
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2014

Grouping and Sequencing of Machining
Operations for High Volume Transfer Lines
Soumitra Subhash Bhale
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Bhale, Soumitra Subhash, "Grouping and Sequencing of Machining Operations for High Volume Transfer Lines" (2014). Electronic
Theses and Dissertations. Paper 5145.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5145?utm_source=scholar.uwindsor.ca%2Fetd%2F5145&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Grouping and Sequencing of Machining Operations for High Volume

Transfer Lines

by

Soumitra Subhash Bhale

A Thesis

Submitted to the Faculty of Graduate Studies

through the department of Industrial & Manufacturing Systems Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2014

© 2014 Soumitra Subhash Bhale

ii

Grouping and Sequencing of Machining Operations for High Volume Transfer Lines

by

Soumitra Bhale

APPROVED BY:

B. Chaouch

Odette School of Business

W. ElMaraghy

Industrial and Manufacturing Systems Engineering

F. Baki, Co-Advisor

Odette School of Business

A. Azab, Co-Advisor

Industrial and Manufacturing Systems Engineering

24 April 2014

iii

DECLARATION OF PREVIOUS PUBLICATION

This thesis includes one original paper that has been previously submitted for

publication in a peer reviewed conference, as follows:

Publication title and full citation
Publication

Status

Bhale S, Baki MF, Azab A. Grouping and Sequencing of Machining Operations for

High Volume Transfer Lines. Proceedings of the 47th CIRP Conference on

Manufacturing Systems; 2014 Apr 28-30; Windsor, Canada. Windsor: Canada;

2014. P. 413-18.

in press

I certify that I have the permission from the copyright owner(s) to include the

above published material(s) in my thesis. I certify that the above material

describes work completed during my registration as graduate student at the

University of Windsor.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas,

techniques, quotations, or any other material from the work of other people

included in my thesis, published or otherwise, are fully acknowledged in

accordance with the standard referencing practices. Furthermore, to the extent

that I have included copyrighted material that surpasses the bounds of fair

dealing within the meaning of the Canada Copyright Act, I certify that I have

obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to

my appendix.

 I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this

thesis has not been submitted for a higher degree to any other University or

Institution.

iv

ABSTRACT

Transfer lines are employed for mass production of a fixed product or a very

narrow range of product variants. This thesis considers a simple transfer line

balancing problem with a focus on process planning and line configuration.

Design features of the product are grouped and machining operations are

sequenced in an optimal manner. The objective is to minimize the handling time

fraction of the cycle time consisting mainly of orientation change time and tool

change time. A new MILP model is developed to solve the problem with the

aforementioned objectives while respecting a set of constraints, which include

cutting tool allocation, tool magazine limit, tool life limit, takt time limit and

precedence, inclusion & exclusion constraints. A problem-specific simulated

annealing algorithm to solve large problems is also proposed. Numerical

experiments are presented to illustrate the functionality of the MILP model and

the meta-heuristic with respect to optimality and computation time.

v

DEDICATION

 -

Shree Vakratunda Mahakaya Suryakoti Samaprabha

Nirvighnam Kuru Me Deva Sarva-Kaaryeshu Sarvada

The Lord with the curved trunk and a mighty body, who has the magnificence of a

Million suns, I pray to you Oh Lord, to remove the obstacles from all the actions I

intend to perform.

The above ‘shloka’ is recited whenever a new endeavor is undertaken. It is an

evocation of Lord Ganesha to seek his blessings for actions to be performed.

Dedicated to my

Teachers, family and friends

vi

ACKNOWLEDGEMENTS

I wish to acknowledge the support of my supervisors Dr. Baki and Dr. Azab.

The prompt guidance from Dr. Baki was a guiding light in the completion of this

work. The long meetings with Dr. Azab were not only helpful to the research but

also intellectually stimulating.

I would also like to thank committee members Dr. W. ElMaraghy and Dr. B.

Chaouch for their guidance that helped me explore other relevant areas of my

research topic and present them in this final version.

The support of my guru Mr. Mayure cannot be forgiven. Without his blessings,

it would have not been possible. My parents have been a source of blessings,

love, care and support at every step. I want to thank them along with other

members of my family including my sister.

Thanks are also due to the Department of Industrial and Manufacturing

Systems Engineering for the opportunity to work that helped me ‘earn and learn’.

I would also acknowledge the research and recreational facilities at the University

of Windsor for helping students balance work and play.

Last but not the least: I thank my friends in Windsor (Navneet, Shivakumar

and everyone from Marathi katta) and elsewhere for wonderful support and

camaraderie that kept me pushing through.

vii

TABLE OF CONTENTS

DECLARATION OF PREVIOUS PUBLICATION .. iii

ABSTRACT .. iv

DEDICATION ... v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES .. ix

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xii

CHAPTER 1: INTRODUCTION .. 1

1.1 Transfer lines .. 1

1.2 Line balancing .. 3

1.3 Context of problem .. 4

1.4 Motivation of thesis ... 7

1.5 Organization of thesis .. 7

CHAPTER 2: LITERATURE REVIEW .. 8

2.1 Problem definition ... 8

2.2 Relevant papers in literature ... 11

2.3 Gap analysis and novelty of solution ... 16

CHAPTER 3: MODEL DEVELOPMENT .. 19

3.1 Assumptions for MILP model ... 19

3.2 Indices for MILP model .. 19

3.3 Decomposition algorithm for MILP model... 20

3.4 Parameters for grouping sub-model .. 23

3.5 Decision variables for grouping sub-model ... 23

3.6 Grouping sub-model objective function and Linearization ... 24

3.7 Grouping sub-model constraints ... 25

3.8 Parameters for sequencing sub-model .. 26

3.9 Decision variables for sequencing sub-model ... 28

3.10 Sequencing sub-model objective function and Linearization .. 29

viii

3.11 Sequencing sub-model constraints .. 30

CHAPTER 4: SIMULATED ANNEALING .. 32

4.1 Introduction ... 32

4.2 Generation of initial solution for grouping problem ... 36

4.3 Neighbor generation scheme for grouping problem ... 36

4.4 Simulated annealing algorithm for grouping problem .. 40

4.5 Generation of initial solution for sequencing problem.. 43

4.6 Neighbor generation scheme for sequencing problem ... 43

4.7 Simulated annealing algorithm for sequencing problem .. 45

CHAPTER 5: NUMERICAL EXPERIMENTS .. 48

5.1 Case study 1 ... 48

5.2 Case study 2 ... 56

5.3 Case study 3 ... 62

CHAPTER 6: CONCLUSIONS AND FUTURE WORK... 64

BIBLIOGRAPHY ... 65

APPENDIX A: AMPL PROGRAM FOR MATHEMATICAL MODEL: CASE STUDY 1 68

APPENDIX B: C++ PROGRAM FOR SA ALGORITHM: CASE STUDY 1 ... 109

APPENDIX C: GAP ANALYSIS FOR LITERATURE ... 141

APPENDIX D: TLCT MATRIX FOR CASE STUDY 1 ... 143

APPENDIX E: DETAIL RESULTS FOR CASE STUDY 2 ... 148

VITA AUCTORIS .. 158

ix

LIST OF TABLES

Table 1: Comparison of high speed and standard machining centers8 ... 6

Table 2: Orientation change time matrix for the chosen cylinder head benchmark problem (12)

 ... 48

Table 3: Processing information for the chosen cylinder head benchmark problem (12) 49

Table 4: Numerical results showing the grouping and sequence obtained (MILP model) 51

Table 5: Size complexity metrics for Das et al.’s planning and sequencing model (12) 53

Table 6: Size complexity metrics for proposed grouping and sequencing models........................ 53

Table 7: Numerical results showing the grouping and sequence obtained (SA algorithm) 53

Table 8: Configuration of the tested benchmark problems (14) ... 56

Table 9: Parameter settings in the tested benchmark problems (14) ... 57

Table 10: Original computational results from Osman and Baki (14) .. 57

Table 11: Computational results for the tested benchmark problems ... 58

Table 12: Numerical results showing effect of cutting speed on cycle time and machine tool

requirement (SA algorithm) ... 62

Table 13: Gap analysis for relevant literature .. 141

Table 14: Tool change time matrix for Case Study 1 (Operations 1-19) (sec) 143

Table 15: Tool change time matrix for Case Study 1 (Operations 20-38) (sec) 145

Table 16: Computational results for problem 1 ... 148

Table 17: Computational results for problem 2 ... 148

Table 18: Computational results for problem 3 ... 149

Table 19: Computational results for problem 4 ... 150

Table 20: Computational results for problem 5 ... 150

Table 21: Computational results for problem 6 ... 151

Table 22: Computational results for problem 7 ... 152

Table 23: Computational results for problem 8 ... 152

Table 24: Computational results for problem 9 ... 153

Table 25: Computational results for problem 10 ... 154

Table 26: Computational results for problem 11 ... 154

Table 27: Computational results for problem 12 ... 155

x

Table 28: Computational results for problem 13 ... 156

Table 29: Computational results for problem 14 ... 156

Table 30: Computational results for problem 15 ... 157

xi

LIST OF FIGURES

Figure 1: Flowchart depicting activities of process planning (5) .. 3

Figure 2: Top and lower level IDEF diagrams ... 10

Figure 3: Proposed approach for hierarchical grouping and sequencing of machining operations

for transfer lines (MILP model) .. 21

Figure 4: Decomposition algorithm for MILP model.. 22

Figure 5: Flowchart of a general simulated annealing algorithm .. 35

Figure 6: Allocation of Design features to workstations before trade .. 37

Figure 7: Allocation of Design features to workstations after trade ... 38

Figure 8: Allocation of Design features to workstations before transfer 39

Figure 9: Allocation of Design features to workstations after transfer ... 39

Figure 10: Proposed approach for hierarchical grouping and sequencing of machining operations

for transfer lines (SA algorithm) ... 40

Figure 11: Flowchart of a simulated annealing algorithm for the grouping problem 42

Figure 12: Flowchart of a simulated annealing algorithm for the sequencing problem 47

Figure 13: Cycle times against takt time for transfer line workstations (MILP model) 52

Figure 14: Vector diagram showing operation sequence at each workstation (MILP model) [DFU,

Operation] .. 52

Figure 15: Cycle times against takt time for transfer line workstations (SA algorithm) 54

Figure 16: Vector diagram showing operation sequence at each workstation (SA algorithm) [DFU,

Operation] .. 55

Figure 17: Comparison of mean solution time required for MILP model and SA algorithm for

problems of small size .. 59

Figure 18: Comparison of mean solution time required for MILP model and SA algorithm for

problems of medium size ... 60

Figure 19: Comparison of mean solution time required for MILP model and SA algorithm for

problems of large size .. 60

xii

 LIST OF ABBREVIATIONS

AMPL A mathematical programming language

BIP Binary integer program

DFU Design feature unit

IP Integer program

MIP Mixed integer program

MILP Mixed integer linear program

NPT Non-productive time

ORCT Orientation change time

RT Re-fixturing and reloading time

SA Simulated annealing

TLCT Tool change time

TO Machining time

1

CHAPTER 1: INTRODUCTION

1.1 Transfer lines

Manufacturing systems have evolved rapidly since their inception and this

transformation is expected to continue in a pursuit of optimum utility. This thesis

considers a special type of manufacturing system: transfer lines. Transfer lines

employ a fixed sequence of machine tools connected by an automated material

handling system for mass production of a small family of complex parts (several

million parts per year). They are a special case of flow lines. A flow line may be

synchronous or asynchronous. In synchronous lines, all parts move thorough the

line at the same speed. In asynchronous lines, some parts have to wait before

processing at the next station resulting in a buffer. The workstations are also not

governed by cycle time (takt time) limit. However, synchronous lines respect takt

time limit at each workstation. The workstations are connected by an automated

material handling system, which causes the line to function as a single unit. The

layout may be either straight or circular.

Transfer lines have several benefits. They require less manpower and space.

They ensure low work in progress and lower lead time. As a result, they are

widely used in the automotive industry (1). A huge investment is involved in

setting up the transfer line for a particular product. This cost in turn affects the

cost of the finished product coming out of the line. Therefore, profitability depends

on the investment cost and production efficiency. Hence, it is required that line

design be done in an optimal manner because cost and efficiency can be

optimized at this stage by solving the line balancing problem (2). Line design

encompasses analysis of the product, process planning, line configuration,

dynamic flow analysis and transport system design and detailed design and line

implementation. This thesis will consider line configuration and some activities of

process planning. Line configuration and process planning are inter-dependent

aspects of line design.

2

The process planning problem involves preparation of plan for performing

machining operations in an optimal manner. Several technological constraints like

inclusion and exclusion constraints are respected while solving this problem (1).

Operation sequencing and cutting tool allocation problems are part of process

planning. The operation sequence generated ought to be feasible with respect to

constraints and also serve as the optimal solution with respect to the objective

(3). Figure 1 presents a flowchart depicting activities involved in process

planning.

Line configuration determines the allocation of machining operations and

required equipment to workstations to maximize utility. Takt time limit and

precedence constraints are respected in this problem (1). It aims to distribute the

operations to the workstations for the total processing time at each workstation to

be less than or equal to the takt time. The optimum number of machine tools

required by each workstation is determined. Precedence constraints ensure that

the operations are performed in the required order (4). A classification of Line

balancing problems is presented in 1.2.

3

Figure 1: Flowchart depicting activities of process planning (5)

1.2 Line balancing

Both manual assembly line and transfer line classify as flow line production

systems. A line balancing problem performs assignment of operations to

workstations in order to optimize a criterion while respecting precedence and takt

time constraints. When the number of workstations is minimized while respecting

a given cycle time, the problem is called time-oriented simple assembly line

4

balancing problem (SALBP). If skills of workers are differentiated and the total

cost of the product is optimized, the problem is called cost-oriented assembly line

balancing problem (COALBP) (2). Depending upon the variety of products

manufactured, the line may be classified as single-model, mixed-model (different

units in arbitrary sequence) and multi-model (sequential batches of different units)

(6). When mixed-model production, equipment selection, cost objectives and

parallel stations are considered in ALBP, the problem is called generalized

assembly line balancing problem (GALBP) (7). The assembly line design problem

(ALDP) relates equipment selection to the operations assigned to a station and

their execution. When ALBP is extended to apply to transfer lines, the problem is

called transfer line balancing problem (TLBP). In TLBP, operations are grouped

together to form blocks and these blocks are allocated to workstations. The

blocks on different workstations are executed simultaneously and the longest

execution time among the blocks determines the pace of the line (8). The

problem considered here is analogous to the simple assembly line balancing

problem and hence it is called a simple transfer line balancing problem.

1.3 Context of problem

The automotive industry typically requires manufacturing of complex parts in

large quantities. Various engine components are produced in large numbers

without significant change in the design. The following five parts require critical

and high-technology operations: Cylinder block, cylinder head, crank shaft, cam

shaft and connecting rod (8). A chronological sequence of the shift in the

manufacturing systems adopted for production of these parts is as follows:

i) “General purpose machines such as milling machines, radial drilling

machines, etc. with special fixtures with crude material transportation

between the machines.

5

ii) Special purpose machines with multi-spindle, multi-slide, linear or rotary

indexing with built-in special fixtures and jigs and roller conveyor in

between for part transfer.

iii) Transfer machines with a large number of machining heads built around

the different workstations where the component is transferred after

completion of operation on one station to the next station through varied

types of transfer mechanisms.

iv) Flexible manufacturing systems with conventional CNC machining

centers with pallets, large size ATC and transportation system with a

centralized control. Fixtures are mostly manual and modular.

v) Flexible transfer machine with CNC machining centres/modules, CNC

head changers and automatic transfer of component as in conventional

transfer line.

vi) Agile manufacturing with special NC 3-axis machining units - different

for heavy duty operations such as milling and for light duty operations

such as drilling, tapping, etc. doing parallel processing and has better

re-configurability to meet increasing or decreasing volume of

production, if so required.” (8)

Traditional transfer machines utilize dedicated machining stations for milling,

drilling and other operations. The operations are allocated to workstations

according to their specialty and hence a sequence of machines is set-up. This

type of system permits very small change in the design and time and cost

required for a change in set-up are high. They are suitable for high-volume

production without significant changes in design.

Current trend in the market is to launch new products or make frequent

changes to the existing products. Therefore, a degree of flexibility is required

from the manufacturing system to accommodate these changes in design.

Flexible transfer lines provide a certain degree of flexibility by following a modular

design (7). They employ CNC machining centers and/or multi-spindle head

changers for high volume production combined with flexibility. “For a typical 4-

6

cylinder aluminum cylinder head, numbers of holes vary between 50 & 100, and

almost 50-60 processes are used. In a conventional flexible transfer line, the

numbers of machines required for a cycle time of 3-4 minutes are: 13-15 NC

single spindle machining centers, 5-6 Special Purpose machines and 6-7

assembly machines” (8). However, single spindle machining centers are not as

efficient as high speed machining centers. High speed machining centers provide

lower operation time due to the use of high speed spindles, high speed traverse

and lower tool change time but at a higher cost than single spindle machining

centers. A comparison of specifications for standard and high speed machining

centers is presented in the Table 1.

Table 1: Comparison of high speed and standard machining centers8

No. Feature High speed Standard

1 Spindle speed (rpm) 12000-24000 6000

2 Chip to chip time (sec) 3.0-4.5 10

3 Rapid traverse rate (m/min) 40-60 15-20

4 Acceleration and deceleration Less than 3 4-6

5 Cycle time (sec) 35-70% 100%

The planning time for transfer line is high. The transfer line balancing problem

involves process planning and line configuration. If a long time is spent in

planning after commissioning of transfer line, time required to reach full capacity

of production increases. This augments the cost of the product coming out of the

line. Due to such a limitation, agile manufacturing system is preferred. Agile

system provides adaptability and flexibility with CNC cells. As the cells can be

built in less time and added as per the requirement, production can be gradually

increased. However, the floor space and total cost needed for such a system is

high. Only a small batch can be manufactured and the lead time is also high

compared to a transfer line. Moreover, a higher level of training is required to be

provided to the operators in case of an agile system (8).

7

1.4 Motivation of thesis

There is a need to develop a solution for simple transfer line balancing

problem to reduce the time required for solution. If mathematical techniques are

employed to solve the problem, the time spent between commissioning of lines

and reaching full capacity of production can be reduced. The automation of

process planning and line configuration can enable manufacturers to perform

sequencing of operations, line balancing, machine tool and cutting tool allocation

and in an integrated manner. Several constraints are respected while optimizing

a criterion. It gives better control on the planning of the process and better

accuracy. Hence, the motivation is to develop such a technique for efficient

balancing of flexible transfer lines utilizing single spindle machining centers.

1.5 Organization of thesis

The thesis is organized in the next few chapters as follows: chapter 2 includes

definition of the problem and literature review. The MILP model is described in

chapter 3. The problem-specific simulated annealing algorithm is presented in

chapter 4. Chapter 5 includes numerical experiments conducted to verify the

functioning of the proposed methods. Conclusions and recommendations for

future work are specified in chapter 6.

8

CHAPTER 2: LITERATURE REVIEW

2.1 Problem definition

The simple transfer line balancing problem considered in this thesis involves

machine tool and cutting tool allocation, grouping of design features and

sequencing of machining operations. Synchronous transfer lines with a straight

layout to manufacture large quantities of a complex product are considered. All

workstations are identical, consisting of CNC machine tools with a single spindle

and tool magazine. The takt time is constant and equal for all machine tools. The

objective of the problem is to minimize the handling time portion of the cycle time

consisting mainly of orientation change time and tool change time. Various

design features are located on different faces of the product. Whenever a feature

is processed on one face, the product is rotated if the next feature to be

processed lies on a different face. The time spent for this change in orientation is

called orientation change time (ORCT). It is time spent for a non-value added

activity and hence, it needs to be minimized. If the design features on one face

are processed together, the change in orientation can be reduced. Thus, the

grouping problem aims to group the design features with an objective of

minimizing the ORCT. However, the inclusion and exclusion constraints are to be

respected by the grouping problem. The inclusion constraint ensures that two

design features are allocated to the same group. The exclusion constraint

prevents allocating two features to the same group.

After grouping the features, an optimum sequence for machining

operations is to be developed. There are fixed number of operations for each

design feature. A specific cutting tool is needed to perform an operation. If the

cutting tool required for the next operation is different, the tool spindle needs to

go back to the tool magazine to change the cutting tool. The time spent in

changing the cutting tool is tool change time (TLCT). It is also a non-value

added fraction of the cycle time and it needs to be minimized. Also, ORCT

needs to be kept at a minimum while deciding the optimum sequence of

9

operations. Thus, the objective of the sequencing problem is to minimize a sum

of ORCT, TLCT and Transportation time. Transportation time is the time spent

for movement of work piece from one machine tool to the other, within a

workstation. Precedence constraint ensures that a logical sequence is followed

when operations are processed.

Machine tool and cutting tool allocation also require satisfaction of certain

constraints. Capacity constraint ensures the number of cutting tools allocated to

a machine tool is not more than the tool magazine capacity. Tool life constraint

ensures the cutting tool has required life for processing the operations. The

cycle also consists of machining time (TO) and refixturing or reloading time

(RT). RT is the sum of tool positioning time, tool retracting time and rapid time

spent by the cutting tool motion. TO and RT are not affected by the sequence of

operations. Takt time limit is to be respected at all workstations. Figure 2

illustrates the nature of the problem. It is an IDEF0 representation including top

level and lower level diagrams that follows the Integration Definition for Function

Modeling Standard (9).

10

Figure 2: Top and lower level IDEF diagrams

11

2.2 Relevant papers in literature

Due to a high cost involved in set-up of transfer lines, maximization of line

utilization is found necessary. A cost-based approach to transfer line balancing is

presented in Dolgui and Ihnatsenka (2) and Dolgui et al. (10-11). The objective is

to minimize the line investment cost which is the sum of equipment and

workstation cost. Multi-spindle machining centers are considered and the

problem of operation allocation is solved.

Dolgui and Ihnatsenka (2) present a transfer line balancing problem to

minimize line investment cost using a branch and bound algorithm. A subset of

spindle heads from the available set of blocks to be assigned to workstations is

determined while respecting inclusion, exclusion, precedence and cycle time

constraints. The branch and bound algorithm develops solution in a reasonable

time for the small problems. However, the solution time exponentially increases

for medium size problems. Dolgui et al. (10) consider a similar problem of

equipment block allocation. However, the solution procedure uses an MIP and

some heuristic algorithms. First, an exact algorithm based on Mixed Integer

Program and calculation of bounds is considered which provides exact solution to

small and medium problems in a small time. Second, two heuristic algorithms viz.

Random allocation of blocks and Depth-first search technique are provided for

solving large size problems for near-optimal solution in a reasonable time. Dolgui

et al. (11) present an improved mixed integer program to solve large instances of

the block allocation problem in a reasonable time.

Transfer line balancing problem with an objective of minimizing number of

machines is presented in Essafi et al. (1). They consider a flexible transfer line

with parallel workstations that utilize CNC machines. A Mixed Integer Program

(MIP) with the objective of minimizing the number of machines utilized is

presented. Precedence, inclusion and exclusion constraints are specified and

sequence dependent set-up times are specified. An algorithm is proposed to

reduce the size of the problem by computing range of variables. Long time is

12

required to solve even a small sized problem when the density of the precedence

graph is high. Moreover, the scope is limited to line configuration. No process

planning in terms of feature grouping or tool allocation is considered.

A time-dependent objective for line balancing is presented in Das et al. (12)

and Osman and Baki (13-14). Single spindle machining centers are considered.

Das et al. (12) present a grouping and scheduling problem with an objective of

minimizing the non-cutting time. The problem is solved in a hierarchical manner

using a mathematical model. Machine and tool allocation problems are solved at

the higher level assuming a particular sequence. At the lower level, the

sequencing model is solved and if a better solution is obtained, the new

sequence is provided to the planning model to repeat iteration. This procedure is

followed until an optimal solution is obtained. This method is time-consuming and

solution time is long for the small problem considered. Transportation time,

inclusion and exclusion constraints are not considered.

Osman and Baki (13) provide a decomposition based approach for transfer

line balancing with an objective of minimizing non-value added time. Bender’s

Decomposition is applied to solve small problem instances. Computation time is

prohibitive to solve large problems. Transportation time, tool magazine capacity

and tool life constraints are not considered.

Osman and Baki (14) develop ant colony meta-heuristic and a hybrid method

to solve the problem for medium and large instances. However, computation time

is long for large problems. Transportation time between any two machine tools is

considered. However, transportation time between two workstations needs to be

neglected. Tool magazine capacity constraint considers capacity of a workstation

without considering number of machine tools allocated to the workstation.

An investigation on line balancing of an automated cylinder block production

transfer line is carried out by Masood (15). A case study is considered to improve

cycle time performance and machine utilization. Re-sequencing of operations is

13

carried out to improve the throughput. The results are validated by simulation. A

systematic methodology is not provided for re-sequencing.

Tolio and Urgo (7) present a mixed integer linear program to consider design

of flexible transfer lines. The equipment cost for a multi-model rotary transfer line

is minimized while respecting design constraints. An industrial case study is

considered to analyze the cost for configuration and reconfiguration of the line for

three different parts. There is a significant effect of reconfiguration on the cost.

Zhang et al. (16) provide a hierarchical process planning approach for flexible

transfer line schematic design. The activities include the selection of

manufacturing feature, machining operation, part set-up planning, feature

sequencing, operation sequencing and process plan generation. The evaluation

is performed on the basis of quality, flexibility, reliability, machine load and cost.

The machine loading and resource allocation problems for other

manufacturing systems are considered in Reddy et al. (3), Kim and Suh (4), Persi

et al. (17), Sarin and Chen (18), Sinreich et al. (19), Ecker and Gupta (20) and

Lin and Wang (21).

Persi et al. (17) present a hierarchical approach to production planning and

scheduling for a flexible manufacturing system with the objective of minimizing

lead time. At the higher level, part grouping and tool allocation problems are

solved using a Mixed Integer Program (MIP). Time and tool magazine capacity

constraints are respected. At the lower level, batches are sequenced and parts

are scheduled within the batches using dispatching rules. A numerical example

demonstrates the efficiency of the model.

Sarin and Chen (18) discuss a machine loading and a tool allocation problem

for a flexible manufacturing system. The objective of the problem is to minimize

the total cost of machine utilization and cutting tools. A Mixed Integer Program

(MIP) is presented with cycle time limit, tool life and tool magazine capacity

constraints. A computational example is included in the discussion.

14

Sinreich et al. (19) consider minimization of non-productive machining time in

a Single-Stage Multifunctional Machining System (SSMS). The effect of

bottleneck resources like setup tasks, machine idle time, machine breakdown

and defective jobs on job scheduling is considered. A Binary Integer Program

(BIP) is presented and linearized using additional constraints. A heuristic

sequencing algorithm is developed and a numerical example is solved using

GAMS. The non-productive time of the internal set-up is reduced but at the

expense of an increase in the external set-up.

Kim and Suh (4) present an optimal grouping and sequencing technique for a

Multi-stage Machining System. A combination of an expert system and an Integer

Program (IP) is used to develop a process plan with global and local scope. A

heuristic algorithm further reduces the size of the problem. The objective is to

minimize the non-cutting time while respecting precedence and tolerance

constraints. Line balancing is also taken into consideration. A numerical example

is included to verify the functionality of the approach.

Ecker and Gupta (20) present an algorithm to sequence tasks on a machine

by reducing the tool change time for a flexible manufacturing system. The

precedence constraints of tasks and difference in tool changeover times are

taken into consideration. A numerical example is included which illustrates the

solution. Simulation experiments are also performed to verify the effectiveness of

the heuristic algorithms.

Lin and Wang (21) present an operation planning and sequencing technique

for tool changeovers to minimize cost. A two stage integer program is provided.

At the first stage, tool allocation is performed while respecting precedence

constraints for each part to be produced. The objective is to minimize the total

machining and tooling cost. At stage two, an optimal tool changeover sequence

is prepared. A numerical example is included to verify performance at both

stages. Bhaskara Reddy et al. (3) present an operation sequencing solution to

minimize tool changeover and set-up and maximize utilization. Accessibility,

precedence and geometric constraints are considered. They acknowledge that

15

operation sequencing problem is difficult to solve using integer programming or

branch and bound approaches. A genetic algorithm is provided to solve the

problem in a reasonable time.

Simulated annealing is an effective technique to solve large combinatorial

optimization problems. It is applied in McMullen and Frazier (22), Pandey et al.

(23), Azab and Elmaraghy (24) and Suresh and Sahu (26).

McMullen and Frazier (22) present a simulated annealing approach to solve

multi-objective assembly line balancing problem. The objectives of the heuristic

are to minimize total cost (labor and equipment), to minimize the smoothness

index and to minimize the probability of lateness. A Design of experiment is

presented with seven problems with different number of tasks. Some of the

problems have more than one product and hence a mixed-model sequencing

approach is discussed. The results obtained from different selection rules and

their comparison is included. Simulated annealing is found to be an effective tool

to improve cycle time performance.

Pandey et al. (23) solve a multi-objective operation sequencing problem using

simulated annealing. The objective functions considered are minimization of

setup changeover and tool changeover, maximization of tool motion continuity

and loose precedence. Each of these functions is assigned an index and a

weighted sum of indices is called Operation Sequencing Rating Index (OSRI).

Neighboring solutions are developed each time by Modified Shifting Scheme

(MSS). A feature precedence graph is prepared beforehand to reduce

computational time.

Azab and Elmaraghy (24) present a macro-level approach to process planning

for a reconfigurable manufacturing system. A binary integer program and a

simulated annealing algorithm are applied to the problem with the objective of

minimizing non-cutting time. Operation sequencing is performed while respecting

precedence constraints. An industrial case study is presented to verify the

performance of the two methods.

16

Suresh and Sahu (26) adopt simulated annealing technique to solve the

assembly line balancing problem with stochastic task times. A problem-specific

simulated annealing algorithm is presented with two different objectives

considered independently. The first is to minimize the smoothness index and the

other is to minimize the probability of line stopping. Several experiments are

performed to solve the problem for different number of tasks. It is observed that

better solution is obtained at a lower rate of cooling. However, slower cooling

results in an increase in the computational time.

2.3 Gap analysis and novelty of solution

It is observed that transfer line balancing problem can be solved either by a

time-based or a cost-based approach. If multi-spindle machining centers are

considered, the objective is generally to minimize equipment cost. When

considering single spindle machining centers, the objective is generally to

minimize non-cutting time. There is a need to develop an efficient solution to

solve the latter problem for large instances. Therefore, such a problem is

considered here.

Moreover, most of the papers consider only one of the two aspects of transfer

line balancing problem: process planning and line configuration. There is a need

to consider both process planning and line configuration while solving the

transfer line balancing problem. A comparative gap analysis is presented in the

Appendix C.

Transfer line balancing problems consider only manufacturing operations but

not the design features. Operations belonging to a design feature have certain

similar characteristics. For instance, all operations of a feature lie on one face of

the product. If this property of operations is taken into consideration, the size of

the problem can be considerably reduced. Moreover, if precedence constraints

are defined using design features instead of operations, the number of constraint

17

equations reduces considerably. The reduction in the density of the precedence

graph shortens the computation time. Changes in design of the product can be

easily implemented. Any change in the design of the product translates into

addition or removal of a design feature. The transfer line balancing problem is

solved again for a new solution which is implemented by utilizing the flexibility of

the transfer line. Hence, the grouping of design features is considered instead of

grouping individual operations.

Moreover, the current trend is to utilize flexible transfer lines instead of

traditional transfer lines with dedicated machines and a fixed set of tools. The tool

allocation problem in flexible transfer lines must consider tool magazine capacity

constraint and tool change time. The handling time also consists of transportation

time and orientation change time which need to be reduced. The variable number

of machines at a workstation is another distinguishing characteristic. A flexible

transfer line may allow duplication of machine at a workstation in order to respect

the takt time. Therefore, different workstations of the line may have different

number of machines allotted to them as per the assigned workload.

Some of these considerations for flexible transfer lines are found in Das et al.

(12) and Osman and Baki (13-14).

Das et al. (12) present a mixed integer linear program for grouping and

sequencing of operations. However, the computation time required to solve the

small problem considered is long. Moreover, transportation time between

workstations is not considered. Inclusion, exclusion and tool life constraints are

also not considered.

Osman and Baki (13) present a Bender’s Decomposition approach to solve

the transfer line balancing problem. However, long computation time restricts the

problem size that can be solved.

Osman and Baki (14) develop ant colony and hybrid meta-heuristic methods to

solve the transfer line balancing problem. Small, medium and large problem sizes

are solved using the proposed methods. Solution time is long for large problems.

18

Transportation time between any two machine tools is considered. However,

transportation time between two workstations needs to be neglected. Tool

magazine capacity constraint considers capacity of a workstation without

considering number of machine tools allocated to the workstation.

This thesis presents a new Mixed Integer Linear Programming (MILP) model

that is developed to solve the problem in an efficient manner. Design features are

grouped at the higher level and machining operations are sequenced at the lower

level. The required machine tools and cutting tools are allocated to the

workstations.

The tool magazine constraint is revised for accurate representation. The

number of machine tools allocated to a workstation is considered while

calculating the tool magazine capacity of a workstation.

Transportation time between two machine tools of a workstation is considered.

The number of machine tool is a variable and the workstations are configured

with the necessary machine tools to satisfy the prescribed takt time, minimizing

the transportation between the machine tools within the workstation. However,

transportation time between workstations is neglected. As the number of

workstations is fixed, transportation time between workstations cannot be

minimized.

It is observed that simulated annealing is an effective tool for solving line

balancing and operation sequencing problems of large size and combinatorial

nature. It helps to obtain near-optimal solutions to problems of large size in a

reasonable time without getting trapped in a local minimum. Simulated annealing

can be effectively applied to transfer line balancing problem. Hence, a problem-

specific simulated annealing algorithm is proposed to solve transfer line

balancing problem in a reasonable time.

Numerical experiments are performed to assess the performance of the

mathematical model and the meta-heuristic. The results from the SA algorithm

are compared with the optimal results from the MILP model.

19

CHAPTER 3: MODEL DEVELOPMENT

The following sub-sections present the assumptions, indices, algorithm and

sub-models for the proposed Mixed Integer Linear Programming model.

3.1 Assumptions for MILP model

1) Details of design features and machining operations are known. Machining

time, orientation change time, tool change time and refixturing / reloading

time and transportation time are known.

2) Every operation requires a specific cutting tool for machining. Cutting tools

are identified by numbers.

3) Workstations are identical and any cutting tool can be allotted to any

machine group. The number of machine groups is known.

4) Machine groups are allotted the required number of CNC machine tools.

The machine tools have one spindle and a tool magazine. Tool magazine

capacity is known.

5) The fixtures on each workstation can be rotated to any degree as per

processing requirement.

6) All parts visit all workstations while they move at equal speeds. A machine

tool processes only one workpiece at a time. There are no buffers

between workstations.

7) Transportation time between workstations is not considered. However,

transportation time between machine tools within a workstation is

considered.

3.2 Indices for MILP model

),...,3,2,1(Gg Index set of machine groups

20

),...,3,2,1(Rr Index set of design features

),...,3,2,1(rOo r Index set of machining operations

),...,3,2,1(gSs g Index set of sequence positions

),...,3,2,1(Ll Index set of cutting tools

3.3 Decomposition algorithm for MILP model

The model is solved in a hierarchical manner. Grouping of design features

is performed at higher level. Sequencing problem is solved at the lower level.

The model is divided into two sub-models: grouping and sequencing. The

grouping sub-model allocates design features to machine groups. The result is

provided to the sequencing sub-model to sequence the operations. This result

may not always satisfy takt time limit as the constraint appears in the

sequencing sub-model.

The sequencing sub-model is solved for each group separately. Machine

tool and cutting tool allocation is performed by the sequencing sub-model. If a

feasible solution is not obtained for all groups, iteration is repeated. The

grouping sub-model is solved again by specifying different inclusion and

exclusion relationships between features while respecting design intent. This

procedure is repeated until a feasible solution is obtained. Figure 3 depicts the

proposed approach for hierarchical grouping and sequencing of machining

operations for transfer lines. Figure 4 depicts the algorithm followed to solve the

problem.

21

Figure 3: Proposed approach for hierarchical grouping and sequencing of

machining operations for transfer lines (MILP model)

Grouping sub-model

Feature grouping and
allocation

Sequencing sub-model

Operation sequencing

Cutting tool allocation

Inclusion & exclusion
constraints

Precedence,
capacity and takt
time constraints

Machine too l allocation

22

Figure 4: Decomposition algorithm for MILP model

23

3.4 Parameters for grouping sub-model

rO Number of machining operations of design feature r

NO Total number of operations in a cycle

'rri 1 if feature r and feature 'r are required to be allocated to one

group, 0 otherwise

'rre 1 if feature r and feature 'r are not be allocated to one group, 0

otherwise

rf Face on which design feature r is located

'rr
ORCT Orientation change time after processing design feature r on face

f before performing design feature 'r on face 'f

3.5 Decision variables for grouping sub-model

gQ 1 if group g is formed, 0 otherwise

Variable gQ decides formation of group g .

rogX 1 if operation o of design feature r is processed in group g , 0

otherwise

Variable rogX decides allocation of operation o of design feature r to machine

group g .

24

rgZ 1 if Design Feature r is processed in group g , 0 otherwise

Variable rgZ decides allocation of design feature r to group g

gS
 Number of sequence positions in group g

Variable gS decides the number of sequence positions in group g .

Equations (1) and (2) specify other variables for the problem.

Equation (1) determines the total number of operations.

R

r

rONO
1

 (1)

Variable 1W calculates the total ORCT for group g .

grrg

R
r

R
r rr ZZORCTgW '1 1' ')(1 (2)

3.6 Grouping sub-model objective function and Linearization

The objective of the grouping sub-model is to minimize the total ORCT for all

groups.

Minimize
G
g gW1)(1 (3)

Variable)(1 gW is defined in equation (2).

As the equation is non-linear in nature, a linearization scheme from Osman

and Baki (13) is followed to introduce a new binary variable ''grgrB . It has a value

of 1 if design feature r is allotted to group g and design feature 'r is allotted to

group 'g and 0, otherwise. This variable replaces the multiplication of two

variables in the objective function of grouping sub-model. Equations (12) and

25

(13) are added which are auxiliary constraints for the binary variable. Variable

)(1 gW changes to:

grgr

R
r

R
r rr BORCTgW '1 1' ')(1 (4)

3.7 Grouping sub-model constraints

Equation (5) ensures that each design feature r is allocated to only one group g .

1
1

G

g rgZ r (5)

Equation (6) allows variable values for rgZ . For every group, the value of LHS is

zero if no feature is allocated to it and positive if at least one feature is allocated.

0
1

R

r rgZ g (6)

Equation (7) ensures all operations of a group are processed in the same group

in which the feature is allocated.

rgrog ZX gro ,, (7)

Equation (8) represents inclusion constraint to assign the two design features to

the same group.

0)('
grrg ZZ 1,:,, '

'' irrrrg rr (8)

Equation (9) provides exclusion constraint to assign the two design features to

the different groups.

1)('
grrg ZZ 1,:,, '

'' errrrg rr (9)

26

Equation (10) indicates that a design feature is allocated to a group only when it

is formed. M is a big number which facilitates allocation of feature only when gQ

is 1.

g

R

r rg MQZ 1
 g (10)

Equation (11) calculates the total number of sequence positions allotted to group

g viz. gS .

g

R

r rg

r SZO 1
 g (11)

Equations (12) and (13) are auxiliary constraints for linearization.

G

g grgrrg BZ
1' '' ',, rrg (12)

rggrgrgr BB '''' rrgrgr ':',',, (13)

Equations (1)-(13) are adopted from Bhale et al. (25).

3.8 Parameters for sequencing sub-model

rO Number of machining operations of design feature r

rD Total number of times design feature r is processed for each

product

gNM Maximum number of machine tools allowed for a group

lH Number of tool slots needed by cutting tool l

27

lT Life of cutting tool l

A Size of the tool magazine of each machine tool

E Cycle time

roTO Time for processing operation o of design feature r

rf Face on which design feature r is located

'rr
ORCT Orientation change time after performing design feature r on face

f before performing design feature 'r on face 'f

)1(ororTLCT Tool change time for changing cutting tool l to 'l after performing

operation o of design feature r before performing operation 1o of the same

design feature r

''oror
TLCT Tool change time for changing cutting tool l to 'l after performing

operation o of design feature r before performing operation 'o of the next design

feature 'r

roRT Refixturing or reloading time for operation o of feature r

gS Number of sequence positions in group g

rolP 1 if operation o of design feature r requires cutting tool l , 0

otherwise

rgZ 1 if Design Feature r is processed in group g , 0 otherwise

28

'rri 1 if feature r and feature 'r are required to be allocated to one

group, 0 otherwise

t Transportation time between two machine tools of a workstation

3.9 Decision variables for sequencing sub-model

gN Number of machine tools in group g (Integer)

Variable
gN decides the number of machine tools allocated to group g .

rogsX 1 if operation o of design feature r is processed on sequence

position s in group g , 0 otherwise

Variable rogsX decides allocation of sequence position to an operation o of design

feature r belonging to group g .

lgY 1 if cutting tool l is assigned to group g , 0 otherwise

Variable lgY decides allocation of cutting tool l to group g .

Equations (14)-(18) specify other variables for the problem.

Variable 1W calculates the total ORCT for group g .

grrgsgorrogs

R
r

R
r

Or
o

Or
o

Sg
s rr ZZXXORCTgW ')1(''1 1' 1

'
1'

1
1 ')(1

 (14)

Variable 2W calculates the total TLCT for group g .

 rgsgorrogs

R
r

Or
o

Sg
s oror ZXXTLCTgW)1()1(1

1
1

1
1)1()(2

grrgsgorrogs

R
r

R
rrr

Or
o

Or
o

Sg
s oror ZZXXTLCT ')1(''1 ':1' 1

1
1'

1
1 ''

 (15)

29

Variable 3W calculates the total RT for an operation o of feature r for group g .

rogsro
R
r

Or
o

Sg
s r XRTDgW 1 1 1)(3 (16)

Variable 4W calculates the total TO for group g .

rogsrou
R
r

Or
o

Sg
s r XTODgW 1 1 1)(4

 (17)

Variable 5W calculates the total transportation time for group g .

)1()(5 gNtgW (18)

3.10 Sequencing sub-model objective function and

Linearization

rgZ and gS are input parameters to the sequencing model as their value is

obtained from grouping sub-model. The sequencing model is solved

independently for each group.

The sequencing sub-model considers minimization of a sum of ORCT, TLCT

and transportation time for a group. The objective function is as follows:

Minimize)(5)(2)(1 gWgWgW (19)

Variables)(1 gW ,)(2 gW and)(5 gW are defined in equations (14), (15) and

(18) respectively.

As the objective function is non-linear, a linearization scheme is adopted from

Osman and Baki (13) to introduce a new binary variable ''' sogrosrC . It has a value of

1 if operation o of design feature r is allotted to sequence position s and

operation 'o of design feature 'r is allotted to sequence position 's in group g

30

and 0, otherwise. Equations (30) and (31) are added which are auxiliary

constraints for the binary variable.

Variables)(1 gW and)(2 gW change to:

grrgsogrosr

R
r

R
r

Or
o

Or
o

Sg
s rr ZZCORCTgW ')1(''1 1' 1

'
1'

1
1 ')(1

 (20)

 rgsogrosr

R
r

Or
o

Sg
s oror ZCTLCTgW)1)(1(1

1
1

1
1)1()(2

grrgsogrosr

R
r

R
rrr

Or
o

Or
o

Sg
s oror ZZCTLCT ')1(''1 ':1' 1

'
1'

1
1 ''

 (21)

3.11 Sequencing sub-model constraints

Equation (22) ensures that the number of machine tools allocated to a group is

within the upper limit for the group.

gg NMN g (22)

Equation (23) specifies the precedence constraint to ensure that the operation o

of feature r precedes operation 1o of the same feature r .

s

s
gsor

s

s
rogs XX

1'
')1(

1'
' sgor ,,, (23)

Equation (24) specifies the precedence constraint to ensure that the last

operation
rO of feature r precedes first operation of the feature 'r .

s

s
gsr

s

s
gsrO XX r

1'
'1'

1'
' 1:,,', ' rrisgrr (24)

Equation (25) ensures that each operation o is assigned only to one sequence

position s .

rgrogs

S

s ZXg 1 gor ,, (25)

31

Equation (26) ensures that each sequence position s is assigned to only one

operationo .

1
11

rO

o rogs

R

r X sg, (26)

Whenever an operation is assigned to a group, the required cutting tool must be

assigned to the group and the tool life limit is satisfied. Equation (27) represents

this limit.

lg
1 1

YTXTODP lrogsror
R

r

O

o rol

r

 lsg ,, (27)

Equation (28) indicates tool magazine capacity limit for each machine group. The

number of machine tools allocated to a workstation is considered while

calculating the tool magazine capacity of the group. The number of machine tools

allotted to a group is not considered while calculating the capacity of the group in

Das et al. (12) and Osman and Baki (13-14).

g

L

l
l ANYH

lg
1

 g (28)

Equation (29) specifies the cycle time limit of each machine tool to prevent

overloading of machine tools.

gENgWgWgWgW)(4)(3)(2)(1 g (29)

Equations (30) and (31) are auxiliary constraints for binary variable ''' sogrosrC .

R

r

O

o sogrosrgsor

r

CX
1 1 '''''' ':',',',, sssorsg (30)

rossogrsogrosr CC '''''' ':',',',,,, sssorsorg (31)

Equations (22) – (31) are adopted from Bhale et al. (25).

32

CHAPTER 4: SIMULATED ANNEALING

The problem considered is of combinatorial nature. When optimization

problems are solved using calculus-based methods, the solution is trapped in the

local minimum. Solving large size problems for global optimum solutions using

such methods requires long computation time. Hence, random-based search

techniques like simulated annealing or genetic algorithm are usually preferred.

They provide near-optimal solutions to large problems of combinatorial nature

with a better performance than greedy algorithms (26). Simulated annealing is an

efficient technique for solving assembly line balancing problem (22, 26) and

operation sequencing problem (23, 24). Therefore, a problem-specific simulated

annealing algorithm is developed which is presented in the following sections

along with introduction to the method in 4.1.

4.1 Introduction

Simulated annealing derives its name from physical annealing of solids (26).

Annealing of solids involves heating of the solid to a high temperature (melting

point) and slow cooling to a low temperature at a controlled rate. The slow

cooling ensures more time is spent near the freezing point of the solid. This

facilitates the re-arrangement of the molecules and the solid eventually attains

the desired properties. Simulated annealing is a high quality approximation

algorithm to solve combinatorial problems for minimizing the objective function

using a similar procedure. The algorithm begins when an initial feasible solution

is specified along with the value of the control parameter. The control parameter

is analogous to the temperature in annealing as the value of control parameter is

reduced according to the cooling rate. Similar to energy in annealing, the value of

the objective function is calculated for each configuration. Neighboring

configurations are generated according to the scheme being followed. The

neighboring solution is accepted as a current solution if its energy value is lower.

33

It may also be accepted if it satisfies the Metropolis criterion. In this criterion, a

random number from a uniform distribution between (0, 1) is drawn. It is

compared with the acceptance probability which is a ratio of change in energy to

the control parameter.

Due to the acceptance of new configuration according to the metropolis

criterion, the algorithm also accepts inferior solutions at a probability. This

prevents being stuck in a local minimum. A certain number of iterations are

performed for each value of the control parameter and then the value is lowered.

At high values of the control parameter, more uphill changes are accepted. On

the contrary, the number of uphill values being accepted is lower for lower values

of the control parameter. The algorithm stops when the control parameter

reaches the pre-specified minimum value. For slower cooling, better solution is

obtained. However, there is an exponential increase in computational time with a

lower rate of cooling (26).

The following parameters are required for implementation of simulated

annealing technique:

i) “Initial configuration and solution space

ii) Initial value of control parameter

iii) Neighborhood generation procedure

iv) Cooling rate

v) Stopping criterion” (26).

The general algorithm consists of the following steps:

1) Declare all parameters. Enter initial solution, initial temperature (Tin),

minimum temperature (Tmin), number of iterations (N) and cooling rate

(CR).

2) Calculate the energy for the initial configuration (Ec).

3) Set the value of n=0.

DO

34

4) Develop a neighboring solution and calculate new energy (En).

5) IF new energy is less than current energy, proceed to 6.

ELSE IF metropolis criterion is satisfied, proceed to 6.

ELSE Increment the value of n (n=n+1). Proceed to step 7.

6) New state = Current state (En=Ec). Increment the value of n (n=n+1).

7) IF n<=N, go to step 4.

ELSE T=CR*T. Go to step 4.

UNTIL Stopping criterion is reached. IF T<=Tmin, declare final solution. ELSE Go

to step 4.

Figure 5 shows flowchart of a general simulated annealing algorithm.

35

Figure 5: Flowchart of a general simulated annealing algorithm

36

4.2 Generation of initial solution for grouping problem

The scheme for generation of initial feasible solution for grouping problem

respects inclusion and exclusion constraints.

The steps are listed below:

1. Calculate upper limit on the number of design features to be allotted to

each group for uniform distribution.

DO

2. Check if all features for which inclusion constraints are specified have been

assigned a group.

IF NO, go to step 3.

ELSE go to step 4.

3. Select one design feature from those for which inclusion feature is

specified and no group is assigned. Assign it to current group along with all

features that have inclusion constraints specified for this feature.

4. Assign features for which no inclusion constraint is specified to current

group while respecting exclusion constraints and upper limit on feature

allocation. Go to next group.

UNTIL all machine groups reach upper limit.

5. If any design feature is not assigned a group, assign it to a random group

while respecting exclusion constraints and neglecting upper limit.

4.3 Neighbor generation scheme for grouping problem

The scheme for generation of neighborhood solutions for grouping problem is

adopted from Mcmullen and Frazier (22). It involves performing either a trade or

transfer at each iteration. A random number is drawn to determine which activity

is to be performed for the iteration.

37

Trade:

Trade involves swapping of two design features between two machine groups.

A machine group is selected at random. The last design feature of the group is

assigned to the next machine group. At the same time, the first design feature of

the next machine group is assigned to the previous machine group.

Consider the example shown in Figure 6. The workstation 2 is selected at

random. The last design feature 9 is to be allocated to the next workstation. After

trade, the design feature 10 is allocated to workstation 2 and DFU 9 is allocated

to workstation 3 as seen in Figure 7.

Figure 6: Allocation of Design features to workstations before trade

Group 2

Group 3

DFU: 9

DFU: 6 DFU: 7 DFU: 8

DFU: 10 DFU: 11 DFU: 12 DFU: 13

38

Figure 7: Allocation of Design features to workstations after trade

Transfer:

Transfer involves assigning a design feature of a machine group to the next

group without allocating any design feature back to the first group. A machine

group is selected at random and the last design feature of the group is assigned

to the next group.

An example is shown in Figure 8. Workstation 4 is selected for transfer at

random. The last design feature 24 is to be allocated to the next workstation. In

Figure 9, it is seen that DFU 24 is allocated to workstation 5 after the transfer is

performed.

Group 2

Group 3

DFU: 10

DFU: 6 DFU: 7 DFU: 8

DFU: 9 DFU: 11 DFU: 12 DFU: 13

39

Figure 8: Allocation of Design features to workstations before transfer

Figure 9: Allocation of Design features to workstations after transfer

Group 4

Group 5

DFU: 24

DFU: 21 DFU: 22 DFU: 23

DFU: 25 DFU: 26 DFU: 27

Group 4

Group 5 DFU: 27

DFU: 21 DFU: 22 DFU: 23

DFU: 24 DFU: 25 DFU: 26

40

4.4 Simulated annealing algorithm for grouping problem

The algorithm for grouping problem allocates design features to machine

groups. The objective is to minimize the sum of orientation change time and

transportation time within each workstation. It also allocates the required machine

tools and cutting tools to the machine groups. Tool life, tool magazine capacity,

inclusion and exclusion, upper limit on machine tool allocation and takt time limit

are the constraints respected by this algorithm. Figure 10 shows the proposed

approach for hierarchical grouping and sequencing using SA algorithm. The

steps involved in the proposed simulated annealing algorithm for grouping

problem are listed below and depicted in Figure 11.

Figure 10: Proposed approach for hierarchical grouping and sequencing of

machining operations for transfer lines (SA algorithm)

The algorithm consists of the following steps:

SA algorithm for grouping problem

Cutting tool allocation

Inclusion and exclusion,
capacity and takt
time constraints

Machine too l allocation

 Feature grouping and
allocation

 Precedence constraints Operation sequencing

SA algorithm for sequencing problem

41

1) Declare all parameters. Generate initial feasible solution while respecting

inclusion and exclusion constraints. Enter initial temperature

(Tin=1000000), minimum temperature (Tmin=1), number of iterations

(N=50) and cooling rate (CR=0.99).

2) Calculate the energy for the initial configuration (Ec).

3) Set the value of n=0.

DO

4) Develop a neighboring solution using either a trade or transfer and

calculate new energy (En) by calling Grouping energy function.

5) Grouping energy function: Measure ORCT, TLCT, OPT and transportation

time and verify takt time limit. Allocate the required cutting tools and

machine tools to each machine group. Verify tool life limit, tool magazine

limit, and upper limit on number of machines, inclusion and exclusion

constraints.

IF the configuration is feasible, proceed to step 7.

ELSE Go to step 6.

6) Repair configuration to old state by reversing trade or transfer performed

for this iteration. Increment the value of n (n=n+1). Proceed to 9.

7) IF new energy is less than current energy, proceed to 8.

ELSE IF metropolis criterion is satisfied, proceed to 8.

ELSE Increment the value of n (n=n+1). Go to step 9.

8) New state = Current state (En=Ec). Increment the value of n (n=n+1).

IF new solution is better than best solution, accept current solution as best

solution. Proceed to 9.

ELSE Go to 9.

9) IF n<=N, go to step 4.

ELSE T=CR*T. Go to step 4.

UNTIL Stopping criterion is reached.

IF T<=Tmin, declare final solution and best solution. ELSE Go to step 4.

42

Figure 11: Flowchart of a simulated annealing algorithm for the grouping problem

43

4.5 Generation of initial solution for sequencing problem

The initial feasible solution for sequencing problems is generated from the

best solution obtained from the grouping problem. For each machine group, the

initial sequence is obtained by serially placing operations from each design

feature allotted to the group in a numerical order. The precedence constraints are

satisfied by default. The complete operation sequence from all machine groups is

built up and placed into Q which is the initial feasible operation sequence for the

sequencing problem.

4.6 Neighbor generation scheme for sequencing problem

The scheme for generation of neighborhood solutions for sequencing problem

is called modified shifting scheme (MSS). It is a novel perturbation scheme

developed by Pandey et al. (23). Whenever the operation sequence is modified,

it may lead to an infeasible solution. MSS involves making changes to the

operation sequence such that the resulting sequencing is always feasible. This

reduces the number of iterations required to reach the optimum solution and also

minimizes the search space. The following steps are followed to generate a

neighboring solution.

1. Input the current sequence of operations Q and precedence constraint for

features.

2. Generate a random number ‘x’ between 1 and total number of operations.

This is the operation number which is to be moved.

3. Copy the operation sequence for the machine group to which x belongs

from Q into R.

DO

4. Replace x with an operation of R serially starting from 1.

44

5. IF precedence within a feature or precedence between features constraint

is violated, replace x to its original position and go to step 4.

ELSE go to step 6.

6. Copy R into the machine group portion of Q to which x belongs.

UNTIL R is copied to Q.

Consider an example.

1. Q = {32, 33, 34, 35, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 26, 27, 7, 8, 9, 24, 25, 28, 29, 30, 31} and precedence

constraint implies for the following pair of design features: [1,4], [2,6], [3,9]

and [4,5]. The operations belonging to each design feature are as follows:

[1: 1, 2, 3], [2: 4, 5, 6], [3: 7, 8, 9], [4: 10, 11, 12], [5: 13, 14], [6: 16, 17], [7:

18, 19, 20], [8: 21, 22, 23], [9: 24, 25], [10: 26, 27], [11: 28, 29, 30, 31] and

[12: 32, 33, 34, 35].

2. A random number is generated x=6.

3. As operation number 6 belongs to group 2, all operations belonging to

group 2 are copied to R from Q. R= {1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23}.

4. Replace 1 with 6.

5. Precedence within feature constraint is violated.

4. Replace 2 with 6.

5. Precedence within feature constraint is violated.

4. Replace 3 with 6.

5. Precedence within feature constraint is violated.

4. Replace 4 with 6.

5. Precedence within feature constraint is violated.

4. Replace 5 with 6.

45

5. Precedence within feature constraint is violated.

4. Replace 10 with 6.

5. Precedence constraints are not violated.

6. Copy updated R = {1, 2, 3, 4, 5, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23} into Q.

New Q = {32, 33, 34, 35, 1, 2, 3, 4, 5, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 26, 27, 7, 8, 9, 24, 25, 28, 29, 30, 31}. This is a feasible

neighborhood sequence.

4.7 Simulated annealing algorithm for sequencing problem

The algorithm for sequencing problem develops optimum operation sequence

for each machine group. The objective is to minimize the sum of orientation

change time and tool change time within each workstation. Precedence

constraints are respected by this algorithm. The steps involved in the proposed

simulated annealing algorithm for sequencing problem are listed below and

depicted in Figure 12.

The algorithm consists of the following steps:

1) Declare all parameters. Generate initial feasible solution while respecting

precedence constraints. Enter initial temperature (Tin=1000000), minimum

temperature (Tmin=1), number of iterations (N=50) and cooling rate

(CR=0.99).

2) Calculate the energy for the initial configuration (Ec).

3) Set the value of n=0.

DO

4) Develop a neighboring feasible solution using modified shifting scheme

and calculate new energy (En) by calling Sequencing energy function.

46

5) Sequencing energy function: Measure ORCT and TLCT, the sum of which

is the value of energy.

6) IF new energy is less than current energy, proceed to 7.

ELSE IF metropolis criterion is satisfied, proceed to 7.

ELSE Increment the value of n (n=n+1). Proceed to 8.

7) New state = Current state (En=Ec). Increment the value of n (n=n+1).

IF new solution is better than best solution, accept current solution as best

solution. Proceed to 8.

ELSE Proceed to 8.

8) IF n=N, go to step 4.

ELSE T=CR*T. Go to step 4.

UNTIL Stopping criterion is reached. IF T=Tmin, declare final solution and best

solution. ELSE Go to step 4.

47

Figure 12: Flowchart of a simulated annealing algorithm for the sequencing

problem

48

CHAPTER 5: NUMERICAL EXPERIMENTS

A number of experiments are conducted to verify the functionality of the MILP

model and simulated annealing algorithm. Three case studies are presented in

the following sections. The first case study is the benchmark problem from Das et

al. (12). It is a cylinder head manufacturing problem consisting of 38 operations.

The second case study is considered from Osman and Baki (14). Fifteen

problems with different sizes are solved. The last case study considers the effect

of variation in machining time on machine tool requirement.

5.1 Case study 1

A case study from Das et al. (12) is considered. An automotive cylinder head

is to be manufactured. It has 12 Design features located on five different faces

consisting of 38 machining operations in total. They are to be distributed amongst

four machine groups. Twelve different types of cutting tools are required. The

orientation change time matrix (in seconds) is presented in Table 2. The details

of the operations are specified in Table 3. The tool change time is a random

number in the range (1, 10). The value is zero for no change in cutting tool. As

the complete data for tool change time is not available, new values are

generated. The matrix for tool change time is included in Appendix D. The MILP

model is coded using AMPL27 and solved using CPLEX solver. The simulated

annealing algorithm is coded and solved using C++28 in Microsoft Visual Studio

Express. The test is conducted using an Intel i-3 processor @1.4 GHz with 4GB

RAM.

Table 2: Orientation change time matrix for the chosen cylinder head benchmark

problem (12)

Face Face

1 2 3 4 5

1 -- 1.95 2.5 4 5

2 1.95 -- 1.95 2.5 4

3 2.5 1.95 -- 1.95 2.5

49

4 4 2.5 1.95 -- 1.95

5 5 4 2.5 1.95 --

Table 3: Processing information for the chosen cylinder head benchmark problem

(12)

DFU No.

of

DFUs

Location

on face

Data

Type

1 16 1 UMF 1 2 3 4

Tool # 1 2 3 4

No. of

slots

4 2 2 2

TO(s) 2.88 1.25 1.7

1

2.9

3

RT(s) 1.73 0.75 1.0

3

1.8

2 4 1 UMF 5 6 7 8

Tool # 1 2 4 5

No. of

slots

4 2 2 2

TO(s) 1.54 1.57 2.6

2

1.7

RT(s) 0.92 0.94 1.5

7

1

3 8 1 UMF 9 10 11

Tool # 1 4 5

No. of

slots

4 2 2

TO(s) 2.75 1.79 2.89

RT(s) 1.65 1.07 1.73

4 8 2 UMF 12 13 14

Tool # 6 7 8

No. of

slots

1 1 1

TO(s) 1.95 1.2 1.65

RT(s) 1.17 0.75 0.99

5 4 2 UMF 15 16

Tool # 9 10

No. of

slots

1 1

TO(s) 2.68 2.3

RT(s) 1.61 1.38

6 4 3 UMF 17 18 19 20

Tool # 9 10 11 12

No. of

slots

1 1 3 3

TO(s) 1.97 3.37 1.3

6

2.74

RT(s) 1.18 2.02 0.8

2

1.4

50

7 4 3 UMF 21 22 23

Tool # 10 11 12

No. of

slots

1 3 3

TO(s) 1.35 1.22 3.09

RT(s) 0.81 0.73 1.85

8 20 4 UMF 24 25 26

Tool # 3 4 5

No. of

slots

2 2 2

TO(s) 1.2 1.62 2.06

RT(s) 0.72 0.97 1.24

9 20 3 UMF 27 28

Tool # 3 4

No. of

slots

2 2

TO(s) 1.9 3.3

RT(s) 1.14 1.98

10 8 5 UMF 29 30

Tool # 1 2

No. of

slots

4 2

TO(s) 2.78 1.31

RT(s) 1.67 0.79

11 8 5 UMF 31 32 33 34

Tool # 11 12 5 6

No. of

slots

3 3 2 1

TO(s) 3.43 3.42 3.39 2.5

RT(s) 2.05 2.05 2.03 1.5

12 4 5 UMF 35 36 37 38

Tool # 8 9 10 11

No. of

slots

1 1 1 3

TO(s) 2.64 2.26 2.45 2.3

2

RT(s) 1.58 1.36 1.47 1.4

The computational results from MILP model are illustrated in Table 4. The

solution to the grouping sub-model is obtained in 1 sec. The total solution time for

the sequencing sub-models is 3.37 sec. A total makespan of 1248.64 sec is

obtained. The makespan obtained by Das et al. (12) are 1256.74 seconds,

1213.64 seconds and 1223.14 seconds with a solution time of 2329 sec, 1694

sec and 2376 sec respectively. As the complete data for tool change time is not

available and transportation time is not considered in (12), the makespan is not

51

compared with original results. However, a total computational time of 4.37 sec is

significantly lower than the original run time exhausted by Das et al. (12). The

original metrics that could express the computational complexity of Das et al.’s

(12) models are presented in Table 5. Table 6 shows those for the proposed

models. Hence, the discrepancies with the run time could be attributed to the

development and improvement of the commercial solvers that have taken place

since Das et al. (12) ran their models.

A histogram in Figure 13 shows the cycle time against takt time at each

workstation. Figure 14 shows the operation sequence at each workstation.

The computational results from simulated annealing algorithm are presented in

Table 7. The makespan obtained is 1342.64 seconds with a solution time of 2

sec. A shorter solution time can be attributed to simple structure of SA algorithm.

The deviation with respect to optimal solution from MILP model is 7.5%. A

histogram in Figure 15 shows the cycle time against takt time at each

workstation. Figure 16 shows the operation sequence at each workstation.

Table 4: Numerical results showing the grouping and sequence obtained (MILP

model)

Machine Group 1 2 3 4 Total

DFUs 10, 11, 12 4, 5, 8 1, 2, 3 6, 7, 9 12

Solution time for
sequencing sub-

model (sec)
1.5 0.19 0.96 0.72 3.37

No. of machine
tools allotted

1 1 1 1 4

Cutting tools
allocated

1, 2, 5, 6, 8, 9,
10, 11, 12

3, 4, 5, 6, 7,
8, 9, 10

1, 2, 3, 4, 5
3, 4, 9, 10,

11, 12
-

No. of sequence
positions

10 8 11 9 38

Optimum
sequence [DFU,

Sequence]

[11,31], [11,32],
[11,33], [12,35],
[10,29], [12,36],
[12,37], [11,34],
[10,30], [12,38]

[8,24],
[4,12],
[8,25],
[4,13],
[4,14],
[5,15],

[5,16], [8,26]

[1,1], [2,5],
[1,2], [1,3],
[2,6], [1,4],
[2,7], [2,8],
[3,9], [3,10],

[3,11]

[6,17], [6,18],
[7,21], [9,27],
[9,28], [6,19],
[7,22], [6,20],

[7,23]

-

52

ORCT (sec) 0 10 0 0 10

TLCT (sec) 23 21 23 15 82

Transportation
time (sec)

0 0 0 0 0

TO + RT (sec) 277.28 249.76 367.76 262.04 1156.84

Makespan (sec) 300.28 280.76 390.76 277.04 1248.84

Figure 13: Cycle times against takt time for transfer line workstations (MILP

model)

Figure 14: Vector diagram showing operation sequence at each workstation

(MILP model) [DFU, Operation]

300.28
280.76

390.76

277.04

0

50

100

150

200

250

300

350

400

450

1 2 3 4

C

y

c

l

e

t

i

m

e

Workstations

takt time = 400 s

53

Table 5: Size complexity metrics for Das et al.’s planning and sequencing model

(12)

Item Planning model
Sequencing model

Group 1 Group 2 Group 3 Group 4

Total number of variables 1418 17,683 14, 737 11, 867 11, 811

Number of integer variables 828 17,616 14, 670 11, 800 11, 744

Number of constraints 768 3292 1894 956 964

CPU time 18 min 14 sec 18 min 39 sec 1 min 19 sec 2 sec

Table 6: Size complexity metrics for proposed grouping and sequencing models

Item Grouping sub-model
Sequencing sub-model

Group 1 Group 2 Group 3 Group 4

Total number of variables 2508 9113 3661 13444 5926

Number of integer variables 2508 1 1 1 1

Number of constraints 1816 10082 4162 14698 6608

CPU time 1 sec 1.5 sec 0.19 sec 0.96 sec 0.72 sec

Table 7: Numerical results showing the grouping and sequence obtained (SA

algorithm)

Machine Group 1 2 3 4 Total

DFUs 1, 4, 5 2, 6, 8 3, 7, 10, 11 9, 12 12

Solution time for
sequencing sub-

model (sec)

- - - - 2

No. of machine
tools allotted

1 1 1 1 4

Cutting tools
allocated

1, 2, 3, 4, 6,

7, 8, 9, 10

1, 2, 3, 4, 5, 9,

10, 11, 12

1, 2, 4, 5, 6, 10,

11, 12

3, 4, 8, 9,

10, 11
-

No. of sequence
positions

9 11 12 6 38

Optimum
sequence [DFU,

Sequence]

[1,1], [1,2],

[1,3], [4,12],

[2,5], [2,6],

[2,7], [2,8],

[3,9], [3,10],

[3,11], [7,21],

[9,27],

[9,28],
-

54

[1,4], [4,13],

[4,14], [5,15],

[5,16]

[6,17], [6,18],

[6,19], [6,20],

[8,24], [8,25],

[8,26]

[7,22], [10,29],

[7,23], [10,30],

[11,31], [11,32],

[11,33], [11,34]

[12,35],

[12,36],

[12,37],

[12,38]

ORCT (sec) 5.85 4.45 10 2.5 22.8

TLCT (sec) 35 69 34 25 163

Transportation
time (sec)

0 0 0 0 0

TO + RT (sec) 318.84 263.08 346.6 228.32 1156.84

Makespan (sec) 359.69 336.53 390.6 255.82 1342.64

Figure 15: Cycle times against takt time for transfer line workstations (SA

algorithm)

359.69
336.53

390.6

255.82

0

50

100

150

200

250

300

350

400

450

1 2 3 4

C

y

c

l

e

t

i

m

e

Workstations

takt time = 400 s

55

Figure 16: Vector diagram showing operation sequence at each workstation (SA

algorithm) [DFU, Operation]

56

5.2 Case study 2

A case study from Osman and Baki (14) is considered. It consists of 15

problems with different configurations. The problem size is small for the first

seven problems, medium for 8-12 and large for 13-15. The configuration of the

problems is listed in Table 8. The number of design features, operations and

groups are listed in the second column and the inclusion, exclusion relationships

are listed in the adjacent columns. The number of operations for a feature is a

random number between 2 and 4. Other parameter settings are specified in

Table 9. The original results from Osman and Baki (14) are presented in Table

10.

In order to take into account the nature of parameter settings, a total of 10

runs are performed for each of the 15 problems. The mean values of solution

time, handling time and makespan are calculated for results from both MILP

model and SA algorithm. The comparison is presented in Table 11 and Figures

17-19. The detail results for individual runs for each problem are included in

Appendix E.

Table 8: Configuration of the tested benchmark problems (14)

Problem
Number

R / O / G Inclusion relationships Exclusion relationships

1 3 / 14 / 2 [1,2] [2,3]

2 4 / 10 / 2 [1,2] [1,3]

3 5 / 16 / 3 [1,2], [1,4] [3,4]

4 6 / 17 / 2 [1,4], [3,5] [3,6], [4,6]

5 6 / 18 / 2 [1,4], [3,5] [3,6], [4,6]

6 7 / 19 / 3 [2,3], [2,5] [5,7], [3,6]

7 8 / 22 / 2 [3,4], [5,7] [4,7], [6,8], [7,8]

8 10 / 30 / 3 [1,4], [2,7] [6,9], [7,10]

9 12 / 35 / 4 [1,4], [2,6], [4,5], [3,9] [6,9], [6,10], [9,10]

10 18 / 46 / 4
[1,4], [2,3], [8,11], [11,15],

[5,9], [5,7], [5,12]
[1,5], [1,11], [1,16], [2,10], [5,16],

[10,12], [11,12]

57

11 15 / 41 / 5 [5,7], [5,10], [11,15], [12,13] [1,13], [6,9], [8,10], [8,11], [12,15]

12 15 / 52 / 5 [5,7], [5,10], [11,15], [12,13] [1,13], [6,9], [8,10], [8,11], [12,15]

13 20 / 64 / 5
[1,4], [1,6], [1,8], [5,9], [5,7],

[5,10]
[1,16], [1,11], [10,12], [11,12]

14 25 / 80 / 5
[1,14], [1,19], [21,23],
[19,22], [23,24], [5,11],

[10,16]

[1,11], [1,13], [1,16], [1,21], [5,14],
[13,17], [10,11]

15 30 / 96 / 6
[1,14], [1,18], [5,19], [20,30],

[21,24], [22,28], [19,22]
[1,11], [1,13], [13,17], [1,16], [5,14],

[18,30], [10,11], [10,12], [11,12]

Table 9: Parameter settings in the tested benchmark problems (14)

Parameter Data range Parameter Data range

'rr
ORCT Uniform (1, 5) s roTO Uniform (1, 5) s

)1(ororTLCT / ''oror
TLCT Uniform (2, 7) s roRT Uniform (1, 2) s

lH Uniform (1, 4) gNM Uniform (2, 5) machine

lT Uniform (2000, 3000) s E Uniform (330, 550) s

A Uniform (60, 80) tool t Uniform (5, 10) s

rD Uniform (5, 12) unit
rf Uniform (1, 5)

Table 10: Original computational results from Osman and Baki (14)

Problem
No.

Benders
Decomposition

Hybrid Benders-ACO Nested ACO

Solution
time

Handling
time (s)

Solution
time

Non-
productive

time (s)

% from
optimal

Solution
time

Handling
time (s)

% from
optimal

1 31.34 s 361.01 3.38 s 361.01 0 2.55 s 361.01 0

2 2 s 56.03 9 s 56.03 0 7 s 56.03 0

3
13.4
min

82.94 30 s 84.07 1.36 13 s 84.27 1.6

4 7.2 min 86.7 8 s 89.6 3.34 3.9 s 87.9 1.38

5 1.9 h 91 16 s 93.2 2.41 2.7 s 93.6 2.85

6
22.5
min

94.41 15.96 s 95.72 1.38 8.55 s 98.05 3.8

7 1.7 h 110.49 41.57 s 114.96 4.04 10.05 s 114.37 3.51

8 >72 h - 7.75 142.75 - 14.7 139.2 -

58

min min

9 >72 h -
4.65
min

175.1 - 14 min 185 -

10 >72 h -
19.75
min

217.75 - 2.14 h 214.29 -

11 >72 h - 1.45 h 227.96 - 3.35 h 224.8 -

12 >72 h - 53 min 245.01 - 2.6 h 249.9 -

13 >72 h - 16.39 h 296.76 - 3.79 h 310.07 -

14 >72 h - >24 h - - 19.1 h 366.41 -

15 >72 h - >24 h - - 20.4 h 464.15 -

Table 11: Computational results for the tested benchmark problems

Problem
no.

MILP model Simulated annealing algorithm

Mean
Solution

time

Mean
Handlin
g time

(s)

Mean
Makesp
an (s)

Mean
Solutio
n time

Mean
Handli

ng
time
(s)

Mean
Makesp
an (s)

%
deviatio

n of
sub-

optimal
handlin
g time
from

optimal
solution

%
deviation
of sub-
optimal

makespa
n from
optimal
solution

1 0.19 s 59.28 615.25 <0.1 s 59.28 615.25 0 0

2 0.15 s 39.55 415.76 <0.1 s 41.26 427.2 4.32 2.75

3 0.25 s 65.03 705.6 < 0.1 s 66.8 707.39 2.72 0.25

4 1.88 s 77.71 738.42 1 s 83 742.62 6.8 0.56

5 1.96 s 81.22 783.22 1 s 89.82 791.83 10.58 1.1

6 0.36 78.66 816.83 1 s 84.48 822.58 7.39 0.7

7 5.23 s 103.07 925.51 1.1 s 116.83 939.27 13.35 1.49

8 7.2 s 136.04 1318.36 2.2 s 147.12 1329.44 8.14 0.84

9 2.31 s 155.06 1497.08 2.2 s 164.37 1512.52 6 1.03

10 24.46 s 218.91 1954.64 4.4 s 231.79 1967.5 5.88 0.66

11 6.17 s 178.48 1740.16 2.8 s 195.53 1757.22 9.55 0.98

12 14.67 s 236.49 2241.23 4 s 254.3 2259.04 7.53 0.79

59

13 5.14 min 301.59 2819.96 6.6 s 323.03 2843.7 7.1 0.84

14 4.37 h 380.39 3447.17 10.8 s 431.37 3498.11 13.4 1.47

15 >24 h - - 11.4 s 442.31 4240.03 - -

Figure 17: Comparison of mean solution time required for MILP model and SA

algorithm for problems of small size

0.19 0.15 0.27

1.88 1.96

0.36

5.23

0 0
0

1.7
1.3

1.1

1.9

0

1

2

3

4

5

6

1 2 3 4 5 6 7

M

e

a

n

s

o

l

u

t

i

o

n

t

i

m

e

 (

s)

Problems of small size

MILP SA

60

Figure 18: Comparison of mean solution time required for MILP model and SA

algorithm for problems of medium size

Figure 19: Comparison of mean solution time required for MILP model and SA

algorithm for problems of large size

7.2

2.27

24.46

6.17

14.51

2.8 2 3.6
2

3.3

0

5

10

15

20

25

30

8 9 10 11 12

M

e

a

n

s

o

l

u

t

i

o

n

t

i

m

e

 (

s)

Problems of medium size

MILP SA

308.4

15732

No solution

6 8.7
11.4

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

13 14 15

M

e

a

n

s

o

l

u

t

i

o

n

t

i

m

e

 (

s)

Problems of large size

MILP SA

61

The settings and ranges of the parameters for the case study are given in

Table 9. However, the exact values of the parameters being used Osman and

Baki (14) are not available. Hence, only a comparison of the elapsed

computational time is conducted and not that of the objective function value.

The mean solution time with MILP model is less than the original solution time.

As the sequencing problem is solved individually for each workstation, the

sequencing problem is solved for (g) number of times. The original Bender’s

Decomposition method (14) involves solving the sequencing problem (r x g)

number of times. Hence, the total time required for solution is lower with the

proposed method.

However, the solution time increases exponentially for large problems. The

model is able to solve 14 of the total 15 problems within reasonable time.

The solution time for simulated annealing algorithm is further less than that of

the MILP model. Therefore, large problems can be solved using this method

within a short time. The result for problem 15, which is not solved by MILP model

in a reasonable time, is obtained within a short time. The quality of solution is

compared with the optimal solution from MILP model by calculating percentage

deviation in Table 11. An average deviation of 7.34% is obtained for handling

time and 0.96% for makespan.

62

5.3 Case study 3

This case study considers the effect of variation in processing time of

operation on machine tool requirement. With higher cutting speeds, the

machining time can be reduced along with a reduction in number of machine

tools utilized.

Problem 15 from case study 2 is considered. The Machining time is varied

between 4 intervals of the original range (1, 5). All other parameters remain

unchanged. The results are included in Table 12. The machine tool requirement

decreases for lower machining time. Also, the makespan is lower for lower

machining time.

Table 12: Numerical results showing effect of cutting speed on cycle time and

machine tool requirement (SA algorithm)

No.
Machining

time
TO (sec)

Cycle time (sec)

Make
span
(s)

Total no.
of

machine
tools

required

Worksta
tion 1

Worksta
tion 2

Worksta
tion 3

Worksta
tion 4

Worksta
tion 5

1 (1,2) 697.75 551.85 603.46 702.65 375.51 2931 9

2 (2,3) 889.75 710.85 769.46 906.68 485.47 3762 10

3 (3,4) 1326.98 869.85 1058.18 1114.64 220.69 4590 12

4 (4,5) 1279.71 1034.81 1107.42 1314.61 693.47 5430 14

However, a higher cutting speed increases wear of cutting tools. The effect of

cutting parameters on cutting tool life is studied by Lajis et al. (29). A model is

presented to calculate cutting tool life in end milling of hardened steel using the

following equation:

14.157.002.3167711 fdVTL

63

They conclude that tool life decreases with increase in cutting speed followed

by feed rate and depth of cut. Therefore, selection of cutting condition should be

performed considering the cutting parameters. An expert system is proposed by

Arezoo et al. (30) for selection of cutting tool and condition. It uses a knowledge

based system to determine the optimum cutting tool and condition for an

operation. The selection of cutting condition is another step of process planning

which has not been considered here.

With reduction of tool life, the cutting tools wear out faster. A replacement with

new cutting tools would be required. Normally, an extra spare tool would be

plugged into the tool magazine to replace the worn-out tool before its life expires.

For accuracy, this would result in additional tool change times, which is not really

incorporated in the model. Due to shortage of data about the exact machining

parameters being used by the benchmarked case studies, this part could not be

incorporated and added as extra tool life constraints in the sequencing sub-

model. However, one could argue as well that the effect of this might not be as

significant, since tool change times are not as significant components as

transportation time in the overall handling time objective function being taken.

Another implication of the extra tool change is the cost. The total equipment cost

needs to be considered. Future work in this field may consider a total cost of

machine tools and cutting tools to arrive at a pareto optimal solution.

64

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

A simple transfer line balancing problem is considered with a focus on process

planning and line configuration. A hierarchical approach of grouping design

features and sequencing machining operations is adopted. The objective is to

minimize the handling time fraction of the cycle time consisting mainly of

orientation change time and tool change time. Several technological constraints

of inclusion, exclusion, precedence and takt time limit are considered. A revised

tool magazine capacity constraint is considered for accurate representation. A

balanced transfer line ensures maximum utilization of machine tool and higher

productivity.

A new mixed integer linear programming model is proposed. A meta-heuristic

is an effective technique to solve this problem for large instances. Simulated

annealing is an efficient algorithm for process planning and operation sequencing

as seen in literature. Hence, a problem-specific simulated annealing algorithm is

developed to solve this problem.

Rigorous numerical experiments are conducted. Optimal results are obtained

with MILP model for problems of small and medium size within a reasonable

time. The solution time increases exponentially for large problems. The simulated

annealing algorithm is able to solve problems of all sizes within a short time with

near-optimal results. This performance with respect to optimality and computation

time is better than that of similar methods considered in the literature.

A time-based approach has been followed in this thesis. An extension to this

thesis may involve multi-objective optimization to solve the transfer line balancing

problem. Both production time and equipment cost may be considered to reach a

pareto optimal solution. Goal programming can be a useful tool for the

formulation of a new mathematical model. Multi-threaded simulated annealing

may be applied to develop a new problem-specific algorithm for multi-objective

optimization.

65

BIBLIOGRAPHY

1. Essafi M, Delorme X, Dolgui A, Guschinskaya O. A MIP approach for

balancing transfer line with complex industrial constraints. Computers & Industrial

Engineering. 2010; 58(3):393-400.

2. Dolgui A, Ihnatsenka I. Branch and bound algorithm for a transfer line

design problem: Stations with sequentially activated multi-spindle heads.

European Journal of Operational Research. 2009; 197(3):1119-32.

3. Reddy SB, Shunmugam MS, Narendran TT. Operation sequencing in

CAPP using genetic algorithms. International Journal of Production Research.

1999; 37(5):1063-74.

4. Kim I-T, Suh H-W. Optimal operation grouping and sequencing technique

for multistage machining systems. International Journal of Production Research.

1998; 36(8):2061-81.

5. Halevi G, Weill RD. Principles of process planning: a logical approach.

Springer; 1995.

6. Boysen N, Fliedner M, Scholl A. Assembly line balancing: Which model to

use when? International Journal of Production Economics. 2008; 111(2):509-28.

7. Tolio T, Urgo M. Design of flexible transfer lines: A case-based

reconfiguration cost assessment. Journal of Manufacturing Systems. 2013;

32:325-334.

8. Sharma IR. Latest trends in machining [Internet]. 2001 [updated 2001 Jan

1; cited 2014 Jan 23]. Available from:

http://drishtikona.files.wordpress.com/2012/08/ch-all.pdf

9. Integration Definition for Function Modeling (IDEF0) [Internet] 1993

[updated 1993 December 21; cited 2014 Jan 15]. Available from:

http://www.idef.com/pdf/idef0.pdf

10. Dolgui A, Guschinsky N, Levin G. Exact and heuristic algorithms for

balancing transfer lines when a set of available spindle heads is given.

International Transactions in Operational Research. 2008; 15(3):339-57.

66

11. Dolgui A, Guschinsky N, Levin G. Enhanced mixed integer programming

model for a transfer line design problem. Computers & Industrial Engineering.

2012; 62:570-78.

12. Das K, Baki MF, Li X. Optimization of operation and changeover time for

production planning and scheduling in a flexible manufacturing system.

Computers & Industrial Engineering. 2009; 56(1):283-93.

13. Osman H, Baki MF. A Linearization and Decomposition Based Approach

to Minimize the Non-Productive Time in Transfer Lines. World Academy of

Science, Engineering and Technology. 2013:74.

14. Osman H, Baki MF. Balancing transfer lines using Benders decomposition

and ant colony optimisation techniques. International Journal of Production

Research. 2013: 1-17.

15. Zhang GW, Zhang SC, Xu YS. Research on flexible transfer line

schematic design using hierarchical process planning. Journal of Materials

Processing Technology. 2002; 129:629-633.

16. Masood, Syed. Line balancing and simulation of an automated production

transfer line. Assembly Automation. 2006; 26(1):69-74.

17. Persi P, Ukovich W, Pesenti R, Nicolich M. A hierarchic approach to

production planning and scheduling of a flexible manufacturing system. Robotics

and Computer-Integrated Manufacturing. 1999;(1)15(5):373-85.

18. Sarin S, Chen C. The machine loading and tool allocation problem in a

flexible manufacturing system. International Journal of Production Research.

1987; 25(7):1081-94.

19. Sinriech D, Rubinovitz J, Milo D, Nakbily G. Sequencing, scheduling and

tooling single-stage multifunctional machines in a small batch environment. IIE

Transactions. 2001; 33(10):897-911.

20. Ecker KH, Gupta JND. Scheduling tasks on a flexible manufacturing

machine to minimize tool change delays. European Journal of Operational

Research. 2005; 164(3):627-38.

67

21. Lin C-J, Wang H-P. Optimal operation planning and sequencing:

minimization of tool changeovers. The International Journal of Production

Research. 1993; 31(2):311-24.

22. McMullen PR, Frazier G. Using simulated annealing to solve a

multiobjective assembly line balancing problem with parallel workstations.

International Journal of Production Research. 1998; 36(10):2717-41.

23. Pandey V, Tiwari MK, Kumar S. An interactive approach to solve the

operation sequencing problem using simulated annealing. The International

Journal of Advanced Manufacturing Technology. 2005; 29(11-12):1212-31.

24. Azab A, ElMaraghy H. Sequential process planning: A hybrid optimal

macro-level approach. Journal of Manufacturing Systems. 2007; 26(3-4):147-60.

25. Bhale S, Baki MF, Azab A. Grouping and Sequencing of Machining

Operations for High Volume Transfer Lines. Proceedings of the 47th CIRP

Conference on Manufacturing Systems; 2014 Apr 28-30; Windsor, Canada.

Windsor: Canada; 2014. P. 413-18.

26. Suresh G, Sahu S. Stochastic assembly line balancing using simulated

annealing. The International Journal of Production Research. 1994; 32.8:1801-

10.

27. Fourer R, Gay D, Kernighan BW. The AMPL book. Duxbury Press, Pacific

Grove; 2002.

28. Savitch WJ. Problem solving with C++: the object of programming / Walter

Savitch. Reading, Mass.: Addison Wesley Longman; 1999.

29. Lajis MA, Karim ANM, Amin AKMN, Hafiz AMK, Turnad LG. Prediction of

Tool Life in End Milling of Hardened Steel AISI D2. European Journal of

Operations Research. 2008; 21(4):592-602.

30. Arezoo B, Ridgway K, Al-Ahmari AMA. Selection of cutting tools and

conditions of machining operations using an expert system. Computers in

Industry. 2000; 42:43-58.

68

APPENDIX A: AMPL PROGRAM FOR MATHEMATICAL

MODEL: CASE STUDY 1

Grouping Sub-model

Model file

Format: .mod

reset;

option solver cplex;

set R;

set O{R};

set G;

param Or{R} >= 0;

param ORCT{r in R, rp in R} default 0;

param i{R,R} binary default 0;

param e{R,R} binary default 0;

var X {r in R,O[r],G} binary;

var Q {G} binary;

var Z {R,G} binary;

var B {R,G,R,G} binary;

var W1{g in G} = sum {r in R, rp in R} ORCT[r,rp] * B[r,g,rp,g];

var S{g in G} = sum {r in R} Or[r] * Z[r,g];

minimize objective:

69

sum{g in G} W1[g];

subject to eq_06 {r in R}:

sum {g in G} Z[r,g] = 1;

subject to eq_07 {g in G}:

sum {r in R} Z[r,g] >= 0;

subject to eq_08 {r in R, o in O[r], g in G}:

X[r,o,g] = Z[r,g];

subject to eq_09 {g in G, r in R, rp in R: rp>r and i[r,rp]=1}:

(Z[r,g] - Z[rp,g]) = 0;

subject to eq_10 {g in G, r in R, rp in R: rp>r and e[r,rp]=1}:

(Z[r,g] + Z[rp,g]) <= 1;

subject to eq_11 {g in G}:

sum {r in R} Z[r,g] <= 10000000 * Q[g];

subject to eq_13 {r in R, g in G, rp in R}:

Z[r,g] = sum{gp in G} B[r,g,rp,gp];

subject to eq_14 {r in R, g in G, rp in R, gp in G: rp>r}:

B[r,g,rp,gp] = B[rp,gp,r,g];

Data file

Format: .dat

param: R: Or:=

1 4

70

2 4

3 3

4 3

5 2

6 4

7 3

8 3

9 2

10 2

11 4

12 4 ;

set O[1] := 1 2 3 4 ;

set O[2] := 5 6 7 8 ;

set O[3] := 9 10 11 ;

set O[4] := 12 13 14 ;

set O[5] := 15 16 ;

set O[6] := 17 18 19 20 ;

set O[7] := 21 22 23 ;

set O[8] := 24 25 26 ;

set O[9] := 27 28 ;

set O[10] := 29 30 ;

71

set O[11] := 31 32 33 34 ;

set O[12] := 35 36 37 38 ;

set G := 1 2 3 4 ;

let i[2,3] := 1;

let i[4,5] := 1;

let e[10,1] := 1;

let ORCT[1,4] := 1.95; let ORCT[1,5] := 1.95; let ORCT[1,6] := 2.5;

let ORCT[1,7] := 2.5; let ORCT[1,8] := 4; let ORCT[1,9] := 2.5;

let ORCT[1,10] := 5; let ORCT[1,11] := 5; let ORCT[1,12] := 5;

let ORCT[2,4] := 1.95; let ORCT[2,5] := 1.95; let ORCT[2,6] := 2.5;

let ORCT[2,7] := 2.5; let ORCT[2,8] := 4; let ORCT[2,9] := 2.5;

let ORCT[2,10] := 5; let ORCT[2,11] := 5; let ORCT[2,12] := 5;

let ORCT[3,4] := 1.95; let ORCT[3,5] := 1.95; let ORCT[3,6] := 2.5;

let ORCT[3,7] := 2.5; let ORCT[3,8] := 4; let ORCT[3,9] := 2.5;

let ORCT[3,10] := 5; let ORCT[3,11] := 5; let ORCT[3,12] := 5;

let ORCT[4,1] := 1.95; let ORCT[4,2] := 1.95; let ORCT[4,3] := 1.95;

let ORCT[4,6] := 1.95; let ORCT[4,7] := 1.95; let ORCT[4,8] := 2.5;

let ORCT[4,9]:= 1.95; let ORCT[4,10] := 4; let ORCT[4,11] := 4;

let ORCT[4,12] := 4;

let ORCT[5,1] := 1.95; let ORCT[5,2] := 1.95; let ORCT[5,3] := 1.95;

let ORCT[5,6] := 1.95; let ORCT[5,7] := 1.95; let ORCT[5,8] := 2.5;

let ORCT[5,9]:= 1.95; let ORCT[5,10] := 4; let ORCT[5,11] := 4;

let ORCT[5,12] := 4;

let ORCT[6,1] := 2.5; let ORCT[6,2] := 2.5; let ORCT[6,3] := 2.5;

let ORCT[6,4] := 1.95; let ORCT[6,5] := 1.95; let ORCT[6,8] := 1.95;

let ORCT[6,10]:= 2.5; let ORCT[6,11] := 2.5; let ORCT[6,12] := 2.5;

72

let ORCT[7,1] := 2.5; let ORCT[7,2] := 2.5; let ORCT[7,3] := 2.5;

let ORCT[7,4] := 1.95; let ORCT[7,5] := 1.95; let ORCT[7,8] := 1.95;

let ORCT[7,10]:= 2.5; let ORCT[7,11] := 2.5; let ORCT[7,12] := 2.5;

let ORCT[8,1] := 4; let ORCT[8,2] := 4; let ORCT[8,3] := 4;

let ORCT[8,4] := 2.5; let ORCT[8,5] := 2.5; let ORCT[8,6] := 1.95;

let ORCT[8,7]:= 1.95; let ORCT[8,9] := 1.95; let ORCT[8,10] := 1.95;

let ORCT[8,11] := 1.95; let ORCT[8,12] := 1.95;

let ORCT[9,1] := 2.5; let ORCT[9,2] := 2.5; let ORCT[9,3] := 2.5;

let ORCT[9,4]:= 1.95; let ORCT[9,5] := 1.95; let ORCT[9,8] := 1.95;

let ORCT[9,10] := 2.5; let ORCT[9,11] := 2.5; let ORCT[9,12] := 2.5;

let ORCT[10,1] := 5; let ORCT[10,2] := 5; let ORCT[10,3] := 5;

let ORCT [10,4]:= 4; let ORCT[10,5] := 4; let ORCT[10,6] := 2.5;

let ORCT[10,7] := 2.5; let ORCT[10,8] := 1.95; let ORCT[10,9] := 2.5;

let ORCT[11,1] := 5; let ORCT[11,2] := 5; let ORCT[11,3] := 5;

let ORCT [11,4]:= 4; let ORCT[11,5] := 4; let ORCT[11,6] := 2.5;

let ORCT[11,7] := 2.5; let ORCT[11,8] := 1.95; let ORCT[11,9] := 2.5;

let ORCT[12,1] := 5; let ORCT[12,2] := 5; let ORCT[12,3] := 5;

let ORCT [12,4]:= 4; let ORCT[12,5] := 4; let ORCT[12,6] := 2.5;

let ORCT[12,7] := 2.5; let ORCT[12,8] := 1.95; let ORCT[12,9] := 2.5;

Sequencing Sub-model

Sample model and data files for group 1 are included below. The coding

structure for other groups is similar except for the number of sequence positions,

which differs for each group.

Model file

Format: .mod

73

reset;

option solver cplex;

set R;

set O{R};

set O1{R};

set O2{R};

set G;

set L;

set S{G};

set SP{G};

set S1{G};

set SP1{G};

set S2{G};

set SP2{G};

set S3{G};

set SP3{G};

set S4{G};

set SP4{G};

set S5{G};

set SP5{G};

set S6{G};

74

set SP6{G};

set S7{G};

set SP7{G};

set S8{G};

set SP8{G};

set S9{G};

set SP9{G};

set S10{G};

set SP10{G};

param Or{R} >= 0;

param Orf{R} >= 0;

param Orl{R} >= 0;

param D{R} >= 0;

param T{L} default 100;

param H{L} >= 0;

param E >= 0;

param A default 20;

param ORCT{r in R, rp in R} default 0;

param TLCT{r in R, o in O[r], rp in R, op in O[rp]} default 0;

param TO{r in R, o in O[r]} default 0;

param RT{r in R, o in O[r]} default 0;

75

param P{r in R, o in O[r], l in L} default 0;

param Z {R,G} default 0;

param NM{G} >= 0;

param i{R,R} binary default 0;

param t default 5;

var X {r in R, o in O[r], g in G, s in S[g]} binary;

var Y {L,G} binary;

var C {g in G, r in R, o in O[r], s in S[g], rp in R, op in O[rp], sp in S[g]} binary;

var N {G} integer >= 0;

var W1{G} = sum {r in R, rp in R, g in G, o in O[r], op in O[rp], s in SP[g]:rp!=r}

ORCT[r,rp] * C[g,r,o,s,rp,op,s+1] * Z[r,g] * Z[rp,g];

var W2{G} = sum{g in G, r in R, o in O[r], s in SP[g], op in O[r]} TLCT[r,o,r,op] *

C[g,r,o,s,r,op,s+1] * Z[r,g] + sum{g in G, r in R, o in O[r], rp in R, op in O[rp], s in

SP[g]:r!=rp} TLCT[r,o,rp,op] * C[g,r,o,s,rp,op,s+1] * Z[r,g] * Z[rp,g];

var W3{G} = sum {r in R, o in O[r], g in G, s in S[g]} D[r] * RT[r,o] * X[r,o,g,s];

var W4{G} = sum {r in R, o in O[r], g in G, s in S[g]} D[r] * TO[r,o] * X[r,o,g,s];

minimize objective1_non_productive_time:

sum {g in G} W1[g] + sum {g in G} W2[g] + sum{g in G} (N[g]-1) * t;

subject to eq_15 {g in G}:

N[g] <= NM[g];

subject to eq_16_001{r in R, o in O1[r], g in G, s in S1[g]}:

sum{sp in SP1[g]} (X[r,o,g,sp]) >= sum{sp in SP1[g]} (X[r,o+1,g,sp]);

76

subject to eq_16_002{r in R, o in O1[r], g in G, s in S2[g]}:

sum{sp in SP2[g]} (X[r,o,g,sp]) >= sum{sp in SP2[g]} (X[r,o+1,g,sp]);

subject to eq_16_003{r in R, o in O1[r], g in G, s in S3[g]}:

sum{sp in SP3[g]} (X[r,o,g,sp]) >= sum{sp in SP3[g]} (X[r,o+1,g,sp]);

subject to eq_16_004{r in R, o in O1[r], g in G, s in S4[g]}:

sum{sp in SP4[g]} (X[r,o,g,sp]) >= sum{sp in SP4[g]} (X[r,o+1,g,sp]);

subject to eq_16_005{r in R, o in O1[r], g in G, s in S5[g]}:

sum{sp in SP5[g]} (X[r,o,g,sp]) >= sum{sp in SP5[g]} (X[r,o+1,g,sp]);

subject to eq_16_006{r in R, o in O1[r], g in G, s in S6[g]}:

sum{sp in SP6[g]} (X[r,o,g,sp]) >= sum{sp in SP6[g]} (X[r,o+1,g,sp]);

subject to eq_16_007{r in R, o in O1[r], g in G, s in S7[g]}:

sum{sp in SP7[g]} (X[r,o,g,sp]) >= sum{sp in SP7[g]} (X[r,o+1,g,sp]);

subject to eq_16_008{r in R, o in O1[r], g in G, s in S8[g]}:

sum{sp in SP8[g]} (X[r,o,g,sp]) >= sum{sp in SP8[g]} (X[r,o+1,g,sp]);

subject to eq_16_009{r in R, o in O1[r], g in G, s in S9[g]}:

sum{sp in SP9[g]} (X[r,o,g,sp]) >= sum{sp in SP9[g]} (X[r,o+1,g,sp]);

subject to eq_16_010{r in R, o in O1[r], g in G, s in S10[g]}:

sum{sp in SP10[g]} (X[r,o,g,sp]) >= sum{sp in SP10[g]} (X[r,o+1,g,sp]);

subject to eq_17_001{r in R, rp in R, g in G, s in S1[g]:i[r,rp]=1}:

sum{sp in SP1[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP1[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_002{r in R, rp in R, g in G, s in S2[g]:i[r,rp]=1}:

77

sum{sp in SP2[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP2[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_003{r in R, rp in R, g in G, s in S3[g]:i[r,rp]=1}:

sum{sp in SP3[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP3[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_004{r in R, rp in R, g in G, s in S4[g]:i[r,rp]=1}:

sum{sp in SP4[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP4[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_005{r in R, rp in R, g in G, s in S5[g]:i[r,rp]=1}:

sum{sp in SP5[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP5[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_006{r in R, rp in R, g in G, s in S6[g]:i[r,rp]=1}:

sum{sp in SP6[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP6[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_007{r in R, rp in R, g in G, s in S7[g]:i[r,rp]=1}:

sum{sp in SP7[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP7[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_008{r in R, rp in R, g in G, s in S8[g]:i[r,rp]=1}:

sum{sp in SP8[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP8[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_009{r in R, rp in R, g in G, s in S9[g]:i[r,rp]=1}:

sum{sp in SP9[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP9[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_17_010{r in R, rp in R, g in G, s in S10[g]:i[r,rp]=1}:

sum{sp in SP10[g]} (X[r,Orl[r],g,sp]) >= sum{sp in SP10[g]} (X[rp,Orf[rp],g,sp]);

subject to eq_18 {r in R, o in O[r], g in G}:

sum {s in S[g]} X[r,o,g,s] = Z[r,g];

subject to eq_19 {g in G, s in S[g]}:

sum {r in R, o in O[r]} X[r,o,g,s] = 1;

78

subject to eq_20 {g in G, s in S[g], l in L}:

sum {r in R, o in O[r]} P[r,o,l] * D[r] * TO[r,o] * X[r,o,g,s] <= T[l] * Y[l,g];

subject to eq_21 {g in G}:

sum {l in L} H[l] * Y[l,g] <= A * N[g];

subject to eq_22 :

sum{g in G} W1[g] + sum {g in G} W2[g] + sum{g in G} W3[g] + sum{g in G}

W4[g] <= sum{g in G} E * N[g];

subject to eq_23 {g in G, s in S[g], rp in R, op in O[rp], sp in S[g]:s != sp}:

X[rp,op,g,sp] = sum{r in R, o in O[r]} C[g,r,o,s,rp,op,sp];

subject to eq_24 {g in G, s in S[g], sp in S[g], r in R, o in O[r], rp in R, op in

O[rp]:s != sp}:

C[g,r,o,s,rp,op,sp] = C[g,rp,op,sp,r,o,s];

Data file

Format: .dat

param: R: Or:=

1 4

2 4

3 3

4 3

5 2

6 4

7 3

79

8 3

9 2

10 2

11 4

12 4 ;

param: L: H :=

1 4

2 2

3 2

4 2

5 2

6 1

7 1

8 1

9 1

10 1

11 3

12 3 ;

set O[1] := 1 2 3 4 ;

set O[2] := 5 6 7 8 ;

set O[3] := 9 10 11 ;

80

set O[4] := 12 13 14 ;

set O[5] := 15 16 ;

set O[6] := 17 18 19 20 ;

set O[7] := 21 22 23 ;

set O[8] := 24 25 26 ;

set O[9] := 27 28 ;

set O[10] := 29 30 ;

set O[11] := 31 32 33 34 ;

set O[12] := 35 36 37 38 ;

set O1[1] := 1 2 3 ;

set O1[2] := 5 6 7 ;

set O1[3] := 9 10 ;

set O1[4] := 12 13 ;

set O1[5] := 15 ;

set O1[6] := 17 18 19 ;

set O1[7] := 21 22 ;

set O1[8] := 24 25 ;

set O1[9] := 27 ;

set O1[10] := 29 ;

set O1[11] := 31 32 33 ;

set O1[12] := 35 36 37 ;

81

set G := 1 ;

set SP[1] := 1 2 3 4 5 6 7 ;

set S[1] := 1 2 3 4 5 6 7 8 ;

set S1[1] := 1 ;

set S2[1] := 2 ;

set S3[1] := 3 ;

set S4[1] := 4 ;

set S5[1] := 5 ;

set S6[1] := 6 ;

set S7[1] := 7 ;

set S8[1] := 8 ;

set SP1[1] := 1 ;

set SP2[1] := 1 2 ;

set SP3[1] := 1 2 3 ;

set SP4[1] := 1 2 3 4 ;

set SP5[1] := 1 2 3 4 5 ;

set SP6[1] := 1 2 3 4 5 6 ;

set SP7[1] := 1 2 3 4 5 6 7 ;

set SP8[1] := 1 2 3 4 5 6 7 8 ;

let Orf[1] := 1;

let Orf[2] := 5;

82

let Orf[3] := 9;

let Orf[4] := 12;

let Orf[5] := 15;

let Orf[6] := 17;

let Orf[7] := 21;

let Orf[8] := 24;

let Orf[9] := 27;

let Orf[10] := 29;

let Orf[11] := 31;

let Orf[12] := 35;

let Orl[1] := 4;

let Orl[2] := 8;

let Orl[3] := 11;

let Orl[4] := 14;

let Orl[5] := 16;

let Orl[6] := 20;

let Orl[7] := 23;

let Orl[8] := 26;

let Orl[9] := 28;

let Orl[10] := 30;

let Orl[11] := 34;

83

let Orl[12] := 38;

let Z[4,1] := 1 ;

let Z[5,1] := 1 ;

let Z[8,1] := 1 ;

let i[2,3] := 1;

let i[4,5] := 1;

let E := 400;

let NM[1] := 5 ;

let TO[1,1] := 2.88 ;

let TO[1,2] := 1.25 ;

let TO[1,3] := 1.71 ;

let TO[1,4] := 2.93 ;

let TO[2,5] := 1.54 ;

let TO[2,6] := 1.57 ;

let TO[2,7] := 2.62 ;

let TO[2,8] := 1.7 ;

let TO[3,9] := 2.75 ;

let TO[3,10] := 1.79 ;

let TO[3,11] := 2.89 ;

let TO[4,12] := 1.95 ;

let TO[4,13] := 1.2 ;

84

let TO[4,14] := 1.65 ;

let TO[5,15] := 2.68 ;

let TO[5,16] := 2.3 ;

let TO[6,17] := 1.97 ;

let TO[6,18] := 3.37 ;

let TO[6,19] := 1.36 ;

let TO[6,20] := 2.74 ;

let TO[7,21] := 1.35 ;

let TO[7,22] := 1.22 ;

let TO[7,23] := 3.09 ;

let TO[8,24] := 1.2 ;

let TO[8,25] := 1.62 ;

let TO[8,26] := 2.06 ;

let TO[9,27] := 1.9 ;

let TO[9,28] := 3.3 ;

let TO[10,29] := 2.78 ;

let TO[10,30] := 1.31 ;

let TO[11,31] := 3.43 ;

let TO[11,32] := 3.42 ;

let TO[11,33] := 3.39 ;

let TO[11,34] := 2.5 ;

85

let TO[12,35] := 2.64 ;

let TO[12,36] := 2.26 ;

let TO[12,37] := 2.45 ;

let TO[12,38] := 2.32 ;

let RT[1,1] := 1.73 ;

let RT[1,2] := 0.75 ;

let RT[1,3] := 1.03 ;

let RT[1,4] := 1.8 ;

let RT[2,5] := 0.92 ;

let RT[2,6] := 0.94 ;

let RT[2,7] := 1.57 ;

let RT[2,8] := 1 ;

let RT[3,9] := 1.65 ;

let RT[3,10] := 1.07 ;

let RT[3,11] := 1.73 ;

let RT[4,12] := 1.17 ;

let RT[4,13] := 0.75 ;

let RT[4,14] := 0.99 ;

let RT[5,15] := 1.61 ;

let RT[5,16] := 1.38 ;

let RT[6,17] := 1.18 ;

86

let RT[6,18] := 2.02 ;

let RT[6,19] := 0.82 ;

let RT[6,20] := 1.4 ;

let RT[7,21] := 0.81 ;

let RT[7,22] := 0.73 ;

let RT[7,23] := 1.85 ;

let RT[8,24] := 0.72 ;

let RT[8,25] := 0.97 ;

let RT[8,26] := 1.24 ;

let RT[9,27] := 1.14 ;

let RT[9,28] := 1.98 ;

let RT[10,29] := 1.67 ;

let RT[10,30] := 0.79 ;

let RT[11,31] := 2.05 ;

let RT[11,32] := 2.05 ;

let RT[11,33] := 2.03 ;

let RT[11,34] := 1.5 ;

let RT[12,35] := 1.58 ;

let RT[12,36] := 1.36 ;

let RT[12,37] := 1.47 ;

let RT[12,38] := 1.4 ;

87

let P[1,1,1] := 1 ;

let P[1,2,2] := 1 ;

let P[1,3,3] := 1 ;

let P[1,4,4] := 1 ;

let P[2,5,1] := 1 ;

let P[2,6,2] := 1 ;

let P[2,7,4] := 1 ;

let P[2,8,5] := 1 ;

let P[3,9,1] := 1 ;

let P[3,10,4] := 1 ;

let P[3,11,5] := 1 ;

let P[4,12,6] := 1 ;

let P[4,13,7] := 1 ;

let P[4,14,8] := 1 ;

let P[5,15,9] := 1 ;

let P[5,16,10] := 1 ;

let P[6,17,9] := 1 ;

let P[6,18,10] := 1 ;

let P[6,19,11] := 1 ;

let P[6,20,12] := 1 ;

let P[7,21,10] := 1 ;

88

let P[7,22,11] := 1 ;

let P[7,23,12] := 1 ;

let P[8,24,3] := 1 ;

let P[8,25,4] := 1 ;

let P[8,26,5] := 1 ;

let P[9,27,3] := 1 ;

let P[9,28,4] := 1 ;

let P[10,29,1] := 1 ;

let P[10,30,2] := 1 ;

let P[11,31,11] := 1 ;

let P[11,32,12] := 1 ;

let P[11,33,5] := 1 ;

let P[11,34,6] := 1 ;

let P[12,35,8] := 1 ;

let P[12,36,9] := 1 ;

let P[12,37,10] := 1 ;

let P[12,38,11] := 1 ;

let D[1] := 16 ;

let D[2] := 4 ;

let D[3] := 8 ;

let D[4] := 8 ;

89

let D[5] := 4 ;

let D[6] := 4 ;

let D[7] := 4 ;

let D[8] := 20 ;

let D[9] := 20 ;

let D[10] := 8 ;

let D[11] := 8 ;

let D[12] := 4 ;

let ORCT[1,4] := 1.95; let ORCT[1,5] := 1.95; let ORCT[1,6] := 2.5;

let ORCT[1,7] := 2.5; let ORCT[1,8] := 4; let ORCT[1,9] := 2.5;

let ORCT[1,10] := 5; let ORCT[1,11] := 5; let ORCT[1,12] := 5;

let ORCT[2,4] := 1.95; let ORCT[2,5] := 1.95; let ORCT[2,6] := 2.5;

let ORCT[2,7] := 2.5; let ORCT[2,8] := 4; let ORCT[2,9] := 2.5;

let ORCT[2,10] := 5; let ORCT[2,11] := 5; let ORCT[2,12] := 5;

let ORCT[3,4] := 1.95; let ORCT[3,5] := 1.95; let ORCT[3,6] := 2.5;

let ORCT[3,7] := 2.5; let ORCT[3,8] := 4; let ORCT[3,9] := 2.5;

let ORCT[3,10] := 5; let ORCT[3,11] := 5; let ORCT[3,12] := 5;

let ORCT[4,1] := 1.95; let ORCT[4,2] := 1.95; let ORCT[4,3] := 1.95;

let ORCT[4,6] := 1.95; let ORCT[4,7] := 1.95; let ORCT[4,8] := 2.5;

let ORCT[4,9]:= 1.95; let ORCT[4,10] := 4; let ORCT[4,11] := 4;

let ORCT[4,12] := 4;

let ORCT[5,1] := 1.95; let ORCT[5,2] := 1.95; let ORCT[5,3] := 1.95;

let ORCT[5,6] := 1.95; let ORCT[5,7] := 1.95; let ORCT[5,8] := 2.5;

let ORCT[5,9]:= 1.95; let ORCT[5,10] := 4; let ORCT[5,11] := 4;

let ORCT[5,12] := 4;

90

let ORCT[6,1] := 2.5; let ORCT[6,2] := 2.5; let ORCT[6,3] := 2.5;

let ORCT[6,4] := 1.95; let ORCT[6,5] := 1.95; let ORCT[6,8] := 1.95;

let ORCT[6,10]:= 2.5; let ORCT[6,11] := 2.5; let ORCT[6,12] := 2.5;

let ORCT[7,1] := 2.5; let ORCT[7,2] := 2.5; let ORCT[7,3] := 2.5;

let ORCT[7,4] := 1.95; let ORCT[7,5] := 1.95; let ORCT[7,8] := 1.95;

let ORCT[7,10]:= 2.5; let ORCT[7,11] := 2.5; let ORCT[7,12] := 2.5;

let ORCT[8,1] := 4; let ORCT[8,2] := 4; let ORCT[8,3] := 4;

let ORCT[8,4] := 2.5; let ORCT[8,5] := 2.5; let ORCT[8,6] := 1.95;

let ORCT[8,7]:= 1.95; let ORCT[8,9] := 1.95; let ORCT[8,10] := 1.95;

let ORCT[8,11] := 1.95; let ORCT[8,12] := 1.95;

let ORCT[9,1] := 2.5; let ORCT[9,2] := 2.5; let ORCT[9,3] := 2.5;

let ORCT[9,4]:= 1.95; let ORCT[9,5] := 1.95; let ORCT[9,8] := 1.95;

let ORCT[9,10] := 2.5; let ORCT[9,11] := 2.5; let ORCT[9,12] := 2.5;

let ORCT[10,1] := 5; let ORCT[10,2] := 5; let ORCT[10,3] := 5;

let ORCT [10,4]:= 4; let ORCT[10,5] := 4; let ORCT[10,6] := 2.5;

let ORCT[10,7] := 2.5; let ORCT[10,8] := 1.95; let ORCT[10,9] := 2.5;

let ORCT[11,1] := 5; let ORCT[11,2] := 5; let ORCT[11,3] := 5;

let ORCT [11,4]:= 4; let ORCT[11,5] := 4; let ORCT[11,6] := 2.5;

let ORCT[11,7] := 2.5; let ORCT[11,8] := 1.95; let ORCT[11,9] := 2.5;

let ORCT[12,1] := 5; let ORCT[12,2] := 5; let ORCT[12,3] := 5;

let ORCT [12,4]:= 4; let ORCT[12,5] := 4; let ORCT[12,6] := 2.5;

let ORCT[12,7] := 2.5; let ORCT[12,8] := 1.95; let ORCT[12,9] := 2.5;

let TLCT[1,1,1,1] := 0; let TLCT[1,1,1,2] := 10; let TLCT[1,1,1,3] := 6;

let TLCT[1,1,1,4] := 1; let TLCT[1,1,2,5] := 0; let TLCT[1,1,2,6] := 9;

let TLCT[1,1,2,7] := 1; let TLCT[1,1,2,8] := 8; let TLCT[1,1,3,9] := 0;

let TLCT[1,1,3,10] := 4; let TLCT[1,1,3,11] := 4; let TLCT[1,1,4,12] := 5;

let TLCT[1,1,4,13] := 2; let TLCT[1,1,4,14] := 8; let TLCT[1,1,5,15] := 9;

let TLCT[1,1,5,16] := 6; let TLCT[1,1,6,17] := 3; let TLCT[1,1,6,18] := 5;

91

let TLCT[1,1,6,19] := 2; let TLCT[1,1,6,20] := 1; let TLCT[1,1,7,21] := 5;

let TLCT[1,1,7,22] := 7; let TLCT[1,1,7,23] := 8; let TLCT[1,1,8,24] := 7;

let TLCT[1,1,8,25] := 6; let TLCT[1,1,8,26] := 10; let TLCT[1,1,9,27] := 2;

let TLCT[1,1,9,28] := 9; let TLCT[1,1,10,29] := 0; let TLCT[1,1,10,30] := 6;

let TLCT[1,1,11,31] := 2; let TLCT[1,1,11,32] := 2; let TLCT[1,1,11,33] := 10;

let TLCT[1,1,11,34] := 3; let TLCT[1,1,12,35] := 4; let TLCT[1,1,12,36] := 10;

let TLCT[1,1,12,37] := 10; let TLCT[1,1,12,38] := 7;

let TLCT[1,2,1,1] := 8; let TLCT[1,2,1,2] := 0; let TLCT[1,2,1,3] := 2;

let TLCT[1,2,1,4] := 1; let TLCT[1,2,2,5] := 6; let TLCT[1,2,2,6] := 0;

let TLCT[1,2,2,7] := 4; let TLCT[1,2,2,8] := 1; let TLCT[1,2,3,9] := 3;

let TLCT[1,2,3,10] := 9; let TLCT[1,2,3,11] := 2; let TLCT[1,2,4,12] := 2;

let TLCT[1,2,4,13] := 4; let TLCT[1,2,4,14] := 8; let TLCT[1,2,5,15] := 3;

let TLCT[1,2,5,16] := 6; let TLCT[1,2,6,17] := 4; let TLCT[1,2,6,18] := 6;

let TLCT[1,2,6,19] := 2; let TLCT[1,2,6,20] := 4; let TLCT[1,2,7,21] := 6;

let TLCT[1,2,7,22] := 6; let TLCT[1,2,7,23] := 1; let TLCT[1,2,8,24] := 3;

let TLCT[1,2,8,25] := 5; let TLCT[1,2,8,26] := 8; let TLCT[1,2,9,27] := 9;

let TLCT[1,2,9,28] := 6; let TLCT[1,2,10,29] := 2; let TLCT[1,2,10,30] := 0;

let TLCT[1,2,11,31] := 8; let TLCT[1,2,11,32] := 2; let TLCT[1,2,11,33] := 7;

let TLCT[1,2,11,34] := 2; let TLCT[1,2,12,35] := 5; let TLCT[1,2,12,36] := 5;

let TLCT[1,2,12,37] := 9; let TLCT[1,2,12,38] := 5;

let TLCT[1,3,1,1] := 6; let TLCT[1,3,1,2] := 9; let TLCT[1,3,1,3] := 0;

let TLCT[1,3,1,4] := 10; let TLCT[1,3,2,5] := 2; let TLCT[1,3,2,6] := 1;

let TLCT[1,3,2,7] := 6; let TLCT[1,3,2,8] := 3; let TLCT[1,3,3,9] := 1;

let TLCT[1,3,3,10] := 9; let TLCT[1,3,3,11] := 3; let TLCT[1,3,4,12] := 6;

let TLCT[1,3,4,13] := 2; let TLCT[1,3,4,14] := 6; let TLCT[1,3,5,15] := 6;

let TLCT[1,3,5,16] := 7; let TLCT[1,3,6,17] := 10; let TLCT[1,3,6,18] := 5;

let TLCT[1,3,6,19] := 7; let TLCT[1,3,6,20] := 1; let TLCT[1,3,7,21] := 9;

let TLCT[1,3,7,22] := 9; let TLCT[1,3,7,23] := 7; let TLCT[1,3,8,24] := 0;

let TLCT[1,3,8,25] := 5; let TLCT[1,3,8,26] := 2; let TLCT[1,3,9,27] := 0;

let TLCT[1,3,9,28] := 7; let TLCT[1,3,10,29] := 10; let TLCT[1,3,10,30] := 3;

92

let TLCT[1,3,11,31] := 6; let TLCT[1,3,11,32] := 5; let TLCT[1,3,11,33] := 4;

let TLCT[1,3,11,34] := 1; let TLCT[1,3,12,35] := 7; let TLCT[1,3,12,36] := 6;

let TLCT[1,3,12,37] := 5; let TLCT[1,3,12,38] := 7;

let TLCT[1,4,1,1] := 9; let TLCT[1,4,1,2] := 8; let TLCT[1,4,1,3] := 7;

let TLCT[1,4,1,4] := 0; let TLCT[1,4,2,5] := 10; let TLCT[1,4,2,6] := 4;

let TLCT[1,4,2,7] := 0; let TLCT[1,4,2,8] := 9; let TLCT[1,4,3,9] := 8;

let TLCT[1,4,3,10] := 0; let TLCT[1,4,3,11] := 3; let TLCT[1,4,4,12] := 4;

let TLCT[1,4,4,13] := 6; let TLCT[1,4,4,14] := 6; let TLCT[1,4,5,15] := 9;

let TLCT[1,4,5,16] := 6; let TLCT[1,4,6,17] := 1; let TLCT[1,4,6,18] := 1;

let TLCT[1,4,6,19] := 4; let TLCT[1,4,6,20] := 1; let TLCT[1,4,7,21] := 10;

let TLCT[1,4,7,22] := 4; let TLCT[1,4,7,23] := 9; let TLCT[1,4,8,24] := 7;

let TLCT[1,4,8,25] := 0; let TLCT[1,4,8,26] := 4; let TLCT[1,4,9,27] := 2;

let TLCT[1,4,9,28] := 0; let TLCT[1,4,10,29] := 10; let TLCT[1,4,10,30] := 8;

let TLCT[1,4,11,31] := 8; let TLCT[1,4,11,32] := 1; let TLCT[1,4,11,33] := 6;

let TLCT[1,4,11,34] := 8; let TLCT[1,4,12,35] := 7; let TLCT[1,4,12,36] := 9;

let TLCT[1,4,12,37] := 4; let TLCT[1,4,12,38] := 6;

let TLCT[2,5,1,1] := 0; let TLCT[2,5,1,2] := 1; let TLCT[2,5,1,3] := 6;

let TLCT[2,5,1,4] := 1; let TLCT[2,5,2,5] := 0; let TLCT[2,5,2,6] := 9;

let TLCT[2,5,2,7] := 8; let TLCT[2,5,2,8] := 8; let TLCT[2,5,3,9] := 0;

let TLCT[2,5,3,10] := 1; let TLCT[2,5,3,11] := 5; let TLCT[2,5,4,12] := 10;

let TLCT[2,5,4,13] := 10; let TLCT[2,5,4,14] := 2; let TLCT[2,5,5,15] := 2;

let TLCT[2,5,5,16] := 4; let TLCT[2,5,6,17] := 8; let TLCT[2,5,6,18] := 6;

let TLCT[2,5,6,19] := 3; let TLCT[2,5,6,20] := 2; let TLCT[2,5,7,21] := 2;

let TLCT[2,5,7,22] := 9; let TLCT[2,5,7,23] := 10; let TLCT[2,5,8,24] := 5;

let TLCT[2,5,8,25] := 8; let TLCT[2,5,8,26] := 3; let TLCT[2,5,9,27] := 5;

let TLCT[2,5,9,28] := 2; let TLCT[2,5,10,29] := 0; let TLCT[2,5,10,30] := 2;

let TLCT[2,5,11,31] := 2; let TLCT[2,5,11,32] := 7; let TLCT[2,5,11,33] := 1;

let TLCT[2,5,11,34] := 8; let TLCT[2,5,12,35] := 5; let TLCT[2,5,12,36] := 10;

let TLCT[2,5,12,37] := 4; let TLCT[2,5,12,38] := 4;

93

let TLCT[2,6,1,1] := 9; let TLCT[2,6,1,2] := 0; let TLCT[2,6,1,3] := 8;

let TLCT[2,6,1,4] := 1; let TLCT[2,6,2,5] := 5; let TLCT[2,6,2,6] := 0;

let TLCT[2,6,2,7] := 5; let TLCT[2,6,2,8] := 1; let TLCT[2,6,3,9] := 2;

let TLCT[2,6,3,10] := 4; let TLCT[2,6,3,11] := 7; let TLCT[2,6,4,12] := 1;

let TLCT[2,6,4,13] := 1; let TLCT[2,6,4,14] := 10; let TLCT[2,6,5,15] := 10;

let TLCT[2,6,5,16] := 8; let TLCT[2,6,6,17] := 5; let TLCT[2,6,6,18] := 7;

let TLCT[2,6,6,19] := 7; let TLCT[2,6,6,20] := 6; let TLCT[2,6,7,21] := 8;

let TLCT[2,6,7,22] := 6; let TLCT[2,6,7,23] := 10; let TLCT[2,6,8,24] := 1;

let TLCT[2,6,8,25] := 1; let TLCT[2,6,8,26] := 4; let TLCT[2,6,9,27] := 3;

let TLCT[2,6,9,28] := 10; let TLCT[2,6,10,29] := 4; let TLCT[2,6,10,30] := 0;

let TLCT[2,6,11,31] := 7; let TLCT[2,6,11,32] := 3; let TLCT[2,6,11,33] := 3;

let TLCT[2,6,11,34] := 7; let TLCT[2,6,12,35] := 8; let TLCT[2,6,12,36] := 7;

let TLCT[2,6,12,37] := 10; let TLCT[2,6,12,38] := 8;

let TLCT[2,7,1,1] := 4; let TLCT[2,7,1,2] := 1; let TLCT[2,7,1,3] := 5;

let TLCT[2,7,1,4] := 0; let TLCT[2,7,2,5] := 8; let TLCT[2,7,2,6] := 5;

let TLCT[2,7,2,7] := 0; let TLCT[2,7,2,8] := 7; let TLCT[2,7,3,9] := 8;

let TLCT[2,7,3,10] := 0; let TLCT[2,7,3,11] := 8; let TLCT[2,7,4,12] := 5;

let TLCT[2,7,4,13] := 6; let TLCT[2,7,4,14] := 7; let TLCT[2,7,5,15] := 1;

let TLCT[2,7,5,16] := 1; let TLCT[2,7,6,17] := 4; let TLCT[2,7,6,18] := 8;

let TLCT[2,7,6,19] := 10; let TLCT[2,7,6,20] := 10; let TLCT[2,7,7,21] := 7;

let TLCT[2,7,7,22] := 7; let TLCT[2,7,7,23] := 2; let TLCT[2,7,8,24] := 7;

let TLCT[2,7,8,25] := 0; let TLCT[2,7,8,26] := 6; let TLCT[2,7,9,27] := 1;

let TLCT[2,7,9,28] := 0; let TLCT[2,7,10,29] := 5; let TLCT[2,7,10,30] := 6;

let TLCT[2,7,11,31] := 8; let TLCT[2,7,11,32] := 6; let TLCT[2,7,11,33] := 5;

let TLCT[2,7,11,34] := 3; let TLCT[2,7,12,35] := 7; let TLCT[2,7,12,36] := 9;

let TLCT[2,7,12,37] := 9; let TLCT[2,7,12,38] := 10;

let TLCT[2,8,1,1] := 4; let TLCT[2,8,1,2] := 1; let TLCT[2,8,1,3] := 10;

let TLCT[2,8,1,4] := 5; let TLCT[2,8,2,5] := 1; let TLCT[2,8,2,6] := 4;

let TLCT[2,8,2,7] := 2; let TLCT[2,8,2,8] := 0; let TLCT[2,8,3,9] := 7;

let TLCT[2,8,3,10] := 4; let TLCT[2,8,3,11] := 0; let TLCT[2,8,4,12] := 9;

94

let TLCT[2,8,4,13] := 2; let TLCT[2,8,4,14] := 5; let TLCT[2,8,5,15] := 9;

let TLCT[2,8,5,16] := 8; let TLCT[2,8,6,17] := 6; let TLCT[2,8,6,18] := 8;

let TLCT[2,8,6,19] := 9; let TLCT[2,8,6,20] := 7; let TLCT[2,8,7,21] := 5;

let TLCT[2,8,7,22] := 10; let TLCT[2,8,7,23] := 0; let TLCT[2,8,8,24] := 5;

let TLCT[2,8,8,25] := 2; let TLCT[2,8,8,26] := 0; let TLCT[2,8,9,27] := 10;

let TLCT[2,8,9,28] := 3; let TLCT[2,8,10,29] := 7; let TLCT[2,8,10,30] := 10;

let TLCT[2,8,11,31] := 4; let TLCT[2,8,11,32] := 1; let TLCT[2,8,11,33] := 0;

let TLCT[2,8,11,34] := 6; let TLCT[2,8,12,35] := 1; let TLCT[2,8,12,36] := 7;

let TLCT[2,8,12,37] := 2; let TLCT[2,8,12,38] := 1;

let TLCT[3,9,1,1] := 0; let TLCT[3,9,1,2] := 2; let TLCT[3,9,1,3] := 8;

let TLCT[3,9,1,4] := 4; let TLCT[3,9,2,5] := 0; let TLCT[3,9,2,6] := 2;

let TLCT[3,9,2,7] := 7; let TLCT[3,9,2,8] := 3; let TLCT[3,9,3,9] := 0;

let TLCT[3,9,3,10] := 3; let TLCT[3,9,3,11] := 5; let TLCT[3,9,4,12] := 2;

let TLCT[3,9,4,13] := 9; let TLCT[3,9,4,14] := 10; let TLCT[3,9,5,15] := 7;

let TLCT[3,9,5,16] := 7; let TLCT[3,9,6,17] := 5; let TLCT[3,9,6,18] := 4;

let TLCT[3,9,6,19] := 4; let TLCT[3,9,6,20] := 7; let TLCT[3,9,7,21] := 6;

let TLCT[3,9,7,22] := 7; let TLCT[3,9,7,23] := 4; let TLCT[3,9,8,24] := 8;

let TLCT[3,9,8,25] := 9; let TLCT[3,9,8,26] := 9; let TLCT[3,9,9,27] := 8;

let TLCT[3,9,9,28] := 6; let TLCT[3,9,10,29] := 0; let TLCT[3,9,10,30] := 6;

let TLCT[3,9,11,31] := 4; let TLCT[3,9,11,32] := 10; let TLCT[3,9,11,33] := 6;

let TLCT[3,9,11,34] := 1; let TLCT[3,9,12,35] := 4; let TLCT[3,9,12,36] := 2;

let TLCT[3,9,12,37] := 2; let TLCT[3,9,12,38] := 7;

let TLCT[3,10,1,1] := 1; let TLCT[3,10,1,2] := 9; let TLCT[3,10,1,3] := 10;

let TLCT[3,10,1,4] := 0; let TLCT[3,10,2,5] := 2; let TLCT[3,10,2,6] := 1;

let TLCT[3,10,2,7] := 0; let TLCT[3,10,2,8] := 6; let TLCT[3,10,3,9] := 10;

let TLCT[3,10,3,10] := 0; let TLCT[3,10,3,11] := 1; let TLCT[3,10,4,12] := 5;

let TLCT[3,10,4,13] := 1; let TLCT[3,10,4,14] := 10; let TLCT[3,10,5,15] := 4;

let TLCT[3,10,5,16] := 10; let TLCT[3,10,6,17] := 8; let TLCT[3,10,6,18] := 8;

let TLCT[3,10,6,19] := 7; let TLCT[3,10,6,20] := 2; let TLCT[3,10,7,21] := 7;

let TLCT[3,10,7,22] := 5; let TLCT[3,10,7,23] := 8; let TLCT[3,10,8,24] := 3;

95

let TLCT[3,10,8,25] := 0; let TLCT[3,10,8,26] := 9; let TLCT[3,10,9,27] := 10;

let TLCT[3,10,9,28] := 0; let TLCT[3,10,10,29] := 5; let TLCT[3,10,10,30] := 2;

let TLCT[3,10,11,31] := 6; let TLCT[3,10,11,32] := 7; let TLCT[3,10,11,33] := 9;

let TLCT[3,10,11,34] := 2; let TLCT[3,10,12,35] := 10;let TLCT[3,10,12,36] := 5;

let TLCT[3,10,12,37] := 10;let TLCT[3,10,12,38] := 1;

let TLCT[3,11,1,1] := 7; let TLCT[3,11,1,2] := 2; let TLCT[3,11,1,3] := 2;

let TLCT[3,11,1,4] := 6; let TLCT[3,11,2,5] := 8; let TLCT[3,11,2,6] := 7;

let TLCT[3,11,2,7] := 9; let TLCT[3,11,2,8] := 0; let TLCT[3,11,3,9] := 9;

let TLCT[3,11,3,10] := 10; let TLCT[3,11,3,11] := 0; let TLCT[3,11,4,12] := 1;

let TLCT[3,11,4,13] := 4; let TLCT[3,11,4,14] := 8; let TLCT[3,11,5,15] := 9;

let TLCT[3,11,5,16] := 4; let TLCT[3,11,6,17] := 8; let TLCT[3,11,6,18] := 1;

let TLCT[3,11,6,19] := 3; let TLCT[3,11,6,20] := 1; let TLCT[3,11,7,21] := 4;

let TLCT[3,11,7,22] := 8; let TLCT[3,11,7,23] := 10; let TLCT[3,11,8,24] := 2;

let TLCT[3,11,8,25] := 1; let TLCT[3,11,8,26] := 0; let TLCT[3,11,9,27] := 7;

let TLCT[3,11,9,28] := 7; let TLCT[3,11,10,29] := 7; let TLCT[3,11,10,30] := 8;

let TLCT[3,11,11,31] := 7; let TLCT[3,11,11,32] := 10;let TLCT[3,11,11,33] := 0;

let TLCT[3,11,11,34] := 7; let TLCT[3,11,12,35] := 9; let TLCT[3,11,12,36] := 1;

let TLCT[3,11,12,37] := 3; let TLCT[3,11,12,38] := 10;

let TLCT[4,12,1,1] := 6; let TLCT[4,12,1,2] := 6; let TLCT[4,12,1,3] := 1;

let TLCT[4,12,1,4] := 1; let TLCT[4,12,2,5] := 1; let TLCT[4,12,2,6] := 5;

let TLCT[4,12,2,7] := 8; let TLCT[4,12,2,8] := 8; let TLCT[4,12,3,9] := 2;

let TLCT[4,12,3,10] := 3; let TLCT[4,12,3,11] := 4; let TLCT[4,12,4,12] := 0;

let TLCT[4,12,4,13] := 10; let TLCT[4,12,4,14] := 4; let TLCT[4,12,5,15] := 6;

let TLCT[4,12,5,16] := 2; let TLCT[4,12,6,17] := 2; let TLCT[4,12,6,18] := 8;

let TLCT[4,12,6,19] := 1; let TLCT[4,12,6,20] := 5; let TLCT[4,12,7,21] := 6;

let TLCT[4,12,7,22] := 3; let TLCT[4,12,7,23] := 7; let TLCT[4,12,8,24] := 3;

let TLCT[4,12,8,25] := 2; let TLCT[4,12,8,26] := 2; let TLCT[4,12,9,27] := 2;

let TLCT[4,12,9,28] := 1; let TLCT[4,12,10,29] := 2; let TLCT[4,12,10,30] := 6;

let TLCT[4,12,11,31] := 10;let TLCT[4,12,11,32] := 5; let TLCT[4,12,11,33] := 7;

96

let TLCT[4,12,11,34] := 0; let TLCT[4,12,12,35] := 10;let TLCT[4,12,12,36] := 2;

let TLCT[4,12,12,37] := 3; let TLCT[4,12,12,38] := 5;

let TLCT[4,13,1,1] := 3; let TLCT[4,13,1,2] := 3; let TLCT[4,13,1,3] := 1;

let TLCT[4,13,1,4] := 7; let TLCT[4,13,2,5] := 2; let TLCT[4,13,2,6] := 6;

let TLCT[4,13,2,7] := 4; let TLCT[4,13,2,8] := 7; let TLCT[4,13,3,9] := 5;

let TLCT[4,13,3,10] := 5; let TLCT[4,13,3,11] := 6; let TLCT[4,13,4,12] := 8;

let TLCT[4,13,4,13] := 0; let TLCT[4,13,4,14] := 5; let TLCT[4,13,5,15] := 9;

let TLCT[4,13,5,16] := 3; let TLCT[4,13,6,17] := 4; let TLCT[4,13,6,18] := 2;

let TLCT[4,13,6,19] := 2; let TLCT[4,13,6,20] := 1; let TLCT[4,13,7,21] := 9;

let TLCT[4,13,7,22] := 6; let TLCT[4,13,7,23] := 3; let TLCT[4,13,8,24] := 9;

let TLCT[4,13,8,25] := 5; let TLCT[4,13,8,26] := 5; let TLCT[4,13,9,27] := 9;

let TLCT[4,13,9,28] := 5; let TLCT[4,13,10,29] := 3; let TLCT[4,13,10,30] := 2;

let TLCT[4,13,11,31] := 2; let TLCT[4,13,11,32] := 2; let TLCT[4,13,11,33] := 5;

let TLCT[4,13,11,34] := 7; let TLCT[4,13,12,35] := 6; let TLCT[4,13,12,36] := 9;

let TLCT[4,13,12,37] := 1; let TLCT[4,13,12,38] := 6;

let TLCT[4,14,1,1] := 7; let TLCT[4,14,1,2] := 2; let TLCT[4,14,1,3] := 1;

let TLCT[4,14,1,4] := 6; let TLCT[4,14,2,5] := 7; let TLCT[4,14,2,6] := 8;

let TLCT[4,14,2,7] := 6; let TLCT[4,14,2,8] := 3; let TLCT[4,14,3,9] := 7;

let TLCT[4,14,3,10] := 10; let TLCT[4,14,3,11] := 4; let TLCT[4,14,4,12] := 9;

let TLCT[4,14,4,13] := 2; let TLCT[4,14,4,14] := 0; let TLCT[4,14,5,15] := 2;

let TLCT[4,14,5,16] := 7; let TLCT[4,14,6,17] := 6; let TLCT[4,14,6,18] := 1;

let TLCT[4,14,6,19] := 5; let TLCT[4,14,6,20] := 3; let TLCT[4,14,7,21] := 6;

let TLCT[4,14,7,22] := 5; let TLCT[4,14,7,23] := 9; let TLCT[4,14,8,24] := 9;

let TLCT[4,14,8,25] := 7; let TLCT[4,14,8,26] := 4; let TLCT[4,14,9,27] := 4;

let TLCT[4,14,9,28] := 3; let TLCT[4,14,10,29] := 9; let TLCT[4,14,10,30] := 1;

let TLCT[4,14,11,31] := 6; let TLCT[4,14,11,32] := 7; let TLCT[4,14,11,33] := 1;

let TLCT[4,14,11,34] := 9; let TLCT[4,14,12,35] := 0;let TLCT[4,14,12,36] := 10;

let TLCT[4,14,12,37] := 3; let TLCT[4,14,12,38] := 5;

let TLCT[5,15,1,1] := 10; let TLCT[5,15,1,2] := 7; let TLCT[5,15,1,3] := 6;

let TLCT[5,15,1,4] := 6; let TLCT[5,15,2,5] := 7; let TLCT[5,15,2,6] := 5;

97

let TLCT[5,15,2,7] := 4; let TLCT[5,15,2,8] := 6; let TLCT[5,15,3,9] := 6;

let TLCT[5,15,3,10] := 8; let TLCT[5,15,3,11] := 8; let TLCT[5,15,4,12] := 1;

let TLCT[5,15,4,13] := 6; let TLCT[5,15,4,14] := 3; let TLCT[5,15,5,15] := 0;

let TLCT[5,15,5,16] := 3; let TLCT[5,15,6,17] := 0; let TLCT[5,15,6,18] := 9;

let TLCT[5,15,6,19] := 7; let TLCT[5,15,6,20] := 10; let TLCT[5,15,7,21] := 4;

let TLCT[5,15,7,22] := 2; let TLCT[5,15,7,23] := 6; let TLCT[5,15,8,24] := 5;

let TLCT[5,15,8,25] := 9; let TLCT[5,15,8,26] := 1; let TLCT[5,15,9,27] := 9;

let TLCT[5,15,9,28] := 6; let TLCT[5,15,10,29] := 9; let TLCT[5,15,10,30] := 8;

let TLCT[5,15,11,31] := 2; let TLCT[5,15,11,32] := 7; let TLCT[5,15,11,33] := 4;

let TLCT[5,15,11,34] := 2; let TLCT[5,15,12,35] := 10;let TLCT[5,15,12,36] := 0;

let TLCT[5,15,12,37] := 3; let TLCT[5,15,12,38] := 1;

let TLCT[5,16,1,1] := 4; let TLCT[5,16,1,2] := 9; let TLCT[5,16,1,3] := 3;

let TLCT[5,16,1,4] := 3; let TLCT[5,16,2,5] := 5; let TLCT[5,16,2,6] := 1;

let TLCT[5,16,2,7] := 4; let TLCT[5,16,2,8] := 8; let TLCT[5,16,3,9] := 7;

let TLCT[5,16,3,10] := 10; let TLCT[5,16,3,11] := 1; let TLCT[5,16,4,12] := 8;

let TLCT[5,16,4,13] := 1; let TLCT[5,16,4,14] := 4; let TLCT[5,16,5,15] := 10;

let TLCT[5,16,5,16] := 0; let TLCT[5,16,6,17] := 2; let TLCT[5,16,6,18] := 0;

let TLCT[5,16,6,19] := 3; let TLCT[5,16,6,20] := 10; let TLCT[5,16,7,21] := 0;

let TLCT[5,16,7,22] := 2; let TLCT[5,16,7,23] := 10; let TLCT[5,16,8,24] := 9;

let TLCT[5,16,8,25] := 5; let TLCT[5,16,8,26] := 2; let TLCT[5,16,9,27] := 2;

let TLCT[5,16,9,28] := 8; let TLCT[5,16,10,29] := 5; let TLCT[5,16,10,30] := 8;

let TLCT[5,16,11,31] := 1; let TLCT[5,16,11,32] := 5; let TLCT[5,16,11,33] := 9;

let TLCT[5,16,11,34] := 1; let TLCT[5,16,12,35] := 6; let TLCT[5,16,12,36] := 2;

let TLCT[5,16,12,37] := 0; let TLCT[5,16,12,38] := 2;

let TLCT[6,17,1,1] := 4; let TLCT[6,17,1,2] := 6; let TLCT[6,17,1,3] := 10;

let TLCT[6,17,1,4] := 8; let TLCT[6,17,2,5] := 1; let TLCT[6,17,2,6] := 3;

let TLCT[6,17,2,7] := 1; let TLCT[6,17,2,8] := 4; let TLCT[6,17,3,9] := 2;

let TLCT[6,17,3,10] := 10; let TLCT[6,17,3,11] := 2; let TLCT[6,17,4,12] := 5;

let TLCT[6,17,4,13] := 1; let TLCT[6,17,4,14] := 4; let TLCT[6,17,5,15] := 0;

let TLCT[6,17,5,16] := 6; let TLCT[6,17,6,17] := 0; let TLCT[6,17,6,18] := 4;

98

let TLCT[6,17,6,19] := 10; let TLCT[6,17,6,20] := 1; let TLCT[6,17,7,21] := 5;

let TLCT[6,17,7,22] := 3; let TLCT[6,17,7,23] := 5; let TLCT[6,17,8,24] := 3;

let TLCT[6,17,8,25] := 6; let TLCT[6,17,8,26] := 5; let TLCT[6,17,9,27] := 1;

let TLCT[6,17,9,28] := 9; let TLCT[6,17,10,29] := 6; let TLCT[6,17,10,30] := 4;

let TLCT[6,17,11,31] := 5; let TLCT[6,17,11,32] := 6; let TLCT[6,17,11,33] := 6;

let TLCT[6,17,11,34] := 9; let TLCT[6,17,12,35] := 9; let TLCT[6,17,12,36] := 0;

let TLCT[6,17,12,37] := 7; let TLCT[6,17,12,38] := 8;

let TLCT[6,18,1,1] := 2; let TLCT[6,18,1,2] := 3; let TLCT[6,18,1,3] := 3;

let TLCT[6,18,1,4] := 8; let TLCT[6,18,2,5] := 8; let TLCT[6,18,2,6] := 9;

let TLCT[6,18,2,7] := 5; let TLCT[6,18,2,8] := 5; let TLCT[6,18,3,9] := 8;

let TLCT[6,18,3,10] := 4; let TLCT[6,18,3,11] := 7; let TLCT[6,18,4,12] := 2;

let TLCT[6,18,4,13] := 9; let TLCT[6,18,4,14] := 10; let TLCT[6,18,5,15] := 5;

let TLCT[6,18,5,16] := 0; let TLCT[6,18,6,17] := 8; let TLCT[6,18,6,18] := 0;

let TLCT[6,18,6,19] := 6; let TLCT[6,18,6,20] := 5; let TLCT[6,18,7,21] := 0;

let TLCT[6,18,7,22] := 3; let TLCT[6,18,7,23] := 6; let TLCT[6,18,8,24] := 10;

let TLCT[6,18,8,25] := 5; let TLCT[6,18,8,26] := 4; let TLCT[6,18,9,27] := 9;

let TLCT[6,18,9,28] := 9; let TLCT[6,18,10,29] := 10;let TLCT[6,18,10,30] := 1;

let TLCT[6,18,11,31] := 3; let TLCT[6,18,11,32] := 3; let TLCT[6,18,11,33] := 7;

let TLCT[6,18,11,34] := 9; let TLCT[6,18,12,35] := 9;let TLCT[6,18,12,36] := 10;

let TLCT[6,18,12,37] := 0; let TLCT[6,18,12,38] := 3;

let TLCT[6,19,1,1] := 10; let TLCT[6,19,1,2] := 9; let TLCT[6,19,1,3] := 5;

let TLCT[6,19,1,4] := 9; let TLCT[6,19,2,5] := 5; let TLCT[6,19,2,6] := 2;

let TLCT[6,19,2,7] := 6; let TLCT[6,19,2,8] := 8; let TLCT[6,19,3,9] := 4;

let TLCT[6,19,3,10] := 3; let TLCT[6,19,3,11] := 5; let TLCT[6,19,4,12] := 5;

let TLCT[6,19,4,13] := 2; let TLCT[6,19,4,14] := 3; let TLCT[6,19,5,15] := 10;

let TLCT[6,19,5,16] := 1; let TLCT[6,19,6,17] := 5; let TLCT[6,19,6,18] := 7;

let TLCT[6,19,6,19] := 0; let TLCT[6,19,6,20] := 6; let TLCT[6,19,7,21] := 1;

let TLCT[6,19,7,22] := 0; let TLCT[6,19,7,23] := 8; let TLCT[6,19,8,24] := 2;

let TLCT[6,19,8,25] := 1; let TLCT[6,19,8,26] := 6; let TLCT[6,19,9,27] := 9;

let TLCT[6,19,9,28] := 8; let TLCT[6,19,10,29] := 4; let TLCT[6,19,10,30] := 3;

99

let TLCT[6,19,11,31] := 0; let TLCT[6,19,11,32] := 3; let TLCT[6,19,11,33] := 7;

let TLCT[6,19,11,34] := 9; let TLCT[6,19,12,35] := 3; let TLCT[6,19,12,36] := 1;

let TLCT[6,19,12,37] := 4; let TLCT[6,19,12,38] := 0;

let TLCT[6,20,1,1] := 3; let TLCT[6,20,1,2] := 10; let TLCT[6,20,1,3] := 5;

let TLCT[6,20,1,4] := 7; let TLCT[6,20,2,5] := 4; let TLCT[6,20,2,6] := 7;

let TLCT[6,20,2,7] := 3; let TLCT[6,20,2,8] := 5; let TLCT[6,20,3,9] := 6;

let TLCT[6,20,3,10] := 1; let TLCT[6,20,3,11] := 4; let TLCT[6,20,4,12] := 2;

let TLCT[6,20,4,13] := 2; let TLCT[6,20,4,14] := 9; let TLCT[6,20,5,15] := 5;

let TLCT[6,20,5,16] := 6; let TLCT[6,20,6,17] := 7; let TLCT[6,20,6,18] := 10;

let TLCT[6,20,6,19] := 8; let TLCT[6,20,6,20] := 0; let TLCT[6,20,7,21] := 9;

let TLCT[6,20,7,22] := 3; let TLCT[6,20,7,23] := 0; let TLCT[6,20,8,24] := 7;

let TLCT[6,20,8,25] := 3; let TLCT[6,20,8,26] := 4; let TLCT[6,20,9,27] := 10;

let TLCT[6,20,9,28] := 2; let TLCT[6,20,10,29] := 9; let TLCT[6,20,10,30] := 3;

let TLCT[6,20,11,31] := 8; let TLCT[6,20,11,32] := 0;let TLCT[6,20,11,33] := 10;

let TLCT[6,20,11,34] := 10;let TLCT[6,20,12,35] := 8; let TLCT[6,20,12,36] := 9;

let TLCT[6,20,12,37] := 10;let TLCT[6,20,12,38] := 5;

let TLCT[7,21,1,1] := 1; let TLCT[7,21,1,2] := 4; let TLCT[7,21,1,3] := 7;

let TLCT[7,21,1,4] := 10; let TLCT[7,21,2,5] := 10; let TLCT[7,21,2,6] := 5;

let TLCT[7,21,2,7] := 6; let TLCT[7,21,2,8] := 9; let TLCT[7,21,3,9] := 4;

let TLCT[7,21,3,10] := 9; let TLCT[7,21,3,11] := 9; let TLCT[7,21,4,12] := 7;

let TLCT[7,21,4,13] := 4; let TLCT[7,21,4,14] := 8; let TLCT[7,21,5,15] := 10;

let TLCT[7,21,5,16] := 0; let TLCT[7,21,6,17] := 10; let TLCT[7,21,6,18] := 0;

let TLCT[7,21,6,19] := 7; let TLCT[7,21,6,20] := 4; let TLCT[7,21,7,21] := 0;

let TLCT[7,21,7,22] := 2; let TLCT[7,21,7,23] := 1; let TLCT[7,21,8,24] := 10;

let TLCT[7,21,8,25] := 9; let TLCT[7,21,8,26] := 4; let TLCT[7,21,9,27] := 2;

let TLCT[7,21,9,28] := 9; let TLCT[7,21,10,29] := 9; let TLCT[7,21,10,30] := 7;

let TLCT[7,21,11,31] := 3; let TLCT[7,21,11,32] := 7; let TLCT[7,21,11,33] := 6;

let TLCT[7,21,11,34] := 7; let TLCT[7,21,12,35] := 7; let TLCT[7,21,12,36] := 4;

let TLCT[7,21,12,37] := 0; let TLCT[7,21,12,38] := 4;

100

let TLCT[7,22,1,1] := 3; let TLCT[7,22,1,2] := 1; let TLCT[7,22,1,3] := 10;

let TLCT[7,22,1,4] := 6; let TLCT[7,22,2,5] := 6; let TLCT[7,22,2,6] := 8;

let TLCT[7,22,2,7] := 5; let TLCT[7,22,2,8] := 2; let TLCT[7,22,3,9] := 4;

let TLCT[7,22,3,10] := 2; let TLCT[7,22,3,11] := 9; let TLCT[7,22,4,12] := 2;

let TLCT[7,22,4,13] := 10; let TLCT[7,22,4,14] := 7; let TLCT[7,22,5,15] := 4;

let TLCT[7,22,5,16] := 10; let TLCT[7,22,6,17] := 10; let TLCT[7,22,6,18] := 9;

let TLCT[7,22,6,19] := 0; let TLCT[7,22,6,20] := 4; let TLCT[7,22,7,21] := 7;

let TLCT[7,22,7,22] := 0; let TLCT[7,22,7,23] := 5; let TLCT[7,22,8,24] := 5;

let TLCT[7,22,8,25] := 10; let TLCT[7,22,8,26] := 1; let TLCT[7,22,9,27] := 6;

let TLCT[7,22,9,28] := 7; let TLCT[7,22,10,29] := 4; let TLCT[7,22,10,30] := 4;

let TLCT[7,22,11,31] := 0; let TLCT[7,22,11,32] := 9; let TLCT[7,22,11,33] := 5;

let TLCT[7,22,11,34] := 6; let TLCT[7,22,12,35] := 7; let TLCT[7,22,12,36] := 5;

let TLCT[7,22,12,37] := 5; let TLCT[7,22,12,38] := 0;

let TLCT[7,23,1,1] := 2; let TLCT[7,23,1,2] := 8; let TLCT[7,23,1,3] := 10;

let TLCT[7,23,1,4] := 10; let TLCT[7,23,2,5] := 9; let TLCT[7,23,2,6] := 3;

let TLCT[7,23,2,7] := 10; let TLCT[7,23,2,8] := 6; let TLCT[7,23,3,9] := 8;

let TLCT[7,23,3,10] := 7; let TLCT[7,23,3,11] := 7; let TLCT[7,23,4,12] := 10;

let TLCT[7,23,4,13] := 8; let TLCT[7,23,4,14] := 6; let TLCT[7,23,5,15] := 5;

let TLCT[7,23,5,16] := 2; let TLCT[7,23,6,17] := 1; let TLCT[7,23,6,18] := 3;

let TLCT[7,23,6,19] := 9; let TLCT[7,23,6,20] := 0; let TLCT[7,23,7,21] := 7;

let TLCT[7,23,7,22] := 6; let TLCT[7,23,7,23] := 0; let TLCT[7,23,8,24] := 5;

let TLCT[7,23,8,25] := 8; let TLCT[7,23,8,26] := 8; let TLCT[7,23,9,27] := 1;

let TLCT[7,23,9,28] := 8; let TLCT[7,23,10,29] := 5; let TLCT[7,23,10,30] := 1;

let TLCT[7,23,11,31] := 6; let TLCT[7,23,11,32] := 0; let TLCT[7,23,11,33] := 5;

let TLCT[7,23,11,34] := 4; let TLCT[7,23,12,35] := 3; let TLCT[7,23,12,36] := 9;

let TLCT[7,23,12,37] := 1; let TLCT[7,23,12,38] := 1;

let TLCT[8,24,1,1] := 5; let TLCT[8,24,1,2] := 7; let TLCT[8,24,1,3] := 0;

let TLCT[8,24,1,4] := 10; let TLCT[8,24,2,5] := 10; let TLCT[8,24,2,6] := 8;

let TLCT[8,24,2,7] := 9; let TLCT[8,24,2,8] := 9; let TLCT[8,24,3,9] := 4;

let TLCT[8,24,3,10] := 1; let TLCT[8,24,3,11] := 2; let TLCT[8,24,4,12] := 4;

101

let TLCT[8,24,4,13] := 3; let TLCT[8,24,4,14] := 1; let TLCT[8,24,5,15] := 10;

let TLCT[8,24,5,16] := 9; let TLCT[8,24,6,17] := 8; let TLCT[8,24,6,18] := 3;

let TLCT[8,24,6,19] := 1; let TLCT[8,24,6,20] := 7; let TLCT[8,24,7,21] := 4;

let TLCT[8,24,7,22] := 10; let TLCT[8,24,7,23] := 7; let TLCT[8,24,8,24] := 0;

let TLCT[8,24,8,25] := 10; let TLCT[8,24,8,26] := 3; let TLCT[8,24,9,27] := 0;

let TLCT[8,24,9,28] := 2; let TLCT[8,24,10,29] := 1; let TLCT[8,24,10,30] := 4;

let TLCT[8,24,11,31] := 8; let TLCT[8,24,11,32] := 9; let TLCT[8,24,11,33] := 2;

let TLCT[8,24,11,34] := 1; let TLCT[8,24,12,35] := 2; let TLCT[8,24,12,36] := 8;

let TLCT[8,24,12,37] := 9; let TLCT[8,24,12,38] := 3;

let TLCT[8,25,1,1] := 10; let TLCT[8,25,1,2] := 8; let TLCT[8,25,1,3] := 3;

let TLCT[8,25,1,4] := 0; let TLCT[8,25,2,5] := 9; let TLCT[8,25,2,6] := 3;

let TLCT[8,25,2,7] := 0; let TLCT[8,25,2,8] := 6; let TLCT[8,25,3,9] := 2;

let TLCT[8,25,3,10] := 0; let TLCT[8,25,3,11] := 4; let TLCT[8,25,4,12] := 6;

let TLCT[8,25,4,13] := 3; let TLCT[8,25,4,14] := 6; let TLCT[8,25,5,15] := 8;

let TLCT[8,25,5,16] := 5; let TLCT[8,25,6,17] := 1; let TLCT[8,25,6,18] := 3;

let TLCT[8,25,6,19] := 2; let TLCT[8,25,6,20] := 5; let TLCT[8,25,7,21] := 2;

let TLCT[8,25,7,22] := 4; let TLCT[8,25,7,23] := 10; let TLCT[8,25,8,24] := 1;

let TLCT[8,25,8,25] := 0; let TLCT[8,25,8,26] := 9; let TLCT[8,25,9,27] := 5;

let TLCT[8,25,9,28] := 0; let TLCT[8,25,10,29] := 9; let TLCT[8,25,10,30] := 8;

let TLCT[8,25,11,31] := 1; let TLCT[8,25,11,32] := 6; let TLCT[8,25,11,33] := 5;

let TLCT[8,25,11,34] := 6; let TLCT[8,25,12,35] := 1; let TLCT[8,25,12,36] := 9;

let TLCT[8,25,12,37] := 1; let TLCT[8,25,12,38] := 4;

let TLCT[8,26,1,1] := 7; let TLCT[8,26,1,2] := 8; let TLCT[8,26,1,3] := 7;

let TLCT[8,26,1,4] := 7; let TLCT[8,26,2,5] := 9; let TLCT[8,26,2,6] := 7;

let TLCT[8,26,2,7] := 3; let TLCT[8,26,2,8] := 0; let TLCT[8,26,3,9] := 1;

let TLCT[8,26,3,10] := 8; let TLCT[8,26,3,11] := 0; let TLCT[8,26,4,12] := 9;

let TLCT[8,26,4,13] := 6; let TLCT[8,26,4,14] := 10; let TLCT[8,26,5,15] := 4;

let TLCT[8,26,5,16] := 7; let TLCT[8,26,6,17] := 10; let TLCT[8,26,6,18] := 10;

let TLCT[8,26,6,19] := 5; let TLCT[8,26,6,20] := 4; let TLCT[8,26,7,21] := 2;

let TLCT[8,26,7,22] := 9; let TLCT[8,26,7,23] := 7; let TLCT[8,26,8,24] := 9;

102

let TLCT[8,26,8,25] := 6; let TLCT[8,26,8,26] := 0; let TLCT[8,26,9,27] := 10;

let TLCT[8,26,9,28] := 9; let TLCT[8,26,10,29] := 5; let TLCT[8,26,10,30] := 8;

let TLCT[8,26,11,31] := 1; let TLCT[8,26,11,32] := 1; let TLCT[8,26,11,33] := 0;

let TLCT[8,26,11,34] := 7; let TLCT[8,26,12,35] := 4; let TLCT[8,26,12,36] := 1;

let TLCT[8,26,12,37] := 4; let TLCT[8,26,12,38] := 4;

let TLCT[9,27,1,1] := 6; let TLCT[9,27,1,2] := 2; let TLCT[9,27,1,3] := 0;

let TLCT[9,27,1,4] := 1; let TLCT[9,27,2,5] := 6; let TLCT[9,27,2,6] := 1;

let TLCT[9,27,2,7] := 7; let TLCT[9,27,2,8] := 2; let TLCT[9,27,3,9] := 6;

let TLCT[9,27,3,10] := 3; let TLCT[9,27,3,11] := 1; let TLCT[9,27,4,12] := 4;

let TLCT[9,27,4,13] := 7; let TLCT[9,27,4,14] := 4; let TLCT[9,27,5,15] := 9;

let TLCT[9,27,5,16] := 4; let TLCT[9,27,6,17] := 8; let TLCT[9,27,6,18] := 2;

let TLCT[9,27,6,19] := 6; let TLCT[9,27,6,20] := 4; let TLCT[9,27,7,21] := 10;

let TLCT[9,27,7,22] := 10; let TLCT[9,27,7,23] := 9; let TLCT[9,27,8,24] := 0;

let TLCT[9,27,8,25] := 4; let TLCT[9,27,8,26] := 5; let TLCT[9,27,9,27] := 0;

let TLCT[9,27,9,28] := 2; let TLCT[9,27,10,29] := 3; let TLCT[9,27,10,30] := 4;

let TLCT[9,27,11,31] := 7; let TLCT[9,27,11,32] := 8; let TLCT[9,27,11,33] := 6;

let TLCT[9,27,11,34] := 9; let TLCT[9,27,12,35] := 8; let TLCT[9,27,12,36] := 7;

let TLCT[9,27,12,37] := 8; let TLCT[9,27,12,38] := 6;

let TLCT[9,28,1,1] := 9; let TLCT[9,28,1,2] := 4; let TLCT[9,28,1,3] := 1;

let TLCT[9,28,1,4] := 0; let TLCT[9,28,2,5] := 6; let TLCT[9,28,2,6] := 2;

let TLCT[9,28,2,7] := 0; let TLCT[9,28,2,8] := 4; let TLCT[9,28,3,9] := 6;

let TLCT[9,28,3,10] := 0; let TLCT[9,28,3,11] := 4; let TLCT[9,28,4,12] := 2;

let TLCT[9,28,4,13] := 6; let TLCT[9,28,4,14] := 9; let TLCT[9,28,5,15] := 9;

let TLCT[9,28,5,16] := 3; let TLCT[9,28,6,17] := 2; let TLCT[9,28,6,18] := 8;

let TLCT[9,28,6,19] := 3; let TLCT[9,28,6,20] := 4; let TLCT[9,28,7,21] := 6;

let TLCT[9,28,7,22] := 3; let TLCT[9,28,7,23] := 7; let TLCT[9,28,8,24] := 3;

let TLCT[9,28,8,25] := 0; let TLCT[9,28,8,26] := 4; let TLCT[9,28,9,27] := 2;

let TLCT[9,28,9,28] := 0; let TLCT[9,28,10,29] := 7; let TLCT[9,28,10,30] := 6;

let TLCT[9,28,11,31] := 5; let TLCT[9,28,11,32] := 3; let TLCT[9,28,11,33] := 8;

103

let TLCT[9,28,11,34] := 2; let TLCT[9,28,12,35] := 10;let TLCT[9,28,12,36] := 6;

let TLCT[9,28,12,37] := 1; let TLCT[9,28,12,38] := 3;

let TLCT[10,29,1,1] := 0; let TLCT[10,29,1,2] := 8; let TLCT[10,29,1,3] := 9;

let TLCT[10,29,1,4] := 3; let TLCT[10,29,2,5] := 0; let TLCT[10,29,2,6] := 4;

let TLCT[10,29,2,7] := 2; let TLCT[10,29,2,8] := 10; let TLCT[10,29,3,9] := 0;

let TLCT[10,29,3,10] := 7; let TLCT[10,29,3,11] := 2; let TLCT[10,29,4,12] := 3;

let TLCT[10,29,4,13] := 7; let TLCT[10,29,4,14] := 7; let TLCT[10,29,5,15] := 7;

let TLCT[10,29,5,16] := 5; let TLCT[10,29,6,17] := 6; let TLCT[10,29,6,18] := 1;

let TLCT[10,29,6,19] := 2; let TLCT[10,29,6,20] := 4; let TLCT[10,29,7,21] := 5;

let TLCT[10,29,7,22] := 4; let TLCT[10,29,7,23] := 6; let TLCT[10,29,8,24] := 9;

let TLCT[10,29,8,25] := 5; let TLCT[10,29,8,26] := 8; let TLCT[10,29,9,27] := 3;

let TLCT[10,29,9,28] := 4;let TLCT[10,29,10,29] := 0;let TLCT[10,29,10,30] :=

9;

let TLCT[10,29,11,31] := 4;let TLCT[10,29,11,32] := 1;let TLCT[10,29,11,33] :=

3;

let TLCT[10,29,11,34] := 5;let TLCT[10,29,12,35] := 7;let TLCT[10,29,12,36] :=

3; let TLCT[10,29,12,37] := 9;let TLCT[10,29,12,38] := 2;

let TLCT[10,30,1,1] := 8; let TLCT[10,30,1,2] := 0; let TLCT[10,30,1,3] := 1;

let TLCT[10,30,1,4] := 8; let TLCT[10,30,2,5] := 6; let TLCT[10,30,2,6] := 0;

let TLCT[10,30,2,7] := 4; let TLCT[10,30,2,8] := 2; let TLCT[10,30,3,9] := 4;

let TLCT[10,30,3,10] := 1; let TLCT[10,30,3,11] := 6; let TLCT[10,30,4,12] := 7;

let TLCT[10,30,4,13] := 1; let TLCT[10,30,4,14] := 3; let TLCT[10,30,5,15] := 7;

let TLCT[10,30,5,16] := 7; let TLCT[10,30,6,17] := 3; let TLCT[10,30,6,18] := 8;

let TLCT[10,30,6,19] := 10;let TLCT[10,30,6,20] := 6; let TLCT[10,30,7,21] := 3;

let TLCT[10,30,7,22] := 2; let TLCT[10,30,7,23] := 4; let TLCT[10,30,8,24] := 6;

let TLCT[10,30,8,25] := 7; let TLCT[10,30,8,26] := 10;let TLCT[10,30,9,27] := 2;

let TLCT[10,30,9,28] := 9;let TLCT[10,30,10,29] := 10;let TLCT[10,30,10,30] :=

0;

104

let TLCT[10,30,11,31] := 3;let TLCT[10,30,11,32] := 9;let TLCT[10,30,11,33] :=

4;

let TLCT[10,30,11,34] := 6;let TLCT[10,30,12,35] := 6;let TLCT[10,30,12,36] :=

3;

let TLCT[10,30,12,37] := 10;let TLCT[10,30,12,38] := 2;

let TLCT[11,31,1,1] := 4; let TLCT[11,31,1,2] := 5; let TLCT[11,31,1,3] := 8;

let TLCT[11,31,1,4] := 3; let TLCT[11,31,2,5] := 10; let TLCT[11,31,2,6] := 1;

let TLCT[11,31,2,7] := 10; let TLCT[11,31,2,8] := 1; let TLCT[11,31,3,9] := 2;

let TLCT[11,31,3,10] := 10;let TLCT[11,31,3,11] := 9; let TLCT[11,31,4,12] := 7;

let TLCT[11,31,4,13] := 3; let TLCT[11,31,4,14] := 2; let TLCT[11,31,5,15] := 3;

let TLCT[11,31,5,16] := 8; let TLCT[11,31,6,17] := 9; let TLCT[11,31,6,18] := 2;

let TLCT[11,31,6,19] := 0; let TLCT[11,31,6,20] := 4; let TLCT[11,31,7,21] :=

10;

let TLCT[11,31,7,22] := 0;let TLCT[11,31,7,23] := 3;let TLCT[11,31,8,24] := 7;

let TLCT[11,31,8,25] := 4; let TLCT[11,31,8,26] := 10;let TLCT[11,31,9,27] := 5;

let TLCT[11,31,9,28] := 10;let TLCT[11,31,10,29] := 5;let TLCT[11,31,10,30] :=

8;

let TLCT[11,31,11,31] := 0;let TLCT[11,31,11,32] := 1;let TLCT[11,31,11,33] :=

6;

let TLCT[11,31,11,34] := 2;let TLCT[11,31,12,35] := 10;let TLCT[11,31,12,36] :=

3;

let TLCT[11,31,12,37] := 1;let TLCT[11,31,12,38] := 0;

let TLCT[11,32,1,1] := 6; let TLCT[11,32,1,2] := 7; let TLCT[11,32,1,3] := 9;

let TLCT[11,32,1,4] := 8; let TLCT[11,32,2,5] := 7; let TLCT[11,32,2,6] := 4;

let TLCT[11,32,2,7] := 7; let TLCT[11,32,2,8] := 8; let TLCT[11,32,3,9] := 4;

let TLCT[11,32,3,10] := 6; let TLCT[11,32,3,11] := 9; let TLCT[11,32,4,12] := 6;

let TLCT[11,32,4,13] := 1; let TLCT[11,32,4,14] := 5; let TLCT[11,32,5,15] := 5;

105

let TLCT[11,32,5,16] := 7; let TLCT[11,32,6,17] := 7; let TLCT[11,32,6,18] := 6;

let TLCT[11,32,6,19] := 6; let TLCT[11,32,6,20] := 0; let TLCT[11,32,7,21] := 1;

let TLCT[11,32,7,22] := 8; let TLCT[11,32,7,23] := 0; let TLCT[11,32,8,24] := 5;

let TLCT[11,32,8,25] := 9; let TLCT[11,32,8,26] := 8; let TLCT[11,32,9,27] := 2;

let TLCT[11,32,9,28] := 6; let TLCT[11,32,10,29] := 9;let TLCT[11,32,10,30] :=

10;

let TLCT[11,32,11,31] := 4;let TLCT[11,32,11,32] := 0;let TLCT[11,32,11,33] :=

6;

let TLCT[11,32,11,34] := 10;let TLCT[11,32,12,35] := 5; let TLCT[11,32,12,36]

:= 4;

let TLCT[11,32,12,37] := 8;let TLCT[11,32,12,38] := 9;

let TLCT[11,33,1,1] := 7; let TLCT[11,33,1,2] := 1; let TLCT[11,33,1,3] := 6;

let TLCT[11,33,1,4] := 7; let TLCT[11,33,2,5] := 10; let TLCT[11,33,2,6] := 9;

let TLCT[11,33,2,7] := 7; let TLCT[11,33,2,8] := 0; let TLCT[11,33,3,9] := 5;

let TLCT[11,33,3,10] := 5; let TLCT[11,33,3,11] := 0; let TLCT[11,33,4,12] := 9;

let TLCT[11,33,4,13] := 7; let TLCT[11,33,4,14] := 6; let TLCT[11,33,5,15] := 2;

let TLCT[11,33,5,16] := 6; let TLCT[11,33,6,17] := 8; let TLCT[11,33,6,18] :=

10;

let TLCT[11,33,6,19] := 9; let TLCT[11,33,6,20] := 8; let TLCT[11,33,7,21] := 1;

let TLCT[11,33,7,22] := 1; let TLCT[11,33,7,23] := 7; let TLCT[11,33,8,24] := 4;

let TLCT[11,33,8,25] := 8; let TLCT[11,33,8,26] := 0; let TLCT[11,33,9,27] := 5;

let TLCT[11,33,9,28] := 8; let TLCT[11,33,10,29] := 6;let TLCT[11,33,10,30] :=

4;

let TLCT[11,33,11,31] := 5;let TLCT[11,33,11,32] := 7;let TLCT[11,33,11,33] :=

0;

let TLCT[11,33,11,34] := 3; let TLCT[11,33,12,35] := 1;let TLCT[11,33,12,36] :=

5;

106

let TLCT[11,33,12,37] := 1;let TLCT[11,33,12,38] := 6;

let TLCT[11,34,1,1] := 9; let TLCT[11,34,1,2] := 5; let TLCT[11,34,1,3] := 7;

let TLCT[11,34,1,4] := 1; let TLCT[11,34,2,5] := 3; let TLCT[11,34,2,6] := 4;

let TLCT[11,34,2,7] := 1; let TLCT[11,34,2,8] := 8; let TLCT[11,34,3,9] := 4;

let TLCT[11,34,3,10] := 8; let TLCT[11,34,3,11] := 3; let TLCT[11,34,4,12] := 0;

let TLCT[11,34,4,13] := 3; let TLCT[11,34,4,14] := 3; let TLCT[11,34,5,15] := 9;

let TLCT[11,34,5,16] := 5; let TLCT[11,34,6,17] := 7; let TLCT[11,34,6,18] :=

10;

let TLCT[11,34,6,19] := 2; let TLCT[11,34,6,20] := 8; let TLCT[11,34,7,21] := 6;

let TLCT[11,34,7,22] := 7; let TLCT[11,34,7,23] := 9; let TLCT[11,34,8,24] := 9;

let TLCT[11,34,8,25] := 7; let TLCT[11,34,8,26] := 2; let TLCT[11,34,9,27] := 2;

let TLCT[11,34,9,28] := 4; let TLCT[11,34,10,29] := 9;let TLCT[11,34,10,30] :=

3;

let TLCT[11,34,11,31] := 8;let TLCT[11,34,11,32] := 3;let TLCT[11,34,11,33] :=

4;

 let TLCT[11,34,11,34] := 0;let TLCT[11,34,12,35] := 5;let TLCT[11,34,12,36] :=

7;

let TLCT[11,34,12,37] := 7;let TLCT[11,34,12,38] := 4;

let TLCT[12,35,1,1] := 9; let TLCT[12,35,1,2] := 1; let TLCT[12,35,1,3] := 6;

let TLCT[12,35,1,4] := 10; let TLCT[12,35,2,5] := 7; let TLCT[12,35,2,6] := 5;

let TLCT[12,35,2,7] := 7; let TLCT[12,35,2,8] := 6; let TLCT[12,35,3,9] := 1;

let TLCT[12,35,3,10] := 9; let TLCT[12,35,3,11] := 4; let TLCT[12,35,4,12] := 8;

let TLCT[12,35,4,13] := 9; let TLCT[12,35,4,14] := 0; let TLCT[12,35,5,15] := 8;

let TLCT[12,35,5,16] := 7; let TLCT[12,35,6,17] := 2; let TLCT[12,35,6,18] := 4;

let TLCT[12,35,6,19] := 6; let TLCT[12,35,6,20] := 1; let TLCT[12,35,7,21] := 8;

let TLCT[12,35,7,22] := 6; let TLCT[12,35,7,23] := 6; let TLCT[12,35,8,24] := 5;

let TLCT[12,35,8,25] := 1; let TLCT[12,35,8,26] := 8; let TLCT[12,35,9,27] := 2;

107

let TLCT[12,35,9,28] := 2; let TLCT[12,35,10,29] := 3;let TLCT[12,35,10,30] :=

5;

let TLCT[12,35,11,31] := 8;let TLCT[12,35,11,32] := 9;let TLCT[12,35,11,33] :=

1;

let TLCT[12,35,11,34] := 10;let TLCT[12,35,12,35] := 0;let TLCT[12,35,12,36] :=

8;

let TLCT[12,35,12,37] := 1;let TLCT[12,35,12,38] := 9;.

let TLCT[12,36,1,1] := 2; let TLCT[12,36,1,2] := 3; let TLCT[12,36,1,3] := 6;

let TLCT[12,36,1,4] := 8; let TLCT[12,36,2,5] := 1; let TLCT[12,36,2,6] := 4;

let TLCT[12,36,2,7] := 10; let TLCT[12,36,2,8] := 6; let TLCT[12,36,3,9] := 5;

let TLCT[12,36,3,10] := 5; let TLCT[12,36,3,11] := 7; let TLCT[12,36,4,12] := 3;

let TLCT[12,36,4,13] := 3; let TLCT[12,36,4,14] := 3; let TLCT[12,36,5,15] := 0;

let TLCT[12,36,5,16] := 6; let TLCT[12,36,6,17] := 0; let TLCT[12,36,6,18] := 2;

let TLCT[12,36,6,19] := 8; let TLCT[12,36,6,20] := 5; let TLCT[12,36,7,21] := 8;

let TLCT[12,36,7,22] := 10;let TLCT[12,36,7,23] := 6; let TLCT[12,36,8,24] := 3;

let TLCT[12,36,8,25] := 5; let TLCT[12,36,8,26] := 4; let TLCT[12,36,9,27] := 8;

let TLCT[12,36,9,28] := 7; let TLCT[12,36,10,29] := 6;let TLCT[12,36,10,30] :=

6;

let TLCT[12,36,11,31] := 2;let TLCT[12,36,11,32] := 8;let TLCT[12,36,11,33] :=

3;

let TLCT[12,36,11,34] := 6;let TLCT[12,36,12,35] := 9;let TLCT[12,36,12,36] :=

0;

let TLCT[12,36,12,37] := 2;let TLCT[12,36,12,38] := 7;

let TLCT[12,37,1,1] := 2; let TLCT[12,37,1,2] := 9; let TLCT[12,37,1,3] := 6;

let TLCT[12,37,1,4] := 7; let TLCT[12,37,2,5] := 1; let TLCT[12,37,2,6] := 2;

let TLCT[12,37,2,7] := 1; let TLCT[12,37,2,8] := 7; let TLCT[12,37,3,9] := 7;

let TLCT[12,37,3,10] := 2; let TLCT[12,37,3,11] := 1; let TLCT[12,37,4,12] := 1;

108

let TLCT[12,37,4,13] := 7; let TLCT[12,37,4,14] := 9; let TLCT[12,37,5,15] := 1;

let TLCT[12,37,5,16] := 0; let TLCT[12,37,6,17] := 4; let TLCT[12,37,6,18] := 0;

let TLCT[12,37,6,19] := 4; let TLCT[12,37,6,20] := 2; let TLCT[12,37,7,21] := 0;

let TLCT[12,37,7,22] := 2; let TLCT[12,37,7,23] := 1; let TLCT[12,37,8,24] := 5;

let TLCT[12,37,8,25] := 7; let TLCT[12,37,8,26] := 3; let TLCT[12,37,9,27] := 9;

let TLCT[12,37,9,28] := 6; let TLCT[12,37,10,29] := 3;let TLCT[12,37,10,30] :=

4;

let TLCT[12,37,11,31] := 8;let TLCT[12,37,11,32] := 8;let TLCT[12,37,11,33] :=

6;

let TLCT[12,37,11,34] := 2; let TLCT[12,37,12,35] := 4;let TLCT[12,37,12,36] :=

3;

let TLCT[12,37,12,37] := 0;let TLCT[12,37,12,38] := 3;

let TLCT[12,38,1,1] := 10; let TLCT[12,38,1,2] := 10; let TLCT[12,38,1,3] := 3;

let TLCT[12,38,1,4] := 5; let TLCT[12,38,2,5] := 4; let TLCT[12,38,2,6] := 1;

let TLCT[12,38,2,7] := 7; let TLCT[12,38,2,8] := 1; let TLCT[12,38,3,9] := 3;

let TLCT[12,38,3,10] := 3; let TLCT[12,38,3,11] := 4; let TLCT[12,38,4,12] := 5;

let TLCT[12,38,4,13] := 3; let TLCT[12,38,4,14] := 8; let TLCT[12,38,5,15] := 1;

let TLCT[12,38,5,16] := 5; let TLCT[12,38,6,17] := 10;let TLCT[12,38,6,18] := 3;

let TLCT[12,38,6,19] := 0; let TLCT[12,38,6,20] := 6; let TLCT[12,38,7,21] := 7;

let TLCT[12,38,7,22] := 0; let TLCT[12,38,7,23] := 9; let TLCT[12,38,8,24] := 6;

let TLCT[12,38,8,25] := 3; let TLCT[12,38,8,26] := 4; let TLCT[12,38,9,27] := 6;

let TLCT[12,38,9,28] := 10;let TLCT[12,38,10,29] := 5;let TLCT[12,38,10,30] :=

7;

let TLCT[12,38,11,31] := 0;let TLCT[12,38,11,32] := 5;let TLCT[12,38,11,33] :=

2;

let TLCT[12,38,11,34] := 10;let TLCT[12,38,12,35] := 1;let TLCT[12,38,12,36] :=

8;

let TLCT[12,38,12,37] := 3;let TLCT[12,38,12,38] := 0;

109

APPENDIX B: C++ PROGRAM FOR SA ALGORITHM: CASE

STUDY 1

Header file

Format: .h

#include <iostream>

#include <conio.h>

#include <random>

#include <time.h>

#include <cmath>

using namespace std;

class Operation

{

public:

 int R;

 int D;

 int F;

 int P;

 float TO;

 float RT;

 int I;

 int E;

 int G;

};

extern Operation O[38];

extern Operation BG[38];

extern float Face[5][5];

extern float Tool[38][38];

extern int Q[38];

extern int BS[38];

extern int Nbg[4];

extern int H[12];

extern float Ebg;

extern float Ebs;

extern float t;

110

extern float takt;

extern float T[12];

extern int counter1;

extern int counter2;

extern int A;

extern int NM;

extern int totaloper;

float grouping_energy();

float sequencing_energy();

void display_result();

void best_grouping_solution (float, int []);

void best_sequencing_solution (float);

void declare();

int randint(int, int);

Source file 1

Format: .cpp

#include "data.h"

Operation O[38];

Operation BG[38];

float Face[5][5] =

{{0,1.95,2.5,4,5},{1.95,0,1.95,2.5,4},{2.5,1.95,0,1.95,2.5},{4,2.5,1.95,0,1.95},{5

,4,2.5,1.95,0}};

float Tool[38][38] =

{{0,10,6,1,0,9,1,8,0,4,4,5,2,8,9,6,3,5,2,1,5,7,8,7,6,10,2,9,0,6,2,2,10,3,4,10,10,7

},{8,0,2,1,6,0,4,1,3,9,2,2,4,8,3,6,4,6,2,4,6,6,1,3,5,8,9,6,2,0,8,2,7,2,5,5,9,5},{6

,9,0,10,2,1,6,3,1,9,3,6,2,6,6,7,10,5,7,1,9,9,7,0,5,2,0,7,10,3,6,5,4,1,7,6,5,7},{9,

8,7,0,10,4,0,9,8,0,3,4,6,6,9,6,1,1,4,1,10,4,9,7,0,4,2,0,10,8,8,1,6,8,7,9,4,6},{0,1

,6,1,0,9,8,8,0,1,5,10,10,2,2,4,8,6,3,2,2,9,10,5,8,3,5,2,0,2,2,7,1,8,5,10,4,4},{9,0

,8,1,5,0,5,1,2,4,7,1,1,10,10,8,5,7,7,6,8,6,10,1,1,4,3,10,4,0,7,3,3,7,8,7,10,8},{4,

1,5,0,8,5,0,7,8,0,8,5,6,7,1,1,4,8,10,10,7,7,2,7,0,6,1,0,5,6,8,6,5,3,7,9,9,10},{4,1

,10,5,1,4,2,0,7,4,0,9,2,5,9,8,6,8,9,7,5,10,0,5,2,0,10,3,7,10,4,1,0,6,1,7,2,1},{0,2

,8,4,0,2,7,3,0,3,5,2,9,10,7,7,5,4,4,7,6,7,4,8,9,9,8,6,0,6,4,10,6,1,4,2,2,7},{1,9,1

0,0,2,1,0,6,10,0,1,5,1,10,4,10,8,8,7,2,7,5,8,3,0,9,10,0,5,2,6,7,9,2,10,5,10,1},{7,

2,2,6,8,7,9,0,9,10,0,1,4,8,9,4,8,1,3,1,4,8,10,2,1,0,7,7,7,8,7,10,0,7,9,1,3,10},{6,

6,1,1,1,5,8,8,2,3,4,0,10,4,6,2,2,8,1,5,6,3,7,3,2,2,2,1,2,6,10,5,7,0,10,2,3,5},{3,3

,1,7,2,6,4,7,5,5,6,8,0,5,9,3,4,2,2,1,9,6,3,9,5,5,9,5,3,2,2,2,5,7,6,9,1,6},{7,2,1,6

111

,7,8,6,3,7,10,4,9,2,0,2,7,6,1,5,3,6,5,9,9,7,4,4,3,9,1,6,7,1,9,0,10,3,5},{10,7,6,6,

7,5,4,6,6,8,8,1,6,3,0,3,0,9,7,10,4,2,6,5,9,1,9,6,9,8,2,7,4,2,10,0,3,1},{4,9,3,3,5,

1,4,8,7,10,1,8,1,4,10,0,2,0,3,10,0,2,10,9,5,2,2,8,5,8,1,5,9,1,6,2,0,2},{4,6,10,8,1

,3,1,4,2,10,2,5,1,4,0,6,0,4,10,1,5,3,5,3,6,5,1,9,6,4,5,6,6,9,9,0,7,8},{2,3,3,8,8,9

,5,5,8,4,7,2,9,10,5,0,8,0,6,5,0,3,6,10,5,4,9,9,10,1,3,3,7,9,9,10,0,3},{10,9,5,9,5,

2,6,8,4,3,5,5,2,3,10,1,5,7,0,6,1,0,8,2,1,6,9,8,4,3,0,3,7,9,3,1,4,0},{3,10,5,7,4,7,

3,5,6,1,4,2,2,9,5,6,7,10,8,0,9,3,0,7,3,4,10,2,9,3,8,0,10,10,8,9,10,5},{1,4,7,10,10

,5,6,9,4,9,9,7,4,8,10,0,10,0,7,4,0,2,1,10,9,4,2,9,9,7,3,7,6,7,7,4,0,4},{3,1,10,6,6

,8,5,2,4,2,9,2,10,7,4,10,10,9,0,4,7,0,5,5,10,1,6,7,4,4,0,9,5,6,7,5,5,0},{2,8,10,10

,9,3,10,6,8,7,7,10,8,6,5,2,1,3,9,0,7,6,0,5,8,8,1,8,5,1,6,0,5,4,3,9,1,1},{5,7,0,10,

10,8,9,9,4,1,2,4,3,1,10,9,8,3,1,7,4,10,7,0,10,3,0,2,1,4,8,9,2,1,2,8,9,3},{10,8,3,0

,9,3,0,6,2,0,4,6,3,6,8,5,1,3,2,5,2,4,10,1,0,9,5,0,9,8,1,6,5,6,1,9,1,4},{7,8,7,7,9,

7,3,0,1,8,0,9,6,10,4,7,10,10,5,4,2,9,7,9,6,0,10,9,5,8,1,1,0,7,4,1,4,4},{6,2,0,1,6,

1,7,2,6,3,1,4,7,4,9,4,8,2,6,4,10,10,9,0,4,5,0,2,3,4,7,8,6,9,8,7,8,6},{9,4,1,0,6,2,

0,4,6,0,4,2,6,9,9,3,2,8,3,4,6,3,7,3,0,4,2,0,7,6,5,3,8,2,10,6,1,3},{0,8,9,3,0,4,2,1

0,0,7,2,3,7,7,7,5,6,1,2,4,5,4,6,9,5,8,3,4,0,9,4,1,3,5,7,3,9,2},{8,0,1,8,6,0,4,2,4,

1,6,7,1,3,7,7,3,8,10,6,3,2,4,6,7,10,2,9,10,0,3,9,4,6,6,3,10,2},{4,5,8,3,10,1,10,1,

2,10,9,7,3,2,3,8,9,2,0,4,10,0,3,7,4,10,5,10,5,8,0,1,6,2,10,3,1,0},{6,7,9,8,7,4,7,8

,4,6,9,6,1,5,5,7,7,6,6,0,1,8,0,5,9,8,2,6,9,10,4,0,6,10,5,4,8,9},{7,1,6,7,10,9,7,0,

5,5,0,9,7,6,2,6,8,10,9,8,1,1,7,4,8,0,5,8,6,4,5,7,0,3,1,5,1,6},{9,5,7,1,3,4,1,8,4,8

,3,0,3,3,9,5,7,10,2,8,6,7,9,9,7,2,2,4,9,3,8,3,4,0,5,7,7,4},{9,1,6,10,7,5,7,6,1,9,4

,8,9,0,8,7,2,4,6,1,8,6,6,5,1,8,2,2,3,5,8,9,1,10,0,8,1,9},{2,3,6,8,1,4,10,6,5,5,7,3

,3,3,0,6,0,2,8,5,8,10,6,3,5,4,8,7,6,6,2,8,3,6,9,0,2,7},{2,9,6,7,1,2,1,7,7,2,1,1,7,

9,1,0,4,0,4,2,0,2,1,5,7,3,9,6,3,4,8,8,6,2,4,3,0,3},{10,10,3,5,4,1,7,1,3,3,4,5,3,8,

1,5,10,3,0,6,7,0,9,6,3,4,6,10,5,7,0,5,2,10,1,8,3,0}};

int Q[38] =

{1,1};

int BS[38] =

{1,1};

int Nbg[4] = {1,1,1,1};

int H[12] = {4,2,2,2,2,1,1,1,1,1,3,3};

int A = 75;

int NM = 5;

int totaloper = 38;

float Ebg = 1600;

float Ebs = 500;

float t = 5;

float takt = 400;

float T[12] = {2000,2000,2000,2000,2000,2000,2000,2000,2000,2000,2000,2000};

112

float grouping_energy()

{

 float En=0; float Eng[4]={0,0,0,0}; int Hg[4]={0,0,0,0}; int decision=0;

int N[4] = {1,1,1,1};

 //ORCT

 int F1=0; int F2=0;

 for (int i=1; i<=4; i++)

 {

 for(int j=1; j<=totaloper-1; j++)

 {

 if(O[j].G==i)

 {

 F1=O[j].F;

 for(int k=j+1; k<=totaloper; k++)

 {if(O[k].G==i) {F2=O[k].F; Eng[i-1] = Eng[i-1] +

Face[F1-1][F2-1]; break;}}

 }

 }

 }

 for(int i=1; i<=4;i++)

 {

 En = En + Eng[i-1];

 }

 //TLCT

 int T1=0; int T2=0;

 for (int i=1; i<=4; i++)

 {

 for(int j=1; j<=totaloper-1; j++)

 {

 if(O[j].G==i)

 {

 T1=j;

 for(int k=j+1; k<=totaloper; k++)

 {if(O[k].G==i) {T2=k; Eng[i-1] = Eng[i-1] +

Tool[T1-1][T2-1]; break;}}

 }

113

 }

 }

 //OPT

 for (int i=1; i<=4; i++)

 {

 for(int j=1; j<=totaloper; j++)

 {

 if(O[j].G==i)

 {

 Eng[i-1] = Eng[i-1] + O[j].D *

(O[j].TO+O[j].RT);

 }

 }

 }

 //Tool life

 for (int i=1; i<=4; i++)

 {

 int Y[12]={0,0,0,0,0,0,0,0,0,0,0,0};

 float TO[12]={0,0,0,0,0,0,0,0,0,0,0,0};

 for(int j=1; j<=totaloper; j++)

 {

 if(O[j].G==i)

 {

 Y[O[j].P-1]=1;

 TO[O[j].P-1]=TO[O[j].P-1] + O[j].TO*O[j].D;

 }

 }

 for(int k=1; k<=12; k++)

 {

 if(Y[k-1]==1)

 {

 Hg[i-1] = Hg[i-1] + H[k-1];

 }

 if(TO[k-1]>T[k-1])

 {

 decision=1;

 }

 }

114

 }

 //Inclusion and exclusion

 for(int i=1; i<=totaloper; i++)

 {

 for (int j=1; j<=totaloper; j++)

 {

 if(O[i].I==O[j].R&&O[i].G!=O[j].G) {decision=1;}

 if(O[i].E==O[j].R&&O[i].G==O[j].G) {decision=1;}

 }

 }

 //No. of machines

 for (int i=1; i<=4; i++)

 {

 if(Eng[i-1]>(takt*N[i-1])&&Eng[i-1]<2*(takt*N[i-1]))

 N[i-1]++;

 else if(Eng[i-1]>2*(takt*N[i-1]))

 N[i-1] = N[i-1] + 2;

 else if (((takt*N[i-1])-Eng[i-1])>takt)

 N[i-1]--;

 }

 //TT

 for (int i=1; i<=4; i++)

 {

 Eng[i-1] = Eng[i-1] + (N[i-1]-1)*t;

 En = En + (N[i-1]-1)*t;

 }

 //Takt time, Tool magazine limit and No. of machines

 for (int i=1; i<=4; i++)

 {

 if(Eng[i-1]>(takt*N[i-1])||Hg[i-1]>(A*N[i-1])||N[i-1]>NM)

 {

 decision=1;

 }

 }

 if (decision==0) {best_grouping_solution(En,N); return En;}

 else return 1;

}

115

float sequencing_energy()

{

 float En=0;

 for(int i=1; i<=4; i++)

 {

 for (int j=1; j<=totaloper; j++)

 {

 if(BG[Q[j-1]].G==i)

 { int F1=0; int F2=0; int T1=0; int T2=0;

 for(int k=j+1; k<=totaloper; k++)

 {if(BG[Q[k-1]].G==i)

 {

 F1=O[Q[j-1]].F; F2=O[Q[k-1]].F; En

= En + Face[F1-1][F2-1];

 T1=Q[j-1]; T2=Q[k-1]; En = En +

Tool[T1-1][T2-1]; break;

 }

 }

 }

 }

 }

 best_sequencing_solution(En);

 return En;

}

void display_result()

{

 float ORCT[4]={0,0,0,0}; float TLCT[4]={0,0,0,0}; float OPT[4]={0,0,0,0};

 for(int i=1; i<=4; i++)

 {

 cout << endl << " Workstation No= " << i << endl;

 for (int j=1; j<=totaloper; j++)

 {

 if(BG[BS[j-1]].G==i)

116

 { cout << "[" << O[BS[j-1]].R << ", " << BS[j-1] <<

"] ";

 OPT[i-1] = OPT[i-1] + O[BS[j-1]].D * (O[BS[j-

1]].TO+O[BS[j-1]].RT);

 int F1=0; int F2=0; int T1=0; int T2=0;

 for(int k=j+1; k<=totaloper; k++)

 {if(BG[BS[k-1]].G==i)

 {

 F1=O[BS[j-1]].F; F2=O[BS[k-1]].F;

ORCT[i-1] = ORCT[i-1] + Face[F1-1][F2-1];

 T1=BS[j-1]; T2=BS[k-1]; TLCT[i-1]

= TLCT[i-1] + Tool[T1-1][T2-1]; break;

 }

 }

 }

 }

 cout << endl << "N= " << Nbg[i-1] << " ORCT= " << ORCT[i-1] << "

TLCT= " << TLCT[i-1] << " OPT= " << OPT[i-1] << " TT= " << (Nbg[i-1]-1)*t << "

Idle time= " << Nbg[i-1]*takt-ORCT[i-1]-TLCT[i-1]-OPT[i-1]-(Nbg[i-1]-1)*t << endl;

 }

 cout << endl << "Takt time= " << takt << " Total ORCT= " <<

ORCT[0]+ORCT[1]+ORCT[2]+ORCT[3] << " Total TLCT= " <<

TLCT[0]+TLCT[1]+TLCT[2]+TLCT[3] << " Total OPT= " << OPT[0]+OPT[1]+OPT[2]+OPT[3]

<< " Total TT= " << (Nbg[0]+Nbg[1]+Nbg[2]+Nbg[3]-4)*t << " Makespan= " <<

ORCT[0]+ORCT[1]+ORCT[2]+ORCT[3]+TLCT[0]+TLCT[1]+TLCT[2]+TLCT[3]+OPT[0]+OPT[1]+OPT[

2]+OPT[3]+(Nbg[0]+Nbg[1]+Nbg[2]+Nbg[3]-4)*t << endl;

}

void best_grouping_solution (float Enew, int N[])

{

 if (Enew < Ebg)

 {

 Ebg=Enew;

 for(int i=1; i<=totaloper; i++)

 {

117

 BG[i].G=O[i].G;

 BG[i].F=O[i].F;

 }

 for(int i=1; i<=4; i++)

 {

 Nbg[i-1]=N[i-1];

 }

 }

}

void best_sequencing_solution (float Enew)

{

 if (Enew < Ebs)

 {

 Ebs=Enew;

 for(int i=1; i<=totaloper; i++)

 {

 BS[i-1]=Q[i-1];

 }

 }

}

int randint(int floor, int ceiling)

{

 int range = ceiling+1-floor;

 int num = floor + int ((range*rand()) / (RAND_MAX+1.0));

 return num;

}

void declare()

{

O[1].R=1; O[1].D=16; O[1].F=1; O[1].P=1; O[1].TO= 2.88; O[1].RT= 1.73;

O[1].I=0; O[1].E=6;

O[2].R=1; O[2].D=16; O[2].F=1; O[2].P=2; O[2].TO= 1.25; O[2].RT= 0.75;

O[2].I=0; O[2].E=6;

O[3].R=1; O[3].D=16; O[3].F=1; O[3].P=3; O[3].TO= 1.71; O[3].RT= 1.03;

O[3].I=0; O[3].E=6;

118

O[4].R=1; O[4].D=16; O[4].F=1; O[4].P=4; O[4].TO= 2.93; O[4].RT= 1.80;

O[4].I=0; O[4].E=6;

O[5].R=2; O[5].D=4; O[5].F=1; O[5].P=1; O[5].TO= 1.54; O[5].RT= 0.92;

O[5].I=0; O[5].E=0;

O[6].R=2; O[6].D=4; O[6].F=1; O[6].P=2; O[6].TO= 1.57; O[6].RT= 0.94;

O[6].I=0; O[6].E=0;

O[7].R=2; O[7].D=4; O[7].F=1; O[7].P=4; O[7].TO= 2.62; O[7].RT= 1.57;

O[7].I=0; O[7].E=0;

O[8].R=2; O[8].D=4; O[8].F=1; O[8].P=5; O[8].TO= 1.70; O[8].RT= 1.00;

O[8].I=0; O[8].E=0;

O[9].R=3; O[9].D=8; O[9].F=1; O[9].P=1; O[9].TO= 2.75; O[9].RT= 1.65;

O[9].I=0; O[9].E=0;

O[10].R=3; O[10].D=8; O[10].F=1; O[10].P=4; O[10].TO= 1.79; O[10].RT= 1.07;

O[10].I=0; O[10].E=0;

O[11].R=3; O[11].D=8; O[11].F=1; O[11].P=5; O[11].TO= 2.89; O[11].RT= 1.73;

O[11].I=0; O[11].E=0;

O[12].R=4; O[12].D=8; O[12].F=2; O[12].P=6; O[12].TO= 1.95; O[12].RT= 1.17;

O[12].I=5; O[12].E=0;

O[13].R=4; O[13].D=8; O[13].F=2; O[13].P=7; O[13].TO= 1.20; O[13].RT= 0.75;

O[13].I=5; O[13].E=0;

O[14].R=4; O[14].D=8; O[14].F=2; O[14].P=8; O[14].TO= 1.65; O[14].RT= 0.99;

O[14].I=5; O[14].E=0;

O[15].R=5; O[15].D=4; O[15].F=2; O[15].P=9; O[15].TO= 2.68; O[15].RT= 1.61;

O[15].I=0; O[15].E=0;

O[16].R=5; O[16].D=4; O[16].F=2; O[16].P=10; O[16].TO= 2.30; O[16].RT= 1.38;

O[16].I=0; O[16].E=0;

O[17].R=6; O[17].D=4; O[17].F=3; O[17].P=9; O[17].TO= 1.97; O[17].RT= 1.18;

O[17].I=8; O[17].E=0;

O[18].R=6; O[18].D=4; O[18].F=3; O[18].P=10; O[18].TO= 3.37; O[18].RT= 2.02;

O[18].I=8; O[18].E=0;

O[19].R=6; O[19].D=4; O[19].F=3; O[19].P=11; O[19].TO= 1.36; O[19].RT= 0.82;

O[19].I=8; O[19].E=0;

O[20].R=6; O[20].D=4; O[20].F=3; O[20].P=12; O[20].TO= 2.74; O[20].RT= 1.40;

O[20].I=8; O[20].E=0;

O[21].R=7; O[21].D=4; O[21].F=3; O[21].P=10; O[21].TO= 1.35; O[21].RT= 0.81;

O[21].I=0; O[21].E=12;

O[22].R=7; O[22].D=4; O[22].F=3; O[22].P=11; O[22].TO= 1.22; O[22].RT= 0.73;

O[22].I=0; O[22].E=12;

119

O[23].R=7; O[23].D=4; O[23].F=3; O[23].P=12; O[23].TO= 3.09; O[23].RT= 1.85;

O[23].I=0; O[23].E=12;

O[24].R=8; O[24].D=20; O[24].F=4; O[24].P=3; O[24].TO= 1.20; O[24].RT= 0.72;

O[24].I=0; O[24].E=0;

O[25].R=8; O[25].D=20; O[25].F=4; O[25].P=4; O[25].TO= 1.62; O[25].RT= 0.97;

O[25].I=0; O[25].E=0;

O[26].R=8; O[26].D=20; O[26].F=4; O[26].P=5; O[26].TO= 2.06; O[26].RT= 1.24;

O[26].I=0; O[26].E=0;

O[27].R=9; O[27].D=20; O[27].F=3; O[27].P=3; O[27].TO= 1.90; O[27].RT= 1.14;

O[27].I=0; O[27].E=0;

O[28].R=9; O[28].D=20; O[28].F=3; O[28].P=4; O[28].TO= 3.30; O[28].RT= 1.98;

O[28].I=0; O[28].E=0;

O[29].R=10; O[29].D=8; O[29].F=5; O[29].P=1; O[29].TO= 2.78; O[29].RT= 1.67;

O[29].I=11; O[29].E=0;

O[30].R=10; O[30].D=8; O[30].F=5; O[30].P=2; O[30].TO= 1.31; O[30].RT= 0.79;

O[30].I=11; O[30].E=0;

O[31].R=11; O[31].D=8; O[31].F=5; O[31].P=11; O[31].TO= 3.43; O[31].RT= 2.05;

O[31].I=0; O[31].E=0;

O[32].R=11; O[32].D=8; O[32].F=5; O[32].P=12; O[32].TO= 3.42; O[32].RT= 2.05;

O[32].I=0; O[32].E=0;

O[33].R=11; O[33].D=8; O[33].F=5; O[33].P=5; O[33].TO= 3.39; O[33].RT= 2.03;

O[33].I=0; O[33].E=0;

O[34].R=11; O[34].D=8; O[34].F=5; O[34].P=6; O[34].TO= 2.50; O[34].RT= 1.50;

O[34].I=0; O[34].E=0;

O[35].R=12; O[35].D=4; O[35].F=5; O[35].P=8; O[35].TO= 2.64; O[35].RT= 1.58;

O[35].I=0; O[35].E=0;

O[36].R=12; O[36].D=4; O[36].F=5; O[36].P=9; O[36].TO= 2.26; O[36].RT= 1.36;

O[36].I=0; O[36].E=0;

O[37].R=12; O[37].D=4; O[37].F=5; O[37].P=10; O[37].TO= 2.45; O[37].RT= 1.47;

O[37].I=0; O[37].E=0;

O[38].R=12; O[38].D=4; O[38].F=5; O[38].P=11; O[38].TO= 2.32; O[38].RT= 1.40;

O[38].I=0; O[38].E=0;

//Generate grouping

 int steps=12/4; int index_step=0; int decision=0;

 int R1[3]={-1,-1,-1}, R2[3]={-1,-1,-1}, R3[4]={-1,-1,-1,-1}, R4[3]={-1,-1,-

1};

 int R=0; int I=0;

120

 for(int i=1; i<=totaloper; i++)

 {

 O[i].G=0;

 }

 //G1

 //String

 for(int i=1; i<=totaloper; i++)

 {

 if(O[i].I!=0)

 {

 for(int j=1; j<=totaloper; j++)

 {

 if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)

 {

 O[j].G=1;

 if(O[j].R!=R1[0]&&O[j].R!=R1[1]&&O[j].R!=R1[2])

 {R1[index_step]=O[j].R; index_step++;}

 }

 }

 break;

 }

 }

 //Filler

 for (int i=1; i<=totaloper; i++)

 {

 if(O[i].I==0&&index_step<steps)

 {

 decision=0;

 for(int j=1; j<=totaloper; j++)

 {

 for(int k=0; k<=index_step; k++)

 {

 if((O[j].E==O[i].R)&&(O[j].R==R1[k])) decision=1;

121

 }

 }

 if (decision==0)

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=1;

 }

 if(O[i].R!=R1[0]&&O[i].R!=R1[1]&&O[i].R!=R1[2])

 {R1[index_step]=O[i].R;

index_step++;}

 }

 else

if(O[i].I==R1[0]||O[i].I==R1[1]||O[i].I==R1[2])

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=1;

 }

 if(O[i].R!=R1[0]&&O[i].R!=R1[1]&&O[i].R!=R1[2])

 {R1[index_step]=O[i].R;

index_step++;}

 }

 }

 }

 //G2

 //String

 index_step=0;

 for (int i=1; i<=totaloper; i++)

 {

 if(O[i].I!=0&&O[i].G==0)

122

 {

 for(int j=1; j<=totaloper; j++)

 {

 if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)

 {

 O[j].G=2;

 if(O[j].R!=R2[0]&&O[j].R!=R2[1]&&O[j].R!=R2[2])

 {R2[index_step]=O[j].R; index_step++;}

 }

 }

 break;

 }

 }

 //Filler

 for(int i=1; i<=totaloper; i++)

 {

 if(O[i].I==0&&O[i].G==0&&index_step<steps)

 {

 decision=0;

 for(int j=1; j<=totaloper; j++)

 {

 for(int k=0; k<=index_step; k++)

 {

 if((O[j].E==O[i].R)&&(O[j].R==R2[k])) decision=1;

 }

 }

 if (decision==0)

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=2;

 }

123

 if(O[i].R!=R2[0]&&O[i].R!=R2[1]&&O[i].R!=R2[2])

 {R2[index_step]=O[i].R;

index_step++;}

 }

 else

if(O[i].I==R2[0]||O[i].I==R2[1]||O[i].I==R2[2])

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=2;

 }

 if(O[i].R!=R2[0]&&O[i].R!=R2[1]&&O[i].R!=R2[2])

 {R2[index_step]=O[i].R;

index_step++;}

 }

 }

 }

 //G3

 //String

 index_step=0;

 for (int i=1; i<=totaloper; i++)

 {

 if(O[i].I!=0&&O[i].G==0)

 {

 for(int j=1; j<=totaloper; j++)

 {

 if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)

 {

 O[j].G=3;

 if(O[j].R!=R3[0]&&O[j].R!=R3[1]&&O[j].R!=R3[2])

 {R3[index_step]=O[j].R; index_step++;}

 }

 }

 break;

124

 }

 }

 //Filler

 for (int i=1; i<=totaloper; i++)

 {

 if(O[i].I==0&&O[i].G==0&&index_step<steps+1)

 {

 decision=0;

 for(int j=1; j<=totaloper; j++)

 {

 for(int k=0; k<=index_step; k++)

 {

 if((O[j].E==O[i].R)&&(O[j].R==R3[k])) decision=1;

 }

 }

 if (decision==0)

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=3;

 }

 if(O[i].R!=R3[0]&&O[i].R!=R3[1]&&O[i].R!=R3[2])

 {R3[index_step]=O[i].R;

index_step++;}

 }

 else

if(O[i].I==R3[0]||O[i].I==R3[1]||O[i].I==R3[2])

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=3;

125

 }

 if(O[i].R!=R3[0]&&O[i].R!=R3[1]&&O[i].R!=R3[2])

 {R3[index_step]=O[i].R;

index_step++;}

 }

 }

 }

 //G4

 //String

 index_step=0;

 for (int i=1; i<=totaloper; i++)

 {

 if(O[i].I!=0&&O[i].G==0)

 {

 for(int j=1; j<=totaloper; j++)

 {

 if(O[j].R==O[i].R||O[j].I==O[i].R||O[j].R==O[i].I)

 {

 O[j].G=4;

 if(O[j].R!=R4[0]&&O[j].R!=R4[1]&&O[j].R!=R4[2])

 {R4[index_step]=O[j].R; index_step++;}

 }

 }

 break;

 }

 }

 //Filler

 for (int i=1; i<=totaloper; i++)

 {

 if(O[i].I==0&&O[i].G==0&&index_step<steps)

 {

 decision=0;

 for(int j=1; j<=totaloper; j++)

 {

 for(int k=0; k<=index_step; k++)

 {

126

 if((O[j].E==O[i].R)&&(O[j].R==R4[k])) decision=1;

 }

 }

 if (decision==0)

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=4;

 }

 if(O[i].R!=R4[0]&&O[i].R!=R4[1]&&O[i].R!=R4[2])

 {R4[index_step]=O[i].R;

index_step++;}

 }

 else

if(O[i].I==R4[0]||O[i].I==R4[1]||O[i].I==R4[2])

 {

 for(int k=1; k<=totaloper;

k++)

 {

 if(O[k].R==O[i].R)

O[k].G=4;

 }

 if(O[i].R!=R4[0]&&O[i].R!=R4[1]&&O[i].R!=R4[2])

 {R4[index_step]=O[i].R;

index_step++;}

 }

 }

 }

 for(int i=1; i<=totaloper; i++)

 {

127

 cout << " Oper no = " << i << " R= " << O[i].R << " Group = " <<

O[i].G << endl;

 }

}

Source file 2

Format: .cpp

#include "data.h"

void main()

{

 clock_t start_time=clock();

 declare();

 double e = 2.718281828;

 double lambda = 0.99;

 float Enew; float Ecs=0;

 int counter1=0; int counter2=0;

 int x; int x1; int x2; int x3;

 int temp1=0; int temp2=0; int temp3=0; float decision=0;

 int R[20]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

 float Ec = Enew = grouping_energy();

 for (double T=1000000; T>=1; T *= lambda)

 {

 for (int n=1; n<=50; n++)

 {

 temp1=0; temp2=0; temp3=0; decision=0;

 x=randint(1,2);

 switch(x)

 {

 case 1:

128

 x1=randint(1,4);

 switch(x1)

 {

 case 1:

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==2)

 { temp1=O[i].R;

break;}

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==2&&O[i].R==temp1)

 O[i].G=1;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==1&&O[i].R>temp2)

 temp2=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==1&&O[i].R==temp2)

 O[i].G=2;

 }

 decision =

grouping_energy();

 if (decision>1)

Enew=decision;

 else if (decision==1)

129

 {

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==1&&O[i].R==temp1)

 O[i].G=2;

 }

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==2&&O[i].R==temp2)

 O[i].G=1;

 }

 }

 break;

 case 2:

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==3)

 { temp1=O[i].R;

break;}

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==3&&O[i].R==temp1)

 O[i].G=2;

 }

 for(int i=1; i<=totaloper;

i++)

 {

130

 if(O[i].G==2&&O[i].R>temp2)

 temp2=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==2&&O[i].R==temp2)

 O[i].G=3;

 }

 decision =

grouping_energy();

 if (decision>1)

Enew=decision;

 else if (decision==1)

 {

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==2&&O[i].R==temp1)

 O[i].G=3;

 }

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==3&&O[i].R==temp2)

 O[i].G=2;

 }

 }

 break;

 case 3:

 for(int i=1; i<=totaloper;

i++)

 {

131

 if(O[i].G==4)

 { temp1=O[i].R;

break;}

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==4&&O[i].R==temp1)

 O[i].G=3;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==3&&O[i].R>temp2)

 temp2=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==3&&O[i].R==temp2)

 O[i].G=4;

 }

 decision =

grouping_energy();

 if (decision>1)

Enew=decision;

 else if (decision==1)

 {

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==3&&O[i].R==temp1)

 O[i].G=4;

132

 }

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==4&&O[i].R==temp2)

 O[i].G=3;

 }

 }

 break;

 case 4:

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==1)

 { temp1=O[i].R;

break;}

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==1&&O[i].R==temp1)

 O[i].G=4;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==4&&O[i].R>temp2)

 temp2=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==4&&O[i].R==temp2)

133

 O[i].G=1;

 }

 decision =

grouping_energy();

 if (decision>1)

Enew=decision;

 else if (decision==1)

 {

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==4&&O[i].R==temp1)

 O[i].G=1;

 }

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==1&&O[i].R==temp2)

 O[i].G=4;

 }

 }

 break;

 default: break;

 }

 break;

 case 2:

 x2=randint(1,4);

 switch(x2)

 {

 case 1:

 for(int i=1; i<=totaloper;

i++)

 {

134

 if(O[i].G==1&&O[i].R>temp3)

 temp3=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==1&&O[i].R==temp3)

 O[i].G=2;

 }

 decision =

grouping_energy();

 if (decision>1)

Enew=decision;

 else if (decision==1)

 {

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==2&&O[i].R==temp3)

 O[i].G=1;

 }

 }

 break;

 case 2:

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==2&&O[i].R>temp3)

 temp3=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

135

 if(O[i].G==2&&O[i].R==temp3)

 O[i].G=3;

 }

 decision =

grouping_energy();

 if (decision>1)

Enew=decision;

 else if (decision==1)

 {

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==3&&O[i].R==temp3)

 O[i].G=2;

 }

 }

 break;

 case 3:

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==3&&O[i].R>temp3)

 temp3=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==3&&O[i].R==temp3)

 O[i].G=4;

 }

 decision =

grouping_energy();

136

 if (decision>1)

Enew=decision;

 else if (decision==1)

 {

 for(int i=1;

i<=totaloper; i++)

 {

 if(O[i].G==4&&O[i].R==temp3)

 O[i].G=3;

 }

 }

 break;

 case 4:

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==4&&O[i].R>temp3)

 temp3=O[i].R;

 }

 for(int i=1; i<=totaloper;

i++)

 {

 if(O[i].G==4&&O[i].R==temp3)

 O[i].G=1;

 }

 decision =

grouping_energy();

 if (decision>1)

Enew=decision;

 else if (decision==1)

 {

 for(int i=1;

i<=totaloper; i++)

 {

137

 if(O[i].G==1&&O[i].R==temp3)

 O[i].G=4;

 }

 }

 break;

 default: break;

 }

 counter1++;

 if (Enew < Ec || (rand()/(double)RAND_MAX) <=

pow(e,-(Enew-Ec)/T))

 {

 Ec=Enew;

 }

 }

 }

 }

 int j=1;

 for (int i=1; i<=totaloper; i++)

 {

 if(BG[i].G==1)

 {Q[j-1]=i; j++;}

 }

 for (int i=1; i<=totaloper; i++)

 {

 if(BG[i].G==2)

 {Q[j-1]=i; j++;}

 }

 for (int i=1; i<=totaloper; i++)

 {

 if(BG[i].G==3)

 {Q[j-1]=i; j++;}

 }

 for (int i=1; i<=totaloper; i++)

 {

 if(BG[i].G==4)

 {Q[j-1]=i; j++;}

138

 }

 Ecs = sequencing_energy();

 for (float T=1000000; T>=1; T *= lambda)

 {

 for (int n=0; n<50; n++)

 {

 x3=randint(1,totaloper);

 int index=0; int x3p=0; int temp4=0; int

decision=0;

 for(int i=0; i<=totaloper-1; i++)

 {

 if(BG[Q[i]].G==BG[x3].G)

 {

 R[index]=Q[i]; index++;

 }

 }

 for(int i=0; i<index; i++)

 {

 if(R[i]==x3)

 { x3p=i; }

 }

 for(int i=0; i<index; i++)

 {

 if(R[i]!=x3)

 {

 temp4=R[i];

 R[i]=x3;

 R[x3p]=temp4;

 decision=0;

 for(int j=0; j<index-1; j++)

 {

 for(int k=j+1; k<index;

k++)

 {

 if(O[R[j]].R==O[R[k]].R&&R[j]>R[k])//precedence within a feature

 decision=1;

139

 else if

((O[R[j]].I==O[R[k]].R||O[R[k]].I==O[R[j]].R)&&R[j]>R[k])//precedence between

features

 decision=1;

 }

 }

 if (decision==1) { R[i]=temp4;

R[x3p]=x3; }

 else if (decision==0)

 {

 int j=0;

 for(int k=0;

k<=totaloper-1; k++)

 {

 if(BG[Q[k]].G==BG[x3].G&&j<index)

 {Q[k]=R[j];

j++;}

 }

 Enew=sequencing_energy();

 R[i]=temp4;

R[x3p]=x3;

 }

 }

 }

 for (int i=0; i<=totaloper-1; i++)

 {

 Q[i] = BS[i];

 }

 for (int i=0; i<index; i++)

 {

 R[i]=0;

 }

 counter2++;

 Enew=sequencing_energy();

 if (Enew < Ecs || (rand()/(double)RAND_MAX) <=

pow(e,-(Enew-Ecs)/T))

140

 {

 Ecs=Enew;

 }

 }

 }

 cout << " Best Grouping Objective= " << Ebg << " Last Grouping Objective= "

<< Ec << " Iterations= " << counter1 << endl;

 for (int i=1; i<=totaloper; i++)

 {

 cout << "Operation No. " << i << " R= " << O[i].R << " G= "

<< BG[i].G << endl;

 }

 cout << " Best Sequencing Objective= " << Ebs << " Last Sequencing

Objective= " << Ecs << " Iterations= " << counter2 << endl;

 for (int i=1; i<=totaloper; i++)

 {

 cout << "Position No. " << i << " Operation no.= " << BS[i-1]

<< endl;

 }

 display_result();

 clock_t end_time=clock();

 cout << "elapsed time= " << (end_time-start_time)/CLOCKS_PER_SEC;

 char end;

 cin >> end;

}

141

APPENDIX C: GAP ANALYSIS FOR LITERATURE

Table 13: Gap analysis for relevant literature

Category Problem Objective Method Gap

Transfer line

balancing

(cost-based

approach)

Equipment

block allocation

Minimize line

investment cost

Branch and bound

algorithm (2)

Small problem

size

MILP and two

heuristic

algorithms (10)

Solution time

is long

Enhanced MILP

(11)

Solution time

is long

Transfer line

balancing

(time-based

approach)

Machine

loading, tool

allocation and

operation

sequencing

Minimize handing

time

MILP (12)

Small problem

size

Decomposition

and linearization

approach to MILP

(13)

Ant colony and

hybrid heuristic

(14)

Solution time

is long

Analysis and

simulation (16)

No feature

grouping /

operation

sequencing

Transfer line

balancing

(minimize no.

of machines)

Machine loading

and operation

sequencing

Minimize number of

machines

MILP with

algorithm (1)

Small problem

size,

No feature

grouping / tool

allocation

Transfer line

design

Machine loading

and tool

allocation

Minimize equipment

cost
MILP (7)

No feature

grouping /

operation

sequencing

Hierarchical

process

planning

Multi-criteria

evaluation
Analysis (15)

No line

balancing

FMS Part grouping Maximize machine MILP (17) No Feature

142

Scheduling and batch

scheduling

utilization grouping

Machine

loading, tool

allocation and

part routing

Minimize total

machining cost
MILP (18)

No operation

sequencing

Operations

sequencing and

tool allocation

Minimize tool change

time

Heuristic algorithm

and simulation

(20)

Solution is

near optimal

Line balancing

/ operation

sequencing

Assembly line

balancing

Minimize total cost,

smoothness index

and probability of

lateness

Simulated

annealing

algorithm (22)

No tool

allocation or

operation

sequencing

Operation

sequencing

Maximize tool

changeover index,

setup changeover

index, motion

continuity index and

loose precedence

index

Simulated

annealing

algorithm (23)

No machine

loading or tool

allocation

Operation

sequencing

Minimize non-cutting

time

Simulated

annealing

algorithm (24)

No machine

loading or tool

allocation

Assembly line

balancing

Minimize smoothness

index, minimize

probability of line

stopping

Simulated

annealing

algorithm (26)

No tool

allocation or

operation

sequencing

143

APPENDIX D: TLCT MATRIX FOR CASE STUDY 1

Table 14: Tool change time matrix for Case Study 1 (Operations 1-19) (sec)

[D
FU
,

Op
]

[1
,1
]

[1
,2
]

[1
,3
]

[1
,4
]

[2
,5
]

[2
,6
]

[2
,7
]

[2
,8
]

[3
,9
]

[3,
10
]

[3,
11
]

[4,
12
]

[4,
13
]

[4,
14
]

[5,
15
]

[5,
16
]

[6,
17
]

[6,
18
]

[6,
19
]

[1,
1]

0 8 6 9 0 9 4 4 0 1 7 6 3 7 10 4 4 2 10

[1,
2]

1
0

0 9 8 1 0 1 1 2 9 2 6 3 2 7 9 6 3 9

[1,
3]

6 2 0 7 6 8 5
1
0

8 10 2 1 1 1 6 3 10 3 5

[1,
4]

1 1
1
0

0 1 1 0 5 4 0 6 1 7 6 6 3 8 8 9

[2,
5]

0 6 2
1
0

0 5 8 1 0 2 8 1 2 7 7 5 1 8 5

[2,
6]

9 0 1 4 9 0 5 4 2 1 7 5 6 8 5 1 3 9 2

[2,
7]

1 4 6 0 8 5 0 2 7 0 9 8 4 6 4 4 1 5 6

[2,
8]

8 1 3 9 8 1 7 0 3 6 0 8 7 3 6 8 4 5 8

[3,
9]

0 3 1 8 0 2 8 7 0 10 9 2 5 7 6 7 2 8 4

[3,
10]

4 9 9 0 1 4 0 4 3 0 10 3 5 10 8 10 10 4 3

[3,
11]

4 2 3 3 5 7 8 0 5 1 0 4 6 4 8 1 2 7 5

[4,
12]

5 2 6 4
1
0

1 5 9 2 5 1 0 8 9 1 8 5 2 5

[4,
13]

2 4 2 6
1
0

1 6 2 9 1 4 10 0 2 6 1 1 9 2

[4,
14]

8 8 6 6 2
1
0

7 5
1
0

10 8 4 5 0 3 4 4 10 3

[5,
15]

9 3 6 9 2
1
0

1 9 7 4 9 6 9 2 0 10 0 5 10

[5,
16]

6 6 7 6 4 8 1 8 7 10 4 2 3 7 3 0 6 0 1

[6,
17]

3 4
1
0

1 8 5 4 6 5 8 8 2 4 6 0 2 0 8 5

[6,
18]

5 6 5 1 6 7 8 8 4 8 1 8 2 1 9 0 4 0 7

[6,
19]

2 2 7 4 3 7
1
0

9 4 7 3 1 2 5 7 3 10 6 0

144

[6,
20]

1 4 1 1 2 6
1
0

7 7 2 1 5 1 3 10 10 1 5 6

[7,
21]

5 6 9
1
0

2 8 7 5 6 7 4 6 9 6 4 0 5 0 1

[7,
22]

7 6 9 4 9 6 7
1
0

7 5 8 3 6 5 2 2 3 3 0

[7,
23]

8 1 7 9
1
0

1
0

2 0 4 8 10 7 3 9 6 10 5 6 8

[8,
24]

7 3 0 7 5 1 7 5 8 3 2 3 9 9 5 9 3 10 2

[8,
25]

6 5 5 0 8 1 0 2 9 0 1 2 5 7 9 5 6 5 1

[8,
26]

1
0

8 2 4 3 4 6 0 9 9 0 2 5 4 1 2 5 4 6

[9,
27]

2 9 0 2 5 3 1
1
0

8 10 7 2 9 4 9 2 1 9 9

[9,
28]

9 6 7 0 2
1
0

0 3 6 0 7 1 5 3 6 8 9 9 8

[10
,29

]
0 2

1
0

1
0

0 4 5 7 0 5 7 2 3 9 9 5 6 10 4

[10
,30

]
6 0 3 8 2 0 6

1
0

6 2 8 6 2 1 8 8 4 1 3

[11
,31

]
2 8 6 8 2 7 8 4 4 6 7 10 2 6 2 1 5 3 0

[11
,32

]
2 2 5 1 7 3 6 1

1
0

7 10 5 2 7 7 5 6 3 3

[11
,33

]

1
0

7 4 6 1 3 5 0 6 9 0 7 5 1 4 9 6 7 7

[11
,34

]
3 2 1 8 8 7 3 6 1 2 7 0 7 9 2 1 9 9 9

[12
,35

]
4 5 7 7 5 8 7 1 4 10 9 10 6 0 10 6 9 9 3

[12
,36

]

1
0

5 6 9
1
0

7 9 7 2 5 1 2 9 10 0 2 0 10 1

[12
,37

]

1
0

9 5 4 4
1
0

9 2 2 10 3 3 1 3 3 0 7 0 4

[12
,38

]
7 5 7 6 4 8

1
0

1 7 1 10 5 6 5 1 2 8 3 0

145

Table 15: Tool change time matrix for Case Study 1 (Operations 20-38) (sec)

[D
F
U,
O
p]

[6
,2
0]

[7
,2
1]

[7
,2
2]

[7
,2
3]

[8
,2
4]

[8
,2
5]

[8
,2
6]

[9
,2
7]

[9
,2
8]

[1
0,
29
]

[1
0,
30
]

[1
1,
31
]

[1
1,
32
]

[1
1,
33
]

[1
1,
34
]

[1
2,
35
]

[1
2,
36
]

[1
2,
37
]

[1
2,
38
]

[6,
20
]

3 1 3 2 5
1
0

7 6 9 0 8 4 6 7 9 9 2 2 10

[7,
21
]

1
0

4 1 8 7 8 8 2 4 8 0 5 7 1 5 1 3 9 10

[7,
22
]

5 7
1
0

1
0

0 3 7 0 1 9 1 8 9 6 7 6 6 6 3

[7,
23
]

7
1
0

6
1
0

1
0

0 7 1 0 3 8 3 8 7 1 10 8 7 5

[8,
24
]

4
1
0

6 9
1
0

9 9 6 6 0 6 10 7 10 3 7 1 1 4

[8,
25
]

7 5 8 3 8 3 7 1 2 4 0 1 4 9 4 5 4 2 1

[8,
26
]

3 6 5
1
0

9 0 3 7 0 2 4 10 7 7 1 7 10 1 7

[9,
27
]

5 9 2 6 9 6 0 2 4 10 2 1 8 0 8 6 6 7 1

[9,
28
]

6 4 4 8 4 2 1 6 6 0 4 2 4 5 4 1 5 7 3

[1
0,
29
]

1 9 2 7 1 0 8 3 0 7 1 10 6 5 8 9 5 2 3

[1
0,
30
]

4 9 9 7 2 4 0 1 4 2 6 9 9 0 3 4 7 1 4

[1
1,
31
]

2 7 2
1
0

4 6 9 4 2 3 7 7 6 9 0 8 3 1 5

[1
1,
32
]

2 4
1
0

8 3 3 6 7 6 7 1 3 1 7 3 9 3 7 3

[1
1,
33
]

9 8 7 6 1 6
1
0

4 9 7 3 2 5 6 3 0 3 9 8

146

[1
1,
34
]

5
1
0

4 5
1
0

8 4 9 9 7 7 3 5 2 9 8 0 1 1

[1
2,
35
]

6 0
1
0

2 9 5 7 4 3 5 7 8 7 6 5 7 6 0 5

[1
2,
36
]

7
1
0

1
0

1 8 1
1
0

8 2 6 3 9 7 8 7 2 0 4 10

[1
2,
37
]

1
0

0 9 3 3 3
1
0

2 8 1 8 2 6 10 10 4 2 0 3

[1
2,
38
]

8 7 0 9 1 2 5 6 3 2 10 0 6 9 2 6 8 4 0

[6,
20
]

0 4 4 0 7 5 4 4 4 4 6 4 0 8 8 1 5 2 6

[7,
21
]

9 0 7 7 4 2 2
1
0

6 5 3 10 1 1 6 8 8 0 7

[7,
22
]

3 2 0 6
1
0

4 9
1
0

3 4 2 0 8 1 7 6 10 2 0

[7,
23
]

0 1 5 0 7
1
0

7 9 7 6 4 3 0 7 9 6 6 1 9

[8,
24
]

7
1
0

5 5 0 1 9 0 3 9 6 7 5 4 9 5 3 5 6

[8,
25
]

3 9
1
0

8
1
0

0 6 4 0 5 7 4 9 8 7 1 5 7 3

[8,
26
]

4 4 1 8 3 9 0 5 4 8 10 10 8 0 2 8 4 3 4

[9,
27
]

1
0

2 6 1 0 5
1
0

0 2 3 2 5 2 5 2 2 8 9 6

[9,
28
]

2 9 7 8 2 0 9 2 0 4 9 10 6 8 4 2 7 6 10

[1
0,
29
]

9 9 4 5 1 9 5 3 7 0 10 5 9 6 9 3 6 3 5

[1
0,
30
]

3 7 4 1 4 8 8 4 6 9 0 8 10 4 3 5 6 4 7

147

[1
1,
31
]

8 3 0 6 8 1 1 7 5 4 3 0 4 5 8 8 2 8 0

[1
1,
32
]

0 7 9 0 9 6 1 8 3 1 9 1 0 7 3 9 8 8 5

[1
1,
33
]

1
0

6 5 5 2 5 0 6 8 3 4 6 6 0 4 1 3 6 2

[1
1,
34
]

1
0

7 6 4 1 6 7 9 2 5 6 2 10 3 0 10 6 2 10

[1
2,
35
]

8 7 7 3 2 1 4 8
1
0

7 6 10 5 1 5 0 9 4 1

[1
2,
36
]

9 4 5 9 8 9 1 7 6 3 3 3 4 5 7 8 0 3 8

[1
2,
37
]

1
0

0 5 1 9 1 4 8 1 9 10 1 8 1 7 1 2 0 3

[1
2,
38
]

5 4 0 1 3 4 4 6 3 2 2 0 9 6 4 9 7 3 0

148

APPENDIX E: DETAIL RESULTS FOR CASE STUDY 2

Table 16: Computational results for problem 1

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 0.27 s 56.84 715.04 <0.1 s 56.84 715.04

2 0.23 s 58 504.1 <0.1 s 58 504.1

3 0.19 s 51.16 588.56 <0.1 s 51.16 588.56

4 0.17 s 68.73 582.13 <0.1 s 68.73 582.13

5 0.17 s 61.15 591.75 <0.1 s 61.15 591.75

6 0.17 s 61.85 733.45 <0.1 s 61.85 733.45

7 0.16 s 62.46 620.76 <0.1 s 62.46 620.76

8 0.17 s 51.57 537.27 <0.1 s 51.57 537.27

9 0.14 s 59.84 572.24 <0.1 s 59.84 572.24

10 0.19 s 61.16 707.16 <0.1 s 61.16 707.16

Mean 0.19 s 59.28 615.25 <0.1 s 59.28 615.25

Standard
deviation

0.036 5.23 78.21 0 5.23 78.21

Table 17: Computational results for problem 2

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 0.22 s 37.33 416.53 <0.1 s 41.33 501.93

2 0.22 s 36.91 356.11 <0.1 s 39.76 358.76

3 0.13 s 33.56 409.6 <0.1 s 33.56 409.6

4 0.16 s 45.61 432.31 <0.1 s 46.2 432.9

149

5 0.14 s 36.82 442.52 <0.1 s 36.82 442.52

6 0.13 s 35.13 420.23 <0.1 s 41.43 442.63

7 0.11 s 46.03 527.53 <0.1 s 47.94 529.44

8 0.11 s 39.97 414.17 <0.1 s 40.19 414.39

9 0.12 s 49.76 396.66 <0.1 s 49.88 396.78

10 0.16 s 34.36 341.96 <0.1 s 35.47 343.07

Mean 0.15 s 39.55 415.76 <0.1 s 41.26 427.2

Standard
deviation

0.04 5.63 50.46 0 5.36 57.45

Table 18: Computational results for problem 3

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 0.39 s 55.25 770.95 <0.1 s 55.25 770.95

2 0.27 s 70.77 743.67 <0.1 s 72.86 745.76

3 0.28 s 74.08 581.78 <0.1 s 74.33 582.03

4 0.25 s 59.83 659.03 <0.1 s 62.6 661.8

5 0.23 s 64.96 888.36 <0.1 s 68.97 892.37

6 0.22 s 67.83 661.33 <0.1 s 68.69 662.43

7 0.22 s 68.75 776.95 <0.1 s 70.84 779.04

8 0.2 s 68.69 709.49 <0.1 s 70.41 711.21

9 0.25 s 60.17 643.87 <0.1 s 63.38 647.08

10 0.27 s 60 620.5 <0.1 s 60.63 621.23

Mean 0.25 s 65.03 705.6 < 0.1 s 66.8 707.39

Standard
deviation

0.05 5.98 91.13 0 6.07 91.75

150

Table 19: Computational results for problem 4

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 1.86 s 68.31 659.51 1 s 77.48 668.68

2 1.98 s 80.26 736.36 1 s 80.26 736.36

3 1.88 s 75.38 762.38 1 s 81.72 768.72

4 1.9 s 90.94 673.04 1 s 91.99 674.09

5 1.88 s 76.36 766.16 1 s 86.48 766.28

6 1.81 s 70.32 617.02 1 s 72.85 619.55

7 1.88 s 83.48 763.88 1 s 90.28 770.68

8 1.89 s 82.08 860.08 1 s 82.68 860.68

9 1.88 s 75.77 659.57 1 s 85.42 668.92

10 1.81 s 74.81 886.21 1 s 80.84 892.24

Mean 1.88 s 77.71 738.42 1 s 83 742.62

Standard
deviation

0.05 6.64 88.25 0 5.76 87.64

Table 20: Computational results for problem 5

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 1.81 s 62.5 610 1 s 90.06 637.56

2 1.91 s 87.63 795.83 1 s 94.35 802.55

3 1.94 s 79.49 757.89 1 s 90.17 768.57

4 2.37 s 83.02 725.62 1 s 83.02 725.62

5 1.95 s 91.42 891.82 1 s 94.07 894.57

6 1.92 s 91.01 851.31 1 s 94.12 854.42

151

7 1.98 s 84.57 770.97 1 s 93.22 779.62

8 1.94 s 80.33 773.13 1 s 88.92 781.72

9 1.86 s 62.99 712.29 1 s 73.12 722.42

10 1.89 s 89.3 943.4 1 s 97.19 951.29

Mean 1.96 s 81.22 783.22 1 s 89.82 791.83

Standard
deviation

0.15 10.57 95.16 0 7.06 90.56

Table 21: Computational results for problem 6

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 0.45 s 69.61 748.11 1 s 74.12 752.62

2 0.31 s 83.98 846.88 1 s 84.45 847.35

3 0.34 s 92.14 827.04 1 s 100.43 835.33

4 0.36 s 76.83 862.83 1 s 81.71 867.71

5 0.41 s 73.17 921.87 1 s 79.19 927.89

6 0.33 s 84.21 815.41 1 s 97.28 828.48

7 0.33 s 77.63 673.93 1 s 80.83 677.13

8 0.33 s 77.94 647.14 1 s 85.69 654.89

9 0.36 s 79.6 915.2 1 s 81.54 917.14

10 0.34 s 71.48 909.88 1 s 79.52 917.19

Mean 0.36 78.66 816.83 1 s 84.48 822.58

Standard
deviation

0.04 6.75 98 0 8.23 97.76

152

Table 22: Computational results for problem 7

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 5 s 104.98 952.68 1 s 120.73 968.43

2 5.23 s 102.89 1004.29 1 s 112.07 1013.47

3 5.23 s 90.91 880.41 1 s 106.71 896.21

4 5.3 s 110.93 1156.13 1 s 118.74 1163.94

5 5.91 s 114.51 861.51 1 s 127.01 874.01

6 5.06 s 89.08 856.98 1 s 104.6 872.5

7 5.06 s 100.93 833.53 1 s 109.55 842.15

8 5.13 s 101.46 913.56 1 s 105.02 917.12

9 5.17 s 102.5 961.2 1 s 115.48 974.18

10 5.22 s 112.49 834.79 2 s 148.34 870.64

Mean 5.23 s 103.07 925.51 1.1 s 116.83 939.27

Standard
deviation

0.26 8.41 99.48 0.32 13.27 96.18

Table 23: Computational results for problem 8

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 12.19 s 132.15 1358.85 2 s 151.96 1378.66

2 7.5 s 134.56 1328.16 3 s 141.46 1335.06

3 13.95 s 131.27 1100.37 2 s 147.97 1117.07

4 6.86 s 131.01 1339.31 2 s 140.87 1349.17

5 4.3 s 146.98 1285.38 2 s 148.93 1287.33

6 3.25 s 119.64 1233.74 3 s 137.26 1251.36

153

7 3.33 s 155.8 1335.6 2 s 160.29 1340.09

8 7.16 s 134.28 1441.08 2 s 147.5 1454.3

9 6.27 s 128.04 1273.04 2 s 141.91 1286.91

10 7.14 s 146.68 1488.08 2 s 153.02 1494.42

Mean 7.2 s 136.04 1318.36 2.2 s 147.12 1329.44

Standard
deviation

3.5 10.67 107.58 0.42 6.93 105.7

Table 24: Computational results for problem 9

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 2.56 s 148.5 1450.7 2 s 164.9 1467.1

2 2.5 s 139.9 1314.9 2 s 146.4 1321.4

3 1.73 s 143.8 1695.8 2 s 172 1724

4 2.31 s 166.2 1615.3 3 s 166.2 1615.3

5 2.19 s 167.9 1426 2 s 170.3 1428.3

6 2.39 s 163.6 1572.3 2 s 169.5 1639.6

7 2.17 s 158.8 1590.4 3 s 160.4 1592

8 2.44 s 146.8 1501 2 s 161.9 1516.1

9 2.23 s 159.6 1345.1 2 s 169.9 1355.4

10 2.58 s 155.5 1459.3 2 s 162.2 1466

Mean 2.31 s 155.06 1497.08 2.2 s 164.37 1512.52

Standard
deviation

0.25 9.8 121.46 0.42 7.48 129.23

154

Table 25: Computational results for problem 10

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 25.75 s 211.52 2031.52 4 s 232.03 2052.03

2 18.42 s 217.87 1947.17 4 s 219.91 1949.21

3 22.72 s 216.16 1878.76 4 s 225.8 1888.4

4 22.55 s 206.86 1674.56 5 s 223.29 1690.99

5 28.55 s 239 2079.8 4 s 239.27 2080.07

6 20.98 s 225.39 1906.79 4 s 237.09 1918.49

7 36.05 s 236.86 2092.66 4 s 257.96 2113.56

8 24.14 s 211.63 1936.23 5 s 220.21 1944.81

9 20.89 s 205.79 1973.19 5 s 233.05 2000.45

10 24.56 s 217.97 2025.67 5 s 229.26 2036.96

Mean 24.46 s 218.91 1954.64 4.4 s 231.79 1967.5

Standard
deviation

4.95 11.56 121.52 0.52 11.36 121.58

Table 26: Computational results for problem 11

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 5.8 s 185.61 1949.51 2 s 187.74 1951.64

2 5.13 s 178.77 1903.67 3 s 189.89 1914.79

3 7.95 s 163.64 1661.24 3 s 185.49 1683.09

4 5.47 s 160.29 1715.79 2 s 179.49 1734.99

5 5.73 s 192.64 1670.74 3 s 205.76 1683.86

6 6.72 s 180.87 1627.87 3 s 199.05 1646.05

155

7 6.95 s 193.9 1857.7 3 s 210.7 1874.5

8 6 s 167.81 1540.91 3 s 199.95 1573.05

9 6.45 s 182.1 1815.9 3 s 196.6 1830.4

10 5.53 s 179.14 1658.34 3 s 200.6 1679.8

Mean 6.17 s 178.48 1740.16 2.8 s 195.53 1757.22

Standard
deviation

0.85 11.42 133.65 0.42 9.69 127.09

Table 27: Computational results for problem 12

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 17.34 s 225.04 1924.14 4 s 246.22 1945.32

2 12.77 s 260.88 2114.58 4 s 276.58 2130.28

3 17.34 s 238.22 2292.22 3 s 240.53 2294.53

4 14.3 s 238.98 2253.88 5 s 251.88 2266.78

5 12.78 s 240.94 2319.64 4 s 251.73 2330.43

6 15.75 s 242.26 2306.96 4 s 264.95 2329.65

7 12.06 s 218.41 2239.61 4 s 243.02 2264.22

8 12.59 s 227.24 2183.44 4 s 248.7 2204.9

9 12.61 s 229.86 2389.46 4 s 248.32 2407.92

10 19.22 s 243.06 2388.36 4 s 271.13 2416.43

Mean 14.67 s 236.49 2241.23 4 s 254.3 2259.04

Standard
deviation

2.56 11.96 141.15 0.47 12.27 139.96

156

Table 28: Computational results for problem 13

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 3.92 min 304.98 2889.08 6 s 322.44 2906.54

2 5.66 min 322.11 2872.51 6 s 367.88 2918.28

3 7.18 min 307.79 3030.99 6 s 310.69 3033.89

4 4.69 min 291.29 2670.39 7 s 308.37 2687.47

5 6.05 min 293.5 2933.7 8 s 319.46 2982.66

6 11.22 min 294.97 2802.67 7 s 314.06 2821.76

7 5.96 min 304.68 2500.28 6 s 315.94 2511.54

8 1.29 min 292.41 2961.21 6 s 349.85 3018.65

9 4.17 min 292.94 2854.94 7 s 302.68 2864.68

10 1.28 min 311.19 2683.79 7 s 318.93 2691.53

Mean 5.14 min 301.59 2819.96 6.6 s 323.03 2843.7

Standard
deviation

2.89 10.26 159.72 0.7 20.20 168.13

Table 29: Computational results for problem 14

Test no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 5.73 h 373.07 3402.37 10 s 416.78 3446.08

2 4.88 h 370.36 3345.76 14 s 418.59 3393.99

3 4.27 h 377.37 3408.27 10 s 425.95 3456.85

4 3.46 h 393.95 3618.85 10 s 448.27 3673.17

5 8.97 h 362.63 3278.03 11 s 400.79 3316.19

6 4.54 h 385.55 3444.35 11 s 438.15 3496.95

157

7 3.59 h 388.51 3600.21 9 s 453.79 3665.49

8 4.56 h 390.86 3423.66 13 s 431.61 3464.41

9 2.71 h 372.17 3393.77 10 s 437.91 3459.51

10 1 h 389.44 3556.08 10 s 441.85 3608.45

Mean 4.37 h 380.39 3447.17 10.8 s 431.37 3498.11

Standard
deviation

2.08 10.62 110.85 1.55 16.08 116.34

Table 30: Computational results for problem 15

Te0st no.

MILP model Simulated annealing algorithm

Solution
time

Handling
time (s)

Makespan
(s)

Solution
time

Handling
time (s)

Makespan
(s)

1 >24 h - - 15 s 446.34 4167.48

2 >24 h - - 10 s 456.76 4295.72

3 >24 h - - 13 s 433.79 4224.2

4 >24 h - - 10 s 425.01 4307.78

5 >24 h - - 12 s 459.31 3876.95

6 >24 h - - 10 s 453.93 4204.65

7 >24 h - - 13 s 422.25 4522.25

8 >24 h - - 10 s 451.76 4101.23

9 >24 h - - 11 s 436.01 4309.29

10 >24 h - - 10 s 437.91 4390.82

Mean >24 h - - 11.4 s 442.31 4240.03

Standard
deviation

0 - - 1.78 13.21 174.08

158

VITA AUCTORIS

NAME: Soumitra Subhash Bhale

PLACE OF BIRTH: Aurangabad, Maharashtra, India

YEAR OF BIRTH: 1989

EDUCATION: MASc. University of Windsor, Windsor, ON

2014

 B.E. University of Pune, Pune, India 2010

H.S.C. M.S.B.S.H.S.E., Aurangabad, India

2006

S.S.C. M.S.B.S.H.S.E., Aurangabad, India

2004

PUBLICATION: Bhale S, Baki MF, Azab A. Grouping and

Sequencing of Machining Operations for High

Volume Transfer Lines. Proceedings of the 47th

CIRP Conference on Manufacturing Systems;

2014 Apr 28-30; Windsor, Canada. Windsor:

Canada; 2014. P. 413-18.

	University of Windsor
	Scholarship at UWindsor
	2014

	Grouping and Sequencing of Machining Operations for High Volume Transfer Lines
	Soumitra Subhash Bhale
	Recommended Citation

	tmp.1413986123.pdf.QTvEp

