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Abstract

In this dissertation we propose shrinkage estimators and absolute penalty estimators (APEs)
in linear models, partially linear models (PLM) and quasi-likelihood models. We study
the asymptotic properties of shrinkage estimators both analytically and through simulation
studies, and compare their performance with APEs.

In Chapter 2, we propose shrinkage estimators for a multiple linear regression with first
order random coefficient autoregressive (RCAR(1)) error term. We also present two APEs
for this models which are modified versions of lasso and adaptive lasso estimators. We
compare the performance of shrinkage estimators and APEs through the mean squared error
criterion. Monte Carlo studies were conducted to compare the estimators in two situations:
when p > n and when p < n. A data example is presented to illustrate the usefulness of the
suggested methods.

In Chapter 3, we develop shrinkage estimators for a PLM with RCAR(1) error term.
The nonparametric function is estimated using a kernel function. We also compare the
performance of shrinkage estimators with a modified version of lasso for correlated data.
Monte Carlo studies were conducted to compare the behavior of the proposed estimators.
A data example is presented to illustrate the application of the suggested methods.

In Chapter 4, we propose pretest and shrinkage estimators for quasi-likelihood models.
We investigate the asymptotic properties of these estimators both analytically and through
simulation studies. We also apply a lasso estimator and compare its performance with the
other proposed estimators.
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Chapter 1

Background

1.1 Introduction

Statistical models are used to describe the relationships between the response(s) or depen-

dent variable(s) and a set of explanatory variables or predictors. The basic form of these

models can be written in the following form

y = f (X,β)+ε (1.1)

where y = (y1,y2, · · · ,yn) is the vector of responses, X = (x1,x2, · · · ,xp) are the pre-

dictors, β = (β1,β2, · · · ,βp) is an unknown vector of parameters, and ε = (ε1,ε2, · · · ,εn)

is the vector of unobservable random errors. If appropriate, such models can be used to

predict the value of the response variable for a set of known values of the predictors and

for any such prediction, estimation of the model parameters (β), is essential. Estimation of

parameters is also essential for performing statistical tests on any individual or set of model

parameters. However, the commonly-used classical estimators of the unknown parameters

1
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of the statistical models are based on the sample information. In real life situations, re-

searchers may have some prior information on the parameters either in the form of a prior

distribution or as a constraint on some (all) of the parameters. The source of such prior

information can be extracted from previous studies, empirical work or expert knowledge.

The prior distribution of a parameter is used in the Bayesian approach to statistical anal-

ysis. However, if the prior information about the parameters is available as values of pa-

rameters or relationships among them rather than as a distribution, the Bayesian approach

cannot be implemented. There are however other estimation methods that use this kind of

prior information in addition to the sample information. The inclusion of such additional

information in the estimation process would result in a better estimator than using sam-

ple information alone. This additional information is called non-sample information (NSI)

or uncertain prior information (UPI) and can be expressed in the form of a general linear

constraint such as

H0 : F ′β = d, (1.2)

where F is a p×q full rank matrix with rank q≤ p, d is a given q×1 vector of constants

and β is a p× 1 vector of model parameters. A model with no restriction on parameters

is called a full model and a model with restrictions given in (1.2) is a reduced model or

sub-model.

As a specific form of the above null hypothesis, consider the case when F ′ = (0,I)

where Ip2×p2 is the identity matrix, 0p2×p1 is the matrix of 0s, and dp2×1 = 0. In this case,

the parameter vector β can be partitioned to (β′1,β
′
2)
′ where β1 is the vector of main effects

and β2 relates to the nuisance parameters which can be excluded from the model. As we
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see, the general form (1.2) reduces to

H0 : β2 = 0. (1.3)

Here, β1 and β2 have dimensions of p1 and p2 respectively, with p1 + p2 = p. Now, the

question arises as to how one incorporates this UPI into the estimation process of model

parameters.

This dissertation deals with improved estimation strategy for the parameter estimation in

some statistical models. This strategy is called James-Stein estimation strategy, also known

as shrinkage estimation strategy inspired by Stein’s result that shows, in a parameter dimen-

sion greater than two, efficient estimates can be obtained by shrinking full model estimates

in the direction of reduced model estimates. We apply this method to three different mod-

els where sample as well as non-sample prior information about the model parameters are

available.

In particular, we propose improved estimators for a multiple linear regression model and

partially linear model (PLM) with random coefficient autoregressive (RCAR) errors when

UPI is available in the form of (1.3). We also propose improved estimators for the quasi-

likelihood (QL) models when UPI is given as (1.2). Furthermore, we consider absolute

penalty estimators (APEs) for parameter estimation in the above models and for comparison

purposes with our proposed Stein-type estimators.

1.1.1 Unrestricted and Restricted Estimators

When an estimator is solely based on sample information and not a function of UPI, it is

called the unrestricted estimator (UE). Denote the UE of β by β̂. This estimator can be
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achieved through different methods such as ordinary least square (OLS), generalized least

square (GLS), maximum likelihood (ML), etc. However, when non-sample information

on β exists as in (1.2), β̂ may not be efficient anymore. In order to take advantage of the

available UPI, we define β̃, the restricted estimator (RE) of β. When UPI holds, β̃ will be

an unbiased estimator of β with smaller variance than the β̂. However, if the UPI is not

true, then β̃ will be a biased estimator and the β̂ will outperform β̃.

Therefore, it is natural to combine the sample information as well as the UPI to define

an improved estimator that may outperform both β̂ and β̃, under certain conditions.

1.1.2 Pretest Estimator

Let Tn be the test statistic for the null hypothesis in (1.2) and cq,α be the critical value of

the distribution of Tn under H0. The pretest estimator (PTE) is defined as follows:

β̂PT = β̂ I(Tn > cq,α)+ β̃ I(Tn < cq,α),

where I(A) is an indicator function of set A. If the researcher is uncertain of the accuracy

of the UPI, then the procedure usually followed in practice is to pretest the validity of the

UPI. If the outcome of the pretest suggests that the UPI is correct, then the parameters are

estimated incorporating the restrictions, which leads to β̃. However, if the pretest rejects

the UPI, then the parameters are estimated from the sample information alone, which leads

to β̂.

If the UPI is nearly correct, then β̂PT outperforms β̂. But for incorrect restrictions, β̂PT

is a biased estimator since β̃ is biased under incorrect restriction.

More useful discussions about this estimator can be found in Bancroft (1944), Giles and



1.1 Introduction 5

Giles (1993), Albertson (1993), Ahmed (2001), Saleh (2006) and Ahmed and Liu (2009),

among others.

To overcome the problem associated with β̂PT , an improved estimation strategy, called

James-Stein or shrinkage estimation strategy, is defined. This estimator, despite β̂PT , is

a continuous function of the test statistic and it performs better than β̂PT in the entire

parameter space induced by UPI.

1.1.3 Shrinkage and Positive Shrinkage Estimators

The shrinkage estimator (SE) of the parameter vector β is defined as:

β̂S = β̃+(1− coptT−1
n )(β̂− β̃),

where copt is the optimal constant that minimizes the risk. As mentioned earlier, this es-

timator is a continuous function of the test statistic Tn; and the binary function of I(A) in

β̂PT is replaced by the continuous function coptT−1
n . To avoid the over-shrinking problem

in SE, we define the positive shrinkage estimator (PSE):

β̂S+ = β̃+(1− coptT−1
n )+(β̂− β̃),

where z+ = max(0,z). This estimator outperforms β̂S and will control the possible over-

shrinking in β̂S. Both β̂S and β̂S+ uniformly dominate β̂.

More useful discussions about these estimators can be found in Stein (1956), James and

Stein (1961), Ahmed and Saleh (1989), Ahmed (1997), Ahmed and Krzanowski (2004),

Ahmed et al. (2007) and Ahmed et al. (2010), among others.
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1.1.4 Absolute Penalty Estimator

Absolute Penalty Estimators (APEs) are a class of estimators in the penalized least square

family and since the absolute value of the penalty term is considered for estimation pro-

cess they are known as APE. One of the most commonly used class of APEs is the L1

penalized least square estimator or the lasso (least absolute shrinkage and selection opera-

tor) proposed by Tibshirani (1996) which performs both variable selection and parameter

estimation simultaneously. Lasso has become a popular model selection strategy since it

shrinks some of the coefficients and sets some of them exactly equal to zero.

As we know, in regression models the parameters are estimated by minimizing the resid-

ual sums of squares:

min
β

(Y −Xβ)′(Y −Xβ),

but lasso imposes an additional constraint on the coefficients,

p

∑
j=1
|β j| ≤ τ,

where τ is the tuning parameter. When τ is large enough, the constraint has no effect and

the solution will be the usual least square estimates; however, for small value of τ the

solutions are shrunk estimates often with some of them equal to zero. Thus, choosing τ can

be thought of as choosing the number of predictors to include in a regression model.

Note that the lasso results are similar to the shrinkage method by both shrinking and

deleting coefficients. However, it is different from the shrinkage procedure in that it treats

all the covariate coefficients equally.

Later, some other APEs were introduced by researchers. Fan and Li (2001) introduced
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the smoothly clipped absolute deviation (SCAD) approach. Efron et al. (2004) introduced

the Least Angle Regression algorithm and its connection to lasso. Zou (2006) introduced

adaptive lasso (AL) which uses a weighted L1 penalty. Park and Hastie (2007) developed L1

regularization paths for generalized linear models. Ahmed et al. (2007) proposed an APE

for partially linear models (PLM), which is an extension of the lasso method for linear

models. Nowadays, APEs are frequently being used for variable selection and estimation

strategy in problems with fixed and high dimensional data. In our dissertation we also

implement the APE and compare the results with the proposed shrinkage estimators.

1.2 Appraisal of the Estimators

1.2.1 Asymptotic Comparison

In this dissertation we study the performance of β̂, β̃, β̂S, β̂S+ and β̂PT using the notion of

asymptotic distributional bias (ADB) and asymptotic distributional risk (ADR). In general,

it is not easy to achieve the finite sample properties of the shrinkage and pretest estima-

tors for non-normal models. Asymptotic methods have overcome this difficulty (Ahmed,

1991, Ahmed, 2001, and others) which is related to convergence in distribution, but does

not guarantee convergence in quadratic risk. By implementing the notion of asymptotic

distributional risk (ADR), this technicality will be taken care of and it plays a useful role in

asymptotic risk analysis.

For this aim, we consider the weighted quadratic loss function criterion to examine the

performance of the estimators.

L(β0,β) = n(β0−β)′M(β0−β),
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where β0 is any one of β̂, β̃, β̂S, β̂S+ and β̂PT and M is a positive semidefinite matrix.

Obviously, when M = I , we get the squared loss function. The expectation of the loss

function as n→ ∞

E[ lim
n→∞

L(β0,β);M ] = R[(β0,β);M ],

is called the asymptotic risk (AR), which can be written as

R[(β0,β);M ] = E[ lim
n→∞

L(β0,β);M ]

= E[ lim
n→∞

n(β0−β)′M(β0−β)]

= tr[ME{ lim
n→∞

n (β0−β)(β0−β)′}]

= tr[MΓ],

where Γ is the asymptotic covariance matrix of β0.

We can evaluate the performance of the estimators by comparing the AR with a suitable

matrix M . The smaller the AR, the better the estimator. If there exists another estimator

β� such that

R[(β�,β);M ]≤ R[(β0,β);M ] ∀ (β,M) (1.4)

with strict inequality for some β, then the estimator β0 will be called an inadmissible

estimator. In such cases, we say that the estimator β� dominates β0.

Ahmed (1997) noted that since the statistic Tn is consistent against fixed alternative, the

SE and PSE will be asymptotically equivalent in probability to UE, i.e., the asymptotic dis-

tribution of
√

n(β0−β), is equivalent to
√

n(β̂−β) as n→∞. Therefore, for large sample

situations there is not much to investigate on the estimators. In this case, to obtain mean-

ingful asymptotic results and to evaluate the behavior of the estimators in a neighborhood
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of the null hypothesis, a class of local alternatives, {Kn}, is considered, which is given by

Kn : F ′β = d+
ω√

n
, ω 6= 0 fixed,

where ω = (ω1,ω2, . . . ,ωq) ∈ ℜq is a real fixed vector. It is obvious that for all n when

ω = 0, then F ′β = d. The expression in (1.4) is not easy to prove. An alternative is

to consider the asymptotic distributional risk (ADR) for the sequence of local alternatives

{Kn}.

Suppose that the asymptotic cumulative distribution function (cdf) of β0 under {Kn}

exists, and is defined as

F(x) = lim
n→∞

P{
√

n(β0−β)≤ x|Kn},

where F(x) is nondegenerate. Then, the ADR of β0 is defined as

R(β0,M) =
∫
· · ·

∫
x′Mx dF(x) = tr(MΓ),

where M is a positive semidefinite matrix and Γ =
∫
· · ·

∫
xx′ dF(x) is the dispersion

matrix obtained from F(x).

We also compare the behavior of the estimators based on the asymptotic distributional

bias (ADB). The ADB of the estimator β0 under Kn is defined as

ADB(β0) = E{ lim
n→∞

√
n(β0−β)}.
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1.2.2 Monte Carlo Comparison

Along with the bias and risk comparisons of the proposed estimators, we also carry out

Monte Carlo simulation studies to investigate the achieved results for β̂, β̃, β̂S and β̂S+

and β̂PT and also to compare and examine the performance of the suggested estimators

with absolute penalty estimators.

1.3 Review of Literature

In the following subsections we give an introduction and literature review of three models

that were used in this dissertation.

1.3.1 Multiple Regression Models with Random Coefficient Autore-

gressive Errors

In Chapter 2 we consider the following multiple regression model:

yi = x
′
iβ+ εi, i = 1, . . . ,n, (1.5)

where yi’s are responses, xi are known p×1 vectors of covariates, β = (β1, . . . ,βp)
′ is an

unknown p×1 vector of regression parameters, and εi’s are unobservable random errors. In

practice, it is plausible that the independent and identically distributed (i.i.d) assumption of

εi’s may be violated, especially for sequentially collected economic data that often exhibit

evident dependence in the errors. One way to model dependence in the error is to use

a linear stationary process, for instance, an AR process, an MA process, or an ARMA
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process.

However, in many fields of research including air pollution, image analysis, economics

and finance, linear time series is not the best model to fit. As a result, various nonlinear

time series models have been proposed, see, for instance, Tong (1990) and the references

therein.

There are many papers that consider ordinary linear models with nonlinear time series

error. For example, Weiss (1986) established the consistency and asymptotic normality of

the maximum likelihood estimators for a regression model with autoregressive conditional

heteroscedastic (ARCH) errors. Bera and Zuo (1996) developed a specification test for a

linear regression model with ARCH errors and Dutta (1999) derived the Wald and score

tests for additional linear regression parameters.

One of the nonlinear forms of time series models is the random coefficient autoregressive

(RCAR) model. Specifically we assume that εi in model (1.5) is a first order random

coefficient autoregressive process RCAR(1), which is a stationary solution of

εi = (θ+ zi)εi−1 + ei, i = 1, . . . ,n, (1.6)

where θ is the autoregression parameter and {zi} and {ei} are zero mean independent pro-

cesses each consisting of i.i.d random variables with finite second moments σ2
z and σ2

e ,

respectively.

For complete background on this model, we refer to Nicholls and Quinn (1982). Later

Akharif and Hallin (2003) introduced a test statistic for detecting randomness in the co-

efficients of an AR(p) model. Aue et al. (2006) proposed the quasi-maximum likelihood

estimator for the parameters of model (1.6) and derived strong consistency and the asymp-
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totic normality of the proposed estimator.

Hwang and Basawa (1993) considered parameter estimation of the model (1.5) with

errors given in (1.6) and investigated the limit distribution of the regression and the au-

toregression parameters. Also, Hwang and Basawa (1997) established the local asymptotic

normality for a class of generalized random coefficient autoregressive processes.

In Chapter 2, we use the model in Hwang and Basawa (1993) and propose improved

estimation strategy for the parameter vector in the presence of UPI given in (1.3). We

obtained restricted, shrinkage and positive shrinkage estimators and presented two absolute

penalty estimators for this model which are modified versions of lasso and AL for the

correlated errors.

1.3.2 Partially Linear Models with Random Coefficient Autoregres-

sive Errors

In Chapter 3 we consider the following partially linear model (PLM):

yi = x
′
iβ+g(ti)+ εi, i = 1, . . . ,n, (1.7)

where yi’s are responses, xi = (xi1, . . . ,xip)
′ and ti ∈ [0,1] are design points, β =

(β1, . . . ,βp)
′ is an unknown parameter vector, g(·) is an unknown bounded real-valued

smooth function defined on the compact subset [0,1], and εi’s are unobservable random

errors with mean zero. When εi are i.i.d random variables, Heckman (1986), Rice (1986),

Chen (1988), Robinson (1988), Speckman (1988), Eubank and Speckman (1990), Chen

and Shiau (1991), Donald and Newey (1994), Hamilton and Truong (1997) and Liang and

Härdle (1999) used various estimation methods, such as the kernel method, spline method,



1.3 Review of Literature 13

series estimation, local linear estimation, two-stage estimation and M-estimation to obtain

estimators of the regression parameters in model (1.7) and discussed the asymptotic prop-

erties of these estimators. Further, Gao (1997) and González-Manteiga and Aneiros-Pérez

(2003) discussed the problem of testing for model (1.7). For a more complete review, the

reader is referred to the monograph by Härdle et al. (2000) and a book by Horowitz (2009).

The majority of the work done so far, including that mentioned above, assume that the

errors are independent. However, the independence assumption is not always practical,

specially in areas like economics and finance. Recently, there has been more attraction to

model (1.7) with serially correlated errors.

When the error is an AR(1) process, Schick (1994) presented an estimator for the au-

tocorrelation coefficient in the presence of partially linear regression trend. Schick (1996,

1998) further constructed efficient estimators of the regression coefficient and the auto-

correlation coefficient, respectively. Gao (1995) considered the estimation problem of the

model (1.7) with MA(∞) error process. Furthermore, Aneiros-Pérez and Quintela (2002)

and Aneiros-Pérez et al. (2004), You and Chen (2007), among others, have studied the

estimation problem of this model with serially correlated errors.

You and Chen (2002) considered the partially linear model with nonlinear time series er-

ror. They specifically assumed a RCAR(1) model for the errors and used kernel estimates

of the nonparametric function g(.) to investigate the estimation problem and the limit dis-

tribution of regression parameters and autocorrelation coefficient.

In chapter 3, we consider the model in You and Chen (2002) and obtain restricted, shrink-

age and positive shrinkage estimators. We also present the absolute penalty estimator for

this model which is the extended and modified version of lasso and compared its perfor-

mance with the shrinkage estimators (Fallahpour et al., 2012).
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1.3.3 Quasi-likelihood Models

Nelder and Wedderburn (1972) extended general linear models to generalized linear mod-

els (GLMs) by including the exponential family of error distribution along with the normal.

The GLM requires full distributional assumptions. However, sometimes a full distribu-

tional assumption is not possible, especially in discrete data problems. To overcome this

problem, Wedderburn (1974) introduced quasi-likelihood (QL) methodology. This model

is based on only the first two moments of the response variable and is useful for estimating

the mean or the regression parameters. Consider the uncorrelated data yi with

E(yi) = µi, var(yi) = φV (µi) i = 1, . . . ,n,

and

g(µi) =
p

∑
r=0

βrxir, i = 1, . . . ,n,

where the link function g(.) and variance function V (.) are assumed known and the disper-

sion parameter φ may be unknown. The constant variance linear regression has g(µ) = µ,

V (µ) = 1 and dispersion parameter denoted by σ2. Now the quasi-likelihood function is

given by

Q(y,µ) =
n

∑
i=1

[∫ µi

yi

(yi− t)
φV (t)

dt

]
.

McCullagh (1983) examined the asymptotic properties of the QL function and showed that

the estimators enjoy a certain asymptotic optimality property. Firth (1987) investigated the

efficiency of the quasi-likelihood estimator under more general distributions than the expo-

nential family. Nelder and Pregibon (1987) and Godambe and Thompson (1989) proposed

extended quasi-likelihood (EQL) functions by introducing a normalizing factor to the QL.

The EQL resembles a likelihood involving not only the mean (regression) parameters but
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also the variance parameter of the response variable. Also Lee and Nelder (1996) devel-

oped hierarchical likelihood (HL) methodology for joint estimation of the mean and the

dispersion parameters in over dispersed models. The HL is based on full distributional as-

sumptions. In order to avoid full distributional assumption at the stages of the hierarchy,

Lee and Nelder (2001) introduced the double extended quasi-likelihood (DEQL) function

for the joint estimation of the mean and the dispersion parameters.

In Chapter 4, we propose an improved estimation strategy for the QL models in the pres-

ence of UPI given in (1.2). We obtain shrinkage, positive shrinkage and pretest estimators.

We also apply lasso to this model and compare the performance of all the estimators by

simulation studies.

1.4 Highlights of Contributions

In this dissertation, we extend the concept of pretest and shrinkage estimation in three

different models when UPI is available. We derive the asymptotic properties of these esti-

mators and compare their performances with absolute penalty estimators. We also conduct

extensive simulation studies for all three models and demonstrate the application of the

proposed estimators in real life problems.

The highlights of our contributions in this dissertation are summarized as follows:

In Chapter 2, we apply the shrinkage and absolute penalty methodologies in multiple

regression model with RCAR(1) errors. We divide Chapter 2 into two parts. In the first

part we consider the parameter estimation in high dimensional case, i.e., when the sample

size is less than the number of parameters (n < p). Here, we only provide absolute penalty

estimators since shrinkage estimators do not exist when n < p. In particular, we present
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a modified version of lasso and AL in order to apply these techniques to the correlated

observations. The simulation results show the superiority of AL over lasso.

In the second part of Chapter 2, we consider the fixed dimensional case, i.e., when n > p.

In this case we obtain shrinkage generalized least square estimators and we derive the

asymptotic bias and risk of the estimators. We also compare the performance of these es-

timators with APEs through simulation. The results show that when UPI is correct the

restricted estimator is the best. However, for misspecified UPI, positive shrinkage has su-

perior performance over the restricted, unrestricted, and shrinkage estimator. In comparing

shrinkage and APE, positive shrinkage estimator is superior to APEs when there are large

number of nuisance variables in the model with respect to significant variables, i.e., when

the dimension in (1.3) is large. Finally, a real data analysis is presented to illustrate the

results.

In Chapter 3, we consider the shrinkage and absolute penalty estimator in partially linear

model with RCAR(1) errors. We investigate the asymptotic properties of shrinkage estima-

tors and we show that these estimators dominate the unrestricted generalized least square

estimator. The relative performance of the estimators is examined using asymptotic risk

and bias. We also consider an absolute penalty estimator for partially linear model with

correlated error. We conduct a Monte Carlo simulation study and the results show that the

shrinkage method outperforms the absolute penalty estimator when the dimension in (1.3)

is large.

In Chapter 4, we study the application of shrinkage and pretest estimation methods to

the quasi-likelihood models. Asymptotic properties of the restricted, shrinkage, positive

shrinkage, and pretest estimators are discussed and compared with the unrestricted quasi-

maximum likelihood estimator. It is demonstrated that the positive shrinkage estimator is
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superior to the ordinary shrinkage estimator. Simulation results reveal that the shrinkage

estimator outperforms the unrestricted quasi-maximum likelihood estimator in the entire

parameter space and the pretest estimator dominates the unrestricted quasi-maximum like-

lihood estimator on a small part of the parameter space. We also apply the lasso estimator

and compare its performance with the other proposed estimators.

In Chapter 5, we summarize the results of this dissertation and present an outline for

future research.



Chapter 2

Estimation Strategies in Regression

Models with Random Coefficient

Autoregressive Errors

2.1 Introduction

A classic problem in statistical analysis is finding a reasonable relationship between a re-

sponse variable and a set of regressor variables under certain assumptions on the random

errors. The usual assumption is that the errors are independent, identically distributed (i.i.d)

random variables. This has been later extended to many different cases when the errors are

correlated. However, in many fields of research including economics, finance and biology,

it is well known that not all correlated errors can be fitted well by linear time series errors.

Therefore, much attention is now transferred to nonlinear time series models. Random co-

efficient time series models are one of the tools to handle the possible nonlinear features

18
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of real-life data. For complete background on this model, we refer the reader to Nicholls

and Quinn (1982). Liu and Tiao (1980) applied the random coefficient first-order autore-

gressive model to panel data and they fitted this model to annual average hourly earnings

in goods manufacturing in California. Also Singpurwalla and Soyer (1985) implemented

this model in real life data on software failures. They used this model for describing and

assessing the software reliability growth or decay.

In this chapter, we consider an improved estimation for the parameters in a multi-

ple regression model with random coefficient autoregressive errors (RCAR). We consider

methodologies for model selection and parameter estimation using shrinkage, lasso, and

adaptive lasso strategies. Consider the following model:

yi = x
′
iβ+εi, i = 1, . . . ,n, (2.1)

where yi’s are responses, xi are known p× 1 vectors of covariates, β = (β1, . . . ,βp)
′ is

an unknown p× 1 vector of regression parameters, and εi are unobservable random er-

rors. Here, we assume that εi is a first order random coefficient autoregressive (RCAR(1))

process, which is a stationary solution of

εi = (θ+ zi)εi−1 + ei, i = 1, . . . ,n, (2.2)

where θ is the autoregression parameter and {zi} and {ei} are zero mean independent pro-

cesses each consisting of i.i.d random variables with finite second moments σ2
z and σ2

e ,

respectively.

In this chapter, we propose shrinkage and absolute penalty estimation strategies for fixed

dimensional (p ≤ n) and high dimensional (p > n) data problems. In the case of fixed
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dimensionality, we consider shrinkage estimation strategy and propose shrinkage and pos-

itive shrinkage estimators for β1 when UPI is given in the form of β2 = 0. We study the

properties of these estimators using the notion of asymptotic distributional bias and risk.

For the case of high dimension data, we apply two variable selection methods such as lasso

and adaptive lasso (AL). We also provide Monte Carlo simulation studies in both cases.

The simulation experiments are conducted for each estimator in a different scenario and

the performance of each estimator is evaluated in terms of simulated mean squared error.

We also compare the relative performance of both lasso and AL estimation with the SE and

PSE. A real data example is given to illustrate the methods.

2.1.1 Organization of the Chapter

The rest of this chapter is organized as the following. In Section 2.2, shrinkage and ab-

solute penalty estimators are presented. Section 2.3 and 2.4 provide asymptotic results of

shrinkage and positive shrinkage estimators. In Section 2.5, the performance of the pro-

posed estimators are evaluated through simulation studies. Section 2.6 provides a real data

example. Finally, in Section 2.7, we present our concluding thoughts.

2.2 Statistical Model and Estimation

Assume model (2.1) in the general form of y =Xβ+ε, where X is the n× p matrix of

covariates and y is the n×1 vector of responses. If θ is known, then the generalized least

squares (GLS) estimator of β is

β̌ = (X ′Ω−1(θ)X)−1X ′Ω−1(θ)y,
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where Ω−1(θ) is a n×n matrix defined as

Ω−1(θ) =



1 −θ 0 0 . . . 0

−θ 1+θ2 −θ
...

0 −θ 1+θ2 −θ

...

0 . . . −θ 1


.

When θ is unknown, as is often the case in practice, Ω(θ) is replaced by Ω(θ̂) where θ̂

is a suitable estimator of θ. Noting that εi is unobservable, a reasonable estimator of θ is

the least square estimator θ̂ based on the residuals ε̂i = yi−x′iβ̂n, i = 1, . . . ,n, and is given

by θ̂ = ∑
n
i=2 ε̂iε̂i−1/∑

n
i=2 ε̂2

i−1. Noting that β̂n = (X ′X)−1X ′y is the ordinary least square

(OLS) estimate of β. consequently, the estimated GLS β̂ can be written as

β̂ = (X ′Ω−1(θ̂)X)−1X ′Ω−1(θ̂)y.

The properties of β̂ were investigated in Hwang and Basawa (1993).

2.2.1 Fixed Dimensional Estimation (n≥ p)

The model (2.1) is generally regarded as a full model, which is built at the initial stage of

modeling and contains all the possibly relevant variables.

Suppose that β can be partitioned as β = (β′1,β
′
2)
′, where sub-vectors β1 and β2 have

dimensions p1 and p2 respectively, and p1+ p2 = p, pi≥ 0 for i= 1,2. Thus we can rewrite
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the full candidate model as follows:

y =X1β1 +X2β2 +ε,

where X1 is the n× p1 matrix of the first p1 covariates and X2 is the n× p2 matrix of the

second p2 covariates. We are mainly interested in the estimation of β1 when based on some

variable selection method or prior information from previous studies indicate it is plausible

that β2 is close to some specified β0
2 which, without loss of generality, we may set to 0.

Thus, by removing these insignificant variables, we have a candidate sub-model as

y =X1β1 +ε. (2.3)

Our goal is to construct an efficient estimation for the regression parameter β1 when β2

may be equal to 0. For example, in the case of a multi-factor design, we maybe interested

in the estimating of the main effects β1, while there is a question whether the vector of

interaction effects β2 may be ignored. Now suppose β1 is the p1× 1 coefficient vector

for main effects and β2 is the p2× 1 coefficient vector for nuisance effects and there is

evidence that nuisance variables do not provide useful information, that is, β2 = 0.

Unrestricted and Restricted Estimators

According to the inverse matrix formula we have

A−1 =

 A11 A12

A21 A22


−1

=

 A−1
11.2 −A−1

11.2A12A−1
22

−A−1
22 A21A−1

11.2 A−1
22 +A−1

22 A21A−1
11.2A12A−1

22

 , (2.4)
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where A11.2 = A11−A12A−1
22 A21. Also, by partitioning β̂= (β̂′1, β̂

′
2)
′ andX = [X1|X2] we

have

β̂ =

 β̂1

β̂2

 =

(
[X1|X2]

′Ω−1(θ̂)[X1|X2]

)−1

[X1|X2]
′Ω−1(θ̂)y

=

 X ′1Ω
−1(θ̂)X1 X ′1Ω

−1(θ̂)X2

X ′2Ω
−1(θ̂)X1 X ′2Ω

−1(θ̂)X2


−1 X ′1Ω

−1(θ̂)y

X ′2Ω
−1(θ̂)y


By using the inverse matrix formula (2.4), the unrestricted GLS estimator (UE) β̂1 of β1

will be in the form of

β̂1 = (X ′1MΩ−1(θ̂)X2
X1)

−1X ′1MΩ−1(θ̂)X2
y,

whereX1 is composed of the first p1 column vectors ofX ,X2 is composed of the last p2

column vectors ofX and

MΩ−1(θ̂)X2
= Ω−1(θ̂)−Ω−1(θ̂)X2(X

′
2Ω
−1(θ̂)X2)

−1X ′2Ω
−1(θ̂).

The restricted GLS estimator (RE) β̃1 of β1 for model (2.3) when β2 = 0 has the form

β̃1 = (X ′1Ω
−1(θ∗)X1)

−1X ′1Ω
−1(θ∗)y,

where θ∗ = ∑
n
i=2 ε∗i ε∗i−1/∑

n
i=2 ε∗2i−1 with ε∗i = yi − x′iβ∗1 , β∗1 = (X ′1X1)

−1X1y, X1 =

(x1, . . . ,xp1), x j = (x j1, . . . ,x jn)
′, j = 1, · · · , p1.

Generally speaking, β̃1 performs better than β̂1 when β2 is null vector (or very close to

null vector). But for β2 away from the null vector, β̃1 may be considerably biased, inef-
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ficient, and even possibly inconsistent while the β̂1 holds its performance characteristics

steadily over the departure of β2 from null vector. Thus, in the face of uncertain prior

information β2 = 0, we have two extreme estimators β̂1 and β̃1 suited best for the full

model and sub-model, respectively. One natural attempt is to strike a smooth compromise

between β̂1 and β̃1 so that the performance characteristic of the compromise estimator

behaves reasonably well relative to β̂1 as well as β̃1.

Shrinkage and Positive Shrinkage Estimators

The shrinkage estimator (SE) β̂S
1 of β1 is defined as follows:

β̂S
1 = β̃1 +{1− coptT−1

n }(β̂1− β̃1), where copt = p2−2, p2 ≥ 3

and

Tn = nσ̂
−2
n β̂′2X

′
2MΩ−1(θ̂)X1

X2β̂2,

where σ̂2
n = n−1

∑
n
i=1(yi−x′iβ̂)2 and MΩ−1(θ̂)X1

has the same definition as MΩ−1(θ̂)X2
. It

is clear that β̂S
1 is a smooth compromise between β̂1 and β̃1. It tends to β̂1 as Tn tends to

infinity and tends to β̃1 as Tn→ p2−2. The problem with SE is that its components may

have a different sign from the coordinates of β̂1. This could happen if coptT−1
n > 1. In

this case the change in sign would affect its interpretability. In an attempt to overcome this

difficulty, we define the positive shrinkage estimator (PSE) by using the positive part of the

SE which will control the possible over-shrinking in SE. The PSE has the form

β̂S+
1 = β̃1 +{1− coptT−1

n }+(β̂1− β̃1), p2 ≥ 3,
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where z+ = max(0,z). For the sake of computation, the PSE can be written in the following

form

β̂S+
1 = β̂S

1− [1− (p2−2)T−1
n ]I(Tn < p2−2)(β̂1− β̃1), p2 ≥ 3,

where I(.) is the indicator function.

2.2.2 High Dimensional Estimation (n < p)

In this section, we present two absolute penalty estimators, namely, lasso and adaptive lasso

(AL) for the model (2.1) with the errors in (2.2).

Lasso Estimator

The least absolute shrinkage and selection operator (lasso) proposed by Tibshirani (1996)

is a regularization technique for simultaneous estimation and variable selection. The lasso

estimates are defined as

β̂lasso = argmin
β

{ n

∑
i=1

(yi−x′iβ)2 +λ

p

∑
j=1
|β j|
}
, (2.5)

where λ is a nonnegative regularization parameter and the second term is the so-called

L1 penalty. This method has become a popular model selection procedure since it shrinks

some coefficients and, because of its L1 penalty, the method will set many of the coefficients

exactly equal to 0. When λ is large enough, the solutions are shrunk versions of the least

square estimates often with some of them equal to zero; however, for smaller values of

λ(λ ≥ 0), the constraint may have no effect. A cross-validation method is mainly used to

find the best value for λ.
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Many well developed procedures can be used to find the solution for the above penalized

functions. For example: quadratic programming (Tibshirani, 1996), the shooting algorithm

(Fu, 1998), local quadratic approximation (Fan and Li, 2001), and least angle regression

(LAR) algorithm (Efron et al., 2004). The latter exploits the special structure of the lasso

problem, and provides an efficient way to compute the solutions simultaneously for all

values of λ.

In recent years, there has been a vast amount of research devoted to regularization meth-

ods. Rosset and Zhu (2007) studied the piecewise linear regularized solution paths to dif-

ferentiable and piecewise quadratic loss functions with L1 penalty. Friedman et al. (2007),

Wu and Lange (2008), and Friedman et al. (2010) developed the coordinate descent (CD)

algorithm for penalized linear regression and generalized linear models. For a review, the

reader is referred to Hesterberg et al. (2008), Zhang and Chai (2010), Ahmed and Raheem

(2012) and references therein for an up-to-date comprehensive review on this topic.

Since in our model the errors are correlated, we cannot achieve the APEs by directly

applying the L1 penalty to the data. As suggested by Hastie, we transform the data first and

then apply the L1 penalty to the transformed data.

Based on Hwang and Basawa (1993) we have Var(ε) = Υ =
(1−θ2)σ2

e
1−θ2−σ2

z
Ω(θ). Using

Cholesky decomposition, we factor Υ =AA′ where Υ and A are n× n matrices. Now

if we multiply both sides of the equation y = Xβ+ ε by A−1, we then get the linear

model y? =X?β+ε?, where y? =A−1y, X? =A−1X and ε? =A−1ε. In this model,

Var(ε?) =A−1ΥA−1 = I; therefore, the lasso method can be applied to these transformed

data.

Since Υ is unknown in most cases, we first estimate it by Υ̂ = σ̂2
nΩ(θ̂) where σ̂2

n =

n−1
∑

n
i=1 ε̂

2
i = n−1

∑
n
i=1(yi−x′iβ̂n)

2 and β̂n is the OLS estimate of β. But in the high
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dimension case since n < p, the OLS estimate can not be achieved. Therefore the initial

estimate for β is computed from a lasso fit on the original data. Once Υ is estimated,

we then factor Υ̂ = CC ′ where C is also an n× n matrix and lasso coefficients are the

solutions to the L1 optimization problem:

β̂lasso = argmin
β

{
(y?−X?β)′(y?−X?β)+λ

p

∑
j=1
|β j|
}
,

where y? =C−1y,X? =C−1X .

Adaptive Lasso Estimator

The asymptotic setup in lasso is somewhat unfair, because it forces the coefficients to be

equally penalized in the L1 penalty. Also there are certain situations where the lasso is in-

consistent for variable selection. Zou (2006) proposed a weighted lasso method called

adaptive lasso (AL) where different weights are assigned to different coefficients. He

showed that AL enjoys oracle properties; namely, it performs as well as if the true under-

lying model were given in advance. The AL method uses adaptive weights for penalizing

different coefficients in the L1 penalty and is defined as

β̂AL = argmin
β

{ n

∑
i=1

(yi−x′iβ)2 +λ

p

∑
j=1

w j|β j|
}
,

where λ is the tuning parameter, w j is a known weight which is better to be data-dependent

chosen, ŵ j = 1/|β̂ j|γ for γ > 0, and β̂ is a root n-consistent estimator to β; for instance,

ordinary least square estimator (OLS). But since in high-dimensional problems the OLS

estimates do not exist, the lasso estimates can be used instead to compute the weights.

Similar steps described for applying the lasso technique to correlated data can be followed
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to achieve AL estimators. The steps are given below:

Step 1: Fit lasso to the original data to get the estimator β∗

Step 2: Calculate σ̂2
n = n−1

∑
n
i=1 ε̂

2
i = n−1

∑
n
i=1(yi−x′iβ∗)2, θ̂ = ∑

n
i=2 ε̂iε̂i−1/∑

n
i=2 ε̂2

i−1

Step 3: Calculate Υ̂ = σ̂2
nΩ(θ̂) and then factor Υ̂ =CC ′ using Cholesky decomposition

Step 4: Transform y andX to y? =C−1y,X? =C−1X

Step 5: Solve the AL problem as

β̂AL = argmin
β

{
(y?−X?β)′(y?−X?β)+λ

p

∑
j=1

w j|β j|
}
.

In the next section we present the assumptions needed to provide asymptotic results for

shrinkage estimators and compare their performances based on their asymptotic distribu-

tional bias (ADB) and asymptotic distributional risk (ADR).

2.3 First-Order Asymptotics

The following assumptions are needed to derive the main results in Section 2.4.

Assumption 2.3.1. For all t,k = 1, · · · , p and h = 0,±1,±2, . . ., there exist gi j(h) such that

lim
n→∞

∑
n−h
i=1 xitxi+|h|,k

n
= gtk(h).

Assumption 2.3.2.

Eε
4
1 < ∞, and |θ|< 1, θ

2 +σ
2
z < 1.

Theorem 2.3.1. Suppose that Assumptions 2.3.1 and 2.3.2 hold. Then we have that

√
n(β̂−β) D−→ N

(
0,

(1−θ2)σ2
e

1−θ2−σ2
z
B−1

)
, where lim

n→∞

(
1
n
X ′Ω−1(θ)X

)
=B,
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and D−→ denotes convergence in distribution.

Proof. The proof can be found in Hwang and Basawa (1993).

Lemma 2.3.1. Suppose that Assumptions 2.3.1 and 2.3.2 hold. Then we have that

lim
n→∞

1
n
X ′Ω−1(θ̂)X =B.

Proof. According to Theorem 4.4 in Hwang and Basawa (1993), we need to show that

1
n
(X ′Ω−1(θ̂)X−X ′Ω−1(θ)X) = op(1), (2.6)

and

1√
n
(X ′Ω−1(θ̂)ε−X ′Ω−1(θ)ε) = op(1). (2.7)

Consider the (i, j) element of the term on the left-hand side of equation (2.6) given by

(θ̂2−θ
2)

∑
n
i=2 xitxik

n
−2(θ̂−θ)

∑
n−1
i=1 xitxi+1,k

n
,

which implies (2.6) since
√

n(θ̂−θ) is bounded in probability by Theorem 4.3 in Hwang

and Basawa (1993) and n−1
∑

n
i=2 xitxik and n−1

∑
n−1
i=1 xitxi+1,k are bounded by Assumption

2.3.1. The proof of (2.7) follows on a similar way.

Lemma 2.3.2. Suppose that Assumptions 2.3.1 and 2.3.2 hold. Then we have

σ̂
2
n = (1−θ

2−σ
2
z )
−1{(1−θ

2)σ2
e}+op

(
n−

1
2

)
, β̃1 = (I,B−1

11 B12)β̂G +op

(
n−

1
2

)
,
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and

Tn = n(1−θ
2−σ

2
z )
−1{(1−θ

2)σ2
e}β̂′2GB22.1β̂2G +op(1),

where σ̂2
n = n−1

∑
n
i=1 ε̂

2
i = n−1

∑
n
i=1(yi−x′iβ̂)2.

Proof. According to Nicholls and Quinn (1982) we need to show

1
n

n

∑
i=1

ε̂
2
i −

1
n

n

∑
i=1
ε2

i = op(n−
1
2 ).

It is easy to show that

1
n

n

∑
i=1
ε̂2

i −
1
n

n

∑
i=1
ε2

i =
1
n

n

∑
i=1

(ε̂i−εi)
2 +

2
n

n

∑
i=1

(ε̂i−εi)εi.

Since

σ̂
2
n =

1
n

n

∑
i=1
ε̂2

i and ε̂i = εi−x′i(β̂−β),

it holds that

σ̂
2
n =

1
n

n

∑
i=1
ε2

i +
1
n

n

∑
i=1

(x′i(β− β̂))2 +
2
n

n

∑
i=1
εix
′
i(β− β̂) = I1 + I2 + I3,

where I1 = σ2
ε = Var(ε1) = (1− θ2−σ2

z )
−1{(1− θ2)σ2

e}. Also based on Assumption

2.3.1 and the results of Lemma 2.3.1, it can be shown that Ii = op(n−
1
2 ) i= 2,3. The other

results of Lemma 2.3.2 can be proved by combining Theorem 4.4 in Hwang and Basawa

(1993) and Lemma 2.3.1.

Lemma 2.3.3. In an effort to establish some important properties of proposed estimators,

let η1 =
√

n(β̂1−β1), η2 =
√

n(β̃1−β1), and η3 =
√

n(β̂1− β̃1). Under the local alter-

native {Kn} and the results of Lemma 2.3.1 and Lemma 2.3.2, the asymptotic joint distri-
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butions of listed estimators are given below:

(i)

 η2

η3

∼ N2p1

{ −γ
γ

 ,

 Σ−Σ∗ 0

0 Σ∗

}

(ii)

 η1

η3

∼ N2p1

{ 0

γ

 ,

 Σ Σ∗

Σ∗ Σ∗

},

where Σ =
(1−θ2)σ2

e
1−θ2−σ2

z
B−1

11.2, Σ∗ = (1−θ2)σ2
e

1−θ2−σ2
z
B−1

11 B12B
−1
22.1B21B

−1
11 and γ =B−1

11 B12ω.

Lemma 2.3.4. Let x be a p-dimensional normal vector distributed as Np(µx,Σp). Then,

for a measurable function of φ, we have

E[xφ(x′x)] = µxE[φ(χ2
p+2(∆))],

E[xx′φ(x′x)] = ΣpE[φ(χ2
p+2(∆))]+µxµ

′
xE[φ(χ2

p+4(∆))],

where χ2
ν(∆) is a non-central chi-square distribution with ν degrees of freedom and non-

centrality parameter ∆ = µ′xΣ−1
p µx.

Proof. The proof can be found in Judge and Bock (1978).

Lemma 2.3.5. LetA= (A′1
...A′2)

′ be a vector distributed as Np(µ,Σp) with

 µ1

µ2

and

 Σ11 Σ12

Σ21 Σ22

 .

Then the conditional distribution ofA1 givenA2 = a2, is normal with

µ11.2 = µ1−Σ12Σ
−1
22 (a2−µ2)
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and

Σ11.2 = Σ11−Σ12Σ
−1
22 Σ21.

Proof. The proof can be found in Johnson and Wichern (2001).

2.4 Asymptotic Properties of the Shrinkage Estimators

In this section, we investigate the performance of the UE, RE, SE and PSE of β1 using the

notion of asymptotic distributional bias (ADB) and asymptotic distributional risk (ADR)

under {Kn}. Consider the sequence of {Kn} given by

Kn : β2(n) = n−
1
2ω, ω 6= 0 fixed,

where ω = (ω1,ω2, . . . ,ωp2) ∈ℜp2 is a real fixed vector.

Suppose that the asymptotic cumulative distribution function (cdf) of
√

n(β0
1−β1) under

{Kn} exists, and is defined as

F(x) = P[ lim
n→∞

√
n(β0

1−β1)≤ x|Kn].

Further let

Γ =
∫

. . .
∫
xx′dF(x)

be the dispersion matrix obtained from cdf. Then the ADR is defined as

R[(β0
1,β1);M ] = tr(MΓ).
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Also, the ADB of the estimator β0
1 under Kn is defined as

ADB(β0
1) = E{ lim

n→∞

√
n(β0

1−β1)}.

In the following we present the ADB and ADR of the estimators. The results of the

Lemma 2.3.4 and Lemma 2.3.5 will be extensively used to derive the asymptotic results of

the estimators under Kn.

2.4.1 Asymptotic Distributional Bias (ADB)

Theorem 2.4.1. Suppose that Assumptions 2.3.1 and 2.3.2 hold. Then under {Kn}, as

n→ ∞, the ADB of the estimators β̂1, β̃1, β̂S
1 , and β̂S+

1 are, respectively,

ADB(β̂1) = 0,

ADB(β̃1) = −B−1
11 B12ω,

ADB(β̂S
1) = −(p2−2)B−1

11 B12ωE(χ−2
p2+2,α;∆),

ADB(β̂S+
1 ) = ADB(β̂S

1)−B−1
11 B12ω

{
Hp2+2(p2−2;∆)

− (p2−2)E(χ−2
p2+2(∆)I(χ

2
p2+2(∆)< p2−2))

}
,

where B =

 B11 B12

B21 B22

 is defined in Theorem 2.3.1, ∆ = (ω′B22.1ω)(1− θ2 −

σ2
z ){(1−θ2)σ2

e}−1, B22.1 =B22−B21B
−1
11 B12 and Hv(x;∆) denotes the noncentral chi-

square distribution function with non-centrality parameter ∆ and v degrees of freedom and

E(χ−2 j
v (∆)) =

∫
∞

0
x−2 jdHv(x;∆).
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Proof. Here, we provide the proof of bias expressions. Lemma 2.3.2 and Lemma 2.3.3 are

used to prove the results.

ADB(β̃1) = E lim
n→∞

√
n(β̃1−β1)

= E lim
n→∞

√
n(β̂1−B−1

11 B12β̂2−β1)

= E lim
n→∞

√
n(β̂1−β1)−E lim

n→∞

√
n(B−1

11 B12β̂2)

= −
√

nB−1
11 B12β2 =−

√
nB−1

11 B12n−
1
2ω =−γ,

ADB(β̂S
1G) = E lim

n→∞

√
n(β̂S

1G−β1)

= E lim
n→∞

√
n(β̃1 +(1− (p2−2)T−1

n )(β̂1− β̃1)−β1)

= E lim
n→∞

√
n[β̃1−β1 +(β̂1− β̃1)− (p2−2)T−1

n (β̂1− β̃1)]

= E lim
n→∞

[η2 +η3− (p2−2)T−1
n η3]

= E lim
n→∞

[η1− (p2−2)T−1
n η3] =−(p2−2)E lim

n→∞
[T−1

n η3]

= −(p2−2)γE(χ−2
p2+2(∆)),

ADB(β̂S+
1 ) = E lim

n→∞

√
n(β̂S+

1 −β1)

= E lim
n→∞

√
n[β̂S

1−β1− (1− (p2−2)T−1
n )(β̂1− β̃1)I(Tn < p2−2)]

= ADB(β̂S
1)−E lim

n→∞

√
n[(1− (p2−2)T−1

n )(β̂1− β̃1)I(Tn < p2−2)]

= ADB(β̂S
1)−E lim

n→∞
[η3(1− (p2−2)T−1

n )I(Tn < p2−2)]

= ADB(β̂S
1)−E lim

n→∞
[η3I(Tn < p2−2)]+E lim

n→∞
[(p2−2)η3T−1

n I(Tn < p2−2)]

= ADB(β̂S
1)−γHp2+2(p2−2;∆)+γ(p2−2)E(χ−2

p2+2(∆)I(χ
2
p2+2(∆)< p2−2)).

Since the bias expressions of all the estimators are not in the scalar form, we convert them

to quadratic form. Thus, we define the asymptotic quadratic distributional bias (AQDB) of
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an estimator β0
1 of β1 by

AQDB(β0
1) = [ADB(β0

1)]
′B11.2[ADB(β0

1)],

whereB11.2 =B11−B12B
−1
22 B21.

Corollary 2.4.1. Suppose that conditions in Theorem 2.4.1 hold. Then under {Kn}, as

n→ ∞, the AQDB of the estimators are given as follows:

AQDB(β̂1) = 0,

AQDB(β̃1) = ω′B21B
−1
11 B11.2B

−1
11 B12ω,

AQDB(β̂S
1) = (p2−2)2ω′B21B

−1
11 B11.2B

−1
11 B12ω

[
E(χ−2

p2,α;∆)
]2
,

AQDB(β̂S+
1 ) = ω′B21B

−1
11 B11.2B

−1
11 B12ω

{
Hp2+2(p2−2;∆)

+ (p2−2)2E(χ−2
p2+2(∆))− (p2−2)2E(χ−2

p2+2(∆)I(χ
2
p2+2(∆)< p2−2))

}2

.

Proof. The expressions for quadratic biases are obtained by following the definition of

AQDB.
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2.4.2 Asymptotic Distributional Risk (ADR)

Theorem 2.4.2. Suppose that conditions in Theorem 2.4.1 hold. Then under {Kn}, as

n→ ∞, the asymptotic covariance matrices of the estimators are as follows:

Γ(β̂1) = σ
∗B−1

11.2 where σ
∗ = (1−θ

2−σ
2
z )
−1{(1−θ

2)σ2
e},

Γ(β̃1) = σ
∗B−1

11.2−σ
∗(B−1

11 B12B
−1
22.1B21B

−1
11 )+B−1

11 B12ωω
′B21B

−1
11 ,

Γ(β̂S
1) = σ

∗B−1
11.2

− σ
∗(p2−2)B−1

11 B12B
−1
22.1B21B

−1
11

{
2E(χ−2

p2+2(∆))− (p2−2)E(χ−4
p2+2(∆))

}
+ (p2−2)B−1

11 B12ωω
′B21B

−1
11

{
2E(χ−2

p2+2(∆)+(p2−2)E(χ−4
p2+4(∆)

− 2E(χ−2
p2+4(∆))

}
,

Γ(β̂S+
1 ) = Γ(β̂S

1)

+ σ
∗
{
(p2−2)(B−1

11 B12B
−1
22.1B21B

−1
11 )
{

2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− (p2−2)E

[
χ
−4
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− B−1

11 B12B
−1
22.1B21B

−1
11 Hp2+2(p2−2;∆)

}
+ B−1

11 B12ωω
′B21B

−1
11

[
2Hp2+2(p2−2;∆)−Hp2+4(p2−2;∆)

]
− (p2−2)B−1

11 B12ωω
′B21B

−1
11

{
2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− 2E

[
χ
−2
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]
+ (p2−2)E

[
χ
−4
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]}
.

Proof. The asymptotic covariance matrix of an estimator β0
1 is defined as follows:

Γ(β0
1) = E lim

n→∞
(n(β0

1−β1)(β
0
1−β1)

′).
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By definition,

Γ(β̂1) = E lim
n→∞

(n(β̂1−β1)(β̂1−β1)
′)

= E lim
n→∞

(η1η1
′) =Var(η1)+E(η1)E(η1)

′

= Σ.

Γ(β̃1) = E lim
n→∞

(n(β̃1−β1)(β̃1−β1)
′)

= E lim
n→∞

(η2η2
′) =Var(η2)+E(η2)E(η2)

′

= Σ−Σ∗+γγ ′.

Γ(β̂S
1) = E lim

n→∞
(n(β̂S

1−β1)(β̂
S
1−β1)

′)

= E lim
n→∞

√
n
(
(β̃1 +(1− (p2−2)T−1

n )(β̂1− β̃1)−β1

)
×
√

n
(
β̃1 +(1− (p2−2)T−1

n )(β̂1− β̃1)−β1

)′
= E lim

n→∞
[(η1− (p2−2)T−1

n η3)(η1− (p2−2)T−1
n η3)

′]

= E lim
n→∞

[η1η1
′− (p2−2)T−1

n η1η3
′− (p2−2)T−1

n η3η1
′+(p2−2)2T−2

n η3η3
′]

= Var(η1)−2(p2−2)E lim
n→∞

(η3η1
′T−1

n )+(p2−2)2E lim
n→∞

(T−2
n η3η3

′).

Note that, by using Lemma 2.3.2, Lemma 2.3.3 and the formula for a conditional mean of

a multivariate normal, we have

E lim
n→∞

(η3η1
′T−1

n ) = E lim
n→∞

(E(η3η1
′T−1

n |η3))

= E lim
n→∞

(η3[E(η1)+Σ∗Σ∗−1(η3−E(η3))]
′T−1

n )

= E lim
n→∞

(η3[η3
′−γ ′]T−1

n )

= E lim
n→∞

(η3η3
′T−1

n )−E lim
n→∞

(η3γ
′T−1

n )

= Σ∗E(χ−2
p2+2(∆))+γγ

′E(χ−2
p2+4(∆))−γγ

′E(χ−2
p2+2(∆))

= Σ∗E(χ−2
p2+2(∆))+γγ

′[E(χ−2
p2+4(∆))−E(χ−2

p2+2(∆))].
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Therefore,

Γ(β̂S
1) = Σ−2(p2−2)Σ∗E(χ−2

p2+2(∆))−2(p2−2)γγ ′[E(χ−2
p2+4(∆))−E(χ−2

p2+2(∆))]

+ (p2−2)2[Σ∗E(χ−4
p2+2(∆))+γγ

′E(χ−4
p2+4(∆))]

= Σ+Σ∗[−2(p2−2)E(χ−2
p2+2(∆))+(p2−2)2E(χ−4

p2+2(∆))]

+ γγ ′[−2(p2−2)E(χ−2
p2+4(∆))+2(p2−2)E(χ−2

p2+2(∆))+(p2−2)2E(χ−4
p2+4(∆))]

= Σ+(p2−2)Σ∗[−2E(χ−2
p2+2(∆))+(p2−2)E(χ−4

p2+2(∆))]

+ (p2−2)γγ ′[−2E(χ−2
p2+4(∆))+2E(χ−2

p2+2(∆))+(p2−2)E(χ−4
p2+4(∆))]

Γ(β̂S+
1 ) = E lim

n→∞
(n(β̂S+

1 −β1)(β̂
S+
1 −β1)

′)

= E lim
n→∞

√
n
(
(β̂S

1− (1− (p2−2)T−1
n )I(Tn < p2−2)(β̂1− β̃1)−β1

)
×
√

n
(
β̂S

1− (1− (p2−2)T−1
n )I(Tn < p2−2)(β̂1− β̃1)−β1

)′
= Γ(β̂S

1)−2E lim
n→∞

[η3η2
′(1− (p2−2)T−1

n )I(Tn < p2−2)]

− 2E lim
n→∞

[η3η3
′(1− (p2−2)T−1

n )2I(Tn < p2−2)]

+ E lim
n→∞

(η3η3
′(1− (p2−2)T−1

n )2I(Tn < p2−2))

= Γ(β̂S
1)−2E lim

n→∞
[η3η2

′(1− (p2−2)T−1
n )I(Tn < p2−2)]

− E lim
n→∞

[η3η3
′(1− (p2−2)T−1

n )2I(Tn < p2−2)].
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Now we have

E lim
n→∞

[η3η2
′(1− (p2−2)T−1

n )I(Tn < p2−2)] =

E lim
n→∞

[η3E(η2
′(1− (p2−2)T−1

n )I(Tn < p2−2)|η3)] =

E lim
n→∞

[η3(−γ+0×Σ∗(η3−γ))′(1− (p2−2)T−1
n )× I(Tn < p2−2)] =

E lim
n→∞

[η3γ
′(1− (p2−2)T−1

n )I(Tn < p2−2)]−

γγ ′E[(1− (p2−2)χ−2
p2+2(∆))I(χ

2
p2+2(∆)< p2−2)],

and based on Lemma 2.3.3 we have

E lim
n→∞

[η3η3
′(1− (p2−2)T−1

n )I(Tn < p2−2)] =

Σ∗E[(1− (p2−2)χ−2
p2+2(∆))

2I(χ2
p2+2(∆)< p2−2)]

+γγ ′E[(1− (p2−2)χ−2
p2+4(∆))

2I(χ2
p2+4(∆)< p2−2)].

Therefore,

Γ(β̂S+
1 ) = Γ(β̂S

1)+2γγ ′E[(1− (p2−2)χ−2
p2+2(∆))I(χ

2
p2+2(∆)< p2−2)]

− Σ∗E[(1− (p2−2)χ−2
p2+2(∆))

2I(χ2
p2+2(∆)< p2−2)]

− γγ ′E[(1− (p2−2)χ−2
p2+4(∆))

2I(χ2
p2+4(∆)< p2−2)].

The asymptotic risk expressions for the estimators are contained in the following corol-

lary.

Corollary 2.4.2. Suppose that conditions in Theorem 2.4.1 hold. Then under {Kn}, as
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n→ ∞, the ADR of the estimators β̂1, β̃1, β̂S
1 and β̂S+

1 are respectively

ADR(β̂1;M) = σ
∗ tr(MB−1

11.2),

ADR(β̃1;M) = σ
∗ tr(MB−1

11.2−B21B
−1
11 MB−1

11 B12B
−1
22.1)+ω

′B21B
−1
11 MB−1

11 B12ω,

ADR(β̂S
1;M) = σ

∗ tr(MB−1
11.2)

− σ
∗
[
(p2−2)tr(B21B

−1
11 MB−1

11 B12B
−1
22.1)

{
2E(χ−2

p2+2,α(∆))

− (p2−2)E(χ−4
p2+2(∆))

}]
+(p2−2)ω′B21B

−1
11 MB−1

11 B12ω

×
{

2E(χ−2
p2+2(∆)+(p2−2)E(χ−4

p2+4(∆)−2E(χ−2
p2+4(∆))

}
,

ADR(β̂S+
1 ;M) = ADR(β̂S

1;M)

+ σ
∗
{
(p2−2)tr(B21B

−1
11 MB−1

11 B12B
−1
22.1)

{
2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− (p2−2)E

[
χ
−4
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]}
− tr(B21B

−1
11 MB−1

11 B12B
−1
22.1)Hp2+2(p2−2;∆)

}
+ ω′B21B

−1
11 MB−1

11 B12ω
[
2Hp2+2(p2−2;∆)−Hp2+4(p2−2;∆)

]
− (p2−2)ω′B21B

−1
11 MB−1

11 B12ω
{

2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− 2E

[
χ
−2
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]
+ (p2−2)E

[
χ
−4
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]}
.

Proof. The expressions for risk are obtained by following the definition of ADR.

2.4.3 Bias and Risk Comparison

According to Theorem 2.4.1 and 2.4.2, if B12 = 0, then all the AQDB reduce to zero and

all the ADR reduce to common value (1− θ2−σ2
z )
−1{(1− θ2)σ2

e}tr(MB−1
11 ) for all ω.

Hence, in sequel we assume that B12 6= 0. By Theorem 2.4.1 we know the AQDB of
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β̃1 is an unbounded function of ω′B21B
−1
11 B11.2 B

−1
11 B12ω. By application of Courant’s

theorem, in order to investigate the AQDB(β̂S
1) and AQDB(β̂S+

1 ), we will have

chmin(B21B
−1
11 B11.2B

−1
11 B12B

−1
22.1) ≤

ω′B21B
−1
11 B11.2B

−1
11 B12ω

ω′B22.1ω

≤ chmax(B21B
−1
11 B11.2B

−1
11 B12B

−1
22.1).

Therefore, AQDB(β̂S
1) starts from zero at ω′B21B

−1
11 B11.2B

−1
11 B12ω = 0, increases to

a point, then decreases towards zero due to E(χ−2
p2+2(∆)) being a decreasing log-convex

function of ∆.

Now, we provide ADR analysis. By comparing ADR(β̂S
1) and ADR(β̂1), we can see if

M ∈MD β̂S
1 dominates β̂1 for any ω in the sense of ADR where

MD =

{
M :

tr(B21B
−1
11 MB−1

11 B12B
−1
22.1)

chmax(B21B
−1
11 MB−1

11 B12B
−1
22.1)

≥ p2 +2
2

}
.

The behavior of β̂S+
1 is similar to β̂S

1; however, the quadratic bias curve of β̂S+
1 remains

below the curve of β̂S
1 for all values of ∆. By comparing ADR(β̂S+

1 ) with ADR(β̂S
1), we ob-

serve β̂S+
1 dominates β̂S

1 for all the values of ω, with strict inequality for some ω. Further,

the largest risk improvement of β̂S+
1 over β̂S

1 is near the null hypothesis. Therefore, the

risk of β̂S+
1 is also smaller than the risk of β̂1 in the entire parameter space, and the upper

limit is attained when ∆ approaches ∞. It also clearly indicates the asymptotic inferiority

of β̂S
1 and β̂1 compared to β̂S+

1 for ∆ ∈ [0,∞). ADR(β̂S+
1 ) increases monotonically towards

ADR(β̂1) from below, as ∆ moves away from 0. This implies that

ADR(β̂S+
1 )≤ ADR(β̂S

1)≤ ADR(β̂1) for anyM ∈MD and ω
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with strict inequality for some ω. By the analysis above, we conclude that β̂S
1 and β̂S+

1

perform better than β̂1 regardless of the correctness of UPI, although the gain in risk over

β̂1 is substantial when the UPI is nearly correct. Moreover, β̂S+
1 is asymptotically superior

to β̂S
1 . In the next section we present our simulation results and compare the performances

of the proposed estimators.

2.5 Monte Carlo Simulation

In this section, we carry out a Monte Carlo simulation study to examine the relative per-

formance of the proposed estimators. In Subsection 2.5.1, we consider the situation when

n < p by implementing APE strategy. In Subsection 2.5.2, we do the simulation for the

case when n ≥ p and compare our proposed shrinkage estimators with APE, UE, and RE.

In our simulation study, we use the following model:

yi = β1x1i +β2x2i + . . .+βpxpi + εi, i = 1,2, . . . ,n, (2.8)

with β = (β1, · · · ,βp). Moreover, εi = (θ+ zi)εi−1 + ei, θ = 0.4 with zi and ei being i.i.d

N(0,1). Furthermore, xsi = ts + νi with ts being i.i.d N( s
2 ,

s
2 + 0.1) and νi are i.i.d N(0,1)

for all s = 1, . . . , p and i = 1, . . . ,n. For each n, we generate 5000 samples and xi values

are generated once for each n. We use this setup for simulation experiments in Subsections

2.5.1 and 2.5.2.
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2.5.1 High Dimensional Estimation

In this section we consider the case when (n < p). In this situation, the GLS estimator

cannot be achieved, which is why we perform the APE strategy. Consider the following

cases:

Model 1: p = 20, n = 15 and β = (1′,0′)′ where 1 and 0 are 10×1 vectors.

Model 2: p = 20, n = 10 and β = (1′,0′)′ where 1 and 0 are 10×1 vectors.

Model 3: p = 30, n = 20 and β = (1′,0′)′ where 1 and 0 are 15×1 vectors.

Model 4: p = 30, n = 15 and β = (1′,0′)′ where 1 and 0 are 15×1 vectors.

Model 5: p = 40, n = 20 and β = (1′,0′)′ where 1 and 0 are 20×1 vectors.

Model 6: p = 40, n = 15 and β = (1′,0′)′ where 1 and 0 are 20×1 vectors.

We used the lars (Hastie and Efron, 2012) and parcor (Kraemer and Schaefer, 2010) pack-

age in R software (R Development Core Team, 2011) to achieve lasso and AL estimators,

respectively. In parcor package, the w j
′s are computed in terms of a lasso fit. Also, a 10-

fold cross-validation method is used for choosing the best value for λ. We show the results

of model 1 and 2 in Table 2.1 and Table 2.2. We compared the performance of these two

estimators for the above models based on their total simulated MSE as shown in Table 2.3.

Table 2.1: APE estimators of Model 1

β 1 1 1 1 1 1 1 1 1 1
β̂AL 1.014 0.989 0.993 0.993 1.000 0.988 1.001 0.988 0.991 0.992
β̂lasso 1.008 0.963 0.955 1.011 0.933 0.982 0.988 0.947 1.047 1.002
β 0 0 0 0 0 0 0 0 0 0
β̂AL 0.000 0.013 0.028 0.004 0.001 0.000 0.000 0.000 0.000 0.008
β̂lasso -0.009 0.000 0.001 0.033 0.000 0.011 0.083 -0.003 0.000 -0.002

Both lasso and AL methods applied to the transformed data, provide estimates close to

the true parameters. In both models, the total MSE of the APE estimators are calculated. In
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Table 2.2: APE estimators of Model 2

β 1 1 1 1 1 1 1 1 1 1
β̂AL 1.019 1.080 0.988 0.984 1.000 0.988 0.962 0.844 1.021 1.013
β̂lasso 0.984 0.991 0.986 0.977 0.986 0.967 0.999 0.985 1.000 0.997
β 1 0 0 0 0 0 0 0 0 0
β̂AL 0.006 0.000 0.003 -0.003 0.000 0.000 0.000 0.000 0.004 0.000
β̂lasso 0.000 0.000 -0.009 0.039 -0.039 0.000 0.000 0.000 0.000 -0.008

model 1, MSE(β̂lasso) = 4.81 whereas the AL estimators have a total MSE of MSE(β̂AL) =

2.55 (see Table 2.3). As we see, the AL estimators have smaller MSE than lasso and similar

results are obtained for model 2, which indicate the AL method gives better performance

than lasso.

Table 2.3: Simulated MSE of APE estimators
Model MSE(β̂lasso) MSE(β̂AL)

Model 1 (n = 15, p = 20) 4.81 2.55
Model 2 (n = 10, p = 20) 5.45 3.71
Model 3 (n = 20, p = 30) 3.75 3.17
Model 4 (n = 15, p = 30) 3.92 3.66
Model 5 (n = 20, p = 40) 4.85 4.76
Model 6 (n = 15, p = 40) 5.69 5.32

2.5.2 Fixed Dimension Estimation

In this section, we consider model (2.8) and compare the performance of different estima-

tors when n ≥ p. We set the regression coefficients β = (β′1,β
′
2)
′ to β = (β′1,0

′)′ for the

following cases:

Case 1: β1 = (1,1,1)′ and β2 = 0p2×1 where β2 is a vector of 0 with dimensions

p2 = 3,4, · · · ,8,

Case 2: β1 = (1,1,1,1,1)′ and β2 = 0p2×1 where p2 = 3,4, · · · ,8.
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Now we define the parameter ∆∗ = ‖β−β∗‖2, where β∗ = (β′1,0
′)′ and ‖ . ‖ is the

Euclidian norm. Here ∆∗ is the degree of deviation from the restriction (β2 = 0). The

objective is to investigate the behavior of the proposed estimators of β1 under varying

degrees of model misspecification, i.e., when ∆∗ ≥ 0. In order to do this, further samples

are generated from those distributions under local alternative hypotheses. Various ∆∗ values

between 0 and 2 are considered. To produce different values of ∆∗, different values of β2

are chosen.

To compare the performance of the proposed estimators of β1 we have numerically cal-

culated their risk. Their performance was evaluated in terms of relative mean square error

(RMSE). The simulated RMSE of β̂?
1 to the unrestricted estimator β̂1 is defined by

RMSE(β̂1 : β̂?
1) =

MSE(β̂1)

MSE(β̂?
1)
,

where β̂?
1 can be any of β̃1, β̂

S
1, β̂

S+
1 , β̂lasso

1 and β̂AL
1 . It is obvious that a RMSE larger than

one indicates the degree of superiority of the estimator β̂?
1 over β̂1.

We designed the simulation study for the sample sizes n = 30,50,80 and 100. Since the

results were similar for different sample sizes, We report the results for n= 30 and 100 with

p2 = 3,4, · · · ,8. Comparative RMSEs for RE, UE, SE and PSE in Figures 2.1-2.4 portray

the relative performance of the suggested estimators. The line at RMSE=1 indicates the

UE as the RMSE(β̂1 : β̂1) = 1.

As we see in the figures, for all combinations of p2 and n, the RE outperforms both SE

and PSE at and near ∆∗ = 0, i.e., RE is the optimal choice as an estimator of β1 in this case.

However if the sub-model is misspecified, i.e., ∆∗ moves away from 0 and the restriction

is not correctly specified, then the estimated risk of RE increases and becomes unbounded.

Therefore its RMSE goes below the horizontal line at RMSE=1 and its efficiency converges
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to 0.

The figures also reveal that as ∆∗ moves away from 0, the RMSE of both SE and PSE

decreases, i.e., their risk increases but remains bounded for the worst case when ∆∗ >> 0.

In this case their risk converges to the risk of UE irrespective of p1, p2 and n. Also in all the

cases, the RMSE of SE remains below the RMSE of PSE which indicates the superiority

and better performance of PSE over SE and that the risk of PSE is less than SE. Thus

one can not go wrong by choosing the PSE even if the restriction or the sub-model is not

correctly specified. In this case, the PSE has the highest risk, equal to the risk of UE.

Comparison of Shrinkage with Absolute Penalty Estimator

We also compare the performance of shrinkage estimators with APEs (lasso and AL) rel-

ative to β̂1 based on the RMSE criterion. We used the 10-fold cross validation method

to estimate the tuning parameter λ to compute APEs. For comparison purposes we con-

sidered again Case 1 and 2 for p2 = 3,4, · · · ,9 and n = 30,100. We compare the RMSE

only at ∆∗ = 0, since according to Ahmed et al. (2007), APE does not take advantage of

the fact that the parameter vector β is partitioned into main and nuisance parts, and is at a

disadvantage when ∆∗ > 0. Simulated RMSE for both cases and different sample sizes are

presented in Tables 2.4-2.7.

The results reveal that the AL estimator outperforms the lasso in all the cases. In the

first case when p1 = 3, we see that both APEs outperform shrinkage estimators when p2 is

small indicating that APEs have lower MSE compared to SE and PSE. But as p2 increases,

the RMSE of shrinkage estimators beat the RMSE of APEs. When p1 = 3, the RMSE of

PSE is higher than lasso when p2 ≥ 3 and is higher than AL when p2 ≥ 4. Also SE has

higher RMSE than AL and lasso when p2 ≥ 6 and p2 ≥ 7, respectively. Similar results are
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Figure 2.1: Relative MSE of the estimators for various p2 when p1 = 3 and n = 30. “- - -” denotes
the positive shrinkage estimator, “ · · ·” denotes the shrinkage estimator, “— - — -” denotes the restricted
estimator and “—” denotes the unrestricted estimator.
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Figure 2.2: Relative MSE of the estimators for various p2 when p1 = 3 and n = 100. “- - -” denotes
the positive shrinkage estimator, “ · · ·” denotes the shrinkage estimator, “— - — -” denotes the restricted
estimator and “—” denotes the unrestricted estimator.
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Figure 2.3: Relative MSE of the estimators for various p2 when p1 = 5 and n = 30. “- - -” denotes
the positive shrinkage estimator, “ · · ·” denotes the shrinkage estimator, “— - — -” denotes the restricted
estimator and “—” denotes the unrestricted estimator.
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Figure 2.4: Relative MSE of the estimators for various p2 when p1 = 5 and n = 100. “- - -” denotes
the positive shrinkage estimator, “ · · ·” denotes the shrinkage estimator, “— - — -” denotes the restricted
estimator and “—” denotes the unrestricted estimator.
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obtained when p1 = 5 which indicates that shrinkage estimators perform better than APEs

when there are many nuisance predictors in the model. The gain in efficiency depends on

the value of p2, that is, the larger p2 is relative to p1, the larger the gain in efficiency.

Table 2.4: Simulated RMSE of shrinkage and APE estimators with respect to β̂1 when
p1 = 3, n = 30

p2 β̃1 β̂S
1 β̂S+

1 β̂lasso β̂AL
3 1.853 1.197 1.311 1.388 1.475
4 2.583 1.388 1.617 1.536 1.743
5 2.875 1.810 2.144 1.822 2.122
6 3.219 2.355 2.481 2.103 2.372
7 3.482 2.606 2.756 2.227 2.536
8 4.632 2.974 3.016 2.562 2.825
9 5.216 3.346 3.566 2.982 3.251

Table 2.5: Simulated RMSE of shrinkage and APE estimators with respect to β̂1 when
p1 = 3, n = 100

p2 β̃1 β̂S
1 β̂S+

1 β̂lasso β̂AL
3 1.964 1.260 1.356 1.423 1.647
4 2.422 1.532 1.693 1.622 1.859
5 3.562 1.851 2.165 1.912 2.138
6 3.786 2.478 2.684 2.257 2.516
7 4.837 2.973 3.742 2.604 2.911
8 5.987 3.709 4.316 3.241 3.542
9 6.324 4.379 5.161 4.001 4.212
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Table 2.6: Simulated RMSE of shrinkage and APE estimators with respect to β̂1 when
p1 = 5, n = 30

p2 β̃1 β̂S
1 β̂S+

1 β̂lasso β̂AL

3 1.895 1.140 1.251 1.395 1.467
4 2.141 1.203 1.559 1.602 1.710
5 2.783 1.452 1.775 1.830 1.967
6 3.308 1.719 2.083 2.055 2.198
7 3.712 2.275 2.611 2.216 2.443
8 4.735 2.803 3.206 2.576 2.795
9 5.223 3.125 3.615 2.818 3.082

Table 2.7: Simulated RMSE of shrinkage and APE estimators with respect to β̂1 when
p1 = 5, n = 100

p2 β̃1 β̂S
1 β̂S+

1 β̂lasso β̂AL

3 1.996 1.174 1.358 1.461 1.552
4 2.341 1.315 1.573 1.693 1.818
5 2.883 1.773 1.913 1.935 2.204
6 3.697 2.011 2.466 2.233 2.485
7 4.271 2.634 2.902 2.477 2.709
8 5.352 3.110 3.524 2.931 3.085
9 6.033 3.547 4.256 3.271 3.499

2.6 Data Example

We now implement suggested strategies to quarterly macroeconomic time series data

(United Kingdom, 1948-1956). The data can be found in Reinsel and Velu (1998, p. 233)

and they were initially analyzed by Klein et al. (1961). In this data set, we consider the de-

pendent variable yi as the total exports and the explanatory variables xi1 , xi2 , xi3 , xi4 and

xi5 are total labor force, weekly wage rates, price index of imports, price index of exports

and price index of consumption, respectively. The sample size is n = 36. We first fit a mul-

tiple regression model to the data and plot the autocorrelation and partial-autocorrelation

of the OLS residuals (Figure 2.5). We also computed the Durbin-Watson statistics for the
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regression model (Table 2.8). The results suggest an AR(1) process at the 0.05 significance

level. We now consider a regression model with first order autoregressive errors given in

the form of:

yi = β1x1i +β2x2i +β3x3i +β4x4i +β5x5i + εi, i = 1,2, . . . ,36, (2.9)

where εi follows an AR(1) process. The model estimation is ŷi = 0.49x1i + 1.64x2i +

1.47x2i− 1.05x4i− 1.45x5i and the corresponding residual mean square error and AIC is

54.41 and 253.66 respectively. Now we consider the following linear regression model

with random coefficient AR(1) error in (2.2):

yi = β1x1i +β2x2i +β3x3i +β4x4i +β5x5i + εi, i = 1,2, . . . ,36. (2.10)

The estimated model is ŷi = 0.51x1i + 1.63x2i + 1.42x2i− 1.01x4i− 1.46x5i. The residual

mean square error and the calculated AIC for this model is 48.05 and 239.41 respectively,

which are less than those in model (2.9). Therefore we choose this model for further anal-

ysis. Now based on preliminary analysis (Table 2.9), we set

β1 = β4 = β5 = 0.

Table 2.8: Durbin-Watson test statistic
Lag Autocorrelation D-W Statistic p− value

1 0.349 1.173 0.004
2 0.174 1.441 0.054
3 0.031 1.693 0.358
4 -0.173 2.099 0.662
5 -0.058 1.839 0.990
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Figure 2.5: Autocorrelation and partial-autocorrelation function for the residuals from the OLS regression.

Table 2.9: Coefficients of model (2.9)

Covariate Value Std.Error t-value p− value
x1 0.490 0.449 1.092 0.283
x2 1.641 0.577 2.840 0.007∗

x3 1.473 0.522 2.821 0.008∗

x4 -1.059 0.676 -1.566 0.127
x5 -1.450 1.190 -1.218 0.232

* Significant at 0.05

The estimation results are given in Table 2.10. The performance of the estimators are

evaluated in terms of predictive MSE (PMSE). The PMSE of β̃, β̂S, β̂S+, β̂lasso and β̂AL

Table 2.10: Estimated Coefficients
Estimator β1 β2 β3 β4 β5

β̂ 0.515 1.634 1.421 -1.009 -1.465
β̃ 0 0.512 0.519 0 0
β̂S -0.514 -1.630 -1.418 1.006 1.460
β̂S+ 0 0.512 0.519 0 0
β̂lasso 0.424 0.602 0.375 0 0
β̂AL 0 0.441 0.618 0 0
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relative to β̂ is given by:

RPMSE(β̂ : β̂∗) =
PMSE(ŷi; β̂)
PMSE(ŷi; β̂∗)

,

where β̂∗ can be any of the β̃, β̂S, β̂S+, β̂lasso and β̂AL. The RPMSE of β̃, β̂S, β̂S+, β̂lasso

and β̂AL is calculated and reported in Table 2.11. Table 2.11 reveals that RPMSE for PSE

is larger than that of APE and lasso, which indicates the superiority of this estimator over

AL and lasso. But the SE has smaller RPMSE compared to the both APEs. In fact this is

because of over-shrinking problem in SE. We see this over-shrinking in the SE causes the

estimations to have opposite sign than UE and the SE is being dominated by both APEs.

However, the sub-model estimator under the assumption of the correctly specified model

is always the best estimator and we see that the PSE has the same RPMSE as the RE with

RPMSE=2.04.

Table 2.11: The Relative PMSE of the Estimators
Estimators(β̂∗) RPMSE(β̂ : β̂∗)

β̃ 2.04
β̂S 1.29
β̂S+ 2.04
β̂lasso 1.65
β̂AL 1.72

2.7 Concluding Remarks

In this chapter, we considered multiple regression models with random coefficient autore-

gressive errors. We suggested estimation approaches for two scenarios: high and fixed

dimension data analysis. For the case of high dimensionality, we proposed APEs including

lasso and AL. For the case of fixed dimension data, we proposed shrinkage estimators. We
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compared the performance of these estimators via simulation. Further, we explored and

compared the risk properties of shrinkage estimators, RE and UE based on the asymptotic

distributional risk. The simulation results indicated that RE dominates the other estimators

under a correctly specified model. Numerical results showed that the AL method performs

better than lasso. Moreover, comparing the APE with shrinkage estimators demonstrated

that the APE estimators are better than SE and PSE when there is a large number of predic-

tors in the model with only a few of them being irrelevant. On the other hand, the shrinkage

estimators perform well when p and the number of nuisance parameters (p2) are relatively

large. We demonstrated that, based on both analytical and numerical findings, PSE out-

performs the UE and SE in the entire parameter space. When the restriction is true, RE is

superior to all the other estimation rules; however, its MSE may become unbounded when

such restrictions are incorrect.



Chapter 3

Estimation Strategies in Partially Linear

Models with Random Coefficient

Autoregressive Errors

3.1 Introduction

Many estimation problems involve an unknown function or unknown function with un-

known finite-dimension parameter. Models and estimation problems that only involve an

unknown function are called nonparametric whereas models with an unknown function and

unknown finite-dimensional parameter are called semiparametric. Several semiparametric

models have been proposed in the literature. Partially linear model, semiparametric single

index models, and varying coefficient models are among the popular ones.

57
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A partially linear model (PLM) can be written as the following:

yi = x
′
iβ+g(ti)+ εi, i = 1, . . . ,n, (3.1)

where yi’s are responses, xi = (xi1, . . . ,xip)
′ and ti ∈ [0,1] are design points, β =

(β1, . . . ,βp)
′ is an unknown parameter vector, g(·) is an unknown bounded real-valued

smooth function defined on the compact subset [0,1] which will be estimated based on

nonparametric methods using a kernel function, and εi’s are unobservable random errors

with mean zero. In nonparametric statistics, a kernel is a weighting function used in non-

parametric estimation techniques. It is a non-negative real-valued integrable function K

satisfying the following two requirements:

1)
∫ +∞

−∞
K(u)du = 1;

2) K(−u) = K(u) for all values of u.

Let (t1, t2, · · · , tn) be a sample drawn from some distribution with an unknown density f .

We are interested in estimating the shape of this function f . Its kernel density estimator is

f̂h(t) =
1
n

n

∑
i=1

Kh(t− ti) =
1

nh

n

∑
i=1

K(
t− ti

h
),

where K(.) is the kernel function and h > 0 is a smoothing parameter called the bandwidth.

A range of kernel functions are commonly used: uniform, triangular, triweight, Gaussian,

and others.

An advantage of the model (3.1) is that it allows dependence of the response variable

yi on some covariates in an unknown fashion and, hence, is more flexible than the con-

ventional linear regression model. However, it is to be noted that the bulk of the research

that has been done so far assumes that εi are i.i.d. random variables. In practice, this is

not always the case, especially for sequentially collected economic data that often exhibit
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evident dependence in the errors.

One interesting case is to consider that the errors are modeled by a first order random

coefficient autoregressive (RCAR(1)) process, that is, a stationary solution of

εi = (θ+ zi)εi−1 + ei, i = 1, . . . ,n, (3.2)

where θ is the autoregression parameter, {zi} and {ei} are zero mean independent processes

each consisting of i.i.d. random variables with finite second moments σ2
z and σ2

e respec-

tively. You and Chen (2002) considered estimation of the regression and autocorrelation

parameters of model (3.1) with errors in (3.2) and investigated their properties.

For model (3.1) with independent errors, Ahmed et al. (2007) considered a profile least

squares approach based on using kernel estimates of g(.) to construct absolute penalty,

shrinkage, and pretest estimators of the regression parameters β. They also studied the rel-

ative performance of APE with shrinkage and positive shrinkage estimators through Monte

Carlo simulation.

In this chapter, we extend their work with errors given in (3.2). We consider variable

selection and parameter estimation when the parameter vector β can be partitioned to

(β′1,β
′
2)
′, where β1 and β2 have dimensions of p1 and p2 respectively, with p1 + p2 = p.

We are essentially interested in estimation of β1 when it is plausible that β2 is close to the

null vector.

In this situation we consider shrinkage estimation strategy for β1 based on kernel esti-

mates of g(.). We study the properties of these estimators using the notion of asymptotic

distributional bias and risk. We also present an absolute penalty estimator, a modified ver-

sion of lasso when errors are correlated. We provide simulation study for all the estimators
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to appraise their performances. A real data example is given to illustrate the methods.

3.1.1 Organization of the Chapter

Section 3.2 provides the proposed shrinkage estimators as well as an APE which is a mod-

ified version of lasso for correlated data. Section 3.3 and 3.4 provide asymptotic results

of shrinkage and positive shrinkage estimators. In Section 3.5, we design and conduct a

Monte Carlo experiment to study the performance of the proposed estimators and compare

them with the APE. Section 3.6 provides a real data example. In Section 3.7, we present

concluding thoughts.

3.2 Statistical Model and Estimation

Throughout this chapter we will assume that 1n = (1, . . . ,1)′ is not in the space spanned by

the column vectors ofX = (x1, . . . ,xn)
′. As a result, according to Chen (1988) model (3.1)

is identifiable. In addition, we assume the design points xi and ti are fixed for i = 1, . . . ,n,

and errors εi have the form (3.2). Assume that {x′i, ti,yi; i = 1, . . . ,n} satisfy model (3.1).

We first define a least square estimator (LSE) for the parameter vector β based on g(·)

estimated using a general kernel smoothing. If β is known to be the true parameter, then

by E(εi) = 0 we have g(ti) = E(yi−x′iβ), i = 1, . . . ,n. Hence, a natural nonparametric

estimator of g(·) given β is

g̃n(t,β) =
n

∑
i=1

Wni(t)(yi−x′iβ),
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where Wni(t) are positive weight functions depending on t and will be defined in Assump-

tion 3.3.3 and Remark 3 in Subsection 3.3. To estimate β, we seek to minimize

SS(β) =
n

∑
i=1

(yi−x′iβ− g̃n(ti,β))2 =
n

∑
i=1

(ŷi− x̂′iβ)2. (3.3)

The minimizer to (3.3) is found as β̂n = (X̂ ′X̂)−1X̂ ′ŷ, where ŷi = yi−∑
n
j=1Wn j(ti)y j,

x̂i = xi−∑
n
j=1Wn j(ti)x j, for i = 1, . . . ,n, ŷ = (ŷ1, . . . , ŷn)

′, and X̂ = (x̂1, . . . , x̂n)
′. β̂n is

called the LSE of β.

Since the error is correlated, the LSE β̂n will not be asymptotically efficient. We use a

weighted least squares estimator (WLSE) of β which is

β̂WLSE = (X̂ ′Ω−1(θ)X̂)−1X̂ ′Ω−1(θ)ŷ,

where

Ω
−1(θ) =



1 −θ 0 0 . . . 0

−θ 1+θ2 −θ
...

0 −θ 1+θ2 −θ

...

0 . . . −θ 1


and θ is unknown, as is often the case in practice, Ω(θ) is replaced by Ω(θ̂) where θ̂ is a

suitable estimator of θ. Noting that εi is unobservable, a reasonable estimator of θ is the

least squares estimator θ̂n based on the residuals ε̂i = ŷi− x̂′iβ̂n, i = 1, . . . ,n, and is given

by θ̂ = ∑
n
i=2 ε̂iε̂i−1/∑

n
i=2 ε̂2

i−1. Consequently, the estimated WLSE of β can be written as

β̂ = (X̂ ′Ω−1(θ̂)X̂)−1X̂ ′Ω−1(θ̂)ŷ.
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The properties of β̂ was investigated in You and Chen (2002).

Suppose that, β can be partitioned such that β = (β′1,β
′
2)
′. Thus the model (3.1) may be

written as follows:

y =X1β1 +X2β2 +g(t)+ε.

Without loss of generality, we suppose that some variable selection method or prior in-

formation suggests that X2 is relatively insignificant and thus is removed from the model

(3.1). Then we obtain a candidate sub-model as

y =X1β1 +g(t)+ε. (3.4)

This model is assumed to be a low dimensional working model. Thus, we study a work-

ing sub-model of a partially linear model determined by variable selection or UPI. This

situation may arise when there is over-modeling and one wishes to cut down the irrelevant

part from the model (3.1). Our goal is to construct an efficient estimation for the regression

parameter β1.

3.2.1 Unrestricted and Restricted Estimators

Let β̂1 be the unrestricted weighted least square estimator (UE) of β1. Using the same

argument in Subsection 2.2.1 and the inverse matrix formula (2.4), β̂1 will be in the form

of

β̂1 = (X̂ ′1M
Ω−1(θ̂)X̂2

X̂1)
−1X̂ ′1M

Ω−1(θ̂)X̂2
ŷ,
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where X̂1 is composed by the first p1 column vectors of X̂ , X̂2 is composed by the last p2

column vectors of X̂ and

M
Ω−1(θ̂)X̂2

= Ω−1(θ̂)−Ω−1(θ̂)X̂2(X̂
′
2Ω
−1(θ̂)X̂2)

−1X̂ ′2Ω
−1(θ̂).

Moreover, when β2 = 0, we have the restricted partially linear regression model given in

(3.4).

Let β̃1 be the restricted weighted least square estimator (RE) of β1. Then β̃1 has the

form

β̃1 = (X̂ ′1Ω
−1(θ∗)X̂1)

−1X̂ ′1Ω
−1(θ∗)ŷ,

where θ∗ = ∑
n
i=2 ε∗i ε∗i−1/∑

n
i=2 ε∗2i−1 with ε∗i = ŷ∗i − x̂∗

′
i β
∗
1 , β∗1 = (X̂ ′1X̂1)

−1X̂1ŷ, X̂1 =

(x̂∗1, . . . , x̂
∗
n)
′, x̂∗i = (x̂i1, . . . , x̂ip1)

′.

3.2.2 The Shrinkage Estimators

We define the shrinkage estimator (SE) β̂S
1 as follows:

β̂S
1 = β̃1 +{1− coptT−1

n }(β̂1− β̃1), where copt = p2−2, p2 ≥ 3

and

Tn = nσ̂
−2
n β̂′2X̂

′
2M

Ω−1(θ̂)X̂1
X̂2β̂2,

where σ̂2
n = n−1

∑
n
i=1(ŷi− x̂′iβ̂n)

2 and M
Ω−1(θ̂)X̂1

has the same definition as M
Ω−1(θ̂)X̂2

.

Finally, we define the positive shrinkage estimator (PSE) β̂S+
1 . The PSE is defined as

β̂S+
1 = β̃1 +{1− coptT−1

n }+(β̂1− β̃1), p2 ≥ 3,
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where z+ = max(0,z), or alternatively

β̂S+
1 = β̂S

1− [1− coptT−1
n ]I(Tn < copt)(β̂1− β̃1), p2 ≥ 3.

3.2.3 Absolute Penalty Estimation

Although most penalized methods deal with a standard linear regression, there are some

results for other models. Ahmed et al. (2007) extended the lasso to a partially linear model

with independent errors by developing an absolute penalty estimator (APE) and compared

its relative performance with the shrinkage estimators. Their APE coefficients are the so-

lutions to the L1 optimization problem

β̂lasso = argmin
β

{ n

∑
i=1

(ŷi− x̂′iβ)2 +λ

p

∑
j=1
|β j|
}

(3.5)

where ŷi = yi−∑
n
j=1Wn j(ti)y j, x̂i =xi−∑

n
j=1Wn j(ti)x j, for i = 1, . . . ,n and λ is the tuning

parameter.

In this section we propose an APE for the partially linear model with RCAR(1) errors. In

particular, this is an extension to (3.5). Since the errors are correlated, we transform the data

and apply the L1 penalty to the transformed data. We have Υ=Var(ε) = (1−θ2)σ2
e

1−θ2−σ2
z
Ω(θ) and

using Cholesky decomposition, we factor Υ =AA′ where Υ and A are n× n matrices.

Now, we follow the steps similar to those in Subsection 2.2.2 in Chapter 2, to achieve APE

coefficients.

Step 1: Estimate β̂n = (X̂ ′X̂)−1X̂ ′ŷ defined in Section 3.2

Step 2: Calculate σ̂2
n = n−1

∑
n
i=1 ε̂2

i = n−1
∑

n
i=1(ŷi− x̂′iβ̂n)

2

Step 3: Calculate θ̂ = ∑
n
i=2 ε̂iε̂i−1/∑

n
i=2 ε̂2

i−1
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Step 4: Calculate Υ̂ = σ̂2
nΩ(θ̂) and then factor Υ̂ =CC ′ using Cholesky decomposition

Step 5: Transform y andX to ŷ? =C−1ŷ, X̂? =C−1X̂

Step 6: Solve the APE problem as

β̂lasso = argmin
β

{
(ŷ?−X̂?β)′(ŷ?−X̂?β)+λ

p

∑
j=1
|β j|
}
. (3.6)

In the next section we present the assumptions needed to provide the asymptotic results

for shrinkage estimators and compare their performances based on their asymptotic distri-

butional bias (ADB) and asymptotic distributional (ADR).

3.3 First-Order Asymptotics

We now present the following assumptions required to derive the asymptotic results in

Section 3.4.

Assumption 3.3.1. There exist bounded functions h j(·) over [0,1] such that

xi j = h j(ti)+ui j, i = 1, . . . ,n, j = 1, . . . , p, (3.7)

where ui = (ui1, . . . ,uip)
′ are real vectors satisfying

lim
n→∞

∑
n−h
k=1 ukiuk+|h|, j

n
= bhi j, for h = 0,±1,±2, . . . , i = 1, . . . , p, j = 1, . . . , p, (3.8)

and the matrix B = (b0i j) is nonsingular. Moreover, for any permutation ( j1, . . . , jn) of the
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integers (1, . . . ,n),

limsup
n→∞

1√
n logn

max
1≤m≤n

∣∣∣∣∣
∣∣∣∣∣ m

∑
i=1

u ji

∣∣∣∣∣
∣∣∣∣∣< ∞, (3.9)

where || · || denotes the Euclidean norm.

Assumption 3.3.2. The functions g(·) and h j(·) satisfy the Lipschitz condition of order 1

on [0,1].

Assumption 3.3.3. The probability weight functions Wni(·) satisfy

(i) max1≤i≤n ∑
n
j=1Wni(t j) = O(1),

(ii) max1≤i, j≤nWni(t j) = O(bn),

(iii) max1≤ j≤n ∑
n
i=1Wnk(t j)I(|t j− ti|> cn) = O(dn),

where bn = o[n−1/2(logn)−2], cn satisfies limsupn→∞ nc4
n logn<∞, dn satisfies limsupn→∞ n

d4
n logn < ∞, and I(A) is the indicator function of a set A.

Assumption 3.3.4. {zi} is a Gaussian process and we further assume that

Ee4
0 < ∞, |θ|< 1, θ

2 +σ
2
z < 1 and θ

4 +6θ
2
σ

2
z +3σ

4
z < 1.

Remark 1. In Assumption 3.3.1, the ui j behave like zero mean, uncorrelated random vari-

ables, and the h j(ti) is like the regression of xi j on ti. If the design points (xi, ti) are i.i.d.

random variables, then by the law of large numbers and the law of iterated logarithm, (3.8)

and (3.9) hold with probability 1 for h j(ti) = E(xi j|ti), ui j = xi j−h j(ti), and B = E(uiu′i).

Conditions (3.8) and (3.9) are assumed in Härdle et al. (2000), and Gao (1995), among

others.

Remark 2. Assumption 3.3.2 is very mild. The usual polynomial and trigonometric func-

tions satisfy this assumption.
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Remark 3. The following two weight functions satisfy Assumption 3.3.3:

W (1)
ni (t) =

1
hn

∫ si

si−1

K
(

t− s
hn

)
ds, W (2)

ni (t) = K
(

t− ti
hn

)[ n

∑
j=1

K
(

t− t j

hn

)]−1

,

where si = (ti+ ti−1)/2, i = 1, . . . ,n−1,s0 = 0,sn = 1, K(·) is the Parzen-Rosenblatt kernel

function, and hn is a bandwidth parameter verifying suitable conditions.

Theorem 3.3.1. Suppose that Assumptions 3.3.1 to 3.3.4 hold. Then the limiting distribu-

tion of β̂ is given by

√
n(β̂−β) D−→ N

(
0,

(1−θ2)σ2
e

1−θ2−σ2
z
G−1

)
,

where D−→ denotes convergence in distribution, G = limn→∞ n−1U ′Ω−1(θ)U provided it

exists and U = (u1, . . . ,un)
′ is defined in Assumption 3.3.1.

Proof. The proof can be found in You and Chen (2002).

Lemma 3.3.1. (i) Suppose that Assumptions 3.3.2 and 3.3.3 (iii) hold. Then as n→ ∞

max
0≤s≤p

max
1≤i≤n

∣∣∣∣∣Gs(ti)−
n

∑
j=1

Wn j(ti)Gs(t j)

∣∣∣∣∣= O(cn)+O(dn),

where G0(·) = g(·) and Gs(·) = hs(·), s = 1, . . . , p.

(ii) Suppose that Assumptions 3.3.1 to 3.3.3 hold. Then as n→ ∞

max
1≤s≤p

max
1≤i≤n

∣∣ĥns(ti)−hs(ti)
∣∣= O(cn)+O(dn)+O(anbn),

where ĥns(ti) = ∑
n
j=1Wn j(ti)x js and an =

√
n logn.

Proof. The proof can be found in Gao (1995).
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Lemma 3.3.2. Suppose that Assumptions 3.3.1 to 3.3.3 hold. Then we have that

lim
n→∞

1
n
X̂ ′Ω−1(θ̂)X̂ =G.

Proof. According to Lemma 2 of You and Chen (2002), we just need to show that

1
n
(X̂ ′Ω−1(θ̂)X̂−X̂ ′Ω−1(θ)X̂) = op(1). (3.10)

Consider the (i, j) element of the term on the left-hand side of above equation given by

(θ̂2−θ
2)

∑
n−1
k=2 x̂kix̂k j

n
−2(θ̂−θ)

∑
n−1
k=1 x̂kix̂k+1, j

n
,

which implies (3.10), since θ̂−θ = Op(n−
1
2 ) by You and Chen (2002), and n−1

∑
n−1
k=2 x̂kix̂k j

and n−1
∑

n−1
k=1 x̂kix̂k+1, j are bounded by Lemma 3.3.1 (i).

Lemma 3.3.3. Suppose that Assumptions 3.3.1 to 3.3.4 hold. Then we have that

σ̂
2
n = (1−θ

2−σ
2
z )
−1{(1−θ

2)σ2
e}+Op

(
n−

1
2

)
, β̃1 = (I,G−1

11 G12)β̂w +op

(
n−

1
2

)
,

and

Tn = n(1−θ
2−σ

2
z )
−1{(1−θ

2)σ2
e}β̂′2G22.1β̂2 +op(1),

where σ̂2
n = n−1

∑
n
i=1 ε̂2

i = n−1
∑

n
i=1(ŷi− x̂′iβ̂)2. Moreover, we have

lim
n→∞

P{Tn ≤ x|Kn}= Hp2(x;∆) where ∆ = (ω′G22.1ω)(1−θ
2−σ

2
z ){(1−θ

2)σ2
e}−1.
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Proof. According to Nicholls and Quinn (1982) we just need to show

1
n

n

∑
i=1

ε̂
2
i −

1
n

n

∑
i=1

ε
2
i = op(n−

1
2 ).

It is easy to see that

1
n

n

∑
i=1

ε̂
2
i −

1
n

n

∑
i=1

ε
2
i =

1
n

n

∑
i=1

(ε̂i− εi)
2 +

2
n

n

∑
i=1

(ε̂i− εi)εi = I1 + I2, say.

Since

ε̂i = εi−x′i(β̂n−β)− (ĝ(ti)−g(ti)),

where ĝ(ti) = ∑
n
j=1Wn j(ti)(Yj−x′jβ̂n), it holds that

I2 =
1
n
(β− β̂n)

′

{
n

∑
i=1

[
xi−

n

∑
j=1

Wn j(ti)x j

]}
εi

+
1
n

n

∑
i=1

[
g(ti)−

n

∑
j=1

Wn j(ti)g(t j)

]
εi−

1
n

n

∑
i=1

n

∑
j=1

Wn j(ti)ε jεi = I21 + I22− I23, say.

By Assumption 3.3.1, I21 can be decomposed into a sum of two terms as follows,

I21 =
1
n

p

∑
s=1

(βs− β̂ns)
n

∑
i=1

[
hs(ti)−

n

∑
j=1

Wn j(ti)x js

]
εi +

1
n

p

∑
s=1

(βs− β̂ns)
n

∑
i=1

uisεi

= I211 + I212, say.

It follows from Lemma 3.3.1, Theorem 3.3.1, and the strict stationarity and ergodicity of
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{|εi|} that

|I211| = Op(n−
1
2 ) · max

1≤s≤p
max

1≤k≤n

∣∣∣∣∣hs(tk)−
n

∑
j=1

Wn j(tk)x js

∣∣∣∣∣ · 1n n−h

∑
k=1
|εk|

= Op(n−
1
2 ) · [O(cn)+O(dn)+O(anbn)] = op(n−

1
2 ).

According to Theorem 3.3.1, it follows that I212 = Op(n−1) = op(n−
1
2 ). Therefore, I21 =

op(n−
1
2 ). Moreover, we have

EI2
22 ≤

c
n2

n

∑
i=1

[
g(ti)−

n

∑
j=1

Wn j(ti)g(t j)

]2

= n−1[O(cn)+O(dn)]
2 = o(n−1),

which implies that I22 = op(n−
1
2 ). On the other hand, by Assumptions 3.3.3 and 3.3.4, we

have I23 = op(n−
1
2 ). Hence, I2 = op(n−

1
2 ). By the same reason, it follows that I1 = op(n−

1
2 ).

The first result holds. Moreover, by combining Theorem 3.3.1 and Lemma 3.3.2, it is easy

to prove the other results. According to Lemma 3.3.3, we demonstrate that
√

n(β̃1−β1)

and Tn are asymptotically independent under Kn. Therefore,

limn→∞ P
{√

n(β̃1−β1)≤ x,Tn ≤ χ2
p2,α|Kn

}
=

Φp1(x+G
−1
11 G12ω;0,(1−θ2−σ2

z )
−1{(1−θ2)σ2

e}G−1
11 )Hp2(χ

2
p2,α;∆).

Moreover, combining Lemmas 3.3.2 and 3.3.3, by Saleh (2006)

limn→∞ P
{√

n(β̂1−β1)≤ x,Tn ≥ χ2
p2,α|Kn

}
=∫

E(ω)Φp1(x−D
−1
12 D22z;0,(1−θ2−σ2

z )
−1{(1−θ2)σ2

e}D−1
11.2)dΦp2(z;0,(1−θ2−σ2

z )
−1

· {(1−θ2)σ2
e}D22),

where E(ω) = {z : (1−θ2−σ2
z ){(1−θ2)σ2

e}−1(z+ω)′G22.1(z+ω)≥ χ2
p2,α} andD =

G−1 =

 D11 D12

D21 D22

.
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Therefore under {Kn},
√

n(β̂S
1−β1) has the same distribution as

√
n(β̂S

1−β1)→D D1U +(p2−2)
(1−θ2−σ2

z )
−1{(1−θ2)σ2

e}G−1
11 G12(D1U +ω)

(D2U +ω)′G22.1(D2U +ω)
,

when n tends to infinity, where U ∼ Np(0,(1−θ2−σ2
z )
−1{(1−θ2)σ2

e}G−1). Now, com-

bining Lemma 3.3.3, the proofs of Theorems 3.4.1 and 3.4.2 in the following section, follow

by direct computation and definitions of the estimators.

3.4 Asymptotic Properties of the Estimators

In this section, we provide the asymptotic distributional bias (ADB) and asymptotic distri-

butional risk (ADR) of the UE, RE, SE and PSE. Since the main concern is the performance

of these four estimators when β2 is close to the null vector, namely β2 = 0, we consider a

sequence of local alternatives

Kn : β2(n) = n−
1
2ω, ω 6= 0 fixed

to establish the asymptotic properties of these estimators. Consider the following loss

function

L(β0
1,β1) = n(β0

1−β1)
′M(β0

1−β1),

where β0
1 is any one of β̂1, β̃1, β̂S

1 and β̂S+
1 . The cumulative distribution function of β0

1

under {Kn} can be denoted as

F(x) = lim
n→∞

P{
√

n(β0
1−β1)≤ x|Kn},
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where F(x) is nondegenerate. Then, the ADR of β0
1 is defined as

R(β0
1,M) = tr

{
M

∫
R p1

∫
xx′dF(x)

}
= tr(MΓ),

where Γ is the dispersion matrix obtained from F(x).

First we present the expression for the asymptotic distribution bias (ADB) of the pro-

posed estimators. The ADB of an estimator β0
1 is defined as

ADB(β0
1) = lim

n→∞
E
{

n
1
2 (β0

1−β1)
}
.

In the following we present the ADB and ADR of the estimators. The result of Theorem

3.3.1 along with Lemma 2.3.4 and 2.3.5 in Chapter 2, will be used to derive the asymptotic

results of the estimators under Kn.

3.4.1 Asymptotic Distributional Bias (ADB)

Theorem 3.4.1. Suppose that Assumptions 3.3.1 to 3.3.4 hold. Then under {Kn}, as n→∞,

the ADB of the estimators β̂1, β̃1, β̂S
1 , and β̂S+

1 are respectively

ADB(β̂1) = 0,

ADB(β̃1) = −G−1
11 G12ω,

ADB(β̂S
1) = −(p2−2)G−1

11 G12ωE(χ−2
p2+2(∆)),

ADB(β̂S+
1 ) = ADB(β̂S

1)−G−1
11 G12ω{Hp2+2(p2−2;∆)}

+ G−1
11 G12ω{(p2−2)E(χ−2

p2+2(∆)I(χ
2
p2+2(∆)< p2−2))},
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where G =

 G11 G12

G21 G22

 is defined in Theorem 3.3.1, ∆ = (ω′G22.1ω)(1− θ2 −

σ2
z ){(1−θ2)σ2

e}−1,G22.1 =G22−G21G
−1
11 G12, and Hv(x;∆) denotes the noncentral chi-

square distribution function with noncentrality parameter ∆ and v degrees of freedom and

E(χ−2 j
v (∆)) =

∫
∞

0
x−2 jdHv(x;∆).

Proof. See Section 3.3.

Since the bias expression of all the estimators are not in the scalar form, we therefore take

the recourse by converting them into the quadratic form. Thus, let us define the asymptotic

quadratic distributional bias (AQDB) of an estimator β0
1 of β1 by

AQDB(β0
1) = [ADB(β0

1)]
′G11.2[ADB(β0

1)],

whereG11.2 =G11−G12G
−1
22 G21.

Corollary 3.4.1. Suppose that conditions in Theorem 3.4.1 hold. Then under {Kn}, as

n→ ∞, the AQDB of the estimators are given as follows:

AQDB(β̂1) = 0,

AQDB(β̃1) = ω′G21G
−1
11 G11.2G

−1
11 G12ω,

AQDB(β̂S
1) = (p2−2)2ω′G21G

−1
11 G11.2G

−1
11 G12ω

[
E(χ−2

p2,α;∆)
]2
,

AQDB(β̂S+
1 ) = ω′G21G

−1
11 G11.2G

−1
11 G12ω ·

{
Hp2+2(p2−2;∆)

+ (p2−2)2E(χ−2
p2+2(∆))− (p2−2)2E(χ−2

p2+2(∆)I(χ
2
p2+2(∆)< p2−2))

}2

.
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Proof. The expressions for quadratic biases are obtained by following the definition of

AQDB.

3.4.2 Asymptotic Distributional Risk (ADR)

Theorem 3.4.2. Suppose that conditions in Theorem 3.4.1 hold. Then under {Kn}, as

n→ ∞, the asymptotic covariance matrices of the estimators are as follows:

Γ(β̂1) = σ
∗G−1

11.2, where σ
∗ = (1−θ

2−σ
2
z )
−1{(1−θ

2)σ2
e},

Γ(β̃1) = σ
∗G−1

11.2−σ
∗(G−1

11 G12G
−1
22.1G21G

−1
11 )+G

−1
11 G12ωω

′G21G
−1
11 ,

Γ(β̂S
1) = σ

∗G−1
11.2

− σ
∗(p2−2)G−1

11 G12G
−1
22.1G21G

−1
11

{
2E(χ−2

p2+2,α(∆))

− (p2−2)E(χ−4
p2+2(∆))

}
+(p2−2)G−1

11 G12ωω
′G21G

−1
11

{
2E(χ−2

p2+2(∆))

+ (p2−2)E(χ−4
p2+4(∆))−2E(χ−2

p2+4(∆))
}
,

Γ(β̂S+
1 ) = Γ(β̂S

1)

+ σ
∗
{
(p2−2)(G−1

11 G12G
−1
22.1G21G

−1
11 )
{

2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− (p2−2)E

[
χ
−4
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− G−1

11 G12G
−1
22.1G21G

−1
11 Hp2+2(p2−2;∆)

}
+ G−1

11 G12ωω
′G21G

−1
11

[
2Hp2+2(p2−2;∆)−Hp2+4(p2−2;∆)

]
− (p2−2)G−1

11 G12ωω
′G21G

−1
11

{
2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− 2E

[
χ
−2
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]
+ (p2−2)E

[
χ
−4
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]}
.

Proof. See Section 3.3.
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The ADR expressions for the estimators are contained in the following corollary.

Corollary 3.4.2. Suppose that conditions in Theorem 3.4.1 hold. Then under {Kn}, as

n→ ∞, the ADR of the estimators β̂1, β̃1, β̂S
1 and β̂S+

1 are respectively

ADR(β̂1;M) = σ
∗ tr(MG−1

11.2),

ADR(β̃1;M) = σ
∗ tr(MG−1

11.2−G21G
−1
11 MG−1

11 G12G
−1
22.1)+ω

′G21G
−1
11 MG−1

11 G12ω,

ADR(β̂S
1G;M) = σ

∗ tr(MG−1
11.2)

− σ
∗
[
(p2−2)tr(G21G

−1
11 MG−1

11 G12G
−1
22.1)

{
2E(χ−2

p2+2,α(∆))

− (p2−2)E(χ−4
p2+2(∆))

}]
+(p2−2)ω′G21G

−1
11 MG−1

11 G12ω

×
{

2E(χ−2
p2+2(∆))(p2−2)E(χ−4

p2+4(∆))−2E(χ−2
p2+4(∆))

}
,

ADR(β̂S+
1 ;M) = ADR(β̂S

1;M)

+ σ
∗
{
(p2−2)tr(G21G

−1
11 MG−1

11 G12G
−1
22.1)

{
2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− (p2−2)E

[
χ
−4
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− tr(G21G

−1
11 MG−1

11 G12G
−1
22.1)Hp2+2(p2−2;∆)

}
+ ω′G21G

−1
11 MG−1

11 G12ω
[
2Hp2+2(p2−2;∆)−Hp2+4(p2−2;∆)

]
− (p2−2)ω′G21G

−1
11 MG−1

11 G12ω
{

2E
[
χ
−2
p2+2(∆)I(χ

2
p2+2(∆)≤ p2−2)

]
− 2E

[
χ
−2
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]
+ (p2−2)E

[
χ
−4
p2+4(∆)I(χ

2
p2+4(∆)≤ p2−2)

]}
.

Proof. The expressions for risk are obtained by following the definition of ADR.
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3.4.3 Bias and Risk Comparisons

In this section, we compare the ADB and ADR of the proposed estimators. Using the

results of Theorem 3.4.1 and 3.4.2, we will have all the AQDB reduced to null vector and

all the ADR reduced to (1−θ2−σ2
z )
−1{(1−θ2)σ2

e}tr(MG−1
11 ) for all ω, when G12 = 0.

Therefore, we assume that G12 6= 0. Based on Theorem 3.4.2, the AQDB of β̃1 is an

unbounded function of ω′G21G
−1
11 G11.2 G

−1
11 G12ω. In order to investigate the AQDB(β̂S

1)

and AQDB(β̂S+
1 ) we will have

chmin(G21G
−1
11 G11.2G

−1
11 G12G

−1
22.1) ≤

ω′G21G
−1
11 G11.2G

−1
11 G12ω

ω′G22.1ω

≤ chmax(G21G
−1
11 G11.2G

−1
11 G12G

−1
22.1).

Therefore, AQDB(β̂S
1) starts from zero at ω′G21G

−1
11 G11.2G

−1
11 G12ω = 0, increases to

a point, then decreases towards zero due to E(χ−2
p2+2(∆)) being a decreasing log-convex

function of ∆. The behavior of β̂S+
1 is similar to β̂S

1 . However, the quadratic bias curve of

β̂S+
1 remains below the curve of β̂S

1 for all values of ∆.

Consider the ADR(β̂S
1) and ADR(β̂1). We can see if M ∈MD, β̂S

1 dominates β̂1 for any

ω in the sense of ADR where

MD =

{
M :

tr(G21G
−1
11 MG−1

11 G12G
−1
22.1)

chmax(G21G
−1
11 MG−1

11 G12G
−1
22.1)

≥ p2 +2
2

}
.

Moreover, by comparing ADR(β̂S+
1 ) with ADR(β̂S

1) we observe β̂S+
1 dominates β̂S

1 for all

the values of ω, with strict inequality holds for some ω and the largest risk improvement

of β̂S+
1 over β̂S

1 is near the null hypothesis. Thus, the ADR(β̂S+
1 )≤ ADR(β̂1) in the entire

parameter space, and the upper limit is attained when ∆ approaches ∞. We can see that,

ADR(β̂S+
1 ) increases monotonically towards ADR(β̂1) from below, as ∆ moves away from
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0. This implies that

ADR(β̂S+
1 )≤ ADR(β̂S

1)≤ ADR(β̂1) for anyM ∈MD and ω

with strict inequality holds for some ω. Finally, we conclude that β̂S
1 and β̂S+

1 outperform

the β̂1 in the entire parameter space induced by ∆. The gain in risk over β̂1 is substantial

when ∆ = 0 or near.

3.5 Monte Carlo Simulation studies

In this section, we carry out a Monte Carlo simulation study to examine the performance

of the proposed estimators. In this study, we use the model (3.1) in which

yi = β1x1i +β2x2i + . . .+βpxpi +g(ti)+ εi, i = 1,2, . . . ,n,

where εi = (θ + zi)εi−1 + ei, θ = 0.1 and zi and ei being i.i.d N(0,1). Furthermore,

g(ti) = sin(2πti), ti are i.i.d U(0,1) and xsi = (ζ
(1)
si )2 + ζ

(2)
i with ζ

(1)
si and ζ

(2)
i being i.i.d

U(0,1) and N(0,1), respectively, for all s = 1, . . . , p and i = 1, . . . ,n. Our sampling experi-

ment consists of various combinations of sample sizes, i.e., n = 50 and 100. For each n, we

generate 5000 samples using the above model, also the xi and ti values are generated once

for each n. We set β j = 0, for j = p1 + 1, . . . , p with p = p1 + p2. We set the regression

coefficients β = (β′1,β
′
2)
′ to β = (β′1,0

′)′ for different cases.

Case 1: β1 = (1.5,1.7,1.1)′

Case 2: β1 = (1.5,1.7,1.1,0.8,0.2)′

Case 3: β1 = (1.5,1.7,1.1,0.8,0.2,2.5,3)′.

Our aim is to estimate β1 based on proposed strategies when β2 does not provide use-
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ful information (β2 = 0). For each case we provide detailed results for p2 = 3,4, . . . ,8.

The estimator in Priestley and Chao (1972) with a gaussian kernel is used for the weight

function Wni(t j)

Wni(t j) =
1

nhn
K(

ti− t j

hn
) =

1
nhn

1√
2π

e
−

(ti−t j)
2

2h2n .

The cross-validation (CV) method (Bowman and Azzalini, 1997) is used to select the opti-

mal bandwidth hn, which minimizes the CV function:

CV (hn) =
1
n

n

∑
i=1

(ŷ−i− β̂
−i
1n x̂−i

1 − β̂
−i
2n x̂−i

2 − . . .− β̂
−i
pnx̂−i

p )2,

where (β̂−i
1n, β̂

−i
2n, . . . , β̂

−i
pn)
′ = (X̂ ′−iX̂−i)−1X ′−iŷ′−i , X̂−i = (x̂−i

sk )
′,1 ≤ k ≤ n,1 ≤ s ≤

p, ŷ−i = (ŷ−i
1 , ŷ−i

2 , . . . , ŷ−i
n ), x̂−i

sk = xsk −∑
n
j 6=iWn j(ti)xs j, ŷ−i

k = yk −∑
n
j 6=iWn j(ti)y j. Noting

that ŷ−i is the predicted value of y = (y1,y2, . . . ,yn) at x = (x1i,x2i, . . . ,xpi) with yi and xi

left out of the estimation of the βs.

We define the parameter ∆∗ = ‖β−β∗‖2, where β∗ = (β′1,0
′)′ and ‖ . ‖ is the Euclidian

norm. In order to produce values of ∆∗ between 0 to 2, different values of β2 were chosen.

The criterion for comparing the performance of the estimators of β1 is based on the mean

squared error (MSE). The relative MSE of β̃1, β̂
S
1 and β̂S+

1 have been numerically calcu-

lated with respect to β̂1. The relative mean squared error (RMSE) of the other estimators

to the unrestricted estimator β̂1 is defined by:

RMSE(β̂1 : β̂?
1) =

MSE(β̂1)

MSE(β̂?
1)
,

where β̂?
1 can be any of β̃1, β̂

S
1 and β̂S+

1 . Comparative RMSEs for RE, UE, SE and PSE

are illustrated in Figures 3.1-3.3 to portray the relative performance of the estimators. The

horizontal line of RMSE=1 facilitates a comparison among the other estimators. It is ob-
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vious that a RMSE larger than one indicates the degree of superiority of the estimator β̂?
1

over β̂1.

We summarize the findings of our simulation study as follows:

(i) Simulation studies show that in all the cases the maximum efficiency of all the other

estimators relative to UE occurred when ∆∗ = 0. The RE dominates all the estima-

tors when the UPI is true (∆∗ = 0). On the contrary, the risk of RE explodes as ∆∗

increases, i.e., as the restriction moves away from ∆∗ = 0, the risk of RE goes below

the horizontal line and becomes an inefficient estimator.

(ii) In all combinations of p2, p1 and n, departure from the restriction has less impact

on shrinkage estimators risks which is consistent with the theory and their RMSE

approaches one as we move away from the restriction.

(iii) The SE in all cases is dominated by the PSE (see the RMSE curve of SE which

is lower than the PSE curve). This indicates that in the event of imprecise UPI (i.e.,

when β2 6= 0), the PSE has the smallest risk among the other estimators which makes

it an ideal choice for real-life problems.

In summary, the simulation results are in agreement with our asymptotic results.

Comparison of Shrinkage with Absolute Penalty Estimator

Here, we compare the performance of shrinkage estimators with an APE (lasso). We used

the 10-fold cross validation method to estimate the tuning parameter λ in (3.6) to compute

APE.
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Figure 3.1: Relative MSE of the estimators for various p2 when p1 = 3 and n = 50. “- - -” denotes the
PSE, “ · · ·” denotes the SE, “– · – ·” denotes the RE, and “—” denotes the UE.



3.5 Monte Carlo Simulation studies 81

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

n=50, p1=5, p2=3

∆

R
M

S
E

RE

S

S+

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

n=50, p1=5, p2=4

∆

R
M

S
E

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

n=50, p1=5, p2=5

∆

R
M

S
E

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

n=50, p1=5, p2=6

∆

R
M

S
E

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

n=50, p1=5, p2=7

∆

R
M

S
E

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

n=50, p1=5, p2=8

∆

R
M

S
E

Figure 3.2: Relative MSE of the estimators for various p2 when p1 = 5 and n = 50. “- - -” denotes the
PSE, “ · · ·” denotes the SE, “– · – ·” denotes the RE, and “—” denotes the UE.
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Figure 3.3: Relative MSE of the estimators for various p2 when p1 = 7 and n = 50. “- - -” denotes the
PSE, “ · · ·” denotes the SE, “– · – ·” denotes the RE, and “—” denotes the UE.
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Table 3.1: Relative MSE of estimators with respect to UE when n = 50 and β1 =
(1.5,1.7,1.1)

p2 lasso S S+ RE
3 1.373 1.230 1.276 2.309
4 1.612 1.372 1.546 2.665
5 1.779 1.514 2.166 3.288
6 1.835 1.861 2.362 3.517
7 1.971 2.100 2.584 3.919
8 2.368 2.446 3.198 4.235
9 2.626 2.854 3.577 5.550

10 3.284 3.468 4.175 6.286

The criterion RMSE was used to compare the performance of the estimators

RMSE(β̂1 : β̂?
1) =

MSE(β̂1)

MSE(β̂?
1)
,

where β̂?
1 is one the β̃1, β̂S

1 , β̂S+
1 and β̂lasso

1 . We performed the simulation for all 3 cases

for n = 50 and 100 with p2 =,4, · · · ,10. The simulated risk of the APE and shrinkage

estimators when ∆∗ = 0 are shown in Tables 3.1 - 3.6.

In Table 3.1 and 3.2 when p1 = 3 and n = 50 and 100, the APE outperforms PSE and SE

when p2 = 5 and p2 = 6, respectively. On the other hand when p2 > 5 the PSE dominates

the APE and when p2 > 6 the SE outperforms the APE. In Table 3.3 and 3.4 when p1 = 5,

we observe that again SE and PSE have less simulated risk than APE when p2 = 7 and

p2 = 8, respectively. Also when p1 = 7 (Table 3.5 and 3.6), SE and PSE have less risk than

APE when p2 = 8 and p2 = 9, respectively. Thus as p2 increases the shrinkage estimators

start to perform better than the APE and we recommend shrinkage method for the large

p2. Not surprisingly, the RE is the best estimator when ∆∗ = 0, compared with all other

estimators.
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Table 3.2: Relative MSE of estimators with respect to UE when n = 100 and β1 =
(1.5,1.7,1.1)

p2 lasso S S+ RE
3 1.550 1.268 1.356 1.953
4 1.742 1.488 1.677 2.344
5 1.944 1.803 2.008 3.875
6 2.129 2.153 2.337 3.409
7 2.242 2.315 2.725 3.712
8 2.509 2.538 3.016 4.211
9 2.920 2.956 3.545 4.962

10 3.260 3.401 4.053 5.567

Table 3.3: Relative MSE of estimators with respect to UE when n = 50 and β1 =
(1.5,1.7,1.1,0.8,0.2)

p2 lasso S S+ RE
3 1.341 1.140 1.251 1.696
4 1.544 1.303 1.459 1.947
5 1.908 1.452 1.675 2.356
6 2.139 1.719 2.083 2.883
7 2.340 2.104 2.510 3.933
8 2.525 2.862 3.306 4.586
9 2.835 3.485 3.628 5.823

10 3.482 3.864 4.036 7.253

Table 3.4: Relative MSE of estimators with respect to UE when n = 100 and β1 =
(1.5,1.7,1.1,0.8,0.2)

p2 lasso S S+ RE
3 1.437 1.148 1.202 1.541
4 1.691 1.274 1.394 1.789
5 1.954 1.589 1.826 2.605
6 2.261 1.899 2.134 3.190
7 2.402 2.282 2.591 3.384
8 2.611 2.648 2.855 3.841
9 2.909 3.036 3.352 4.538

10 3.157 3.388 3.945 5.612
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Table 3.5: Relative MSE of estimators with respect to UE when n = 50 and β1 =
(1.5,1.7,1.1,0.8,0.2,2.5,3)

p2 lasso S S+ RE
3 1.343 1.153 1.203 1.552
4 1.551 1.259 1.393 1.744
5 1.764 1.528 1.716 2.405
6 2.103 1.749 1.971 2.609
7 2.397 1.914 2.230 3.206
8 2.652 2.446 2.734 4.619
9 2.954 2.974 3.187 5.158

10 3.488 3.501 3.753 6.486

Table 3.6: Relative MSE of estimators with respect to UE when n = 100 and β1 =
(1.5,1.7,1.1,0.8,0.2,2.5,3)

p2 lasso S S+ RE
3 1.414 1.106 1.216 1.591
4 1.686 1.228 1.341 1.643
5 1.818 1.409 1.553 1.984
6 1.923 1.518 1.676 2.058
7 2.154 1.762 1.866 2.684
8 2.296 1.936 2.343 2.919
9 2.595 2.622 2.943 4.562

10 3.012 3.342 3.588 5.523



3.6 Data Example 86

3.6 Data Example

We now implement suggested strategies to quarterly macroeconomic time series data

(United Kingdom, 1948-1956). The data can be found in Reinsel and Velu (1998, p. 233)

and they were initially analyzed by Klein et al. (1961). In this data set, we consider the de-

pendent variable yi as the total exports and the explanatory variables xi1 , xi2 , xi3 , xi4 and

xi5 are total labor force, weekly wage rates, price index of imports, price index of exports

and price index of consumption, respectively and the sample size is n = 36. By applying

the Durbin-Watson d test, it can be shown that the errors are autocorrelated with order one,

with an estimated auto-coefficient -0.349. Thus, we first consider a regression model with

first order autoregressive errors given in the form of:

yi = β1x1i +β2x2i +β3x3i +β4x4i +β5x5i + εi, i = 1,2, . . . ,36, (3.11)

where εi follows an AR(1) process. The model estimation is ŷi = 0.49x1i + 1.64x2i +

1.47x2i−1.05x4i−1.45x5i and the corresponding residual mean square error is 54.41. Now

we consider the following partially linear regression model with random coefficient AR(1)

error in (3.2):

yi = β1x1i +β2x2i +β3x3i +β4x4i +β5x5i +g(ti)+ εi, i = 1,2, . . . ,36, (3.12)

where g(ti) is an unknown function and ti = i/36. The estimated model is ŷi = 0.53x1i +

1.56x2i +1.35x2i−1.01x4i−1.33x5i + ĝ(ti). The bandwidth is 0.02 and the residual mean

square error for this model is 4.95, which is less than that in model (3.11). Moreover, the

lower panel of Figure 3.4 shows that our model in (3.12) is adequate. Now based on pre-

liminary analysis using autoreg procedure in SAS software with first order autoregressive
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Table 3.7: Estimated Coefficients
Estimator β1 β2 β3 β4 β5

β̂ 0.53 1.56 1.35 -1.01 -1.33
β̃ 0 1.54 1.49 0 0
β̂S 0.16 0.71 0.40 -0.86 -1.14
β̂S+ 0.16 0.71 0.40 -0.86 -1.14
β̂lasso 0.33 1.62 1.59 0 0

error, we realize that 3 of the variables are not significant and we consider the following

hypothesis:

β1 = β4 = β5 = 0.

The UE, RE, SE, PSE and lasso estimators are given in Table 3.7.

The performance of the estimators are evaluated in terms of their model predictive MSE

(PMSE). The PMSE of β̃, β̂S, β̂S+ and β̂lasso relative to β̂ is given by: RPMSE(β̂ :

β̂∗) = PMSE(ŷi;β̂)
PMSE(ŷi;β̂∗)

, where β̂∗ can be any of the β̃, β̂S, β̂S+ and β̂lasso. The RPMSE of

β̃, β̂S, β̂S+ and β̂lasso is calculated and reported in Table 3.8. The Table 3.8. reveals that

RPMSE for shrinkage estimators are larger than that of β̂lasso. Since in this model p is

relatively small, it is expected that lasso will do better. However, the sub-model estimator

under the assumption of correctly specified model is the best one with RPMSE=2.15.

Table 3.8: The Relative PMSE of the Estimators
Estimators(β̂∗) RPMSE(β̂ : β̂∗)

β̃ 2.15
β̂S 1.47
β̂S+ 1.47
β̂lasso 1.69
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Figure 3.4: Comparison of fits from model (3.11) and model (3.12). “—” denotes the actual observations,
“ · · ·” denotes the linear regression model, and “– – –” denotes the the partial linear model.
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3.7 Concluding Remarks

In this chapter, we considered partial linear models with random coefficient autoregressive

errors. We suggested a unified estimation approach including a candidate sub-model esti-

mator, lasso, and shrinkage estimators. We appraised the relative performance of these es-

timators. We demonstrated via simulation that our suggested methodology has sound finite

sample properties and can be useful in practical applications. Our findings here are con-

sistent with that of Ahmed et al. (2007), in which lasso is competitive to SE and PSE. The

shrinkage estimators will perform better than the lasso estimator. Further, we reappraised

the properties of shrinkage and restricted estimators for PLM with an autoregressive error.

We demonstrated that, based on both analytical and numerical findings, the PSE outper-

forms the usual SE and the unrestricted estimator in the entire parameter space. When the

restriction is true the RE is superior to all the other estimation rules; however, the MSE of

RE may become unbounded when such restrictions are incorrect. Also the risk of SE and

PSE is always smaller or equal to the risk of the UE.



Chapter 4

Estimation Strategies in

Quasi-likelihood Models

4.1 Introduction

In real life problems, sometimes a full distributional assumption on response variables

is not possible, specially in discrete data. Therefore the frequently used models such as

generalized linear models (GLMs) or any model assuming a distribution on observed data

can not be implemented. In order to be able to model a response variable yi based on some

existing covariates when no distributional assumption on yi is assumed, Wedderburn (1974)

introduced the term quasi-likelihood (QL) function. This term is also used as QL models.

In this dissertation, we use “QL function” and “QL model” interchangeably.

The QL function has similar properties to the log-likelihood function, except that a QL

function is not the log-likelihood function corresponding to any actual probability distri-

bution. Instead of specifying a probability distribution for the data, only a relationship

90
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between the mean and the variance is specified in the form of a variance function when

given the variance as a function of the mean. Thus, QL is based on the assumption of only

the first two moments of the response variable.

Over the last two decades, QL estimation strategy has been widely used in different ar-

eas. For example, Lin et al. (2009) used the QL model to develop an estimating equation for

the analysis of spatially correlated binary data. Alzghool et al. (2010) proposed an asymp-

totic QL approach for parameter estimation in multivariate heteroscedastic models with an

unspecific correlation. Aue and Horváth (2011) proposed a QL procedure for estimating

the unknown parameters of a first-order random coefficient autoregressive model, among

other research, which indicates the importance of this model in broad areas.

In this chapter, we provide and compare shrinkage and pretest estimation strategy for

QL models when UPI is in the general form given in (1.2), i.e., F ′β = d. We study the

properties of these estimators using the notion of asymptotic distributional bias and risk.

We also apply a penalty estimation strategy and compare the relative performance with

shrinkage and pretest estimators through simulation studies.

4.1.1 Organization of the Chapter

The rest of this chapter is organized as follows. In Section 4.2, we propose an estima-

tion strategy as well as an APE. Section 4.3 provides the asymptotic results of shrinkage

and pretest estimators. In Section 4.4, we design and conduct a Monte Carlo experiment

to study the performance of the proposed estimators and compare them with an APE. In

Section 4.5, we present our concluding thoughts.
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4.2 Statistical Model and Estimation

Consider the uncorrelated data yi with E(yi) = µi and var(yi) = φV (µi), where µi is to be

modeled in terms of a p-vector of parameters β, the variance function V (.) is assumed a

known function of µi, and φ is a multiplicative factor known as the dispersion parameter or

scale parameter that is estimated from the data. Suppose that for each observation yi , the

QL function Q(yi;µi) is given by

Q(yi;µi) =
∫ µi

yi

yi− t
φV (t)

dt.

Furthermore, for each observation, the quasi-score function U(yi,µi) is defined by the

relation

U(yi,µi) =
∂Q
∂µi

=
yi−µi

φV (µi)
.

U(yi,µi) has the following properties which are in common with a log likelihood deriva-

tives:

E(U) = 0

var(U) =
1

φV (µ)

−E(
∂U
∂µ

) =
1

φV (µ)
.

Now consider n independent observations y = (y1,y2, . . . ,yn)
′ with a set of predictor

values xi = (xi1,xi2, . . . ,xip)
′. In the generalized linear form we have

E(yi) = µi, g(µi) =
p

∑
r=0

βrxir i = 1, . . . ,n,
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with the generalized form of variance

var(yi) = φV (µi) i = 1, . . . ,n,

where g(.) is the link function which connects the random component y to the systematic

components x1,x2, . . . ,xp. It is obvious that µi is a function of β since µi = g−1(x′iβ), so

we can rewrite µ= µ(β).

4.2.1 Unrestricted and Restricted Estimators

Our concern is to estimate the regression parameters β1,β2, . . . ,βp. Since the observations

are independent by assumption, the QL for the complete data is the sum of the individual

quasi-likelihoods:

Q(y,µ) =
n

∑
i=1

Q(yi,µi).

Therefore, the estimation of the regression parameters β is obtained by differentiating

Q(y,µ) with respect to β, which may be written in the form of U(β̂) = 0, where

U(β) =D′V −1(µ)(y−µ)/φ

is called the quasi-score function and β̂ is the unrestricted quasi-maximum likelihood esti-

mator (UE) of β. Here,D is a n× p matrix and the components

Dir =
∂µi

∂βr
i = 1,2, . . . ,n r = 1,2, . . . , p,

are the derivatives of µ(β) with respect to the parameters. Since the data are

independent, V (µ) can be considered in the form of a diagonal matrix V (µ) =
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diag{V1(µ1), . . . ,Vn(µn)}, where Vi(µi) is a known function depending only on the ith

component of the mean vector µ. Wedderburn (1974) and McCullagh (1983) show that

quasi-likelihoods and their corresponding quasi-maximum likelihood estimates have many

properties similar to those of likelihoods and their corresponding maximum likelihood es-

timates.

We wish to estimate β when it is plausible that β lies in the subspace

F ′β = d.

Hence, the UPI is F ′β = d, where F is a p×q full rank matrix with rank q ≤ p and d is

a given q× 1 vector of constants. Based on Heyde (1997), the restricted quasi-maximum

likelihood estimator (RE) β̃ of β under UPI can be written as

β̃ = β̂−Σ−1F (F ′Σ−1F )−1(F ′β̂−d),

where Σ =D′V −1(µ)D and µ= µ(β).

4.2.2 Pretest Estimation

The pretest estimator (PTE) based on the UE and RE is defined as

β̂PT = β̂ I(Tn > cq,α)+ β̃ I(Tn < cq,α),

where cq,α is the upper α-level critical value of the χ2 distribution with q degrees of free-

dom, I(A) is the indicator function of the set A, and Tn is the test-statistic to test the null-
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hypothesis H0 : F ′β−d= 0 defined as

Tn = φ̂
−1η3

′F (F ′Σ̂−1F )−1F ′η3;

where Σ̂ = D̂′V −1(µ̂)D̂, φ̂ = 1
n−p ∑i(yi− µ̂i)

2/Vi(µ̂i), µ̂ = µ(β̂) and η3 is defined in

Proposition 4.3.1. Thus, β̂PT chooses β̃ when H0 is tenable, otherwise β̂. For some use-

ful discussions on pretest estimation strategy, we refer to Ahmed and Liu (2009), among

others.

4.2.3 Shrinkage Estimation

The shrinkage estimator (SE) based on the UE and RE is defined as

β̂S = β̃+{1− coptT−1
n }(β̂− β̃) where copt = q−2, q≥ 3.

To avoid the over shrinking inherent in SE, we define the PSE as follows:

β̂S+ = β̃+{1− coptT−1
n }+(β̂− β̃) q≥ 3,

where z+ = max(0,z). For the sake of computation, the PSE can be rewritten in the follow-

ing form

β̂S+ = β̂S− [1− coptT−1
n ]I(Tn < copt)(β̂− β̃) q≥ 3.
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4.2.4 Absolute Penalty Estimator

Absolute penalty estimators (APEs) of regression coefficients are the solutions to the L1

optimization problem

β̂lasso = argmin
β

{ n

∑
i=1

(yi−x′iβ)2 +λ

p

∑
j=1
|β j|
}
,

where λ is the tuning parameter. Park and Hastie (2007) proposed an L1 regularization

procedure for fitting generalized linear models. It is similar to the lasso procedure, in

which the loss function is replaced by the negative log-likelihood of any distribution in the

exponential family; i.e.,

β̂ = argmin
β

{
− `(β)+λ

p

∑
j=1
|β j|
}
,

where `(β) is the log-likelihood of the underlying GLM. For a review on other available

techniques we refer the reader to Friedman et al (2010) and references therein.

In order to apply the L1 penalty in the QL model, we first generated observations from

the quasi-Poisson model. In a personal communication with Trevor Hastie, he suggested

to use the glmnet package (Friedman et al., 2009) in R software in order to obtain the

parameter estimates of the quasi-Poisson model based on L1 penalty. The results are shown

in Section 4.4.
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4.3 Asymptotic Properties

In this section, we derive the asymptotic properties of the estimators. For this aim, we

consider a sequence of local alternatives {Kn} given by

Kn : F ′β = d+
ω√

n
,

where ω is a fixed q-column vector. Under the local alternative, we compute ADB and

ADR of the estimators for fixed β.

Theorem 4.3.1. Under the following regularity conditions:

(1) Weak conditions on the third derivative of E(y) = µ(β) and the third moments of y

are finite;

(2) Assuming limn→∞ n−1D′nV
−1(µ)Dn = Σ, finite and positive definite matrix,

we will have:
√

n(β̂−β)∼ Np(0,φ Σ−1),

where β̂ is the UE of β.

Proof. The proof of the theorem can be found in McCullagh (1983).

Proposition 4.3.1. If the regularity conditions (1) and (2) in Theorem 4.3.1 hold, then

under local alternative {Kn}, as n→ ∞, we have

(
η1

η3

)
∼ N2p

{(
0

γ

)
,φ

 Σ−1 Σ−1−Σ∗

Σ−1−Σ∗ Σ−1−Σ∗

}

(
η2

η3

)
∼ N2p

{(
−γ
γ

)
,φ

 Σ∗ 0

0 Σ−1−Σ∗

},
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where η1 =
√

n(β̂−β), η2 =
√

n(β̃−β), η3 =
√

n(β̂− β̃), γ = Σ−1F (F ′Σ−1F )−1ω

and Σ∗ = Σ−1−Σ−1F (F ′Σ−1F )−1F ′Σ−1.

Proof. Since η2 and η3 are linear functions of β̂, they are also asymptotically normally

distributed.

E(η2) = E lim
n→∞

√
n(β̃−β)

= E lim
n→∞

√
n(β̂−Σ−1F (FΣ−1F )−1(F ′β̂−d)−β)

= E lim
n→∞

√
n(β̂−β−Σ−1F (FΣ−1F )−1(F ′β̂−F ′β+F ′β−d)

= E lim
n→∞

√
n(β̂−β)−E lim

n→∞

√
n
{
Σ−1F (F ′Σ−1F )−1[F ′(β̂−β)+ ω√

n
]
}

= E( lim
n→∞

η1)−Σ−1F (F ′Σ−1F )−1(E lim
n→∞

(F ′η1)+ω)

= −Σ−1F (F ′Σ−1F )−1ω =−γ

V (η2) = Var(
√

n(β̃−β)) =Var(η1−Σ−1F (F ′Σ−1F )−1F ′η1)

= φ
{
Σ−1 +Σ−1F (F ′Σ−1F )−1F ′Σ−1F (F ′Σ−1F )−1F ′Σ−1

− 2Σ−1F (F ′Σ−1F )−1F ′Σ−1}
= φ

{
Σ−1−Σ−1F (F ′Σ−1F )−1F ′Σ−1}.

In a similar way, one can achieve the asymptotic results of η3. Now the joint distribution

of (η1,η2) and (η2,η3) will be asymptotically normal as well.

Proposition 4.3.2. If Proposition 4.3.1 holds, then φ−1η3
′F (F ′Σ−1F )−1F ′η3

D−−−→
n→∞

χ2
q(∆), where χ2

q(∆) is a non-central chi-square distribution with q degrees of freedom and

non-centrality parameter ∆ = φ−1ω′(F ′Σ−1F )−1ω. Note that the covariance matrix Σ

and φ can be estimated using β̂

Σ̂ = D̂′V −1(µ̂)D̂, φ̂ =
1

n− p ∑
i
(yi− µ̂i)

2/Vi(µ̂i),
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where µ̂i = µi(β̂). Since β̂ is a consistent estimator of β, thus, by Slutsky’s theorem we

will have Dn = φ̂−1η3
′F (F ′Σ̂−1F )−1F ′η3

D−−−→
n→∞

χ2
q(∆).

Proof. By using Proposition 4.3.1, under local alternative, we have η3
D−−−→

n→∞
Np(γ,φ C)

whereC = φ(Σ−1−Σ∗)= φΣ−1F (F ′Σ−1F )−1F ′Σ−1. ConsiderA= φ−1F (F ′Σ−1F )−1F ′

which is a symmetric matrix, one can verify that the following conditions hold:

1) (AC)2 =AC,

2) γ ′(AC)2 = γ ′AC,

3) γ ′ ACAγ = γ ′ Aγ,

4) r(AC) = q

under the regularity conditions in Theorem 4.3.1 and using Theorem 4 in Styan (1970), we

get

φ−1η3
′F (F ′Σ−1F )−1F ′η3 ∼ χ2

q(∆) where ∆ = φ−1γ ′Aγ = φ−1ω′(F ′Σ−1F )−1ω.

Based on the above results, the UE and RE of β are consistent and they are asymptoti-

cally normal under the local alternative. In the next section we present the ADB and ADR

of the estimators. The above results along with Theorems 2.3.4 and 2.3.5 in Chapter 2 will

be used to derive the asymptotic results of the estimators under Kn.
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4.3.1 Asymptotic Distributional Bias (ADB)

Theorem 4.3.1. If the regularity conditions (1) and (2) in Theorem 4.3.1 hold, then under

{Kn}, as n→ ∞, the ADB of the estimators are respectively

ADB(β̂) = 0,

ADB(β̃) = −γ,

ADB(β̂PT ) = −γHq+2(χ
2
q(α);∆),

ADB(β̂S) = −(q−2) γ E[χ−2
q+2(∆)],

ADB(β̂S+) = ADB(β̂S)−γ
{

Hq+2(q−2;∆)− (q−2)E(χ−2
q+2(∆)I(χ

2
q+2(∆)< q−2))

}
.

where ∆ = φ−1ω′(F ′Σ−1F )−1ω, Hν(x;∆) is the distribution function of a non-central chi-

square with ν degrees of freedom and non-centrality parameter ∆, and

E
(
χ
−2 j
ν (∆)

)
=

∫
∞

0
χ
−2 jdHν(x;∆).

Proof. From Proposition 4.3.1, we get directly the statements ADB(β̂) = 0, and ADB(β̂) =

−γ. The ADB of the shrinkage estimators are as follows:
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ADB(β̂S) = E lim
n→∞

√
n(β̂S−β) = E lim

n→∞

√
n(β̃+(1− (q−2)T−1

n )(β̂− β̃)−β)

= E lim
n→∞

√
n[β̃−β+(β̂− β̃)− (q−2)T−1

n (β̂− β̃)]

= E lim
n→∞

[η2 +η3− (q−2)T−1
n η3]

= E lim
n→∞

[η1− (q−2)T−1
n η3] =−(q−2)E lim

n→∞
[T−1

n η3]

= −(q−2)γE(χ−2
q+2(∆)),

ADB(β̂S+) = E lim
n→∞

√
n(β̂S+−β)

= E lim
n→∞

√
n[β̂S−β− (1− (q−2)T−1

n )(β̂− β̃)I(Tn < q−2)]

= ADB(β̂S)−E lim
n→∞

√
n[(1− (q−2)T−1

n )(β̂− β̃)I(Tn < q−2)]

= ADB(β̂S)−E lim
n→∞

[η3(1− (q−2)T−1
n )I(Tn < q−2)]

= ADB(β̂S)−E lim
n→∞

[η3I(Tn < q−2)]+E lim
n→∞

[(q−2)η3T−1
n I(Tn < q−2)]

= ADB(β̂S)−γHq+2(q−2;∆)+γ(q−2)E(χ−2
q+2(∆)I(χ

2
q+2(∆)< q−2)).

Since the bias expressions are not in scalar form, we convert them to quadratic form.

The asymptotic quadratic distributional bias (AQDB) of an estimator as follows

AQDB(β0) = (ADB(β0))′φ−1Σ(ADB(β0))

Corollary 4.3.1. Suppose that the assumptions of Theorem 4.3.1 hold. Then under {Kn},
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as n→ ∞, the AQDB of the estimators are

AQDB(β̂) = 0,

AQDB(β̃) = φ
−1γ ′Σγ = ∆,

AQDB(β̂PT ) = ∆
(
Hq+2(χ

2
q(α);∆)

)2
,

AQDB(β̂S) = ∆(q−2)2(E[χ−2
q+2(∆)]

)2
,

AQDB(β̂S+) = ∆

(
(q−2)E[χ−2

q+2(∆)]−Hq+2(q−2;∆)

+ (q−2)E(χ−2
q+2(∆)I(χ

2
q+2(∆)< q−2))

)2
.

Proof. The expressions for quadratic biases are obtained by following the definition of

AQDB.
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4.3.2 Asymptotic Distributional Risk (ADR)

Theorem 4.3.2. Suppose that the assumptions of Theorem 4.3.1 hold. Then under {Kn},

as n→ ∞, the asymptotic covariance matrices of the estimators are

Γ(β̂) = φΣ−1,

Γ(β̃) = φΣ∗+γγ ′,

Γ(β̂PT ) = φΣ−1−φ(Σ−1−Σ∗)Hq+2(χ
2
q(α);∆)+γγ ′

{
2Hq+2(χ

2
q(α);∆)−Hq+4(χ

2
q(α);∆)

}
,

Γ(β̂S) = φΣ−1 +(q−2)φ(Σ−1−Σ∗)[−2E(χ−2
q+2(∆))+(q−2)E(χ−4

q+2(∆))]

+ (q−2)γγ ′[−2E(χ−2
q+4(∆))+2E(χ−2

q+2(∆))+(q−2)E(χ−4
q+4(∆))],

Γ(β̂S+) = Γ(β̂S)+2γγ ′E[(1− (q−2)χ−2
q+2(∆))I(χ

2
q+2(∆)< q−2)]

− γγ ′E[(1− (q−2)χ−2
q+4(∆))

2I(χ2
q+4(∆)< q−2)]

− φ(Σ−1−Σ∗)E[(1− (q−2)χ−2
q+2(∆))

2I(χ2
q+2(∆)< q−2)].

Proof. The asymptotic covariance of an estimator β∗ is defined as follows:

Γ(β0) = E lim
n→∞

(n(β0−β)(β0−β)′).



4.3 Asymptotic Properties 104

Therefore,

Γ(β̂) = E lim
n→∞

(n(β̂−β)(β̂−β)′) = E lim
n→∞

(η1η1
′)

= Var(η1)+E(η1)E(η1)
′ = φΣ−1,

Γ(β̃) = E lim
n→∞

(n(β̃−β)(β̃−β)′) = E lim
n→∞

(η2η2
′)

= Var(η2)+E(η2)E(η2)
′ = φΣ∗+γγ ′,

Γ(β̂S) = E lim
n→∞

(n(β̂S−β)(β̂S−β)′)

= E lim
n→∞

√
n
(
(β̃+(1− (q−2)T−1

n )(β̂− β̃)−β
)

×
√

n
(
β̃+(1− (q−2)T−1

n )(β̂− β̃)−β
)′

= E lim
n→∞

[(η1− (q−2)T−1
n η3)(η1− (q−2)T−1

n η3)
′]

= E lim
n→∞

[η1η1
′− (q−2)T−1

n η1η3
′− (q−2)T−1

n η3η1
′+(q−2)2T−2

n η3η3
′]

= Var(η1)−2(q−2)E lim
n→∞

(η3η1
′T−1

n )+(q−2)2E lim
n→∞

(T−2
n η3η3

′).

Note that, by using Lemmas 2.3.4 and 2.3.5 in Chapter 2, we have

E lim
n→∞

(η3η1
′T−1

n ) = E lim
n→∞

(E(η3η1
′T−1

n |η3))

= E lim
n→∞

(η3[E(η1)+φ(Σ−1−Σ∗)φ−1(Σ−1−Σ∗)−1(η3−E(η3))]
′T−1

n )

= E lim
n→∞

(η3[η3
′−γ ′]T−1

n )

= E lim
n→∞

(η3η3
′T−1

n )−E lim
n→∞

(η3γ
′T−1

n )

= φ(Σ−1−Σ∗)E(χ−2
p2+2(∆))+γγ

′E(χ−2
p2+4(∆))−γγ

′E(χ−2
p2+2(∆))

= φ(Σ−1−Σ∗)E(χ−2
p2+2(∆))+γγ

′[E(χ−2
p2+4(∆))−E(χ−2

p2+2(∆))].
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Therefore,

Γ(β̂S) = φΣ−1−2(q−2)φ(Σ−1−Σ∗)E(χ−2
p2+2(∆))

− 2(q−2)γγ ′[E(χ−2
p2+4(∆))−E(χ−2

p2+2(∆))]

+ (q−2)2[φ(Σ−1−Σ∗)E(χ−4
p2+2(∆))+γγ

′E(χ−4
p2+4(∆))]

= φΣ−1 +(q−2)φ(Σ−1−Σ∗)[−2E(χ−2
p2+2(∆))+(q−2)E(χ−4

p2+2(∆))]

+ (q−2)γγ ′[−2E(χ−2
p2+4(∆))+2E(χ−2

p2+2(∆))+(q−2)E(χ−4
p2+4(∆))]

Γ(β̂S+) = E lim
n→∞

(n(β̂S+−β)(β̂S+−β)′)

= E lim
n→∞

√
n
(
(β̂S− (1− (q−2)T−1

n )I(Tn < q−2)(β̂− β̃)−β
)

×
√

n
(
β̂S− (1− (q−2)T−1

n )I(Tn < q−2)(β̂− β̃)−β
)′

= Γ(β̂S)−2E lim
n→∞

[η3η2
′(1− (q−2)T−1

n )I(Tn < q−2)]

− 2E lim
n→∞

[η3η3
′(1− (q−2)T−1

n )2I(Tn < q−2)]

+ E lim
n→∞

(η3η3
′(1− (q−2)T−1

n )2I(Tn < q−2))

= Γ(β̂S)−2E lim
n→∞

[η3η2
′(1− (q−2)T−1

n )I(Tn < q−2)]

− E lim
n→∞

[η3η3
′(1− (q−2)T−1

n )2I(Tn < q−2)].

Now we have

E lim
n→∞

[η3η2
′(1− (q−2)T−1

n )I(Tn < q−2)]

= E lim
n→∞

[η3E(η2
′(1− (q−2)T−1

n )I(Tn < q−2)|η3)]

= E lim
n→∞

[η3(−γ+0×φ(Σ−1−Σ∗)−1(η3−γ))′(1− (q−2)T−1
n )I(Tn < q−2)]

=−E lim
n→∞

[η3γ
′(1− (q−2)T−1

n )I(Tn < q−2)]

=−γγ ′E[(1− (q−2)χ−2
p2+2(∆))I(χ

2
p2+2(∆)< q−2)],
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and based on Lemmas 2.3.4 in Chapter 2, we have

E lim
n→∞

[η3η3
′(1− (q−2)T−1

n )2I(Tn < q−2)]

= φ(Σ−1−Σ∗)E[(1− (q−2)χ−2
p2+2(∆))

2I(χ2
p2+2(∆)< q−2)]

+γγ ′E[(1− (q−2)χ−2
p2+4(∆))

2I(χ2
p2+4(∆)< q−2)].

Therefore,

Γ(β̂S+) = Γ(β̂S)+2γγ ′E[(1− (q−2)χ−2
p2+2(∆))I(χ

2
p2+2(∆)< q−2)]

− γγ ′E[(1− (q−2)χ−2
p2+4(∆))

2I(χ2
p2+4(∆)< q−2)]

− φ(Σ−1−Σ∗)E[(1− (q−2)χ−2
p2+2(∆))

2I(χ2
p2+2(∆)< q−2)].

Corollary 4.3.2. If the assumptions of Theorem 4.3.1 hold, then under {Kn}, as n→∞, the

ADR of the estimators are

ADR(β̂;M) = φ tr(MΣ−1),

ADR(β̃;M) = φ tr(MΣ−1)−φtr(A11)+γ
′Mγ,

ADR(β̂PT ;M) = φ tr(MΣ−1)−φ tr(A11)Hq+2(χ
2
q(α);∆)

+ γ ′Mγ
{

2Hq+2(χ
2
q(α);∆)−Hq+4(χ

2
q(α);∆)

}
,

ADR(β̂S;M) = φ tr(MΣ−1)+(q−2)φ tr(A11)
{
−2E(χ−2

q+2(∆))+(q−2)E(χ−4
q+2(∆))

}
+ (q−2)γ ′Mγ[−2E(χ−2

p2+4(∆)1)+2E(χ−2
q+2(∆))+(q−2)E(χ−4

q+4(∆))],

ADR(β̂S+) = ADR(β̂S)+2 γ ′Mγ E[(1− (q−2)χ−2
q+2(∆))I(χ

2
q+2(∆)< q−2)]

− γ ′Mγ E[(1− (q−2)χ−2
q+4(∆))

2I(χ2
q+4(∆)< q−2)]

− φ tr(A11) E[(1− (q−2)χ−2
q+2(∆))

2I(χ2
q+2(∆)< q−2)].
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whereA11 =MΣ−1F (F ′Σ−1F )−1F ′Σ−1.

Proof. The expressions for risk are obtained by following the definition of ADR.

4.3.3 Bias and Risk Comparisons

Clearly, the quadratic biases of the estimators are functions of ω. Therefore, for com-

parison, it suffices to compare the scalar factor ∆ only. Under H0, i.e., when ∆ = 0,

all the estimators are unbiased. However, as ∆ moves away from 0, the AQDB(β̃) be-

comes unbounded function of ∆ and AQDB(β̂PT ) will be less than AQDB(β̂S) for all val-

ues of ∆ since Hq+2(χ
2
q(α);∆) lies between 0 and 1. The AQDB(β̂S+) and AQDB(β̂S)

start from the origin at ∆ = 0, and, as ∆ increases, they increase to a maximum and then

decrease towards 0. It can be shown that the AQDB(β̂S+) ≤ AQDB(β̂S); thus, we have

AQDB(β̂S+)≤ AQDB(β̂S)≤ AQDB(β̃).

By comparing the risk of the estimators, we see that, as ∆ moves away from 0, the risk

of β̃ becomes unbounded and the risk of β̂S+ is asymptotically superior to β̂S for all values

of ∆≥ 0. Thus, not only does β̂S+ confirm the inadmissibility of β̂S, but it also provides a

simple superior estimator. Also, by comparing the risk of β̂S and β̂, it can be easily shown

that, under certain conditions ADR(β̂S) ≤ ADR(β̂) = φ tr(MΣ−1) for all ∆ ≥ 0. Hence,

the PSE dominates the UE and we have ADR(β̂S+)≤ ADR(β̂S)≤ ADR(β̂). By comparing

the risk of βPT and β̂, it can be shown that as ∆ increases, the ADR(β̂PT ) will increase and

reaches the ADR(β̂) from below. Furthermore, beyond small values of ∆(∆ ∈ [0,c]), the

risk of RE is higher than the other estimators, however, under the null hypothesis, i.e., for

∆ = 0:

ADR(β̃)≤ ADR(β̂PT )≤ ADR(β̂S+)≤ ADR(β̂S)≤ ADR(β̂).
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4.4 Monte Carlo Simulation

In this section, we provide a Monte Carlo simulation study to investigate the performance

of the proposed estimators with different numbers of explanatory variables. Our sampling

experiment consists of different combination of sample sizes, i.e., n = 30,50,100. In this

study, we considered the following model:

log(λi) = x
′
iβ, i = 1,2, . . . ,n,

where x′i = (x1i,x2i, . . . ,xpi), λi = E(yi|xi), and y′is are observations from an over-dispersed

Poisson model, and β= (β1, · · · ,βp) is the vector of coefficients. In order to generate over-

dispersed Poisson observations with mean λi and variance φλi, we considered a Negative

Binomial distribution NB(ri, p) with

ri =
λi

φ−1
and p =

1
φ
, i = 1,2, . . . ,n,

where λi = ex
′
iβ and xsi = t2

s +νi with ts and νi being i.i.d N(0,1) for all s = 1, . . . , p and

i= 1, . . . ,n. Also, in the simulation we considered φ= 2. Our sampling experiment consists

of various combinations of sample sizes, i.e., n = 50 and 100. For each n, we generate 5000

samples using the above model. We also use the 10-fold cross validation method to estimate

the tuning parameter λ to compute lasso. Furthermore, we use the aod-package (Lesnoff

and Lancelot, 2012) in R statistical software to fit the above model to account for the over-

dispersed Poisson model. In our simulation, we consider the UPI in the following format:

F ′ = (0,I) where Ip2×p2 is the identity matrix, and 0p2×p1 is the matrix of 0s and dp2×1 =

0. Also, we set the regression coefficients of β = (β′1,β
′
2)
′ to β = (β′1,0

′)′ with β j = 0,

for j = p1 +1, . . . , p with p = p1 + p2 for the following cases:
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Case 1: β1 = (1,1,1)′ and β2 = 0p2×1 , where p2 = 3,4, · · · ,8.

Case 2: β1 = (1,1,1,1,1)′ and β2 = 0p2×1 , where p2 = 3,4, · · · ,8.

Now we define the parameter ∆∗ = ‖β−β∗‖2, where β∗ = (β′1,0
′)′ and ‖ . ‖ is the

Euclidian norm. The objective is to investigate the behavior of the estimators for ∆∗ ≥ 0.

In order to do this, further samples are generated from those distributions (i.e. for different

∆∗ between 0 and 2). To produce different values of ∆∗, different values of β2 are chosen.

The relative MSE of the estimators β̃, β̂S, and β̂S+ have been numerically calculated with

respect to β̂ using the R statistical software. The relative mean squared error (RMSE) of

the other estimators to the unrestricted estimator β̂ is defined by

RMSE(β̂ : β̂?) =
MSE(β̂)
MSE(β̂?)

,

where β̂? can be any of β̃, β̂S, β̂S+,βPT and β̂lasso. It is obvious that a RMSE larger than

one indicates the degree of superiority of the estimator β̂? over β̂.

The performance of lasso is independent of the parameter ∆∗. This estimator does not

take advantage of the fact that the regression parameter lies in a subspace and is at a disad-

vantage when ∆∗ > 0. Therefore, only ∆∗ = 0 was considered to compare the MSE of lasso

with MSE of other estimators. Figures 4.1 to 4.4 portray the relative performance of the

suggested estimators excluding lasso and Tables 4.1 to 4.4 show the relative performance

of lasso compared to the other estimators when ∆∗ = 0. We summarize our findings as

follows:

(i) The lasso estimator outperforms the UE. In all simulation cases, the RMSE of lasso is

higher than that in the UE, indicating that this estimator has a lower MSE compared

to the UE.
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(ii) Shrinkage estimators perform better than the UE. Comparing the SE and the PSE

shows that the PSE has a higher RMSE than the SE, which shows the better perfor-

mance of the PSE over the SE.

(iii) Shrinkage estimators perform better than lasso only when there are many nuisance

predictors in the model. The gain in efficiency depends on the value of p2: the larger

p2 is relative to p1, the larger the gain in efficiency.

(iv) For smaller values of ∆∗, the RE has less risk than PTE; however, beyond the small

interval near the null hypothesis (∆∗ = 0), the PTE performs better than the RE. The

PTE outperforms shrinkage and lasso at ∆∗ = 0 for all values of p2; however after

small intervals near ∆∗ = 0, both SE and PSE dominate PTE and then they all reach

the risk of UE.

(v) The RE performs best only when ∆∗ is small. For large values of ∆∗, it becomes

very inconsistent and its efficiency converges to 0. Again, if a sub-model is nearly

correctly specified, then RE is optimal one.
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Table 4.1: Relative MSE of estimators with respect to β̂1 when p1 = 3 and n = 50

p2 β̃ β̂S β̂S+ β̂PT β̂lasso

3 2.309 1.230 1.276 1.929 1.407
5 2.175 1.514 1.766 2.023 1.723
7 3.919 2.100 2.584 2.943 1.985

Table 4.2: Relative MSE of estimators with respect to β̂1 when p1 = 3 and n = 100

p2 β̃ β̂S β̂S+ β̂PT β̂lasso

3 2.225 1.260 1.356 1.877 1.496
5 3.482 1.810 2.137 2.756 1.823
7 3.715 2.115 2.414 2.780 2.041

Table 4.3: Relative MSE of estimators with respect to β̂1 when p1 = 5 and n = 50

p2 β̃ β̂S β̂S+ β̂PT β̂lasso

3 1.696 1.140 1.251 1.544 1.345
5 2.156 1.452 1.675 1.942 1.453
7 3.933 2.104 2.610 3.039 1.759

Table 4.4: Relative MSE of estimators with respect to β̂1 when p1 = 5 and n = 100

p2 β̃ β̂S β̂S+ β̂PT β̂lasso

3 1.551 1.148 1.202 1.432 1.392
5 2.605 1.584 1.826 2.213 1.577
7 3.384 1.979 2.391 2.745 1.841
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Figure 4.1: Relative MSE of the estimators for various p2 when p1 = 3 and n = 50. “- - -” denotes the
PSE, “ · · ·” denotes the SE, “– · – ·” denotes the RE, “—” denotes the UE, and “– – –” denotes the PTE.
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Figure 4.2: Relative MSE of the estimators for various p2 when p1 = 3 and n = 100. “- - -” denotes the
PSE, “ · · ·” denotes the SE, “– · – ·” denotes the RE, “—” denotes the UE, and “– – –” denotes the PTE.
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Figure 4.3: Relative MSE of the estimators for various p2 when p1 = 5 and n = 50. “- - -” denotes the
PSE, “ · · ·” denotes the SE, “– · – ·” denotes the RE, “—” denotes the UE, and “– – –” denotes the PTE.
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Figure 4.4: Relative MSE of the estimators for various p2 when p1 = 5 and n = 100. “- - -” denotes the
PSE, “ · · ·” denotes the SE, “– · – ·” denotes the RE, “—” denotes the UE, and “– – –” denotes the PTE.
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4.5 Concluding Remarks

In this chapter, we suggested an estimation strategy for QL models. We proposed shrinkage

estimators, explored the risk properties of these estimators, and compared the performance

of these estimators with the UE, RE, and the lasso estimator via simulation. The simulation

results indicated that the RE dominates the other estimators under a correctly specified

model. Numerical results demonstrated that the lasso estimator is better than the SE and

the PSE when there is a large number of predictors in the model and when only a few of

them are irrelevant. On the other hand, the shrinkage estimators perform well when p and

the number of nuisance parameters p2 are relatively large. We demonstrated that, based on

both analytical and numerical findings, the PSE outperforms the UE and SE in the entire

parameter space. When the restriction is true, the RE is superior to all the other estimation

rules; however, its MSE may become unbounded when such restrictions are incorrect.



Chapter 5

Conclusions and Future Research

In this dissertation, we studied different estimation strategies for linear and partially lin-

ear models with first order random coefficient autoregressive errors (RCAR(1)) and quasi-

likelihood models.

The following estimation procedures are discussed in this dissertation

(i) Application and comparison of shrinkage and absolute penalty estimation in multiple

linear regression model with RCAR(1) errors.

(ii) Application and comparison of shrinkage and absolute penalty estimation in partially

linear models with RCAR(1) errors using kernel function.

(iii) Shrinkage, pretest and absolute penalty estimation in quasi-likelihood models.

We applied the above estimation procedures to improve the performance of existing

estimators when non-sample information is available. The shrinkage estimators perform

uniformly better than the unrestricted estimator. The estimator produced by the pretest pro-

117
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cedure is superior to the estimators based on sample data only in some part of the parameter

space induced by non-sample prior information. The absolute penalty estimators perform

better than the shrinkage estimators when the number of restriction on the parameter space

is small.

The weighted quadratic loss function was used to calculate the risk. The relative mean

square error was used as a criterion for comparison of the performance of the proposed

shrinkage estimators. The dominance of proposed shrinkage estimators over the unre-

stricted estimator is investigated analytically and computationally. In the following we

summarize our findings:

We divided Chapter 2 into two parts, namely, low dimensional and high dimensional data

problems. In the first part of this chapter, we considered the high dimensional case, i.e.,

when n< p, and we proposed absolute penalty estimators which are the modified version of

lasso and adaptive lasso estimation technique for the correlated data. We conducted Monte

Carlo simulation studies for different scenarios and compared their performances based on

the simulated relative mean square error of the estimators. In all the situations adaptive

lasso estimates showed superior performance over the lasso estimates.

In the second part of Chapter 2 we considered the low dimensional case, i.e., when n> p,

and proposed shrinkage estimation strategy. We investigated statistical properties of these

estimators analytically and numerically. The simulations results support our theoretical

findings. Based on relative mean square error, our simulation study concluded that the

shrinkage and positive shrinkage estimators outperform the classical unrestricted estimator.

We also compared the performance of shrinkage estimators with lasso and adaptive lasso

numerically. The numerical results showed that APEs perform well when the number of

parameters p2 in the nuisance parameter vector β2 is small relative to p1, but the shrinkage
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estimators perform best when p2 is large relative to p1. For all p2, the positive shrinkage

estimator dominates the shrinkage estimator and they both perform well relative to the

classical unrestricted estimator. However, when the restriction is correctly specified, the

restricted estimator is the best, but as it departs from the restriction, the risk of the restricted

estimator increases and becomes unbounded.

In Chapter 3, we compared the performance of shrinkage, positive shrinkage, absolute

penalty-type and weighted semiparametric least squares estimator in the context of partially

linear models with RCAR(1) errors. A kernel-based method was to estimate the nonpara-

metric component in the model. This work is an extension of Ahmed et al. (2007). A

numerical example based on real life data is used for illustration of proposed estimators.

The risk performance of the estimators is investigated through asymptotic distributional

risk and Monte Carlo experiments. We found that shrinkage estimators outperform the full

model estimator uniformly. The lasso-type estimator performs well when the number of

parameters p2 in the nuisance parameter vector β2 is small relative to p1, but the shrink-

age estimators perform best when p2 is large. For all p2, the positive shrinkage estimator

dominates the usual shrinkage estimator and they both perform better than the classical full

model weighted semiparametric least squares estimator in the entire parameter space. On

the other hand the performance of the restricted estimator heavily depends on the quality

of the UPI.

In Chapter 4 we considered shrinkage, pretest and absolute penalty estimators of pa-

rameter β for quasi-likelihood models. It is concluded through numerical simulation that

the positive shrinkage estimator dominates the usual shrinkage estimator and they both

dominate the unrestricted maximum quasi-likelihood estimator in terms of asymptotic dis-

tributional risk in the entire parameter space. Under the null hypothesis, the pretest estima-

tor dominates the shrinkage estimators and absolute penalty estimator. However, beyond
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small intervals near the null hypothesis, the shrinkage estimators dominate the pretest esti-

mator and the risk of the pretest estimator keeps increasing, crosses the risk of unrestricted

maximum quasi-likelihood estimator, reaches a maximum, then decreases monotonically

to the risk of the unrestricted maximum quasi-likelihood estimator. The absolute penalty

estimator performs better than the shrinkage and pretest estimators when the number of

restrictions on the parameter space is small and the opposite conclusion holds when it is

large.

Future Research

There are possibilities of extending our works in the following ways. In Chapter 2, we

compared shrinkage estimation strategies with absolute penalty estimators (APEs), such as,

lasso and adaptive lasso. We found that the shrinkage estimators perform better than APEs

when the number of nuisance variable (p2) in the model is high compared to the number of

main effects (p1). This study can be extended to investigate if there exists a ratio of p2 to

p1 when shrinkage estimators outperform APEs uniformly.

For our future research in Chapter 3, we will consider comparing the performance of

kernel with B-spline and penalized spline (P-spline) to estimate the nonparametric part of

the model and propose spline based shrinkage estimators when errors are RCAR(1). Also

we can consider other types of APEs such as: minimax concave penalty (MCP), smoothly

clipped absolute deviation (SCAD) and penalized linear unbiased selection (PLUS) algo-

rithms for comparison purposes with shrinkage estimators.

In Chapter 4, we considered a QL model with independent observations. We can extend

this work to a QL model with dependent observations. We can also consider extended

quasi-likelihood (EQL), hierarchical likelihood (HL) and double extended quasi-likelihood

(DEQL) models to propose pretest and shrinkage estimators.
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