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ABSTRACT 
 

Transfer lines are employed for mass production of a fixed product or a very 

narrow range of product variants. This thesis considers a simple transfer line 

balancing problem with a focus on process planning and line configuration. 

Design features of the product are grouped and machining operations are 

sequenced in an optimal manner. The objective is to minimize the handling time 

fraction of the cycle time consisting mainly of orientation change time and tool 

change time. A new MILP model is developed to solve the problem with the 

aforementioned objectives while respecting a set of constraints, which include 

cutting tool allocation, tool magazine limit, tool life limit, takt time limit and 

precedence, inclusion & exclusion constraints. A problem-specific simulated 

annealing algorithm to solve large problems is also proposed. Numerical 

experiments are presented to illustrate the functionality of the MILP model and 

the meta-heuristic with respect to optimality and computation time.  
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CHAPTER 1: INTRODUCTION 

1.1 Transfer lines 

 

Manufacturing systems have evolved rapidly since their inception and this 

transformation is expected to continue in a pursuit of optimum utility. This thesis 

considers a special type of manufacturing system: transfer lines. Transfer lines 

employ a fixed sequence of machine tools connected by an automated material 

handling system for mass production of a small family of complex parts (several 

million parts per year). They are a special case of flow lines. A flow line may be 

synchronous or asynchronous. In synchronous lines, all parts move thorough the 

line at the same speed. In asynchronous lines, some parts have to wait before 

processing at the next station resulting in a buffer. The workstations are also not 

governed by cycle time (takt time) limit. However, synchronous lines respect takt 

time limit at each workstation. The workstations are connected by an automated 

material handling system, which causes the line to function as a single unit. The 

layout may be either straight or circular. 

Transfer lines have several benefits. They require less manpower and space. 

They ensure low work in progress and lower lead time. As a result, they are 

widely used in the automotive industry (1). A huge investment is involved in 

setting up the transfer line for a particular product. This cost in turn affects the 

cost of the finished product coming out of the line. Therefore, profitability depends 

on the investment cost and production efficiency. Hence, it is required that line 

design be done in an optimal manner because cost and efficiency can be 

optimized at this stage by solving the line balancing problem (2). Line design 

encompasses analysis of the product, process planning, line configuration, 

dynamic flow analysis and transport system design and detailed design and line 

implementation. This thesis will consider line configuration and some activities of 

process planning. Line configuration and process planning are inter-dependent 

aspects of line design. 
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The process planning problem involves preparation of plan for performing 

machining operations in an optimal manner. Several technological constraints like 

inclusion and exclusion constraints are respected while solving this problem (1). 

Operation sequencing and cutting tool allocation problems are part of process 

planning. The operation sequence generated ought to be feasible with respect to 

constraints and also serve as the optimal solution with respect to the objective 

(3). Figure 1 presents a flowchart depicting activities involved in process 

planning. 

Line configuration determines the allocation of machining operations and 

required equipment to workstations to maximize utility. Takt time limit and 

precedence constraints are respected in this problem (1). It aims to distribute the 

operations to the workstations for the total processing time at each workstation to 

be less than or equal to the takt time. The optimum number of machine tools 

required by each workstation is determined. Precedence constraints ensure that 

the operations are performed in the required order (4). A classification of Line 

balancing problems is presented in 1.2. 
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Figure 1: Flowchart depicting activities of process planning (5) 

 

1.2 Line balancing 
 

Both manual assembly line and transfer line classify as flow line production 

systems. A line balancing problem performs assignment of operations to 

workstations in order to optimize a criterion while respecting precedence and takt 

time constraints. When the number of workstations is minimized while respecting 

a given cycle time, the problem is called time-oriented simple assembly line 
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balancing problem (SALBP). If skills of workers are differentiated and the total 

cost of the product is optimized, the problem is called cost-oriented assembly line 

balancing problem (COALBP) (2).  Depending upon the variety of products 

manufactured, the line may be classified as single-model, mixed-model (different 

units in arbitrary sequence) and multi-model (sequential batches of different units) 

(6). When mixed-model production, equipment selection, cost objectives and 

parallel stations are considered in ALBP, the problem is called generalized 

assembly line balancing problem (GALBP) (7). The assembly line design problem 

(ALDP) relates equipment selection to the operations assigned to a station and 

their execution. When ALBP is extended to apply to transfer lines, the problem is 

called transfer line balancing problem (TLBP). In TLBP, operations are grouped 

together to form blocks and these blocks are allocated to workstations. The 

blocks on different workstations are executed simultaneously and the longest 

execution time among the blocks determines the pace of the line (8). The 

problem considered here is analogous to the simple assembly line balancing 

problem and hence it is called a simple transfer line balancing problem. 

1.3 Context of problem 
 

The automotive industry typically requires manufacturing of complex parts in 

large quantities. Various engine components are produced in large numbers 

without significant change in the design. The following five parts require critical 

and high-technology operations: Cylinder block, cylinder head, crank shaft, cam 

shaft and connecting rod (8). A chronological sequence of the shift in the 

manufacturing systems adopted for production of these parts is as follows: 

i) “General purpose machines such as milling machines, radial drilling 

machines, etc. with special fixtures with crude material transportation 

between the machines.  
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ii) Special purpose machines with multi-spindle, multi-slide, linear or rotary 

indexing with built-in special fixtures and jigs and roller conveyor in 

between for part transfer.  

iii) Transfer machines with a large number of machining heads built around 

the different workstations where the component is transferred after 

completion of operation on one station to the next station through varied 

types of transfer mechanisms.  

iv) Flexible manufacturing systems with conventional CNC machining 

centers with pallets, large size ATC and transportation system with a 

centralized control. Fixtures are mostly manual and modular.  

v) Flexible transfer machine with CNC machining centres/modules, CNC 

head changers and automatic transfer of component as in conventional 

transfer line. 

vi) Agile manufacturing with special NC 3-axis machining units - different 

for heavy duty operations such as milling and for light duty operations 

such as drilling, tapping, etc. doing parallel processing and has better 

re-configurability to meet increasing or decreasing volume of 

production, if so required.” (8) 

Traditional transfer machines utilize dedicated machining stations for milling, 

drilling and other operations. The operations are allocated to workstations 

according to their specialty and hence a sequence of machines is set-up. This 

type of system permits very small change in the design and time and cost 

required for a change in set-up are high. They are suitable for high-volume 

production without significant changes in design. 

Current trend in the market is to launch new products or make frequent 

changes to the existing products. Therefore, a degree of flexibility is required 

from the manufacturing system to accommodate these changes in design. 

Flexible transfer lines provide a certain degree of flexibility by following a modular 

design (7). They employ CNC machining centers and/or multi-spindle head 

changers for high volume production combined with flexibility. “For a typical 4-
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cylinder aluminum cylinder head, numbers of holes vary between 50 & 100, and 

almost 50-60 processes are used. In a conventional flexible transfer line, the 

numbers of machines required for a cycle time of 3-4 minutes are: 13-15 NC 

single spindle machining centers, 5-6 Special Purpose machines and 6-7 

assembly machines” (8). However, single spindle machining centers are not as 

efficient as high speed machining centers. High speed machining centers provide 

lower operation time due to the use of high speed spindles, high speed traverse 

and lower tool change time but at a higher cost than single spindle machining 

centers. A comparison of specifications for standard and high speed machining 

centers is presented in the Table 1. 

Table 1: Comparison of high speed and standard machining centers8 

No. Feature High speed Standard 

1 Spindle speed (rpm) 12000-24000 6000 

2 Chip to chip time (sec) 3.0-4.5 10 

3 Rapid traverse rate (m/min) 40-60 15-20 

4 Acceleration and deceleration Less than 3 4-6 

5 Cycle time (sec) 35-70% 100% 

 

The planning time for transfer line is high. The transfer line balancing problem 

involves process planning and line configuration. If a long time is spent in 

planning after commissioning of transfer line, time required to reach full capacity 

of production increases. This augments the cost of the product coming out of the 

line. Due to such a limitation, agile manufacturing system is preferred. Agile 

system provides adaptability and flexibility with CNC cells. As the cells can be 

built in less time and added as per the requirement, production can be gradually 

increased. However, the floor space and total cost needed for such a system is 

high. Only a small batch can be manufactured and the lead time is also high 

compared to a transfer line.  Moreover, a higher level of training is required to be 

provided to the operators in case of an agile system (8). 
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1.4 Motivation of thesis 

 

There is a need to develop a solution for simple transfer line balancing 

problem to reduce the time required for solution. If mathematical techniques are 

employed to solve the problem, the time spent between commissioning of lines 

and reaching full capacity of production can be reduced. The automation of 

process planning and line configuration can enable manufacturers to perform 

sequencing of operations, line balancing, machine tool and cutting tool allocation 

and in an integrated manner. Several constraints are respected while optimizing 

a criterion. It gives better control on the planning of the process and better 

accuracy. Hence, the motivation is to develop such a technique for efficient 

balancing of flexible transfer lines utilizing single spindle machining centers.  

1.5 Organization of thesis 

 

The thesis is organized in the next few chapters as follows: chapter 2 includes 

definition of the problem and literature review. The MILP model is described in 

chapter 3. The problem-specific simulated annealing algorithm is presented in 

chapter 4. Chapter 5 includes numerical experiments conducted to verify the 

functioning of the proposed methods. Conclusions and recommendations for 

future work are specified in chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Problem definition 
 

The simple transfer line balancing problem considered in this thesis involves 

machine tool and cutting tool allocation, grouping of design features and 

sequencing of machining operations. Synchronous transfer lines with a straight 

layout to manufacture large quantities of a complex product are considered. All 

workstations are identical, consisting of CNC machine tools with a single spindle 

and tool magazine. The takt time is constant and equal for all machine tools. The 

objective of the problem is to minimize the handling time portion of the cycle time 

consisting mainly of orientation change time and tool change time. Various 

design features are located on different faces of the product. Whenever a feature 

is processed on one face, the product is rotated if the next feature to be 

processed lies on a different face. The time spent for this change in orientation is 

called orientation change time (ORCT). It is time spent for a non-value added 

activity and hence, it needs to be minimized. If the design features on one face 

are processed together, the change in orientation can be reduced. Thus, the 

grouping problem aims to group the design features with an objective of 

minimizing the ORCT. However, the inclusion and exclusion constraints are to be 

respected by the grouping problem. The inclusion constraint ensures that two 

design features are allocated to the same group. The exclusion constraint 

prevents allocating two features to the same group.  

After grouping the features, an optimum sequence for machining 

operations is to be developed. There are fixed number of operations for each 

design feature. A specific cutting tool is needed to perform an operation. If the 

cutting tool required for the next operation is different, the tool spindle needs to 

go back to the tool magazine to change the cutting tool. The time spent in 

changing the cutting tool is tool change time (TLCT). It is also a non-value 

added fraction of the cycle time and it needs to be minimized. Also, ORCT 

needs to be kept at a minimum while deciding the optimum sequence of 
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operations. Thus, the objective of the sequencing problem is to minimize a sum 

of ORCT, TLCT and Transportation time. Transportation time is the time spent 

for movement of work piece from one machine tool to the other, within a 

workstation. Precedence constraint ensures that a logical sequence is followed 

when operations are processed. 

Machine tool and cutting tool allocation also require satisfaction of certain 

constraints. Capacity constraint ensures the number of cutting tools allocated to 

a machine tool is not more than the tool magazine capacity. Tool life constraint 

ensures the cutting tool has required life for processing the operations. The 

cycle also consists of machining time (TO) and refixturing or reloading time 

(RT). RT is the sum of tool positioning time, tool retracting time and rapid time 

spent by the cutting tool motion. TO and RT are not affected by the sequence of 

operations. Takt time limit is to be respected at all workstations. Figure 2 

illustrates the nature of the problem. It is an IDEF0 representation including top 

level and lower level diagrams that follows the Integration Definition for Function 

Modeling Standard (9).  
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Figure 2: Top and lower level IDEF diagrams 
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2.2 Relevant papers in literature 

 

Due to a high cost involved in set-up of transfer lines, maximization of line 

utilization is found necessary. A cost-based approach to transfer line balancing is 

presented in Dolgui and Ihnatsenka (2) and Dolgui et al. (10-11). The objective is 

to minimize the line investment cost which is the sum of equipment and 

workstation cost. Multi-spindle machining centers are considered and the 

problem of operation allocation is solved. 

Dolgui and Ihnatsenka (2) present a transfer line balancing problem to 

minimize line investment cost using a branch and bound algorithm. A subset of 

spindle heads from the available set of blocks to be assigned to workstations is 

determined while respecting inclusion, exclusion, precedence and cycle time 

constraints. The branch and bound algorithm develops solution in a reasonable 

time for the small problems. However, the solution time exponentially increases 

for medium size problems. Dolgui et al. (10) consider a similar problem of 

equipment block allocation. However, the solution procedure uses an MIP and 

some heuristic algorithms. First, an exact algorithm based on Mixed Integer 

Program and calculation of bounds is considered which provides exact solution to 

small and medium problems in a small time. Second, two heuristic algorithms viz. 

Random allocation of blocks and Depth-first search technique are provided for 

solving large size problems for near-optimal solution in a reasonable time. Dolgui 

et al. (11) present an improved mixed integer program to solve large instances of 

the block allocation problem in a reasonable time. 

Transfer line balancing problem with an objective of minimizing number of 

machines is presented in Essafi et al. (1). They consider a flexible transfer line 

with parallel workstations that utilize CNC machines. A Mixed Integer Program 

(MIP) with the objective of minimizing the number of machines utilized is 

presented. Precedence, inclusion and exclusion constraints are specified and 

sequence dependent set-up times are specified. An algorithm is proposed to 

reduce the size of the problem by computing range of variables. Long time is 
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required to solve even a small sized problem when the density of the precedence 

graph is high. Moreover, the scope is limited to line configuration. No process 

planning in terms of feature grouping or tool allocation is considered.  

A time-dependent objective for line balancing is presented in Das et al. (12) 

and Osman and Baki (13-14). Single spindle machining centers are considered. 

Das et al. (12) present a grouping and scheduling problem with an objective of 

minimizing the non-cutting time. The problem is solved in a hierarchical manner 

using a mathematical model. Machine and tool allocation problems are solved at 

the higher level assuming a particular sequence. At the lower level, the 

sequencing model is solved and if a better solution is obtained, the new 

sequence is provided to the planning model to repeat iteration. This procedure is 

followed until an optimal solution is obtained. This method is time-consuming and 

solution time is long for the small problem considered. Transportation time, 

inclusion and exclusion constraints are not considered. 

Osman and Baki (13) provide a decomposition based approach for transfer 

line balancing with an objective of minimizing non-value added time. Bender’s 

Decomposition is applied to solve small problem instances. Computation time is 

prohibitive to solve large problems. Transportation time, tool magazine capacity 

and tool life constraints are not considered. 

Osman and Baki (14) develop ant colony meta-heuristic and a hybrid method 

to solve the problem for medium and large instances. However, computation time 

is long for large problems. Transportation time between any two machine tools is 

considered. However, transportation time between two workstations needs to be 

neglected. Tool magazine capacity constraint considers capacity of a workstation 

without considering number of machine tools allocated to the workstation. 

An investigation on line balancing of an automated cylinder block production 

transfer line is carried out by Masood (15). A case study is considered to improve 

cycle time performance and machine utilization. Re-sequencing of operations is 
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carried out to improve the throughput. The results are validated by simulation. A 

systematic methodology is not provided for re-sequencing. 

Tolio and Urgo (7) present a mixed integer linear program to consider design 

of flexible transfer lines. The equipment cost for a multi-model rotary transfer line 

is minimized while respecting design constraints. An industrial case study is 

considered to analyze the cost for configuration and reconfiguration of the line for 

three different parts. There is a significant effect of reconfiguration on the cost. 

Zhang et al. (16) provide a hierarchical process planning approach for flexible 

transfer line schematic design. The activities include the selection of 

manufacturing feature, machining operation, part set-up planning, feature 

sequencing, operation sequencing and process plan generation. The evaluation 

is performed on the basis of quality, flexibility, reliability, machine load and cost.  

The machine loading and resource allocation problems for other 

manufacturing systems are considered in Reddy et al. (3), Kim and Suh (4), Persi 

et al. (17), Sarin and Chen (18), Sinreich et al. (19), Ecker and Gupta (20) and 

Lin and Wang (21). 

Persi et al. (17) present a hierarchical approach to production planning and 

scheduling for a flexible manufacturing system with the objective of minimizing 

lead time. At the higher level, part grouping and tool allocation problems are 

solved using a Mixed Integer Program (MIP). Time and tool magazine capacity 

constraints are respected. At the lower level, batches are sequenced and parts 

are scheduled within the batches using dispatching rules. A numerical example 

demonstrates the efficiency of the model. 

Sarin and Chen (18) discuss a machine loading and a tool allocation problem 

for a flexible manufacturing system. The objective of the problem is to minimize 

the total cost of machine utilization and cutting tools. A Mixed Integer Program 

(MIP) is presented with cycle time limit, tool life and tool magazine capacity 

constraints. A computational example is included in the discussion.  
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Sinreich et al. (19) consider minimization of non-productive machining time in 

a Single-Stage Multifunctional Machining System (SSMS). The effect of 

bottleneck resources like setup tasks, machine idle time, machine breakdown 

and defective jobs on job scheduling is considered. A Binary Integer Program 

(BIP) is presented and linearized using additional constraints. A heuristic 

sequencing algorithm is developed and a numerical example is solved using 

GAMS. The non-productive time of the internal set-up is reduced but at the 

expense of an increase in the external set-up.   

Kim and Suh (4) present an optimal grouping and sequencing technique for a 

Multi-stage Machining System. A combination of an expert system and an Integer 

Program (IP) is used to develop a process plan with global and local scope. A 

heuristic algorithm further reduces the size of the problem. The objective is to 

minimize the non-cutting time while respecting precedence and tolerance 

constraints. Line balancing is also taken into consideration. A numerical example 

is included to verify the functionality of the approach.   

Ecker and Gupta (20) present an algorithm to sequence tasks on a machine 

by reducing the tool change time for a flexible manufacturing system. The 

precedence constraints of tasks and difference in tool changeover times are 

taken into consideration. A numerical example is included which illustrates the 

solution. Simulation experiments are also performed to verify the effectiveness of 

the heuristic algorithms. 

Lin and Wang (21) present an operation planning and sequencing technique 

for tool changeovers to minimize cost. A two stage integer program is provided. 

At the first stage, tool allocation is performed while respecting precedence 

constraints for each part to be produced. The objective is to minimize the total 

machining and tooling cost. At stage two, an optimal tool changeover sequence 

is prepared. A numerical example is included to verify performance at both 

stages. Bhaskara Reddy et al. (3) present an operation sequencing solution to 

minimize tool changeover and set-up and maximize utilization. Accessibility, 

precedence and geometric constraints are considered. They acknowledge that 
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operation sequencing problem is difficult to solve using integer programming or 

branch and bound approaches. A genetic algorithm is provided to solve the 

problem in a reasonable time. 

Simulated annealing is an effective technique to solve large combinatorial 

optimization problems. It is applied in McMullen and Frazier (22), Pandey et al. 

(23), Azab and Elmaraghy (24) and Suresh and Sahu (26). 

McMullen and Frazier (22) present a simulated annealing approach to solve 

multi-objective assembly line balancing problem. The objectives of the heuristic 

are to minimize total cost (labor and equipment), to minimize the smoothness 

index and to minimize the probability of lateness. A Design of experiment is 

presented with seven problems with different number of tasks. Some of the 

problems have more than one product and hence a mixed-model sequencing 

approach is discussed. The results obtained from different selection rules and 

their comparison is included. Simulated annealing is found to be an effective tool 

to improve cycle time performance. 

Pandey et al. (23) solve a multi-objective operation sequencing problem using 

simulated annealing. The objective functions considered are minimization of 

setup changeover and tool changeover, maximization of tool motion continuity 

and loose precedence. Each of these functions is assigned an index and a 

weighted sum of indices is called Operation Sequencing Rating Index (OSRI). 

Neighboring solutions are developed each time by Modified Shifting Scheme 

(MSS). A feature precedence graph is prepared beforehand to reduce 

computational time.  

Azab and Elmaraghy (24) present a macro-level approach to process planning 

for a reconfigurable manufacturing system. A binary integer program and a 

simulated annealing algorithm are applied to the problem with the objective of 

minimizing non-cutting time. Operation sequencing is performed while respecting 

precedence constraints. An industrial case study is presented to verify the 

performance of the two methods. 
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Suresh and Sahu (26) adopt simulated annealing technique to solve the 

assembly line balancing problem with stochastic task times. A problem-specific 

simulated annealing algorithm is presented with two different objectives 

considered independently.  The first is to minimize the smoothness index and the 

other is to minimize the probability of line stopping. Several experiments are 

performed to solve the problem for different number of tasks. It is observed that 

better solution is obtained at a lower rate of cooling. However, slower cooling 

results in an increase in the computational time.  

2.3 Gap analysis and novelty of solution 

 

It is observed that transfer line balancing problem can be solved either by a 

time-based or a cost-based approach. If multi-spindle machining centers are 

considered, the objective is generally to minimize equipment cost. When 

considering single spindle machining centers, the objective is generally to 

minimize non-cutting time. There is a need to develop an efficient solution to 

solve the latter problem for large instances. Therefore, such a problem is 

considered here. 

Moreover, most of the papers consider only one of the two aspects of transfer 

line balancing problem: process planning and line configuration. There is a need 

to consider both process planning and line configuration while solving the 

transfer line balancing problem. A comparative gap analysis is presented in the 

Appendix C. 

Transfer line balancing problems consider only manufacturing operations but 

not the design features. Operations belonging to a design feature have certain 

similar characteristics. For instance, all operations of a feature lie on one face of 

the product. If this property of operations is taken into consideration, the size of 

the problem can be considerably reduced. Moreover, if precedence constraints 

are defined using design features instead of operations, the number of constraint 
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equations reduces considerably. The reduction in the density of the precedence 

graph shortens the computation time. Changes in design of the product can be 

easily implemented. Any change in the design of the product translates into 

addition or removal of a design feature. The transfer line balancing problem is 

solved again for a new solution which is implemented by utilizing the flexibility of 

the transfer line. Hence, the grouping of design features is considered instead of 

grouping individual operations. 

Moreover, the current trend is to utilize flexible transfer lines instead of 

traditional transfer lines with dedicated machines and a fixed set of tools. The tool 

allocation problem in flexible transfer lines must consider tool magazine capacity 

constraint and tool change time. The handling time also consists of transportation 

time and orientation change time which need to be reduced. The variable number 

of machines at a workstation is another distinguishing characteristic. A flexible 

transfer line may allow duplication of machine at a workstation in order to respect 

the takt time. Therefore, different workstations of the line may have different 

number of machines allotted to them as per the assigned workload. 

Some of these considerations for flexible transfer lines are found in Das et al. 

(12) and Osman and Baki (13-14). 

Das et al. (12) present a mixed integer linear program for grouping and 

sequencing of operations. However, the computation time required to solve the 

small problem considered is long. Moreover, transportation time between 

workstations is not considered. Inclusion, exclusion and tool life constraints are 

also not considered. 

Osman and Baki (13) present a Bender’s Decomposition approach to solve 

the transfer line balancing problem. However, long computation time restricts the 

problem size that can be solved. 

Osman and Baki (14) develop ant colony and hybrid meta-heuristic methods to 

solve the transfer line balancing problem. Small, medium and large problem sizes 

are solved using the proposed methods. Solution time is long for large problems. 
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Transportation time between any two machine tools is considered. However, 

transportation time between two workstations needs to be neglected. Tool 

magazine capacity constraint considers capacity of a workstation without 

considering number of machine tools allocated to the workstation. 

This thesis presents a new Mixed Integer Linear Programming (MILP) model 

that is developed to solve the problem in an efficient manner. Design features are 

grouped at the higher level and machining operations are sequenced at the lower 

level. The required machine tools and cutting tools are allocated to the 

workstations. 

The tool magazine constraint is revised for accurate representation. The 

number of machine tools allocated to a workstation is considered while 

calculating the tool magazine capacity of a workstation. 

Transportation time between two machine tools of a workstation is considered. 

The number of machine tool is a variable and the workstations are configured 

with the necessary machine tools to satisfy the prescribed takt time, minimizing 

the transportation between the machine tools within the workstation. However, 

transportation time between workstations is neglected. As the number of 

workstations is fixed, transportation time between workstations cannot be 

minimized. 

It is observed that simulated annealing is an effective tool for solving line 

balancing and operation sequencing problems of large size and combinatorial 

nature. It helps to obtain near-optimal solutions to problems of large size in a 

reasonable time without getting trapped in a local minimum. Simulated annealing 

can be effectively applied to transfer line balancing problem. Hence, a problem-

specific simulated annealing algorithm is proposed to solve transfer line 

balancing problem in a reasonable time.  

Numerical experiments are performed to assess the performance of the 

mathematical model and the meta-heuristic. The results from the SA algorithm 

are compared with the optimal results from the MILP model.   
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CHAPTER 3: MODEL DEVELOPMENT 
 

The following sub-sections present the assumptions, indices, algorithm and 

sub-models for the proposed Mixed Integer Linear Programming model. 

3.1 Assumptions for MILP model 
 

1) Details of design features and machining operations are known. Machining 

time, orientation change time, tool change time and refixturing / reloading 

time and transportation time are known. 

2) Every operation requires a specific cutting tool for machining. Cutting tools 

are identified by numbers.  

3) Workstations are identical and any cutting tool can be allotted to any 

machine group. The number of machine groups is known.  

4) Machine groups are allotted the required number of CNC machine tools. 

The machine tools have one spindle and a tool magazine. Tool magazine 

capacity is known. 

5) The fixtures on each workstation can be rotated to any degree as per 

processing requirement. 

6) All parts visit all workstations while they move at equal speeds. A machine 

tool processes only one workpiece at a time. There are no buffers 

between workstations.  

7) Transportation time between workstations is not considered. However, 

transportation time between machine tools within a workstation is 

considered. 

3.2 Indices for MILP model 
 

),...,3,2,1( Gg   Index set of machine groups 
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),...,3,2,1( Rr   Index set of design features 

),...,3,2,1( rOo r   Index set of machining operations 

),...,3,2,1( gSs g   Index set of sequence positions 

),...,3,2,1( Ll   Index set of cutting tools 

3.3 Decomposition algorithm for MILP model 

 

The model is solved in a hierarchical manner. Grouping of design features 

is performed at higher level. Sequencing problem is solved at the lower level. 

The model is divided into two sub-models: grouping and sequencing. The 

grouping sub-model allocates design features to machine groups. The result is 

provided to the sequencing sub-model to sequence the operations. This result 

may not always satisfy takt time limit as the constraint appears in the 

sequencing sub-model. 

The sequencing sub-model is solved for each group separately. Machine 

tool and cutting tool allocation is performed by the sequencing sub-model. If a 

feasible solution is not obtained for all groups, iteration is repeated. The 

grouping sub-model is solved again by specifying different inclusion and 

exclusion relationships between features while respecting design intent. This 

procedure is repeated until a feasible solution is obtained. Figure 3 depicts the 

proposed approach for hierarchical grouping and sequencing of machining 

operations for transfer lines. Figure 4 depicts the algorithm followed to solve the 

problem. 
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Figure 3: Proposed approach for hierarchical grouping and sequencing of 

machining operations for transfer lines (MILP model) 
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Figure 4: Decomposition algorithm for MILP model 
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3.4 Parameters for grouping sub-model 
 

rO   Number of machining operations of design feature r  

NO  Total number of operations in a cycle 

'rri   1 if feature r  and feature 'r are required to be allocated to one 

group, 0 otherwise 

'rre   1 if feature r  and feature 'r are not be allocated to one group, 0 

otherwise 

rf   Face on which design feature r is located 

'rr
ORCT  Orientation change time after processing design feature r  on face 

f before performing design feature 'r  on face 'f  

3.5 Decision variables for grouping sub-model 
 

gQ   1 if group g is formed, 0 otherwise 

Variable gQ decides formation of group g . 

rogX   1 if operation o  of design feature r is processed in group g , 0 

otherwise 

Variable rogX decides allocation of operation o of design feature r to machine 

group g . 
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rgZ   1 if Design Feature r is processed in group g , 0 otherwise 

Variable rgZ decides allocation of design feature r to group g  

gS
  Number of sequence positions in group g  

Variable gS  decides the number of sequence positions in group g . 

Equations (1) and (2) specify other variables for the problem. 

Equation (1) determines the total number of operations. 





R

r

rONO
1

                (1) 

Variable 1W calculates the total ORCT for group g . 

grrg

R
r

R
r rr ZZORCTgW '1 1' ')(1                   (2) 

3.6 Grouping sub-model objective function and Linearization 
 

The objective of the grouping sub-model is to minimize the total ORCT for all 

groups. 

Minimize  
G
g gW1 )(1               (3) 

Variable )(1 gW is defined in equation (2). 

As the equation is non-linear in nature, a linearization scheme from Osman 

and Baki (13) is followed to introduce a new binary variable ''grgrB . It has a value 

of 1 if design feature r is allotted to group g and design feature 'r is allotted to 

group 'g and 0, otherwise. This variable replaces the multiplication of two 

variables in the objective function of grouping sub-model. Equations (12) and 
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(13) are added which are auxiliary constraints for the binary variable. Variable 

)(1 gW changes to: 

grgr

R
r

R
r rr BORCTgW '1 1' ')(1                 (4) 

3.7 Grouping sub-model constraints 
 

Equation (5) ensures that each design feature r  is allocated to only one group g . 

1
1

 

G

g rgZ     r            (5) 

Equation (6) allows variable values for rgZ . For every group, the value of LHS is 

zero if no feature is allocated to it and positive if at least one feature is allocated. 

0
1

 

R

r rgZ     g            (6) 

Equation (7) ensures all operations of a group are processed in the same group 

in which the feature is allocated.  

rgrog ZX      gro ,,           (7) 

Equation (8) represents inclusion constraint to assign the two design features to 

the same group. 

0)( ' 
grrg ZZ    1,:,, '

''  irrrrg rr         (8) 

Equation (9) provides exclusion constraint to assign the two design features to 

the different groups. 

1)( ' 
grrg ZZ      1,:,, '

''  errrrg rr         (9) 
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Equation (10) indicates that a design feature is allocated to a group only when it 

is formed. M is a big number which facilitates allocation of feature only when gQ

is 1. 

g

R

r rg MQZ  1
    g          (10) 

Equation (11) calculates the total number of sequence positions allotted to group 

g viz. gS . 

g

R

r rg

r SZO  1
    g          (11) 

Equations (12) and (13) are auxiliary constraints for linearization. 

 


G

g grgrrg BZ
1' ''     ',, rrg         (12) 

rggrgrgr BB ''''      rrgrgr  ':',',,       (13) 

Equations (1)-(13) are adopted from Bhale et al. (25).  

3.8 Parameters for sequencing sub-model 
 

rO   Number of machining operations of design feature r  

rD   Total number of times design feature  r  is processed for each 

product 

gNM  Maximum number of machine tools allowed for a group 

lH   Number of tool slots needed by cutting tool l  
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lT   Life of cutting tool l  

A   Size of the tool magazine of each machine tool 

E   Cycle time 

roTO  Time for processing operation o  of design feature r  

rf   Face on which design feature r is located 

'rr
ORCT  Orientation change time after performing design feature r  on face 

f before performing design feature 'r  on face 'f  

)1( ororTLCT Tool change time for changing cutting tool l  to 'l  after performing 

operation o of design feature r  before performing operation 1o  of the same 

design feature r  

''oror
TLCT  Tool change time for changing cutting tool l  to 'l  after performing 

operation o of design feature r  before performing operation 'o  of the next design 

feature 'r  

roRT  Refixturing or reloading time for operation o  of feature r  

gS   Number of sequence positions in group g  

rolP   1 if operation o of design feature r  requires cutting tool l , 0 

otherwise 

rgZ   1 if Design Feature r is processed in group g , 0 otherwise 
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'rri   1 if feature r  and feature 'r are required to be allocated to one 

group, 0 otherwise 

t   Transportation time between two machine tools of a workstation 

3.9 Decision variables for sequencing sub-model 
 

gN   Number of machine tools in group g (Integer) 

Variable 
gN decides the number of machine tools allocated to group g . 

rogsX  1 if operation o  of design feature r is processed on sequence 

position s in group g , 0 otherwise 

Variable rogsX decides allocation of sequence position to an operation o of design 

feature r belonging to group g . 

lgY   1 if cutting tool l  is assigned to group g , 0 otherwise 

Variable lgY decides allocation of cutting tool l to group g . 

Equations (14)-(18) specify other variables for the problem. 

Variable 1W calculates the total ORCT for group g . 

grrgsgorrogs

R
r

R
r

Or
o

Or
o

Sg
s rr ZZXXORCTgW ')1(''1 1' 1

'
1'

1
1 ')(1    


            (14) 

Variable 2W calculates the total TLCT for group g . 

   





  rgsgorrogs

R
r

Or
o

Sg
s oror ZXXTLCTgW )1()1(1

1
1

1
1 )1()(2

grrgsgorrogs

R
r

R
rrr

Or
o

Or
o

Sg
s oror ZZXXTLCT ')1(''1 ':1' 1

1
1'

1
1 ''   





           (15) 
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Variable 3W calculates the total RT for an operation o  of feature r  for group g . 

rogsro
R
r

Or
o

Sg
s r XRTDgW      1 1 1)(3          (16) 

Variable 4W  calculates the total TO for group g . 

rogsrou
R
r

Or
o

Sg
s r XTODgW      1 1 1)(4

         (17) 

Variable 5W  calculates the total transportation time for group g . 

)1()(5  gNtgW             (18) 

3.10 Sequencing sub-model objective function and 

Linearization 
 

rgZ  and gS are input parameters to the sequencing model as their value is 

obtained from grouping sub-model. The sequencing model is solved 

independently for each group. 

The sequencing sub-model considers minimization of a sum of ORCT, TLCT 

and transportation time for a group. The objective function is as follows: 

Minimize  )(5)(2)(1 gWgWgW                (19)  

Variables )(1 gW , )(2 gW and )(5 gW are defined in equations (14), (15) and 

(18) respectively. 

As the objective function is non-linear, a linearization scheme is adopted from 

Osman and Baki (13) to introduce a new binary variable ''' sogrosrC . It has a value of 

1 if operation o  of design feature r  is allotted to sequence position s  and 

operation 'o  of design feature 'r  is allotted to sequence position 's  in group g  
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and 0, otherwise. Equations (30) and (31) are added which are auxiliary 

constraints for the binary variable.  

Variables )(1 gW  and )(2 gW change to: 

grrgsogrosr

R
r

R
r

Or
o

Or
o

Sg
s rr ZZCORCTgW ')1(''1 1' 1

'
1'

1
1 ')(1    
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3.11 Sequencing sub-model constraints 
 

Equation (22) ensures that the number of machine tools allocated to a group is 

within the upper limit for the group. 

gg NMN      g               (22) 

Equation (23) specifies the precedence constraint to ensure that the operation o  

of feature r  precedes operation 1o  of the same feature r . 

 





s

s
gsor

s

s
rogs XX

1'
')1(

1'
'   sgor ,,,         (23) 

Equation (24) specifies the precedence constraint to ensure that the last 

operation 
rO  of feature r  precedes first operation of the feature 'r . 

 


s

s
gsr

s

s
gsrO XX r

1'
'1'

1'
'   1:,,', '  rrisgrr          (24) 

Equation (25) ensures that each operation o  is assigned only to one sequence 

position s . 

rgrogs

S

s ZXg  1    gor ,,         (25) 



31 
 

Equation (26) ensures that each sequence position s  is assigned to only one 

operationo . 

1
11  

rO

o rogs

R

r X    sg,          (26) 

Whenever an operation is assigned to a group, the required cutting tool must be 

assigned to the group and the tool life limit is satisfied. Equation (27) represents 

this limit. 

lg
1 1

YTXTODP lrogsror
R

r

O

o rol

r

  
 lsg ,,         (27) 

Equation (28) indicates tool magazine capacity limit for each machine group. The 

number of machine tools allocated to a workstation is considered while 

calculating the tool magazine capacity of the group. The number of machine tools 

allotted to a group is not considered while calculating the capacity of the group in 

Das et al. (12) and Osman and Baki (13-14).  

g

L

l
l ANYH  

lg
1

    g          (28) 

Equation (29) specifies the cycle time limit of each machine tool to prevent 

overloading of machine tools. 

gENgWgWgWgW  )(4)(3)(2)(1   g       (29) 

Equations (30) and (31) are auxiliary constraints for binary variable ''' sogrosrC . 

  


R

r

O

o sogrosrgsor

r

CX
1 1 ''''''   ':',',',, sssorsg        (30) 

rossogrsogrosr CC ''''''     ':',',',,,, sssorsorg                 (31) 

Equations (22) – (31) are adopted from Bhale et al. (25). 
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CHAPTER 4: SIMULATED ANNEALING 

 

The problem considered is of combinatorial nature. When optimization 

problems are solved using calculus-based methods, the solution is trapped in the 

local minimum. Solving large size problems for global optimum solutions using 

such methods requires long computation time. Hence, random-based search 

techniques like simulated annealing or genetic algorithm are usually preferred. 

They provide near-optimal solutions to large problems of combinatorial nature 

with a better performance than greedy algorithms (26). Simulated annealing is an 

efficient technique for solving assembly line balancing problem (22, 26) and 

operation sequencing problem (23, 24). Therefore, a problem-specific simulated 

annealing algorithm is developed which is presented in the following sections 

along with introduction to the method in 4.1. 

4.1 Introduction 

 

Simulated annealing derives its name from physical annealing of solids (26). 

Annealing of solids involves heating of the solid to a high temperature (melting 

point) and slow cooling to a low temperature at a controlled rate. The slow 

cooling ensures more time is spent near the freezing point of the solid. This 

facilitates the re-arrangement of the molecules and the solid eventually attains 

the desired properties. Simulated annealing is a high quality approximation 

algorithm to solve combinatorial problems for minimizing the objective function 

using a similar procedure. The algorithm begins when an initial feasible solution 

is specified along with the value of the control parameter. The control parameter 

is analogous to the temperature in annealing as the value of control parameter is 

reduced according to the cooling rate. Similar to energy in annealing, the value of 

the objective function is calculated for each configuration. Neighboring 

configurations are generated according to the scheme being followed. The 

neighboring solution is accepted as a current solution if its energy value is lower. 
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It may also be accepted if it satisfies the Metropolis criterion. In this criterion, a 

random number from a uniform distribution between (0, 1) is drawn. It is 

compared with the acceptance probability which is a ratio of change in energy to 

the control parameter.  

Due to the acceptance of new configuration according to the metropolis 

criterion, the algorithm also accepts inferior solutions at a probability. This 

prevents being stuck in a local minimum. A certain number of iterations are 

performed for each value of the control parameter and then the value is lowered. 

At high values of the control parameter, more uphill changes are accepted. On 

the contrary, the number of uphill values being accepted is lower for lower values 

of the control parameter. The algorithm stops when the control parameter 

reaches the pre-specified minimum value. For slower cooling, better solution is 

obtained. However, there is an exponential increase in computational time with a 

lower rate of cooling (26). 

The following parameters are required for implementation of simulated 

annealing technique: 

i) “Initial configuration and solution space 

ii) Initial value of control parameter 

iii) Neighborhood generation procedure 

iv) Cooling rate 

v) Stopping criterion” (26). 

The general algorithm consists of the following steps: 

1) Declare all parameters. Enter initial solution, initial temperature (Tin), 

minimum temperature (Tmin), number of iterations (N) and cooling rate 

(CR). 

2) Calculate the energy for the initial configuration (Ec). 

3) Set the value of n=0. 

DO 
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4) Develop a neighboring solution and calculate new energy (En). 

5) IF new energy is less than current energy, proceed to 6.  

ELSE IF metropolis criterion is satisfied, proceed to 6. 

ELSE Increment the value of n (n=n+1). Proceed to step 7.  

6) New state = Current state (En=Ec). Increment the value of n (n=n+1).  

7) IF n<=N, go to step 4. 

ELSE T=CR*T. Go to step 4. 

UNTIL Stopping criterion is reached. IF T<=Tmin, declare final solution. ELSE Go 

to step 4. 

Figure 5 shows flowchart of a general simulated annealing algorithm.  
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Figure 5: Flowchart of a general simulated annealing algorithm 
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4.2 Generation of initial solution for grouping problem 
 

The scheme for generation of initial feasible solution for grouping problem 

respects inclusion and exclusion constraints. 

The steps are listed below: 

1. Calculate upper limit on the number of design features to be allotted to 

each group for uniform distribution. 

DO 

2. Check if all features for which inclusion constraints are specified have been 

assigned a group. 

IF NO, go to step 3.  

ELSE go to step 4. 

3. Select one design feature from those for which inclusion feature is 

specified and no group is assigned. Assign it to current group along with all 

features that have inclusion constraints specified for this feature. 

4. Assign features for which no inclusion constraint is specified to current 

group while respecting exclusion constraints and upper limit on feature 

allocation. Go to next group. 

UNTIL all machine groups reach upper limit. 

5. If any design feature is not assigned a group, assign it to a random group 

while respecting exclusion constraints and neglecting upper limit. 

4.3 Neighbor generation scheme for grouping problem 
 

The scheme for generation of neighborhood solutions for grouping problem is 

adopted from Mcmullen and Frazier (22).  It involves performing either a trade or 

transfer at each iteration. A random number is drawn to determine which activity 

is to be performed for the iteration. 



37 
 

Trade: 

Trade involves swapping of two design features between two machine groups. 

A machine group is selected at random. The last design feature of the group is 

assigned to the next machine group. At the same time, the first design feature of 

the next machine group is assigned to the previous machine group. 

Consider the example shown in Figure 6. The workstation 2 is selected at 

random. The last design feature 9 is to be allocated to the next workstation. After 

trade, the design feature 10 is allocated to workstation 2 and DFU 9 is allocated 

to workstation 3 as seen in Figure 7. 

 

Figure 6: Allocation of Design features to workstations before trade 
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Figure 7: Allocation of Design features to workstations after trade 

 

Transfer: 

Transfer involves assigning a design feature of a machine group to the next 

group without allocating any design feature back to the first group. A machine 

group is selected at random and the last design feature of the group is assigned 

to the next group. 

An example is shown in Figure 8. Workstation 4 is selected for transfer at 

random. The last design feature 24 is to be allocated to the next workstation. In 

Figure 9, it is seen that DFU 24 is allocated to workstation 5 after the transfer is 

performed. 
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Figure 8: Allocation of Design features to workstations before transfer 

 

Figure 9: Allocation of Design features to workstations after transfer 
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4.4 Simulated annealing algorithm for grouping problem 
 

The algorithm for grouping problem allocates design features to machine 

groups. The objective is to minimize the sum of orientation change time and 

transportation time within each workstation. It also allocates the required machine 

tools and cutting tools to the machine groups. Tool life, tool magazine capacity, 

inclusion and exclusion, upper limit on machine tool allocation and takt time limit 

are the constraints respected by this algorithm. Figure 10 shows the proposed 

approach for hierarchical grouping and sequencing using SA algorithm. The 

steps involved in the proposed simulated annealing algorithm for grouping 

problem are listed below and depicted in Figure 11.  

 

Figure 10: Proposed approach for hierarchical grouping and sequencing of 

machining operations for transfer lines (SA algorithm) 

The algorithm consists of the following steps: 
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1) Declare all parameters. Generate initial feasible solution while respecting 

inclusion and exclusion constraints. Enter initial temperature 

(Tin=1000000), minimum temperature (Tmin=1), number of iterations 

(N=50) and cooling rate (CR=0.99). 

2) Calculate the energy for the initial configuration (Ec). 

3) Set the value of n=0. 

DO 

4) Develop a neighboring solution using either a trade or transfer and 

calculate new energy (En) by calling Grouping energy function. 

5) Grouping energy function: Measure ORCT, TLCT, OPT and transportation 

time and verify takt time limit. Allocate the required cutting tools and 

machine tools to each machine group. Verify tool life limit, tool magazine 

limit, and upper limit on number of machines, inclusion and exclusion 

constraints.  

IF the configuration is feasible, proceed to step 7. 

ELSE Go to step 6. 

6) Repair configuration to old state by reversing trade or transfer performed 

for this iteration. Increment the value of n (n=n+1). Proceed to 9. 

7) IF new energy is less than current energy, proceed to 8.  

ELSE IF metropolis criterion is satisfied, proceed to 8. 

ELSE Increment the value of n (n=n+1). Go to step 9.  

8) New state = Current state (En=Ec). Increment the value of n (n=n+1). 

IF new solution is better than best solution, accept current solution as best 

solution. Proceed to 9. 

ELSE Go to 9. 

9) IF n<=N, go to step 4. 

ELSE T=CR*T. Go to step 4. 

UNTIL Stopping criterion is reached.  

IF T<=Tmin, declare final solution and best solution. ELSE Go to step 4.  
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Figure 11: Flowchart of a simulated annealing algorithm for the grouping problem 
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4.5 Generation of initial solution for sequencing problem 
 

The initial feasible solution for sequencing problems is generated from the 

best solution obtained from the grouping problem. For each machine group, the 

initial sequence is obtained by serially placing operations from each design 

feature allotted to the group in a numerical order. The precedence constraints are 

satisfied by default. The complete operation sequence from all machine groups is 

built up and placed into Q which is the initial feasible operation sequence for the 

sequencing problem. 

4.6 Neighbor generation scheme for sequencing problem 

 

The scheme for generation of neighborhood solutions for sequencing problem 

is called modified shifting scheme (MSS). It is a novel perturbation scheme 

developed by Pandey et al. (23). Whenever the operation sequence is modified, 

it may lead to an infeasible solution. MSS involves making changes to the 

operation sequence such that the resulting sequencing is always feasible. This 

reduces the number of iterations required to reach the optimum solution and also 

minimizes the search space. The following steps are followed to generate a 

neighboring solution.  

1. Input the current sequence of operations Q and precedence constraint for 

features. 

2. Generate a random number ‘x’ between 1 and total number of operations. 

This is the operation number which is to be moved. 

3. Copy the operation sequence for the machine group to which x belongs 

from Q into R. 

DO 

4. Replace x with an operation of R serially starting from 1.  
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5. IF precedence within a feature or precedence between features constraint 

is violated, replace x to its original position and go to step 4. 

ELSE go to step 6. 

6. Copy R into the machine group portion of Q to which x belongs. 

UNTIL R is copied to Q.  

Consider an example.  

1. Q = {32, 33, 34, 35, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 26, 27, 7, 8, 9, 24, 25, 28, 29, 30, 31} and precedence 

constraint implies for the following pair of design features: [1,4], [2,6], [3,9] 

and [4,5]. The operations belonging to each design feature are as follows: 

[1: 1, 2, 3], [2: 4, 5, 6], [3: 7, 8, 9], [4: 10, 11, 12], [5: 13, 14], [6: 16, 17], [7: 

18, 19, 20], [8: 21, 22, 23], [9: 24, 25], [10: 26, 27], [11: 28, 29, 30, 31] and 

[12: 32, 33, 34, 35].  

2. A random number is generated x=6.  

3. As operation number 6 belongs to group 2, all operations belonging to 

group 2 are copied to R from Q. R= {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 22, 23}.  

4. Replace 1 with 6. 

5. Precedence within feature constraint is violated. 

4. Replace 2 with 6. 

5.  Precedence within feature constraint is violated. 

4. Replace 3 with 6. 

5. Precedence within feature constraint is violated. 

4. Replace 4 with 6. 

5. Precedence within feature constraint is violated. 

4. Replace 5 with 6. 
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5. Precedence within feature constraint is violated. 

4. Replace 10 with 6. 

5. Precedence constraints are not violated. 

6. Copy updated R = {1, 2, 3, 4, 5, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23} into Q. 

New Q = {32, 33, 34, 35, 1, 2, 3, 4, 5, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 

20, 21, 22, 23, 26, 27, 7, 8, 9, 24, 25, 28, 29, 30, 31}. This is a feasible 

neighborhood sequence. 

4.7 Simulated annealing algorithm for sequencing problem 
 

The algorithm for sequencing problem develops optimum operation sequence 

for each machine group. The objective is to minimize the sum of orientation 

change time and tool change time within each workstation. Precedence 

constraints are respected by this algorithm. The steps involved in the proposed 

simulated annealing algorithm for sequencing problem are listed below and 

depicted in Figure 12. 

The algorithm consists of the following steps: 

1) Declare all parameters. Generate initial feasible solution while respecting 

precedence constraints. Enter initial temperature (Tin=1000000), minimum 

temperature (Tmin=1), number of iterations (N=50) and cooling rate 

(CR=0.99). 

2) Calculate the energy for the initial configuration (Ec). 

3) Set the value of n=0. 

DO 

4) Develop a neighboring feasible solution using modified shifting scheme 

and calculate new energy (En) by calling Sequencing energy function. 
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5) Sequencing energy function: Measure ORCT and TLCT, the sum of which 

is the value of energy. 

6) IF new energy is less than current energy, proceed to 7.  

ELSE IF metropolis criterion is satisfied, proceed to 7. 

ELSE Increment the value of n (n=n+1). Proceed to 8. 

7) New state = Current state (En=Ec). Increment the value of n (n=n+1).  

IF new solution is better than best solution, accept current solution as best 

solution. Proceed to 8. 

ELSE Proceed to 8. 

8) IF n=N, go to step 4. 

ELSE T=CR*T. Go to step 4. 

UNTIL Stopping criterion is reached. IF T=Tmin, declare final solution and best 

solution. ELSE Go to step 4. 
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Figure 12: Flowchart of a simulated annealing algorithm for the sequencing 

problem  
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CHAPTER 5: NUMERICAL EXPERIMENTS 
 

A number of experiments are conducted to verify the functionality of the MILP 

model and simulated annealing algorithm. Three case studies are presented in 

the following sections. The first case study is the benchmark problem from Das et 

al. (12). It is a cylinder head manufacturing problem consisting of 38 operations. 

The second case study is considered from Osman and Baki (14). Fifteen 

problems with different sizes are solved. The last case study considers the effect 

of variation in machining time on machine tool requirement. 

5.1 Case study 1 
 

A case study from Das et al. (12) is considered. An automotive cylinder head 

is to be manufactured. It has 12 Design features located on five different faces 

consisting of 38 machining operations in total. They are to be distributed amongst 

four machine groups. Twelve different types of cutting tools are required. The 

orientation change time matrix (in seconds) is presented in Table 2. The details 

of the operations are specified in Table 3. The tool change time is a random 

number in the range (1, 10). The value is zero for no change in cutting tool. As 

the complete data for tool change time is not available, new values are 

generated. The matrix for tool change time is included in Appendix D. The MILP 

model is coded using AMPL27 and solved using CPLEX solver. The simulated 

annealing algorithm is coded and solved using C++28 in Microsoft Visual Studio 

Express. The test is conducted using an Intel i-3 processor @1.4 GHz with 4GB 

RAM.  

Table 2: Orientation change time matrix for the chosen cylinder head benchmark 

problem (12) 

Face Face 

1 2 3 4 5 

1 -- 1.95 2.5 4 5 

2 1.95 -- 1.95 2.5 4 

3 2.5 1.95 -- 1.95 2.5 
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4 4 2.5 1.95 -- 1.95 

5 5 4 2.5 1.95 -- 

 

Table 3: Processing information for the chosen cylinder head benchmark problem 

(12) 

DFU No. 

of 

DFUs 

Location 

on face 

Data 

Type 

 

1 16 1 UMF 1 2 3 4 

Tool # 1 2 3 4 

No. of 

slots 

4 2 2 2 

TO(s) 2.88 1.25 1.7

1 

2.9

3 

RT(s) 1.73 0.75 1.0

3 

1.8 

2 4 1 UMF 5 6 7 8 

Tool # 1 2 4 5 

No. of 

slots 

4 2 2 2 

TO(s) 1.54 1.57 2.6

2 

1.7 

RT(s) 0.92 0.94 1.5

7 

1 

3 8 1 UMF 9 10 11 

Tool # 1 4 5 

No. of 

slots 

4 2 2 

TO(s) 2.75 1.79 2.89 

RT(s) 1.65 1.07 1.73 

4 8 2 UMF 12 13 14 

Tool # 6 7 8 

No. of 

slots 

1 1 1 

TO(s) 1.95 1.2 1.65 

RT(s) 1.17 0.75 0.99 

5 4 2 UMF 15 16 

Tool # 9 10 

No. of 

slots 

1 1 

TO(s) 2.68 2.3 

RT(s) 1.61 1.38 

6 4 3 UMF 17 18 19 20 

Tool # 9 10 11 12 

No. of 

slots 

1 1 3 3 

TO(s) 1.97 3.37 1.3

6 

2.74 

RT(s) 1.18 2.02 0.8

2 

1.4 
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7 4 3 UMF 21 22 23 

Tool # 10 11 12 

No. of 

slots 

1 3 3 

TO(s) 1.35 1.22 3.09 

RT(s) 0.81 0.73 1.85 

8 20 4 UMF 24 25 26 

Tool # 3 4 5 

No. of 

slots 

2 2 2 

TO(s) 1.2 1.62 2.06 

RT(s) 0.72 0.97 1.24 

9 20 3 UMF 27 28 

Tool # 3 4 

No. of 

slots 

2 2 

TO(s) 1.9 3.3 

RT(s) 1.14 1.98 

10 8 5 UMF 29 30 

Tool # 1 2 

No. of 

slots 

4 2 

TO(s) 2.78 1.31 

RT(s) 1.67 0.79 

11 8 5 UMF 31 32 33 34 

Tool # 11 12 5 6 

No. of 

slots 

3 3 2 1 

TO(s) 3.43 3.42 3.39 2.5 

RT(s) 2.05 2.05 2.03 1.5 

12 4 5 UMF 35 36 37 38 

Tool # 8 9 10 11 

No. of 

slots 

1 1 1 3 

TO(s) 2.64 2.26 2.45 2.3

2 

RT(s) 1.58 1.36 1.47 1.4 

 

The computational results from MILP model are illustrated in Table 4. The 

solution to the grouping sub-model is obtained in 1 sec. The total solution time for 

the sequencing sub-models is 3.37 sec. A total makespan of 1248.64 sec is 

obtained. The makespan obtained by Das et al. (12) are 1256.74 seconds, 

1213.64 seconds and 1223.14 seconds with a solution time of 2329 sec, 1694 

sec and 2376 sec respectively. As the complete data for tool change time is not 

available and transportation time is not considered in (12), the makespan is not 
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compared with original results. However, a total computational time of 4.37 sec is 

significantly lower than the original run time exhausted by Das et al. (12). The 

original metrics that could express the computational complexity of Das et al.’s 

(12) models are presented in Table 5. Table 6 shows those for the proposed 

models. Hence, the discrepancies with the run time could be attributed to the 

development and improvement of the commercial solvers that have taken place 

since Das et al. (12) ran their models. 

A histogram in Figure 13 shows the cycle time against takt time at each 

workstation. Figure 14 shows the operation sequence at each workstation.  

The computational results from simulated annealing algorithm are presented in 

Table 7. The makespan obtained is 1342.64 seconds with a solution time of 2 

sec. A shorter solution time can be attributed to simple structure of SA algorithm. 

The deviation with respect to optimal solution from MILP model is 7.5%. A 

histogram in Figure 15 shows the cycle time against takt time at each 

workstation. Figure 16 shows the operation sequence at each workstation. 

Table 4: Numerical results showing the grouping and sequence obtained (MILP 

model) 

Machine Group 1 2 3 4 Total 

DFUs 10, 11, 12 4, 5, 8 1, 2, 3 6, 7, 9 12 

Solution time for 
sequencing sub-

model (sec) 
1.5 0.19 0.96 0.72 3.37 

No. of machine 
tools allotted 

1 1 1 1 4 

Cutting tools 
allocated 

1, 2, 5, 6, 8, 9, 
10, 11, 12 

3, 4, 5, 6, 7, 
8, 9, 10 

1, 2, 3, 4, 5 
3, 4, 9, 10, 

11, 12 
- 

No. of sequence 
positions 

10 8 11 9 38 

Optimum 
sequence [DFU, 

Sequence] 

[11,31], [11,32], 
[11,33], [12,35], 
[10,29], [12,36], 
[12,37], [11,34], 
[10,30], [12,38] 

 

[8,24], 
[4,12], 
[8,25], 
[4,13], 
[4,14], 
[5,15], 

[5,16], [8,26] 
 

[1,1], [2,5], 
[1,2], [1,3], 
[2,6], [1,4], 
[2,7], [2,8], 
[3,9], [3,10], 

[3,11] 
 

[6,17], [6,18], 
[7,21], [9,27], 
[9,28], [6,19], 
[7,22], [6,20], 

[7,23] 
 

- 
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ORCT (sec) 0 10 0 0 10 

TLCT (sec) 23 21 23 15 82 

Transportation 
time (sec) 

0 0 0 0 0 

TO + RT (sec) 277.28 249.76 367.76 262.04 1156.84 

Makespan (sec) 300.28 280.76 390.76 277.04 1248.84 

 

 

Figure 13: Cycle times against takt time for transfer line workstations (MILP 

model) 

 

Figure 14: Vector diagram showing operation sequence at each workstation 

(MILP model) [DFU, Operation] 
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Table 5: Size complexity metrics for Das et al.’s planning and sequencing model 

(12) 

Item Planning model 
Sequencing model 

Group 1 Group 2 Group 3 Group 4 

Total number of variables 1418 17,683 14, 737 11, 867 11, 811 

Number of integer variables 828 17,616 14, 670 11, 800 11, 744 

Number of constraints 768 3292 1894 956 964 

CPU time 18 min 14 sec 18 min 39 sec 1 min 19 sec 2 sec 

 

Table 6: Size complexity metrics for proposed grouping and sequencing models  

Item Grouping sub-model 
Sequencing sub-model 

Group 1 Group 2 Group 3 Group 4 

Total number of variables 2508 9113 3661 13444 5926 

Number of integer variables 2508 1 1 1 1 

Number of constraints 1816 10082 4162 14698 6608 

CPU time 1 sec 1.5 sec 0.19 sec 0.96 sec 0.72 sec 

 

Table 7: Numerical results showing the grouping and sequence obtained (SA 

algorithm) 

Machine Group 1 2 3 4 Total 

DFUs 1, 4, 5 2, 6, 8 3, 7, 10, 11 9, 12 12 

Solution time for 
sequencing sub-

model (sec) 

- - - - 2 

No. of machine 
tools allotted 

1 1 1 1 4 

Cutting tools 
allocated 

1, 2, 3, 4, 6, 

7, 8, 9, 10 

1, 2, 3, 4, 5, 9, 

10, 11, 12 

1, 2, 4, 5, 6, 10, 

11, 12 

3, 4, 8, 9, 

10, 11 
- 

No. of sequence 
positions 

9 11 12 6 38 

Optimum 
sequence [DFU, 

Sequence] 

[1,1], [1,2], 

[1,3], [4,12], 

[2,5], [2,6], 

[2,7], [2,8], 

[3,9], [3,10], 

[3,11], [7,21], 

[9,27], 

[9,28], 
- 



54 
 

[1,4], [4,13], 

[4,14], [5,15], 

[5,16] 

[6,17], [6,18], 

[6,19], [6,20], 

[8,24], [8,25], 

[8,26] 

[7,22], [10,29], 

[7,23], [10,30], 

[11,31], [11,32], 

[11,33], [11,34] 

[12,35], 

[12,36], 

[12,37], 

[12,38] 

ORCT (sec) 5.85 4.45 10 2.5 22.8 

TLCT (sec) 35 69 34 25 163 

Transportation 
time (sec) 

0 0 0 0 0 

TO + RT (sec) 318.84 263.08 346.6 228.32 1156.84 

Makespan (sec) 359.69 336.53 390.6 255.82 1342.64 

 

 

Figure 15: Cycle times against takt time for transfer line workstations (SA 

algorithm) 
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Figure 16: Vector diagram showing operation sequence at each workstation (SA 

algorithm) [DFU, Operation] 
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5.2 Case study 2 

 

A case study from Osman and Baki (14) is considered. It consists of 15 

problems with different configurations. The problem size is small for the first 

seven problems, medium for 8-12 and large for 13-15. The configuration of the 

problems is listed in Table 8. The number of design features, operations and 

groups are listed in the second column and the inclusion, exclusion relationships 

are listed in the adjacent columns. The number of operations for a feature is a 

random number between 2 and 4. Other parameter settings are specified in 

Table 9. The original results from Osman and Baki (14) are presented in Table 

10. 

In order to take into account the nature of parameter settings, a total of 10 

runs are performed for each of the 15 problems. The mean values of solution 

time, handling time and makespan are calculated for results from both MILP 

model and SA algorithm. The comparison is presented in Table 11 and Figures 

17-19. The detail results for individual runs for each problem are included in 

Appendix E. 

Table 8: Configuration of the tested benchmark problems (14) 

Problem 
Number 

R / O / G Inclusion relationships Exclusion relationships 

1 3 / 14 / 2 [1,2] [2,3] 

2 4 / 10 / 2 [1,2] [1,3] 

3 5 / 16 / 3 [1,2], [1,4] [3,4] 

4 6 / 17 / 2 [1,4], [3,5] [3,6], [4,6] 

5 6 / 18 / 2 [1,4], [3,5] [3,6], [4,6] 

6 7 / 19 / 3 [2,3], [2,5] [5,7], [3,6] 

7 8 / 22 / 2 [3,4], [5,7] [4,7], [6,8], [7,8] 

8 10 / 30 / 3 [1,4], [2,7] [6,9], [7,10] 

9 12 / 35 / 4 [1,4], [2,6], [4,5], [3,9] [6,9], [6,10], [9,10] 

10 18 / 46 / 4 
[1,4], [2,3], [8,11], [11,15], 

[5,9], [5,7], [5,12] 
[1,5], [1,11], [1,16], [2,10], [5,16], 

[10,12], [11,12] 
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11 15 / 41 / 5 [5,7], [5,10], [11,15], [12,13] [1,13], [6,9], [8,10], [8,11], [12,15] 

12 15 / 52 / 5 [5,7], [5,10], [11,15], [12,13] [1,13], [6,9], [8,10], [8,11], [12,15] 

13 20 / 64 / 5 
[1,4], [1,6], [1,8], [5,9], [5,7], 

[5,10] 
[1,16], [1,11], [10,12], [11,12] 

14 25 / 80 / 5 
[1,14], [1,19], [21,23], 
[19,22], [23,24], [5,11], 

[10,16] 

[1,11], [1,13], [1,16], [1,21], [5,14], 
[13,17], [10,11] 

15 30 / 96 / 6 
[1,14], [1,18], [5,19], [20,30], 

[21,24], [22,28], [19,22] 
[1,11], [1,13], [13,17], [1,16], [5,14], 

[18,30], [10,11], [10,12], [11,12] 

 

Table 9: Parameter settings in the tested benchmark problems (14) 

Parameter Data range Parameter Data range 

'rr
ORCT  Uniform (1, 5) s roTO  Uniform (1, 5) s 

)1( ororTLCT  / ''oror
TLCT  Uniform (2, 7) s roRT  Uniform (1, 2) s 

lH  Uniform (1, 4) gNM  Uniform (2, 5) machine 

lT  Uniform (2000, 3000) s E  Uniform (330, 550) s 

A  Uniform (60, 80) tool t  Uniform (5, 10) s 

rD  Uniform (5, 12) unit 
rf  Uniform (1, 5) 

 

Table 10: Original computational results from Osman and Baki (14) 

Problem 
No. 

Benders 
Decomposition 

Hybrid Benders-ACO Nested ACO 

Solution 
time 

Handling 
time (s) 

Solution 
time 

Non-
productive 

time (s) 

% from 
optimal 

Solution 
time 

Handling 
time (s) 

% from 
optimal 

1 31.34 s 361.01 3.38 s 361.01 0 2.55 s 361.01 0 

2 2 s 56.03 9 s 56.03 0 7 s 56.03 0 

3 
13.4 
min 

82.94 30 s 84.07 1.36 13 s 84.27 1.6 

4 7.2 min 86.7 8 s 89.6 3.34 3.9 s 87.9 1.38 

5 1.9 h 91 16 s 93.2 2.41 2.7 s 93.6 2.85 

6 
22.5 
min 

94.41 15.96 s 95.72 1.38 8.55 s 98.05 3.8 

7 1.7 h 110.49 41.57 s 114.96 4.04 10.05 s 114.37 3.51 

8 >72 h - 7.75 142.75 - 14.7 139.2 - 
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min min 

9 >72 h - 
4.65 
min 

175.1 - 14 min 185 - 

10 >72 h - 
19.75 
min 

217.75 - 2.14 h 214.29 - 

11 >72 h - 1.45 h 227.96 - 3.35 h 224.8 - 

12 >72 h - 53 min 245.01 - 2.6 h 249.9 - 

13 >72 h - 16.39 h 296.76 - 3.79 h 310.07 - 

14 >72 h - >24 h - - 19.1 h 366.41 - 

15 >72 h - >24 h - - 20.4 h 464.15 - 

 

Table 11: Computational results for the tested benchmark problems  

Problem 
no. 

MILP model Simulated annealing algorithm 

Mean 
Solution 

time 

Mean 
Handlin
g time 

(s) 

Mean 
Makesp
an (s) 

Mean 
Solutio
n time 

Mean 
Handli

ng 
time 
(s) 

Mean 
Makesp
an (s) 

% 
deviatio

n of 
sub-

optimal 
handlin
g time 
from 

optimal 
solution 

% 
deviation 
of sub-
optimal 

makespa
n from 
optimal 
solution 

1 0.19 s 59.28 615.25 <0.1 s 59.28 615.25 0 0 

2 0.15 s 39.55 415.76 <0.1 s 41.26 427.2 4.32 2.75 

3 0.25 s 65.03 705.6 < 0.1 s 66.8 707.39 2.72 0.25 

4 1.88 s 77.71 738.42 1 s 83 742.62 6.8 0.56 

5 1.96 s 81.22 783.22 1 s 89.82 791.83 10.58 1.1 

6 0.36 78.66 816.83 1 s 84.48 822.58 7.39 0.7 

7 5.23 s 103.07 925.51 1.1 s 116.83 939.27 13.35 1.49 

8 7.2 s 136.04 1318.36 2.2 s 147.12 1329.44 8.14 0.84 

9 2.31 s 155.06 1497.08 2.2 s 164.37 1512.52 6 1.03 

10 24.46 s 218.91 1954.64 4.4 s 231.79 1967.5 5.88 0.66 

11 6.17 s 178.48 1740.16 2.8 s 195.53 1757.22 9.55 0.98 

12 14.67 s 236.49 2241.23 4 s 254.3 2259.04 7.53 0.79 
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13 5.14 min 301.59 2819.96 6.6 s 323.03 2843.7 7.1 0.84 

14 4.37 h 380.39 3447.17 10.8 s 431.37 3498.11 13.4 1.47 

15 >24 h - - 11.4 s 442.31 4240.03 - - 

 

 

 

Figure 17: Comparison of mean solution time required for MILP model and SA 

algorithm for problems of small size  
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Figure 18: Comparison of mean solution time required for MILP model and SA 

algorithm for problems of medium size  

 

Figure 19: Comparison of mean solution time required for MILP model and SA 

algorithm for problems of large size  
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The settings and ranges of the parameters for the case study are given in 

Table 9. However, the exact values of the parameters being used Osman and 

Baki (14) are not available. Hence, only a comparison of the elapsed 

computational time is conducted and not that of the objective function value. 

The mean solution time with MILP model is less than the original solution time. 

As the sequencing problem is solved individually for each workstation, the 

sequencing problem is solved for (g) number of times. The original Bender’s 

Decomposition method (14) involves solving the sequencing problem (r x g) 

number of times. Hence, the total time required for solution is lower with the 

proposed method.  

However, the solution time increases exponentially for large problems. The 

model is able to solve 14 of the total 15 problems within reasonable time. 

The solution time for simulated annealing algorithm is further less than that of 

the MILP model. Therefore, large problems can be solved using this method 

within a short time. The result for problem 15, which is not solved by MILP model 

in a reasonable time, is obtained within a short time. The quality of solution is 

compared with the optimal solution from MILP model by calculating percentage 

deviation in Table 11. An average deviation of 7.34% is obtained for handling 

time and 0.96% for makespan. 
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5.3 Case study 3 
 

This case study considers the effect of variation in processing time of 

operation on machine tool requirement. With higher cutting speeds, the 

machining time can be reduced along with a reduction in number of machine 

tools utilized.  

Problem 15 from case study 2 is considered. The Machining time is varied 

between 4 intervals of the original range (1, 5). All other parameters remain 

unchanged. The results are included in Table 12. The machine tool requirement 

decreases for lower machining time. Also, the makespan is lower for lower 

machining time. 

  

Table 12: Numerical results showing effect of cutting speed on cycle time and 

machine tool requirement (SA algorithm) 

No. 
Machining  

time 
TO (sec) 

Cycle time (sec) 

Make 
span 
(s) 

Total no. 
of 

machine 
tools 

required 

Worksta
tion 1 

Worksta
tion 2 

Worksta
tion 3 

Worksta
tion 4 

Worksta
tion 5 

1 (1,2) 697.75 551.85 603.46 702.65 375.51 2931 9 

2 (2,3) 889.75 710.85 769.46 906.68 485.47 3762 10 

3 (3,4) 1326.98 869.85 1058.18 1114.64 220.69 4590 12 

4 (4,5) 1279.71 1034.81 1107.42 1314.61 693.47 5430 14 

 

However, a higher cutting speed increases wear of cutting tools. The effect of 

cutting parameters on cutting tool life is studied by Lajis et al. (29). A model is 

presented to calculate cutting tool life in end milling of hardened steel using the 

following equation: 

14.157.002.3167711  fdVTL  
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They conclude that tool life decreases with increase in cutting speed followed 

by feed rate and depth of cut. Therefore, selection of cutting condition should be 

performed considering the cutting parameters. An expert system is proposed by 

Arezoo et al. (30) for selection of cutting tool and condition. It uses a knowledge 

based system to determine the optimum cutting tool and condition for an 

operation. The selection of cutting condition is another step of process planning 

which has not been considered here. 

With reduction of tool life, the cutting tools wear out faster. A replacement with 

new cutting tools would be required. Normally, an extra spare tool would be 

plugged into the tool magazine to replace the worn-out tool before its life expires. 

For accuracy, this would result in additional tool change times, which is not really 

incorporated in the model. Due to shortage of data about the exact machining 

parameters being used by the benchmarked case studies, this part could not be 

incorporated and added as extra tool life constraints in the sequencing sub-

model. However, one could argue as well that the effect of this might not be as 

significant, since tool change times are not as significant components as 

transportation time in the overall handling time objective function being taken. 

Another implication of the extra tool change is the cost. The total equipment cost 

needs to be considered. Future work in this field may consider a total cost of 

machine tools and cutting tools to arrive at a pareto optimal solution. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 
 

A simple transfer line balancing problem is considered with a focus on process 

planning and line configuration. A hierarchical approach of grouping design 

features and sequencing machining operations is adopted. The objective is to 

minimize the handling time fraction of the cycle time consisting mainly of 

orientation change time and tool change time. Several technological constraints 

of inclusion, exclusion, precedence and takt time limit are considered. A revised 

tool magazine capacity constraint is considered for accurate representation. A 

balanced transfer line ensures maximum utilization of machine tool and higher 

productivity.  

A new mixed integer linear programming model is proposed. A meta-heuristic 

is an effective technique to solve this problem for large instances. Simulated 

annealing is an efficient algorithm for process planning and operation sequencing 

as seen in literature. Hence, a problem-specific simulated annealing algorithm is 

developed to solve this problem.  

Rigorous numerical experiments are conducted. Optimal results are obtained 

with MILP model for problems of small and medium size within a reasonable 

time. The solution time increases exponentially for large problems. The simulated 

annealing algorithm is able to solve problems of all sizes within a short time with 

near-optimal results. This performance with respect to optimality and computation 

time is better than that of similar methods considered in the literature. 

A time-based approach has been followed in this thesis. An extension to this 

thesis may involve multi-objective optimization to solve the transfer line balancing 

problem. Both production time and equipment cost may be considered to reach a 

pareto optimal solution. Goal programming can be a useful tool for the 

formulation of a new mathematical model. Multi-threaded simulated annealing 

may be applied to develop a new problem-specific algorithm for multi-objective 

optimization.  
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APPENDIX A: AMPL PROGRAM FOR MATHEMATICAL 

MODEL: CASE STUDY 1 
 

Grouping Sub-model 

Model file 

Format: .mod  

reset; 

option solver cplex; 

set R; 

set O{R}; 

set G; 

param Or{R} >= 0; 

param ORCT{r in R, rp in R} default 0; 

param i{R,R} binary default 0; 

param e{R,R} binary default 0; 

var X {r in R,O[r],G} binary; 

var Q {G} binary; 

var Z {R,G} binary; 

var B {R,G,R,G} binary; 

var W1{g in G} = sum {r in R, rp in R} ORCT[r,rp] * B[r,g,rp,g]; 

var S{g in G} = sum {r in R} Or[r] * Z[r,g]; 

minimize objective: 
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sum{g in G} W1[g]; 

subject to eq_06 {r in R}: 

sum {g in G} Z[r,g] = 1; 

subject to eq_07 {g in G}: 

sum {r in R} Z[r,g] >= 0; 

subject to eq_08 {r in R, o in O[r], g in G}: 

X[r,o,g] = Z[r,g]; 

subject to eq_09 {g in G, r in R, rp in R: rp>r and i[r,rp]=1}: 

(Z[r,g] - Z[rp,g]) = 0; 

subject to eq_10 {g in G, r in R, rp in R: rp>r and e[r,rp]=1}: 

(Z[r,g] + Z[rp,g]) <= 1; 

subject to eq_11 {g in G}: 

sum {r in R} Z[r,g] <= 10000000 * Q[g]; 

subject to eq_13 {r in R, g in G, rp in R}: 

Z[r,g] = sum{gp in G} B[r,g,rp,gp]; 

subject to eq_14 {r in R, g in G, rp in R, gp in G: rp>r}: 

B[r,g,rp,gp] = B[rp,gp,r,g]; 

Data file 

Format: .dat 

param: R: Or:= 

1 4 
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2 4 

3 3 

4 3 

5 2 

6 4 

7 3 

8 3 

9 2 

10 2 

11 4 

12 4 ; 

set O[1] := 1 2 3 4 ; 

set O[2] := 5 6 7 8 ; 

set O[3] := 9 10 11 ; 

set O[4] := 12 13 14 ; 

set O[5] := 15 16 ; 

set O[6] := 17 18 19 20 ; 

set O[7] := 21 22 23 ; 

set O[8] := 24 25 26 ; 

set O[9] := 27 28 ; 

set O[10] := 29 30 ; 
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set O[11] := 31 32 33 34 ; 

set O[12] := 35 36 37 38 ; 

set G := 1 2 3 4 ; 

let i[2,3] := 1; 

let i[4,5] := 1; 

let e[10,1] := 1; 

let ORCT[1,4] :=  1.95; let ORCT[1,5] :=  1.95; let ORCT[1,6] :=  2.5;        

let ORCT[1,7] :=  2.5;  let ORCT[1,8] :=  4;   let ORCT[1,9] :=  2.5;                 

let ORCT[1,10] :=  5;  let ORCT[1,11] :=  5;  let ORCT[1,12] :=  5; 

let ORCT[2,4] :=  1.95; let ORCT[2,5] :=  1.95; let ORCT[2,6] :=  2.5;         

let ORCT[2,7] :=  2.5;  let ORCT[2,8] :=  4;   let ORCT[2,9] :=  2.5;                 

let ORCT[2,10] :=  5;  let ORCT[2,11] :=  5;  let ORCT[2,12] :=  5; 

let ORCT[3,4] :=  1.95; let ORCT[3,5] :=  1.95; let ORCT[3,6] :=  2.5;         

let ORCT[3,7] :=  2.5;  let ORCT[3,8] :=  4;   let ORCT[3,9] :=  2.5;                 

let ORCT[3,10] :=  5; let ORCT[3,11] :=  5; let ORCT[3,12] :=  5; 

let ORCT[4,1] :=  1.95; let ORCT[4,2] :=  1.95; let ORCT[4,3] :=  1.95;        

let ORCT[4,6] :=  1.95;  let ORCT[4,7] :=  1.95;  let ORCT[4,8] :=  2.5;                 

let ORCT[4,9]:=  1.95;  let ORCT[4,10] :=  4;  let ORCT[4,11] :=  4;                  

let ORCT[4,12] :=  4; 

let ORCT[5,1] :=  1.95; let ORCT[5,2] :=  1.95; let ORCT[5,3] :=  1.95;         

let ORCT[5,6] :=  1.95; let ORCT[5,7] :=  1.95; let ORCT[5,8] :=  2.5;                 

let ORCT[5,9]:=  1.95; let ORCT[5,10] :=  4; let ORCT[5,11] :=  4;                  

let ORCT[5,12] :=  4; 

let ORCT[6,1] :=  2.5; let ORCT[6,2] :=  2.5; let ORCT[6,3] :=  2.5;           

let ORCT[6,4] :=  1.95;  let ORCT[6,5] :=  1.95;  let ORCT[6,8] :=  1.95;                

let ORCT[6,10]:=  2.5;  let ORCT[6,11] :=  2.5;  let ORCT[6,12] :=  2.5; 
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let ORCT[7,1] :=  2.5; let ORCT[7,2] :=  2.5; let ORCT[7,3] :=  2.5;         

let ORCT[7,4] :=  1.95; let ORCT[7,5] :=  1.95;  let ORCT[7,8] :=  1.95;                

let ORCT[7,10]:=  2.5; let ORCT[7,11] :=  2.5;  let ORCT[7,12] :=  2.5; 

  

let ORCT[8,1] :=  4;  let ORCT[8,2] :=  4;  let ORCT[8,3] :=  4;                   

let ORCT[8,4] :=  2.5; let ORCT[8,5] :=  2.5;  let ORCT[8,6] :=  1.95;                

let ORCT[8,7]:=  1.95;  let ORCT[8,9] :=  1.95; let ORCT[8,10] :=  1.95;             

let ORCT[8,11] :=  1.95;  let ORCT[8,12] :=  1.95; 

let ORCT[9,1] :=  2.5;  let ORCT[9,2] :=  2.5;  let ORCT[9,3] :=  2.5;                  

let ORCT[9,4]:=  1.95;  let ORCT[9,5] :=  1.95;  let ORCT[9,8] :=  1.95;                

let ORCT[9,10] :=  2.5;   let ORCT[9,11] :=  2.5;  let ORCT[9,12] :=  2.5; 

let ORCT[10,1] :=  5;   let ORCT[10,2] :=  5;  let ORCT[10,3] :=  5;           

let ORCT [10,4]:=  4;  let ORCT[10,5] :=  4;  let ORCT[10,6] :=  2.5;             

let ORCT[10,7] :=  2.5;  let ORCT[10,8] :=  1.95;  let ORCT[10,9] :=  2.5;  

let ORCT[11,1] :=  5;  let ORCT[11,2] :=  5;  let ORCT[11,3] :=  5;                   

let ORCT [11,4]:=  4; let ORCT[11,5] :=  4;  let ORCT[11,6] :=  2.5;               

let ORCT[11,7] :=  2.5;  let ORCT[11,8] :=  1.95;  let ORCT[11,9] :=  2.5; 

  

let ORCT[12,1] :=  5;  let ORCT[12,2] :=  5;  let ORCT[12,3] :=  5;          

let ORCT [12,4]:=  4;  let ORCT[12,5] :=  4;  let ORCT[12,6] :=  2.5;                 

let ORCT[12,7] :=  2.5;  let ORCT[12,8] :=  1.95;  let ORCT[12,9] :=  2.5; 

Sequencing Sub-model 

Sample model and data files for group 1 are included below. The coding 

structure for other groups is similar except for the number of sequence positions, 

which differs for each group. 

Model file 

Format: .mod 
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reset; 

option solver cplex; 

set R; 

set O{R}; 

set O1{R}; 

set O2{R}; 

set G; 

set L; 

set S{G}; 

set SP{G}; 

set S1{G}; 

set SP1{G}; 

set S2{G}; 

set SP2{G}; 

set S3{G}; 

set SP3{G}; 

set S4{G}; 

set SP4{G}; 

set S5{G}; 

set SP5{G}; 

set S6{G}; 
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set SP6{G}; 

set S7{G}; 

set SP7{G}; 

set S8{G}; 

set SP8{G}; 

set S9{G}; 

set SP9{G}; 

set S10{G}; 

set SP10{G}; 

param Or{R} >= 0; 

param Orf{R} >= 0; 

param Orl{R} >= 0; 

param D{R} >= 0; 

param T{L} default 100; 

param H{L} >= 0; 

param E >= 0; 

param A default 20; 

param ORCT{r in R, rp in R} default 0; 

param TLCT{r in R, o in O[r], rp in R, op in O[rp]} default 0; 

param TO{r in R, o in O[r]} default 0; 

param RT{r in R, o in O[r]} default 0; 
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param P{r in R, o in O[r], l in L} default 0; 

param Z {R,G} default 0; 

param NM{G} >= 0; 

param i{R,R} binary default 0; 

param t default 5; 

var X {r in R, o in O[r], g in G, s in S[g]} binary; 

var Y {L,G} binary; 

var C {g in G, r in R, o in O[r], s in S[g], rp in R, op in O[rp], sp in S[g]} binary; 

var N {G} integer >= 0; 

var W1{G} = sum {r in R, rp in R, g in G, o in O[r], op in O[rp], s in SP[g]:rp!=r} 

ORCT[r,rp] * C[g,r,o,s,rp,op,s+1] * Z[r,g] * Z[rp,g]; 

var W2{G} = sum{g in G, r in R, o in O[r], s in SP[g], op in O[r]} TLCT[r,o,r,op] * 

C[g,r,o,s,r,op,s+1] * Z[r,g] + sum{g in G, r in R, o in O[r], rp in R, op in O[rp], s in 

SP[g]:r!=rp} TLCT[r,o,rp,op] * C[g,r,o,s,rp,op,s+1] * Z[r,g] * Z[rp,g];  

var W3{G} = sum {r in R, o in O[r], g in G, s in S[g]} D[r] * RT[r,o] * X[r,o,g,s]; 

var W4{G} = sum {r in R, o in O[r], g in G, s in S[g]} D[r] * TO[r,o] * X[r,o,g,s]; 

minimize objective1_non_productive_time: 

sum {g in G} W1[g] + sum {g in G} W2[g] + sum{g in G} (N[g]-1) * t; 

subject to eq_15 {g in G}: 

N[g] <= NM[g]; 

subject to eq_16_001{r in R, o in O1[r], g in G, s in S1[g]}: 

sum{sp in SP1[g]} (X[r,o,g,sp]) >= sum{sp in SP1[g]} (X[r,o+1,g,sp]); 
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subject to eq_16_002{r in R, o in O1[r], g in G, s in S2[g]}: 

sum{sp in SP2[g]} (X[r,o,g,sp]) >= sum{sp in SP2[g]} (X[r,o+1,g,sp]); 

subject to eq_16_003{r in R, o in O1[r], g in G, s in S3[g]}: 

sum{sp in SP3[g]} (X[r,o,g,sp]) >= sum{sp in SP3[g]} (X[r,o+1,g,sp]); 

subject to eq_16_004{r in R, o in O1[r], g in G, s in S4[g]}: 

sum{sp in SP4[g]} (X[r,o,g,sp]) >= sum{sp in SP4[g]} (X[r,o+1,g,sp]); 

subject to eq_16_005{r in R, o in O1[r], g in G, s in S5[g]}: 

sum{sp in SP5[g]} (X[r,o,g,sp]) >= sum{sp in SP5[g]} (X[r,o+1,g,sp]); 

subject to eq_16_006{r in R, o in O1[r], g in G, s in S6[g]}: 

sum{sp in SP6[g]} (X[r,o,g,sp]) >= sum{sp in SP6[g]} (X[r,o+1,g,sp]); 

subject to eq_16_007{r in R, o in O1[r], g in G, s in S7[g]}: 

sum{sp in SP7[g]} (X[r,o,g,sp]) >= sum{sp in SP7[g]} (X[r,o+1,g,sp]); 

subject to eq_16_008{r in R, o in O1[r], g in G, s in S8[g]}: 

sum{sp in SP8[g]} (X[r,o,g,sp]) >= sum{sp in SP8[g]} (X[r,o+1,g,sp]); 

subject to eq_16_009{r in R, o in O1[r], g in G, s in S9[g]}: 

sum{sp in SP9[g]} (X[r,o,g,sp]) >= sum{sp in SP9[g]} (X[r,o+1,g,sp]); 

subject to eq_16_010{r in R, o in O1[r], g in G, s in S10[g]}: 

sum{sp in SP10[g]} (X[r,o,g,sp]) >= sum{sp in SP10[g]} (X[r,o+1,g,sp]); 

subject to eq_17_001{r in R, rp in R, g in G, s in S1[g]:i[r,rp]=1}: 

sum{sp in SP1[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP1[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_002{r in R, rp in R, g in G, s in S2[g]:i[r,rp]=1}: 



77 
 

sum{sp in SP2[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP2[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_003{r in R, rp in R, g in G, s in S3[g]:i[r,rp]=1}: 

sum{sp in SP3[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP3[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_004{r in R, rp in R, g in G, s in S4[g]:i[r,rp]=1}: 

sum{sp in SP4[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP4[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_005{r in R, rp in R, g in G, s in S5[g]:i[r,rp]=1}: 

sum{sp in SP5[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP5[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_006{r in R, rp in R, g in G, s in S6[g]:i[r,rp]=1}: 

sum{sp in SP6[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP6[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_007{r in R, rp in R, g in G, s in S7[g]:i[r,rp]=1}: 

sum{sp in SP7[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP7[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_008{r in R, rp in R, g in G, s in S8[g]:i[r,rp]=1}: 

sum{sp in SP8[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP8[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_009{r in R, rp in R, g in G, s in S9[g]:i[r,rp]=1}: 

sum{sp in SP9[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP9[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_17_010{r in R, rp in R, g in G, s in S10[g]:i[r,rp]=1}: 

sum{sp in SP10[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP10[g]} (X[rp,Orf[rp],g,sp]); 

subject to eq_18 {r in R, o in O[r], g in G}: 

sum {s in S[g]} X[r,o,g,s] = Z[r,g]; 

subject to eq_19 {g in G, s in S[g]}: 

sum {r in R, o in O[r]} X[r,o,g,s] = 1; 
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subject to eq_20 {g in G, s in S[g], l in L}: 

sum {r in R, o in O[r]} P[r,o,l] * D[r] * TO[r,o] * X[r,o,g,s] <= T[l] * Y[l,g]; 

subject to eq_21 {g in G}: 

sum {l in L} H[l] * Y[l,g] <= A * N[g]; 

subject to eq_22 : 

sum{g in G} W1[g] + sum {g in G} W2[g] + sum{g in G} W3[g] + sum{g in G} 

W4[g] <= sum{g in G} E * N[g]; 

subject to eq_23 {g in G, s in S[g], rp in R, op in O[rp], sp in S[g]:s != sp}: 

X[rp,op,g,sp] = sum{r in R, o in O[r]} C[g,r,o,s,rp,op,sp]; 

subject to eq_24 {g in G, s in S[g], sp in S[g], r in R, o in O[r], rp in R, op in 

O[rp]:s != sp}: 

C[g,r,o,s,rp,op,sp] = C[g,rp,op,sp,r,o,s]; 

Data file 

Format: .dat 

param: R: Or:= 

1 4 

2 4 

3 3 

4 3 

5 2 

6 4 

7 3 
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8 3 

9 2 

10 2 

11 4 

12 4 ; 

param: L: H := 

1 4 

2 2 

3 2 

4 2 

5 2 

6 1 

7 1 

8 1 

9 1 

10 1 

11 3 

12 3 ; 

set O[1] := 1 2 3 4 ; 

set O[2] := 5 6 7 8 ; 

set O[3] := 9 10 11 ; 
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set O[4] := 12 13 14 ; 

set O[5] := 15 16 ; 

set O[6] := 17 18 19 20 ; 

set O[7] := 21 22 23 ; 

set O[8] := 24 25 26 ; 

set O[9] := 27 28 ; 

set O[10] := 29 30 ; 

set O[11] := 31 32 33 34 ; 

set O[12] := 35 36 37 38 ; 

set O1[1] := 1 2 3 ; 

set O1[2] := 5 6 7 ; 

set O1[3] := 9 10 ; 

set O1[4] := 12 13 ; 

set O1[5] := 15 ; 

set O1[6] := 17 18 19 ; 

set O1[7] := 21 22 ; 

set O1[8] := 24 25 ; 

set O1[9] := 27 ; 

set O1[10] := 29 ; 

set O1[11] := 31 32 33 ; 

set O1[12] := 35 36 37 ; 
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set G := 1 ; 

set SP[1] := 1 2 3 4 5 6 7 ; 

set S[1] := 1 2 3 4 5 6 7 8 ; 

set S1[1] := 1 ; 

set S2[1] := 2 ; 

set S3[1] := 3 ; 

set S4[1] := 4 ; 

set S5[1] := 5 ; 

set S6[1] := 6 ; 

set S7[1] := 7 ; 

set S8[1] := 8 ; 

set SP1[1] := 1 ; 

set SP2[1] := 1 2 ; 

set SP3[1] := 1 2 3 ; 

set SP4[1] := 1 2 3 4 ; 

set SP5[1] := 1 2 3 4 5 ; 

set SP6[1] := 1 2 3 4 5 6 ; 

set SP7[1] := 1 2 3 4 5 6 7 ; 

set SP8[1] := 1 2 3 4 5 6 7 8 ; 

let Orf[1] := 1; 

let Orf[2] := 5; 
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let Orf[3] := 9; 

let Orf[4] := 12; 

let Orf[5] := 15; 

let Orf[6] := 17; 

let Orf[7] := 21; 

let Orf[8] := 24; 

let Orf[9] := 27; 

let Orf[10] := 29; 

let Orf[11] := 31; 

let Orf[12] := 35; 

let Orl[1] := 4; 

let Orl[2] := 8; 

let Orl[3] := 11; 

let Orl[4] := 14; 

let Orl[5] := 16; 

let Orl[6] := 20; 

let Orl[7] := 23; 

let Orl[8] := 26; 

let Orl[9] := 28; 

let Orl[10] := 30; 

let Orl[11] := 34; 
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let Orl[12] := 38; 

let Z[4,1] := 1 ; 

let Z[5,1] := 1 ; 

let Z[8,1] := 1 ; 

let i[2,3] := 1; 

let i[4,5] := 1; 

let E := 400; 

let NM[1] := 5 ; 

let TO[1,1] := 2.88 ; 

let TO[1,2] := 1.25 ; 

let TO[1,3] := 1.71 ; 

let TO[1,4] := 2.93 ; 

let TO[2,5] := 1.54 ; 

let TO[2,6] := 1.57 ; 

let TO[2,7] := 2.62 ; 

let TO[2,8] := 1.7 ; 

let TO[3,9] := 2.75 ; 

let TO[3,10] := 1.79 ; 

let TO[3,11] := 2.89 ; 

let TO[4,12] := 1.95 ; 

let TO[4,13] := 1.2 ; 
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let TO[4,14] := 1.65 ; 

let TO[5,15] := 2.68 ; 

let TO[5,16] := 2.3 ; 

let TO[6,17] := 1.97 ; 

let TO[6,18] := 3.37 ; 

let TO[6,19] := 1.36 ; 

let TO[6,20] := 2.74 ; 

let TO[7,21] := 1.35 ; 

let TO[7,22] := 1.22 ; 

let TO[7,23] := 3.09 ; 

let TO[8,24] := 1.2 ; 

let TO[8,25] := 1.62 ; 

let TO[8,26] := 2.06 ; 

let TO[9,27] := 1.9 ; 

let TO[9,28] := 3.3 ; 

let TO[10,29] := 2.78 ; 

let TO[10,30] := 1.31 ; 

let TO[11,31] := 3.43 ; 

let TO[11,32] := 3.42 ; 

let TO[11,33] := 3.39 ; 

let TO[11,34] := 2.5 ; 
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let TO[12,35] := 2.64 ; 

let TO[12,36] := 2.26 ; 

let TO[12,37] := 2.45 ; 

let TO[12,38] := 2.32 ; 

let RT[1,1] := 1.73 ; 

let RT[1,2] := 0.75 ; 

let RT[1,3] := 1.03 ; 

let RT[1,4] := 1.8 ; 

let RT[2,5] := 0.92 ; 

let RT[2,6] := 0.94 ; 

let RT[2,7] := 1.57 ; 

let RT[2,8] := 1 ; 

let RT[3,9] := 1.65 ; 

let RT[3,10] := 1.07 ; 

let RT[3,11] := 1.73 ; 

let RT[4,12] := 1.17 ; 

let RT[4,13] := 0.75 ; 

let RT[4,14] := 0.99 ; 

let RT[5,15] := 1.61 ; 

let RT[5,16] := 1.38 ; 

let RT[6,17] := 1.18 ; 
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let RT[6,18] := 2.02 ; 

let RT[6,19] := 0.82 ; 

let RT[6,20] := 1.4 ; 

let RT[7,21] := 0.81 ; 

let RT[7,22] := 0.73 ; 

let RT[7,23] := 1.85 ; 

let RT[8,24] := 0.72 ; 

let RT[8,25] := 0.97 ; 

let RT[8,26] := 1.24 ; 

let RT[9,27] := 1.14 ; 

let RT[9,28] := 1.98 ; 

let RT[10,29] := 1.67 ; 

let RT[10,30] := 0.79 ; 

let RT[11,31] := 2.05 ; 

let RT[11,32] := 2.05 ; 

let RT[11,33] := 2.03 ; 

let RT[11,34] := 1.5 ; 

let RT[12,35] := 1.58 ; 

let RT[12,36] := 1.36 ; 

let RT[12,37] := 1.47 ; 

let RT[12,38] := 1.4 ; 
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let P[1,1,1] := 1 ; 

let P[1,2,2] := 1 ; 

let P[1,3,3] := 1 ; 

let P[1,4,4] := 1 ; 

let P[2,5,1] := 1 ; 

let P[2,6,2] := 1 ; 

let P[2,7,4] := 1 ; 

let P[2,8,5] := 1 ; 

let P[3,9,1] := 1 ; 

let P[3,10,4] := 1 ; 

let P[3,11,5] := 1 ; 

let P[4,12,6] := 1 ; 

let P[4,13,7] := 1 ; 

let P[4,14,8] := 1 ; 

let P[5,15,9] := 1 ; 

let P[5,16,10] := 1 ; 

let P[6,17,9] := 1 ; 

let P[6,18,10] := 1 ; 

let P[6,19,11] := 1 ; 

let P[6,20,12] := 1 ; 

let P[7,21,10] := 1 ; 
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let P[7,22,11] := 1 ; 

let P[7,23,12] := 1 ; 

let P[8,24,3] := 1 ; 

let P[8,25,4] := 1 ; 

let P[8,26,5] := 1 ; 

let P[9,27,3] := 1 ; 

let P[9,28,4] := 1 ; 

let P[10,29,1] := 1 ; 

let P[10,30,2] := 1 ; 

let P[11,31,11] := 1 ; 

let P[11,32,12] := 1 ; 

let P[11,33,5] := 1 ; 

let P[11,34,6] := 1 ; 

let P[12,35,8] := 1 ; 

let P[12,36,9] := 1 ; 

let P[12,37,10] := 1 ; 

let P[12,38,11] := 1 ; 

let D[1] := 16 ; 

let D[2] := 4 ; 

let D[3] := 8 ; 

let D[4] := 8 ; 
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let D[5] := 4 ; 

let D[6] := 4 ; 

let D[7] := 4 ; 

let D[8] := 20 ; 

let D[9] := 20 ; 

let D[10] := 8 ; 

let D[11] := 8 ; 

let D[12] := 4 ; 

let ORCT[1,4] :=  1.95; let ORCT[1,5] :=  1.95; let ORCT[1,6] :=  2.5;         

let ORCT[1,7] :=  2.5;  let ORCT[1,8] :=  4;   let ORCT[1,9] :=  2.5;                 

let ORCT[1,10] :=  5;  let ORCT[1,11] :=  5;  let ORCT[1,12] :=  5; 

let ORCT[2,4] :=  1.95; let ORCT[2,5] :=  1.95; let ORCT[2,6] :=  2.5;         

let ORCT[2,7] :=  2.5;  let ORCT[2,8] :=  4;   let ORCT[2,9] :=  2.5;                 

let ORCT[2,10] :=  5;  let ORCT[2,11] :=  5;  let ORCT[2,12] :=  5; 

let ORCT[3,4] :=  1.95; let ORCT[3,5] :=  1.95; let ORCT[3,6] :=  2.5;           

let ORCT[3,7] :=  2.5;  let ORCT[3,8] :=  4;   let ORCT[3,9] :=  2.5;                  

let ORCT[3,10] :=  5;  let ORCT[3,11] :=  5;  let ORCT[3,12] :=  5; 

let ORCT[4,1] :=  1.95; let ORCT[4,2] :=  1.95; let ORCT[4,3] :=  1.95;          

let ORCT[4,6] :=  1.95;  let ORCT[4,7] :=  1.95;  let ORCT[4,8] :=  2.5;                 

let ORCT[4,9]:=  1.95;  let ORCT[4,10] :=  4;  let ORCT[4,11] :=  4;                  

let ORCT[4,12] :=  4; 

let ORCT[5,1] :=  1.95; let ORCT[5,2] :=  1.95; let ORCT[5,3] :=  1.95;         

let ORCT[5,6] :=  1.95;  let ORCT[5,7] :=  1.95;  let ORCT[5,8] :=  2.5;                  

let ORCT[5,9]:=  1.95;  let ORCT[5,10] :=  4;  let ORCT[5,11] :=  4;                     

let ORCT[5,12] :=  4; 
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let ORCT[6,1] :=  2.5; let ORCT[6,2] :=  2.5; let ORCT[6,3] :=  2.5;            

let ORCT[6,4] :=  1.95;  let ORCT[6,5] :=  1.95;  let ORCT[6,8] :=  1.95;                

let ORCT[6,10]:=  2.5;  let ORCT[6,11] :=  2.5; let ORCT[6,12] :=  2.5; 

let ORCT[7,1] :=  2.5; let ORCT[7,2] :=  2.5; let ORCT[7,3] :=  2.5;              

let ORCT[7,4] :=  1.95;  let ORCT[7,5] :=  1.95;  let ORCT[7,8] :=  1.95;                

let ORCT[7,10]:=  2.5;  let ORCT[7,11] :=  2.5; let ORCT[7,12] :=  2.5; 

let ORCT[8,1] :=  4;  let ORCT[8,2] :=  4;  let ORCT[8,3] :=  4;                   

let ORCT[8,4] :=  2.5;  let ORCT[8,5] :=  2.5;  let ORCT[8,6] :=  1.95;               

let ORCT[8,7]:=  1.95;  let ORCT[8,9] :=  1.95;  let ORCT[8,10] :=  1.95;             

let ORCT[8,11] :=  1.95;  let ORCT[8,12] :=  1.95; 

let ORCT[9,1] :=  2.5;   let ORCT[9,2] :=  2.5;  let ORCT[9,3] :=  2.5;                  

let ORCT[9,4]:=  1.95;  let ORCT[9,5] :=  1.95;  let ORCT[9,8] :=  1.95;               

let ORCT[9,10] :=  2.5;  let ORCT[9,11] :=  2.5;  let ORCT[9,12] :=  2.5; 

let ORCT[10,1] :=  5;  let ORCT[10,2] :=  5;  let ORCT[10,3] :=  5;                     

let ORCT [10,4]:=  4;  let ORCT[10,5] :=  4;  let ORCT[10,6] :=  2.5;               

let ORCT[10,7] :=  2.5;  let ORCT[10,8] :=  1.95;  let ORCT[10,9] :=  2.5;  

let ORCT[11,1] :=  5;  let ORCT[11,2] :=  5;  let ORCT[11,3] :=  5;                  

let ORCT [11,4]:=  4;  let ORCT[11,5] :=  4;  let ORCT[11,6] :=  2.5;                

let ORCT[11,7] :=  2.5;  let ORCT[11,8] :=  1.95; let ORCT[11,9] :=  2.5;  

let ORCT[12,1] :=  5;  let ORCT[12,2] :=  5;  let ORCT[12,3] :=  5;            

let ORCT [12,4]:=  4;  let ORCT[12,5] :=  4;  let ORCT[12,6] :=  2.5;                 

let ORCT[12,7] :=  2.5;  let ORCT[12,8] :=  1.95;  let ORCT[12,9] :=  2.5; 

let TLCT[1,1,1,1] :=  0; let TLCT[1,1,1,2] :=  10; let TLCT[1,1,1,3] :=  6;         

let TLCT[1,1,1,4] :=  1; let TLCT[1,1,2,5] :=  0; let TLCT[1,1,2,6] :=  9;          

let TLCT[1,1,2,7] :=  1; let TLCT[1,1,2,8] :=  8; let TLCT[1,1,3,9] :=  0;            

let TLCT[1,1,3,10] :=  4; let TLCT[1,1,3,11] :=  4; let TLCT[1,1,4,12] :=  5;           

let TLCT[1,1,4,13] :=  2; let TLCT[1,1,4,14] :=  8; let TLCT[1,1,5,15] :=  9;          

let TLCT[1,1,5,16] :=  6; let TLCT[1,1,6,17] :=  3; let TLCT[1,1,6,18] :=  5;          
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let TLCT[1,1,6,19] :=  2; let TLCT[1,1,6,20] :=  1; let TLCT[1,1,7,21] :=  5;           

let TLCT[1,1,7,22] :=  7; let TLCT[1,1,7,23] :=  8; let TLCT[1,1,8,24] :=  7;          

let TLCT[1,1,8,25] :=  6; let TLCT[1,1,8,26] :=  10; let TLCT[1,1,9,27] :=  2;           

let TLCT[1,1,9,28] :=  9; let TLCT[1,1,10,29] :=  0; let TLCT[1,1,10,30] :=  6;          

let TLCT[1,1,11,31] :=  2; let TLCT[1,1,11,32] :=  2; let TLCT[1,1,11,33] :=  10;           

let TLCT[1,1,11,34] :=  3; let TLCT[1,1,12,35] :=  4; let TLCT[1,1,12,36] :=  10;          

let TLCT[1,1,12,37] :=  10; let TLCT[1,1,12,38] :=  7; 

let TLCT[1,2,1,1] :=  8; let TLCT[1,2,1,2] :=  0; let TLCT[1,2,1,3] :=  2;          

let TLCT[1,2,1,4] :=  1; let TLCT[1,2,2,5] :=  6; let TLCT[1,2,2,6] :=  0;          

let TLCT[1,2,2,7] :=  4; let TLCT[1,2,2,8] :=  1; let TLCT[1,2,3,9] :=  3;          

let TLCT[1,2,3,10] :=  9; let TLCT[1,2,3,11] :=  2; let TLCT[1,2,4,12] :=  2;           

let TLCT[1,2,4,13] :=  4; let TLCT[1,2,4,14] :=  8; let TLCT[1,2,5,15] :=  3;          

let TLCT[1,2,5,16] :=  6; let TLCT[1,2,6,17] :=  4; let TLCT[1,2,6,18] :=  6;           

let TLCT[1,2,6,19] :=  2; let TLCT[1,2,6,20] :=  4; let TLCT[1,2,7,21] :=  6;           

let TLCT[1,2,7,22] :=  6; let TLCT[1,2,7,23] :=  1; let TLCT[1,2,8,24] :=  3;          

let TLCT[1,2,8,25] :=  5; let TLCT[1,2,8,26] :=  8; let TLCT[1,2,9,27] :=  9;           

let TLCT[1,2,9,28] :=  6; let TLCT[1,2,10,29] :=  2; let TLCT[1,2,10,30] :=  0;         

let TLCT[1,2,11,31] :=  8; let TLCT[1,2,11,32] :=  2; let TLCT[1,2,11,33] :=  7;         

let TLCT[1,2,11,34] :=  2; let TLCT[1,2,12,35] :=  5; let TLCT[1,2,12,36] :=  5;         

let TLCT[1,2,12,37] :=  9; let TLCT[1,2,12,38] :=  5; 

let TLCT[1,3,1,1] :=  6; let TLCT[1,3,1,2] :=  9; let TLCT[1,3,1,3] :=  0;              

let TLCT[1,3,1,4] :=  10; let TLCT[1,3,2,5] :=  2; let TLCT[1,3,2,6] :=  1;           

let TLCT[1,3,2,7] :=  6; let TLCT[1,3,2,8] :=  3; let TLCT[1,3,3,9] :=  1;           

let TLCT[1,3,3,10] :=  9; let TLCT[1,3,3,11] :=  3; let TLCT[1,3,4,12] :=  6;          

let TLCT[1,3,4,13] :=  2; let TLCT[1,3,4,14] :=  6; let TLCT[1,3,5,15] :=  6;           

let TLCT[1,3,5,16] :=  7; let TLCT[1,3,6,17] :=  10; let TLCT[1,3,6,18] :=  5;         

let TLCT[1,3,6,19] :=  7; let TLCT[1,3,6,20] :=  1; let TLCT[1,3,7,21] :=  9;        

let TLCT[1,3,7,22] :=  9; let TLCT[1,3,7,23] :=  7; let TLCT[1,3,8,24] :=  0;           

let TLCT[1,3,8,25] :=  5; let TLCT[1,3,8,26] :=  2; let TLCT[1,3,9,27] :=  0;           

let TLCT[1,3,9,28] :=  7; let TLCT[1,3,10,29] :=  10; let TLCT[1,3,10,30] :=  3;           
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let TLCT[1,3,11,31] :=  6; let TLCT[1,3,11,32] :=  5; let TLCT[1,3,11,33] :=  4;          

let TLCT[1,3,11,34] :=  1; let TLCT[1,3,12,35] :=  7; let TLCT[1,3,12,36] :=  6;           

let TLCT[1,3,12,37] :=  5; let TLCT[1,3,12,38] :=  7;  

let TLCT[1,4,1,1] :=  9; let TLCT[1,4,1,2] := 8; let TLCT[1,4,1,3] :=  7;          

let TLCT[1,4,1,4] :=  0; let TLCT[1,4,2,5] :=  10; let TLCT[1,4,2,6] :=  4;          

let TLCT[1,4,2,7] :=  0; let TLCT[1,4,2,8] :=  9; let TLCT[1,4,3,9] :=  8;           

let TLCT[1,4,3,10] :=  0; let TLCT[1,4,3,11] :=  3; let TLCT[1,4,4,12] :=  4;          

let TLCT[1,4,4,13] :=  6; let TLCT[1,4,4,14] :=  6; let TLCT[1,4,5,15] :=  9;         

let TLCT[1,4,5,16] :=  6; let TLCT[1,4,6,17] :=  1; let TLCT[1,4,6,18] :=  1;          

let TLCT[1,4,6,19] :=  4; let TLCT[1,4,6,20] :=  1; let TLCT[1,4,7,21] :=  10;          

let TLCT[1,4,7,22] :=  4; let TLCT[1,4,7,23] :=  9; let TLCT[1,4,8,24] :=  7;          

let TLCT[1,4,8,25] :=  0; let TLCT[1,4,8,26] :=  4; let TLCT[1,4,9,27] :=  2;           

let TLCT[1,4,9,28] :=  0; let TLCT[1,4,10,29] :=  10; let TLCT[1,4,10,30] :=  8;          

let TLCT[1,4,11,31] :=  8; let TLCT[1,4,11,32] :=  1; let TLCT[1,4,11,33] :=  6;          

let TLCT[1,4,11,34] :=  8; let TLCT[1,4,12,35] :=  7; let TLCT[1,4,12,36] :=  9;         

let TLCT[1,4,12,37] :=  4; let TLCT[1,4,12,38] :=  6; 

let TLCT[2,5,1,1] :=  0; let TLCT[2,5,1,2] := 1; let TLCT[2,5,1,3] :=  6;           

let TLCT[2,5,1,4] :=  1; let TLCT[2,5,2,5] :=  0; let TLCT[2,5,2,6] :=  9;         

let TLCT[2,5,2,7] :=  8; let TLCT[2,5,2,8] :=  8; let TLCT[2,5,3,9] :=  0;          

let TLCT[2,5,3,10] :=  1; let TLCT[2,5,3,11] :=  5; let TLCT[2,5,4,12] :=  10;         

let TLCT[2,5,4,13] :=  10; let TLCT[2,5,4,14] :=  2; let TLCT[2,5,5,15] :=  2;          

let TLCT[2,5,5,16] :=  4; let TLCT[2,5,6,17] :=  8; let TLCT[2,5,6,18] :=  6;        

let TLCT[2,5,6,19] :=  3; let TLCT[2,5,6,20] :=  2; let TLCT[2,5,7,21] :=  2;          

let TLCT[2,5,7,22] :=  9; let TLCT[2,5,7,23] :=  10; let TLCT[2,5,8,24] :=  5;        

let TLCT[2,5,8,25] :=  8; let TLCT[2,5,8,26] :=  3; let TLCT[2,5,9,27] :=  5;         

let TLCT[2,5,9,28] :=  2; let TLCT[2,5,10,29] :=  0; let TLCT[2,5,10,30] :=  2;        

let TLCT[2,5,11,31] :=  2; let TLCT[2,5,11,32] :=  7; let TLCT[2,5,11,33] :=  1;          

let TLCT[2,5,11,34] :=  8; let TLCT[2,5,12,35] :=  5; let TLCT[2,5,12,36] :=  10;        

let TLCT[2,5,12,37] :=  4; let TLCT[2,5,12,38] :=  4; 
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let TLCT[2,6,1,1] :=  9; let TLCT[2,6,1,2] := 0; let TLCT[2,6,1,3] :=  8;           

let TLCT[2,6,1,4] :=  1; let TLCT[2,6,2,5] :=  5; let TLCT[2,6,2,6] :=  0;             

let TLCT[2,6,2,7] :=  5; let TLCT[2,6,2,8] :=  1; let TLCT[2,6,3,9] :=  2;           

let TLCT[2,6,3,10] :=  4; let TLCT[2,6,3,11] :=  7; let TLCT[2,6,4,12] :=  1;           

let TLCT[2,6,4,13] :=  1; let TLCT[2,6,4,14] :=  10; let TLCT[2,6,5,15] :=  10;            

let TLCT[2,6,5,16] :=  8; let TLCT[2,6,6,17] :=  5; let TLCT[2,6,6,18] :=  7;           

let TLCT[2,6,6,19] :=  7; let TLCT[2,6,6,20] :=  6; let TLCT[2,6,7,21] :=  8;          

let TLCT[2,6,7,22] :=  6; let TLCT[2,6,7,23] :=  10; let TLCT[2,6,8,24] :=  1;          

let TLCT[2,6,8,25] :=  1; let TLCT[2,6,8,26] :=  4; let TLCT[2,6,9,27] :=  3;          

let TLCT[2,6,9,28] :=  10; let TLCT[2,6,10,29] :=  4; let TLCT[2,6,10,30] :=  0;         

let TLCT[2,6,11,31] :=  7; let TLCT[2,6,11,32] :=  3; let TLCT[2,6,11,33] :=  3;          

let TLCT[2,6,11,34] :=  7; let TLCT[2,6,12,35] :=  8; let TLCT[2,6,12,36] :=  7;         

let TLCT[2,6,12,37] :=  10; let TLCT[2,6,12,38] :=  8; 

let TLCT[2,7,1,1] :=  4; let TLCT[2,7,1,2] := 1; let TLCT[2,7,1,3] :=  5;           

let TLCT[2,7,1,4] :=  0; let TLCT[2,7,2,5] :=  8; let TLCT[2,7,2,6] :=  5;           

let TLCT[2,7,2,7] :=  0; let TLCT[2,7,2,8] :=  7; let TLCT[2,7,3,9] :=  8;           

let TLCT[2,7,3,10] :=  0; let TLCT[2,7,3,11] :=  8; let TLCT[2,7,4,12] :=  5;          

let TLCT[2,7,4,13] :=  6; let TLCT[2,7,4,14] :=  7; let TLCT[2,7,5,15] :=  1;           

let TLCT[2,7,5,16] :=  1; let TLCT[2,7,6,17] :=  4; let TLCT[2,7,6,18] :=  8;          

let TLCT[2,7,6,19] :=  10; let TLCT[2,7,6,20] :=  10; let TLCT[2,7,7,21] :=  7;          

let TLCT[2,7,7,22] :=  7; let TLCT[2,7,7,23] :=  2; let TLCT[2,7,8,24] :=  7;         

let TLCT[2,7,8,25] :=  0; let TLCT[2,7,8,26] :=  6; let TLCT[2,7,9,27] :=  1;         

let TLCT[2,7,9,28] :=  0; let TLCT[2,7,10,29] :=  5; let TLCT[2,7,10,30] :=  6;         

let TLCT[2,7,11,31] :=  8; let TLCT[2,7,11,32] :=  6; let TLCT[2,7,11,33] :=  5;         

let TLCT[2,7,11,34] :=  3; let TLCT[2,7,12,35] :=  7; let TLCT[2,7,12,36] :=  9;          

let TLCT[2,7,12,37] :=  9; let TLCT[2,7,12,38] :=  10; 

let TLCT[2,8,1,1] :=  4; let TLCT[2,8,1,2] := 1; let TLCT[2,8,1,3] :=  10;          

let TLCT[2,8,1,4] :=  5; let TLCT[2,8,2,5] :=  1; let TLCT[2,8,2,6] :=  4;            

let TLCT[2,8,2,7] :=  2; let TLCT[2,8,2,8] :=  0; let TLCT[2,8,3,9] :=  7;           

let TLCT[2,8,3,10] :=  4; let TLCT[2,8,3,11] :=  0; let TLCT[2,8,4,12] :=  9;          
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let TLCT[2,8,4,13] :=  2; let TLCT[2,8,4,14] :=  5; let TLCT[2,8,5,15] :=  9;           

let TLCT[2,8,5,16] :=  8; let TLCT[2,8,6,17] :=  6; let TLCT[2,8,6,18] :=  8;          

let TLCT[2,8,6,19] :=  9; let TLCT[2,8,6,20] :=  7; let TLCT[2,8,7,21] :=  5;           

let TLCT[2,8,7,22] :=  10; let TLCT[2,8,7,23] :=  0; let TLCT[2,8,8,24] :=  5;         

let TLCT[2,8,8,25] :=  2; let TLCT[2,8,8,26] :=  0; let TLCT[2,8,9,27] :=  10;         

let TLCT[2,8,9,28] :=  3; let TLCT[2,8,10,29] :=  7; let TLCT[2,8,10,30] :=  10;          

let TLCT[2,8,11,31] :=  4; let TLCT[2,8,11,32] :=  1; let TLCT[2,8,11,33] :=  0;          

let TLCT[2,8,11,34] :=  6; let TLCT[2,8,12,35] :=  1; let TLCT[2,8,12,36] :=  7;         

let TLCT[2,8,12,37] :=  2; let TLCT[2,8,12,38] :=  1; 

let TLCT[3,9,1,1] :=  0; let TLCT[3,9,1,2] := 2; let TLCT[3,9,1,3] :=  8;            

let TLCT[3,9,1,4] :=  4; let TLCT[3,9,2,5] :=  0; let TLCT[3,9,2,6] :=  2;            

let TLCT[3,9,2,7] :=  7; let TLCT[3,9,2,8] :=  3; let TLCT[3,9,3,9] :=  0;            

let TLCT[3,9,3,10] :=  3; let TLCT[3,9,3,11] :=  5; let TLCT[3,9,4,12] :=  2;          

let TLCT[3,9,4,13] :=  9; let TLCT[3,9,4,14] :=  10; let TLCT[3,9,5,15] :=  7;          

let TLCT[3,9,5,16] :=  7; let TLCT[3,9,6,17] :=  5; let TLCT[3,9,6,18] :=  4;          

let TLCT[3,9,6,19] :=  4; let TLCT[3,9,6,20] :=  7; let TLCT[3,9,7,21] :=  6;            

let TLCT[3,9,7,22] :=  7; let TLCT[3,9,7,23] :=  4; let TLCT[3,9,8,24] :=  8;            

let TLCT[3,9,8,25] :=  9; let TLCT[3,9,8,26] :=  9; let TLCT[3,9,9,27] :=  8;         

let TLCT[3,9,9,28] :=  6; let TLCT[3,9,10,29] :=  0; let TLCT[3,9,10,30] :=  6;          

let TLCT[3,9,11,31] :=  4; let TLCT[3,9,11,32] :=  10; let TLCT[3,9,11,33] :=  6;         

let TLCT[3,9,11,34] :=  1; let TLCT[3,9,12,35] :=  4; let TLCT[3,9,12,36] :=  2;        

let TLCT[3,9,12,37] :=  2; let TLCT[3,9,12,38] :=  7; 

let TLCT[3,10,1,1] :=  1; let TLCT[3,10,1,2] := 9; let TLCT[3,10,1,3] :=  10;            

let TLCT[3,10,1,4] :=  0; let TLCT[3,10,2,5] :=  2; let TLCT[3,10,2,6] :=  1;          

let TLCT[3,10,2,7] :=  0; let TLCT[3,10,2,8] :=  6; let TLCT[3,10,3,9] :=  10;         

let TLCT[3,10,3,10] :=  0; let TLCT[3,10,3,11] :=  1; let TLCT[3,10,4,12] :=  5;         

let TLCT[3,10,4,13] :=  1; let TLCT[3,10,4,14] :=  10; let TLCT[3,10,5,15] :=  4;         

let TLCT[3,10,5,16] :=  10; let TLCT[3,10,6,17] :=  8; let TLCT[3,10,6,18] :=  8;         

let TLCT[3,10,6,19] :=  7; let TLCT[3,10,6,20] :=  2; let TLCT[3,10,7,21] :=  7;          

let TLCT[3,10,7,22] :=  5; let TLCT[3,10,7,23] :=  8; let TLCT[3,10,8,24] :=  3;        
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let TLCT[3,10,8,25] :=  0; let TLCT[3,10,8,26] :=  9; let TLCT[3,10,9,27] :=  10;          

let TLCT[3,10,9,28] :=  0; let TLCT[3,10,10,29] :=  5; let TLCT[3,10,10,30] :=  2;         

let TLCT[3,10,11,31] :=  6; let TLCT[3,10,11,32] :=  7; let TLCT[3,10,11,33] :=  9;         

let TLCT[3,10,11,34] :=  2; let TLCT[3,10,12,35] :=  10;let TLCT[3,10,12,36] :=  5;        

let TLCT[3,10,12,37] :=  10;let TLCT[3,10,12,38] :=  1; 

let TLCT[3,11,1,1] :=  7; let TLCT[3,11,1,2] := 2; let TLCT[3,11,1,3] :=  2;           

let TLCT[3,11,1,4] :=  6; let TLCT[3,11,2,5] :=  8; let TLCT[3,11,2,6] :=  7;          

let TLCT[3,11,2,7] :=  9; let TLCT[3,11,2,8] :=  0; let TLCT[3,11,3,9] :=  9;          

let TLCT[3,11,3,10] :=  10; let TLCT[3,11,3,11] :=  0; let TLCT[3,11,4,12] :=  1;          

let TLCT[3,11,4,13] :=  4; let TLCT[3,11,4,14] :=  8; let TLCT[3,11,5,15] :=  9;           

let TLCT[3,11,5,16] :=  4; let TLCT[3,11,6,17] :=  8; let TLCT[3,11,6,18] :=  1;          

let TLCT[3,11,6,19] :=  3; let TLCT[3,11,6,20] :=  1; let TLCT[3,11,7,21] :=  4;         

let TLCT[3,11,7,22] :=  8; let TLCT[3,11,7,23] :=  10; let TLCT[3,11,8,24] :=  2;          

let TLCT[3,11,8,25] :=  1; let TLCT[3,11,8,26] :=  0; let TLCT[3,11,9,27] :=  7;           

let TLCT[3,11,9,28] :=  7; let TLCT[3,11,10,29] :=  7; let TLCT[3,11,10,30] :=  8;           

let TLCT[3,11,11,31] :=  7; let TLCT[3,11,11,32] :=  10;let TLCT[3,11,11,33] :=  0;        

let TLCT[3,11,11,34] :=  7; let TLCT[3,11,12,35] :=  9; let TLCT[3,11,12,36] :=  1;          

let TLCT[3,11,12,37] :=  3; let TLCT[3,11,12,38] :=  10; 

let TLCT[4,12,1,1] :=  6; let TLCT[4,12,1,2] := 6; let TLCT[4,12,1,3] :=  1;        

let TLCT[4,12,1,4] :=  1; let TLCT[4,12,2,5] :=  1; let TLCT[4,12,2,6] :=  5;         

let TLCT[4,12,2,7] :=  8; let TLCT[4,12,2,8] :=  8; let TLCT[4,12,3,9] :=  2;         

let TLCT[4,12,3,10] :=  3; let TLCT[4,12,3,11] :=  4; let TLCT[4,12,4,12] :=  0;          

let TLCT[4,12,4,13] := 10; let TLCT[4,12,4,14] :=  4; let TLCT[4,12,5,15] :=  6;         

let TLCT[4,12,5,16] :=  2; let TLCT[4,12,6,17] :=  2; let TLCT[4,12,6,18] :=  8;         

let TLCT[4,12,6,19] :=  1; let TLCT[4,12,6,20] :=  5; let TLCT[4,12,7,21] :=  6;          

let TLCT[4,12,7,22] :=  3; let TLCT[4,12,7,23] :=  7; let TLCT[4,12,8,24] :=  3;          

let TLCT[4,12,8,25] :=  2; let TLCT[4,12,8,26] :=  2; let TLCT[4,12,9,27] :=  2;         

let TLCT[4,12,9,28] :=  1; let TLCT[4,12,10,29] :=  2; let TLCT[4,12,10,30] :=  6;        

let TLCT[4,12,11,31] :=  10;let TLCT[4,12,11,32] :=  5; let TLCT[4,12,11,33] :=  7;         
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let TLCT[4,12,11,34] :=  0; let TLCT[4,12,12,35] :=  10;let TLCT[4,12,12,36] :=  2;        

let TLCT[4,12,12,37] :=  3; let TLCT[4,12,12,38] :=  5; 

let TLCT[4,13,1,1] :=  3; let TLCT[4,13,1,2] := 3; let TLCT[4,13,1,3] :=  1;          

let TLCT[4,13,1,4] :=  7; let TLCT[4,13,2,5] :=  2; let TLCT[4,13,2,6] :=  6;         

let TLCT[4,13,2,7] :=  4; let TLCT[4,13,2,8] :=  7; let TLCT[4,13,3,9] :=  5;          

let TLCT[4,13,3,10] :=  5; let TLCT[4,13,3,11] :=  6; let TLCT[4,13,4,12] :=  8;         

let TLCT[4,13,4,13] :=  0; let TLCT[4,13,4,14] :=  5; let TLCT[4,13,5,15] :=  9;         

let TLCT[4,13,5,16] :=  3; let TLCT[4,13,6,17] :=  4; let TLCT[4,13,6,18] :=  2;           

let TLCT[4,13,6,19] :=  2; let TLCT[4,13,6,20] :=  1; let TLCT[4,13,7,21] :=  9;          

let TLCT[4,13,7,22] :=  6; let TLCT[4,13,7,23] :=  3; let TLCT[4,13,8,24] :=  9;          

let TLCT[4,13,8,25] :=  5; let TLCT[4,13,8,26] :=  5; let TLCT[4,13,9,27] :=  9;        

let TLCT[4,13,9,28] :=  5; let TLCT[4,13,10,29] :=  3; let TLCT[4,13,10,30] :=  2;          

let TLCT[4,13,11,31] :=  2; let TLCT[4,13,11,32] :=  2; let TLCT[4,13,11,33] :=  5;         

let TLCT[4,13,11,34] :=  7; let TLCT[4,13,12,35] :=  6; let TLCT[4,13,12,36] :=  9;         

let TLCT[4,13,12,37] :=  1; let TLCT[4,13,12,38] :=  6; 

let TLCT[4,14,1,1] :=  7; let TLCT[4,14,1,2] := 2; let TLCT[4,14,1,3] :=  1;          

let TLCT[4,14,1,4] :=  6; let TLCT[4,14,2,5] :=  7; let TLCT[4,14,2,6] :=  8;           

let TLCT[4,14,2,7] :=  6; let TLCT[4,14,2,8] :=  3; let TLCT[4,14,3,9] :=  7;         

let TLCT[4,14,3,10] :=  10; let TLCT[4,14,3,11] :=  4; let TLCT[4,14,4,12] :=  9;         

let TLCT[4,14,4,13] :=  2; let TLCT[4,14,4,14] :=  0; let TLCT[4,14,5,15] :=  2;          

let TLCT[4,14,5,16] :=  7; let TLCT[4,14,6,17] :=  6; let TLCT[4,14,6,18] :=  1;          

let TLCT[4,14,6,19] :=  5; let TLCT[4,14,6,20] :=  3; let TLCT[4,14,7,21] :=  6;          

let TLCT[4,14,7,22] :=  5; let TLCT[4,14,7,23] :=  9; let TLCT[4,14,8,24] :=  9;           

let TLCT[4,14,8,25] :=  7; let TLCT[4,14,8,26] :=  4; let TLCT[4,14,9,27] :=  4;         

let TLCT[4,14,9,28] :=  3; let TLCT[4,14,10,29] :=  9; let TLCT[4,14,10,30] :=  1;          

let TLCT[4,14,11,31] :=  6; let TLCT[4,14,11,32] :=  7; let TLCT[4,14,11,33] :=  1;          

let TLCT[4,14,11,34] :=  9; let TLCT[4,14,12,35] :=  0;let TLCT[4,14,12,36] :=  10;       

let TLCT[4,14,12,37] :=  3; let TLCT[4,14,12,38] :=  5; 

let TLCT[5,15,1,1] :=  10; let TLCT[5,15,1,2] := 7; let TLCT[5,15,1,3] :=  6;           

let TLCT[5,15,1,4] :=  6; let TLCT[5,15,2,5] :=  7; let TLCT[5,15,2,6] :=  5;                 



97 
 

let TLCT[5,15,2,7] :=  4; let TLCT[5,15,2,8] :=  6; let TLCT[5,15,3,9] :=  6;         

let TLCT[5,15,3,10] :=  8; let TLCT[5,15,3,11] :=  8; let TLCT[5,15,4,12] :=  1;           

let TLCT[5,15,4,13] :=  6; let TLCT[5,15,4,14] :=  3; let TLCT[5,15,5,15] :=  0;          

let TLCT[5,15,5,16] :=  3; let TLCT[5,15,6,17] :=  0; let TLCT[5,15,6,18] :=  9;          

let TLCT[5,15,6,19] :=  7; let TLCT[5,15,6,20] :=  10; let TLCT[5,15,7,21] :=  4;         

let TLCT[5,15,7,22] :=  2; let TLCT[5,15,7,23] :=  6; let TLCT[5,15,8,24] :=  5;          

let TLCT[5,15,8,25] :=  9; let TLCT[5,15,8,26] :=  1; let TLCT[5,15,9,27] :=  9;           

let TLCT[5,15,9,28] :=  6; let TLCT[5,15,10,29] :=  9; let TLCT[5,15,10,30] :=  8;          

let TLCT[5,15,11,31] :=  2; let TLCT[5,15,11,32] :=  7; let TLCT[5,15,11,33] :=  4;         

let TLCT[5,15,11,34] :=  2; let TLCT[5,15,12,35] :=  10;let TLCT[5,15,12,36] :=  0;        

let TLCT[5,15,12,37] :=  3; let TLCT[5,15,12,38] :=  1; 

let TLCT[5,16,1,1] :=  4; let TLCT[5,16,1,2] := 9; let TLCT[5,16,1,3] :=  3;            

let TLCT[5,16,1,4] :=  3; let TLCT[5,16,2,5] :=  5; let TLCT[5,16,2,6] :=  1;         

let TLCT[5,16,2,7] :=  4; let TLCT[5,16,2,8] :=  8; let TLCT[5,16,3,9] :=  7;         

let TLCT[5,16,3,10] :=  10; let TLCT[5,16,3,11] :=  1; let TLCT[5,16,4,12] :=  8;         

let TLCT[5,16,4,13] :=  1; let TLCT[5,16,4,14] :=  4; let TLCT[5,16,5,15] :=  10;         

let TLCT[5,16,5,16] :=  0; let TLCT[5,16,6,17] :=  2; let TLCT[5,16,6,18] :=  0;         

let TLCT[5,16,6,19] :=  3; let TLCT[5,16,6,20] :=  10; let TLCT[5,16,7,21] :=  0;           

let TLCT[5,16,7,22] :=  2; let TLCT[5,16,7,23] :=  10; let TLCT[5,16,8,24] :=  9;          

let TLCT[5,16,8,25] :=  5; let TLCT[5,16,8,26] :=  2; let TLCT[5,16,9,27] :=  2;          

let TLCT[5,16,9,28] :=  8; let TLCT[5,16,10,29] :=  5; let TLCT[5,16,10,30] :=  8;          

let TLCT[5,16,11,31] :=  1; let TLCT[5,16,11,32] :=  5; let TLCT[5,16,11,33] :=  9;          

let TLCT[5,16,11,34] :=  1; let TLCT[5,16,12,35] :=  6; let TLCT[5,16,12,36] :=  2;        

let TLCT[5,16,12,37] :=  0; let TLCT[5,16,12,38] :=  2; 

let TLCT[6,17,1,1] :=  4; let TLCT[6,17,1,2] := 6; let TLCT[6,17,1,3] :=  10;            

let TLCT[6,17,1,4] :=  8; let TLCT[6,17,2,5] :=  1; let TLCT[6,17,2,6] :=  3;         

let TLCT[6,17,2,7] :=  1; let TLCT[6,17,2,8] :=  4; let TLCT[6,17,3,9] :=  2;          

let TLCT[6,17,3,10] :=  10; let TLCT[6,17,3,11] :=  2; let TLCT[6,17,4,12] :=  5;            

let TLCT[6,17,4,13] :=  1; let TLCT[6,17,4,14] :=  4; let TLCT[6,17,5,15] :=  0;           

let TLCT[6,17,5,16] :=  6; let TLCT[6,17,6,17] :=  0; let TLCT[6,17,6,18] :=  4;          
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let TLCT[6,17,6,19] :=  10; let TLCT[6,17,6,20] :=  1; let TLCT[6,17,7,21] :=  5;          

let TLCT[6,17,7,22] :=  3; let TLCT[6,17,7,23] :=  5; let TLCT[6,17,8,24] :=  3;           

let TLCT[6,17,8,25] :=  6; let TLCT[6,17,8,26] :=  5; let TLCT[6,17,9,27] :=  1;          

let TLCT[6,17,9,28] :=  9; let TLCT[6,17,10,29] :=  6; let TLCT[6,17,10,30] :=  4;           

let TLCT[6,17,11,31] :=  5; let TLCT[6,17,11,32] :=  6; let TLCT[6,17,11,33] :=  6;          

let TLCT[6,17,11,34] :=  9; let TLCT[6,17,12,35] :=  9; let TLCT[6,17,12,36] :=  0;           

let TLCT[6,17,12,37] :=  7; let TLCT[6,17,12,38] :=  8; 

let TLCT[6,18,1,1] :=  2; let TLCT[6,18,1,2] := 3; let TLCT[6,18,1,3] :=  3;           

let TLCT[6,18,1,4] :=  8; let TLCT[6,18,2,5] :=  8; let TLCT[6,18,2,6] :=  9;           

let TLCT[6,18,2,7] :=  5; let TLCT[6,18,2,8] :=  5; let TLCT[6,18,3,9] :=  8;           

let TLCT[6,18,3,10] :=  4; let TLCT[6,18,3,11] :=  7; let TLCT[6,18,4,12] :=  2;           

let TLCT[6,18,4,13] :=  9; let TLCT[6,18,4,14] :=  10; let TLCT[6,18,5,15] :=  5;          

let TLCT[6,18,5,16] :=  0; let TLCT[6,18,6,17] :=  8; let TLCT[6,18,6,18] :=  0;          

let TLCT[6,18,6,19] :=  6; let TLCT[6,18,6,20] :=  5; let TLCT[6,18,7,21] :=  0;          

let TLCT[6,18,7,22] :=  3; let TLCT[6,18,7,23] :=  6; let TLCT[6,18,8,24] :=  10;           

let TLCT[6,18,8,25] :=  5; let TLCT[6,18,8,26] :=  4; let TLCT[6,18,9,27] :=  9;          

let TLCT[6,18,9,28] :=  9; let TLCT[6,18,10,29] :=  10;let TLCT[6,18,10,30] :=  1;        

let TLCT[6,18,11,31] :=  3; let TLCT[6,18,11,32] :=  3; let TLCT[6,18,11,33] :=  7;         

let TLCT[6,18,11,34] :=  9; let TLCT[6,18,12,35] :=  9;let TLCT[6,18,12,36] :=  10;       

let TLCT[6,18,12,37] :=  0; let TLCT[6,18,12,38] :=  3; 

let TLCT[6,19,1,1] :=  10; let TLCT[6,19,1,2] := 9; let TLCT[6,19,1,3] :=  5;           

let TLCT[6,19,1,4] :=  9; let TLCT[6,19,2,5] :=  5; let TLCT[6,19,2,6] :=  2;             

let TLCT[6,19,2,7] :=  6; let TLCT[6,19,2,8] :=  8; let TLCT[6,19,3,9] :=  4;         

let TLCT[6,19,3,10] :=  3; let TLCT[6,19,3,11] :=  5; let TLCT[6,19,4,12] :=  5;        

let TLCT[6,19,4,13] :=  2; let TLCT[6,19,4,14] :=  3; let TLCT[6,19,5,15] :=  10;         

let TLCT[6,19,5,16] :=  1; let TLCT[6,19,6,17] :=  5; let TLCT[6,19,6,18] :=  7;          

let TLCT[6,19,6,19] :=  0; let TLCT[6,19,6,20] :=  6; let TLCT[6,19,7,21] :=  1;         

let TLCT[6,19,7,22] :=  0; let TLCT[6,19,7,23] :=  8; let TLCT[6,19,8,24] :=  2;          

let TLCT[6,19,8,25] :=  1; let TLCT[6,19,8,26] :=  6; let TLCT[6,19,9,27] :=  9;         

let TLCT[6,19,9,28] :=  8; let TLCT[6,19,10,29] :=  4; let TLCT[6,19,10,30] :=  3;         
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let TLCT[6,19,11,31] :=  0; let TLCT[6,19,11,32] :=  3; let TLCT[6,19,11,33] :=  7;        

let TLCT[6,19,11,34] :=  9; let TLCT[6,19,12,35] :=  3; let TLCT[6,19,12,36] :=  1;         

let TLCT[6,19,12,37] :=  4; let TLCT[6,19,12,38] :=  0; 

let TLCT[6,20,1,1] :=  3; let TLCT[6,20,1,2] := 10; let TLCT[6,20,1,3] :=  5;          

let TLCT[6,20,1,4] :=  7; let TLCT[6,20,2,5] :=  4; let TLCT[6,20,2,6] :=  7;          

let TLCT[6,20,2,7] :=  3; let TLCT[6,20,2,8] :=  5; let TLCT[6,20,3,9] :=  6;         

let TLCT[6,20,3,10] :=  1; let TLCT[6,20,3,11] :=  4; let TLCT[6,20,4,12] :=  2;          

let TLCT[6,20,4,13] :=  2; let TLCT[6,20,4,14] :=  9; let TLCT[6,20,5,15] :=  5;          

let TLCT[6,20,5,16] :=  6; let TLCT[6,20,6,17] :=  7; let TLCT[6,20,6,18] :=  10;         

let TLCT[6,20,6,19] :=  8; let TLCT[6,20,6,20] :=  0; let TLCT[6,20,7,21] :=  9;         

let TLCT[6,20,7,22] :=  3; let TLCT[6,20,7,23] :=  0; let TLCT[6,20,8,24] :=  7;          

let TLCT[6,20,8,25] :=  3; let TLCT[6,20,8,26] :=  4; let TLCT[6,20,9,27] :=  10;         

let TLCT[6,20,9,28] :=  2; let TLCT[6,20,10,29] :=  9; let TLCT[6,20,10,30] :=  3;         

let TLCT[6,20,11,31] :=  8; let TLCT[6,20,11,32] :=  0;let TLCT[6,20,11,33] :=  10;       

let TLCT[6,20,11,34] :=  10;let TLCT[6,20,12,35] :=  8; let TLCT[6,20,12,36] :=  9;         

let TLCT[6,20,12,37] :=  10;let TLCT[6,20,12,38] :=  5; 

let TLCT[7,21,1,1] :=  1; let TLCT[7,21,1,2] := 4; let TLCT[7,21,1,3] :=  7;         

let TLCT[7,21,1,4] :=  10; let TLCT[7,21,2,5] :=  10; let TLCT[7,21,2,6] :=  5;          

let TLCT[7,21,2,7] :=  6; let TLCT[7,21,2,8] :=  9; let TLCT[7,21,3,9] :=  4;         

let TLCT[7,21,3,10] :=  9; let TLCT[7,21,3,11] :=  9; let TLCT[7,21,4,12] :=  7;          

let TLCT[7,21,4,13] :=  4; let TLCT[7,21,4,14] :=  8; let TLCT[7,21,5,15] :=  10;         

let TLCT[7,21,5,16] :=  0; let TLCT[7,21,6,17] :=  10; let TLCT[7,21,6,18] :=  0;        

let TLCT[7,21,6,19] :=  7; let TLCT[7,21,6,20] :=  4; let TLCT[7,21,7,21] :=  0;          

let TLCT[7,21,7,22] :=  2; let TLCT[7,21,7,23] :=  1; let TLCT[7,21,8,24] :=  10;        

let TLCT[7,21,8,25] :=  9; let TLCT[7,21,8,26] :=  4; let TLCT[7,21,9,27] :=  2;         

let TLCT[7,21,9,28] :=  9; let TLCT[7,21,10,29] :=  9; let TLCT[7,21,10,30] :=  7;         

let TLCT[7,21,11,31] :=  3; let TLCT[7,21,11,32] :=  7; let TLCT[7,21,11,33] :=  6;           

let TLCT[7,21,11,34] :=  7; let TLCT[7,21,12,35] :=  7; let TLCT[7,21,12,36] :=  4;          

let TLCT[7,21,12,37] :=  0; let TLCT[7,21,12,38] :=  4; 
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let TLCT[7,22,1,1] :=  3; let TLCT[7,22,1,2] := 1; let TLCT[7,22,1,3] :=  10;          

let TLCT[7,22,1,4] :=  6; let TLCT[7,22,2,5] :=  6; let TLCT[7,22,2,6] :=  8;          

let TLCT[7,22,2,7] :=  5; let TLCT[7,22,2,8] :=  2; let TLCT[7,22,3,9] :=  4;           

let TLCT[7,22,3,10] :=  2; let TLCT[7,22,3,11] :=  9; let TLCT[7,22,4,12] :=  2;          

let TLCT[7,22,4,13] :=  10; let TLCT[7,22,4,14] :=  7; let TLCT[7,22,5,15] :=  4;           

let TLCT[7,22,5,16] :=  10; let TLCT[7,22,6,17] :=  10; let TLCT[7,22,6,18] :=  9;          

let TLCT[7,22,6,19] :=  0; let TLCT[7,22,6,20] :=  4; let TLCT[7,22,7,21] :=  7;           

let TLCT[7,22,7,22] :=  0; let TLCT[7,22,7,23] :=  5; let TLCT[7,22,8,24] :=  5;         

let TLCT[7,22,8,25] :=  10; let TLCT[7,22,8,26] :=  1; let TLCT[7,22,9,27] :=  6;           

let TLCT[7,22,9,28] :=  7; let TLCT[7,22,10,29] :=  4; let TLCT[7,22,10,30] :=  4;         

let TLCT[7,22,11,31] :=  0; let TLCT[7,22,11,32] :=  9; let TLCT[7,22,11,33] :=  5;          

let TLCT[7,22,11,34] :=  6; let TLCT[7,22,12,35] :=  7; let TLCT[7,22,12,36] :=  5;         

let TLCT[7,22,12,37] :=  5; let TLCT[7,22,12,38] :=  0; 

let TLCT[7,23,1,1] :=  2; let TLCT[7,23,1,2] := 8; let TLCT[7,23,1,3] :=  10;           

let TLCT[7,23,1,4] :=  10; let TLCT[7,23,2,5] :=  9; let TLCT[7,23,2,6] :=  3;          

let TLCT[7,23,2,7] :=  10; let TLCT[7,23,2,8] :=  6; let TLCT[7,23,3,9] :=  8;         

let TLCT[7,23,3,10] :=  7; let TLCT[7,23,3,11] :=  7; let TLCT[7,23,4,12] :=  10;         

let TLCT[7,23,4,13] :=  8; let TLCT[7,23,4,14] :=  6; let TLCT[7,23,5,15] :=  5;        

let TLCT[7,23,5,16] :=  2; let TLCT[7,23,6,17] :=  1; let TLCT[7,23,6,18] :=  3;          

let TLCT[7,23,6,19] :=  9; let TLCT[7,23,6,20] :=  0; let TLCT[7,23,7,21] :=  7;         

let TLCT[7,23,7,22] :=  6; let TLCT[7,23,7,23] :=  0; let TLCT[7,23,8,24] :=  5;           

let TLCT[7,23,8,25] :=  8; let TLCT[7,23,8,26] :=  8; let TLCT[7,23,9,27] :=  1;         

let TLCT[7,23,9,28] :=  8; let TLCT[7,23,10,29] :=  5; let TLCT[7,23,10,30] :=  1;          

let TLCT[7,23,11,31] :=  6; let TLCT[7,23,11,32] :=  0; let TLCT[7,23,11,33] :=  5;           

let TLCT[7,23,11,34] :=  4; let TLCT[7,23,12,35] :=  3; let TLCT[7,23,12,36] :=  9;           

let TLCT[7,23,12,37] :=  1; let TLCT[7,23,12,38] :=  1; 

let TLCT[8,24,1,1] :=  5; let TLCT[8,24,1,2] := 7; let TLCT[8,24,1,3] :=  0;         

let TLCT[8,24,1,4] :=  10; let TLCT[8,24,2,5] :=  10; let TLCT[8,24,2,6] :=  8;           

let TLCT[8,24,2,7] :=  9; let TLCT[8,24,2,8] :=  9; let TLCT[8,24,3,9] :=  4;         

let TLCT[8,24,3,10] :=  1; let TLCT[8,24,3,11] :=  2; let TLCT[8,24,4,12] :=  4;           
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let TLCT[8,24,4,13] :=  3; let TLCT[8,24,4,14] :=  1; let TLCT[8,24,5,15] :=  10;           

let TLCT[8,24,5,16] :=  9; let TLCT[8,24,6,17] :=  8; let TLCT[8,24,6,18] :=  3;           

let TLCT[8,24,6,19] :=  1; let TLCT[8,24,6,20] :=  7; let TLCT[8,24,7,21] :=  4;          

let TLCT[8,24,7,22] :=  10; let TLCT[8,24,7,23] :=  7; let TLCT[8,24,8,24] :=  0;          

let TLCT[8,24,8,25] :=  10; let TLCT[8,24,8,26] :=  3; let TLCT[8,24,9,27] :=  0;            

let TLCT[8,24,9,28] :=  2; let TLCT[8,24,10,29] :=  1; let TLCT[8,24,10,30] :=  4;          

let TLCT[8,24,11,31] :=  8; let TLCT[8,24,11,32] :=  9; let TLCT[8,24,11,33] :=  2;            

let TLCT[8,24,11,34] :=  1; let TLCT[8,24,12,35] :=  2; let TLCT[8,24,12,36] :=  8;           

let TLCT[8,24,12,37] :=  9; let TLCT[8,24,12,38] :=  3; 

let TLCT[8,25,1,1] :=  10; let TLCT[8,25,1,2] := 8; let TLCT[8,25,1,3] :=  3;         

let TLCT[8,25,1,4] :=  0; let TLCT[8,25,2,5] :=  9; let TLCT[8,25,2,6] :=  3;         

let TLCT[8,25,2,7] :=  0; let TLCT[8,25,2,8] :=  6; let TLCT[8,25,3,9] :=  2;           

let TLCT[8,25,3,10] :=  0; let TLCT[8,25,3,11] :=  4; let TLCT[8,25,4,12] :=  6;         

let TLCT[8,25,4,13] :=  3; let TLCT[8,25,4,14] :=  6; let TLCT[8,25,5,15] :=  8;           

let TLCT[8,25,5,16] :=  5; let TLCT[8,25,6,17] :=  1; let TLCT[8,25,6,18] :=  3;          

let TLCT[8,25,6,19] :=  2; let TLCT[8,25,6,20] :=  5; let TLCT[8,25,7,21] :=  2;          

let TLCT[8,25,7,22] :=  4; let TLCT[8,25,7,23] :=  10; let TLCT[8,25,8,24] :=  1;          

let TLCT[8,25,8,25] :=  0; let TLCT[8,25,8,26] :=  9; let TLCT[8,25,9,27] :=  5;         

let TLCT[8,25,9,28] :=  0; let TLCT[8,25,10,29] :=  9; let TLCT[8,25,10,30] :=  8;           

let TLCT[8,25,11,31] :=  1; let TLCT[8,25,11,32] :=  6; let TLCT[8,25,11,33] :=  5;          

let TLCT[8,25,11,34] :=  6; let TLCT[8,25,12,35] :=  1; let TLCT[8,25,12,36] :=  9;         

let TLCT[8,25,12,37] :=  1; let TLCT[8,25,12,38] :=  4; 

let TLCT[8,26,1,1] :=  7; let TLCT[8,26,1,2] := 8; let TLCT[8,26,1,3] :=  7;            

let TLCT[8,26,1,4] :=  7; let TLCT[8,26,2,5] :=  9; let TLCT[8,26,2,6] :=  7;           

let TLCT[8,26,2,7] :=  3; let TLCT[8,26,2,8] :=  0; let TLCT[8,26,3,9] :=  1;          

let TLCT[8,26,3,10] :=  8; let TLCT[8,26,3,11] :=  0; let TLCT[8,26,4,12] :=  9;         

let TLCT[8,26,4,13] :=  6; let TLCT[8,26,4,14] :=  10; let TLCT[8,26,5,15] :=  4;         

let TLCT[8,26,5,16] :=  7; let TLCT[8,26,6,17] :=  10; let TLCT[8,26,6,18] :=  10;          

let TLCT[8,26,6,19] :=  5; let TLCT[8,26,6,20] :=  4; let TLCT[8,26,7,21] :=  2;          

let TLCT[8,26,7,22] :=  9; let TLCT[8,26,7,23] :=  7; let TLCT[8,26,8,24] :=  9;          
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let TLCT[8,26,8,25] :=  6; let TLCT[8,26,8,26] :=  0; let TLCT[8,26,9,27] :=  10;           

let TLCT[8,26,9,28] :=  9; let TLCT[8,26,10,29] :=  5; let TLCT[8,26,10,30] :=  8;         

let TLCT[8,26,11,31] :=  1; let TLCT[8,26,11,32] :=  1; let TLCT[8,26,11,33] :=  0;          

let TLCT[8,26,11,34] :=  7; let TLCT[8,26,12,35] :=  4; let TLCT[8,26,12,36] :=  1;          

let TLCT[8,26,12,37] :=  4; let TLCT[8,26,12,38] :=  4; 

let TLCT[9,27,1,1] :=  6; let TLCT[9,27,1,2] := 2; let TLCT[9,27,1,3] :=  0;          

let TLCT[9,27,1,4] :=  1; let TLCT[9,27,2,5] :=  6; let TLCT[9,27,2,6] :=  1;          

let TLCT[9,27,2,7] :=  7; let TLCT[9,27,2,8] :=  2; let TLCT[9,27,3,9] :=  6;          

let TLCT[9,27,3,10] :=  3; let TLCT[9,27,3,11] :=  1; let TLCT[9,27,4,12] :=  4;          

let TLCT[9,27,4,13] :=  7; let TLCT[9,27,4,14] :=  4; let TLCT[9,27,5,15] :=  9;          

let TLCT[9,27,5,16] :=  4; let TLCT[9,27,6,17] :=  8; let TLCT[9,27,6,18] :=  2;          

let TLCT[9,27,6,19] :=  6; let TLCT[9,27,6,20] :=  4; let TLCT[9,27,7,21] :=  10;          

let TLCT[9,27,7,22] :=  10; let TLCT[9,27,7,23] :=  9; let TLCT[9,27,8,24] :=  0;         

let TLCT[9,27,8,25] :=  4; let TLCT[9,27,8,26] :=  5; let TLCT[9,27,9,27] :=  0;           

let TLCT[9,27,9,28] :=  2; let TLCT[9,27,10,29] :=  3; let TLCT[9,27,10,30] :=  4;          

let TLCT[9,27,11,31] :=  7; let TLCT[9,27,11,32] :=  8; let TLCT[9,27,11,33] :=  6;         

let TLCT[9,27,11,34] :=  9; let TLCT[9,27,12,35] :=  8; let TLCT[9,27,12,36] :=  7;          

let TLCT[9,27,12,37] :=  8; let TLCT[9,27,12,38] :=  6; 

let TLCT[9,28,1,1] :=  9; let TLCT[9,28,1,2] := 4; let TLCT[9,28,1,3] :=  1;        

let TLCT[9,28,1,4] :=  0; let TLCT[9,28,2,5] :=  6; let TLCT[9,28,2,6] :=  2;           

let TLCT[9,28,2,7] :=  0; let TLCT[9,28,2,8] :=  4; let TLCT[9,28,3,9] :=  6;          

let TLCT[9,28,3,10] :=  0; let TLCT[9,28,3,11] :=  4; let TLCT[9,28,4,12] :=  2;          

let TLCT[9,28,4,13] :=  6; let TLCT[9,28,4,14] :=  9; let TLCT[9,28,5,15] :=  9;          

let TLCT[9,28,5,16] :=  3; let TLCT[9,28,6,17] :=  2; let TLCT[9,28,6,18] :=  8;         

let TLCT[9,28,6,19] :=  3; let TLCT[9,28,6,20] :=  4; let TLCT[9,28,7,21] :=  6;           

let TLCT[9,28,7,22] :=  3; let TLCT[9,28,7,23] :=  7; let TLCT[9,28,8,24] :=  3;         

let TLCT[9,28,8,25] :=  0; let TLCT[9,28,8,26] :=  4; let TLCT[9,28,9,27] :=  2;          

let TLCT[9,28,9,28] :=  0; let TLCT[9,28,10,29] :=  7; let TLCT[9,28,10,30] :=  6;         

let TLCT[9,28,11,31] :=  5; let TLCT[9,28,11,32] :=  3; let TLCT[9,28,11,33] :=  8;          
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let TLCT[9,28,11,34] :=  2; let TLCT[9,28,12,35] :=  10;let TLCT[9,28,12,36] :=  6;         

let TLCT[9,28,12,37] :=  1; let TLCT[9,28,12,38] :=  3; 

let TLCT[10,29,1,1] :=  0; let TLCT[10,29,1,2] := 8; let TLCT[10,29,1,3] :=  9;          

let TLCT[10,29,1,4] :=  3; let TLCT[10,29,2,5] :=  0; let TLCT[10,29,2,6] :=  4;          

let TLCT[10,29,2,7] :=  2; let TLCT[10,29,2,8] :=  10; let TLCT[10,29,3,9] :=  0;           

let TLCT[10,29,3,10] :=  7; let TLCT[10,29,3,11] :=  2; let TLCT[10,29,4,12] :=  3;          

let TLCT[10,29,4,13] :=  7; let TLCT[10,29,4,14] :=  7; let TLCT[10,29,5,15] :=  7;         

let TLCT[10,29,5,16] :=  5; let TLCT[10,29,6,17] :=  6; let TLCT[10,29,6,18] :=  1;         

let TLCT[10,29,6,19] :=  2; let TLCT[10,29,6,20] :=  4; let TLCT[10,29,7,21] :=  5;          

let TLCT[10,29,7,22] :=  4; let TLCT[10,29,7,23] :=  6; let TLCT[10,29,8,24] :=  9;          

let TLCT[10,29,8,25] :=  5; let TLCT[10,29,8,26] :=  8; let TLCT[10,29,9,27] :=  3;           

let TLCT[10,29,9,28] :=  4;let TLCT[10,29,10,29] :=  0;let TLCT[10,29,10,30] :=  

9; 

let TLCT[10,29,11,31] :=  4;let TLCT[10,29,11,32] :=  1;let TLCT[10,29,11,33] :=  

3; 

let TLCT[10,29,11,34] :=  5;let TLCT[10,29,12,35] :=  7;let TLCT[10,29,12,36] :=  

3;      let TLCT[10,29,12,37] :=  9;let TLCT[10,29,12,38] :=  2; 

let TLCT[10,30,1,1] :=  8; let TLCT[10,30,1,2] := 0; let TLCT[10,30,1,3] :=  1;          

let TLCT[10,30,1,4] :=  8; let TLCT[10,30,2,5] :=  6; let TLCT[10,30,2,6] :=  0;            

let TLCT[10,30,2,7] :=  4; let TLCT[10,30,2,8] :=  2; let TLCT[10,30,3,9] :=  4;          

let TLCT[10,30,3,10] :=  1; let TLCT[10,30,3,11] :=  6; let TLCT[10,30,4,12] :=  7;           

let TLCT[10,30,4,13] :=  1; let TLCT[10,30,4,14] :=  3; let TLCT[10,30,5,15] :=  7;           

let TLCT[10,30,5,16] :=  7; let TLCT[10,30,6,17] :=  3; let TLCT[10,30,6,18] :=  8;          

let TLCT[10,30,6,19] :=  10;let TLCT[10,30,6,20] :=  6; let TLCT[10,30,7,21] :=  3;         

let TLCT[10,30,7,22] :=  2; let TLCT[10,30,7,23] :=  4; let TLCT[10,30,8,24] :=  6;           

let TLCT[10,30,8,25] :=  7; let TLCT[10,30,8,26] :=  10;let TLCT[10,30,9,27] :=  2;            

let TLCT[10,30,9,28] :=  9;let TLCT[10,30,10,29] :=  10;let TLCT[10,30,10,30] :=  

0;      
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let TLCT[10,30,11,31] :=  3;let TLCT[10,30,11,32] :=  9;let TLCT[10,30,11,33] :=  

4; 

let TLCT[10,30,11,34] :=  6;let TLCT[10,30,12,35] :=  6;let TLCT[10,30,12,36] :=  

3; 

let TLCT[10,30,12,37] :=  10;let TLCT[10,30,12,38] :=  2; 

let TLCT[11,31,1,1] :=  4; let TLCT[11,31,1,2] := 5; let TLCT[11,31,1,3] :=  8;         

let TLCT[11,31,1,4] :=  3; let TLCT[11,31,2,5] :=  10; let TLCT[11,31,2,6] :=  1;         

let TLCT[11,31,2,7] :=  10; let TLCT[11,31,2,8] :=  1; let TLCT[11,31,3,9] :=  2;         

let TLCT[11,31,3,10] :=  10;let TLCT[11,31,3,11] :=  9; let TLCT[11,31,4,12] :=  7;          

let TLCT[11,31,4,13] :=  3; let TLCT[11,31,4,14] :=  2; let TLCT[11,31,5,15] :=  3;         

let TLCT[11,31,5,16] :=  8; let TLCT[11,31,6,17] :=  9; let TLCT[11,31,6,18] :=  2;           

let TLCT[11,31,6,19] :=  0; let TLCT[11,31,6,20] :=  4; let TLCT[11,31,7,21] :=  

10;  

let TLCT[11,31,7,22] :=  0;let TLCT[11,31,7,23] :=  3;let TLCT[11,31,8,24] :=  7;          

let TLCT[11,31,8,25] :=  4; let TLCT[11,31,8,26] :=  10;let TLCT[11,31,9,27] :=  5;        

let TLCT[11,31,9,28] :=  10;let TLCT[11,31,10,29] :=  5;let TLCT[11,31,10,30] :=  

8; 

let TLCT[11,31,11,31] :=  0;let TLCT[11,31,11,32] :=  1;let TLCT[11,31,11,33] :=  

6; 

let TLCT[11,31,11,34] :=  2;let TLCT[11,31,12,35] :=  10;let TLCT[11,31,12,36] :=  

3; 

let TLCT[11,31,12,37] :=  1;let TLCT[11,31,12,38] :=  0; 

let TLCT[11,32,1,1] :=  6; let TLCT[11,32,1,2] := 7; let TLCT[11,32,1,3] :=  9;          

let TLCT[11,32,1,4] :=  8; let TLCT[11,32,2,5] :=  7; let TLCT[11,32,2,6] :=  4;          

let TLCT[11,32,2,7] :=  7; let TLCT[11,32,2,8] :=  8; let TLCT[11,32,3,9] :=  4;          

let TLCT[11,32,3,10] :=  6; let TLCT[11,32,3,11] :=  9; let TLCT[11,32,4,12] :=  6;          

let TLCT[11,32,4,13] :=  1; let TLCT[11,32,4,14] :=  5; let TLCT[11,32,5,15] :=  5;           
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let TLCT[11,32,5,16] :=  7; let TLCT[11,32,6,17] :=  7; let TLCT[11,32,6,18] :=  6;          

let TLCT[11,32,6,19] :=  6; let TLCT[11,32,6,20] :=  0; let TLCT[11,32,7,21] :=  1;            

let TLCT[11,32,7,22] :=  8; let TLCT[11,32,7,23] :=  0; let TLCT[11,32,8,24] :=  5;         

let TLCT[11,32,8,25] :=  9; let TLCT[11,32,8,26] :=  8; let TLCT[11,32,9,27] :=  2;          

let TLCT[11,32,9,28] :=  6; let TLCT[11,32,10,29] :=  9;let TLCT[11,32,10,30] :=  

10;     

let TLCT[11,32,11,31] :=  4;let TLCT[11,32,11,32] :=  0;let TLCT[11,32,11,33] :=  

6;      

let TLCT[11,32,11,34] :=  10;let TLCT[11,32,12,35] :=  5; let TLCT[11,32,12,36] 

:=  4;     

let TLCT[11,32,12,37] :=  8;let TLCT[11,32,12,38] :=  9; 

let TLCT[11,33,1,1] :=  7; let TLCT[11,33,1,2] := 1; let TLCT[11,33,1,3] :=  6;           

let TLCT[11,33,1,4] :=  7; let TLCT[11,33,2,5] :=  10; let TLCT[11,33,2,6] :=  9;         

let TLCT[11,33,2,7] :=  7; let TLCT[11,33,2,8] :=  0; let TLCT[11,33,3,9] :=  5;        

let TLCT[11,33,3,10] :=  5; let TLCT[11,33,3,11] :=  0; let TLCT[11,33,4,12] :=  9;           

let TLCT[11,33,4,13] :=  7; let TLCT[11,33,4,14] :=  6; let TLCT[11,33,5,15] :=  2;               

let TLCT[11,33,5,16] :=  6; let TLCT[11,33,6,17] :=  8; let TLCT[11,33,6,18] :=  

10;          

let TLCT[11,33,6,19] :=  9; let TLCT[11,33,6,20] :=  8; let TLCT[11,33,7,21] :=  1;         

let TLCT[11,33,7,22] :=  1; let TLCT[11,33,7,23] :=  7; let TLCT[11,33,8,24] :=  4;         

let TLCT[11,33,8,25] :=  8; let TLCT[11,33,8,26] :=  0; let TLCT[11,33,9,27] :=  5;        

let TLCT[11,33,9,28] :=  8; let TLCT[11,33,10,29] :=  6;let TLCT[11,33,10,30] :=  

4;        

let TLCT[11,33,11,31] :=  5;let TLCT[11,33,11,32] :=  7;let TLCT[11,33,11,33] :=  

0;       

let TLCT[11,33,11,34] :=  3; let TLCT[11,33,12,35] :=  1;let TLCT[11,33,12,36] :=  

5;       
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let TLCT[11,33,12,37] :=  1;let TLCT[11,33,12,38] :=  6; 

let TLCT[11,34,1,1] :=  9; let TLCT[11,34,1,2] := 5; let TLCT[11,34,1,3] :=  7;           

let TLCT[11,34,1,4] :=  1; let TLCT[11,34,2,5] :=  3; let TLCT[11,34,2,6] :=  4;        

let TLCT[11,34,2,7] :=  1; let TLCT[11,34,2,8] :=  8; let TLCT[11,34,3,9] :=  4;         

let TLCT[11,34,3,10] :=  8; let TLCT[11,34,3,11] :=  3; let TLCT[11,34,4,12] :=  0;        

let TLCT[11,34,4,13] :=  3; let TLCT[11,34,4,14] :=  3; let TLCT[11,34,5,15] :=  9;             

let TLCT[11,34,5,16] :=  5; let TLCT[11,34,6,17] :=  7; let TLCT[11,34,6,18] :=  

10;          

let TLCT[11,34,6,19] :=  2; let TLCT[11,34,6,20] :=  8; let TLCT[11,34,7,21] :=  6;        

let TLCT[11,34,7,22] :=  7; let TLCT[11,34,7,23] :=  9; let TLCT[11,34,8,24] :=  9;        

let TLCT[11,34,8,25] :=  7; let TLCT[11,34,8,26] :=  2; let TLCT[11,34,9,27] :=  2;          

let TLCT[11,34,9,28] :=  4; let TLCT[11,34,10,29] :=  9;let TLCT[11,34,10,30] :=  

3;          

let TLCT[11,34,11,31] :=  8;let TLCT[11,34,11,32] :=  3;let TLCT[11,34,11,33] :=  

4;        

 let TLCT[11,34,11,34] :=  0;let TLCT[11,34,12,35] :=  5;let TLCT[11,34,12,36] :=  

7;          

let TLCT[11,34,12,37] :=  7;let TLCT[11,34,12,38] :=  4; 

let TLCT[12,35,1,1] :=  9; let TLCT[12,35,1,2] := 1; let TLCT[12,35,1,3] :=  6;          

let TLCT[12,35,1,4] :=  10; let TLCT[12,35,2,5] :=  7; let TLCT[12,35,2,6] :=  5;         

let TLCT[12,35,2,7] :=  7; let TLCT[12,35,2,8] :=  6; let TLCT[12,35,3,9] :=  1;          

let TLCT[12,35,3,10] :=  9; let TLCT[12,35,3,11] :=  4; let TLCT[12,35,4,12] :=  8;          

let TLCT[12,35,4,13] :=  9; let TLCT[12,35,4,14] :=  0; let TLCT[12,35,5,15] :=  8;        

let TLCT[12,35,5,16] :=  7; let TLCT[12,35,6,17] :=  2; let TLCT[12,35,6,18] :=  4;          

let TLCT[12,35,6,19] :=  6; let TLCT[12,35,6,20] :=  1; let TLCT[12,35,7,21] :=  8;         

let TLCT[12,35,7,22] :=  6; let TLCT[12,35,7,23] :=  6; let TLCT[12,35,8,24] :=  5;           

let TLCT[12,35,8,25] :=  1; let TLCT[12,35,8,26] :=  8; let TLCT[12,35,9,27] :=  2;          
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let TLCT[12,35,9,28] :=  2; let TLCT[12,35,10,29] :=  3;let TLCT[12,35,10,30] :=  

5;         

let TLCT[12,35,11,31] :=  8;let TLCT[12,35,11,32] :=  9;let TLCT[12,35,11,33] :=  

1;        

let TLCT[12,35,11,34] :=  10;let TLCT[12,35,12,35] :=  0;let TLCT[12,35,12,36] :=  

8;          

let TLCT[12,35,12,37] :=  1;let TLCT[12,35,12,38] :=  9;. 

let TLCT[12,36,1,1] :=  2; let TLCT[12,36,1,2] := 3; let TLCT[12,36,1,3] :=  6;           

let TLCT[12,36,1,4] :=  8; let TLCT[12,36,2,5] :=  1; let TLCT[12,36,2,6] :=  4;          

let TLCT[12,36,2,7] :=  10; let TLCT[12,36,2,8] :=  6; let TLCT[12,36,3,9] :=  5;          

let TLCT[12,36,3,10] :=  5; let TLCT[12,36,3,11] :=  7; let TLCT[12,36,4,12] :=  3;         

let TLCT[12,36,4,13] :=  3; let TLCT[12,36,4,14] :=  3; let TLCT[12,36,5,15] :=  0;         

let TLCT[12,36,5,16] :=  6; let TLCT[12,36,6,17] :=  0; let TLCT[12,36,6,18] :=  2;         

let TLCT[12,36,6,19] :=  8; let TLCT[12,36,6,20] :=  5; let TLCT[12,36,7,21] :=  8;        

let TLCT[12,36,7,22] :=  10;let TLCT[12,36,7,23] :=  6; let TLCT[12,36,8,24] :=  3;          

let TLCT[12,36,8,25] :=  5; let TLCT[12,36,8,26] :=  4; let TLCT[12,36,9,27] :=  8;           

let TLCT[12,36,9,28] :=  7; let TLCT[12,36,10,29] :=  6;let TLCT[12,36,10,30] :=  

6;          

let TLCT[12,36,11,31] :=  2;let TLCT[12,36,11,32] :=  8;let TLCT[12,36,11,33] :=  

3;          

let TLCT[12,36,11,34] :=  6;let TLCT[12,36,12,35] :=  9;let TLCT[12,36,12,36] :=  

0;          

let TLCT[12,36,12,37] :=  2;let TLCT[12,36,12,38] :=  7; 

let TLCT[12,37,1,1] :=  2; let TLCT[12,37,1,2] := 9; let TLCT[12,37,1,3] :=  6;          

let TLCT[12,37,1,4] :=  7; let TLCT[12,37,2,5] :=  1; let TLCT[12,37,2,6] :=  2;         

let TLCT[12,37,2,7] :=  1; let TLCT[12,37,2,8] :=  7; let TLCT[12,37,3,9] :=  7;          

let TLCT[12,37,3,10] :=  2; let TLCT[12,37,3,11] :=  1; let TLCT[12,37,4,12] :=  1;        
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let TLCT[12,37,4,13] :=  7; let TLCT[12,37,4,14] :=  9; let TLCT[12,37,5,15] :=  1;         

let TLCT[12,37,5,16] :=  0; let TLCT[12,37,6,17] :=  4; let TLCT[12,37,6,18] :=  0;        

let TLCT[12,37,6,19] :=  4; let TLCT[12,37,6,20] :=  2; let TLCT[12,37,7,21] :=  0;           

let TLCT[12,37,7,22] :=  2; let TLCT[12,37,7,23] :=  1; let TLCT[12,37,8,24] :=  5;         

let TLCT[12,37,8,25] :=  7; let TLCT[12,37,8,26] :=  3; let TLCT[12,37,9,27] :=  9;          

let TLCT[12,37,9,28] :=  6; let TLCT[12,37,10,29] :=  3;let TLCT[12,37,10,30] :=  

4;       

let TLCT[12,37,11,31] :=  8;let TLCT[12,37,11,32] :=  8;let TLCT[12,37,11,33] :=  

6;       

let TLCT[12,37,11,34] :=  2; let TLCT[12,37,12,35] :=  4;let TLCT[12,37,12,36] :=  

3;     

let TLCT[12,37,12,37] :=  0;let TLCT[12,37,12,38] :=  3; 

let TLCT[12,38,1,1] :=  10; let TLCT[12,38,1,2] := 10; let TLCT[12,38,1,3] :=  3;         

let TLCT[12,38,1,4] :=  5; let TLCT[12,38,2,5] :=  4; let TLCT[12,38,2,6] :=  1;          

let TLCT[12,38,2,7] :=  7; let TLCT[12,38,2,8] :=  1; let TLCT[12,38,3,9] :=  3;           

let TLCT[12,38,3,10] :=  3; let TLCT[12,38,3,11] :=  4; let TLCT[12,38,4,12] :=  5;           

let TLCT[12,38,4,13] :=  3; let TLCT[12,38,4,14] :=  8; let TLCT[12,38,5,15] :=  1;           

let TLCT[12,38,5,16] :=  5; let TLCT[12,38,6,17] :=  10;let TLCT[12,38,6,18] :=  3;          

let TLCT[12,38,6,19] :=  0; let TLCT[12,38,6,20] :=  6; let TLCT[12,38,7,21] :=  7;          

let TLCT[12,38,7,22] :=  0; let TLCT[12,38,7,23] :=  9; let TLCT[12,38,8,24] :=  6;          

let TLCT[12,38,8,25] :=  3; let TLCT[12,38,8,26] :=  4; let TLCT[12,38,9,27] :=  6;          

let TLCT[12,38,9,28] :=  10;let TLCT[12,38,10,29] :=  5;let TLCT[12,38,10,30] :=  

7;          

let TLCT[12,38,11,31] :=  0;let TLCT[12,38,11,32] :=  5;let TLCT[12,38,11,33] :=  

2;          

let TLCT[12,38,11,34] :=  10;let TLCT[12,38,12,35] :=  1;let TLCT[12,38,12,36] :=  

8;         

let TLCT[12,38,12,37] :=  3;let TLCT[12,38,12,38] :=  0;  
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APPENDIX B: C++ PROGRAM FOR SA ALGORITHM: CASE 

STUDY 1 

Header file 

Format: .h 

#include <iostream> 

#include <conio.h> 

#include <random> 

#include <time.h> 

#include <cmath> 

 

using namespace std; 

 

class Operation 

{ 

public: 

 int R; 

 int D; 

 int F; 

 int P; 

 float TO; 

 float RT; 

 int I; 

 int E; 

 int G; 

}; 

 

extern Operation O[38]; 

extern Operation BG[38]; 

extern float Face[5][5]; 

extern float Tool[38][38]; 

extern int Q[38]; 

extern int BS[38]; 

extern int Nbg[4]; 

extern int H[12]; 

extern float Ebg;  

extern float Ebs; 

extern float t; 
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extern float takt; 

extern float T[12]; 

extern int counter1; 

extern int counter2; 

extern int A; 

extern int NM; 

extern int totaloper; 

float grouping_energy(); 

float sequencing_energy(); 

void display_result(); 

void best_grouping_solution (float, int []); 

void best_sequencing_solution (float); 

void declare();  

int randint(int, int); 

Source file 1 

Format: .cpp 

#include "data.h" 

 

Operation O[38]; 

Operation BG[38]; 

float Face[5][5] = 

{{0,1.95,2.5,4,5},{1.95,0,1.95,2.5,4},{2.5,1.95,0,1.95,2.5},{4,2.5,1.95,0,1.95},{5

,4,2.5,1.95,0}};  

float Tool[38][38] = 

{{0,10,6,1,0,9,1,8,0,4,4,5,2,8,9,6,3,5,2,1,5,7,8,7,6,10,2,9,0,6,2,2,10,3,4,10,10,7

},{8,0,2,1,6,0,4,1,3,9,2,2,4,8,3,6,4,6,2,4,6,6,1,3,5,8,9,6,2,0,8,2,7,2,5,5,9,5},{6

,9,0,10,2,1,6,3,1,9,3,6,2,6,6,7,10,5,7,1,9,9,7,0,5,2,0,7,10,3,6,5,4,1,7,6,5,7},{9,

8,7,0,10,4,0,9,8,0,3,4,6,6,9,6,1,1,4,1,10,4,9,7,0,4,2,0,10,8,8,1,6,8,7,9,4,6},{0,1

,6,1,0,9,8,8,0,1,5,10,10,2,2,4,8,6,3,2,2,9,10,5,8,3,5,2,0,2,2,7,1,8,5,10,4,4},{9,0

,8,1,5,0,5,1,2,4,7,1,1,10,10,8,5,7,7,6,8,6,10,1,1,4,3,10,4,0,7,3,3,7,8,7,10,8},{4,

1,5,0,8,5,0,7,8,0,8,5,6,7,1,1,4,8,10,10,7,7,2,7,0,6,1,0,5,6,8,6,5,3,7,9,9,10},{4,1

,10,5,1,4,2,0,7,4,0,9,2,5,9,8,6,8,9,7,5,10,0,5,2,0,10,3,7,10,4,1,0,6,1,7,2,1},{0,2

,8,4,0,2,7,3,0,3,5,2,9,10,7,7,5,4,4,7,6,7,4,8,9,9,8,6,0,6,4,10,6,1,4,2,2,7},{1,9,1

0,0,2,1,0,6,10,0,1,5,1,10,4,10,8,8,7,2,7,5,8,3,0,9,10,0,5,2,6,7,9,2,10,5,10,1},{7,

2,2,6,8,7,9,0,9,10,0,1,4,8,9,4,8,1,3,1,4,8,10,2,1,0,7,7,7,8,7,10,0,7,9,1,3,10},{6,

6,1,1,1,5,8,8,2,3,4,0,10,4,6,2,2,8,1,5,6,3,7,3,2,2,2,1,2,6,10,5,7,0,10,2,3,5},{3,3

,1,7,2,6,4,7,5,5,6,8,0,5,9,3,4,2,2,1,9,6,3,9,5,5,9,5,3,2,2,2,5,7,6,9,1,6},{7,2,1,6
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,7,8,6,3,7,10,4,9,2,0,2,7,6,1,5,3,6,5,9,9,7,4,4,3,9,1,6,7,1,9,0,10,3,5},{10,7,6,6,

7,5,4,6,6,8,8,1,6,3,0,3,0,9,7,10,4,2,6,5,9,1,9,6,9,8,2,7,4,2,10,0,3,1},{4,9,3,3,5,

1,4,8,7,10,1,8,1,4,10,0,2,0,3,10,0,2,10,9,5,2,2,8,5,8,1,5,9,1,6,2,0,2},{4,6,10,8,1

,3,1,4,2,10,2,5,1,4,0,6,0,4,10,1,5,3,5,3,6,5,1,9,6,4,5,6,6,9,9,0,7,8},{2,3,3,8,8,9

,5,5,8,4,7,2,9,10,5,0,8,0,6,5,0,3,6,10,5,4,9,9,10,1,3,3,7,9,9,10,0,3},{10,9,5,9,5,

2,6,8,4,3,5,5,2,3,10,1,5,7,0,6,1,0,8,2,1,6,9,8,4,3,0,3,7,9,3,1,4,0},{3,10,5,7,4,7,

3,5,6,1,4,2,2,9,5,6,7,10,8,0,9,3,0,7,3,4,10,2,9,3,8,0,10,10,8,9,10,5},{1,4,7,10,10

,5,6,9,4,9,9,7,4,8,10,0,10,0,7,4,0,2,1,10,9,4,2,9,9,7,3,7,6,7,7,4,0,4},{3,1,10,6,6

,8,5,2,4,2,9,2,10,7,4,10,10,9,0,4,7,0,5,5,10,1,6,7,4,4,0,9,5,6,7,5,5,0},{2,8,10,10

,9,3,10,6,8,7,7,10,8,6,5,2,1,3,9,0,7,6,0,5,8,8,1,8,5,1,6,0,5,4,3,9,1,1},{5,7,0,10,

10,8,9,9,4,1,2,4,3,1,10,9,8,3,1,7,4,10,7,0,10,3,0,2,1,4,8,9,2,1,2,8,9,3},{10,8,3,0

,9,3,0,6,2,0,4,6,3,6,8,5,1,3,2,5,2,4,10,1,0,9,5,0,9,8,1,6,5,6,1,9,1,4},{7,8,7,7,9,

7,3,0,1,8,0,9,6,10,4,7,10,10,5,4,2,9,7,9,6,0,10,9,5,8,1,1,0,7,4,1,4,4},{6,2,0,1,6,

1,7,2,6,3,1,4,7,4,9,4,8,2,6,4,10,10,9,0,4,5,0,2,3,4,7,8,6,9,8,7,8,6},{9,4,1,0,6,2,

0,4,6,0,4,2,6,9,9,3,2,8,3,4,6,3,7,3,0,4,2,0,7,6,5,3,8,2,10,6,1,3},{0,8,9,3,0,4,2,1

0,0,7,2,3,7,7,7,5,6,1,2,4,5,4,6,9,5,8,3,4,0,9,4,1,3,5,7,3,9,2},{8,0,1,8,6,0,4,2,4,

1,6,7,1,3,7,7,3,8,10,6,3,2,4,6,7,10,2,9,10,0,3,9,4,6,6,3,10,2},{4,5,8,3,10,1,10,1,

2,10,9,7,3,2,3,8,9,2,0,4,10,0,3,7,4,10,5,10,5,8,0,1,6,2,10,3,1,0},{6,7,9,8,7,4,7,8

,4,6,9,6,1,5,5,7,7,6,6,0,1,8,0,5,9,8,2,6,9,10,4,0,6,10,5,4,8,9},{7,1,6,7,10,9,7,0,

5,5,0,9,7,6,2,6,8,10,9,8,1,1,7,4,8,0,5,8,6,4,5,7,0,3,1,5,1,6},{9,5,7,1,3,4,1,8,4,8

,3,0,3,3,9,5,7,10,2,8,6,7,9,9,7,2,2,4,9,3,8,3,4,0,5,7,7,4},{9,1,6,10,7,5,7,6,1,9,4

,8,9,0,8,7,2,4,6,1,8,6,6,5,1,8,2,2,3,5,8,9,1,10,0,8,1,9},{2,3,6,8,1,4,10,6,5,5,7,3

,3,3,0,6,0,2,8,5,8,10,6,3,5,4,8,7,6,6,2,8,3,6,9,0,2,7},{2,9,6,7,1,2,1,7,7,2,1,1,7,

9,1,0,4,0,4,2,0,2,1,5,7,3,9,6,3,4,8,8,6,2,4,3,0,3},{10,10,3,5,4,1,7,1,3,3,4,5,3,8,

1,5,10,3,0,6,7,0,9,6,3,4,6,10,5,7,0,5,2,10,1,8,3,0}}; 

int Q[38] = 

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; 

int BS[38] = 

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; 

int Nbg[4] = {1,1,1,1}; 

int H[12] = {4,2,2,2,2,1,1,1,1,1,3,3}; 

int A = 75; 

int NM = 5; 

int totaloper = 38; 

float Ebg = 1600; 

float Ebs = 500; 

float t = 5; 

float takt = 400; 

float T[12] = {2000,2000,2000,2000,2000,2000,2000,2000,2000,2000,2000,2000}; 
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float grouping_energy() 

{ 

  

 float En=0; float Eng[4]={0,0,0,0}; int Hg[4]={0,0,0,0}; int decision=0; 

int N[4] = {1,1,1,1}; 

 //ORCT 

 int F1=0; int F2=0; 

 for (int i=1; i<=4; i++) 

 { 

  for(int j=1; j<=totaloper-1; j++) 

  { 

   if(O[j].G==i) 

    { 

     F1=O[j].F; 

     for(int k=j+1; k<=totaloper; k++) 

     {if(O[k].G==i) {F2=O[k].F; Eng[i-1] = Eng[i-1] + 

Face[F1-1][F2-1]; break;}} 

       

    } 

  } 

 } 

 for(int i=1; i<=4;i++) 

 { 

  En = En + Eng[i-1]; 

 } 

 //TLCT 

 int T1=0; int T2=0; 

 for (int i=1; i<=4; i++) 

 { 

  for(int j=1; j<=totaloper-1; j++) 

  { 

   if(O[j].G==i) 

    { 

     T1=j; 

     for(int k=j+1; k<=totaloper; k++) 

     {if(O[k].G==i) {T2=k; Eng[i-1] = Eng[i-1] + 

Tool[T1-1][T2-1]; break;}} 

       

    } 
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  } 

 } 

 //OPT 

 for (int i=1; i<=4; i++) 

 { 

  for(int j=1; j<=totaloper; j++) 

  { 

   if(O[j].G==i) 

    { 

     Eng[i-1] = Eng[i-1] + O[j].D * 

(O[j].TO+O[j].RT);  

    } 

  } 

 } 

 //Tool life 

 for (int i=1; i<=4; i++) 

 { 

  int Y[12]={0,0,0,0,0,0,0,0,0,0,0,0}; 

  float TO[12]={0,0,0,0,0,0,0,0,0,0,0,0}; 

  for(int j=1; j<=totaloper; j++) 

  { 

   if(O[j].G==i) 

    { 

     Y[O[j].P-1]=1; 

     TO[O[j].P-1]=TO[O[j].P-1] + O[j].TO*O[j].D; 

    } 

  } 

  for(int k=1; k<=12; k++) 

  { 

   if(Y[k-1]==1) 

    { 

     Hg[i-1] = Hg[i-1] + H[k-1]; 

    } 

   if(TO[k-1]>T[k-1]) 

   { 

    decision=1; 

   } 

  } 

    



114 
 

 } 

 //Inclusion and exclusion 

  

 for(int i=1; i<=totaloper; i++) 

 { 

  for (int j=1; j<=totaloper; j++) 

  { 

   if(O[i].I==O[j].R&&O[i].G!=O[j].G) {decision=1;} 

   if(O[i].E==O[j].R&&O[i].G==O[j].G) {decision=1;} 

  } 

 } 

 //No. of machines 

 for (int i=1; i<=4; i++) 

 { 

  if(Eng[i-1]>(takt*N[i-1])&&Eng[i-1]<2*(takt*N[i-1])) 

   N[i-1]++; 

  else if(Eng[i-1]>2*(takt*N[i-1])) 

   N[i-1] = N[i-1] + 2; 

  else if (((takt*N[i-1])-Eng[i-1])>takt) 

   N[i-1]--;    

 } 

 //TT 

 for (int i=1; i<=4; i++) 

 { 

  Eng[i-1] = Eng[i-1] + (N[i-1]-1)*t; 

  En = En + (N[i-1]-1)*t; 

 } 

 //Takt time, Tool magazine limit and No. of machines 

 for (int i=1; i<=4; i++) 

 { 

  if(Eng[i-1]>(takt*N[i-1])||Hg[i-1]>(A*N[i-1])||N[i-1]>NM) 

   { 

    decision=1;  

   } 

 } 

 

 if (decision==0) {best_grouping_solution(En,N); return En;} 

 else return 1; 

} 
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float sequencing_energy() 

{ 

 float En=0; 

  

 for(int i=1; i<=4; i++) 

 { 

  for (int j=1; j<=totaloper; j++) 

  { 

   if(BG[Q[j-1]].G==i) 

    {   int F1=0; int F2=0; int T1=0; int T2=0; 

      

     for(int k=j+1; k<=totaloper; k++) 

     {if(BG[Q[k-1]].G==i)  

      { 

       F1=O[Q[j-1]].F; F2=O[Q[k-1]].F; En 

= En + Face[F1-1][F2-1];  

       T1=Q[j-1]; T2=Q[k-1]; En = En + 

Tool[T1-1][T2-1]; break; 

      } 

     }       

  

    } 

  } 

 } 

 

 best_sequencing_solution(En); 

 return En; 

} 

 

void display_result() 

{ 

 float ORCT[4]={0,0,0,0}; float TLCT[4]={0,0,0,0}; float OPT[4]={0,0,0,0}; 

 for(int i=1; i<=4; i++) 

 { 

  cout << endl << " Workstation No= " << i << endl; 

  for (int j=1; j<=totaloper; j++) 

  { 

   if(BG[BS[j-1]].G==i) 
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    {   cout << "[" << O[BS[j-1]].R << ", " << BS[j-1] << 

"] "; 

     OPT[i-1] = OPT[i-1] + O[BS[j-1]].D * (O[BS[j-

1]].TO+O[BS[j-1]].RT); 

     int F1=0; int F2=0; int T1=0; int T2=0; 

      

     for(int k=j+1; k<=totaloper; k++) 

     {if(BG[BS[k-1]].G==i)  

      { 

       F1=O[BS[j-1]].F; F2=O[BS[k-1]].F; 

ORCT[i-1] = ORCT[i-1] + Face[F1-1][F2-1];  

       T1=BS[j-1]; T2=BS[k-1]; TLCT[i-1] 

= TLCT[i-1] + Tool[T1-1][T2-1]; break; 

      } 

     }       

  

    } 

  } 

  cout << endl << "N= " << Nbg[i-1] << " ORCT= " << ORCT[i-1] << " 

TLCT= " << TLCT[i-1] << "  OPT= " << OPT[i-1] << " TT= " << (Nbg[i-1]-1)*t << " 

Idle time= " << Nbg[i-1]*takt-ORCT[i-1]-TLCT[i-1]-OPT[i-1]-(Nbg[i-1]-1)*t << endl; 

 } 

 

 cout << endl << "Takt time= " << takt << " Total ORCT= " << 

ORCT[0]+ORCT[1]+ORCT[2]+ORCT[3] << " Total TLCT= " << 

TLCT[0]+TLCT[1]+TLCT[2]+TLCT[3] << " Total OPT= " << OPT[0]+OPT[1]+OPT[2]+OPT[3] 

<< " Total TT= " << (Nbg[0]+Nbg[1]+Nbg[2]+Nbg[3]-4)*t << " Makespan= " << 

ORCT[0]+ORCT[1]+ORCT[2]+ORCT[3]+TLCT[0]+TLCT[1]+TLCT[2]+TLCT[3]+OPT[0]+OPT[1]+OPT[

2]+OPT[3]+(Nbg[0]+Nbg[1]+Nbg[2]+Nbg[3]-4)*t << endl; 

} 

 

 

void best_grouping_solution (float Enew, int N[]) 

{ 

 if (Enew < Ebg) 

 { 

  Ebg=Enew; 

  for(int i=1; i<=totaloper; i++) 

  { 
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   BG[i].G=O[i].G; 

   BG[i].F=O[i].F; 

  } 

  for(int i=1; i<=4; i++) 

  { 

   Nbg[i-1]=N[i-1]; 

  } 

 } 

 

} 

 

void best_sequencing_solution (float Enew) 

{ 

 if (Enew < Ebs) 

 { 

  Ebs=Enew; 

  for(int i=1; i<=totaloper; i++) 

  { 

   BS[i-1]=Q[i-1]; 

  } 

 } 

 

} 

 

int randint(int floor, int ceiling) 

{ 

  int range = ceiling+1-floor; 

  int num = floor + int ((range*rand()) / (RAND_MAX+1.0)); 

  return num; 

} 

 

void declare() 

{ 

O[1].R=1;    O[1].D=16;   O[1].F=1;   O[1].P=1;   O[1].TO= 2.88;   O[1].RT= 1.73;   

O[1].I=0;   O[1].E=6;       

O[2].R=1;    O[2].D=16;   O[2].F=1;   O[2].P=2;   O[2].TO= 1.25;   O[2].RT= 0.75;   

O[2].I=0;   O[2].E=6;       

O[3].R=1;    O[3].D=16;   O[3].F=1;   O[3].P=3;   O[3].TO= 1.71;   O[3].RT= 1.03;   

O[3].I=0;   O[3].E=6;    
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O[4].R=1;    O[4].D=16;   O[4].F=1;   O[4].P=4;   O[4].TO= 2.93;   O[4].RT= 1.80;   

O[4].I=0;   O[4].E=6;       

O[5].R=2;    O[5].D=4;    O[5].F=1;   O[5].P=1;   O[5].TO= 1.54;   O[5].RT= 0.92;   

O[5].I=0;   O[5].E=0;     

O[6].R=2;    O[6].D=4;    O[6].F=1;   O[6].P=2;   O[6].TO= 1.57;   O[6].RT= 0.94;   

O[6].I=0;   O[6].E=0;    

O[7].R=2;    O[7].D=4;    O[7].F=1;   O[7].P=4;   O[7].TO= 2.62;   O[7].RT= 1.57;   

O[7].I=0;   O[7].E=0;      

O[8].R=2;    O[8].D=4;    O[8].F=1;   O[8].P=5;   O[8].TO= 1.70;   O[8].RT= 1.00;   

O[8].I=0;   O[8].E=0;       

O[9].R=3;    O[9].D=8;    O[9].F=1;   O[9].P=1;   O[9].TO= 2.75;   O[9].RT= 1.65;   

O[9].I=0;   O[9].E=0;       

O[10].R=3;   O[10].D=8;   O[10].F=1;  O[10].P=4;  O[10].TO= 1.79;  O[10].RT= 1.07;  

O[10].I=0;  O[10].E=0;    

O[11].R=3;   O[11].D=8;   O[11].F=1;  O[11].P=5;  O[11].TO= 2.89;  O[11].RT= 1.73;  

O[11].I=0;  O[11].E=0;   

O[12].R=4;   O[12].D=8;   O[12].F=2;  O[12].P=6;  O[12].TO= 1.95;  O[12].RT= 1.17;  

O[12].I=5;  O[12].E=0;   

O[13].R=4;   O[13].D=8;   O[13].F=2;  O[13].P=7;  O[13].TO= 1.20;  O[13].RT= 0.75;  

O[13].I=5;  O[13].E=0;   

O[14].R=4;   O[14].D=8;   O[14].F=2;  O[14].P=8;  O[14].TO= 1.65;  O[14].RT= 0.99;  

O[14].I=5;  O[14].E=0;   

O[15].R=5;   O[15].D=4;   O[15].F=2;  O[15].P=9;  O[15].TO= 2.68;  O[15].RT= 1.61;  

O[15].I=0;  O[15].E=0;    

O[16].R=5;   O[16].D=4;   O[16].F=2;  O[16].P=10; O[16].TO= 2.30;  O[16].RT= 1.38;  

O[16].I=0;  O[16].E=0;    

O[17].R=6;   O[17].D=4;   O[17].F=3;  O[17].P=9;  O[17].TO= 1.97;  O[17].RT= 1.18;  

O[17].I=8;  O[17].E=0;    

O[18].R=6;   O[18].D=4;   O[18].F=3;  O[18].P=10; O[18].TO= 3.37;  O[18].RT= 2.02;  

O[18].I=8;  O[18].E=0;    

O[19].R=6;   O[19].D=4;   O[19].F=3;  O[19].P=11; O[19].TO= 1.36;  O[19].RT= 0.82;  

O[19].I=8;  O[19].E=0;   

O[20].R=6;   O[20].D=4;   O[20].F=3;  O[20].P=12; O[20].TO= 2.74;  O[20].RT= 1.40;  

O[20].I=8;  O[20].E=0;   

O[21].R=7;   O[21].D=4;   O[21].F=3;  O[21].P=10; O[21].TO= 1.35;  O[21].RT= 0.81;  

O[21].I=0;  O[21].E=12;  

O[22].R=7;   O[22].D=4;   O[22].F=3;  O[22].P=11; O[22].TO= 1.22;  O[22].RT= 0.73;  

O[22].I=0;  O[22].E=12;  
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O[23].R=7;   O[23].D=4;   O[23].F=3;  O[23].P=12; O[23].TO= 3.09;  O[23].RT= 1.85;  

O[23].I=0;  O[23].E=12;  

O[24].R=8;   O[24].D=20;  O[24].F=4;  O[24].P=3;  O[24].TO= 1.20;  O[24].RT= 0.72;  

O[24].I=0;  O[24].E=0;    

O[25].R=8;   O[25].D=20;  O[25].F=4;  O[25].P=4;  O[25].TO= 1.62;  O[25].RT= 0.97;  

O[25].I=0;  O[25].E=0;   

O[26].R=8;   O[26].D=20;  O[26].F=4;  O[26].P=5;  O[26].TO= 2.06;  O[26].RT= 1.24;  

O[26].I=0;  O[26].E=0;   

O[27].R=9;   O[27].D=20;  O[27].F=3;  O[27].P=3;  O[27].TO= 1.90;  O[27].RT= 1.14;  

O[27].I=0;  O[27].E=0;   

O[28].R=9;   O[28].D=20;  O[28].F=3;  O[28].P=4;  O[28].TO= 3.30;  O[28].RT= 1.98;  

O[28].I=0;  O[28].E=0;   

O[29].R=10;  O[29].D=8;   O[29].F=5;  O[29].P=1;  O[29].TO= 2.78;  O[29].RT= 1.67;  

O[29].I=11; O[29].E=0;   

O[30].R=10;  O[30].D=8;   O[30].F=5;  O[30].P=2;  O[30].TO= 1.31;  O[30].RT= 0.79;  

O[30].I=11; O[30].E=0;   

O[31].R=11;  O[31].D=8;   O[31].F=5;  O[31].P=11; O[31].TO= 3.43;  O[31].RT= 2.05;  

O[31].I=0;  O[31].E=0;   

O[32].R=11;  O[32].D=8;   O[32].F=5;  O[32].P=12; O[32].TO= 3.42;  O[32].RT= 2.05;  

O[32].I=0;  O[32].E=0;   

O[33].R=11;  O[33].D=8;   O[33].F=5;  O[33].P=5;  O[33].TO= 3.39;  O[33].RT= 2.03;  

O[33].I=0;  O[33].E=0;   

O[34].R=11;  O[34].D=8;   O[34].F=5;  O[34].P=6;  O[34].TO= 2.50;  O[34].RT= 1.50;  

O[34].I=0;  O[34].E=0;   

O[35].R=12;  O[35].D=4;   O[35].F=5;  O[35].P=8;  O[35].TO= 2.64;  O[35].RT= 1.58;  

O[35].I=0;  O[35].E=0;   

O[36].R=12;  O[36].D=4;   O[36].F=5;  O[36].P=9;  O[36].TO= 2.26;  O[36].RT= 1.36;  

O[36].I=0;  O[36].E=0;   

O[37].R=12;  O[37].D=4;   O[37].F=5;  O[37].P=10; O[37].TO= 2.45;  O[37].RT= 1.47;  

O[37].I=0;  O[37].E=0;   

O[38].R=12;  O[38].D=4;   O[38].F=5;  O[38].P=11; O[38].TO= 2.32;  O[38].RT= 1.40;  

O[38].I=0;  O[38].E=0;   

 

//Generate grouping 

 

 int steps=12/4; int index_step=0; int decision=0; 

 int R1[3]={-1,-1,-1}, R2[3]={-1,-1,-1}, R3[4]={-1,-1,-1,-1}, R4[3]={-1,-1,-

1}; 

 int R=0; int I=0; 
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 for(int i=1; i<=totaloper; i++) 

 { 

  O[i].G=0; 

 } 

 

 //G1 

 //String 

 for(int i=1; i<=totaloper; i++) 

 { 

  if(O[i].I!=0) 

  { 

   for(int j=1; j<=totaloper; j++) 

   { 

    if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)  

    {    

     O[j].G=1;  

     if(O[j].R!=R1[0]&&O[j].R!=R1[1]&&O[j].R!=R1[2]) 

     {R1[index_step]=O[j].R; index_step++;} 

    } 

 

   }   

  break; 

  }    

 } 

 //Filler 

 for (int i=1; i<=totaloper; i++) 

  { 

   if(O[i].I==0&&index_step<steps) 

   { 

    decision=0; 

      for(int j=1; j<=totaloper; j++) 

      { 

       for(int k=0; k<=index_step; k++) 

       

       {  

       

 if((O[j].E==O[i].R)&&(O[j].R==R1[k])) decision=1; 
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       }     

   

      } 

      if (decision==0) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=1; 

        }  

       

 if(O[i].R!=R1[0]&&O[i].R!=R1[1]&&O[i].R!=R1[2]) 

        {R1[index_step]=O[i].R; 

index_step++;} 

       } 

      else 

if(O[i].I==R1[0]||O[i].I==R1[1]||O[i].I==R1[2]) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=1; 

        }  

       

 if(O[i].R!=R1[0]&&O[i].R!=R1[1]&&O[i].R!=R1[2]) 

        {R1[index_step]=O[i].R; 

index_step++;} 

       } 

    }    

  } 

 

 //G2 

 //String 

 index_step=0; 

 for (int i=1; i<=totaloper; i++) 

 { 

  if(O[i].I!=0&&O[i].G==0) 
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  { 

   for(int j=1; j<=totaloper; j++) 

   { 

    if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)  

    {    

     O[j].G=2;  

     if(O[j].R!=R2[0]&&O[j].R!=R2[1]&&O[j].R!=R2[2]) 

     {R2[index_step]=O[j].R; index_step++;} 

      

    } 

   } 

  break; 

  }   

 } 

 //Filler 

 for(int i=1; i<=totaloper; i++) 

 { 

   if(O[i].I==0&&O[i].G==0&&index_step<steps) 

   { 

    decision=0; 

      for(int j=1; j<=totaloper; j++) 

      { 

       for(int k=0; k<=index_step; k++) 

       

       {  

       

 if((O[j].E==O[i].R)&&(O[j].R==R2[k])) decision=1; 

       }     

   

      } 

      if (decision==0) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=2; 

        }  
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 if(O[i].R!=R2[0]&&O[i].R!=R2[1]&&O[i].R!=R2[2]) 

        {R2[index_step]=O[i].R; 

index_step++;} 

       } 

      else 

if(O[i].I==R2[0]||O[i].I==R2[1]||O[i].I==R2[2]) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=2; 

        }  

       

 if(O[i].R!=R2[0]&&O[i].R!=R2[1]&&O[i].R!=R2[2]) 

        {R2[index_step]=O[i].R; 

index_step++;} 

       } 

    }    

 }   

 

 //G3 

 //String 

 index_step=0; 

 for (int i=1; i<=totaloper; i++) 

 { 

  if(O[i].I!=0&&O[i].G==0) 

  { 

   for(int j=1; j<=totaloper; j++) 

   { 

    if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)  

    {    

     O[j].G=3;  

     if(O[j].R!=R3[0]&&O[j].R!=R3[1]&&O[j].R!=R3[2]) 

     {R3[index_step]=O[j].R; index_step++;} 

    } 

   }    

  break; 
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  } 

 } 

 //Filler 

 for (int i=1; i<=totaloper; i++) 

  { 

   if(O[i].I==0&&O[i].G==0&&index_step<steps+1) 

   { 

    decision=0; 

      for(int j=1; j<=totaloper; j++) 

      { 

       for(int k=0; k<=index_step; k++) 

       

       {  

       

 if((O[j].E==O[i].R)&&(O[j].R==R3[k])) decision=1; 

       }     

   

      } 

      if (decision==0) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=3; 

        }  

       

 if(O[i].R!=R3[0]&&O[i].R!=R3[1]&&O[i].R!=R3[2]) 

        {R3[index_step]=O[i].R; 

index_step++;} 

       } 

      else 

if(O[i].I==R3[0]||O[i].I==R3[1]||O[i].I==R3[2]) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=3; 
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        }  

       

 if(O[i].R!=R3[0]&&O[i].R!=R3[1]&&O[i].R!=R3[2]) 

        {R3[index_step]=O[i].R; 

index_step++;} 

       } 

    }    

  }  

 

 //G4 

 //String 

 index_step=0; 

 for (int i=1; i<=totaloper; i++) 

 { 

  if(O[i].I!=0&&O[i].G==0) 

  { 

   for(int j=1; j<=totaloper; j++) 

   { 

    if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)  

    {    

     O[j].G=4;  

     if(O[j].R!=R4[0]&&O[j].R!=R4[1]&&O[j].R!=R4[2]) 

     {R4[index_step]=O[j].R; index_step++;} 

    } 

   }    

  break; 

  } 

 } 

 //Filler 

 for (int i=1; i<=totaloper; i++) 

  { 

   if(O[i].I==0&&O[i].G==0&&index_step<steps) 

   { 

    decision=0; 

      for(int j=1; j<=totaloper; j++) 

      { 

       for(int k=0; k<=index_step; k++) 

       

       {  
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 if((O[j].E==O[i].R)&&(O[j].R==R4[k])) decision=1; 

       }     

   

      } 

      if (decision==0) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=4; 

        }  

       

 if(O[i].R!=R4[0]&&O[i].R!=R4[1]&&O[i].R!=R4[2]) 

        {R4[index_step]=O[i].R; 

index_step++;} 

       } 

      else 

if(O[i].I==R4[0]||O[i].I==R4[1]||O[i].I==R4[2]) 

       { 

        for(int k=1; k<=totaloper; 

k++)        

        {  

         if(O[k].R==O[i].R) 

O[k].G=4; 

        }  

       

 if(O[i].R!=R4[0]&&O[i].R!=R4[1]&&O[i].R!=R4[2]) 

        {R4[index_step]=O[i].R; 

index_step++;} 

       } 

    }    

  } 

 

  

 for(int i=1; i<=totaloper; i++) 

 { 
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  cout << " Oper no = " << i << " R= " << O[i].R << " Group = " << 

O[i].G << endl; 

 } 

} 

 

Source file 2 

Format: .cpp 

#include "data.h" 

void main() 

{ 

 clock_t start_time=clock(); 

 

 declare(); 

   

 double e = 2.718281828; 

 double lambda = 0.99; 

  

 float Enew; float Ecs=0; 

 int counter1=0; int counter2=0; 

 int x; int x1; int x2; int x3;  

 int temp1=0; int temp2=0; int temp3=0; float decision=0; 

 

 int R[20]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};  

 

 float Ec = Enew = grouping_energy();  

 for (double T=1000000; T>=1; T *= lambda) 

   { 

    for (int n=1; n<=50; n++) 

    { 

      

      temp1=0; temp2=0; temp3=0; decision=0; 

       

      x=randint(1,2); 

      switch(x) 

      { 

      case 1: 
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       x1=randint(1,4); 

       switch(x1) 

       { 

       case 1: 

        for(int i=1; i<=totaloper; 

i++) 

        { 

         if(O[i].G==2) 

         { temp1=O[i].R; 

break;} 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==2&&O[i].R==temp1) 

          O[i].G=1; 

        } 

 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==1&&O[i].R>temp2) 

          temp2=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==1&&O[i].R==temp2) 

          O[i].G=2; 

        } 

        decision = 

grouping_energy(); 

        if (decision>1) 

Enew=decision; 

        else if (decision==1) 
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        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==1&&O[i].R==temp1) 

          

 O[i].G=2; 

         } 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==2&&O[i].R==temp2) 

          

 O[i].G=1; 

         } 

        } 

        break; 

       case 2: 

        for(int i=1; i<=totaloper; 

i++) 

        { 

         if(O[i].G==3) 

         { temp1=O[i].R; 

break;} 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==3&&O[i].R==temp1) 

          O[i].G=2; 

        } 

 

        for(int i=1; i<=totaloper; 

i++) 

        { 
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 if(O[i].G==2&&O[i].R>temp2) 

          temp2=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==2&&O[i].R==temp2) 

          O[i].G=3; 

        } 

        decision = 

grouping_energy(); 

        if (decision>1) 

Enew=decision; 

        else if (decision==1) 

        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==2&&O[i].R==temp1) 

          

 O[i].G=3; 

         } 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==3&&O[i].R==temp2) 

          

 O[i].G=2; 

         } 

        } 

        break; 

       case 3: 

        for(int i=1; i<=totaloper; 

i++) 

        { 
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         if(O[i].G==4) 

         { temp1=O[i].R; 

break;} 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==4&&O[i].R==temp1) 

          O[i].G=3; 

        } 

 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==3&&O[i].R>temp2) 

          temp2=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==3&&O[i].R==temp2) 

          O[i].G=4; 

        } 

        decision = 

grouping_energy(); 

        if (decision>1) 

Enew=decision; 

        else if (decision==1) 

        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==3&&O[i].R==temp1) 

          

 O[i].G=4; 
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         } 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==4&&O[i].R==temp2) 

          

 O[i].G=3; 

         } 

        } 

        break; 

       case 4: 

        for(int i=1; i<=totaloper; 

i++) 

        { 

         if(O[i].G==1) 

         { temp1=O[i].R; 

break;} 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==1&&O[i].R==temp1) 

          O[i].G=4; 

        } 

 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==4&&O[i].R>temp2) 

          temp2=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==4&&O[i].R==temp2) 
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          O[i].G=1; 

        } 

        decision = 

grouping_energy(); 

        if (decision>1) 

Enew=decision; 

        else if (decision==1) 

        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==4&&O[i].R==temp1) 

          

 O[i].G=1; 

         } 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==1&&O[i].R==temp2) 

          

 O[i].G=4; 

         } 

        } 

        break; 

       default: break; 

       }  

       break; 

      case 2: 

       x2=randint(1,4); 

       switch(x2) 

       { 

       case 1: 

         

        for(int i=1; i<=totaloper; 

i++) 

        { 
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 if(O[i].G==1&&O[i].R>temp3) 

          temp3=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==1&&O[i].R==temp3) 

          O[i].G=2; 

        } 

        decision = 

grouping_energy(); 

        if (decision>1) 

Enew=decision; 

        else if (decision==1) 

        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==2&&O[i].R==temp3) 

          

 O[i].G=1; 

         } 

        } 

        break; 

       case 2: 

         

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==2&&O[i].R>temp3) 

          temp3=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 
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 if(O[i].G==2&&O[i].R==temp3) 

          O[i].G=3; 

        } 

        decision = 

grouping_energy(); 

        if (decision>1) 

Enew=decision; 

        else if (decision==1) 

        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==3&&O[i].R==temp3) 

          

 O[i].G=2; 

         } 

        } 

        break; 

       case 3: 

 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==3&&O[i].R>temp3) 

          temp3=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==3&&O[i].R==temp3) 

          O[i].G=4; 

        } 

        decision = 

grouping_energy(); 
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        if (decision>1) 

Enew=decision; 

        else if (decision==1) 

        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 

         

 if(O[i].G==4&&O[i].R==temp3) 

          

 O[i].G=3; 

         } 

        } 

        break; 

       case 4: 

 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==4&&O[i].R>temp3) 

          temp3=O[i].R; 

        } 

        for(int i=1; i<=totaloper; 

i++) 

        { 

        

 if(O[i].G==4&&O[i].R==temp3) 

          O[i].G=1; 

        } 

        decision = 

grouping_energy(); 

        if (decision>1) 

Enew=decision; 

        else if (decision==1) 

        { 

         for(int i=1; 

i<=totaloper; i++) 

         { 
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 if(O[i].G==1&&O[i].R==temp3) 

          

 O[i].G=4; 

         } 

        } 

        break; 

      default: break; 

      } 

     counter1++; 

     if (Enew < Ec || (rand()/(double)RAND_MAX) <= 

pow(e,-(Enew-Ec)/T)) 

     { 

      Ec=Enew; 

     } 

    } 

   } 

  } 

 

 int j=1; 

 for (int i=1; i<=totaloper; i++) 

 { 

  if(BG[i].G==1) 

  {Q[j-1]=i; j++;} 

 } 

 for (int i=1; i<=totaloper; i++) 

 { 

  if(BG[i].G==2) 

  {Q[j-1]=i; j++;} 

 } 

 for (int i=1; i<=totaloper; i++) 

 { 

  if(BG[i].G==3) 

  {Q[j-1]=i; j++;} 

 } 

 for (int i=1; i<=totaloper; i++) 

 { 

  if(BG[i].G==4) 

  {Q[j-1]=i; j++;} 
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 } 

 

 Ecs = sequencing_energy(); 

 

 for (float T=1000000; T>=1; T *= lambda) 

   { 

    for (int n=0; n<50; n++) 

    { 

     x3=randint(1,totaloper); 

     int index=0; int x3p=0; int temp4=0; int 

decision=0; 

     for(int i=0; i<=totaloper-1; i++) 

     { 

      if(BG[Q[i]].G==BG[x3].G) 

      { 

       R[index]=Q[i]; index++; 

      } 

     } 

     for(int i=0; i<index; i++) 

     { 

      if(R[i]==x3) 

      { x3p=i; } 

     } 

     for(int i=0; i<index; i++) 

     { 

      if(R[i]!=x3) 

      { 

       temp4=R[i]; 

       R[i]=x3; 

       R[x3p]=temp4; 

       decision=0; 

       for(int j=0; j<index-1; j++) 

       { 

        for(int k=j+1; k<index; 

k++) 

        { 

        

 if(O[R[j]].R==O[R[k]].R&&R[j]>R[k])//precedence within a feature 

          decision=1; 
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         else if 

((O[R[j]].I==O[R[k]].R||O[R[k]].I==O[R[j]].R)&&R[j]>R[k])//precedence between 

features 

          decision=1; 

        } 

       } 

       if (decision==1) { R[i]=temp4; 

R[x3p]=x3; } 

       else if (decision==0)  

        { 

         int j=0; 

         for(int k=0; 

k<=totaloper-1; k++) 

         { 

         

 if(BG[Q[k]].G==BG[x3].G&&j<index) 

          {Q[k]=R[j]; 

j++;} 

         } 

        

 Enew=sequencing_energy(); 

         R[i]=temp4; 

R[x3p]=x3; 

        } 

      } 

     } 

     for (int i=0; i<=totaloper-1; i++) 

      { 

       Q[i] = BS[i]; 

      } 

     for (int i=0; i<index; i++) 

      { 

       R[i]=0; 

      } 

      

     counter2++; 

     Enew=sequencing_energy(); 

     if (Enew < Ecs || (rand()/(double)RAND_MAX) <= 

pow(e,-(Enew-Ecs)/T)) 
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     { 

      Ecs=Enew; 

     } 

    } 

     

   } 

    

  

 cout << " Best Grouping Objective= " << Ebg << " Last Grouping Objective= " 

<< Ec << " Iterations= " << counter1 << endl; 

 for (int i=1; i<=totaloper; i++) 

  { 

   cout << "Operation No. " << i << "  R= " << O[i].R << " G= " 

<< BG[i].G << endl; 

  } 

  

 cout << " Best Sequencing Objective= " << Ebs << " Last Sequencing 

Objective= " << Ecs << " Iterations= " << counter2 << endl; 

 for (int i=1; i<=totaloper; i++) 

  { 

   cout << "Position No. " << i << " Operation no.= " << BS[i-1] 

<< endl; 

  } 

  

 display_result(); 

  

 clock_t end_time=clock(); 

 cout << "elapsed time= " << (end_time-start_time)/CLOCKS_PER_SEC; 

 char end; 

 cin >> end; 

} 
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APPENDIX C: GAP ANALYSIS FOR LITERATURE 

 

Table 13: Gap analysis for relevant literature 

Category Problem Objective Method Gap 

Transfer line 

balancing 

(cost-based 

approach) 

Equipment 

block allocation 

Minimize line 

investment cost 

Branch and bound 

algorithm (2) 

Small problem 

size 

MILP and two 

heuristic 

algorithms (10) 

Solution time 

is long 

Enhanced MILP 

(11) 

Solution time 

is long 

Transfer line 

balancing 

(time-based 

approach) 

Machine 

loading, tool 

allocation and 

operation 

sequencing 

Minimize handing 

time 

MILP (12) 

Small problem 

size 

Decomposition 

and linearization 

approach to MILP 

(13) 

Ant colony and 

hybrid heuristic 

(14) 

Solution time 

is long 

Analysis and 

simulation (16) 

No feature 

grouping / 

operation 

sequencing 

Transfer line 

balancing 

(minimize no. 

of machines) 

Machine loading 

and operation 

sequencing 

Minimize number of 

machines 

MILP with 

algorithm (1) 

Small problem 

size, 

No feature 

grouping / tool 

allocation 

Transfer line 

design 

Machine loading 

and tool 

allocation 

Minimize equipment 

cost 
MILP (7) 

No feature 

grouping / 

operation 

sequencing 

Hierarchical 

process 

planning 

Multi-criteria 

evaluation 
Analysis (15) 

No line 

balancing 

FMS Part grouping Maximize machine MILP (17) No Feature 
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Scheduling and batch 

scheduling 

utilization grouping 

Machine 

loading, tool 

allocation and 

part routing 

Minimize total 

machining cost 
MILP (18) 

No operation 

sequencing 

Operations 

sequencing and 

tool allocation 

Minimize tool change 

time 

Heuristic algorithm 

and simulation 

(20) 

Solution is 

near optimal 

Line balancing 

/ operation 

sequencing 

Assembly line 

balancing 

Minimize total cost, 

smoothness index 

and probability of 

lateness 

Simulated 

annealing 

algorithm (22) 

No tool 

allocation or 

operation 

sequencing 

Operation 

sequencing 

Maximize tool 

changeover index, 

setup changeover 

index, motion 

continuity index and 

loose precedence 

index 

Simulated 

annealing 

algorithm (23) 

No machine 

loading or tool 

allocation 

 

Operation 

sequencing 

Minimize non-cutting 

time 

Simulated 

annealing 

algorithm (24) 

No machine 

loading or tool 

allocation 

 

Assembly line 

balancing 

Minimize smoothness 

index, minimize 

probability of line 

stopping 

Simulated 

annealing 

algorithm (26) 

No tool 

allocation or 

operation 

sequencing 
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APPENDIX D: TLCT MATRIX FOR CASE STUDY 1 
 

Table 14: Tool change time matrix for Case Study 1 (Operations 1-19) (sec) 

[D
FU
, 

Op
] 

[1
,1
] 

[1
,2
] 

[1
,3
] 

[1
,4
] 

[2
,5
] 

[2
,6
] 

[2
,7
] 

[2
,8
] 

[3
,9
] 

[3,
10
] 

[3,
11
] 

[4,
12
] 

[4,
13
] 

[4,
14
] 

[5,
15
] 

[5,
16
] 

[6,
17
] 

[6,
18
] 

[6,
19
] 

[1,
1] 

0 8 6 9 0 9 4 4 0 1 7 6 3 7 10 4 4 2 10 

[1,
2] 

1
0 

0 9 8 1 0 1 1 2 9 2 6 3 2 7 9 6 3 9 

[1,
3] 

6 2 0 7 6 8 5 
1
0 

8 10 2 1 1 1 6 3 10 3 5 

[1,
4] 

1 1 
1
0 

0 1 1 0 5 4 0 6 1 7 6 6 3 8 8 9 

[2,
5] 

0 6 2 
1
0 

0 5 8 1 0 2 8 1 2 7 7 5 1 8 5 

[2,
6] 

9 0 1 4 9 0 5 4 2 1 7 5 6 8 5 1 3 9 2 

[2,
7] 

1 4 6 0 8 5 0 2 7 0 9 8 4 6 4 4 1 5 6 

[2,
8] 

8 1 3 9 8 1 7 0 3 6 0 8 7 3 6 8 4 5 8 

[3,
9] 

0 3 1 8 0 2 8 7 0 10 9 2 5 7 6 7 2 8 4 

[3,
10] 

4 9 9 0 1 4 0 4 3 0 10 3 5 10 8 10 10 4 3 

[3,
11] 

4 2 3 3 5 7 8 0 5 1 0 4 6 4 8 1 2 7 5 

[4,
12] 

5 2 6 4 
1
0 

1 5 9 2 5 1 0 8 9 1 8 5 2 5 

[4,
13] 

2 4 2 6 
1
0 

1 6 2 9 1 4 10 0 2 6 1 1 9 2 

[4,
14] 

8 8 6 6 2 
1
0 

7 5 
1
0 

10 8 4 5 0 3 4 4 10 3 

[5,
15] 

9 3 6 9 2 
1
0 

1 9 7 4 9 6 9 2 0 10 0 5 10 

[5,
16] 

6 6 7 6 4 8 1 8 7 10 4 2 3 7 3 0 6 0 1 

[6,
17] 

3 4 
1
0 

1 8 5 4 6 5 8 8 2 4 6 0 2 0 8 5 

[6,
18] 

5 6 5 1 6 7 8 8 4 8 1 8 2 1 9 0 4 0 7 

[6,
19] 

2 2 7 4 3 7 
1
0 

9 4 7 3 1 2 5 7 3 10 6 0 
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[6,
20] 

1 4 1 1 2 6 
1
0 

7 7 2 1 5 1 3 10 10 1 5 6 

[7,
21] 

5 6 9 
1
0 

2 8 7 5 6 7 4 6 9 6 4 0 5 0 1 

[7,
22] 

7 6 9 4 9 6 7 
1
0 

7 5 8 3 6 5 2 2 3 3 0 

[7,
23] 

8 1 7 9 
1
0 

1
0 

2 0 4 8 10 7 3 9 6 10 5 6 8 

[8,
24] 

7 3 0 7 5 1 7 5 8 3 2 3 9 9 5 9 3 10 2 

[8,
25] 

6 5 5 0 8 1 0 2 9 0 1 2 5 7 9 5 6 5 1 

[8,
26] 

1
0 

8 2 4 3 4 6 0 9 9 0 2 5 4 1 2 5 4 6 

[9,
27] 

2 9 0 2 5 3 1 
1
0 

8 10 7 2 9 4 9 2 1 9 9 

[9,
28] 

9 6 7 0 2 
1
0 

0 3 6 0 7 1 5 3 6 8 9 9 8 

[10
,29

] 
0 2 

1
0 

1
0 

0 4 5 7 0 5 7 2 3 9 9 5 6 10 4 

[10
,30

] 
6 0 3 8 2 0 6 

1
0 

6 2 8 6 2 1 8 8 4 1 3 

[11
,31

] 
2 8 6 8 2 7 8 4 4 6 7 10 2 6 2 1 5 3 0 

[11
,32

] 
2 2 5 1 7 3 6 1 

1
0 

7 10 5 2 7 7 5 6 3 3 

[11
,33

] 

1
0 

7 4 6 1 3 5 0 6 9 0 7 5 1 4 9 6 7 7 

[11
,34

] 
3 2 1 8 8 7 3 6 1 2 7 0 7 9 2 1 9 9 9 

[12
,35

] 
4 5 7 7 5 8 7 1 4 10 9 10 6 0 10 6 9 9 3 

[12
,36

] 

1
0 

5 6 9 
1
0 

7 9 7 2 5 1 2 9 10 0 2 0 10 1 

[12
,37

] 

1
0 

9 5 4 4 
1
0 

9 2 2 10 3 3 1 3 3 0 7 0 4 

[12
,38

] 
7 5 7 6 4 8 

1
0 

1 7 1 10 5 6 5 1 2 8 3 0 
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Table 15: Tool change time matrix for Case Study 1 (Operations 20-38) (sec) 

[D
F
U, 
O
p] 

[6
,2
0] 

[7
,2
1] 

[7
,2
2] 

[7
,2
3] 

[8
,2
4] 

[8
,2
5] 

[8
,2
6] 

[9
,2
7] 

[9
,2
8] 

[1
0,
29
] 

[1
0,
30
] 

[1
1,
31
] 

[1
1,
32
] 

[1
1,
33
] 

[1
1,
34
] 

[1
2,
35
] 

[1
2,
36
] 

[1
2,
37
] 

[1
2,
38
] 

[6,
20
] 

3 1 3 2 5 
1
0 

7 6 9 0 8 4 6 7 9 9 2 2 10 

[7,
21
] 

1
0 

4 1 8 7 8 8 2 4 8 0 5 7 1 5 1 3 9 10 

[7,
22
] 

5 7 
1
0 

1
0 

0 3 7 0 1 9 1 8 9 6 7 6 6 6 3 

[7,
23
] 

7 
1
0 

6 
1
0 

1
0 

0 7 1 0 3 8 3 8 7 1 10 8 7 5 

[8,
24
] 

4 
1
0 

6 9 
1
0 

9 9 6 6 0 6 10 7 10 3 7 1 1 4 

[8,
25
] 

7 5 8 3 8 3 7 1 2 4 0 1 4 9 4 5 4 2 1 

[8,
26
] 

3 6 5 
1
0 

9 0 3 7 0 2 4 10 7 7 1 7 10 1 7 

[9,
27
] 

5 9 2 6 9 6 0 2 4 10 2 1 8 0 8 6 6 7 1 

[9,
28
] 

6 4 4 8 4 2 1 6 6 0 4 2 4 5 4 1 5 7 3 

[1
0,
29
] 

1 9 2 7 1 0 8 3 0 7 1 10 6 5 8 9 5 2 3 

[1
0,
30
] 

4 9 9 7 2 4 0 1 4 2 6 9 9 0 3 4 7 1 4 

[1
1,
31
] 

2 7 2 
1
0 

4 6 9 4 2 3 7 7 6 9 0 8 3 1 5 

[1
1,
32
] 

2 4 
1
0 

8 3 3 6 7 6 7 1 3 1 7 3 9 3 7 3 

[1
1,
33
] 

9 8 7 6 1 6 
1
0 

4 9 7 3 2 5 6 3 0 3 9 8 
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[1
1,
34
] 

5 
1
0 

4 5 
1
0 

8 4 9 9 7 7 3 5 2 9 8 0 1 1 

[1
2,
35
] 

6 0 
1
0 

2 9 5 7 4 3 5 7 8 7 6 5 7 6 0 5 

[1
2,
36
] 

7 
1
0 

1
0 

1 8 1 
1
0 

8 2 6 3 9 7 8 7 2 0 4 10 

[1
2,
37
] 

1
0 

0 9 3 3 3 
1
0 

2 8 1 8 2 6 10 10 4 2 0 3 

[1
2,
38
] 

8 7 0 9 1 2 5 6 3 2 10 0 6 9 2 6 8 4 0 

[6,
20
] 

0 4 4 0 7 5 4 4 4 4 6 4 0 8 8 1 5 2 6 

[7,
21
] 

9 0 7 7 4 2 2 
1
0 

6 5 3 10 1 1 6 8 8 0 7 

[7,
22
] 

3 2 0 6 
1
0 

4 9 
1
0 

3 4 2 0 8 1 7 6 10 2 0 

[7,
23
] 

0 1 5 0 7 
1
0 

7 9 7 6 4 3 0 7 9 6 6 1 9 

[8,
24
] 

7 
1
0 

5 5 0 1 9 0 3 9 6 7 5 4 9 5 3 5 6 

[8,
25
] 

3 9 
1
0 

8 
1
0 

0 6 4 0 5 7 4 9 8 7 1 5 7 3 

[8,
26
] 

4 4 1 8 3 9 0 5 4 8 10 10 8 0 2 8 4 3 4 

[9,
27
] 

1
0 

2 6 1 0 5 
1
0 

0 2 3 2 5 2 5 2 2 8 9 6 

[9,
28
] 

2 9 7 8 2 0 9 2 0 4 9 10 6 8 4 2 7 6 10 

[1
0,
29
] 

9 9 4 5 1 9 5 3 7 0 10 5 9 6 9 3 6 3 5 

[1
0,
30
] 

3 7 4 1 4 8 8 4 6 9 0 8 10 4 3 5 6 4 7 
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[1
1,
31
] 

8 3 0 6 8 1 1 7 5 4 3 0 4 5 8 8 2 8 0 

[1
1,
32
] 

0 7 9 0 9 6 1 8 3 1 9 1 0 7 3 9 8 8 5 

[1
1,
33
] 

1
0 

6 5 5 2 5 0 6 8 3 4 6 6 0 4 1 3 6 2 

[1
1,
34
] 

1
0 

7 6 4 1 6 7 9 2 5 6 2 10 3 0 10 6 2 10 

[1
2,
35
] 

8 7 7 3 2 1 4 8 
1
0 

7 6 10 5 1 5 0 9 4 1 

[1
2,
36
] 

9 4 5 9 8 9 1 7 6 3 3 3 4 5 7 8 0 3 8 

[1
2,
37
] 

1
0 

0 5 1 9 1 4 8 1 9 10 1 8 1 7 1 2 0 3 

[1
2,
38
] 

5 4 0 1 3 4 4 6 3 2 2 0 9 6 4 9 7 3 0 
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APPENDIX E: DETAIL RESULTS FOR CASE STUDY 2  

 

Table 16: Computational results for problem 1 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 0.27 s 56.84 715.04 <0.1 s 56.84 715.04 

2 0.23 s 58 504.1 <0.1 s 58 504.1 

3 0.19 s 51.16 588.56 <0.1 s 51.16 588.56 

4 0.17 s 68.73 582.13 <0.1 s 68.73 582.13 

5 0.17 s 61.15 591.75 <0.1 s 61.15 591.75 

6 0.17 s 61.85 733.45 <0.1 s 61.85 733.45 

7 0.16 s 62.46 620.76 <0.1 s 62.46 620.76 

8 0.17 s 51.57 537.27 <0.1 s 51.57 537.27 

9 0.14 s 59.84 572.24 <0.1 s 59.84 572.24 

10 0.19 s 61.16 707.16 <0.1 s 61.16 707.16 

Mean 0.19 s 59.28 615.25 <0.1 s 59.28 615.25 

Standard 
deviation 

0.036 5.23 78.21 0 5.23 78.21 

 

Table 17: Computational results for problem 2 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 0.22 s 37.33 416.53 <0.1 s 41.33 501.93 

2 0.22 s 36.91 356.11 <0.1 s 39.76 358.76 

3 0.13 s 33.56 409.6 <0.1 s 33.56 409.6 

4 0.16 s 45.61 432.31 <0.1 s 46.2 432.9 
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5 0.14 s 36.82 442.52 <0.1 s 36.82 442.52 

6 0.13 s 35.13 420.23 <0.1 s 41.43 442.63 

7 0.11 s 46.03 527.53 <0.1 s 47.94 529.44 

8 0.11 s 39.97 414.17 <0.1 s 40.19 414.39 

9 0.12 s 49.76 396.66 <0.1 s 49.88 396.78 

10 0.16 s 34.36 341.96 <0.1 s 35.47 343.07 

Mean 0.15 s 39.55 415.76 <0.1 s 41.26 427.2 

Standard 
deviation 

0.04 5.63 50.46 0 5.36 57.45 

 

Table 18: Computational results for problem 3 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 0.39 s 55.25 770.95 <0.1 s 55.25 770.95 

2 0.27 s 70.77 743.67 <0.1 s 72.86 745.76 

3 0.28 s 74.08 581.78 <0.1 s 74.33 582.03 

4 0.25 s 59.83 659.03 <0.1 s 62.6 661.8 

5 0.23 s 64.96 888.36 <0.1 s 68.97 892.37 

6 0.22 s 67.83 661.33 <0.1 s 68.69 662.43 

7 0.22 s 68.75 776.95 <0.1 s 70.84 779.04 

8 0.2 s 68.69 709.49 <0.1 s 70.41 711.21 

9 0.25 s 60.17 643.87 <0.1 s 63.38 647.08 

10 0.27 s 60 620.5 <0.1 s 60.63 621.23 

Mean 0.25 s 65.03 705.6 < 0.1 s 66.8 707.39 

Standard 
deviation 

0.05 5.98 91.13 0 6.07 91.75 
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Table 19: Computational results for problem 4 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 1.86 s 68.31 659.51 1 s 77.48 668.68 

2 1.98 s 80.26 736.36 1 s 80.26 736.36 

3 1.88 s 75.38 762.38 1 s 81.72 768.72 

4 1.9 s 90.94 673.04 1 s 91.99 674.09 

5 1.88 s 76.36 766.16 1 s 86.48 766.28 

6 1.81 s 70.32 617.02 1 s 72.85 619.55 

7 1.88 s 83.48 763.88 1 s 90.28 770.68 

8 1.89 s 82.08 860.08 1 s 82.68 860.68 

9 1.88 s 75.77 659.57 1 s 85.42 668.92 

10 1.81 s 74.81 886.21 1 s 80.84 892.24 

Mean 1.88 s 77.71 738.42 1 s 83 742.62 

Standard 
deviation 

0.05 6.64 88.25 0 5.76 87.64 

 

Table 20: Computational results for problem 5 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 1.81 s 62.5 610 1 s 90.06 637.56 

2 1.91 s 87.63 795.83 1 s 94.35 802.55 

3 1.94 s 79.49 757.89 1 s 90.17 768.57 

4 2.37 s 83.02 725.62 1 s 83.02 725.62 

5 1.95 s 91.42 891.82 1 s 94.07 894.57 

6 1.92 s 91.01 851.31 1 s 94.12 854.42 
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7 1.98 s 84.57 770.97 1 s 93.22 779.62 

8 1.94 s 80.33 773.13 1 s 88.92 781.72 

9 1.86 s 62.99 712.29 1 s 73.12 722.42 

10 1.89 s 89.3 943.4 1 s 97.19 951.29 

Mean 1.96 s 81.22 783.22 1 s 89.82 791.83 

Standard 
deviation 

0.15 10.57 95.16 0 7.06 90.56 

 

Table 21: Computational results for problem 6 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 0.45 s 69.61 748.11 1 s 74.12 752.62 

2 0.31 s 83.98 846.88 1 s 84.45 847.35 

3 0.34 s 92.14 827.04 1 s 100.43 835.33 

4 0.36 s 76.83 862.83 1 s 81.71 867.71 

5 0.41 s 73.17 921.87 1 s 79.19 927.89 

6 0.33 s 84.21 815.41 1 s 97.28 828.48 

7 0.33 s 77.63 673.93 1 s 80.83 677.13 

8 0.33 s 77.94 647.14 1 s 85.69 654.89 

9 0.36 s 79.6 915.2 1 s 81.54 917.14 

10 0.34 s 71.48 909.88 1 s 79.52 917.19 

Mean 0.36 78.66 816.83 1 s 84.48 822.58 

Standard 
deviation 

0.04 6.75 98 0 8.23 97.76 
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Table 22: Computational results for problem 7 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 5 s 104.98 952.68 1 s 120.73 968.43 

2 5.23 s 102.89 1004.29 1 s 112.07 1013.47 

3 5.23 s 90.91 880.41 1 s 106.71 896.21 

4 5.3 s 110.93 1156.13 1 s 118.74 1163.94 

5 5.91 s 114.51 861.51 1 s 127.01 874.01 

6 5.06 s 89.08 856.98 1 s 104.6 872.5 

7 5.06 s 100.93 833.53 1 s 109.55 842.15 

8 5.13 s 101.46 913.56 1 s 105.02 917.12 

9 5.17 s 102.5 961.2 1 s 115.48 974.18 

10 5.22 s 112.49 834.79 2 s 148.34 870.64 

Mean 5.23 s 103.07 925.51 1.1 s 116.83 939.27 

Standard 
deviation 

0.26 8.41 99.48 0.32 13.27 96.18 

 

Table 23: Computational results for problem 8 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 12.19 s 132.15 1358.85 2 s 151.96 1378.66 

2 7.5 s 134.56 1328.16 3 s 141.46 1335.06 

3 13.95 s 131.27 1100.37 2 s 147.97 1117.07 

4 6.86 s 131.01 1339.31 2 s 140.87 1349.17 

5 4.3 s 146.98 1285.38 2 s 148.93 1287.33 

6 3.25 s 119.64 1233.74 3 s 137.26 1251.36 



153 
 

7 3.33 s 155.8 1335.6 2 s 160.29 1340.09 

8 7.16 s 134.28 1441.08 2 s 147.5 1454.3 

9 6.27 s 128.04 1273.04 2 s 141.91 1286.91 

10 7.14 s 146.68 1488.08 2 s 153.02 1494.42 

Mean 7.2 s 136.04 1318.36 2.2 s 147.12 1329.44 

Standard 
deviation 

3.5 10.67 107.58 0.42 6.93 105.7 

 

Table 24: Computational results for problem 9 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 2.56 s 148.5 1450.7 2 s 164.9 1467.1 

2 2.5 s 139.9 1314.9 2 s 146.4 1321.4 

3 1.73 s 143.8 1695.8 2 s 172 1724 

4 2.31 s 166.2 1615.3 3 s 166.2 1615.3 

5 2.19 s 167.9 1426 2 s 170.3 1428.3 

6 2.39 s 163.6 1572.3 2 s 169.5 1639.6 

7 2.17 s 158.8 1590.4 3 s 160.4 1592 

8 2.44 s 146.8 1501 2 s 161.9 1516.1 

9 2.23 s 159.6 1345.1 2 s 169.9 1355.4 

10 2.58 s 155.5 1459.3 2 s 162.2 1466 

Mean 2.31 s 155.06 1497.08 2.2 s 164.37 1512.52 

Standard 
deviation 

0.25 9.8 121.46 0.42 7.48 129.23 
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Table 25: Computational results for problem 10 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 25.75 s 211.52 2031.52 4 s 232.03 2052.03 

2 18.42 s 217.87 1947.17 4 s 219.91 1949.21 

3 22.72 s 216.16 1878.76 4 s 225.8 1888.4 

4 22.55 s 206.86 1674.56 5 s 223.29 1690.99 

5 28.55 s 239 2079.8 4 s 239.27 2080.07 

6 20.98 s 225.39 1906.79 4 s 237.09 1918.49 

7 36.05 s 236.86 2092.66 4 s 257.96 2113.56 

8 24.14 s 211.63 1936.23 5 s 220.21 1944.81 

9 20.89 s 205.79 1973.19 5 s 233.05 2000.45 

10 24.56 s 217.97 2025.67 5 s 229.26 2036.96 

Mean 24.46 s 218.91 1954.64 4.4 s 231.79 1967.5 

Standard 
deviation 

4.95 11.56 121.52 0.52 11.36 121.58 

 

Table 26: Computational results for problem 11 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 5.8 s 185.61 1949.51 2 s 187.74 1951.64 

2 5.13 s 178.77 1903.67 3 s 189.89 1914.79 

3 7.95 s 163.64 1661.24 3 s 185.49 1683.09 

4 5.47 s 160.29 1715.79 2 s 179.49 1734.99 

5 5.73 s 192.64 1670.74 3 s 205.76 1683.86 

6 6.72 s 180.87 1627.87 3 s 199.05 1646.05 
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7 6.95 s 193.9 1857.7 3 s 210.7 1874.5 

8 6 s 167.81 1540.91 3 s 199.95 1573.05 

9 6.45 s 182.1 1815.9 3 s 196.6 1830.4 

10 5.53 s 179.14 1658.34 3 s 200.6 1679.8 

Mean 6.17 s 178.48 1740.16 2.8 s 195.53 1757.22 

Standard 
deviation 

0.85 11.42 133.65 0.42 9.69 127.09 

 

Table 27: Computational results for problem 12 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 17.34 s 225.04 1924.14 4 s 246.22 1945.32 

2 12.77 s 260.88 2114.58 4 s 276.58 2130.28 

3 17.34 s 238.22 2292.22 3 s 240.53 2294.53 

4 14.3 s 238.98 2253.88 5 s 251.88 2266.78 

5 12.78 s 240.94 2319.64 4 s 251.73 2330.43 

6 15.75 s 242.26 2306.96 4 s 264.95 2329.65 

7 12.06 s 218.41 2239.61 4 s 243.02 2264.22 

8 12.59 s 227.24 2183.44 4 s 248.7 2204.9 

9 12.61 s 229.86 2389.46 4 s 248.32 2407.92 

10 19.22 s 243.06 2388.36 4 s 271.13 2416.43 

Mean 14.67 s 236.49 2241.23 4 s 254.3 2259.04 

Standard 
deviation 

2.56 11.96 141.15 0.47 12.27 139.96 
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Table 28: Computational results for problem 13 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 3.92 min 304.98 2889.08 6 s 322.44 2906.54 

2 5.66 min 322.11 2872.51 6 s 367.88 2918.28 

3 7.18 min 307.79 3030.99 6 s 310.69 3033.89 

4 4.69 min 291.29 2670.39 7 s 308.37 2687.47 

5 6.05 min 293.5 2933.7 8 s 319.46 2982.66 

6 11.22 min 294.97 2802.67 7 s 314.06 2821.76 

7 5.96 min 304.68 2500.28 6 s 315.94 2511.54 

8 1.29 min 292.41 2961.21 6 s 349.85 3018.65 

9 4.17 min 292.94 2854.94 7 s 302.68 2864.68 

10 1.28 min 311.19 2683.79 7 s 318.93 2691.53 

Mean 5.14 min 301.59 2819.96 6.6 s 323.03 2843.7 

Standard 
deviation 

2.89 10.26 159.72 0.7 20.20 168.13 

 

Table 29: Computational results for problem 14 

Test no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 5.73 h 373.07 3402.37 10 s 416.78 3446.08 

2 4.88 h 370.36 3345.76 14 s 418.59 3393.99 

3 4.27 h 377.37 3408.27 10 s 425.95 3456.85 

4 3.46 h 393.95 3618.85 10 s 448.27 3673.17 

5 8.97 h 362.63 3278.03 11 s 400.79 3316.19 

6 4.54 h 385.55 3444.35 11 s 438.15 3496.95 



157 
 

7 3.59 h 388.51 3600.21 9 s 453.79 3665.49 

8 4.56 h 390.86 3423.66 13 s 431.61 3464.41 

9 2.71 h 372.17 3393.77 10 s 437.91 3459.51 

10 1 h 389.44 3556.08 10 s 441.85 3608.45 

Mean 4.37 h 380.39 3447.17 10.8 s 431.37 3498.11 

Standard 
deviation 

2.08 10.62 110.85 1.55 16.08 116.34 

 

Table 30: Computational results for problem 15 

Te0st no. 

MILP model Simulated annealing algorithm 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

Solution 
time 

Handling 
time (s) 

Makespan 
(s) 

1 >24 h - - 15 s 446.34 4167.48 

2 >24 h - - 10 s 456.76 4295.72 

3 >24 h - - 13 s 433.79 4224.2 

4 >24 h - - 10 s 425.01 4307.78 

5 >24 h - - 12 s 459.31 3876.95 

6 >24 h - - 10 s 453.93 4204.65 

7 >24 h - - 13 s 422.25 4522.25 

8 >24 h - - 10 s 451.76 4101.23 

9 >24 h - - 11 s 436.01 4309.29 

10 >24 h - - 10 s 437.91 4390.82 

Mean >24 h - - 11.4 s 442.31 4240.03 

Standard 
deviation 

0 - - 1.78 13.21 174.08 
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