  one th a t  produced th e  provided test

signal, i.e.

A =  arg m ax P (A |0 )  (6.23)
All of the A

T his is M axim um  A Postriori P robab ility  (M AP) problem , where Bayes rule is utilized to  refor

m ulate the  recognition problem  as:

P ( 0 \ X ) P ( \ )
A =  arg  m ax ----- — —----- (6-24)

All of the X P ( 0 )
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P ( A) is usually considered equal for all models, i.e. all models are  equally probable. Thus 

Equation 6.24 can be simplified as:

A =  arg m ax P (0 |A ) (6.25)
All o f  the X

In the  evaluation stage, signal sequence is sent to  every model in th e  system  to  calculate the  

probabilily as shown above. T he M AP is the  final result of the  classification. T he next im portan t 

problem  is to  estim ate th e  param eters in the  model during th e  tra in ing  stage.

6.2.3 Training stage

C onventional H M M  train ing m eth ods

The train ing stage is the  m ost critical step  for the  perform ance of a classifier. In th is  process the 

sta tistical param eters of th e  model will be optim ized to  fit a set of observed tra in ing  data . For con

ventional HMM, m any successful heuristic algorithm s such as the Baum -W elch algorithm s [94] and 

th e  gradient m ethods [88] are developed for th e  optim ization of the  model param eters. Baum-W elch 

algorithm  iteratively provides param eter estim ates th a t  maximize the  actual (M axim um  Likelihood 

Estim ation)M LE criterion, i.e. P (0 |A ); those estim ates are based on partia l p a th  probabilities com

puted by forward and backward recurrences and converge a t least to  a  local m axim um . Even the  

m axim um  likelihood can not yield analytically  optim al results. A nother straight-forw ard m ethod 

is the  decision-directed estim ation algorithm [100], where suboptim al results are obtained w ith less 

com putational cost. Besides the  above m ethods the  Genetic A lgorithm  [89] is an  a lternative m ethod 

to  further improve the  tra in ing  process. U ntil now th e  Baum-W elch algorithm  is still th e  domi

nant m ethod because of its guanran teed  convergence. In  th is m ethod, an  auxilary param eter £ is 

introduced, where

c /,• _  A t(i)a ijb j(O t+ i)/3 t+ i(j)_________ At ( i ) a j j b j  { O t + i  )A + i  { j )______  nr.\

^ ' J ) ~  P ( ° \ X) ~ E L Z U M i ) a l j bj (Ot+1)(3t+1(j ) { • j

A nother param eter 7t(i)  is added here to  describe th e  probability  of being in s ta te  S* a t tim e 

t , given the  observation sequence and th e  model; hence, we can relate 7*(i) to  by sum m ing

over j ,  giving
N

7t (*) =  E &(*’■?') <6-27)
3 =  1

W hen we sum  7 t(i) over th e  tim e index t, we get a q uan tity  which can be in terp reted  as the  expected 

num ber of transitions m ade from s ta te  Si.  A t the  sam e tim e, sum m ation of £,t(h j )  ’over t  can be
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in terpreted  as the  expected num ber of transitions from sta te  Si  to  s ta te  Sj.  T h a t is

T - l

7 t (i) = expected n um ber  o f  t rans i t ions f r o m  Si  (6.28)
t=i

T - l

^  £((i, j )  = expected nu m ber  o f  t ra ns i t ions  f r o m  Si to Sj  (6.29)
t= i

W ith  th e  above form ulas we can give a m ethod for re-estim ation of the  param eters of an HMM. 

Hence the  estim ated 7r, A and B are

7r =  expected f re q u en cy  in  s tate Si at t ime  (t =  1) =  71 (i) (6.30)

_ _  expected number  o f  t rans i t i ons  f r o m  Si to S j  J2 t=i ^ t ( i , j ) ,g
13 expected number  o f  t rans i t io ns  f r o m  Si Y l t~ i  €t(i)

expected num ber  o f  t i m e s  i n  state j  wi t h  symbol Vk
bj (k) =  —^  -------------   i -----2--------- * (6.32)

expected numb er  o f  t i m e s  m  state j
Based on the  above procedure, if we iteratively  use A as estim ated param eters and repeat the  

reestim ation calculation, we can then  improve the  probability  of O being observed from  th e  model 

until th e  tim e of iteration  is over a  specific num ber or the  likelihood calculated in equation  6.25 is 

over a  threshold.

Since th e  proposed m ethod is non-linear and non-causal, it is difficult to  tra in  th e  model w ith 

conventional m ethods. Here, we will in troduce two feasible m ethods. Sim ulation results show the  

sufficiency of the  proposed tra in ing  m ethods.

E stim ation  o f  proposed  m eth od  param eter using conventional H M M

The proposed model has a sim ilar arch itecture  to  th e  conventional HMM. T he com m on cores of the 

two m odels are th e  structu re  of two layers: observations and hidden states. All of th e  param eters in 

bo th  models indicate th e  relationship of th e  two layers. T he only difference is th a t  the  relationship 

of the  hidden sta tes in th e  conventional HMM is causal, which m eans the  sta tes are derived from 

upstream  or dow nstream  states, while in th e  proposed m ethod bo th  of them  will be considered. 

Here we will introduce a feasible tra in ing  m ethod. To tra in  a proposed SAHMM, we establish a 

HMM w ith the  same num ber of sta tes and observations. After the  tra in ing  d a ta  are  inpu tted  into 

the  HMM, i t ’s easy to  ob tain  th e  optim al hidden sta tes in the  database.

Assuming we have a self-adaptive model w ith  N sta tes and  M observations, we can set up a HMM 

w ith the  same num ber of s ta tes and observations. O ptim al paths searching is a decoding problem  

th a t is well studied for the  HMM. In th is  step  th e  V iterbi algorithm[79] is the  m ost used m ethod.
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In th is m ethod, to  find the  single best s ta te  sequence, Q  =  qi ,q2 , ■■■■qr for th e  given observation 

sequence O — Oi,  we need to  define the  quan tity  St (i) which is th e  best score a t t  along a

single path , considering the  observations from th e  first elem ent to  the  elem ent t. We can also find 

th a t

<5t+ i( j )  =  max[5t (i)aij]bj(Ot+i)  1 <  i < N  (6.33)

For a given database, we can find the  unique optim al p a th  for every sequence under supervision. 

For exam ple, if we have K d a ta  in the  database and  th e  length of th e  sequence is T  w ith  M  

observations. In th is case, the  sequences have constan t length. After the  decoding, we can find the 

K optim al pa th s  for all of the  sequences. A fter enum erating the K  observation sequences and  K  

hidden s ta tes sequences we can obtain  th e  Cj,  L ^ ,  B  =  bj(k)  and D t (j).

The to ta l num ber of s ta te  i occuring in the d a ta  base should be the  N u m b e r  S ta te s  j, in th is  case

N
N u m b e r S ta t e s i  = K  x T  (6.34)

2 = 1

then  Cj  can  be obtained

„  N u m b e r  Statesi  N u m b e r  S tatesi
Ci =  — Ki 2—  = ------- 77— ™---- 1 (6-35)

5Zi=i N u m b e r S ta te s i  K  x  T

T he to ta l num ber of com binations of neighbour s ta te  i and j  occuring in th e  database  should be

N u m b e r  C o m bi na t io n^  and can be obtained

L a  =  — Tj------ Tj-------------------------- %1--------- (6.36)
H i= i  i NumberCombinat ior i i

N  umber  Combinatiorii  

2jL i  NumberCombinuuMinj

w here =  0 when j  < i or j  > i +  1

W ith  th e  sam e m ethod we can ob tain  th e  param eter D t (j):

For every tim e slot in the  K sequences, one more variable N u m t (i) is defined, which is the  num ber 

of tim es the  s ta te  i occurring in the  tim e slot t\

rw .o  N u m t (i)
=  m  7T (6'37)£ i= i N u m t (i)

In the  sam e way we can find the  B  = b j (k ):

. . N u m b e r  o f  observation k  occurrinq when  the s tate i s  j
bj(k) =  ---------------   :---------------------------   —  (6.38)

number  o f  s tates j

Through th is  m ethod, we can estim ate  all of th e  param eters in the  Self-Adaptive HMM w ith the 

aid of the  conventional HMM.
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Iterative train ing m eth od

A nother available tra in ing  m ethod utilizes the  iterative strategy. F irst, we assign initial values to  

th e  param eters in th e  model. Assuming we have th e  tra in ing  set w ith K  sequences and  the  length 

of each sequence is T , according to  the  m ethod m entioned in th e  last section we can ob tain  the  

probability  of the  neighbor com bination of th e  hidden sta tes in every tim e slot as L ^ t (i j) ,  w here k  

is the index of the  sequence in th e  database and t is the  tim e slot, n  is the  ite ra tion  tim e, while i 

and j  are th e  sta tes. We can easily get th e  probability  of th e  hidden sta tes a t tim e t  P£t {i)\

N

Pkt(i) = l < i < N , l < t < T - l  (6.39)
j =i

when t= T ,  th e  P^t U)  is:
N

P&rti) =  E I < i < N  (6.40)
i= 1

A fter estim ating th e  fuzzy m em bership of sta tes in every tim e slot in the  database, we can obtain  

th e  new param eters in the  model, like the  m ethod used in th e  last section. After several iteration, 

a  new set of param eters will be available. O ur sim ulation shows th a t  th is m ethod  can converge 

into a stable local m aximum. A draw back of th is  m ethod is th a t th e  perform ance of the  model 

highly depends on the  intial values because only a local m axim um  is reached a t th e  end. Here the  

decision-directed estim ation algorithm  is proposed to  estim ate th e  initial param eters in th e  model 

to  improve the  perform ance of the  classifier.

D ecision  D irected  E stim ation (D D E ) m eth od

T he decision directed estim ation m ethod is a straight-forw ard way to  find the  inherent relationship 

of the  s ta tes and observations. The details are explained as below:

1) D istribution  probability

Since th e  sta tes d istribu tion  P{t\i)  (t is the  tim e slot, i is th e  sta te) would be exponential 

<2je ci , w here 1 < t  < T  and the  a,6,c is the  coefficient of th e  G aussian function, b refers to  

th e  center of the  G aussian distribu tion , and we assum e the  center b is equally d istribu ted  in the  

sequ en ce. T h en

bi = ~  ̂ 1 - 1 -  N  (6-41)

A fter norm alizing th e  s ta tes d istribu tion  for every tim e slot, the  probability  of s ta te  j  occurring

a t tim e slot t  is D t ( j ):

D t {j) =  - (6.42)
£ f = i  p m
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Since th is  is ju s t initial estim ation, the  d istribu tion  param eter of each m odel for every character in 

th is case is th e  same.

2) T he probability  of every s ta te  i existing in the  model is C\ th a t can be derived from D t ( i ):

T

C i = £ A ( i )  (6-43)
t=i

3) The initial estim ation of th e  probability  of com bination of s ta te  Li j  in a  m odel can be obtained: 

H ere we assum e there  are equal chances for the  L ,3 occurring in a model. Since L tJ =  0 when

j  < i or j  > i  + 1, there  are 2 possible com binations for every sta te  except when i = N ,  which m eans 

there  are to ta l 2N-1 different com binations. Thereby initially we can assum e th e  L l3 =  2JV1_ 1.

4) T he observation probability  d istribu tion  in each of the  states, B  = bj(k)  can be calculated as 

below:

From  step  1, we can get the  m em bership of the sta tes in every location in every sequence. For 

exam ple for the  sequence w,  in tim e slot t the  observation is k, then  the  chance of th is  tim e slot 

belongs to  s ta te  j is Pwt{j)  — Dt( j) -  C onsequently the  observation k  belonging to  s ta te  j  here is 

Pwt(k\ j)  =  D t (j).  I t ’s easy to  accum ulate th e  expectation value E(j) of s ta te  j  shown in th e  database 

as:
K  T

E c?) =  E  E  1 <  j  <  ^  (6 -44)
w=l t=l

A nd the  expectation  value of s ta te  j when observation is k:

K  T

E ( k \ j )  =  E E  Pwt(k\ j )  1 < j < N  (6.45)
W — 1  t~ 1

T hen we can get the  observation d istribu tion  in s ta te  j as:

° ( k \j ) = l < j < N , l < k < K  (6.46)

U ntil now we have obtained the  estim ate of the  initial values of th e  param eter in the  model. 

Inpu tting  th e  initial values into th e  model to  continue the  train ing, we will find th a t  b e tte r results 

can be ob tained com pared to  random  initial values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. 1-D SE LF -A D A PTIV E  HM M  A N D  ITS A P P L IC A T IO N  T O  O C R

6.3 Im p lem en ta tion  o f 1-D  S elf-A d ap tive  M od el in h an d w rit

ten  character recogn ition

6.3.1 D ataset

This section presents the  sim ulation results obtained by the  proposed m ethods on the  M NIST(M odified 

NIST) database, which is the  widely used benchm ark of handw ritten  digits th a t  contains a  train ing  

set of 60000 images and  a  te s t set of 10000 images. These d a ta  are considered by m ajo rity  of re

searchers in th e  held. T he original black and  w hite (bilevel) images from NIST were fit in a 20x20 

pixel box. A fter conversion in the  M NIST the  resulting images contain grey levels as a result of the  

anti-aliasing technique used by the  norm alization algorithm . Eventually  the  images were centered 

in a 28x28 pixel box w ith  gray pixel values.

6.3.2 Feature extraction

The investigation of feature extraction  m ethods has gained considerable a tten tion  because a  discrim 

inative feature set is considered the  m ost im portan t factor in achieving high recognition perform ance. 

The feature used here is ju s t the  pixel values in each column of gray images. T he Self O rganizing 

M ap (SOM) [92] m ethod is utilized here to  quantize the  feature vectors. F irst, we have to  reduce the 

size of th e  image from 28 by 28 to  20 by 20. T he 20 column pixel values from the  60000 characters 

in the M NIST will generate a code book. W ith  SOM we can divide the  feature space into a num ber 

of subspaces, where the  average value of the  vectors in the  subspace can be regarded as the  center of 

the  subspace. Every colum n in an image can be represented by the discrete symbol of th e  subspace. 

Then every character image will be converted into a sequence of 20 elements.

6.3.3 Sim ulation results

To carry ou t a com parative study, we here set th e  same num ber of observations and s ta tes to  HMM 

as to  the  proposed model. I t  is easy to  tra in  the  HMM to  obtain  its param eters. I t should be 

m entioned th a t  th is HMM is left to  right single path , and no s ta te  skip scheme is allowed, which 

means a7j =  0 w hen j  < i and i > j  +  1. W ith  the  Baum-W elch algorithm , we get th e  optim al 

hidden s ta te  p a th  in th e  database. W ith  th e  m ethod mentioned in the  last section, we can obtain  

th e  param eters of the  proposed model.
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Effect o f  th e iteration  tim es in th e  evaluation  phase to  th e  perform ances o f  proposed  

m odel

In last section we m entioned th a t the  ite ra tion  is critical for the  estim ation of the  s ta te s ’ m em ber

ships. O ur experim ent shows too  m any iterations yield suboptim al results. T he em pericial results 

can be shown in figure 6.5. In the  tested  model th e  num ber of sta tes is 15, the  num ber of observa

tion  is 400 and th is  test is perform ed on the  original M NIST datase t w ithout degradation. I t  was 

discovered when the  iteration  tim e is 4, th e  optim al result is obtained. A dditional ite ra tion  m ay not 

yield b e tte r perform ance. A large num ber of tests  based on different models w ith  different num ber of 

sta tes and observations were carried out and similar curves were obtained. Such iterative m ethod  is 

widely utilized and proven in train ing of conventional HMM[97], How to  ob tain  th e  op tim al itera tion  

tim e in different applications and how to  m athem atically  prove its validity a t th e  SAHMM is yet to  

be studied.

© 94.00% 
5  92.00% 
§ 90.00% 
S 88.00% 
o> 86.00% 
o 84.00% 
CC 82.00%

0 1 2 3 4 5 6
Iteration times

Figure 6.5: Recognition ra te  w ith different tim es of iteration  in evaluation stage of th e  proposed 

model
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Test resu lts w ith  th e  iterative train ing

In  order to  exam ine the  validity of th e  proposed iterative train ing algorithm , we first use th e  direct 

decision m ethod to  ob tain  the  initial values and iteratively tra in  the  model until th e  recognition ra te  

stopped increasing. The num ber of sta tes is 15 and th e  num ber of observation is 625. T he learning 

curve can be checked in figure 6.6. One can observe the  perform ance of Self-Adaptive HM M  will be 

stable after some iterations.

96.00% - 
94.00% - 
92.00% - 

|  90.00% -
§  88.00% -

£  86.00% -

g> 84.00% -
S 82.00% -

80.00% - 
78.00% - 
76.00% -

Iteration of training

Figure 6.6: Learning curves for iterative tra in ing  algorithm

C om parison o f  th e perform ances o f  proposed  m odel and conventional H M M  under  

degraded environm ent

In the preceding section we have m entioned th a t  the  m ajor goal of the  designed model is to  try  to  

minimize its vulnerability  to  noise and other degradations as opposed to  conventional HMM. To test 

th e  perform ance of the  model in th e  degraded environm ent, we a rb itrarily  replace one or several 

elements in every sequence w ith  random  valid num ber(s) to  im ita te  the  presence of noise. T he length 

of the sequence is 20 in th is  case. In th is experim ent we replace up to  3 elem ents in th e  feature 

sequences of the  characters to  te s t the  perform ance of the  proposed model and reference models.
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Table 6.1: Perform ance of th e  proposed model when th e  num ber of observations is 400

N um ber of noise Self-Adaptive HMM HMM Difference

0 92.7% 91.8% 0.9%

1 68.8% 62.6% 6.2%

2 54.1% 44.75% 9.35%

3 ■ 44.4% 33.67% 10.73%

Table 6.2: Perform ance of the  proposed model when th e  num ber of observations is 625

N um ber of noise Self-Adaptive HMM HMM Difference

0 93.82% 93.5% 0.32%

1 71.6% 67.00% 4.6%

2 55.33% 50.60% 4.73%

3 46.77% 38.80% 7.97%

The proposed model is exam ined for different s tru c tu ra l param eters, namely, the  num ber of s ta tes 

per model and  num ber of clusters for quantization . T he sim ulation results on th e  M NIST w ith  15 

sta tes and a different num ber of observations are shown in figures 6.7 and 6.8, which are tab u la ted  

in tables 6.1 and  6.2:

From  sim ulation results one can notice th a t  for the  signals w ithout degradation , the  proposed 

m ethod has sim ilar perform ance as th e  conventional HMM. W hen the  num ber of s ta tes is 15 and  th e  

num ber of observations are 400, th e  recognition rates of th e  proposed model and conventional HMM 

are 92.7% and 91.8% respectively; W hen th e  num ber of sta tes  is 15 and the  num ber of observations 

are 625, th e  recognition rates of the  proposed model and conventional HMM are 93.82% and  93.5% 

respectively.

However, it can be noticed th a t when the  signals are corrupted by noise, the  perform ance of 

the  proposed model drops slower th a n  conventional models when the  noise is increased graduately. 

W hen the  num ber of changes in th e  sequence increases to  3, in the  case of 400 observations, the  

recognition ra te  of th e  proposed m ethod is 10.73% higher th a n  the  conventional one; in the  case of 

625 observations, th e  recognition ra te  of the  proposed m ethod is 7.97% higher th an  th e  conventional 

one. I t  can be considered th a t  the  proposed m odel is more to leran t to  th e  degradations in th e  signals.
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Recognition rate
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Figure 6.7: Sim ulation result w ith the  num ber of s ta te  is 15, num ber of observation is 400

6.3.4 Com putational com plexity

Classification speed is also of prim e im portance. For th e  conventional HM M  w ith  T  tim e slot and 

N  hidden s ta te , in the  recognition stage, the  general com putational burden  is approxim ately N 2 T . 

For the  proposed m ethod, a t the  stage of single node sta tes estim ation, N  * T  tim es m ultiplications 

are required. A t the  stage of coupled nodes sta tes estim ation, from equation 6.11 one can notice 

2 *  N  * (T  — 1) tim es m ultiplications, 2 * N  * (T  — 1) divisions are needed; in equations 6.14 6.15, 

N 2 * T  tim es additions are required. However, since L tJ =  0 when j  > i +  1 or j  <  i, actually  

N  * 2 * T  tim es additions are needed. The to ta l com putation  requirem ent a t th e  coupled node sta tes 

are 2* N *  ( T  — 1) tim es m ultiplications, 2* N *  (T  — 1) divisions and N  *2  * T  tim es additions. And 

the  ite ra tion  stage is to  repeat th is  process, assuming r  tim es iterations are required, then  th e  to ta l 

com putational cost in th is ite ra tion  will r  tim es of above com putational complexity. T he calculation 

of the probability  of the  sequence belonging to  model A P (0 |A ) is based on the  objective functions
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Recognition rate
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Figure 6.8: Sim ulation result w ith  the  num ber of s ta te  is 15, num ber of observation is 625

6.18, 6.21. Here approxim ately 3N T  tim es m ultiplications and  2 N T  tim es divisions are needed. In 

sum m ary, th e  to ta l required com putation  cost will be approxim ately: A N T  + 2 N T r  m ultiplication 

and 2N T  + 2 N T r  divisions.

Some variable issues affect the  com parative study  of th e  proposed m ethod w ith conventional 

HMM in the  respect of the  speed issue. T he iteration  tim e varies in differenct cases, which affects 

the  com putation  cost of th e  proposed m ethod. Thereby for a simple system  w ith small N ,  the  

conventional m ethod has less com putation  cost, and when N  is larger th a n  some threshold, the  

proposed m ethod is m ore efficient. Assuming the  m ultiplication and  division require the  sam e 

com puting tim e and far m ore th an  the  addition. The to ta l conm utation for HMM is 2 * N 2 * T  

virsus 6N T  + A N T r  for our proposed SAHMM m ethod.

6.4  C onclu sion

In  th is chapter we have presented a  new non-causal Self-Adaptive H idden M arkov Model, w ith two 

tra in ing  strategies presented for th e  proposed model. In the first tra in ing  m ethod, a conventional 

HMM w ith th e  same architecture as the  proposed model is established to  estim ate the  optim al
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states for every sequence in the  datase t. The sta tistics of the  hidden s ta tes and  th e  observations 

can be calculated to  obtain  the  param eters of th e  proposed model. In th e  o ther tra in ing  m ethod, 

a local m inim um  is obtained through iteration  of the  estim ation of the  m em berships of the  hidden 

sta tes in every tim e slot in the  dataset. O ur sim ulation results show th a t  w ith the  presence of th e  3 

degradations in every sequence, as in the  exam ple of 400 and 625 observations, the  recognition rates 

of the proposed m ethod are 10.73% and 7.97% higher th a n  the  conventional one respectively.

For the  conventional HMM, the  deduction of the  hidden sta tes in a sequence is unidirectional 

and causal, therefore, any noise existing in the  sequence m ay lead th e  s ta te  estim ation in a wrong 

direction, which m ay yield wrong classification. The proposed model estim ates th e  initial s ta te  

m em berships in every tim e slot simultaneously, and optim izes th e  m em berships of sta tes in every 

tim e slot w ith neighbors mutually. Consequently, the  whole system  is m ore to leran t to  the  noise 

in signals. Since the  proposed model utilizes th e  itera tion  stra tegy  in the  evaluation stage, the 

com putation  cost is higher th an  the  conventional m ethod. O ur sim ulation results also show th a t  the 

perform ance of the  proposed model is slightly higher th a n  the  conventional one when handling the  

noise free signals. Such problems should be solved w ith the  further study  of such noncausal systems.
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Chapter 7

2-D Self-Adaptive  H M M

7.1 T w o d im en tion a l H id d en  m arkov M od els

Images are two dim ensional signals, while th e  model proposed in th e  last several chapters are one 

dimensional, which are suitable to  1-D signal processing. Theoretically, 2-D HMMs should yield 

b e tte r results in 2-D signal processing. There are two causal 2-D M arkov chains available: th e  M arkov 

mesh random  field(M M RF) [208] and the Nonsym m etric Half-Plane(NSHP)[209] M arkov chain. 2-D 

HMM usually m eans the  M M RF because of its popularity  in th is field. T he m ajor bottleneck of 

expanding th e  1-D HMM into the  two dim ensional model is its prohibitative com putation  cost in the  

tra in ing  phase. T here have been several a ttem p ts  to  extend the  1-D HMM to  2-D HMM[100][61]. 

The first breakthough was reported  in 1998 by Hee-Seon Park[100], where the  look-ahead technique 

was proposed. I t is w orth noting th a t  the  conventional B aum  Welch m ethod estim ates th e  hidden 

sta tes based on all of th e  elem ents in a sequence as shown in equation 3.30. T he estim ation of hidden 

sta te  S[m,„] proposed by Hee-Seon P ark  is based on th e  signal from location [1,1] to  [m +  1, n  +  1] 

as illustrated  in figure 7.1. Since the  inform ation beyond the  [m +  l , n  +  1] is not considered in the  

tra in ing  stage, the  solution is obviously suboptim al, though the com putation cost is reduced to  a 

reasonable level. T he m odel is the  th ird-order M arkov Mesh R andom  Field, which means:

P(Qk,l\Qk-l , l ,Qk,l-l ,Qk-l, l-l ,  — , Ql,l) =  P(Qk,l \Qk-l , l ,Qk,l-l ,qk-l , l - l )  (7.1)

where qk,i is th e  curren t active s ta te  a t location [k. I].
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[1,1] n - l  n n+1 N

m-1
m
m+1

M

[M .N]

Figure 7.1: D em onstration of the  look ahead tra in ing  m ethod

In th e  recognition phase, an  observation O  is recognized as model A according to:

A =  a rg m ax P (0 |A ) (7.2)
allX

The observation likelihood, P(O jA ), is approxim ated by the  jo in t probability  of th e  observation O  

and the  optim al s ta te  sequence, Q,  which is estim ated by a look-ahead technique given th e  model 

A, i.e.;

P (0 |A ) =  P (0 ,Q |A ) (7.3)

The jo in t probability  of the  observation O  and a s ta te  sequence Q  given by th e  class model A, 

P ( 0 , Q |A), is com puted by:

K  L

P ( 0 , Q \ \ )  = P ( 0 \ Q , \ ) P ( Q \ \ )  = nn P(qk,i \qk-i , i ,qk, i - i ,Qk-i , i -i )P(Ok, i \qk, i )
k = i (= i

Obvisouly, the  th ird  order models require high com putational cost in th e  evaluation stage. A 

simplified version of th e  above model was proposed in [189], In this model the  s ta te  in location [i, j] 

can only be effected by th e  sta tes in [i — 1, j] and [i . j  — 1], therefore th e  active s ta tes a t diagonal 

neighborhood [i — 1, j  — 1] will be ignored. A nother assum ption in th is  m ethod  is th a t  th e  active 

sta tes of the  two observation blocks in anti-diagonal neighborhood locations, e.g. [i,j  — 1], [i — 1 , j \  

are sta tistically  independent. Therefore:

P ( < i k , i \ q k - i , i , q k , i - i )  =  -P(9fc,ikfc-i,i)-P(9fc,ikfe,/-i) (7.4)

Hence, the  com putation  burden will be reduced, while 100% recognition ra te  in face recognition 

was reported  in [189]. In  th is case, the  probability  can be calculated as below:
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K  L

P(0,Q\X)  = P(0 \Q ,X)P(Q ,X)  = ] J ] J P ( q k j \ q k - u ) P ( q k , i \ 9k , i - i )P(Okj \qk,l ) (7.5)
k= 1 1=1

Some compromising m ethods are also addressed by scholars, such as Two-Dim ensional Psuedo 

Hidden M arkov Model (2-D PHM M ) [190] [191] and Em bedded HMM[192]. A two-dim ensional Psuedo 

Hidden M arkov Model consists of a  num ber of superstates, each of them  containing a  M arkov chain. 

2-D PH M M  is equivalent to  a 1-D HM M  whose sta tes are lined in one chain according to  the ir in

ternal order w ithin the ir supersta tes and the  order of the  superstates as well. T he em bedded HMM 

has a s truc tu re  th a t  is sim ilar to  the  2-D PHM M  but the  image is scanned in a two-dim ensional 

m anner and th e  1-D V iterbi algorithm  is im plem ented in two layers. In the  first layer th e  1-D V iterbi 

algorithm  is used to  estim ate th e  probability  of each sub-chain of s ta tes to  generate each row indi

vidually. Then, the  second layer estim ates th e  overall probability  of th e  m ain-chain of superstates 

based on th e  estim ates of the  preceding layer.

Similar to  the  1-D model, such 2-D models are vulnerable to  the  influence of the  noise mixed 

w ith signals. Any wrong estim ation  of s ta te  a t present location will heavily effect th e  following 

deductions. Here we try  to  expand th e  proposed 1-D Self-Adaptive HMM m ethod into a  2-D model 

and im plem ent it for character recognition applications. O ur test is based on the  M NIST handw ritten  

num eral da tase t. The te s t results appear to  be very promising.

7.2 O u tlin e o f  th e  p rop osed  2-D  m eth od

For th e  conventional M arkov Mesh R andom  Field(MMRF)[100] based 2-D classifiers, th e  images will 

be divided into different grids and  th e  relationships am ong the grids will be analyzed to  calculate 

the probability  of the  signal belonging to  different classes(models). T he calculations are perform ed 

on all of the  grids from left up to  right down. From figure 7.2, one can find the  observation of every 

zone in a font is completely different from ones extracted  from other fonts. T he relationships among 

the neighbor zones also vary w ith th e  variations of the  font, w ritten  style and distortions of the 

images. Here we propose a new classification strategy, where the  relationship between the  strokes 

can be studied and variations of th e  w ritten  style are ignored. In th is way th e  com putation  cost is 

reduced greatly  in com parison w ith o ther 2-D models. Here we propose a new 2-D Self-Adaptive 

HMM which is im plem ented for recognition of the  database M NIST. T he procedure of th e  proposed

2-D model consists of several steps:

1. Skeleton points extraction.
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2. Feature extraction.

3. 2-D Self-Adaptive HMM based classification.

Figure 7.2: Im ages of character 4 w ith different fonts

7.3 S keleton  p o in ts ex tra ctio n

As we m entioned in chapter 2, th e  procedure of O C R  can be divided into 2 steps: feature extraction  

and classification. M ost of the  feature  extractions and classifications for 2-D signal processing are 

grid-based[193], which means th e  whole image will be divided into overlapped or non-overlapped 

grids. Some features[193], such as gradient feature[43], DCT[189] and  G abor features[91], are ex

trac ted  in every grid to  represent th e  characteristics of the  grid. T he to ta l inform ation from all of 

the  grids in th e  images will be inp u tted  to  the  classifiers such as NN[212], HMM[100]. T he m ajor 

advantage of such m ethods is the  sim plicity of feature extraction. However, the  variations of the  

features in every grid for differnt fonts as depicted in figure 7.2 make it difficult for th e  conventional 

HMM m ethods to  track  and determ ine th e  hidden sta tes in the  2-D signals. T raining classifiers w ith 

larger scale num bers of tra in ing  d a ta  is a stra igh t forward solution, however, over tra in ing  always 

m eans th e  generation of fuzzier system  w ith degraded performance. O n th e  o ther hand  it is usually 

difficult to  collect enough tra in ing  d a ta , especially for real world applications.

For character recognition, th e  s tru c tu re  of th e  skeletons of characters contain the  invariant in

form ation of th e  images of the  characters. Skeleton based character recognition is also one of the
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m ainstream  m ethods [75]. This m ethod can usually be divided into two steps: Skeletonization and 

skeleton based classification.

Skeletonization plays an im portan t role in digital image processing and p a tte rn  recognition, 

especially for the  analysis and recognition of binary  images. I t has been widely used in O C R  and 

fingerprint recognition[76]. The process can be viewed as a transform ation  to  transform  th e  w idth 

of a binary p a tte rn  into ju s t one single pixel. Essentially, such a transform ation  can be achieved by 

successively removing points or layers of the  outline from a binary p a tte rn  until all th e  lines or curves 

are of un it w idth, which is called thinning. T he resulting set of lines or curves is called th e  skeleton 

of the  pattern . As we know, the  purpose of skeletonization is to  reduce the  am ount of redundant 

d a ta  em bedded in a binary image and to  facilitate the  extraction of d istinctive features from  the  

binary image thereafter. A good skeletonization algorithm  should possess th e  following properties: 

(1) preserving connectivity of th e  skeleton, (2) converging to  skeleton of unit w idth, (3) preventing 

excessive erosion, and (4) possessing insensitivity  to  boundary  noise. U ntil now, th inning has been 

th e  m ost frequently used m ethod to  achieve skeletonization goal. Such an iterative process always 

requires high com putation cost.

In  the  second stage, the  s tru c tu ra l m ethods are usually based on the  skeleton of a character. 

T he skeleton is first decomposed into a set of prim itives, and then  features are ex trac ted  for each 

prim itive. T he topological relations am ong th e  prim itives are also useful inform ation. T here are, 

however, no general m ethods for th e  decom position and feature ex traction . O n th e  one hand, 

inadequate prim itives and  features for a p a tte rn  result in a high rejection ra te  and high substitu tion  

rate. On the  o ther hand, redundan t prim itives and features increase com putational burden and 

make recognition m ore difficult.

T he skeleton based m ethod suffers from  low speed, noise sensitivity, loss of continuity, and 

distortion. A nother draw back of th e  skeletonization m ethod is th a t some critical inform ation will be 

easily lost after skeletonization, especially if there  are self-touching strokes in the  characters shown in 

figure 7.3. From the  figure 7.3, one can find th a t  it is even difficult for a  hum an being to  distinguish 

the  3 and 5 from the  skeleton of the  self-touching characters. This m ethod  is also sensitive to  blurs 

and other noises in the  character images shown in figure 7.4. One can notice th a t  th e  d isto rtion  and 

noise  in  an im age w ill b e exa g g era ted  after sk eleton iza tion .

Here we try  to  combine the  conventional feature extraction  w ith  a skeleton based m ethod. In 

this way we will ex trac t neighborhood inform ation around skeleton points as features, instead of the 

neighborhood inform ation in some fixed grids. Here we propose a novel skeleton ex trac tion  m ethod 

w ith high speed and  com parably low accuracy which is acceptable to  th is application. The procedure
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3 J 5 A M

3  J  5 - A H

Figure 7.3: Skeletons of self-touching characters

M 3 A

Figure 7.4: Skeletons of characters w ith blurs

can be depicted as below:

1. B inarization.

2. Skeleton extraction.

3. Skeleton points determ ination.

B inarization

M ost of the  skeletonization m ethods are  based on the  binary  images, therefore it is essential to  

binarize th e  image before the  skeletonization. M any binarization m ethods are discussed in chapter
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4. The databse used in th is experim ent is M NIST. O ur experim ent shows th a t  a simple thresholing 

m ethod is efficient enough in th is  application. In th is m ethod  the  to ta l num ber of non-zero pixels 

in an image is counted as NumberofTotalPixels.  We regard  a certain  num ber of pixels in an image 

as foreground, which is Num^ erof PotalPlxels where the  variable Coefficiency is constan t. I t should°  ’ Coef ftciency 5 JJ *
be m entioned th a t the  accuracy of skeletonization is not critical, because the  skeletion points in this 

application only determ ine th e  locations of feature extraction  instead of being regarded as feature. 

In th is case we set the  Coefficient as 7 empirically. From  th e  histogram  of th e  image, we can select 

th e  darkest Nu,^ r o / r o ta tP |xe;s pjxejs as foreground. O ur sim ulation shows th a t  th is  m ethod is good 

enough for th e  purpose, in spite of its simplicity.

Skeleton  extraction

Since, in th is proposed m ethod, the  skeletons do not work independantly, speed instead of accuracy 

is the  m ajo r concern in th is process. We proposed a new m ethod to  skeletonize th e  images as shown 

below:

Two two-dimensional arrays, P  and  Q,  are used to  store the  original b inary  im age and th e  ou tpu t 

(skeleton) respectively. F irst, a run-length  m easurem ent is taken in four directions: left to  right, up 

to  down, leftup to  righdown, leftdown to  rightup. Here th e  run-length is th e  num ber of continuous 

black points in the  run direction. Skeletons are assum ed to  be the center of th e  strokes in a character, 

therefore th e  skeleton m ust be in th e  center of th e  run-length  segment. T hereafter, only th e  centers 

of the  run-length segment are kept and saved in array  Q.  W hen the  run-length  is even, two center 

pixels are remained. In th is  way we can find th e  skeletons of the  characters, although they  are 

coarse and some redundant pixels are left a t th is stage. T he m ajor advantage of th is  m ethod  is its 

low com putational burden. I t  should be m entioned th a t  any other finer skeletonization m ethod is 

applicable here as well.

Skeleton  p oin ts d eterm ination

In th is m ethod we will not take features from th e  skeleton pixels themselves, because there  is a 

risk of loss of inform ation in the  stage of skeletonization. The skeleton points will be regarded 

as the  critical points and features will be ex tracted  around  the critical points based on th e  grey 

image pixels. Thereby, it is unnecessary to  take features around every skeleton pixels. To reduce 

th e  com putation  cost, we subsam ple th e  skeleton pixels to  make sure no two skeleton points are 

im m ediate neighbors to  each o ther as shown in figure 7.5. The details of th e  process are  explained 

as below: Select one pixel from th e  skeleton pixel and elim inate the  neighbor skeleton pixels around
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it w ithin th e  window size of 3, and move to  th e  next skeleton pixel th a t  has no t been elim inated; 

repeat the  above process until the  skeleton pixels are equally d istribu ted  in the  image. T hrough 

th e  above process, th e  connectivity of th e  neighbor skeletons can be found and saved for next step  

processing as shown in figure 7.5. The connectivity here is based on th e  corresponding b inary  image 

of the  character and defined as ” If some continuous black pixels can compose a  line to  connect 

two neighbor critical points, the  two critical points are regarded as connected, otherw ise they  are 

regarded as non-connected.”

<

r

* ■9* - 9

Figure 7.5: Illustra tion  of skeleton points determ ination

7.3.1 Feature extraction

In th is step  we will ex trac t the  features in the  neighborhood around every critical point. T he features 

are  ex trac ted  from pixels in a rectangle window around every criticl point and th e  features will be 

quantized for th e  next step process. To simplify th e  sim ulation, only raw d a ta  of th e  pixels are 

regarded as a feature in th is case. T he size of th e  window is a critical issue to  th e  perform ance of the  

whole process. Bigger window sizes m eans bigger coverage and usually yield be tte r results, however, 

a big sized window also means larger com putational burden. For example, if the  size of window 

increase from a to  a * c, where c is a real num ber bigger th an  1, the  size of th e  feature space will 

expand from 256“ to  256-a*'7 ; which m eans it will be 256^a*c 2̂_“2 tim es bigger th a n  the  original 

one. T he bigger the feature space m eans bigger th e  num ber of clusters and much m ore com putation  

cost.

To reduce the  com putation  cost we propose a new feature extraction m ethod. Instead  of tak ing  

the  2-D features around a skeleton point in a window, we take pixel values in th e  gray images across 

the  skeleton point in 4 directions. For instance, in a 7 x 7 window around pixel P ( x ,  y ) as shown in 

figure 7.1, for the  conventional m ethod, all of th e  pixels in th is window will be regarded as a  feature 

vector. In th e  proposed m ethod, there  are only 4 1-D vectors:
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Table 7.1: D em onstration of feature extraction
P(x-3,y-3) P(x-3,y-2) P (x-3 ,y -l) P(x-3,y) P (x -3 ,y + l) P(x-3 ,y+2) P(x-3 ,y+3)

P(x-2,y-3) P(x-2,y-2) P (x-2 ,y -l) P(x-2,y) P (x -2 ,y + l) P (x-2 ,y+2) P(x-2 ,y+3)

P(x-l,y -3) P (x-l,y -2 ) P (x -l,y - l) P (x -l,y ) P (x - l ,y + l) P (x -l,y + 2 ) P (x -l,y + 3 )

P(x,y-3) P(x,y-2) P (x ,y -l) P(x,y) P (x ,y+ 1) P (x ,y+ 2) P (x ,y+ 3)

P (x + l,y -3 ) P (i,y -2 ) P (x + l ,y - l ) P (x + l,y ) P ( x + l ,y + l ) P (x + l,y + 2 ) P (x + l,y + 3 )

P(x+2,y-3) P (x+2,y-2) P (x + 2 ,y -l) P (x+ 2 ,y ) P (x + 2 ,y + l) P (x + 2 ,y + 2 ) P (x + 2 ,y + 3 )

P(x+3,y-3) P(x+3,y-2) P (x + 3 ,y -l) P (x+ 3 ,y ) P (x + 3 ,y + l) P (x + 3 ,y + 2 ) P (x + 3 ,y + 3 )

1. [P(x  - 3 , y) ,  P ( x  -  2, y ), P ( x  -  1 , y ) ,  P{x ,  y),  P (x  +  1,2/), P ( x  + 2 ,y) ,  P ( x  +  3, y)}

2. \ P ( x - 3, ?/—3), P ( x - 2 ,  y —2), P ( x - 1 , 2/—1), P (x , y), P ( x + 1 ,2/+1), P (x + 2 , y+2) ,  P ( x + 3 ,2/+3)]

3. [P(x, y  -  3), P (x , y  -  2), P (x , y — 1), P (x , 2/), P (x , y +  1), P (x , 2/ +  2), P{x,  y  +  3)]

4. [P (x —3, y+S) ,  P ( x - 2, ?/+2), P (x -1 ,2 /+ 1 ) ,  P (x , 2/), P (x + 1 , y - 1 ) ,  P ( x + 2, 2), P ( x + 3 ,2/—3)]

A fter the  ex traction  of the  critical points in th e  database, the  4 1-D feature vectors around every 

critical point will be collected to  form a codebook. The K ohonen SOM[195] is used to  construct 

th e  code book vectors, thereby the  feature space can be divided into different clusters. According 

to  the Euclidean distance to  th e  centers of clusters we can quantize the  4 1-D feature vectors. I t 

should be noted th a t  the  SOM is utilized here instead of the  K-M ean. The continuity  of neighbor 

center vectors from SOM makes it possible to  im plem ent some searching stra tegy  to  speed up the 

quantization  stage in th e  future if necessary, while for the  K-M ean, the  neighbor center vectors have 

no such feature.

A fter obtain ing the  center vectors from the  SOM, we can quantitize th e  four feature  vectors in 

every location into 1 vector w ith 4 elem ents [ViV^FaEi]- T he advantage of such a  m ethod  is the  

realistic com putational burden w ith  robust perform ance. Assuming th a t  th e  size of window is N  

by N  and  th e  num ber of clusters is M , for conventional 2-D window based quantization  m ethod 

M x N x N  tim es m ultipications and  M x N x N  tim es additions are needed. For the  proposed feature 

ex ttraction , only 4 x M  x  N  tim es m ultipications and 4 x M  x  ( N  — 1) tim es additions are needed. 

One can tell, when N  is bigger th a n  4, th e  proposed feature ex traction  will be much faster th a n  the 

conventional 2-D m ethod. Here we consider th e  length of th e  sliding window around every skeleton 

point t o b e 5 * 2  +  l  =  l l .  Thereby for every selected skeleton point, four observations(quantized 

feature vectors) are generated for next step  classification.
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7.3.2 Param eters in 2-D Self-A daptive M odel

Here a novel 2-D Self-Adaptive HMM is introduced. The same as th e  1-D Self-Adaptive Model, 

the  2-D model is composed of following elements: I  x J  num ber of hidden s ta tes and  M  num ber 

of observation symbols in the  alphabet. D ifferentiating from the  hidden s ta tes in 1-D SAHMM, the 

s ta tes in a 2-D system  will be indexed in 2 directions i , j .  Some hypotheses abou t the  relationships 

of the  elem ents are proposed and the  model is characterized by the  following progess, which are 

slightly different from th e  1-D model:

1. S tates com bination probability  w here d is the  direction of the  link and 1 <  d  <  8; i j

and i j  are th e  coordinates of the  hidden s ta tes a t the  two neighbor locations.

2. P robability  of d istribu tion  of observations to  every sta te  B  = bfj(k), \i,j] is th e  coordinate of 

the  states, k  is the  symbol of the  obervation, the  superscript d is the  direction of the  four 1-D 

vector around th e  point.

3. T he d istribu tion  probability  of sta tes in every location of the  2-D observation sequence D xy(ij),  

x ,y  is th e  coordinate of the  critical point, while i , j  are the coordinate of th e  hidden sta te .

4. P robability  of th e  s ta te  [i,j] occurring in th e  model is C lt].

T hen the  com pact no ta tion  A for the  proposed model is usually used to  combine all of the  

param eters,

A = ( L , B , D , C )  (7.6)

T he same as in th e  1-D system , the  2-D model consists of num ber of s ta tes and num ber of 

observation symbols in th e  alphabet. However, in the  2-D model, th e  sta tes  are  no t indexed by one 

num ber any more, because every node has m ore th a n  left or right neighbor nodes as in th e  1-D 

system . Therefore the  transition  from one s ta te  to  another is more th a n  two direction. Hence, we 

define the  l S d)  where d is the  direction of th e  link. Here we define th e  direction as a  m utual link
i ] - i 3

in 8 directions as shown in figure 7.6.

Assuming the  differential vector of the  locations of two ends E \ ,  E 2 of a link is \DtJ Dj \ ,  and the 

sta tes in the  two ends are Si1j 1, Sl2J2, some constrain ts are defined as below:

=  0 W hen Di > 0 and 12 — i i  <  0
1 3 - 1 3

L ^  -- =  0 W hen Di < 0 and ?2 — i i  > 0
1 3 - w

L ^  -- =  0 W hen D  j > 0 and 72 — j i  < 0i j - 1 3  3  j *  j i
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Figure 7.6: 8 directional m utual links 

L^d)  =  0 W hen D j  <  0 and  j '2 — j i  > 0  (7-10)
IJ IJ

And a non-skip scheme is utilized here, which m eans —1 <  «2 — i \  <  1 and  —1 < j 2 ~  j i  <  1. So: 

L^d)  -- =  0 W hen *2 — i\  > 1 or fy — i \  < —1 or j 2 — j i  >  1 or j 2 — j l <  —1 (7-11)IJ IJ

T he distribu tion  probability  in the  2-D model is expanded to  two dim ensional, which is D xy(Sij).  

The d istribu tion  of th e  hidden sta tes are supposed to  be a G aussian d istribu tion  and the  d istribu tion  

can be illustra ted  as in figure 7.7. Therefore, we quantize the  d istribu tion  probability  in th is  way 

th a t the  image of a character is divided into 5 x 5  zones. All of the  pixels in one zone have identical 

d istribu tion  probability.

The definition of observation d istribu tion  probability  B  =  bfj(k) is very sim ilar th e  one defined 

in the  1-D model. T he m ajor difference is th a t  in th is case there are four observations for every 

hidden sta te . To simplify th e  calculation, we assume th e  four observations are independant to  each 

other. After m ultiplying th e  probability  of the  four observations together, we can easily ob ta in  the 

general probability  of the  four observations belonging to  the  location.

d=4
PtiOtlsi j ) =  n  1 <  i < I ,  1 <  j  < J, 1 <  Ot < M  (7.12)

d= 1

The probability  of s ta te  [i, j \  occurring in model C l3 is the  same as th e  param eter Ct in 1-D model, 

except th a t th e  indexs are expanded into two dimensional.
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The states distribution

Ii.

y

Figure 7.7: Illustra tion  of the  3 by 3 sta tes d istributing  on a p lanar 

7.3.3 Evaluation stage

The evaluation stage of th e  2-D SAHMM is sim ilar to  th e  1-D SAHMM. T here are two m ajor 

differences between th e  two systems: To simplify the  com putation cost, th e  ite ra tion  in 1-D system  

is cancelled in the  proposed 2-D system; and disconnected neighbor critical points are independent 

to  each o ther. T he detail of the  process is described as below:

Single node sta tes  estim ation

The estim ation of the  hidden sta tes a t critical points in an image will s ta r t  from every single ober- 

vation. T he m em berships are decided by two issues: the  location of the  critical point and the  

observations a t th is critical point. T he first one can be looked up from th e  D xy(Sij),  while the  sec

ond one depends on observations symbol probabilities d istribution  bfj(k).  T he general probability  

can be calculated as below:

d=4
Pt(Ot ,S i j \ x y )  = P i S i j ^ P t i O t l S i j ^ y )  = D xy(Sij)  J J  bfj(od) (7.13)

d= 1
Here i , j  are the  coordinate of th e  hidden state; x ,y  are the  coordinate of the  critical point; o<i is 

the  observation in th e  d  direction.
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N eighbor nodes s ta tes  estim ation

In this stage we s ta r t  to  consider the  influence of neighbor nodes on each other. In the  conventional 

m ethod, th e  m em berships of hidden sta tes in S i j  will be determ ined by th e  past neighbor nodes 

S i - i j , S i j - 1, S i - i j - i .  T here are two drawbacks in such m ethods. F irst, th e  sam e as in 1-D 

HMMs, the  hidden sta tes are only decided by past states, while the  inform ation from ’fu tu re ’ nodes, 

(in the  case of image, they  are th e  nodes a t the right or down side of the  present node), are ignored. 

A ctually th e  ’fu tu re ’ inform ation is available as well as the  ’p a s t’ inform ation, when HM M  is utilized 

as a classifier. Secondly, any past neighbor nodes have to  be considered, as shown in figure 7.2, even 

though there  is no inherent relationship between some of the  points.

Here we propose a new m ethod, where only the  connected neighbor critical points will be con

sidered for the  estim ation of hidden states. As depicted in  figure 7.8, there  are 4 d irect neighbors 

a b d e skeleton points around th e  point c. Only points b d are connected to  the  point c, therefore, 

points a e will be ignored when calculating the combined link possibility of point c, since th ey  are 

not directly  connected to  c.

Figure 7.8: Illustra tion  of connected critical points in an image

For a skeleton point [a;, y] in a  character image we can find U pieces of d irectly  connected points 

around it, therefore U num ber of links around it. For a link u  connected to  point [x , y\, th e  coordinate 

of another end of the  node is \x'y'\. From the  last step, we have calculated the  m em bership of hidden 

s ta te  as Pt(Ot , S l3\xy) and Pt(0[,  5 V y \x'y'): sim ilar to  equation 6.11 in 1-D model, a link u  can be 

calculated as:
Pt(Ot , S i j \ x y ) T Pt (0't ,S i ’f \ x ' y ' )  „  ,

i j V j 1 ~
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Thereby the  m em bership of th e  hidden sta tes in the  two nodes will be:

I  J

^  =  (7-15)
i ' = i y = i

/  j

=  (7 -1 6 )
i — 1 j = 1

Then considering all of the  influences from th e  connected neighbors around a node, one can get:

u
Pxy(St j ) = l [ P ^ ( S i j ), (7.17)

U = 1

W ith the  sam e m ethod, we can easily find th e  m em bership of the  hidden sta tes in every critical 

point in an  image.

O bjective functions:

After th e  above calculation, we can ob tain  th e  estim ate of the  m em berships of sta tes in every nodes. 

A norm alization m ethod is used in every critical point:

, (7.18)
2 -ii=  1 l^ ,j= 1 * x y \ d i j )

T he probability  of every node in the  sequence generating the corresponding observation can be 

calculated as below:
I  J

( i j )bt j (Oxy) 1 < t  < T  (7.19)
i = l  j = l

where n is the  itera tion  time.

Assum ing there  are to ta lly  K  critical points and for every point, the  probability  is , th en  the  

general probability  of every point occurring in th e  2-D model will be:

K

p ( o \ \ ) = n  P k ( 0 )  (7.20)
t = l

I t m ay happen  th a t some probabilities of nodes are 0, then  after m ultiplication th e  general result 

will be 0. In such a case we will generally substitue  the  0 w ith small positive value to  avoid a rigid 

result.

W hen the  model is im plem ented for th e  classification application, the  self-adaptive model based

recognizer aim s to  determ ine the  model th a t  it is m ost probable the  one th a t  produces the  provided

test signal, i.e.

A =  a r g m a x P ( \ \ 0 ) (7-21)
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This is a problem  of M axim um  A Postriori P robability(M A P), where Bayes rule is utilized to  

reform ulate th e  recognition problem  as:

P (0 |A )P (A )
A =  a r g m a x  -----  (7.22)

Since all models are considered equally probable, equation7.21 can be simplified as:

A =  a r g m a x P ( 0 \A )  (7.23)

In the  evaluation stage, ex tracted  features for every image are sent to  every model in th e  system  

to  find th e  A w ith th e  m axim um  P (0 |A ).

7.3.4 Training stage

Here the  iterative stra tegy  is utilized to  tra in  the  model. F irst, we assign initial values to  the  

param eters A in the  model. In th is sim ulation we divided the  character image whose size is 20 by 

20 into X  — 5 by Y  =  5 zones to  quantize th e  sta tes d istribution probability  D xy(Sij); th e  size of 

the  hidden sta tes is I  = 3 by J  =  3; the  num ber of observations is defined as 64.

After estim ating the  fuzzy m em bership of sta tes in every critical point in every image of th e  

database, we can o b ta in  th e  new param eters in th e  model ju s t as in th e  m ethod  used in last chapter. 

After several iterations, a new set of param eters will be available. O ur sim ulation shows th a t  th is 

m ethod can converge into stable local m axim um . However th e  perform ance of the  model will depend 

highly on th e  in tial values because only a local m axim um  is reached a t the  end. Here th e  decision-

directed estim ation algorithm  is proposed to  estim ate  the  initial param eters in th e  model to  improve

the  perform ance of classifier.

D ecision  D irected  E stim ation (D D E ) m eth od

A decision directed estim ation m ethod is a straight-forw ard way to  find the  inherent relationship of 

the  sta tes and observations. T he details can be depicted as below:

1) D istribution probability

Assuming th a t th e  sta tes d istribution  P(Si j \x y )  (x.y  is the  quantitized coordinate of th e  critical
^ ( 1 - i . l , ; ) 2 { ( v - b 2 j . ) 2 j

points, i , j  is the  s ta te) is an exponential a ^ e  c2« , where l < x < X . l < y < Y  and

the  a ,b l,b 2 ,c l,c2  is th e  coefficient of the  two dim ensional G aussian function, and  [bl, b2] refers to  

th e  center of th e  G aussian distribution. In itially  we suppose the center [61,62] is equally d istribu ted  

in the  sequence. Then:

bu  = (TTTj * (*- ! ) 1 -  * - 1 (7-24)
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b2i =  ( j ~ i )  * (i -  !)  1 <  * <  J  (7-25)

c lj c2j are experim entally obtained values and considered to  be 2 here. A fter norm alizing th e  sta tes 

d istribu tion  th e  probability  of s ta te  [i,j] occurring a t th e  location \x,y] would be D xy(S i j ) :

, , P - 2 6 >H i = i 2Zj= i P ( S i j \ x , y )

Since th is is ju st an initial estim ate, th e  d istribu tion  param eters of each model for every character 

in th is case is assum ed to  be the  same.

2) The initial estim ate  of the  probability  of every s ta te  [i, j] existing in th e  model is th a t 

can be derived from D xy( S i j ) .

x  Y
C i j  = D x y j h j )  (7.27)

: c —  1 y— 1

3) The initial estim ation of th e  probability  of the  com bination of s ta te  i j  and i ' j '  in a model can 

b e T ^

Here we assum e there  is an equal chance for every L ^ \ , y  occurring in a  model, except in some 

cases indicated in equations 7.11, where would be be 0.

4) The observation probability  d istribu tion  in each of the  states, B  — bij(k)  can be calculated as 

below:

From  step  1, we can get the  m em bership of sta tes in every cirical point in every character image.

For exam ple there  are to ta l W  character images in the  database, in th e  image w th, a t location [a:, y\

th e  observation is k , then  th e  chance of it is generated by sta te  S tJ is Pw[x,y](Sij) — D[x y](S,j).  

Consequently, th e  observation k  belonging to  s ta te  Sij  here is Pw[%j ] ( k \S tj )  = D Xty(Sij).  I t ’s easy 

for us to  accum ulate th e  expectation  value E( S i j )  of s ta te  from the  W  images in th e  database:

w  x  Y

E ( S i j )  =  y  ] Pw\x,y]{Sjj) (7.28)
w = 1 x~l  y= 1

And th e  expectation value of s ta te  [?, j] when the  observation is k  is:

w  x  Y

E(k \S i j )  =  E E E  iV ,„ ] ( fe |S y )  (7-29)
w = 1 £ = 1  y= 1

Then we can get the  observation d istribu tion  in s ta te  [i,j] as:

0 ( k \ S t j ) = E^ lj) l < j < N , l < k < K  (7.30)
h ( b i j )

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7. 2-D SE L F -A D A PT IV E  H M M

We can easily know th a t
K

^ 2  0 ( k \ S i j )  = l l < j < N l < k < K  (7.31)
f c = i

U p to  now we have finished th e  estim ation of th e  initial values of th e  param eter A in th e  model. 

Inpu tting  the  initial values into th e  model to  continue th e  training, we will find th e  be tte r results 

can be obtained th an  from random  initial values.

7.3.5 Simulation results

We carry  ou t prelim inary experim ents to  estim ate the perform ance of our classifiers. T he database 

used here is the  handw ritten  digits in the  M NIST database. The size of the  im age will be downscaled 

from 28 by 28 to  20 by 20.

HMM has been im plem ented for character recognition and  the  test results in different d a tase t 

are shown in tab le  7.2. From  the  table, one can notice, because of the  variation of database, various 

perform ances are obtained. The recognition ra tes not only depend on the  sufficiency of the  m ethods, 

bu t are also affected by th e  database itself, such as the  lexicon size, degradation  of th e  signals, size 

of the  database,e.t.c. Therefore it is difficult to  com pare the  perform ances of different models only 

based on the  recognition rate . O ur proposed m ethod’s recognition ra te  is 5.6% higher th a n  the  

conventional 2-D HMM[100], whose experim ent is based on th e  database of C EN PA R M I(C enter for 

P a tte rn  Recognition and M achine Intelligence). The M NIST database th a t  we used contains 60,000 

handw ritten  digits in the  tra in ing  set and 10,000 handw ritten  digits in the  te s t set. CENPARM I is 

generated by Concordia U niversity of C anada. It consistes of 6000 unconstrained num berals, while 

4000 of them  are used for tra in ing  and 2000 of them  are used for testing. In th is  way the  da tase t of 

the  M NIST is alm ost 10 tim es larger th an  CENPARM I. A d a tase t w ith larger size usually contains 

more variation of th e  degradation , and it is m ore challenging. One can say th a t  th e  perform ance of 

the  proposed m ethod is be tte r th a n  the  conventional 2-D HMM[100].

Various p a tte rn  recognition technologies were im plem ented in the  character recognition problem  [43]. 

Different classifiers tested  on th is  database M NIST had shown very high recognition. The com para

tive results of our proposed m ethod and other m ethods are tabu la ted  in tab le  7.3. In  th e  tab le  the  R R  

stands for Recognition R ate; CC is C om putation  Cost and it is num ber of 1000 M ultiply-A ccum ulate 

O perations(M A O ) for the  recognition of a  single character starting  w ith a size-norm alized image; 

M emory in the tab le  is m easured in 1000 variables for each of the m ethods.

T he com putation cost of proposed 2-D SAHMM varies according to  the  num ber of th e  critical 

points and num ber of connected neighbor critical points. O ur sim ulation results show there  are
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Table 7.2: Com parison results of HMM based O C R  engine

M ethod Classifier Lexicon Size RR(%) Test Set D atabase

(Bunke95)[196] HMM 150 98.4 3,000 W ORDS (eng)

(M ohamed96) [197] HM M -DP 100 89.3 317 C ity nam es

(Knerr98)[198] HMM-NN 30 92.9 40,000 LA words

(Guillevic98)[199] HMM-k-NN 30 86.7 4,500 LA words

(Yacoulbi99) [200] HMM 100 96.3 4,313 C ity nam es

(Yacoulbi99) [200] HMM 1,000 88.9 4,313 C ity nam es

(Kim00)[201] HM M -M LP 32 92.2 2,482 LA words

(Freitas01)[202] HMM 39 77 2,387 LA words

(01iveira02)[203] M LP 12 87.2 1,200 M onth words

(Xu02)[204] HM M -M LP 29 85.3 2,063 M onth words

(Kundu02)[205] HMM 100 88.2 3,000 Postal words

(Arika02)[206] HMM 1,000 90.8 2,000 W ords

(Kapp04)[207] HM M -M LP 39 81.7 2,387 LA words

(Koerich04)[210] HMM 1,000 91 4,674 C ity nam es

(Parker98)[100] 2d HMM 10 90.80 10,000 CENPARM I

Proposed 2D SAHMM 10 96.4 10000 M NIST
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Table 7.3: Com parison results from M NIST

Classifier RR(%) CC (k) M em ory(k)

Linear classifier [43] 88 4 4

nearest neighbor-NN[43] 91.60 24000 24000

Pairw ise linear classifier [43] 92.40 36 35

K-NN Euclidean [43] 95.00 24000 24000

2-layer NN,300 hidden units(20*20*300*10)[43] 95.3 123 123

2-layer NN,1000 hidden units(28*28*1000*10)[43] 95.50 795 795

1000RBF +  linear classifier [43] 96.40 794 794

40PCA  +  quadratic  classifier [43] 96.70 39 40

3-layer NN, 300+100HU[43] 96.95 267 267

3-layer NN, 500+150HU[43] 97.05 469 469

K-NN Euclidean, deslant [43] 97.60 24000 24000

LeNet-1 [16*16] [43] 98.30 100 3

B oosted LeNet-4 [distortions] [43] 99.30 460 24000

V irtual SVM poly 5 [distortions] [43] 99.20 28000 28000

HMM [212] 94.19 N /A N /A

Com bination of HMM and SVM [212] 98.02 N /A N /A

M arkov R andom  Field-based[213] 94.60 N /A N /A

Proposed M ethod 96.4 45 26
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average 16 critical points in a character image and 2.3 connected neighbors to  every nodes. A t 

the  stage of single node sta tes estim ation, from equation  7.13 one can notice for every critical point 

9 x 4 =  36 m ultiplications are required. A t the  stage of neighbor nodes s ta tes estim ation, 2.2 x 2 =  4.4 

m ultiplications are required in equation 7.14, and 9 addations are required for equation  7.15. W hen 

calculating the  objective functions, to ta lly  9 +  9 =  18 additions and 9 m ultiplications are needed. 

Considering there  are average 16 critical points in every image, th e  to ta l required additions and 

m ultiplications needed are 16 x (9 +  9 +  18) =  576 and 16 x (36 +  9) =  720. G enerally no m ore th a n  

720 tim es of m ultiply-accum ulate operations for the  recognition of a single character are required, 

which are much sm aller th an  any classifiers m entioned in th e  table7.3. Q uantizations are required 

in the  discrete model. There are 4 observations for every location, 64 clusters, average 16 critical 

points in every image and the  legnth of the  vector is 11 elements, therefore 4 x  6 4 x 1 6 x 1 1 =  45056 

m ultiply-accum ulate operations(M A O ) are needed for quantization. For the  discrate model, the  

to ta l calculational com plexity are 45056 +  720 =  45776 m ultiply-accum ulate operations, which is still 

smaller th a n  m ost of o ther m ethods w ith sim ilar perform ance. T he m ajo r m achine tim e consum ed 

here is the  quantization. Since th e  Self Organizing M ap (SOM) [92] m ethod is utilized here to  

quantize the  feature vectors, th e  central vectors of the  clusters from SOM are continuous. I t is 

possible to  speed up the  quantization  several tim es faster w ith  some hierarchial strategies, which is 

out of range of th is  thesis.

A sum m ary of the  perform ance of our proposed classifier and other m ainstream  classifiers is 

shown in tab le  7.3. The SVM[211] and LeNet-4[43] are reported  to  yield th e  highest perform ances. 

Support vector machines (SVMs) were in troduced in [35] as learning m achines w ith capacity  control 

for regression and  binary  classfication problem s. In the  case of classification, a SVM constructs an 

optim al separating  hyperplane in a high-dim ensional feature space. T he com putation of th is  hyper

plane relies on the  m axim ization of the  m argin. Because SVM is a  b inary  classifier, to  im plem ent 

it in m ulti-class classification problem s, the  m ost common solution is th a t  a SVM based classifier is 

built for every pair of classes to  separate  th e  classes two by two. LeNet5 takes a raw  image of 28 

by 28 pixels as input. I t is composed of 7 layers: th ree  convolutional layers (C l, C3 and C5), two 

subsam pling layers (S2 and S4), one fully connected layer (F 6) and th e  o u tp u t layer. From  table7.3, 

th e  com putation  cost and m em ory requirem ent of th e  SVM are 622 and  1077 tim es higher th a n  the  

proposed m ethod; and  th e  com putation cost and m em ory requirem ent of th e  LeNet-4 are 10 and 

923 tim es higher th a n  the  proposed m ethod. Therefore the  proposed m ethod  is m ore suitable for 

real world applications.

For th e  proposed 2-D SAHMM, there  are four sets of param eters A =  (L.  B,  D,  C)  in the  model.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7. 2-D SE LF -A D A PTIV E  H M M

Table 7.4: Learning curves of proposed 2D SAHMM

Iterative tim e 1 2 3 4 5 6 7 8

Initial values from DDE 76.00% 86.00% 90.00% 94.70% 95.20% 96.00% 95.60% 95.80%

R andom  (case 1) 57.10% 59.00% 68.00% 71.20% 77.90% 75.00% 76.40% 73.00%

Random  (case 2) 51.00% 55.30% 59.10% 67.20% 71.20% 74.70% 74.80% 71.20%

In th is experim ent, we divide th e  image into 5 by 5; the  num ber of hidden s ta tes is 3 x 3; the  num ber 

of obervations is 64. T hen  there  are 5 x 5 x 3 x 3 param eters in D xy(S i j ); there  are 8 x 3 x 3 x 2 

param eters in Cl3 contains 3 x 3  data ; 0 ( k \ S l3) has 3 x 3 x 4 x 64 variables. Since there  are

a to ta l of 10 classes in the  system , the  m em ory requirem ent of the system  are 26820 float num bers. 

Therefore, the  m em ory requirem ent of th e  NN is 8.8 tim es higher th a n  the  proposed m ethod w ith 

similar perform ance. O ther classifiers, such as,k-NN, SVM, LeNet-4 are reported  to  require even 

more m em ory th a n  th e  NN m entioned here [43].

Test results w ith  th e  iterative train ing

In order to  exmine the  validity of the proposed iterative train ing algorithm , we firstly use th e  direct 

decision m ethod to  obtain  th e  initial values and  then  iteratively tra in  th e  model un til the  recognition 

rate  stopped increasing. In  th is sim ulation, we divided an image into 5 x 5  zones to  quantize the  

sta tes d istribu tion  probability  D xy{Sij).  The size of the  hidden s ta tes is 3 x 3 and  the  num ber of 

observations is defined as 64. The learning curve can be checked in figure 7.9, where th ree  sets of 

learning curves are presented in th e  diagram . One set of initial values in th e  param eters are derived 

from th e  decision directed estim ation, and th e  o ther two sets of initial values are ju s t random  valid 

values. Though all of th e  iterative tra in ing  can converge to  a local m inim m um , th e  deliberatly  

selected values lead to  optim al result. T he details of the  recognition rates can be found in tab le  7.4.

7.4 C onclusion

In th is chapter we present a new non-causal 2-D Self-Adaptive Hidden M arkov M odel(2-D SAHMM), 

which require lower m em ory and com putational burden in com parison w ith o ther classifiers w ith  the  

same recognition ra te . Like conventional HMM and proposed 1-D SAHMM, th is proposed model 

is composed of two layers: the  hidden s ta tes and observations. F irst, the  skeleton of a character
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Figure 7.9: Learning curves for iterative training algorithm

will be ex tracted  from the  binarized image. A fter subsampling, some of th e  skeleton points will 

be selected as critical points for next step  feature extraction. After feature  ex traction , the  hidden 

sta tes will be estim ated based on th e  observation around every critical points and  the ir connected 

neighbor critical points. The final probability  of the  image belongs to  m odel can be calculated from 

the  proposed objective functions.

Some new m ethods and concepts are in troduced in th is model. M ost of the  o ther gird based 

m ethods ex trac t features from all of th e  grids in a plane and all of th e  features will be inpu tted  into 

the  classifers. In th is proposed m ethod, features are only extracted  from  th e  neighborhood of the  

critical points. In th is  m ethod th e  influence of the  variation of fonts, w ritten  styles and degradations 

from the  environm ent noise can be minimized. At th e  sam e time, th e  com putation  cost will be 

reduced. In the conventional 2-D HMMs, the  deduction of hidden s ta te s  are  based on the  sta tes 

in the  left, up, or left-up im m ediate neighbors grids and the  inform ation from  other neighbors are 

ignored. Obviously the  im perfect deduction will yield a degraded perform ance. As a noncausal 

system , w ithin the  proposed model th e  connected neighbor points will m utually  affect each other. 

Only the  influence from connected neighbor points will be considered, which is a  suitable stra tegy  

for b inary  image processing. A new feature  ex traction  m ethod is utilized in th e  m ethod. In th is way,
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one 2-D feature m atrix  will be substitued  by 4 1-D feature vectors. Therefore th e  com putational 

com plexity will be dram atically  reduced w ith acceptable performance.

T here are several prom inent d ifferences between the  2-D system and the  1-D system  introduced 

in the  the  last chapter. Besides the  fact th a t  the  index of the  s ta tes are expanded to  2-D, some 

strategies in the two system s are different. In the  1-D SAHMM system  the evaluation will be iterated  

to  make th e  s ta te  propagate along the  1-D path . To reduce the com putation  cost, ite ra tion  is not 

utilized in th e  2-D system  anym ore and the  recognition ra te  is 96.4%, which is still higher th an  

the  1-D system . In the  objective functions, the  link probability  shown in equation  6.21 is also not 

considered in the  2-D system  to  fu rther increase the  speed.
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Chapter 8

Conclusion and fu ture research

8.1 C onclusions

In this thesis two novel binarization m ethods are introduced here. A HMM based b inarization 

m ethod is presented in chapter 4. O ur test results show the  binarized images from  the  proposed 

m ethod is much m ore robust th a n  th e  ones from other references[107][108][110]. A com m ercial O C R  

engine is tested  on 42 binarized images from proposed m ethod and o ther reference b inarization 

strategies. A recognition ra te  of 77% is ob tained using th e  proposed technique while th e  closest 

perform ance was th a t  of O tsu ’s which yielded 53% correct rate. I t  should be m entioned th a t  th is 

b inarization  m ethod is a  local pixel’s characteristics based binarization m ethod. HM M  functions 

as a classifier to  identify the  a ttr ib u te  of every pixel (foreground or background) according to  the  

features of neighborhood around every pixel. For th e  local pixel’s characteristics based b inarization 

m ethod, the  m ajor draw back is th a t  th e  com putation cost is extrem ely high, which ham pers its 

im plem entation in real world applications. W ith  the  aid of look up tab le  and other strategies, 

th is  proposed m ethod is fast enough for m ost of the  real world applications w ithou t degradation 

of its perform ance. The size of the  reference set is only 10k bits, which is acceptable to  real world 

applications as well.

Due to  its high efficiency, histogram  based binarizations are the  m ost prefered m ethods. However 

such kind of m ethods can only work well when the  histogram  of an image is bimodel, which is un true 

for m ost of the  real world images. An edge based b inarization  m ethod is also proposed in th e  thesis.
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In this m ethod after the  edges are detected  in th e  process, some pixels around edges are selected from 

an image to  represent the foreground and th e  background. A recognition ra te  of 67.3% is obtained 

using the  proposed technique while the  closest perform ance was th a t  of O tsu ’s which yielded 53% 

correct ra te . The binarization is based on th e  histogram  of selected pixels. One can notice the  

histogram  is usually bimodel, since m ost of th e  d isturbing background inform ation is ignored after 

the  edge detection. The promising experim ent results of the  proposed m ethod are dem onstrated  in 

chapter 5.

The proposed b inarization  m ethods are effective for different types of applications. T he HMM 

based b inarization  is based on th e  feature of th e  neighborhood around every pixel and th e  train ing 

set is selected from th e  strokes of the  characters in different images. Thereby a t th e  recogizing stage, 

pixels in strokes and stroke-like objects are easily discrim inated, even though it m ay be difficult 

for o ther conventional m ethods. For the  edge based m ethod, robust edges and  the ir neighbors 

are selected to  decide the  suitable threshold for the  whole image or different regions in an  image. 

Less com putation  com plexity is expected in com parison w ith HMM based m ethod. This m ethod  is 

more suitble for images w ith simple background, otherwise the edges generated from  background 

will degrade the  whole perform ance. T he edge based binarization can be im plem ented for various 

applications; while th e  HMM based m ethod is m ost su itable for character extraction  applications.

For th e  conventional HMM th e  deduction of the  hidden sta tes in a  sequence is unidirectional and 

causal, therebfore, any noise existing in the  sequence may lead the s ta te  estim ation to  w rong direc

tion, which m ay yields wrong classification. Here we propose a new Self-Adaptive HMM. T he same 

as the  conventional HMM, every model has two layers: observation and hidden sta te . T he proposed 

model estim ates th e  initial s ta te  m em bership a t every tim e slot simultaneously, and  optim izes the  

m em berships of sta tes in every tim e slot w ith  neighbors m utually.A  iterative asynchronous m ethod 

is utilized in the evaluation stage and  solves th e  noncausal problem successfully. T he application 

of th is new proposed model for off-line optical character recognition is tested  in th is thesis. Test 

results indicates a 93.82% recognition ra te  for a noise free datase t which is close to  a coventional 

HMM perform ance. However w ith th e  presence of severe noise a 9% im provem ent in recognition 

perform ance over conventional HMM is obtained.

To fu rther enhance the  perform ance of th e  proposed SAHMM in optical p a tte rn  recognition, we 

expand th e  proposed SAHMM system  into two dim ensional. Non-causal s tra tegy  is still im plem ented 

in this m ethod  w ith some new concepts. A fter skeletonization and subsam pling, the  sparse skeleton 

points will be chosen as critical points, around which some features will be ex tracted . In th e  new 

feature ex traction  m ethod the  2-D feature m atrix  around every critical point will be substitued  by

i l l
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4 simpler 1-D features to  ob ta in  the  op tim al tradeoff of coverage of feature ex trac tion  window and  

com putation cost. The hidden sta tes a t every critical points will be estim ated  from the  features 

there  and th e  location of the  critical point, while th e  connected neighbor hidden sta tes will affect 

each o ther m utually. This m ethod is m ore to leran t to  the  variation of the  images and prom ising 

result is reported  when it is im plem ented in M NIST. O ur experim ent shows 96.4% recognition ra te  

is obtained w ith  sm aller m em ory requirem ent and lower com putational com plexity in com parison 

w ith o ther classifiers w ith sim ilar perform ance.

8.2 F uture work

All of the  HMMs m entioned in this thesis are discrete HMM. T he continuous HM M  is th e  more 

general HM M  type. T he only difference of th e  two types is th a t  the  bj(Ot) are expressed in different 

ways, as shown in equation 3.44 and 3.45. T he m emory requirem ent of continuous HM M  will 

be slightly higher th an  th e  discrete HMM. Since th e  quantization  stage in a  discrete HMM will 

be substitu ted  by th e  sum  of finite num ber of G aussian d istributions in continuous HMM, the  

com putational burden will be released slightly, if th e  continuous HMM is im plem ented here instead 

of the  discrete HMM. Corresponding continuous HMMs and SAHMMs should be set up and tested  

in identical appplications to  com pare the  difference of th e  two types in te rm  of recognition ra te , 

m emory requirem ent and speed.

According to  our experim ent, noncausal system s yield m ore satisfactory results in the  degraded 

environm ent, which m eans they  are more suitable for real world application. T he m ajo r problem  for 

noncausal system  is th a t  every node has m ore th an  one neighbors and there  m ust be some conflicts 

among the  inform ation derived from different neighbors. Here we tried  several m ethods, such as 

asynchronous m ethod or m ultiplication of the  m em bership of every hidden sta tes, which have not 

been m athem atically  proven yet. Ite ra tion  is utilized in the  asychronous m ethod. How to  ob ta in  the  

optim al itera tion  tim e a t the  stage of th e  evalution of SAHMM is another challenging topic. The 

’op tim al’ num ber of hidden sta tes M  and num ber of observation N  are unsloved problem s for the  

conventional HMM and the  proposed SAHMM.

In th is thesis we address iterative tra in ing  m ethod for the  proposed SAHMM. F urther s tudy  will 

be carried out to  prove th e  ra tionality  of such local m ixim um  search strategies. G enetic A lgorithm  [89] 

and o ther optim ization m ethods will be tried  a t th e  tra in ing  stage of SAHMM. T he proposed 1-D and 

2-D SAHMMs have obtained prom ising results in the  application of OCR, expanding its application 

to  bioinform atics, m achine vision is also th e  m ajor highlights of fu tu re  study.
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