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ABSTRACT

This work presents a new fast and efficient algorithm for a floating point multiplier that
adheres to the IEEE 754 standard and also investigates its VLSI implemetation. As a
verification tool, VHDL is used to simulate the hardware model of the new floating point
multiplier algorithm. In addition this work describes and compares several parallel
multiplier architectures including a new parallel multiplier architecture which is both time
optimal and regular in structure. This new multiplier architecture will be used as part for
the new floating point multiplier algortihm. Finally the BICMOS implementation of the

new multiplier architecture is discussed.
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CHAPTER 1

Introduction

1.1 Introduction

The growing market for fast floating-point co-processors, digital signal processing chips,
and graphics processors has created a demand for high speed area efficient multipliers.
Current architectures range from small, low-performance shift and add multipliers, to large,
high performance array and tree multipliers. Conventional linear array multipliers achieve
high performance in regular structure, but require large amounts of silicon. Tree structures
achieve even higher performance than linear arrays but the tree interconnection is more
complex and less regular making them even larger than linear arrays. Ideally, one would
want the speed benefits of a tree structure, the regularity of an array multiplier, and the

small size of a shift and add multiplier.

This thesis considers an implementation of a new tree niultiplier architecture which is faster
than linear arrays, and more regular than traditional multiplier trees. In addition, since the

need for high speed and high precision computation has been increasing in applications for
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R

image processing, computer graphics, model simulation and so on this thesis will
investigate a hardware implementation of a floating point multiplier that adheres to the IEEE
754 standard. This standard will be explained briefly in the next section starting with its

origin.

1.2 Historical Overview Of Floating Point Systems

Almost all of the early computers provided only fixed point arithmctic operations, the only
exceptions being the Model V Relay Computer designed by George R. Stibitz of the Bell
telephone Laboratories [1,2] and the Harvard Mark IT Computer [3] designed by Horward
Aiken. To facilitate scientific and engineering calculations, the early machines often used
long word lengths for number representations. Forty bit numbers were used in machines
patterned after an Institute of Advanced Study Machine, and forty five bit numbers were
used in the SEAC (Bureau of Standards Eastern Automatic Computer) family. However,
merely providing greater precision for number representation did not solve the need for
greater range in the size of the numbers. To scale large numbers into the range afforded by
the machine involved a great deal of programming effort, as well as a rather thorough
analysis of the problem being solved so as to determine the appropriate scaling factors in
advance. The technique of automatic scaling or floating point arithmetic, came into wide
spread use in the mid 1950’s, first as a software option and as a hardware feature.
Nowadays all computers for scientific and engineering use have built in floating point

features.

Presently there are more than twenty different floating point formats in use by various
computer manufacturers. Table 1.1 shows the formats of three computer which are
popular for scientific computing. From table 1.1 it can be simply seen that there is hardly

any similarity between the various formats. This situation which prohibits data portability
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produced by numerical software, - vas the main motivation for setting up in 1978 an IEEE
(Computer Society) 754 committee to standardize floating point arithmetic. The main goal
of the standardization effort was to establish a standard which will allow communication

between systems at the data level without the need for conversion.

e —

CDC

| IBM/370 \ \ |
Cyber 70|
|
l
Word length S: 32 bits S: 32 bits 60 bits
L: 64 bits L: 64 bits
Exponent 7 bits 8 bits || 11 bits
Significand 5: 6 digits . S: (1) + 23 bits 48 bits
L: 14 digits | L: (1) + 55 bits
Bias of Exponent | 64 128
Radix 16 2
Hidden '1' No

Table 1.1: Comparison of floating point specification of three popular computers

In addition to the respectable goal of the “ the same format for all computers ,” the
comittee wanted to ensure that it would be the best possible standard for given number of
bits. Specificaily, the concern was to ensure correct results, that is the same as those given
by the corresponding infinite precision with an error of 1/2 LSB. Furthermore, to ensure
portability of all numerical data. A more detail explanation of the IEEE 754 standard will

be given in the next chapter.
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1.3 Thesis Organization

The next chapter provides background information on the 1EEE 754
standard. In particular the three major aspects of the IEEE 754 floating point standard are
dexcribed, that is the format of the data types, the arithmetic and the exception handling. In

addition, it covers in detail the IEEE 754 rounding modes.

Chapter 3 focuses on the VLSI implementation of a floating point multiplier which adheres
to the IEEE 754 standard presented in Chapter 2. This chapter also introduces a high
performance hardware model for a floating point multiplier which incorporates several high
performance rounding algorithm proposed by Mark Santario. In addition, in this chapter a

new fast and efficient method for ~omputing the exponent and the sticky bit are presented.

Chapter 4 covers the background information on the basics of binary multiplication. The
advantages and disadvantages of various hardware multiplier architectures, including linear
arrays, trees; two new multiplier architectures are also discussed. In addition, a
comparison of several adder structures and BICMOS implementation of the two new

multiplier architectures are presented.

Finally Chapter 5 presents a summary of the contributions of this thesis and describes

directions for future investigations.



CHAPTER 2

IEEE Floating Point Standard

2.1 Introductidn

This chapter provides a tour of the IEEE 754 floating point standard. Each subsection
discusses one aspect of the standard and why it was ircluded. It is not the purpose of this
thesis to argue that the IEEE 754 standard is the best floating point standard but rather to
accept the standard as given. This chapter will start by first explaining the three major
aspects in the ITEEE 754 floating point standard [4] : the format of the data types, the

arithmetic, and the exception handling.

2.2 Data Formats

The floating point data format is made up of three parts (from left to right): sign bit, biased

exponent {characteristics), and significand (mantissa).

Page 5



IEEE Floating Point Standard _ 6

where:
§ = Sign bit (indicates sign of the significand)

CE

Biased Exponent

F = Significand

i

then
e = true exponent = CE - bias
f = true significand = 1.F
A normalized non-zero number X, has the following interpretation

X = (-I)S * ZCE-bi‘ds * {1.F)

Floating point numbers are usually represented in normalized form. For example, both
0.01x10! and 1.00 x 107! represent 0.1. If the leading digit is non-zero the representation
is said to be normalized. The floating point number 1.00 x 107! is normalized, whereas
0.01x10! is not. Requiring that a floating point representation be normalized makes the
representation unique. Unfortunately this restriction makes it impossible to represent zero.
A natural way to represent zero is with 1.0 x 2(®min -1) temin is the smallest allowable
exponent), since this preserves the fact that the numerical ordering of non-negative real
numbers corresponds to the lexicographical ordering of their floating point representation.
When the exponent is stored in a k bit field, this implies that only 2K . 1 values are available

for use as exponents, since one must be reserved to represent zero.

2.3 Precision

The IEEE 754 standard defines four different precisions: Single, Double, Single_Extended
and Double_Extended.
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2.3.1 Single Precision

Single precision occupies a single 32 bit word. A 32-bit format for binary floating point
number X is divided as shown in Figure 2.1. The component fields of X are the 1-bit sign

S, the 8-bit biased exponent CE, and the 23-bit fraction f. The value V of X is as follows:
(a) If CE = 255 and f# 0, then V = NAN

(b) If CE = 255 and f=0, then V = (-1)® x infinity

(¢) If ¢ < CE < 255 , then v = (-152CE-127 (1

(d) If CE =0and f #0, then V = (-1)5 2-126(0 1)

(e) IFCE=0and f=0, then V = (-1)30, (Zero)

CE | £

7]

Figure 2.1: Single Precision Format

2.3.2 Double Precision

Double precision occupies a 64-bit word. The 64-bits for a binary floating point number X
is divided as shown in Figure 2.2. The component fields of X are the 1-bit sign S, the 11-

bit biased exponent CE, and the 52-bit fraction f. The value of X is as follows:
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(a) If CE = 2047 and f# 0, then V = NAN

(b) If CE = 2047 and =0, then V = (-1)% x infinity
(c) If0 < CE < 2047 , then V = (-1)5 2CE-1023 (1 gy
(d) If CE =0 and f #0, then V = (-1) 2-1022(g 1)

(&) If CE=0and f =0, then V = (-1)%0, (Zero)

0 11 63
Figure 2.2: Double Precision Format

2.3.3 Single-Extended

Extended is ar implementation dependent format. An extended binary floating point number X has
four components: a 1 bit sign S, an exponent CE of specified range combined with an
implementation dependent bias, a 1-bit integer j, and a fraction f with at least 31 bits. The
exponent shall range between a minimum value m < -1023 and a maximum value M >1024. The

value of V of X is as follows:
(a)IfCE=Mand f#0, then V = NAN

(b) If CE = M and f=0, then V = (-1)® x infinity
©HKEm<CE<M,then V=(-152CEf

(d)IfCE=mandj=f=0, then V =(-1)% 0, (normal zero)
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2.3.4 Double-Extended

The double-extended format is the same as single extended described in 2.3.3, except that
the exponent can range between m < -16383 and M > 16384, and a fraction shall have at

least 63 bits.

2.4 Exponent

Since the exponent can be positive or negative, some methods must be chosen to represent
its sign. Two common methods of representing signed numbers are sign/magnitude and
two's complement. Sign/magnitude is the system used for the sign of the significand in the
{EEE formats: 1 bit used to hold the sign; the rest of the bits represent the magnitude of the

number. The two's complement representation is often used in integer arithmetic.

The TEEE binary standard does not use either of these methods to represent the exponent
but instead uses a biased representation. In the case of single precision, where the
exponent is stored in 8 bits, the bias is 127 (for double precision it is 1023). What this
means is that if CE is the value of the exponent bits interpreted as an unsigned integer, then
the exponent of the floating point number is CE-127. This is often called the biased
exponent to distinguish it from the unbiased exponent E. An advantage of biased
representation is that non-negative ﬂoﬁting point numbers can be treated as integers for

comparison purposes.

2.5 Arithmetic Operations

All conforming implementations of the IEEE standard provide the following operations:
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1. Numerical Operations
i) Add
ii) Subtract
iit) Multiply
iv) Divide
v) Square Root

vi) Reminder
2. Conversion Operations

i) Floating point 4—¥ Integer

ii) Binary(integer) <&— Decimal (integer)

iii) Binary (floating) <@—# Decimal (floating)
3. Miscellaneous Operations

i) Move from one format width to another

i1} Compare and set condition code

iii} Find Integer part

2.6 Exception Handling

On some floating point hardware every bit pattern represents a valid floating point number.
The IBM system/370 is an example of this, On the other hand, the VAX reserves some bit
patterns to represent special numbers called reserved operands . The idea goes back to the

CDC 6600, which had bit patterns for the special quantities Indefinite and Infinity.

The TIEEE 754 standard continues in this tradition and has NANs (not a number) and
infinities. Without special quantities, there is no good way to handle exceptional situations,

such as taking the square root of a negative number, other than aborting the computation,
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Under IBM System/370 FORTRAN, the default action in response to computing the square
root of a negative number results in the printing of an error message. In IEEE arithmetic a

NAN is returned in this situation. The IEEE standard specifies the special quantities shown

in table 2.1.
Exponent Fraction Represenis
€ = €mip -1 f=0 +0
€ = €min -1 f 20 0.f x 2€min
€min S € S Cmax - 1.fx2°
€=emayx + 1 f=0 + infinity
€ =Emay + 1 f#0 NAN
Table 2.1: [EEE 754 Special Values
2.6.1 NANs

Traditionally, the computation of 0/0 or the square root of -1 has been treated as an
unrecoverable error that causes computations to halt. There are however, examples for
which it makes sense for a computation to continue in such a situation. Consider a
subroutine that finds the zeros of a function f, say zero(f). Traditionally, zero finders
require the user to input arn interval [a,b] on which the function is defined and over which
the zero finder will search. That is, the subroutine is called as zero(f,a,b). A more useful
zero finder would not require the user to input this extra information. This more general
zero finder is especially appropriate for calculators, where it is a natural to key in a function

and awkward to then have to specify the domain. It is easy, however, to see why most
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zero finders require a domain. The zero finder does its work by probing the function f at
various values. If it is probed for a value outside the domain of f the code for f might well

compute 0/0 or the square root of -1, and the computation will halt, unnecessarily aborting

the zero finding process.

This problem can be avoided by introducing a special value called NAN and specifying that
the computation of expressions like 0/0 and the square root of -1 produce NAN rather than
halting. A list of the situations that can cause a NAN is given in table 2.2. Then, when
zéro(f) probes outside the domain of f, the code for f will return NAN and the zero finder
can continue. That is, zero(f) is not “punished” for making an incorrect guess. With this
example in mind, it is easy to see what the result of combining NAN with an ordinary
floating point number should be. Suppose that the final statement of f is return(-b +
sqrt(d))/(2a). If d<0, sqrt(d) is a NAN and -b + sqrt(d) will be a NAN. Similarly, if one
operand of a division operation is a NAN, the quotient should be a NAN. In general,

whenever a NAN participates in a floating point operation, the result is another NAN.

In the IEEE 754 standard, NANs are represented as floating point numbers with the

exponent €., +1 and non-zero significands.

2.6.2 Infinity

Just as NANs provide a way to continue # computation when expressions like 0/0 or the
square root of -1 are encountered, infinities provide a way to continue when an overflow
occurs. This is much safer than simply returning the largest representable number. As an
example, consider computing (x2 + y2)1/2, when base(B)=10, precision(p) =3 and e,
=98. If x = 3x1070 and y = 4x1079, then x2 will overflow and be replaced by 9.99 x
1098, Similarly y2 and X2 + y2 will each overflow in turn and be replaced by 9.99 x
1098, So the final result will be (9.99 x 1098)1/2 = 3.16 x 1049, which is drastically in
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error. The correct answer is 5x1070. In IEEE 754 standard arithmetic, the result of x2 is
infinity, as is y2, x2+y2, and sqrt(x2 + y2). So the final result is infinity, which is safer
than returning an ordinary floating point number that is considerably diiferent from the

correct answer.

Il (_);_Eration
| +
/

infinity + (- infinity)

0 x infinity

/0, infinity/infinity

REM x REM 0, infinity REM y

sart(x)(when x < Q)

Table 2.2: Operations that produce a NAN

2.6.3 Signed Zero

Zero is represented by the exponent emin-1 and a zero significand. Since the sign bit can
take on two different values there are two zeros, +0 and () If a distinction were made
when comparing +0 and -0, simple tests, such as if (x=0), would have unpredictable
behavior, depending on the sign of x. Thus, the IEEE standard defines comparisons so
that +0 equals -0 rather than -0 < +0. Although it would be possible to always ignore the
sign of zero, the IEEE standard does not do so. When a multiplication or division involves
a signed zero, the usual sign rules apply in computing the sign of the answer. Thus, 3(+0)

= +0 and +0/-3 = -0. If zero did not have a sign, the relation 1/(1/x) = x would fail to hold
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when x = + or - infinity. The reason is 1/(- infinity) and 1/(+ infinity) both result in zero
and 1/0 results in + infinity, the sign information has been lost . One way io restore the
identity 1/(1/x) = x is to have only one kind of infinity, however that would result in the

disastrous consequence of losing the sign of an overflowed quantity.

Another example of the use of signed zero concerns underflow and functions that have a
discontinuity at zero such as log. In IEEE arithmetic, it is natural to define log(0) =
negative infinity and log(x) to be a NAN when x < 0. Suppose x represents a small
negative number that has underflowed to zero, with a signed zero, x will be negative so log
can return a NAN. If there were no signed zero, however, the log function could not

distinguish an underflowed negative number from 0 and would therefore have to return

negative infinity.

Although distinguishing between +0 and -0 has advantages, it can occasionally be
confusing. For example, signed zero destroys the relation x = y #—®  {/x = l/y,
which is false when x = +0 and y = -0. The IEEE committee decided, however that the

advantages of using signed zero outweighed the disadvantages.

2.6.4 Denormalized Numbers

Consider normalized floating point numbers with = 10, p = 3 and e;;, = -98. The

numbers x = 6.87 x 10-27 and y= 6.81x10°97 appear to be perfectly ordinary floating
point numbers, which are more than a factor of 10 larger than the smallest floating point
number 1.00 x 10-98, They have a strange property, however: x - y = 0 even though x #
y. Thereason is that x - y = .06 x 1097 = 6.0 x 10°99 is too small to be represented as a

normalized number and so be flushed to zero.
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How important is it to preserve the property
x=y 94— x.y=07 (2.1)

The IEEE standard uses denormalize numbers, which guarantee(2.1), as well as other
useful relations. They are the most controversial part of the standard and probably
accounted for the long delay in getting 754 approved. Most high performance hardware
that claims to be IEEE compatible does not support denormalized numbers directly but
rather traps when producing denormals, and leaves it to software to simulate the IEEE

standard. The idea behind denormalized numbers goes back to Goldberg (1967) and is

simple. When the zxponent is .,,; -, the significand does not have to be normalized. For

example, when B =10, p = 3 and e;;,, = -98, 1.00 x 10-98 is no longer the smallest

floating point number, because 0.98 X 10-98 is also a floating point number.

There is small snag when B = 2 and a hidden bit is being used, since a number with an

exponent of e,;, will always have a significand greater than or equal to 1.0 because of the

implicit leading bit. The solution is similar to that used to represent 0 and is summarized in
table 2.1. The exponent €,,;,-1 is used to represent denormals. More formally, if the bits
in the significant field are by, b2,...... ,bp-1 and a value of the exponent is e, then when e
> €min -1, the number being represented is 0.bjby ... bp-1x2¢, whereas when e = emqip-1
the number being represented is 0.b1b3 ... bp.1 x 26*1, The +1 in the exponent is needed
because denormals have an exponent of €,i,, not émin-1. Recall the example B=10,p=
3, €mip =98, x = 6.87 x 1097 and y=6.81x 1097 presented at the beginning of this

section. With denormals, x - y does not flush to zero but is instead represented by the

098

denormalized number 0.6 x 1 . This behaviour is called gradual underflow . Itis easy

to verify that (2.1) always holds when using gradual underflow.
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Figure 2.3 illustrates denormalized numbers. The top number line in the figure shows

normalized floating point numbers. Notice the gap between 0 and the smallest normalized

number 1.0 x B€min, If the result of a floating point calculation falls into this gap, it is
flushed to zero. The bottom number line shows what happens when denormals are added

to the set of floating point numbers. The gap is filled in, when the result of a calculation is

less than 1.0 x pEmin; it is represented by the nearest denormal. When denormalized
numbers are added to the number line, the spacing between adjacent floating point numbers

varies in a regular way. Adjacent spacings are either the same length or differ by a factor of

B. Without denormals the spacing abruptly changes from B-P+1g€min 1o Bemin, which is
a factor of Bp'l, rather than the orderty change by a factor of B. As a result of this, many
algorithms that can have relative error for normalized numbers close to the underflow
threshold are well behaved in this range when gradual underflow is used. Figure 2.4

shows the error which results from gradual underflow comparing to flush to zero.

Example 2.1 :

Corrparison of various schemes in six- digit decimal arithmetic with €3, = -99
(1.23456x10769) x (6.54321x10"40) = 8.0779853376x 10100 (Exact)
—» .80780x10"%9 (Gradual Underflow)
— 0.0 (Store 0)

—» UN (UN symbol)
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emin emin+1 emin+2 emin+3

° B B B B
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0 emin Emmﬂ emin+2 emins3

Figure 2.3: Flush to zero compared with gradual underflow

Gradual Underfiow” error
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- . .99 .
0 0.10000x10°"Y  0.80000x10 °° 0.90000x10°° " 1.00000x10

Figure 2.4: Gradual Underflow Error
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2.7 Rounding

Squeezing infinitely many real numbers into a finite number of bits requires an
approximate representation. Although there many infinitely many integers, in most
programs the result of integer computations can be stored in 32 bits. In contrast, given any
fixed number of bits, most calculations with real numbers will produce quantities that
cannot be exactly represented using that many bits. Therefore, the result of a floating point

calculation must often be rounded in order to fit back into its finite representation.

In IEEE 754 standard there are four rounding modes. Unbiased rounding to nearest,
Round toward zero, Round toward minus infinity, and Round toward plus infinity. Of the
four only the first is mandatory and the rest are optional. Unbiased rounding is very
similar to the conventional round to nearest which is implemented by adding 1/2 of the digit

to be discarded and then truncate to the desired precision.

Example 2.2:
39.2 39.7
00.5 Q0.5
39.7 —® 39 40.2 —9 40

However, suppose the number to be rounded is exactly half way between two number,

which one is the nearest ? To answer the question let's add the same 0.5 to the iwo

following numbers:

38.5 39.5

00.5 00.5
39.0-—#39 40.0—»40
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Notice that in both cases we rounded up even though each number was exactly half way
between smaller and larger numbers. Therefore, by simply adding 0.5 and truncating a
biased rounding is generated. In order to have unbiased rounding the IEEE 754 standard
rounds to even when there is a tie between two numbers. Now, using the previous

numbers we get:
38.5 —» 38

39.5 —® 40

In the first case the number is rounded down and in the second case the number is rounded
up. Therefore, we have statistically unbiased rounding. Of course, the same unbiased
rounding could be obtained by rounding to odd (instead of even) in the tie case. This time

the rounding looks like this:
385 —» 39

39.5 —¥» 39

However, rounding to even is preferred because it may result in "nice” integer numbers as

in the following examples:
1.95 —» 2
205 —» 2

Whereas rounding to odd results in the more frequent occurrence of non-integer numbers:

1.95 — 19

2.05 —¥ 2.1
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Now, we illustrate the implementation of unbiased rounding to even, and introduce the the

so called "sticky bit".

The conventional system for rounding is to add half of the LSD position of the desired
precision, to the MSD of the portion to be discarded. This scheme has a problem as is

illustrated below (the XXXXX are additional bits). Thus:
385X XX XXX

00.5
39.0

Two cases have to be distinguished:
Case 1: XXXXXX # 0 and the rounding is correct since 39 is nearest 38.5 + 8,

where 0 < 8 < 0.5,

Case 2: XXXXXX =0 Note the rounding is incorrect because we have a tie case which

requires the result to be rounded to even (38).

It is obvious that regardless of the number of X bits, all possible permutations can be
mapped into one of the two above cases. Therefore, one bit can be used to distinguish
between Case 1 and Case 2. This bit is called the "sticky bit", and it has the value one for
Case 1 and the value zero for Case 2. The logic implementation of the sticky bit is simply
ORing of the bits to the right of the second guard bit, as illustrated below for the

addition/subtraction operation

1. G R S
— desired -
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In the case of a left shift(normalization after subtraction), S does not participate in the left
shift, but instead zeros are shifted into R. In the case of a right shift due to significand
overflow (during magnitude addition), the R guard bit is ORed into S during the shift, The
above format (with two guard bits) is necessary only during the addition/subtraction

process: the final result just before rounding has only one guard bit and the sticky bit.

1. L|G]|S

The proper action to obtain unbiased rounding to even is determined from the

following table 2.3:

‘Exact result

g Inexact result

l The tie case with even significand

| The tie case with odd significand

Rounding to nearest

Table 2.3: Unbiased Rounding

In addition to round to nearest, as mentioned previously the IEEE 754 standard
define three other optional rounding modes. These "directed" rounding modes are round
toward plus infinity, round toward minus infinity and round toward zero. Once round to

nearest has been implemented, the other rounding modes are relatively simple. To begin
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with, consider round toward zero. This is simply a truncation. We now look at round
toward plus infinity. The standard states that "when rounding toward plus infinity the
result shall be the the format's value (possibly plus infinity) closest to and no less than the
infinitely precise result”. Basically, what this says is that in case of positive result, if all the
bits to the right of the LSB of the desired result are zero, then the result is correct. If any of
these bits are a one then a 1 should be added to the LSB of ike result. If the result is

negative it should be truncaied. When rounding toward minus infinity the exact opposite

holds.

In conclusion, this chapter has described the IEEE 754 floating point standard
which is widely accepted by most computer maiwifacturers. Details on the data formats,
exception handling and rounding methods have been explained. In the next chapter,

implementation of a floating point multiplier that satisfies the IEEE standard will be

discussed.



CHAPTER 3

Floating Point Multiplier

3.1 Introduction

Many applications exist in which integer, or non-IEEE floating point multiplication is
sufficient. However, to be widely accepted, current and future floating point co-processors
must adhere to IEEE standard for floating point arithmetic [4]. The standard can be
implemented in software, hardware, or a combination of the two [5]. The performance
requirements of modern digital systems demand direct hardware floating point multipliers.

To match the performance of the hardware multipliers, the rounding modes must also be

implemented in hardware.

In this chapter a hardware implementation of a floating point multiplier will be presented.
Since dealing with tie case for the round to nearest/even mode slows the performance of

the multiplier, three algorithms will be presented for implementing round to nearest/up [6].

Page 23
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Then it will be shown how the round to nearest up result can be adjusted to produce the
correct IEEE rounded result. In addition two techniques for computing the sticky bit will
be presented. All of the rounding algorithms and sticky methods presented are technology
independent and can be used with several types of multiplier architectures. Finally the

floating point multiplier hardware model obtained by incorporating the fast rounding

techniques will be given.

3.2 Hardware Implementation of a FPU Multiplier

A hardware realization of a floating point unit multiplier is shown in Figure 3.1. This
algorithm is made up of two distinct sections. On the right side the mantissa are handled as
fixed point operands, while the left side computes the exponent. The mantissa, and the
characteristic of the "A" operand are designated MA, and CA respectively, while MB, and
CB are similar part of the B operand. The result of multiplication is designated by R; and
MR, and CR are the mantissa, and the characteristic of the R result. In general the floating

point multiplication algorithm involve the following operations:

1) Perform fixed point multiplication of the mantissa of the two operands
2) Round the result

3) Normalize the result of the mantissa multiplier

4) Add the two characteristics and correct for bias

5) Check for underflow and overflow conditions
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CA CB MA MB
n x n bit
ADDER CSA
Exponent Bias 2n bit
Adjustment ADDER
Y
vi—p{ Compute the
Sticky bit
» Rounding
n+1 Adder
]
. L
Exponent  |aqg— > 0/1 Place
Adjustment Right Shifter

l

Exponent
Result

Mantissa
Result

Figure 3.1: Floating Point Muliiplier Data Path
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The performance of the algorithm shown in Figure 3.1 can be enhanced by removing the
computation of the sticky bit from the critical path and incorporating Mark Santario fast

rounding techniques [6]. These two techniques will be presented in the next sections.

3.3 A Simple Round to Nearest/up Algorithm

Most high performance VLSI multipliers use some sort of array or tree structure to sum the
purtial products in the mantissa portion of a floating point multiply (7]. Figure 3.2 shows a
flow diagram for the mantissa handling section of a floating point multiply unit. This

simple round to nearest/up scheme will be referred to as Algorithm 3a.

The top sec’-on (multiply) accepts two normalized mantissas and uses some type of
reduction structure which produces the product in carry save form (two 2n bit numbers).
These two numbers are then added in the CPADD section to produce a complete 2n bit
product. The are two possible rounding operations which then occur, depending on the
most significant bit(MSB) of this product. If the resulting product is in the range 2 <
product < 4 (overflow), the constant 20-n+1) i5 added to the product and the result is
truncated : n-2 bits to the right of the decimal point. A normalization shift (Normal) of 1
to the right is then necessary to restore the rounded product to the range 1 < rounded
product < 2, with an appropriate adjustment of the exponent. If the original 2n bit product
was in the range 1< product < 2 (no overflow), then the constant 2(-0) is added. In most
cases this rounded product will be less than 2, and the rounding operation is finished.
However, it is possible that the addition of 2(-n) could cause the rounded product to be
equal to 2, in which case a normalization shift of 1 and an exponent adjustment is

necessary (as in the left branch).
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Figure 3.2: Algorithm 3a Data Flow

The low order n-2 bits from the CPADD section of Figure 3.2 are not used in any of the

following steps. The only effect that these bits have on the final result is due to the carry

they generate into the most significant n+2 bits. Thus, the carry propagate adder need

never actually compute the sum of the least significant n-2 bits. The 2n bit carry propagate

adder can be replaced by an n+2 bit carry propagate adder, with an input carry from the

least significant n-2 bits. The small adder is clearly an advantage where a hardware
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implementation is concerned. Algorithm 3a requires two carry propagate additions in
series. In section 3.4 algorithm 3b and algorithm 3c concentrate on computing these

additions in paralle], which significantly increases performance.

3.4 Parallel Addition Schemes

If an n+2 bit carry propagate adder is used in the CPADD section of Figure 3.2, then the
carry from the lower bits (Cin) will be added at the 2(-0) pit position. Assuming that no
overflow occurred, an additional 201) wint be added to the result in the Round section.
The 21 bit position will thus be called the round bit position, or R bit. The 1 that always
get added to the R bit position for rounding will be identified as Rin. If no overflow

occurs, adding Cin and Rin to the R bit position will produce the correct round to

nearest/up result.

Now consider the overflow case. The MSB, known as the overflow bit (V),isa 1. By
assuming that no overflow would occur, 2(-1) was added for rounding. If an overflow did
occur, then 2(™*1) should have been added for rounding. The difference of 21 must be
added to correct the rounding. This can be done by defining a new bit that is added to the
2(-1) pit position in the case of an overflow. This bit will be called the overflow rounding
bit (Rv). The correct rounding can thus be obtained by simply adding the carry from the
lower order bits (Cin), the rounding bit (Rin), and in the case of an overflow (Rv) tothe R

bit position. This bits are shown in Figure 3.3.
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* | Rv

+ | Rin

. |Cin
Carry | «|+]- oo -] *
Sum L I G101 .
A% n-1 bits LI R

Figure 3.3: Bits to be Summed for Correct Round to Nearest/up

Fast and effective implementation schemes for summing the bits in Figure 3.3 must
overcome two problems. First, the value of Ry is not known until the sum of all the other

bits have been computed. Second, an adder with 5 input slots at the LSB is required.

The first problem can be overcome by computing two carry propagate additions in parallel.
The first assuming Rv=0, and second, assuming Rv=1. When the overflow condition is
known, the correct sum can then be selected using a maltiplexer. These two additions are
related, as the first is simply one larger than the second. This provides many possibilities
for the designer. An efficient technique is to simply merge the two carry propagate adders
into one. A conditional sum adder (CSAdd), or carry select adder as it is often known,
computes two possible outputs [8]. The first assumes the input carry is a zero, and the
second assumes the input carry is a one. When the input carry is known the correct output

is selected. This compound adder requires much less hardware than two separate adders,



Floating Point Multiplier 10

since only the carry chain need be duplicated. In the more general sensz, a conditional sum

type adder produces two results in the form of A+B and A+B+1.

Now for the second problem Rcarry and Rsum use the carry and sum slots. Rv uses the
input carry slot to the CSAdder. This leaves no empty slots for Rin and Cin to be added to
the R bit position. Two algorithms were proposed by Mark Santario to fix this problem
[6]. Both involve adding Cin and Rin to the R bit position, without propagating the carry,

before computing the carry propagate result.

The data flow of algorithm 3b is shown in Figure 3.4. A row of half adders is used to
partly sum the carry and sum bits. This leaves a hole in the CSAdder at Rcarry. The Cin
from the lower order bits can be placed into this hole. Rin must still be added to the R bit
position. An additional row of half adders could be used as on Cin, but there are more
economical techniques. Array multipliers typically have empty slots. A 1 can often be
injected into the array, or corresponding structure, in the appropriate place so that the effect
is to add Rin to the R bit. Once Rin and Cin have been added to the R bit position and the
CSAdd has completed, the correct result can be picked based upon the overflow bit from
the A+B result. The V bit from the A+B result is used, because the overflow bit must be
checked before Rv has been added in. The A+B+1 result has already added Rv to the
sum, potentially corrupting the V bit. If the V bit from the A+B result is a 0, the A+B
result is chosen. If the V bit is a 1 from the A+B+1 result is picked. In this case an

overflow has occurred, the result must be normalized and the exponent adjusted.

In some cases a slot may not exist, or it may be difficult to inject Rin into the multiplier
array or accumulator. Figure 3.5 shows the data flow for algorithm 3c. This algorithm is
similar to algorithm 3b, except that Rin is not injected into the array. Instead, two least
significant half adders are replaced with CSA's, providing two additional slots as the L and

R bit positions. Rin, which is always 1, can be combined with Cin and placed into these
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. Rin

l

Array or tree structure

l

n+2 CSA sel

A% n-1 bits LI|R
Carry e | e le ]
Sum o« | A I
row of n-2 half adders
ef o] e el o ‘—-' Cin
l \Y frdm

“4— A+B result

Figure 3.4: Algorithm 3b Data Flow
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empty slots. If Cin equals 0, then a 1 from Rin should be added to the R bit. If Cin equals
1, then 2 should be added to the R bit position; one from Rin and one from Cin. Adding 2
to the R bit position is equivalent to adding 1 to the R+1(L) bit position. The output of the
half-adder/CSA row may then fed to the CSAdder as in algorithm 3b.

A% n-1 bits LR
Carry 1 i R
Sum . . . . .
[ | _Cin
C C
S S
row of n half adders Al A
V from
n+2 bit CSAdder sel &Zﬁu

Figure 3.5: Algorithm 3c Data Flow
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3.5 Obtaining the IEEE Round to Nearest Result

It was stated earlier that round to nearest/up produces exactly the same result as round to
nearest/even, except when a tie occurs. To produce the correct round to nearest/even result
from the unrounded result, a '1' is potentially added to the round bit. The bit (E) to be
added to the round bit (R) for correct IEEE round to nearest is based up on the L, R, and

sticky (8) bits as shown in table 3.1.

Before Rounding Add to R bit L after Rounding ’

R

S———

L
X
X

0

E = Bit added to R bit for correct round 1o nearest/even

U = Bit added to R bit for correct round to nearest/up

Lg = The L bit after round to nearest/even
Ly = The L bit after round w aearest/up

d = Don't care. E can not etfect Lg

Table 3.1: Round to Neurest/even versus Round to Nearest/up
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In contrast, round to nearest/up assumes that the bit to be added to the R bit for correct
rounding (U) is always a 1. The only case where the round to nearest/up bit (U) will
produce different result from the round to nearest/even bit (E) is shown in row 3 of table
3.1, where E=0, and U=1. In this case round to nearest/up changed the L bit from a 0
(L=0) to a 1 (Lp=1), while round to nearest/cven left the L bit unchanged (Lj=0). The
important thing to notice is that when round to nearest/up changed the L bitto a 1, the 1
was not propagated. As such, only the L bit was effected. This means that the correct

round to nearest/even result can be obtained from the round to nearest/up result by restoring

the L bit to a zero.

By assuming that the round bit will be a 1, the round to nearest/up algorithms have
an advantage over the round to nearest/even method in that the carry propagate addition can
take place before the sticky bit has been computed. This means that the round to nearest/up
zesult can be obtained using any of the methods presented in the earlier sections. The
correct IEEE round to nearest result can then be obtained by observing only the L, R and
sticky bits, and forcing the L bit to a zero if required. The circuit used for restoring the L.

bit depending on L, R, and S bits is shown on Figure 3.6.

3.6 Computing the Sticky Bit

3.6.1 A Simple Method to Compute the Sticky Bit

The first method for determining the sticky bit is conceptually the simplest, as it stems from
the very definition of the sticky bit. Recall that the sticky bit was defined to be equal to
zero if the value of all the bits to the right of the round bit is zero. To determine the sticky
bit, begin with a carry propagate addition on all of the bits. The Sticky bit(S) will be the
OR of all the bits to the right of the R bit. This method is very simple in corcept, and is
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often used in practice. One drawback is that a full carry propagate addition, followed by a

logical OR, must be done on all of the lower order carry save bits.

L2 —

-

L1I'—

Do—oA )

| Rtﬂm[

Stemp ﬁ

Figure 3.6: L Bit Restorer

Y

i

3.6.2 Computing Sticky Bit From Input Operands

The sticky bit may also be computed directly from the inputs to be multiplied, bypassing
the multiply array completely. The number of trailing zeros in the binary number
X@Y(product of X and Y) is exactly equal to the number of trailing zeros in X plus the
number of trailing zeros in Y (Note the number of trailing zeros in the product is exactly

equal to the sum of the trailing zeros in the operands, for any representation in which the
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base is prime. This is true because prime numbers cannot be factored. Non prime bases
can be factored: therefore, the number of trailing zeros in the product can be greater than the
sumn of the trailing zeros in the operands). The trailing zeros in X and Y can be counted
and summed while the multiply is taking place. If the sum is greater than the sum of the
bits to the right of the round bit, then the sticky bit is a zero. The advantage of using this
method is that the sticky bit can be computed in parallel with the actual multiplication,

removing the sticky bit from the critical path.

The floating point multiplier which incorporates the fast rounding technique and the new
sticky bii computation technique is shown in Figure 3.7. This new floating point algorithm
was fully simulated vsing a VHDL simulator. From the simulation results it was found that
even though this new algorithm has a better performance than the one shown in Figure 3.1

it has the following three major drawbacks.

First, since the result of the mantissa multiplier is in range 1 < (1.F) <4, the exponent must
increment when V=1 (or the mantissa is between 2 < (1.F) < 4). This increment of the
exponent can not be done until the mantissa multiplication is completed. Thus this

operation is on the critical path of the floating point multiplication.

Second, the exponent data path is twenty percent slower than the mantissa data path.

Therefore the speed of the multiplier is determined by the exponent datapath.

Thirdly, the performance gain obtained by computing the sticky bit from input operands is

offset by its hardware complexity.

The first problem was solved by using a conditional sum adder to remove the computation
of the exponent from the critical path. To solve the other problems, new techniques for
computing the sticky bit and exponent have been developed. These technigues are

explained in the next sections,
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CA CB MA MB
'V 1 3
nx n bit Detect
ADDER CSA trailing Zeros
Cin
Exponent Bias n+2 bit
Adjustment ADDER
\%
y . A
Exponent |- Right Shifter Compute
Adjustment 0/1 Place Sticky bit
y
Restoring ¢
L bit
h 4 l

Exponent Mantissa
Result Result

Figure 3.7: Floating Point Data Path which Incorporates the Fast Rounding Techniques
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3.7 A New and Efficient Technique for Computing the
Sticky Bit

The new technique computes the sticky bit by ORing the Carry Save bits. That is, a simple
logical OR on the Carry Save bits formed from the bits to the right of the round bit will
yield the correct sticky bit. This simple ORing of the carry save bits works for the
following reasons. If the 2n bit carry save result is scanned from right to left, the first non-
zero carry/sum pair will contain a single one. That is, either the carry -or the sum willbe a 1
but not both. This single one could not generate a carry during a carry propagate addition,
and since all of the bits to its right ure zero, there is no carry to propagate. This will cause
a single one to remain in its current position. If this position is to the right of the R bit, the

sticky bit will be a 1.

To see why this is true, refer to Figure 3.8. This figure shows a section of the partial
products for the multiplication of A@B. Each row represents a single partial product
which will be generated and later sumimed to form the carry save fornm of the final product.

AOBO represents the partial product represented by the logical AND of bit AO with bit BO,

and so on.

Assume A2B2 in column 4 is a 1, and column 4 is the first column in which a 1 appears.
Since A2 isa 1, B1 and BQ must both be zero, or there would be a one in an earlier column
formed by A2B1 in column 3, row I, or A2B0 in column 2, row 0. All products above
A2B2 in column 4 contain either a B1 or a BO and thus must be zero. Looking across row
2,B2isa 1. This means Al and A0 must be both zero, or a 1 would exist in columns 3 or
2. All products below A2B2 in column 4 contain either Al or AQ, and thus must also be

zero. Therefore, A2B2 is the only non-zero partial product in this column. This can easily
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be generalized to any element in any column, proving that the first column in whick a 1

exist will contain a single 1.

2
—
o

A2B0 AlBO AOBO

AQBI

Figure 3.8: Summation of Partial Product

This new technique of computing the sticky bit is much more efficient in terms of both
hardware complexity and speed in comparison to the computation of the sticky bit directly

from input operands.

3.8 A New technique for Computing the Exponent

It was mentioned earlier that the exponent data path is much slower than the mantissa
section. The main reason for low performance of the exponent data path is due to the need
of three serial adders for computing the exponent. To improve the performance of the

exponent computation a new technique has been developed that veduces the number of
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serial adders from three to two. This new technique will be iilustrated through the

following examples.

In floating point multiplication the exponent of the two operands are added together to

generate the exponent of the result. As the exponents are represented by biased code

(Characteristic) a correction is necessary.

The characteristic of A is : CA=EA +127
The characteristic of B is : CB =CB + 127
Adding the two characteristic gives: CA + CB=EA +EB +254
The characteristic of the result should be: C(A+B) = (EA + EB +127

Thus, correct the exponent by subtracting the bias: C(A+B) = CA+CB-127

Let's call the corrected characteristic of the result CR
CR=CA+CR_temp+V
where:
CR_temp = CB -bias

V is the overflow bit from the mantissa

In the next first two examples, only the computation of CR_temp will be analyzed.

CR_temp will be computed using 2's complement addition that is
CR_temp = CB -Bias = CB + Bias_bar +1

Example 1:

CB = 10000000 Bias =01111111
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CB 10000000
Bias_bar 10000000
00000001

CR_temp 100000001 00000001
Note in 2's complement addition the most significant bit of the result indicates the sign bit.
That is if the most significant bit (E) is 1 the sign of the result is positive otherwise it is
negative. Therefore, the sign of the result for example 1 is positive.
Example 2:

CB = 11100000 Bias = 01111111
CB 11100000

Bias_bar 10000000

00000001
CR_temp 101100001 01100001

Note the final results of the above two examples can be simply obtained by inverting the
most significant bit (MSB) of CB and adding a one to its least significant bit. The result
obtained using this technique are shown on the right hand side of the final resuits written in
bold form. The question is how to detect the sign of the result obtained using this new
technique. The sign can be simply detected by looking at the most significant bit of CB,

that is if MSB of CB is a one then the result is positive otherwise it is negative.

In the previous two examples the final results are positive, the next example will justify

that the new technique of computing CR_temp also holds for negative final result.

Example 3:
CB = 00001000 Bias = 01111111
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CB 00001000

Bias_bar 16000000

00000001
CR_temp 010001001 10001001
CR _tempbar 01110110 01110110
00000001 00000001
01110111 01110111

Since the most significant bit of CR_temp (E) in example 3 is zero, CR_temp must be
complemented and then a one is added to its least significant bit (LSB) to obtain the correct
result. Both final results obtained using 2's complement addition and the new technique

are the same. Therefore the new technique holds for both E=0 and E=1.

In the next examples, it will be investigated whether the adjustment of CR_temp is
necessary when E=0, by looking at the full computation of the exponent (that is computing
CR). Since in the previous examples it was demonstrated that computing CR_temp using
2's complement aZdition gives the same result as the new technique, for the coming
examples the new technique will be used to compute CR_temp,
Example 4:
CA = 10001100 CB = 00001000 V=0

CR_temp 10001001

CA 100011
CR' 100010101
v 00000000

CR 000010101
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El1=0 E2=1 E3

Il
o

where:
Elis MSB of CB
E2 is MSB of CR'

E3is MSB of CR

Since El is zero the intermediate result (CR_temp) is negative. Therefore CR' is the sum
of a negative number (CR_temp) and a positive number (CA). In this case the MSB of
CR' indicates the sign of CR'. Since E2 equals one for the above example the result is
positive 21 as expected. The next example illustrates the condition when both E1 and E2

are z<ro.

Example 5:

CA =(0001111 CB = 00011000 V=1

CR_temp 10011001

CA 00001111
CR’ 010101000
A 00000001
CR 010101001

E1=0 E2=0 E3=0

Since E1 and E2 are both zero, the output CR is in two's complement form. Is it necessary

to adjust CR to get the true result ? No, since the minimum biased exponent in IEEE
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standard is zero, negative biased exponent indicates an underflow condition. Therefore, if
CR is negative it not necessary to adjust the exponent rather it will be setted to underflow.

In general, if both E1 and E2 are zero, they indicate an underflow condition independent of
E3.

If E1 is one and at the same time either E2 or E3 are one, it indicates an overflow condition.
IfE1 equals one it means that the intermediate result (CR_temp) is positive. Therefore, the
subsequent additions involve the addition of positive numbers and consequently the most
significant bit of the result is an overflow bit, not a sign bit as shown in example 5. Table
3.2 shows how overflow and underflow conditions are detected using the three bits El,

E2 and E3. Figure 3.9 shows the circuit used to detect underflow and overflow

conditions.
Example 6:

CA=11111110 CB = 10000000 V=1

CR_temp (00000001

CA 11111110
CR' 011111111
\ 00000000
CR 100000000

El =1 E2

0 E3=1
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Table 3.2; Detection of Underflow and Overflow Conditions

E1_bar

\/

NG
Vl-

\/

o

[ —

E2_bar|

Figure 3.9: Underflow and Overflow Detector

Therefore as illustrated in the previous examples, the number of serial adders

required in the expon.nt data path can be reduced from three to two by using the new

technique. CR_temp + CA (CA + CB - Bias) can be computed using only one adder, That
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is, CB - Bias is simply computed by inverting the MSB of CB and adding one to its LSB.
The one added to the LSB of CB can be placed in the carry_in slot of the adder as shown in
Figure 3.10. The new exponent data path is shown in Figure 3.10. From VHDL
simulation result it was found that the new technique has a 50 percent higher performance
than the normal way of computing the exponent. The simulation result of the exponent data

path using the new technique is shown in Figure 3.11.

CA + CB -bias l— Cin=1

CR_temp

CR_temp +V g— v

VYT

Uand vV
Detector

!
=)

Figure 3.10: Fast and Efficient Exponent Data Path
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Figure 3.12: Improved Floating Point Multiplier Data Path
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The improved floating point multiplier algorithm, which incorporates the fast rounding
technique and the new fast and efficient computation of the exponent and the sticky bit, is
shown in Figure 3.12. A single precision floating point multiplier using the new algorithm

has been successfully simutated in VHDL as shown in Figure 3.13.

From Figure 3.12, it can be seen that many steps are required for implementing floating
point operations. However, each floating point operation eventually reduces to an integer
operation. Thus increasing the speed of integer operations will also lead to faster floating
point operation. For this reason, in the next chapter, a comparison of several parallel
multiplier architectures and adder structures, including two new paraliel multiplier
architectures, in terms of their speed and complexity will be made. In addition the

architecture suitable for the new floating point multiplier algorithm will be selected.



CHAPTER 4

Multiplier Architectures

4.1 Introduction

Webster's dictionary defines multiplication as "a mathematical operation that at its simplest
is an abbreviated process of adding an integer to itself a specified number of times". A
number (multiplicand) is added to itself a number of times as specified by another
number (multiplier) to form a result (product). In elementary school, students learn to
multiply by placing the multiplicand on top of the multiplier. The multiplicand is then
multiplied by each digit of the multiplier beginning with the rightmost, Least Significant
Digit (LSD). Intermediate results (partial products) are placed one atop the other, offset
by one digit to align digits of the same weight. The final product is determined by
summation of all the partial products. Although most people think of multiplication only in

base 10, this technique applies equally to any base, including binary. Figure 4.1 shows a

Page 51
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data flow for the basic multiplication just described. Each black dot represents a single

digit.

Multiplicand

L X -

C X Multiplier
0

®

ﬁ Partial Products

QPG Reut

Figure 4.1: Basic Multiplication Data Flow

4.2 Binary Multiplication

In the binary number system the digits, called bits, are limited to the set [0,1]. The result
of multiplying any binary number by a single binary bit is either 0, or the original number.
This makes forming the intermediate partial-products simple and efficient. Summing these
partial-products is the time consuming task for binary multipliers. One logical approach is
to form the partial products one at a time and sum them as they are generated. Often
implemented by software on processors that do not have a hardware multiplier, this
technique works fine, but is slow because at least one machine cycle is required to sum
each additional partial product. For application where this approach does not provide

enough performance multipliers can be implemented directly in hardware.
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Direct hardware implementations of shift and add multipliers can increase performance over
software synthesis, but are still quite slow. The reason is that, as each additional partial-
product is summed, a carry must propagated from the least significant bit to the most
significant bit. This carry propagation is time consuming, and must be repeated for eact

partial product to be summed.

One method to increase multiplier performance is by using encoding techniques to reduce
the number of partial products to be surnmed. Such a technique was first proposed by
Booth [9]. The original 'Booth's algorithm' sk s over contiguous strings of 1's by using
the property that: 20 + 2(0-1) 4+ 2(n-2) o 4 o(n-m) = 5(n+1) . o(n-m)  Ajthongh
Booth's algorithm produces at most N/2 encoded partial products from an N bit operand,
the number of partial products produced varies. This has caused designers to nse modified
version of Booth's algorithm for hardware multipliers. Modified 2 bit Booth encoding

halves the number of partial products to be summed.

To achieve even a higher performance, advanced hardware multiplier architectures use
faster and more efficient methods for summing the partial-products. Most designs increase
performance by eliininating the time consuming carry propagate additions. To accomplish
this, they sum the partial-products in a redundant number representation. The advantage of
a redundant representation is that two numbers, or partial products, can be added together
without propagating a carry across the entire width of the number. Many redundant
number representations are possible. One commonly vsed representation is known as
carry-save form. In this redundant representation two bits, carry and sum, are used to
represent each bit position. When two numbers in carry-save form are added together any
carries that result are never propagated more than one bit position. This makes adding two
numbers in carry-save form much faster than adding two normal binary numbers where a
carry may propagate. One common method that has been developed for summing rows of

partial products using carry-save representation is the array multiplier.
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4.3 Array Multiplier

Conventional linear array multipliers consist of rows of carry-save adders(CSA). An 8 by
8 bit linear array multiplier can be seen in Figure 4.2. In a linear array multiplier, as the
data propagates down through the array, each row of CSA's adds one additional partial
product to the partial sum. Since the intermediate partial sum is kept in redundant, carry-
save form there is no carry propagation. This means that the delay of an array multiplier is
only dependent upon the depth of the array, and is independent of partial-product width.
Linear array multipliers are also regular, consisting of replicated rows of CSA's. Their
performance and regular structure are most often used in array muitipliers for VLSI math

co-processors and special purpose DSP chips.

One of the problems with full linear array multipliers is that they are very large. As
operand size increases, linear arrays grow in size at a rate equal to the square of the operand
size. The other problem of linear multipliers is that their performance (proportional to N) is
not time optimal. Due to these facts, linear array multipliers are restricted for small operand
sizes, or on special purpose math chips where a major portion of the silicon area can be
assigned to the multiplier array. Another multiplier architecture which has a higher
performance than the linear array multiplier and regular in structure will be described in the

next section.
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Figure 4.2: 8x8 Bit Linear Array Multiplier
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4.4 Five Bit Counter Multiplier

The five-counter parallel iterative multiplier was proposed by Nakamura [10]. The
multiplier is compused of five-counter cells and it was claimed [10] the multiplication speed
is twice as fast as the conventional array multiplier with approximately the same complexity
in hardware. The five-input counter, or simply the 5 counter is expressed by the diagram
shown in Figure 4.3. The five inputs to the 5-counter are the three inputs through input

lines ing, in_1,in_» and the two partial-products of aibj and ajbi which are shown at the

centre of the diagram. The 5-counter counts the number of ones on these 5 inputs and

produces a binary number of the count on the three output lines outg, out] and outy which

correspond to the 20, 21 and 22 positions respectively, i.e. the function of a five counter

cell is:

22(outy) + 21(outy) + 200outg) = ing + in_ + in_p + aibj + ajbi

Figure 4.3: A 5-Bit Counter Cell
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This five-counter multiplier requires n five-counter cell delays plus one binary adder delay
for n bit by n bit multiplication. Another multiplier architecture that possesses almost the
same structure as the five-counter multiplier, but with fewer cells and slightly higher speed
was proposed by Wang. This architecture uses a two-bit full-adder as the basic building
cell. A two-bit full-adder is a device which takes two 2-bit input numbers (m1m0, nin0)
and a carry-in Ci and produces a three bit output. The relationship of the input and outpu

number is shown in Figure 4.4.

m0 + n0 + ci + 2(m1 + nl) = 4c0 + 251 +s0

mO

ci sO

Figure 4.4: A two-bit full-adder cell

One may see that Figure 4.3 is similar to Figure 4.4, because both the 2-bit full-adder and
the 5-counter have five input bits and three output bits. The difference relies on the weight
of the input bits. All input bits for the 5-counter possess same weights. While input bits of
2-bit full-adder possess different weights. The weight of each input inside the circle
possess a weight twice as that of each input bit outside the circle. The logical expressions

for s0, s1 and c0 are given by
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sO = m0(nOci + nOci) + mO(noci + noci)

sl= (mlnl + mIn1)[mOn0 + (MO + nO)i] + (mInl +min)[MOn0 + (MO + n0)ci)
<0 =mlnl + (m1 + n1){mOn0 + (MmO + nO)ci]

Now we consider the speed of these two types of multipliers. As mentioned earlier, the
overall delay for the five bit counter is n five counter delays plus one binary adder delay.
While the overall delay for the two-bit full-adder multiplier is (n-1) two-bit full-adder
delays plus one binary full-adder delay. It is reasonable to assume thai the delay of a two-
bit full-adder is the same as the delay of a five-counter. Therefore, the two-bit full-adder

possesses a slightly higher speed than the five bit counter multiplier.

In this work, two 8 by 8 bit two_bit full-adder multiplier have been implemented in 0.8um
BICMOS technology. These two multiplier will be referred to as Type_1 and Type_2
multipliers. Type_1 and Type_2 multipliers were implemented using Figure 4.5 and
Figure 4.6 as their basic building cell (2-bit full-adder cell). The structural organization of
an 8 by 8 bit two-bit full-adder multiplier is shown in Figure 4.7. A comparison of the two
multipliers in terms of speed and area is shown in Table 4.1. Implementation of a two-bit
full-adder multiplier using type_1 has a higher performance than type_2. However, the

area of type_1 is about twice the area of type_2 as shown in tble 4.1.

The VHDL simulation results and the layouts of the multipliers are shown in Figure 4.8
and Figure 4.9 respectively.  Even though the 2-bit full adder multiplier gives a better

performance than linear arrays, it does not give an optimal performance.
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Figurc 4.6 Type_2 two-bit full-adder
Type Latency
Type_1 20 ns 1.3x 1.1 mm
Type_2 24 ns 0.890 x ().776 mm

Table 4.1: Comparisons of two two-bit full-adder multipliers
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Figure 4.8a: VHDL Waveforms for Type_l Two-Bit Full-Adder Multiplier
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VHDL Waveforms for Type_2 Two-Bit Full-Adder Multiplier

Figure 4.8b




Mulgplier Architecnires

i

LT =t

Figure 4.9a: Layout for Type_l Two-Bit Full-Adder Multiplier



Multgplier Archit=ctures 65

= e Sl =
= 1
= =l
I o
Hi=>
e 1L
£l
=
s z
|
i
I |
1
f
"

e B e

Figure 4.9b: Layout for Type_2 Two-Bit Full-Adder Multiplier



Mulaplier Architectures 66

To achieve an additional increase in performance one obvious step is to make the CSA's
faster. Another powerful technique for increasing performance is to reduce the number of

series additions required to sum the partial-products by using tree structures.

4.5 Wallace and Dadda Multipliers

The Wallace multiplier (tree structure) is extremely fast for summing partial products. As
previously discussed, linear arrays require order N stages to reduce N partial products. In

contrast, by performing the additions in parallel tree structures only order log(N) stages are

required to reduce N partial products.

In Wallace's scheme [7], groups of three partial product vectors are applied as inputs to
banks of (3,2) adders, each such triplet of vectors producing two vectors at the outputs.
Triplets of these output vectors are then applied as inputs to the next level of adders, and so

forth. The number of levels required in the Wallace structure is given approximately by:

logy(n-1)
~ log,(3) -1

This follows from the fact that Vg, the number of output vectors from a given level,

is related to Vy, the number of input vectors to that level, by

Y, = |_2/3xVI—‘
|—|—|—2/3xn—lx2/3—!x2/3-‘x voo 2)3—| -2

which leads to
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An improvement on the Wallace structure has been made by L. Dadda [11], who has
devised an arrangement that uses fewer adders, although the same number of levels are
required. Dadda points out that since the last level produces two vectors (the input to the
carry propagawe adder) the preceding level had at most 3, its predecessor at most 4, and so

on the series 2, 3, 4, 6,9, 13, 19, 28 and so on is formed by the relation

'13+]=|’2/3XT“]—'

Where Tj is the jth term in the sequence. To minimize the number of adder elements in the

total structure, we start by using the first level only enough full adders and half adders to
reduce the initial n-row matrix to one having a number of rows equal to one of the terms in
the series. Then 2t each succeeding level we use whatever number of adders we need to
form the matrices having number of rows equal to the successively smaller number in the
series. To illustrate the reduction scheme of dadda, an 8x8 bit multiplier is taken as an
example as shown in Figure 4.10. The architecture of this multiplier is also shown in

Figure 4.11.

Although trees such as dadda multiplier are faster than linear arrays the wiring required to
gather bits of the same weight (as shown in Figure 4.11 ) makes trees even larger than
linear arrays. The additional wiring required of full_trees over linear arrays has caused
designers to look at permutations of the basic tree structure to ease the routing [12].
Unbalanced or modified trees make a compromise between conventional full_arrays and
full_tree structures. They reduce the routing required of full trees, while slightly increasing
the serialization of the partial product summation. Regularity is an important issue in VLSI
designs. Regular structure tends to increase performance, reduce the risk of mistakes, and
reduce layout time. The irregular nature of most makes them notoriously difficult to design
and layout. Module generators can be used to automate the routing process, but the

resulting structure requires significant area [13).
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To produce a more regular structure, multipliers based upon redundant representation other
than carry-save form have been presented [14]. In an attempt to reduce both the size and
complexity of the wiring, one architecture uses radix 4 redundant form to produce a binary
like tree, then encodes the signals using multiple-valued logic to reduce wire
interconnection. The most popular architecture such as DEC MultiTitan Multiplier [15]
uses high order counters such as (4:2) compressor and (7:3) counter rather than (3:2)

counter to reduce partial products more rapidly and reduce the number of wirings. These

architectures will be discussed in the next sections.

4.6 (4:2) Compressor

In designing a (4:2) compressor, a problem arises since a sum output with a weight of one
and a carry output with a weight of two are not enough to convey the maximum possible
count of four. The problem is circumvented by generating an intermediate carry output
which is fed into the next block in the adder array. Thus a (4:2) compressor is effectively a
(5:3) counter. The corresponding (4:2) adder truth table is shown in table 4.2. Note in
table 4.2 n indicates the number of inputs which equals to 1 and the * indicates either C or
Cout may be one if two or three inputs equal to 1 but not both. The (4:2) compressor has
the same logical function as that of a carry-save adder constructed by two serial full-adders
as shown in Figure 4.12b. This configuration is not :ime optimal in comparison to the
circuit implemented directly from the truth table shown in Figure 4.12c. A 32 by 32 bit
CMOS multiplier has been designed using (4:2) adder block [16]. In the (4:2) tree, for

every four input taken in at one level, two outputs are produced ai the next level.
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n Cin Cout C S
0 0 0 0 0
1 C 0 0 1
2 0 * * 0
3 0 1 0 1
4 0 1 1 0
0 1 0 0 1
1 1 0 ] 0
2 1 * * 1
3 1 1 1 0
4 1 1 1 1
Table 4.2: Truth table for the (4:2) Compressor
X4
i v
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Figure 4.12c: Circuit for the (4:2) Compressor
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Since each level of the (4:2) tree reduces two redundant numbers to one redundant number,
the (4:2) tree can also be viewed as a redundant binary tree, and, as such, is better suited
for VLSI implementation. However, the 4:2 tree has the following drawbacks. First, it
has a higher delay than the Dadda structure if the operands are not multiples of two.
Secondly, the gate count increases by more than twenty five percent if the 4:2 tree is
implemented using Figure 4.12c rather than Figure 4.12b. Thirdly, it has longer
interconnection wiring than the Dadda structure if the 4:2 adder is used for a full-tree

implementation, as shown in Figure 4.13.

4.7 (7:3) Counter

There are several methods of implementing high input counters Foster and Stocken [17]
have described a method for implementing counters with a network of full-adders. As
shown in [17] at most N full-adders are required to implement an N-input counter.
Swartzlander [18] introduced an alternative method to design a counter with 2k+1 inputs
using two k input counters and (ll-z-lf)gZ(k)) stage ripple carry adder. Using this
philosophy a (7:3) counter was designedmﬁ‘é*i'gg two (3:2) counters and a stage ripple carry
adder (which is equivalent to two (3:2) counters) as shown in Figure 4.14a. Figure 4.14b
shows an alternative logic diagram of the (7:3) counter proposed by Mayur.M [19]. The
seven inputs are divided into groups (x0, x1, x2, x3) and (x4, x5, x6). Internal "A" is the
carry for two, three, or four ones in the first group, while intecnal " B" is the carry for two
or three ones in the second group.' Finally,' internal signal " C " is generated by ORing the
carry for four ones in the first group. A, B and C are combined using a conventional
full_adder to get outputs C1 and C2, with weights of two and four respectively. The
circuit shown in Figure 4.14a has six exclusive-or gate delays. Assuming an exclusive-or

gate has twice the delay of a normal gate, and assuming that complex and-and-nor or or-or-

nand gates have 1.5 times the delay of a normal gate, the circuit in Figure 4.14b has four
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Figure 4.14a: (7:3) Counter Implementation with (3:2) Counters

exclusive-or gate delays which is a 33 percent improvement over the one using (3:2)

couniers.

Although a muitiplier designed using Figure 4.14b (7:3) counter implementation has a
higher performance than the other implementation, its gate count increases by more than 13
percent in comparison to the 3.2 counters( Figure 4.14a). To offset thic problem Paul
J.Sang and Giovannic D.M {20] proposed implementation of (7:3) counter using folded
transistors. Figure 4.14c shows the folded transistor implementation of the output C2 of
the (7:3) counter. Even though this approach reduces the number of transistor counts it has

the following three disadvantages:

a) Increased input capacitance when compared to the (3:2) counter.

b) More intermediate node capacitance and transistor capacitance increases linearly a

as the number of inputs increases.
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Figure 4.14c: (7:3) Counter Implementation with Folded transistor

¢) Longer pull-dowr path - the longer the pull down transistor path, the smaller the

pull down current is.

Due to the combinations of the above three effects the circuit slows down as the number of

input increases. For these reasons, it is convenient to construct high input counters such as
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7:3 counter using (3:2) counters . A multiplier implemented using 7:3 counter reduces both
the number of cross stage wiring and the number of interconnection wiring. However, it
has the following drawbacks: First, it has a higher gate delay than the Dadda structure.
Second, it has longer interconnection wiring than the Dadda structure, as shown in Figure

4.144d. Thirdly, it has a higher gate count than the Dadda structure.

4.8 New Tree Structure

In the previous sections, it was explained that using higher order counters instead of a
(3:2) counters, for a full tree structure implementation, does not give a regular structure. In
this section a new multiplier architecture will be described as developed by Dr. Wang (a
member of a VL.ST research group in University of Windsor ) which is both time optimal

and regular in structure.

The new multiplier architecture, like the Dadda architecture, uses a (3:2) counter and has a

depth proportional to log(N). However, unlike the Dadda algorithm, the new multiplier

architecture does not obey the relaiionship:

Tj+!= P/3 X ’Ij]‘]

The structure for an 8 by 8 bit multiplier using the new technique is shown in Figure 4.15.
The new multiplier architecture shown in Figure 4.15 will be referred to as the Column

Compression Multiplier.
b}

The Column Compression Multiplier has much better regularity whein compared to the

Dadda structure shown in Figure 4.11.
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Figure 4.15: §x8& Bit Column Compression Multiplier

In order to have a better measure of comparison of the various multiplier architectures
presented in earlier sections a 16 by 16 bit multiplier has been taken as a base. Table 4.3
shows the number of components (i.e adders, compressors, and counters) and the total
equivalent gate count of several multipliers. The equivalent gate count is the sum of the

number of "simple gates” (i.e inverters, 2-input and 3-input nand gate and nor gates), 1.5
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times the rumber of complex gates and two times the number of exclusive-or gates. Figure
4.16 shows the performance measure of the multipliers in table 4.3. Note, since the
implementation of the (7:3) counter and (4:2) compressor without using (3:2) counter cells
has a very high gate count, the (7:3) and (4:2) multipliers in table 4.8 are assumed to be

implemented using (3:2) counters.

Compressor || _Counter || Compressor |

Half-Adder

Full-Adder

(4:2) Compressor

(4:3) Counter

(5:3) Counter

(6:3) Counter

(7:3) Counter

Total Gate
Count

Table 4.3: Comparison of the Complexity of Various 16 by 16 Bit Multipliers

The multipliers performance was compared by evaluating the number of gate delays to
reduce the number of partial products from sixteen to two. No.:, however the total time to
perform the multiplication must also include the time to generate the partizl products {one

gate delay) and the time to sum the two words in the carry propagate adder (10 gate delay).
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The Wallace, Dadda and Column Compression structures use six-levels of full-adders (four
gate delays each) to reduce the number of partial products from sixteen to two. As each
full-adder has two exclusive-or gate delays (two “simple” gate delays each), their delay is
24. The (4:2) compressor approach uses four exclusive-or gates per level to reduce the
partial products to two giving a total of 24 gate delays. The (7:3) counter has a total of 28

"simple" gate delays.

Array
Multiplier

7:3

Dadda

Column
Compresso

4:2

| { i I | >
10 20 30 40 50
Gate Delay

Figure 4.16: Performance Measure Of Various 16 by 16 Bit Multipliers

Implementation based on the Column Compression and (4:2) compressor improve upon the
(7:3) counter scheme in terms of overall delay. Even though the (4:2) compressor structure

has the same overall delay as the Column Compression multiplier, it has the following
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major drawbacks: First, the multiplier implemented with (4:2) compressors has 7.5 percent
higher gate count than the Column Compression Multiplier. Second, the (4:2) compressor

requires long interconnections between adjacent compressors for intermediate carries.

Implementation based on (7:3) counters has several drawbacks besides its low performance
compared to the Column Compression Multiplier. First, the multiplier implemented with
(7:3) counters has 5 percent higher gate count than the Column Compression Multiplier.
Second, the multiplier implemented with (7:3) counters will require more blocks at the early
stages of the partial-product reduction process than the column multiplier architecture; this
leads to long interconnections to gather bits of the same weight from outputs of the higher

stage, as shown in Figure 4.14d.

Therefore multipliers implemented with either (4:2) compressor or (7:3) counter are
expected to be more difficult to lay out than the Column Compression Multiplier. From the
comparison results, one can conclude that the new multiplier architecture is superior in both
speed and structure compared to the other multiplier architectures. This new multiplier

architecture will be used for the mantissa section of the floating point algorithm described in

chapter 3.

As mentioned earlier, the performance of a multiplier is not only determined by the column
compression part, but also by the carry propagate adder at the last stage of the multiplier.
Therefore a comparison of three adders in terms of their complexity and performance will

be described in the next section.
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4.9 High Speed Adders

49.1 Carry Look Ahead

One scheme of adding two n bit operands is by cascading n full-adders; this is effectively a
ripple carry adder. The disadvantage of this scheme is that the delay time is linearly
proportional to the size of the input operands. Carry look-ahead (CLA) is a technique
which is used to speed up the carry propagation in an adder. The carries to each stage of
the adder are calculated by additional logic circuitry. As a result, the addition time will
improve at the expense of using more hardware for the carry look-ahead unit.
Theoretically, one should be able to expand the CLA unit freely, and build adders of any
word length, but, because of fan-in and fan-out limitations, single level CLA is applied

only to the design of adders of length four in CMOS circuits.

One solution to the high fan-in problem is to break the large single CLA unit into a number
of smaller CLA units and let the carries ripple between the units. The organization of a 10-
bit carry look-ahead adder with three CLA units is shown in Figure 4.17. The total delay
of this type of adder is the sum of the delays due to the propagate/generate unit and sum
unit plus delays through CLA units. The circuit layout of this type of adder is quiet

irregular.

4.9.2 Binary Carry Look Ahead

It was noted in the previous section that the structure of ripple CLA is very irregular. In
fact, Mead and Conway {21] considered several look-ahead schemes, but concluded that
" they added a great deal of complexity to the system without much gain in performance”.

This argument of Mead and Conway was disproved by Brent and Kung [22].
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Figure 4,17: Organization of a 10_Bit Ripple Adder

The Brent and Kung's technique can be illustrated by first reviewing the equations for the

binary adders i.e.
Gi =Gi +Pi Gi-1
Pi=Aj @ Bj
Gi = Aj and Bj
Si=Ci-1® Pj
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Both Gi and Pi can be determined in constant time, so Ci is the only time critical term that
needs to be calculated. Brent and Kung define a new operator, o, which has the following

functicn:

(g. po(g,p)=(g+ (pg) pp)

where g, p, g and p' are Boolean variables. It can be shown that this new operator is

associative [22] and the carry signal can be determined by

Ci=Gj
where
(Gi, Pi) = (g1.p1) ifi=1

= (gi,pi) .- (Gi-1,Pi-1) if2<i<gn

The associative property of the o operator allows the processing elements to be embedded
in a binary tree structure of depth O(logn). The organization of a 10-bit binary CLA adder

is shown in Figure 4.18. The carry propagation time in this structure is proportional to

log, of the size of the adder and its area is proportional to n.

4.9.3 Modified Brent and Kung's Adder

One major drawback of Brent and Kung's approach is that the gate count required to
produce a regular structure is rather high, so, in this work, an attempt has been made to
modify Brent and Kung's adder to reduce the gate count. This modified structure uses

look-ahead blocks of four as opposed to two bits used in the Brent and Kung's approach.
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The equations for a 10-bit of the modified adder can be summarized as follows:
Propagate and generate unit:

P;=A; ®B;

Gj=A; B
Group generate and Group Propagate unit

GP,

PyPy Py P3

GGO = G3+G2P3+G1 P2P3+C10P1 P2P3

GP, = P4P5PgP;
GGy =Gq +Gg Py + G5 Pg Py + Gy P5 Pg Py
GP, = PgPg
GGy = Gg +Pg Pg

Group Carry Unit

GC3 = GGO + CIN GP(}

GC7 = GGl + GGO GPl + CIN GPO GPl

GC9 GG2 + GGI GP2 + GGO GPI GP2 + CINO GPO GPI GP2
Carry Unit
Co=Go+CinPo

C1 =G1 +G()P1 +CIN POPI



Multiplier Architectures 89

Cp =Gy +G Pr+ G Py P+ Gy Py Py Py
Cy =GC3
Cq4 =G4 +GC3 Py
Cg5 =G5 +Gy P5+GC3 Py Py
Cg =Gg +G5Pg + Gy P5Pg + GC3 P4 P5Pg
Cy =GCq
Cg =Gg +GC7 Pg
Co =GCy
C10=GC10+GCyPyg
Sum Unit
S;i=P; © G

The block diagram for a 10-bit of the modified adder is shown in Figure 4.19. Even
though this modified structure has 40 percent less gate count than the Brent and Kung's

adder it has a rather irregular structure.
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Figure 4.19: 10-Bit Modified Brent and Kung's Adder



Multiplier Architectures 9]

4.9.4 A New Adder Structure

It was noted in the previous section that to reduce the gate count, four bit look-ahead blocks
were used instead of two bit lock-ahiead blocks. The penalty is an irregular structure,
Now we will see a new adder structure proposed by Wang which requires a lower gate
count than Brent and Kung's adder and also possesses a better structure than the modified
adder. The new adder structure, as with the modified adder, uses four bit look-ahead
blocks, but unlike the modified adder it only generaies even carries. Due to the generation
of only even carries, the new adder structure has less interconnection wiring than the
modified adder, resulting in more regular layouts than the modified adder. The

organization of a 10-bit adder (new adder) is shown in Figure 4.20.
Where:
8 =23 b
Pi=2;®b;
GGy; = [(ag; @ bopgil + (ag; bay)
GPgj = piPy;
Caisz = [GP2i42 Coil + GGpiyn
S2i+1 = P2i+1 @ Cyj

S2i42 = P2j42 ® (82141 + P24 1Cap)
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Figure 4.20: Structure of a 10-Bit New Adder
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Figure 4.21¢: MODL Gate for the Sum Block

The MODL implementations of the 10-bit adder are shown in Figure 4.21a to Figure 4.21c.
From Figure 4.21 it can be noted that the implementations of the new adder using MODL
(multiple output domino logic) is very efficient due to the recurrent nature of the carry look-
ahead equations. Although the area advantage of MODL over standard domino logic is
raither apparent, the speed advantage is not as obvious especially at the gate level. This is
because each MODL gate implements more than one function, and performance
improvement is achieved by capitalizing on this fact at a higher level. In an organization
optimized with respect to the MODL technique, the improvement of performance is due to a
reduction of load capacitance for a given logic stage. This results from less overall device
count {and therefore less fan-out for a given output), and less parasitic capacitance as a

consequence of smaller laycut.
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One drawback of the MODL logic is that it can provide only non-inverting gates. Therefore
a modified MODL logic was developed to realize the new adder functions to accommodate
both true and complement signals. The functionality of the new adder was fully simulated
using the VHDL simulator. The adder was also simulated in HSPICE up to a maximum of
70 Mhz. The simulation and layout of the new adder are shown in Figure 4.22 and 4.23

respectively.

The comparison of the adders described in this section i.e. Binary CLA (type_1), Modified
Brent and Kung's adder (type_2) and new adder (type_3) is shown in table 4.4. Since the
multiplier has to be implemented using only static logic, the three adders compared in table
4.4 are assufﬁe&l to be designed using only static logics. Note the delays are calculated

assuming that the adders are implemented in 0.8um BICMOS technology.

number of overall Gate _
stages Delay Count Complexity
= = e |
Type 1 7 6.5 ns 122 regular
Type 2 5 5.0 ns 82 irregular
Type 3 3 55ns 74 rather irregular
== — —

Table 4.4: Comparison of the three Adders

If the adders are to be implemented in BICMOS, type_3 adder is the best choice for the

following reasons. First, type_3, compared to type_2, has fewer interconnections,
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Figure 4.23: Layout for 10-Bit New Adder
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as a consequence a type_2 adder is more difficult to layout than a type_3 adder. In
addition, due to the smaller number of interconnections, the type_3 adder has less parasitic
capacitance. Therefore, a type_3 adder has a better overall performance than a type 2
adder. Second, a type_3 adder is better than a type_1 adder in terms of both speed and gate
count. Even though a type_3 adder is less regular than a type_1 adder, this advantage is
less significant in the BICMOS process because the BICMOS process has three layers of

metals for use as interconnects.

Since the multiplier will be implemented in BICMOS, as mentioned before, a type_3 adder

will be used for the adder at the last stage of the multiplier.

-4.10 Implementation

The preceding two sections described the new multiplier structure, referred to as the
Column Compression Multiplier, and a new adder structure which will be used at the final
stage of the multiplier. To demonstrate the feasibility of this new architecture, an 8 by 8 bit
multiplier has been designed in a new 0.8um BICMOS technology. Note, only static logic
is used for the implementation of the multiplier. To facilitate the structural testability of the
multiplier, scannable D-latches were used for the input and output laches. The VHDL
simulation result ,and the layout of the multiplier, are shown in Figure 4.24 and Figure
4.25, respectively. Its latency is 16 ns, including the delay of the input and output latches.

The multiplier has a core size of 0.950mm x 0.782mm.

An 8 by 8 bit floating point multiplier has been taken as a model for investigating the VLSI
implementation of the new floating point muitiplier algorithm developed in this thesis. The
column compression multiplier is used for the mantissa section of the floating point
multiplier as shown in Figure 4.26. Since, there is an empty slot in the array multiplier,

Rin is placed in the empty slot as described in Chapter 3. Similarly, to create an empty slot
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Figure 4.26: Mantissa Section for an 8x8 Bit Floating Point Multiplier

for Cin (a carry from the lower order bits) a row of half adders are used as shown in Figure

4.26. Finally a conditional sum adder is used which produces two outputs, one for Rv=0
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and the other for Rv=1. When the overflow bit is known, the cotrect sum will be selected.
The block diagram representation of the conditional sum adder is shown in Figure 4.27.
Note, since the carry out (V) is known at the second stage, only the carry block need to be
duplicated.

The following example: illustrates how the floating point multiplication is processed:
Example:
135 x 192

11000000

10000111

11000000

11000000
11000000

11000000

0110010101000000 V=0 L=0 R=1 S=0

Rin 1

110010110  (result after round to nearest)

11001010 (result after round to nearest/even)

Note, since the carry out of the result before rounding is zero (v=0), Rin is added at the 2°%

bit position for rounding to nearest. After rounding to nearest the L bit is changed from
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zero to one. Before rounding the L bit was zero, the R bit was one and the § bit was zero,

therefore we have a tie case. According to the IEEE standard for rounding, if there is a tie,

the number must be rounded to even. Therefore, the L bit is restored to zero as shown in

PPl

Sum
Block

the final result.
2"
g > c4" >
Carry 0
GP > ch »
Block(1)
p c8||
Ay e e .
02" 1 t
GG/G 2x1
GP/P MUX
B ' c2l
==——»
2 » L
GP Carry .
——— Block(o) L
_L_.. cf' >
c2 > cl0 o,
cl®) f

-5,
—-5,

Figure 4.27: 10-Bit Conditional Sum Adder

The VHDL simulation result of the 8 by & bit multiplier is shown in table 4.5. The latency

of the multiplier is 21 ns.
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Ons | 00000C"0 §0O0000000 | © 0

T

21 ns 110000000 § 10000000 [ 129 [ 127

41 ns | 11000000 ‘ 10000111 )f 100 192 10000001 || 10000000 :
| i i

61ns 1000010111000000 254 | 6

oo

81 ns §1C000011 § 11000011 108 || 126

101 ns] 11000000 | 11000000 92 | 124
| |
{121 ns} 11000110 { 11000000 | 200 | 130

10100101 11001010
10000101 H11001000

01101011 [[11001000 |

01011010 | 10010000
i

11001100 § 10010100

1 141 ns]| 11000000 1 11000001 | 131 | 135

10001100 [ 10010001

01010011 {|10001110

161n310000111 10000111 80 [ 130

; |
| 181 ns 10000011 ff 11111111 || 1 124

t

201 nsfj 11000000 % 11000010 | 254 | 254 00000000 || 10000010
| ‘ i
| |

| |
221 nsf| 10011000 § 10000001 || 63 | 1 11111111 | 10010010

1

Table 4.5: VHDL Simulation Result for an 8x8 Bit Floating Point Multiplier
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In summary, in this chapter we have described several parallel multiplier architectures and
adder structures including the simulation and BICMOS implementation of the two new
parallel multiplier architectures. In addition the simulation and VLSI implementation of the
new floating point unit multiplier algorithm have been discussed. From the simulation
result, it can be said that both the fixed and floating point unit multipliers are very

competitive with any of the existing multiplier architectures.



CHAPTER 35

Conclusions and Future Work

5.1 Conclusions

This thesis has presented a new fast and efficient floating point multiplier algorithm. The
high performance is obtained by using fast rounding techniques and new fast techniques
for computing the exponent and the sticky bit. The novel technique developed for the
exponent computation has increased the overall performance of the floating point multiplier
by more than twenty percent. The new method for computing the sticky bit, removes the
computation of the sticky bit from the critical path without increasing the hardware
complexity. In addition, the new floating point multiplicr algorithm detects overflow and

underflow conditions using only three bits without much loss in the performance of the

multiplier.

Page 106
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Since the two main components of the floating point multiplier algorithm are a fixed point
multiplier and an adder, a comparison of several multipliers and adders architectures,

including two new multiplier architectures, has been made. From the comparison of the

multipliers one can draw the following conclusions:

First, if the number of bits in the multiplicand or multiplier is small, the array multiplier or
the two-bit full-adder multiplier are favoured over the other architectures, They are more

regular and the difference in speed, in comparison to the tree structure, is not significant for

small N.

Second, even though trees such as the Dadda architecture get faster than linear arrays, they

have a very irregular structure. As a result the VLSI implementation of the Dadda

architecture is not feasible.

Thirdly, the new multiplier architecture, referred to as the Column Compression Multiplier,
has been found to be both faster and smaller than other multipliers. In addition, a multiplier
implemented with (4:2) compressors or (7:3) counters is expected to be more difficult to

layout compared to thie Column Compression Multiplier,

Similarly from the comparison of variouy adder structures the following observations are
made. The ranking of the adders depends on the process used for their implementation,
For instance, the binary carry look-ahead is superior to the others if the adders are to be
implemented in CMOS technology. On the other hand, the new adder structure will be the
best choice, if the adders are to be implemented in BICMOS. The performance loss due to
irregular structure of the new adder when compared to the regular structure of the binary
carry look-ahead is insignificant for the following two reasons: First, BICMOS technology
uses three layers of inetals for interconnection, while CMOS uses only two. The use of

more levels of metals reduces the delay associated with the interconnection between cells,
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which permits the over-routing of active circuitry. Second, BICMOS technology has a

higher driving capability per unit capacitance than the CMOS technology.

Both of the new multiplier architectures, i.e. the Column Compression and two-bit full-
adder multipliers have been implemented in 0.8um BATMOS process. From VHDL
simulation result, it was found that the latency for fractional multiply is under 16 ns for an
8 by 8 bit Column Compression Multiplier and 20 ns for an 8 by 8 bit two-bit full-adder

multiplier.

The Column Compression Multiplier is also usefn) for implementing the floating point
multiplier (i.e. for the mantissa section). To demonstrate its usefulness for floating-point,
an 8 by 8 bit floating multiplier using the new floating multiplier developed in this thesis,
was fully simulated in VEDL. From VHDL simulation result the latency of the 8 by 8 bit
floating point multiplier was found to be 21 ns. This study proved that both the new
fioating multiplier algorithm and the new multiplier architectures work and are efficient and
faster than current floating point multiplier aigoritims and muitiplier architectures

respectively.

5.2 Future Work

An obvious continuation of this work would be to implement an IEEE compatible floating
point multiplier in a more aggressive BICMOS technology. The ability to construct very
small high performance multipliers provides many other interesting possibilities. A double
precision IEEE multiplier could be placed on the same chip with an existing RISC
processor. Multiplication intensive applications, such as DSP or graphics, could benefit
significantly from several high performance multipliers on the same chip. A single very

high throughput multiplier, or several multipliers working in parallel on the same chip,
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could open up new possibilities such as single chip video signal processors. Further
investigation into high order counter multipliers should also continue as it may produce a

better tradeoff in particular if they have to be implemented in BICMOS.
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APPENDIX

1A

Behavioral Model for a Floating Point Multiplier

This Appendix provides the behavioral VHDL Model for the new floating point multiplier

algorithm described in chapter 3. The simulation result is shown at the end.

Page 113
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entity float_multiplier is
port(a,b: bit_vector(24 downto 1); q:inout bit_vector(22 downto 1); prod: out
bit_vector(24 downto 1); ab:inout bit_vector(26 downto 1);temp_prod :out
bit_vector(24 downto 1); S,L,R: out bit; counta,countb : out integer);
end float_multiplier;

architecture behavior of float_multiplier is
signal carry_in: bit:='()’;

begin
pl:  process(a,b)

variable ab2,temprod: bit_vector(24 downto 1);
:="000000000000000000000000";

variable ql:bit_vector(23 downto 1);
="00000000000000000000000™;

variable count,countl,count2: integer:=0;

variable m:integer;

variable carry: bit_vector(24 downto 1);

variable start : integer;

variable temp,temp1: bit;

variable rbit,sticky,Lbit: bit;

variable si,c1: bit_vector(26 downto 1);

constant rl: bit:='1";

begin
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start := 0;

loopl:

forjin 1 to 24 loop

if(b()=

loop2:
foriin

‘1) then

1to 24 loop

if(i=1) then

else

- shift right

loop3:

loop4:

forlin

carry(i):= (ab2(i) and a(i)) or (ab2(i) and
carry_in) or (a(i) and carry_in);
ab2(i):= (ab2(i) xor a(i)) xor carry_in;

temp:=ab2(i);

ab2(i):= (ab2(i) xor a(i)) xor carry(i-1);
carry(i) := (temp and a(i)) or (temp and
carry(i-1)) or (a(i) and carry(i-1))

end if;

end loop loop2;
else

count:=couni+l;
end if;

m:=j;

while(m < 24) loop

1to22 loop
ql{):= ql{1+1);
end loop loop4;
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loop5:

loop6:

-- Round

g1(23):=ab2(1);

forkin 1 to 23 loop
ab2(k):= ab2(k+1);
end loop loop$;

ab2(24):=carry(24);
carry(24):='0";
m:=m+23;

end loop loop3;
end loop loopl;

foriin 1 to 22 loop
q(i)<=ql(i) after Sns;
end loop loop6;

ab <= carry(24)&ab28&q1(23) after Sns;
sli=carry(24)&ab28q1(23);

-- First check overflow bit

loop7:

if(s1(26)="1") then

foriin 2 to 26 loop
if(i=2) then
rbit:=s1(2);
Lbit:=s1(3);
cl(i):=sl1{i) and rl;
s1(i):=s1() xor rl;
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loop8:

else

templ:=s1(i);
s1{i):=sl(i) xorcl(i-1);
ci@t):=templ and c1(-1);
end if;

end loop loop7;

else

forjin 1 to 26 loop

if(j=1) then
rbit:=s1(1);
Lbit:= s1(2);
cl():=sl) and rl;
s1(j):=s1(j) xorrl;

else

templ:=s1(j);
s1(§):=s1() xorcl(i-1)
¢1(j):= temp!l and c1(j-1);
end if;

end loop loop8;

end if}

-- Compute Sticky Bit

loop9:

foriin1to 24 loop
if(a(i)='0"then
countl:=countl+1;
else
exit loopY ;
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end if;
end loop loop9;

loop10:

foriin 1 to 24 loop
if(b(1)="0")then

countl:=countl+1;

else

exit loop10;

end if;

end loop loopl(;

if(carry(24)='1") then

count2:=23;
else

count2:=22;
end if;

if(countl >= count2) then

sticky:='0)";
else
sticky:="1l";
end if;
-~ Normalization

if(s1(26)="1") then

loop11:
foriin 2 to 25 loop
si@):=sl(i+1);
end loop loopll;
end if;
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loop12:
foriin 2 to 25 loop
temprod(i-1):=s1(i);
end loop loopl2;

loop13:
foriin 1to 24 loop
temp_prod(i)<= temprod(i) after 5ns;
end loop loopl3;

if(rbit="1" and temprod(1)="1"then

if(sticky='0") then
temprod(1):='0":

end if;

end if;

loopl4:
foriin 1 to 24 loop
prod(i) <= temprod(i) after 3ns;
end loop loopl4,

R <= rbit after 5ns;

S <= sticky after 5ns;

L <=Lbit after 5ns;
counta<= countl after Sns;
countb <= count2 after 5ns;

loopl5:
foriin 1 to 24 loop

ab2(1):='0";
end loop loopls;
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loopl6:
foriin 1 to 23 loop
qli(i):="0;
end loop loop16;
carry(24):='0";

countl:=(0);
count2:=0;

end process;

end behavior;

entity tb_fmultpl is
end tb_fmultp1;

architecture behavior of th_fmultp! is

component b_multp
port(a,b:bit_vector(24 downto 1); g:inout bit_vector(22 downto 1); prod:
out bit_vector(24 downto 1); ab: inout bit_vector(26 downto
1);temp_prod:out bit_vector(24 downto 1); S,L,R:out bit;
counta,countb: out integer);
end component;

signal al,bl:bit_vector(24 downto 1);

signal q1:bit_vector(22 downto 1);

signal abl: bit_vector(26 downto 1);

signal temp_prod,fprod: bit_vector (24 downto 1);
signal S,R,L.:bit;

signal counta,countb: integer;

for x1: b_multp use entity work.float_multiplier(behavior);
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begin

x1: b_multp port map(al,bl,ql.fprod,abl,temp_pred,S,L,R,counta,countb);

al<= "101000000000000000000000" after Ons, "101000000000000000000000"
after 40ns,"111111111111111111111111" after 80ns "10000000000000-

-0000000001" after 100ns, "000000000000000000000000" after 120ns;

bl<= "100000000000000000000010" after Ons, " 100000000000000000000110"
after 40ns,"100000000000000000000001" after 80ns, "11111111111111-
-1111111110" after i00ns, "000000000000000000000000" after 120ns;

end behavior;
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Library XL;

use XL.XL_STD.all;
Library Mgates;

use Mgates.all;

entity exp_adderl is
generic(delayl ,de]ay2,de1ay3,dclay4,de1ay5,delay6,delay7,delayS: in time);
port (clk1: bit;al,bl:in bit_vector(8 downto 1); V,V_bar: in bit;CR_temp :
inout bit_vector(§ downto 1); CRR:inout bit_vector(8 downto
1):CRI: inout bit_vector(8 downto 1); E11,E22,E33:inout bit;
ain,bin,output:out integer);
end exp_adderl;

architecture structure of exp_adderl is

component Fadd
generic (delay: in time);
port (a,b,c: bit; sum, carry: inout bit),
end component;
component and_2
generic (delay: in time);
port (a,b:bit; c: out bit);
end component; ‘
component and_3
generic (delay: in time);
port (a,b,c: bit; d:out bit);
end component;
component xor_2
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generic (delay: in time);
port (a,b:bit; c: out bit);
end component;
component or_3
generic (delay: in time);
port (a,b,c:bit; d: out bit);
end component;
component or_2

generic (delay: in time);

port (a,b:bit; c:out bit),
end component;
component inverter
generic (delay: in time),
port(a: bit; b: out bit);
end component;
component and_7
port(CB: in bit_vector(8 downto 1); E11: out bit);
end component;
component d_latchN
generic (delay: in time);
port(clk1,x:in bit; y: out bit);
end component;
component d_latchP
generic (delay: in time);
port(cik1,x: in bit; y:out bit);
end component;
component detector
generic (delay: in time),
port(E2,E3: bi; CB: in bit_vector(8§ downto 1);CR_templ 1:in
bit_vector(8 downto 1); CR_out: out bit_vector(8 downto
)
end component;
signal a,b,m1,CR temp500, temp501 Jtemp520,temp521,temp522:
bit_vector(8 downto 1):="00000000";



Appendix 2A

FPM - Architectural Model 126

begin

signal g,gg,p,gp: bit_vector(10 downto 1):="0000000000";

signal gl,ggl,pl,gpl: bit_vector(10 downto 1):="0000000000";

signal sum_temp100,sum_tempe0,sum_tempelcarry_temp100,
carry_tempe0,carry_tempel: bit_vector(8 downto 1):="00000000";

signal temp1,temp2,temp3,carry_temp3: bit_vector(4 downto 1):="0000";

signal temp4,temp5eQ,temp5el,temp6e0,tempéel,carry. temp4e0,
carry_tempdel: bit_vector(4 downto 1):="0000";

signal ¢0,0V,V1: bit:='1";

signal carry_tempx, carry_tempxx, carry_tempxxx,E1_bar:bit:='0’;

signal E33e0,E33e1,E33_temp1,E33_temp2,E33_temp,E22_temp,
E11_temp,UN,E2_bar,V_barl: bit:='0’;

signal CR_outl: bit_vector(8 downto 1):="00000000";

signal temp10, temp11,temp12,templ3,temp14,temp15,temp16:bit:='0';

signal temp20, temp21,temp22,iemp23,temp24,temp235,temp26: bit:='0’;

signal temp30,temp31,temp32,temp33,temp34,temp35,temp36: bit:="0";

signal temp510, temp311,temp512,F1,F2,F1_bar,F2_bar: bit:='0";

signal msb_cB: bit;

for all: Fadd use entity work.Fadd(structure);

for all: and_2 use entity work.and_2(behavior);

for all: or_2 use entity work.or_2(behavior);

for all: or_3 use entity work.or_3(behavior);

for all: xor_2 use entity work.xor_2(behavior);

for all: inverter use entity work.inverter(behavior);
for all;detector use entity work.detector(behavior);
for all:and_7 use entity work.and_7(behavior);

for all: and_3 use entity work.and_3(behavior);

for all: d_latchN use entity work.d_latchN(behavior),
for all: d_latchP use entity work.d_latchP(behavior),

- CA +CB -127

G2000:

foriin1to 8 generate
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d500: d_latchN
generic map{delay2)
port map(clk1, al(i}, a(i));
d501: d_latchN
generic map(delay2)
port map(clkl, b1(i), b(i});
end generate;
inv500: inverter
generic map(delay5)
port map(b(8), msb_cB);
x500: Fadd
generic map(delay4)
port map(a(1),b(1),c0,sum_temp100(1), carry_temp100(1));
x501: Fadd
generic map{(delay4)
port map(a(2), b(2), carry_temp100(1),sum_temp100(2),
carry_tempx);

especial circuit to generate carry 2 (¢2)

u500: and_2

generic map(delayl)

port map(a(1), b(1),temp30);
u501: and_2

generic map(delayl)

port map(a(1), cO,temp31);
u502: and_2

generic map(delay!)

port map(b(1}, cO,temp32);
k500: or_3

generic map(delay7)

port map(temp30, temp31, temp32, temp33);
u503: and_2

generic map(delayl)
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port map(a(2), b(2), temp34);
u504: and_2

generic map(delayl)

port map(a(2), temip33, temp35);

u505: and_2
generic map(delayl)
port map(temp33, b(2), temp36);
k501: or_3
generic map({delay7)
nort map(temp34, temp35,temp36, carry_temp100(2));

u506: and_2

generic map(delay1)

port map(a(8), msb_CB, g(8));
z500: xor_2

generic map(delay2)

port map(a(8), msb_CB, p(8));

G500: foriin 3 to 7 generate

u507: and_2
generic map(delay1)
port map(a(i), b(1),g(1));

z501: xor_2
generic map(delay2)
port map(a(i), b(i), p(i));
end generate;

G501: foriin1to 3 generate
u508: and_2
generic map(delay1)
port map(p(2*i+2), g(2*i+1),temp1(i));
y500: or_2
generic map(delay3)
port map(g(2*i+2),temp1(i),gg(2*i+2));
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u509: and_2
generic map(delayl)
port map(p(2*i+2), p(2*i+1), gp(2¥*i+2));
end generate;

G502:; foriin 1 to 3 generate
u510: and_2
generic map{(delayl)
port map(gp(2*i+2), carry_temp100(2*i),carry_temp3(i));
y501: or_2
generic map(delay3)
port map(cany_tempf%(i),gg(?.*i+2),curry_temp100(2*i+2)):
end generate;

G503: foriin 1 to 3 generate
z502: xor_2
generic map(delay2)
port map(p(2*i+1), carry_temp100(2*i), sum_temp100(2*i+1));
uS1l:and_2
generic map(delay1)
port map(p(2*¥i+1), carry_temp100(2*i), temp2(i});
y502: or_2
generic map(delay3)
port map(temp2(i), g(2*i+1),temp3(i));
z503: xor_2
generic map(delay2)
port map(p(2¥i+2), temp3(i),sum_temp100(2*i+2));
end generate;

CR_temp <= sum_temp100;
E22_temp <= carry_templ100(8);

-- for v=0
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x502: Fadd

generic map(delay4)

port map(sum_temp100(1),m1 (1),V_barl,sum_tempeQ(1),

carry_tempe(O(1));
x503: Fadd

generic map(delay4)

port map(sum_temp100(2),m1 (2),carry_tempe(Q(1),

sum_tempe0(2),carry_tempxx);
u512:and_2

generic map{delayl)

port map(sum_temp100(1), m1(1),temp 10);
u513: and_2

generic map(delayl)

port map(sum_temp100(1), V_barl,temp11);
u514: and_2

generic map{delayl)

port map(m1(l), V_barl,templ2);
k502: or_3

generic map(delay7)

port map(temp10), templ1, temp12, temp13);
us15: and_2

generic map(delayl)

port map(sum_temp100(2), m1(2), temp14);
u516: and_2

generic map(delayl)

port map(sum_temp100(2), temp13, temp15);
u517: and_2

generic map(delayl)

port map(temp13, m1(2), templ6);
k503: or_3

generic map{delay7)

port raap(temp 14, temp15,temp16, carry_tempe0(2));

(G504:foriin 3 to 8 generate
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u518: and_2
generic map(delay1)
port map(sum_temp100(i), m1(i).g1(i));
z504: xor_2
generic map(delay2)
port map(sum_temp100(i), m13), pl(i));
end generate;

G505: foriin 1 to 3 generate

u519: and_2

generic map(delayl)

port map(p1(2*i+2), g1(2*i+1),temp4(i));
y503: or_2

generic map(delay3)

port map(gl(2¥i+2),temp4(i),gg1(2*i+2));
u520: and_2

generic map(delay!)

port map(pl(2*i+2), p1(2*i+1), gp1(2*i+2));

end generale;

G506: foriin 1to 3 generate

u521: and_2
generic map(delay1)
port map(gp1(2*1+2), carry_tempeQ(2*i),carry_temp4e0(i));

y504: or_2

generic map(delay3)
port map(carry_tempde0(i),ggl (2*i+2),carry_tempe0(2*i+2));
end generate;

E33e0 <= carry_tempe0(8);

G507: foriin 1 to 3 generate
z505: xor_2



Appendix 2A

FPM - Architectural Model

-- for v=1

generic map(delay2)

port map(p1(2*i+1), carry_tempe0(2*i), sum_tempe0(2*i+1));
us22:and_2

generic map(delayl)

port map(p1(2*i+1), carry_tempe0(2*i}), temp5e0(1));
y505: or_2

generic map{(delay3)

port map(temp35e0(i), gl(2*1+1),temp6e0(i));

z506: xor_2
generic map(delay2)
port map(pl(2*i+2), temp6e((i),sum_tempeQ(2*i+2));
end generate; -

x504: Fadd
generic map(delay4)
port map(sum_temp100(1),m1(1),V1,sum_tempel(1),
carry_tempel(1));
x505: Fadd
generic map(delay4)
port map(sum_templ100(2), m1(2),carry_tempel(1),
sum_tempe1(2),carry_tempxxx);
u523: and_2
generic map(delayl)
port map(sum_temp100(1), m1(1),temp20);
u324: and_2
generic map(delayl)
port map(sum_temp100(1),V1,temp21);
ud25: and_2
generic map(delayl}
port map(m1i(}), V1,iemp22);
k504: or_3
generic map(delay7)
port map(temp20), temp21, temp22, temp23);
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G508:

u526: and_2

generic map(delayl)

port map(sum_temp100(2), m1(2), temp24),
u527: and_2

generic map(delay1)

port map(sum_temp100(2), temp23, temp25);
u528: and_2

generic map(delayl)

port map(temp23, m1(2), temp26);

k505: or_3
generic map(delay7)
port map(temp24, temp25,lemp26, carry_tempel(2)),

foriin 1 to 3 generate
u529: and_2
generic map(delay1) '
port map(gpl(2*i+2), carry_tempel (2*1),carry_temp4e0(i));
y506: or_2
generic map(delay3)
port map(carry_temp4e((i),gg 1 (2*i+2),carry_tempel (2*i+2));
end generate;

E33el <=carry_tempel(8);

G509: foriin 1to 3 generate

z507: xor_2
generic map(delay2)
port map(p1(2#¥i+1), carry_tempe1(2*i), sum_tempe1(2¥i+1));
u530: and_2
generic map(delayi)
port map(p1(2#i+1), carry_temnpel1(2*1), temp5e0(1));
y507: or_2
generic map(delay3)
port map(temp3e()(i), gl 2*i+1),temp6eQ(i));
z508: xor_2
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generic map(delay2)
port map(p1(2*i+2), temp6e0(i),sum_tempel(2*i+2));
end generate;

G510: foriin 1 to 8 generate
u531: and_2
generic map(delay1)
port map(V_bar, sum_tempe0(i), tempS00(i));
u532: and_2
generic map(delay1)
port map(V, sum_tempe1(i), temp501());

y508: or_2
generic map{(delay3)
port map(temp500(i), temp501(), CRR());
end generate;
u533: and_2
generic map{delay1)
port map(V_bar, E33e0, E33_templ);
u544; and_2
generic map(delay!)
port map(V, E33el, E33_temp2);
y509: or_2
generic map(delay3)
port map(E33_templ, E33_temp2, E33_temp);
- CRR <= sum_templ ;

-- underflow and Overflow detector

a7_500: and_7

port map(b, E11_temp);
u345: and_2

generic map(delay!)

port map(E11_temp, E22_temp, temp510);
in501: inverter
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generic map(delays)

port map(E11_temp, E1_bar);
in503: inverter

generic map(delay5)

port map(E22_temp, E2_bar);
a500: and_3

generic map(delay8)

port map(E11_temp, E2_bar,E33_temp, temp51 1)
a5000: and_3

generic map(delay8)

port map(E1_bar, E22_temp, E33_temp, temp312);

u546: and_2

generic map(delayl)

port map(E1_bar, E2_bar, F2);
K508: or_3

generic map (delay3)

port map(temp510, temp511,temp512, F1);
in504: inverter

generic map(delay5)

port map(Fl, F1_bar).
in505: inverter

generic map(delay5)

port map(F2, F2_bar);

G511: foriin 1 to 8 generate
a501:and_3
generic map(delay8)
port map( F1_bar, F2_bar, CRR(i), temp520(i));
a502: and_3
generic map(delay8)
port map(UN,F1_bar, F2, temp521(i});
a503: and_3
generic map(delay8)
port map(OV,F1,F2_bar, temp522(i));
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k505: or_3
generic map(delay7)
pert map(temp520(i), temp521 (1),temp522(i), CR(D));
end generate;

G5000:; foriin 1 to 8 generate
d503: d_latchP
generic map(delay2)
port map(clk1, CR(i), CRI(1));
end generate;
d504: d_latchP
generic map(delay2)
port map(clk1, E22_temp, E22);
d505: d_latchP
generic map(delay2)
port map(clk1, E11_temp, E11);
d506: d_latchP
generic map(delay2)
port map{clk I, E33_temp, E33);

output <= to_integer(CRI);
ain <= to_integer(a);
bin <= to_integer(b);

- CR <= CR_outl;
end structure;
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Library XL;

use XL.XL_STD.all;
Library Mgates;

Use Mgates.all;
Library Madder;

Use Madder.all;

entity float_multp is
generic(delayl,delay2,delay3,delay4,delay5,delay6.delay7,delay8: in time);
port(clk1: bit; al,bl:in bit_vector(7 downto 0);call,cb1l: bit_vector(8 downto 1);
fproduct, CRI: out bit_vector(8 downto 1); ainl,binl, CA_I1, CB_Il:out
integer;V,L,R,S,Res:inout bit);
end float_multp;

architecture structure of float_multp is

component and_2
generic(delay : in time);
port(a,b: in bit; ¢: out bit);

end component;

component and_21
generic(delay: in time);
port(a: bit; c:inout bit);

end component;

component xor_2
generic (delay: in time);
port(a,b: bit; c: out bit);

end component;

component or_2
generic (delay: in time);
port(a,b:bit; ¢: out bit);
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end component;

component FADD
generic(delay: in time);
port(a,b,c: bit; sum,carry:out bit);
end component;
component Hadder
generic(delay: in time);
port(x,y:in bit; sum,carry:out bit);
end component,
component Tenbit_adder
generic(delay1,delay2 delay3,delay4: in time);
port(a,b: bit_vector(10 downta 1); c0: in bit; sum: out bit_vector(11
downto 1))
end component;
component canca
port(producta: in bit_vector(11 downto 1); suma: in bit_vector(14
downto {3); productb: inout bit_vector(15 downto ))H
end component;
coinponent d_latchN
generic(delay:in time);
port(clk1,x: in bit; y:out bit),
end component;
component d_lalchP
generic(delay: in time);
port(clk1,x:in bit; y: out bit);
end component;
component and_3
generic (delay: in time);
port(a,b.c: bit; D: out bit);
end component;
component and_7
port (CB: in bit_vector(8 downto 1); E1 1:out bit);
end component;
component R_Shifter
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generic (delay: in time);
port(v: bit; input: in bit_vector(10 downto 1); output: cut
bit_vector(8 downto 1));
end component;
component V_detector
port{a: bit_vector(10 downto 1); b:out bit);
end component;
component RL_detector
port(a: bit_vector(10 downto 1); b,c,d:out bit);
end component;
component inverter
generic (delay: in time);
port (a: bit; b: out bit);
end component;
component or_3
generic (delay: in time);
port (a,b,c:bit; d: out bit);
end component;
component restorer
generic (delay: in time);
port(a: bit; b: inout bit);
end component;
component sticky
generic (delay: in time);
port(vl,a,b: bit; c: out bit);
end cornponent;

signal ¢01: bit:='0";

signal Rin,RV2 :bit:="1";

signal RV1: bit:='0";

signal carry: bit_vector(14 downto 0);

signal GG1,GG2,35G3,GG4,GG5,6G6,GG7,GG8: bit_vector(7 downto
0):="00000000";

signal sum: bit_vector(15 downto 0):="000000000000000";

signal tsa2,tsa3,tsad,tsas,tsa6,t5a9,tsa10: bit:='0"



Appendix 2A FPM - Architectural Model 141

signal tcal,tca2,tca3,tcad,tcas,tcab,ca9,tcal 0:bit:='0";

signal tsa7,tsa8,tca7,tca8: bit_vector(l downto 0):="00";

signal tsb3,tcb3,icb2,tsb4,tsb5,tsb7,t5b9,tsb10,tsb11:bit:="0;

signal tcb4,icb5,tcb7,tcb9,tcb10,tcb11:bitn='0"

signal tsb6,tcb6,tsb8,tcb8:bit_vector(l downto 0):="00";

signal tscd,isc5,tsc6,isc8,tsc10,tscl 1,ts¢12:bin="0";

signal tce3,tced,teeS, teeb,tee8 tec10,tce 1,ieci 2:bit="0";

signal tsc9,tcc9,tsc7,cc7: bit_vector(1 downto 0):="00";

signal tsd5,tsd6,tsd7,tsd8,tsd9,tsd10,tsd11,tsd12,tsd13,tsd14: bit:='0';
signal tcdd,tcd5,tcd6,tcd7,tcd8,ted9,icd10,tcd 11,ted12,tcd13,ted 14: biti='0%
signal tsc14,tsc15:bit :='0';

-- adder

signal a1l,b1L.: bit_vector(7 downto 0):="00000000";

signal suml: bit_vector(14 downto 0):="000000000000000";

signal carry_templv0, sum_templv0,carry_templv | sum_templv1: bit_vector(10 downto
1):="0000000000";

signal g,gg,p.gp: bit_vector(10 downto 1):="0000000000";

signal sum_tempv0,carry_tempvO,sun_tempvl,carry_tempvl: bit_vector(10 downto
1):="0000000000";

signal tempv11,tempv12,tempv13,carry_tempv L 1: bit_vector(4 downto 1);="0000";

signal tempv21,tempv22,tempv23,carry_tempv2l: bit_vector{4 downto 1):="0000";

signal tempv14,tempv24,carry_tempV, carry_tempvv: bit:='0';

signal tempp14,z1, Res_bar,out_temp, out_templ:bit:=0’;

signal temp70, temp80,temp90,temp100,s_temp:bit:=='0;

signal V_bar, S_bar,R_bar,R_temp: bit:="0)’;

signal fproduct_temp: bit_vector(8 downto 1):="00000000";

signal temp110, temp120 : bit_vector(10 downto 1);

signal T_sum, T_carry :bit_vector(10 downto 1):="0000000000";

signa! Product],ProductO: bit_vector(1( downto 1):="0000000000";

signal temp210, temp200: bit_vector(8 downto 1):="00000000";

signal fproduct_test: bit_vector(§ downto 1):="00000000";

-- exponent signals
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signal m1,cal,cbl,CR,CR_temp, CRR,emp500, temp501,temp520,temp521,temp522:
bit_vector(8§ downto 1):="00000000";

signal Product,ge,gge,pe.gpe: bit_vector(10 downto 1):="0000000000";

signal g11,gg11,pl,gp1: bit_vector(10 downto 1):="0000000000";

signal sum_temp100,sum_tempe0,sum_tempel carry_temp100,carry_tempe0,
carry_tempel: bit_vector(8 downto 1):="00000000";

signal temple,temp2e,temp3e,carry_temp3e: bit_vector(4 downto 1):="0000";

signal temp4,temp5e0,tempSel temp6e0,temp6el carry_tempde0,carry_temp4el:
bit_vector(4 downto 1):="0000";

signal c0,0V,V1: bit:='l;

signal carry_tempx, carry_tempxx, carry_tempxxx,E1_bar:bit:='0";

signal E33e0,E33¢1,E33_temp1,E33_temp2,UN,E2_bar,V_barl: bit:='0";

signal CR_outl: bit_vector(8 downto 1):="00000000";

signal temp10, temp11,temp12,temp13,templ4,templ5,templ6:bit:='0';

signal temp20, temp21,temp22,temp23,temp24,tenip25,temp26: bit:="0";

signal temp30,temp31,temp32,temp33,temp34,temp35,temp36: bit:='0";

signal temp510, temp511,F1,F2,F1_bar,F2_bar,El: bi:='0';

signal msb_cB: bit;

signal E22, E33:bit;

for all: and_2 use entity work.and_2(behavior);

for all: xor_2 use entity work.xor_2(behavior);

for all: or_2 use entity work.or_2(behavior);

for all: or_3 use entity work.or_3(behavior);

for all: d_latchN use entity work.d_latchN(behavior);
for all: d_latchP use entity work.d_latchP(behavior);

for all: FADD use entity work. FADD(structure);

for all: hadder use entity work.hadder(structure);

for all: inverter use entity work.inverter(behavior);

for all; sticky use entity work.sticky(behavior);

for all: Restorer use entity work.Restorer(behavior);

for all; V_detector use entity work.V_detector(behavior);
for all: RL,_detector use entity work.RL_detector(behavior);
for all: and_3 use entity work.and_Z,oehavior);

for all: R_shifter use entity work.R_shifter(behavior);
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for all: and_21 use entity work.and_21(behavior);
for all; and_7 use entity work.and_7(behavior);
for ccl: canca use entity Mgates.cancation(behavior);

begin

GO: foriin O to 7 generate
d0: d_latchN
generic map(delay2)
port map(clk 1, al(i), all(i));
end generate;

G141: foriin 0 to 7 generate
dl: d_latchN
generic map(delay2)
port map(celkl, b1(i), b11(i));
end generate;

G1l: foriin 0 to 7 generate
uQ: and_2
generic map{delayl)
port map(al1(i),b11{0),GG1(1));
end generate;

G2: foriin 0 to 7 generate
ul:and_2
generic map(delayl)
port map(a11(i).b 11(1),GG2(i));
end generate;

G3: foriin { to 7 generate
u2: and_2
generic map(delayl)
port map(a 11(i),b11(2),GG3(1));
end generate;
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G4: foriin 0 to 7 generate
u3: and_2
generic map(delayl)
port map(all(i),b11(3),GG4(1));

end generate;

G5: fori in O to 7 generate
u4: and_2
generic map(delayl)
port map(all(i),b11(4),GG5(1));
end generate;

G6: for i in O to 7 generate
ud: and_2
generic map(delayl}
port map(al1(i),b11(5),GG63));
end generate,

G7. foriin 0to 7 generate
u6: and_2
generic map(delay1)
port map(all(i),b11(6),GG7(1));
end generate;

G8: foriin 0to 7 generate
u7:and_2
generic map(delayl)
port map(a11(i),b11{7),GG8(i));
end generate;

HAla: hadder
generic map(delay3)
port map(GGI1(1), GG2(0), sum(l),tcal);
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y20: or_2
generic map(delay4)
port map(GG 1(0), sum(1), temp70);
FA2a: FADD
generic map(delay3)
port map(GG2(1),GG1(2),GG3(0),tsa2,tca2);

FA3a: FADD
generic map(delay3)
port map(GG3(1).GG1(3),GG4(0),tsa3,tca3);

FAda: FADD

generic map(delay3)

port map(GG4(1),GG 1(4),GG5(0),tsad,tcad);
FASa: FADD

generic map(delay3)

port map(GG5(1),GG6(0),GG1(5),tsa5,tcal);
FA6a: FADD

generic map(delay3)

port map(GG4(3),GG1(6),GG7(0),tsab,tcad);
FA7a: FADD

generic map(delay3)

port map(GG3(5),GG6(2),GG2(6),tsa7(0),1ca?(1));
FAT7al: FADD

generic map(delay3)

port map(GG7(1),GG8(0),GG1(7),tsa7(1),tca7(1));
FA8a: FADD

generic map(delay3)

port map(GG7(2),GG2(7),GG8(1),t5a8(0),tca8(0));
FA8al: FADD

generic map(delay3)

port map(GG4(5),GG6(3),GG3(6),tsa8(1),tca8(1));
FA9a: FADD

generic map(delay3)
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port map(GG7(3),GG3(7),GG8(2),tsa9,tca9);
FA1Q0a: FADD

generic map(delay3)

port map(GG8(3),GG4(7),GG7(4),tsal0,tcal0);
HAZ2b: hadder

generic map(delay3)

port mapf{tcal,tsa2,sum(2),tcb2);
y21:or_2

generic map(delay4)

port map(temp70, sum(2), temp&0);
FA3b: FADD

generic map(delay3)

port map(GG2(2),tca2,tsa3,tsb3,tcb3);
FA4b: FADD

generic map(delay3)

port map(GG2(3),tca3,tsad,tsbd,icb4);
FA5b: FADD

generic map(delay3)

port map(GG2(4),tcad,tsad,tsbd,tch5);
FA6b: FADD

generic map(delay3)

port map(GGB(4),tcaS,GGS(2),tsb6(0),tcb6(0));
FA6bl: FADD

generic map(delay3)

port map(GG6(1),GG2(5),tsa6,tsb6(1),tcb6(1));
FA7b: FADD

generic map(delay3)

port map(tcab,tsa7(),1sa7(1),tsb7,tcb7);
HAS8bD: hadder

generic map(delay3)

port map(tca7(M,1ca7(1),isb8(0),1cb8(0));
FA8b: FADD

generic map(delay3)

port map(tsa8{(%),tsa8(1),GG5(4),tsb8(1),icb8(1));
FA9b: FADD
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generic map(delay3)
port map(tca8(0),tca8(1),tsa9,tsb9,icb9);

FA10b: FADD

generic map(delay3)

port map(ica9,tsal0,GG5(6),tsb10,tcb10);
FAllb: FADD

generic map(delay3)

port map(tcal(},GG5(7),GG8(4),tsb11,tcb11);
HAZ3c: hadder

generic map(delay3)

port map(tch?2,tsb3,sum(3),tce3);
y22: or_2

generic map(delay4)

port map(temp&0, sum(3), temp0);
HAdc: hadder

generic map{delay3)

port map(teb3,tsb4 tscé teed),
FAS5c: FADD

generic map(delay3)

port map(teb4,isb5,GG4(2),tsc3,tee5);
FA6c: FADD

generic map{delay3)

port map(tcb3,tsb6(0),tsb6(1),t5¢6,tcch);
FA7c: FADD

generic map(delay3)

port map(tcb6(0),GG5(3),GG4(4),tsc7(0),tec? 0y;
HAT7c: hadder

generic map(delay3)

port map(teho( 1),1sb7,ts¢7(1),tec7(1));
FAS8c: FADD

generic map(delay3)

port map(tch7,tsb8(0),tsb8(1),tsc8,tceB);
FA9c: FADD

generic map(delay3)
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port map(tch8(0),GG5(5),GG6(4),ts¢9(0),icc(0));
FA9cl: FADD

generic map(delay3)

port map(tcb8(1),tsb9,GG4(6),tsc(1),tcc(1));
FAl(c: FADD

generic map(delay3)

port map(tcb9,tsb10,GG6(5),tsc10,tcc10);
FAllc: FADD

generic map(delay3)

port map(tcb10,tsb11,GG6(6),tsc11,tccll);
FAlZc: FADD

generic map(delay3)

port map(tcb11,GG6(7),GG8(5),tsc12,tccl2);
FA4d: FADD |

generic map(delay3)

port map(tce3,tscd, GG3(2),sum(4),tcd4);
y23:0r_2

generic map(delay3)

port map(temp90, sum{4), temp100);
FAS5d: FADD

generic map(delay3)

port map(tced,tse5,GG3(3),isd5,tedS);
FA6d1: FADD

generic map{delay3)

port map(tce5,tsc6,Rin,sd6,tcdb);
FA7d: FADD

generic map(delay3)

port map(tcc6,tsc7(0),tsc7(1),tsd7,tcd7);
FAS8d: FADD

generic map(delay3)

port map(tcc7(0),tcc7(1),tsc8,tsd8,tcd8);
FA9d: FADD

generic map(delay3)

port map(tcc8.tsc9(0),tsc9(1),tsd9,tcd9);
FA1(Qd: FADD
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generic map(delay3)
port map(tcc9(0),tcc9(1),tsc10,tsd10,tcd 10);

FAlld: FADD

generic map(delay3)

port map(tcc10,tscl1,GG7(5),1sd11,1ed11);
FAl2d: FADD

generic map(delay3)

port map(tcc11,ts¢12,GG7(6),t5d12,tcd12);
FA13d: FADD

generic map(delay3)

port map(tcc12,GG7(7),GG8(6),tsd13,tcd13);
FAl4d: FADD

generic map(delay3)

port map(tsc14,tsc15,GG8(7),tsd14,tcd14);

HASe: hadder

generic map(delay3)

port map(tsd3,tcdd, sum(S),carry(3));
y24: or_2

generic map(delay4)

port map(temp100, sum(5), S_temp);
HAG®6e: hadder

generic map(delay3)

port map(tsd6,ted3,sum{6),carry(6));
HA7e: hadder

generic map(delay3)

port map(tsd7,tedG,sum(7),carry(7));
HAB8e: hadder

generic map(delay3)

port map(tsd8,ted7,sum(8),carry(8));
HADO9e: hadder

generic map(delay3)

port map{tsd9,1cd8,sum(9),carry(9);
HA10e: hadder
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generic map(delay3)

port map(tsdl(),tcd9,sum(10),carry(10));
HA1le: hadder

generic map(delay3)

port map(tsd11 ,tcd10,sum(11),carry(11));
HA12e: hadder

generic map(delay3)

port map(tsd12,tcd] 1,sum(12),carry(12}));
HA13e: hadder

generic map(delay3)

port map(tsdl3,tcd12,sum(13),carry(13));
FA14e: hadder

generic map(delay3)

port map(tsd14.ted ] 3.sum(14),carry(14)):

sum(0) <= GG1(0);
T sum <= sum{15 downto 6);
T_carry <= carry(14 downto 5);

x1: FADD
generic map(delay3)
port map(T_sum(1 ), T_carry(1),RV1,sum_tempv0(1),
carry_tempvO(1));
x2: FADD
generic map(delay3)
port map(T_sum(2), T_carry(2), carry_tempvO(1),sum_tempvO(2)
carry_tempv0(2)),

G9:foriin 3 to 10 generate
ull: and_2
generic map(delay1)
port map(T_sum(i), T_carry(i),g());
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z5: xor_2
generic map(delay5)

port map(T_sum(i), T_carry(i), p(1));
end generate;

G10: foriin1 to 4 generate
ul2: and_2
generic map(delayl)
port map(p(2*i+2), g(2*i+1),tempv11(i));
yl:or_2
generic map(delay4)
port map(g(2¥i+2),tempv11(i),gg(2*i+2));
ul3: and_2
generic map(delayl)
port map(p(2*i+2), p(2*i+1), gp(2*i+2));
end generate;

Gl111: foriin 1 to 4 generiie
uld: and_2
generic map(delay1)
port map(gp(2#1+2), carry_tempv0(2*i),carry_tempv11(i));
y2:or_2
generic map(delay4)
port map(carry_tempv!1(i),gg(2*i+2),carry_tempvO(2*i+2));
end generate;

G12: foriin 1to 3 generate
Z3: xor_2
generic map(delay5)
port map(p(2*i+1), carry_tempv0(2*i), sum_tempvO(2*i+1,);
uls: and_2
generic map(delayl)
port map(p{2*i+1), carry_tempv0(2*i), tempv12(3i));
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y3:o0r_2
generic map(delay4)
port map(tempv 12(i), g(2*i+1),tempv13(i));
72: xor_2
generic map(delay3)
port map(p(2*i+2), tempv13(i),sum_tempvO(2*i+2));
end generate;

x3: FADD
generic map(delay3)
port map(T__sum(9),T_carry(9),can'y_tcmpvo(8),sum_tcmpv0(9),
carry_tempv);
ulé: and_2

generic map(delayl)
port map(p(9), carry_tempv0(8), tempv14);
y4: or_2
generic map(delay4)
port map(tempv 14, g(9),Carry_tempv0(9));
x4: FADD
generic map(delay3)
port map(T_sum( 10),T_carry(10),Carry_tempv0(9),
sum_tempvO(10), carry_tempv0(10));
x5: FADD
generic map(delay3)
port map(T_sum(1),T_carry(1),RV2,sum_tempv1i(1),
carry_tempvi(1));
x6: FADD
generic map(delay3)
port map(T_sum(2), T_carry(2), carry_tempv1(1),sum_tempv1(2),
carry_tempv1(2));

G13: foriin 1 to4 generate
ul7:and_2
generic map(delayl)
port map(gp(2*i+2), carry_tempv1(2*i),carry_tempv2i(i));
y6: or_2
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generic map(delay4)
port map(carry_tempv21(i),gg(2*i+2),carry_tempv1(2*i+2));
end generate:

G14: foriin 11to 3 generate
z6: xor_2
geqeric map(delays)
port map(p(2¥i+1), carry_tempvi{2*i), sum_tempv1(2¥i+1));
ul§: and_2
generic map(delay1)
port map(p(2~i+1). carry_tempv1(2*i), tempv21(i));
y7:or_2
generic map(delay4)
port map(tempv21(i), g(2¥i+1),tempv23(i));
z7: xor_2
generic map(dalay)5)
port map(p(2*i+2), tempv23(i),sum_tempv1 (2*i+2));
end generate;
x7: FALD
generic map(delay3)
port map(T_sum(9),T_carry(9),carry_tempv1(8),sum_tempv 1(9),
caTy_tempvv),
ul9: and_2
generic map(delayl)
port map(p(9), carry_tempv1(8), lempv24),
y8:or_2
generic map(delay4)
port map(tempv24, g(9),Carry_tempv1(9));
x9: FADD
generic map{delay3)
port map(T_sum(10),T_carry(10),Carry_tempv1(9),
sum_tempv1(10), carry_tempv1(i0));

ProductO<= sum_tempv() ;
Productl <= sum_tempvi ;
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vill: V_detector
port map(product(, V);

ind:  inverter
generic map(delay6)
port map(V, V_bar);

- multplexer to Select output

G200: foriin1to 10 generate
u200: and_2
generic map(delayl)
port map(V_bar, productO(i), temp110(i));
u201: and_2
generic map(delayl)
port map(V, product1{i), temp120(1));
y200: or_2
generic map(delay4)
port map(temp110(1), temp120(), Product(i));
end generate;
vll: RL_detector
port map(product,R _temp,R,L);
- Correct the sticky bit depending on V

S1:  sticky
generic map(delay4)
port map(V,S_temp, R_temp,S);
-- detect the Restorer Bit

inl:  inverter
generic map(delay6)
port map(R, R_bar);
in2;  inverter
generic map{delay6)
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port map(S,S_bar);
a3: and_3
generic map(delay7)

port map(L, R_bar,S_bar, Res);

G500: foriin 2to 9 generate

u500: and_2

generic map(delay1)

port man(v_bar, product(i), temp200(i-1));
u501: and_2

generic map(delay i)
port map(V, product(i+1), temp210(i-1));
y1500: or_2
generic map(delayl)
port map(temp200(i-1), temp210(i-1), fproduct_temp(i-1));
end generate:

- Check Condtions of L, R, S
in8: inverter
generic map(delay0)
port map(Res, Res_bar),
u300: and_2
generic map(delayl)
port map(Res_bar, (product_temp(1 ),out_temp);

-- CA+CB-127 ----
G550; foriin 1 to 8 generate

d500: d_latchN
generic map(delay?2)
port map(clkl, call(i), cal(i));

d501: d_latchN
generic map(delay2)
port map{clkl, cb1l1(i), cb1(});
end generate:
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CA_I1 <= to_integer(cal);
CB_I1 <= to_integer(cbl);

inv500: inverter

generic map(delay6)

port map(cb1(8), msb_cB);
x500: Fadd

generic map(delay3)

port map(cal(1),cb1(l },c0,sum_temp100(1), carry_temp100(1));
x501: Fadd

generic map{delay3)
port map(cal(2), cb1(2), carry_temp 100(1),sum_temp100(2),

, carry_tempx);

u500: and_2

generic map(delay1)

port map(cal(1), cbl (1),temp30);
u501: and_2

generic map(delay1)

port map(cal(1), cO,temp31);
u502: and_2

generic map(delayl)

port map(cb1(1), c0,temp32);
k500: or_3

generic map(delay8)

port map(temp30, temp31, temp32, temp33);
u503: and_2

generic map{delay!)

port map(cal(2), cb1(2), temp34);
u504: and_2

generic map(delay1)

port map(cal(2), temp33, temp35);
u505: and_2

generic map(delayl)

port map(temp33, cb1(2), temp36);
k501: or_3
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ceneric map(delay8)
port map(temp34, temp35,temp36, carry_temp100(2));

u506: and_2

generic map(delayl)

port map(cal(8), msb_CB, ge(8));
z500: ..or_2

generic map(delay5)

port map(cal(8), msb_CB, pe(8));

G580: foriin 3 to 7 generate
u507: and_2
generic map{delayl)
port map(cal(i), cbl{i).ge(®));
z501: xor_2
generic map{delay3)
port map{cal(i), cb1(i). pe(i));
end generate:

G501: foriin 1 to 3 generate

u508: and_2

generic map(delay|l)

port map(pe(2¥i+2), ge(2*i+1),temple(i));
y500: or_2

generic map(delay4)

port map(ge(2*i+2) tlemple(i),gge(2*i+2));
u509: and_2

generic map{(delayl)

port map(pe(2*¥i+2), pe(2*i+1), gpe(2¥i+2)),
end generate;

G502: foriin 1 to 3 generate
u510: and_2
generic map(delayl)
port map(gpe(2*i+2), carry_lempl 00(2*i),carry_temp3e(i));
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G503:

y501:or_2
generic map(delay4)
port map(carry_temp3c(i),ggc(Z*i-l—Z),carry_temp100(2*i+2));

end generate;
foriin 1to 3 generate
z502: xor_2
generic map{delayJ)
port map(pe(2¥*i+1), carry_temp100(2*i), sum_templ100(2¥i+1));
u511:and_2
generic map(delay1)
port map(pe(2¥i+1), carry_temp100(2*i), temp2e(i));
y502: or_2
generic map(delay4)
port map(temp2e(i), ge(2¥i+1),temp3e(i));
z503: xor_2
generic map(delay3)
port map(pe(2*i+2), temp3e(i),sum_temp 100(2*i+2));
end generate;
x502: Fadd
generic map(delay3)
port map(sum_temp100(1),m1(1),V_barl ,sum_tempe0(1),
carry_tempe(0(1));
x503: Fadd
generic map(delay3)
port map(sum_temp100(2),m1(2) ,carry_tempe0(1),sum_tempe0(2),
Carry _tempxx);
u512:and_2
generic map(delayl)
port map(sum_temp100(1), m1 (1),temp10),
u513:and_2
generic map(delay 1)
port map(sum_temp100(1}, V_barl,templ1);
u514: and_2
generic map{(delayl)
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port map(m1(1), V_barl,templ2);
k502: or_3
generic map(delay8)
port map(temp10, templ1, templ2, temp13);
uS15:and_2
generic map(delayl)
port map(sum_temp100(2), m1(2), temp14);
u516: and_2
generic map(delayl)
port map(sum_temp100(2), temp13, temp15);
u517: and_2
generic map(delayl)
port map(iemp 13, m1(2), templ6);
k503:0r_ 3
generic map(delay&)
port map(temp 14, temp15,temp16, carry_tempe((2));

G504:foriin 3 to 8 generate

u318: and_2

generic map{delayl)

port map{suin_temp100(i), m1(i),g11(i});
z504: xor_2

generic map(delay5)

port map(sum_templ00(i), m1(i), p1(i));
end generate;

G505: foriinlto 3 generaic
u519: and_2
generic map{delayl)
port map(p1(2*i+2), gl 1{(2*i+1),temp4(i));
y503: or_2

generic map(delay4)
port map(gl 1(2¥i+2),temp4(i),gg11(2*1+2)),

u520; and_2
generic map(delay1)
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port map(pl(2*i+2), p1(2*i+1), gpl(2*i+2));
end generate;

G506: foriin1to3 generate
u521: and_2
generic map(delay1)
port map(gp1(2¥i+2), carry_tempe((2*i),carry_temp4e((i));
y504: or_2
generic map(delay4)
port map(carry_temr “20(i),ggl 1(2%i+2),carry_tempe0(2*i+2));
end generate; '

E33e0 <= carry_tempe(Q(8).

G507: foriin 1to 3 generate
z505: xor_2
generic map(delay))
port map(p1(2*i+1), carry_tempeQ(2*i}, sum_tempe0(2*i+1));
u522: and_2
generic map(delayl)
port map(p ! (2*i+1), carry_tempeQ(2*i), temp5e0());
y505: or_2
generic map(delay4)
port map(temp35e((i), g1 1 (2*i+1),temp6eQ(i));
z506: xor_2
generic map{delay5)
port map(p1(2*i+2), temp6e0(i),sum_tempe0(2*i+2));
end generate;

x504: Fadd
generic map(delay3)
port map(sum_temp100(1),m1(1),V1,sum_tempel(1),
carry_tempel(1));
x5035: Fadd
generic map(delay3)
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port map(sum_temp 100(2), m1(2),carry_tempei(1),
sum_tempe 1(2),carry_icmpxxx);

u523: and_2

generic map(delay1)

port map(sum_temp100(1), m1(1),temp20);
ud24: and_2

generic map(delayl)

port map(sum_temp 100(1),V1,temp21);
ud25: and_2

generic map{(delay1)

port map(ml1(!), V1,temp22);
k504: or_3

generic map(delay8)

port map(temp20, temp21, temp22, temp23);
u526: and_2

generic map(delay!)

port map(sum_temp100(2), m1(2), temp24),
u527: and_2

generic map{delay|)

port map(sum_temp 100(2), temp23, temp25);
u528: and_2

generic map(delayl)

port map{temp23, m!(2), temp26);
k505: or_3

generic map(delay§)

port map(temp24, temp25,temp26, carry_tempel(2));

G508: foriinlto 3 generate

u529: and_2

generic map(delayl)

port map(gp1(2*i+2), carry_tempe1(2*i),carry_temp4e0(i));
y999: or_2

generic map(delay4)
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port map(carry_temp4e0(i),gg1 1(2*i+2),carry_tempel(2*i+2));

end generate;

E33el <= carry_tempel(8),

G509: foriin 1 to 3 generate

z507: xor_2

generic map(delay5)

port map(p1(2*i+1), carry_tempe1(2*i), sum_tempel(2*i+1));
u530: and_2

generic map{delayl)

port map(p1(2#i+1), carry_tempel(2*i), temp5e0(i));
y507: or_2

generic map(delay4)

port map(temp5e((i), gl 1{2*i+1),temp6e0(1));
z508: xor_2

generic map{delay5)

port map(p1(2#*i+2), temp6e0(i),sum_tempel(2*i+2));
end generate;

-- 2x1 Multeplixier
G510: foriin 1 to 8 generate
u531: and_2
generic map(delay1)
port map(V _bar, sum_tempeQ(i), temp500(i));
u532: and_2
generic map(delayl)
port map(V, sum_tempe1(i), temp501(1));
y508: or_2
generic map(delay4)
port map(tempS500(i), temp501(i), CRR(1));
end generate;
u533: and_2
generic map(delayl)
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port map(V_bar, E33e0, E33_templ);
ud44: and_2

generic map(delayl)

port map(V, E33el, E33_temp2);

y509: or_2

generic map(delay4)

port map(E33_templ, E33_temp2, E33);
a7_500: and_7

port map{cbl, El});
u345; and_2

generic map{delay!l)

port map(Ei. E22, temp510);
in501: inverter

generic map(delay6)

port map(E |, E1_bar);
in503: inverter

generic map(delay®)

port map(E22, EZ_bar);
a500: and_3

generic map(delay7}

port map(E1, E2_bar,E33, temp511);
uS46: and_2

generic map(delayl)

port map(E1_bar, E2_bar, F2);
y510: or 2

generic map (delay4)

port map(temp310, temp511, F1);
in504: inverter

generic map(delay6)

port map(F1, Fi_bar);
in505: inverter

generic map(delay0)

port map(F2, F2_bar);
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G511:foriin 1 to 8 generate

G512

G400:

end structure;

a501: and_3

generic map(delay7)

port map( F1_bar, F2_bar, CRR(), temp520(i));
a502: and_3

generic map(delay7)

port map(UN,F1_bar, F2, temp521(i));
a503: and_3

generic map(delay7)

port map(OV,F1,F2_bar, tempS522(1));
k505; or_3

generic map(delay8)

port map(temp520(i), temp521(3i),temp522(i),CR(D);
end generate;

foriin 1 to § generate

d503: d_latchP
generic map(delay2)
port map(clk1, CR(i), CRI(D);
end generate:

ainl<=to_integer(all);
binl <= to_integer(b1l);

foriin2 to 8§ generaie
d3: d_laichP
generic map(delay2)
port map(clk1, fproduct_temp(i), fproduct_test(1));
end generate;
d4: d_latchP
generic map(delay2)
port map(clkl, out_temp, out_templ);
fproduct <= fproduct_test(& downto 2)& out_templ;
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library XL,
use XL XL_STD.all, XL.XL_GATES.all;
entity tenbit_adder is
generic (delayl,delay2: in time);
port(a,b: bit_vector(10 downto 1); c0: in bit: sum: out bit_vector(11 downto 1));
end tenbit_adder;

architecture behavior of tenbit_adder is
begin

pl: process(a,b,c0)
variable g,gg,p.gp: bit_vector(10 downto 1):="0000000000";
variable sum_temp,carry_temp: bit_vector(10 downto 1),
variable k: integer;

begin

loopl:
foriin 1 to 2 loop
if(i= 1) then
sum_temp{i):= (a(i) xor b(i)) xorc0;
carry_temp(i):= (a(i) and b(i)) or (a(i) and c0) or (b(i) and c0);
else
sum_temp(i):= (a(i) xor b(i)) xor carry_temp(i-1) ;.
carry_temp(i):= (a(i) and b(i)) or (a(i) and carry_temp(i-1)) or (b(i) and
carry_temp(i-1));
end if}

end loop loopl;



Appendix 1B Behavorial Model for the New-Adder 167

loop2:

foriin 3 to 10 locp
g(i):= a(i) and b(D);

p(i):= a(i) xor b(i);

end loop loop2;

loop3:
foriin 1to 4 loop
k:=2%j;
gg(k+2):= (p(k+2) and g(k+1)) or glk+2),
gp(k+2):= p(k+2) and p(k+1);
end loop loop3;

loop4:
foriin 1to 4 loop
k:=2%j;
carry_temp(k+2):= (gp(k+2)and carry_temp(k)) or gg(k+2);
end loop loop4;

loop5:
foriin 1 to 4 loop
k:=2%i;
sum_temp(k+1):= p(k+1) xor carry_temp(k);
sum_temp(k+2):= p(k+2) xor ((p(k+1) and carry_temp(k)) or g(k+1));
end loop loop5;
sum <= carry_temp(1()&sum_temp after delay2;
end process;

end structure;
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library XL;

use XL.XL_STD.all, STD.TEXTIO.all, XL.XL_IO.all;
entity tb_adder is

end tb_adder;

architecture behavior of tb_adder is

component CPA_adder
generic(delayl, delay2,delay3,delay4: in time);
" port(a,b: bit_vector(10 downto 1}; c0: in bit; sum: out kit_vector(11 downto
1)

end component;

signal input_a,input_b: bit_vector(10 downto 1};
signal input_carry: bit;

signal sum_output: bit_vector(11 downto 1);
signal Even_carry_output: bit_vector(5 downto 1);

for x1: CPA_adder use entity work.tenbit_adder(behavior),
begin

x1: CPA_adder
generic map(0.3218 ns,1.0216 ns, 0.5893 ns, 1.486 ns )
port map(input_a,input_b,input_carry,sum_output);

input_a <= "0000000000" after O ns, "0000000001" after 7 ns,"1001000010" after 14
ns, "1111111111" after 21 ns, "1010000000" after 28 ns, "1010101010"
after 35 ns,"0000000000" after 42 ns;

input_b <= "0000000000" after O rs, "0000000001" after 7 ns,"1010101010" after 14
ns, "1111111111" after 21 ns, "1010000000" after 28 ns, "1110111101"
after 35 ns, "1010111111" after 42 ns;
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input_carry <= '0" after O ns, '1" after 7 ns, '0f after 14 ns, '1' after 21 ns, '0" after 28 ns,
'1' after 35 ns, "0 after 42 ns;

--waves_monitor(a,b,c);
-- display result

Process

variable 1.:line;

begin
write (L," TIME input_a input_b input_carry sum_output ")
writeline (output, L);
write (L, " - - - - ")
writeline (output, L):
write (L, " ");
Writeline (output, L);
wait;

end process;

monitor_process: process(input_a, input_b,input_carry )

variable dline: line;

begin
write (dline, NOW, righi(, 10);
write (dline, input_a, right, 15);
write (dline, input_b, right, 15);
write (dline, input_carry, right, 7);
write (dline, sum_output, right, 15);
writeline (output, dline);

end process,

end behavior;
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Library XL;

use XL.XL_STD.all;

Library Madder;

use Madder xor_2,or_2,and_2;

entity tenbit_adder1 is

generic (delayl,delay2,delay3,delay4: in time),

port(a,b: bit_vector(10 downto 1); c0: in bit; sum: out bit_vector(11 downto 1));
end tenbit_adderl;

architecture structure of tenbit_adder! is

component Fadd
generic (delay: in time};
port (a,b,c: bit; sum, carry: inout bit);
end component;
component and_2
generic (delay: in time);
port (a,b:bit; ¢: out bit);
end component;
component Xor_2
generic (delay: in time);
port (a,b:bit; ¢: out bit);
end component;
component or_2
generic (delay: in time);
port (a,b:bit; c:out bit);
end component;
signal g,gg,p.gp: bit_vector(10 downto 1):="0000000000";
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signal sum_temp,carry_temp: bit_vector(10 downto 1):="0000000000";

signal temp1,temp2,temp3,carry_templ: bit_vector(4 downto 1):="0000"
signal temp4:bit:="0’;

for all; Fadd use entity work. FA(structure);

for all: and_2 use entity work.and_2(behavior);
for all: or_Z use entity Madder.or_2(behavior);
for all: xor_2 use entity Madder.xor_2(behavior);

begin

x1: Fadd
generic map(delay4)
port map(a(1),b(1),c0,sum_temp(1), carry_temp(1));

x2: Fadd
generic map(delay4)
port map(a(2), b(2), carry_temp(1),sum_temp(2),carry_temp(2));

G0: foriin3to 10 generae
ul:and_2
generic map(delayl)
port map(a(i), b(i),g(1));
z5: xor_2
generic map(delay?2)
port map(a(i), b(i), p(i));
end generate;

Gl: foriinl to 4 generate
u2: and_2
generic map(delayl)
port map(p(2*i+2), g(2*i+1),templ(i));
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yl:or_2
generic map(delay3)
port map(g(2*i+2),temp1(1),gg(2*i+2));
u3:and_2
generic map(delayl)
port map(p(2*i+2), p(2*i+1), gp(2*i+2));
end generate;

G3: foriinlto4 generate
ud: and_2
generic map(delayl)
port map(gp(2*i+2), carry_temp(2*i),carry_temp1(i));
y2:or_2
generic map(delay3)
port map(carry_temp1{i),gg(2*i+2),carry_temp(2*i+2));
end generate;

G4: foriin1to 3 generate
z3: xor_2
generic map(delay2)
port map(p(2*i+1), carry_temp(2*i), sum_temp(2*i+1));
u5: and_2
generic map(delayl)
port map(p(2*#i+1), carry_temp(2*i), temp2(i));
y3:0r 2
generic map(delay3)
port map(temp2(i), g(2*i+1),temp3(i));
z2: xor_2
generic map(delay2)
port map(p(2*i+2), temp3(i),sum_temp(2*i+2));
end generate,
x3: Fadd
generic map(delay4)

port map(a(9),b(9),carry_temp(8),sum_temp(9), carry_temp{(9));
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u6: and_2
generic map(delayl)
port map(p(9), carry_temp(8), temp4);
y3:or 2
generic map{delay3)
port map(temp4, g(9),Carry_temp(9));
x4: Fadd
generic map(delay4)
port map(a(10),b(10),Carry_temp(9),sum_temp(10),
carry_temp(10));

-- process
-- variable k: integer;

- begin
- loop6:
- foriin 1 to 5 loop
- ki=2%i;
-- carry(i) <= carry_temp(2*i) after delayl;
- end loop loop6;
-- end process;

sum <= carry_temnp(l10)&sum_temp ;
end structure,

tb_adderi.vhd

library XL;

use XL.XL_STD.all, STD.TEXTIQ.all, XL.XL_IO.all;
entity tb_adder is
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end tb_adder;
architecture structure of tb_adder is

component CPA_adder
generic(delay1, delay2,delay3.delay4: in ime);
port(a,b: bit_vector(10 downto 1); ¢0: in bit; sum: out bit_vector(11 downto
D

end component;

sign;ﬂ input_a,input_b: bit_vector(10 downto 1);
signal input_carry: bit;

signal sum_output: bit_vector(11 downto 1);
signal Even_carry_output: bit_vector(5 downto 1);

for x1: CPA_adder use entity work.tenbit_adder(structure);
begin

x1: CPA_adder
generic map(0.3218 ns,1.0216 ns, 0.5893 ns, 1.486 ns )
port map(input_a,input_b,input_carry,sum_output);

input_a <= "0000000000" after 0 ns, "0000000001" after 7 ns," 1001000010" after 14
ns, "1111111111" after 21 ns, "1010000000" after 28 ns, "1010101010"
after 35 ns,"0000000000" after 42 ns;

input_b <= "0000000000" after 0 ns, "0000000001" after 7 ns,"1010101010" after 14
ns, "1111111111" after 21 ns, "1010000000" after 28 ns, "1110111101"
after 35 ns, "1010111111" after 42 ns;

input_carry <=0 after 0 ns, '1" after 7 ns, ‘0" after 14 ns, 1" after 21 ns, '0" after 28 ns,
‘1" after 35 ns, '0" after 42 ns;

--waves_monitor(a,b,c);
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-- display result

process
variable L:line;

begin
write (L," TIME input_a input_b input_carry sum_output “);
writeline (output, L);

write (L, " - - --- - ")
writeline (output, L);
write (L, " ");
Writeline (output, L);
wait;
end process;

monitor_process: process(input_a, input_b,input_carry )
variable dline: line;

begin
write {(dline, NOW, right, 10);
write (dline, input_g, right, 15);
write (dline, input_b, right, 15);
write (dline, input_carry, right, 7);
write (dline, sum_output, right, 15);
writeline (output, dline);

end process;

end structure;
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five_bit.vhd

library X1;
use XL XL_STD.all,STD.TEXTIO.all, XL.XL_IO.ail;

entity five_bit is
generic (delayl,delay2,delay3.delay4,delay5,delay6,delay7,delay8: in time);
port(al,bl: bit_vector(7 downto 0);clk1: in bit;Product: inout bit_vector(15 downto
0); ainl,binl,productl: out integer);
end five_bi;

architecture structure of five_bit is
component and_2
generic(delay : in time);
port(a,b: in bit; c: out bit);
end component;
component xor_2
generic (delay: in time);
port(a,b: bit; c: out bit);
end component;
component or_2
generic (delay: in time);
port(a,b:bit; c: out bit);
end component;
component inverter
generic (delay: in time);
port (a: bit; b: out bit);
end component;
component xnor_2
generic (delay: in time);
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port(a,b: bit; c: out bit);
end component;
component or_3
generic (delay: in time);
port(a,b,c: bit; d: out bit);
end component;
component twobit_FA
generic (delayl,delay2,delay3,delay4,delay5,delay6: in time);
port (a,b,c,d,e: in bit; s0,s1,c1: cut bit);
end componeilt;
component FADD
generic(delay: in time);
port(a,b,c: bit; sum:out bit; carry: inout bit);
end component;
component d_latchN
generic(delay:in time);
port(clkl,x: in bit; y:out bit);
end component;
component d_latchP
generic(delay: in time);
port{clkl,x:in bit; y: out bit);
end component;

signal tempal,tempa2,tempa3,tempad,tempaS,tempab,tempa7: bit_vector(2 downto
0):="000";

signal tempb2,tempb3,tempb4,tempb5,tempb6,tempb7: bit_vector(2 downto 0):="000"

signal tempc3,tempc4,tempce5,tempce6,tempe7: bit_vector(2 downto 0):="000",

signal tempd4,tempdS,tempd6,tempd7: bit_vector(2 downto 0):="000";

signal tempe5,tempe6,tempe7: bit_vector(2 downto ():="000";

signal tempf6,tempf7: bit_vector(2 downto 0):="000";

signal tempg7: bit_vector(2 downto 0);="000";

signal c0,c1,tempbl tempc,tempc2,tempd2,tempd3,tempe3,temped,tempf4,tempf5,
tempgS,tempg6,temph6,temph7:bit:='();

signal GG1,GG2,GG3,GG4,GG5,GG6,GG7,GGE:bit_vector(7 downto
0):="00000000";
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signal all,b1l: bit_vector(7 downto 0):="00000000";
signal P: bit_vector(15 downto 0):="0000000000000000";
for all: and_2 use entity work.and_2(behavior);

for all; xor_2 use entity work.xor_2(behavior),

for all: or_2 use entity work.or_2(behavior);

for all: d_latchN use entity work.d_latchN(behavior);
for all: d_latchP use entity work.d_latchP(behavior);

for all: FADD use entity work. FADD(structure);

for all: twobit_FA use entity work.twobit_FA (structure);
for all: or_3 use entity work.cr_3(behavior);

for all; xnor_2 use entity work.xnor_2(behavior);

for all: inverter use entity work.inverter(behavior);

begin

GO: foriin O to 7 generate
d0: d_latchN
generic map(delay8)
port map(clkl, al(i), all(i));
end generate;
G141: foriin 0 to 7 generate
dl1: d_latchN
generic map(delay8)
port map(clkl, b1(i), b11(i));
end generate;
G1: foriin O to 7 gencrate
u0: and_2
generic map(delay1)
port map(all(i),b11(0),GG1()};
end generate;
G2: foriin Oto 7 generate
ui:and_2
generic map(delayl)
port map(all(i),b11(1),GG23));
end generate;
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fl;

G3: foriin 0 to 7 generate
u2: and_2
generic map(delayl)
port map(all(i),b11(2),GG3(i));
end generate;
G4: foriin O to 7 generate
u3:and_2
generic map(delay1)
port map(all(i),b11(3),GG4());
end generate;
GS5: foriin O to 7 generate
u4: and_2
generic map(delay 1)
port map(all(i).b1i(4),GG5(x));
end generate;
G6: foriin 0 to 7 generate
ud; and_2
generic map(delayl)
port map(all(i),bil(5),GG6());
end generate;
G7: foriin O to 7 generate
u6; and_2
generic map(delay1)
port map(all(i),b11(6),GG7(1));
end generate;
G8: foriin O to 7 generate
u7: and_2
generic map(delay1)
port map(all(i),b11(7),GG&(i));
end generate;

P(0) <= GG1(0);

twobit_FA
generic map(delay1,delay2,delay3,delay4,delay5,delay6)
port map(GG2(1),c0,GG1(1),GG2(0),c1, P(1),tempal (1),tempal(2));
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f2; twobit_FA

generic map(delay1,delay2,delay3,delay4,delays,delay6)

port map(GG3(1),GG2(2),GG3(0),GG1(2),c0tempa2(0),tempa2(1),iempa2(2));
f3: twobit_FA

generic map(delay1,delay2,delay3,delay4,delay5,delay6)

port map(GG2(2),GG4(1),GG4(0),GG1(3),c0,tempa3(0),tempa3(1),tempa3(2));
f4: twobit_FA

genzric map(delay1,delay2,delay3,delay4,delay5,delay6)

port map(GG5(1),GG2(4),GG5(0),GG1(4),c0,tempad{D),tempad(1),tempad(2));
f5: twebit_FA

generic map(delay1,delay2,delay3,delay4,delayS,delay6)

port map(GG6(1),GG2(5),GG6(0),GG1(5),c0,tempaS{0),tempa5(1),tempaS(2));
f6: twobit_FA

generic map(delay1,delay2,delay3,delay4,delay5,delay6)

port map(GG7(1),GG2(6),GG7((;),GG1(6},c0,tempa6(0),tempad(1),tempad(2));
f7: twobit_FA

generic map(delay1,delay2,delay3,delay4,delayS,delay6)

port map(GG8(1),GG2(7),GGR(0),GG1(7),c0,tempa7(0),tempa7(1),tempa7(2));
FAl: FADD

generic map(delay?)

port map(tempal(1l),tempa2(0),c0, P(2), tempbl);
f8: twobit_FA

generic map(delay1,delay2,delay3,delay4,delay5,delay6)

port map(GG3(2),c0,tempal(2),tempa2(1),tempa3(0),tempb2(0),

tempb2(1),tempb2(2));

f9: twobit_FA

generic map(delay1,delay2 delay3,delay4,delay5,dclay6)

port map(GG4(2),GG3(3),tempa2(2),tempa3(1),tempad(0),tempb3(0),

tempb3(1),tempb3(2));

f10:  twobit_FA

generic map(delay1,delay? delay3,delay4,delay5,delay6)

port map(GG5(2),GG3(4),tempa3(2),tempad(1),tempa5(0),tempb4(0),t

empb4(1),tempb4(2));
f11:  twobit_FA _

generic map(delay,delay2,delay3,delay4,delay5,delay6)
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£12;

f13:

zl:

us;

FA2:

f14:

f15:

fl6:

f17;

port map(GG3(5),GG6(2),tempad(2),tempa5(1),tempa6(0),tempb5(0),
tempb5(1),tempb5(2));

twobit_FA

generic map(delay,delay2,delay3,delay4,delay5,delay6)

port map(GG7(2),GG3(6),tempa5(2),tempab(1),tempa7(0),tempb6(0),
tempb6(1).tempb6(2));

twobit_FA

generic map(delay1,delay2 delay3,delay4,delayS.delay6)

port map(GG8(2),GG3(7),tempab(2),tempa7(1), c0,tempb7(0),
tempb7(1),tempb7(2));

xor_2

generic map(delay4)

port map(tempb1, tempb2(0),P(3));

and_2

generic map(delay1)

port map(tempbl1, tempb2(0), tempc);

FADD

generic map(delay7)

port map(tempc, tempb2(1), tempb3(()), P(4), tempc2);

twobit_FA

generic map(delay1,delay2.delay3,delay4,delay5,delay6)

port map(GG4(3),c0,tempb2(2),tempb3(1), tempb4(0),tempc3(0)
tempc3(1),tempc3(2));

twobit_FA

generic map(delay1,delay2,delay3,delay4,delayS,delay6)

port map(GG5(3),GG4(4),tempb3(2},tempb4(1), tempb5(0),tempc4(0)
stempcd(1),tempcd(2));

twobit_FA

generic map(delay 1,delay2,delay3,delay4,delay5,delay6)

port map(GG6(3),GG4(5),tempb4(2),tempb5(1), tempb6(0),tempcS(0),
tempe5(1),tempe3(2));

twobit_FA

generic map(delay1,delay2,delay3,delayd,delay5,delay6)

port map(GG7(3),GG4(6),tempb5(2),tempb6(1), tempb7(0),tempc6(0),
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tempc6(1),tempc6(2));
f18: twwobit_FA

generic map(delay1,delay2,delay3,delay4,delays delay6)
port map(GG8(3),GG4(7),tempa7(2),tempb6(2), tempb7(1),tempc7(0),

tempc7(1),tempc7(2));

z2: xor_2
generic map(delay4)
port map(tempc2, tempc3(0),P(5));
u9: and_2
generic map{(delay1)
port map(tempc2, tempce3(0), tempd?2);
FA3: FADD
generic map(delay7)
port map(tempd2, tempc3(1), tempcd(0), P(6), tempd3);
f19:  wwobit_FA
generic map(delay 1. delay2,delay3,delay4,delay5,delay6)
port map{(GG5(4),c0,tempc3(2),temped(1), tempc5(0),tempd4(0)
,2tempd4(1),tempd4(2));
f20: twobit_FA
generic map(delay1,delay2,delay3,delay4,delay5,delay6)
port map(GG6(4),GG5(5),temped(2),tempe5(1), tempe6(0),tempdS(0)
ystempd5{1),tempd5(2));
f21: twobit_FA
generic map(delay1,delay2,delay3,delay4,delay5,delay6)
port map(GG7(4),GGS5(6),tempc5(2),tempc6(1), tempe7(0),tempd6(0)
,2tempd6(1),tempd6(2));
f22:  twobit_FA
generic map(delay1,delay2,delay3,delay4,delay5,delay6)
port map(GG8(4),GG5(7),tempc6(2),tempe7(1), tempb7(2),tempd7(0)
,Ltempd7(1),tempd7(2));
z3:  xor 2
generic map(delay4)



ul:

FA4:

f23:

f24:

£25:

ull:

FAS:

£26:

f27.

port tnap(tempd3, tempd4(0),P(7)):
and_2

generic map(delayl)

port map(tempd3, tempd4(0), tempe3);
FADD

generic map(delay7)

port map{tempe3, tempd4(1), tempd5(0), P(8), tempe4);

twobit_FA

generic map(delayl,delay2,delay3,delay4,delay5,delay6)

port map(GG6(5),c0,tempd4(2),tempdS(1), tempd6(0),tempe5(0)
stempe5(1),tempe5(2)):

twobit_FA

generic map(delayl,delay2 delay3.delay4,delay5,delay6)

port map{GG7(5),GG6(6),tempd5(2),tempd6(1), tempd7(0),tempet(0)
Jemped(1),tempe6(2));

twobit_FA

generic map(delay,delay2,delay3,delay4,delay5.delay6)

port map(GG8(5),GG6(7),tempd6(2),tempd7(1), tempc7(2),tempe7(0)
JLempe7(1),tempe7(2));

xor_2

generic map(delay4)

port map(tempe4, tempe5(0),P(9));

and_2

generic map(delayl)

port map(tempe4, tempe5(0), tempfd);

FADD

generic map(delay7)

port map(tempf4, tempe5(1), tempe6(0), P(10), tempfS);

twobit_FA

generic map(delay1,delay2,delay3,delay4,delays.delay6)

port map(GG7(6),c0,tempe5(2),1lempe6(1), tempe7(0),tempf6(0)
,tempf6(1),tempf6(2));

twobit_FA

generic map(delay1,delay2,delay3,delay4,delay5,.delay6)
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port map(GG7(7),GG8(5),tempe6(2),tempe7(1), tempd7(2),tempf7{0)
,tempf7(1),tempf7(2));
zSs: xor_2
generic map(delay4)
port map(tempf3, tempf6(0),P(11));
ul2: and_2
generic map(delayl)
port map(tempf3, tempf6(0), tempg5);
FA6: FADD
generic map(delay7)
port map(tempg5, tempf6(1), tempf7(0), P(12), tempg6);
28:  twobit_FA
generic map(delay|1,delay2,delay3,delay4,delay5,delay6)
port map(GG8(7),c0,tempf6(2),tempf7(1), tempe7(2),tempg7(0)

stempg7(1),tempg7(2));
z6: xor_2
generic map(delay4)
port map(tempg6, tempg7(0),P(13));
ul3: and_2

generic map(detay!)

port map(tempg6, tempg7(0), temph6);
FA7: FADD

generic map(delay7)

port map(temph6, tempg7(1), tempf7(2), P(14), temph7);
zl: xor_2

generic map(delay4)

port map(tempg7(2), temph7,P(15));

G400: foriinOto 15 generate
d3: d_latchP
generic map(delay§)
port map(clk1, P(i}, product(i});
end generate;

ainl<=to_integer(all);
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binl <= to_integer(bll);
product] <= to_integer(product);
end structure;

entity twobit_FA is

generic (delayl,delay2,delay3.delayd,delay5,delay6

port(a,b,c,d,e: in bit; s0,51,c1: out bit),
end twobit_FA,;

architecture structure of twobit_FA is
component and_2
generic(delay : in time);
port{a,b: in bit; ¢: out bit);
end component;
component xor_2
generic (delay: in time);
port(a,b: bit; c: out bit);
end component;
component or_2
generic (delay: in time);
port(a,b:bit, c: out bit);
end component;
component inverter
generic (delay: in time);
port (a: bit; b: out bit);
end component;
component xnor_2
generic (delay: in time);

:in time);



Appendix 1C Architectural Model for Type 1_2-Bit FA Muluplier

189

port(a,b: vit; c: out bit);
end component;
component or_3

generic (delay: in time);

port(a,b,c: bit; d: out bit);
end component;

signal temp1,temp2,temp3,temp4,temp5,temp6,temp7 temp8,temp9:bit:='0";
signal temp10,temp11,tempi2,temp13,templ4,templS,templ6,templ7: bit:='0';
signal temp18,temp19:bit:='0";

signal c_bar,d_bar,e_bar: bit;

for all: and_2 use entity work.and_2(behavior);

for all: xor_2 use entity work.xor_2(behavior);

for all: or_2 use entity work.or_2(behavior);

for all: d_latchN use entity work.d_latchN(behavior);

for all: d_latchP use entity work.d_latchP(behavior);

for all: or_3 use entity work.or_3(behavior);

for all: xnor_2 use entity work.xnor_2(behavior);

for all: inverter use entity work.inverter(behavior);

begin

inl:  inverter
generic map(delay6)
port map(c, c_bar);
in2:  inverter
generic map(delay6)
port map(d, d_bar);
in3:  inverter
generic map(delay6)
port mapf(e, ¢_bar),
zl; xor_2
generic map(delay4)
port map(d,e,templ):
xl: xnor_2
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ul:;

u3:

ud:

us:

pl:

y2:

ub:

u?:

y3:

generic map(delay5)

port map(d,e, temp2);

and_2

generic map(delay1)

port map(templ, ¢_bar,temp3);
and_2

generic map(delayl)

port map(temp2, c,temp4);

or_2

generic map(delay2)

port map{temp3, temp4, s0);
and_2

generic map{delayl)

port map(c, d,temp3);

and_2

generic map(delay1)

port map{c, e,temp6);

and_2

generic map(delayl)

port map(d, e,temp7);

or_3

generic map(delay3)

port map(temp3, temp6,temp7,temp8);
or_2

generic map(delay2)

port map(a, b,temp9);
and_2

generic map(delay!)

port map(tempé,temp9,temp10);
and_2

generic map(delay!)

port map(a,b,temp1 1);

or_2

generic map(delay?)
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u8:

uo:

ulQ:

p2:

ull:

ul2:

end structure;

port map(temp10,tempil,cl);
and_2

generic map{delay1)

port map(c_bar,d_bar,temp12);
and_2

generic map(delay!)

port map(d_bar,e_bar,temp13),
and_2

generic map(delayl)

port map(c_bar,e_bar,temp14);
or_3 '
generic map(delay3)

port map(temp12, temp13,templ4,temp15);
xor_2

generic map(delay4)

port map(a,b,temp16);

xnor_2

generic map(delay5)

port map(a,b, temp17);

and_2

generic map(delayl)

port map(temp15, temp16, temipi8);
and_2

generic map(delayl)

port map(temp17, temp8, temp19);
or_2

generic map(delay2)

port map(temp18,templ9, si);
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use XL.XL._STD.all, STD.TEXTIO.all, XL.XL_10.all;
entity th_five is

end ;

architecture structure of tb_five is

signal a,b: bit_vector(7 downto 0);

signal ain,bin,product_IL:integer:=0;
signal clk:bit:='0";

signal product_b:bit_vector(15 downto 0);

component five_bit
generic(delay 1,delay2, delay3,dclay4,delay5,delay6,delay7,delay8 :in time);
port(al,bl:bit_vector(7 downto 0); clk1: in bit; Product; inout bit_vector(15
downto 0); ainl,bin1,productl: out integer);

end component;

for xx1: five_bitc use entity work.five_bit(structure);
begin
xx1: five_bit
generic map (0.3218 ns,0.5893 ns,0.6844 ns, 1.026 ns, 1.1042 ns.0.15
ns, 1.486 ns, 1.2 ns)
port map (a,b, clk, product_b, ain, bin, product_I);

a <= "00000000","11000000" after 20 ns, "10000101" after 40 ns,"00000101" after
60 ns, "11111111" after 80 ns, "00001010" after 100 ns, "00000001" after 120
ns,"00000011" after 140 ns;

b <= "00000000","11000111" after 20 ns, "11000000" after 40 ns, "000001000" after 60
ns, "11111111" after 80 ns, "00000100" after 100 ns, "00000001" after 120
ns,"00000011" after 140 ns;

clk <='0", '1" after 18 ns,'0" after 20 ns, '1' after 38 ns, '0' after 40 ns, '1’ after 58 ns,'0’
after 60 ns, '1" after 78 ns, ‘0’ after 80 ns, '1' after 98 ns, ‘0" after 160 ns, '1’
after 118 ns, '0" after 120 ns, '1" after 138 ns, ‘0" after 140 ns;
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variable L:line;

write (L," TIME ain bin Product_l

writeline (outpui, L);

write (L, " ~- - - - PR
writeline (output, L);

write (L, " ");

writeline (output, L);

wait;

monitor_process: process(d,b)

variable dline; line;

begin

write (dline, NOW, right, 7);
write (dline, ain, right, 7);

write (dline, bin, right, 7);

write (dline, Product_l, right, 10);

write (dline, Produc:_b, right, 20);
write (dline, el, right, 7);

write (dline, s01, right, 7);

write (dline, s11, rigt, 7);

write (dline, c11, right, 75
writeline (output, dline);

end process;

waves_monitor (to_integer(a),to_integer(b).tc_integer(product_b));

end siructure ;

Product_B");
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library XL;
use XL.XI._STD.all,STD.TEXTIQO.all, XL.XL_IO.all;

entity five_bit] is
generic (delayl,delay2 delay3,delayd,delay5,delay6,delay7,delay8: in time);
port(al,bl: bit_vector(7 downto 0);clk1: in bit;Product: inout bit_vector(15 downto
0); ainl,binl,productl: out integer);

end five_bitl;

architecture structure of five_bitl is
component and_2
generic(delay : in time);
port(a,b: in bit; c: out bit);
end component;
component xor_2
generic {delay: in time);
port(a,b: bit; c: out bit);
end component,
component or_2
generic (delay: in time);
port(a,b:bit; ¢: out bit);
end component;
component inverter
generic (delay: in time),
port (a: bit; b: out bit);
end component;
component xnor_2
generic (delay: in time);
port(a,b: bit; c: out bit);
end component;
component or_3
generic (delay: in time);
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port(a,b,c: bit; d: out bit);
end component;
component twobit_FA1
generic (delay1: in time);
port (a,b,c.d,e: in bit; s0,s1: out bit; c1: inout bit);
end component;
component FADD
generic{delay: in time);
port(a,b,c: bit; sum:out bit; carry: inout bit);
eid component;
component d_{aichN
generic(delay:in time);
port(clk1,x: in bit; y:out bit);
end component;
component d_latchP
generic(delay: in time);
port(clk1,x:in bit; y: out bit);
end component;
signal tempal,tempa2,tempa3,tempad,tempa5,tempa6,tempa7: bit_vector(2 downto
0):="000";

signal tempb2,tempb3,tempb4,temphS,tempb6,tempb7: bit_vector(2 downto 0):="000

signal tempc3,tempcd,tempeS,tempe6,tempe7: bit_vector(2 downto 0):="000";

signal tempd4,tempd5,tempd6,tempd7: bit_vector(2 downto 0):="000";

signal tempeS5,tempe6,tempe7: bit_vector(2 downto 0):="000";

signal tempf6,tempf7: bit_vector(2 downto 0):="000";

signal tempg7: bit_vector(2 downto 0):="000";

signal c0,c1,tempbl,tempc,tempc2,tempd2,tempd3,tempe3,temped, tempf4
tempfS5,tempgS,tempg6,temph6,temph7:bit:='0";

signal GG1,GG2,GG3,6G4,GGS5,G6G6,GG7,GG8:bit_vector(7 downto
0):="00000000";

signal all,b1l: bit_vector(7 downto 0):="00000000";

signal P: bit_vector(15 downto 0):="0000000000000000";

for all: and_2 use entity work.and_2(behavior);

for all: xor_2 use entity work.xor_2(behavior);

for all: or_2 use entity work.or_2(behavior);



for all; d_latchN use entity work.d_latchN(behavior);
for all: d_latchP use entity work.d_latchP(behavior);
for all: FADD use entity work. FADD(structure);

for all: twobit_FA1 use entity work.twobit_FA 1(structure);
for all; or_3 use entity work.or_3(behavior);

for all: xnor_2 use entity work.xnor_2(behavior);
for all: inverter use entity work.inverter(behavior);

begin
GO: foriin O to 7 generate

d0: d_latchN
generic map{delay8)
port map(cikl, al(i), all(i));
end generate;
Gl41: foriin0to 7 g.nerate
dl: d_latchN
generic map(delay8)
port map(clkl, bl{i), b11{i));
end generate;
G1: foriin O to 7 generate
u(: and_2
generic map(delay1)
port map(all(i),b11(0),GG1());
end generate;
G2: foriin O to 7 generate
ul:and_2
generic map(delay1)
port map(all(i),b11(1),GG2(i));
end generate;

G3: foriin O to 7 generate
u2: and_2

generic map(delay1)
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fl:

port map(ali(i),b11(2),GG3(i}));
end generate;
G4: foriin 0 to 7 generate
u3: and_2
generic map(delay1)
port map(all(i},b11(3),GG4(i));
end generate;
G5: foriin O to 7 generate
u4: and_2
generic map(delayl)
port map(all(i),b11(4),GG5(1));
end generate;
G6: foriin 0 to 7 generate
wSrand_2
generic map(delay1)
port map(ali(i),b11(5),GG6());
end generate;
G7: foriin O to 7 generate
ub: and_2
generic map(delayl1)
port map(a1l(i),b11(6),GG7(1));
end generate;
G8: foriin 0 to 7 generate
u7:and_2
generic map(delay1)
port map(all(i),b11(7),GG8(1));
end generate;
P(0) <= GG1(0);
twobit_FA1l
generic map(delay7)

port map(GG2(1),c0,GG1(1),GG2(0),c1, P(1),tempal(1),tempal(2));

twobit_FA1
generic map(delay7)

port map(GG3(1),GG2(2),GG3(0),GG1(2),c0,tempa2(0),tempa2(1),tempa2(2));

twobit_FA1



f4:

f5:

f6:

FAl:

f10:

fl1:

rchi iral Model for Tvpe 2 2-Bj

generic map{delay7)

port map(GG2(3),GG4(1),GG4(0).GG1(3),c0,tempa3(0),tempa3(1),tempa3(2));

twobit_FA1

generic map(delay7)

port map(GG5(1),GG2(4),GG5(0),GG1(4),c0,tempad(0),tempad(1),tempad(2));

twobit_FAl

generic map(delay7)

port map(GG6(1),GG2(5),GG6(0),GG1(5),c0,tempaS(0),tempaS(1),tempas5(2));

twobit_FA1

generic map(delay7)

port map(GG7(1),GG2(6),GG7(0),GG1(6),c0,tempa6(0),tempa6(1),tempa6(2));

twobit_FA1

generic map(delay7)

port map(GG8(1),GG2(7),GGR(0),GG1(7),c0,tempa7(0),tempa’(1),tempa7(2));

FADD
generic map(delay7)
port map(tempal(l),tempa2(0),c0, P(2), tempbl);

twobit_FA1l

generic map(delay7)

port map(GG3(2),c0,tempal(2),tempa2(1),tempa3(0),tempb2(0)
tempb2(1),tempb2(2));

twobit_FA1l

generic map(delay?7)

port map(GG4(2),GG3(3),tempa2(2),tempa3(1),tempa4(0),tempb3(0)
tempb3(1),tempb3(2));

twobit_FA1

generic map(delay7)

port map(GG5(2),GG3(4),tempa3(2),tempad(1),tempa5(0),tempb4(0)
tempb4(1),tempb4(2});

twobit_FAl

generic map(delay7)

port map(GG3(5),GG6(2),tempad(2),tempa5(1),tempa6(0),tempb5(0),
tempb5(1),tempb5(2));
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fi2:

f13:

zl:

us:

FAZ2;

fl14:

f15:;

fl6:

f17:

f18:;

twobit_FA1

generic map(delay7)

port map(GG7(2),GG3(6),tempa5(2),tempaé(1),tempa7(0),tempb6(0),
tempb6(1),tempb6(2));

twobit_FA1l

generic map(delay7)

port map(GG8(2),GG3(7),tempa6(2),tempa?(1), c0,tempb7(0)
tempb7(1),tempb7(2));

xor_2

generic map(delay4)

port map(tempbl, tempb2(0),P(3));

and_2

generic map(delayl)

port map(témpbl, tempb2((), tempc),

FADD

generic map(delay7)

port map(tempc, tempb2(1), tempb3(0), P(4), tempc2);

twobit_FA1

generic map(delay7)

port map(GG4(3),c0,tempb2(2),tempb3(1), tempb4(0),tempc3(0)
tempe3(1),tempc3(2));

twobit_FA1

generic map(delay7)

port map(GG35(3),GG4(4),tempb3(2),tempb4(1), tempb5(0),tempc4(0)
tempc4(1),tempcd(2));

twobit_FA1l

generic map(delay7)

port map(GG6(3),GG4(5),iempb4(2),tempb5(1), tempb6(0),tempec5(0)
tempcS(1),tempeS(2));

twobit_FA1

generic map(delay7)

port map(GG7(3),GG4(6),tempb5(2),tempb6(1), tempb7(0),tempc6(0)
tempc6(1),tempc6(2));

twobit_FA1

generic map(delay7)
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u9:

FA3:

f19:

£20:

21:

22:

ul0:

FA4:

port map(GG8(3),GG4(7),tempa7(2),iempb6(2), tempb7(1),tempc7(0)
ztempc7(1),tempc7(2));

Xor_2

generic map(delay4)

port map(tempc2, tempc3(0),P(5));

and_2

generic map(delay1)

port map(tempc2, tempc3(0), tempd?2);

FADD :

generic map(delay7)

port map(tempd2, tempc3(1), tempc4(0), P(6), tempd3);

twobit_FAl

generic map(delay7)

port map(GG5(4),c0,tempc3(2),tempcd(1), tempc5(0),tempd4(0)
tempd4(1),tempd4(2));

twobit_FA1]

generic map(delay7)

port map(GG6(4),GG5(5),tempcd(2),tempe5(1), tempc6(0),tempd5(0),
tempd3(1),tempd5(2));

twobit_FA1l

generic map(delay7)

port map(GG7(4),GG5(6),tempe3(2),tempe6(1), tempe7(0),tempd6(0),
tempd6(1),tempd6(2));

twobit_FA1l

generic map(delay7)

port map(GG8(4),GGS5(7),tempc6(2),tempce7(1), tempb7(2),tempd7(0)
tempd7(1),tempd7(2));

Xor_2

generic map(delay4)

port map(tempd3, tempd4(0),P(7));

and_2

generic map(delay1)

port map(tempd3, tempd4((), tempe3);

FADD



f23:

24:

f25:

ull:

FAS:

f26:

f27.
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generic map(delay7)

port map(tempe3, tempd4(1), tempd5(0), P(8), tempe4);

twobit_FA1

generic map(delay7)

port map(GG6(5),c0,tempd4(2),tempd5(1), tempd6(0),tempeS5(0)
stempe3(1),tempe5(2));

twobit_FA1

generic map{(delay7)

port map(GG7(5),GG6(6),tempd5(2),tempd6(1), tempd7(0),tempe6(0)
tempe6(1),tempe6(2));

twobit_FA1

generic map(delay7)

port map(GG3(5),GG6(7),tempd6(2),tempd7(1), tempc7(2),tempe7(0),
tempe7(1),tempe7(2));

xor_2

generic map(delay4)

port map(temped, tempe5(0),P(9));

and_2

generic map(delayl)

port map(tempe4, tempe5(0), tempf4);

FADD

generic map(delay7)

port map(tempf4, tempe5(1), tempe6(0), P(10), tempf5);

twobit_FA1l

generic map(delay7)

port map(GG7(6),c0,tempe5(2) tempe6(1), tempe7(0),tempf6(0)
tempf6(1),tempf6(2));

twobit_FA1

generic map(delay7)

port map(GG7(7),GG8(6),tempe6(2),tempe7(1), tempd7(2),tempf7(0),
tempf7(1),tempf7(2));

xor_2

generic map(delay4)

port map(tempf35, tempf6(0),P(11));
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ul2: and_2

generic map(delay1)

port map(tempf3, tempf6(0), tempgs);
FA6: FADD

generic map(delay7)

port map(tempg5, tempf6(1), tempf7(0), P(12), tempg6);
f28:  twobit_FAl

generic map(delay7)

port map(GG8(7),¢0,tempf6(2),tempf7(1), tempe7(2),tempg7(0),

tempg7(1),tempg7(2));
z6: xor_2

generic map(delay4)

port map(tempg6, tempg7(0),P(13));
ul3: and 2

generic map(delay!)

port map(tempg5, tempg7(0), temph6);
FA7: FADD

generic map(delay7)

port map(temph®, tempg7(1), tempf7(2), P(14), temph7);
zl: xor_2

generic map(delay4)

port map(tempg7(2), temph7,P(15));

G400: foriin Oto 15 generate
d3: d_latchP
generic map(delay8)
port map(clk], P(i), product(i});
end generate;

zinl<= to_integer(all);
binl <=to_liieger(b1l);

productl <= to_integer{(product);

end structure;
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entity twobii_TAl is

generic (de'ay1: in ime);

port(a,b,c,d,e: in bit; s0,s1: out bit; c1: incut bit);
end twobit_FAL;

architecture structure of twobit_FA1 is
component FADD
generic (delay: in time);
port(a,b,c: bit; sum:out bit;carry: inout bit);
end component;
signal temp_out:bit:="0";
for all: FADD use entity work. FADD(structure);

begin
FAl: FADD
generic map(delay1)
port map(c,d,e,s0,temp_out);
FA2: FADD
generic map(delayl)
port map(a,b,temp_out,sl,cl);

end structure;

library XL;
e XL XL_STD.all,STD.TEXTIO.al!, XL.XL_IO.all;
entity th_fivel is

end ;
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architecture structure of tb_fivel is
signal a,b: bit_vector(7 downto 0);
signal ain,bin,product_Liinteger:=0;
signal clk:bit:='0',;
signal product_b:bit_vector(15 downto 0);

component five_bitl _
generic(delay 1, delay2,delay3,delay4,delay5,delay6,delay?,delay8 :in time);
port(al,bi:bit_vector(7 downto 0); clkl: in bit; Product: inout bit_vector(15
downto 0); ainl,binl,productl: out integer);
end component;

for xx1: five_bitl use entity work.five_bit1(structure);

begin
xx1: five_bitl
generic map (0.3Z18 ns,0.5893 ns,0.6844 ns, 1.026 ns, 1.1042 ns,0.15
ns, 1.486 ns, 1.2 ns)
port map (a,b, clk, product_b, ain, bin, product_I);

a <= "00000000","10000000" after 24 ns, "10000011" after 48 ns,"00000101" after 72
ns, "11000000" after 96 ns, "00001100" after 120 ns, "00000001" after 144
ns,"00000011" after 168 ns;

b <= "00000000","10000000" after 24 ns, "11100001" after 48 ns, "00000101" after 72
ns, "11000110" after 96 ns, "00001101" after 120 ns, "00000001" after 144
ns,"00000011" after 168 ns;

clk <='0, '1" after 22 ns,'0' after 24 ns, '1' after 46 ns, '0" after 48 ns, '1" after 70 ns,'(f
after 72 ns, '1' after 94 ns, 0" after 96 ns, '1' after 118 ns, '0" after 120 ns, 'l
after 142 ns, '0" after 144 ns, '1" after 166 ns, '0' after 168 ns;

-process
variable L:line;
begin
write (L, " TIME ain bin Product.]  Product_B");
writeline (output, L);
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write (L, " - - o - ",
writeline (output, L);
write (L, " ");

end process;

writeline (output, L);

wait;

monitor_process: process(a,b)

variable dline: line;

write (dline, NOW, right, 7);
write (dline, ain, right, 7);

write (dline, bin, right, 7);

write (dline, Product_], right, 10);

write (dline, Product_b, right, 20);
writeline (output, dline);

end process;

waves_monitor (to_integer(a),to_integer(b),to_integer(product_b));

end structure ;
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Figure 2C.1: VHDL Waveforms for Type_2 Two-Bit Full-Adder Multiplier
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Cemultp.vhd

Library XL;

use XL.XI, _STD.all;
Library Mgates;

Use Mgates.all;
Library Madder;

Use Madder.all;

entity dadda_multp2 is
generic(delayl,delay2,delay3,delay4,delay5,delay6,delay7,delay8,delay9,delay 10,
delayll,delayl2: in time);
port(clkl: bit; al,bl:in bit_vector(7 downto 0); sum: inout bit_vector(14 downto
0);T_sum,T_carry: inout bit_vector(10 downto 1); Productl:inout
bit_vector{15 downto 0);Product: inout bit_vector(11 downto
1);ainl,binl,output:out integer);
end dadda_multp2;

architecture structure of dadda_multp2 is

component and_2
generic(delay : in time);
port(a,b: in bit; ¢: out bit);
end component;
component xor_2
generic (delay: in time);
port(a,b: bit; ¢: out bit);
end component;
component or_2
generic (delay: in time);
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port(a,b:bit; c: out bit);
end component,
component FADD
generic(delay: in ime);
port(a,b,c: bit; sum,carry:out bit);
end component;
component Hadder
generic(delay: in time);
port(x,y:in bit; sum,carry:out bit);
end component;
component Tenbit_adder
generic(delay1,delay2,delay3,delay4: in time);
port(a,b: bit_vector(10 downto 1); c0: in bit; sum: out bit_vector(11
downto 1));
end component;
component canca
port(producta: in bit_vector(11 downto 1); suma: in bit_vector(14 downto
0); productb: inout bit_vector(15 downto 0));
end component;
component d_latchN
generic(delay:in time);
port(clkl,x: in bit; y:out bit);
end component;
component d_latchP
generic(delay: in time);
port(clk1,x:in bit; y: out bit);
end component;

signal c01: bit:="0";

signal carry: bit_vector(14 downto 0};

signal GG1,GG2,GG3,GG4,GG5,GG6,GG7,GG8: bit_vector(7 downto
0):="00000000";

signal tsa2,tsa3 tsad,tsad,tsa6,tsa9,tsa10: bit:='0";

signal tcal,tca2,tca3,tcad,tcas,tcab,tcad,tcal0:bit:='0"

signal tsa7,tsa8,tca7,tca8: bit_vector(1 downto 0):="00";
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signal tsb3,tcb3,tcb2,tsbd,tsbS,tsb7,tsb9,tsb10,tsb11:bit:="0";

signal tcb4,tcb5,tcb7,tcb9,tcb10,tcb1 1:bit:='0";

signal tsb6,1cb6,tsb8,tcb8:bit_vector(l downto 0):="00";

signal tscd,tscS,tsc6,1sc8,tsc10,tsc11,tsc12:bit:="0";

signal tcc3,tced,teeS,teeb,iec8, tec10,tecl 1,tec12:bin:="0';

signal ts¢9,tcc9,tsc7,tec7: bit_vector(1 downto 0):="00";

signal tsc14,tscl15:bit :='0';

signal all,b1L: bit_vector(7 downto 0):="00000000";

signal suml: bit_vector(14 downto 0):="000000000000000";

signal carry_templ, sum_templ: bit_vector(10 downto 1):="0000000000";
signal g,gg,p,gp: bit_vector(10 downto 1):="0000000000";

signal sum_temp,carry_temp: bit_vector(10 downto 1):="0000000000",
signal temp1,temp2,temp3,carry_templ: bit_vector(4 downto 1):="0000";
signal temp4:bit:='0";

for all: and_2 use entity work.and_2(behavior);

for all: xor_2 use entity work.xor_2(behavior);

for all: or_2 use entity work.or_2(behavior),

for all; d_latchN use entity work.d_latchN(behavior);
for all: d_latchP use entity work.d_latchP(behavior);
for all: FADD use entity work. FADD(structure);

for all: hadder use entity work.hadder(structure);

for ccl: canca use entity work.cancation(behavior);

" begin

G40: foriin O to 7 generate
d0: d_latchN
generic map(delay2)
port map(clkl, ai(i), al.fi));
end generate;

G41: foriin O to 7 generate
dl: d_latchN
generic map(delay2)



i ral Model for

port map(clk1, b1(i), b1l(i));
end generate;

GO: foriin 010 7 generate
u0: and_2
generic map(delay1)
port map(ail(i),b11(0),GG1G));
end generate;

Gl: foriin 0 to 7 generate
ul:and_2
generic map(delay1)
port map(all(i),b11(1),GG23));
end generate;

G2: foriin 0 to 7 generate
u2: and_2
generic map(delay])
port map(all(i),b11(2),GG3(i));
end generate;

G3: foriin 0 to 7 generate
u3: and_2
generic map(delay1)
port map(all(i),b11(3),GG4(i));
end generate;
G4: foriin 0 to 7 generate
ud: and_2
generic map(delay1)
port map{(all(i),b11(4),GG5());
end generate;
GS: foriin O to 7 generate
u5: and_2
generic map(delay1)
port map(all(i),b11(5),GG63));
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end generate;
G6: foriin O to 7 generate
u6: and_2
generic map(delayl)
port map(all{i),b11(6),GG7(i));
end generate;

G7: foriin O to 7 generate
u7:and_2
generic map(delay1)
port map(all(i),b11(7),GG8(i));
end generate;

HA1la: hadder

generic map(delay3)

port map(GG1(1), GG2(0), sum(1),tcal);
FA2a: FADD

generic map(delay3)

port map(GG2(1),GG1(2),GG3(0),tsa2,tca2);
FA3a: FADD

generic map(delay3)

port map(GG3(1),GG1(3),GG4(0),tsa3,tca3);
FAda: FADD

generic map(delay3)

port map(GG4(1),GG1(4),GG5(0),tsa4,tcad);
FAS5a: FADD

generic map(delay3)

port map(GG5(1),GG6(0),GG1(5),tsas,tcal);
FA6a: FADD

generic map(delay3)

port map(GG4(3),GG1(6),GG7(0),tsa6,tcabd);
FA7a: FADD

generic map(delay3)

port map(GG3(5),GG6(2),GG2(6),tsa7(0),tca7(0));
FA7al: FADD
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generic map(delay3)

port map(GG7(1),GG8(0),GG1(7),tsa7(1),1ca7(1));
FAB8a: FADD

generic map(delay3)

port map(GG7(2),GG2(7),GG8(1),tsa8(0),tca8(0));
FA8al: FADD

generic map(delay3)

port map(GG4(5),GG6(3),GG3(6),tsa8(1),tca8(1));
FA9a: FADD

generic map(delay3)

port map(GG7(3),GG3(7),GG8(2),tsa9,tcad);
FA1Qa: FADD

generic map(delay3)

port map(GG8(3),GG4(7),GG7(4),tsal0,tcal0);
HAZ2b: hadder

generic map(delay3)

port map(ical,tsa2,sum(2),tcb2);
FA3b: FADD

generic map(delay3)

port map(GG2(2),tca2,tsa3,tsb3,tch3);
FA4b: FADD

generic map(delay3)

port map(GG2(3),1ca3,tsad, tsbd,tcbd);
FA5b: FADD

generic map(delay3)

port map(GG2(4),tcad,tsas,tsbs,tcb5);
FA6b: FADD

generic map(delay3)

port map(GG3(4),tca5,GG5(2),tsb6(0),tcb6(0));
FA6b1: FADD

generic map(delay3)

port map(GG6(1),GG2(5),tsa6,tsb6(1),teb6(1));
FAT7b: FADD

generic map{delay3)

port map(icab,tsa7(0),tsa7(1),tsb7,tcb7);
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HAS8bD: hadder

generic map(delay3)

port map{tca7(0),tca7(1),tsb8(0),tcb8(0));
FA8b: FADD

generic map(delay3)

port map(tsa8(0),tsa8(1),GG5(4),tsb8(1),tcb8(1));
FA9b: FADD

generic map(delay3)

port map(tca8(0),tca8(1),tsa9,tsb9,tchb9);
FA10b: FADD

generic map(delay3)

port map(tca%,tsal0,GG5(6),tsb10,tcb10);
FAllb: FADD

generic map(delay3)

port map(tcal0,GG5(7),GG8(4),tsb11,1cb11);
HA3c: hadder

generic map(delay3)

port map(tcb2,tsb3,sum(3),tcc3);
HAd4c: hadder

generic map(delay3)

port map{tcb3,tsb4,tscd tced);
FAS5¢: FADD

generic map(delay3)

port map(tcb4,tsb5,GG4(2),tsc5,tced);
FA6¢c: FADD

generic map(delay3)

port map(tch5,tsb6(0),tsb6(1),tsc6,tcch);
FA7c: FADD

generic map(delay3)

port map(tcb6(0),GG5(3),GG4(4),ts¢7(0),tcc7(0));
HA7¢: hadder

generic map(delay3)

port map(tcb6(1),tsb7,tsc7(1),tcc7(1));
FAS8c: FADD

generic map(delay3)
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port map(tcb7,tsb8(0),tsb8(1),tsc8,tcc8);
FA9c: FADD

generic map(delay3)

port map(icb8(0),GG5(5),GG6(4),tsc9(0),1cc9(0));
FA9¢l: FADD

generic map(delay3)

port map(tcb8(1),tsb9,GG4(6),tsc9(1),tcc(1));
FA10c: FADD

generic map(delay3)

port map(tcb9,tsb10,GG6(5),tsc10,tcc10);
FAllc: FADD

generic map(delay3)

port map(tcb1Q,tsb11,GG6(6),tsc11,tcell);
FA12c: FADD

generic map(delay3)

port map(tcb11,GG6(7),GG8(5),tsc12,tccl2);
FA4d: FADD

generic map(delay3)

port map(tcc3,tscd,GG3(2),sum(4),carry(4));
FASd: FADD

generic map{(delay3)

port map(tccd,tsc5,GG3(3),sum(5),carry(5));
HAGd: hadder

generic map(delay3)

port map(tccS,tsc6,sum(6),carry(6));
FA7d: FADD

generic map(delay3)

port map(tcc,tsc7(0),tsc7(1),sum(7),carry(7));
FA8d: FADD

generic map(delay3)

port map(tcc7(0),tcc7(1),tsc8,sum(8),carry(8));
FA9d: FADD

generic map(delay3)

port map(tcc8,tsc9(0),tsc9(1),5um(9),carry(9));
FA10d: FADD
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generic map(delay3)

port map(tcc(0),tcc9(1),isc10,sum(10),carry(10));
FAlld: FADD

generic map(delay3)

port map(tce10,tsc11,GG7(5),sum(11),carry(11));
FAl2d: FADD

generic map(delay3)

port map(tecl 1,tsc12,GG7(6),sum(12),carry(12));
FA13d: FADD

generic map(delay3)

port map(tcc12,GG7(7),GG8(6),sum(13),carry(13));

FAl14d: FADD
generic map(delay3)
port map(tscl4,tsc15,GG8(7),sum(14),carry(14));

sum(0) <= GG1(0);

T_sum <= sum(14 downto 5);

T_carry <= carry(13 downto 4);
x1: FADD

generic map(delay?3)

port map(T_sum(1),T_carry(1),c(1,sum_temp{1), carry_temp(1));

x2: FADD
generic map(delay3)
portmap(T_sum(2),T_carry(2),carry_temp(1),sum_temp(2),
carry_temp(2));

G30:foriin 3 to 10 generate

ull:and_2

generic map(delayl)

port map(T_sum(i), T_carry(i),z(i));
z5: xor_2

generic map(delay5)

port map(T_sum(i), T_carry(i), p(i));
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end generate;

G31: foriin 1 to 4 generate

ulZ:and_2

generic map(delayl)

port map(p(2*i+2), g(2*i+1),temp1{i));
yl:or_2

generic map(delay4)

port map(g(2*i+2),temp1(i),gg(2*i+2));

ul3: and_2
generic map(delayl)
port map(p(2*i+2), p(2*i+1), gp(2*1+2));
end generate;

G33: foriinl to4 generate
ui4: and_2
generic inap{delayl)
port map(gp(2*i+2), carry_temp(2*i),carry_temp1(1));
y2:or_2
generic map(delay4)
port map(carry_tempi(i),gg(2*i+2),carry_temp(2*i+2));
end generate;

G34: foriin1to 3 generate
z3: xor_2
generic map{delays)
port map(p(2*i+1), carry_temp(2*1), sum_temp(2*i+1));
uls:and_2
generic map{delayl)
port map(p(2*i+1), carry_temp(2*i), temp2(i));
y3:or_2
generic map(delay4)
port map(temp2(i), g(2*i+1),temp3(i));
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z2: xor_2
generic map(delay5)
port map(p(2*i+2), temp3(i),sum_temp(2*i+2)};
end generate;
x3: FADD
generic map(delay3)
port map(T_sum(9),T_carry(9),carry_temp(8),sum_temp(9),
carry_temp(9));
ul6: and_2
generic map(delayl)
port map(p(9), carry_temp(8), temp4);

y4: or_2
generic map{(delay4)
port map(temp4, g(9),Carry_temp(9));
x4: FADD
generic map(delay3)
port map(T_sum{10),T_carry(10),Carry_temp(9),sum_temp(10),
carry_temp(10));

G42:foriin 1 to 10 generate
d3: d_latchP
generic map(delay2)
port map(clk1, carry_temp(i), carry_templ(i});
end generate;

G43: foriin 1 to 10 generate
d4: d_latchP
generic map(delay?2)
port map(clkl, sum_temp(i),sum_templ(i));
end generate;

G44: foriin Oto 14 generate
d5: d_latchP
generic map(delay2)
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port map(clk1, sum(i}, suml(i));
end generate;

Product<= carry_templ(10)&sum_templ ;

ainl<=to_integer(all);
binl <=to_intcger{b1l);
ccl: canca
port map{product,suml,product1);

output <= to_integer(productl);
end structure;

library XL;
use XL.XL_STD.all,STD.TEXTIQ.all, XL.XL_IQ.all;

entity tb_dadda is
end tb_dadda;

architecture structure of tb_dadda is

component dadda_multp2
generic(delayl,delay2,delay3,delay4,delay5,delay6,delay7,delay$
delay9,delay10,delay11,delay12: in time);
port(clkl: bit;al,bl: in bit_vector(7 downto 0); sum: inout bit_vector(14
downto 0);T_sum,T_carry : inout bit_vector(10 downto 1);
producti:inout bit_vector(15 downto 0);Product: inour bir_vector(11
downto 1); ainl,bini,output: out integer);
end component;

signal ain,bin,Product_Linteger:=0;
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signal produci_b: bit_vector(15 downto 0):="0000000000000000";
signal a,b: bit_vector(7 downto 0):="00000000";

signal carryl,sum1l: bit_vector(14 downio 0):="000000000000000";
signal cin,clk: bit:='0";

signal T_suml,T_carryl:bit_vector(10 downto 1):="0000000000";
signal even_carryl: bit_vector(S downto 1);

signal Producta: bit_vector(11 downto 1):="00000000000",

for x1: dadda_mulip2 use entity work.dadda_multp2(structure);
begin

x1: dadda_multp2
generic map(0.3218 ns, 1.2 ns, 1.486 ns, 0.5893 ns, 1,026 ns, 2.972 ns,
1.486 ns, 11.405 ns, 9.919 ns, 8.433 ns, 6.947 ns, 5.416
ns}
port map(clk,a,b,sum1,T_sum1,T_carryl,product_b,Producta
,ain,bin,Product_I);

a<= "10000000","11111111" after 16 ns, "10000011" after 32 ns, "10000011" after 48
ns,"10000111" after 64 ns,"11000011" after 80 ns, "11111111" after 96 ns, “11100001"
after 112 ns, "10000000" after 128 ns;

b <= "10000000","11111111" after 16 ns, "11000011" after 32 ns, "11100001" after 48
ns,"10000001" after 64 ns,"11001000" after 80 ns, "10000011" after 96 ns, “11100001"
after 112 ns, "10000000" after 128 ns;

clk <='0', 'l" after 14 ns, '0' after 16 ns, '1' after 30 ns, '0' after 32 ns, '1" after 46 ns,
'O after 48 ns, '1' after 62 ns, '0' after 64 ns, '1' after 78 ns, '0" after 80 ns, 'l' after 94
ns, '0" after 96 ns, '1" after 110 ns, '0' after 112 ns;

process
variable L:line;
begin
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write (L.," TIME ain bin product_b product_I ");
writeline (output, L);
write (L, " «-- - - — - ")
writeline (output, L);
write (L, " ");
writeline {output, L);
wait;
end process;

monitor_process: process(ain,bin)
variable dline: line;

begin
write (dline, NOW, right, 7);
write (dline, ain, right, 7);
write (dline, bin, right, 10);
write (dline, product_b, right, 20);
write (dline, product_I, right, 15),
writeline (output, dline);

end process;

waves_monitor (to_integer(a),to_integer(b),to_integer(product_b));

end structure ;
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APPENDIX

1E

IITGH SPEED COMPACT 10-BIT CMOS ADDER IN MULTIPLE
OUTPUT DOMINO LOGIC

This appendix provides the simulation results and the layout of the subcomponents for the
new adder described in chapter 4. In addtion, the clocking scheme and distribution used in

the design of the adder will be described.

Page 225
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E.1 INTRODUCTION

Performing addition rapidly and with a minimum investment in equipment has been
a continuing challenge to computer designers. The essential nature of carry propagation is
the most difficult problem in speeding up addition, and a variety of ways have been devised
for coping with it such as Carry Completion Sensing, Conditional Sum adder, Carry
Minimization and Carry Look Ahead(CLA).

The CLA technique has been widely used in most of the arithmetic units. The
principle of the CLA is that instead of propagating carries through the adder stages
sequentially, one provides supplemental circuitry that forms a carry signal into each adder
stage if its predecessor generated a carry or if its predecessor propagated a carry generated
two stages previously. All of these actions go on simultaneously and carry propagation
thus becomes concurrent instead of sequential. In order to further enhance the performance
of the CPA a new carry propagate adder has been designed in this work using MODL
gates.
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E.2 MULTIPLE OUTPUT DOMINO LOGIC {MODL)

In order to improve the area and speed of CMOS logic while retaining its
lower power characteristic, many of the recent CMOS logic styles exploit non-
complementary circuit structures and dynamic circuit operations. In particular the domino
technique is very valuable for arithmetic and other circuit involving complex gates with
high fan-in and high fan-out. This is so in spite of the fact that it can provide only non-
inverting gates. In addition domino circuits are more stable than other unbuffered dynamic

circuits.

E.3 Description Of MODL

In domino CMOS logic as well as other noncomplementary MOS logic styles, there
is only one output available from a given logic gate. This is in spite of the fact that multiple
functions are often implemented in the logic tree with one being the subfunction of the
another. Therefore if one or more of these subfunctions are needed as separate output
signals they have to be implemented in several additicnal gates resulting in replication of
circuitry. For example in the domino circuit shown in Figure E.1 the function f and £2
require the implementation of two different gates with logic tree for f2 duplicated.

The main concept behind MODL is the utilization of subfunction available in the
logic tree of domino gates thus saving replication of circuitry. The additional outputs are
obtained by adding precharge devices and static inverter at the corresponding intermediate
nodes of the logic tree. The MODL circuit for f and f2 shown in Figure E.2 illustrates the
concept and construction, producing both functions from single gate without duplicating
the logic tree for £2.

In addition, since nodes internal to the logic tree are being precharged for functional
purposes, MODL is by construction considerably less susceptive to charge shaiing than
standard domino. Overall use of MODL can reduce silicon area, increase circuit
performance and decrease power, because of reduction of device count, wire length, and
consequently oniput loading.
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Figure E.1: Domino Implementation of F with F=F1F2
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Figure E.2: MODL Implementation of the same function



E.4 10-Bit MODL Adder

A. Circuit Description

The organization of a 10 bit adder using both the original structure designed
by LHwang[E1] and the modified structure are shown in Figure E.3 and Figure E4
respectively.

As shown in Figure E.3 and Figure E.4, unlike the original architecture, the
mwodified architecture only generates even carries and has less stages. Therefore the new or
modified adder architecture has a better performance than its counterpart .
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Figure E.3: Structure of the Original Adder
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Figure E.4: Structure of the Modified Adder
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The first stage of the new adder stage is a 4-bit wide unit which produces 1 and 2 bit
generate (gi and ggi) and propagate terms(p; and gpy).

where
g; = a;and b;
g82i = [(ag; xor by;) and g;] or (a; and by;)
pi = a; xor b;

8P2i = p; and po;

The second stage takes its inputs from the first stage and produces only even carries. The
final stage accepts its inputs from the first stage and second stage and gives the final sum
of the input operands.

where
Caivp = (P24 and cp; | or ggy;1
$2i41 = P2j41 XOr €o4

52142 = P2i42 Xor ((poj+1 and co;) or £3i41)

The recurrent nature of the above logic functions makes the carry propagate adder suitable
for multiple output domine logic. One of the drawbacks of the domino logic as mentioned
in the previous section is that it can provide only non-inverting gates. Therefore modified
Differential Cascode Voltage Switch(DCVS) logic was used to realize the above Boolean
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functions to accommodate both true and complement signals. The circuit equivalent of the
functions are illustrated in chapter 4.

——

o

Figure E.5: MODL Gate for Carry_bar Generator

In constructing and cascading OR-AND (Sum of Products) forms of the MODL
gates some care is required to prevent false discharge at a lower AND dynamic output node
when a higher OR dynamic node is pulled down. This occurs because a reverse current
path can be established from the lower node through the higher node to ground depending
on inputs to the logic tree. In the design of the circuit shown in Figure E.5 Boolean
Simplification Theorm[E2] was used to avoid the above mentioned problem.

E.5 Clocking Scheme and Distribution

In previous sections the architecture and design of the carry propagate adder using
MODL gates was discussed. To achieve optimal performance a true single phase clocking
scheme [E3] and true single phase latch shown in Figure E.6 were used. This clocking
scheme minimizes clock skew problem which is a major problem in two and single phase
clocking schemes. In order to further reduce the clock skew problem the clock distribution



R n th 1 n i - 3

shown in Figure E.7 was used in this design. Distributing the load across several buffers
serves to shorten clock lines and reduce the maximum RC delay, both of which help keep
the clock edges sharp.

Figure E.6: True Single Phase P_Latch

Stage 1

Stage 3

!

Staged

>
. sige 2
D
_Do_

Figure E.7: Clock Distribution
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E.6 Simulation Results

The functionality of the new adder was fully verified using VHDL as shown
in Figure 2B.1. The adder was also simulated successfully using HSPICE in both 1.2um
and 3um CMOS technology. The simulation results of the adder is shown in Figure E.8.

The circuit was found to be operating at a maximum frequency of 70Mhz by applying the
device sizing method developed by Sammy Bizzan.

E.7 CHIP IMPLEMENTATION

The new adder was implemented in a standard 3um CMOS two level metal
CMOS technology. All the cells are fully custom design. The adder circuit has 458
transistors in an active area 5.8mm x 4.1mm. The layout for the subcomponents of the chip

are shown in Figure E.9 to E. 14,
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Figure E.8: Simulation Result for the 10-Bit Adder



Appendix 1E A Report o the Desien and Lavout of a 10-bit New-Adder 235

Figure E.9: Layout for S2 and C2 Block
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Figure E.12: Layout for Propagate and Group Propagate Block
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Figure E.13: Layout for Carry Generator Block




ix 1E AR nth ign i -

X X [%
\/
W -
X Al
X
=KX —HI
—_— <
< EE - X 2
il | — =) 2
X 1 X X
B
.
< &
i
& LS
ﬁﬁ:; X
X
L S
S

Figure E.14: Layout for Sum Block
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Figure E.15: Layout for the 10-Bit Adder
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E.8 CONCLUSIONS

The 10 bit adder described in this section demonstrates extremely high
speed and low silicon area requirement. The adder achieves 10 bit addition at a maximum
frequency of 70Mhz. These achievements are due to the combination of MODL, clockin g
scheme and device sizing. MODL allows for the area and speed efficient designs.
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