
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Object-oriented programming in C# with dynamic classification. Object-oriented programming in C# with dynamic classification.

Wenjiang Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Wang, Wenjiang, "Object-oriented programming in C# with dynamic classification." (2004). Electronic
Theses and Dissertations. 2900.
https://scholar.uwindsor.ca/etd/2900

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/2900?utm_source=scholar.uwindsor.ca%2Fetd%2F2900&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

OBJECT-ORIENTED PROGRAMMING IN C#

WITH

DYNAMIC CLASSIFICATION

by
Wenjiang Wang

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree o f Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2004

© 2004 Wenjiang Wang

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library a n d
A rch iv es C a n a d a

P u b lish e d H eritag e
B ran ch

B ib lio th eq u e e t
A rch iv es C a n a d a

D irection du
P a tr im o in e d e I'edition

3 9 5 W ellington S treet
Ottaw a ON K1A 0N 4
C an ad a

3 9 5 , rue W ellington
O ttaw a ON K1A 0N 4
C an ad a

Your file Votre reference
ISBN: 0-612-96127-3
Our file Notre reference
ISBN: 0-612-96127-3

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

Object-oriented programming language has gained popularity in recent years. However,

some problems exist in object-oriented programming languages. It works well with static

classification, but does not support object dynamic classification. Static classification

means an object always and only belongs to one class during its life spans. In real-world

applications, objects may belong to different classes rendering different roles certain

times during the lifetime. Dynamic classification enables the changing of object

classification over time. Objects can be classified and declassified into/from acquire and

release class membership during runtime.

In this thesis, many approaches to dynamic classification will be discussed in different

implementing languages. Based on the thorough reviews of these approaches, we give a

new approach. This approach combines the concept of object and roles and extends a

class hierarchy with dynamic classification. The syntax o f dynamic classification shows

how to implement the function o f dynamic classification in the object-oriented

programming language. Finally, we present a preprocessor, by which a C# code including

the extendable dynamic classification functions can be translated to standard C# code.

Keywords:

object-oriented, dynamic classification, role, object hierarchy, class hierarchy, object

migration

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

M y family, and 3̂ HimdU

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

I would like to take this opportunity to thank many people who encouraged and

supported me to complete this thesis.

I would like to thank Dr. Liwu Li, my advisor, for his valuable direction and

comments. I appreciate that he spent so much time with me on my research.

I would also like to thank my committee members, Dr. Sang-Chul Suh and Dr.

Jianguo Lu, for spending time to give me directions and opinions which help me to

improve my thesis. I want to specially thank Dr. Bubaker Boufama for being chair in my

thesis committee.

Finally, I would love to thank my family and friends for their love and support.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

ABSTRACT.. I ll

DEDICATION.. IV

ACKNOWLEDGEMENTS.. V

LIST OF FIGURES... VIII

LIST OF TABLES...IX

CHAPTER 1 INTRODUCTION...1

CHAPTER 2 OBJECT-ORIENTED PROGRAMMING AND DYNAMIC
CLASSIFICATION... 4

2.1 Object-O riented Pr o g r a m m in g .. 4
2.1.1 Object-Oriented T ech n o lo g y ...4
2 .1 .2 Object-Oriented Programming C o n cep t..5
2 .1.3 Object-Oriented Programming L anguage... 7
2 .1 .4 Object-Oriented Programming D esign and A n a ly s is ...8

2.2 D y n a m ic Cl a ssific a tio n ...9
2.2.1 Conventional Object-Oriented M odel...10
2 .2 .2 Concept o f R o le ..11
2.2.3 Patterns o f R o le ... 12
2 .2 .4 C lass H ierarchy... 15

CHAPTER 3 RELATED RESEARCHES... 18

3.1 Ex t e n d e d Sm a l l t a l k ...18
3.2 D oR ..20
3.3 F ib o n a c c i... 21
3 .4 A spect Pr o g r a m m in g .. 21
3.5 Prototype-B a se d La n g u a g e ... 23

CHAPTER 4 PROGRAMMING WITH DYNAMIC CLASSIFICATION............... 25

4.1 Ex ten d ed Cla ss H ie r a r c h y .. 25
4.2 Sy n t a x of D y n a m ic c l a ssif ic a t io n .. 31

4.2.1 C lass D e fin it io n ... 31
4 .2 .2 Statement D efin itio n ...34

CHAPTER 5 IMPLEMENTING DYNAMIC CLASSIFICATION IN C#.................37

5.1 Features of the C# La n g u a g e ..37
5.2 Im plem entation of Pr epr o c esso r ..42

5.2.1 The First Process o f the Preprocessor.. 42
5.2.2 The Second Process o f the P reprocessor..45

5.3 Restrictions a n d A ssum ptions of Sy n t a x ...59

VI

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.4 How t o U s e t h e P r e p r o c e s s o r .. 61

CHAPTER 6 CONCLUSIONS..64

6.1 C o n c l u s i o n s ..64
6.2 F u t u r e W o r k ...65

REFERENCE..66

VITA AUCTORIS... 69

VII

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

F ig u r e 2.2.1 A p e r s o n ’s l if e t r a c k ..9

F ig u r e 2.2.3.1 S t r u c t u r e o f p a t t e r n s .. 12

F ig u r e 2 .2 .3 .2 U s in g r o l e o b j e c t s f o r p e r s o n ..13

Figure 2 .2 .3 .3 T reat the role a s a relatio nsh ip ...14

F ig u r e 2.2.4.1 A c l a s s h i e r a r c h y ...15

F ig u r e 2.2 .4 .2 C l a s s i n s t a n t i a t i o n in a c l a s s h i e r a r c h y .. 16

Figure 2 .2 .4 .3 Evo lv in g a n object in class h ie r a r c h y ... 16

F ig u r e 3.1.1 A c l a s s a n d r o l e h i e r a r c h y ... 19

F igure 3.4.1 A n O bject a n d its R o les: In trinsic a n d Extrinsic M e m b e r s 22

Figure 4 .1 . 1a A n object h ie r a r c h y ..26

F ig u r e 4.1.1 b A c l a s s h i e r a r c h y ... 26

F igure 4 .1 .2 A n exten ded cla ss h ie r a r c h y .. 28

Figure 4 .1 .3 Implied d y n a m ic par en t-child r e l a t io n ... 28

Figure 4 .1 .4 A n exten ded c la ss hierarchy with dy n a m ic c la ssific a tio n 29

F ig u r e 4.2.1.1 R e l a t io n s o f t h r e e c l a s s e s ..33

VIII

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

Ta ble 2 .1 .1 .1 H istory of O O T ..4

Table 3.1.1 Cla ss m ethods of RoleType.. 20

Ta ble 3 .1.2 Cla ss m ethods of Qual i f I edRoleType...20

T a b le 5.2.1.1 DYNAMIC _C L A SS_INFO. DAT S T R U C T U R E ... 43

T a b le 5 .3 .1 .2 c l a s s j n f o . DAT s t r u c t u r r e ... 45

Ta ble 5.2.2.1 Cla ss m ethods of D ynaC lassification.. 47

Table 5.3.1 V ar ia ble t y p e s .. 60

IX

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1 Introduction

Object migration is the phenomenon when a real-world entity is classified or declassified

during its lifetime. For example, one person becomes a student first and changes into an

employee later. The person belongs to two class types, and plays the role o f student or

employee, or student and employee. The person is not changed, but his role is changed.

When the person is a student, he has the character of a student. When he is employed, he

owns the character of the employee. In the real world, different kinds of entities are

classified into different classes over time. For example, a frog belongs to water-living

type animal at first, and then belongs to amphibian type. A company document belongs to

secret archive at one time, and belongs to general archive later. From the above

discussion, we get the definition o f dynamic classification, which means an object may

change its class membership at the run-time.

Object-oriented programming is an important concept, which is widely used in different

fields o f computer science research and software industry. It is a kind o f method, which

uses object-oriented concepts effectively and systematically to develop programs. It can

thoroughly describe the real-world problems and resolve them. The traditional object-

oriented programming has shortcomings when it tries to implement object with dynamic

classification in the real world. Most o f the existing object-oriented programming

languages such as Smalltalk, Java and C# are static type, supporting single and static

classification. In these languages, an object always and only belongs to its class and

possesses the attributes and methods of this class. It cannot be changed into other classes

in its lifetime.

The study on the dynamic classification may count back to the early 1977, when

Bachman and Daya [BD77] presented the concept of the role model to extend the

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

traditional network model. This approach establishes the foundation for the later research.

With continually comprehensive and in-depth research, the researchers proposed many

approaches to challenge the theory and implement the dynamic classification from

several different perspectives. Although researchers name the dynamic classification with

different titles, but the meaning are almost same and consistent. For example, Wieringa et

al. [WJS94] named it as “object migration”, and Drossopoulou et al. [DDD01] named it

as “re-classification”. The consecutive efforts on the research lead to the great

achievement: Gottlob et al. [GSR96] focused on the role and extended the Smalltalk to

enable the function of the dynamic classification. Ddrossopoulou et al. [DDD01]

introduced a new approach to resolve the object mutation from the programming

perspective, and implemented it in programming language DoR and Fickle. Kendall

[Ken99] researched mostly on the perspective of aspect-oriented programming based on

the role object pattern. Wieringa et al. [WJS94] presented a new concept o f dynamic

subclass that aims to the problem of class migration, etc.

While a lot of accomplishments were made on different areas o f dynamic classification,

some problems remained in implementation. For example, Gottlob et al. [GSR96]

provides approach which distinguished object classes from role classes and prevented any

other classes to represent role, so each real-world concept needs to be redefined; In

[ABG+93], the approach does not satisfy the way whether allowing a class to create

dynamic subobjects as well as primary objects and whether allowing an extended class

hierarchy to enclose all the types used in an object-oriented language, etc.

Li [Li02] presented a new approach, which combines the notions o f role and object. It

uses a primary object to represent the static (permanent) properties o f entity and uses a

dynamic object to represent the dynamic (temporary) properties. He theoretically

redefines the definition of object hierarchy, extended class hierarchy and class. He also

proposed an extending class hierarchy with dynamic classification relation to improve the

views of role and object. He introduced the concept o f dynamic superclass-subclass

relation in which an object of a class can be classified and declassified into/from other

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

classes dynamically. Using this approach, an object of class is implemented only once in

its program and the ascription o f this object can be changed.

Based on the approach developed by Li, we design a preprocessor to implement the

dynamic classification in C#. It simplifies the program development by supporting

dynamic classification. Using this preprocessor, C# codes including the extendable

dynamic classification functions can be translated into standard C# codes. The output

code can be compiled by the C# complier.

This paper is organized as follows. In chapter 2, we introduce the basic concepts and

review the background of object-oriented programming and dynamic classification. In

chapter 3, we review and analyze the existing approaches to dynamic classification in

different programming languages. A new approach to dynamic classification is discussed

in chapter 4. We introduce an extended class hierarchy and the operational syntax, which

use the new approach. In chapter 5, we discuss how to implement the proposed approach

to dynamic classification in C#. Finally, conclusion and future works will be described in

chapter 6.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2 Object-Oriented Programming and Dynamic

Classification

2.1 Object-Oriented Programming

Object-Oriented Programming (OOP) is widely used in all fields of computer science and

software industry. It is a simply way to use object-oriented concepts and apply them

effectively and systematically in developing programs [Wu99].

2.1.1 Object-Oriented Technology

Object-Oriented Technology (OOT) is a development principle and software modeling

which makes a complex system into a set of separate components. OOT is a software

development paradigm, which is based on the object concept. To reach the task of

building a system that is reusable, scalable, flexible, and easy to maintain, OOT will be a

possible solution. The history o f OOT development is shown in Table 2.1.1.1.

0 0 Programming Mid 1960s

OO Design Mid 1980s

0 0 Analysis Late 1980s

0 0 Methodologies Early 1990s

Table 2.1.1.1 History of OOT

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The OOT provides better methodologies to construct complex software systems from

modularized software units. The OOT will bring the following advantages to the systems

[KA95]:

• Using similar metaphors to interact easily with a computational environment.

• Constructing modularized reusable software units and software modules with

easily extensible libraries.

• Modeling the real world as close as possible to user’s attitude.

• Easily changing and extending implementations of units without the need to

recode everything.

One o f the OOT’s major advantages is the concept of reusability. Instead of developing

all the codes, OOT provides ability to construct standardized components. Besides, it

improves maintenance o f system.

2.1.2 Object-Oriented Programming Concept

Object-oriented programming is different from traditional computer programming. In

object-oriented programming, structure and module are different from that in

conventional programming. Some concepts such as class, object, inheritance,

classification, object identity and polymorphism come out. In the following parts, we will

discuss them in detail.

• Class

In object-oriented programming, a class is a set or collection of abstracted objects

that share common characteristics [KA99]. It is a kind of mold or template that

the computer is used to create objects [Wu99]. Object is an instance o f class, and

one class may have many object instances. Normally, a class has variables and

methods.

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Object

In object-oriented programming, an object is defined as an abstraction o f a person,

place, or things within the problem domain o f which the information system must

be aware [KA99]. Each object is an instance of a particular class.

• Inheritance

It is a feature of object-oriented programming language in which a subclass

inherits methods and variables from its superclass. All lower level or children

nodes in an inheritance hierarchy inherit the characteristics o f the parent node. In

some languages, inheritance can be applied for both class and interface.

• Object Identity

It means each object is distinguished from all other objects. With this property,

objects can contain or refer to other objects. Object identity is something that is at

the core o f all persistence containers and most distributed object systems. It

combines two distinct notions: one is the facility o f object reference, which

permits object correlation and access to object internal states. The other is the

facility of object comparison, which permits the decision if two variables actually

point to the same object.

• Classification

Classification is the process o f organizing objects into groups that have same

properties and operations. It is the ordering or separation o f objects into classes.

In organization of information, classification is the process o f determining

whether an information accords with a given hierarchy and then assigning the

notation associated with the appropriate level of the hierarchy to the information

and its surrogate.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Polymorphism

Polymorphism means an object that takes on different forms. For example, H2O

molecule can take on three forms: liquid, steam, or ice. It gives the same name to

service in different classes. These services may do the work differently, yet they

produce the same kind of results.

2.1.3 Object-Oriented Programming Language

The first object-oriented language is Simula-67, an acronym from Simulation and

Language, which was debut in the 1960s. In early 1980s, object-oriented programming

has become a widely accepted style o f programming.

The Simula-67 took the block concept from the Algol one step further and introduced the

concept o f object. In 1970s, with the combination of the concept of object-oriented

language from Simula and other earlier prototypes, there came a language which may be

one of the most influential object-oriented languages: Smalltalk. It is the first pure object-

oriented programming language developed by Xerox PARC.

During 1980s and 1990s, with the introduction o f C++ and Java, object-oriented

programming languages got a great development. In 1985, C++ was introduced as an

extension o f the C programming language. In May 1995, Sun formally announced Java at

a major conference. In 2000, C# was submitted by Microsoft to the ECMA standards

group and released it with the .NET Framework. It is an evolution o f the C and C++

languages. Now, these languages have been widely used as the basic and mainstream

object-oriented software [KA95] [DH98].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.1.4 Object-Oriented Programming Design and Analysis

In 90’s, object-oriented paradigm became more and more popular, as a practical and

effective approach for software development. The object-oriented programming method

has already been widely used by software developers.

With the perspective of software engineering, the basic composing portion of object-

oriented programming method includes object-oriented analysis, object-oriented design

and object-oriented program. The famous Coad’s object-oriented methodology includes

four major activities [Nor96]:

• Identify information system purposes and features

• Identify model component objects and patterns

• Establish object responsibilities

• Define service scenarios

In the real world, analysis means each product construction must have detailed

consideration o f what is the problem to be solved, and design means how it can be

resolved. Object-oriented analysis (OOA) provides detailed description o f the problem.

OOA is a step when transferring a real-world problem into an object-oriented

implementation. This step involves understanding the problem which is to identify

entities, relationships, and operations, separates the static and dynamic parts, and

identifies the necessary operations. Object-oriented design (OOD) tries to provide the

“blueprint” for implementation. OOD is the next step to perform after the object-oriented

analysis. The goal of design is to produce detailed implementation o f product structure.

The OOD is composed o f two parts: a coarse-grained design and detailed object-oriented

design.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2 Dynamic Classification

Dynamic classification means object classification that is performed at runtime. In other

words, with dynamic classification, the classification of object can change over time

[M098].

There are many similar situations in the real world. For example as Figure 2.2.1, a person

can play different roles in his lifetime: student and employee. In phase 1, 2 and 5, he is a

student. In phase 3 and 6, he is an employee. In phase 4, he acts both student and

employee.

imployeeStudent

Person

Figure 2.2.1 A person’s life track

1. High-school Student

2. College Student

3. Company Employee

4. Company Employee & Part-time Master Student

5. Master Student

6. Company Employee

From the above example, we can see the phenomenon o f dynamic classification, which

tries to model the real world entities. Object-oriented programming is helpful to resolve

the problems in the real life. So we concern is how to realize dynamic classification in

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

object-oriented programming. In the following parts we focus on the problems during the

implementation of the dynamic classification in conventional object-oriented

programming and introduce some related concepts in dynamic classification.

2.2.1 Conventional Object-Oriented Model

In conventional object-oriented programming, an object is created from a class and

contains all the attributes and methods. In its lifetime, this object always and only belongs

to this class. But in reality there are many entities that need to play different roles in

different situation. As shown in Figure 2.2.1, we shall create three classes: Person,

Student and Employee to illustrate the different roles in one’s lifetime. We hope an

object which is the instance o f class Person plays the student role that possesses the

attributes and methods o f the class Student, and plays the employee role when he is

employed later. In the existed object-oriented languages this problem cannot be resolved

directly, since they do not provide mechanisms for object to change their class

membership. When programmers need dynamic classification, two possible solutions are

provided [DDD+01]:

• Create an instance of the new class, copy the properties o f old instance to the new

instance, and then delete the old one.

• Merge two classes into one to combine the properties of the two classes into the

new class.

However, neither solution is satisfied. In the first solution, all references to old objects

need to be informed o f changing. The second solution combines two different classes into

one class. It violates the original intention of object-oriented class concept, which

classifies objects by their attributes and behaviors.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.2 Concept of Role

Role implies the character described in the drama or fiction. But it has a different

meaning in computer area. In early 1977, Bachman et al. started to pay attention to the

role and said the role is used with the relational model to describe the way in which an

attribute relates to domains, the role type means the prototype of a class of roles with

similar properties [BD77]. Kristensen et al. define the role o f an object as a set of

properties that are important for an object to be able to behave in a certain way expected

by a set o f other objects [K096].

An entity can play one or more roles. For example, a man is an entity, and his roles can

be employee, manager, customer, student, and so on. Role is different from the entity.

The role type is the prototype of the roles that share the same character, whereas the

entity type is the prototype of the entities that play the same role. For example, one

student entity is the type of people that possess the student role. The relationship between

the role type and the entity type is many-to-many relation. An entity can play many roles

and a role can be possessed by many entities. Therefore, both role types and entity types

were viewed as object types without the distinction which is made in the role data model.

Role has some characteristic features for analyzing the dynamic entities and plays various

roles, particularly [GSR96] [Kri95]:

• Different roles o f one entity may share the same structure and behavior. For

example, the student role and employee role o f a person can share the information

of name, gender etc.

• Entities can add and delete roles dynamically. For example, a person acquired

employee role when he is employed, then he abandons employee role when he

quits the job.

• R oles can be added and deleted independently o f each other. For exam ple, an

em ployee can becom e a project manager independently o f being a department

manager.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Dynamicity: Entities exhibit role-specific behavior. For example, a person can

have different phone numbers in their role of student and employee role.

• Roles restrict access to a particular feature. For example, a company’s document

can only be viewed by a department manager role, but not a general employee role.

• Entities may appear repeatedly in the same type of role. For example, a student

may become a teacher assistant of several courses, and each o f these courses may

need different knowledge.

Another concept relates to the role is role model. Role model is the description of a set of

object collaborations using role type [RG98]. Once role model is identified, it is easy to

be recognized in the real world [BD77]. Roles and role models are abstraction and

decomposition mechanisms. A role model identifies a prototype and a reoccurring

structure o f roles. It can be used for analysis and design [Ken99].

2.2.3 Patterns of Role

In [Fow97], Fowler divided roles into five analysis patterns to solve the problem, which

are easy to represent many roles of the same object. The five patterns are single role type,

separate role type, role subtype, role object, and role relationship. Figure 2.2.3.1 [Fow97]

shows the structure o f these analysis patterns.

Representing Roles

Single Role
Type

'Separate Role
V TyPe >

Role
Subtype

Role
RelationshipRole Object

Implement with Need Type Information

Hidden
Delegate

State
Object

Explicit Type
Method

Parameterized
/Type M ethod,Internal Flag

Figure 2.2.3.1 Structure o f patterns

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Single role type: when the objects share most of the behavior but with few

variations. It can use one type to describe all of them.

• Separate role type: when most o f the objects share no common behavior.

• Role subtype: when some of the objects share common behavior while others

cannot use the role subtype. The important key of this technology is that

customers are convinced of dealing just with one single object, which has multiple

types. The implementation of this technology uses three patterns: internal flag,

hidden delegate, and state object. And there are two methods involved to get the

relevant information.

• Role object: There are many discussions about role objects in relevant articles

[Sch96] [Fow96] [Gam96] etc. Role object means each role has its own separate

object, links to a basic object that includes common features. The user accesses to

basic object for relevant role to use a role’s features. The essential of both role

object and state object are identical. Figure 2.2.3.2 [Fow97] shows how to use role

objects for person, and each person has a set of role objects for its various roles.

Engineer

S a les

P erson RolePerson M anager

Figure 2.2.3.2 Using role objects for person

• Role relationship: It means that the role acts as a relationship between two

objects. It is required when you consider an organization with several different

groups. For example an engineer can begin work with one group then change into

anther group. Figure 2.2.3.3 [Fow97] shows treating role as a relationship.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Engineer
P erson

G roup

P erson Role M anager

S a le s

Figure 2.2 .3 .3 Treat the role as a relationship

Many researchers are dedicated to implementing dynamic classification by considering

patterns for role. Baumer et al. processed the research on role object pattern [BRS+97].

They show that role objects can be dynamically attached to and removed from the core

object. For example, two different customers can separately play the role of borrower and

investor, and a single customer object can play both roles. They point out that the

implementation o f the role object patter must involve the consideration of two aspects:

transparently extending key abstraction with roles and dynamically managing these roles.

Many problems need to be considered when it is implemented in the real world. In

particular, as described in following [BRS+97]:

• Providing interface conformance

• Hiding the role object creation process

• Decoupling role classes from the core

• Choosing appropriate specification objects

• Managing role objects

• Maintaining consistent core and role object state

• Maintaining role attribute constraints by using Property and Observer

• Maintaining conceptual identity

• Maintaining constraints among roles

• Maintaining constraints among roles by recursively applying the role object

pattern

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Research on analyzing patterns is based on the conceptual points, rather than

implementation point [Fow97]. All the approaches can be used to design and implement

the dynamic classification. So there are numerous works to be done on how to implement

these approaches in the real computer languages [Ken99].

2.2.4 Class Hierarchy

In object-oriented system, class hierarchy is used to denote the relationship between

classes. The class hierarchy has the following characteristic features [GSR96]:

• Class hierarchy supports sharing o f structure and behavior o f several classes due

to inheritance.

Figure2.2.4.1 models a typical class hierarchy. The rectangle represents class and

the solid arrow represents the relationship between superclass and subclass. In this

figure the class Person is a superclass that contains the common features of

entities, the class Student and Emp I oyee are subclasses that are the extension of

class Person and inherit the attributes and methods from class Person.

- nam e
- sex
- birth date

- university
- major

salary
phoneNo

departm ent
responsibilities

- supervisor

EmployeeStudent

GradStudent M anager

Person

Figure 2.2.4.1 A class hierarchy

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The entity in the real world can be represented as the instance of specific class.

Figure 2.2A.2 shows how to represent an instance object in a class hierarchy. Mr.

Jason is an instance o f class Emp I oyee, and it inherits some attributes from the

class Person such as name, birthDate, and privatePhoneNo.

Person
- nam e
- sex

birth date

- university
Student - major Employee

- supervisor
G radStudent M anager

- salary
- phoneNo

Jason
male
July 1969
80,000
999-9999

responsibilities
departm ent

Figure 2.2A.2 Class instantiation in a class hierarchy

• Evolving objects tracking is a tedious task.

In traditional object-oriented programming, the procedure for an entity changing

its role is as follows: create a new class, copy the attributes o f old class to new

one, references to old objects need to be reset to new one, and finally delete the

old one. Figure 2.2.4.3 shows the procedure o f object Jason changed from student

to employee.

Person
nam e
sex
birth da te

Ja sq n
MalK

July,1969

Studen t
- uniyersity
- major EmDlovee

Qlason —U of W indsor
h CS

------------ ► 80,000 -
999-9999 -

Jason

on^No
— Ja so n
— Male
I - July, 1969

Figure 2.2.4.3 Evolving an object in class hierarchy

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Class hierarchies must be planned carefully or may grow exponentially when

entities take on several roles.

We need to consider the relationship between different classes in dynamic classification

description. Through the concept introduction on class hierarchy, problems arise on how

to describe object dynamic classification with class hierarchy. We will discuss it on the

following chapter.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3 Related Researches

In 1977, Bachman and Daya [BD77] first began the study on the dynamic classification.

They build the concept of role model that is the extension of network model with role

concept. In this model, the required data description and data manipulation language

integrate the concept of record and role segment. The role model shows the data

description with existing data can be provided to a high level. It is richer than all other

earlier models and provides a good start for further study. A lot o f researchers start to

study on this model, and many different approaches were provided.

Based on the research method, there are foundational perspective, database perspective

and programming perspective [DDDOO]. Based on the way of how to realize the

possibility, there are role type, pattern for role modeling, prototypical and aspect

programming with roles [Li02], We will explain the implementation o f dynamic

classification in different programming languages by groups.

3.1 Extended Smalltalk

Gottlob et al. [GSR96] presents how class-based object-oriented systems can be extended

to handle evolving objects. Since original class hierarchy has serious difficulties in

modeling the evolving objects, the combining role hierarchies can complete it. The

difference between these two hierarchies is that the role hierarchy doesn’t need to inherit

the definition from supertype. An entity can be represented by an instance of the root and

an instance o f role type. So they compare the representing roles by class hierarchy, role

hierarchy, and combined two.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.1.1 [GSR96] shows the combination. The class hierarchy includes three classes:

Legal Entity, Person, and Company. The role hierarchy includes: Customer, Student,

Employee, Department Manager and Project Manager. Classes may have subclasses

and may function as the root o f role hierarchies. For example, class Person is the leaf of

class hierarchy (class Lega I Ent i ty) and root o f role hierarchy (role Student, Emp I oyee,

Department Manager and Project Manager).

LegalEntity

Customer

Company Person

EmployeeStudent

Project
Manager

Department
Manager

Figure 3.1.1 A class and role hierarchy

To implement this approach, they extend object-oriented language Smalltalk by adding a

few classes to support the role mechanism and dynamic classification. By adding three

classes, roles can easily be implemented as an additional feature in Smalltalk. Smalltalk

can handle the evolving objects, and do not need to modify its definition. The three

classes are RoleType, ObjectWithRoles, and Qual i f iedRoleType. Their functions are

discussed in detail as follows:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Class ObjectWithRoles: Used to define the behavior and structure o f objects

which may take on roles and roles may be roots of role hierarchies.

• Class RoleType: Used to define the behavior and structure o f objects that are

inner nodes o f a role hierarchy. Table 3.1.1 [GSR96] shows the methods for

defining role type and instances.

Class Method of RoleType Purpose
defRoleType: roleTypeName

instanceVariableNames: stringOflnstVarNames
classVariableNames: stringOfClassVarNames
poolDictionaries: stringOfPoolNames
Category: cateGoryNameString
roleSuperType: nameOfRoleSuperType

Define role type roleTypeName

newRoleOf: anObject Create new role of anObject

Table 3.1.1 Class methods of RoleType

• Class Qua I i f iedRoleType: Used to define additional structure and behavior of

qualified roles. It is a subclass of class RoleType. Table 3.1.2 [GSR96] shows the

methods for defining qualified role types and instances.

Class Methods of QualifiedRoleType Purpose
defQualifiedRoleType: roleTypeName

instanceVariableNames:stringOflnstVarNames
classVariableNames: stringOfClassVarNames
poolDictionaries: stringOfPoolNames
Category xateGoryNameString
roleSuperType:nameOfRoleSuperType
classOfQualifyingObj: aClass

Define qualified role type roleTypeName

newRoleOf: anObject qualifiedBy:qualifyingObj Create new qualified role of anObject

Table 3.1.2 Class methods of Qua I i f i edRo I eType

3.2 DoR

Ddrossopoulou et al. [DDD01] introduce a new approach to resolve the object mutation

from the programming perspective. They define an operational semantics for re-

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

classification operation to change the class membership of an object. In this approach,

two additional classes are introduced: s ta te classes are used to describe the object which

may be reclassified, and abstract s ta te classes are used to describe the abstract

superclasses of state classes. It is implemented through language DoR. They develop a

type and effective system for DoR and use the operational semantics to prove its

soundness. DoR is an imperative, class-based and Java-like language, which allows

object’s dynamic reclassification by changing the object’s class. In language DoR, they

present the relevant syntax, operational semantics and typing. The benefits of this

approach are that it is more liberal than most others from the programming perspective

and it allows the object to be changed from class to class and it can change back to

original class.

3.3 Fibonacci

Albano et al. [ABG+93] present a new mechanism that shows how to use the existing

object-oriented features as inheritance and late binding to solve strictly related problems.

They introduce the Fibonacci features that are used in database problems from

construction to properties. Fibonacci is a new strongly typed and object-oriented database

programming language. It has a mechanism to model objects with roles to resolve the

challenge o f changing the object type dynamically at runtime.

3.4 Aspect Programming

Based on the Object-Oriented Database System (OODBs), Richardson et al. [RS91]

studied the perspective o f aspect programming, and it extends objects to support multiple

and independent roles. They add additional states and behaviors to an existing object

while sharing the same object identity. This object model includes three parts: abstract

types, implementations and conformity rules. The abstract type is independent of

an implementation and may be conformable with multiple implementations.

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Kendall [Ken99] studies mostly on the perspective of aspect-oriented programming

which is based on the role object pattern. She points out that role object pattern have

some problems in implementation level, which are object schizophrenia, significant

interface maintenance and no support for role composition. She uses a conceptual model

[Kri95] for an object and its roles to resolve some o f these problems. In this model, an

object is used to keep the intrinsic properties of an entity, roles are used to keep extrinsic

properties of an entity and provide interface for other entities or roles to view and access

it.

For example: Figure 3.4.1 [Ken99] shows the relationship between an object and its roles.

A worker from the view of boss is subordinate, so he/she has three intrinsic members and

three extrinsic. However, from view of customer, the worker plays two roles provider and

subordinate, so he/she has three intrinsic members and five extrinsic.

Intrinsic
M em bers

Extrinsic
M em bers

Extrinsic
M em bers

R ole B
(Provider)

Role A
(S ubord inate)

O b jec tl
(W orker)

O bject2
(B oss)

O bject3
(C ustom er)

Figure 3.4.1 An Object and its Roles: Intrinsic and Extrinsic Members

For implementation view, Kendall describes how to implement role models in aspect-

oriented language AspectJ and compare the difference with object-oriented language.

Based on the five options o f aspect-oriented designs and the suggestion of G. Kiczales,

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

she utilized the subject-oriented programming features to present the hybrid approach for

role models. The five options are shown as follows [Ken99].

• Option 1: Static aspect introduces extrinsic role members to core class.

• Option 2: Aspect instance implements role behavior by advising role members

that already exist in a core instance.

• Option 3: Aspect instance contains role members separate from a core instance.

Two separate entities are used.

• Option 4: Aspect instance filters out invalid role members from a core instance

with advice weaves. The core instance contains members for all roles.

• Option 5: Role and core are objects. Static aspect integrates or composes them

using introduces weaves.

3.5 Prototype-Based Language

Sciore [Sci89] discussed the specialization at the level of object in the prototype-based

language. In his approach, objects are allowed to define their own inheritance part. The

object specialization transfers the specialization hierarchy from type-level to object-level.

It can create a more flexible and functional hierarchy. Base on the concept of the class-

based system, each object is assigned to a class and has the same variables and methods.

New methods let the object itself to choose whether inheritance is needed, as with

prototype-base systems. Objects o f real-world entity are contained in an object hierarchy.

Each object in object hierarchy represents a role played by entity. An object can be added

or removed from an object hierarchy.

The prototype-based system will be slower than the class-based system, which is suitable

for management over large number o f objects. This approach focuses on how to combine

both the efficiency of the class-based system and the flexibility of the prototype-based

system to reach the desired result. It satisfies the following three dimensions: whether an

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

object can change its inheritance path at run time, whether the inheritance is implicit or

explicit, and whether inheritance is each object or each group [LSU88]. The key feature

is that object can inherit from other object without abandon the ability of managing large

numbers o f object efficiently by using the class hierarchy.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4 Programming with Dynamic Classification

Base on the early research, Li [Li02] presents a new approach to object-oriented dynamic

classification, which combines the concept of object and role. The traditional class

hierarchy has a problem to represent the dynamic classification relation o f classes. It does

not support the specific behavior of role. To solve the problem, he extended class

hierarchy with a dynamic classification relation between classes to improve it. He also

unified the notion o f role and object by allowing a primary object to represent the static

(permanent) properties and a dynamic object to represent the dynamic (temporary)

properties.

4.1 Extended Class Hierarchy

In the real world, some properties o f the entities are permanent and some others keep

temporarily. For example, one person Jason has permanent properties of human as

primary property, and has temporary properties during different phases in his life. He

possesses the property of student while he is a student in school and possesses the

property of employee while he is employed later. Therefore we may create different

classes (Person, Student and Employee) in object-oriented programming to describe the

entity. The object generated by class Person describes the inherent and intrinsic

properties. We call it primary object. The object generated by class Student or

Emp I oyee describes the dynamic and extrinsic properties. We call it dynamic object.

For the relation between these objects, we use a parent-child relation to describe it and

compose the objects and relation on an object hierarchy. For a real word entity, we create

a primary object as the root of the object hierarchy, and create other dynamic objects as

the leaf of the object hierarchy to describe the change of the status. A non-leaf object in

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the hierarchy may have one or more children. An entity can be described by a unique

primary object and other one or more dynamic objects. For example, Jason as an object

of class Person is an entity in the real world. While he is a student, an object of class

Student shows his property o f student. While he is an employee, an object of class

Employee shows his property of employee. Combination o f different objects can

adequately show the property of student Jason or employee Jason. A parent-child relation

exists between these objects. Here we use an object hierarchy to describe it. It is shown in

Figure 4.1.1a.

Jason : Person

Student : Employee

G radStudent M anager

Figure 4.1.1a An object hierarchy

M anagerG rad S tu d en t

S tu d en t

P erso n

Em ployee

Figure 4.1.1b A class hierarchy

In object-oriented programming language, class as aggregation o f the objects who

possesses the same property describes the entities in the real world. We can define the

inheritance relation between classes. A class may inherit the attributes and methods from

another class if there is an inheritance relation between two classes. As shown in Figure

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1.1b class student and person have inheritance relationship. The class Student

inherits the attributes and methods form the class Person. It is a traditional class

hierarchy.

Inheritance relation between classes is static, and subclass can statically inherit the

attributes and methods from superclass. So we call the inheritance relation in class

hierarchies as static subclass-superclass relation. The traditional class hierarchy can only

describe the inheritance relation, not applicable for dynamic classification relation. Li

improved class hierarchy by presenting an extended class hierarchy. In Figure 4.1.2 it

shows an example o f extended class hierarchy that combines Figure 4.1.1a and Figure

4.1.1b. He also defined a new relation combining these two relations (parent-child

relation and static subclass-superclass relation) as dynamic superclass-subclass relation

that satisfies the following conditions [Li02]:

• Condition 1: If class C, is static subclass o f class C0, class C3 is a static subclass of

class C2, and class C0 is a dynamic parent of class C2, we say that there is an

implied dynamic parent-child relation between the classes C, and C3, and class C3 is

a dynamic subclass of C,.

• Condition 2: If class C2 is a dynamic subclass of class C, and C, is a dynamic

subclass of class C0, we call C2 a dynamic subclass of C0 as transitivity.

The concept o f dynamic superclass-subclass relation is different to inheritance relation.

The dynamic classification relation is dynamic, and it just likes the above definition of

parent-child relation in object hierarchies. For example, we imagine two classes: C0 and C,.

The dynamic classification between these two classes is defined as: if the object of class

C0 can dynamically acquire the attributes and method of C,, we call the class C0 the

dynamic parent o f class C,, C, is dynamic child of C0.

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

P erson

G rad S tu d en t M anager

Em ployeeS tuden t

Figure 4.1.2 An extended class hierarchy

To better describe the approach, we show an example in Figure 4.1.3 which the class

Student and Employee inherits from class Person, class Manager inherits from class

Emp I oyee and the class Person is a dynamic parent of the class Emp I oyee. We denote the

solid link as inheritance relationship, dashed arrow as dynamic classification relationship.

Suppose C0presents class Person, C, as class Student, C2 as class Employee, C3 as class

Manager. Based on the Condition 1, we can conclude an implied dynamic parent-child

relation between the class Student and Manager.

Static Superclass-
Subclass Relation

Dynamic
Parent-Child Relation

Static Superclass-
Subclass Relation

Implied Dynamic
Parent-Child Relation

C3: GradStudent

Co: Person

Cx Student C l: Employee

Figure 4.1.3 Implied dynamic parent-child relation

As a consequence, there is an implied dynamic classification between the class and itself,

because the class is a static subclass of itself. For example, C0 is o f class Person. Cl5 C2,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C3 are of Student classes. We can get the implied dynamic parent-child relation between

the class Student and itself.

technicM anager projectM anager

Person

M anagerGradStudent

EmployeeStudent

Figure 4.1.4 An extended class hierarchy with dynamic classification

In the real world, an entity may play different roles simultaneously. To model it, we

extend the class hierarchy to support multiple dynamic classifications. It is showed in

Figure 4.1.4. For example, we may create two instances of class Manager as dynamic

children o f an employee object and this object can play different roles that are technical

manager and project manager. Now we define an operational semantic to illustrate this

dynamic classification relation. We define dynamic classification relation between the

class C0 and C, as a triple <C0, I, C^, the label I identifies the role in the dynamic

classification relation. The dynamic classification relation illustrated in the Figure 4.1.4

can be presented with triples:

<Person, employee, Employee)

<Person, student, Student)

<Student, gradStudent, GradStudent)

<Employee, technicManager, Manager)

<Employee, projectManager, Manager)

Up till now we fully introduced and discussed the new approach of object-oriented

dynamic classification which is presented by Li. Basically, Li summarized the new

approach by the following definitions: extended class hierarchy, object hierarchy and

class definition [Li02].

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Definition 1: A n extended class hierarchy is a triple (C, I, R) with finite sets C, I, and

R such that

• C is a set o f classes;

• I d C x C is an inheritance relation that implies no cycle;

• R C C x N x C i s a dynamic classification relation such that for any dynamic

classifications <C, fi, Ci> and <C', I2, C2> in set R, if C= C' and li=l2, then Ci=C2.

The symbol N is the set o f all identifies in the object-oriented programming

language.

Definition 2: For an extended class hierarchy (C, I, R), an object hierarchy is a

quadruple (Q, P, &, £) with finite sets Q , P and functions 3, £ such that

• Q = {objo, obji,.. objn} is a non-empty set of objects;

• P c Q x Q i s a parent-child relation between objects in set Q such that graph (Q ,

P) is a tree;

• 3: Q —>• C maps objects in Q to classes in C;

• £: P —► R maps the parent-child relation P between objects to dynamic

classification relation R such that for each <obj, o b j '> d R if £ (<obj, obj'>) =<C,

1, C’> e R , we have <3 (obj), C> d I* and <3 (obj'), C'> d I*.

The symbol I* is reflexive and transitive closure of inheritance relation I that is static

subclass-superclass relation.

Definition 3: Assume an extended class hierarchy (C, I, R). The definition o f a class C

d C specifies a pair <C“, C3> of finite partial functions such that

• Ca: N —► C declares each attribute name a d dom (Ca)with a type C“(a) d Q

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Cp: (N x C) -» C specifies a return type T= Cp (m, (Ci ,Cn))G C for

each pair (m, (Ci ,C 2 , '" ,C n)) e dom (C p). We say that class C defines return

type T for operation m (C i, C2 , ■ • •, Cn) ■

4.2 Syntax of Dynamic classification

Based on the above theory, Li defined the syntax to implement dynamic classification in

object-oriented programming language. Here we follow the presented syntax in [Li02]. In

that paper, it discusses dynamic classification, syntax structure, especially the dynamic

classification on objects of class. It can be used to extend any object-oriented languages,

such as C++, Java, or C#.

In this paper we use the syntax o f extended BNF (Backus-Naur Form) to illustrate this

approach. A BNF grammar is composed of a set of production rules. Each production

rule has two sides left and right and separated by the symbol =’. The right side

contains a non-terminal symbol. And the left side is consisted o f one or more alternative

specifications [Rag81]. For more specific, the syntax meaning is as follows:

• Symbol ‘|’ is used for separated alternative specifications

• Symbol ‘< ’ and ‘> ’is used for enclosing a string of one or more characters

• Square bracket ‘[‘and ‘] ’ is used for surrounding optional.

• Symbol ‘ {‘and ‘} ’ indicates repetition.

• Suffix ‘ ’ is used for a sequence of zero or more of an item.

4.2.1 Class Definition

First, we introduce the definition o f class with dynamic classification. The following

syntax can be used to define the static and dynamic superclass-subclass relation in object-

oriented programming language. Keyword c la s s is used to define the class name, and

symbol ‘ : ’ is used to define the inheritance relationship. The symbol ‘ ’ is followed by

the class name o f static parent. Keyword dynam i c is used to define dynamic superclass-

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

subclass relationship. It is followed by the class name o f dynamic child. Keyword I abe I

is used to define the role of the object in that class, and it introduces identifier lists of

dynamic classification relation. By this syntax we can implement the dynamic

classification relation (C, I, R) defined in the Definition 1.

The following syntax extended the grammar in C# language. The keyword c la s s and

symbol ‘ ’ are standard C# sentence, and keyword dynam i c and I abe I are not included

in C# language. Here is the definition of class syntax.

<class_definition> ::= c lass <class_name>[<static_parents>]*

[<dynam i c_cI ass i f i cat i on>]*<cIass_body>

<cIass_name> ::= < ident i f i er>

<static_parents> ::= : <cIass_names>

<dynamic_classification> ::= dynamic <cIass_names>

[<Iabel_lists>]

<cIass_names> ::= <cIass_name>{, <cIass_name>}*

<Iabel_ lists> ::= label [<Iabel_list>]

<Iabel_ list> ::= <identifier>{, <identifer>}*

Next, we discuss the class body. In class body, we can define the attribute and method in

its class. The method can be composed o f a signature and a method body that include one

or more statements. Here is the syntax of class body.

<class_body> ::= {{<property>;}*}

<property> ::= <attribute>|<method>

<attribute> ::= <class_name><attribute_name>

<attribute_name> ::= <ident ifier>

<method> ::= <class_name><method_name>([<parameter_list>]*)

{{<statement>}*)

<method_name> ::= <ident i fier>

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

<parameter_list> ::= <class_name><identifier>{, <class_name>

<ident ifier>}*

In the example of company employee that is forenamed, we can construct three classes

Person, Employee and Manager. Class Employee takes the class Person as its static

parent, and the class Employee can inherit all the attributes from class Person. Class

Emp I oyee takes the class Manager as a dynamic child and class Emp I oyee can obtain the

attributes dynamically from class Manager. The class Manager plays two roles:

projectManager and technicManager. Figure 4.2.1.1 shows the relationship between

three classes.

projectManager

ManagerManager

Person

Employee

technicManager

Figure 4.2.1.1 Relations of three classes

The followings are the demo codes, and it shows how to define classes to implement

dynamic classification relation like <Emp I oyee, projectManager, Manager> and

<Emp I oyee, technicManager, Manager> in Figure 4.2.1.1. Meanwhile we define the

attribute serviceLength and method setServiceLength, getServiceLength for this

class.

/ / class Employee
Class EmpIoyee:Person dynamic Manager label[projectManager,

technicManager]
{

Year serviceLength:
setServiceLength (Year year)
{

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

this.serviceLength = year;
}
Year getServiceLength()
{

return th i s.servi ceLIength;
1

}

4.2.2 Statement Definition

We now discuss the syntax for statement definition, which is divided into three types. An

expression ends with a semicolon. An assignment statement assigns the parameter and

attribute to an object. The third type is conditional statement such as if-else statement.

<statement> ::= <expression>;|<assignment>|<conditional>|

«statement»

<assignment> <parameter> = <expression>; |

<express>. <attribute_name> = <expression>;

<conditional> ::= if<expression)then<statement>

else<statement>

We define the expression as follow:

<expression> ::= <object_creation>|<declassification)|

<f i eId_access>|<method_ i nvocat i on)|

<dynam i c_ch iId>|<dynam i c_parent>|

<constant>|<parameter>| «express i on))

An expression principally performs the following operations:

• Create primary and dynamic object o f class. Detailed syntax is as follows:

<object_creation> ::= <primary_object_creation>|

<dynam i c_object_creat i on)

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

<primary_object_creation> ::= new <cIass_name>()

<dynamic_object_creation> ::= <expression> newChiIdC

<cIass_name>, < i dent i f i er>, <cIass_name>, <cIass_name»

I<express i on> newCh iId «cIass_name>, < i dent i f i er»

I<express i on> newCh iId « i dent i f i er»

Here is the example:

Student Jason = new Student ():

eJason = Jason newChiId (Person, employee, Employee);

eJason newChiId(projectManager);

The example describes the process of Jason from being a student to a manager.

First we create object Jason in class Student as a primary object with the

expression.

Student Jason = new Student ():

Then, we create object eJason of class Emp I oyee as a dynamic object with the

expression.

eJason = Jason newChiId(Person,employee,Employee);

By building the parent-child relationship between object Jason and eJason

through dynamic classification <Person, emp I oyee, Emp I oyee>, the parent Jason

has the ability to access the attributes and methods to child eJason. Same way,

the following expression creates a new object of class Manager and builds the

parent-child relation with object eJason through dynamic classification

<Empl oyee, projectManager, Manager>. Obviously, object Jason can be student,

employee, or manager.

eJason newChiId (projectManager);

Similarly, expression

newChiId (projectManager);

is the abbreviation of the expression.

newChiId(EmpIoyee, projectManager, Manager);

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Declassification object. Using these expressions to remove the dynamic objects

and delete the parent-child relation between two objects. Among these

expressions removeCh i I d is a Keyword, acting as remove the appointed relations

separately. The detail syntax is as follows:

<declassification> ::= <expression> removeChiId

• Store and acquire operations on data of object. The detail syntax is as follows:

<field_access> ::= <expression>. <attribute_name>

<method_invocation) ::= <expression>. <method_name>

([<argument_list>]*)

<argument_list> ::= <expression>{, <expression>}*

Herein, we comprehensively discussed the new approach presented by Li from the

motivation, definition to the implementation syntax. Next we will focus on the detailed

implementation o f dynamic classification in object-oriented programming languages.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5 Implementing Dynamic Classification in C#

This chapter works on how to extend the object-oriented programming language C# to

implement the functions of dynamic classification. We will present a preprocessor, by

which a C# code including the extendable dynamic classification functions can be

translated to standard C# code. The translated code can be compiled by a C# complier.

This chapter is divided into four sections: feature of the C# language, implementation of

the preprocessor, the restrictions and assumptions o f syntax, and how to use the

preprocessor.

5.1 Features of the C# Language

C# language is an object-oriented programming language. It can be used to create

applications that run in the .NET CLR. C# is an evolution of C and C++ language and it

is created by Microsoft especially to work with the .NET platform. C# can be used for

more common application types: windows applications, web applications and web

services. As it is a recent language, it has been designed with foresight and contains many

good features from other languages while clearing up their problems [Wat02]. The C#

language has the following features [Msd04].

• C# is a simple but powerful programming language, which is intended to write

enterprise applications.

• C# uses many C++ features in the areas of statements, expressions, and operators.

• C# has much improvement and innovation in the area o f type safety, versioning,

events, and garbage collection.

• C# provides common API styles: .NET Framework, COM, Automation, and C-

style APIs. C# supports unsafe mode which let us use pointers to read and write

memory that is not under control of the garbage collector.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reflection is also a feature of the C# language. It is the process by which a program can

read its own metadata. It is a powerful mechanism, which allows program to inspect type

information and invoke methods on those types at runtime. Reflection is generally used

for any of the following four tasks [LibOl]:

• Viewing metadata: Type’s metadata can be explored with reflection.

• Performing type discovery: Performing type discovery: Reflection allows program

to examine the types in an assembly and interact with or instantiate those types. It

is used in creating custom scripts.

• Late binding to methods and properties: Reflection allows the programmer to

invoke properties and methods on objects instantiated dynamically based on type

discovery. It is also called dynamic invocation.

• Creating types at runtime: Reflection can be used to create new types at runtime

and then to use those types to perform tasks. We can use it when a custom class is

created at runtime, and it runs significantly faster than more generic code is

created at compile time.

In our program, we use the System. Ref I ect i on namespace and functions as follows:

• Method I nf o: Used to discover the attributes of a method such as the name, return

type, parameters, and it provide access to method metadata.

• GetT ype: Used to get the runtime type of the current instance.

• GetMethod: Used to explore method of a Type object to invoke a specific method.

• Invoke: Used to invoke the method or constructor reflected by the Methodlnfo

instance.

In the following example, we will show how to use the functions of reflection in a

program.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

using System;
using System. Ref lection;

namespace TestReflection
{

class Classl
{

public s ta t ic void Main(string[] args)
{

try
{

/ / I n i t ia l iz e input parameters
Class2 testObject=new Class2();
Object input1=test0bject;
string input2="JoinName";
object[] input3=new object[2];
i nput3[0]="Jason";
input3[13="Wang";

//Invoke method MethodCheck in Classl
CI ass1. MethodCheck(i nputl, i nput2,

i nput3);
}
catch (Except ion e)
{

ConsoIe. Wr i teL i ne("Execept i on:"
+e.Message);

}

1

//Check and invoke the specified method
public s ta t ic void MethodCheck(Object obj, string

methodName, Object[] methodArguments)
{
//Get the types of method arguments

Type[] arguTypes=new Type
[methodArguments. Length];

for(int i=0; i<methodArguments.Length; i++)
arguTypes[i]=

methodArguments[i]. GetType()

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

//Evaluate whether the method has
//been find from the specified object
if (methodInfo!=nu11)
{

/ / I f found it, invoke the method of
/ / the specified object
Console.WriteLine("The method has been

found.");
method Info. Invoke(obj,

(Object[])methodArguments);
}
else
{

Console. WriteLine ("Can not find the
method");

)

1
}

class Class2
{

public void JoinName(string FirstName,
string LastName)

{
//Join f i s t and last name, and show them
Console.WriteLine("The f ir s t name i s '{0}",

Fi rstName);
Console.WriteLine("The last name i s :{0}",

LastName);
Console.WriteLine("The fulI name i s :{0}",

FirstName+LastName);
}

1
}

This program includes two classes: Classl and Class2. The method MethodCheck in

class Cl ass 1 is used to check and invoke a specified method of an object. The method

Jo i nName in class CI ass2 is used to join the first and last name and then display them. In

method MethodCheck, the input parameter obj is an object name, the methodName is a

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

method name, and the methodArguments is the input parameters of method methodName.

In this method, we use the following syntax to bring the types of methodArguments into

an array arguTypes, the function GetTypeO is used to get the runtime type o f the

current object methodArguments [i].

Type[] arguTypes=new Type[methodArguments. Length];
fo r (int i=0; KmethodArguments.Length; i++)

arguTypes[i] =methodArguments[i]. GetType 0 ;

Then we use the following syntax to get the information of method methodName from the

specified object obj, and keep the information in method I nfo. The function GetMethod()

is used to explore method of a specified object.

Method Info method Info=obj. GetType(). GetMethod(methodName,
(TypeD) arguTypes);

Finally we evaluate the value of method Info. If it is not nul I, it means the method has

been found from the specified object. We use the function InvokeO to invoke this

method reflected by the Method I nfo instance. The syntax is shown as follows:

if(methodInfo!=nu11)
{

Console.WriteLine("The method has been found.");
methodlnfo.lnvoke(obj, Object[])methodArguments);

}
else
{

Console.WriteLine("Can not find the method");
)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The result of this program is now:

Comm and Prompt (̂ vaJ a Hm u m m m t r i i w i r o i a i i ^ i f c i ^ ^ i g j g

G:\Code_new\ Tes tR©f lec t ion \ b in \D@bug>t©s t r©f l ee t i c
The method has been found.
The f i r s t name i s ; J a s o n
The l a s t name i s : Wang
The f u l l name i s : Jasonldanq

|_J

Id
d 4

5.2 Implementation of Preprocessor

The preprocessor includes two parts: Processl and Process2. It completes the

translation of the input program. Processl is used to analyze and record the information

o f input program. The recorded information will be used for Process2. Process2 is used

to translate input program to standard C# code. A detailed discussion to program

structure will be given at follows.

5.2.1 The First Process of the Preprocessor

The first process for an input program is the method Processl of class Process that

mainly focuses on the forepart preparation for the program translation. The functions of

Processl are presented as follows.

• By analyzing the sentence that contains the keyword dynamic in the input

program, preprocessor creates the dynamic classification relation table and saves

the table in the specified file dynamic_class_info. dat. This file includes the

information o f class name, label and dynamic child class. It will be used to

translate input program in Process2. For example, we create the content in Table

5.2.1.1 from the following dynamic classification definition sentence.

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

/ / class Person
public class Person dynamic Student,Employee
{

public string name, sex, address;
}

/ / class Employee
class Employee:Person dynamic Manager label [technicManager,

projectManager]
{

public string employeeNumber:
public string salary;
public string GetSalaryO
{

return this, salary;
}

public void SetSaIary(string s)
{

this.salary = s;
}

}

Class Name Label Dynamic Child Class
Person student Student
Person emp1oyee Emp1oyee

Emp1oyee technicManager Manager
Emp1oyee projectManager Manager

Table 5.2.1.1 dynamic_class_info. dat structure

• By analyzing the sentence containing the keyword new in the input program,

preprocessor saves the name o f new object and its class name in global variable

newOb jectAr ray. The new is a keyword in standard C# language, which is used to

create objects and invoke constructors. The information in variable

newObjectArray will be used for Process2 later. For example, we analyze the

following sentence and save the name of object jason and class

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

GraduateStudent in variable newObjectArray as (jason, GraduateStudent).

It shows that object jason is an instance of class GraduteStudent.

GraduateStudent jason = new GraduateStudent();

• By analyzing the sentence containing the keyword newCh i I d in the input program,

preprocessor saves the name of new object and its class name in global variable

newOb jectArray, which is used for the Process2 later. The newCh i Id is a

keyword in dynamic classification grammar. It is used to create primary and

dynamic objects from classes. In the following demo codes, the first statement

creates object e of class Emp I oyee that depends on dynamic classification relation

(Person, employee, Employee), and lets the object e as a dynamic child of

object jason. For the first line, preprocessor saves the name of object e and class

Employee in variable newObjectArray as (e, Employee). The second line

doesn’t define a new object name, so preprocessor will create the object name

automatically. For the second line, preprocessor records nothing in variable

newObjectArray.

e = jason newChiId (Person, employee, Employee);

e newCh iId (deptManager);

• Analyzing each class definition and save the class information in the specified file

c lass_ in fo . dat. It includes the class name, superclass name, variable number

and variables, method number and methods. This file will be invoked in Process2.

For example, we can create the table in the Table 5.2.1.2 from the following class

definition sentence:

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

/ / class GraduateStudent
class GraduateStudent : Student
t

pub Iic string professorName = nulI;
public string thesisSubject = null;
pub I i c vo i d show ()
{

ConsoIe. Wr i te l i ne ("Professor Name:{0}",
professorName);

ConsoIe. Wr i teL i ne("Thes i s Subj e c t :{0}",
thesisSub j e c t) ;

}
1

Class Name GraduateStudent
Superclass Name Student
Varible Number 2
Varibles professorName,thes i sSubject
Method Number 1
Methods show ()

Table 5.3.1.2 class_ info . dat structurre

5.2.2 The Second Process of the Preprocessor

The method Process2 of class Process implements the second process for input

program. It uses the information from Processl and focuses on the program transition.

The functions are shown as following.

• Translate dynamic classification definition sentence.

Searching the keyword dynamic to find the dynamic classification definition

sentence and translate the input program to an output file. In chapter 4.2.1, we

introduced how to use the keyword dynamic and label in object-oriented

programming language to define dynamic classification relation(C, I, R). As

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

these keywords are not recognized by standard C# but defined by ourselves, so a

transition is required before compiling the input program. In preprocessor, both

the first and second process are responsible for analyzing the dynamic

classification relation, but with different purpose. The relationship analyzed in

Processl is used for recording the relationship information of the input program.

In Process2, it is used for the translation of input program. We explain it by the

example below.

/ / class Person
public class Person dynamic Student,Employee

/ / class Student
class Student:Person dynamic GraduateStudent

/ / class Employee
class EmpIoyee:Person dynamic Manager label

[technicManager, projectManager]

/ / class GraduateStudent
class GraduateStudent'.Student

/ / class Manager
class Manager:EmpIoyee

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This demo code defines five classes: Person, Student, Employee,

GraduateStudent and Manager. The dynamic classification relations between

them are illustrated in the Figure 4.1.4. Before we explain how to translate this

code, we consider how to record relations between these classes in run time first.

Therefore we define a new class DynaC I ass i f i cation and add it to the output

file. The methods of class DynaC la s s i f i cat ion is shown in Table 5.2.2.1.

Methods Purpose

DynaClassification()

Equals()

MethodSearch()

FieldSearch()

ExecuteMethod 1 ()

ExecuteMethod2()

ExecuteFieldl()

ExecuteField2()

Record the dynamic classification relation

Compare different dynamic classification relations

Search for maximal subobjects o f specified object that include the invoked method

Search for maximal subobjects o f specified object that include the invoked field

Invoke method (no output parameter)

Invoke method (with output parameter)

Invoke field (no output parameter)

Invoke field (with output parameter)

Table 5.2.2.1 Class methods of DynaC la s s i f i cat ion

Here we just discuss the method DynaC la s s i f i cat i on and Equa I s, and the other

methods will be explained in the following part. The method

DynaC la s s i f i cat ion is used to record the dynamic classification relation

between the classes, with variables C, I and D separately represent the dynamic

parent, label and dynamic child in the dynamic classification relation. The method

Equals is inherited from class Object and used to compare different dynamic

classification relations. The method DynaC la s s i f i cat ion and Equals are

defined as:

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

using System;
using System. Ref lection;
using System. Co 11ections;

/ / class DynaCI assification
class DynaCI ass if icat ion
{

pub Iic string label;
public Type parent.chi Id;

/ / Used to record the dynamic c lassification relation
public DynaCI assification(Type C, string I, Type D)
{

parent = C;
IabeI = I;
ch iId = D;

1

/ / Used to compare different dynamic c lassification
/ / relations
public bool Equals (DynaCI assification dynac)
{

If (parent. EquaIs(dynac. parent)&&IabeI. Equals
(dynac.IabeI) &&ch iId. EquaIs(dynac. ch iId))

return true;
return false;

1

1

So we can use an instance of class DynaC I ass i f i cat i on to record the dynamic

classification relation of input program. The way for recording is to define an

ArrayList dynamics for dynamic classification relation and save each dynamic

superclass-subclass relation in it. If a class does not have a superclass, which

means the class is the root node in the dynamic classification relation. We define

a new ArrayList dynamics in the class and define an interface Parent as the

superclass o f this class. Whereas if a class has a superclass, which means the class

is the leaf node in the dynamic classification relation, the class can inherit the

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

variable dynamics from its superclass. Therefore we can get all the dynamic

classification relations from the variable dynamics. Therefore, the dynamic

classification definition sentence listed above can be translated to the following

C# code:

using System. Col lections;

/ / interface Parent
interface Parent
{

I Co 11ect i on GetCh iIdren();
}

/ / class Person
public class Person:Parent
{

internal Parent parents;
internal DynaCI ass if icat ion dyna;
internal Hashtable children= new HashtableQ;
public sta t ic ArrayList dynamics;

static Person()
{

dynamics = new ArrayListO ;
dynam i cs. Add(new DynaCI ass i f i cat i on(

typeof(Person), "student", typeof (Student)));
dynamics. Add(new DynaCI ass if icat ion(

typeof (Person), "empIoyee", typeof(EmpIoyee)));
}
public I Co I lection GetChiIdren()
{

I Co 11ection children_values = chi Idren. Values;
return children_values;

1

}

/ / c la s s Student
class Student : Person
{

sta t ic Student0
{

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

dynamics. Add(new DynaCI ass ifi cat i on(
typeof(Student), "graduateStudent",
typeof(GraduateStudent)));

}

}

/ / class Employee
class EmpIoyee:Person
{

static EmpIoyee()
{

dynam i cs. Add(new DynaCI ass i f i cat i on(
typeof(Employee), "technicManager",
typeof (Manager))):

dynam i cs. Add(new DynaCI ass i f i cat i on(
typeof(Employee), "projectManager",
typeof(Manager)));

}

}

/ / class GraduateStudent
class GraduateStudent:Student
{

1

/ / class Manager
class Manager Employee
{

1

• Translate the newCh i I d statement sentence.

Searching the keyword newCh i I d to find the newCh i I d definition sentence and

translate it correspondingly. In chapter 4.2.2 we introduced how to use the

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

keyword newCh i I d in object-oriented programming language to define a dynamic

object. Now preprocessor opens file dynamic_cIass_info, dat that is created in

Processl. From this file, preprocessor can get dynamic classification relation

between classes. Depending on the relation, a newCh i I d definition sentence will

be translated into some standard C# sentences which include creating object and

describing dynamic classification relation. For Example, the expression

obj' = obj° newChi Id (C, l,C');

creates a dynamic object obj1 with class C' . Object ob j1 is a subobject of object

obj °, and they are related with dynamic classification relation (C, I, C'). In

this expression, we have defined the subobject name ob j1. If it is not defined, the

preprocessor will automatically create a new object name. The following input

code is an example.

using System;
using System. Ref lection;
us i ng System. Co 11ect i ons;

pub Ii c cl ass DemoCode
{

public sta t ic void Main(String[] args)
{

/ / Sentence 1
GraduateStudent jason = new GraduateStudent0 ;
/ / Sentence 2
e = jason newChild (Person, employee, Employee);
/ / Sentence 3
e newChild (technicManager);

}

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In the above codes, object jason is created by class GraduateStudent, object e

is created by class Employee, and there exists a dynamic parent-child relation

between the object e and jason, where object jason is a primary object and

object e is a dynamic object, and they are related with dynamic classification

relation (Person, employee, Employee). The relationship between object jason

and e will be recorded and used for the following program at runtime. Here we

put the relation in Hashtable chi I dren which is defined in the root class of the

dynamic superclass-subclass relation. The following is a translation C# code of

the input code above.

using System;
using System. Ref lection;
using System. Col lections;

public class DemoCode
{

public s ta t ic void Main(String[] args)
{

/ / Sentence 1
GraduateStudent jason = new GraduateStudent ();

/ / Sentence 2
Emp I oyee e = new Emp I oyee ();
DynaCI ass ification temp_Dyna_0 = new

DynaCI ass i f i cat i on (typeof (Person),
"empIoyee", typeof (EmpIoyee));

jason. ch iIdren. Add(temp_Dyna_0, e) :

/ / Sentence 3
Manager temp_deptManagerO = new Manager 0 ;
DynaClassificat ion temp_Dyna_1 = new

DynaCI ass i f i cat i on(typeof(EmpIoyee),
"techn i cManager", typeof (Manager));

e. chi Idren. Add(temp_Dyna_1, temp_deptManagerO);

}
1

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Translate the removeChild sentence.

Searching keyword removeCh i I d to find the removeCh i I d sentence and translate

it correspondingly. The removeChi Id sentence is used for declassify operation of

the dynamic classification relation. The following sentence is an example:

jason removeChild:

This input code can be translated to the following C# code. It removes the object

jason from Hashtable ch i I dren, and disconnects the relation between the object

jason and its dynamic child object. The parameter temp_Dyna_0 is an instance of

class DynaC I ass i f i cat ion that recorded the dynamic classification relation

between the classes.

jason. chiIdren. Remove(temp_Dyna_0);

• Method and field operate and access

In this step, preprocessor gets a list of new objects and newCh i I d object from

global variable newObjectArray which is created in Processl and use the list to

analyze input program. When preprocessor find a method that invoked sentence

of an object, it opens file c I ass_i nfo. dat that is created in Processl to analyze

the class of this object that belongs to a system class or user created class. If

preprocessor cannot find the invoked method from this class, it will check the

superclass of this class depending on recorded information in file

class_ in fo . dat. Finally, a result will be returned, which shows whether the

class is found or not. Preprocessor that depends on the result translates the input

code.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In translation codes, we use the reflection function of C# language to implement

the operation o f method and field at run time. We define other three methods in

the class DynaC I ass i f i c a t ion for method operation: MethodSearch,

ExecuteMethodl and ExecuteMethod2, which are responsible for method check

and method access. The MethodSearch use the reflection function to search

whether an object or subobjects of this object includes the specific method in real

time. The ExecuteMethodl and ExecuteMethod2 are used for setting the

operation and getting the values from the methods. We also define three methods

in the class DynaC la s s i f i c a t ion for field operation: FiledSearch,

ExecuteFieldl and ExecuteField2, which are responsible for field check and

access. The operation of field is similar to method operation. The methods of

method operation in class DynaC I ass i f i cat i on are shown as follows.

using System;
using System. Ref lection;
us i ng System. Co 11ect i ons;

/ / class DynaCI assification
class DynaClassificat ion
{

/ / Search for maximal subobjects of specified object
/ / that include the invoked method
public s ta t ic Object MethodSearch (Object objectName,

string methodName, ObjectD arguments)
{

Type[] arguTypes = new Type[arguments. Length];
fo r (int i=0;Karguments.Length;i++)

arguTypes[i] = arguments[i] . GetTypeO ;
ArrayList objReturn = new ArrayList();
ArrayList objList = new ArrayList();
objList.Add (objectName);
While(objList.Count != 0)
{

ArrayList S=new ArrayList (objList);

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

objList = new ArrayList();
for(int i=0; i<S.Count; i++)
{

try
{

Method Info SearchMethodlnfo=
S[i]. GetType (). GetMethod
(methodName, (Type[])a r guTypes)

if (SearchMethodlnfo!=nulI)
{

objReturn. Add(S[i]);
}
else
{

objList. AddRange(((Parent)
S[i]). GetChiIdren0) :

}

}
catch (MethodAccessExcept i on MAE)
{

ConsoIe. Wr i teL i ne("MAE:"+
MAE. Message);

}
catch (Secur ity. Secur ityException SE)
{

ConsoIe. Wr i teL i ne("SE:"+
SE.Message);

}
}

}
i f(objReturn. Count==1)

return objReturn[0];
return nulI;

}
/ / Invoke method (no output parameter)
public s ta tic bool ExecuteMethodl (object objectName,

string methodName,object[] arguments)
{

try
{

Object obj=DynaCIassification. MethodSearch(
objectName, methodName, arguments)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

if (obj! =nu11)
{

TypeD arguTypes = new Type
[arguments. Length];

for (i nt i =0;i <arguments. Length; i ++)
arguTypes[i]=

arguments[i]. QetTypeQ ;
((Method Info) obj. GetType 0 . GetMethod(

methodName, (Typed) arguTypes)).
lnvoke(b, (ObjectG) arguments);

}
return true;

}
catch (Exception e)
{

Console. Out. WriteLine("Error:" + e. Message);
return false;

}
1

/ / Invoke method (with output parameter)
public s ta t ic bool ExecuteMethod2(object objectName,

string methodName,oject[] arguments,
out Type outType,out string outvalue)

{
outType = nulI;
outvalue = nulI;
try
{

Object obj=DynaClassificat ion. MethodSearch(
objectName, methodName, arguments);

if (obj! =nu 11)
{

Typed arguTypes = new
Type[arguments.Length];

for(int i=0; iArguments. Length; i++)
arguTypes[i]=arguments[i].

GetType ();
OutType = ((MethodInfo) obj. GetType().

GetMethod (methodName,
(System. Type[])arguTypes)).
lnvoke(obj, (System. Object[])
arguments). GetType ();

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

outVaIue = ((Method 1nfo) obj. GetType ().
GetMethod (methodName, (System. Type[])
arguTypes)).
lnvoke(obj, (System.Object[])
arguments). ToStringO;

1
return true;

1

catch (Exception e)
{

Console. Out. Writeline("Error:" + e. Message);
return false;

}
}

1

The following is an example, it shows how to translate method operation sentence
to C# code.

Example 1:

using System;
using System. Ref lection;
us i ng System. Co 11ect i ons;

pub Ii c cl ass DemoCode
{

public s ta t ic void Main(String[] args)
{

string salary_set="$8000";
jason.SetSaIary(saIary_set);

1
1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Translate to C# code:

using System;
using System. Ref Iection;
using System.Co 11ections;

pub Iic class DemoCode
{

public sta t ic void Main(String[] args)
{

string salary_set="$8000";
string methodname="SetSalary";
object objectname=jason;
object[] arguments = new object[1];
arguments[0] = salary_set;
DynaCI ass i f i cat i on. ExecuteMethodl(objectname,

methodname, arguments)

}

Example 2:

using System;
using System. Ref Iection;
using System. Col lections;

public class DemoCode
{

public s ta t ic void MainCString[] args)
{

string salary_get = jason.GetSalary0;

1

}

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Translate to C# code:

using System;
using System. Ref lection;
using System. Col lections;

public class DemoCode
{

public sta t ic void Main(String[] args)
{

string methodname = "GetSalary";
object objectname = jason;
object[] arguments = new object[0];
Type outputType;
string outputArgument:
DynaCI ass i f i cat i on. ExecuteMethod2(obj ectname,

methodname, arguments, out outputType,
out outputArgument);

string salary_get = outputArgument;

}
1

5.3 Restrictions and Assumptions of Syntax

This project demonstrates how to realize the function o f dynamic classification with the

existing object-oriented programming language C#. It is an implementation of the new

approach mentioned in chapter 4. For easily understanding the program, some restrictions

are defined as following:

• Extend C# with keywords dynam i c, I abe I, newCh i I d and removeCh i I d.

• The variables in C# language can be classified as two types: simple variable type

and complex variable type, as shown in Table 5.3.1. Our program only uses the

simple variable types by now.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Simple Variable Types int, uint, long, ulong, short, ushort, byte, sbyte
bool,char,string,float,double,decimal

Complex Variable Types Enumerations, Structures, Arrays

Table 5.3.1 Variable types

• The elements in class include behaviors and attributes. In C# we use methods to

define behaviors of a class, fields and properties to define the attributes. The fields

are defined using standard variable declaration format. The properties are defined

in a similar way to fields, but they act like methods. In our program, the variables

can only be defined in the class body and out of the method body, as fields in the

C#. The following program describes the difference between the fields and

properties.

Example (Field):

class testField
{

pub Ii c int tes t Int;
pub Iic char testChar;

1

Example (Property):

class testProperty
{

private int testInt;
pub Iic int TestInt
{

get
{

return testInt;
}
set
{

test Int=vaIue;
}

1
}

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• The use of the dynamic classification object is only limited to the basic expression

which include the = assignment operator.

<variable> = <object>.<field | method);

CobjectX <fi eId> = <variable>;

5.4 How to Use the Preprocessor

The usage o f the preprocessor consists o f the following three steps:

• Create C# source code files. We can compose a C# code which includes the

dynamic classification feature in a text editor. The code can be saved as any file

format.

• Translate the C# source code. We use the preprocessor to translate the source code

to a standard C# code which can be recognized by a C# compiler. The

preprocessor is a C# code translation tool in DOS command window. There are

several ways to execute preprocessor, exe, correspondingly get different results

as show below.

a) Generate the help information:

C:\>preprocessor -?
Usage: Preprocessor [-f<output-pathname>] input-pathname--
-? Show this usage information
- f Send output to specified pathname instead of the console

b) Run preprocessor, exe with input file name:

If the input file is formatted as *. cs, it will generate an output file

test_dc. cs under the current directory, e.g.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C: ̂ Preprocessor testcode. cs

If the input file is formatted as any other file formats, it will also generate

output file test_dc. cs, e.g.

C:\>Preprocessor testcode.txt

c) Run preprocessor with input and output file names:

C:\>preprocessor. exe -fc:\testcode_output. cs testcode. cs

The preprocessor will process the input file testcode. cs and the output

file testcode_output. cs will be put into c:\.

If the preprocessor runs successfully, the following results will be shown:

C; \ p r e p r o c e s s o r * f c : \ t e o t c o d e _ o u t p u t .cs testcode.c s
I n f O : CS P r e p r o c e s s o r far Dynamic Classification Step 1
I n f o : Ctt Preprocessor for Dynamic Classification Step 1
I n f o : CS Preprocessor for Dynamic Classification Step 2
Info: C# P r e p r o c e s s o r for Dunamic C l a s s i f i c a t i o n Step 2

Starting
End!
Starting
End!

A

That means the input code has been processed two times and an output file has

been generated.

Compile the output source code. We use the compiler provided by C# language to

compile . cs file to generate the executed file.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

csc testcode_dc. cs

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6 Conclusions

6.1 Conclusions

In this paper, we introduce a new approach and discuss the theory o f dynamic

classification in detail based on the knowledge o f precious research. The research of the

dynamic classification can be divided into two major parts: from theory perspective and

from implementation perspective.

• From theory perspective

Researchers present many approaches for dynamic classification. Bachman and

Daya [BD77] first extended the network data model with a role concept. Wieringa

et al. [WJS94] propose an order-stored logic dynamic database to implement class

migration and role-playing. Sciore et al. [Sci89] presents the object specialization

based on prototype. Richardson et al. [RS91] works on the aspect of programming.

Fower [Fow97] presents the five types of analysis pattern, etc.

• From implementation perspective

Many papers discuss the concrete implementation of dynamic classification in

existing computer language. Gottlob et al. [GSR96] researches on the

implementation of roles in Smalltalk and Fibonacci [ABG+93] [AG095], Kendall

[Ken99] implement the role model in the Aspect!. Depke et al. [DEKOO] conducts

the research on how to implement dynamic classification in UML. Drossopoulou

et al. [DDD+01] develops a type and effect system for language DoR and Fickle

to testify their approach, etc.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Based on the existing research achievement, we study object-oriented programming

language with dynamic classification, and get a totally comprehensive understanding on

this area. I focus on my thesis from two parts:

• From the aspect of theory: do more research on object-oriented programming with

dynamic classification, and complete the theory by a new approach.

• From the aspect of implementation: base on the complete understanding of

existing theories, implement dynamic classification by object-oriented

programming language C#. I develop a preprocessor, by which a C# code

including the extendable dynamic classification functions can be translated to

standard C# code. The export code can be compiled by a C# complier.

6.2 Future Work

Up till now, a lot of research achievements of dynamic classification have improved the

implementation, but still there are some problems, such as:

• To improve the existing theory.

• To implement the theory in programming language.

• To study on the system efficiency, which is one of the reasons that many existing

programming languages do not support dynamic classification?

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reference

1. [ABG+93] A. Albano, R. Bergamini, G. Ghelli and R. Orsini. An Object Data

Model with Roles. Proceedings o f the Nineteenth International Conference on

VLDB, pages 39-51, Dublin, Ireland, 1993.

2. [BD77] C. Bachman, M. Daya. The Role Concept in Data Models. In

Proceedings o f the 3rd International Conference on VLDB, pages 464-476, 1977.

3. [BRS+97] D. Baumer, D. Riehle, W. Siberski and M. Wulf The Role Object

Pattern. Proceedings o f the 4th Annual Conference on the Pattern Languages o f

Programs, 1997.

4. [DDD+00] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, P. Giannini.

Dynamic Object Reclassification. Octorber 30, 2000.

5. [DDD+01] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, P. Giannini.

Fickle: Dynamic Object Reclassification. In Electronic Proceedings o f The Eighth

International Workshop on Foundations o f Object-Oriented Languages (FOOL 8),

London, England, January 20, 2001, Available at

http://www. cs.williams. edu/~kim/FOOL/sched8. html.

6. [DH98] E. R. Doke, B. C. Hardgrave. An Introduction to Object COBOL. John

Wiley & Sonc, Inc. 1998.

1. [Fow97] M. Fowler. Dealing with Roles. Proceedings o f the 4th Annual

Conference on the Pattern Languages o f Programs, Monticello, Illinois, USA,

Sept. 1997.

8. [Gam96] E. Gamma. The Extension Objects Pattern. Submitted to PloP 1996.

9. [GSR96] G. Gottlob, M. Schrefl, B. Rock. Extending Object-Oriented Systems

with Roles. ACM Transactions on Information Systems, Vol. 14, No. 3, pp 268-

296, July 1996.

10. [KA95] S. Khoshafian, R. Abnous. Object Orientation - second edition. John

Wiley & Sonc, Inc. 1995.

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www

11. [Ken99] E. A. Kendall. Role Model Designs and Implementations with Aspect-

oriented Programming. In OOPSLA’99, pp.353-369, Denver, CO, USA,

November 1999.

12. [Kri95] B. B. Kristensen. Object-Oriented Modeling with Roles. OOIS’95,

Proceedings o f the 2nd International Conference on Object-oriented Information

Systems, 1995.

13. [Kri96] B. B. Kristensen. Roles: Conceptual Abstraction Theory & Practical

Language Issues. Theory and Practice o f Object Systems, 2:143-160, 1996.

14. [Li02] L. W. Li. Extending Object-Oriented Programming Languages with

Dynamic Classification. Submitted to Jourmal, 2002.

15. [LibOl] Jesse Liberty. Programming C#. July 2001.

16. [M098] J. Martin, J. J. Odell. Object-Oriented Methods: A Foundation. Prentice

Hall, 1998.

17. [Msd04] Msdn. Visual C# Language Concepts: C# Language Tour. Microsoft

Corporation 2004.

18. [Nor96] R. J. Norman. Object-Oriented Systems Analysis and Design. Prentice

Hall, 1996.

19. [Rag81] F. G. Ragan. Formal Specification of programming language. Prentice -

Hall, Inc., 1981.

20. [RG98] D. Riehle, T. Gross. Role Model Based Framework Design and

Integration. In Proceedings OOPSLA '98 ACM SIGPLAN Notices, pages 117—

133, Oct. 1998.

21. [RS91] J. Richardson, P. Schwarz. Aspects: Extending Objects to Support

Multiple, Independent Roles. In Proc. Intl. Conf. on Management o f Data, ACM,

pp 298-307,1991.

22. [Sch96] A. Schoenfeld. Domain Specific Patterns: Conversions, Persons and Roles,

and Documents and Roles. www.cs.wustl.edu/~schmidt/Plop-96/schoenfeld.ps.gz,

1996.

23. [Sci89] E. Sciore. Object Specialization. ACM Transactions on Information

Systems, 7(2): pp 103- 122, April 1989.

24. [Wat02] Karli Watson. Beginning Visual C#. Wrox Press Ltd., 2002.

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.wustl.edu/~schmidt/Plop-96/schoenfeld.ps.gz

25. [WJS94] R. Wieringa, W. de Jonge, P. Spruit. Roles and Dynamic Subclasses: A

Modal Logic Approach. Proceedings o f the 8th European Conference on Object-

Oriented Programming, ECOOP'94, Springer-Verlag, Bologna, Italy, July 1994.

26. [Wu99] C. Thomas Wu. An Introduction to Object-Oriented Programming with

Java. McGrow Hill 1999.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

VITA AUCTORIS

Wenjiang Wang was born in 1969 in Tianjin, P.R.China. He graduated from Beijing

Technology and Business University where he obtained a B.E. in Computer and

Application in 1992. He is currently a candidate for the Master's degree in Computer

Science at the University of Windsor and hopes to graduate in Summer 2004.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Object-oriented programming in C# with dynamic classification.
	Recommended Citation

	tmp.1618245630.pdf.Swqw7

