
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2007

An adaptive approach for QoS-aware Web service composition An adaptive approach for QoS-aware Web service composition

Zhiyang Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Wang, Zhiyang, "An adaptive approach for QoS-aware Web service composition" (2007). Electronic Theses
and Dissertations. 4620.
https://scholar.uwindsor.ca/etd/4620

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4620&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4620?utm_source=scholar.uwindsor.ca%2Fetd%2F4620&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Adaptive Approach for QoS-aware Web Service
Composition

by

Zhiyang Wang

A Thesis
Submitted to the Faculty o f Graduate Studies

through the School o f Computer Science
in Partial Fulfillment of the Requirements for

the Degree o f Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2007

© 2007 Zhiyang Wang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-34938-0
Our file Notre reference
ISBN: 978-0-494-34938-0

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Web service composition is the process of integrating existing web services. It is a

prospective method to build an application system. Current approaches, however, only

take service function aspect into consideration. With the rapid growth of web service

applications and the abundance of service providers, the consumer is facing the

inevitability o f selecting the maximum satisfied service providers due to the dynamic

nature of web services. This requirement brings us some research challenges

including a web service quality model, to design a web service framework able to

monitor the service’s real time quality. A further challenge is to find an algorithm that

can handle extensible service quality parameters and has good performance to solve

NP-hard web services global selection problem. In this thesis, we propose a web

service framework, using an extensible service quality model. A Cultural Algorithm is

adopted to accelerate service global selection. We also provide experimental results

comparing between Cultural Algorithm with Genetic Algorithm and Random service

selection.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To my loving and caring wife who has always patiently supported me.

Thank you for taking care o f everything during the program.

This thesis would not be possible without you!

And, of course, to my dearest daughter who brighten my every day.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I would like express my gratitude to all those who gave me the possibility to complete

this thesis. I want to thank my supervisor, Dr. Ziad Kobti, for the energy and

enthusiasm he invested in this research. His guidance has been essential in the success

of this work. I would also like to thank my thesis committee members, Dr. Lu, Dr.

Tepe and Dr. Yuan, who have been all generous and patient. Their confidence in my

abilities has been unwavering, and has helped to make this thesis a solid work.

I would like to thank my friends Wang Yan and Li Nan’s concerns on my daily life

and help.

Especially, I am deeply indebted to my wife for her patient love, support and

encouragement. I also want to thank my adorable daughter DouDou for her moral

support and bringing me happiness.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Content

Abstract.. iii

Dedication... iv

Acknowledgement... v

List of Figures... ...viii

List of Tables... ix

1 Introduction.. 1

1.1 Contributions...5

1.2 Organization o f the thesis... 6

2 Preliminary.. 7

2.1 Overview o f Web Services... 7

2.2 Web Service Composition.. 7

2.3 Quality o f Service (QoS)...9

2.4 QoS model..10

2.5 Genetic Algorithm..11

2.6 Cultural Algorithm...13

3 Literature Review.. 14
3.1 Workflow in W SC..14

3.2 QoS Model and QoS Monitoring... 15

3.3 Framework o f Web Service.. 17

3.4 Web Service Global Selection Algorithm...17

4 Proposed M ethod.. 19

4.1 Service Composition Workflow..19

4.2 Proposed QoS Model o f Component Services..21

4.3 Proposed QoS Model o f Composite service.. 22

4.3.1 Unfolding Service Workflow..23

4.3.2 Computation of the QoS o f Composite Service..24

4.4 Proposed Framework... 25

4.5 Architecture o f Proxy..26

4.2.1 Service Repository...29

4.2.2 Proxy Controller.. 30

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3 Request Interpreter..31

4.2.4 Workflow Analyzer..32

4.2.5 QoS Evaluator.. 33

4.2.6 Service Composer..33

4.2.7 QoS Adapter..34

4.6 Execution Engine... 34

5 Implementation and Experiment...35

5.1 Experiment Environment.. 35

5.2 Simulation Process.. 35

5.2.1 Initialization..35

5.2.2 Complete Process...37

5.2.2.1 Random Service Selection... 37

5.2.2.2 Genetic Algorithm.. 38

5.2.2.3 Cultural Algorithm...39

5.3 Test with Different Algorithm.. 41

5.3.1 Randomly Compose Service... 41

5.3.2 Service Composition by using Genetic Algorithm...42

5.3.3 Service Composition by using Culture Algorithm.. 42

5.4 Comparison...43

6 Conclusion and Future Work...45

Appendix A :46

Reference..50

Vita Auctoris.. 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

FIGURE 1-1 CURRENT WEB SERVICE WORKING FRAMEWORK..3

FIGURE 2- 1 QOS STACK... 9

FIGURE 2- 2 CULTURAL ALGORITHM (REYNOLDS 2004)...13

FIGURE 4- 1 EXAMPLE OF WEB SERVICE COMPOSITION WORKFLOW (CANFORA 2006)..20

FIGURE 4- 2 SERVICE COMPOSITION MODEL.. 20

FIGURE 4- 3 CONDITIONAL WORKFLOW UNFOLDING APPROACH.. 23

FIGURE 4- 4 LOOP WORKFLOW UNFOLDING APPROACH... 24

FIGURE 4- 5 CURRENT AND PROPOSED WS FRAMEWORK... 26

FIGURE 4- 6 PROXY MODULES..27

FIGURE 4- 7 DEFAULT ENACTING PLANNING IN PROXY.. 28

FIGURE 5- 1 PROPOSED WSC BY RANDOM SELECTION APPROACH.. 38

FIGURE 5- 2 GENOME MODEL...38

FIGURE 5- 3 PROPOSED WSC BY G A ...39

FIGURE 5- 4 PROPOSED CA FOR WSC... 40

FIGURE 5- 5 EVOLUTION OF QUALITY AND FITNESS PARAMETERS BY RANDOM

SERVICE SELECTION APPROACH... 41

FIGURE 5- 6 EVOLUTION OF QUALITY PARAMETERS AND FITNESS BY GA SERVICE

COMPOSITION APPROACH.. 42

FIGURE 5- 7 EVOLUTION OF QUALITY PARAMETERS AND FITNESS BY CA SERVICE

COMPOSITION APPROACH.. 43

FIGURE 5- 8 COMPARISON OF FITNESS EVOLUTION OF RANDOM,GA AND CA....................44

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

TABLE 4- 1 QOS AGGREGATION FUNCTION OF DIFFERENT COMPOSITE STRUCTURE 25

TABLE 4- 2 SERVICE TABLE.. 30

TABLE 4- 3 QOS STATISTICS TABLES... 30

TABLE 4- 4 PROCESS TABLE... 31

TABLE 4- 5 SEQUENTIAL PROCESS TABLE.. 33

TABLE 4- 6 SERVICE COMMUNITY TABLE... 33

TABLE 5- 1 WEB SERVICE DESCRIPTION..36

TABLE 5- 2 ABSTRACT SERVICE DESCRIPTION... 36
TABLE 5- 3 UNFOLDED SERVICE WORKFLOW.. 36

TABLE 5- 4 CONVERGENT POINT OF QUALITY PARAMETERS AND FITNESS USING

RANDOM SERVICE SELECTION APPROACH..41

TABLE 5- 5 CONVERGENT POINT OF QUALITY PARAMETERS AND FITNESS USING GA

WSC APPROACH...42

TABLE 5- 6 CONVERGENT POINT OF QUALITY PARAMETERS AND FITNESS USING CA

WSC APPROACH...43

TABLE 5- 7 COMPARISON OF FITNESS AMONG RANDOM SERVICE SELECTION, GA AND

CA WSC APPROACHES.. 44

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction

According to the World Wide Web consortium(W3C) “A Web service is a

software system identified by a Uniform Resource Identifier (URI), whose public

interfaces and bindings are defined and described using extensible mark-up language

(XML). Its definition can be discovered by other software systems. These systems

may then interact with the web service in a manner prescribed by its definitions, using

XML based messages conveyed by internet protocols.” (W3C 2003).

A web service is conveyed by Simple Object Access Protocol (SOAP) which is

based on Hyper Text Transfer Protocol (HTTP). It allows web services to pass through

any firewall. Therefore, a web service pulls the web functionality from document

oriented to application oriented and provides a new model of distributed computing.

Tsalgatidou (2002) states that a web service has the following potential advantages:

Reusability, web services can be reused to build value-added service or application;

Platform and language independent means any web service can interact with other

web services. This is achieved through an XML-based interface definition language

and a protocol o f collaboration and negotiation; Just-in-time integration, which means

web services systems promote significant decoupling and just-in-time integration of

new applications and services, as they are based on the notion o f building applications

by discovering and orchestrating available services. The integration system has

self-configuring, adaptive and robust features.

Due to the above benefits, a web service has become an emerging and promising

technology to design and build complex enterprise business applications. It has

received great attention from industry and academia. Milanovic (2004) predicts that

the Internet will become a global common platform where organizations and

individuals communicate with each other to carry out various commercial activities

and to provide value-added services. In the future, business service developers will

simply assemble a set o f appropriate web services to implement business tasks.

Business applications will be no longer written manually.

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where Web Service Composition (WSC) is concerned, current approaches only

take the service function aspect into consideration. The purpose o f service discovery

is to find the services whose function matches customers’ requirements. The major

concern of current WSC is the service functional aspect.

With the rapid growth of web service applications and the abundance of service

providers, the consumer is facing the inevitability of selecting the “maximum

satisfied” service provider given t he dynamic nature of web services. In such a

scenario the Quality of Service (QoS) becomes the benchmark to differentiate

providers (Kalepu 2004). Yu (2005) presents several major issues which must be

considered when integrating distributed quality-aware web services into a business

execution process: (1) The set o f services capable of providing the same functionality

(service community) may be constantly changing; (2) There may be different ways to

construct an execution process; (3) An execution process needs to accommodate

system exceptions, such as service failure (adaptation ability); (4) The performance of

an execution process, which is measured in terms of its global QoS, must satisfy the

user’s requirements.

Due to different concerns, current WSC and QoS-aware WSC have different aims.

A current WSC approach is to find a composite service whose function satisfies

customer’s functional requirements. A QoS-aware WSC approach considers both

functional and non-functional customer’s requirements.

Before going to QoS-aware WSC, let us take a look at the current framework of

service composition which does not take the quality issue into account. This

framework only considers the service’s functional aspects. It consists o f three roles:

the service provider, the service registry and the service consumer. Figure 1-1 shows a

graphical representation of the current web service working framework.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Registry

findpublisl

Provider Consumer
bind

Figure 1-1 current web service working framework

The service provider publishes the web service by extensible markup language

(XML) standard in a central Service Registry. The service registry stores the

information about the service provider, such as address and contact of the providing

company, and technical details about the service. The Service Consumer retrieves the

information from the registry and uses the service description obtained to bind to and

invoke the web service. The appropriate methods are depicted in Figure 1 by the

keywords ‘publish’, ‘bind’ and ‘find’. Web services architecture is loosely coupled,

and service oriented. The Web Service Description Language (WSDL) uses the XML

format to describe the methods provided by a web service. The Universal Description

Discovery and Integration standard (UDDI) suggests methods to publish details about

a service provider, the services that are stored and the opportunity for service

consumers to find service providers and web service details. The Simple Object

Access Protocol (SOAP) is used for XML formatted information exchange among the

entities involved in the web service model.

Two categories of service composition strategies are mainly applied at present,

which are static and dynamic strategies. Milanovic (2004) and Pistore (2004) show us

the most often used approach in each strategy. Business Process Execution Language

for Web Services (BPEL4WS) is a static composition approach since the composition

process takes place during design time. The dynamic service composition solution is a

semantic web services strategy. The main idea o f a semantic web service strategy is

that semantic markup on the web service makes web service automatic discovery.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since web services are created on the fly, current approach is apparently

unsuitable to an unpredictable environment. The current solution cannot guarantee a

process executable at run time. Moreover, the current existing framework does not

support for service’s non-functional quality monitoring, such as performance,

scalability, reliability, availability, flexibility, stability, cost, and completeness. For

example, there is no mechanism available in the existing web services architecture to

determine run-time performance characteristics of a web service, and select a service

that best meets the performance requirements o f the consumer (Singhera 2006).

Therefore, current WSC strategies are hardly employed in real business applications.

According to the concerns o f QoS-aware WSC, a QoS-aware WSC framework

must support the following functionalities besides those in the current framework: (1)

service discovery from both function and non-function aspects; (2) QoS computing;

(3) service composition; (4) execution plan adaptation.

Zeng (2004) proposes a middleware supporting service discovery, QoS

computing, and service composition. Singhera (2006) devises a so-called extended

web service framework to meet non-functional requirements. Yu (2005) uses a

broker-based framework for QoS-aware web service composition. Xia (2006) uses an

agent implementing probe-based QoS-aware WSC, which support all the functions

above. However, they are either lacking in flexibility or only partially implement the

functionality mentioned above.

A comprehensive QoS-aware WSC system should have service discovery, QoS

computing, service composition, and adaptation functionalities. In current QoS-aware

WSC research, the approaches of web service function discovery mostly adopt the

current discovery methods like WSDL matching, semantic web service, or based on

Database Query. QoS estimation based on historical logs is employed in QoS

computing. Linear and Genetic Algorithm integration are the most popular approaches

applied in service composition. Re-planning trigger is used in adaptation. More details

are found in the literature review section.

QoS-aware service composition involves three major problems: first is the QoS

model which means how to choose appropriate quality attributes to exactly describe

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the non-functional feature o f a service. Second is WS framework. QoS-aware WSC

requires its framework to be able to monitor the quality attributes of each web service

in real time. The third problem is the performance of the WSC algorithm. QoS-aware

service composition is a late-binding process. From the service composition to

invocation of execution process and re-planning must be performed very quickly, long

delay may be unacceptable. Performing service composition long before execution

may lead to unattended results. For example, some services may be unavailable

during execution. QoS-aware WSC solution without time consideration is

unacceptable. In current research, many algorithms have been investigated to

implement service composition such as integer programming (Zeng 2003),

Pinsinger’s Algorithm, Reduction Algorithm (Cardoso 2004), and Genetic Algorithm

(Canfora 2006) etc. Unfortunately, few of them have considered the performance of

the algorithms. For real time, failure to compose and deliver the aggregated service on

time can cause big loss in business. Furthermore, in order to keep the consistence o f a

delivered service, re-planning should be finished and deployed in a timely manner.

In this thesis, we propose a scalable service QoS model and a flexible framework

to facilitate dynamic service composition and adaptation o f QoS-aware web services

with global QoS constraints. We use Cultural Algorithm to accelerate convergence so

that the computation duration can be greatly shortened.

1.1 Contributions

We extend the functionality o f current web service framework by adding a proxy.

It integrates the functionality of modeling web service quality and dynamically

composing web service. It overcomes the shortages of previous research that tries to

define a complete or formal web service model and uses a linear algorithm or genetic

algorithm to compose web services. The proxy looks web service quality model and

service composition algorithm as a whole. It also takes the algorithm performance

into consideration. The proxy automatically maintains the quality attributes of

concrete services by monitoring their run time quality attributes. It adopts Cultural

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm to enhance the composition speed and support any customized quality

parameters. The proxy therefore has excellent scalability and good performance.

1.2 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the

background knowledge related to our approach. Chapter 3 gives literature review.

Some milestone researches are shown from three aspects service quality model, WS

framework and algorithms of web services global selection. Chapter 4 gives the

details o f our proposed approach. It includes the proposed framework, quality of

service model, and the functionality and design idea of each module in the proxy.

Chapter 5 explains the implementation process and shows the difference among

different strategies used in the proxy. Finally, chapter 6 concludes our contributions,

advantages o f our approach and shortages for future work.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Preliminary

2.1 Overview of Web Services

According to the Organization for the Advancement of Structured Information

Standards (OASIS), a Web Service is a software component that is described via

WSDL and is capable of being accessed via standard network protocols such as but

not limited to SOAP over HTTP (OASIS 2001).

Web services presents a standardized way of integrating web-based applications

using the XML, SOAP, WSDL and UDDI standards over an Internet protocol

backbone. XML is used to tag the data, SOAP is used to transfer the data, WSDL is

used for describing the services available and UDDI registry is applied for listing

what services are available. Used primarily as means for businesses to communicate

with each other and with clients, Web services allow organizations to communicate

data without intimate knowledge of each other's systems behind the firewall.

A web service brings a lot of potential advantages (Tsalgatidou 2002): Reusability,

web services can be reused to build value-added service or application. Platform and

language independence, any web service can interact with other web services. This is

achieved through an XML-based interface definition language and a protocol of

collaboration and negotiation. By limiting what is absolutely required for

interoperability, collaborating Web Services can be truly platform and language

independent. Just-in-time integration, web services systems promote significant

decoupling and just-in-time integration of new applications and services, as they are

based on the notion of building applications by discovering and orchestrating

network-available services. This in turn yields systems that are self-configuring,

adaptive and robust with fewer single points of failure.

2.2 Web Service Composition

From Srivastava (2003), Milanovic (2004) and Dustdar (2005), when the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implementation of a web service’s application involves the invocation of other web

services, it is necessary to combine the functionality of several web services. This is

called a composite service. The process of developing a composite service is called

service composition. Service composition can be either performed by composing

elementary or composite services. Composite services in turn are recursively defined

as an aggregation of elementary and composite services.

In web service composition, services are executed in different platforms

distributed by firewalls and other trust barriers. Srivastava (2003), Milanovic (2004)

and Granell (2005) state that a QoS-aware composition mechanism of web services

must satisfy several requirements: connectivity, non-functional quality-of-service

properties, correctness, and scalability. Connectivity means each composition

approach must guarantee connectivity because only with reliable connectivity,

services can be composed and reason about the input and output messages. Secondly,

web services are based on message passing, service providers must also address

nonfunctional QoS properties which are the foundation of web service selection. Next,

composition correctness requires verification of the composed service’s properties,

such as function, security or dependability. Finally, because complex business

processes are likely to involve multiple services in an invocation workflow,

composition frameworks must scale with the number of composed services.

Many approaches within different categories are applied to compose web services.

In (Milanovic 2004), it simply grouped the approaches o f web service composition

into two types. On type, it is based on a number of XML-based standards to formalize

the specification o f web services. This approach is primarily syntactical: Web service

interfaces are like remote procedure calls and the interaction protocols are manually

written. The other type is based on the Semantic Web reasoning about web resources

by explicitly declaring their preconditions and effects in ontology to dynamically

compose web services. Dustdar (2005) presents two categories which are static and

dynamic strategies. The difference between the two strategies is the time concern

when web services are composed. They are equivalent to design-time and run-time

composition.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Quality of Service (QoS)

The international quality standard ISO 8402 within ISO 9000 (IS09000 2002)

describes quality as “the totality of features and characteristics of a product or service

that bear on its ability to satisfy stated or implied needs.” Quality o f web service is a

set of non-functional attributes which reflects the quality offered by a web service.

In a web service, QoS requirement mainly refers to the non-functional quality of

the web service. Quality o f a web service is not only associated with its own services

but also relates to the network environment they are located. In fact, at each layer of a

web service stack there are different corresponding quality attributes. Figure 2-1

shows the relation in a QoS stack.

Web Service Stack

Presentation Laver: Composite Services

HTML Client Service...

Logic Layer: Web service Dev. and

Management

/
A

I

Data Laver: Common Infrastructure

Web Service Standards (SOAP, WSDL, UDDI...)

XML

Internet Protocols (TCP/IP, HTTP, etc.)

S

QoS Stack

Others

Integrity

Management

Framework

Inter-operability

Reliability

Accessibility

Availability

*0re
I

C/2oo

Figure 2-1 QoS stack
QoS is a combination of quality properties of a service (Menasce 2002). Araban

(2004) expresses that the main classification o f QoS attributes are internal attributes,

which are independent o f the service environment, and external attributes which are

dependent on the service environment. These attributes mainly include performance,

reliability, integrity, accessibility, availability, interoperability, and security.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performance is measured in terms o f throughput, latency, execution time, and

transaction time. Reliability is the overall measure of a Web Service to maintain its

service quality. The number o f failures per day, week, month, or year represents an

overall measure of reliability for a web service. Reliability also refers to the assured

and ordered delivery for messages being sent and received by service requestors and

service providers. Integrity is the degree to which a system or component prevents

unauthorized access to, or modification of, computer programs or data. Accessibility

defines whether the Web Service is capable o f serving the client's request. Availability

is the percentage o f time that a service is available. The fundamental goal of

interoperability in Web Services is to cross the lines between the developing

environments used to implement services so that developers using those services do

not have to think about which programming language or operating system the services

are hosted on. Security properties include the existence and type o f authentication

mechanisms the service offers.

The QoS measure is observed by web service users. These users are not human

beings but programs that send requests for services to web service providers. QoS

issues in web services can be evaluated from the perspective o f the providers o f web

services and from the perspective of the users of these services.

2.4 QoS model

Quality of service is a big umbrella which covers a variety o f quality attributes.

QoS attributes are in fact defined by a subjective notion. The meaning of each

attribute is different due to end-user factors, contextual circumstances as well as the

perspective o f interest. QoS model has no standard feature which means we do not

have a formal or complete quality model to specify web service quality. Therefore,

each provider has to define its web service quality model before delivering its quality

aware services.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Araban (2004) states the two domain classifications of QoS attributes are internal

attributes, which are independent of the service environment, and external attributes

which are dependent on the service environment.

Another popular model is expressed in (Ran 2003). They classify the QoS

attributes as: Runtime Related QoS, Transaction Support Related QoS, Configuration

Management and Cost Related QoS and Security Related QoS. The author further

explains Runtime Related QoS includes Scalability, Capacity, Performance (response

time, latency, and throughput), Reliability, Availability, Robustness/Flexibility,

Exception Handling, and Accuracy. Transaction QoS is related to transaction Integrity.

Configuration Management and Cost Related QoS include regulatory, support

standard, stability/change cycle, cost, and completeness. Security Related QoS is

composed of Authentication, Authorization, Confidentiality, Accountability,

Traceability and Auditability, Data encryption, and Non-Repudiation.

According to Cardoso (2004), quality of service can be characterized by various

dimensions. Web service composition of a business system is targeted two distinct

areas, operations management of organization and quality of service of software

system. On the organizational side, the result indicates that the success of a company

is related to the capability to compete with other organizations. It is based upon three

essential pillars: time, cost, and quality. On the software system side, it presents a set

o f practical dimensions for distributed object systems’ reliability and performance,

which include TTR (time to repair), TTF (time to failure), and availability.

In the thesis, in order to associate our approach with real business system, we

have constructed a four-dimension QoS model which consists o f response time,

service price, reliability and availability.

2.5 Genetic Algorithm

From GA (2002) and Goldberg (1989), GA originated with an idea, bom over 30

years ago, o f applying the biological principle of evolution to artificial systems.

Genetic Algorithm (GA) is the search algorithm that works via the process of natural

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selection. It begins with a sample set of potential solutions which then evolves toward

a set o f more optimal solutions. Within the sample set, solutions that are poor tend to

die out while better solutions mate and propagate their advantageous traits, thus

introducing more solutions into the set that boast greater potential (the total set size

remains constant; for each new solution added, an old one is removed). A little

random mutation helps guarantee that a set won't stagnate and simply fill up with

numerous copies of the same solution.

In general, genetic algorithm tends to work better than traditional optimization

algorithms because it is less likely to be led astray by local optima. This is because it

does not make use of single-point transition rules to move from one single instance in

the solution space to another. Instead, GA takes advantage o f an entire set of solutions

spread throughout the solution space, all of which are experimenting upon many

potential optima.

The basic operations of the genetic algorithm are simple and straight-forward.

They have three steps. Reproduction: The act of making a copy of a potential solution.

Crossover: The act o f swapping gene values between two potential solutions,

simulating the "mating" o f the two solutions. Mutation: The act of randomly altering

the value o f a gene in a potential solution.

Roughly speaking, a GA is an iterative procedure that searches for the best

solution o f a given problem among a constant-size population, represented by a finite

string of symbols, named the genome. The search is made starting from an initial

population o f individuals, often randomly generated. At each evolutionary step,

individuals are evaluated using a fitness function. High-fitness individuals will have

the highest probability to reproduce.

The evolution (i.e., the generation o f a new population) is made by means of two

operators: the crossover operator and the mutation operator. The crossover operator

takes two individuals (the parents) of the old generation and exchanges parts o f their

genomes, producing one or more new individuals (the offspring). The mutation

operator has been introduced to prevent convergence to local optima, in that it

randomly modifies an individual’s genome (e.g., by flipping some of its bits, if the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

genome is represented by a bit string). Further details on GA can be found, for

example, in (Goldberg 1989).

2.6 Cultural Algorithm

From (Reynolds 2004), Cultural Algorithm has two basic components: Population

Space and Belief Space. First, individuals in the Population Space are evaluated with

a performance function objQ. An acceptance function accept0 will then determine

which individuals are to impact the Belief Space. Experiences of those chosen elites

will be used to update the knowledge / beliefs of the Belief Space via function

updateQ, which represents the evolution o f beliefs. Next, the beliefs are used to

influence the evolution o f the population. New individuals are generated under the

influence o f the beliefs, and from then, together with old individuals, individuals are

selected and form a new generation of population. The two feedback paths of

information, one through the acceptQ and influenceQ functions, and the other through

individual experience and the objQ function create a system of dual inheritance of

both population and belief. The population component and the belief space interact

with and support each other, in a manner analogous to the evolution of human culture.

Figure 3 describes such a framework.

update()

Belief space

AcceptQ InfluenceO

SelectQ

Population space

ObjO

GenerateQ

Figure 2- 2 cultural algorithm (Reynolds 2004)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Literature Review

In order to implement a business function by integrating existing web services,

we should carefully consider the management of services relationship, service quality

model, WS framework and a strategy to select services in global. The following

papers from above aspects introduce their solutions.

3.1 Workflow in WSC

From Gouscos (2003) and Singhera (2006), future business systems require a

seamless integration o f many business processes, applications, intelligence, and web

services over the Internet. Delivering services to meet user needs is a significant and

critical challenge because of the dynamic and unpredictable nature o f business

applications and Internet traffic. Business applications with very different

characteristics and requirements compete for resources used to provide web services.

Without a careful management o f service quality, critical business applications may

suffer detrimental performance degradation, and result in functional failures and/or

financial losses.

The area o f Quality of Service (QoS) management covers a wide range of issues

to match the needs of service requesters with those of the service providers. QoS has

been a major area of interest in communication networks, real-time computing, and

multimedia systems. For web service, QoS guarantee and enhancement have started to

receive great attention.

Workflow technology has been used since a decade and has been proved

successful in automating many complex business processes. In addition, a significant

number o f works have been done to deal with different aspects of workflow

technology. Current research on web service workflow-based composition has

obvious advantages including scalability, heterogeneity, reuse and maintenance of

services (Patel 2003). The major issues in service composition workflow are service

discovery, service binding, service QoS contracts and service composition. Service

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

workflow aids such as Web Service workFlow Language (WSFL) overcome the

limitations o f traditional workflow tools which manually specify the composition of

programs to perform some tasks. Other industrial initiatives such as BPEL4WS,

XLANG concentrate on service representation issues to tackle the problem of service

contracts, compositions and agreements.

The process-based composition of web services is ,in particular, gaining a

considerable momentum as an approach for the effective integration of distributed,

heterogeneous, and autonomous applications in (Zeng 2003), (Cardoso 2004) and

(Canfora 2006). In process-based approach, applications are encapsulated as web

services and the logic of their interactions is expressed as a process model. In this

thesis, the BEPL-alike workflow is employed similar to (Zeng 2003) and (Canfora

2004).

3.2 QoS Model and QoS Monitoring

QoS model is a set of non-functional attributes which reflect the quality offered

by a web service. The main problems o f QoS model have quality parameter selection,

quality parameter specification, and run time quality value monitoring. Namely, the

major problems in QoS model are what quality parameters can be appropriately used

to describe a service quality, how to define each quality attribute and how to monitor

the quality values in real time. The following papers present their solutions on these

issues. Since modeling web service quality is complicated, Gouscos (2003)

recommends “a simple way to go, when talking about quality of web services, is to

identify some facets whose meaning is intuitive and whose importance is also

recognized in the literature. This line of thought, although not resulting in a formal

and complete model of quality, at least offers an appropriate basis for modeling work

that can be later on extended and enriched with additional features.”

Gouscos (2003) presents a simple approach to model and represent QoS o f web

service, such as, availability, accessibility, integrity, performance, reliability and

provision price, in lower-level WSDL specification. In its conceptual model, it uses

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deterministic or fuzzy two different ways to present quality attributes of a web service

quality attributes. At last, it introduces a trusted third party offered “web service

management information broker” to refresh run-time quality attributes. The problem

of their approaches is the QoS definition is tied to the individual operation (local

binding), rather than the service as a whole. Furthermore, runtime QoS issue is not

addressed.

Kalepu (2004) states most QoS descriptions are subjective notion. The author

recommends mapping the objective system quality to the users’ subjective perception

of quality. The author, therefore, introduces a new web service quality attribute

termed objective verity and proposes a framework to quantify it.

Lau (2001) explains the importance o f monitoring and refreshing QoS

information at run-time. He proposes the notion of a “QoS broker service”, which

would be responsible for publishing and disseminating QoS data based on historical

as well as real-time QoS measurements of web services.

Jin (2002) presents an approach to manage web service quality in the context of

Service Level Agreements (SLAs). The approach directly uses UDDI registry as the

storage for both service description and service quality attributes. In order to observe

the real-time quality values, the author proposes that the registered web services

periodically refresh their values at UDDI. The major problem of this approach is that

client applications have always access to up-to-date quality values. It brings a big

security problem to UDDI registry.

Tian (2003) uses XML schema defining QoS that both service consumers and

providers apply to specify the agreed QoS parameters. The approach allows for the

web service dynamic selections based on various QoS requirements. On the negative

side, the life-cycle of agreements is not taken into account, and it is not possible to

define expiration for a negotiation.

Cardoso (2004) explicates why and how to choose quality attributes to mostly

describe a web service. The author recommends using time, cost, reliability and

availability to define a service quality. The author also introduces quality monitor and

trigger to fresh certain service quality values and re-planning a business process.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since quality description of web service does not have a formal or complete

model, the scalability o f QoS model is significant important. Unfortunately, few of

above paper mentioned it. None of them mentioned how to handle a scalable QoS

model in their WSC process.

3.3 Framework of Web Service

Singhera (2006) proposes an extended web services framework that enables to

deal with a collection of functional and non-functional service characteristics at run

time, and uses the collected data for service discovery, binding, and execution. It

extends the current web service framework by a monitor agent which is responsible

for collecting services non-functional attributes. The author presents an approach of

using a collection o f historical non-functional data to implement local service

selection. It enhances the current approach using static non-function attribute to

choose services.

Penta (2006) describes WS Binder, a framework for services dynamic binding.

The framework is implemented on top of a BPEL technology and supports

pre-execution binding (able to satisfy global composition constraints), run-time

binding of single service invocations and runtime re-binding of the whole workflow.

However, the authors o f above papers do not mention if their framework can

handle different no-standard QoS model.

3.4 Web Service Global Selection Algorithm

Zeng (2003) proposes a global linear planning approach to select component

services during running time rather than design time. It uses state-charts to model the

process o f composing web services. It transfers the WSC plan to a path plan problem.

In web service quality model, it clearly explains the meaning of each quality attribute.

However, it does not give an approach to compute the value of each quality attribute.

Canfora (2006) presents the problems of linear algorithm to implement web

service dynamic composition. It proposes an approach which is more scalable and

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more suitable to handle generic QoS attributes, Genetic Algorithm. It also gives the

comparison between linear algorithm and genetic algorithm.

None of the above paper, however, mentions the performance o f their algorithm

or the method to enhance their algorithm performance.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Proposed Method

In this section, the approaches from the client requirement description to the

combination of concrete services are given. The terms and techniques involved are

explained. The framework and its components are introduced. We also present

functionality and implementation details of each module in proxy entity at the final.

4.1 Service Composition Workflow

In a service composition workflow, function modules (e.g. application) are

encapsulated as abstract web services. The logic relation is represented as a process

model. In the other words, the application requirement is described as a workflow

containing several abstract services. The abstract services are combined as sequence,

branch or loop. Here, an abstract service represents as functional module and is

associated with a web service community which contains several concrete web

services with the same functionality. The process o f selecting a concrete service from

a web service community for an abstract service by QoS attributes is called local

selection. Obviously, a task presented by the service composition can be solved by a

significant numbers of combinations. The process o f selection from the numerous

combinations according to the global QoS constraints is called global selection. The

global selection problem is a NP-hard problem (Canfora 2006). Figure 4-1 shows an

example of service composition workflow.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CS40
CS50

CS10 CS41
CS51CS20

csn CS42
CS70CS21

CS12 CS43
A S

ASAS AS

AS

CS60

CS61

CS: concrete service AS: Abstract Service
Local binding: selecting a concrete service for a abstract service

Global binding: combination of local binding

Figure 4-1 Example of web service composition workflow (Canfora 2006)

In service composition workflow, there are four different models that individual

services use to integrate and build a process. The four basic models are sequential,

parallel, conditional, and loop, as shown in figure 4-2.

Sequential

Parallel

LoopConditional

Figure 4- 2 service composition model

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Proposed QoS Model of Component Services

Since the meaning o f QoS attributes is different by a variety o f end-user factors,

contextual circumstances as well as the perspective o f interest, each provider must

unambiguously define its QoS model before delivering its QoS aware service.

In the thesis, we use four typical quality attributes execution cost, response time,

reliability and availability to model the extendable quality of web services (the reason

has been mentioned in preliminary section). The brief explanation o f each attribute is

as follows.

Execution cost: The execution cost of an operation of a service is the amount of

money that a service requester has to pay for executing the operation. Web service

providers either directly advertise the execution cost of their operations, or they

provide means to enquire about it.

Execution duration: The execution duration measures the maximum delay in

seconds between the moment when a request is sent and the moment when the results

are received by a client. The execution duration wraps the complex transmission

factor into account. It includes service response time and network transmission

latency. Service response time is the maximum seconds that elapses from the moment

that a web service receives a legitimate SOAP request until it produces the

corresponding legitimate SOAP reply. The execution duration expression

is qduratmn - trep (s, op) + ttram (s, op) , meaning that the execution duration is the sum of

the response time trep(s,op) and the transmission tim etlrans(s,op) . Services advertise

their response time or provide methods to enquire about it. The transmission time is

estimated based on past executions of the service operations,

n
e.g. ttram(s , o p) - ^ j ti(s ,op)/n , where /,(s,op) the past observation o f the

(=1

transmission time, and n is the number of execution times observed in the past. The

average Execution Cost is also used to evaluate the execution cost quality attribute of

a service.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reliability: the reliability of a service is the probability that a request is correctly

responded within a maximum expected time frame which is published in the web

service description. In the thesis, reliability measures the degree of compliance

between providers claimed value with the actual value. Reliability is a technical

measure related to hardware and/or software configuration o f web services and

network connections between the service consumers and providers. The value of

reliability is computed from historical data about past invocations using the

expression qrel (s) - N c(s) / k , where N J s) is the number of times that the service s

has been successfully delivered within the maximum expected time frame, and k is the

total number o f invocations.

Availability: A vailability is the quality aspect of whether the web service is

present or ready for immediate use. The availability qav (s) of a service is the

probability that the service is accessible. In the thesis, the value of the availability o f a

service is computed using the following expressionqm(s) = ta(s) / k , where ta(s) is

the amount of time (in seconds) in which service is available during given k seconds.

In conclusion, the quality vector Q(s) = (qC0SI(s),qdumti0n(s),qrel(s) ,q J s)) is

used to represent the quality of a service in the thesis. This proposed QoS model also

supports extended custom QoS attribute as long as customers give its unambiguous

definition and computing approach.

4.3 Proposed QoS Model of Composite service

The above quality attributes are also applied to evaluate the quality o f composite

services. In order to simplify the computation, a composite service, first o f all, will be

unfolded and only composed o f a set o f sequential component services, no loops and

conditions. Namely, we can consider a composite web service containing several

concretized abstract services with sequential structure. For example, a composite

service can be defined as S = {AS1, AS2, ASi ...} and each component ASi must be

concretized. The next section explains the approach of unfolding a complex

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

composition workflow.

4.3.1 Unfolding Service Workflow

A complex composite service may be composed of conditional branches and

loops. In order to simplify the computation o f the QoS of a complex composite

service, an unfolding approach is introduced as follows based on (Canfora 2004) and

(Zeng 2003).

For a Switch construct in the service composition, each case statement is

annotated with the probability to be chosen. A conditional branch can be serialized as

sequential workflow in which the QoS of each component service becomes its

invocation probability times its original QoS value. For example, for a workflow

containing a Switch structure composed of two Cases, with costs C l and C2

respectively and probabilities p and 1-p, the overall cost is computed as follows: p*C l

+ (1-P)*C2. The probabilities are initialized by the workflow designer. Therefore, a

conditional branch can be unfolded as Figure 4-3.

S2’S2’

Conditional After unfolded

Figure 4- 3 Conditional workflow unfolding approach

Loop construct is unfolded with an estimated number of iterations n. Here, the

QoS o f the Loop is computed taking into account the factor n. for example, if the

Loop compound has a cost C l, the estimated cost of the Loop will be n*Cl.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n times

Loop
After unfolded

Figure 4- 4 Loop workflow unfolding approach

4.3.2 Computation of the QoS of Composite Service

Table 4-1 provides the aggregation functions of computing the QoS o f a

composite service. A brief explanation is given as follows.

Execution cost: the execution cost of an unfolded composite service is the sum of

every component service. For instance, for a workflow containing a conditional

branch, with cost C l and C2 and probabilities p and 1-p, the overall cost is p*C l +

(l-p)*C2. For a workflow containing a Loop, with cost C l and n times iteration, the

overall cost is n*Cl.

Execution duration: the execution duration o f a sequential composite service is

the sum of every component service.

Reliability: the reliability o f a sequential composite service is the multiplication

o f the reliability o f each component service.

Availability: the availability o f a sequential composite service iis the

multiplication of the availability o f each component service.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-1 QoS aggregation function of different composite structure
QoS

Attributes
Sequential Conditional Parallel Loop

Execution
Cost (C)

7=1
i p , ' C M
i= 1

£c(<,>
i=l

k*C(t)

Execution
Duration

(D)
T m)
/=1

*£>(',)/=i
Max{T(l, k * D(t)

Reliability
(R) /=t i=l

n * « ,)
,=1

R{t)k

Availability
(A) rW ,>M Y lPi*A(t l)

/=1 rW ,>
;=1

A(t)k

Custom
Attributes

(F)

/ 5(^('/W..ra}) f c (P i ’ F (t i) i e{ 1..*}) f L {

4.4 Proposed Framework

In order to overcome the deficiency o f current web service framework (details in

introduction section) and facilitate dynamic QoS-aware service composition and

adaptation with global QoS constraints, we devise a flexible framework which is

completely compatible with current web service model and supports the following

functionalities:

1. convert the user’s requirement into a workflow process that can be implemented

by existing services;

2. identify the most capable and efficient service for each component service in the

workflow to meet users’ functional and non-functional QoS requirements;

3. compose services that meet with user’s global QoS requirement;

4. monitor the workflow invocation process, perform adaptation during service

failures or unacceptable;

A suggested proxy is added in the proposed framework besides the existing

registry, providers and consumers roles. The principle o f the proposed framework

design is to make the change as few as possible under current web service framework.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The proxy is the central controller which works as service and manages the

consumers’ requests, selects appropriate services and sends results back to consumers.

In the proposed framework, all current publishing, finding and binding operations

are supported. The typical difference between the proposed from the current

framework is that the proxy takes over the consumers’ requests instead o f manually

marshalling the WSC workflow. The proxy identifies a component service composite

service in its service repository satisfied with customers’ requests. After global

optimization, an execution plan with services’ location is then sent back to the user.

The user side execution engine binds with concrete providers, invokes the concrete

services in the execution plan and returns the QoS attributes of each concrete service

to the proxy. The appropriate methods are depicted in Figure 4-5.

4.5 Architecture of Proxy

Proxy plays an important role in the proposed WS framework during the WSC

lifecycle. It produces a set o f optimal global service composition plan. It also

monitors the plan execution process to dynamically re-plan once the previous plan

violates the client’s requirement.

The proxy has a proxy central control module, request interpreter, workflow

RegistryRegistry

PublishPublish

Request/Rte. return
QoS monitor

Consumer
Consumer

Execution Engine

Provider
Provider Execute

a. Current Framework b. Proposed Framework

Figure 4- 5 Current and Proposed WS framework

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analyzer, QoS evaluator, service composer, QoS adapter, QoS monitor modules and a

service repository (shown in figure 4-6). Each module works independently and is

managed by the central control module.

1. Request Interpreter

Repository

Task Matching

Workflow

Generator

2. Workflow Analyzer

Workflow

Interpreter

Service

Community

Generator

3. QoS Evaluator

QoS Computing

4. Service Composer

Execution planning

5. QoS based Adapter

Re-plannmg

Trigger

6. QoS Monitor

Qos Check Engine

Proxy Controller

Figure 4- 6 Proxy Modules

The motivation of the proxy is to automatically generate a service combination

execution plan which is the most satisfied solution for the user’s request. In the thesis,

we focus on user’s non-functional requirements. We assume all services in the

community using the same ontology or registered at the same TModel contract in

UDDI registry, so that the proxy can generate the service community easily.

The default process of user requests in proxy is stated as follow and illustrated in

figure 4-7.

1. User request is sent or forwarded from registry to proxy service.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Request interpreter matches the user’s request with an abstract workflow from

proxy service repository.

3. Workflow analyzer takes the abstract workflow from request interpreter to unfold

it and generate service communities for each abstract service.

4. Service composer gets the abstract workflow, QoS statistics and service

communities from QoS analyzer and service repository and returns an execution

plan to client-side execution engine.

5. Execution engine returns QoS values to QoS evaluator after each component

service executed.

6. QoS evaluator records service runtime QoS values into service repository and also

passes to QoS adapter.

7. QoS adapter asks execution planning engine to re-plan the execution plan if the

QoS downgrades to the pre-defined threshold.

Repository

Workflow Interpreter

2. Access history

Task Matching

Workflow generator

3. Abstract
1. Request

workflow Service Community

Generator

QoS statistics

4. Sequential workflow+QoS values+service community

QoS computing

6 Real time QoS values5 Concrete execution nlan

Execution planning Execution engine

Re-planning trigger
7. Re-planning

Figure 4- 7 Default enacting planning in proxy

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Service Repository

The Service repository stores the information of web services candidates. It

includes the service functional description and non-functional quality properties.

There are two key tables: Service Table and QoS Statistics Table.

• Service Table

Each web service in the Service Table includes the following fields (see Table 4-2):

1. Primary ID: a unique representation of the record;

2. Service Name: the name o f the web service;

3. URL: the location of the Web service which points to the WSDL file of the service;

4. Namespace URI: a unique namespace for each web service to distinguish it from

other services on the internet;

5. Service community: it shows the different functionalities of services. The services

in the same service community have the same functionality with possibly different

nonfunctional parameters (QoS);

6. Description: description of the operation;

7. Worst Execution Duration (TDmax): the maximum time needed for service which

is claimed by providers;

8. Average Execution Duration (TDavg): the average time needed for service;

9. Execution Cost: the service cost;

10. Availability;

11. Reliability.

Columns 7 to 11 are non-functional QoS parameters. The table is initialized by

the service provider. The attributes are refined by QoS evaluator module according to

the service’s runtime values received from client side execution. A web service may

have many records in a table depending on the number of operations the service

provides.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4- 2 Service Table
PID Service

name
URL URI SC Des EDmax EDavg Exe

Cost
Rel. Ava.

1 CS1 http:
//

http:
//

ASI Desl 70 45 20 .7 .8

2 CS2 http:
//

http:
//

ASI Des2 30 40 10 .9 .9

3

• QoS Statistics Table

QoS Statistics Table (Table 4-3) records the statistical QoS data for services. The

information includes number of times a service having been invoked, last invoke time,

average response time based on previous invocations, standard deviation o f the

response time to indicate the stability of service, reliability, and availability. Based on

the statistical QoS data, we can update the Service Table with more accurate values of

TDavg, reliability and availability.

Table 4- 3 QoS Statistics Tables
Service
name

Invoke
times
(sec.)

Last
invoked

time (sec.)

TD
(second)

Rel.
(percentage)

Av.
(percentage)

CS1 10 timestamp 45 .77 .90
CS2 20 Timestamp 40 .80 .90

4.2.2 Proxy Controller

The proxy control module acts as the central controller, which coordinates the

invocations of all modules in proxy. It reads the initial file and creates the instances of

other modules. It delivers the customer’s request to the first module, manages the

return results and forwards the results to the next module, and so on. The control

module makes the proposed proxy more flexible and scalable since the configuration

o f the proxy is set by an external file.

Example o f proxy configuration:

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<proxy>

<source>

<driver> </driver>

<user></user>

<password> </password>

</source>

<module name= ”RequstInterpreter”>

<config>requestInterpreter.xml</config>

</module>

< module name=”WorkflowAnalyzer”>

< / module >

</proxy>

4.2.3 Request Interpreter

The function o f request interpreter is to translate the user function request into the

workflow composed of abstract services. The user request can be a task description, a

process workflow or any other style as long as the request interpreter recognizes. The

translation process can be implemented either based on history knowledge or service

ontology.

To knowledge based request interpreter, the interpreter module simply translates

the user request based on request history knowledge.

To ontology based solution, it assumes the services have ontology meaning. The

first step is to bring the user request to the ontology level. The second step is semantic

mapping during which the interpreter module matches the client request to services by

ontology.

Since the interpreter module is not the major concern in the thesis, we assume the

customer’s requests are workflow-based. Therefore, we do not need to care about how

to create history knowledge or service ontology. Table 4-4 shows the abstract process.

Table 4- 4 Process Table
Request Abstract process

Taskl Taskl.xml
Task2 Task2.xml

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example o f Taskl.xml:

<workflow task= ”Taskl ">

<sequence>

<invoke>ASl</invoke> //calls an abstract service in a synchronous fashion

<switch>

<case>

< invoke>A S5 </invoke>

</case>

<case>

<invoke>AS9</invoke>

</case>

</switch>

<loop times= ”N ’’>

<invoke>AS2</invoke>

<irrvoke>AS3 </invoke>

<invoke>AS4</invoke>

</loop>

<invoke>AS2</invoke>

<parallel>

<invoke>AS7</invoke>

<invoke>AS8</invoke>

</parallel> //calls in asynchronous fashion (in parallel)

</sequence>

</workflow>

4.2.4 Workflow Analyzer

The function of Workflow Analyzer is to simplify a complex abstract process to a

sequential workflow and collect concrete services for each abstract service in the

abstract sequential process. The two sub-modules are called workflow interpreter and

service community generator.

The function o f workflow interpreter module is to unfold a composite

XML-based workflow to a sequential process and save it in Sequential Process table

(SPtable) or a XML file for future requests. Table 4-5 shows the sequential workflow

results. A composite service is composed of several services in a bracket. N*(AS2,

AS3, AS4) means the composite service executes N times. ((AS7), (AS8)) means the

components execute in parallel. Service community is generated based on history

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

knowledge or ontology matching. Table 4-5 shows the service community.

____________________Table 4- 5 Sequential Process Table__________
Request Abstract process

Taskl ASl,AS5,AS9,N*(AS2,AS3,AS4),Max((AS7),(AS8))
Task2 AS1,AS3,AS8,AS2

Table 4- 6 Service Community Table
Abstract service Community members

ASI S3,S4,S1,S9
AS5 S4,S5

4.2.5 QoS Evaluator

The function o f QoS evaluator is to calculate the quality values for component

and composite services in the execution plan. The other function is to update the each

quality attribute based on the real-time values from client-side execution engine and

store in QoS statistics table (Table 4-3 shown). QoS evaluator works as a QoS data

resource center. It provides the QoS values for execution plan optimization. It also

supplies the QoS resources for re-planning trigger (Figure 4-7 presents the function of

QoS evaluator).

4.2.6 Service Composer

Service composer is the most important module in the proxy. Other modules

serve as data collector or data analyzer o f it. The data will be used in the module to

find the final solution for client.

The idea of service composer is to determine the best global integration of

concrete services. The goal of the optimization algorithm is to maximize a fitness

function of the available QoS attributes and meet the client’s request. In the thesis, we

implement both Genetic Algorithm and Cultural Algorithm to optimize service

composition. The advantage and operation process o f GA and CA have been given in

preliminary section. In order to shorten the computation duration o f service

combination, we take Culture Algorithm in this model.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.7 QoS Adapter

QoS adapter decides when and how to re-plan a failed execution plan. It includes

two respective components: re-planning trigger and re-planning strategies.

The design of re-planning trigger is tightly bounded with QoS computing module.

The QoS attributes and customer’s QoS requirement should be used to determine the

QoS thresholds.

The strategy o f re-planning is to keep the re-planning scope as small as possible.

Therefore, if a component service fails, the best solution is that a suitable candidate

service can be found to substitute the failure service. In worst solution, there is no

suitable candidate found, the service composer has to re-plan the whole execution

workflow to find an alternative. The whole process has to start over from scratch.

Re-planning strategies need to be carefully designed to improve the efficiency of this

procedure.

4.6 Execution Engine

The function of execution engine is to initiate and invoke the optimal concretized

business process, monitor the execution process at each component service and send

run time QoS values to QoS evaluator module. The QoS evaluator calculates the

quality values and stores them to the QoS statistics table (Table 4-3).

If a service problem occurs during process execution or one of its quality values

downgrades to the threshold, the QoS evaluator fires the re-planning trigger in QoS

adapter to re-plan the execution process from the failure point. The execution engine

will adopt the alternative path and repeat above operations.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Implementation and Experiment

The experiment aims to prove the reason we use CA algorithm in service

composer module. We assume the client request is to maximize availability and

reliability and also minimize execution Cost and execution Duration. In the

experiment, the performance of Cultural Algorithm, Genetic Algorithm and Random

selection approaches for QoS-aware WSC are compared.

5.1 Experiment Environment

This experiment is conducted under Windows XP and Java5 SDK which is

running on Dell DIMENSION 440, Pentium® 4 CPU 2.80GHz, 2.79GHz 0.99GB of

RAM.

5.2 Simulation Process

5.2.1 Initialization

The initial parameters o f the experiment include the number o f available web

services, the size of abstract services, the quality properties of web services,

population size and the number o f generations.

A large population size of 500 is used so that we can rapidly reach to the

convergent point. The fixed number of generations is 40. The initial service quality

values are compliant to better execution duration and availability offers corresponding

higher execution cost. In the experiment, we consider a simple workflow including 5

distinct abstract services which include 3 to 15 available services respectively. Table

5-1 and 5-2 show the samples o f service QoS and abstract service (i.e. service

community) description in the experiment (complete table are attached in Appendix).

We assume a complex service workflow has been unfolded and stored as Table 5-3.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5- 1 Web Service description
Service

serviceName rspMax rspAvg | price | Reliability availability 1 comName
SI 100 63 100[0.627 0.544 ASI

S2 500 451 30 0.598 0.532AS1

S3 400 318) 30 0.653 0 584 ASI

S4 30 13 300 0.955 0.956AS2

S5 80 54 160 0.592 0 527 ASI

S6 140 68 70 0.937 0.929 AS2

S7 130 921 65 0.595 0.529 AS3

Table 5- 2 Abstract Service description
Community

com munityName
ASI

Members
S1,S3,S2,S5,S15,S36,S37,S38,S39,S40

—— ~

AS2 S10,S6,S4,S16,S33,S34,S35

AS3 S7,S9,S17,S18,S28,S29,S30,S31,S32

AS4 |S8,S11,S19

AS5 S14,S13,S12,S20,S21,S22,S23,S24,S25,S26,S27

Table 5- 3 Unfolded service workflow
Task

taskName process
It a s k i (AS 1 ,AS5,AS2,AS3,AS4

TASK2 AS3,AS4,AS6,AS7

According to the assumption of client request (mentioned at the beginning o f this

chapter), the solutions must satisfy the quality requirements, maximum availability

and reliability, minimum Execution Cost and execution Duration. Therefore, our

problem can now be modeled by means of a fitness function which maximizes

reliability and availability, while minimizing Execution Cost and execution Duration.

The fitness function is defined for a genome g as follows:

_ wxAvailability + w2 Reliability
w3 ExecutonCost + w4ExecutionDuration

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where wl, . . . , w4 are real, positive weighting factors. In general, calibrating

weights is guided by observing the landscape of fitness function, as well as from the

analysis o f the evolution o f the different factors. In our experiment, in order to

simplify the calculation, we define the fitness function as follows:

p , ̂ _ Availability + Re liability * ̂
ExecutionCost + ExecutionDuration

In this fitness function, the four quality parameters are considered having the same

priority so that they have the same weight factor. The calibrating coefficient 1000 is

to make the fitness values easily analyze.

5.2.2 Complete Process

5.2.2.1 Random Service Selection

The main idea of random service selection is randomly select an available

concrete service from each service community following a workflow. The

combination o f these concrete services is the solution of client’s requirement.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pseudo code:

Initialization
load web services and service communities
For (curGen=l; curGen<=MaxGenerations;curGen++){

For (pop=l; pop<=NumOfPopulation;pop++)}
while (workflow is not over){

Randomly select a service from a service community;
}
Create newGenome(curGen);
Evaluate QoS of the genome;

}
evaluate QoS of the generation;

Figure 5-1 Proposed WSC by Random Selection Approach

S.2.2.2 Genetic Algorithm

To use GA searching for WSC solutions, we first need to have a suitable genome

to present the problem. In our case, the genome is represented by a java ArrayList

with a number o f items that equals to the number of distinct abstract services

composing our service. Each item contains a HashMap of the concrete services.

Figure 5-2 illustrates the idea o f how the genome is made.

S8

S9

S7
JL ; l n a

ASI A S2A S3

Figure 5- 2 genome model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In our experiment,

• Crossover operator is the standard two-point crossover. The crossover point is

randomly selected according to the length of the genome.

• Mutation operator randomly selects an abstract service (a position in the

genome) and randomly replaces a concrete service by another available

concrete service in the community.

• Service selection operator picks up the individuals which have best fitness

values in current generation as the parents o f next generations.

• Stop criteria is a certain number o f generation reached.

Pseudo code:

Initialization
load web services and service communities;
randomly create the population number of solutions;
evaluate QoS for each individuals;
save the individuals into Population Space as sample data set;
For (curGen=l; curGen<=MaxGenerations;curGen++){

pick up top 20% individuals according to finessVal as parents;
For (pop=l; pop<=NumOfPopulation;pop++)}

Randomly select two individuals from sample data set;
Crossover;
Mutation;
make a new genome(curGen);
Evaluate QoS of the genome;

}
evaluate QoS of the generation;

Figure 5- 3 Proposed WSC by GA

5.2.2.3 Cultural Algorithm

We apply the same genome model as Genetic Algorithm used to present our

problem. The same methods in GA are used to evaluate the individuals in Population

Space. Belief Space is maintained by two knowledge sources, Situational Knowledge

and History Knowledge. Situational Knowledge chooses the best individuals into

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Belief Space. History Knowledge takes the most recently used individuals into Belief

Space. The individuals in Belief Space also influence the production o f the next

generation in population space.

In the experiment:

• In Population Space, individuals come from Belief Space to produce the

individuals o f next generation.

• The individuals in Population Space have two paths to be accepted into Belief

Space:

o Situation knowledge: The fitness is better than the individuals in Belief

Space.

o History knowledge: The most recent selected individuals.

• Belief Space is updated by selecting the certain number o f best individuals.

Pseudo Code:

Initialization
load web services and service communities;
randomly create the population number of solutions;
evaluate QoS for each individuals;
initialize Population Space;
initialize Belief Space by Situational and History Knowledge;
For (curGen=l; curGen<=MaxGenerations;curGen++){

Update Population Space by roulette selection;
Update Belief Space by Situational and History Knowledge;
For (pop=l; pop<=NumOfPopulation;pop++)}

Randomly select two individuals from Belief and Population
Space;
Crossover;
Mutation;
make a new genome(curGen);
Evaluate QoS of the genome;

}
evaluate QoS of the generation;

Figure 5- 4 Proposed CA for WSC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Test with Different Algorithm

5.3.1 Randomly Compose Service

Figures 5-5 illustrates the evolution of average quality parameters and fitness

among 40 generations. Apparently, the convergent point o f the average fitness is very

low by random service selection approach. In other words, random selection approach

is not an ideal approach to search for “maximum satisfied” WSC solution.

Random Service Selection Approach

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
generation

|—»-ExecCost/100Q -a-ExecDuration/IOOO Reliability —■—Availability -it-Fitness |

Figure 5- 5 evolution of quality and fitness parameters by Random service
selection approach

Table 5- 4 Convergent point of quality parameters and fitness using Random

Parameters Convergent Value
Fitness 0.2 ±0.02

Reliability 0.15 ±0.001
Availability 0.11 ±0.005

Execution Cost 0.657 ±0.01
Execution Duration 0.547 ±0.011

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2 Service Composition by using Genetic Algorithm

Figure 5-6 plots the Execution Cost, Execution Duration, Reliability, Availability

and Fitness evolution track across GA generations. From this figure, the average

fitness is converged at the central value 0.85 ± 0.01 from the 10th generation. Namely,

it takes 10 generations to reach to the peak point 0.85 ± 0.01 in GA WSC approach.

The quality parameter and fitness convergent points are listed in table 5-5.

GA Service Composition

0.7

0.5

0.4

0.3

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
generation

p-o—ExecCost/1000 —i— ExecDuratoin/1000 —A— Reliability -Q-Availability Fitness |

Figure 5- 6 evolution of quality parameters and Fitness by GA service
composition approach

Table 5- 5 Convergent point of quality parameters and fitness using GA WSC
_____________________________ approach_____________________________

Parameters Convergent Value
Fitness 0.85 + 0.01

Reliability 0.5 + 0.01
Availability 0.43 + 0.01

Execution Cost 0.885 + 0.005
Execution Duration 0.229 + 0.006

5.3.3 Service Composition by using Culture Algorithm

Figure 5-7 presents the Execution Cost, Execution Duration, Reliability,

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Availability and Fitness evolution track across CA generations. From this figure, the

average fitness is converged at the central value 0.885 ± 0.007 from the 3rd generation.

Namely, it takes three generations to reach to the peak point 0.885 ± 0.007 in CA.

The quality parameter and fitness convergent points are listed in table 5-6.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Table 5- 6 Convergent point of quality parameters and fitness using CA WSC
_____________________________ approach_____________________________

Parameters Convergent Value
Fitness 0.885 ±0.007

Reliability 0.506 ±0.004
Availability 0.438 ±0.004

Execution Cost 0.827 ±0.004
Execution Duration 0.245 ±0.004

5.4 Comparison

Figure 5-8 illustrates the Fitness evolution track across Random service selection,

GA and CA generations. The average fitness values o f Random Service Selection, GA

and CA are respectively converged at 0.2 ±0 .02 , 0.85 ±0.01 and 0.885 ± 0.007 .

From the curve of Random Service Selection, we could not find at what generation

43

CA Service Composition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
generation

j -+ — ExecCost/1000 - a — ExecDuration/1000 —I— Reliability Availability —A— Fitness |

Figure 5- 7 evolution of quality parameters and Fitness by CA service
composition approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the convergent point reached, but we can clearly find GA reached its convergent point

at the 10th generation, CA only took 3rd generation reaching its convergent point.

Further, CA has the best convergent point which is 0.885 ±0.007. In table 5-6, it

shows the fitness improvement compared to random service selection approach.

Comparison of Random, GA, CA Service Composition Approaches

1 . 4

1.2

0.8

5 0.6

0 . 4

0.2

0
1 3 5 7 9 11 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9

generations

[—♦— fitness (CA) -B-MaxFitness — A— fitness (Random) —*-fitness(GA) j

Figure 5- 8 comparison of fitness evolution of Random,GA and CA

Table 5- 7 Comparison of fitness among Random service selection, GA and CA
__________________________ WSC approaches__________________________
Approaches # of Runs # of

Generations
Convergent

Point
Fitness

Increase
Random 5 / 0.2 ±0.02 /

GA 5 11 0.85 ±0.01 76.5%
CA 5 3 0.885 ±0.007 77.4%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Conclusion and Future Work

This thesis proposes a framework using proxy agents to monitor QoS in web

service composition. According to the results reporting on a limited set o f quality

parameters a near optimal solution was reached in a reasonable amount of generations

using a Cultural Algorithm, slightly surpassing the performance of a GA.

The proxy works well with any customized quality attributes by unfolding

approach and cultural algorithm. It solves the irresolvable web service quality model

problem. Therefore, the proxy has excellent scalability and good performance.

Future work will focus on additional knowledge structures in the Belief Space of

the CA and investigate further quality parameters in the evaluation process. We will

also try other algorithms to implement QoS-aware web service dynamic composition,

such as Greedy Algorithm and compare them with GA and CA algorithm.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A:

The experiment files are arranged at 4 packages: thesis.appinit, thesis.basicClass,

thesis.simulation, and thesis.algorithm. The files in each package are listed as follow:

Package: thesis.basicClass: (data structure)

SampleSolutions.java, ServCommunity.java, Services.java, Solution.java, Taskjava

Package: thesis.appinit

Applnit.java

Package: thesis.algorithm

Algorithmlmp.java

Package: thesis.simulation

WSCSimulation.java

Design o f the simulation system:

The purpose o f the system design is to make the system has good performance

and good scalability. In order to improve the performance of the simulation system,

we used data source connection pool, concrete service pool, service community pool

and solution pool. In order to improve the scalability, we reduced the hard code as

much as possible. Client can setup the initial values in a table or an initial file. The

main control class is thesis.simulation.WSCSimulation. First of all, it initializes the

system by creating a connection pool and loading all initial values from external data

sources into the data structure which likes the genome model we mentioned in chapter

5. Secondly, according to the client requirement, it chooses corresponding algorithm

to compose web services. Thirdly, it pours out the solutions from solution pool into

database table through connection pool.

The complete initial parameters o f the experiment are list in following 3 tables:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

service
serviceName rspM ax rspAvg price reliability availability comName

SI 100 63 100 0.627 0.544 AS1

S2 500 451 30 0.598 0.532 AS1

S3 400 318 30 0.653 0.584 AS1

S4 30 13 300 0.955 0.956 AS2

S5 80 54 160 0.592 0.527 AS1

S6 140 68 70 0.937 0.929 AS2

S7 130 92 65 0.595 0.529 AS3

S8 220 167 25 0.494 0.425 AS4

S9 100 51 190 0.858 0.861 AS3

S10 45 16 200 0.983 0.978 AS2

S ll 30 11 250 0.969 0.953 AS4

S12 75 50 150 0.499 0.425 AS5

S13 55 35 210 0.569 0.521 AS5

S14 50 24 200 0.869 0.863 AS5

S15 90 54 180 0.722 0.661 AS1

S16 100 69 100 0.513 0.452 AS2

S17 35 18 250 0.803 0.749 AS3

S18 100 66 100 0.543 0.483 AS3

S19 300 241 20 0.487 0.422 AS4

S20 400 356 30 0.465 0.4 AS5

S21 100 90 98 0.627 0.6 AS5

S22 500 451 30 0.598 0.6 AS5

S23 400 318 30 0.653 0.7 AS5

S24 30 13 300 0.955 0.956 AS5

S25 80 54 (160 0.592 0.6 AS5

S26 140 68 0.937 0.929 AS5

S27 130 92 65 0.595 0.529 AS5

S28 220 167| 25 0.494 0.425 AS3
S29 100 51 190 0.858 0.861 AS3

S30 45 16j 200 0.983 0.978 AS3

S31 30 11] 250 0.969 0.953 AS3

S32 75 50I 150 0.499 0.425 AS3

S33 55 35P 210 0.521 AS2

S34 50 24L...a i " | 0.869 0.863 AS2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

service

serviceName rspMax rspAvg price reliability availability comName

S35 90 54 180 0.722 0.661 AS2

S36 100 69 100 0.513 0.452 AS1

S37 35 18 250 0.803 0.749 AS1

S3 8 100 66 100 0.543 0.483 AS1

S39 300 241 20 0.487 0.422 AS1

S40 400 356 30| 0.465 0.4 AS1

Web Service description

Community

communityName Members
AS1 SI S3,S2,S5,S15,S36,S37,S38,S39,S40
AS2 S10,S6,S4,S16,S33,S34,S35

AS3 S7,S9,S17,S18,S28,S29,S30,S31,S32

AS4 S8,S11,S19

AS5 S14,S13,S12,S20,S21,S22,S23,S24,S25,S26,S27

Abstract Service description

Task

taskName process

TASK1 | AS 1, AS5,AS2, AS3, AS4

TASK2 |AS3,AS^AS6,AS7

Unfolded service workflow

The updating formula o f Execution Duration, Reliability, and Availability as follows:
ExecDuration:

ExecDurationmg = (CurExec Duration avg * InvokeTimes + CurExecDur) /(InvokeTimes

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reliability:

i f (CurExecDuration <= ExecDurationworst)then

Reliability = {CurReliability * InvokeTimes +1) /{InvokeTimes +1)

else

Re liability = (Cur Re liability * InvokeTimes) /(InvokeTimes +1)

Availability:

i f (CurExecDuration <= ExecDurationwms,)then

Availability = {CurAvailability * ExecDurmg * {InvokeTimes +1) + CurExecDur)/

{ExecDurmg * {InvokeTimes +1) + CurExecDur)

else

Availability = CurAvailability * ExecDuravg * {InvokeTimes + 1)/

{ExecDurmg * {InvokeTimes +1) + CurExecDur)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reference

(Fan 2005):

(Jorge 2005):

(Milanovic 2004):

(Tsalgatidou 2002):

(Lau 2001):

(Jin 2002):

(Maximilien 2002):

(Ran 2003):

(Zeng 2003):

Fan, J.C.; Subbarao, K.; 2005; A Snapshot of Public Web

Services; Research articles and surveys; Page: 24-32; ACM

Press;

Jorge, C.; Miller, J.; Su, J.W.; Pollock, J.; 2005; Academic and

industrial research: Do their approaches differ in adding

semantics to web services? ; Page: 14-21; Springer Press;

Milanovic, N.; Malek, M.; 2004; Current solutions for web

service composition; Internet Computing, IEEE Volume:

8, Issue: 6 Page: 51-59; IEEE Press;

Tsalgatidou, A.; Pilioura, T.; 2002; an Overview o f Standards

and Related Technology in Web Services; a Journal o f

Distributed and Parallel Databases; Springer Press;

Lau, T.C.; 2001; “QoS for B2B Commerce in the New Web

Services Economy”, ISEC 2001 Workshop on Performance and

QoS fo r E-Commerce Applications, Hong-Kong, China, April

2001

Jin, L.; 2002; “Analysis on Service Level Agreement of Web

Services”; Software Technology Laboratory, HP Laboratories

Palo Alto, Technical Paper HPL-2002-180, June 2002

Maximilien, E.M.; Singh M.P.; 2002; Conceptual model of web

service reputation; ACM S1GMOD Record, Special section on

semantic web and data management, Pages: 36-41, ACM Press

Ran, S.; 2003; a model for web service discovery with QoS;

ACMSIGecom Exchanges, Pages: 1-10, ACM Press

Zeng, L.Z.; Benatallah, B.; Dumas, M.; Kalagnanam, J.; Seng,

Q.Z.; 2003; Quality driven web services composition;

International World Wide Web Conference, Proceedings o f 12th

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Zeng 2004):

(Gouscos 2003):

(Kalepu 2004):

(Yu 2005):

(Sherchan 2006):

(Bouch 2000):

(Aggarwal 2004):

international conference on World Wide Web Session: Web

engineering; Pages: 411-421, ACM Press

Zeng, L.Z.; Benatallah, B.; Ngu, A.H.H.; Dumas, M.;

Kalagnanam, J.; Chang, H.; 2004; QoS-aware middleware for

web services composition; Software Engineering, IEEE

Transactions; Pages: 311-327; IEEE Press

Gouscos, D.; Kalikakis, M.; Georgiadis, P.; 2004; An Approach

to Modeling Web Service QoS and Provision Price; the 4th

international conference on web information systems

engineering workshops, Pages: 121-130; IEEE Press

Kalepu, S.; Krishnaswamy, S.; Loke, S.W.; 2004; Verity: a QoS

metric for selecting web service and providers; Web information

systems engineering workshops, Proceedings 4th international

conference,-Pages: 131-139;

Yu, T.; Lin, K.J.; 2005; service selection algorithms for web

services with end-to-end QoS constraints; Pages: 103-126;

Springer Press;

READ PLS Sherchan, W.; Loke, S.W.; Krishnaswamy, S.; 2006;

A fuzzy model for reasoning about reputation in web services;

Symposium on Applied Computing, Proceedings o f the 2006

ACM symposium on Applied computing; Pages: 1886-1892;

ACM Press;

Bouch, A.; Kuchinsky, A.; Bhatti, N.; 2000; Quality is the eye of

the beholder; meeting user s requirements fo r internet quality o f

service, Proceedings o f the SIGCHI conference on human

factors in computing systems

Aggarwal, R.; Verma, R.; Miller, J.; Milnor, W.; 2004;

Constraint driven web service composition in METEOR-S.

Proceedings o f the 2004 IEEE International Conference on

Services Computing-, pages 23-30; IEEE Press

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Canfora 2004):

(Cardoso 2004):

(Tian 2003):

(Singhera 2006):

(Milanovic 2005):

(Penta 2006):

(Xia 2006):

(Canfora 2006):

Canfora, G ; Penta, M.D.; Esposito, R.; Vilanni, M.L.; 2004;

A lightweight approach for QoS-aware service composition;

Proceedings o f the 2nd International Conference on Service

Oriented Computing, pages 36-47

Cardoso, J; Sheth, A.; Miller, J.; Arnold, J.; Kochut, K.; 2004;

Quality of service for workflows and web service processes;

Journal o f Web Semantics

Tian, M.; Gramm, A.; Naumowicz, T.; Ritter, H.; Schiller. J.; A

concept for QoS integration in web services; Proceedings o f the

First Web Services Quality Workshop at WISE, Rome, Italy,

December

Singhera, Z.U.; Shah, A.; 2006; Extended services framework to

meet non-functional requirements; ACM International

Conference Proceeding Series, Workshop proceedings o f 6th

international conference on web engineering; ACM Press;

Milanovic, N.; Malek, M.; 2005; Architectural Support for

Automatic Service Composition; Proceedings o f the 2005 IEEE

International Conference on Services Computing (SCC’05)

Penta, M.D.; Esposito, R.; Villani, M.L.; Codato, R.; Colombo,

M.; Nitto, E.D.; 2006; WS Binder: a framework to enable

dynamic binding of composite web services; International

conference on software engineering, Proceedings o f the 2006

international workshop on service-oriented software

engineering; Pages: 74-80; ACM Press;

Xia, J.; 2006; QoS-based Service Composition; Computer

software and applications conference, 2006, COMPSAC’06

30th; Page: 359-361; IEEE Press;

Canfora, G ; Penta, M.D.; Esposito, R.; Vilanni, M.L.; 2006; An

Approach for QoS-aware Service Composition based on

Genetic Algorithms; Genetic And Evolutionary Computation

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Zhou 2007):

(Li 2005):

(Menasce 2002):

(Araban 2004):

(Dustdar 2005):

(Patel 2003):

(W3C 2003):

(OASIS 2001):

(IS09000 2002):

(GA 2002):

(Reynolds 2004):

Conference, Proceedings o f the 2005 conference on Genetic

and evolutionary computation; Pages: 1069-1075; ACM Press;

Zhou, J.H.; Niemela, E.; Savolainen, P.; 2007; An Integrated

QoS-Aware Service Development and Management Framework;

Software Architecture, IEEE/IFIP Conference; Pages: 13-13;

IEEE Press

Li, B.; Tang, X.Y.; Jian, L.; 2005; The Research and

Implementation of Services Discovery Agent in Web Services

Composition Framework; Machine Learning and Cybernetics,

Proceedings o f 2005 International Conference; Pages: 78-84;

IEEE Press

Menasce, D.A.; 2002; QoS issues in web services; IEEE

internet computing; Pages: 72-75; IEEE Press

Araban, S.; Sterling, L.; 2004; Measuring Quality o f Service;

1st Australian Workshop on Engineering Service-Oriented

Systems (AWESOS2004). Melbourne, Australia, 2004.

Dustdar, S.; Schreiner, W.; 2005; A survey on web services

composition; International Journal o f Web and Grid Services,

Pages: 1-30

Patel, C.; Supekar, K.; Lee, Y.; 2003; A QoS Oriented

Framework for Adaptive Management of Web Service Based

Workflows; Book: Database and Expert Systems Applications;

Springer Press

http://www.w3.Org/TR/2003/WD-ws-arch-20030808/#whatis

Glossary for the OASIS Web Service Interactive Applications

http://www.oasis-open.org/committees/wsia/glossary/wsia-draft

-glossary-03.htm

http://www.iso.ch/iso/en/ISOOnline.frontpage

http://jgap.sourceforge.net/doc/gaintro.html

Reynolds, R.G.; Peng, B.; 2004; Cultural Algorithms: Modeling

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.Org/TR/2003/WD-ws-arch-20030808/%23whatis
http://www.oasis-open.org/committees/wsia/glossary/wsia-draft
http://www.iso.ch/iso/en/ISOOnline.frontpage
http://jgap.sourceforge.net/doc/gaintro.html

(Goldberg 1989):

(Paolucci 2002):

(Rose 2004):

(Hu 2005):

(Aversano, 2004):

o f how cultures learn to solve problems; Proceedings o f the

16th IEEE International Conference on Tools with Artificial

Intelligence; IEEE Press;

Goldberg, D.E.; 1989; Genetic Algorithms in Search,

Optimization and Machine Learning; Addison-Wesley Pub Co.;

Paolucci, M.; Kawamura, T.; Payne, T.R.; Sycara, K.; 2002;

Semantic Matching of Web Service Capabilities; The Semantic

Web - ISWC 2002; Proceeding o f First International Semantic

Web Conference, Sardinia, Italy; Springer Press;

Rose, D.E.; Levinson, D.; 2004; Understanding user goals in

web search; Proceedings o f the 13th international conference on

World Wide Web, New York, USA; IEEE Press; Pages: 13-19;

Hu, J.; Guo, C.; Wang, H.; Zuo, P.; 2005; Web Service

Peer-to-Peer Discovery Service for Automated Web Service

Composition; Springer Press; Journal World Wide Web; Pages:

211-229;

Aversano, L.; Canfora, G.; Ciampi, A.; 2004; An algorithm for

Web service discovery through their composition; Web Service,

2004. Proceedings o f IEEE International Conference; IEEE

Press; Pages: 332-339;

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

Zhiyang Wang was bom in Changde, Hunan, china. He received his bachelor degree

o f communication engineering at Huazhong University o f Science and Technology.

Currently, he is completing his masters’ degree in computer science from the

University o f Windsor and expects to graduate in October 2007.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	An adaptive approach for QoS-aware Web service composition
	Recommended Citation

	tmp.1619632271.pdf.Idmpp

