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Abstract

Ultrasonic image acquisition with non-phased 2D arrays is a relatively new method in NDE inspection. 

Historically, ultrasonic array development progressed mostly in the medical imaging where phased 

arrays found a great application. However, in the field of NDE inspection of metals, heavy plastics 

and composites, and many other materials the applicability of phased arrays is often restricted due 

to physical limitations. On the other hand, using versatile systems with mechanical scanning is not 

always convenient. Therefore, non-phased arrays of independent elements have a strong potential for 

becoming a valuable tool for rapid ultrasonic image acquisition in the industrial environment as well as 

in many other areas where conventional methods may not be applicable. The main motivation of this 

work is to build the necessary mathematical apparatus for estimating the process of signal and image 

formation in such systems. A model of signal penetration through a complex multilayered structure 

with non-parallel interfaces is discussed in the plane-wave approximation. This model is then refined 

to finite-size transducers and finite-size defects inside the sample. A new method of obtaining the 

beam structure in such multi-layered media is presented. The advantage of this method is that it 

allows for a very fast calculation while the precision is still comparable to more precise and more 

computationally expensive methods. A new method of calculating the response of the transducer 

to defects inside the sample is presented and discussed. The results of numerical calculations using 

these two methods are discussed and compared with experimental data. Using these models, image 

formation algorithms together with new image refining techniques are discussed.

iii

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



To my family

iv

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Aknowledgements

This work was carried out at the Centre for Imaging Research and Advanced Materials 

Characterization, School of Physical Sciences, University of Windsor.

I would like to express my sincere gratitude to Roman Gr. Maev, Professor, Head 

of the Centre, for support, advice, and excellent working conditions. It is hard to 

imagine this project would succeed w ithout his energy and insight.

My sincere gratitude is due to Serge Titov and Andrei Ptchelintsev whose knowl

edge and expertise in the area of ultrasound, engineering and electronics has been 

an inexhaustible source for me and a crucial resource for developing our own array 

system.

My deepest respect and appreciation is due to Elena Maeva and other members of 

the Centre and the School of Physical Sciences for their work and great support.

I would be remiss if I did not mention our secretaries Sarah Beneteau, Emily 

Schmidt and Sharon Horne, who I bothered repeatedly and was rewarded only by 

their kindness and generosity.

Of course, all of this would have no meaning if I did not thank my parents. There 

will never be enough words to express my love and convey my deepest appreciation 

for their support, encouragement, and patience.

v

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Contents

List o f Tables viii

List o f Figures ix

1 Introduction 1

2 Basic Principles 6

2.1 Propagation of Elastic Waves in Unbounded M e d i a .................................. 7

2.2 Reflection and T ran sm iss io n .............................................................................  14

2.2.1 General Boundary C o n d itio n s ..............................................................  15

2.2.2 Reflection and Transmission a t a Solid-Solid In te rfa c e ...............  19

2.2.3 Reflection and Transmission at a Fluid—►Solid In te rfac e ............ 24

2.2.4 Longitudinal Wave Incidence on a Solid—►Fluid Interface . . . .  25

2.2.5 Shear (SV) Wave Incidence on a Solid—►Fluid In te r fa c e ...............  26

2.2.6 Reflection of a Shear (SH) Wave from an In te rface .........................  28

2.3 A tte n u a t io n ............................................................................................................ 29

3 R eflection and R efraction at M ultiple Interfaces 32

3.1 The Measurement M o d e l....................................................................................  32

3.1.1 Reflection and Transmission at the Delay-Coupling Interface . . 35

3.1.2 Reflection and Transmission at the Coupling-Sample Interface . 36

3.1.3 Reflection from the D e f e c t ....................................................................  40

vi

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



3.1.4 Combining Reflection and Transmission F a c to r s ...........................  40

4 M odeling M atrix Transducer Elem ents 44

4.1 The Piston Transducer M o d e l .........................................................................  45

4.2 Stationary Phase Approach ............................................................................  48

4.3 Propagation through Interfaces—Direct C a lcu la tio n .................................  51

4.4 Equivalent T ra n s fo rm a tio n s ............................................................................  52

4.5 Calculating the Detected S ig n a l ...................................................................... 56

4.6 Comparing Different M e th o d s .........................................................................  59

5 Studying the Behavior of the M odel 65

5.1 Specifying the Reference S y s te m ...................................................................... 65

5.2 Influence of Delay Line and Immersion L a y e r..............................................  68

5.3 Influence of Defect Location and O rie n ta tio n ..............................................  71

5.4 Dependence on Transducer Frequency............................................................ 75

5.5 Obtaining Im a g e s ................................................................................................. 79

6 Conclusions and Future Work 86

A M athC A D  Source for O btaining Transmission and R eflection Factors 89

B O btaining A ngle o f Incidence from D iscrete Phase Values 108

Bibliography 110

vii

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



List of Tables

3.1 Mechanical properties of some materials ...................................................... 33

5.1 Param eters of the modelled s y s t e m ................................................................  66

viii

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



List of Figures

2.1 Polarization of the acoustic wave relative to the in te r fa c e ......................... 15

2.2 Reflection and transmission of a plane longitudinal and shear wave in

general c a s e ............................................................................................................ 16

2.3 Reflection and transmission of a plane longitudinal wave

at a fluid-solid interface ....................................................................................  24

2.4 Reflection and transmission of a plane longitudinal wave

at a solid-fluid interface ....................................................................................  26

2.5 Reflection and transmission of a shear (SV) wave

at a solid-fluid interface ....................................................................................  27

3.1 A simplified model of the measurement sy s te m ............................................. 34

3.2 Reflection and transmission at the immersion-delay in te rfa c e .................. 37

3.3 Reflection and transmission at the delay immersion in te rfa c e .................. 37

3.4 Reflection and transmission at the immersion-sample in te rfa c e ..............  37

3.5 Reflection and transmission at the sample-immersion interface, P-wave

incidence ..................................................................................................................  38

3.6 Reflection and transmission at the sample-immersion interface, SV-

wave incidence........................................................................................................  38

3.7 Reflection from the void defect, P-wave in c id e n c e ...................................... 39

3.8 Reflection from the void defect, SV-wave incidence...................................... 39

3.9 Conversion of wave modes inside the s a m p le ................................................  41

ix

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



B

3.10 Effective reflection factors from a flat-parallel d e fe c t.................................. 42

3.11 Effective angles and reflection factors, flat-parallel defect, 0  =  0° . . . .  43

3.12 Effective angles and reflection factors, flat-parallel defect, (f> = 10° . . .  43

4.1 A planar piston transducer m o d e l ....................................................................  45

4.2 The amplitude of pressure distribution for a flat square transducer . . .  47

4.3 On-axis pressure for circular and rectangular tra n s d u c e rs ......................... 48

4.4 Propagation of a wave through an interface along a ray p a t h .................. 53

4.5 Geometrical interpretation of equivalent tra n s fo rm a tio n s ...............  54

4.6 Equivalent transform ation for multiple in terfaces....................  55

4.7 General model for obtaining detected s i g n a l ................................................  56

4.8 Comparison of exact calculations with the method of equivalent trans

formations ...............................................................................................................  61

4.9 Using different approximations to  calculate transducer response . . . .  63

4.10 Comparing experimental and theoretical r e s u l t s .........................................  64

5.1 Dependence of signal on transducer tilt for reference s y s t e m .................. 67

5.2 Dependence of the signal on thickness of delay line ................................... 69

5.3 Angular sensitivity for different thicknesses of delay l in e ............................ 69

5.4 Influence of immersion layer th ick n ess .............................................................  70

5.5 Dependence of the signal on thickness of the water c o lu m n .....................  70

5.6 Angular sensitivity for various thicknesses of the water c o lu m n ..............  71

5.7 Reflection amplitudes vs. defect depth for various sizes of defects . . .  72

5.8 Dependence of the reflected signal on defect tilt for various defect sizes 73

5.9 Lateral displacement of defects and partial cov erag e ................................... 73

5.10 Dependence of reflected signal on lateral defect displacement for various 

defect sizes...............................................................................................................  74

x

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



B

5.11 Choosing the effective size of the m atrix e lem en t.......................................  76

5.12 Effective sizes of m atrix e le m e n ts .................................................................. 77

5.13 Dependence on transducer f r e q u e n c y ...........................................................  78

5.14 Frequency shift for two different angles of t r a n s d u c e r .............................  79

5.15 A typical waveform received by the element of a tra n sd u ce r...................  80

5.16 The m atrix transducer and calibration sam ples..........................................  83

5.17 Interpolated images of calibration sam p le ....................................................  84

B .l Phase delays on a rectangular grid ..................................................................108

xi

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER

1
Introduction

Acoustical imaging is one of the im portant applications of ultrasound. For many 

researchers the ability to visualize the distribution of mechanical properties has been 

a driving force in developing new and improving existent methods and techniques in 

this area. Today we have methods for studying live cell structures and locating sunken 

ships on the sea bottom , obtaining images of an embryo and finding corrosion under 

paint films, checking for structural integrity in novel composites and mapping elastic 

properties of various materials on the nanoscale.

To build an image, the information on mechanical properties should be obtained 

at different locations in the sample; therefore, some sort of scanning is involved. The 

two common scanning methods are mechanical scanning and phased arrays with a 

synthetic aperture. Mechanical scanning is mostly used in desktop systems, such as 

scanning acoustic microscopes, or industrial nondestructive evaluation (NDE) systems 

based on a 3D mechanical scan in a water tank. In such systems the ultrasonic probe 

is moved in one, two, or three dimensions relative to the investigated object collecting

1
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Introduction 2

information at each scanning point. The systems based on the principle of synthetic 

aperture, also known as beam steering, scan the studied object by sending ultrasonic 

waves in a specific direction. To achieve tha t, an electric pulse is delivered to  piezo

electric elements in the array with slightly different delays; the time lag is controlled 

mechanically or electronically to produce the required shape of the wavefront.

The non-phased array transducers, discussed in this dissertation, are simpler than 

phased arrays. The design of the probe incorporates a two-dimensional m atrix of 

transducers, where each element functions both as transm itter and receiver of ultra

sonic waves. Instead of working in ensemble w ith other elements to  synthesize the 

aperture, each element of the m atrix works independently. Common principles on 

which the function of the array is based are the same as in many pulse-echo ultrasonic 

devices [1, 2, 3, 4, 5, 6]. The construction of the probe is also in many ways similar 

to  the phased arrays [7, 8, 9, 10, 11, 12, 13, 14] and is described in [15, 16]. There are 

some im portant differences, however. For example, the ratio of the element size to  the 

wavelength is larger, and there is more power feed to  each element in the array.

The resolution of non-phased arrays is limited by the size of its elements. There is 

always a compromise between the sensitivity of the array and its resolution. Arrays 

w ith higher density provide better resolution, however there are both manufacturing 

and physical limitations on how small the element can be. From the point of view of 

manufacturing, it harder to  provide sufficient power to  smaller elements of the array 

and it is more difficult to  build high density arrays with uniform properties across 

all the elements. At the same time, smaller element sizes result in a larger spreading 

of the beam causing blurring of the image and more energy loss. Another im portant 

issue involves the angular stability of the system. That is, how the probe sensitivity 

is affected by its orientation to  surface of the sample.
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Comparing characteristics of non-phased arrays with their phased siblings or sys

tems with mechanical scanning is not a rewarding task now, at the early stages of 

their development. The signal to  noise ratio is insufficient for obtaining images with 

high contrast, the spatial resolution is low, there are no arrays w ith focused elements 

available at the moment, and finally, the manufacturing price is relatively high. On 

the other hand, there are many application areas where neither mechanical scanning, 

nor phased arrays can be used. Regarding the mechanical scanning systems, they are 

fragile, heavy and there are just a few of them  designed in portable implementations. 

At present they cannot achieve the level of m iniaturization and robustness already 

available with phased and non-phased arrays. The phased arrays, historically, were 

designed for medical application and due to physical limitations they cannot be used 

effectively for inspection of metals, dense plastics and composites. In addition, the true 

2D phased arrays are only in the development stage at present. Therefore, despite all 

the issues w ith non-phased arrays, they seem to have a strong potential of becoming 

a valuable tool for rapid ultrasonic image acquisition in the industrial environment as 

well as in many other areas where usage of conventional methods is restricted. W ith 

advances in piezomaterials, transducer manufacturing, electronics, and other related 

areas this technology is becoming a real portable alternative to desktop acoustical 

scanners.

The present dissertation is a part of a larger project carried out in the Centre 

for Imaging Research and Advanced Materials Characterization, in the University of 

Windsor. The main goal of this project is to  build a 2D non-phased array system. 

The objectives of this project include:

•  developing technologies for manufacturing non-phased 2D transducers;

•  developing electronics which includes pulser-receiver, multi-channel multiplexer,
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Introduction 4

digital-to-analog converter, and a controller;

•  developing controlling software together w ith signal and image processing m eth

ods;

•  developing computer vision or fussy logic algorithms for autom atic recognition 

and measurement of defects or structural features.

The more we understand the physics behind the function of the array transducer the 

more effectively many of these tasks can be fulfilled. Here are some of the advantages 

to having a consistent m athem atical model of transducer operation:

•  choosing the characteristics of the transducer, such as size, frequency, immersion, 

delay line, etc. to  develop an optimal configuration for a specific task

•  developing new methods for signal and image processing

•  generating artificial da ta  sets for tuning and testing the image processing m eth

ods and com puter vision/fussy logic algorithms

We begin in Chapter 2 by reviewing the basic principles of wave propagation in 

continuous unbounded media, extending this knowledge to  the reflection and transm is

sion problem at various types of interfaces. Unfortunately, in many books the solution 

for reflection and transmission factors contains errors, so a lot of attention is focused 

on deriving these equations accurately.

The equations obtained are used in Chapter 3 to  study the reflection and trans

mission problem numerically. In addition, a more complex case of multiple media and 

interfaces is discussed. In this chapter we start formulating the m athem atical model 

of a single transducer element.

In Chapter 4, the beam structure of a finite size transducer element is discussed. 

We also dem onstrate how the structure of the beam can be obtained in the stationary
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phase approximation. For multiple interfaces, using a high-frequency approximation 

obtained in [1], a m ethod of equivalent transformations is derived. In the paraxial 

approach, this m ethod has more restricted applicability, however its performance is 

much higher. In the stationary phase approximation, it allows obtaining the beam 

structure analytically. In addition, we show the m ethod of calculating the signal 

received by the transducer operating in the reflective mode. The advantage of this 

m ethod is th a t it does not require calculating the beam structure of the reflected wave. 

Only the structure of the forward propagating wave, location, orientation, and m aterial 

of the defect are required to  estim ate the response of the transducer. The methods 

and approximations described in this chapter are compared and the differences are 

discussed. In addition, we dem onstrate th a t results of our m athem atical model are 

consistent with experiment.

In Chapter 5, we study the behavior of the model in various configurations. Several 

virtual experiments are staged to  illustrate how the model responds to changes in 

size and frequency of the transducer element, properties of the immersion, location 

and orientation of the defect, etc. Finally we discuss the process of image formation 

and dem onstrate several methods to improve the quality and stability of the images 

obtained.
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CHAPTER

2
Basic Principles

This chapter presents an overview of basic physical aspects of elastic wave propagation, 

covering questions of reflection, refraction and dissipation of the ultrasound. The 

discussion starts with a derivation of the basic equations describing the physical effects 

created by external forces acting upon continuum elastic media. These equations 

create a basis with which to study the propagation of waves in continuous media. The 

next step is investigating the propagation of acoustic waves through interfaces, where 

expressions for reflection and transmission factors are discussed. Derived for various 

types of interfaces between fluids and solids, these factors provide necessary tools for 

studying propagation of ultrasonic beams in complex multi-layer structures. Finally, 

various mechanisms and effects of attenuation are considered.

6
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Basic Principles -  Propagation of Elastic Waves in Unbounded Media 7

2.1 Propagation of Elastic Waves in Unbounded Media

Prior to  studying the propagation of sound in complex systems w ith multiple materials 

and interfaces, we need to  understand the basic principles of sound wave propagation 

in unbounded media.

The starting point of this discussion is the principle of conservation of linear mo

mentum within an arbitrary  volume. Expressed in terms of particle displacement u, 

it can be w ritten in Cartesian coordinates as

+  Pfy = pUj; i , j  = 1,2,3; (2.1)

where <7̂  is the stress tensor, p is the density, bj is the body force per unit mass, and

Uj is the particle acceleration. This equation is sometimes called the Cauchy equation 

of motion. In a normal environment, the body forces, such as gravity, are negligible.

The principle of conservation of angular momentum is satisfied if the stress tensor 

a  is symmetrical (see, for example, [17], or [18])

&ij & (2-2)

The strain tensor, also referred as the Lagrangian strain tensor is related to  particle 

displacement u  as
_ 1  (0 o\

£lJ 2 \ d x j  dxi dx{ d x j )

For small deformations, the product term s in equation (2.3) can be neglected.

Under these conditions the strain tensor is

The relationship between the strain  and the related stress is a property of the 

material; it is described by constitutive equations. If the continuum media is a linear
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Basic Principles -  Propagation of Elastic Waves in Unbounded Media 8

and elastic material, these stress-strain relations are referred to  as the generalized 

Hooke’s law:

@ij CijklEkl ( T  T) j

where is the elastic stiffness tensor. The generalized Hooke’s law by itself is noth

ing more than  a statem ent th a t the stress is proportional to the gradient of deformation 

occurring in the material. These equations assume a linear relationship between the 

components of the stress tensor and strain tensor, which is generally valid for the case 

of small deformations. In this thesis, we focus our attention on m atrix transducers 

which produce ultrasonic waves w ith amplitudes below the level where nonlinear ef

fects can be observed. The vast m ajority of ultrasonic NDE equipment operates in 

linear mode.

Since the stress a  and strain e are tensors, we can conclude th a t the stiffness is a 

forth order tensor. Due to the symmetry of the stress and strain tensors, the stiffness 

tensor must satisfy the relation

C i j k l  —  C i j l k  —  C j i k l  C j i l k ) (2 .6)

and, in general, only 36 of the 81 constants are independent.

To simplify the analysis, it is common to  replace the components of tensors by 

introducing new quantities:

similarly

£ 1 1 £ 1 2 £ 1 3 £ l £ 4 £ 5

£ 2 1 £ 2 2 £ 2 3 = £ 4 £ 2 £ 6 ; (2 .7)

£ 3 1 £ 3 2 £ 3 3 _ £ 5 £ 6 £ 3 _

o - n 0 1 2 0 1 3 0 1 0 4 0 5

0 2 1 0 2 2 0 2 3 = 0 4 0 2 0 6 (2.8)

0 3 1 0 3 2 0 3 3 0 5 0 6 0 3
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Basic Principles -  Propagation of Elastic Waves in Unbounded Media 9

The strain  tensor can now be expressed as

£1

£2

£ 3

£ 4

£ 5

£6

1 ( i2

1 ( -  2 \ t

 ̂ /  du-3 . dm \
_2 y&ri 8x3 )  .

In this notation, the generalized Hooke’s law becomes

dm 
dx  i

8U2 
dx  2

du;j 
dx  3

+ d u i  \
dxi J, 8x2

du2 I dti2.X 
8x3 8 x 2 J

Oi CijEj, i , j  =  1 , . . .  ,6;

where
Cnl Cij 11 Cn4 (‘.jj ] 2

Cn2 C 'ij‘2‘2 Cr(5 Cjj'13

Cn3 Cij33 Cn6 Cij23i

and

(2.9)

(2.10)

(2 . 11)

( 2 .12)
i =  j  =  1, 2 or 3 

2 +  j  +  1 , 2 7  ̂ji and 2 =  1 or 2 .

Furthermore, for isotropic materials, the additional axes of symmetry will result in 

further reduction of the elastic stiffness tensor

cn  C12 C12 0 0 0

c 12 cn  C12 0 0 0

C12 C12 cn  0 0 0

0 0 0 c44 0 0

0  0 0 0 c44 0

0 0 0 0 0 c44

C44 =  2 (dLl — C12)i

0 2

0 3

<74

<75

_C6 _

£1

£2

£ 3

£4

£5

£6

(2.13)
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Basic Principles -  Propagation of Elastic Waves in Unbounded Media 10

which has only two independent constants. By introducing new constants

A =  cn  — 2c 4 4 ; (j, = c44, (2-14)

and returning back to  the double index notation, the equation (2.13) can be rew ritten 

as

(T%j 2.iis /j “I- XekkSij. (2.15)

The constants A and \i are called Lame constants. The relations between the Lame 

constants and more commonly used elastic constants are

^  _  /r(3A +  2/x) Young’s modulus (2.16)
A + fj,

G  =  Shear modulus (2.17)

^ AO Poisson ratio (2.18)

k  =  . ^ — - Bulk modulus (2-19)
3(1 — 2v)

Equations (2.1), (2.2), (2.4), and (2.15) are the basic equations of linear elasticity. 

After expanding the indices, they produce 15 equations with 15 unknowns

ui,U 2 , U3 , a i, a 2 , cr3, a4 , cr5, a^, £2 : £2 , ^4: 5̂-, ^6- (2 .20)

which represent 3 displacements, 6 stresses and 6 strains. These equations can be 

combined and w ritten as one set of equations. The resulting equations are known 

as Navier’s equations for the displacements Ui over the range i = 1,2,3. To derive 

Navier’s equations, we calculate d o ij/d x j  in terms of the displacements u% and substi

tu te  the results into the momentum equation (2.1).

Neglecting the body forces, we write the final form of Navier’s equations in Carte

sian coordinates

=  i =  1- 2 ’3; (2 -21)
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In vector form these equations can be expressed as

(A +  )Lt)V(V • u )  +  j iV 2u  =  pit. (2 .22)

This is the fundam ental differential equation of three-dimensional elasticity.

Navier’s equations can be simplified using the Helmholtz decomposition theorem, see 

for example [18]. By representing the displacement vector u  =  Ui + u s as a combina

tion of longitudinal (V x it; =  0) and shear (V • u s =  0) waves, we separate equation

(2.22) into two independent ordinary wave equations:

where A  is the amplitude, u> is the angular frequency, k  is the wave vector, and p  is 

the polarization vector. The negative sign corresponds to a wave travelling along the

p ^ r  -  (A +  2/1)V 2« , =  0, (2.23)

(2.24)

This may also be expressed in terms of longitudinal and shear (or transversal) 

velocities q  and cs

ci = y /c u /p  =  y/(X + 2 p)/p-, (2.25)

(2.26)cs =  V cm / p =  \FvT p -

Thus, our wave equations (2.23) and (2.24) may be rewritten

(2.28)

(2.27)

A well known plane harmonic wave solution for equations (2.27) and (2.28) can be 

presented in the form

u ( r , t ) =  A p  ei(-k"rZfuxt\ (2.29)
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k  vector, and the positive sign corresponds to  the opposite travelling wave. For lon

gitudinal waves, the polarization vector p  coincides with the direction of propagation, 

while for shear waves it lies in the plane perpendicular to  the direction of propaga

tion. Since the direction of wave propagation is determined by the wave vector k , the 

following conditions are imposed on the polarization

p  x k  =  0, for the longitudinal wave; (2.30)

p  • k  =  0, for the shear wave. (2-31)

An alternative way of obtaining solutions for Navier’s equations (2.22) involves 

using vector potentials. In this case, the displacement field u  is presented as

u  =  V 0 +  V x ^ i ;  (2.32)

where <j> is the scalar part and is a vector part of the vector potential. The wave 

equations in this case have the same form as equation (2.27) and equation (2.28)

-  c?V20 =  0; (2.33)

-  c JV V  =  0. (2.34)

Additional considerations are required when considering fluids instead of elastic 

solids. Generally, the accurate consideration of sound propagation in fluids should take 

into account the fluid viscosity. Therefore, the theory of wave propagation in fluids 

normally deals w ith velocities instead of displacements, and involves velocity strain 

tensors instead of displacement strain tensors, as in elastic solids. The corresponding 

equations of motion can be found in literature as Navier-Stokes-Duhem equations [17]. 

However, when considering an idealized model with no viscosity, the fluid behavior can 

be explained in the same term s as the behavior of an elastic solid with zero resistance
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to shear strains. By setting p  =  0, the stiffness tensor simplifies to

-t_7 (2.35)

A A A 0 0 0

A A A 0 0 0

A A A 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Therefore, from equation (2.15), the constitutive equations for an ideal fluid are

O'ij — (2.36)

The £kk factor has an explicit physical meaning. Let’s express it through the 

particle displacement:

£kk ~~ 2 id̂ k,k T  ^ k,k) V'kyk
dur du„ duz

+ + (2.37)
dx  ' dy  ' d z  ’

This is a relative change in an elementary volume, or dilatation. The product of the 

dilatation and A, which in this case is known as the bulk modulus of a fluid, corresponds 

to  the pressure inside the elementary volume:

(2.38)

where the negative sign reflects the fact th a t the pressure is proportional to  the volume 

compression.

Similar to  the elastic solid case, we obtain Navier’s equations in Cartesian coordi

nates

k,ki pdii (2.39)

or in the vector form

A V 2w =  pit. (2.40)
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In terms of the sound velocity in a fluid, c = \/X /p ,  the three dimensional wave 

equations for a fluid have the same form as longitudinal wave equations for an elastic 

solid

^  -  c2V 2u  =  0, V x u  =  0. (2.41)
o tz

Similarly, we can obtain the wave equation for pressure

-  c2V 2p =  0. (2.42)

The harmonic plane wave solution for this equation has the same form as equa

tion (2.29):

p (r ,t)  — A e i('k'rTwt\  (2.43)

As we can see, there are many similarities between the fluid and solid media. In

fact, when the shear waves are unim portant, it is often convenient to consider the solid

media as a fluid.

2.2 Reflection and Transmission

One of the im portant topics in studying wave propagation is the wave reflection and 

transmission at an interface between two different media. The most common approach 

to  obtaining reflection and transmission relations involves specifying and applying 

boundary conditions at the interface. Here we consider a simplified case of a plain 

harmonic wave hitting a plain interface between two semi-infinite media. Solving the 

interface problem in this case implies obtaining angles and amplitudes of reflected 

and transm itted  waves for a given amplitude and angle of the incident wave using 

specific boundary conditions, such as phase, displacement, and strain matching at the 

interface.
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2.2.1 General Boundary Conditions

From the practical point of view, if the first medium is an elastic solid, it is convenient 

to  consider the cases of incident longitudinal (P) and shear (S) waves separately. 

Furthermore, it is common to separate vertical (SV) and horizontal (SH) polarizations 

of the shear wave, which correspond to displacements parallel and perpendicular to 

the interface (figure 2 .1).

SV

SH

Figure 2.1. Polarization o f the acoustic wave relative to the interface

Assume th a t medium 1 is in the half-space z  <  0 and medium 2 is in the half-space 

z  >  0. The coordinate system is chosen such th a t the wave vector of the incident 

wave lies in the x z  plane perpendicular to  the interface. For isotropic media, in such 

a coordinate system, the P and SV waves have displacement components in the same 

x z  plane, while SH waves have displacements along the y axis. Since SH waves do not 

couple with either P or SV waves, the problem, therefore, can be solved separately for 

SH waves and combinations of P and SH waves.

Consider now the geometry shown in figure 2.2. The displacement vector u , lying
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As R s

UlT

Figure 2.2. Reflection and transmission of a plane longitudinal and shear wave in

general case

in the xz  plane, can be represented as

u  =

The wave displacements then can be w ritten as

. / s i n a A  r / \ • iuLf  = A A  exp [ikli (x  sin +  z c o sa i)  — i ivtr,
\cos Oil J
(  COS P i  \  f  1 /  • r t  n  \  ■ 1Usi = As . exp[iksi (x s in f t  +  2 cos f t ) -  nut]; 

s m fty
_ /  sina'i \  r., . . .. . ,

Ulr = R l I ,1  exp[iKi l (a;smQ'1 — zcosctA — luty,
V *“  COS

f  cos j3‘f \
Usr  =  ^51 . J  ) exp[i/cs l (x  sin P[ -  z  cos f t ) -  iu t]; 

\sm  P i /

u LT = Tl [ z 1 expfifcift^sina^ +  zc o sa 2) -  icoth 
\ cos a 2!

sin « 2

!OS o;2
. COS f t  \ r / . n  n  \ ■ luST — Ts [ . exphftftx  sin f t  +  2  cos f t )  -  iuit\. 

- s m  f t /

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
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dux
&XX — dx  ’

duz
£zz = d z  ’

1 ( dux
&XZ 2 \ d z

Recall the stress-strain relations from the previous chapter. In our two-dimensional 

coordinate system, the strain tensor (2.4) has the following components:

(2.51)

(2.52)

+ ^  <2'53> 
and the corresponding stress-strain relationship (2.15) can be rew ritten as

x duz , ( dux duz \
Gzz =  2fj,£zz +  A(exx +  ezz) =  2p ,-^-  -I- A f > (2-54)

<r„ =  =  /i ( j f  +  . (2.55)

By differentiating wave displacements, we obtain expressions for normal and tan 

gential strains:

' a x z \  a ■ i f  ^ is in 2 o :iL I I = A L ikL1[ ) exp[...]; (2.56)
crzz )  \ 2 //i cos2 O'! +  A i/

fff f )  =  iksi (  C°S2f '  )  exp[...]; (2.57)

( c * £ )  = R l ikLl (  S2m ,2“ ; )  exp[.,.]; (2.58)
\ < ? z z R J  \ 2 / i i  CO S2 a '  +  X J

n  cos 2/?J

m -7 A*2 sin 2q:2

ifcsi C /il exp[- • (2‘59)\~ H i sm 2p[J

**T ) = T L ikL2( "  '  I exp[...]; (2.60)
\°zz )  \2jtt2 cos2 a 2 +  A2y

m  Z' /x2 COS 2/52
T s i W  ■ 0/o ) exp[...]; (2.61)

\~ fJv  sm 2p 2J

where the exp[...] expression is the same as for the displacements.
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The phase m atching conditions force the k projection on the axis to  be constant, 

which leads to  Snell’s law

sincti s in a j _  s in a 2 _  sin/?i _  sin/3j _  s in /?2 (2 62)
CLl CLl CL2 Csi Csi Cs2

Snell’s law, in turn , defines angles for reflected and transm itted waves.

Using Snell’s law we may further simplify the strain equations using the identity

2/r cos2 a  + X =  (A +  2/r) cos 2/?; (2.63)

where a  corresponds to  the longitudinal wave and f3 corresponds to  the shear wave. 

Consider now the phase factor

exp[i/c(a; sin a  ±  z  cos a) — icut], (2-64)

After applying Snell’s law, the phase factor at the interface (z =  0) becomes the same

for all types of waves. It is possible to  get rid of it just by choosing an appropriate

tim e and x  coordinate.

Recall also th a t the Lame coefficients in term s of longitudinal (cl) and shear (c$) 

velocities are

A +  2/i =  pc2L, /i =  pc |. (2.65)

To further simplify the equations, we introduce the acoustic impedance

Z  = pc (2.66)

Let’s rewrite the expressions for strains taking into account (2.62) and (2.63), and
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assuming the phase exponent equals 1:

a / /  =  iojA l Z s i • 2 cos a i  sin P i; o f /  =  iloA l Z L1 cos 2/?i ;

a xzSI -  iu)As Z SiCos2Pi, crz* = -iu )A s Z si sin2Pi; (2.67)

o f f  =  - iloR l Z si • 2 co s« i sin fix; o f f  =  iloR l Z ia cos 2pi ;

o f f  =  -ia>.Rs ^ s i  cos 2PX; of/* =  ^ s i  sin 2/?i; (2 .6 8 )

u / J  =  iwTL ZS2 • 2 cos q;2 s in p2; u / J  =  io;TL ZL2 cos 2/52;

u f j  =  iwTs Z52cos2/?2; = ~itoTs Z S2 sin 2/?2; (2.69)

These expressions, together w ith the expressions for displacements (similarly as

suming the exponent to be 1), form the basis for studying reflection and propagation 

at different types of interface.

2.2.2 Reflection and Transm ission at a Solid-Solid Interface

The interface problem for a boundary between two elastic solids is strongly influenced 

by physical conditions at the interface. Normally these conditions may vary from a 

welded contact to  a smooth contact. For the case of the welded contact, the normal 

and tangential components of displacements and stresses are the same at z  =  0 from 

both  sides of the interface. For the smooth contact, also referred to as a slipping 

contact, only the normal components of displacements are preserved and the shear 

stress is assumed to vanish at the interface. Physically the smooth contact can be 

described as two solids separated by a negligibly th in  liquid coupling, which does not 

transfer the shear stresses.

Together w ith Snell’s law, the physical conditions at the interface form the full
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description of the boundary problem, perm ittin  the calculation of the angles and am

plitudes of the reflected and transm itted  waves.

Physical boundary conditions for the welded contact are th a t the displacements 

and stresses are continuous across the interface:

E«t1) = E«?); E “™ = E «t2) i
= E oS’; E ^ 1 = E<j£); (2.70)

or, expressed in m atrix form,

M  —

u* R l

u i R s
a  = M d\ a  = ; d  =

° lz z Tl

v i z Ts

— cos a i  sin Pi COS Q:2 -  sin p2

sin a i  cos Pi sin a 2 cos p2

Z Li cos 2Pi —Zgi sin 2pi Z L2 cos 2p2 Z S 2 sin 2p2

(2.71)

(2.72)

-2Zg\ cos cti sin Pi — Zsi cos 2/?! 2Z s2 cos a 2 sin p2 Z s2 Cos2/?2 

where d  holds reflection and transmission amplitudes. The components of a  are the 

normal and tangential amplitudes (£7/ and U£) and the normal and tangential stresses 

(aTzz and ccjLj for the incident wave. Generally, these amplitudes and stresses are linear 

combinations of the corresponding amplitudes and stresses for longitudinal and shear 

waves. Since the system is linear, the longitudinal and shear waves can be considered 

independently:

a  =  A t

COS O il

sinor 

Z LX cos 2/3i 

2Zg\ cos a i  sin f3\

for P wave input,
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and

— sin Pi

cos Pi
a  = A s

—ZSi sin 2Pi
for SV wave input.

Z si cos 2Pi

By setting the amplitude of the incident wave as A i  =  1 or A s  =  1, and solving this 

linear system of equations, we obtain reflection and transmission factors corresponding 

to incident longitudinal or shear wave polarizations correspondingly.

The physical boundary conditions for the smooth contact are th a t normal com

ponents of displacements and stresses are continuous across the interface, while the 

tangential stresses vanish:

E«?) = E«?); Edi’ = E^?; 
E ^ » = 0 ;  E ^ ?  =  0; (2.73)

or, in m atrix form,

— cos a i  sin Pi cos a 2 — sin p2

Z LiCos2Pi - Z s i  s in 2/?x ZL2 cos2fi2 —Z S 2 sin2/32 
M  =  (2.74)

—2 Zsi cost*! sin/5i —Z siC os2/?i 0 00

0 0 2 Zs2 cos a 2 sin p2 Z s2 cos 2p2

where

COSCCi

Z Li cos 2pi
a  = A L

Z Si sin 2ai
for P wave input,

0
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and

b =  A f

— sin Pi 

- Z s i  sin 2Pi 

Z si cos 2Pi 

0

for SV wave input.

Similar to  welded contacts, reflection and transmission factors are obtained by solving 

this system.

The factors obtained relate the displacement amplitudes. In the literature it is pos

sible to  find alternative approaches, where instead of displacement amplitudes authors 

obtain transmission and reflection factors in terms of particle velocities [2], strains and 

pressures, field potentials [1], etc.

Note th a t the displacement am plitude is related to  strain as

&nn = ikL( A +  2 p)UL, 

Ont =  i ksliUs,

for longitudinal waves; (2-75)

for shear waves; (2.76)

where Ul and Us are the displacement amplitudes; ann and ant are, respectively, the 

strain components along, and perpendicular to  the direction of propagation. Therefore, 

conversion of displacement factors to  pressure/strain  factors is a very simple procedure:

rp(P) _  ^2 _  Z 2U 2 _  Z 2

ai -  Z 1U1 ~  Z i
(2.77)

Recall also th a t pressure in fluids corresponds to a negative longitudinal strain in 

solids. For different com bin ations o f so lids and  flu ids, one o f th e  fo llow ing eq u ations  

is valid:
-  *2 P2 -<72 P2 (2 78)rp(P) _  ^2 _  P2 _  —&2

o-i P i P i

P2

- a  1
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Similarly, we define transmission and reflection factors in term s of energies. For a 

harmonic wave, the intensity is given by

2 t t 2  2

I L =  PClUJ— k  =  (7nn ; for longitudinal waves; (2.79)
2 2 pcL

j  _  pcsu  US _  ant ^  shear waves; (2.80)
2 2 pcs

which leads to  intensity reflection and transmission factors:

71(/ ) — —  =  ^ I j ' 2 — ^ l rpi.p )2  ̂ (2.81)
I\ z± Z -2

To determine how the energy of an incident wave is partitioned at the interface,

we introduce normalized intensity, which corresponds to  the averaged energy flux 

delivered across the interface

I* =  I { k  ■ n ) / k  =  /cos(0); (2.82)

where n  is the interface normal; 9 is the angle of incidence. Therefore, in term s of

normalized intensities, the reflection and transmission angles, can be expressed as

rW  =  h  COS 62 =  Z -2 cos 6*2 t 2  g3^
I\ cos 6i Z \ cos 91

An im portant consequence of the energy conservation law is th a t the normalized 

intensities sum up to  the normalized intensity of the incident wave; or in terms of 

reflection and transmission factors

l  =  Ei2w  +  ETw ; (2.84)

where and are the reflection and transmission factors expressed in term s of 

normalized intensities.
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Figure 2.3. Reflection and transmission o f a plane longitudinal wave 

at a fluid-solid interface

2.2.3 Reflection and Transm ission at a Fluid— Solid Interface

Consider now a plane harmonic wave in a fluid hitting a plane fluid-solid interface, as 

shown in figure 2.3

There are no shear stresses in fluid media, and the boundary conditions are sim

plified:

E ^ E ”?’; E<*' = E

which requires only a 3 x 3 scattering matrix:

( i ) r (2)-'  Z Z  5 E ^ ? = 0 ; (2.85)

cos an

ZLI =

0

COS O i l  

Z Li 

0

cos a 2 

Z 1/2 cos 2(32

-  sin (32 

-Z S 2 sin 213-2

2ZS2 c o s  a-2 s i n  (32 Z S2 c o s  2 (32

R l

Tl

.Ts .

(2 .86 )
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Solving this system, we find the reflection and transmission factors:

X L1- Y
R l  =  

Tl

L X L1 +  X ’
Z l\  2 X 1 2  COS 202 
^  X l i  + Y  ; 

Z li  2X 52 sin 2 f t
Ts = - Z S2 X L1 + Y

where

X L1 = ' L I X JL2
L 2 Xs2 —

Z 32

cos a i  cos a 2 cos 0 2 ’

Y  = X L2  cos2 2 0 2  +  X 52 sin2 2 ft.

The X -param eter is often referred to  as the normal acoustic impedance:

x =  z  ^

(2.87)

(2 .88)
cos 6 cos 6.

Note th a t the phase of the reflected wave can change depending on m aterial prop

erties or wave angles.

2.2.4 Longitudinal Wave Incidence on a  Solid— Fluid Interface

Consider an incident P wave hitting a solid-fluid interface (figure 2.4). In this case, 

the boundary conditions are

E “f1) = E U
(2 ) .  
•z 1

(1)

This again results in a 3 x 3 matrix:

c o s o : ! —  COS O il s i n  0i cos a 2 R l

Z l \  c o s 20\ = Z L1 c o s  20i - Z s  1 s i n  2 f t  Z L2 R s

2Zsi c o s  ct\ s i n  0i —2Zs\ c o s  o l \  s i n  0 i —Z si c o s  20i 0 . t K

(2.89)

(2.90)
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Figure 2.4. Reflection and transmission of a plane longitudinal wave 

at a solid-fluid interface

Solving this system, we obtain the corresponding transmission and reflection factors:

X L1 cos2 2/?x -  Y
R l =  

Rs =  

Tl =

L X L1 cos2 2 f t +  Y  '
Z li 2X si sin 2 f t cos 2 ft 

X L1cos2 2 f t + T  ; 
Z l i  % X l 2 c o s  2 f t  

' X L1 cos2 2 f t  + Y
(2.91)

where

Y  = X Si sin2 2 ft + X L2;

2.2.5 Shear (SV) Wave Incidence on a Solid— Fluid Interface

The case of a vertically polarized incident shear wave hitting a solid-fluid interface 

(figure 2.5) is in many ways similar to the longitudinal incoming wave, discussed in 

the previous section. The boundary conditions are the same, and so is the scattering 

m atrix M . The only difference is in the input vector, which is determined by the 

displacements and stresses in the shear wave. Thus the boundary conditions can be
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Figure 2.5. Reflection and transmission of a shear (SV) wave 

at a solid-fluid interface

w ritten in m atrix form as

— sin Pi - cos a i sin Pi cos a.2 R l

- Z s i  sin 2Pi ZLi cos 2Pi - Z Si sin 2/?i Z L2 R s

Z s i cos 2Pi —2Zsi cos a i  sin Pi —ZsiCos2Pi 0 . t K

The transmission and reflection factors in this case are

Z si 2X Li sin 2/?i cos 2f3i
R l  =  

Rs =  

T l =

Z Li X s i  sin2 2/?i +  Y  
X s i  sin2 2f31 -  Y  
X s i  sin2 2/3i + Y ]

Z si 2XL2sin2pi
Z l 2 X Si sin2 2/?i +  Y  ’

where

Y  — X l 2 +  X s i  cos2 2/3j ;

(2.92)

(2.93)
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2.2.6 Reflection of a  Shear (SH) Wave from an Interface

Finally, consider a horizontally polarized shear wave, travelling in an elastic solid, and 

incident on an interface. As mentioned earlier, there is no coupling of SH waves with 

either P or SV waves. For a welded contact, it is easy to show th a t the shear wave is 

transm itted and reflected similar to  the pressure wave at a fluid-fluid interface. The 

corresponding reflection and transmission factors are

R S"  =  y T  y t  (2-94)
A  i +  A  2

t S H  =  v r f k -  < 2 - 9 5 >

For an arbitrary  angle of incidence, we separate the incoming wave into SV and 

SH polarized components. Since this is a simple geometric procedure, we just show 

the basic vector operations th a t can be used to  split an arbitrary  shear wave incident 

on an arbitrary  oriented interface.

Let’s define the interface as a plane in space

( x  — s )  ■ n  = 0; (2.96)

where n  is the surface normal and s  is an arbitrary  point on the interface. Let the 

incident wave be determined by the wave vector k and polarization vector p , (|p | =  1; 

p • k — 0). The normal and tangential components of the wave vector axe

kn = (k ■ n )n ;  k t =  k — kn. (2.97)

The angle of incidence is

9 =  arccos ( -vyy-l ; (2.98)
1*1

and the new coordinate system can be chosen as

kte i = t t - t ;  e 2 =  n  x ed; e3 =  n . (2.99)
1**1
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Contributions of SH and SV waves, correspondingly, are

A sh  =  P  ■ 62 ; A s v  =  \ / 1 — A s h ■ (2 .100)

By solving the interface problem separately for SV and SH waves, for the general case, 

we obtain three solutions: a P wave and an SV wave corresponding to  an incident SV 

wave, and a single SH wave, resulting from an incident SH wave. For the first two 

waves, the obtained reflected and refracted factors should be multiplied by the A sv  

factor and for the SH wave—by the A SIi factor.

In previous chapters, only the propagation of sound in media w ithout attenuation has 

been considered. In practice, however, the intensity of the wavefront diminishes as 

it progresses through the media. The list of physical effects involved in this process 

includes scattering, absorption, cavitation, and many others. Building a precise math-

of physical phenomena and because of the statistical nature of attenuation. Fortu

nately, there exists a common empiric relation covering attenuation losses in the wave 

amplitude:

where a  is an attenuation factor and A z  is the distance travelled.

It is common to  measure the attenuation factor on a logarithmic scale to  accom

m odate for a very wide range of am plitude ratios encountered in practice. Use of the 

logarithmic scale also allows addition of successive attenuations. One of the methods 

of representing the attenuation is a simple logarithm of the amplitude ratio. It gives

2.3 Attenuation

ematical model including all the possible factors is impractical due to a large variety

(2 .101)
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the attenuation measured in nepers:

Attenuation =  aA z  nepers. (2.102)

The attenuation factor a  is therefore said to  have units of nepers/m eter.

A more commonly used logarithmic scale is based on the decibel (dB), where the 

attenuation over A z  distance is defined as:

A ttenuation =  101og(exp[—a ( f ) A z \ ) 2 =  20(loge)a:Az dB. (2.103)

It is often convenient to subclass the attenuation into scattering and absorption 

losses. If attenuation is caused by scattering, the to tal energy of the ultrasonic wave is 

conserved. However, the energy flow is partially deflected from the wave path  due to 

reflections and refractions on m icrostructural levels. For the case of multiple scattering, 

a ray of energy may eventually be returned back to  the main beam. However, due to 

differences in path  length travelled by the scattered component, the phase relations 

are affected. Additionally, some part of the energy can be converted to different wave 

modes. Absorption losses, on the other hand, are associated with m aterial viscosity 

and similar effects, when part of the wave energy is transformed into other forms. 

Normally, absorption may adequately be described by introducing a viscous damping 

term. Commonly refereed to  as material viscosity, the attenuation often includes other 

effects which influence the wave propagation in a similar manner. For the absorption, 

the attenuation a t room tem perature is typically proportional to  / 2.

At room tem perature, most single crystal materials have acoustic attenuations th a t 

increase w ith the square of the frequency. The physical mechanisms contributing to 

this viscous damping include the thermoelastic mechanism  and the Akhieser mech

anism. Thermoelastic attenuation is due to irreversible heat flow from compression 

regions to  rarefaction regions. It occurs only in longitudinal waves, since shear waves
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do not produce changes in size of the elementary volume elements. At finite tem 

peratures in all materials there exists an equilibrium distribution of thermally-excited 

acoustic waves (phonons). Passage of a coherently-excited acoustic wave disturbs this 

phonon equilibrium, with a resulting energy absorption or damping. This mecha

nism is known as Akhieser (or phonon) damping. In metals the predom inant damping 

mechanism depends upon the type of wave. Thermoelastic effects contribute about one 

half of the observed compressional wave attenuation and the remainder is explained 

by Akhieser damping. For shear waves, there is no thermoelastic damping and the 

Akhieser mechanism is believed to  be the m ajor contributor.

In noncrystalline materials, which consist of small, randomly oriented single crystal 

grains, the thermoelastic and Akhieser mechanisms do not display significant contri

bution up to  several tenths of a gigahertz, and most of the attenuation is usually 

attribu ted  to  grain scattering. As a rule, there is a wide variety of experimental 

attenuation-frequency curves.

A m ultitude of other effects may contribute to  attenuation, such as micro eddy cur

rents, frictional losses in powder m etal compactions, cavitation in liquids, interaction 

w ith conduction electrons in semiconductors, chemical reactions induced by passing of 

the ultrasonic waves, etc.

M aterial attenuation is usually considered together with the dispersion phenomena. 

In a common environment, the sound velocity does not depend of frequency until 

extremely high frequencies when, strictly speaking, the m aterial should no longer 

be considered as continuous. However, for some materials, there exist exceptions. 

The anomalous dispersion, accompanied by the non-quadratic attenuation, can be 

caused by such phenomena as resonance excitation of internal degrees of freedom, or by 

mechanical relaxation. For more detailed information on attenuation and dispersion, 

see [3].
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CHAPTER

3
Reflection and Refraction at Multiple Interfaces

In this chapter we discuss the process of propagation of a plane ultrasonic wave through 

multiple interfaces. A model for oblique incidence on the stack of tilted  plain interfaces 

is considered. Results of numerical modeling for common materials are presented here, 

while the MathCAD source for these calculations can be found in Appendix A.

3.1 The Measurement Model

Some degree of understanding of wave propagation phenomena in real systems can be 

achieved by studying a simplified plane wave model. This can often be considered a 

good approximation when the wavelength is small compared to the transducer size. 

However, for m atrix transducers, as well as for many other ultrasonic devices, this is 

not always the case. Therefore, diffraction phenomena should be combined with the 

results obtained here, which will be done in Chapter 5.

We start with specifying a model for studying reflection and refraction indices.

32
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M aterial properties are chosen to  be close to  th a t in experimental setup to  be able to 

compare the modeling approach w ith experimental data.

The model, sketched in figure 3.1, consists of three layers: polystyrene, ultrasonic 

gel, and the steel sample containing a defect. Ultrasonic param eters of these materials 

are presented in table Table 3.1.

Table 3.1. Mechanical properties of some materials

Material
Sound Velocity Density Impedance

ci, m/s ct, m/s p, kg/m3 Z, kg/m2s xlO6

Water 1480 — 1000 1.48

Ultrasonic gel 1900 — 1300 2.47

Polystyrene 2400 1100 1050 2.52

Aluminum 6300 3100 2750 17.33

Steel 5900 3200 7900 46.61

Most of the numerical results are obtained for a steel sample. The reason for th a t 

is not only because it is a common m aterial for NDE inspection, but also because 

mechanical properties of steel promote it close to the “worst case” scenario. Having 

one of the highest acoustic impedances amongst the constructional materials, steel 

represents a sufficient challenge, from both  a modeling and experimental point of 

view. In modeling, for example, it narrows the scope of the paraxial approach; in 

experiment, it suppresses penetration of sound inside the sample by returning it back 

into immersion, which makes resulting signals extremely weak and sometimes hard to 

detect on the noisy background. Therefore, following success with steel, we can expect 

the same model to be applicable to  materials with smaller impedances.

To simplify the problem, we consider it in two dimensions, th a t is only P (pressure)
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Single element of the 
matrix transducer

Delay (Polystyrene)

Coupling (Ultrasonic gel)

Sample (Steel)

Defect (Void)

Figure 3.1. A simplified model of the measurement system. Red lines correspond 

to P-wave paths; blue lines correspond to SV-wave paths
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and SV (vertically sheared) polarizations are involved. Both transducer and defect tilts 

are considered to  be in the same plane (figure 3.1).

The longitudinal ultrasonic wave is generated in polystyrene by the transducer. The 

polystyrene delay is assumed to  be flat-parallel, so th a t the initial wave has a normal 

collision with the first interface. The wave passes through ultrasonic gel, penetrates 

into the steel sample, reflects from the defect inside, and returns back passing through 

the same stack of materials. The defect is modelled as a plain interface with no 

m aterial (or air) on the other side.

Throughout this chapter, we consider reflection and refraction factors at each in

terface. Then the obtained results are combined to  obtain effective reflection factors 

for different wave paths within the system.

3.1.1 Reflection and Transm ission at the Delay-Coupling Interface

According to  the selected model, a forward propagating wave, travelling away from 

the transducer, undergoes a normal collision with the first interface. The matching of 

acoustic impedances for polystyrene and ultrasonic gel is so close, th a t according to 

equations (2.91), almost 100% of the energy is transm itted1. In fact, even for 5° tilts, 

more than  99% of the energy is still transm itted, and for angles of up to  30° there is 

still more than  90% of the energy passing through the polystyrene-gel boundary (see 

figure 3.2). Therefore, small angles th a t may occur due to wearing of the delay line, 

or due to  imperfections in delay manufacturing, should not change the general picture 

of wave propagation compared to  th a t obtained for normal incidence.

For a backward propagating wave, travelling in the opposite direction, the angular

1To convert amplitude reflection and transmission factors to normalized intensity factors, we use 
equation (2.83)
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dependance of reflection and transmission factors can be obtained using (2.87). Results 

of numerical calculations are illustrated in figure 3.3 for normalized intensity factors. 

Notice th a t for the backward propagating wave, there exists a critical angle at 52°.

In this figure, as well as in many other figures throughout this chapter, the following 

notation is used:

•  oti,Pi -  angles for incident/reflected longitudinal and shear waves;

•  ct2,/?2 "  angles for transm itted  longitudinal and shear waves;

•  T j* \ and -  reflection (R) and transmission (T) factors in term s of 

normalized intensities for longitudinal (L) and shear (S) waves correspondingly.

3.1.2 Reflection and Transm ission at the Coupling-Sample Interface

Consider now the immersion-sample boundary. Due to  a large difference in impedances 

of ultrasonic gel and steel, only a small portion of the wave energy penetrates through 

this interface.

Reflection and transmission factors for the forward propagating wave are shown in 

figure 3.4. The first critical angle is at 18°; above which only the shear polarization 

penetrates inside the sample. The second critical angle, at 36°, corresponds to the full 

reflection of both  shear and longitudinal polarizations.

The energy participation for the backward propagating P-wave is shown in fig

ure 3.5. Similarly, for the backward propagating SV-wave, transmission and reflection 

factors are shown in figure 3.6. A critical angle in this case is 33°.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Reflection and Refraction at Multiple Interfaces -  The Measurement Model 37

90
80
70
60
50
40
30
20

10

0
0 10 20 30 40 50 60 70 80 90

1.0

0.6

0.4

0.2

degreesa\, degrees

Figure 3.2. Reflection and transmission at the immersion delay interface

90
80
70
60
50
40
30
20
10

0
0 10 20 30 40 50 60 70 80 90

1.0

0.8

0.6

0.4

0.2

0

1
\

/
/

..........;.........̂ .........' »
l
\

' /
4V/

\
\ *
/s.

t

'S'

; \

„ • *
• *

i
/

\

0 10 20 30
a i, degrees

40 50 60
c*j, degrees

70 80 90

Figure 3.3. Reflection and transmission at the delay-immersion interface
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Figure 3.4. Reflection and transmission at the immersion-sample interface
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Figure 3.5. Reflection and transmission at the sample-immersion interface, P-wave

incidence
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Figure 3.6. Reflection and transmission at the sample-immersion interface, SV-wave
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Figure 3.7. R e f l e c t i o n  f r o m  t h e  v o i d  d e f e c t ,  P - w a v e  i n c i d e n c e
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3.1.3 Reflection from the Defect

We model the defect inside the sample as a fiat void cavity, th a t is, all the incoming 

energy is reflected back. The angular dependance of reflection and transmission factors 

in this case is very similar to  those at the sample-immersion interface, which can 

be explained by the big difference of impedances in both cases. For the incident 

longitudinal wave, the distribution is shown in figure 3.7. For the incident shear wave, 

the energy partition is shown in figure 3.8.

3.1.4 Combining Reflection and Transm ission Factors

W hen the reflection and transmission factors have been determined at each interface, 

they can be combined to  obtain effective reflection factors for the whole system. Con

sider the signal, reflected from the surface of the sample, and four different types of 

first-order reflections from the defect.

The existence of these four paths inside the sample is caused by the mode conversion 

a t the front boundary of the sample and at the defect’s boundary (figure 3.9). The 

main path, usually referred to  as the LL-wave, does not include any mode conversion. 

LT- and TL-waves result from the consecutive mode transform ation at front and back 

faces. The sound passes one way as a longitudinal wave and one way as a shear wave. 

Both LT- and TL-waves have very similar angles, phases and intensities, and it is 

usually impossible to  separate them  in the reflected signal. The last case for a TT- 

wave includes a double conversion of the wave mode at the front face of the sample, 

once when it enters the sample, and for the second time when it returns. The sound 

travels within the sample as a transverse wave in both directions.

The effective reflection factors and corresponding angles are denoted by (see also 

figure 3.1):
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Figure 3.9. Conversion of wave modes inside the sample. L stands for a longitudinal 

pressure wave; T is a transversal SV wave

•  R q, 70 reflection from the surface;

•  Rii h  ~ TT-wave;

•  i?2, 72 ~ TL-wave;

•  -R3, 7.3 -  LT-wave;

•  /?4, 74 -  LL-wave.

If the angle of the defect, relative to  the sample’s surface is 0 =  0, then all the angles 

of the reflected waves are the same. Figure 3.10 shows these angles and reflection 

factors as a function of the angle 60 between the transducer and the sample.

Note th a t the relative contribution of TT-, TL-, and LT-waves for flat-parallel 

defects is relatively small. L et’s zoom into details of internal reflections and study the 

reflection angles and factors in more detail. The values of the reflection factors for the 

two values of 0  =  0° and 0 =  10° are shown in figures 3.11 and 3.12.
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Figure 3.10. Effective reflection factors from a flat-parallel defect
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Figure 3.11. Effective angles and reflection factors, flat-parallel defect, </> =  0°
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Figure 3.12. Effective angles and reflection factors, flat-parallel defect, <f> = 10°
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CHAPTER

4
Modeling Matrix Transducer Elements

An im portant part of any ultrasonic system is the transducer. This typically incor

porates a piezoelectric element, which converts electrical signals into acoustic waves 

(transm it mode) and acoustic waves into electrical signals (receive mode).

The ultrasonic field generated by such a transducer is often the feature th a t deter

mines the performance of the entire system. This is why the modeling of ultrasonic 

beam formation and propagation is im portant. Not only does it provide better un

derstanding of physical processes which take place inside the system, but it also the 

optimization of the transducer design.

In this chapter attention is paid to modeling the field generated by a single planar 

transducer element. The results of this modeling are used later in Chapter 5, when 

the process of image formation is discussed.

44
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4.1 The Piston Transducer Model

A common ultrasonic transducer radiates sound waves directly into an immersion 

liquid or hard delay line. Before reaching the area of interest inside the investigated 

sample, this beam transm its through one or more material boundaries. The structure 

of the field in such systems is extremely complex. W ith various types of surface, 

leaky and other waves being generated, building a precise m athem atical model seems 

impossible. More importantly, it is not necessary from the practical point of view since 

the model can often be simplified down to  a reasonable extent.

Before modeling the entire system, w ith all materials and interfaces, we first con

sider a simplified model of an ultrasonic transducer in a homogeneous medium. The 

most common approach for planar sound sources is the piston transducer model. The 

transducer is described as a finite region S  in the x - y  plane, surrounded by a motion

less infinite boundary, as shown in figure 4.1. The velocity inside S  is taken to be 

constant in space and directed along the z axis.

x

X

y

Figure 4.1. A  p l a n a r  p i s t o n  t r a n s d u c e r  m o d e l

In transducer modeling, especially for the piston transducer model, it is common 

to  treat the coupled media as a fluid, even when the transducer is coupled to  the 

solid delay line. Indeed, the transducer primarily generates (and detects) longitudinal
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waves, therefore neglecting the shear strength of the solid media seems reasonable. 

Moreover, as shown in [1], where a full elastic model for contact transducers is devel

oped, this approximation does represent the transducer fields accurately. Shear waves, 

however, should be taken into account when considering beam propagation through 

interfaces. From the previous chapter, it follows th a t for specific geometries and rel

atively small angles, the shear component can be neglected. Based on this, we will 

treat all solid materials as equivalent fluids, thus operating on scalar pressures instead 

of stress tensors or displacement vectors.

Following the Huigens-Freshnel priniple, the distribution of pressure in the uniform 

homogeneous half-space Y (z > 0) can be obtained using the Rayleigh-Sommerfeld 

integral

where V0 is the velocity of the transducer surface, x  E V is a point where the pressure 

is measured, and r  is the distance from x  to  a point y  inside S.

In figure 4.2, the results of numerical calculations are presented. These results are 

obtained for a 1 x 1—mm transducer radiating at 15 MHz directly into polystyrene.

The field structure varies with changes in frequency, geometry or m aterial param 

eters. However, the general picture remains similar to  th a t shown in figure 4.2. There 

is a noticeable similarity in the field structure characteristic of circular transducers. 

First of all, it is easy to  locate a near-field zone, w ith a series of amplitude oscillations. 

The last maximum, in our case located 2.2 mm along the central axis, is commonly 

refereed to  as a natural focus of a flat transducer—see figure 4.3. It separates near and 

far field zones. In the far field, the structure of the field no longer depends on the par

ticular shape of the sound source, and the on-axis pressure curve approaches the one 

calculated for the circular transducer. In the far field, the amplitude of the ultrasonic

(4.1)
s

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Modeling Matrix Transducer Elements -  The Piston Transducer Model 47

2 mm

Figure 4.2. T he amplitude of pressure distribution for a flat square transducer 

r a d i a t i n g  d i r e c t l y  i n t o  p o l y s t y r e n e .  T h e  r e s u l t s  a r e  o b t a i n e d  u s i n g  d i r e c t  n u m e r i c a l  

i n t e g r a t i o n  o f  t h e  R a y l e i g h - S o m m e r f e l d  e q u a t i o n .  F r e q u e n c y :  1 5  M H z ;  t r a n s d u c e r  

s iz e :  l x l  m m ,  s o u n d  v e l o c i t y :  2 4 0 0  m / s
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wave diminishes inversely proportionally to the square of the distance. The decrease 

in beam amplitude w ith distance is sometimes referred to  as attenuation caused by 

beam spreading.
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Figure 4.3. O n - a x i s  p r e s s u r e  f o r  c i r c u l a r  ( s o l i d  r e d  l i n e )  a n d  r e c t a n g u l a r  ( d a s h e d  

b l u e  l i n e )  t r a n s d u c e r s .  F r e q u e n c y :  1 5  M H z ;  s o u n d  v e l o c i t y :  2 4 0 0  m / s .  B o t h  

t r a n s d u c e r s  h a v e  t h e  s a m e  a r e a ,  1 m m 2

4.2 Stationary Phase Approach

For the general case, equation (4.1) cannot be expressed analytically and its direct 

numerical integration is a computationally expensive task. The stationary phase ap

proach provides considerably better performance. Rewriting equation (4.1) in a sim

plified form gives

I  = J J  / ( r ) ei<Wr) dS. (4.2)
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We use the fact th a t for distant points the exponential part e1̂  oscillates rapidly 

compared to f ( r )  =  1 /r.

As a first step, the surface S  of the transducer is subdivided into flat elements Sm 

(m = 1 , . . . ,  M ) to  set the function / ( r )  approximated in first order as constant. Let 

the distance from x  to  the center of each element y m be

rm = \rm\ =  I* - y j .  (4.3)

Denoting f m =  we obtain

r  = f f  e^ r ) i s - (4-4>
m  Q

*->771

For an arbitrary point y  in Sm, the distance r can be approximated as

e m =  r m/ r m; r  =  rm -  e m • (y  -  y m). (4.5)

Similarly, for the phase 0 (r) =  kr, we have

(f) = <t>m -  k e m ■ (y  -  y m). (4.6)

Equation (4.4) then becomes

1 =  ^ 2  j j  exP [ -  ike™ • (y -  Vm)] d<5. (4.7)
m c•5m

Returning back to the Rayleigh-Sommerfeld expression (4.1), we obtain

-iujpVo v-^ elfcr"
=  (4.8)

2w „

where

Im = J J  exp [ -  ik e m ■ (y  -  y m)\ d S. (4.9)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Modeling Matrix Transducer Elements -  Stationary Phase Approach 50

So far, the shape of Sm was arbitrary. Let’s consider the case when S rn is a small 

rectangle w ith width a along the x  axis and height b along the y  axis. Equation (4.9) 

then can be rew ritten as

/6/2

/  exp [ -  ik(emxu + emyv)\ ditdw, (4.10)
6/2 J —a/2

where emx and emy are the components of vector e m =  r m/ r m along the x  and y  axes. 

Integrating equation (4.10), we obtain the Fraunhofer diffraction expression:

sin ( | kemx) sin ( f  kemy)
Im = a b -L —  —. (4.11)

2 Kemx 2 my

The final expression for the pressure field generated by a flat piston transducer 

inside the liquid media is

P (I | z) ,  Y ,  —  Sini | t e ’” ) S>R̂ ke- ’) ■ (4.12)
rn ^  771 2 rnx

where

x  = (x, y, z); y m =  (um, vm, 0); (4.13)

T m  =  y / ( x  ~  U m ) 2 +  ( V  ~  V m ) 2 + Z 2 ] (4.14)

('mx (•£ ^m)/Un) &my (?/ (4-15)

Using the stationary phase approach it is possible to  reduce the number of elements 

into which the transducer surface S  is subdivided. The applicability of this m ethod is

limited by the assumption tha t, in each element S m, the distance attenuation term  1 /r

changes slowly compared to phase changes. For low frequencies (or small distances) 

this can require densities of the grid close to  th a t required for direct application of 

Rayleigh-Sommerfeld integration, which makes the Fraunhofer approximation less ef

fective.
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4.3 Propagation through Interfaces—Direct Calculation

Direct numerical calculation of the field using the Rayleigh-Sommerfeld integral (4.1) 

or Fraunhofer approximation (4.12) can be adapted to an interface propagation case. 

Although, being computationally expensive, this approach provides an exact solution 

to  the problem.

To calculate the field transm itted  through an interface, one can take the following 

steps:

1. Subdivide the interface w ith a mesh, choosing its density to be small compared 

to the period of the phase oscillation across the interface;

2. Use equation (4.1) or (4.12) to  calculate the distribution of the complex ampli

tude across the interface;

3. Knowing the wave number k  in the first medium, and using the phase of the 

complex amplitude, calculate the local angle of incidence at each point and the 

corresponding transmission factor;

4. Multiply the am plitude of the incident wave by the transmission factor a t each 

point and use the mesh from step 1 as a set of point sources to  calculate the field 

in the second medum.

The calculation of local phase and transmission factors can be avoided in the parax

ial approach. However, there are no strong reasons for doing this since it takes suffi

ciently less time compared to  surface integrals, whether it is the Rayleigh-Sommerfeld 

integral (4.1) or the Fraunhofer approximation (4.12).
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4.4 Equivalent Transformations

The number of calculation involved in the direct method makes this approach unsuit

able for studying the general behavior of the system. The time required to calculate 

the beam structure also grows dram atically when more than  one interface is involved,

especially if the wavelength is relatively short and dense meshes must be used. Here we

try  to come up w ith a close approximation method, which is still good for particular 

geometries and materials.

As shown by Lester and Schmerr in [1], the transducer field in the second medium 

can be expressed as:

—icU/9iVn /* f  ei(kiDi+k2D2)
p = — ^  / /  T ie , )  =  r  dS, (4.16)

where D\  is the distance from the point y  on the transducer to  the interface and D 2 is 

the distance from the interface to x  along a ray th a t satisfies Snell’s law (figure 4.4). 

This equation is valid in the high-frequency approximation, bu t it does not account for 

various types of interface waves. However for many practical applications it is likely 

to  be sufficient.

In the paraxial approach, denoting

Co COS 9 \  Co COS $ io
7i =   -------------------------------------------------------------4.17

C l COS $2 C l COS $20

where $io and $20 are the stationary values for $1 and $2, one can reduce (4.10) to

5
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Cl fcl

n

Figure 4.4. Propagation of a wave through an interface along a ray path

Similarly, the phase term  can be approximated as

<f) =  k \D \  +  k2D 2 

=  ki(D\ + 71D 2) +  k2D 2 — k a i D 2

= ki(Di + 71D 2) +  k2D 2(l -  71C2/C1). (4.19)

Finally, the expression for pressure in the second medium can be w ritten as

P
—iu>PiVoT(9io)

2it

r r g1”'! *
exp [ife2D2(l -  7 i c2/c i)] 11 - p

e ifei(Di+7iD2)

+  71^2
d S. (4.20)

Equation (4.20) has the same form as the Rayleigh-Sommerfeld integral (4.1) with 

a phase correction term:

$  =  exp [iAt2D 2(l -  71C2/C1)]. (4.21)

Note th a t there exists a simple geometrical interpretation for equation (4.20). For 

a flat interface, defined with a plane equation in the vector form

(x  ~  s) ■ n  — 0 , (4.22)
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we specify a vector transform ation which transforms vectors in the second medium:

x '  =  r (* )  =  x  + [ ( 7 1  — 1) n  • (x  — s)]n . (4.23)

Applying it to  an arbitrary paraxial radius vector in the second medium, we can 

calculate the field at th a t point as if there were no interface. After tha t, the obtained 

value must be multiplied by the transmission coefficient T  and phase correction factor 

$ . Equation (4.23) defines the equivalent transformation for our system.

Geometrically, transform ation T corresponds to stretching the post-interface half

space along the interface normal by a yx factor (figure 4.5).

Figure 4.5. Geometrical interpretation of equivalent transformations

The im portant fact is th a t equivalent transformations can be applied to  systems 

containing more than  one interface, as shown in figure 4.6. For a paraxial point x ,  

located after the n -th  interface, the equivalent transform ation can be defined as
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Cl

Figure 4.6. Equivalent transformation for multiple interfaces

* w  =  r 1(r 2( . . . r n(*))) ;

r i(x )  =  x  + [(7 i -  1 ) m - ( x -

Cf-f-l cos Qi n
l i  = ----------------------a — ;

Cj COS Ui-j-x,0

and the final expression for the pressure after the n -th  interface is

P =
-icopiVo 

2ir i=1 II ai

(n) d5 ,

where

=  exp [ifci+iA+i (1 -  7 iCi+i/ci)]; 

r[ =  D i +  7 iA + i .

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

The surface integral in (4.27) can in tu rn  be estim ated by direct numerical integra

tion or by using the Fraunhofer formula (4.12). We should keep in mind, however, tha t 

this solution is based on the equation derived in the high-frequency approximation and 

in addition to  tha t, we assumed paraxial location of the target point.
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4.5 Calculating the Detected Signal

So fax we considered only a forward-propagating wave. The next natural step is to 

show how this system is capable of detecting structural features and defects inside the 

sample, by measuring the reflected signal.

Consider an approximation where the transducer response to  the incoming wave is 

linear to  the wave pressure averaged across the transducer surface:

Q =  J J p r ( y ) d S ( y ) -  (4.30)

St

where point y  is in the transducer surface St  (figure 4.7), and pr is the pressure in 

the returning backward propagating wave, which is reflected from the defect inside the 

sample.

defecttransducer

Figure 4.7. General model for obtaining detected signal

In the general case, the pressure at the surface of the defect can be expressed as 

p{x) = J I  T f ( x ,  y ) e ^ ^  d 5 (y ); (4.31)

St

where x  is the point at the surface of the defect So,  and T is the effective transmission 

factor. The function f ( x ,  y)  corresponds to the phase path  from x  to y  and <p(x, y )  is
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the corresponding phase factor. In the simplest case of no interfaces and no attenuation 

these functions can be as simple as

/ ( * .  V) =  r ^ - T i  v)  =  (4,32)
I* -  y  I

When working with multiple interfaces, these functions also include transmission and 

attenuation factors and can be evaluated using the Rayleigh-Sommerfeld integral, 

equivalent transformations, or other methods. The key feature here is th a t these 

functions do not depend on the direction of propagation, th a t is f ( x , y)  =  f ( y ,  x )  

and (j>(x,y) = </>(y,x).

The surface of the defect reflects back a part of the incoming wave, acting as a 

secondary source for the backward propagating wave. Denoting the reflection factor 

a t the defect boundary as R{x),  we obtain local amplitudes of the secondary sources 

as R(x)p (x ) .  Therefore the pressure pr is

Pr(y) =  ^  / /  R ( x ) p ( x ) J f ( y ,  x )eW v’*'> dS( x) ,  (4.33)
Sd

where T is the effective transmission factor for the wave travelling back from defect 

to  transducer.

Combining this w ith equation (4.30), we obtain

Q = J J ^ r J J  R ( x ) p ( x ) T n y , x ) ^ < ’̂ d S ( x ) d S ( y )
St Sd

= J J  R ( x ) p (x )  T ^  J J  f ( y ,  x )eW "r i  d S (y )  dS(as). (4.34)

Sd St

Recall now th a t functions f ( x ,  y)  and 4>(x, y )  are the same regardless of the direction 

of propagation. After swapping the arguments in these functions, the inner integral 

becomes similar to  the pressure at the defect boundary induced by a forward propa

gating wave (4.33). The final expression for the transducer response can be w ritten
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as

Q
Po T k 0

SD

J J  R ( x ) p 2(x)dS(x)- ,  (4.35)

or, for relative amplitudes, and assuming variations of transmission factors are small 

within the main beam,

£  = § -  [ f  R ( x & d S ( x ) -  (4.36)
Po C N  j  j  " o

Sd

Equation (4.36) shows th a t building the structure of a forward-propagating beam 

p(x)  provides enough information to  estim ate the response of the transducer to  a 

great variety of defects. The only assumption in deriving this equation is th a t the 

variation of transmission factors is small across the main beam propagating through 

each interface. There was no assumption made on shape, location, or reflectivity of the 

defect boundary. Generally, the applicability of this m ethod is limited by the precision 

of the m ethod used to  find the field pressure a t the defect boundary.

As shown in Chapter 3, the reflection factor R( x )  is determined by m aterial proper

ties and by the angle of incidence. For each point of the defect’s surface, this angle can 

easily be obtained from the phase distribution a t th a t point. In order to estim ate this 

angle numerically, consider the defect whose the surface is subdivided by a rectangular 

mesh m itj with grid step a; th a t is |raj+ij — m itj\ =  — m^j\ =  a. Using the

m ethod of equivalent transformations we can estim ate the phase (f)lJ of the incoming 

wave at each node of this mesh. Provided the mesh is dense enough to  consider phase 

changes across each cell to  be linear, the local angle of incidence can be approximated 

as (see Appendix B)

aijj =  arccos
d\ d\

+  0 " +  1
a2 — d\ a2 — do

- 1 /2

(4.37)

where

di = {(f>i+ij -  <t>ij) / h ,  d2 =  1 -  4>i,j) /  k. (4.38)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Modeling Matrix Transducer Elements -  Calculating the Detected Signal 59

A similar expression can be derived for an arbitrary non-rectangular mesh.

The choice of the mesh density is imposed by the phase variations in the direction 

tangential to  the interface. In most cases, choosing the mesh step 5-10 times smaller 

than  the average distance corresponding to a 27r-phase change across the boundary, 

appears to  be sufficient. There are no noticeable changes in the results when the mesh 

step is smaller. Furthermore, the same mesh can be used to  estim ate the integral in 

(4.36).

In the following sections we study how relative alignment of transducer, sample sur

face, and defect surface inside the sample can influence the amplitude of the detected 

signal.

4.6 Comparing Different Methods

In order to  estim ate how much precision is lost due to a paraxial approach, le t’s com

pare results of exact calculations with those obtained using equivalent transformations.

A few refinements should be added to  the model developed in Chapter 3. Consider 

a 1 x 1—mm transducer radiating at 15 MHz into a 5 mm thick delay layer. As in the 

plane-wave model, the delay is made of polystyrene and is coupled with the ultrasonic 

gel. The investigated sample is a steel plate with an approximate depth of defects in 

1-2 mm range.

First, we compare the structure of the field. In figure 4.8, the beam generated 

by the transducer was modelled using the three methods: the brute-force Rayleigh- 

Sommerfeld in tegration, equivalent transform ations coupled w ith  Rayleigh-Somm erfeld 

integration, and equivalent transform ations w ith Fraunhoffer approximation. The field 

distribution was calculated for a 1mm thick gel layer and a 5° tilt of the sample relative
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to  the delay layer surface. The choice of a 5° angle is imposed by practical considera

tions; it is close to  the maximum tilt at which the experimental system is still capable 

of recognizing defects lying at about 1 mm depth inside the metal.

To present the d a ta  in the most informative way, these images show only the beam 

structure as a result of diffraction; this amplitude should also be multiplied by the 

corresponding transmission factor after passing through each interface.

Prom the da ta  obtained, we can see th a t the general picture of the field distribu

tion is retained despite the approximations. The first apparent difference is a phase 

discontinuity, which is a characteristic feature of the Fraunhofer approach. However, 

these phase jum ps are located in the area of zero amplitude separating main and 

side beams, therefore it does not contradict common sense. In addition, compared 

to  exact calculations, the side beams diverge slightly less in da ta  obtained using the 

equivalent transform ations method. This is an obvious consequence of the paraxial 

approach. Talcing into account the small amplitudes of these beams, one can expect 

this difference to  be unim portant.

The main goal of applying the m ethod of equivalent transformations is to  increase 

the com putational performance. It is not an easy task to provide exact benchmarking, 

but in any case the difference is of several orders of magnitude. W hen using the 

Fraunhoffer approximation, the procedure of obtaining the pressure at an arbitrary 

location becomes completely analytical, and the resulting images of field distribution, 

similar to  figure 4.8, can be obtained in less than  a second on a standard PC.

To estim ate the difference between the three methods numerically, le t’s compare 

results of the calculation for a large flat-parallel defect1 (figure 4.9). From these results 

we conclude th a t the m ethod of equivalent transformations provides numerical results

1In this case the size of the defect is 8 mm which is large compared to the transducer size. The 
exact dependence of the signal on the defect size will be studied in the next chapter
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Amplitude Combined Phase

Figure 4.8. Comparison of exact calculations with the method of equivalent trans

formations. A 1 x 1-mm transducer radiates at 15 MHz into a 5 mm polystyrene 

delay layer. The delay is coupled with 1 mm layer of ultrasonic gel adjoining to 

a tilted steel sample at the angle of 5°. Each image shows an area of 6 x 10 mm.

The amplitudes do not include the influence of the transmission factor.
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close to those obtained using the brute-force Rayleigh-Sommerfeld integration. The 

small difference can be attribu ted  to  lim itations of the paraxial approach. It can also 

be caused by th a t fact th a t transmission factors were calculated only for the central 

beam direction, while in the exact method, they were calculated locally at each point 

of the interface. In addition, the m ethod of equivalent transform ations is based on 

(4.16), which is valid in the high frequency approximation; for smaller distances the 

results might not be as accurate.

In fact, the accuracy of the experimental da ta  is much worse when the differences 

between the approximations. In figure 4.10 a comparison between the experimental 

and theoretical da ta  is provided. Since there is no reference point in terms of gain, 

the amplitude of the theoretical surface reflection has been fitted using least squares 

to  the voltage of surface peaks in experimental data. Each experimental point in this 

graph corresponds to  the averaged result of five neighboring elements.

The green 0.05 V zone at the bottom  of the graph corresponds to the noise level 

in the measurement system. Due to i t ’s semi-regular structure, it is not possible to 

get rid of this noise by averaging several measurements; it also can not be filtered by 

the Fourier transform  or other filtering methods because the frequency of this noise is 

close to  the central frequency of the transducer. Determining the origins of this noise 

and methods of getting rid of it is an additional complex problem which lies beyond 

the scope of this work.

One of the im portant conclusions here is th a t the model yields results which are 

consistent w ith the experimental data. The continuous wave approximation proves to 

be sufficient despite th a t fact th a t the real transducer operates in a short-pulse mode, 

when the length of each pulse is just a few wavelengths.
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Figure 4.9. Using different approximations to calculate transducer response. Dashed 

lines correspond to the surface reflection, solid lines correspond to the reflection

fro m  a  la r g e  f la t  1 m m  d e e p  d e fe c t
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Figure 4.10. Comparing experimental and theoretical results. The upper line is 

a reflection from the surface, the lower line is a reflection from the bottom of a 

1.5- mm steel plate. Dashed lines correspond to theoretical data, dots correspond

to experiment
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CHAPTER

5
Studying the Behavior of the Model

In this chapter the m athem atical model designed for the single element is studied nu

merically. At the beginning, the response of a single transducer element is estim ated 

in various situations, dem onstrating how the model predicts the received signal ampli

tude. This d a ta  is gathered later to show how the whole m atrix of multiple transducers 

is capable of visualizing various types of defects and structural features in investigated 

samples.

5.1 Specifying the Reference System

To estimate the behavior of a single element, the number of param eters influencing 

the transducer response should be studied. These parameters include the size of the 

transducer, i t ’s frequency, the thickness and the material of the delay line, the thick

ness and the acoustical properties of the immersion, the m aterial of the sample, the 

location and the properties of the defect inside the sample, the shape of the defect

65
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and it’s orientation, and other parameters. All together this satiates the model with 

many degrees of freedom, making the general discussion on its behavior inappropriate. 

Probably the best logical approach is to  take a particular configuration and study how 

changes in one of two param eters influence the resulting signal. Prom such data, it 

should be possible to conclude what changes should be made to  the initial configuration 

to  optimize it for better performance in comparison to  the initial system.

We choose the same reference configuration as in the previous chapter. The pa

ram eters of this system are presented in Table 5.1.

Table 5.1. P a r a m e t e r s  o f  t h e  m o d e l l e d  s y s t e m

P a r t P a r a m e t e r V a lu e  i n  r e f e r e n c e  s y s t e m

T r a n s d u c e r s i z e 1 .0  x  1 .0  m m 2

f r e q u e n c y 1 5  M H z

D e l a y  l i n e  ( p o l y s t y r e n e ) d e n s i t y ,  p 1 0 5 0  k g / m 3

v e l o c i t y ,  cl 2 4 0 0  m / s

t h i c k n e s s 5  m m

I m m e r s i o n  ( u l t r a s o n i c  g e l ) d e n s i t y ,  p 1 3 0 0  k g / m 3

v e l o c i t y ,  cl 1 9 0 0  m / s

t h i c k n e s s 1 m m

S a m p l e  ( s t e e l ) d e n s i t y ,  p 7 9 0 0  k g / m 3

v e l o c i t y ,  cj_, 5 9 0 0  m / s

D e f e c t  ( a ir ) d e n s i t y ,  p 1 k g / m 3

v e l o c i t y ,  cl 3 5 0  m / s

In this chapter we are only interested in relative amplitudes of the received signal. 

The am plitude of 100% will be attribu ted  to the reference system, when it radiates into 

a flat-parallel immersion layer (1m m  thick) and the large flat parallel defect is located
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Figure 5.1. D e p e n d e n c e  o f  s i g n a l  o n  t r a n s d u c e r  t i l t  f o r  r e f e r e n c e  s y s t e m

1 mm below the surface. This configuration can also be described as a reflection from 

the 1 m m thick steel plate. Figure 5.1 shows the da ta  obtained for an 8 x 8 mm defect, 

which in this context may be considered infinite. In addition, a small l x l  mm defect 

was calculated for the same configuration. The relative am plitude of the large defect 

reflection is 13.5% (for normal incidence), which decreases down to  7.6% for the small 

defect.

One of the most im portant factors influencing the resulting image is the angular 

stability of the transducer. As we can see, even small variations of a few degrees in tilt 

o f  t r a n s d u c e r  r e l a t i v e  t o  t h e  s a m p l e  s u r f a c e  m a y  c a u s e  s e v e r e  c h a n g e s  i n  t h e  r e c e i v e d  

signal. In this chapter we will be paying a lot of attention to  the angular stability. 

The results of the theoretical calculations in this chapter illustrate how changes in the 

reference system alter this dependence.
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5.2 Influence of Delay Line and Immersion Layer

As a first step in these virtual experiments, consider dependence of the received signal 

on the thickness of the polystyrene delay, as shown in figure 5.2. In addition, a couple of 

angular dependencies for different thicknesses of the delay line are shown in figure 5.3. 

Notice th a t the am plitude of the surface reflection slightly increases for larger delays 

and th a t for small internal defects—decreases. Although the correctness of the m ethod 

of equivalent transform ations should be questioned for small thicknesses of the delay 

line, the general conclusion is th a t smaller delay sizes are beneficial. The am plitude of 

the reflected signal is stronger and the angular dependence is not as sharp as for large 

delays. The overall change, however, is relatively small, and the system is similarly 

stable to  variations in the immersion layer thickness (figure 5.4).

A simple physical explanation for this stability can be derived from th a t fact th a t 

the wavelength in both  delay line and gel is small. At the frequency of 15 MHz, 

the wavelengths in polystyrene and gel are 0.16 mm and 0.13 mm correspondingly. 

Compared to  1 mm size of the transducer, it appears to be small enough to behave 

similar to  the plane wave, th a t is the spreading of the energy is small.

There is also an interest in using the same transducer with a water column instead 

of the delay line and gel. This system is easier to model, because there are less 

interfaces on the wave path, however, because the impedance of the water is lower 

than  th a t of the polystyrene or ultrasonic gel, less signal penetrates inside the sample. 

Notice from figure 5.5, th a t the amplitudes of surface and internal reflections are 

smaller then in the reference system. At the same time, this system appears to  be 

more stable to defect size and for small sizes of water columns, the angular sensitivity 

is comparable to  th a t in the reference system (figure 5.6).
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Figure 5.2. Dependence of the signal on thickness of delay line
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Figure 5.6. Angular sensitivity for various thicknesses of the water column

5.3 Influence of Defect Location and Orientation

The dependance of the detected signal on the depth of the defect is shown in figure 5.7. 

The defect is centered relative to  the transducer. For small defect sizes, the amplitude 

of the reflected signal grows with the size of the defect, however when the defect 

becomes larger than  the transducer, this growth slows down and eventually, when the 

size of the defect is above a certain value, the further increase is no longer noticeable. 

This threshold depends on the size of the element and on its depth. The deeper the 

defect is inside the sample, the larger this threshold is.

Similarly the dependence on the defect orientation can be obtained. In figure 5.8 

such a  dependence is shown for various defect sizes. The general conclusion here is 

th a t the transducer is less sensitive to  orientation of small defects, although even for 

large defects this sensitivity is less critical than  the sensitivity of the transducer to  the
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Figure 5.7. Reflection amplitudes vs. defect depth for various sizes of defects 

tilt of the surface.

Consider now the defects which are not aligned on the axis of the transducer. 

Figure 5.10 dem onstrates results of numerical modeling for various sizes of defects. In 

the same figure, a partial coverage of the same defects by the transducer is shown. The 

partial coverage (figure 5.9) corresponds to  the signal which would have been received 

in an idealized plane wave model. Notice th a t the calculated curves in figure 5.10 

appear to  be less dense than  those corresponding to  partial coverage.

It is possible to  choose the effective size of the transducer to  make the coverage 

curves close to  th a t calculated w ith the m ethod of equivalent transformations. By 

fitting the coverage factors for various transducer sizes, we deduce th a t the best ef

fective size of the transducer is 1.5 x 1.5 mm. Figure 5.11 shows the coverage factors 

corresponding to  a 1.5 mm transducer and the same factors superimposed on the pre

viously obtained displacement dependencies. From the physical point of view this can
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Figure 5.9. Lateral displacement of defects and partial coverage. The partial cov

erage is the ratio of the hatched area to the area of the transducer’s surface.
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be explained as a result of beam spreading inside the sample, which effectively enlarges 

the area radiated by the transducer. Using this effective transducer size it is possible 

to  choose the size of the resampling kernel to  interpolate the image acquired by the 

transducer.

The effective size of the transducer is larger for deeper effects. The effective size is 

smaller for larger transducers1, which can be explained by the larger beam spread for 

smaller transducer sizes. Figure 5.12 illustrates this dependence.

5.4 Dependence on Transducer Frequency

The frequency of the transducer is influenced by the properties of the piezoelectric 

m aterial and its thickness. In this work, the transducer is presented as an idealized 

continuous-wave model with a single frequency. However, the real transducer operates 

in a short pulse mode and its spectrum  is continuous. So far, a 15 MHz frequency has 

been chosen for modeling, which corresponds to  the central frequency of the exper

imental setup. This simplification does not have a significant impact on the results 

of the modeling. However, for more precise models, a band of frequencies should be 

taken into account.

In this section, we proceed with a continuous-wave approximation, but the field 

structure is now obtained for different frequencies. Figure 5.13 shows the field structure 

for transducer elements operating a t 5, 10, 15, and 20 MHz. Notice th a t for low 

frequencies the field tends to be more similar to a point-source field with rapidly 

d e c r e a s i n g  a m p l i t u d e  a s  w e  m o v e  a w a y  f r o m  t h e  s o u r c e .  A t  h i g h e r  f r e q u e n c i e s ,  t h e  

field approaches a plane-wave with substantially smaller spreading. On the other hand,

1For really large transducers this dependence is reversed and the effective size grows with the 
transducer
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Figure 5.11. Choosing the effective size of the m atrix element

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Studying the Behavior of the Model -  Dependence on Transducer Frequency 77

5.0

,5-mm element
4.5 1-mm element

4.0

3.5

8 3.0
1.5-mm element

2.5

°  2.0

S 1.5

0.5

0.0
8 9 100 1 2 3 4 5 6 7

depth of defect, mm

Figure 5.12. Effective sizes of matrix elements

the higher frequency results in a sharper angular dependence. T hat is, high-frequency 

transducers are more sensitive to orientation relative to  the sample surface.

The angular dependence for various frequencies explains an interesting phenomena, 

which can actually be observed experimentally. The central frequency of the received 

signal slightly depends on the tilt of transducer. Different wavelengths in the initial 

signal spectrum  have different angular dependence, therefore the reflected signal from 

both the surface and the defect tends to  have lower central frequency for larger tilts. 

This effect is illustrated in figure 5.14 where the signal received by the transducer 

is shown in the time domain and in the frequency domain. The first set of images 

shows the signal for the element tilted at 0.29°; the second set was obtained with the 

transducer tilted at 4.42° relative to the surface. The experimental da ta  for this figure 

were obtained w ith a 1.5 mm thick steel plate. As we can see, the central frequency
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Figure 5.13. Dependence on transducer frequency. The angular dependence graphs 

show the surface reflection (dashed line) and the reflection from l x l  mm defect

1 mm deep inside the steel
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in the second case is approximately 2-3 MHz lower.

time domain

0.29’

1.5 2 2.5 30 0.5 1.0
time of flight, jis

time of flight, ps

4.42°

0.5 1.5 2 2.5 30 1.0

frequency domain

30 400 10 20
frequency, MHz

30 400 10 20
frequency, MHz

Figure 5.14. Frequency shift for two different angles of transducer. The frequency 

domain images show the results if the fourier transform for the whole signal (red 

line) and for the part of the waveform from the signal gates (green line)

5.5 Obtaining Images

Now, when we have some understanding of a single element in the m atrix transducer, 

we can see how 2D images are obtained. As mentioned earlier, the transducer operates
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in a short-pulse mode; th a t is, the arrival of signals reflected from surface and internal 

defects is separated in time. Figure 5.15 shows a typical waveform received by each 

element.

surface defect defect 
(second reflection)

0.8 0.8 1 1.2 h*■    . i i .nini . i l

A I B I C I D 1 E I F I 6 I H

signal gates

Figure 5.15. A  t y p i c a l  w a v e f o r m  r e c e i v e d  b y  t h e  e l e m e n t  o f  a  t r a n s d u c e r

The am plitude of the internal reflection is obtained as a maximum am plitude within 

the signal gates. This value is used to  modulate the brightness of an image at the 

corresponding point. The 2D image is then interpolated and shown in grayscale or 

using a color palette. This is a standard technique used by many ultrasonic devices 

also known as C-scan imaging. The interpolation stage here is optional, it does not 

bring in any new information about the sample. However, it produces images th a t are 

more suitable for visual inspection. The quality of the interpolation is better if the 

increased effective size of the transducer elements is taken into account.

Three different techniques have been proposed to  improve the quality and stability 

of the images [19]:
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Tim e-of-Flight (TO F) C om pensation

TO F compensation is the m ethod in which, instead of being fixed, the 

position of the signal gates is set dynamically relative to  the surface peak 

position. Determining the position of the surface peak is an easy problem 

since this is always the largest peak. W hen the sound velocity in the 

sample is known, the location of the signal gates can be calculated for a 

specified depth. This m ethod is sometimes also referred to as the front 

surface follower. An alternative implementation involves shifting entire 

waveforms in the time domain so th a t the location of all surface peaks is 

the same. In this implementation, the position of the signal gates remains 

fixed.

Per-Elem ent Calibration

The m ethod of per-element calibration uses the fact th a t for some config

urations the reflection from flat-parallel defects changes similarly to  the 

surface reflection. Assuming this relation is linear, we can divide the “sig

nal” by the “surface” to  compensate for the tilt of the transducer. Notice, 

for example, from figure 5.1, th a t in the reference system this assumption 

will work for angles of up to  ~6°. To calibrate the signals, the amplitude 

of the surface reflection should be detected, and the rest of the signals 

should be divided by this am plitude1. Unfortunately there is no universal 

calibration for all the possible configurations and types of defects, but this 

simple m ethod increases the stability and quality of acquired images in 

many cases.

1Some special care should be taken to address the issue of small surface amplitudes to avoid
division by small numbers
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T ilt Correction

The goal of the tilt correction technique is similar to th a t of the per-element 

calibration—improving the angular stability. This time, however, the tilt 

of the transducer is obtained explicitly. Knowing the sound velocity in 

the immersion, we can restore the distance between the delay line and the 

surface of the sample for each element of the m atrix from the absolute posi

tions of surface peaks in the tim e domain. Assuming the surface is smooth, 

these distances can be used to  calculate the tilt of elements. This angle 

together with theoretically or experimentally obtained angular dependence 

of the internal reflection can be used to restore the signal am plitude back 

to  its normal value, which corresponds to  0° transducer tilt.

TO F compensation can easily be combined with both  per-element calibration and 

tilt correction. The last two methods are designed to  achieve the same goal—angular 

stability, using different approaches. While the per-element calibration technique is 

less precise, it is much easier to  implement. It will also work for samples w ith non-flat 

surfaces provided, of course, the curvature is small enough to  keep the local tilts at 

each element within the working range. The m ethod of tilt correction, on the other 

hand, requires calibration before the measurement can be done and the assumptions 

on surface flatness (or smoothness) are much more constrained. However, one can 

expect the results provided by this technique to be more precise.

To illustrate these methods, a set of images has been obtained w ith a 52-element 

0 8  mm m atrix transducer for a steel calibration sample shown in figure 5.10. The 

images obtained at various angles of the transducer relative to  the surface are shown 

in figure 5.17.

We can see th a t using the described calibration methods the image remains stable
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Figure 5.16. The matrix transducer and calibration samples
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Figure 5.17. Interpolated images of calibration sample

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Studying the Behavior of the Model -  Obtaining Images 85

for angles of up to 4°. This angle is mostly limited by noise levels in the system. 

Notice from figure 5.1 th a t there is not much room for improvement. Provided the 

better signal-to-noise ratio is achieved, this stability could probably be improved for 

angles of up to  6-7 degrees.

Prom the previous sections, we can see th a t the angular sensitivity is controlled 

by several factors, but there is always a compromise. By manufacturing transducers 

with smaller elements, or by decreasing the frequency we achieve better angular sta

bility, bu t at the same time, signal amplitudes are lower and the image will appear 

more blurry due to  the increased effective size of the elements (see figure 5.12 and 

figure 5.13). Even though it is possible to choose the size of the resampling kernel to 

compensate for larger effective size, the influence of increased noise level will prevent 

fulfilling this compensation properly. Notice also th a t for water column transducers 

the lim itation on tilt should be less severe (figure 5.6).

Choosing larger elements for the array is more beneficial for deeper defects as it 

decreases the beam spreading and perm its delivering more energy to  the reflector.

Different problems require different solutions. The model developed in this work is 

capable of predicting the behavior of transducer elements. By studying how the signals 

will change in various configurations we can design the one with the best performance.

This model is also a useful tool in selecting processing methods to  improve image 

quality, although the final tuning of these methods should probably be performed 

experimentally after the new m atrix transducer is manufactured.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



CHAPTER

6
Conclusions and Future Work

We started  building the model of a single transducer element in Chapter 3 in the 

plane wave approximation. The reflection and transmission factors obtained in this 

simplified model are used in Chapter 4, when we consider a more precise model for 

finite size transducers and defects. We also derive the m ethod of equivalent trans

formations. This m ethod works in a paraxial approach, and perm its calculating the 

field structure. Using the m ethod of equivalent transformations together with the 

Fraunhoffer approximation we can obtain the pressure at any point close to  the main 

beam axis completely analytically at a very high speed. As the last step in building 

the model, we discuss a technique of estim ating the response of the transducer to  the 

reflection from an arbitrary  reflector on its path. The advantage of this technique is 

th a t knowing the  s truc tu re  of the  forward propagating  wave and  th e  location of the  

reflector one can estim ate this response w ithout calculating the backward propagating 

reflected wave. In Chapter 5 we dem onstrate how these methods can be used to  study 

transducer’s performance in various situations. Finally, the image formation in 2D

86
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array of transducers is discussed. We show what can be done to improve the quality 

and stability of these images.

The described model appears to be adequate to  the current stage of development 

of the m atrix transducers. However, with further improvements in materials and 

manufacturing processes, it can be refined to cover a wider range of applications.

One of the weakest points in the model is th a t it works in continuous wave ap

proximation. Prom Section 5.4, we see how our continuous-wave model can be applied 

to  different frequencies. For a known shape of the signal of the transducer, we can 

subdivide its frequency spectrum  into several bands and superimpose the results of 

the modeling obtained for each frequency. However, an additional study is required 

to  answer the question of how narrow should these bands be to  provide a result with 

a given precision.

Another clear deficiency of the m ethod of equivalent transformations is the assumed 

flatness of the elements of the array. Some modification of this m ethod is required 

to accommodate for focused elements when development of such array transducers 

becomes feasible.

We have also chosen the piston model for each element, as well as a linear uniform 

sensitivity, which appears to  be a good approximation, however, when building more 

precise models, other approximations should probably be considered.

To complete the model, the attenuation factors should also be included. The 

attenuation in the current setup appears to  be below the detectable level, th a t is why 

if was not considered here. If necessary (for higher frequencies or materials with higher 

attenuation), this effect can easily be incorporated into the model.

An im portant direction in future work is developing criteria of applicability of this 

model. Currently, the only way of validating the method of equivalent transform a

tions is comparing it with the direct Rayleigh-Sommerfeld integration, which is a time
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consuming operation.
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APPENDIX

A
MathCAD Source for Obtaining Transmission and 

Reflection Factors

In this section a MathCAD source for calculating reflection and transmission factors is 

presented. These is the code which was used to obtain numerical da ta  for Chapter 3. 

In order to  compile these sources M athCAD 2000 or later version is required.
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Transmission and Reflection
Media properties

Delay line (Polystyrene): p_plst:= 1050 cL_plst := 2400 cS_plst:= 1100

Coupling (Ultrasonic gel): p^gel := 1300 c_gel := 1900

Sample (Steel): p s t l  := 7900 cL stl := 5900 cS_stl := 3200

igle element of the 
matrix transducer

•  CoupHng (Ultrasonic gel)

Media vector components: 

Component indices in result:

LI := 0 SI := 1 L2 := 2 S2 := 3

ANGL := 0 AMPL := 1 ENRG := 2
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Reflection and refraction for a P-wave incidence (Smooth interface)

Transfeip(a,pl ,p2 ,c,A o) := <— p l'cL1

ZS1 p l CS1

ZS2 p2-CS2

0 <— as in^ — — sin(a)'' 

.CL1 . 
—>

cos(e) 

cos20Sl <- cos(2-0si)

At +- X ^ a ^ O S l2

A2 <- Xl 2 -cos(2-0s2)2 + Xs2 ’sin(2 '®S2)2 + XS1 ‘sin(2 ® Sl)2

TU ^ A1-A2

LI
SI

L2

S2

cos(0Si)
sin(4-0Si)

COS*(0L2)

LI

•2* co s(2-0s2)‘COs20S1 

-•2-sm(2-0S2)
»s(0S2)

TSi < ~ 0  i f  lm (0 s i) *  0 v  |0 Sij =  j

TL2 i{ Im(0 L2) * 0 v  | 0 L2| = J

TS2 0 i f  M 0 S2) * 0 v  | 0 S2| = J

TAO
T <---------------

At + A2

I « -
(z-cos(o)) 

Z , cos(0L1)

-A

augment(augment(0, t ) , i)
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Reflection and refraction for SV-wave incidence (Smooth interface)

Transfers(p, p i , p2, c , Ao) := LI

SI

L2

"S2

■ p l-C

■ p l - c

■ p 2 c

■ p 2 -c

LI

'SI

L2

S2

8 « - asin -•sin(p)
SI

x < -
cosi ( e )

A1

A2 <— X^j-cos(2-0si) + X

Si

LI

At -  A2

ZS1

cos( 8 l i )

ZS1

•sin (48si)

TI 2 <----------7 -  r-2 sin(2 -0Sl)
cos(0 L2)

TS2 0

<— 0 if Im(0Li) *  0

T <-
T-AO

At + A2

I <-
(z-cos(0))

z  -cos(esi)

augment(augment(0, t ) , i)
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Adaptive Mesh Generation

The GenMesh function generates an optimized mesh for a given function in specified range of 
argument values. It works similar to the Simpson's rule.

Maximum number of iterations: DMAX := 36

Recursive part of the meshing routine:

M (f,a ,b ,fa ,fc ,fb ,to l,S V ,N ,D ,A ) := fac <- f(0.75 a + 0.25 b) 

fcb <- f(0.25 a + 0.75-b) 

b -  aSI

S2 <-

12 

b -  a
12

(fa + 4-fac + fc) 

(fc + 4-fcb + fb)

if |SV -  SI -  S2| > tol a  cols(A) < N a  D < DMAX 

a + b

tol
A1 <- M| f,a ,q ,fa ,fac ,fc , — ,S1,N ,D  + 1,A

A2 <- M| f ,q A f c , f c b ,f b ,y ,S 2 ,N ,D +  l ,A l j

SI <- A10
S2 <- A20
A <— A2

a + b
L0,cols(A)

SI + S2 

A

GenMesh(f,a,b,tol) := fa <- f(a) 

fb <- f(b)

f  cl a + bfc <— f

Q < - M

(qT)

f ,a ,b ,fa ,fc ,fb ,to l,^ — ^ (fa+  4 fc  + fb),2000 ,0 ,(a  b) 
6

sort1
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Solid-Fluid Interface #1 (P-Wave) Forward propagation from polysterene into gel

pi := p_plst cL1 := cL_plst cS] := cS_plst p2 := p_gel cT 7 := c_gel cs? := 0SI L 2 ' S2 '

i := 0 ..  90 a ;  := i-
180

R. := TransferP(aj, p 1, p2, c , 1)

fc) Sl.ANGL

deg

fc) L2.ANGL

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90

deg

RL(a) := TransferP(a,pl,p2,c,l)LisENRG A:= GenMesh^RL.O,- -̂, 10 Jm :=  0..1ength(A) 

RS(a) := TransferP(a,pl ,p2,c, l)si,ENRG ® := GenMeshl RS,0,—, 10 5 In := 0.. length(B)

TL(a) := T ran sfe rP (a ,p l,p 2 ,c ,l)L 2 ,E N R G  G := GenMesh^TL, 0 , ,  10 ^jk := 0 ..length(C)

0.8

f l A"> ..6
r s (b „ )  

TL(ck) 0.4

0.2

20

deg deg deg
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Fluid-Solid Interface #1 Backward propagation from gel into polystyrene

pi := p_gel cL1 := c_gel c§1 := 0 p2 := p_plst CL2:= cL-P lst CS2 := cS-P lst

i := 0.. 90 a; := R j:= TransferP(aj,pl ,p 2 ,c , l)

(Ri)r

S2.ANGL

deg

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90

Critical angles: 

asm ----- = 52.342 deg
V°L2y

«i
deg

RL(a) := TransferP(a,pl ,p 2 ,c , i)li,EK RG  A := GenMesh^RL, 0, —, 10 

TL(a) := TransferP(a, p 1, p2, c , 1 ) l 2 , ENRG b  :== GenMesh^TL, 0, ̂ , 10 

T s(a) := TransferP(a,pl ,p 2 ,c , l)s2,ENRG C := GenMesh^TS,0 , —, 10

m := 0 .. length(A) 

n := 0.. length(B) 

k := 0 .. length(C)

1

0.8

RL(Am)
0.6

t l (b »)

TS(ck) 0.4

0.2

0
40 50 60

A m B n C k 
> » 

deg deg deg
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Fluid-Solid Interface #2 Forward propagation from gel into steel

pi := p jje l cL1 := c_gel cs l  := 0 p2 := p stl := cL_stl c^2 := cS stl

i := 0 .. 90 cij := i——  R. := TransferP(aj,pl ,p 2 ,c , l )

L2.ANGL 60

deg

S2.ANGL

deg

“ i

Critical angles:

= 18.786 deg
f  c > LI

VCL2y

f r .  \
asm

LI

V°S2y
= 36.424 deg

deg

R L(a) := TransferP(a, p i , p 2 , c , 1 ) n  > e n r g  a  := GenMesh^RL, 0 , y , 10 4

TL(a) := TransferP(a,pl ,p2,c, i ) l 2 ,enrG ® := GenMeshl TL,0,—,10, 1 0  4
2
rt 4Ts(a) := TransferP(a,pl,p2,c,l)s2,ENRG C := GenMeshf TS,0,-^-, 10

m := 0 .. length(A) 

n := 0 .. length(B) 

k := 0 .. length(C)

0.8

RL(Am)
 1  '  0.6
t l (b d)

TS(ck) 0.4

0.2

Am Bn Qc
deg deg deg
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Solid-Fluid Interface #2 (P-Wave) Backward propagation from steel into gel

pi := p_stl cL1 := cL stl cgl := cS stl p2 := p_gel cL2 := c_gel cS2 := 0

i := 0.. 90 a; := i——  R{ := TransferP(aj,pl ,p 2 ,c , l )

SI ,ANGL

deg

L2.ANGL

deg
20

deg

RL(a) := TransferP(a,pl ,p 2 ,c ,l)n ,E N R G  A := GenMesh^RL,0 , j , 10 5jm  := 0..length(A) 

R s(a) := T ran sferP (a ,p l,p 2 ,c ,l)sijENRG B := GenMesh^RS,0,^-, 10 ''jn := 0..1ength(B) 

TL(a) := TransferP(a,pl,p2,c,l)L2,ENRG C := GenMeshf TL,0,^-, 10 5Jk := 0..1ength(C)

1

0.2

0 0 10 20 30 50 60 70 80 9040

A m B n C k 
_ > > 
deg deg deg
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Solid-Fluid Interface #2 (SV-Wave) Backward propagation from steel into gel

pi := p_stl cL1 := cL stl cQ1 := cS_stl

i := 0.. 89 Pj:= i-

SI p2 := P_gel cL2 := c^gel c$2 := 0

180
R. := TransferS(Pj,pl ,p 2 ,c , l)

(*0T
deg

L2.ANGL

deg

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90

f  c 'r SI
a  cr := asm

V°Lly

a_cr = 32.845 deg

Mi
deg

Jt -  5 
R L ,0 ,—, 10 

2
RL(p) := TransferS(p,pl,p2,c,i) li,E N R G  a '= GenMesh

v

Rs(p) := TransferS(p,pl ,p 2 ,c , l)gi,ENRG ® := GenMeshf R S,0, — ,10

TL(p) := TransferS(p,pl ,p 2 ,c ,i )l2,ENRG G := GenMeshf TL,0, — , 10

0.8

RL(Am)
0.6

RS(Bn)

TL(ck) 0.4

0.2

0

m := 0 .. length(A) 

n := 0.. length(B) 

k := 0.. length(C)

40 50

A m B n C k
» f

deg deg deg
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Reflection in a Solid 3 (P-Wave) Reflection from a void defect in steel

pi := p_stl cL1 := cL stl c51 := cS_stlSI p2 := 1 °L2:= 1 CS2 ;= 0

i := 0 .. 90 a; := i-
180

R. := TransferP(aj,pl,p2,c,l)

SI ,ANGL

deg

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90

<*i
deg

RL(a) := TransferP(a,pl ,p 2 ,c , i )l i ,ENRG A. := GenMeshJ^RL, 0 , ,  10 Jm := 0 .. length(A) 

R s(a) := TransferP(a,pl,p2,c>l) s x >ENRG B := GenMesh^RS.O,-^-, 10 ^ n : =  0..1ength(B)

0.8

RL(Am) 0.6

RS(Bn)
   0.4

0.2

50 6020 30 40 70 80 90

deg deg
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Reflection in a Solid 3 (SV-Wave)

pi := p_stl cL1 := cL_stl c§1 := cS stl

Reflection from a  void defect in steel

p2:= 1 CL2:=1 CS2 := 0

i: = 0 ..9 0  pi := i— R.  := TransferS( P i.pl ,p 2 ,c , l)  
180

K , . ANGL

deg

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90

_ P i _

deg

Rl ( p ) := TransferS(p,pl,p2,c,i ) l i ,ENRG a  := GenMesh^RL, 0, , 10 5̂ jm:= 0 .. length(A)

Rs(p) := TransferS(p,pl ,p 2 ,c , l)si,ENRG B := GenMesh^RS.O,-^-, 10 5̂ jn := 0..1ength(B)

0.8

0.2

deg deg
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Multiple Interfaces

Initial angle: 0 Angle of the  defect: <f> := 0 —
180

Delay-lmmersion:

Delay: pi := p_plst := cL_plst := cS_plst

Immersion: p2 := pj>el cL2 := cj>el c§2 := 0

A00 := TransferP(o,pl ,p 2 ,c , i )l2,AMPL

Immersion-Sample:

Immersion: pi := p^gel cL1 := c^gel cS l := 0
Sam ple:

aOL(0) := asin

p2 := p_stl c^2 := cL_stl c^2 := cS_stl

—̂  sin(0)
LI

aOs(0) := asin
/ c "\

——• sin(e)
CL1

R<jo(0) := TransferP{0,pl ,p2 ,c,A 00)Li >AMPL (Reflection from sam ple surface) 

A0l (g) := TransferP(0,pl,p2,c,AOo)L2,AMPL 

AOs(o) := TransferP(0,pl ,p2,c,A00)s2,AM PL

Reflection from the defect:

Sam ple:

Void defect: p2 := 1

pi := p_stl cLj := cL_stl

°L2 := 1

Cgj := cS_stl 

CS 2:= 0

pis(0,<|.):=aO s(0)-<t>  

P2l (0 ,<|>) := asin —  « n (p is(e ,+ ))
v cs i

P4L(0,<|») := aOL(0) -  <|) 

p3s(©, <J>) := asin
/  c '\

—  sin(p4L(0,<j>)) 
CL1

Ais(©,<(>) := TransferS(pls(0,(|i),pl,p2,c,AOs(0))si)AMPL

A 2l(0,(|») := TransferS(pis(0,<)>),p i , p2, c, A O s (o )) l i_AMPL 

A3s(©,<(>) := TransferP(p4L(0,(j)),pl,p2,c,A 0l(© ))s i ;AMPL 

A4l(0,<|>) := TransferP(p4L(0, (j)), p i , p2, c ,A O l ( 0 ) ) h jAMPL
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cs l  := cS_stl 

CS 2 := 0

Sample-lmmersion:

Sam ple: pi := p_stl := cL_stl

Immersion: p2 := p_gel c^2 := c_gel

ais(0,«|.):= p is (0 ,* ) -*  a2L(e,*):= p2L(©,«|>) -  «}>

a3s(0 ,<|>) := P3s(e,<i) -  4 a4L(e,<|.) := p4L(0,<|>) -  <(>

9l(9,<p) := asin
f c T - \ f c . .  \

L2
sin(ais(0,<|>)) 02(0 , <|>) := asin -----sin(a2L(0, 4>))

,°S1 , CL1 ,

(  c \ f c . .  \
L2

sin(a3s(0,«|i)) 04(0 , 1(1) := asin -----sin(a4L(0 ,<(>))
, CS1 , CL1 ,

03(9 , <p) := asin

Rcti(0,«)») := T ransferS(als(0,< |»),pl,p2,c,A ls(0 ,<|)))l2,AMPL 

Rct2 (0 ,i|)) := TransferP(a2L(0,<(>), p 1, p2, c ,A2l (o , 4>))l2,AMPL

Rcr3(0,<|>) := TransferS(a3s(0,(|>),pl,p2,c,A3s(0,<|>))L2,AMPL

Rct4(0 , <|)) := TransferP(a4L(0, <}>), p 1, p2, c , A4l (0 , <|)))l2 , AMPL

Immerslon-Delay:

Immersion: pi := p jjel c^j := c^gel c^j := 0

Delay: p2 := p_plst cL2 := cL_plst cs2 := cS_plst

^0(0,<►):= 0 + 0 T|l(0,<|>) := 01 (0 ,«|>) + 0 t|2(g ,+ ) := 02(0,+) + 0

„3(m ) =-«(».♦) + <> 4 4 ( e ,0 : . e i M  + e ^ ( e ,t ) :=„ j ! i 2 sin(^(9,+))
'LI

yl(0 ,<|») := asin 

73(0 ,<|)) := asin

^CL2 . /
— — sin1

( CL1

^ L 2 . /--------- sin1
V°L1

72(0 ,<)>) := 

74(0 , <|>) :=

rc '
asin -----sin(r|2(0, «)>))

CL1 

\ 2

VCL1
asm - sm11(134(0, <|>))

R0(g) := ( |TransferP(yO(0, <|>), p i , p2, c, RctO(0))l2,ENRg| )* 

R l(o) := ( | TransferP^yl (0 , f ) , p 1, p2, c , R<rl(0, <|>))l2, ENRg| ) 1 

R2(g) := ( |Transferp(y2(0,i(»), p i , p2, c,Rct2(g ,<|>))l2,ENRg| ) 1 

R3(g) := ( |TransferP(y3(0, <|>), p i , p2, c,Rcr3(0,<|>))l2,ENRg| ) 1 

R4(g) := ( |TransferP(Y4(0,<|>), p i , p2, c,Rct4(g ,<|>))l2,ENRgI )*
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Numerical calculations:

:= 0 ..6 0 0 i;

60

50

ro(e;,<l>) 40

deg 30

y if a ,* ) 70
deg

72(01,*)
10

deg 0

73(01,*)
“ 10

deg “20

y4(0i>*) “30

deg -40

-50

“60

(i -  30)—  
90

-60 “ 50 "40 -30  "20 “ 10 0 10 20 30 40 50 60

A
deg

© := -  E := 10 7 
6

xO := GenMesh(RO,-@,©,E) 

x l := G enM esh(R l,-0 ,© , e ) 

x2 := GenM esh(R2,-0 ,© , e ) 

x3 := GenMesh(R3,-@ , 0  , e ) 

x4 := G enM esh(R4,-0, © , e )

nO := 0.. length(xO) 

nl := 0.. length(xl) 

n2 := 0.. Iength(x2) 

n3 := 0.. Iength(x3) 

n4 := 0.. Iength(x4)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



MathCAD Source for Obtaining Transmission and Reflection Factors 104

<(> = 0 deg

100

90

80

70

60

50

40

30

20

10

0
“ 30 "25 “20 "15 “ 10

  RO
  R1
  R2
  R3
  R4
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<|> := Odeg

R l(e) := ( |TransferP(yl(©, <|)), p i , p2, c,R o 1(0 , 4>))l2, ENRg| )* 

R2(e) := ( |TransferP(y2(0, (j)), p i , p2, c, R a2(e,4>))l2,ENRg| )*

R3(g) := (|TransferP(y3(0,(|)),pl,p2 ,c,Ro3( 0 , i|)))l2>ENRg | )*

R4(o) := ( |TransferP(y4(0 ,<(>),p i , p2, c ,R<t4(g , 4>))l2,ENRg | )* 

x l := G en M esh (R l,-0 ,0 ,E )

x2

x3

x4

= GenM esh(R2,-0 ,© ,e) 

= G enM esh(R 3,-© ,0,E) 

= GenMesh(R4, , 0 ,  e )

nl := 0 .. length(xl) 

n2 := 0 .. Iength(x2) 

n3 := 0 .. Iength(x3) 

n4 := 0 .. Iength(x4)

10

9

8
7

6

5

4

3

2

1
0

10 15 20 25 3010 •5 0■30 "25 -20 “ 15 5
R1
R2
R3
R4
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< { > 20deg

R l(e)  := (|TransferP(yl(0,i))),pl,p2,c,Roi(0,^))l2,ENRg|)* 

R2(©) := (|TransferP(y2(0,(j)),pl,p2,c,Ro2(0,^))l2,ENRg|)* 

R3(o) := (|TransferP(y3(0,ij>),pl,p2,c,R<t3(0,<|>))l2>ENRg|)*

R4(o) := ( |TransferP(y4(0,({>), p i ,p2, c ,Rct4(0 ,<|>))l2, ENRg | )

xl := G enM esh(R l,-© ,0 ,E ) 

x2 := GenMesh(R2,-© , 0  , e) 

x3 := GenMesh(R3, - 0 ,  © , e)

x4 := G enM esh(R4,-0, 0  , e)

nl := 0. .  length(xl) 

n2 := 0 .. Iength(x2) 

n3 := 0 .. Iength(x3)

n4 := 0 .. Iength(x4)

10

9

8

7

6

5

4

3

2

1
0

10 15 20 25 30010 •5 5
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0 := Odeg d> := 30deg

R(<|>) := ( | TransferP(y4(0, (j>), p i , p2, c , R a4(e, <|>))l2> ENRg | ) 

x := G enM esh(R ,-® ,0 , e ) n := 0.. length(x)

10

9

8
7

6
5

4

3

2
1
0 10 15 20 25 3030 “25 "20 "15 -10 •5 0 5

R1
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APPENDIX

B
Obtaining Angle of Incidence from Discrete Phase Values

Consider an interface specified as a rectangular mesh rriij where each cell size is a x a:

i + l

j  + i

Figure B.1. Phase delays on a rectangular grid

At the moment when the locally flat wavefront crosses a point at m itj ,  the distances 

from mesh vertices at rrij+i j  and m j j +1 to the same wavefront, correspondingly, are:

di =  (0 i+ ij -  and d2 =  (B .l)

108
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To determine the direction of the wavefront normal, le t’s choose a couple of vectors 

in the wavefront plane:

(B.2)

a 0

p  = 0 and q  = a

Zl Z2

where

zi =
di and Z2 =

do
\ / l  — d \/a 2 * \J  1 — d l/a 2

Now the direction of wave propagation can be obtained as

n
p x q

\ p x q \ '

Finally, for the vertical component of this normal:

n , cos 6
a

+ d\
a2 — d\ a2 — d\

+ 1
- 1 /2

(B.3)

(B.4)

(B.5)
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