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* ABSTRACT R e

Sorface‘bardening accomplished by localized heéﬁing |
and controlled cooling permits resistance to lOCal surface
wear to be cOmbined with good torsional _and bending -
} Btreng*h characteristics using cheaper alloys in mechanical
components, Induction heating is a coﬁﬁenient means of
applying this local heating. Al;hough fast, convenient and
having excellent energy conversion characterletics, it is
not simple to set up, nor rapid nor reliable due to the '
lack of e331ly ueeable mathematical solutions to the
problemgy . _

" This study treats the.case of induction hardeniné of
4 cylindrical metal rod of sufficient length that end
effects may be ignored. The boundary value problem ie°b
:giVen an%.a simpllfied representation developed. The
physical parameters, such as conductivity and permeabilitfz
are assumed to be smooth functions of the radius of the rod,
contrary to earlier Btudies which assiime these to.be
constants in order to simplify the mathematics. ‘ .

‘A represeﬁtation theorem forhbhe-eolution of the |
problem is proved using a number of lemmas which are
stated and proven first, 4 number of methoda for
approximating the solution for numerical calculations are
also described. Suggestions are nmade for some possible

- further studies of the problem.
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_ Cha;%ér 1 o ,
." INTRODUCTION -

™

{a) Historical Sketcﬁ

Thé surface hafdgning of metalé and alloys, which
are the‘most ﬁidelf utilized baéic materials for
conStrucﬁing all kinds of machines and mechanisms;

Plays an important role in quérn‘industfial technology
anqg éngineering. Localize& heating of,individuél regions-
of components is necessary in order to carry ous thé

widely eémployed industrial proéess of surface hardehing.

. The possibility of localized'beatingvbf surface regions

of cohponents of various mechanisms and also the duration

H

of the process depends a great deal upon the heating methoq

selected. Two heating methods are in commop use: the

-application of éxternal heat; and the generation of heat

v
within the work piece.

- The application of €xtarnal heat is the traditional

method used and consisﬁs of placing the work piece in a

. L : -
hot environment such as a furnace or ¢rucible. - This hag

the Qiaadvantages characterized by allow fate of
témperature 1ncreése in the work piece:(usually'of the -
order of tens or hundreds of degrees per minute), and by
the low thermal efficien@y of the furnace, both

characteristics being unsuitable for surface hardening,



%ﬁen applying. external heat, not more than one—third

of the thermal energy is utilized directly in heating the

. workpiece, the remaining heat . -being- GXPended in heating the

furnace itself and in other losses. fThe result of this 14
a long heaﬁlng process and high speed specific expendfture
of thermal energy in heating each kilogram of “the material
being heated. In addition to this, the localized heating -
of the Surface regions whioh is required for some articles
is practically impossible using a furnace or equivalent
means [[Q]

The method of genefating heat within the work‘piece
usually uses the principle of induction. It is based on
the fact that an eddy current is 1nduced at the surface of
an electric conductor which 1ia subjected to a rapidly
changing magnetic field. 'This current, flowing as it does
through only the very thin surfsce layer of the conductor
will produce great heat because the Ohmts losses are €

(concentrated there. fThe magnetic field used in surfeceu

xhardening a cylindrical steel rod is,produced by passing

a high frequency electric current through a circular coil
moving with constant speed with respect to the cylinder.
The chief advancages of this fOrm of heating are the

apeed of the process, the ability to control the degree of

'hardenlng by selecting the proper spaed of the moving coil

~ and the ability to harden only a limited portion of the,

metal object. Also, objects case hardened byrinduction
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. combine greatly improved torsional and bending fatigue

N,

v

Btrength with good wear resistance while using cheaper

alloys, The.Wide range of present applicatibns to othar

~fields where speed and convenience of heating are necessary

or'desireble, or where local heating is. a decided asset,
shows the potential for the process if the set up of ‘the
process for a given application can be made simple, rapid,

and reliable.

¥

The next advance in the application of this most -
useful technique of induction heating is the theoretical
atudy of the process and development of a mathematical

treatment of the process. Until the'outcome of K. A.
Zischkarts worklng y not mnch work had bee;.done to
contribute to the mathematical aaﬁect of induction hea:§ng
However, in recent years, there-has been an increased
1nterest in the construction of mathematical models for
iron and steel work processlngl?;g ThiS“nas arisen
because the ‘possibility of performing by computer the

. arduous arithmetic invqlved in translating 8 model into

numerical results for use in 3pecific‘eases has now won
universal acceptance. The development of a mathematical
model depends on a knowledge of the behaviour of the
system being studied the capabllitf of expressing these
mathematically, and on the ability to solve, the resulting
equations, Unfortunately, the exact mathematical

description in closed form of the heating of a work piece

& -



:the radius of the rod,

: 4
2
- b
1s possible only for a few Simple shapes of.conductors-
(work pieces) and configurations of the coil, .Even with
this limitatiom, the mathematical theory of the induction
hardening process is far from pompiete; mginly because of

the‘gréat difficulty enéountered in solving the associated .

.béundary value problem which usually consists of a System

of partial differentisdl @quations with coupled boundary
coﬁditionS; As a resplt, the physical-pa;ameters inVOlved,
such as eiéctrical coﬁﬁuctivity and ﬁermeability, are
frequentiy aséumed to:be congtant éveh though this is 7
not the true case for induetion hardening[ﬁ’--, 61[/4"‘/5]
In fact, these Physical parameters of permeability and ‘
conductivity depend upon the Sbatial coordinates sincé
they are functioﬂs of teuperature, and the temperatﬁre
depends ubon the Spatial coordinates becausé ﬁhe in&uction
heating process imprésses a steep temheraéure gradient
upon the work piece. It is this aspect of the problem'

with which wé concern ourselves in this thes&a.

, - - -

(b) Scope of the. Present work

of a Cylindrieal metal rod. e shall assume that the

Physical parameters, such as the electric conductivity

anq periieability of this rod, are smooth functions of

a
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In section 1 of chapter 2, we give a description
of the physical model together with its geometry. In
Section 2 of chapter 2, we give a brief mathematical
formulation of the boundary value problem for this model.
Some approximations have been made in order that the
~ boundary value problem shall become solvable. )

Chapter 3 deals with the Solution of this boundary
Value .problem. 4 representatlon theorem is Proved. 1In
section 1 of chapter 3, the representation theorem is
Stated with its pertinent aSSumptions.‘ In SECtion 2 of
chapter 3, some"fundamental lemmas which are essential in
proving the theorem are stated and proved. In section 3
of chapter 3, we give a proof of the theorem in a form
" which has been 31mplified with the help of the lemmas
Proved in the previous sectlon.

Chaptep 4 is chiefly devoted to approximate methods,
In Bection 1 of chapter 4, we use the layer method to
approxlmate the whole system. In saction 2 of chapter 4,
. we usg a method of integral equations to approximate the
'solution of the second order d1fferentia1 equation whlch
arises in the solutiOn of the boundary value problem.

In section 3 of chapter 4, we use a Perturbation method _
to approximate the differential equation for small values
of X. 1In section L of . chapter h we give bounds for 3

replac1ng the "improper integral by an integral takeo\over

a finite interval,



Inbthe fifth and final chapter, we give a brief
- ' a
conclusion together with some Suggestions for further

investigations in the subjeci.

[
ficy



Chapter 2

THE PRYSICAL MODEL AND ITS MATHEMATICAL FORMULATION

This’chaptertieals with the physical®model of the
~Surface induction hardening of a metallic cylindrical rod. 4
‘and the mathematical fo}mulatiOh‘of the boundary valuse

Problem asoociated with this model.' Certain approximatlons
and simpllfying assumptions have to be made in order that

the problem 80 described becomes solvable.

1. A Description and the Geometry of the Physical’ Model

. In"this theois we consider the foilouing Physical
problem. 4 long cylindrical metallic rod 13 surrounded
by a concentric - cylindrlcal coil of length 2L whick moves
with constant velocity vV parallel to the axis of the
cylinder, The length of the rod is assumed to be much
greater than that of the coil So that we can neglect the
end effects and treat the rod as havlng infinite length.
Since the velocity v of the coxl is negligible compared
‘to that of light we 1gﬁore the relativistic effect -and
use only the Newtonian transtrmation u=2z-vtin

~order to consider the coordinate system of the coil as

a moving frame. The geometry and coordinate System being

used are illustrated in Fig. 1.
&,
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‘We wish to investlgate the effect on the rod when a
high frequency (of order 10 Hertz\ alternatlng current,
is passed through the coil., The current induced in the .
work piece by the motion of the 0011 is naglected as being.
insignificant compared to that induced by the alternatlng

' magnetic, field at the frequencies being used.

2, The Matﬁematlcal Formulat1on of the

Boundary Value Problenm

-

The basic equations governing this problem are !
Maxwell's equations., 1In rationaljzed MKS units, the

macroscopic Maxwell equations may be written as:

) — —> gD

2.1 Vx H=J —_

( ’) + o ‘

. b4 . - —4-'). .

(2.2) - UxE= - °B_ ' > "

ot

- —: Sa".'

(2.3) bpiv p =P , and

(2.4} Div B = o, Y

Here H’is the mapnetic‘inténsity, 3‘13 the current
denéity, E is the electric field, D is the dlsplacement
vector B is the magnetlc 1ndurt10n field, and .P 1s the .
charye density. For the range of freauencies we are
considering, the current becomes the nua51stat10nary
tase- [A] [ih] [15] and the displacement current )D/Jt
is neplipible compared to the true current density ﬁt

and we mav replace (2.1} by :
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10
(2.5) curl H=-J

Also, frOm Ohm's Law we have
(2.6) —-G-E |
for nonferromagnetlc material we have
2.7 B=pE ) |
while for isotropic material we have . ’ K
(2.8) D = & E;.
wngre ¢ 18 the conduqtivity, }A the permeability, and
£, is the bérmittivity.' We note ‘that o, /1 may be
* different in different negions. We shall aSsume the
fqllowlng: Within the. rod fk and o may depend upon
the radial coordinate T because of the high temperature
gradlent in the radial direction of the rod. within
the coil M and ¢ are constant. /,1 )uc C= 0" . -

e’
In the air o = 0 and /4 }A

If we assume the electric fielg E and the magnetic

inten31ty ﬁ’to be separable in the. time variable, that is

— A it

(2-9)(a) E=Ee » and
_-r ‘ iu)ht ‘
29)) WegHe TVY

where E and H are the amplitudes. of the electric field E
.and the magnetic 1ntensity H respectlvely, and w is the

frequency of the alternatlng current flowing in the coil,

we then have'



S0lid rings.

P
\( ,

) ) Al . .a‘ A -
(2.10). V.x H=0E, and

(2.11) . U xE= -1@3.
J

Since B has zero divergence it may always be

‘represented as the curl of a vector potentlal that is’

(2.12) B=V x A. |

From the formula we then have curl (g +'itd2) = 0.
It follows that | | . ‘
213 f= - 10f -

witﬂ E defined through,(2.l2); is a particular sélution

of'(Z.J”; we have within the rod

. A . d . IS

(2.14)(a) Y x (Tx2) = K1, -%-r—;‘-;ﬁ X {7V x 4)

. o . A

- while_in the air )
A
(2.16)(b) - Vv x (V x A) = 0O,
where b i
1' / !

(2.15)  k = ?iﬁayAT

In Settlng up the 0011 we require that the current‘
density J in the coil satisfies the followinr conditions-
(2.16)(a) vxJ=0,
(2.16)(b) T = {o, i, » 0}, and
(2116)(c) jP'E jp(r) | '_f?r R < rs R,
That is to say, we consider that the coil consists of

¥ -

From (2.16) (a) - (c) we have the dlfferential equati

dr ( rj? )

Integratlng this differential €quation, we obtain

N

= ¢/r, where < is the constant of inte ration.
2 &

1

4

on
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au 12
Since the total currént I flowing in- the coil is
kept constant, we have.
-;/ / i‘J'ﬁdr du = 2L¢C ln@l)
0 R, s K/
and hence -
_ _ , P
(2.17) | (r) = I ! for R <r<nr
s L7 JP = ' — ' 1= 0 = e

2 L1ln (RyR,) r.
Furthermore we have the following boundary condltions
at the interface of the cylindrical rod and the surrounding‘

air:
A
(2.18) (a) E
A A '
) ~E”=EY, and
" (r- '
(c) B L TN O
where the index (r) denotes the interior of the rod and
r

the index (a) denotes the exterior region (air), The
Subscripts t and n signify the tangential c¢omponent énd.
the normal component respectively, ,

. We also have the following boundary conditlons at

the interface of the coil and the surrounding air

: Al A
(2.19) (a) E, = E,
A fe} A fal

(b) E = E_, and

i) ! (o)

(e} — B, = —

Lo



A 13

-

where the index (c¢) denotes the 1nter10r of the coil and

J5$ is\&Qg_surface current density at the interface,

we obviously must require that E and B remaln
bounded along the- axis of the rod, and that E and B are
functions of order (1/r?) for large values of r, that is,
‘E and B vanish at inflnity according to the inverse Square
law. bince the rod and the coil are uylindrlcally
Symmetrie, the current flow is assumed to be in coaxial

circles only. For this case we require:
(2.20) 1} :{0, Ap ,.0}, ith

"In a cylindrlcal coordlnate System (r, P » W) we have

Jhy,  hp 1aa, 4
(2.22) Vx(va):{O’,-.._E-____LO Lohp __g’.of_
au? ar: r Jr T3
By making use of the following definitions-:
!

. B (;2 az .l a- 1
(2-23)(3‘3\ Ll(ur) = (;ﬁ? f"c.j—xj; + 3 --;—2 —J’—‘—

o 57 1 9 l)_
(b) L(uj') (duz+ar2+;ar—r’ur’

we derive from (2.14) (a), (b} the differential 2§uation
{220)a) 1L, ) =0

in the rod, and:

(2.20)(6) 1 (a, )= 0

in the air,

ERN VN
/L{ or r/4+ tJ‘
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From the boundary conditions {2.19) (a) - {c) and
the.relations (2.12) and (2.13), we derive the boundary

conditions at the interface of the rod and the surrounding .

L ?

air to be
’-A(;) =AY for r=R, |ul< o ,
) . & '
OA, BA:J for r=R,, [u]<o, and
o u du .
. ! .
At or M, \r F or fo;-r::R., uf < 0o.

Also the boundary conditions between the coil and the

surrounding air are

() (a) .
P A;, for r - R, or R,, [ul < o,
) () /
QA4L - éﬂﬁ; for r =R, or R,, [u[ < oo, and
ou ou
€) ' @ '
ra} .
_1_(1Ak) f_&AJQ) 1 1) _+3A;2):JSP
FoAr P T oar ) p \r P T TL

for r =R er R,, | <1,

. Since we are studying a problem of surface hardériing, L
the ex{citing frequency o is usually of the’ ordei‘ of 10‘5
Hertz (cycles ‘bEr s econd) or hig‘he’r-and hence the éki'n
depth g:m[g] is ‘quite small., If the radius
R, of the rod to be hardened is not too sxflall, so that thbe

ratio R,,/S is quite large, then for practiecal purposes

AN
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the above boundary value problém can be approximated with

Sufficient'acéufacy by a boundarv wyalue problem in a half-

spacé[lh?,ﬁﬁ]..Geometrically'this is equivalent to allowingﬁ
the radii of the cylinaer and cqil to become very la}ge
80 that their surfaces may be approximated by their tangent
planes. In the transition to the limit, these tangent
planes remain separated by the d;Stance éqﬁal to the
diffqrénce of the radii, and the metallic cylinder becomes
the metgllic half-spacé and the coil becomes an infinite
bedm aligﬁed parallel to the half space,

In making the transforwation we discard terms

containing 1/r and 1/r? in the differential equation and

in the boundary conditions and then introduce the coordinate

transformation [l@]:

(2.25) Xx=R_ ~r,
. h = R, - R,,
;.I = U,

Also, we conslider only a line source of length éL,
instead of a coil, because the coil of finite thickness,

R, - R, >. 0, may be pbtained fr the solution for the

line source by superpositioni—y. by integration. The

Jusrification for this may be fdund_tn[/4]
The geometry. of the original boundary value problem
is shown in Fip. 2, and tha)//

of the afproximated prob‘lem\i
in ¥ig, 3. =
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The 51mplif1ed problem in tgo dimenmons may now be

stated thus ¢

- ()

o (m "
(2.26) W= Y (x, u)
g‘jl) _ l{lm(x, a) |
y/ - u)(x,u) .:

()
where A w W + S

defined on ~h< x40, [u| < w0,

defined on. D 4xX <00, |ul¢w;

1

(2.27) A q’}"’: O  defined on -oog X< -h, [ul dw,

> w‘“’
u‘l

(2.28) A= 5 defined on “~h<x< 0, |u}<oo,

(2.29) Ay - MWI 4. kz(x)_(// = 0,' 0<«x<o0, lul< w,

P (x)
with k*(x) = -1 K (x) o~ (x).

o

The bouhdary conditionsfﬁecnme:'

-

i)

. o
(2.30)  ¥_(-h, u) -~ ¥ "(=h,

(z)

{2.31)(a) VJ (-h u) - (,U (-h u) ._0 for |ul<' "cog.

N ¢ Hv}ﬁ for lu|;L
u), =« 7 :

0 - for [ul>L,

(b) t,u  (-n, u) -2 (n, w) =0 gor (ul £ oo,

(2.32) (a) pr(() ul - W(o,

u) =0 for |uf < .00,

(b) W (0, u) = (0, u) =0 | for ul < 0,
(c) }4(0)({/ {0, u) -/xb%.(o u) =0 for]u]<oo, |

defined on -@ ¢ x<-h, |u}< o,

i




I

.

The conditions at in_finitj; are:

{2.33)(a) " (f/m), l{)a),- and ¥ — 0 as lu|— oo,
(b) L}J“’):ﬂo(lxi"‘}, and 2
AITARPINEY -
&

We use the not:aﬁién f =0(g(x)) to signify that

]ff /]g| is uniformly bounded as x - 00; and

f = of{g(x)) to 3ignify that {f[/]g] —~>0 as x — bo.,

19



Chaﬁter 3

THE REPRESENTATION THEOREM |
- ) \(‘
In ~this chapter wa deal with t;he solution of the
boundary value problem formulated in Chapter 2. A

reprasentation gheorem i3 proved for the pProblem.

1. The Statement of the Representation Theorem

The following assumptions are made with regard to
the physical parameters'/i(x) o-(x), and - for the
purposes of the representation theorem. .They follow ‘
naturally from the physical conditions found in the

model..

(A.1) p» o, and w are positive.
(4-2)  pix), o (x). e c?[0, oo).

(A.3) > 18 a copstant. Y
(A-4) Lm ux) = op, - .
: X3 /4 }x L
1im 0.(x) = o, .
X==3 00 - |
(A.S = '
! TAX—y 00 prx) =0 .
lim /Aﬁtx)xz~0,l

X—_—}CO

f

~



S
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. 1im g '(x) = o0,
X~ 00

}um):'o.
A.6) =) otx) d
( //’ 1}4 x) o(x) - }4 o- I X < oo,

2
f ,}4'(!)) dx < 0w, and
[4)
/oo
Jo

With these assumptions in mind
Stated,

‘dx<c6.

» the .theorem is now

-

Theotem ‘(Representation Theorem)

Suppose that /{(x) g (x)

, and o sat;isfy assumptions
(A.1) té {A.6),

then a solution of the boundary value
problem (2 26) - (2. 33) exist.s and can be represented by':
(U

(3.1) (x, u)—[ [B (A) oxp{) x| +

C. ()) exp{ >uc}]cos)u.—y--‘—h—-i)--E d A

AL ’
' . (m) 00 Sem )L
(3.2) 50 (x, u) = / Aa( )) exp{ )’x? cos >tu T d)
K - 0 !

03) Yk, w- /m Ax, D) cos hy 2i2AL

/)L .‘

where ()) B (/\), C ()(), and A(x, )) Satisfy the

following equatlons'

s
’
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(3.4)(a) <A (}) exp{- n] X 4 B,(3) expf-An} X

=C () exp { \h} A = -}‘—L ,

(B) a,(3) expf-2n} - B () exp{- Ah}
- ¢.(2) expan = o,
(e} -B ( A3} = c, (%) + a0, )) =0,
(d) }4(0) B, ( )) A - h(0) C (h)N -qu'(o A)= o,

{e) AM(x, A) -4&“) A'(x A) e
Jx)
+[k(X)-)_]Mx ))*0
(f)  Alx, 27)—9 0 as X—> @ for all ),

and " degotes differentiation with reSpect to x, .

Ty

2. Some Fundamental Lemmas

In order to facilitate the proof of the theorem we

first state and prove the following lemmas, -

Lemma 1

Moplxle ¢ [0, 00) N1, (o, ®),

then the Solution of the dlfferential equation

(3.5) ua(x) t P(x) u(x) = q(x) 0 £ x <oo
subject to the initial condition _ o
(3.6) u(0) = e,

when con51dered as a functlonal of q(x), is a'monotone

increasing linear functlonal of q(x)

Furthermore, the 8olution of the differential
equatlon (3.5) subgect to |
(3.7) lim o u(x) = ¢ -

2 .
X— o s
[

is a monotone decreasing linear functional of q{x).
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4
- Proof:

If we multiﬁly (345) by the 1ntegrating factor

b'e
exp;/f p(t) dt}, we obtain
0 '
b'd X
(3.8) cut(x) exp}// p(t) dt}+ expf]ﬂ p(t)‘dt} P(x) u(x) =
o 0 - .

' x
n expjyf pl{t) dt}q(x).
o o

. pd : X
(3.9)  wu(x) - c-,exp}r-/ p(t) dt} + ew{-/ p(t) dt}
(o} o g

. t
' [j/;x exﬂgf; p(S)dS2 q(t) dt‘].

From (3.9) it is obvious that u{x) is é linear functional
of q{x) and further that the.positivity of the eéxponentigl
function pénﬁits us to assert that u(x) is & moriotone
increasing functional of q(x).

Similarly, Wé-can show that the solution of (3.5)
. subject to"(3.7) is

_ ‘ 00 o
(3.10) ui{x) = c, exp{/r p(t) dt?-'exp{)[ P(t) dt}
) x b'd

) ‘oo . 700 | |
{//, exp{;}( p(s) dsf q(t)} dt},
_ X x : ’

and hence, that u(x) i3 a monotone decreasing functional

of q(x).
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Lemma 2

I

oo o
For//< lf(x)ldx < @ and Rea} d > 0, the integral
o . C

equation

(f(t) z(t,oc) + axp{at}]dt),

has a unlque solutlon.
Also, the integral equation ‘

1

'(3-.11) 2(x, ) .- ;}O—C/ox[qxp{oc(t-x)} -L'GXP{oC(I'-t)}:I

(3.12) | z2(X, o ) = ;;c—/xm [exP{oc(x-t}}. -'exp{oF(f‘-x)H

(f(t)[z(t,o() + exp{- oct;}] dt) P
has a unique solution. .

Proaf :

-

We use the method'of succeséive approximations to

Solve (3,11). We introduce a sequence of iterates { ﬁx

defined by z (x, cx) = 0, and forn > 1
. . ‘ T
(3.13)  z.(x,ec) =L /%[ [acte x)} ex
.- i (x, = oo Lexp ol (t- . p {oc(x-t)}J

(f(t)[ n- ,(t.oc) 4 exp {oct” dt)
Since—thq variable of integration t is less than x in
(3 13) we have | |

.’OC)}
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exp {oc(Zt-x)} - exp(cc x} , <. Jexp {o((2t-x)}l+}axp{de{
o p{Real oc(2t-x)} + exp{Real «x)]
expreal o(x}

(3 l.lll-‘)- )

4 2

For n =1 we have

z, (x;00) = ——-f [exp{o((t-x)} - exp{O((x-t)H

(f(t) exp {oct} dt) - -

) f (exp{o((Zt-x)} - exp{a(x )f(t) dt,

and then by using (3.‘\11;) we obtaln

. exp Real &«x

B35y [z )] < { }f le(e)] ae.
: ' Real o

In a similar fashion we obtain

2,6, ) - 2, x, o) = 2

X

_ '2—;(- (BXP {d(t‘x)} - exP{O((x‘t)})

» - .
(f(t.)Z(t «< ) dt : )

.z_i(_ ox exp{a((zt.-x)} - exp{a(x})

| (f(t) exp{—"(t} z, (t,o() dt)J.
z,(x, L) - z.(x,oc)’ exP{Real“x} :
| ' Real |

/ jf(t)lexp{ Realo(t}l (t, o()ldt; _
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- -
. | )
exp-{Real o(x} !f(s) I ds
< / [f(t) at
B Real Real o¢ .
: k / (f(-s)[ds
' . . exP{Realcxx}
o ‘ ) “(Real x)* /4 .dt T dt
SR dt /?2
= exP{REalc;(x} [[0 I (t” ]
Real '
2
e
SIN10 Ty we may also show by induction. that for n 2z O
t Tl:':'
xp{Real o(x}g If(t)[ dt
(3. 16) z,(x, oc)-z_hl(x c()(é .
{_ Real of .

Since =z e, (X, <) may be written as a series in the fom

(3.17) 2z (x, ) = .E[szr (xy00) = zk-(x,oc)_J, ,

the convergence of the Sequence {z (x, a()} to a limit;

function z(x, « ) as n---,‘- 0 is equivalent to the convergence

of the series (3, 17). However it is obvious that the

&series (3, 17) is alse absolutely convergent because by

(3.16) each t.erm in {3.17) is less in abaolut;e

exp{ﬂeal ocx} times a term-in the co

el

~ Real

value than

nverge nt Series for

. » Thus the Sequence of iterates

Tfzﬂ(x, o()} converges to g llmit functlon z(x

in every finite subinterval of [0 oo).

-

+ &«) uniformly

Thus wWe now have



. . . <&
. . . . :

27

the solutio>n of the integral equatiop (3.11) by the method

of Buccegsive approximations., It reméins to be shown t.lhat.

the solution for (3;11) 18 unique,

To show uniqueness we SupposSe instead that there exist
two solutions z (x, o¢) and z ﬁ)(x‘,o() Satisfying (3.11).
- We then have

z‘,l)(x"’() - 2 %x, o) - }%("fox [ exp { ¢ (t-x)] - ex?{a((x-t))]
. (f(t)[zw(x,-a() - zﬁ)(x,o()] dt)

g ), oo« onpfcx)]

Ct‘(t) exp;{-a(t})l
L2 - 200 ] de

) exp{Real otx}

qu(X.aC) -z

(X.aﬁ)lé

Real /ox[f(t}} GXp{-. ﬁealp(lf,!

|z“)(t,o<)‘ - z“’(f,,oc)f de.
‘ ' -

(3.18&‘)‘___‘ .e_,xrp{-r Real_.fg;;} lim (x, <) - zm(x.o()‘

£ [x .__,f(__t)_l exp{-‘ Real ot }
0 Realx

lzw(t,oc) - zm(t".oc)l dt.
If we put'

~(3.19) l'g(x,o()ln--: exp‘{- Real o(X}lZ(Z) (x,e() = zm(x,oc)
we have from (3.18) ‘

——— e aL
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(3.20) gix, O()IA/O |f(t” f_g(t"’()ldt'

Rel

If we can show that the soiﬁtion of this integral

inequality is just the trivial solution, then by (3.19)

we have z”(x, K) = (x, o(). In order to show this
we lat
o Real )

From (3.20) we have
(3.22)  [elx, )] £ b (x,).

Differentiating (3.21) with respect to x we obtain

h"(xﬁﬁx).: !f(x)'

\g(x,O()l
Real «
|£(x)] -
. h (x ) " \
Real «
" and thus deduce that - | i
| £ |
(3.23)(a) h "{x,x) - l (x), h (x, ) £0
Real o¢

while from (3.21) we obtain;
(3,23)(b)  h (0, cc) =

Now, if we compare (3. 23)(a) and -(b) with the

following differential equation &
¢ .
(3.24) (a) h,'(x,ec) - | (x” h,(x,). =0
= Realo(

subjedt to ~
(3.2k}(6)  h,(0, ) = 0,

28

L
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- and apply Lemma 1 ang [/] P734, We€ conclude t;)at
(3425)  h{x, &) £ hyx, ). i
However, the ‘solut-ion hﬂ"‘"’“ of {3.24)(a) and (b) is
Just the trivial solution. Hence by (3.22) and {3.25)
we have 'g(x,lo()‘ = 0. ‘“

Similarly we” can,dmploy the method of successive

approximations to prove that (3.12) has a unique solutijon,

.

Lemma 3

For fo' lf(x)\dx < o and Real o« >0, the differentigal

equdtion |
. 2
(3.26)  Y"(x,) - [~ £(x}] Yix, o) = O
has two linearly independent solutions for all 0 £ x < o,
and fér all o with Real o¢ > 0, and these are given by
(3.27)(a)  Y,(x, x) = exp{atx } [1 ¢ b, (x,%}], and
(b) Y,(x,x) = exp{-— o(x} [l + bl.(x,o(')J, with

| . : (S5 tw)] ae ]
(3.28)(a)  |b,(x, )| & exp (0 -1, am

Real &£
00
(b) lbz(x,o()l'é exp{/;c ]f(t')] dt} - 1.
Real
Proof: 4 ~
Let

(3.29) (a) - Z(x,a()_'—-“exp{a(x}bl(x‘,o{) .

1
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S0 that

©(3.29) (b)

Y, (x,¢) = exp{o(x} + z(X, o).
Substituting (3.29)(b)} into (3.26) wé obtéin

B30 amlx, &) - K'a(x, &) = 0[5 (x, ) 4 exp fcx].

Now (3.30) may be transforhéd into the in£¥gral eq

(3-11). By Lemma 2 the solution to this integral equation

eXists and hence Y {x,o¢) exists.

uation

\
» %) satisfies! the

Tt remains to show that b (x

eatimate (3,28)(a).

From (3.1A) and (3.17) we obtain

(.31} [z(w, J)I < Ez)zj.’(X,cf) - Z;(X.cf)’
i=o

—

) exP{Re_ldx}kxp {/:({f(t){dt }_ 1} |

Real -n( J

aing (?,?9)(3) and (3.31) weé obtain

}\‘:(x. ,.()I £ oxp{—RéaIO(X} lz(x,"()l

o |
< exp{_[i ’%F}ldt}- L

Real
Similarly we can Show that Y,

(x, o) exists and that
Pa(X, o) satisfies the estimate (3.28)(p).

—

Lemma I

There exists a unique solution for the differential

equation (3.4}(e) subject to (3.4)(f) ‘and the foli}

owing
condition (3.32):

1

(3320 H{O) A a(0; X) ~ par(o, Ay = JoA1O) | exp{-Ah}.
A ~ |




Proof:

=y,

We, first note that (3.32) is obtained by eliminating

g . .
ALl ) ), B _{ )), and. C_( )) from equations: (3.4) (a) -.(d).

-~ If we introduce the one to one trénSformation:

. | >
: i . (0)
(3.33) ™ alx,) )= / A Al )
A Tx)

then equation (3.4)(e) is reduced to

(3-34) &, )) = [ N%g 0] ax, V) =0

where

| . 1
(3.35) K’ (x) ~ k (x) - 1£_£f4ﬂ%£I; —_
’ M (x)

By (A.5) and (3-33) we also have:
(3.36)(a) a{0, }) =a(0, %),
(b) a0, A ) =ar(0, M.

Substitution of (3.36){a) and (b) into (3.32) and

™

substitution of (3,33) into {3.4)(f) yields:

(3.37)(a) /«(O)X a{o, \) - Moat(0, X)

: ::}Jo i‘(’o) I exp{-) h}) ‘:Iand

" (b)  a(x, ,\)-.>o as x=3 60, forall ).
Hence if we can prove that a solution BXlStB for (3.34)
subject to conditions (3.37)(a) and (b) and that this
solution is unique, then this is also true for A{x, .A).,
Let us then define

(3.38)(a) KX = 1m K (x)
- X-—> ®

. -3
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then.by (A £) we have ,
(3.38)(b) | K. =k} = -1 W

and hence . ' ' ’

/N - K° AT 5t
(3.39) A= K ;F\//) t ol er +) ]

+‘ifh4+-031}116\21-,x2 ,
for all oo ,> A 2= 0,
Also from (3.35), (3. 38) and {A.1) - (A ,6) we obtain

(3.40) f [k x) < k] [[ax ¢ oo.
"o 0 ~*an .

B 1
Now equation (3, 34) may be rev’wrltten as

a"(x, \) - {(A - Ka ) -fK (x) - KQ]}a(X A) =o,
“hence the assumptions of Lemma 3 are Satisfied by (3, 31;). _
Then by Lemma 3 there are two linearly independent solutions )
a , (x,, Agkeand a,(x,A) to (3.34) such that for all 0 £ x < oo
_and oo > A\ 3» 0 1t. holds that:

(B.41)a) ale ) = expf)/ X< KD 'x}[l b, (x, ) )]

(b) . aJx,A)-‘-exp{/A—K Hli-d(gc,,\)]

. whera _ | (j ’K tt) -K dt

Gui2)(a) g, (x, RSENE ; -
o ea /\z

1

-Al’

V N

-- f ]K (t)-K,dt
(b) ’«}d%(x, x)

Real/ )

Now from. (3, hl) (a) and’ (b) and from (3 42)(a} and (b)

we have for 1arge values of x and for all values 04 )< oo



{3.43)(a) a, lx,y)) = exp{m x}.[l + o)l
(b) a, (x,2) - expf</ yi- KZ x}[l t o],

Since (3.34)is linear we have
alx, Ar=c (h) a(x,A) +c,()) az(x/\)
for allO/—xé oo and fo:-all 0= \ < 00,

In particular for large values of x we have

‘a();, A) e A) e.xp'((./ T - K} ‘:x['[l + 0(1)?
O beah) oxp{~/T =52 %] + o]

From (3.37)(b) we see that in order for afx, x)— 0

<

g
as x— oo for all 0 < /\400 wemusthavec(A)—-O

for all 0 £ ) £ oo. Therefore we have

Gebb) a2 ) = cy( Ma,(x, ). | E
If we substitute ‘(3.1.1;) into (3.34)(c) ‘we obtain |
RO 1 xp{-An} 1
/L\(O),\az(o A) = Maa,1(0,A)

forall'o £ ) « 00. Hence we have:

Pol KO /7v) T exp - Ah} |
}((O)A 32,(0!/\, - /uaa '(Ol/\) l(x h). ,/

From (3, 33) we deduce that : . . ' !

(3.46) A(x,)u= L a(x, ) )
ﬁ -MO) ‘

. A& Fol J0)/re) T expf- An) 2 (x ))
J o) /u(OJ/\a (O, A - p,a, 10, AJ ’

‘clt,\)

{3.45) a(x.,\ ) =




T

Proof:

subject to

1 o 34
Thus we have shown the existence and unliqueness of
the solut,ion to {(3.4)(c) subject-to (3 L)(f) and (3. 32).

AS a corollary to Lemma 4 we cbtain thé behaviour of

A{x, X) for large values of x and for all valueﬁ of

042 X< ool

Corollary to Lemma L

For 1arge values of x, A(x, ) )} behaves as g

axp{‘/mm_f;_1 J _ | ' 95

i

A

»

From (3.43}(b) we have for all values of 0 £ A< o

and for large x, that a,(x, A ) behaves as expf / l }.

Hence, from (3 L6), we conclude that A(x )\,,) has the same

behaviour.

Lemma §
For large values of A and fof all values of

0 < x < 00 then there exist ao‘utions to the Ricatti

equations

(3.47)() B, A) ¢ 97 0A) = AT - ki)

3.47)(b) P, A\)— =/ N K.  as x> oo.
Proof :

9 .
If we let wix, A ) =gx, ) p /AT - Ko

Substitute this into equation (3,47)(a) and (b) we obtain:



o

(3.48)(a)  w'(x, \) 4 w*(x. V) -2/ F K wix, V)
' = [K - K (x)]g ’

(b)  wix, ))--}O a8 X— .

~ From (3. 33)(8) we deduce that lim ,Kl(x) - K:., =0

X=~= 00
and from assumption (A.2) we conclude that |K'(x) - K|

. i 2
%C [0,. 00), and hence that ]K (x) - K,,l is uniformly
,

' bounded. Now let M be such a bound, then we have

3490 )X ) - kZ] < M for all 0 € x < oo.
From (3.39) we observe that Real/ \* - K2 is a positive

monotone increasing fun?r,lon of N + hence there axists

a )lo such that for all )t ~

(3.50)  Re/H*-K* > 14m
‘Now equation (3.48)(a) may be reduced to the following

integral equation:

3(3.551.) wix, )\) :c(;\) exp{’z/hz -~ K. x} ‘ axp{zj:\“r:‘x“ﬂ

<]

/xexp{-2/ )= K€l S} -
o

[K:, -K (s) -~ w'(s, /\)]ds

where c( >\) is an arbitrary constant which depends on the

parameter )\ - The presence of exp 2/ . K; x} can
lead to difficulty, so we rewrite the equation as

Py

35
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(3-52.)“ wix, )) =c(A) exp{/l\—lT. x}l T
‘ « +eJCp{/A2_KI'x]’f Bxp{m }

[K; - K (8) -w (s ))] ds

- exp A -~ K, x}/mexp{_zj‘\__'

[:K:, - K (a) -wa ,\)] ds.
In order that w(x, A) shall satisfy (3.48)(b)
the c( A ) must satisfy ,

c()t)r -[ exp{z/w }ﬁ( -K(S)-—W(S ))JdS

Hence (3.52) reduces to the following

(3.53)  wix, )) —_exp{ [N - K5 x)/mexp{Z//\ - Kan B} ’

[w® (s, A) - K (s -Ka,]ds
We now apply the method ,of Successive approximations

( (2] PP. 29-30) with

s,

(3.54)(a) w (x )\) = exp{/ - Ko X /mexp{-Z/A"- Ko s} .

(b) Yot (x, A ) = ,exp(Z ,\i:?x

f exp{-z/)\ -Ka, s} ,
\ [w (a ))-[-K(s)-Ka,]ds

for n 2 0, we next wish to show that this 1teration
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converges for all 0 < x £ 00 and for a],l ) >) -

Wo first show by induction that for all C£x< o
and for all A 4-/\<00:

(3551 [atxi A2 [ < <

<1l for all n >o0. .
" )

-

. - o
\ .

~™ From (3. Sh)(a) we obser've that

!w(x /\)’ .exp{2 Re /\l-xnfx}/ exp{zne//\g_\—l }

- K(S)-Km’ds

A
—

-‘-K-OM exp‘{z Re/Al- K2 x}
: o . _ ’ .
expf{~2 Re/ )\ "~ K __ s}ds
/s /3 k" s}

M ' M M
= 1

{———< < 1.
P Re/W 2 (14M) 1+M

If we assume that the- relation holds for n, it then

follows from (3. ) (b) that

[ g x4 20 £ oxp {2 Re/37 KT x } NG
ENTH )| a8 +fwox, X1
(1\ T ) exp{2 Re/ )X - KZ° xl}
/xm oxp]-2 R"/T S}Z:Hwo;xr /\)!-_ |

%

/ \ . ‘ ‘




/M 1 M 1 M
— —_ 1' - 4 .
1 +M/\ 2 14M 2, 14+ M
Since M/(1+M) < 1 we have that:

(3:58)" [ 000 2D = vt 1) | €on RG/W S
f; exp{-z Re/A"-- K., ”w (s, A) W, '(3 A),
l W, (3, A) + W {s,)\)\ ds '
1 MM expf2 Re/ JT- KX x|
LOO GXP{-A? Re/_,}TKﬂjLI s} ’

[w_(s,)) = Woa(s, )] ds.

Furthermore for n =1 we have

IW( A}-W(x X)lé exp{z RQ/FT\ }

) as

<
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NA RN o
7‘(1 . M) 2 Re/r-“x;' | | |
< () 2 L/ )
L+ M 20w < 2 (1 + M
dterating this relation in (3.52) we obtain

. 1 ntld
(357 |y 06, X1 = wix, 3 ] -__( i )

2 114+ M
x5
Hence the series '
e
SECR U |
Ty | W (x)l)-—w(x,\/z —_ )_..:_._
‘éo l Ny ] n ] ) Zo 1+M : 2 1+M

converges uniformly for all 04 x <. @ and for all )\ /\
to a funct;lon w(x, X ) which satlsfies the integral equatipn

(3.53) and hence satisfies the Ricatti equations.

Lemma 6 w

For large values of y Alx, A) behaves as

A(O,\) exp{ }lx}

Proof:

We introduce the i'.ransformation

(3. 58) Alx, A} = (0, )) px) 1 gix, \) dx}
| / T

which we substitute into (3. h)(e) to obtain (3 47)(a).

From the corollary to Lemma &4, we ‘have that Ax, ))

behaves as exp{ /,\2 - K27 Jgfor large values of x, and

hence we obtain condltions (3.47)(b). /
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';’f?‘-
™ a

I

. Further, if we introduce the transformation:
359 3x,)) = (1/2) gix, \)
then (3.#?)(5) and (b) are transformad into:
(3-60)(a)  AFv(x, \) + ATEUx,A) - AT 4 kYx) = o,

{(b)  B(x,A )— -(1/A)/,\1-K,;' .'as X— .

1t has been shown in [7] p. 191, 1n [3], and in {g]
that for large values of A , we have -

(3.61) F(x, N} = [; ) 0(1/)?’] for al;_Oy&:x £ 00.
rom (2.47) we deduce that o

(3.62) Bx, 2 ) = A[- 1+ ot1/xy]. _

If we can use (3.62) in (3.58) we conclude that A(x, 5)

behaves as A(0, A ) exp{;)‘x}, which proves the lemma,

Lemma 7
Let f(x)é:LI[O;*oo), F(x} be defined and uniformly
bounded on (-o00, ), and for large values of }tl,
.

-t
f F(x) dx = o(t),
O

P
then lim [ ®(x) F(tx) dx =0, -

It} - @ ‘o
Proof: e

Suppose.that' '

. ] | 0:
Hxh={c xek ﬂjc[. )
0 xG[O,oo)\E(,(g],

then we have:



© . p’
{(3.63) [ . f(x) F(tx) dx - c/ F({tx) dx
o of

t . t
— ._c_. [/3 F(s) ds - -—c—/d F(s) ds,
Tt Jo . -t Jo

30 we conclude that for this pérticular choice /of f{x)
o '
1im [ fi{x) F{tx) dx = 0.
t— 0 /o

Now f{x) e L,['O, ®), so for any E 2 O there exists g

&

™
simple funct4on gm(x) = Z f:{x), such that

Q0
[ If(X) - By(x)|dx < g,
o

where the fi (x) are of the form

£:(x) = {cc XGD('"_/J*'JC[O' )
‘ 0 x €[0, o) A\ [ox¢;» /f‘] ,
and the ['o(;, {3‘] are pairwise disjoint (/2] p. 67.

Then the following inequalit} becomes obvious:

® }
f ~f{x) F{tx) dx
o .

+.

© T .
/ F(tx) gm(X) dﬁ)
o

= I,+Il.

Now F(x} is bounded, IF(x)I < M, and

I,< M/mff(x) - g.(x)]dx < £ m.
0 - : :

(3 0]
< ([ {f(X) - g,.(x)] F(tx) dx
o .

41
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From the definition of g .(x) we deduce’ th.,.at.

42

0 m ©
| <) - dx = f, )
[o g, (x) F..(tx) X = § ,fo ¢ (x) ‘F(tx) dx“h

. and since

—

‘b ‘.
lim [ f:{x) F(tx) dx = O for {e l,-...,m, .
“t— - ‘o ‘

w8 conclude that -
(0%

lim g (x) F(tx) dx =0,
t— o Jo " s

Now there exists a 7 > 0 such that V¥ ¢ >T, I,<F¢f.

Hence for t > T

oo . .
/ f{x) F(tx) dx/( £(M31), i.e,
o

. m f
lim . f(x) P(tx) dx -- O. >
t-300 Jo

Tt. can be Shown Similarly that

00 .
lim [ f(x) P(tx) dx - O,
t—-00 /o
Hence
. @
1im [ f(x) F(tx) dx - o,
It - o o

A8 a result of this Lemma we conclude that

o \ ,
ST lim [ f(x) cos tx dx - 0, and
[t} 5 © /o .
. o ;
lim [ f{x) sin tx dx - o,
t - o o o

for aly fé‘L'[()’ 00},
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‘Lemma 8 y

For large values of A ywe have

A0, A )Nexp{- )h}/,\

AolX). ~expfyAn}/

B, (A) ~expf- Xn}/ ,,

Col}) mexp{ An}/ 2.

Proof:
we have Shown in Lemma 5 that for large values of
(3. L?)(a) and (b) has a solution for all x, in Particular
@(0, 1 ) exists. Also from (3.62) we have:
BB g0 - A2 4oy 9.
From (3.58) we obtain by differentiation \
(3.65) A(ok)-ﬂ(oA)A(O A) =0, for a1l AZN .

From (3 4)(a) - (d) and (3.65) we have for aly
values of ;\ >’/\

. (.I'/'rr) exp{'-/“’}
A = s/ p(00) Blo, )

(b) A(N) = = A0, ) ¢ /u M[expﬁ) h}- 1]

expf~ 1 h
{c) CB(A) = a(0, ) ) - oI__’_‘f_{_Ll

™ 22

[3-66) (a) a0, N} -

(

@

(d) ¢ (A)- ,uO; °"pi'/\“}.

If we substitute (3, 64) into (3.66)(a) we obtain
for large values of ) . : - 4

A ) e an)
- l o o 1
) [1 1--/:‘(‘0) + ;‘{0) 0(/\2)]‘

"A(0, 1)

[}




S

~
Thus we have demonstrated the asymptotic behavioup_

of A(O, \ ), A A ), Bo‘( )\ ), and.~C°() } proposed in the

Lemma.

L,emma.: 9"

A0, A), A (N, BN, @()), and A(x, }) may be

 determined from (3.4){a) - (£f) for all O Z ) < @,

and for all 0 < x~ oo,

Proof : ‘
From (3.46) and (3:41}(b) we determine Alx, )) and

A(O,). ) in terms of az(x,) ), a;(O,) ), and a,'(o, ).

Since a_{x, } ), and hence a,{0,) ) and a,'(0, A), are

as8sumed to be known, we have
; .

(67 a0, ) - KOV e) T exp{-An}
fO) A as00, 4) - fi,a,1(0,2)
() ar(o, y)_ FLPOV/n) T expf- An}

H(0) Aay(0,]) - H @' (0, 3 )
(e) A (X)=B,(a) C_(N) exp{2 ) h}

(@) B.()) =40, X) =c (A) °

(e) c (A): I /Aoexp{"/lh}‘_.
0 27 3 n

2,(0,2)

az' (0,)) .

3. The Proof of the Theorem

”Px;e‘of of the Theorem-

With the aid of the nine Lammas We may now proceed t.o

\
~

Prove the t,heorem.
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a

Since we have the asymptotic behaviour in ); for ,
AN, B, Cu( ), A(0, A), and A(x, 1), amd since 5.
all three integrands 1n (3 1) - (3.3) are continuous, o,

all three integrals converge. Here we have defmed the

i
values of the integrands at ) - 0 as the value of lim

: A0
| o &) )
Similarlyﬁll the integrals Y/ v, ¥~ and their ,

derivatives up to the second order converge. ‘The integrands
for. (ﬂ l]t/m}, and }’/ also satisfy the condition at

1nfimty. The latter follows from Lemmas L and 7.

If we Substitute 91&), l,l/m}, and VJ into the

w

differential equations and the boundary conditions and

-\fwake use of the Dirichlet Integral

7

B o) I l“, <L
f—"‘\\_ﬂKOS)u Sin /\L dA - 2L .

° AL 0 lul > 1
- W8 See that they satisfy the differential equations and

the boundary conditions: Hence the representation theorem  :

_ h.gg( been proved.
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Chapter
o

" APPROXIMATE METHODS

\

The representation theorem of the last chapter shows
that one of the integrands is conmposed of the solution of
a second order linear differential ‘equation. Since it 4s
well known that the exact solution of‘h Second order lineap
differential equation with non-constant coefficient; cannot
be obtained using a finite number of algebraic, differential
or integral operations [//] p. 26, it becomes imperative to
provide some methods for approximating the solution. ‘
Because the engineer and.- physicist %re also interested in ’

the quantitative aspects of the eolutlon only those

approximate solutions are discussed which‘éan be evaluated

*

numerically on‘a computer. For computational reasons )
we are interested only i the values of yU(x 1) in the
range ‘of x which is.of the order of the skin depth being
heated., The frequency used in induction hardening is "
80 high that the skin depth is very small Compared with
the radius of. ‘the cylinder hence it. suffices to have
approximate methods which . are good for small values of x
only. We note also that in- applications the permeability‘
and conductivity are functions which vary relativeiy
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8lowly, -thai; is, dewviate from 4 c¢onstant value by a

function whose order of magnitude is very small compared

to ‘that of the constant. We shall maké use of this ;

property_in construcﬁing the approximate solution,

r 2

1. The Layer Method

the model prev{ously described -- where the Permeability
P (x) and the conductivity 0~ (x) are assumed to d"e‘pend:

continuous]ly upon the spatial coordinate x =- by a model

. which méfbhe characterized by "postulating that the .

pérmeabﬂ;ity Ko ._and the conductivity Oy in the metallic;
mediunj which -océupies the half space R = .{(x,’ u)l x>0,
,ul.< -c;o} are constants in the layers L, = {(x, u} ]
(\)—l)'Ax L x £ DA::, ful < oo}. v =1, . . " N of
uniform width Ax,

| Ir wa'adopt this layer model, we will obtain the

following System of differential equations gnd boundary

conditions:

VLY - o
Ao, , | "

(v} 2
LY vky W o— o0 in R,

-ibl.) O— :l . . [ ] N
where k: = #" v Y ’ o
0 Q:O,




. hﬁ .
< %
) - B

“ ) 48 A
subject to: ' : Lo
ur) '
0 (‘D _ (PII) {/1 2L - X = =h, \U‘ < L
‘3 X X = -hd, IUI > L
S <% CRE o bl <w
) (x) '
g/_' SU -‘::0’ i X = -h, lu|.¢__oo
AN 2k "
S . =0, . x;—.O,ﬂ lu\(m
: a {(x} i aw[’) . ‘ y
H —K—ax o 3% -0 x=0, |uf <oo

il

Suw" (Ium - o, N

Sp? o g

0, Jul <

-~

T - = 0, . ‘ x:n)Ax,|u|(_oo
>y > ¢° |
Fo. > x ’f‘o‘_é—;“":o, x=\)-ﬂx,]u|<m
() (e ) Troee e N
- @ :9, . x=Vax,|ul <o
Grel) trot) (r+2)
S 7 = l,Uq =0,

x |
|

“We then use the following representations to
approximate the solutlon of’ the above boundary value
problem: 7

Ea ¥

0§ = [Pl h) s it £ 0,0 expf ]

CHOSAu S;AL)L d.h’ | - . )/
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‘ -~ () . oo e sin }L
(4.2) (x, ):[ A (1) A — d d,
l}) X, u . ! ) exp{ xf c§3 )u ST A
D)

3 Y w = [T ) exefe/STTED x}
o .

. . 8in
cos u"—-—-—A-I-' d}

AL

which uSe the following relations:
(beldla)  -a,02) exp{~An} -+ 5 (}) exp{- Ah} 2
- C ())exp Ahfl= - .L .
° fanh Ko

(®) A, (X) expf-3n] - B_()) expf- I h |

. -cJ})enﬁ)h}:o, |
(e) B A p X ~c, (A bpd + a0 k“.‘-'/xo—‘— 0,
(@) =B, (A) =cC, (X)) +a ()} =o, ,
(e} Ad”(/\ Vi -k I’y exp{-/‘ X - i(b,:,_ ;)Ax}
: - AN s k' m, el o ) Ax
(£) ", (A) exp{-/33 K0 & x)

IS - A;)(A)- GXP{—/)z—ku‘ﬂ ‘)'AI}::,O/.

' In order that (h.a)(é) and (4.4)(f) may have a

I
.O

nontrivial s-olutiaon we require that:

(4.5)  Mos - V/2h|53h — 0.
F A

.This can be satisfied approximately when the following

h01d H . ~



¥

(ho6)(a) Tom

(b) ~ 1.

P

e 2

It 18 clear that (h.6)j(a_) and {(b) can hold only 1ir }4 (x)
and g (x) -are Slowly varying functions of x. In genéral
@“5) 1s not always satisfied, the fOI‘ﬂ';S'[h.l) - M-.llp)
rep.resenti;g the approximate solution only.

. From (4.4)(a) we derive

(627 A (V) s Koy xef- 1)

At (WP W A= K, .

Similarly from {4.5)(a) and (b} we derive
/‘Ao 1 BXP{"/Yh}
Ay )f (Fo//ll)/ 21- E'L‘

(4.8) A ()=

p- . ‘ A
exp -Z" .)‘— kJ.z_Ax +‘/>tl" k2 .(V-l)A'x} .

J.o
Substitution of (4.8) into (4.3) yields:

— 1

\ | 7x ° )+ (/40//4.)/)‘-1?,:'

‘-\—(u) ‘ d . . -
(4.9) ('U (x, u) . M- ot . exp;-)h} .

50.

3
/

-y

eXp{.jg /TR Ax\_m ” . ..

cos A_u ai.n'hL dA ’

AL

.#rith_x': (\)-l)Ax_-'f, . dx)f}o.

N
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ForAx—'—) 0, (4.9) neduces to:

tmo) W (x, ) = ——.I/mexp{/ /) -k(S)dsJ

exp{ )h
At (p/ o))/ 3en k*(0) '

sin AL .
cos )u.————— dA,

AL

and (4, 6)(a) and (b) reduce to o1 0, M=o,
though (4.10) 1s. an integral over an 1nf1nite interval

we may approximate it arbitrarily .closely by an integral

over a finite interval., To See this we can calculate the
following

- | ) 4 g (x) 1-\\(/) +rOH (I)G'“(x) -A
/A= kE ) = ’
// pEES 6)3/.. {(X]o2 {x}’ A

exp{//)’-k‘(.ﬂ'ds = exp[ / ‘J/‘(S)O"(S) _Ji,f
l/‘/A'fuJ/U(S)U“(S) - A

co3 — / ‘//,}‘ff Q) 8)a(s)' -,\‘ ds
-1 expf / W A (‘")U‘.(‘S:)ﬁ ' ds}
A '

fm/u(s)o() “\
- Sin'ﬁ/ //,)f-a)/u(S)‘ -A ds

and ‘

A L TR L L. www—wn

L
. i ——— 2 |
+ 1 (0) 2/5)*5.)/.1(0)0*(0).,).

G
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We now B ‘ |
e an Bet X, (x,) )5 //3.4._1 w"};“(x)aﬁ‘*f)" -R’j

i, 2y SR )
‘ ‘K"{x, H) ’
OZ(O, )):) +L_:'l_
| o) 5 M0, A) ?
Ao, X) = BN
T 7 K, (0, )

. ‘ X
I x, }) :/ K, (t, 2) dt,
O .

X(x’ )\): cos-___l_Jo(x, >):
7

and>'

g(x! )):-‘ Sin/_'—l::'Jo(xy )),

J (x, ) ) — ‘r(‘) d d.t '
' . /0 ( ’ 2 ) ’
whel‘eupon (l;- .10) becomes

““11) H’U\’ (x, u)—-' [oo sin /\L

cos Iy

' e*xp{-)h}exp{ ‘7_—-1 J, (x, A)}

} [Ex(o N Y5 )+ plo, ) S,
(0, ) +/8 ©, ) J




PC'I[OD sin)L
i1 -
+ o

——— 0SS Ju
w L e

2
.exp{-_)h}'exp - --L J, (x, p J? | /
/2" .
[cr(O. MNEx,A) - A0, 3 Yix, A’}d'h
0, 3) + B0, ) -
If we assume that a-{0) 2 (8}4(0)/((1)/1:) and denote
the first apd Second integra%ds of (L.ll-) by f, (x,. u;. ))

and fz-‘"(x, u; A), then we find that £, (x, u; ) and

f,(x, u; A) are both dominateq b7 exp{- Yh{. Wed ofine:

— ' o I s V
{L.12) ),yﬁ(x, u) - -_é:—— -I-:/ [f,(x, u; A} 44 f. (x, u;))]d/\
o [0 . *

Then for all . >0, we can approximate (4.11) by (4.12)
with |

N 3 h [ Tr L €h

| o 5
1 _/u__I.. ‘/—r], i.e.

/l,USE (x, u) - W(x, u) 14 £.

2,  The Method of Integral Equations

From Lemma & of section 2 of Chapter 3, we have the
‘éxia.t.ence of a solution a,{x, 2). . we now wish to construct
an a_pproxihation to this a,(x, A) .using the methéd of

. integral equations.
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From (3.41)(b) we have:

(4.13) ax(x, A) = -exp{-/ PRE &

. + exp(-/ )? 'x}d L, 00, s
If we let U(x, A)-: expf-/,\ - K2 (- d {xy }), we obtain
(h-14) 2, 0x,2) = exp{~/ 33 Kz xf o+ ulx, ) ),

wher-e U(x, )\) satisfies the integral equation

(4.15) U(X 2= 2 -t
YA ["""f/" .l

- exp /) - K:, (t-X)}][Ka(t) - K:].\'
[U(t A) ¢ exp[/W t}]dt. |

We again employ successive approximations to solve (4 .15)
by defining:

u_(x, \)—0

160U, 0x, ) = W /m[’expm (x-t) }
- exp.{./)\z-%i(1 (t-x) 6(1(1?) - Kz)
g‘J ‘ ' [ 4t ) ¢ exp{./ 2 y}] dt.

*The Ssame ar ents as were used in the
e 2 rgum proof of

Lemmgy 2 permit us to Show that:

(4.17) /U(x ))-—UH (x, ))’éexp{ﬂeal/h-l( }
- fo ) k2 fae ] ™

- Real/ )\’- Ko~

nl



~ and

Y

(b.18)  u(x, h) = Z{UJ,, (x, )l) - U, (x, A}}

that is, the sequence SU (x, l)}
uniformly to a limit funetidn U(x, ) ).

(4.18) we can derive the following estimate:

 (4.19) (U{JC, N) - Un(x,)t ) I £ exp{-Real/,\‘-— K xf

N

wherex;’_f< w,

g

. 'foq.ol'xz(ﬁj - K;f dt

[+ )
/ K(t)-l{/dt

i1

o7 Real /‘ - K;

4§ /xoofxz(t)"- K2/ dt 1Y

) Real v Al- K l

([ K(t)-x/dt
Z M exp

Real K z *
® .

]K (t) - K /dt ””_.

n41 1

Real /N - k2
a /(I) 5 ‘ \
< Mexp { /o {K (t) - K“’/ dv

Real /\T_ kX

" +/

n+l 1

Real /A*- gk}

of iterates converges

ju-

55

From (4.17) and
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From (3.39) we have that

2
for all
Real /)%~ k]2 it o >‘
Hence we have from (h%?)
. : | | - ﬁ
(4.20) .}U(x. N - g, A)}ﬁ)ﬁexp .

(.)/ua,
E f ’K (t) -K.»[dt}

/0:0\ f }K (t) - K, {dt] (n41)!

we now define a()(x )) = exp{f ' }+ u, (x ))
so that from (L.14) we have
(h.21) |a,(x, %) = 2y, \)I | utx, 4) - Unlx, 1) -

_ :
< M p{/dﬁmm/x
[ {K (t)-x‘[dt} |

/ / ’K (t)-l( ldt (nfl)! :
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T

3. The Perturbation Method

Using this.method we approach the problem of

constructing appfoximations to (3.34) subject to:

. ,{I/7v) expl- ) h
(.22} (a)  af0,)) = 4 L { ]

At U/ pkON/ TR

"and

A

(b.22)(b) av(o, ) = - S g (0) a(o, )},

by assuming that'a(x,% ) can bé represented gs-
(b:23)(a)  alx, \) = ay(x, }) 4 7 (x, ))

subJect to :

(b-23)(6)  €(x) n(x, Xy oo,

where ¢ (x) is defined by K*(x) - KQ(O) + £(x) and
ao(x,A) is a solution-qf

(b-24)  a,m(x, ) ) 4 [k7(0) -2 ] ayx -0
Subject to tbé initial conditions (t.22)(a) and (b).

. Substitution of (4.23)(a) into (3.34) and (L.22)(a)
yields: , o
(4250 (a) 0, 2) ¢ &m0, 3 ) 4 [kY0) - )’ £(x) ]
R I N5 4) =0
() %(0,x) - o, 70, 1) = o. ’
~Using the a3Sumptions (4.23)(b) we obtain

S A ) +[ Kk *0) =N ]l A T - e(x) a,(x, ).

C i
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This suggests use of the approximations Q(x,')) ’_-Z-'r((x, _))
'whero ’)i{x, ,\) is defined by '

(4.26) v( G )+ [K700) = ) T7ux, M= - g a,(x, )

subject to (4. 25)(b). The Solution is found to ”be

x -
- £{s) ds

4-27) 0 (x, 2} = a,(0, )) 2O
T T

exp {-f).-x_(g)_‘ x }
ox-. g(;) exp.f'-2/)‘2-l{z(0) ‘s } d

L]

"ao(oy A ) -
- 2/ \*~ k X0)
-exp{/)ﬁ- l'[""(O)ﬁ x}.
Replacing 7 (x, ) ) by —?i(x M) in (4.23)(b) yields the
Proposed approximation to the equation which is (j ;31,)
Subject to (4. 22){a) and (b}). \

4. Some Error Esti'mates.

From (3.3) we note t.hat the solution (fJ(x u) is

represented by an mproper integral with the integrand

being the solution of a second order ordinary dlfferential -

equation subject to two-point boundary conditions, In
pPractice, we can not obtain the exact solution of the

differential equation uSing a finite number of st.eps while

£

for computational purposes we uSually replace the 1mproper

iy

g
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9 .

integral by an integral taken over a finite' interval.
In this section we give some error bounds based upon

“the above considerations,

(a)  The Error due to Changing the Limits of Integration

We have seen that:

' © Y  sin L.
(3.3) ,U(x, u)*—-‘/ A(X, 2 ) cos Ay — d),
' o | NI
If we now define: -
) sin XL
28 Yol w = [T a0 eon My = a),
o T.

i

we obtain /

| oo
@29 (Wi, w) - P, ) <f

!A(x, X) cos }lu
3]

ai
in >1L ! .

. AL

We have already shown in Lemma 6 and in Lemma 8 that

-~

IA(x, )\}' is dominated by exp{-ﬂ h)for large values of 2.
We may a3sume without loss of generality that 9 ig
Sufficiently large that this dominatjon holds -and we

then have

.l (L.BO)" !-V/(x, u} - ,%e(x, u)} 5 /00 exp{-)'h}d)

e

providli_ng that

: 1
(.31« e=dhy .
- h El B . v



{b) The Error due to Approxlmating he Integ,rand (

If we replace Alx, ) ) by an approxima ing function

A(x Y ),. where A(x ) satisfies B

- (%.32) )A(x,\) - Alx, )\)J<e
and if we define '

)

- C A e i ) |
C33) u)‘:‘[ R0, %) cos hy SiRAL a),
A e it

[

we obtain_ |
(h.34)

] li/@(x’ U).- i/D;(x’Au)l

—
——

0 ‘
[- A(x,'/\_\) -A(x )) cos\u

_é [(;1,'“3;’ A)

0 . in A
+{ /A(x,A)-A(x X)Ncos u-——-—~---sn -
1 L

AL

dA/

et e e

A(Jgﬂ)”cosﬂ n}L!d‘A.
AL

d A
s
- Z(x, h )/. d)

Z(x,})]id
L

ar
)
er1 Bj] s |




By combining (&4.30) and (4. Jh) we f;nally obtaln

e

(4.35) | ]L/J(x, u - qza(x u)]4 )L{/(x u) - ly (x, u)(
[t w - B, )
. l |
:'_461+E&[1 +——1ne}
This error estlmate is composed of two parts;
the first due to the use of a finite interval of integratlon
and which .may be made arbitrarily 8mall; the second due
to aporoxlmatlng t.he :Lnt.egrand The latter obviously

depends on the goodness of the approx1mation.

o

-~

¥
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CHAPTER 5
- ) . ;
. S CONCLUSION _
y

This study has been based upon a phy31cal problem
of considerable interest to industry and technology -
that of surface hardening of metallic components-to
improvq their performance characteristics in various
mechanisms. The particular application chosen is the
surfacé hardening of a.- long_circular rod by the use of

induction heating, for which the mathematical formulation

of the electromagnetic part of the problem has been choaen

for study. ~

The case of the cylindrical rod ;as'been formulateqd
mathematically as a System of differential equations with -
coupled boundary conditions. A aimplification in this
probmvp has been made by - approxlmating it by a problem
in the half pPlane. The representation theorem for the
Solution of the latter problem is then stated and proved,

Being an applied problem, some methods for evaluating
the solution have been brovided. These are the layer
method, the method of integral eduations; and the
Perturbation methoq: tOgether Qith'séde error estimates,
It is hoped that thi?.presentétion wi}lLbe us?ful not,
only for.the present|problem, but also as a method for

attacking other problems in engineering and physics having

Similar formulations."

w
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Few investlgatora are so blessed as to work on a
Problem to which they can supply all the: aolutions and
“this problem likewise leaves questlons unanswered. Some
further topics which require investigation in order to
further facilitate the more general adoptlon of the method
of surface hardening by 1nduction heatlng will be mentioned
in closing.

The first physical problem that cones to mind is
that of the end conditlons that is to say, the effects
on the rod on entering and leaving the coil. The
' consideration of this problem will involve much more
complicated statements of bqundary conditions, but will
be of condiderable interest in applications.

. Another physical problem concerns the hardening of -
workpieces of different shapes. At the outset it is
obvious that the simplification to a plane problenm is
not likely possible for even simple Shapes to be used,

The addition of another dimension as well as the new
boundary conditions Wlll be the principle dlfflCultleS
met in this kind of extension,

Froem the fact that induction hardeni;E i3 reproducible
in practipe we infer that the solution is unique. Another
mathematical problem for 1nvest1gat10n is that of Showing

* that the solution f@% any -of . the' problems formulated has

a 8olution which is untque.

IS
~
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4 lThe final problem, and that of the greatest 1mportan¢e 
for engineéring applications, is the inverse problem. That
is to say, the.grven Qorkpiece has ‘a specified shape and is
to be hardened in a desired patte;n which need.not be
uniform or even continuous, Many parameters are required
to be deflned for the set up of the process, some of which
may permit alternatlve combinations whlch‘may involve
optimizing trade offs in application. The shape of the coil
to conform to the éhape of the workpiece is the_moat obvious
parameteqﬁﬁhich may be varied. Another involves the end
effects, or the orientation of small workpieces‘for
presentation to the process. V810C1tY of passage, and the
frequency and intensity of the current in the coil are
other parameters that come readily to mind as being

available for variation.

-

while the inverse problem isa probably beyond the
possibility of mathematical analysis in the near future,
its approximation empirically or heuri}tically i3 needed

for the general adoption of the method in mamfacturing

technology.

. !
It is héped [that these thoughts may encourage others

to consider the flurther ramifications of the problem,.

-
- .

~000 -
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