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ABSTRACT

SOME GENERALIZATIONS IN MATRIX DIFFERENTIATION WITH

APPLICATIONS IN MULTIVARIATE ANALYSIS

This work deals with certain theoretical generalizations
and applications of matrix differential calculus. Various
auxiliary and non-auxiliary matrices related to identity
matrices and some new matrix products are introduced and their
properties are studied. These matrices and a new matrix product

known as the partitioned Kronecker product are used to establish

interrelationships among column vector representations of matrix
functions involving partitioned and non-partitioned matrices.
Some particular cases of these new concepts are also pointed out.
In discussing matrix differentiation, it is shown that a
variety of results which are true for scalar and vector functions
are also true for matrix functions. For example, several
algebraic properties of matrix derivative transformations and
procedures for identifying various kinds of matrix of partial
derivatives and their applications in testing extrema of matrix
functions are certain extensions of the corresponding results
from ordinary differential calculus. Some interrelationships
between four available matrix derivatives are established with the
help of a diagram. Differentiation in certain special situations
is also presented. These situations are (1) differentiation of
matrix functions where scalar values of matrix elements have
equality relationships, and (2) differentiation of partitioned

iiil



matrix functions. These (matrix differentiation) results are
obtained by using the Kronecker matrix product, the Schur
product, the partitioned Kronecker product, auxiliary and
non-auxiliary matrices and some other algebraic concepts.

Such results are used for estimating matrix parameters in
the general multivariate linear and non-linear regression
analysis, structural econometric analysis and general covariance
structural analysis. Some of the procedures considered here are
generalizations of earlier methods in factor analysis. Minimum
var%ance unbiased estimates of the matrix parameter and its
linear function are obtained in the general multivariate linear
regression model. The asymptotic covariance matrix of unknown
parameters in the structural econometric model is also
discussed, using partitioned matrix differentiation. Some
special matrix derivative formulae are used to obtain the
jacobians of the symmetric matrix transformations in a simpler
way. A few miscellaneous applications of the new matrix
concepts and matrix differentiation formulae are also given.
These consist of the derivation of some properties of certain
particular matrix products, applications of matrix derivatives
to covariance analysis with linear structure, applications to
dynamic econometric analysis and derivation of a large sample
non-central distribution of a multi-sample regression model with
covariance. An up to date listing of various important
properties of the Kronecker matrix product, including some new

properties, is provided in an appendix. This information is

iv



useful for pursuing further investigations concerning the

partitioned Kronecker product mentioned above.
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CHAPTER I

INTRODUCTION

1.1 Review of the Literature on Matrix Differentiation

The principal contributions, in chronological order,
to the theory of matrix differentiation, were made by the
following authors: Cayley (1845, 1846), Capelli (1887),
Turnbull (1927-29), 1930-31la, 1930-31b), Garding (1947),
Turnbull (1947), Dwyer & MacPhail (1948), Aitken (1953)%,
Wallace (1953), Coy (1955), Wrobleski (1963), Neudecker (1967),
Dwyer (1967), Neudecker (1968, 1969b), Tracy & Dwyer (1969)
and Gordon & Mathai (1972).
There are two main approaches followed in differ-
entiating matrix functions. These are
(1) wusing Turnbull's matrix differential operator, which
was inspired by the Cayley and Capelli operators,
(2) using the column vector representation of Neudecker
and Tracy-Dwyer, which was inspired by Dwyer's
(1967) results.
Suitable arrangements of partial derivatives of certain
matrix transformations for evaluating their jacobians were

first suggested by Deemer & 0lkin (1951)#. This technique was

# According to Turnbull (1947), the contents of this paper were
communicated to him in March 1946.

# Taken from lectures of P.L. Hsu delivered in the spring of
1947 at the University of North Carolina.



further extended and simplified by Olkin (1951, 1953), Olkin
& Roy (1954), Jack (1964-65) and Olkin & Sampson (1969).

Cayley (1845, 1846) introduced the determinant of the
matrix differential operator whose elements were partial
differential oeprators of a square matrix of independent
variables and studied the properties of this operator. Capellil
(1887) considered the minors and linear combinations (polarized
forms) of minors of the same order belonging to Cayley's deter-
minantal operator, as described above, and gave a theorem based
on his new determinantal operator. Turnbull (1927-29, 1930-
3la, 1930-31b) introduced the Q-operator, which is nothing but
Cayley's matrix differential operator, and discussed it

(1) as a useful generalization of differentiation of

one scalar varilable,

(2) 1in relation to matrix operands and invariants.
Turnbull established a close analogy between algebraic theory
of quantum-numbers, developed by Dirac (1926), and his own
differential calculus of finite matrices. He applied the
matrix differential operator to three types of elementary
functions of characteristic roots of a single matrix variable.

He called it the Trace Differential operator. Using this

operator, he developed a matrix form of Taylor's Theorem.
Simultaneously and independently, Aitken (publication of 1953)

and Garding (1947) modified Cayley's operator and extended the
general results obtained by him to the case of symmetric matrices.
A more general and polarized form of Garding's theorem and a

modification of Capelli's theorem, applicable to symmetric and



skew-symmetric matrices, were obtalned by Turnbull (1947).
Wallace (1953) provided an alternative derivation of the
modified Capelli Theorem and of Garding's theorem. Further
generalization of Cayley and Capelli operators was made by
Turnbull (1949). Gordon (1967) used Turnbull's Q-operator
approach to differentiate the multivariate characteristic
functions for characterizing the multivariate distributions
using regression properties.

Some other methods of differentiating a matrix function

[OV]

were given independently by MacDuffee (1946) and Ferrar (1951).

A1l the above methods of matrix differentiation are
limited either to square matrices or by the necessity for
conformability for matrix multiplication of the derivative
operator with the matrix function and hence are not of general
applicability to multivariate statistical analysis, in which
we come across matrix variables of arbitrary dimension.

A matrix differential calculus for scalar functions of
a matrix variable and some applications of this calculus to
statistics were introduced by Dwyer & MacPhail (1948). Coy
(1955) derived the results of Dwyer and MacPhail's paper in

a slightly different and simpler manner and extended these

results to obtain a differential calculus for scalar and matrix

functions of real and complex variables, including functions
whose arguments are symmetric, skew-symmetric and diagonal
matrices. Wrobleski (1963) provided several extensions of the
Dwyer-MacPhail results to more general matrix functions and

pointed out their statistical and econometric applications.



Dwyer (1967) extended the concepts of symbolic matrix
derivatives, introduced by Dwyer & MacPhaill (1948), by
developing a general theory of matrix derivatives. He
applied his general theory to many multivariate statist-
ical analysis problems, such as maximum likelihood
estimation, evaluation of jacobilans, generalization of a
scalar integral to matrix integral and optimization with
side conditions. Also included in Dwyer's (1967) paper
are interesting comments about various approaches in the
field of matrix differentiation, including his own. For
example, the approaches followed in Turnbull (1927-29,
1930-31la, 1930-31b, 1947), Fraser, Duncan & Collar (1936)
and Garding (1947) have very few and limited applications.
Also Anderson (1958), Wilks (1962) and Rao (1965) presented
some results in multivariate statistical theory with the
use of scalar differentiation. Thus a rigorous matrix
differential calculus may not be very essential to study
some aspects of multivariate analysis. On the other hand,
Dwyer (1967) justified the fact that a few well-chosen matrix
derivative formulae are as essential as an appendix on matrix
theory included in many books [Roy (1957), Anderson (1958),
and Scheffé (1959) for example], dealing with multivariate
statistical theory.

Some matrix differentiation formulae and their appli-
cations in obtaining least squares estimates and minimum
variance unbiased estimates for ordinary linear regression

were presented by Neudecker (1967). Neudecker (1969b)



suggested a new method of identifying the matrices of first
and second order derivatives, Dby linking the differentials
of the matrix function (involving ordinary and Kronecker
matrix products) and the argument matrix. Some of these
results were earlier obtained by Dwyer (1967) using a different
method. Neudecker (1969b) also applied his method to an
econometric problem of maximum likelihood estimation. In the
spirit of Dwyer (1967), a further step was taken by Tracy &
Dwyer (1969) in obtaining formulae for matrices of first and
second order matrix derivatives. They applied their results
to problems of extrema of differentiable scalar functions of
matrices. This approach simplified the derivation to a great
extent. The use of Hessian matrices in making tests for
extrema in multivariate analysis was demonstrated by Tracy
& Dwyer (1969). The matrix differential calculus presented
in Dwyer (1967), Neudecker (1969b), and Tracy & Dwyer (1969)
is also useful in evaluating jacoblans of some simple matrix
transformations occurring in multivariate distribution theory.
Jacobians of certain matrix transformations were
obtained by Deemer & Olkin (1951), Olkin (1951, 1953), Olkin
& Roy (1954), Roy (1957) and Hua (1958) using elementwise
differential techniques, and by Hsu (1953), Hua (1958) and
Jack (1964-65) using induction procedures, but in either case
without entering into the explicit presentation of matrix
derivatives of matrix functions. Both methods are based on a

chain of more easily tractable matrix transformations. Khatri

(1965) obtained the jacobians of certain complex matrix trans-



formations in order to discuss the statistical analysis of
the complex Wishart distribution. Further jacobian results
by Khatri (1968) are applicable to the distributions of
traces of Wishart matrices.

Dwyer (1958) in dealing with minimum variance unbiased
estimation of linear functions of parameter vectors, and Stroud
(1968) in discussing Wald statistics, use a technique made
available in the paper of Dwyer & MacPhail (1948). Kleinbaum
(1970) obtained best asymptotically normal estimates for
generalized multivariate linear models. He applied some
matrix differentiation formulae given in Dwyer (1967). Mulaik
(1971), Gebhardt (1971), Stroud (1971) and Gordon & Mathail
(1972) have also presented some applications of matrix

differentiation.



1.2 Notation and Abbreviations

Because the shape and properties of matrices are
important in finding matrix derivatives and the jacobians

of matrix transformations, we adopt the following notation:

1. AT denotes the transpose of the matrix A, and
a7t e ahT |
2. Column vectors are denoted by underlined lower
case letters, e.g., gT:pXI = (al,...,ap). Matrices

are denoted by capital letters.

3. A= (aij):qu means that the matrix A has p rows
and q columns with aij as the element in the i-th

row and j-th column.

b, I:pxp or Ip denotes a pxp identity matrix.

5. O:pxq and O:pxl denote a pxg matrix of zeros and
a px1l vector of zeros respectively.

6. tr A denotes the trace of a square matrix A = (aij)

(that is, the sum of the leading diagonal elements

= Zay;)
i
7. |A| denotes the determinant of A.
8. A—l denotes the unique inverse of a non-singular

square matrix A.
9. A~ is a generalized inverse (g-inverse) of A, defined
implicitly as any A” satisfying AATA = A for any A.
10. A®B:prxgs denotes the Kronecker product of A:pxq,

B:rxs defined as ABB = (aijB)'



11.

12.

13.

14,

15.

16.

17.

18.

AxxB:pxq denotes the Schur (Hadamard) product of

A:pxq, B:pxq defined as AxxB = ( ).

aijbij
Xr:qu1 (Xc:qu1) denotes the column vector
representation of the matrix elements of X:pxq

by displaying underneath each other the rows
(columns) of X by taking in order the first row,
then the second row, etc., (first column, then the
second column etc.). See Section 2.6.

I(k)’ for a sultable integer k, is a permuted

identity matrix. See Section 2.4.

dA = (daij):pxq denotes the differential of A:pxq.

We use the word "conformability of matrices" to
mean that various partitioned and non-partitioned
matrix operations (for example sum, difference,
multiplication, Schur product and a few other
matrix products) are well defined. TFor instance
AxxB:pxg exlsts only if A:pxqg and B:pxq.

o denotes the composition of two matrix functions.

XK - (X—l)k, where k is an integer.

-

<X> or <Xij> denotes the (i,j)-th matrix element of X.

t



1.3 Aim of the Present Study

This dissertation is concerned with some generalizations
of the theory and techniques of the method of matrix differe-
ntiation proposed by Neudecker (1969b), and Tracy & Dwyer
(1969). These generalizations are discussed in Chapters Two
and Three. Most results are applicable to estimation problems
in multivariate models. Some of these applications are given
in Chapter Four.

In Chapter Two a more general definition of a matrix
function is proposed. Based on this, various types of matrix
functions, some of which occur in statistical applications,
are discussed. Some auxiliary and non-auxiliary matrices
related to non-partitioned and partitioned identity matrices
are introduced. Three new matrix products, one of which we

call the partitioned Kronecker product, are defined. These

products have various interesting properties. Some of the
useful results concerning the Kronecker product of matrices

and the partitioned Kronecker product are obtained by using

the above mentioned auxiliary matrices. These results are
applicable in establishing a very general method of column
vector representation and in deducing the various interrela-
tionships of the resulting representations of matrix functions
involving partitioned and non-partitioned matrices.

In Chapter Three some general results concerning matrix
differentiation are presented. In this chapter a general
definition of differentiability of a matrix function is

proposed. In addition to having many other properties which
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the matrix of partial derivatives possesses, it is looked upon
as a matrix of certain linear transformation. Some results
concerning basis représentations of the partial matrix
derivatives are established. For any complicated matrix
function, a general procedure for identifying the matrix bf
partial derivatives is also discussed. It is suggested that
the identification of only one form of partial matrix derivative
out of the four available forms in this work is enough for the
purpose of statistical applications because there exist natural
relationships among these forms. A theorem for identification of
mixed partial matrix derivatives for differentiable scalar
functions of two matrix variables 1s established. Certain
corollaries are also given. This theorem extends a result of
Neudecker (1969b). Some results for testing the unconstrained
and constrained extrema of matrix functions are obtained.

These are generalizations of the corresponding results for
vector functions given in Goldberger (1964) and Tracy & Dwyer
(1969). Further generalizations lead to the introduction of
matrix differentiation (1) after partitioning matrices into
blocks and (2) with equality relationships among scalar values
of matrix elements. Non-partitioned matrix differentiation
uses auxiliary and non-auxiliary matrices, the ordinary
Kronecker product and its various properties. The study of
partitioned matrix differentiation is made simpler by applying
various extended concepts of non-partitioned situations, the
partitioned Kronecker product and its properties.

Some applications of the matrix differential calculus,
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presented in Chapter Three, are given in Chapter Four. Linear
and non-linear parameter estimation in multivariate regression
models is discussed. These discussions provide some extensions
of the results in Tan.(l968—69) and Allen (1967). Minimum
variance unbiased estimation, discussed by Dwyer (1958), is
extended to a general regression model. Estimation of
parameters and their asymptotic covariances in systems of
simultaneous equations are discussed, using the results from
partitioned matrix differentiation. Estimating equations for
covariance structural parameters are obtained for three methods
of covariance structural analysis. For the first two methods,
Hessian matrices are also obtained. For a general covariance
structural model, an expression for estimating unobserved
variables is given. This expression uses basic results from
partitioned matrices. A modified matrix derivative is used to
obtain the jacobians of certain symmetric matrix transforma-
tions in a simpler manner. These jacobians are useful in
evaluating matrix integrals which are applied in deriving
multivariate distributions. Some miscellaneous applications
include the derivation of properties of matrix products
defined by Khatri & Rao (1968) and Khatri (1971), estimation
in covariance analysis with linear structure, in dynamic
econometric analysis and in the derivation of the asymptotic
non-null distribution of the multi-sample regression model
with covariance. The use of various matrix concepts from
Chapter Two is made in tﬁe simplification of certain

calculations of these results.
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Some suggestions for further research are given in
Chapter Five.

A few important results on matrices, some of which are
new, are given in the Appendix.

The whole development is over the field of real numbers,
though most of the results would hold over the field of

complex numbers.



CHAPTER I1

FUNCTIONS OF MATRICES

2.1 Introduction

The notation y = f(x) is well known in differential
calculus as representing a vector valued function of a vector
variable. TFor a scalar variable x, a few results on differe~-
ntiation and integration of matrix functions of the type
Y = Y(X(x)), where X is a square matrix, are available in the
work of Michal (1947). Neudecker (1969b) and Tracy & Dwyer
(1969) have presented a matrix differential calculus for matrix
functions of one matrix variable. However, they have not
presented a matrix differential calculus for more general
matrix functions of several matrix variables. In this chapter
we provide various matrix functions, some of which are presently
unknown, but are needed for completeness in the general matrix
differential calculus. Some new matrices and some new matrix
products are introduced and their properties are studied. Some
other results concerning matrix functions and the Kronecker

matrix product are also obtained.

2.2 Definition of a Matrix Function

Let u4éz q(R) and °/£r;(R) be the spaces of pxq matrices
3 b
and mxn matrices respectively over the field R of real numbers,
then the mapping

F o ‘%p’q(m g ./’m/:n(R)

defined by

13
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vy (X .o. Y1pn(X)
FY(X) = Y(X) = . (2.2.1)
¥ (0 - (0O
is called a matrix function of a matrix variable X = (xij),
where yaB(X> and Xij are in R, for each a = 1,...,m, B = l,...,03
and i =1,...,p, Jd = 1,...,Q.
Example 2.1 Consider the matrix function
_ T
Y = AX™B (2.2.2)

where A:mxqg, B:pxn are matrices of constant scalars, and

X e Végg,QCR), Y ¢ V4zj;(R).

Example 2.2 Consider, for A and X as in Example 2.1,

Y = ABX'X (2.2.3)

where 8 is the Kronecker product, and Y € uAﬁ/q 2(R).
mg,q

Example 2.3 Let xx be the Schur product. Then for a square

matrix A:pxp and a non-singular matrix X:pXp, we have

v = AxxX t (2.2.4)
where Y € bAesqp(R).
3

The matrix function of a vector variable and the matrix
function of a scalar variable are obtained as particular
cases of the above definition by considering X as a vector
and as a scalar respectively. Similarly the vector function and
scalar function of a matrix variable (also of a vector variable,
a scalar variable) are particular cases of a matrix function of

a matrix variable, defined above, obtained by considering Y as
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a vector and as a scalar respectively.

Example 2.4 A mapping I defined by

I(X) = X:pXq (2.2.5)

is called an identity matrix function of a matrix variable X

from 94%2 q(R) into itself.
3

Situations may arise where, in the expression (2.2.1),
the matrix variable X is a function of a matrix variable
Z € (£Zi’s, i.e.,

X

G(Z). (2.2.6)

Then

Y = F(X) = F(G(2)) = (FG)(2) (2.2.7)

where Y is a matrix function of a matrix variable Z from
izigs(R) into ¢4<:nﬁR).

The matrix function of more than one matrix variable is
defined as a mapping from the cartesian product of spaces as
domain into a space as range. In particular, we define below
a matrix function of two matrix variables.

Let X ¢ QE?; q(R), Z € “4éi S(R). Then a mapping
3 3

o L wx M > — ,/fg:ncm

psd r,5

defined by

Gy(X,2) = ¥(X,2) (2.2.8)

is a matrix function of two matrix variables X, Z; where

Y e </¢;tn(R).

Example 2.5 Consider

Y = AXTBZC (2.2.9)

where A:mxq, B:pxr, and C:sXn are non-variable matrices;
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Y e ./4;an(R) is a dependent matrix variable, and
]

X € .in q(R), Z € Uééz S(R) are independent matrix variables.
3 9

Various other examples may similarly be given.

2.3 Types of Function

We shall represent a more general matrix functilon by

7 = F(X, Yye.., W) . (2.3.1)
where X, Y¥,..., W are independent variable matrices, Z is a
dependent variable matrix and F represents a matrix-valued
function. Various particular cases of 7 may be considered.
For example, consider the following functions where the

matrices involved are conformable:

7 = AXPB(YT)SC(XT)tDYu, r, s, t, u positive (2.3.2)
integers
= I p
Z (a, T + aX + + apX )(b, I + b X +
-1

+ quq) , P, q positive integers (2.3.3)
7 = eF(X’ Vyoens W) where F is a square matrix (2.3.4)
7 = Log F(X) where F is a square matrix (2.3.5)

T

Z = ) & , where r, s are positive integers (2.3.6)

7 = ¥X®Y where ® is the Kronecker matrix product (2.3.7)

7 = Xxx¥xxW , xx is the Schur product (2.3.8)
z = Ax (2.3.9)
z = |AxX"B(Y1)®|%, r, s, t positive integers  (2.3.10)
z = |X-AI| where X is a constant scalar (2.3.11)

z = tr F(X, Y,..., W), where F is a square matrix(2.3.12)

Some other functions may similarly be constructed. Thus, in
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general, there are various types of functions of matrices, each
of which can be divided into several categories.
A few types of functions of matrices are the following:
(1) matrix funétions of several matrix arguments together
with scalar coefficients;
(2) matrix functions of several matrix arguments together
with matrix coefficients;
(3) scalar functions of several matrix arguments together

with scalar coefficients.

Each of the above types of functions of matrices could
take one of the following forms:

(1) that involving ordinary matrix products;

(2) that involving Schur products;

(3) that involving Kronecker matrix products;
ete. New matrix products © and () , defined by Khatri &
Rao (1968) and Khatri (1971) respectively, and @ defined in
Section 2.7 of this dissertatidn, yield three additional
categories of matrix functions.

The following ére certain commonly occurring matrix

functions, some of which are applicable in multivariate

analysis:
vy =xt (2.3.13)
Y = X~ is a relation involving a g-inverse
X of X (2.3.14)
Y = BXBT, where B:pxp is a non-singular upper

triangular matrix ' (2.3.15)
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® a X20L+1
Sin X =a§o (-1) —~ —— , X is a square matrix (2.3.16)
(20+1)!
o o X2a
Cos X =3 (-1) , X is a square matrix (2.3.17)
aZo '
(20.)!
X _» X%
e =a§o —— , X is.a square matrix (2.3.18)
a!
=) XOI'
Log (I-X) = —aéo = X is a square matrix (2.3.19)
log |I-X| = tr Log (I-X), X is a square matrix
hf 2 X3
= -tr[X + 5 + 3 e ] (2.3.20)
h(W) = |W|, where W is the residual moment matrix
(used in econometrics) (2.3.21)
h(W) = tr s'lw, S is the residual moment matrix
of unconstrained regression (2.3.22)
- -1 T -1
g(B) = tr T (X-AF(B))" V™~ (X-AF(B)), where F(B)
is some matrix function of B (2.3.23)
et} R ¢
_ P 5 P .
£(X) = (2m) | 2] e , where X:nxp,

E(X) = ARP, and rows of X are independently
and normally distributed with the same
covariance matrix ¥ and
=1 T
T = n ~(X-ARP)~ (X-ABP), (2.3.24)
Matrix derivative results for some of the above functions

are presented in Chapter III.
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2.4 Some Special Types of Matrices

In this section we introduce the following five types of
matrices representing operations which are related to an identity

matrix. The first two are called auxiliary matrices and the last

three are called non-auxiliary matrices. The auxiliary matrices
preserve the dimension and the number of 1's and 0's of the basic

identity matrix, whereas the non-auxiliary ones do not.

Definition 2.4.1 (Tracy & Dwyer (1969)). Suppose we rearrange

the rows of an identity matrix I:mnxmn by taking every m-th row
(n-th row) starting with the first, then every m-th row (n-th
row) starting with the second etc. This matrix we denote Dby

Itmy Tn)’-

Definition 2.4.2 Suppose we rearrange the columns of an

identity matrix I:mnxmn by taking every m=th column (n-th
column) starting with the first, then every m-th column (n-th
column) starting with the second etc. This matrix we denote

by I(m) (I(n)).

Example 2.4.1 Let m = 3, n = 2. Then
1000 0 0] T 0.0 00 0
000100 001000
I _jor1o0000 ;(3) 1000010
(3) 000010}|° 010000
001000 000100
000001 0 000 0 1
_ +(3) (2) _
Ipy =1 and I I3y

In general we may verify the following results:
Theorem 2.4.1 For a given identity matrix I:mnxmn, we have

(2.4.1)

Ty Iy = Tm)femy =1

_ T
Iy = I(n (2.4.2)
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oy - Pt g g g L7 (2.1.3)
I(m) = I(n) ifm=n (2.4.4)
I(m) + I(n) is a symmetric matrix (2.4.5)
|I(m)| = II(n)I = %] (2.4.6)

In the later part of this work, we shall not require the
second type of auxiliary matrices (Definition 2.4.2) because
these turn out to be simple transformations of the first type
of auxiliary matrices. This can be noticed from Theorem 2.4.1
(2.4.2) and (2.4.3) above. Some of the results above go back
to Tracy & Dwyer (1969).

In the following discussion k and % are the number of
repeated scalar elements in the matrices Y and X respectively,
where Y = F(X). Specific positions of these elements in the
matrix lead to deleting certain rows from (or appending certain
rows to) to an identity matrix. Some applications of these
concepts are provided in Sections 3.11 and 4.7.

Definition 2.4.3 Suppose we delete a particular set of k rows,

other than the first row, from an identity matrix I:pagxpq. We
denote this matrix by M:(pg-k)xpg. (These k rows correspond to
the k repeated elements.)

Definition 2.4.4 We denote by N:mnx(mn-%) a matrix obtained by

appending to the identity matrix of order mn-% a particular set
of 2 of its rows other than the first. These rows may either
follow or be inserted between the rows of the identity matrix.

(These % rows correspond to the % repeated elements.)
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Example 2.4.2 Take p =m =3, g =n =2, k=% = 1. Suppose

further that we delete fifth row from I6 and append third row

of 15 between its fourth and fifth rows. Then

=

1]
oo oo
oo OoOHO
oOOHOO
o OO0
cNoReoNole
HOOOO

=

il
OO OO O0OH
OO0 ORrO
OO0
COHOOO
HOOOOO

Definition 2.4.5 We denote by I*¥ :mnxmn a matrix obtained by

reblacing a particular set of the 1l's in the identity matrix
I:mnxmn by zeros. (The choice of the elements so replaced is
governed by the problem under consideration, as in
Section 3.11.)

Under a particular approach, the matrices M, N and I*
are uniquely obtained.

Example 2.4.3 Let m =2, n = 3. Then replacing the first and

fifth 1's on the diagonal of I6 by 0's, we get

100000
000000
001000

¥ = loo0100
000000O
000001

Theorem 2.4.2 For a given I:mnxmn, the following basic

properties are immediately evident.

Mt = T (2.4.7)
MM = T¥ (2.4.8)
WY = T+ = 3S(E. . +E, L), i,ij € {2,...,mn}

i i, Jst

i#]

where Er is a square matrix with the (r,s)-th
3

entry as 1 and zeros elsewhere. (2.4.9)
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NTN =1 + ZE, . (2.4.10)
. 1,1

it
The determination of the matrix derivatives and the

jacobians of certain matrix transformations is made simpler by

investigating some procedures which are based on the matrices

I(m), I(n), M, N, and I¥,

2.5 Some Equalities Concerning the Kronecker Product

The following theorem is based on the auxiliary matrices

I(m)’ I(n) and enables us to simplify the resulting matrices

of partial derivatives.

Theorem 2.5.1 TIf A and B are pxq and rxs matrices respectively,

then
(1) T, (A8B) = (BBAI ) (2.5.1)
(i1) I(q)(B®AT) = (AT®B)I(p) (2.5.2)
(111) I(S)(A®BT)I(q) Y (2.5.3)

Proof: (i) We note that the j-th column of (B@A)I(S) is

B 6®A g where j = s(B-1)+6, 8 = 1,...,9, 6§ = 1,...,s. Also

for this j, the j-th column of A®B is A B®B 5" Since

I(r)(A B®B = B .®A the result follows.

5) s g
(1i) Follows from (i).
(iii) From (i) we get
T _ T
I(S)(A®B )I(q) = (B ®A)I(P)I(q)

BTeA using (2.4.1).

il

A few other equalities concerning Kronecker product of

matrices are available in the Appendix,
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2.6 Column Vector Representations of Matrix Functions

The concept of a column vector function of a matrix
function in terms of its column vector variables 1s basic to
this dissertation. For any matrix, two types of column vector
representations, together with theilr interrelations, are provi-
ded. These are then carried on to general matrix functions of
matrix variables, which are useful in identifying the required
partial matrix derivatives. Theorem 2.4.1 is used in proving
some of the theorems of the present section.

2.6.1 Column Vector Representations of a Maftrix

Definition 2.6.1 For a matrix Y:mxn, we define its column

vector representations Yr and Yc as

[~ - - -
T
1, Y1
i v.2
Yo,
Yr = s Yc = s
Y.n
y T -T
m.

where Yi T and Y 3 are the transpose of the i-th row vector,

3

and the j-th column vector, respectively.
The idea of Yc is due to Koopmans (1950) (who denoted it

by Yvec) and that of Yr is due to Tracy & Dwyer (1969).

2.6.2 Interrelationships of the Column Vector Representations

The basic interrelations of Yr and Yc are given by the
following result which enables us to use the auxiliary matrices.

From now on we assume that the matrices involved are conforma=-
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ble for matrix operations.

Theorem 2.6.2.1 If Y is an mxn matrix, then

(1) I(m)Yc = Yr (2.6.2.1)
(i1) Yc = I(n)Yr . (2.6.2.2)

These results follow trivially from the definitions. For
example, (i) follows from the definition of I(m) given in
Section 2.4.1, since the i, i+m,..., i+(n-1)m-th elements of

Yc form the i-th subvector of I(m)Yc and also the i-th row of

Y, for i =1, 2,..., m. The fact that the i-th row of Y is the

i-th subvector of Yr proves (1).

Reformulation of the proof for (i), with the roles of rows
and columns interchanged, establishes (ii).
The basic property (2.4.1) follows from Theorem 2.6.2.1.

In fact, by using (2.6.2.1) and (2.6.2.2), we get
IYr = Yr = I(m)Yc = I(m)I(n)Yr

TmyIm) = Temyfmy = °
IYC = Yc = I(n)Yr = I(n)I(m)Yc

2.6.3 A General Procedure for Column Vector Representations

of Matrix Functions

Consider any matrix function Y = F(X). Let <ya8> denote

the matrix value of the (o,B8)-th element of Y:mxn, (see

Dwyer (1967)). Based on this concept, the vectors Yr’ Yc

whose respective subvectors are
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Yog

Y = [yal Voo 2072 yan] and Y-B

ymB

- —

are uniquely defined. The vectors Xr and Xc are similarly
defined. Now a general method of representing Yr or YC as
functions of Xr or XC or both is basic to this dissertation
both from the point of view of the theory and application.
For example, we require Yr = G(Xr) to develop the general
matrix differential calculus in Chapter III and to derive some
results concerning the minimum variance unbiased estimation,
given in Section 4.4, in matrix form. Neudecker (1969Db)
presented some theorems connecting Yc and tr Y with the
Kronecker product of matrices, Y being ordinary product of
conformable matrices. He used these theorems in differentia-
ting, up to second degree, non-linear matrix functions
involving ordinary matrix products and Kronecker matrix
products, and applied the resulting matrix differentiation to
the estimation of the structural parameters in a simultaneous
linear structural equation model. In this subsection we
develop some theorems which are applied below to identify the
matrix of partial derivatives for more general matrix
functions in a simpler manner.

We develop the general procedure of column vector

representations of matrix functions in the following way:



Theorem 2.6.3.1 If Y =
X
ng
(1) Y. = Z(A .8X, T) where X, T .
r joed T j.
|
(11) Y. = (I8X1)A
r r
Proof: (i) We have
P
v. T=5a,.x, ¥,
1. J=1 1J J.
which gives
._p -
T
a..xX
j:l 1J J-
p
5a,.X, T
J=l 2J ,j.
. p
Y = =% (A .8X
r j=1 J
b
T.a_ .X, T
5=21°mi"g .

(ii) In this case

p
v. T =3 a .x, T
1. j:llJJ-
_ T
= (ei.®X )Ar , €.
Hence
e1‘®XT
Yr =
T
e 8X
| M _

1.

_ T,
Ar = (I8X )Ar

(0,..
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AX, where Y:mxn, A:mxp and X:pxXn, then

(2.6.3.1)

(2.6.3.2)

-,Olo,lc'go)'

¥
i-th entry
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As a consequence of the above theorem, we have

=<
I

- (A@XT)Ir (2.6.3.3)

(A@I)Xr . (2.6.3.4)

Theorem 2.6.3.2 If Y be as in Theorem 2.6.3.1, then

. _ T
(1) Y, = §(Xj. ®A.j) (2.6.3.5)
(1i) YC = (I@A)XC . (2.6.3.6)

Proof: Using Theorems 2.6.2.1 and 2.6.3.1, we get

(i) Yc = I(n)Yr
T

= T(A ,8X,
I(ny F(A ;8%

_ T

- ?I(n)(A.j®Xj. )I(l)
= g(xj )
I(n)(A@I)xr

Ten ;) » using Theoren 2.5.1(ii1).

(i1) YC
= (I®A)I(n)xr
= (I@A)Xc

Following results follow readily from Theorem 2.6.3.2:

Y
c

(XT®I)AC (2.6.3.7)

(XT®A)IC : (2.6.3.8)

An alternate proof of Theorem 2.6.3.2 is given by
Neudecker (1969b).
An immediate consequence of Theorems 2.6.3.1 and 2.6.3.2

is that whenever we have products of several matrices occurring
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in ¥ = F(X), we can form Yr and Yc without going into tedious
calculations. Additional simplifications will be obtained by
using the following result:

If X is any mxn matrix, we have

= X
c T

1l

I(m)Xc (2.6.3.9)

(X)), = X, = ITyXp - (2.6.3.10)
As an example, for Y = AXTB, we have

Y
r

(A@BT)I(n)xr (2.6.3.11)

and

(8Ten)T

Yc (m)Xc

(2.6.3.12)

Obviously, for Y = AXB, we obtain

Y
r

(A@BT)Xr (2.6.3.13)
and

Y
c

(BT®A)XC . (2.6.3.1L)

Equation (2.6.3.14) is also available in Neudecker (1969b).
It may be noticed that expressions connecting Yr (and YC)

with Ar’ Br’ and Ir (and A Bc’ and IC) can be easily derived.

C’
Now we consider matrix functions involving integral powers
of a matrix variable.

Theorem 2.6.3.3 For Y = XS, where X is a square matrix and s

is a positive integer, we have

-1 . .
. 1 STt iy Tys-d-l
(1) ¥, =% jEO[X 8 (xT) %, (2.6.3.15)
(i1) v = % Ty laxd i (2.6.3.16)
) . 6.3.
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Proof: (i) Follows by induction. The formula is obvious for

s = 1. Now suppose that it is true for Z = XS, then for

Y = XS+1 we have

_ s
Yr = (X ®I)Xr (2.6.3.17)

and

_ T
Y = (I8X )Zr

s-1 R .
- Lerex®y 3 xde(xT)STdtx
S i=0 r

J:

s-1

3 de(xH)STIIx, (2.6.3.18)
j=0

1
s

Combination of (2.6.3.17) and (2.6.3.18) yields

[Xj®(XT)(S+1)-j—l

0

_ 1
Yr T s+l .
J

1X,

[ e O]

This concludes the proof of (i).
The proof of (ii) is analogous to that of (i) and is therefore
omitted.

Theorem 2.6.3.4 For Y = (XT)S, where X:nxn and s is a positive

integer, we have

s-1

(1) Y, = % _EO[(XT)j®xS‘j‘1JI(n)XP (2.6.3.19)
J:
1 STl 5 Tis-i-1
(ii) Yc = 3 -ZO[X ®(X™) ]I(n)Xc . (2.6.3.20)
J:

Proof: The proof again follows from (2.6.3.9) and (2.6.3.10)
and method of induction, as in Theorem 2.6.3.3.

The procedure adopted in proving Theorems 2.6.3.3 and
2.6.3.4 can be used in proving theorems involving positive or

negative integral or rational powers of a matrix variable
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whenever they are defined. In particular, various matrix
functions involving the ordinary matrix product, some of
which are listed in Section 2.3, may be represented as vector

functions.

It is possible to generalize these theorems to partitio-

ned matrix functions.

2.7 The Partitioned Kronecker Product and its Properties

In Section 2.6 we have seen that the Kronecker product 8
may be used for the column vector representations Yr’ Yc of
ordinary matrix functions Y = F(X), in terms of Xr and/or Xc’
Sometimes we come across matrix functions where some or all
of the matrices involved are partitioned into submatrices. To
obtain the column vector representations of partitioned matrix
functions, we need to extend the idea of Kronecker product A®B

of two matrices A and B, as stated in Definition A.1.1.

Definition 2.7.1 Let

uv
m ]

P
be two matrices which are partitioned arbitrarily. Then the

partitioned Kronecker product A@ B (which may be read as

A pi B) is defined by
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1
(M @p) (112 @p) |
A@B =
(A"t @B) AP @ B)
(A @81,
where
.. ! T ]
atdgptl! . ' atdgpth
________ be o e
l ]
! 1
1] :
A C)B = \
' .
":“:"‘_l"l"'—""""""'""!'".'."""i"
1jor8li} 1) qr8il
Lﬁ ®B ; . . . {A ®B |
and AY9@BYY is the well-known Kronecker product (aa%QB ).
A() B may be looked upon as a partitioned matrix of order
P q g h
msxkt, where m = I m,, k = , 8= %£s ,and t = I t_.
i=1 j=1 9 u=1 Y v=1l ¥

Example 2.7.1 Let

11 12 11 12 B13

A A B B

A21 A22 B21 B22 B23

then

s

11,,11 ,11

Allgpll p1lgpl2 pllgpl3 412ggll p12gpl2 412 13]

A="@B AT"8B

A11®B21 A11®B22 A1l®B23 A12®B21 A12®B22 A ®B23

A@B =
p2lgpll ;21gp12 121913 4220511 422512 42 2gpl3

LF.21®B21 A2l®B22 A21®B23 A22®B21 A228822 A22®B23

—
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Many properties of the partitioned Kronecker product are
similar to those of the Kronecker product (Graybill (1969,
pp. 197-209)). We assume that the matrices involved are
conformable with respect to partitioned addition and partiti-
oned multiplication. The following results involving the

partitioned Kronecker product are straightforward:

A@® B, B@A exist for any A, B (2.7.1)
A@B # B@ A in general (2.7.2)
(A@B)@®C = A@ (B® C) (2.7.3)
(ch)@B = A@ (oB) = a(A® B), where o is a

scalar (2.7.4)
a@®n)T = aT@ BT (2.7.5)
(A@B)(C@D) = AC@ BD if AC, BD exist (2.7.6)
(A+B) @ (C+D) = A@C + A@D + B@C + B@D (2.7.7)
a@p) Y = at@e ™t ir a7h, BT exist (2.7.8)
Im@ I, = I, for identity partitioned matrices (2.7.9)

(A@In)(Im@B) = (Im®B)(A@ I) = A@ B, where
A:mxm, B:nxn, Im and In are partitioned matrices (2.7.10)

tr (A@B) = (tr A)(tr B) if traces exist. (2.7.11)

Analogues of (A.1.20)—(A.l.26)* are also true for (@ .

Some other properties of (@ are also available. These
are given in Sections 2.9 and 2.10.

One of the important features of the partitioned Kronecker
product, which is applicable in the differentiation of partiti-
oned matrix functions, is that it helps us to transform partit-
ioned matrices into column vectors. We discuss this in the

next section. Some statistical applications of @ are
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discussed in Chapter IV.

Definition 2.7.2 (Khatri & Rao (1968)). Let

A= (A

EELREE A.q):qu; B = (B.l""’ B.q):nxq

be partitioned matrices, then ®© 1is defined as

A® B = (A.1®B'1 A'2®B.2 oo A.q®B.q)'

Definition 2.7.3 (XKhatri (1971)). Let A:mxn, B:pxqg be

matrices which are partitioned as

- n, 4 95 « e 4,
A= [atia® ... ATy, B = [BYBY ... 1B'D;

then the matrix product @& 1is defined as

2on 2

A@®B = [AteB'ia®eB?) ... iaTeB"l.

It is easily seen that the matrix product (@ 1is an
extension of ©.

The matrix product A ® B (Khatri & Rao (1968)) and A@®B
(Khatri (1971)), useful in solving certain functional equati-
ons needed in characterizing multivariate distributions, may
be obtained from very specialized cases of the matrix product
A @ B.

If no row-wise partitioning is done, and column-wise
partitioning is done such that the number of column blocks in
A and B is the same, say r in each case, then we have

A@B =[5 @8], 5 =1, 2,..., 1,
where

W@ = aderll ... jadeET].

If we now retain only Aj®Bj, j =1, 2,..., r, the 1 mod(r+l)-th

of the r2 column blocks in A@® B, we obtain A @ B. If further,
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kj = tv =1, i.e,, column-wise partitioning in A and B is done

by single columns, then A ® B becomes A® B.

2.8 Extensions of Auxiliary Matrices

Here our main attempt 1s to extend the concepts I(m) and
I(n) for non-partitioned identity matrices mentioned in
Section 2.4 to partitioned identity matrices. Since the sums
of partitioned matrices are obtained frocm the rule of row by
row sum (or column by column sum) and products from row by
column multiplication, certain extensions of ordinary matrices
to partitioned matrices are easily available by treating
matrices as elements.

Definition 2.8.1 Let Y be partitioned into

[~ 1
Yll Yln
Y =1: s (2.8.1)
ml mn
| Y cae Y B
where Ylj is the (i,j)-th submatrix of Y. Then [Yll L. Y™
e U
y1d
and . are the i-th row block and j-th column block of
i-YmJ—

Y respectively.

Definition 2.8.2 Let I:pgxpg be partitioned into mn row

blocks and mn column blocks according to the scheme

DyQqe--Ppdyees - +P1Qy - Pply as
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plql pmql b plqn pmqn
— \ .
pray [Th 050 9]
01 I0 ‘0
’ b w e I
| \ S o 1
Lo h '
I:pgxpq = . b \ (2.8.2)
. t t \\ ;
| N
P o
. : ' ~'0
. e S el e - e - - - UL PR
pa |0y Oy 0.1
meno_e v
m n
such that Zpi = p and qu = q. Suppose we rearrange the row
1 1

blocks of (2.8.2) by taking every m-th row block starting with
the first, then every m-th row block starting with the second

etc. We denote this rearranged matrix by [m]I'

Definition 2.8.3 Suppose that I:paxpq 1s partitioned into row

and column blocks according to the scheme plql...plqn...

Py Py Then we define a matrix I[n] which is obtained

m m-n

on rearranging the row blocks of this I by taking every n-th
row block starting with the first, and then every n-th row
block starting with the second, etc.

Example 2.8.1 Let m = 2, n = 33 p; = 2, Dy = 1, a9 = 2,

d, = 1, q3 = 1. If
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I:12x12 =

then

o
[QV]
o o H O o
o o o o o
[qV]
o H O o o
o o o H o
=
H O O O o
L J
=r aJ [QV] (QV] ~
0l
I
m
[QV]
-

if

Similarly,

2
0

14F}4 0

2] O

2

T:12x12 =

then
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I Eu o o o o ol

2lo o o 1, 0 O

2lo 1, o o o o
Tr31 °

1lo o o o 1 o

2o o 1, 0 0 O

1lo o o o o 1

One may observe that in the definitions of [m]I and I[n]

we have rearranged the row blocks of suitably partitioned
I:pgxpg; whereas in defining I(m) and I(n)’ the rows of
non-partitioned I:mnxmn are rearranged. Thus we may say that
partitioned matrices [m]I and I[n] are block generalizations
of the auxiliary matrices I(m) and I(n)' It would have been
more appropriate to denote by I[m] and I[n] the matrices
introduced in Definitions 2.8.2 and 2.8.3, as extensions of
I
(

m) and I(n) respectively, but there are certain difficulties.

Tracy & Dwyer (1969) were able to denote the auxiliary matrices

by I(m) and I(n)’ since when m = n, I(m) = I(n); whereas in our
case I[m] # I[n] for m = n. We illustrate this by the

following example:
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Example 2.8.2 Let m =2, n = 2; py = 2, Dy = 1, a; = 1,q, = 2.

> 1 4 2
2 I, 0 0
rigxg = L 0 1 o
l 0 0 I, O
2 o 0o 0 I,
then
> 1 4 2
2 I, 0 0 0
4 o 0o I, O
T=r 41 = !
[m]™[2] 1 0 1 0 O
2 o o 0 I,
and if
oy 1 2
2 I, 0 0
I:9%g = I 0 , 0 0
1 0 1 0
2 0 0 o
then
> 1 2
2 I, 0 0
1 0 1 0
S 0 I, 0 O
> o 0o 0 I,

Here easily we see that [m]I # I[n] for m = n = 2. Such an
ambiguity will not arise if the rearrangements of row blocks

of the partitioned identity matrix I are denoted by [m]I and I[n]
when row and column partitioning schemes of I are

plql...pmql... ...plqn...pmqn and plql...plqn... ...pmql...pmqn

respectively. Since [m]I and I[n] are notationally different,
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no relationship between them 1is necessary.

These extended auxiliary matrices are used to rearrange
the rows of an arbitrarily partitioned matrix. Suppose P:pgxs
be partitioned into mn row blocks and into any arbitrary

number of column blocks. Then [m]P and P[n] are rearrangem-

ents of row blocks of P by taking every m-th (n-th) row block
starting with the first, then every m-th (n-th) row block

starting with the second, etc., when the row partitioning

schemes are plql...pmql... "'plqn"'pmqn and plql"'plqn"'

PGy -Ppdy respectively. In such a case we see that

m

[m]IP = [m]P and (I[n])P = P[n]' We illustrate these in the

following example.

Example 2.8.2 Let m =3, n=2; 1,i' =1,...,6;5 §J =1, 2;

jJ' =1, 2, 3; and P:pgxs a partitioned matrix. Then
51 %2 51 %2
11 12| (11 12

ppay | M M ppap M M

21 22 41 42

p2q1 M M plq2 M M

1 2 21 22

P53y w3l w3 P,ay | M M

P = — P =
hy1 42 1 21

pa,| M M (3] P,y VLS
pya,| M M2 pga, | M3t

61 62 61 62

P3dy| M M p3dy | M M

and
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si sé sé si sé s!
plql._Mll M2 Ml';T P93 | M1 Mpo Mléj
Pidy | May Myo Mp3 Pody | M3y M3p M3
Pody | M3 M3p M3y p3ay M5y Mgy M3

T mpap | My My Mg = Pra)- P1dp Moy Mpp Mos
p3dy | Mgy Mg Mgy Pody [Myy Myp Myg
P39 | Mea Meo M3 P3dy |Me1 Meo M6§_

Also we can see that [3]IP = [3]P and (IE2J)P = P[2].

We use the following notation:

— —

All o ... O

0 A22
Diag[All A22 ce Amm] = : .

L? Ce AITEE

Two additional partitioned auxiliary matrices are defined
as follows:

Definition 2.8.4 Let I:pgxpq be partitioned as in (2.8.2),

where p =
i

n
Py and q = 2 qj. Then by

I we mean an
. m>
1 J

<

[ =1

auxiliary partitioned matrix given by
P19y =+r Pplp e v P19, +++ Ppn

I( I( )] (2.8.3)

<m>I = Dlag[l(pl) LI pm) L2 LI I(pl) LI pm

where the blocks I(p )3 i=1,...,m, are as in Definition 2.40.1.
i
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Definition 2.8.5 If the scheme of partitioning of I:pgxpg 1s

as in Definition 2.,8.3, then we define an auxiliary parti-

tioned matrix .
plql LI I plql’l LU ] L pmql LI pmqn

I = Diag[I eee 1 cee e I e I ]
<n> (a;) (q,) (a;) (q,)° (2.8.4)
where the I(q )? j=1,...,n, are as in Definition 2.4.1 and
J
m n
Zp; =P, Lq,=4q.
=1 j=19

Example 2.8.3 Let m = 3, n = 2 so that PytPytpy = P and

q1+q2 = q. If

I:pgxpqg = DiaglI I I I I T ]
then
P9y P,d;  P3d;  Pidy  Ppdy  P3d
p-Qq I 0 o) 0 0 0
1°1{ “(pq)
p-a-| O I o) 0 0 0
271 (p,)
p.a, | O 0 I 0 0 0
371 (p3)
T =
<3>
jefile| 0 0 0 I 0 0
172 (py)
pPA~4 0 0 0 0 I 0
242 (py)
p,a 0 0 0 0 0 I
372 (p3)
P
Similarly one can see that
= Di I I I I
Teos = D28lTq ) Trg) Teap oy ey Tlay)!
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Here again we note that <m>I # I<r1> for m = n,

With the help of the auxiliary partitioned matrices [m]I

I I[n] and T we have the following definition:

<m>"? <n>’?

Definition 2.8.6 For a partitioned matrix I:pagxpq, let [m]I’

em> L I[n] and I, . be as in Definitions 2,8.2 - 2,8.5. Then

we define auxiliary matrices {m}I and I{n} so that

(gD Cems ) = my T (2.8.5)
(I[n])<I<n>) = I‘[l’l} . (2.8.6)

The matrices I and T are used to perform certain
{m} {n}

operations on suitably partitioned matrices. For
non-partitioned matrices, these operations are carried out
with the help of the auxiliary matrices I(m) and I(n)’

Example 2.8.4 For the matrices used in Example 2.8.3, we have

T, 0 0 0 0 o
pl)
0 0 0 I(pl) 0 0
0 T(s,) 0 0 0 0
T =
{3} 0 0 0 0 T 0
(p2)
0 0 I(p3) 0 0 0
0 0 0 0 0 I(p3)

and
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B -
T(q,) 0 0 0 0 0
0 0 I(ql) 0 0 0
0 0 0 0 I(ql) 0
I =
{2} 0 I 0 0 0 0
(qg)
0 0 0 T(q,) 0 0
0 0 0 0 0 T
(a,)

-

. ‘o T _ =
Also it may be verified that 1{2} = {3}I: (1{2})<{3}I) -

(33T (Igpy) = T, and Typy # yoyl

Some important properties of {m}I’ I{ are stated in

n}
the following theorem:

Theorem 2.8.1 For auxiliary partitioned matrices {m}I and

I{n}’ we have

(i) {m}I and I{n} are conformable for partitioned maftrix

multiplication (2.8.7)
(i1) ({m}I)(I{n}) = (I{n})({m}l) = T (2.8.8)
(111 T _
iii) {m}I = I{n} (2.8.9)
(iv) {m}I # I{n} even if m = n (2.8.10)

(v) {m}I + I{n} is a symmetric partitioned matrix (2.8.11)
(vi) [{m}II = II{n}I = 1 . (2.8.12)

Proof: Since the row-wise partitioning scheme of after-factor
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is the same as the column-wise partitioning scheme of

fore-factor hence both ({m}I)(I{n}) and (I{n})({m}I) exist,

which proves (i). Other results have a straightforward proof.
A very simple proof of (ii) is given in Section 2.10.

Thus we see that {m}I and I{n} are certain extensions of
and I(n) respectively. These extended matrices are useful

in carrying out certain between and within block rearrangements.
Such rearrangements are required in developing a partitioned

matrix differential calculus. Some new properties of the matrix
product () , which involve auxiliary partitioned matrices, are

also available.

2.9 Additional Properties of the Matrix Product GD

The following theorem is a straightforward extension of
Theorem 2.5.1.

Theorem 2.9.1 Let A be partitioned into m row blocks and n

column blocks, and B be partitioned into g row blocks and h

column blocks. Then the following equalities hold:

. T _ T

(1) {g}I(A @B) = (B@ A )Ig, (2.9.1)
(i1) {m}I(B@ A) = (A(@ BTy (2.9.2)
(iii) A@B = {m}I(B@ Mgy (2.9.3)

These results are easily verified.
Theorem 2.9.1 is useful in simplifying partitioned

matrix differentiation.
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2.10 Extension of the Column Vectors Yr and YC

Sometimes it is convenient to extend the use of the
fundamental procedure of column vector representation discussed
in Section 2.6 to the case where a vector is regarded as
consisting of smaller subvectors and a matrix consists of two
or more submatrices in a partitioned form. In our discussion
of partitioned matrices, here and also in sections below,
we assume that the matrices involved are partitioned
conformably both for addition and for multiplication. However,
when we come across non-linear partitioned matrix functions
such as Y = XXT, Y = XXTX etc., then the conformability is
obvious and the desired results concerning these matrices are

very easily obtalned.

Definition 2.10.1 Let a matrix Y:pxg be partitioned as

%
= ij
T =Py [Y ] :
m
where i = 1, 2, ,m, J =1, 2, , ny and I Py = P,
i=1
n
X qJ = q Then we define column vector representations YR
j=1
and Y, of Y as below:

C



46

B ]
11 T 11
Py ¥y P19} ¥ ¢
1n
p,a Y ml
1™n r pmql Y c
YR = and YC =
p_a ml 1n
m=1 ¥ r plqn Y c
mn mn
Ppnln Y T Pny Y c
. n - o
In fact, Y

R and YC are block generalizations of Yr and Yc’

respectively, for a partitioned matrix Y.

Example 2.10.1 Let

— |
Y11 ! Y12 Ylﬂ
94 7 ;
- . Y211 Y22 Y23
11 12 R
P |Y t y Py y
31 32 33
Y = 21 ool ===~~~ °"7 7" ,
Py | ¥ i Yy v Y2 a3
]
31 32 \
P3| ¥ Tl |Ys1 o4 Ys2 Ys3
— e 1

where m = 3, n = 2, and py = 2, P, =

Then



If, for all
YR = Yr and YC =
Now we appl

establish certal

are given below:

Theorem 2.10.1

h7

1 1
- _

Y11 V11T
2

Yo1 Y21

Y12 LS

Y13 Yy
2

Yoo I51

Y23 Y12

Y31 Yoo

——— e b

Y32 and Y, = Y13

Y33 Y23

Y1 Y32
2

Y51 Y33

Yyp Ty
4

Y52 Yy3

y y

53 REER

i and j, Py = qj = 1, then we observe that

YC

y the auxiliary matrices {m}I and I{n} to

n interrelationships between YR and YC which

For a partitioned matrix Y:pXxq considered in



Definition 2.

(1)
(i1)

(iii)

10.1, we have

<
1

R = mitic

I = (I{n})YR
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(2.10.1)
(2.10.2)

(2.10.3)

These results are extensions of (2.6.3.9), (2.6.2.1) and

(2.6.2.2) respectively.

Proof: (i) Obvious.

(ii) Using Definitions 2.8.2, 2.8.4, 2.10.1 and equa-

tion (2.8.5), we obtain

{m}IYC = [m]

11
r

Y

ml

In

11

in

ml

(iii) Follows from (ii).

As a consequence of (2.10.2) and (2.10.3), we get

¥g = {m

and

}I(I{n})YR
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Yo = (I{n})({m}I)YC '
From these 1t is clear that (I{n})({m}I) = ({m}I)(I{n}) =TI,

which proves (2.8.8).

Thus we observe that {m}I’ I{n} are used to perform

certain extended operations.

Example 2.10.2 For the matrices given in Examples 2.8.4 and

2.10.1, one can verify that

YR = {B}IYC (2.10.4)

and

Y

¢ = Fep)ir (2.10.5)

Expressions (2.10.4) and (2.10.5) may be compared with

Y = I(p)Yc and Yc = I(q)Y

. respectively, where pl+p2+p3 = Py

r
q;%a, = 9.

We need the column vector representation of a partitioned
matrix function as a function of the column vector representa-
tion of a partitioned matrix variable. This is achieved by
the following basic theorem:

Theorem 2.10.2 For any partitioned matrix function Y = AXB,

we have
_ T
Y = (L@ B )p:e (2.10.6)
and
_ o7
Y, = (B @A)XC (2.10.7)

Proof: It can be seen that

. . T
vt [Al'@B'J ]XR
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is a typical subvector of YR , Suitable rearrangement of these
subvectors yields (2.10.6).

Similarly, (2.10.7) can be proved.

Corollary 2.10.1 Let ¥ = AX'B where X is partitioned into m

row blocks and n column blocks. Then

Yr

(A@ B (T,))%g (2.10.8)

and

T
v, = (B @{\)(Im}mxc . (2.10.9)

When the matrices involved are non-partitioned, then the
above results may be compared with (2.6.3.11) - (2.6.3.14).

Theorem 2.10.2 and Corollary 2,10.1 may be extended to
more general partitioned matrix functions, for example,

Y = AXBXTC, by using property (2.7.6) and the method of

induction. These extended results are used in partitioned

matrix differentiation.
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5.11 Two Extensions of Khatri's Product and Their Properties

Let
By By oo Algﬂ By By, - B1;T
Aoy Bo1
Ik , B = (2.11.1)
Lfml T Amq_ Epl T Bpn

P

be partitioned matrices. Then we define the following two
extensions (&) and ® of the matrix product (® defined by
Khatri (1971):

Definition 2.11.1

Ay18Byq A8y, ... A BBy,
A118B,  A1p®Bho A1n8Bon
A®B = : : ; (2.11.2)
Aml®B11 Am2®B12 Amn®B1n
tf@lngl Am2®Bp2 Amn®Bpn
Definition 2.11.2
A 18By;  A,8B 5 ... Ay 8By
Ay 8B,y A5s®Byy oo A5 BBo)
A@®B = (2.11.3)
A_8B . A 8B ... AmngBme

[Aij®Bij] (2.11.4)



52

where p = m in (2.,11.1).

Below we assume that the matrices involved are conformable
for matrix products and other matrix operations under
consideration,

Certain properties of () are the following:

(1) A@B and B(E) A are coexistent (2.11.5)
(i1) A@B # BOL in general (2.11.6)
(11i) A@®o0 =0®A =0 (2.11.7)

(iv) ocA@BB = ocB(A@ B), for scalars a, B (2.11.8)
(v) (a+B) ® (c+D) = A@c + A@®D + B@C + B@D

(2.11.9)
(vi) If A and B are as in (2.11.1), then

A@B = (IO, (2.11.10)

where {m}I is as in Section 2.8.

Some of the properties of C) are extensions of the
corresponding properties of ® (see Khatri, 1971, p. 76,

(iv) and (v)). These are:

If
— .
Cyy  ++- Cqp
c =" (2.11.11)
c ... C
qal an
L _
then
a@®)@®c=2@® BO®C) (2.11.12)
If
G +r Gip Hyp oeer Hpp
G = |: ,  H=1. (2.11.13)
Gp1 +++ Cym Hoq Hop
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then
(c@H) (A®B) = cA@®HB (2,11,14)

where @) is the partitioned Kronecker product defined in

Section 2.7. Khatri (1971) studied various other properties of
® with the help of the Kronecker product 8. Since @ and
C) are extensions of ® and (® respectively, we may as well
investigate additional properties of C) with the help of @
and some other related concepts.

The matrix product C) defined in (2.11.3) possesses the

following properties:

(1) A®B and B® A are coexistent (2.11.15)
(i1) A®B #B@®A in general (2.11.16)
(i11) A®o=0®a =0 (2.11.17)

(iv) ol ® 8B = oB(A ® B), for scalars a, B (2.11.18)

(v) (a+BY® (c+D) =A@ c + A®@D + BA®Cc +BAD

(2.11.19)
(vi) (®B)®c =20 B ) (2.11.20)
(vit) (a® )T = AT@ BT (2.11.21)

Definition 2.11.3 (Generalized Schur Product). If A = [Aij]’

B = [Bij] are partitioned matrices such that AijBij exists for
all i, j, then a generalization %¥ of the Schur product xx 1s
given by

A%B = [A..B,

1481375 (2.11.22)

where AijBij is the (i,j)-th partition of A¥B.
Rao & Mitra (1971) introduced the matrix product * defined
as in (2.11.22). However, they did not mention any of its

properties. It may be verified that all the properties of the
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Schur product xx are not extendable to the generalized Schur

product. Some properties of the Schur product are given in
Rao & Mitra (1971, pp. 11-12). A few properties of the

generalized Schur product are:

(i) Existence of A#%¥B does not imply the existence

of B#¥A in general (2.11.23)
(ii) A¥O = O%¥A = O (2.11.24)
(iii) A*B # B%A in general (2.11.25)
(iv) (A%¥B)#C = A%(B%C) (2.11.26)
(v) aA¥RB = aB(A*¥B), a,B are scalars (2.11.27)
(vi) (A+B)%(C+D) = A*C + A%¥D + B#%C + B¥D (2.11.28)
(vii) A very interesting relationship between the matrix

products # defined by Rao & Mitra (1971) and (® introduced

in this section is the following:

(A%B) ® (c*¥D) = (A® C)*(B@A D) (2.11.29)

(viii) tr(AxB#C) = Z(Aii)rT (I@Bii)(ciiT)r (2.11.30)
i

(ix) (axB)T = BT#aT (2.11.31)

Various specializations concerning some matrix products
discussed in this work are demonstrated by the following diagram:

FIGURE 2.11.1 SPECIAL MATRIX PRODUCTS

@ > ®
\/\\\\\\\s
Kronecker 8 ///C)-_______4>() Khatri (1971)
2 4 g(/// l
Schur XX & ® Khatri & Rao (1968)

\*

Rao & Mitra (1971)



CHAPTER III

DIFFERENTIATION OF FUNCTIONS OF MATRICES

3.1 Introduction

The problem of matrix differentiation for the purpose of
statistical application has been considered by Dwyer & MacPhail
(1948), Coy (1955), Wrobleski (1963), Dwyer (1967), Neudecker
(1967, 1968, 1969p) and Tracy & Dwyer (1969). A procedure
different from that of the above authors but valid for differe-
ntiating functions of square matrices only is found in the
papers by Aitken (1953), Capelli (1887), Garding (1948),
Turnbull (1927-29, 1930-31a, 1930-31b, 1948) and Wallace
(1953). The latter method is based on the Cayleyan operator
and has found some applications in multivariate analysis, as
pointed out by Gordon (1967) and Stroud (1971).

The matrix calculus presented by Dwyer (1967) is general
enough to include the results of previous authors as particular
cases, both in the theory and in applications. In later
papers, Neudecker (1969b) and Tracy & Dwyer (1969) extended the
concept of this matrix calculus to obtain first and second ord-
er matrix derivatives of matrix functions. Papers by Dwyer
(1967) and Tracy & Dwyer (1969) were based on the first order
matrix derivatives of J-type and K-type matrices as defined by

Dwyer & MacPhail (1948). These matrices are like Eij for X

and Y respectively. In the paper by Tracy & Dwyer (1969),

55
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aYr BYP BYC aYc

expressions for s , , and —— , when the
oX 9X oX 3X
r c r c

matrix Y is some commonly occurring matrix function of
a matrix variable X , are presented by making use of

auxiliary matrices I( A new procedure of identifying

k)
matrices of partial derivatives of some matrix functions
involving (i) ordinary matrix products, (ii) Kronecker

matrix products, without using the auxiliary matrix I(k)

and matrix derivatives of the J-type and K-type was
suggested by Neudecker (1969b). However, in his consideration,
auxiliary matrices I(k) for various positive integers k
would have simplified the matrix derivative results to a
great extent. In the above papers the authors considered
some particular matrix functions and obtained their matrix
derivatives.

Hausdorff differentiability of a matrix function of
a square matrix variable has been studied by Rinehart
(1966a, 1966b) and Powers (1971). Powers gave a new
diagonalizing matrix which, together with the technique
in Neudecker (1969b), provides a simpler computation of
Hausdorff derivatives than that given by Rinehart (1966a).
According to Rinehart (1966a) and Powers (1971), the
differential df(X) of a matrix function f(X) of a
square matrix variable X may be expressed in terms of
differentials dP and dA, where p™lxp = A and A is a
diagonal matrix.

In this chapter we are concerned with the differential
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calculus of matrix functions involving ordinary matrix products
some of which are more general than those considered in Section
2.3. This approach generalizes some of the theoretical results
on matrix differentiation given by Dwyer (1967), Neudecker
(1969b) and Tracy & Dwyer (1969). Besides the above generaliz-
ations, introduced and studied in this chapter are some new
concepts such as matrix derivative transformations, mixed
partial matrix derivatives, partitioned matrix differentiation
and differentiation of functions of matrices involving equality
relationships among their scalar elements. Certain basic facts
given by Dwyer (1970) concerning matrix derivatives are
verified.

Some further results based on the above concepts are also
presented. In this presentation, the J-type and K-type matrix

derivatives are not used at any stage because the fundamental

concepts of X ) 9<X> s 9 and 3<¥> are not used in this
a<X> oX 3<X> oX
oY
thesis and only their transforms to vectors such as —L are
0X
r

treated. However, Sections 2.4-2.10 of the previous chapter,
in coordination with the procedure available in Neudecker
(1969b) and Tracy & Dwyer (1969), play a major role. This
theory is developed in the field of real numbers over which
all the vector spaces under consideration are defined.

An explanation of the term "matrix element" as opposed to
"scalar element" is also very essential in this chapter.
Throughout our discussion, for any matrix X, we denote its

(i,j)-th matrix element by <xij>’ which is (i,j,xij) in the
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terminology of Dwyer (1970, p. 5), and its (i,j)-th scalar
element by Xij' A mention of these concepts is made by Dwyer

(1967, p. 608). Thus we see that a matrix element specifies its

position in the matrix in addition to its scalar value. In the
matrix display the values of i and j are clear and the value Xij

is interpreted as the matrix element which has scalar value of

Xij as a scalar element. From the very definitions of the vectors
it is clear that each of their components has a

X Xc’ X, and X

R C

specific position in a matrix which is a transform of the

l,,’

position in X.

3.2 A Matrix Derivative Transformation and its Properties

3.2.1 We begin by defining the differentiability of matrix
functions with respect to a matrix variable. This generalizes
the differentiability of a vector function of a vector variable;
see for example Fleming (1965).

For differentiation purposes, it is an important fact that
(i,j,xij) is always independent of (i’,j',xi,,j,) except when
i=1i', j = j'. As regards matrix elements versus scalar elements,
we point out that xij and <Xij> are not completely independent
since Xij is one of the three components of <Xij>' We assume
that the differential operator applied to <Xij> works only on Xij
and not on i, j. Thus

d<x, .> = (i,j,dxi.)

ij 3
and hence the scalar value of d<xij> is the scalar dxij'
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Definition 3.2.1.1 (Differentiability). A matrix function

Y € v4é: n is differentiable at X ¢ L/%?q if there exists a
3 H

linear transformation L(X; H) ¢ Udéz n such that
3

Y(X+H) - Y(X) - L(X; H)

lim = 0:mxn (3.2.1.1)
i o | 4] |
where H ¢ b/¢;1q, | [H]| = tr HHT and L is linear in the second
2
matrix H.

Expression (3.2.1.1) is equivalent to:

YP(X+H) - YP(X) - LP(X; H)
lim = 0:mnx1 (3.2.1.2)
H=>0 | 1] ]

. Where Yr and Lr are column vector representations-of Y and L
respectively, or

<y, (X+H)> - <y..(X)> - <. .(X;H)>
1im 1 L J = 0:1x1 (3.2.1.3)
H=->0 P q 5
> Zh
a=1 =1 B

for all i =1, 2,..., m; J =1, 2,..., n; where <yij(X+H)> is

the (i,j)-th matrix element of Y i.e., the element of Y which
specifies the position (i,j) in the matrix in addition to the
scalar value of the element.

Combining expressions (3.2.1.1) and (3.2.1.3), we get the
connection between the differentiability of a matrix function

Y with the differentiability of each scalar function yij(X) of

a matrix variable X, as defined below:

A matrix function Y is differentiable at X if and only if
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each of its components Vi i=1, 2,.0., m3y J =1, 2,..., N3

j’
is differentiable at X.

The linear matrix function L in (3.2.1.1) is called the

differential of Y at X and is denoted by dY¥Y(X). This 1is

called a 'comatrix', being an extension of 'covector'
considered by Fleming (1965). If Y is differentiable at X,
then the transposed matrix of the linear vector function Lr
can be identified to be the matrix of the first order partial
derivatives.

For further description we shall use expression (3.2.1.2).

3.2.2 Representation of a Comatrix

Corresponding to a matrix space UA&;’Q with an ordered

]

basis é??, we can have a vector space wpq with an ordered

basis éﬂz?, where éQ?r is a set of column vector representa-

tions of basis matrices in the ordered basis éﬂ?.
For any linear transformation L, we denote its row-wise

column vector representation by Lr‘

Lemma 3.2.2.1 A matrix function L: bz¢;1q —_— V¢?2 n
3 3

defined by L(X) = [2ij(X)] is a linear transformation if and

only if Lr: qu — Von defined by Lr(X) = [zij(x)]r is a

linear transformation for every X € b/¢<; q'
3

An application of Section 3.4 in Hoffman & Kunze (1971)
yields the following theorem, which uses the concept of

Lemma 3.2.2.1 above.
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Theorem 3.2.2.1 Let wpq and an be two vector spaces, together
4
with their ordered bases éﬂ?r and éﬂ?r , respectively. Then

there is a one to one correspondence between the set of all

linear transformations Lr defined in the Lemma 3.2.2.1 and the
s
set of all mnxpq matrices of Lr relative to ngi, J%g; .

Proof: It is obvious that the set of all linear transformations

Lr forms a vector space U of dimension pgmn. Now each of the

pamn basis matrices of U may be arranged as pgxmn matrices.

Then the transpose of these matrices forms the set of all mnxpg
matrices of Lr relative to ;251, ngg . A detailed proof of

this theorem like that of Theorem 11 in Hoffman & Kunze (1971,
p. 87) may be given.

The above theorem is used for the identification of
matrices of first order partial derivatives.

3.2.3 The Matrix of Paftial Derivatives

Definition 3.2.3.1 (Partial Derivatives). If Y:mxn is a diff-

erentiable matrix function of the matrix variable X:pxdq, then

the (k,%)-th partial derivative of <yij> with respect to the

matrix elements of X is defined as

iy (R thyg)> = ¥y (x)>

lim
g > © 7S
8<yi.(X)>
if the 1limit exsists, and it is denoted by J , Where
9<x, >
k&
i=1, 2,000, my J =1, 2,000, 13 k=1,2, ..., p, and



62

If, in particular, Y = X, then from the above definition,

<X, .>

we obtain 1)  which is O when k # i and/or §j # &, and is 1
Xre”

<X, >
1

9<Xyo?

and the (i,j)-th element of

when 1 = k¥ and j = &. Here we notice that is the

0 . ax
(1,j)-th element of s—=—% ,
ki

QXE— aX T
5<x_ > IS the (i,j)-th element of (35=—%)

k& k&
Dwyer (1967). When Y is a differentiable function of X, we use

as discussed in

T
chain rules to reduce SQ%X—; to gAa X Ba + ECB 90X DB'
ki 8<Xk2> B 3<sz>
T
T oY T X oX
Thus when ¥ = XX, ==———— = X X.
AL e 0<Xy > 9<Kyp?

Definition 3.2.3.2 (The Matrix of Partial Derivatives). For a

differentiable matrix function Y € V¢?; n of the matrix variable
3

BYr

X € °/%;’q , the matrix denoted by ——r and defined by the
’ X
T

equation
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9<yy1> ... ¥V A T RO D e
9<xqy7> 9<x47” 9<xq4> 9<Xy 4>
a<yll> .o 3<yln> . . a<ym1> .. a<ymn>
< > <
9 qu 9 xlq> a<xlq> a<x1q>
oY .
X : (3.2.3.1)
r .
a<yll> .o a<yln> e Ce e a<ym1> e a<ymn>
<
) Xp1> a<xp1> a<xpl> 3<xp1>
8<y > L ¥y L L. 3> L, 3y
<X > 9<X > 9< > < >
pq pq *pq 8<¥pq”

is the "Matrix of Partial Derivatives" or simply the "Matrix
Derivative" in mnpg-dimensional space of all pgxmn matrices
when the elements of Y are transformed to form Yr and the

elements of X to form Xr‘ It should be pointed out that this

. . oY 9<Y>
formulation does not give Y nor —my— - However all the

Y
partial derivatives of these expressions appear in 5?2 , and
r

they are identifiable, so the approach is adequate.

aYr BYC aYc
Similarly, the matrix derivatives 5§;, 5?;’ and syz are
3<Y . s>
defined as matrices of partial derivatives 8<xl S uniquely
ki
ordered such that the elements of Yr or Yc appear as a row and
oY

those of Xr or XC as a column. The matrix 5?9 was introduced
c

by Neudecker (1969b). He denoted it by S—S%— . In a paper

in the same year, Tracy & Dwyer suggested all of the above four
matrix derivatives. However, none of these authors provide any
algebraic treatment of these matrix derivatives. Our aim here

is to characterize these matrices.
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The unique (k,%; i,j)-th element of the matrix derivatives

Y 8Y, 3Y,  9Y, 9<¥44”
s 3 > is indicated by .
X, X, X, X, <X, o>

Using expression (3.2.1.2), Lemma 3.2.2.1 and Theorem
3.2.2.1, we now establish a theorem which characterizes the
oY

matrix of first order partial derivatives 522
r

Theorem 3.2.3.2 If Y € udéz n has a differential at a point
3

aYr
X € L/¢/q , then the matrix derivative exists, it is unique

p,Qd BXr
and it is identifiable as the transpose of the matrix of the

linear transformation Lr of X.
Proof: It is easy to see the existence and the uniqueness of
oY aY

r r

Y We establish the identifiability of 5T as follows:
T r

If Y has a differential at a point X, then each of its
elements <yij>’ i=1, 2,.0.,my J =1, 2,..., n, is a
differentiable scalar function of the elements <Xk£>’

k=1, 2,..., p; L =1, 2,..., q, of X, and hence

I
™
™
[
o
o,
A
>
v

Qij(dX)

()
BXr er . (3.2.3.2)

Collecting these components of L in the form of a column vector,

we obtain
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Qll(dX)

an(dX)
LP(dX) =

zml(dx)

lmn(dX)

L

v T
r
<;i;) ax,, . (3.2.3.3)

Hence the matrix of the linear transformation Lr is the unique

<y, s>
matrix formed by the mnpq elements gz;ii; . This 1is the
ki
BYP
transpose of the first order partial matrix derivative X
r

We call Lr the Matrix Derivative Transformation. In

other words, this is the differential of Y at X.

Some properties of L% are as follows:

(1) L, is linear

(ii) Lr is unique

(1ii) for p = m, q = n, the absolute value of

oY
r

Det(Lr) = -BT-
r

is the jacobian of the matrix transformation X — Y.
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If, in particular, Y = y(X) is a scalar function of X:ipxq,

then the matrix derivative is given by

9X

By_[By ]
T :pxq (3.2.3.4)
53X h

(see Dwyer (1967, p. 609)) where a typical element of %%—is

<X >

given by 3 . Using (3.2.1.3) and (3.2.3.2), L = &;5 = %
] ") ij

is a linear transformation for every X € g/¢;qq , and
3

T
g(ax) = (&) ax, , (3.2.3.5)
axr r
5 T
which gives the matrix (5%_> :pgxl of the linear transformation
r
2. The matrix derivative %% is obtained by rearranging the
elements of %%— in the matrix form and it can be identified from
r
the following expression:
9y T
3 = (29
(dX) (BX ) er
r
T
- oy
= tr(sg) 9%, (3.2.3.6)

using (3.2.3.4) and (3.2.3.5). Since %% is needed in many
statistical applications, we are concerned with (3.2.3.6) only
as long as the first order matrix derivative of a scalar

function is required. Obviously & is the differential dy at X.

aYr BYC BYC
The matrix derivatives z=w , 5% and ¢ may be
oX BXP aXC

[¢]
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similarly characterized.

The main reason for not using %%i—_; and more general
k2
3 __ in the above discussion is that these are inadequate for
9<X) >

characterizing simultaneously all the partial derivatives.
However, the transform of the collection of these partial

oY
derivatives to vector form —%— and to matrix form 572
T r

i

respectively, are characterized as the transposes of the

matrices of certain linear transformations.

3.3 A Basis Representation Theorem

In the previous section we showed that for any differenti-
able matrix function Y of a matrix variable X, we may observe

T
oY
( r) as a matrix of a certain linear transformation. For

39X
r

various choices of bases for the matrix space <£Z§q mn ° we may
3

Y
have various representations of 5?2 . In the present section
r

we consider a standard basis and an ordinary basis for .jzzq mn
3

oY

and then show that the representations of 3?2 with respect to
r

these bases have certain interrelationships.

Let
&= (Epaees By ppses oo Epg 1ot Bpg )
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and
Y- {Byys--+» B

be the standard basis and an ordinary basis, respectively for

. ..., B }

l,mn”""’ pg,1°" " "’ qu,mn

oY

the space of all matrix derivatives 5?2 , Where
r

pgq,mn

Y eudéy and X e‘/47a . Here we note that any B which
m,n p,q Y S

is an element of the arbitrary basis may be expressed uniquely

in terms of the standard basis matrices E&B’ o =1, 2,..., PqQ;

g =1, 2,..., mn. On the otherhand, for any Eas € é? , there

exist unique scalars pYa (see Hoffman & Kunze (1971, p. 46))
af

such that

D £ % oris (3.3.1)
} 0 3.
0B 4oy s-1 B YO -

Here we note that EuB € éf’is the matrix with all

elements equal to zero except the (a,B)-th element which is

equal to 1. The subscripts o and B are defined as

o = q(k-1)+% (3.3.2)
and

n(i-1)+j . (3.3.3)

B

These are useful in specifying any desired typical element of

Y
the matrix derivative 522 . It is easy to see that
r
o =1, 2,..., pq for k =1, 2,..., P; L =1, 2,..., 1
and similarly
g =1, 2,..., mn fori =1, 2, ,myJ =1, 2, , I
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Y
Obviously the matrix 5?2 is such that
r
ayr _ pg mn 8<yij>
axX =z Z 3<X, ,> EuB
rg a=1 B=1 ke
pa mn B<y, ;> ( pq mn )
= Z z X Zp' B , using (3.3.1)
0=l 8=1 0Xyp” \y=1 s=1 *B YO ’
pg mny/ pg mn 5 <Y, s>
= (3 = p¥S —L B (3.3.4)
y=1 6=l(a=l g=1 OB <Xy p> ) Y8
BYr
= 5% . (3.3.5)
'z
Let Zyqseco Zl,mn"" e qu,l""’ qu,mn be the

e Z.
coordinates of the above matrix X in the ordered basis .
r

Since these coordinates are uniquely determined, we have

from (3.3.4),

m <y, > =1, 2,...
. Bam J18 Y157 Yy =1, 2,..., PqQ
Y$ o=1 B=1 af 8<xk2> § =1, 2,..., mMn

, (3.3.6)
where y and 6 correspond to o and B respectively, that is
v = q(k-1)+% and § = n(i-1)+j.

We illustrate expression (3.3.6) by the following example.
Example 3.3.1 Let 1 =1, 25 J = 1, 2; k=1, 2; & =1, 2.
2. From (3.3.2),

Then we have p = g = 2; m = n

o = 2(1-1)+1 =1 when k=1, 2 =1
o= 2(1-1)+2 = 2 when k=1 % =2
o= 2(2-1)+1 =3 when k =2, & =1



a = 2(2-1)+2 = 4

Similarly, from (3.3.

B

= 2 when 1
= 3 when 1

= 4 when i

1 when 1

i

1]

when

3),

j =

j =

1

2.

Hence we see that given p, g, we can determine k and L

uniquely for any a or for any vy

n and for any B or §,

_.1
11 © P11

11
Poy

11
p3l

+

11
Py
12

12 - P11

12
Puq

Similarly Zl3’

These 2z

0<¥y7>

9<Xqy49”

9<¥17°

8<x12>

9<¥17”

9<X 5o >

21

9<¥17”

9<X >

22

3<yll>

9<X, 4>

11

0<¥11”

0<X >

22

Z

the proper (i,j) can be found.

+

+

+

1420

Y6 may be arranged

11
Pio

11
Poo

11
p32

11
Puo

as

9<Yqp” 11

3<xll> 13

8<¥12> 511
53, o> 23

9<Y7 57 11

a<x21> 33

9<V12” | 511
3<x22> 43

12 90

14 8<x11>

+ P

L, 12 9<Y5p”
Py 3<x22>

o<y

o<y

o<y

o<y

.

217
>

9<x

11

217
>

9<X

12

217

9<X

217

217

9<X

22”

11
Py

11
+ Py

+ p%ﬁ

1
* Pﬁu

Thus

0<Ypp”

9<X. >

11

0<Ypp”

<X >

12

3<y22>

9<X A, >

21

3<y22>

<X >

22

vy Bppscecs By may be obtained.

70

Similarly, for given m and
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™ B 11 11 11 1IT —5<y ;—
le-} pll o o plu e o plll . o puu == 11
X, - >
11
14 14 14 14 <Y 15>
Zqy Pyq =+ Py -~ cee Pyq cec Pyy - 22
X, >
11
= . ) ) ) ) . (3.3.7)
41 41 41 bi| | 9<y,.>
Zul pll “ e plu “ e “ e pul ) puu' 52 11
Xnn>
22
Ly by Ly Ly 9<Y 1 n>
2y P1; Pay Pyt Puy| | 5B
L — B Ba-F-

Expression (3.3.7) may be put in matrix form as

Y
Z, = P[;—}(—Ii] , (3.3.8)
r
r

where

Y6 BYP
Zyg = F 3%, - (3.3.9)

r

BYr

In general, every 7 = (ZYG) and 5 are pgxmn matrices of
r

oY
coordinates of 5?2 in the ordered basesJéggnd é?}espectively,
r

and P is the pgmnxpgmn matrix whose typical element is the

scalar pY(S whenever (3.3.8) holds.
of
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From equation (3.3.9), for y = 3, we get k = 2, % = 1 and
for § = 2 we get 1 =1, j = 2.
Hence

- [3<y12> _ . 532 9<Y 43>
32 0<%y o=l g=1 OB 3Xyp?

The following lemma characterizes expression (3.3.8):

Lemma 3.3.1 Let {EaB} and {BaB} for o = 1, 2,..., PQ5

g =1, 2,..., mn, be bases of i2§q mn ° defined previously.
b

Then the mapping

Z_ qumn__________“upqmn
r
defined by
aYr aYr
23 ol B R > o I (3.3.10)
r r
r/ r

where P is a fixed pamnxpgmn matrix over the field of real

numbers, is a well-defined function.

a<y..>(l) 8<y..>(2)
Proof: Let §Z§£i§ and E?EELF be the (y,8)-th elements
ki ke
5Y (1) 8y (2)
of the well-defined matrix derivatives 5?2 and 5?2 .
r r

Let
(1) (2)
oY Y
(1) _ r (2) _ r
Z, —P[ﬁ; ] and Z, —P[—a—g ] , (3.3.11)
r r

and suppose further that
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T = N\ . 3.3.12
BXr BXr

r r
oy, D gy (@)
Then, since X and X are well-defined matrices, we
r r

obtain from (3.3.12)

sy (1) 5y (2
r r

3K, = 3%, > (3.3.13)
which implies
i=1, 2 m;
a<y..>(1) a<y..>(2) . » »
iJ = iJ j=1, 2, s N3
m—; = -a—<*)—{‘—~—>" for (3-3.14)
k2 k& k=1, 2, » P
L = l: 23 > 4.
From (3.3.6),
(1)
o<y, >
. (1) gq gn pyé Yij
vS 0=l g=1 *F 2¥yp”
(2)

pd MmN g 3<yij>

= X I p.p mo——c , using (3.3.14),
o=l p=1 P 9Ky
(2) Y=1> 254005 PQ
= Z.s for all (3.3.15)
Y § =1, 2,..., mn.
Hence from (3.3.11) and (3.3.15)
(1) _ (2)
Z., =7, . (3.3.16)

Hence the mapping defined in (3.3.10) is well-defined.
Now we are in a position to justify "the restriction of our
BYr
discussion of 3% with respect to the standard basis é%yof
r

pq,mn This is clear from the following main result of
E]
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this section.

Y

Theorem 3.3.1 Suppose that the matrix derivatives 523 with
T

respect to the bases é? anthZ?éxist. Then there exist

unique scalars YG such that

Pag
ryr] gq rém §q I;n . (BY . ) ya} B ( )
= = r\ 5 3.3.17
aer§ET y=1 =1 {a=1 B=1 3%, “Ba) Pas Y8
pa mn oY
= T =z PYGK%XB Bys > (3.3.18)
y=1 8=1 rl, ¥

where PY(S is the (y,8)-th row of the non-singular pgmnxpqmn
: = (Y8 - -
matrix P = (paB) , o,y =1, 2,..., pa; B,8 =1, 2,..., mn.
Proof: Letgéz?and é%ybe two ordered bases for =£qu —_— Then
3

[%Y (?Y-}

—r = | L

BXrL@ axrg

pg mn 3<yi.>

= 3 T —2d_F

s (3.3.19)
w=1 p=1 OXyg> B

where k,% are obtained from o and i,j are found with the help

of 8. Hence from (3.3.1) and (3.3.19), we obtain
8 pa mn 3<y..> pq mn
a=1 g=1 °“*ks y=1 ¢=1 %* Y
pq mn pg mn 9<y..>
- s oz )y oz A pyilp (3.3.20)
y=1 §=1 {oc=l g=1 9<Kye” OBl YO

]
i ™MT
= Q
O
[ E=
= o
e
Q
N MO
= Q
w
I M3
= =
ot
3
NS
@] Q@
ke e
I I L}
=
2
N
C
Q=
w O?
\.\/‘/
(vy]
=2
(o]
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Y
where tr(ax EBQ> is the a-th element of the B-th column of

BYP
BXr

This proves (3.3.17)

Using (3.3.6), (3.3.9) and (3.3.20), we have

iin pa mn

— = z Zz B
oX,, y=1 §=1 ¢ Y8
pq mn Y5 8Y
Y= 1 §= 1

which proves (3.3.18).

{]

In particular, for a scalar function y = f(X), Wrobleski
(1963, Theorem 2.2.2) has discussed a certain basis representa-

af

tion of X

Our approach is slightly different and features

more general cases.

With the help of Theorem 3.3.1, we can obtain formulae

BYr BYC BYC
for 5 s 5% and X using various interrelationships

oY BYr oY BY

. . . r c
among matrix derivatives BXr s aXc s BXP and ax .  These

interrelationships are considered in Section 3.7.

Thus, from Theorem 3.3.1, it follows that for any of the
above matrix derivatives, we may very conveniently choose its
representation with respect to the standard basis é%ﬁ This
is possible, since the representation of these with respect to

any arbitrary basis.f%?ﬁay be described by the corresponding



matrix derivatives and the matrices {EuB} and {Byé} of the

bases é%gand(EZ?}espectively.

However, it may be desirable to point out the trivial

modifications needed in obtaining the (a,B)-th elements of

aYr aYC BYC
X IX and 5 respectively. These are given below:
c r c
a<yi.> 3YP
(1) if §Z§_i§ is the (a,B)-th element of 5% then
kil c
o = k+p(2-1) and 8 = n(i-1)+j ;
8<yi.> BYC
(ii) if E?E_l; is the (a,B)-th element of Y then
ki T
o = q(k-1)+% and 8 = i+m(j-1);
8<yi.> BYC
(ii1) if 5—<—X-lj; is the (a,B)-th element of = , then
c

o = k+p(2-1) and B = i+m(j-1).
TIn all the above three cases the knowledge of a and B
is enough to determine k,% and i,j uniquely if these are

required.
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3.4 General Procedure for Identification of Matrix Derivatives

We use the following theorem, where dX = [dxij]'

Theorem 3.4.1 For a matrix function Y = F(X), X:mxn

(1) (de)r = 1,,d%, (3.4.1)

(n

Y
(1i) Y, = PdX, — BXP . (3.4.2)
r

]
o

Proof: (i) Obvious from equation (2.6.3.10).

m n 8<yk2>
(i1) Since d<y, > = .f .§ EP T d<xij> , we have,
i=1l j=1 ij
0<Yyp”
by ordering the partial derivatives YT
iJ
2Y_\"
dYr =\5x er
r
oY

which, together with dYr = Per , implies §X£ = PT .
r

BYP

The identification of 5%
r

from dYr = Per in (ii) above

would be more direct if Definition 3.2.3.2 had required the

elements of Yr to appear as a column and those of Xr as a Ir'ow,

for then

oY

= i __-_rlz
dYr Per would imply aXr P

in place of PT

Although this could save transposition when
matrix derivatives become complicated, we would go along with
Definition 3.2.3.2 to retain consistency with Neudecker (1969Db)

and Tracy & Dwyer (1969).
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In Section 3.11, the above concepts are generalized and
then they become useful in differentiating partitioned matrix
functions.

A very general matrix function, e.g.,

v = acxhHosxTyYex®p(x D)%
of a matrix variable X can be differentiated Dby using Theorem

3.4.1 and the fact that

a-1
a® = 2 x¥ax)x* ¥ 1, for a positive integer o
k=0
a 2k atk-1
and dX~ = - Z X T(dX)X , for a negative integer a.
k=1

This is achieved in the following theorem:

Theorem 3.4.2 For any differentiable matrix function Y = F(X)

of a matrix variable X:mxn involving ordinary matrix products,

and for matrices Ai, B> Cj and Dj (i =1, 25044, S;

j =1, 2,..., t) which are matrix functions of X of appropriate

orders, we have

S t T "
= X2 A, . z C, . A
day : Al(dX)Bl + z CJ(dX )DJ (3.4.3)
and
oY S t
r _ T T
5?; = ? (A4 ®Bi) + I(m) ? (cj @Dj) . (3.4.4)

Proof: Obviously, Y can be expressed as a sum of terms
involving ordinary matrix multiplication, each term containing

T

finite powers of X, X~ and X_l in a conformable fashion. Then

the differential dY can be expressed as the sum of s = utv
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s t T
terms 2 A.(dX)B. and a sum of t terms 2 C.(ax")D, ; where
;1 i 1 3

non-negative integers u, v and t are the aggregates of the

powers of X, X_l and XT, respectively, occurring in the
explicit representation of a matrix function Y of X.

Applying property (A.1.6), the results of Section 2.6.3
and Theorem 3.4.1 (i), we get

S T ¢ T
dY_ = > (A.®8B.") + Z (C.8D, )T ax
r 1 i1 1 37735 (n) r

This proves (3.4.4) on using Theorem 3.4.1(1i1), (2.4.2) and

(A.1.7).

Example 3.4.1 Suppose we have X:mxn, and

v = X pxxlox IRXTS

Then
2 3 .
a¥ = T A.(aX)B. + Z C,(dX )D,
! COM j
where A, = X', A, = xTpxxText , B, = XLQx~1RX'S
~1,,T T T T —1
B, = x'RX's , ©j =T, C,=XPX, Cy= XPXCQL R,
D, = PxxTQx *RX’s , D, = e I D, =S,

and s = 2, u=1, v=1, t = é.

Further,

C T 3 T
ay = ? (a,8B,") + ? (c,80, )T ()| %,

which implies
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In the spirit of Theorem 3.4.2, we can form the following
table of formulae for all forms of matrix derivatives.

BYr BYT BYC aYC
E 3 3
BXr BXC BXr BXC

TABLE 3.4.1 FORMULAE FOR

- T
WHEN dY = Z A, (dX)B, + 3 Cj(dX D,

i J
Q&\A_%
éf’g \)’*"% ? Y Y
) $2'{$ r c
&\ Y2
®® e
<O®O O\»
&
éo
T T
X z(a, @B 4T, ( eD,) E(B ®A, Tysz(p.ec. D)
X I, yZ(h, ®B )+2(C, ®D y | =(B.8a. Ty+1 2(D,ec, Ty
c (n)y 3 ;i (n )

Tgble 3.4.1 is a slight variation of the table presented by
Tracy & Dwyer (1969, Table 2).

Theorem 3.4.2 may be compared with Dwyer (1967, p. 612),
Neudecker (1969b, p. 956) and Tracy & Dwyer (1969, p. 1580).

For differentiable scalar functions of matrices, a theorem

analogous to Theorem 3.4.2 is the following:
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Theorem 3.4.3 If £(X) is a differentiable scalar function of

a matrix variable X, then

ar(x) = tr[ZA (dX)B, + ECj(dXT)Dj] (3.4.5)
3F(X) _ <, T, T
ng P -z T T+ mpicy (3.4.6)

where Ai’ Bi’ Cj and Dj may be some matrix functions of X.

Proof: Since dtrY = trdY, (3.4.5) is obvious.

Expression (3.4.6) follows from

df (X) = tr(%%)TdX , using (3.2.3.6);

T _ T T T
and tr[ZA, (dX)B, + ECj(dX )Dj] = tr[ZA, B, + Zchj] (dx),

using properties of traces of matrices.
Theorem 3.4.3 extends a result in Neudecker (1969b).
Tracy & Dwyer (1969, (4.2), p. 1581), using J-type and K-type

matrices, have derived expression (3.4.6).

3.5 Illustration of the General Identification Theorem

The general procedure for identifying derivative matrices
may be successfully applied to more general matrix functions,
for example, functions involving any finite powers which may be
positive or negative integers. It would be convenient to

Y
arrange 5?2 for more general matrix functions Y = F(X), X:mXn
r

or X:mxm in a tabular form.
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3Y
TABLE 3.5.1 SOME FORMULAE FOR 5?2
r

3Y,
¥ Ey
r
cxxaxTDX CT®XTAXTDX+I(m)(XTCT®AXTDX)+
1. aTxxTcTepx)+p T xATxx T C oI
(m) n
XAX 1BxT 1m®Ax'lBXT-(X'TATXT@x‘laxT)
T -T T,T
+I(m)(B X TAX @Im)
XL ax~TBX I(m)(ImeAx‘TBX)-I(m)(x'lATX®x‘TBx)
+(BTX'1ATX®Im)
a-1 .
x%, o positive integer| 2 (XT)j'QDXOL—l_1
0
o-1 . .
(XT)G, o positive I(m) z X1®(XT)°°_1_l
integer 0
o T P S R
X", a negative integer| - T (X7) 78X
1
T, a ¢ i T.ati-1
(X™)™", o negative —I(m) T XTUe(XT)
integer 1
o p-1 . 4
eX, X square matrix —% z Z (XT)1®Xp i-1
P* p=1 1=0

Tracy & Dwyer (1969, Table 3) have considered other partic-

3Y

ular matrix functions and have obtained formulae for §f£ .
r
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3.6 Algebraic Structure of Matrix Derivative Transformations

The following theorem describes the algebraic structure

oY
of the matrix derivative transformation 5?2

Theorem 3.6.1 Let Z and W be differentiable matrix functions

of an independent matrix variable X, and let A, B, C and D be

constant matrices. Then

3(AZB+CWD) ,  3Z, BV,
3% = 3X, (AT 8B) +my— (c Tep), (3.6.1)
3(AZBWC),  3Z, W, oo

axr = BX (A ®BWC)+ (B Z

Proof: It is obvious that the matrix functions AZB+CWD and
AZBWC are differentiable at X. Further we have:

d(AZB+CWD) = A(dZ)B+C(dW)D
_ T T
= d(AZB+CWD)r = (A8B )er+(C®D )dWr
T T

{é(AZB+CWD)r]T [ o (9%, awr
o ax, = |(A®B") o +(C8DT) ]dxr

which leads to (3.6.1), and similarly

T : T
9 (AZBWC) 97 oW
r _ T T.T r
[‘8—)?————‘] er = [(A@C W™B )( r) +(AZB8C )(BX )]dxr

leads to (3.6.2).

Remark: Combining (3.6.1) and (3.6.2), we have

8(AZBWC+DUQ) BZP T BUP
K = 5% (A @BWC)+———(B Z~A ®C)+ (D Q) ,
r r

aTgec). (3.6.2)

where U 1s an additional differentiable matrix function and Q



84

is a constant matrix.
We demonstrate the use of Theorem 3.6.1 in providing a
formal proof of the following obvious result.

Theorem 3.6.2 Let A be a constant matrix. Then, for a matrix

variable X, we have

aAr
5% - 9 o
r
where 0 is a zero matrix.

Proof: For a non=singular matrix function ¥ of X such that AY

is defined, we have

A = ayy~t

Taking differentials,
aA = A(av)y toavy Laav)yt
from which, on using Theorem 3.6.1, we get

0X

oA oY
r r

3.7 Some Interrelationships Among Derivative Matrices

oY
Tracy & Dwyer (1969, p. 1579) provide expressions for 5?2 R
r

oY Y oY 5Y P

gfz s gig and 529 separately when (M
c r c

In order to justify the fact that the study of the calculus of
only one form of the above four matrix derivatives is sufficient
to supply the useful information about the remaining three

forms, we present their various interrelationships diagramati-
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cally.
Let Y:mxn be any differentiable matrix function of a matrix
variable X:pxq. Then all possible interrelationships are avail-

lable from Figure 3.7.1, where I(k) before/after an arrow head

indicates pre-multiplication /post-multiplication to the

original matrix derivative. For example

W, Iy 2V, B, ) oY
bl

o% 5% ; 3%, (q)3%
Y, Timy oY 2Y, 3,
3% < 5% 7 s = 3% L(m) @

(¢] C [¢] C

and
y

Y, Ty Imy e Wy 0¥ )
BXP i BXC SXC (q)BXr (m)

FIGURE 3.7.1 [INTERRELATIONSHIPS AMONG MATRIX DERIVATIVES

n)

m)
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Entries in the table presented by Tracy & Dwyer (1969,
Table 2) can be obtained, in particular, by using Figure 3.7.1.
For example,

Ty e =1, . (BeAT)I

(p) (n)

AT®B using Theorem 2.5.1 (iii), which

may also be obtained directly by applying the general identi-

BYr BYr aYC
fication procedure for 52; . Similarly 52: and gfg can be
BYC
obtained with the help of Y by using Figure 3.7.1.
T

3.8 Identification of Mixed Partial Matrix Derivatives for

Secalar Functions of Matrix Variables

In this section, we establish two matrix differentiation
theorems which are useful in tackling multivariate statistical

problems. We need the following results which are

straightforward:
er(xay) = (x T)(188) (Y1), (3.8.1)
4%trF(X) = trd°F(X) (3.8.2)
4°r(X,Y) = g(dX,dy) (3.8.3)

Definition 3.8.1 (Mixed Partial Matrix Derivative). Let f be

a differentiable scalar function of matrix variables X, Y,...,

7. Then a Mixed Partial Matrix Derivative V% X f of
r’r

£(X, Y,..., Z) with respect to any pair of transformed vector
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variables, e.g. with respect to Xr:mnXI and Yr:pQXl is a

2

o . . .
3<yk2>a<xij>] of mixed partial matrix element

matrix [

derivatives, uniquely ordered as below:

2 _ 3 [af
Vy x TU6LY) = 5 (ax )
r r r r
i 2 2 ]
3°r 5°f 3°r 3°f
3<Y1>8<K 1> 1Yy 70<X 2 9<Y 120K > "7 19y 770Ky
5°F 3°f 3°r 5°f
a<y1q>a<xll> a<qu>a<xln> a<y1q>a<xml> 3<qu>3<xmn>
3°f 5°f 3°r 5°r
3<ypl>a<xll> a<ypl>a<xln> 3<ypl>a<xml> a<ypl>a<xmn>
5°f 3°f 3°r 3°f
a<ypq>a<xll> a<ypq>a<x1n> a<ypq>3<xml> a<ypq>3<xmn>
Xll- X .Xmlo « X

Y11

qu

pl

pa

5°r

3<yk2>8<xi.>

J
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Using (3.4.1) and (3.8.1), we establish the general
identification theorem which is our main result:

Theorem 3.8.1 For any differentiable scalar function £(X,Y)

of X:mxn, Y:pxq, and I(k) as in Definition 2.4.1,

a?r = tr A(QNB(AYIC = Vo 4 f = I(p)(CA®BT). (3.8.4)
r’r

Proof: Using expression (3.8.1), we obtain

tr A(dX)B(dY)C {A(dX)}rT(I®B){(dY)C}TP

1]

{(A@I)er}T(I®B){(CT®I)(dYT)P}

T, T T
(er) (A"®T)(I8B)(C ®I)I(q)dYr

(er)T(ATCT®B)I(q)dYr , using (A.1.6)

T T
(dYr) I(p)(CA8B )er R (3.8.5)
using (A.2.1) and (2.4.2).

Also, the mixed differential of f with respect to the matrix

variables X:mxn and Y:pxq, respectively, is expressed as

2 m n p g 3°f

r=3 = = =
121 j=1 k=1 g=1 °Vke”9%¥1y”

d<yk2>d<xij>

il

T, g2
(dYr) (VYP,er)er . (3.8.6)

From expressions (3.8.5) and (3.8.6), we obtain

v2

_ T

r
which proves the required result.

For a pair of matrix variables X and Y, there are seven



other possible forms of Theorem 3.8.1.

corollaries.
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These we give as

(In fact, any of these eight results may be

treated as a theorem and the others derived as corollaries).

Let X, Y and £(X,Y) be as in Theorem 3.8.1. Then

Corollary 3.8.

1

d2f = tr

Corollary 3.8.

A(AY)B(AX)C == V5 , f = (ATCT®B)I(n). (3.8.7)
r’’r

2

d2f = tr

Corollary 3.8.

a(axT)B(av)c = Ve 4 f
r’r

3

alf = tr

Corollary 3.8.

A(AY)B(dXT)C => ¥ £

4

d2f = tr

Corollary 3.8.

A(AX)B(dYT)C => ¥ £

5

d2f = tr

Corollary 3.8.

A(aYTYB(dX)C => v% o f
r’’r

6

d2f = tr

Corollary 3.8.

a(axh)B(ayh e =5 ¢
r’’r

7

d2f = tr

A(QYTYB(axT)C => v§ o f
r’*’r

]

1]

BTecA. (3.8.8)
aTcTes. (3.8.9)
caeBT. (3.8.10)
BRATCT . (3.8.11)

(CA@BT)I(n). (3.8.12)

T.T
I(p)(A c*®B). (3.8.13)

Theorem 3.8.1 and Corollary 3.8.4 are also available in

Tracy & Singh

(1971a).

We now discuss some important particular cases of Theorem

3.8.1 and its

corollaries. The following theorem is a generali-
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zation of a result in Fleming (1965, p. 47):

Theorem 3.8.2 If, in the neighbourhood of X and Y, all of the

2
. . . o T . .
second order partial derivatives 53y S0<x. .S (1,3) # (k,2),
ki ij
exist and are continuous, then
2 _ 2 T
Vy X = (VX ¥ £)°. (3.8.14)
r’’r r’’r
Proof: From the above definition, the
(k,%; 1,j)-th element of (VS o £)T = s
L Rads] 5 -
Xr’Yr a<xij>3<yk£>
) 3¢
3<yk2>a<xij>

(ef. Fleming (1965,
p. 47, Theorem 3))

= the (k,%; i,j)-th

2
element of VY JX f.
r’’r

Hence the result.

An interesting special case of the above theorem arises

when ¥ = X. In this case Vi X f is a symmetric matrix of
r’’r

second order partial derivatives, called the Hessian matrix
of £ at X.

If in expressions (3.8.4) and (3.8.7), we put ¥ = X:mxn,
. T T.T
then either I<m)(CA®B ) or (A°C ®B)I(n) may be treated as the
required Hessian matrix of f at X, since

(ATCT®B)I(n) - [(ATCT®B)I(H)]T = I(m)(CA®BT).
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From the other expressions of the above corollaries, three
additional Hessian matrices may similarly be obtained by
specifying Y = X:mxn.

The results of Neudecker ((1967, p. 103), (1969b,
p. 957)) may be obtained as particular cases of Theorem
3.8.1, Corollaries 3.8.1-3.8.7 and Theorem 3.8.2.

Let Y = X in (3.8.10). Then

2

a%f = tr A(AX)B(AX1)C :::g»vi L f CABBYL
r’’r

aTcTeB,

using Theorem 3.8.2.

This is equivalent to:

2
2. _ T 9°fF _ T
a°f = tr A(dX)B(dX ):::::?-[3<Xij>3<xk£>]— A"®B,

where AT®B is symmetric matrix, as given by Neudecker (1967,

p. 103). 1In our terminology this can be written as

2
2 9 f T
v £ = [ ]= A"@B,
Xr’Xr 3<Xij>3<xk2>

for the symmetric matrix AT®B.
We shall need the following results which are immediately

obtained from Figure 3.7.1:

2 2
v £ =1 v £\1I (3.8.15)
Y, X, (q)( Y., X, ) (m)

2 2
v f =1 v £\1I . (3.8.16)
XY, (n)( XY, ) (p)

Now we can derive the result of Neudecker (1969b, p.957),
as a particular case of (3.8.8) or (3.8.11) by specifying

Y = X and using (3.8.15) or (3.8.16).
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Some applications of the results of this section are

given in Chapter IV.

3.9 Testing Extrema of Matrix Functions

In this section we apply formulae for first and second
order matrix derivatives to find extrema (minima and maxima)
of differentiable scalar functions of matrices. We consider
unconstrained and constrained extremum problems and establish
a set of necessary and sufficient conditions for locating
extrema for these problems.

3.9.1 Unconstrained Exftrema

Theorem 3.9.1 (Tracy & Dwyer (1969)). Let y = £(X) be a

differentiable scalar function of a matrix variable X:mXn.

A necessary condition for an extremum of y at x° is that

CNAR (3.9.1)

Q

o)

when = X7,

X
A sufficient condition for f(Xo) to be a minimum is that

2
VX ,X y 3 (3'9‘2)
r-r

when evaluated at XO, be positive definite; and

a sufficient condition for f(XO) to be a maximum is that

VoY, (3.9.3)

when evaluated at XO, be negative definite.
Proof: The approach followed by Gillespie (1951) for a funct-
ion of a vector variable may be extended to prove the above

theorem.
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3.9.2 Constrained Extrema

For a matrix variable X:mxn, let y = £(X) and G(X) = O:pxq,
pa < mn, be differentiable matrix functions of X. Let A:gxp be
a matrix of Lagrangian multipliers. We define a function

z(X,N) = y+trAG . (3.9.4)
We then proceed to find the extrema of z at (XO, Ao) which
provides us with the extrema of y at x° subject to pgq constrai-
nts G(X) = O.

Theorem 3.9.2 A set of necessary conditions for a constrained

extremum of y at x° is that

%% =0 (3.9.5)
and G(X) =0 (3.9.6)
when X = Xo.

A sufficient condition for f(Xo) to be a constrained minimum

(maximum) is that

V2 .z, (3.9.7)

when evaluated at XO, be positive definite (negative definite)

T aGr
subject to (er) EX; = 0:1xpq. (3.9.8)

Proof: Again the proof of this theorem is a generalization of
that of Gillespie (1951, §20) to scalar function y of a matrix
variable.

Tracy & Dwyer (1969) have considered & particular case of
the above theorem applied to matrix derivatives. In their
case X and A are vectors and hence are not applicable to

general multivariate models where the argument X is a matrix.
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For detailed proofs of the above particular cases, we refer to
Gillespie (1951). The sufficient condition for constralned
maxima for any differentiable scalar function of a vector
variable given by Fleming (1965, p. 134, Ex. 11) seems to have
some errors. In his notation, Q(§O,g) < 0 for a maximum and
Q(EO’E) < 0 for a strict maximum, whereas he has these lnequa-
lities reversed. If y =f(§) is a linear differentiable funct-~
ion of a vector variable, then the extremum problems become
particular cases of the work of Gillespie (1951), and express-
ions for such problems are given by Goldberger (1964).
Expressions (3.9.1)-(3.9.8) are very general and are
useful for more general multivariate extremum problems. Some

of these applications are given in Chapter Iv.

3.10 Partitioned Matrix Differentiation

In this section, we present an introduction to the.matrix
differential calculus which is based on matrix functions
involving partitioned matrices. 1In a recent paper, Tracy &
Singh (1970b) discussed the matrix differentiation of linear
partitioned matrix functions with the help of the matrix
product C) . Here our main attempt is to develop a matrix
differential calculus of some general partitioned matrix
functions which parallels that of ordinary (non-partitioned)
matrix functions mentioned in previous sections of this
dissertation. Some extensions of the work of Tracy & Singh
(1970b, 1971b), together with its introductory details are

presented in this section.
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Auxiliary matrices {m}I s I{n} ; the partitioned matrix
product C) and a procedure for obtaining YR and YC as functi-

ons of XR and/or Xc

tpransforms of the partitioned matrix functions Y = F(X). This

are the basic tools in differentiating the

generalizes the basic procedure of non-partitioned matrix
differentiation treated by Dwyer (1967), Neudecker (1969b) and
Tracy & Dwyer (1969).

An econometric application of such differentiation is
provided in Chapter IV.

A very general procedure for identifying the partial
matrix derivatives for some partitioned matrix functions is
given by the following theorem:

Theorem 3.10.1 For any differentiable partitioned matrix

function Y = F(X), where X:pxq is partitioned into m row
blocks and n column blocks, we have

Y

(1) ay, = PaXy === SXB = pT (3.10.1)
R
(i1) (de)R = (In))8%g = aXg | (3.10.2)

where dXR and dX, are to be regarded as abbreviations of (dX)R

and (dX)C .
Proof: (i) It can be readily seen that the differential of

Ykz may be arranged as

k9 aYklr
= x|

R

A unique ordering of the submatrices of partial derivatives
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ke
oY r k2
and differentials dY leads to
3XR r
DYy T
avp = \z%- dXgp - (3.10.3)
R
Comparing dY¥, = PdXg with (3.10.3), we obtain
NN .
3
oXg

which proves (3.10.1).
(ii) is obvious from Theorem 2.10.1.
Here we notice that Theorem 3.10.1 is an extension of
Theorem 3.4.1 to partitioned matrix functions.
The following theorem is an extension of Theorem 3.4.2 to
partitioned situations.

Theorem 3.10.2 Let Y = F(X) be any differentiable partitioned

matrix function of X:pxq, where X is partitioned into m row

blocks and n column blocks. Suppose further that Ai, B., C

19 J"
Dj (i =1, 2,..., 85 3 =1, 2,..., t) are some appropriate
partitioned matrix functions of X. Then
S t T
dy = Z A.(dX)B, + Z C,(dX")D, (3.10.4)
i=1 1 1 j:l J J

and

oY S t

R T T
== Z (A. @®B.)+ T (D,@®cC.,)I (3.10.5)
0Xg ~ 4oq 4 i j=1 J {n}

Proof: We proceed as in Theorem 3.4.2 and apply property
(2.7.6), Theorems 2.10.1, 3.10.1 and expressions (2.8.9) and

(2.9.2).
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Here we observe the applications of the auxiliary matrices

I{n} and the matrix product C) in expressing the requi-

{m}T>
red matrix derivatives in a very compact form. One reason for
partitioned matrix differentiation to be not considered so far
seems to be the algebraic complications involved in partitioned
matrix operations. Some of these difficulties are removed by
introducing certain new ideas, for example, partitioned

auxiliary matrices and the matrix product @ .

In partitioned matrix differentiation, {m}I (I{n}) plays

the same role as I(m) (I(n)) in non-partitioned matrix differ-
BYR
entiation. Hence using {m}I’ we obtain expressions for Fy
R
symbolically from non-partitioned results by Tracy & Dwyer

(1969, Table 3) on using the transformation

BYP aYR

——— L ol [

aXr: H ®: I(m) 3 Im b Il’l QXR 3 @ E] {m}I3 Ip H] Iq .
Note, however, that X here is a pxq matrix, with m row blocks
and n column blocks, rather than X:mxn as in the paper of
Tracy & Dwyer (1969).

Some results for partitioned matrix derivative Y are

given in the following table.
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3Y
TABLE 3.10.1 PARTITIONED MATRIX DERIVATIVE == FOR
R
SOME MATRIX FUNCTIONS
. oYy
e
AX V@ Iq
T 7
AX I @ 1)
XB I @ B
,®@
X'B I(I_® B)
{m}="q
AXB INNGE:
T ' T
AX™B \ {m}I(A‘ ® B)
xTx : (I @X) + xX@1I
-~ {m}~"q q
T T
X AX {m}I(Iq® AX) + A X®@ I,
T T T
XX Ip@X o I(X @Ip)
T T 7T
XBX Ip@ BX" + (3I(B7X @ Ip)
CXTAXD {m}I(CT@ axp) + ATxcT @ D
CXBX'D T @ BX'D + {m}I(BTXTC ® D)
x~1 xT@ x7t
Ax~'s xTAT@ x7 s
(AXTB) "% - {m}I[AT(BTXAT)‘l@ B(AXTB)'l]
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Y
TABLE 3.10.1 PARTITIONED MATRIX DERIVATIVE 5X—R FOR
: R
SOME MATRIX FUNCTIONS-Continued
. 3Yp
)
C(AXB) 1D _ aTaxe)y T @ B(axs)io
xax~1BxT I,® ax~1ext - (xTaTxT @ xiBxD)
T ~T,T,T
+ {m}I(B XA @ Ip)
T, =T T
X AX "BX {m}I(Ip@ AXT"BX) -
1x T @ xTBx) + BIx ATx@ 1)
{m} p
o -l pi o La-i-1
x%, o positive integer T (x ) @X
i=0
T, 0 a-lr s T a—i-T
(X)%, a positive integer| ;.41 z [X @ (x7) ]
| 1=0
a I | at+i-1
X", o negative integer - (X)) TT@X
i=1
T, o @ i T ot+i-1
(X*)", o negative integer| - {m}I z [X @ (x) ]

oY oY oY

B __C and EyoN are very easily obtained from

Results for
SXC BXR P c

Y
Yy by using Theorem 2.10.1. These may also be obtained from

!
the corresponding non-partitioned matrix derivative formulae by

using the following transformation:
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(Yr’Yc’g’I(m)’I(n)’Im’In) M (YR’YC’@D ’hn}I’I{n}’Ip’I ).

The partitioned auxiliary matrix {m}I uses the partitioning
scheme plql...pmql... ...plqn...pmqn for differentiating
YR (YC) with respect to XR’ whereas for differentiating YR (YC)
with respect to XC’ the partitioned identity matrix I{n} uses
plql...plqn... ...pmql...pmqn as its partitioning scheme.
In the following table, the non-partitioned matrix

derivative results of Tracy & Dwyer (1969, Table 2) are extended

to the partitioned situation:

. oY, 8Y, Y, Y,
TABLE 3.10.2 FORMULAE FOR ,
5%y * 3%, > 3% ° 9%,
WHEN dY = A(dX)B or C(dXT)D
dy = A(dX)B dY = C(dXT)D
Q)
%
&
2\p
. y
'\ R Yo Ri e
o\
!
T T
X T T
R A"@ B {m}I(B@A ) {m}I(C @ D) D@ C
X I At T T
c () @B) | B@ A c"@®@p |1, 0@ D
3V,
From the sbove table, formula (3.10.5) for EYon is easy to
R

derive for a linear combination of the form (3.10.4), Similarly
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oY
if we require gyg from (3.10.4), then Table 3.10.2 yields:
R
Y s t
C T T
=== 2 (( ZI)(B, @A)+ Z D.@C.").
SXR i=1 {m} 1 1 j=1 J J
BYR BYC
Expressions for sz and 53— are similarly obtained in
BXC SXC
Table 3.10.3.
Since
= = = = +
‘I(m)l lI(n)l l{m}I‘ [I{n}l tl,

the jacobian of a certain matrix transformation is the same
Y oY Y oY
no matter whether one uses E—£~ o E—B or L
9X_ "' 3K ? 98X, 't X
¢ R C
Analogously, the concepts of Table 3.4.1 and Figure 3.7.1

may also be extended to the partitioned situation.
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3.11 Differential of Functions of Maftrices with Equality

Relationships Among Their Scalar Elements

The theory developed in the above sections of this
chapter, which we recommend for general use, calls for the
differentiation of each matrix element of Y with respect to
the matrix elements of X, where Y = F(X) is a matrix function.

The concept of a matrix element versus a scalar element of a

matrix is discussed in Section 3.1. From this discussion 1t
is clear that the matrix elements are not completely identi-
fied by their scalar values alone since their position in
the matrix must be specified as well. Thus it may happen

that Xij but always <Xij> # <Ky g s when 1 # k or

= Xygo
j # 2 or both.

It seems then appropriate to define matrix derivatives

with respect to the matrix elements themselves and not their

9Y Y oY
r r c , and
3X_ 2 3X _ ? 93X
r c r

scalar values. Thus, with the use of

oY
<

oX | °?
c

the elements of the matrix derivatives are defined to be

the elements of the matrices (scalar values in position) and
not just the scalar values. Several general results concerning
the above definition of matrix derivatives are given in the
previous sections of this chapfter.

There are various kinds of relationships which may exist
between the scalar values of the matrix elements. However, in

our development, we say two scalar elements Xij and Xy g of X

have known equality relationships if Xij = X9 where 1 # k or
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j # % or both. In matrix X, there may be several such equality
relationships between pairs of elements; however no three
elements should be equal to each other. The matrix derivative
theory so developed is useful in obtaining jacobians of the
symmetric matrix transformations, where xij = xji for i # J,
and no other scalar elements are equal. No general theory
seems feasible to cover various combinations of possible
equality relationships. For further development and

applications of this concept (Section 4.7), only this

restricted set of "known equality relationships" is treated.

In particular, a subset of the most commonly known equality
relationships in many statistical problems is obtained from
the concept of symmetry. For example, in evaluating beta and
gamma integrals for symmetric matrices, we come across the
symmetric matrix transformations

7z = ATA
and

Y = AXAT
where A, Z, X and Y are positive definite symmetric matrices,
(see Jack (196L4-65, pp. 97-98)). In general we may have matrix
functions Y = F(X, Z) with arbitrary scalar relationships among
matrix elements of Y which may be due to arbitrary equality
relationships among the scalar values of its independent matrix
variables. An application of the concept of matrix element of
a matrix to the theory of matrix differential calculus is

pointed out by Dwyer (1970). In a later paper, Tracy & Singh

(1970a) presented some formulae concerning differentiation of
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functions of matrices involving a few known equality
relationships among scalar elements and applied it to a
statistical problem. Most of the results of this section
are repeated from the above paper for completeness.

Using the above matrix definition of the collection
of partial derivatives, we can obtain the matrix derivatives
with respect to the matrix elements of the matrix X, since

<xij> is always independent of <Xi'j'> except when i' = 1,

j' = j, even though relationships may be known to exist
between the scalar values of the elements. These deriva-
tives are unaffected even if there are known or unknown
equality relationships among the scalar values of matrix
elements. In this section, we consider modifications of
the following two types of matrix derivative of matrix

funetion Y = F(X) involving known equality relationships

among the scalar values of the matrix elements:
Y

(1) §Y£ , which is obtained by differentiating each
T
vector element of Yr with respect to the vector
elements of Xr R
(i1) the matrix derivative, obtained by differentiating
each scalar element of Yr with respect to the
scalar elements of Xr .

In addition, we obtain matrix derivative described in (ii) as

oY
a linear matrix function of 5?2'
r

The above modifications lead to throwing out certain

repeated rows and columns of the matrix derivatives. Although,
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in throwing out repeated rows and columns, we have changed the
problem, still the corresponding determinantal values yield
jacobians of the original problem. We accept this fact simply
because we have thrown out only those rows and columns which
did not reduce the number of distinct rows and columns in the
modified matrix derivatives (see Tracy & Dwyer (1969, pp. 1582-1583)).

The auxiliary matrices I(k) and the non-auxiliary
matrices M, N and I¥*¥ defined in Section 2.4 are used in identi-
fying the above mentioned matrix derivatives.

The modified versions of these matrix derivatives are
used in Section 4.7 to evaluate the jacobians of certain
symmetric matrix transformations.

3.11.1 Some Definitions and Interrelationships

Here we introduce some column vectors and matrices which

are certain deformations of Xr and the identity matrices.

Definition 3.11.1.1 Let the matrix X have some known equality

relationships among the scalar values of its matrix elements.

Then we obtain the column vector Xr# by cancelling the matrix

elements corresponding to repeated scalar elements as we go

down the vector Xr' This defines Xr# uniquely.

Definition 3.11.1.2 Let X be as in the above definition. Then

we define X(r) as a column vector of the scalar elements of the
#

corresponding matrix elements of Xr; and X(r) as a column

vector of the distinct scalar elements of X(r)'
Here we observe that the elements of X(r) and X(r)# are

not unique. However, we agree that a subset of distinct
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elements chosen from X(r) to obtain X(r)# , though not nece-

ssarily unique, behave as independent variables. In the
above definitions, the repeated scalar values of matrix
elements can be permuted among themselves and hence permit
algebraic simplification with the use of known equality
relationships. We denote these elements arranged in vector

form X(r) by {Xij}'

With reference to a matrix variable X and certain

identity matrices, we define the matrices MX , NX and IX*

Let X:mxn be such that k of the scalar value of ifs
matrix elements are repeated. Let these be identified as the

i-th elements of X(r) , for k values of i e {2,...,mn}.

Then
(1) a matrix obtained by deleting k, i-th rows from
I:mnxmn is denoted by MX:(mn—k)an,
(2) a matrix, obtained by adding to I:(mn-k)x(mn-k) k,
i-th rows corresponding to the repeated elements

of X(r) which have occurred before, is denoted by

NX:mnX(mn-k),

(3) a diagonal matrix with 1 corresponding to elements

of X(r) involving equality relationships and O
elsewhere is denoted Dby IX*:mnan.

The properties of these matrices are the same as those of

M, N and I¥* given in Theorem 2.4.2.

Some useful equalities involving the above concepts are

given by the following
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Theorem 3.11.1.1 For any matrix X with some known equality

relationships and no others, we have

#o_
Xpo = NyX, (3.11.1.1)
# _
Xipy = MxXp) (3.11.1.2)
} y
Xipy = NxXipy o (3.11.1.3)

where the matrices and the vectors involved are conformable.
This theorem may be easily verified.
The following examples illustrate the above definitions

and Theorem 3.11.1.1.

Example 3.11.1.1 Let X:2x3 matrix such that xl3 = X5 - Then
~ - - -
X11 X121 (;11 )
X2 X12 X12
X X X X
. 13 e 13 o o) 13 Lo 13 }
r X ’ r X > (r) X > (r) >
21 22 o1
X X X X
22 | *23 22 23J
Lf23 \523
— — e
_ _ 10000 00000 O]
100000 01000 000000
N L v - |oo100 ¥ _loo1o000
X f001000f* X" ty5100| X 000100
000010 00010 000000
000001 00001 00000 0]

and Theorem 3.11.1.1 holds.

Example 3.11.1.2 For symmetric matrices the situation becomes

very straightforward. Let X = XT:BX3, then
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] s
) XlD
X120 _ X102
X o ]
X 11 X
13 13
X
12
X1 X571
_ # | *13 _ #o_
Xr_ Xop | » Xr - > X(1") =1 X22{’ X(r) - >
X X22 X
23 23
X
23
X31 X31
X
33
X35 |33 X35
X X
L.33_ 33J
_ 10000 0]
10000000 0| 510000
010000000 001000
MX=001oooooo’ N, =|or0000f,
000010000 500100
000001000 500010
000000001 001000
000010
000001
ooooooooﬂ
010000000
001000000
000100000
*
I, =|{000000000
000001000
000000100
000000010
Looooooooo

The results of Theorem 3.11.1.1 are easily verified.
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Expressions (3.11.1.2) and (3.11.1.3) yield the following:

Theorem 3.11.1.2 If Y(r) = KX(r) such that the scalar elements
of Y(r) and X(r) have known equality relationships among

themselves, then

#

_ #
Y(r) = MYKNXX(r)

(3.11.1.4)

In the following discussion we give explicit meaning to

the matrices MY and NX which occur in the proof of certain

theorems involving symmetric matrices. Here we remark that the

*
matrices MY s NX and IX may be of more general nature, depend-

ing on the type of known relationships ( for example, some
functional relationships), among scalar elements of Y and X

respectively. The only modification needed to obtain MY and NX
is to delete and add appropriate types of rows in the respect-

ive matrices described above. A modification to obtain IX* may
also be worked out. However, there does not exist any general
procedure which takes care of all known relationships.

In obtaining the jacobians of certain matrix transformat-
ions, it is desirable to know the distinct scalar elements of
both Y and X for a matrix function Y = F(X). The determinant

of the matrix derivative of each of the distinct scalar

elements of Y with respect to the distinct scalar elements of

X is the required jacobian except for sign. For matrix

functions involving known equality relationships among their

scalar elements, we obtain the above mentioned matrix

derivative and some other results in the following subsections.
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As far as applications are concerned, we require Corollary
3.11.2.1 and Theorem 3.11.3.3, since in evaluating certain
multiple integrals we come across symmetric matrix

transformations.

3.11.2 Modification of Matrix Derivatives with Respect to

Matrix Elements

The fact that
d<xij> = <dxij> = (1,J,dxij) (3.11.2.1)

is useful in expressing differential er as a function of dX(r)#.

Since any two different matrix elements are always distinect,
for any non-singular matrix transformation Y = F(X), the

oY

determinant of §Y£ is non-zero. However, if any two different
r

matrix elements have equal scalar values, then the absolute

oY
value of the determinant of 5?2 is not the appropriate
r
aYr
jacobian. Hence we modify Y to obtain the appropriate
r

jacobian. Above results are discussed in the following:

Theorem 3.11.2.1 For any matrix function Y = F(X), with known

equality relationships among scalar elements of Y:mxn, X:pxq

themselves, we have
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. _ # (3.11.2.2)
(i) d&,—Nﬂxw)
aYr# T
(ii) d4Y. = HAX =—=——p» —— = (M HN,)" , (3.11.2.3)
r r 4 Yy X
where MY and NX are (mn-k)xmn, pgx(pq-%) matrices obtained by

appropriately deleting k rows from or adding & rows to identity
matrices of orders mn, pg-% (k, % are the number of known
equality relationships in Y, X) respectively.

Proof: (i) We claim that even though <Xij> and X135 are not

completely independent variables, their differentials are equal.

Thus d<xij> = dxij in the (i,j)-th position and (3.11.2.2) holds.

(ii) We have

dyY # = M, HdX

r Y r

_ #
and
# aYr# g #
dYr = | ———— dX(P) . (3.11.2.5)
ax, 1
(r)

Comparison of (3.11.2.4) and (3.11.2.5) yields (3.11.2.3).
The following examples illustrate (3.11.2.3).

Example 3.11.2.1 Let y = QTXQ be a scalar differentiable

function of X; a, b are column vectors, X has some known

equality relationships, then

T

T
dy 8b)dX,,

(a

#

T,. T
(2780 )N, dX(
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Hence

90X #
(r)

Example 3.11.2.2 Let ¥ = XAX' be a matrix function, where

X:pxq, and X and Y have some known equality relationships, then
4Y = (dX)AXT+XA(dXT)
4y = (18XAT)dx_+(XA®I) (dX’)
r r T

e
#o_ T #
> ay " = MY[(I®XA )+(XA®I)I(q)]NXdX(r)

oY #

—_— r _ T T T,T T
> . = NX [(I8AX )+I(p)(A X @I)]MY

BX(P)

The following corollary has applications in multivariate

analysis.,
Corollary 3.11.2.1 If, in Theorem 3.11.2.1, Y = vT:
- vI.
X = X :pxp, then
aYr# T
—— = [M HN ] (3.11.2-6)
Yy X ’
3%, _\*
(r)
where MY and NX are r—Tli%ilz-Xm‘? and pzng%ill appropriate
matrices respectively as before.
BYr#
The matrix derivative ——— is useful in evaluating the
oX #
(r)

jacobian of certain mutilated matrix transformations. Using

this matrix derivative, some important statistical applications
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of the above corollary are given in Section 4.7.

3.11.3 Modification of Matrix Derivatives with Respect to

Scalar Elements

The statistical applicability of this section is the same
as that of Section 3.11.2. In this section we establish an
expression which verifies an important fact pointed out by
Dwyer (1970). Here we require the following definition of
matrix derivative with respect to scalar elements.

Definition 3.11.3.1 For any matrix function Y = F(X), we

BY(
BX(

r) to be a matrix of partial derivatives of scalar

define
r)

elements yij with respect to the scalars Xpg uniquely ordered.

We denote the matrix derivative

oY 3V »
(r) o ; 1J§
y

aX(r) dXyg,

oY
A procedure for identifying BX( )
r)

Theorem 3.11.3.1 For any matrix function Y = F(X), we have

is as follows:

5Y
ay, . = KdX — __(r) _ T (3.11.3.1)
(r) (r) ax(r)

There exists a natural relationship between the matrix

oY BY(

. . r r)
derivatives BXP and BX(

We discuss a particular situation

r)
in the following:

Theorem 3.11.3.2 For any matrix function Y = F(X), where the

scalar elements of Y may or may not have equality relationships,

and where X = XT:po are the only known equality relationships
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among the scalar values of <Xij> for 1 # j, we have

dY ¢ 3Y,
= r-{-I

ax(r) X, (p)EX; >

(3.11.3.2)

%
where I 1s a p2><p2 diagonal matrix with zeros in positions
1 mod(p+l) and 1l's elsewhere.

Proof: We see that

ay. = R N OV, ke
L) l’ L) . ,

k% a<xi1> a<xli> 3<Xi,i—1> 3<xi_1,i>

3<yk2> 3<yk%> . 8<ykl> a<yk2> .

<Xy 3> 0 9Ky g7 95Ky g4 T 9Ky

b s
9<Y, o>
ke
s sdx(r) (3.11.3.3)

Hence from (3.11.3.3), we obtain
SO SR .
The required result follows from (3.11.3.1) and (3.11.3.4).

Example 3.11.3.1 Let Y = y and X = X1:2x2, then
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9y 9y
9Xqq 9<xyq”>
N oy oy
9X <X, > 3<X ~a >
BY(r) ) 12 ) 12 21
X
X(r) oy 3y NCH
8x21 a<x2l> 3<x12>
9y oy
8x22 a<x22>
oy . 9y ]
YIS 0 0 0 0 xS
il 11
3y oy
0 0 1 0
9<Xq 5> 9<xq 5>
= +
oy oy
0 1 0 0
9<X 2 9<Xpq”
9y oy
8<x22> 0 0 0 0 a<x22>
L‘ — L —— et a—
dy * 3y

+ I .
BXP (2) BXr

Hence (3.11.3.2) is valid for this particular example.
Theorem 3.11.3.2 may be extended individually for more
general situations. However, it is not possible to establish
aY Y
a general formula relating gii and 52%%% for a general matrix

function involving arbitrary relationships, known or unknown,

Y r)

among the scalar elements of Y and of X. For example, SV
(r)

has different expressions for X: symmetric matrix and
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oY

X: non-symmetric matrix, whereas 5?2 remains unchanged.
r

We note that if any two matrix elements have equal scalar

BY(r)
BX(r)

values, then becomes singular and the jacobian of the

transformation cannot be obtained unless we get rid of those
rows and columns which are repeated. This leads to the
following modification of Theorems 3.11.3.1 and 3.11.3.2:

Theorem 3.11.3.3 For any matrix function Y = F(X) where the

scalar elements of Y and X have only known equality relation-
ships among themselves, we obtain
oY #
QY = KXy == .__LEL; - PMYKMXT]T . (3.11.3.5)
BX(r)

Proof: Since we need to remove the repeated rows and repeated

oY
columns from ¥ r) , we pre-multiply and post-multiply the
(r)
T T 3Y(r)#
matrix K~ by appropriate MX and MY to get
#
SX(r)

The following is an example illustrating the above
theorems.
Example 3.11.3.2 If Y = AXB, where A and B are constant

matrices of conformable orders, X = XT:po, then

oY
(r) . T ¥
p My[A"®B + I,

BX(P)

)(AT®B)] ) (3.11.3.6)

If, in addition, Y = Y :mxm, then
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#
BY(P)

_ T # T T
p M [AT8B + I y(AT8B) 1My~ , (3.11.3.7)

X

3 (r)
*

where I is as in Theorem 3.11.3.2 and MX s MY are sultable

non-auxiliary matrices.

From Theorem 3.11.3.2, we observe that in general:

(r) » _T (3.11.3.8)
r

From Theorems 3.11.2.1 and 3.11.3.3, we can verify that,

in general:
# aYr#
= , . (3.11.3.9)

BY(r)

#
BX(P) BX(r)

If, in Theorem 3.11.3.2, X is neither a symmetric matrix
nor any of its scalar elements have equality relationships,
*
then I (p) = 0 . Hence (3.11.3.2) reduces to

3Y<r) BYr
BX(P) BXr

(3.11.3.10)




CHAPTER IV

APPLICATIONS TO GENERAL MULTIVARIATE MODELS

4,1 Introduction

This chapter seeks to focus attention on some applications
of the matrix differential calculus presented in Chapter III to
general multivariate statistical models. Dwyer (1958, 1967),
Neudecker (1967, 1968, 1969b) and Tracy & Dwyer (1969) have
applied their theoretical results on matrix differentiation to

1. obtain maximum likelihood estimates for multivariate

models,

5. consider constrained optimization of matrix functions,

3. evaluate jacobians of certain matrix transformations

applicable in multivariate distribution theory.

Stroud (1968), in obtaining asymptotic tests for (1) equality
of conditional covariance matrices and (2) equality of conditional
mean vectors when in both cases, errors of measurement have known
variances, used results of Dwyer & MacPhaill (1948) and Dwyer
(1967). Anderson (1968) considered maximum likelihood estimation
of coefficients when the covariance matrix has linear structure,
without using matrix differentiation. Some important applications
of Dwyer's (1967) matrix differentiation results have recently
been pointed out by Kleinbaum (1970). Kleinbaum discusses
estimation and testing hypotheses for multivariate linear models
in which some observations are missing and/or in which different

design matrices correspond to different response

119
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variates. Further applications of less general results
on matrix differentiation have been considered by various
authors: Dwyer (1958, 1967), Goldberger (1964), Trawinski &
Bargmann (1964), Rao (1965), Bock & Bargmann (1966), Eisenpress
% Greenstadt (1966), Srivastava (1966), Joreskog (1966, 1967,
1969, 1970a, 1971), Joreskog & Lawley (1968), Fisk (1967),
Lawley (1967), Morrison (1967), Tan (1968-69), Gebhardt (1971)
and Mulaik (1971).

Multivariate problems discussed in Dwyer (1958, 1967),
Fisk (1967), Neudecker (1967, 1968, 1969b), Tracy & Dwyer
(1969), Gebhardt (1971) and Mulaik (1971) show various
applications of matrix differentiation formulae. These formulae
have been established in the above papers, though, some of them
have followed different approaches. nT

In the present chapter, we reformulate some of the models
in a more general setting. Some of these models are of
econometric and psychometric interest. Matrix differentiation
results of Chapter II are then useful in the estimation of
parameters, for finding asymptotic covariance matrices and for
evaluating the jacobians of symmetric matrix transformations.
These results are also applicable in a k-sample regression
analysis with covariance, in the analysis of covariance matrices
with linear structure and in the dynamic econometric analysis.
An auxiliary matrix from Section 2.4 and its extension are used

in obtaining some properties of the matrix products () and C) .



121

4.2 Estimation of Parameters in General Multivariate Linear

Regression Analysis

Consider the regression model of observations X

X = AZP+U (4.2.1)
where A:nxg and P:hxp are model matrix and fixed matrix
respectively, EZ:gxh is a matrix of parameters to be estimated,
and U:nxp is a matrix of random errors. We assume that

E(U) = O (4.2.2)
and

Var(Ur) = VQZL (4.2.3)

where V:nxn and I:pxXp are positive definite covariance matrices.
The general method of least squares and maximum likelihood
principle can be applied to the model (L4.2.1) for estimating

parameters Z, V and L.

},2.1 Least Squares Estimation

[$3 4

A least squares estimator of the parameter matrix E 1is

obtained by minimizing the function

£(8) = tri t(X-AEP) v T (X-AZP). (4.2.1.1)

We apply Theorem 3.4.3 and Corollary 3.8.2 to obtain
first and second order matrix derivatives of f(E) with respect
to the unknown regression parameter matrix E.

On differentiating f£(E), we obtain

ar(z) = tr[-zz‘lev‘lA(da)P+z‘1PT(da)TATv’lAEP

45~ 1pTeTaTy=1a (az)P]. (4.2.1.2)

Using Theorem 3.4.3, we have
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Qo
Hh
-~
{1l
~

1T

S 2Ty trx-azpiz it (4.2.1.3)
. . AF(E) _ ; :
which, on setting i = 0, yields the normal equation
ATy txz~1pT = aTylpgpz~tpT | (4.2.1.4)

To obtain the second order matrix derivative, we have, from

expression (4.2.1.2),

a%r(5) = 2tr[z tpT(azT)aTv ta(az)P] . (4.2.1.5)

We have, on using Corollary 3.8.2,

1 1.T

pTv~lagpz~ipt . (4.2.1.6)

Hy
~~
[$3]
~—
fl

T

If we assume that A V_l

1,T

A and P5"P" are positive definite

matrices, then from (4.2.1.4), for given V and I,

[$39)

- T i Ty ke Ty (er e, (4.2.1.7)

2

which is the least squares estimator of £, and Vg f(2) is

—
()
-

r’°r
positive definite (cf. A.1.35). This proves that f(E) attains
its minimum at §, on using Theorem 3.9.1.

Tan (1968-69) obtained the normal equations for the model
(4.2.1) with P = I, by using a very complicated method. Also
he does not mention sufficient conditions for the minimum.

The general linear model (4.2.1) becomes simpler if P = I,
and Var(Ur) = T. This case has been considered by Neudecker
(1967) and Tracy & Dwyer (1969), using different approaches.

They have obtained both necessary and sufficient conditions

for minimizing
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log| (X-A5)T(x-a2)| . (4.2.1.8)
Model (4.2.1) can be very easily considered by minimizing

log|z b (x-azp) Ty (x-azP) | (4.2.1.9)
which yields the same results as are obtained by minimizing
£(E) of (4.2.1.1).

4y,2.2 Maximum Likelihood Estimation

We give a simpler proof of a lemma which is similar to a
result in Anderson (1958, Lemma 3.2.2).

Lemma 4.2.2.1 A differentiable scalar function of X

£(X) = é[N log|X|-trXD] (4.2.2.1)
attains its maximum at

X = nd7t (4.2.2.2)

b

where X and D are mxm positive definite matrices.

Proof: On differentiating,
af(x) = %[trNX—T(dXT)—tr(dX)D] ,

which gives

gi(X) = é[Nx_T—DT] , using Theorem 3.4.3.
sesting 22 = 0 yielas x = w7t

Then using the same argument as in Anderson (1958, Lemma 3.2.2)

f(X) has its maximum at X = Nﬁ—l

The procedure followed by
Anderson (1958) in proving the above lemma is much more
complicated than the one presented here.

The above lemma has an interesting application in multi-

variate regression analysis.
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We suppose that the random error matrix U:nxp is normally
distributed with mean O and covariance matrix V®x. Then the

1ikelihood function of the observation matrix X is given by

W -3 B —%trv—l(X—AEP)Z_l(X—AEP)T
L(E,V,z|X) = 7"P|z| “|V] “e . (4.2.2.3)

[Expression (4.1) of Tan (1968-69) is a particular case
of (4.2.2.3) with E = I.]

To find the maximum likelihood estimate of E, we obtain
a solution % of the maximum likelihood equations

3logL(E,V,2[X) _ 4 (4.2.2.4)
3% o

(>

The matrix function is the required maximum likelihood
estimator.

Now treating (4.2.2.3) as a function of E only, we get
dlogL(Z) = -3df(E), (4.2.2.5)

where f(8) is as in (4.2.1.1). From (4.2.2.4) and (4.2.2.5)
we obtain the likelihood equation

2Ty 1xg=1pT = aTy~laZpr=ipt | (4.2.2.6)

which is the same as (4.2.1.4). The second order matrix

derivative

v

(1 no

logL(E) = —%(ATV—lA®PZ—1PT) (4.2.2.7)

{11

r’’r
can similarly be shown to be negative definite under the
assumptions of the previous subsection. This shows that any
solution & of (4.2.2.6) is the maximum likelihood estimate.

Now suppose that V is a known covariance matrix. Then,
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as in Tan (1968-69, (4.2)) with P = I, we have

2

logL(Z,Z|X) constant—gloglz|—%trV_l(X—AEP)Z—l(X-AEP)T

]

constant—%log[ZI-%trz_l(X—AEP)TV_l(X—AEP)
(4.2.2.8)

Then from Lemma 4.2.2.1, logL(E,Z|X) attains its maximum at

§ = %(X—AgP)TV_l(X~A§P) , (4.2.2.9)

which is the maximum likelihood estimate of 1.
If, on the other hand, I is known, then proceeding exactly

as above, the maximum likelihood estimate of V is given by

N

&= Lix-ngp)s~tex-agm) T . (4.2.2.10)

T

Here we emphasize the advantage of using Lemma 4.2.2.1
for drawing inferences regarding normally distributed random
variables. This lemma identifies the maximum likelihood
estimates of covariance matrices without formally using mabtrix
differentiation. In the general least squares theory, we had to
compute second order matrix derivatives because the functions
to be minimized could not be transformed to functions of the
type designated in Lemma 4.2.2.1, to be maximized.

Maximum likelihood estimates considered by Tracy & Dwyer
(1969) are obtained using first and second order matrix
derivatives. They have established the concavity of the
log-likelihood function by showing that its Hessian matrix at
the solutions is negative definite. The multivarliate regress-
ion model considered by Tracy & Dwyer (1969) is obtained from

the model (4.2.1), where X = gT:lXp, A =zlilxq, P = I, and V=1l.
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4.3 Estimation of Parameters in Non-linear Multivariate

Regression Analysis

Non-linear multivariate models have been considered by
several authors following differerent approaches. Eisenpress &
Greenstadt (1966) obtained expressions for estimating regression
parameters of non-linear econometric systems. Allen (1967)
considered parameter estimation, hypothesis testing and large
sample properties of a general non-linear multivariate model
which is useful in the analysis of growth curves. An extensive
1ist of references on non-linear models is available in Allen
(1967). The above authors discussed non-linear models using
scalar differentiation.

In the non-linear multivariate models, each observation
may be a non-linear function of the unknown parameter matrix.
Consider

Xy5 = fi(E, tj)+uij , (4.3.1)

i=14i, 2,00, 3 J =1, 2,004, P
where ‘the observations Xij are non-linear functions of the

elements of the parameter matrix Z:rxs. We note that fi(E, tj)

are non-linear functions of the parameters By& , Where E=[By6]’
the uij are random errors and the tj are j~th points in time.

A matrix representation of the model (4.3.1) is

X = AF(E) +U , (4.3.2)
where X:nxp is the observation matrix; F(E):hxp is a matrix
of non-linear functions of the elements of E, A:nxh is a known

matrix, and U:nxp is a matrix of random errors.



127

As in the general multivariate linear models, we assume
that

E(U) = O (4.3.3)
and

Var(Ur) = Ver . (4.3.4)

If, in particular, F(Z) = ZP, then (4.3.2) is similar to the
linear model considered in Section 4.2.

Example 4.3.1 Suppose there are two groups of 4 and 5

animals respectively, and each group has different parameter
values, 1i.e.

= = j—l
£5(E, €5) = By *RioBs3 ’ (4.3.5)

and suppose that the response fi(E, tj) is measured for six

days. Let X, ~, k = 1, 2,..., 4 be the row vectors of six

observations on each of the animals in the first group; and

let XQ', £ =1, 2,..., 5 be observations on the second group.
Then

1 0]

1 0

1 0

1 0

A = :

0 1

0 1

0 1

0 1

0 1

L. —




ByatByo Byt i1t Byg* Biat Byt
2 3 4 5
BioB13  BioByg BBy BioBys ByoBig
F(E) = 1)
BoytBoy  Bopt Boyt Boyt Boyt Byyt
2 3 Y 5
BooBog  BonBog  BooBog  BooBog BooBhs
tj = J’ J = 1’ 23 - 6)
and

83}
It

(4.3.6)

If, however, from previous experience, it is claimed that Bil’

813 are the same for both groups, then the number of parameters

is reduced and need not be put in formal matrix form., Hence,

in general, it is advisable to assemble parameters in a vector

form. For illustration, if in the above example, Bll = 821 s

then we have a new vector of parameters

=
Bi1

Bi3 = Bo3 s

keeping all the other quantities unchanged.
Some examples similar to the above are considered by Allen
(1967). 1In his discussion, E is always a vector of parameters

T

i.e., Er = (Bll 612 813 621 822 823) obtained
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from (4.3.6). Since, in model (4.3.2), F(E) does not involve
% as an explicit matrix variable, we proceed touaerive

estimation equations for the vector variable Er . We observe
that for any non-linear model (4.3.2), a suitable Er exists.

In this section, our objective is to present some matrix
differentiation results which are useful for parameter
estimation in non-linear multivariate models. Theorem 3.4.3
of Chapter III is useful in the present development.

We need the following result from matrix theory:

For matrices A, B such that the traces exist,

T

trAB (4.3.7)

]

T
trAr(B I,)

T T
tr(A P)Br (4.3.8)

which can be easily verified.
Now we prove a result concerning differentiable scalar
functions involving F(E), whose elements are non-linear

functions of the B .
Y§

Theorem 4.3.1 If, for a differentiable scalar function f(E)

and a differentiable matrix function F(E),

ar(s) = tr[A(dF(E))B+C(dF(2))TD], (4.3.9)

then

ae(z) _ 2FED o mon

NS N +DC)r . (4.3.10)
r r

Proof: We notice that

(4.3.11)

(1}

a(F(z))r}T .

9E
r

a(F(2)), = {
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Now

tr[aTBY (ar(2)) T+DC(dF(2)) 7T,
using the properties of trace functions,

ar(s)

]

er[(aTBT4DC) (daF(2)) 7], using (4.3.7),

3(F(2)),,

0F
r

tp [(ATBT+DC)r(dEP)T ] , using (4.3.11),

which implies

se(z) _ 2FED)
5% 3%
r r

r aTsT+DC), using Theorem 3.4.3.

{1]

A satisfactory estimate of is available from any one
of the following procedures.

4,3,1 Least Squares Estimation

Under this procedure, we minimize

£(2) = tri L (X-AF(E)) v 1 (x-aF(E)) (4.3.1.1)
with respect to the vectorEr,of parameters. On differentiating

f(8), we obtain

af(s) = tr[-z‘l(dF(a))TATV‘lx-z'lev'lAdF(a)

+z'1(dF(5))TATv“lAF(5)+z‘1(F(5))TATV'lAdF(aﬂ

3F(E) _

On application of Theorem 4.3.1, and setting e
“r

, we

obtain the following normal equations for the non-linear model

3(F(E))

. r pTylx-aF(E)] = O (4.3.1.2)
“r

Any solutionsgr‘of (4.3.1.2) provide a good initial estimate of

the E
r
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4.3.2 Maximum Likelihood Estimation

Assuming that U is normally distributed, the logarithm of

the likelihood function is given by
= = kL _p
logL(%,V,2|X) = constant §108|Zl 2log|V|

—%trz_l(X—AF(E))TV_l(X—AF(E)). (4.3.2.1)

Proceeding as in Section 4,3.1, an approximate maximum
likelihood estimate of E is obtained from the likelihood
equation given by (4,3.1.2). Exactly as in the linear case,
if V is known, and if there exists a maximum likelihood

estimate & of EZ, then from Lemma 4.2.2.1

§ = %(X—AF(%))TV—I(X—AF(é)) (4.3.2.2)

is a maximum likelihood estimate of L. If, in particular,

V = I, expression (4.3.2.2) is similar to that given in Allen

(1967, Theorem 2.4.1, (2)), with our § replaced by his V. e

note that ﬁ for a linear model may be obtained by substituting
F(8) = &P in (4.3.2.2). Allen (1967) provides a detailed

~

and ¥ are maximum likelihood estimates

A
-

proof for showing that

A
of § and &, if £ is any value which minimizes

log| (X-AF(5)) T (X-AF(2)].

~
=
=

Allen (1967) obtained an initial estimate - using a different

technique. He used this §r in minimizing the (1) logarithm of
generalized sample variance and (2) a trace function similar to
(4.3.1.1), with V = I, by the method of steepest descent and a

weighted linearization procedure.
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4.4 Some Constrained Extremum Problems of Matrix Functions

Dwyer (1958) discussed the minimum variance unbiased
estimation of a vector of linear parametric functions for the
model

x = AB+u , (4.4.1)

where x:nxl, B:gXl are appropriate column vectors, representing
a linear regression. He applied the theory of symbolic matrix
derivatives [Dwyer & MacPhail (1948)] to extend Aitken's
Generalized Gauss-Markov Least Squares Theorem to a vector of
linear parametric functions. Johnston (1963) obtained the
minimum variance unbiased estimator of B using scalar differen—
tiation. Results by Rao (1965, pp. 189-191) and Johnston
(1963, pp. 180-183) are particular cases of those of Dwyer
(1958, pp. 107-111). Neudecker (1967) gave a simplified proof
of Johnston's result, using matrix differentiation. Tracy &
Dwyer (1969, pp. 1585-1586) considered the extrema of quadratic
forms under a linear restriction, using vector differentiation.
A1l the above extremum problems were solved using Lagrangian
multipliers.

In this section we extend the use of matrix differentiation
theorems to discuss extreme values of matrix functions under
linear restrictions on the matrix variables under a more general
set-up. Results of Dwyer (1958) and Johnston (1963,
pp. 182-183) are obtained as special cases of our results.

We consider the general model of Section 4,2 described by

(4.2.1), (4.2.2) and (4.2.3).
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4.4.1 Minimum Variance Unbiased Estimation of =

Let
¥
5= = BXC (4.4.1.1)

be a linear estimator of the parameter matrix E, and B:gxn,
*

—

C:pxh be matrices to be determined. Suppose £ 1is an unbiased

estimator of E, then

*

E(E ) = BAEPC
if and only if

BA = I, PC = I (4.4.1.2)
Since

*

= = E+4BUC
we have, using Theorem 2.6.3.1,

E T

B L= “r+(B®C )Ur . (4.4.1.3)

*

The sum of the sampling variances of the estimates of & is

given by
% T, % _ T,.T T
E[(E r-:r) (8 r-:r)] = E[UP (B 8C) (B&C )Ur]
T T
= tr[ (B BBCC )(VOLZ)] . (h.4.1.4)
From (4.4.1.2), we obtain
pagcTpT = (BecT)(A8PT) = I . (4.4.1.5)

* . Ld
Hence for & to be a minimum variance unbiased estimator of E,

we need to find B®CT such that

r(socT) = tr[(8TBecCT) (Ver)l-2tr[(BASC P -I)A] (4.4.1.6)
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is a minimum; A:ghxgh being a matrix of Lagrangian multipliers.

On differentiating f(B@CT) with respect to (B®CT), we

obtain

ar(eect) = tr[{a(aTec)}(BecT) (ves)+(aTec){d(BecT)}(ves)]

—2tr[{d(B®CT)}(A®PT)A] . (b.4.1.7)
37 (B8CT)
Using Theorem 3.4.3 and setting ———= = 0, we have
3(BRC™)
(BoCL)(ver) = AT(ATeP) (4.4.1.8)

so that for any solution (ﬁ@éT) of (4.4.1.8), f(B@CT) has an
extreme value.

Further differentiation of (4.4.1.7) leads to

a?r(secTy = 2tr[{a(BTec){a(ect)}(ver)] . (4.4.1.9)

From (4.4.1.9), on using Corollary 3.8.2,

vee(BecT) = 218(V8L) , (4.4.1.10)

which is positive definite (cf. A.1.35) and hence f(%@@T) is a
minimum, from Section 3.9.

Now we show that the minimum variance unbiased estimator

*
£ is equal to the least-squares estimator

A
—
3
—

of the matrix

parameter E.

On post-multiplying (4.4.1.8) by (V_l®2—l)(A®PT) and using

(4.4.1.5), we get

AT (aTep) (v 1oz 1ty (agPT) = I
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ie. = {(aTep)(v ez 1) (aspT)) 7t (4.4.1.11)
if the inverse of the right hand side exists.

Substituting (4.4.1.11) in (4.4.1.8), we get

secT = ((aTep) (v les 1ty (aspT) 1 (aTer) (vor)Tt.  (4.4.1.12)
Now, expression (4.4.1.1) yields

_¥

r

I

T
(B8C )Xr

{(AT®P)(v'1®z'l)(A@PT)}'l(AT®P)(V®z)'lxr (4.4.1.13)

il

which implies

— - * - -
ATy lagpz~ipT)E - (aTy~tepy 1)Xr : (L. 4.1.14)

From (4.4.1.14), we have

- ¥ - - -
aTy=laztpr=1pT = ATy ixz et | (4.4.1.15)

which is the same as the normal equation (4.2.1.4) for the
least squares estimator §

If, in particular, h = p = 1, P = 1 in the general model
(4.2.1), we get the model (4.4.1) considered by Johnston (1963,
p. 179). Consequently, C =1, £ =1, A:gxg, the matrix of
Lagrangian multipliers, would transform the results of this
section to those of Johnston (1963, pp. 182-183) and of
Neudecker (1967, pp. 106-107). The extremum problem considered
by Tracy & Dwyer (1969, p. 1586) involved a vector of Lagrang-

ian multipliers and may be treated as a special case of

Johnston's result by using the substitution

(A, V, X, I, ) » (x%, A, B, u, A)
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4y.4.2 Minimum Variance Unbiased Estimation of a Linear Matrix

Function of E

A simpler proof of the constrained minimization problem
considered by Dwyer (1958) may be given using Theorem 3.4.3 and
Section 3.8. The aim of this subsection is to extend Dwyer's
result to obtain a restricted minimum variance unbiased estima-
tor of a linear parametric function for a general multivariate
model.

Consider a linear matrix function

® = LEM (4.4.2.1)

where L:ang s M:th2 are known matrices.

Define

*
® = GXH = GAEPH+ GUH (4.4.2.2)

where G:ann, H:p><n2 are matrices to be determined such that

%
® 4is a minimum variance unbiased estimator of ¢ together with

a specific restriction to be imposed below.

Now

E(e7) = @ (4.4.2.3)
implies, since E(U) = O,

GAEPH = LEM (h.h.2.4)
if and only if

GA =1L and PH = M. (4.4.2.5)

Suppose further that an additional set of restrictions 1is
given by

¥ = REQ = 0 (4.4.2.6)

where R:nBXg, Q:th“ , gh > n3nu . These restrictions may be
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independent of unbiasedness and the minimum variance property of
®. Pre-multiplying and post-multiplying (4.4.2.6) by C:nlxn3 s
D:nMXn2 , matrices to be determined, we obtain

(cRD'QT)E_ = O and (cepT)y_ = O. (4.4.2.7)
From (4.4.2.5), we have

GA®HIPT = LeM

which implies

(GBHT) (ABPT)-1L8M' = O. (4.4%.2.8)

From (L.4.2.2), under condition (4.4.2.5), we get

* - T n.h
0] r—®r = (G®H )Ur . (4.4.2.9)

¥
Hence the sum of the sampling variances of elements of & is

given by

"

# T, ¥ T,.T T
E[(d r—@r) (o r-@f)] E[Ur-(G ®H) (G8H )Ur]

er[(cTeH) (G8HT) (Vez)] . (4.4.2.10)

It

Now we need to minimize (4.4.2.10) subject to the following

conditions:

(cenT) (a8PT)-LeM +(CcoDT) (R8QT) = O (4.4.2.11)
and

(C®DT)qfr =0 . (b.4.2.12)

We note that the matrices C and D preserve the conformabi-
lity of (4.4.,2.11).

if A:gthln2 and I‘:l><n1n2 are matrices of Lagrangian
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multipliers, then we minimize
£(GEHT, C8DT) = tr[ (G ®H)(GEH ) (Ves)]
_otr[ (GBHT) (A8PT)-LeM+(CoDT) (ROQT) IA

+2tr(C®DT)WrP (4.4.2.13)

with respect to G®HT and C8DT

On differentiating with respect to G®HT and C®DT, and

setting R A 0, £ T 0, we obtain the following

3 (GBHT) 3(CceD")

(o5

estimating equations for an extreme value

(GOHT) (VEL) = AT(AT®P) (4.4.2.14)
2T (rTsq) = FTWPT
= 0, using (4.4.2.6) (4.4.2.15)

Tt is interesting to compare (4.4.2.14) and (4.4.2.15)
with expressions (3.11) and (3.12), respectively, in Dwyer
(1958) paper. Since V@I is positive definite, we have, from

expression (4.4.2.14),

T

eoHT = AT(aTep) (v iez Tty . (L. 4.2.16)

%
Post-multiplying (4.4.2.11) by E . yields

*
of = 1z'm = ATaTv laz"pr~1pT (4. 4.2.17)

using (4.4.2.7), (4.4.2.16) and Theorem 2.6.3.1. Again, from

expression (4.4.2.2),

¥ T
® = (GRH )X
r r
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= 2T(a%p) (vlez ™)X, , using (4.4.2.16)

Hence

* T

o = plaTy~t

xz~tpT (4.4.2.18)
Equating (4.4.2.17) and (4.4.2.18), we get

T 1 1T

1 * -
AE PL P, (4.4.2.19)

ATaTy=1xz~1pT = ATaTv”
which is the same as the normal equation for least squares
estimation except for a pre-factor AT. Dwyer (1958, (3.17))
provides an expression for the special case which 1s obtained
from (4.4.2.19) by substituting X = x:nxl, P =1, L =1 and

* #*
E =08 :gxl.

Dwyer (1958) has not considered the second order condition
for the vector form of the linear regression model. Here we
establish that the extreme value of f(G@HT, C@DT) given in

(4.4.2.13) is, in fact, a minimum. Applying Corollary 3.8.2,

v f(W, 2) = 2I8(V8I) (4.4,2.20)
W_,W
r’'r
2
v f(W, z) =0 (4.4,2.21)
W_,2
r’’r
2
v f(w, z) = 0, (4.4,2.22)
Z_,7Z
r’r
where W = G@HT , 4 = C®DT. Since the Hessian matrix with

respect to G®HT is given by 2I8(V®:I), which is positive

definite, and hence £(G8HT, CEDT) is minimum at GRHT =

2T(aTep)(v"lez~l). with the use of the present matrix differen-
tiation theorems, one can discuss constrained extremum problems

for much more complicated matrix functions.
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4,5 Estimation and the Asymptotic Covariance Matrix in the

Structural Econometric Model

Tn this section we give some applications of partitioned
matrix differentiation discussed in Section 3.10. We consider
a general linear structural model of simultaneous equations

BY+IZ = U (4.5.1)
where Y:pxn is the matrix of observations on p jointly
dependent variables; Z:gxn is the matrix of observations on
the independent variables; B:pxp, T':pxq are matrices of param-
eters, and U:pxn is the matrix of random errors. We assume that

E(U) = O, E(%UUT) = :pxp (4.5.2)
and that the matrices B and I are non-singular. Full informat-
ijon maximum likelihood (FIML) estimators of B and T for the
above model were obtained by Fisk (1967, Chapter 4). He obtail-
ned likelihood equations by differentiating the log-1likelihood
functions with respect to B and I' separately. Since the
likelihood equations are non-linear in the unknown parameters,
he suggested an iterative procedure for obtaining the maximum
likelihood estimators of these parameters. Neudecker (1969Db)
discussed the above problem by using non-partitioned matrix
differentiation theorems, but his expressions are very
complicated and have an error. Rothenberg & Leenders (1964)
have also considered FIML estimators in a model similar to
the above model (4.5.1).

In a recent paper, Tracy & Singh (1971b) simplified some
of the expressions in the paper of Neudecker (1969b, p. 962),

using partitioned matrix differentiation. The aim of this
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section is to consider the structural parameter estimation of
(4.5.1) without assuming that U is normally distributed. A
new procedure for obtaining the asymptotic covariance matrix
in a simultaneous equation model is also suggested.

4,5.1 Full Information - Least Generalized Residual Variance

(FI/LGRV) Estimators

We can express model (4.5.1) as
AW = U , (4.5.1.1)

which is a matrix function involving the partitioned matrices

Y
A=(B T), W= [ ] . Since Y is a dependent variable matrix,
Z

we pre-multiply (4.5.1) by 871 to get the reduced form
y = -~ lrz+p~tu
= [[Z2+V (4.5.1.2)
where Il = —B—lf, vV = 8~ly . Since expression (4.5.1.2) is a

linear regression of Y on Z, the full information - least

generalized residual variance method leads to minimizing the

function %log|VVT| with respect to A. Now

1

£(8) = Slog| V| e

Liog|B T AW AB

= —1og|B|+%log|AMAT| , (4.5.1.3)

Goldberger (1964, p. 353) mentions

i)

where M

difficulty in proceeding with the minimization of (4.5.1.3).
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He, however, provides references for computational procedure.
We discuss the minimization of (4.5.1.3) using our results
for partitioned matrix differentiation. Differentiating f(A)

with respect to the partitioned matrix A, we have

df(A) = -tr B_TdBT+%tr[(AMAT)—l{(dA)MAT+AM(dAT)}]

_tra~T ¢ 0laaT+er(amaT) L amymal | (4.5.1.4)

I

using a trace property.

Applying Theorem 3.4.3, the first order matrix derivative 1is

%%iél = 87T ¢ o1+camaTytam . (4.5.1.5)
Setting gg(A) = 0, we obtain A from
)
[3..] = MAT(AMATY L . (4.5.1.6)
0

Since (4.5.1.6) is non-linear in the unknown parameter A, we
need to evaluate the Hessian matrix which is required in the
Newton-Raphson and Fletcher-Powell methods for estimating A.

Let

8FR

oA ?

of (A) . 2
5 A ; then VA

F(A) = f(A) = (4.5.1.7)

=y

R’AR

where [ ], denotes the column vector representation as in
R

r

Definition 2.10.1, e.g. AR =

r
r

On differentiating F(A), we get

arF(a) = (BT § 01¢aaTyB~"T § 07-(amaTy L (an)maT (amaTy"tam
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_amaTy " LamcaaTy (amaTy " Tams (amaTy " camym
(4.5.1.8)

Since expression (4.5.1.8) is a partitioned matrix function,
we can apply the results of partitioned matrix differentiation
very easily. Applying Theorems 2.10.2 and 3.10.1 to (4.5.1.8),

we obtain the following expression involving the () product

B—l

01 @) [f (T ppdang
0

_ -T
dFR = {[B

(a7 @ maT(ama™)tampan,
T,-1 T T,-1
—{(AMA")""AM @ MA~ (AMA™) }(1{2})dAR

+{(amaT)t @ mrang . (4.5.1.9)

For the product (@ , we have

-1 =T

Since in this problem (1{2})T = {l}I = I , an application of

(3.10.1) yields

®8™T : 0
coeeto ATy @ MAT (AMAT) T YAm)
o o0

ﬁ—l

<
L]
—~
=
e
]

ATyt @ (ART)LAu ((AAT) Tt @ my

(4.5.1.10)



which is the Hessian matrix for any solution A of A.
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It is interesting to note that expressions (4.5.1.6) and

(4.5.1.10) are exactly the same as the corresponding results

obtained on assuming that the matrix U is normally distributed

[see Tracy & Singh (1971b)].

compared to that of Fisk (1967, p. 31, (4.12)).

Expression (4.5.1.10) may be

In Neudecker

(1969b, p. 962), the first term on the right hand side of the

X . 2
expression for V
vec

—

(B

instead of

[B~

L

=T

(8T : 018(B™1)

L should be

=

p.

(4.5.1.11)

(4.5.1.12)

The approach followed by the above authors for estimating the

unknown parameter matrix A 1s known as the full information

maximum likelihood method.
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4.5.2 Asymptotic Covariance Matrix

Sometimes we come across a non-linear matrix function
Y = F(X) of a matrix variable X with known mean and covariance
matrices. Then the expressions for asymptotic mean and covari-
ance matrices of Y are obtained in terms of the mean and covar-
iance matrices of X. These asymptotic expressions extend a
result of Goldberger (1964, p. 125) to matrix functions. Below
we present these asymptotic expressions for non-partitioned
matrix functions. Corresponding expressions for the partition-
ed case are obtained from the non-partitioned one.

Theorem 4.5.2.1 Consider a non-linear differentiable matrix

function

Y = F(X) , Y:pxg, X:mXn (4.5.2.1)
with

E(X) = E, Var(Xr) = I:mnxmn. (4.5.2.2)
Then

E(Y) = F(E) (4.5.2.3)
and

T

(37, 3Y,
Var(Yr) = \§i—> Z(§X_> 1 paxpq - (4.5.2.4)
r r

The proof of this theorem follows immediately from
Goldberger (1964, pp. 123-125).

The results of Theorem 4.5.2.1 are extended to partitioned
matrix functions on replacing Yr’ Xr by YR’ XR respectively.
For example, an expression for the asymptotic covariance matrix

for the partitioned situation is given by
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37 \T

oY
Var(Y,) = (f—3> z(—¥5> . (4.5.2.5)
R 9Xy aXg

Clearly, in the reduced form (4.5.1.2) of the structural

_B™IT is a non-linear partitioned matrix

model (4.5.1), 1
function of A = (ﬁf f). We apply expression (4.5.2.5) to
obtain the asymptotic covariance matrix Var(ﬁr) in terms of

Var(ﬁR).

Now suppose

Var(B,,) : COV(Br,Fr)
Var(ﬁR) I R R R
LCOV(i: ,ﬁr) Var(T_)
Ap v B
I R R (4‘5,2,6)
le boo
= A (4.5.2.7)

is given. Since

we obtain, on differentiation,

ar = B Y(ap)B tr-p~t(ar)

- 7 laB : ar1fn] . (4.5.2.8)
I
Since II is a non-partitioned matrix, HR = Hr Using Theorem

2.10.2, we have

an,, = B l@ I)}ang, , (4.5.2.9)
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where
dB
T

dA

(4.5.2.10)
ar
r

Now, by applying Theorem 3.10.1 to (4.5.2.9), we identify the

matrix of partial derivatives as

(o1 |
T
aBr I
anr _T
—_BAR = - = =B @ . (U.5.2.ll)
T I
ol
r
Hence
8 Tof
BHr
EKE = - . (4.5.2.12)
, A-T
A=A LB ®IJ
The asymptotic covariance matrix of ﬁr is
8~ Tef
i _ A=l AT | a-1 NI P
Var(Hr) = [B QI : B "8I]A s (4.5.2.13)
5 Te1

using expression (4.5.2.5). The process followed by Goldberger,
Nagar & Odeh (1961, pp. 560-561); see also Goldberger (1964,

pp. 370-371), for obtaining Var(ﬁr) is based on elementwise

differentiation of 1 with respect to the elements of A. Their
proof was simplified to some extent by Neudecker (1968, p. 74)

oll oll

where he identifies — and gfz
r

) separately and then assembles
r
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oll
them to obtain an expression for §K£ . The proof followed in
this section is much easier than those followed by above
authors. Our procedure, besides possessing simplicity, has
certain additional advantages. For the sake of illustration,
suppose that the elements of ﬁ are uncorrelated with those of

I . Then 812 = 321 = 0 and an explicit expression for Var(ﬁr)

is given by

var(f_) = [B7efit : B7ter3|d o |[E %t
r 11
0+ bool g Ter

(§'1®ﬁT)Bll(ﬁ"T®ﬁ)+(§“1®I)822(§'T®1). (4.5.2.14)

Following an approach given by Goldberger (1964, p. 370) or by
Neudecker (1968), the covariance matrix of A is not block
diagonal under the above assumption. Hence in this case an
explicit expression for the covariance matrix of fl in terms of

~

the covariance matrices of Br and Pr is much more complicated.



149

4.6 Estimation in the Analysis of Covariance Structures

The purpose of this section is to discuss estimation
problems in the analysis of covariance structures with the help
of the matrix derivative formulae developed in Sections 3.4 and
3.8. First we give a general description of the covariance
structural model in the paper of Joreskog (1970a). We then
obtain:

(1) Three sets of estimation equations for the unknown
structural parameter matrices using the Minres
function, the Likelihood function and a generalized
Howe's function.

(2) The Hessian matrices of the Minres function/Likeli-
hood function which can be tested for positive/
negative definiteness at the solutions of the above
estimation equations. These are also required in the
Fletcher & Powell (1963) method and the Newton-Raphson
iterative procedure for finding improved estimates of
the unknown structural parameter matrices for the
above functions.

(3) Estimates of the non-random latent vectors of the
general covariance structural model.

Estimation problems in factor analysis have been considered
by several authors. Anderson & Rubin (1956) and Lawley &
Maxwell (1963) have given a detailed treatment of the estimation
of parameter matrices and of factor scores in a factor analysis
model. Some improvements in the estimation of parameters were

made by Bock & Bargmann (1966), Joreskog (1966, 1967, 1969),
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J8reskog & Lawley (1968), and Lawley (1967), all based on the
method of maximum likelihood. An alternative estimation proce-
dure was suggested by Howe [see Morrison (1967, pp. 286-289) 1.
The above authors obtained the estimating equations by arranging
the typical elements of the first order partial derivatives in
matrix form.

The factor analysis model considered by the above authors
was generalized by Jdreskog (1970a) by giving a general paramet-
ric structure to the mean vector and covariance matrix of the
vector of response variables. He obtained the first order
partial derivatives of the log-likelihood function with respect
to parameter matrices. However, he does not mention the method
used for differentiation. In a recent paper, Joreskog (1971)
pointed out certain applications of the general model without
any parametric structure of the mean vector.

Matrix derivatives were found very appropriate for estima-
ting the unknown parameters of the factor analysis model by
minimizing or maximizing various goodness of fit functions.

To start with, likelihood equations for a model in the paper

of JBreskog (1966) have been given by Dwyer (1967) using matrix
derivatives. Further attempts were made by Mulaik(1971) and
Gebhardt (1971) to develop some matrix differentiation formulae
to obtain estimates of the unknown parameters in factor analy-
sis. Mulaik (1971) reported first and second order partial
derivatives of both the maximum likelihood and the least
squares goodness-of-fit functions of a factor analysis model

in Joreskog's (1969) paper. Also, he pointed out certain



151

limitations of Newton-Raphson method and suggested the applica-
tion of second derivatives in those situations where this
method is preferable. An extension of the model in Joreskog
(1969) has been considered by Gebhardt (1971). He completely
specifies some unknown parameters in advance and then applies
his matrix formulae to obtain the maximum likelihood estimates
of the remaining parameters by using the iterative procedure

of Fletcher & Powell (1963) or by a gradient method.

Under the basic assumptions of a covariance structural
model, all the goodness-of-fit functions to be minimized/
maximized for estimation purposes are scalar functions of para-
meter matrices as arguments. Some of these are symmetric or
diagonal matrices. In their approach, Joreskog (1970a) and

9X. .
3£ (X) = £ (X) and —d = 1, when

axij axji iji

Mulaik (1971) assumed that

i # j, as scalar elements, when X is a symmetric matrix.
Anderson & Rubin (1956, pp. 140-141) obtained first order
partial derivatives of the log-likelihood function with respect
to the typical elements of the parameter matrices for the
ordinary factor analysis model. For differentiation purposes

they used the fact that <Xij> # <xji>’ even if X = XT. This

particular fact has been incorporated by Dwyer (1967, p. 608),
Tracy & Dwyer (1969, pp. 1578-1582) and Gebhardt (1971, p. 157)
in their general matrix differentiation formulae, which have
applications in multivariate analysis.

In our approach, we postulate that for any matrix variable

any two of its matrix elements are treated as two variables
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with no equality relations. This postulate is meaningful even
if these two matrix elements have equal numerical values,
since they differ in their identity because of their different
positions in the matrix. Under this definition we obtaln very
general matrix derivative results in a simpler way, see Dwyer
(1970). These results ignore any known or unknown felation—
ships, equality or otherwise, among the (scalar) elements of a
matrix. Matrix derivatives of functions of matrices with
respect to their argument matrices, some of whose elements are
constant e.g., diagonal matrices and/or those which are
related functionally or otherwise, may be obtained from the
general results. We substitute dummy matrices X* in place of
special matrices X (e.g., symmetric and diagonal matrices X)
to obtain very general matrix derivative results for £ (x).
The asterisk notation has been used earlier (Section 4.4) in
a different context.

Replacement of special matrices by dummy matrices 1is
continued until the second order partial matrix derivatives
of the goodness~of-fit functions under consideration are
evaluated. After the second derivatives are obtained, any
possible algebraic simplification may be carried out. These
derivatives are used to obtain a unique Hessian matrix which
is a very general result concerning second derivatives.
Appropriate modifications in the general results may be made

to obtain various special results for statistical applications.
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A few special results may be obtained by using the
following terminology:
(1) For a diagonal matrix X:mxm, N, denotes the m><m2
matrix whose respective rows are the 1 mod(m+1)~-th

rows of I 5 and
m

(2) for a diagonal matrix X, Xd denotes the column vector
of diagonal matrix elements.

4.6.1 The General Covariance Structural Model

Consider the covariance structural model

X = Byte (4.6.1.1)
where x:pxl is a vector of observable random variables, B:pXq
is a matrix of unknown coefficients, y:gxl (g<p) is a vector of
unobserved random variables and eg:pxl is a vector of residuals.

We may further represent y as

Yy = Aztu (4.6.1.2)

where A:gxk is a matrix of unknown coefficients, z:1kx1 (k<q) is
a vector of unobserved random variables with respect to y and
u is the corresponding vector of g residuals. We assume that

(i) E(u) = 0 and E(e) =0

(i1) Vvar(z) = 9, Var(u) ¥, Var(e) = ©

where ¥ and © are diagonal matrices
(iii) €, y are uncorrelated, and u, z are uncorrelated.
From these assumptions, a fundamental representation of the

covariance matrix I of x 1s given by the struectural form

L = B(A@AT+W)BT+O . (4.6.1.3)

Let X:nxp be the observation matrix whose rows are uncorr-
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elated with the same covariance matrix £. Then a generalized
analysis of variance model of Potthoff & Roy (1964) is given by
E(X) = AEP (4.6.1.4)
where Z:gxh is an unknown matrix of parameters, A: nxg is a
model matrix of rank r < p < n and P:hxp is a known matrix of
rank h < p. For any unknown E:gxh, we define pxp symmetric

matrices
T = %(X—AEP)T(X—AEP) (4.6.1.5)
and s = nl—:i(x-X)T(x—X) : (4.6.1.6)

The statistical problem of parameter estimation in the

covariance structural analysis is solved by estimating B, A, ¢,

I

Y, © and £ such that £ is fitted to T or S. If, on the other
hand, we assume that the vectors y and z are unobserved
non-random variables, then y and z enter in the model as
vectors of parameters which may also be estimated.

We consider three methods of estimating the unknown para-
meter matrices in I. After these parameter matrices are estim-

ated, a simple procedure for estimating y and z is also given.

4L.,6.2 The Minres Function

For a simple factor analysis model [J3reskog (1969)], a
distribution-free estimation procedure was suggested by Mulaik
(1971). 1In this section we extend this procedure to obtain
parameter estimates of the general covariance sfructural model
by minimizing the sum of squares of the residuals such that L
is fitted to S. This minimizing quantity may be treated as the

minres function
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ree, a, o, v¥, %) = trl(z -8)?]. (4.6.2.1)

It may be noted that minres function is not scale-free.

In particular, if in the general model £ = O, then
(4.6.2.1) reduces to the least squares function considered by
Joreskog (1971, p. 110) for which he did not provide any theore-
tical details. However, Joreskog, Gruvaeus & van Thillo (1970)
have written a general computer program to estimate the parame-
ters by minimizing the above least squares function. If, in
addition, B = I, © = O, then we obtain a goodness of fit crite-
rion discussed by Mulaik (1971, p. 64). He obtained the typical

elements of the first and second order derivatives of

ren, o, vy = erlzt-s) (2 -5)T] (4.6.2.2)

which may be used in the iterative procedure for improving the
estimates.

We obtain estimating equations and the Hessian matrix for
‘s model in Mulaik (1971, p. 63). We treat this special case
only for the sake of simple illustration. Results for the
general model may similarly be obtained by treating the minres
function (4.6.2.1).

A certain basic formulation of the minres solution 1s given
by Harman (1967, Chapter.IX).

4,6.2.1 Least Squares Estimates

Our aim is to minimize a particular minres function

e, oF, vy = trl(z-9)%1, (4.6.2.3)
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% ¥ T ¥
where £ = A A™+Y .
Necessary conditions for a minimum are obtained by differ-
*
entiating (4.6.2.3) with respect to parameter matrices A, @ ,

¥
and ¥ . This leads to

ar(h, o, ¥*) = 2tr(z -s)an e 1Tene” (anT)yenao )T
+av’ 1. (4.6.2.14)
Using Theorem 3.4.3, we obtain first order matrix derivatives
by replacing dummy matrices by the corresponding original

matrices as

of _

Yo 4(z-S)Ad (4.6.2.5)
of _ T

3% - 207 (EZ-S)A (4.6.2.6)
of _

'5'\1}-— Z(Z—S)XXI. ()-1.6.2.7)

A N

Least squares estimates A, 3, and ¥ are any solutions of

the following equations

SA0 = SAd (4.6.2.8)
ATSA = ATsh (4.6.2.9)
ExxT = SxxI (4.6.2.10)

which are obtained by setting the matrix derivatives %% ete.
equal to zero matrix. Our expressions (4.6.2.5), (4.6.2.6) and
(4.6.2.7) are different from (15a), (15b) and (15c) in Mulaik's
paper (1971, pp. 68-69), since our approach is different. In
our approach, we use the concept of matrix element of a matrix,

which yields more general results.
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4.6.2.2 The Hessian Matrix for the Minres Function

The approach followed by Mulaik (1971) in obtaining second
derivatives of fitting functions in factor analysis 1is very
complicated. We apply Theorem 3.8.1 and its corollaries to
obtain the matrix form of the second order and the mixed partial
matrix derivatives for the minres function (4.6.2.3). Since
this particular minres function involves only three parameter
matrices, we need to calculate only three second order and three
mixed partial derivative matrices.

Differentiating (4.6.2.3) twice by treating i1t as a func-

tion of the parameter matrix A only, we have

d2f(A) = Ztr[d(z*—s){(dA)Q*AT+A®*(dAT)}

sz sy {amyet (anTy+(anye (anT)}1]

= oerf{can)e aT(an) o aT+canyo ATae” (anT)
wnotanTy anye aTeae” (anTyne” (anT)y

+(z*—s){(dA)¢*(dAT)+(dA)¢*(dAT)}] . (4.6.2.11)

The second order partial matrix derivative Vi A f(A) is
r’'r
obtained from (4.6.2.11) by applying Theorem 3.8.1 and its
%
corollaries and finally replacing & by & where ¢ = @T

This gives

) £ = 2[I(q)(@AT®A®)+I®®ATA¢+I®®ATA®

r’'r

2

Va

+(A®®®AT)I<k)+2(Z—S)®®]
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- 4[I(q)(@AT®A®)+I®®ATA®+(Z-S)®®] (4.6.2.12)
. 7 _ T
since (A®QIA )I(k) = I(q)(QA QAD) .

The above procedure is used to obtain the remaining second

order matrix derivatives which are given as follows:

2 - Ty onT
Yo ,0 () = 20Ty (A7 ABAT) ] (4.6.2.13)
2
Vy ,y F(¥) = DI (4.6.2.14)
Yar¥q

The procedure for obtaining mixed derivatives is as
follows: We considef £ as a function of only two matrix varia-
ples at a time. Then first we take the differential of f with
respect to any one of the matrix variables and then the differ-
ential of the previous differential with respect to the remain-
ing matrix variable. Theorem 3.8.1 and its corollaries then
yield the required matrix derivatives. For example to obtain

2

E3
o A f, we evaluate the differential dAf(A, d ) of f with
r’r

v
¥

respect to A and then the differential ,d°f of d,f(A,® ) with

o, A

*
respect to & . Thus we have
* ¥ * *
a2e(n,0%) = 2erfiacae™aTrian) e aTvae" (@a))
o LA

¥ * ¥

+(zFo8)((an) (ae yaTea (ae ) (anT)11. (4.6.2.15)

Therefore

¥ ¥ *
ve,  £(h,0) = 2[{ATA(e )T®AT}I(k)+AT®ATA¢
o A
r r

+I(k){AT(z*-s)®I}+AT(z*—s)T@I],(4.6.2.16)
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by applying Theorem 3.8.1 and Corollaries 3.8.1 and 3.8.3.

*
Since (9@ )T may be replaced by ¢, we obtain

2

Vo A
r r

£(A,0) = 2[(I(k)+I){AT®ATA¢+AT(Z—S)®I}] (4.6.2.17)

by using Theorem 2.5.1.
The remaining mixed derivatives may similarly be evaluated

using the above procedure. These are as follows:

2 =

de’Arf(A,W) = 2Ny [(T ) +1)(I840)] (4.6.2.18)
2 =

vwd,Qrf(e,w) = 2Ny [T y(h8r) ], (4.6.2.19)

The required Hessian matrix is then obtained by substitut-
ing the above matrices of second order and mixed derivatives in

the following partitioned matrix:

-
2 2 2
\Y f v f v f
Ar’Ar Ar,¢r Ar’wd
2 2 2 2
v f =1V f Y f v f (4.6.2.20)
Tr’Tr <I>r"Ar ¢r’@r Qr’wd
2 2 2
v b v f \Y f
Yaolp ¥a2%r Yartq
R
r
where Tr = @r :(qk+k2+q)XI (4.6.2.21)
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is a column vector of unknown parameters. Since

Ve L= (v
r’’r r’r

etc., the Hessian matrix V% o T defined by (4.6.2.20) is a
r’'r

symmetric partitioned matrix. This Hessian matrix may be used
for minimizing the function f(A, &, ¥) with respect to the
unknown parameter matrices in the iterative procedure of
Newton-Raphson and that of Fletcher & Powell (1963). A certain
formulation of Fletcher-Powell method by approximate second
order derivatives is given by Joreskog (1970a, p. 240).

.6.,3 The Likelihood Model

In Section 4.6.1, we suppose that u:gxl and e:pxl are
independently distributed as multivariate normal random vectors
with mean vectors gzero and covariance matrices Y and O respec-
tively. Then, since x:px1l follows a p-variate normal distribu~
tion, the density function of the observation matrix X:nxp is

given by

n -1
-=trTL
_ 1 2
£(X) = ——_—Eii_— n e . (4.6.3.1)
(22 |z]°

Omitting a constant term, we write —g times the logarithm of
£(X) as

* ¥ * * *
h(B, A, & , ¥ ,0 , ) = logelZ | +trT2 (4.6.3.2)

%
treating h to be a function of the dummy variables B, A, & ,

% ¥
Yy , © and E.
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Here we are interested in obtaining the maximum likelihood
estimates ﬁ, K, 5, @, ® and g of the unknown parameter matrices
defined in Section 4.6.1. These estimates are obtained by
minimizing h with respect to the above mentioned dummy variables
Jéreskog (1970a) has considered the minimization of h by
an application of the modified version of the Fletcher-Powell
method by using first order derivatives and an approximate
value of the second order derivatives of h. .

We apply very simple and general theorems from matrix
differentiation to obtain the first and second order matrix
derivatives of h. ‘Then these derivatives may be used in the

modified minimization procedure of Jdreskog (1970a, pp.240-241).

4.6.3.1 Maximum Likelihood Equations

For a simple factor analysis model, maximum likelihood
equations were obtained by Anderson & Rubin (1956), Joreskog
(1966, 1967, 1969), Joreskog & Lawley (1968). Bock & Bargmann
(1966) obtained maximum likelihood equations when the covariance
matrix in the above model may be expressed as a linear combina-
tion of known matrices. If there exists an orthogonal matrix
which simultaneously diagonalizes all the above known matrices,
then a set of maximum likelihood equations is given by
Srivastava (1966). Further contribution to the problem of
maximum likelihood estimation where the covariance matrix has a
linear structure has been made by Anderson (1968). Models
considered by the above authors are special cases of the general
model for covariance structural analysis introduced by Joreskog

(1970a). Various specilizations and applications of the general
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model in the behavioural sciences are also available in the
papers of Jdreskog (1970a, 1970b, 1971) where he uses the
maximum likelihood method of unknown parameter estimation.

Maximum 1ikelihood~equations obtained by the above authors
are based on the elementwise differentiation of a scalar func-
tion of matrices, which is a very laborious process. Matrix
differentiation formulae applied by Dwyer (1967) and Gebhardt
(1971) in obtaining the above equations have simplified the
estimation problem to a great extent. 1In this sub-section we
obtain the maximum likelihood equations using Theorem 3.4.3 for
the general model of Jdreskog (1970a) in a much simpler way

than the formulae given in Dwyer (1967) and Gebhardt (1971).

By differentiating (4.6.3.2) with respect to the dummy

* * *
variables B, A, & , ¥ , © and E, we obtain

-1

¥
dh = +tprd (s )"t

1 * %
| *I dalz |+tr(dT)(Z )
z

- errieH o2 s F )y ezt am (2 7L,
using d|z*| = |z*|tr(z*)’Td(z*)T,

aczhH -t = -5 TarHeH,

and some trace properties
* * ¥ * *
= tr[W {(aB)T BI+BT (aBT)+B[(dA)® ATencae yAT
E3 ¥ ¥
#he (aATy+(ay )BT +de }—%{PT(dET)AT(X—AEP)

r(x-nz2)Tacaz)pr(zH 7] (4.6.3.3)



* ¥ - * . ¥ * ¥
where W = () HI-T(z)7'}, 7 = ne a4y’ . By an appl

of Theorem 3.4.3, the matrices of first order partial de

tives of h with respect to dummy matrices are
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ication

riva-

2 - wHTsr ) Tew'sr” (4.6.3.4)
%% - BTt Teace ) T+B T BAG (4.6.3.5)
ah - aTeT(w")Tea (4.6.3.6)
50
*
§E¥ = BT(W )TB (4.6.3.7)
3V
*
ah T (4.6.3.8)
50
%% - —%AT(X—AEP){(Z*)_l+(2*)—T}PT. (4.6.3.9)

First order matrix derivatives of h with respect to

the

basic parameter matrices are obtained after replacing the dummy

variables by the corresponding unknown parameters and ma

algebraic simplification in (4.6.3.4)-(4.6.3.9). These
28 - owBr (4.
h >BTuBA® (4.
%% = ATBTWBA (4.
38 = BluWBxxI (4.
%% = WxxI (4.

king

are

6.3.10)

6.3.11)

6.3.12)

6.3.13)

6.3.14)
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jog

0
0

|

. —%AT(X—AEP)Z_lPT . (4.6.3.15)

[$9]

Different expressions for the matrices (4.6.3.12),
(4.6.3.13) and (4.6.3.14) were obtained by Joreskog (1970a)
without any mention of an applicable result from the Matrix
Differential Calculus nor any other method of proof with a

source of reference. According to our approach, for a symmetric

matrix @, oh # (! as matrix elements, although they are
a<¢ij> 3<¢ji> —_

equal as scalar elements. This leads to the expression

(4.6.3.12) for which is different from that obtained by

3h
90°
Jéreskog.

Setting (4.6.3.10)-(4.6.3.15) equal to the zero matrix, we

obtain the following set of maximum likelihood equations:

T3 1BT = BT (4.6.3.16)
8751835 = 875 1T 'Bhe (4.6.3.17)
ATaTS-188 = ATRTE1TETiEA (4.6.3.18)
BLs 1BxxT = pT5-1p5 " 1BxxT (4.6.3.19)
$7lxr = §718% Lxx (4.6.3.20)
aTxs~1pT = aTagps~1pT . (4.6.3.21)

Maximum likelihood estimates obtained by the above equations
may be improved by an iterative procedure. Thils uses first
order matrix derivatives (4.6.3.10)-(4.6.3.15) and a Hessian

matrix which we obtain in the following sub-section.
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Equation (4.6.3.16) may be used to simplify the equation
(4.6.3.20) in the following way: From the general model, we

have

@>

1]
™

]
w>
™
=>
S
->

= 5-878T . (4.6.3.22)
Since @ is diagonal, pre- and post-multiplication of equation
(4.6.3.20) by O yields

T

(380873 L (5-BPBTyxxT = (5-BFBT)E 187 (E-BFET ) xxT
or A
(5+TBTE 1808 Ty xxT = (D4BFBT L AITIBTBT ) xxI
or
gxxI = %xxI (4.6.3.20)"

using (4.6.3.16). Similarly (4.6.3.16) may be simplified as

T6-18F = BP(T+BT67IET), (4.6.3.16)"

which makes use of the formula

(ereT+0)~1Br = o~ 'Br(1+8T0 tBr) " . (4.6.3.23)
Formulae (4.6.3.16)' and (4.6.3.20)' are very useful for
computational purposes. These have some special cases, see

- Morrison (1967, p. 267, equations (18) and (15)). The matrix
identity (L4.6.3.23) makes the computation easier because this
expresses the inverse of a general non-singular matrix I in
terms of inverses of a diagonal matrix © and a matrix

TG_IBP) of lower dimension. A simpler version of this

(I+B
identity is given by Morrison (1967, p. 267, equation (16)).
The maximum likelihood factor analysis model considered by

Gebhardt (1971) may be obtained from the general model with
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S =0and ¥ = I (in his case BA = F, B = G and © = V). If, in
the general model, £ = 0, B =1 and O = 0 then it reduces to
the model discussed by J&reskog (1966, 1967, 1969), Lawley
(1967), J8reskog & Lawley (1968) and Mulailk (1971). If, in
addition, ® = I, we have the case discussed by Morrison (1967).
Our approach for obtaining the likelihood equations is more
general than those followed by the above authors. Besides our
generality in applying various matrix formulae, we have discus-
sed a very general model for covariance structure.

4.6.3.2 The Hessian Matrix for the Likelihood Model

The basic procedure for evaluating the Hessian matrix for
the likelihood function is the same as that for the minres
function given in Section 4.6.2.2.

We differentiate twice the function h with respect to the

matrix parameter B, which gives

a°n(B) tr[(dw*){(dB)r*BT+BP*(dBT)}+2w*(dB)r*(dBT)]

- erl-(zH L1 (am)r Bt (aB)r BT+ (aB)r BT B (aBT)
wsr¥ (e’ (ap)r B +ar” (aBT)w BT (aBT))
st reamyreT (%) Lap)r BT+ (amy 'l (zF) "B (aBh)
ot aeTy 2%y Lamyr¥e e (a8T) (2 ) "Br (aBT))
+ou” (aB)r” (aBT) 7, (4.6.3.24)

¥ ¥ -1 % =1 # ¥ .
where U = (& ) "T(Z ) and W , T are as before. Applying

Theorem 3.8.1 and Corollaries 3.8.2, 3.8.4 and 3.8.6, we obtain
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2 _ $.p, % _1 , ¥ ¥
VBP’Brh(B) = [T, (T BT (Z) T8 )BT
+(z*)‘1®(r*)TBT(w*)TB(r*)T+(w*)T®r*BT(z*)'lBr*
+{(z*)‘1ar*@(r*>TBT<w*)T}I(q)]
+I(p){r*BTU*®(z*)‘TB(r*)T}+U*®(r*)TBT(z*)‘TB(P*)T
w(hTer*sTu sr e o erte (r ) BT (2D T
i (4.6.3.25)
% % *
Noting that (W )" =W, (T )" =T, 0 =1, and suppressing all

the stars, we get after some simplification

vZ _ n(B) = -{I (r8TsLowsr)+z terB WBT+WETB L TBT
B.»B, (p)
+(z~1erersTw)T, 1+, . (raTusz ler)+ueraTz " er
.y (q) (p)
+Z_1®FBTUBF+(UBF®PBTZ_1)I(q)+2W®P
- —2[I(p)(rBTz‘l®WBr)+z'1®rBTWBr-z‘lsz"l®rBTz'IBr
T -1
-1, (rB7UBE T BI)-Wer ] (4.6.3.26)
Proceeding similarly, we obtain the following:
vi L b)) = —2[I(q)(@ATBTZ—1B®BTWBA®)+BTZ_1B®®ATBTWBA®
r’'r
-BTUB®®ATBTZ-1BA®-I(q)(@ATBTUBeBTZ—lBAQ)—BTWB®¢]

(4.6.3.27)



vg , n(2) = -I(k)[ATBTz‘1BA®ATBTWBA+ATBTUBA®ATBTz‘1BA]
r’r
(4
v2  h(¥) = —[BY s tBxxBT (W-U)B] (4
¥ ,Yy
VS o n(0) = ~[Z7Hxx(u-0)] (4
a°%
v2 . n(e) = ZaTaerzTleh) (4
“r’Tr
v2  n(B,A) = 2[-(wBAesrBTETIB)T, \+(27'BAeeTBTUB)T
Br’Ar (k) (k)
—WB®FBTZ_lBA®+Z—lB®PBTUBA®
+(WBAS®T)T () | +WBBAS] (U

V2 , h(B,0) = [{uBAerBTz " LBA+UBAGA-2 T BAGTBTWBAIT

r’’r

1

_wene(ralz tB-1)a+z tBAerBTUBA] . (b

The remaining mixed partial matrix derivatives may

similarly be evaluated.

Let
&
r
A
r
0]
v 2
Q. = : (pa+ak+k“+q+p+gh)x1. (4
r Wd
%
“p
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.6.3.28)

.6.3.29)

.6.3.30)

.6.3.31)

.6.3.32)

.6.3.33)

.6.3.34)
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The Hessian matrix Vg Q h(Q) is then obtained by assembling
r’’r

the above matrices in the form of the following symmetric

partitioned matrix:

v2 ,h V5 b V2 ,h Ve yh v2 o n Vg :hT
r’r r’r r’r r’°d r’ d r’r
2 2 2 2 2 2
v h v ho v h v h v h v2 _nh
Ar’Br Ar’Ar Ar’®r Ar’wd Ar’ed Ar’“r
v g h ve 4 b v2 ,h Vo h V2 o h v, - h
r’’r r’’r r’r r’d r’’d r’Tr
Vo o b=
3
v v2 b Vg b V2 . b T yh v2 oh Vg o n
a°Bp aMy a* % a’fa a:% a’Zr
2 2 2 2 > 2
v h v hov h v h v h V2 _nh
04sB, Ogshn  04x%.  0g¥g 0450 Ogs%p
v2 on VE ,h VZ v2 ,n V5 gh v2 _h
L_“r’ r “r’r “r’r “r’'d “r?7d “r’Tr
(4.6.3.35)

4.6.4 A Generalization of Howe's Function

In this section we show that under certain distribution-free
assumptions a set of estimating equations for B, A, &, ¥ and 0 of
the structural form (4.6.1.3) may be obtained. For the models
(4.6.1.1) and (4.6.1.2), the only supposition we make is that
Var(x) = I, Var(z) = ¢ and Var(u) = Y:diagonal matrix, are
well-defined covariance matrices. Then the following hypothesis
gives rise to the more general structural form of I given by

(4.6.1.3): Does there exist a random vector z with non-diagonal
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covariance matrix ® such that the partial correlations of the
elements of the observable random vector X with all elements of

z held constant is 0? With
6 = [E(x-By) (x-By)T IxxI , (4.6.4.1)

a matrix formulation of this hypothesis is

1 1
o 2[E(x-By)(x-By)T1e % = I | (4.6.4.2)
since pxi’xj55 = Q0 for all i, J.

Since

B(x-By) (x-By)T = 1-B(reaT+¥)BT
we have from (4.6.4.2)

5 = B(AeAT+Y)B 40 (4.6.14.3)
which is the same as (4.6.1.3).

Under the above hypothesis, we may rewrite (4.6.4.2) as

1 1

o 2rz-B(renT+v)8TIe 2 = I . (4.6.4.4)

If in (4.6.4.4), we replace I by the sample covariance matrix
S, then minimizing all the sample partial correlation coeffic~-

ients simultaneously is equivalent to maximizing the following

determinant
_L .
lo 2rs-B(aeAT+¥)BTI0 2| . (4.6.4.5)

Equation (4.6.4.5) may be treated as a scalar function of the

# * #
dummy variables B, A, ¢ , ¥ and © . It is represented more

simply as
* * .
. s s Is-B(ae aT+¥)BT]
g(B, A, @, ¥, 0) = o] . (4.6.4.6)
0
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We call function (4.6.4.6) the generalized Howe's function. A
very particular case of this function has been discussed by
Morrison (1967, pp. 287-288). Our B, A, © and u are his A, I,
¥ and O respectively.

4.6.4.1 Minimum Partial Correlation Coefficients Estimates

These estimates are obtained by maximizing the generalized
Howe's function (U4.6.4.6) with respect to the unknown parameter
matrices. Differentiation of g with respect to the dummy vari-

* ¥ ®
ables B, A, & , ¥ and 6 , yields

* * * v
dg(B, A, &, ¥ ) = loi d|s-B(re AT+y )BT
* *
+|s-B(ne AT+¥ )BT [d(—)
0
%
|Ss-BI B | a— %
- ———T—;——— tr[-{S-BI B} Ta{B(r ) BT}]
0
%
|s-BT B! £ %
- | *[ tr(0 ) ~d(e )
0
% T
|S-BT B~ | % _ ¥ mo_
- erlie®y Tes-Breh)™h
|07

rap) () TTen ()T (aT)+{(an) (2 ") Tt

+Ad(¢*)TAT+A(¢*)T(dAT)+d(w*)T}BT]] ,
(4.6.4.7)
|S—BF*BT|

ag(6%) = ————— trri(s-pr BT T=(e")TraeMH 1,
o7 4.6.4.8)
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Applying Theorem 3.4.3 and making algebraic simplifications

similar to those in Section 4.6.2.1, we obtain

3 - LE%Z%?EL to™t-(s-BraT) " t}Br (4.6.4.9)
o - LE%S%ETL BT (o~ 1-(s-BrBT) "11BNG (4.6.4.10)
CL LE%S%EEL AT (o~ 1-(s-rT) " 11BA (4.6.4.11)
2 - lE%Z%?EL BT (o™ -(s-BrBT) "11BxxI (4.6.4.12)
22 ISIZTBTL f(s-preT)y"1o71y (4.6.4.13)

The required equations for estimating the parameters B, A,
®, ¥ and © are then obtained by setting equations (4.6.4.9)~

(4.6.4.13) equal to zero. These, after some simplification,

give
s6™L8f = BF(1+B6 1BF) | (4.6.4.14)
8T (s-8p8Ty 1848 = BT61BAS (4.6.4.15)
ATaT (s-aP8Ty 184 = ATAT61BA (4.6.4.16)
8T (5-BIBAT) "1BxxT = B O TBxxI (4.6.4.17)
ExxT = SxxI . (4.6.4.18)

The estimating equations (4.6.3.16)', (4.6.3.20)", obtained

by the method of maximum likelihood, are analogous to the
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equations (4.6.4.14) and (4.6.4.18) respectively. The equival-
ence of these equations provides some justification for adopt-
ing the generalized Howe's function represented by (4.6.4.6)
for estimating the unknown parameter matrices. For a simple
factor analysis model, Morrison(1967, p. 289) has obtained an
estimation equation using Howe's procedure. His equation is a
particular case of our equation (4.6.4.14), where our (B, T, 0)
are his (A, I, ¥). The maximization procedure followed by
Morrison(1967, p. 288) is much more complicated even for a very
simple case. Our procedure 1is very straightforward and can be
used even for more general matrix functions than those conside-
red so far. The treatment of Sections 4.6.3 and 4.6.4 is based
on Tracy & Singh (1971a). In particular, Singh & Tracy (1970)
discussed likelihood function and Howe's function for a factor
analysis model considered by Jdreskog (1969).

4.6.5 Estimation of Unobserved Variables

Suppose that in the model (4.6.1.1) and (4.6.1.2), y and
hence z, u are unobserved non-random vectors. Let
x'£
=1

x = |1 linxp (4.6.5.1)

be an observed random matrix.

Since z and u are non-random vectors, we have for each j

X, = BAgj+BEj+-e-' (4.6.5.2)

._J J 3

where Ej and Bj may be treated as unknown parameter vectors.
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If we define

P 7| -; T | . T |
Z 21 g1
7 = E s U = E and E = ; , (4.6.5.3)
T T T
Zz u e
-n | -0 L—n

then X may be expressed as a function of the partitioned matrix

[BA . B] in the following way:

T

x = z2ATBT+UBT+E

[z : UI[,T Bl+E . (4.6.5.4)

1l

Our aim in this section is to obtain the weighted least

squares estimate of [Z ! U]. This requires minimizing the

function

P(W) = tr(X-WD)e T (x-wD)T (4.6.5.5)
where

W= [z:0]and D’ =B[A: TI, (4.6.5.6)

On differentiating (L4.6.5.5) with respect to W, we get

ar(w) = er-x0~ 10T (awT) - (aw)pe~tx T+ (awypo o Tw”

-1

+wpe~ T (awT) 1. (4.6.5.7)

Applying Theorem 3.4.3, we obtain

af (W)
oW

1 1

pT_xo~1pT). (4.6.5.8)

= 2(WDO~

Let W be the weighted least squares estimate of W, where

~

R
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W is obtained from known estimates of the parameters. Then

= 0 and assuming that Do~ It is non-singular, we

@
]

l

setting 5

=

obtain the following estimating equation:

= x67 T (p6~ Tyt (4.6.5.9)

A

where é and ﬁT = B[K . I] are known least squares estimates of

@ and DT respectively. Since

1 TsTe~28n . ATBTo 1B
e tpt = . .. o, (4.6.5.10)

8Te"len - BTo7'B

we may express (4.6.5.9) more explicitly as

-1
FATaTs 184 . ATBTATIAT

A AT =10 N 5| . (4.6.5.11)
8T~ 184 37618 |

For evaluating the inverse of the partitioned matrix (4.6.5.10)
we refer to Graybill (1969, pp. 164-166).

Particular cases of this estimation problem have been tre-
ated by Anderson & Rubin (1956), Lawley & Maxwell (1963) and
Morrison (1967), without using any matrix differentiation
formulae.

We conclude our discussion on parameter estimation in the
covariance structural analysis by claiming that the matrix der-
ivative approach is the most efficient procedure to deal with

such complicated scalar functions of matrices.
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4,7 Evaluation of Jacobilans Under Symmetric Matrix

Transformations

Matrix derivatives with respect to matrix elements are of
general application in multivariate analysis. Some of these
applications occur in estimation problems, in obtaining large
sample covariance matrices and in evaluating jacobians of
certain matrix transformations. Under general matrix transfo-
rmations Y = F(X), the jacobian is simply the absolute value

oY
of the determinant of 573 . For example, (i) if Y = AXTB,
r

A:pxp, B:axq, then

Y
r

—

BXr

Jacobian mod

_ T
= mod[I(q)(A 8B) |

= |a]|9|B|P , except for a sign, (4.7.1)
using (2.4.6) and (A.1.27)
and (ii) if Y = X—T, X:pxp, then
Jacobian = mod|-T, (X tex™T)]
(p)
- -2p i
= | X] , except for a sign. (4.7.2)

Matrix derivatives with respect to scalar elements are
also useful in the above problems, but this approach is very
complicated because these are not general matrix derivatives.
However, for evaluating jacobians, these are the most desirable
matrix derivatives, especially where matrix transformations

involve known equality relationships. For example, if
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(1) Y = AXTB, (ii) Y = X~ T , with X = %% in both cases, then
(4.7.1) and (4.7.2.) are not the appropriate jacobilans.

The aim of this section is to evaluate the jacobians of
some special matrix transformations involving symmetric matri-
ces by applying matrix derivative results from Section 2.11.
Some of these jacobians have been evaluated by Dwyer (1967),
using matrix derivatives, and by Olkin & Sampson (1969), using
a functional equation induced on a vector space of symmetric
matrices. The generality of our approach lies in the fact that
only one modified matrix derivative formula, given by Corollary
3.11.2.1, is enough to evaluate various jacobians for a class
of symmetric matrix transformations. However, from (3.11.3.9),
it is obvious that either Corollary 3.11.2.1 or Theorem
3.11.3.3 may be used for evaluating such jacobians.

We denote the jacobiaﬁiof a special matrix transformation

Y = F(X), X = X, by

oy *
J(X + Y) = mod|————| . (4.7.3)

#
ax(r)

We use this particular form of matrix derivative because it is
easier to handle than the one discussed in Section 3.11.3.
We require the following matrix result given by Hsu

(1953, p. 41):

Theorem 4.7.1 Every non-singular matrix may be expressed as

the product of a finite number of matrices of either of the

following two types:

(1) a diagonal matrix whose diagonal elements are 1 with
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the exception of one, which is, say, a;
(ii) a matrix whose diagonal elements are 1 and all but
one of whose non-diagonal elements are zero.

Example 4.7.1 If

Y = AXAT (4.7.4)

where A:pxp is a non-singular matrix, and X = XT, then

(4.7.5)
To get (L4.7.5), taking the differential of (4.7.4), we

J(x »~ ¥) = |a|Ptt,

obtain
4y = A(dX)AT (4.7.6)
= av_ = (A®A)AX_ , using (2.6.3.13). (4.7.7)

Now applying Corollary 3.11.2.1 to (4.7.7), we get

ay 7
T
r = [MY(A®A)NX] . (4.7.8)
5%, [
(r)
Hence
J(X > ¥) = |My(ABA)Ny| . (4.7.9)

To evaluate (4.7.9) we apply Theorem y,7.1. Without any

loss of generality we may assume A = diag(a, 1l,..., 1). Then
1 2 p ptl 2p+1
0 4 + 4 4

ABA = diag(a2, Byevey, @y 8y Lyewey, 1y @y 1yeeey Lyenn,
a, ly0e., 1)
¥
(p-1)p+l

and MY(A®A)NX is a lower triangular matrix whose diagonal 1s

given by
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(2%, 8,000, @5 Lyeee, 1)
¥ ¥ Yy ¥ ¥
1 2 p p+l  p(p+l)
Hence
+1
IMY(A®A)NX| = |a|®P

which yields (4.7.5).
In particular, if in (4.7.4), A is a non-singular upper

triangular matrix (aij =0, 1 > j), then this transformation is

needed in connection with the Wishart distribution [see
Anderson (1958, p. 157)]. Evaluation of (4.7.9) for this
particular case is much simpler and has been considered by
Tracy & Singh (1970a).

Using the above example, we obtain the following Jjacobian
of an inverse matrix transformation:

Example 4.7.2 If

Yy = X, (4.7.10)

where X = XT:po, then

7%+ v) = |x|"(PFL) (4.7.11)

]

Since YX I, we have

(AY)X+Y(dX) = O
=> gy = -X L(ax)x '
= av_ = -(x’1®x‘T)dxr : (4.7.12)

Expression (4.7.12) is of the form (4L.7.7) and hence to obtain
the jacobian of (4.7.10), we replace A by X-l in (4.7.5) and
get (4.7.11).

Dwyer (1967) and Olkin & Sampson (1969) evaluated (4.7.5)



180

and (4.7.11) using different approaches. Our approach brings
out certain advantages over that of Dwyer (1967) by making use
of Kronecker product and an interesting property of a
non-singular matrix given by Hsu (1953).

Example 4.7.3 The jacobian of the matrix transformation

Y = XAX , (4.7.13)
= yT _ AT
where X = X :pxp, and A = A" 1s
J(X +~Y) = 1 (A;+Xx;) (4.7.14)
iy *+ 0 J

where Ai are the characteristic roots of AX.
Taking the differential of (4.7.13) leads, after some

simplification, to

aYr# T T
—_—= NX [I@AX+AX®I]MY . (4.7.15)

#
BX(r)
In obtaining the jacobian of (4.7.13), we take AX =

diag(kl,..., Ap), and consequently the required determinant of

(4.7.15) is igﬁ(xi+kj).

If, in particular, ¥ = X2, X = XT:po, then the required

jacobian may be obtained from the above example and is given by

J(X+ X3 = 1 () (4.7.16)
i< J

where Xi are the characteristic roots of X.

Olkin & Sampson (1969) obtained (4.7.14) by using a chain
of matrix transformations and multiplying their jacobians.
Also they provided a very complicated proof for (4.7.16) by

solving the functional equations for a chain of suitable
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matrix transformations.

Example 4.7.4 The jacobian of the matrix transformation

v = AXAT+B XB , (4.7.17)

where X = XT:po matrix, is given by

J(X >~ Y) il (Aikj+uiuj) R (4.7.18)

i)
where Ai and uj are the characteristic roots of A and B respec-

ively.
Taking differential of (4.7.17) and using (2.6.3.13) and

Corollary 3.11.2.1, we obtailn

#
3Y
_r = NXT[AT®A
y
3 ()

TipoBIM, | (4.6.19)

where M, and N appropriate

2 p(p+l)
Y X 2

are EigillXp2 and p

matrices respectively.

From a particular case of (A.1.28), AiAj and “i“j 3
i,j =1, 2,..., p; are the characteristic roots of AT®AT and
BB®B respectively.

Hence the result follows from Example 4.7.3.
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4,8 Miscellaneous

Tn this section we consider a number of important miscell-
aneous applications of Chapters II and III in multivariate
analysis.

4.8.1 Some Properties of the Matrix Product Defined by Khatri

& Rao (1968) and Extended by Khatri (1971)

The proof of the following resuit is straightforward:

Theorem 4.8.1.1 Let

A = (A.l""’ A.q):qu; B = (B.l""’ B.q):an,

then

I(n)(AOB) = BOA (4.8.1.1)
I(m)(BGA) = AOGB (4.8.1.2)

where AOB is as in Definition 2.7.2 defined by Khatri & Rao

(1968), and I(k) is as in Definition 2.4.1.

T r
Definition 4.8.1.1 Let I: Z gq.,n.,x Z q.,n. be partitioned as
i=1 ¢t og=1 b7
Q1 Al e Uy
I =Diag[I I = ... .I 1. (4.8.1.3)
Then we define
q Ny Gyhy e q.n,
I . = DiaglI T I R i ]
<qq,1=1,2,...,r50> sl (qq) (a,) (q,)
(4.8.1.4)
and
9" 4o T Ay
I . = Diagl[I I . I
<n,,i=1,2,...,7;9> gl (nl) (n2) (nr)]’
- r (4.8.1.5)
where 2 n; = n, E q; = Q-

i=1 i
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Some interesting properties of the auxiliary operators
defined by (4.8.1.4) and (4.8.1.5) are given by the following

Theorem 4.8.1.2

(1) I<qi,i=1,2,...,r;n> = (I<ni,i=l,2,...,r;q>)T (4.8.1.6)
(11) (I<qi,i=l,2,...,r;n>)(I<ni,i=l,2,...,r;q>) =1 (4.8.1.7)
(1i1) (I<ni,i=1,2,...,r;q>)<I<qi,i=l,2,...,r;n>) =1 (4.8.1.8)
(1v) I<qi,i=l,2,...,r;n> - I<ni,i=l,2,...,r;q>

(4.8.1.9)

if and only if g = n and q; =0y for all i

(v) I<ni,i=l,2,...,r;q>+I<qi,i=1,2,...,r;n> is a symmetric
partitioned matrix (4.8.1.10)
i = = +
(Vl) II<ni’i=l:2:"'sP;q>| II<qi’i=l:23"'ar;n>| £l
(4.8.1.11)

The verification of all the above properties is straight-
forward.

We need Definition 4.8.1.1 and Theorem 4.8.1.2 to establ-
ish certain connections between the auxiliary operators I(k)
introduced by Tracy & Dwyer (1969) and the matrix product C)
defined by Khatri (1971). These are gilven by the following

Theorem L4.8.1.3 Let A:mxn, B:pxq matrices which are partitioned

as follows:

nl n

A= [Al: &

n q; Ay e o]

r
.. 1Ay, B = [B': BZ:

r

2
2 . Br]'

then
(1) I(p)(A() B) = (B().A)I<qi’i=l,2’-..,r;n> (4.8.1.12)
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(ii) I(m)(B()A) = UX()B)I<ni,i_ (4.8.1.13)

=1,2,...,0;Q>

(ii1) I(p)(A©B)I<ni,i=l,2,...,r';q> =B@®A, (4.8.1.14)

where A.C)B is defined by Khatri (1971); see Definition 2.7.3.

Proof: (i) The i-th column block of I(p)(ACDIB) is given by

I(p)(Ai®Bi) = (Bi®Ai)I(q.) : (4.8.1.15)
1

The right-hand side of expression (4.8.1.15) is the i-th column

block of (B @A)l Hence the result.

<qi,i=l,2,...,r;n>'
The proof of (ii) is analogous to (i).

(iii) Applying (4.8.1.7) and (4.8.1.12), we obtain

I, \(A@B)I, .
()2 ©B) <ng,1=1,2,...,r;0>

“3CDA)(I<qi,i=l,2,...,r;n>)(I<ni,i=1,2,...,r;q>

B@®A.

Hence the theorem is proved.

Obviously

ImyBOMIG o1, . rin> = 2O (4.8.1.16)

Here we may point out that just as the matrix product O is
a special case of @ , it is immediate that Theorem 4.8.1.1 is
a special caée of Theorem 4.8.1.3. Further, since @ 1is a
special case of our partitioned matrix product C) , 1t 1is
observed that Theorem 4.8.1.3 is a special case of Theorem
2.9.1. If we have a multivariate model Y = AXBT, where A and
B are as in Theorems.4.8.l.l or 4.8.1.3, and X is a diagonal

or a block diagonal matrix, then the results of this subsection

are very useful.
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4.8.2 Estimation of Scalar Coefficients for Covariance

Matrices with Linear Structure

Complications may arise even 1if we are required to differ-
entiate a scalar function of matrices with respect to scalar
variables. TFor example, in the analysis of covariance structu-
res, both the positive definite matrix and its inverse may be
assumed to be certain linear combinations of known, linearly
independent symmetric matrices involving unknown scalar coeffi-
cients. The maximum likelihood estimation of these unknown
coefficients requires the differentiation of the log-likelihood
function with respect to these dummy variables.

In this subsection we obtain a set of likelihood equations
and a Hessian matrix concerning likelihood functions involving
a positive definite covariance matrix and its inverse, which
are represented as linear combinations of known matrices.

Such an estimation problem for a positive definite covari-
ance matrix with a linear structure 1is discussed by Srivastava
(1966) and Bock & Bargmann (1966). Anderson (1968) gives a simp-
ler treatment for the problem considered by the above authors
and also for estimating the unknown scalar coefficients when
the inverse of the covariance matrix is a linear combination of
known matrices. However, the procedure for obtaining the
likelihood equation followed by the above authors may be consi-
derably simplified by using particular cases of our matrix
differentiation formulae. Here we discuss these simplifications
in the light of the work of Anderson (1968).

Omitting a constant term, we consider the minimization with
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respect to 0y i=0,1, ..., m, of
g(o,, O g.) = 1og|z]+trsz'l (4.8.2.1)
g2 Opsvves Op! .38.2.
m
where S is a sample covariance matrix; I = Z oiGi, Gi are known
i=0

and linearly independent symmetric matrices, and the o, are
unknown parameters.
Differentiating (4.8.2.1) with respect to these parameters,

we obtain

-1, 0 -1
G,do,)~trSE”( = G,do, )z (4.8.2.2)

m
tr(zY (3
1= i=0

i=0

dg

1

]
h™Ms

-1 - -1
tr[2 "G,do, - G, (do )27 . (4.8.2.3)

i=0
From (4.8.2.3), using a special case of Theorem 3.4.3,

we get

Q

o8 trz‘lei(l-z‘ S), 1 =0, 1, ..., m. (4.8.2.4)

g
3oi
Hence the required likelihood equations are

ersle, = trite,i7ts , 1= 0, 1, ..., m, (4.8.2.5)

m
where & = 2 aiGi and Gi are solutions of (4.8.2.5).
=0

Anderson (1968, pp. 57-58) obtained (4.8.2.5) using scalar
differentiation which is quite involved. In his case the final

result is obtained by using the following formulae:

g =gl k=1, 2, 0
301
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-1
22— = 2o
i
and
3loglz] p p 2dlogl|z| %o p p scof o .
) =z Z 5 ) e 33 ( kz)gﬁi)
91 k=1 2=1 °%k2 %1 k=1 2=1\ |I]

Further differentiation of (4.8.2.1) first with respect to

g. and then o, gives
1 J

a%s = -tr(zT) (e d0,) (2T (6, d0,)
O, 50, J d
J 1
-1 -1 -1
+trST (dooj)z (Gidci)z
-1 -1 -1
+trST (dooj)z (G,do,)z . (4.8.2.6)

Applying a special case of Theorem 3.8.1 to (4.8.2.6), we

obtain
32 A=l a=1 a1l a=l. a=1
—9 8 - _gp¥ TG.2 "G.+2trSI "G.Z G.Z (4.8.2.7)
96.90, J i J 1
Rt
i,j =0, 1, ..., m.

These second derivatives may be arranged in the form of a
symmetric matrix, which yields the required Hessian matrix.
Likelihood equations and the Hessian matrix for the linear

structure

where Hi are known matrices and wi are unknown parameters, may

be similarly obtained.
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Consider
h(Pgs Yps oves wm) = 1og|z'l|—trsz'l , (4.8.2.8)
which is to be maximized with respect to wo, wl’ cees wm .
Differentiating (4.8.2.8) with respect to by i=0,1, ..., m,
gives
an = trita(z™ ) T-trsaz~t (4.8.2.9)
m m
= X triH.dy.- £ trSH.dy, . (4.8.2.10)
i=0 Tt =0 ol

From (4.8.2.10), we obtain %%— which, on setting equal to

zero, gives

trgH. =
1

1
o+
]
92}
)

[N
[
il
o
=
3

(4.8.2.11)

FaY
where L =
i

I ™M

7 P [see Anderson (1968, eqn.(39))]. He does
0

not provide any mathematical detail for obtaining (4.8.2.11).

To obtain a typical element of the Hessian matrix, we have

2. T T
d°n = -tri’H, (dp,)z H, (ay,) (4.8.2.12)

szwi
which implies

32 m o,
H.( Z ¢,H,) "H, , (4.8.2.13)

where i,j = 0, 1, ..., m.
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4.8.3 A Simpler Proof for a Result of Gleser & Olkin (1966)

We note that for any A:axb,

a b
 Zal = traAl. (4.8.3.1)
i=1 j=1 *J

We apply (4.8.3.1) in proving the following

Lemma 4.8.3.1 [Gleser & Olkin (1966, pp. 68-69)] If

L = (ﬁij):aXb and C:cxa, then

a b f3log|W|
2

94, .
i

2
) = werrnt(cTwte) 2, (4.8.3.2)
]

i=1 j=1

where W = T+CLLICT.

Proof: Taking differentials, we get

dlog|wW| = trWw ldw’

srw~Lic(annTeTrernarTycTy . (4.8.3.3)
Using Theorem 3.4.3 in (4.8.3.3), we obtain

dlog|W|
oL
An application of (4.8.3.1) in (4.8.3.4) gives

a ( b dlog|W|

= 2cTw oL, (4.8.3.4)

s Tylc = nernt(cTwtc)?
. .- 0%, .
i=1\j=1 ij

which proves (4.8.3.2).

2
) = yerctw tonnTc

This lemma has been used by Gleser & Olkin (1966, pp.
67-68) in deriving the asymptotic non-central distribution of
the likelihood-ratio statistic for testing the equality of
vector parameters of a k-sample regression model with covaria-
nce. Gleser & Olkin (1966) provide the proof of this lemma Dby
using elementwise differentiation of a scalar function of a

matrix, which is quite lengthy and involved.
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4.8.4 An Application of Matrix Derivatives to a Dynamic

Econometric System

In this subsection we obtain certain matrix derivatives of
the asymptotic covariance matrix S of the endogeneous vector
variable for the following three forms of a dynamic econometric
model considered by Conlisk (1969):

T

reduced form S = ASAT+V (4.8.4.1)
- T

asymptotic form S = 2 A%v(atH® (4.8.4.2)
0=0

structural form S = C_lDSDTC"T+C_lUC—T . (4.8.4.3)

We observe that S is a function of A and V in the reduced
and the asymptotic forms, and 1t 1is a function of C, D and U in

the structural form.

First we show that the asymptotic and reduced forms are

equivalent:

s = z A% = s_= = (aen)v,
a=0 a=0

using Theorem 2.6.3.1,

(1-A8) 71V, using (A.1.50).

Hence

S-(A8A)S, =V, =>S = ASAT4V, which is the reduced

form of S.
To obtain the partial matrix derivatives of S with respect
to A and V, it is more convenient to consider the reduced form
(4.8.4.1). Let A be mxm matrix. Then differentiating S with

respect to A and V, we obtain
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(an)sAT+A(as)AT+AS (aAT)+av,
which gives

as,, = (I-A@A)—l[I®AS+(AS®I)I(m)]dAr+(I—A®A)_ldVr. (4.8.4.4)

From (4.8.4.4) we identify the required partial matrix derivat-

ives as:
P rresaT+1, | (saTe1)1(1-ATeAT) "
LW (m)
= I@SAT(I+I(m))(I-ATeAT)’l, (4.8.4.5)
using (A.1.14).
58
r _ T, . T\-1
v " (I-A"8A7) ~. (4.8.4.6)

Differentiating the structural form of the asymptotic

covariance matrix with respect to C, D and U, we get

as = —c~Yacyo~pspTe et (ap)spTe T+t (as)nlc T
+c'le(dDT)c‘T-c 1pspTeT(acTye T=c"(ac)c tuc™?
o~ ramye T-crue T acTyc T, (4.8.4.7)
Here we note that C:mxm, D:mxm and I(m)T = I(m)'

Applying Theorem 2.6.3.1 in (4.8.4.7), we obtain, after
some simplification,

1

(1-c"1pec~1p) " [-{c"tec ™ tpsp T+ (¢ ST -T

psplc Tec™ 1

s, (m)

+c‘l®c'lUC'T+(c‘luc“T@c"l)I(m)}dcr+{c’l®c'le

+(c’1DS®c”1)I(m)}dDr+(c"l®c"l)dUr]

(c&c-D®D)“l[—{(I+I(m))(1®DSDTc'T+I®Uc“T>}dcr
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+{(T+I (;y) (18DS) }dD, +dU ]. (4.8.4.8)

Hence the matrix derivatives of S with respect to the

structural parameters C, D and U are:

3S
== = ~[{18(C “IpspTeotu) H(I+T ) ICC TecT-pTepT) ™t
r
(4.8.4.9)
B _ ((1esp) (141, )3(cTecT-pTen )" (4.8.4.10)
3D, " T(m) AR
and
5S
s = (C TecT-pTenT) 2. (4.8.4.11)
r

For simplifying the above partial derivatives we have used
some properties of the Kronecker product, especially (A.1.14),
and the result

(1-c"*pec™1py~! = (cec-pep) t(cac).

Conlisk (1969) obtained expressions for the partial

. . SL(S) 9L(S) BL(S) 3L(S) dL(S) _ T
derivatives aaij s STV ? acij Y y and 3L(0)° where V = V7,

U = UT and L(S) = SC in the notation of Tracy & Dwyer (1969).

He derived these equations by expressing the asymptotic and the
structural form of the covariance matrix S as a function of
L(V) and L(U) respectively. His method is interesting only for
linear functions of the parameter matrices.

We have followed a more general approach which is directly
applicable to the reduced model and the structural model. We
have not treated the asymptotic form, since it is equivalent to

the reduced form and is much more complicated to handle than
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the reduced form. It may be observed that the expressions
obtained by Conlisk (1969) are less general and more compli-
cated than the equations (4.8.4.5), (4.8.4,6) and (4.8.4.9)-
(4,8.4.11) presented here.

Neudecker (1969b) attempts to provide an expression for

3L(S) . oaL(S) . . .

as an extension of , given in Conlisk (1969, p.

3L(A) Baij ’
dL(S)

279). His expression for involves a partitioned matrix

oL (A)
of m row blocks which may be simplified by an application of

I(k) given in the paper of Tracy & Dwyer (1969), [see Section
2.4 for various properties of I(k)]’ and property (A.1l.14) of

the Kronecker matrix product.



CHAPTER V

POSSIBILITIES FOR FURTHER RESEARCH

Based on our discussion in Chapters II-IV, we may pursue
further investigations in the theory of matrix differentiation
and its applications.

In Theorem 2.4.1 some properties of the auxiliary matrices
I(k) are stated. Results in matrix differentiation may be simpli-
fied if it 1s possible to express I(m)+I(n) as some other kind
of well-defined auxiliary matrix. Also, it is well-known that
an orthogonal matrix P is proper if |P| = 1 and it is improper
if |P| = -1 [see Murdoch (1971, p. 174)]. It is seen that for
certain mn, II(m)I and |I(n)’ are either both proper or both
improper. Using this fact one may characterize I(m) and I(n)’
which leads to investigating an integer function m = f(m,n).

For the partitioned situation we observed that {m}I and
I{n}’ introduced in Section 2.8, behave as I(m) and I(n) do in
the non-partitioned situation. Hence a study of the nature of
T ny I{m}II and ]I{n}l may be useful in those situations
where partitioned matrix differentiation is applicable.

In Section 4.8.1 we introduced auxiliary operators

I and I and studied their

<qi,i=l,2,...,r;n> <ni,i=l,2,...,r;q>
properties and applications. It is worthwhile to express

I as another auxiliary

. + .
<qi,1=l,2,..,r;n> I<ni,1=1,2,...,r’;q>

matrix which is a symmetric partitioned matrix. The resulting

auxiliary matrix may have some additional properties and may be

194
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useful in simplifying matrix differentiation under very special
situations where the matrix products 0 and () are involved.

In Appendix A.1 we have listed various important properties
of the Kronecker matrix product ®. Some of these properties are
also true for our partitioned Kronecker product () , defined in
Section 2.7. It may be desirable to verify additional proper-
ties of the matrix product @ which are analogous to (A.1.27)-
(A.1.51).

Madansky & Olkin (1968) have developed an alternative pro-
cedure for obtaining an asymptotic confidence region for a cons-
traint vector parameter h(8), where h(8) is a vector function of
a parameter vector 6. For various cases they have used element-
wise differentiation to obtain approximate confidence intervals.
One may apply the results of Chapter II and Chapter III to
simplify the proofs of certain results in Madansky & Olkin
(1968) and also to extend their procedure to set up an asympto-
tic confidence region for the constraint matrix parameter H(O),
where H(0) is a natrix function of a parameter matrix ©.

) Lockhart (1967, pp. 268-271) has obtained typical elements
of the asymptotic covariance matrix of the parameter estimators
in the maximum likelihood factor analysis. The present matrix
derivative methods may be applied in obtaining the asymptotic

covariance matrix of the maximum likelihood estimators for the
1ikelihood model (4.6.3.1). In particular, these methods will

simplify the derivation presented Dby Lockhart (1967).



AFPENDIX

Some important matrix results, many of which are used in

this dissertation, are presented below.

A.1 The Kronecker Product of Matrices

Definition A.1.1 Let A = (aij):mxn matrix and B:pxg matrix;

then the Kronecker product of A and B, written A®B, is defined

as the mpxng matrix

AGB = (aijB)'

The proofs of the following results involving the Kronecker

product 8 are strailghtforward:

A®B, BBA exist for any A, B (A.1.1)
A®B # B®A in general . . (A.1.2)
AB0 = O8A = O (A.1.3)
(aA)®B = o(ABB) = (ABaB), a is a scalar (A.1.4)
A8(B®C) = (ABB)SC (A.1.5)
(ABB)(C®D) = AC®BD if AC, BD exist (A.1.6)
(a8B)T = aTeBT (A.1.7)

If A+B and C+D exist, then

(A+B)®(C+D) = ARC+A®D+BRC+B&D (A.1.8)
(aeB) "t = a~lgB7l, if the inverses exist (A.1.9)
A"8B” is a g-inverse of (A8B) for any A and E (A.1.10)

If A:mxm, B:nxnj; then
(Im®B)(A®In) = (A@In)(Im®B) = A®B (A.1.11)

196
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Im®In = In®Im = Imn (A.1.12)

tr(A®B) = (trA)(trB) | (A.1.13)

If A:mxn, B:pxq matrices, then

. T _ T
(1) I(p)(A ®8B) = (BBA )I(q) (A.1.14)

(i1) I(p)(AT®B)I(m) = BBAT (A.1.15)

If X:mxn, Y:pxq, A:qxm, B:nxp matrices, then

. ) T, T
(1) trAXBY = (X)'(AT8B)I )Y (£.1.16)
(11) trAXBY = (¥ ) (A®BT)I, X (A.1.17)
c (m)~c T
v = AXB =3 ¥_ = (A8B1)X, (A.1.18)
Y= axB=> Y = (B8A)X, (£.1.19)

If A and B are symmetric matrices, then so is A®B.(A.1.20)
If A and B are skew-symmetric matrices, then

A®B is a symmetric matrix. (A.1.21)
If A, B are symmetric and C, D are skew-symmetric matrices,

then

AGBRC is a skew-symmetric matrix (A.1.22)
A®C®D is a symmetric matrix. (A.1.23)
If A and B are orthogonal matrices, then so 1is ABB.(A.1.24)
If A and B are upper (lower) triangular (diagonal) matrices,
then so is A®B. (A.1.25)
If A is upper (lower) triangular and B is arbitrary, then

ABB is a partitioned upper (lower) triangular matrix.
(A.1.26)

|ABB| = |B®A| = |a]™|B|™ , where A:mxm, B:nxn. (A.1.27)
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(I—A@B)_1 = ; (A®B)% for square matrices A and B
a=0 (A.1.28)
If A:mxm is idempotent, then so is A®A® ...8A. (A.1.29)
If A:mxm is nilpotent, then so is ABA® ... BA. (A.1.30)
If o i=1, 2, ..., m are the latent roots of A, and
if Bj’ j=1, 2, ..., n are the latent roots of B; then
aiBj are the latent roots of both A®B and B8A. (A.1.31)

If X35 Uy are the latent row vectors and latent column
vectors of A:mxm, and if zj,yj are the latent row vectors and

latent column vectors of B:nxn, then the

latent row vectors of A8B are x,8y, (A.1.32)
latent column vectors of A®B are Ei®wj (A.1.33)
Rank (A®B) = (Rank A)(Rank B) (A.1.34)

If A and B are positive (positive semi-) definite matrices;
then so is A8B. (A.1.35)
If A:rxm, B:rxn are given matrices such that

Rank(A®B . BBA) = r2, then

Rank A = Rank B = r. (A.1.36)
. T _ T T T T
Let Ai.miXm, B," = (A1 seeesBs g ’Ai+l seeesBp ) for
i=1, 2, ..., k, be given matrices such that

Rank Bi = m for all i.

If

Q=AT@BT where A i

i}
o
il
o
oy
]
S

Rank Q = m°. (A.1.37)

(A.1.36) and (A.1.37) are slight modifications of
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properties (ii) and (iii) given by Khatri (1971).

If A:mxn, B:pxq, P:rxm and Q:sxp matrices, then

(P8Q)(A® B) = PA® QB (A.1.38)
For partitioned matrices A = (Al,...,Ak), B = (Bl,...,Bk);
k k
if Rank A = 2 Rank Ai or Rank B = 2 Rank B, , then
i=1 i=1 *
k
Rank(A ©B) = iElRank(AiébBi) (A.1.39)

Proofs of (A.1.36) -(A.1.39) are very difficult and are
given by Khatri (1971). Some of the other results given above
are scattered in the following references: Graybill (1969) and
Neudecker (1968, 1969a, 1969b). Besides these, there are other
results concerning the Kronecker product ® which are very easily

derived from the above properties and are listed in Graybill

(1969).

Log[I _8(I-A)] = I 8Log(I-A) (A.1.40)

Log[(I-B)8I ] = Log(I-B)8I (A.1.41)

I_®A A

e™ =1 8e (A.1.42)
m

B8 B

e T=e 8L, (A.1.43)

where A and B are square matrices and m, n are arbiltrary
- integers.
If A:mxm, B:nxn, then

(I ®A)+(BBI ) (I_8A) (BBI )
e D m = e I e m-, (A.1.44)

Results (A.1.45) and (A.1.46) are available in MacDuffee
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(1946, pp. 83-8L4). These are the following:
If A:n*n, B:nxn are symmetric matrices, then

sgn(ABB) = sgn(A)sgn(B) , (A.1.45)
where sgn(A) denotes the signature of A:inxn.
if o, i=1, 2, ..., mand Bj, j=1, 2, ..., n are latent
roots of A:mxm and B:nxn respectively, then

¢(ui,6j) are the latent roots of both ®(A;B) and ®(BjA);

(A.1.46)
where
m n i
®(A3B) = T Zoc, (A 8BY)
i=1 j=1 *J
and cij are real coefficients, i =1, 2, ..., m3 J =1, 2,...,

If the matrix norm

Al = \traa®

laeBll = WAl 0B . (A.1.47)

then

|I,8(A-B)+J8B| = |a-B|™ 1| A+ (n-1)B], (A.1.48)

where A:nxn, B:nxn, and J is an mxm matrix with all its entries
unity. This property is taken from Duthie (1971, p.95).
If A = AT is a non-singular matrix with all its entries

rational numbers, then for any prime number p,

_ m-1 m _ m(m-1)/2
Cp(Im®A) = {(—1,—1)p} {Cp(A)} {(]Aa], 1)p}

(A.1.49)

where Cp(X) is the Hasse-Minkowski p-invariant of A.

A detailed description of property (A.1.49) is presented

by Bose & Connor (1952, pp. 376-37T7).
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Let PA = AA” be a projection operator, where

PAA = A, (This follows from the definition of g-inverse
of A).

Then for any two matrices A and B,

Prap = P,®Pg (A.1.50)

see also Rao & Mitra (1971, p. 119).

If, for any matrix BEmZXn2, there exists a matrix A:mxn
such that

B = ABA, (A.1.51)
then A is the square root of B with respect to the Kronecker

matrix product.

A.2 Trace Properties of a Square Ma“rix

Definition A.2.1 Let A = (aij):me be a square matrix. Then

the sum of the diagonal entries of A is known as the trace of A,

which we denote as trA. Symbolically,

M3

trhA = a

i=1 **
. An excellant treatment of traces of square matrices is

given by Graybill (1969). Below, we provide some of the trace

properties:
_ T
trA = trA (A.2.1)
trAB = trBA, A:mxn, B:nxm (A.2.2)
trATB = trABY, A:mxn, Bimxn (A.2.3)

If A:mxm matrix whose latent roots are Xl’ A2, Ceey Am’
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and k is a positive integer, then

mx

er(a¥y = K. (A.2.1)
, i
i=1
trA = trP—lAP, A:mxm, and P:mxm is a non-singular
matrix. (A.2.5)
tr(aA*BB) = atrAiptrB, A:mxm, Bimxm (A.2.6)
tr(A98%) = tr(8ea?), A:mxm, Bimxm (A.2.7)

For any A:mxn, we have

m n
traaT = T T as, . (4.2.8)
i=1 j=1 *J



REFERENCES

Aitken, A. C. (1953). A note on trace-differentiation and the
Q-operator. Proc. Edinburgh Math. Soc. Ser. 2, 10 1-4,

Allen, D. M. (1967). Multivariate Analysis of Non-linear
Models. Institute of Statistics Mimeo Series No. 558.
University of North Carolina.

Anderson, T. W. (1958). An Introduction to Multivariate
Statistical Analysis. John Wiley and Sons, Inc., New York.

Anderson, T. W. (1968). Statistical inference for covariances
with linear structures. In Multivariate Analysis-IT (P. R.
Krishnaiah, Ed.), Academic Press, New York, 55-06.

Anderson, T. W. & Rubin, H. (1956). Statistical inference in
factor analysis. Proceedings of the third Berkeley Sympo-
sium on Mathematical Statistics and Probability, Vol. V
111-150.

Bock, R. D. & Bargmann, R. E. (1966). Analysis of covariance
structures. Psychometrika 31 507-534.

Bose, R. C. & Connor, W. S. (1952). Combinatorial properties
of group divisible incomplete block designs. Ann. Math.
Statist. 23 367-383.

Capelli, A. (1887). Uber die Zurilickfiihrung des Cayleyschen
operatoren Q auf gewohnliche polaroperatoren. Mathemati-
sche Annalen 29 331-338.

Cayley, A. (1845). On the theory of linear transformations.
Cambridge Mathematical Journal 4 193-209.

Cayley, A. (1846). On linear transformations. Cambridge and
Dublin Mathematical Journal 1 104-122.

Conlisk, J. (1969). The equilibrium covariance matrix of
dynamic econometric models. J. Amer. Statist. Assoc. 64
277-279.

Coy, J. W. (1955). A Differential Calculus for Functions of
Matrices. Doctoral Dissertation, University of Michigan.

Deemer, W. L. & Olkin, I. (1951). The jacobian of certain
matrix transformations useful in multivariate analysis.
Based on the lectures of P. L. Hsu at the University of
North Carolina, 1947. Biometrika 38 345-367.

Dirac, P. A. M. (1926). Quantum Algebra. Proc. Cambridge
Phil. Soc. 23 412-418.

203



204

Duthie, A. I. (1971). Quintic Designs. Doctoral Dissertation,
University of Windsor.

Dwyer, P. S. (1958). Generalizations of a Gaussian theorem.
Ann. Math. Statist. 29 106-117.

Dwyer, P. S. (1967). Some applications of matrix derivatives
in multivariate analysis. J. Amer. Statist. Assoc. 62
607-625.

Dwyer, P. S. (1970). The Concept of Matrix Element of a Matrix
with Application to Matrix Derivatives. Unpublished Work.

Dwyer, P. S. & MacPhail, M. S. (1948). Symbolic matrix Deriva-
tives. Ann. Math. Statist. 19 517-534.

Eisenpress, H. & Greenstadt, J. (1966). The estimation of
non-linear econometric systems. Econometrica 34 851-861.

Ferrar, W. L. (1951). Finite Matrices. Oxford University
Press, Oxford.

Fisk, P. R. (1967). Stochastically Dependent Equations.
Charles Griffin and Company, London.

Fletcher, R. & Powell, M. J. D. (1963). A rapidly convergent

descent method for minimization. Computer Journal 6
163-168.

Fleming, W. H. (1965). Functions of Several Variables.
Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts.

Fraser, R. A., Duncan, W. J. & Collar, A. R. (1936). Elemen-
tary Matrices and some Applications to Dynamics and
Differential Bquations. Cambridge University Press,
Cambridge.

Garding, L. (1948). Extension of a formula by Cayley to
symmetric determinants. Proc. Edinburgh Math. Soc. Ser.
2, 8 73-75.

Gebhardt, F. (1971). Maximum likelihood solution to factor
analysis when some factors are completely specified.
Psychometrika 36 155-163.

Gillespie, R. P. (1951). Partial Differentiation. O0liver and
Boyd, Edinburgh.

Gleser, L. & Olkin, I. (1966). A k-sample regression model
with covariance. In Multivariate Analysis (P. R.
Krishnaiah, Ed.), Academic Press, New York, 59-T2.




205

Goldberger, A. S. (1964). Econometric Theory. John Wiley and
Sons, Inc., New York.

Goldberger, A. S., Nagar, A. L. & Odeh, H. S. (1961). The
covariance matrices of reduced form coefficients and of
forecasts for structural econometric model.
Econometrica 29 556-573.

Gordon, F. S. (1967). Characterizations of Univariate and
Multivariate Distributions using Regression Properties.
Doctoral Dissertation, McGill University.

Gordon, F. S. & Mathai, A. M. (1972). Characterizations of the
multivariate normal distribution using regression
properties. Ann. Math. Statist. 43 205-229.

Graybill, F. A. (1969). Introduction to Matrices with Applica-
tions in Statistics. Wadsworth Publishing Company, Inc.,
Belmount, California. . .

Harman, H. H. (1967). Modern Factor Analysis. Second Edition
(Revised). University of Chicago Press, Chicago.

Hoffman, K. & Kunze, R. (1971). Linear Algebra. Second
Edition. Prentice-Hall, Englewood Cliffs, N. J.

Hsu, P. L. (1953). On symmetric, orthogonal and skew-symmetric
matrices. Proc. Edinburgh Math. Soc. Ser. 2, 10 37-44.

Hua, L. K. (1958). Harmonic Analysis of Functions of Several
Complex Variables in the Classical Domains. Original
Chinese text published by Science Press, Peking,
Translations of Mathematical Monographs, Vol. 6, Amer.
Math. Soc., Providence, Rhode Island, 1963.

Jack, H. (1964-65). Jacoblan of transformations involving
orthogonal matrices. Proc. Roy. Soc. Edinburgh Section A,
67 81-103.

Johnston, J. (1963). Econometric Methods. McGraw-Hill Book
Company, Inc., New York.

JSreskog, K. G. (1966). Testing a simple structure hypothesis
in factor analysis. Psychometrika 31 165-178.

J8reskog, K. G. (1967). Some contributions to maximum likeli-
hood factor analysis. Psychometrika 32 4u3-482.

J6reskog, K. G. (1969). A general approach to confirmatory
maximum likelihood factor analysis. Psychometrika 34
183-202. .

Jdreskog, K. G. (1970a). A general method for analysis of
covariance structures. Biometrika 57 239-251.




206

Jéreskog, K. G. (1970b). Estimation and testing of simplex
models. British Journal of Mathematical and Statistical
Psychology 23 121-145.

Joreskog, K. G. (1971). Statistical analysis of sets of
congeneric tests. Psychometrika 36 109-133.

J8reskog, K. G., Gruvaeus, G. T. & van Thillo, M. (1970).
ACOVS-A General Computer Program for Analysis of Covaria-
nce Structures. Research Bulletin 70-15. Educational
Testing Service, Princeton, New Jersey.

Jéreskog, K. G. & Lawley, D. N. (1968). New methods in
maximum likelihood factor analysis. British Journal of
Mathematical and Statistical Psychology 21 85-96.

Khatri, C. G. (1965). Classical statistical analyéis based on
a certain multivariate complex Gaussian distribution.
Ann. Math. Statist. 36 98-114.

Khatri, C. G. (1968). Some Jacobian Transformations and their
Applications in Multivariate Distribution Theory.
Unpublished Work.

Khatri, C. G. (1971). On Characterization of gamma and multiv-
ariate normal distributions by solving some functional
equations in vector variables. J. Multivariate Analysis 1
70-89.

Khatri, C. G. & Rao, C. R. (1968). Solutions to some function-
al equations and their applications to characterization of
probability distributions. Sankhya Ser. A, 30 167-180.

Kleinbaum, D. G. (1970). Estimation and Hypothesis Testing for
Ceneralized Multivariate Linear Models. Doctoral Dissert-
ation, University of North Carolina.

Koopmans, T. C. (1950). Statistical Inference in Dynamic
Economic Models. Cowles Commission for Research in
Economics, Monograph No. 10. John Wiley and Sons, Inc.,
New York.

Lawley, D. N. (1967). Some new results in maximum likelihood
factor analysis. Proc. Roy. Soc. Edinburgh Section A, 67
256-264.

Lawley, D. N. & Maxwell, A. E. (1963). PFactor Analysis as a
Statistical Method. Butterworth, London.

Lockhart, R. S. (1967). Asymptotic sampling variances for
factor analytic models identified by specified zero
parameters. Psychometrika 32 265-277.




207

MacDuffee, C. C. (1946). The Theory of Matrices. Chelsea
Publishing Company, New York.

Madansky, A. & Olkin, I. (1968). Approximate confidence
regions for constraint parameters. In Multivariate
Analysis-II (P. R. Krishnaiah, Ed.), Academic Press,
New York, 261-286.

Michal, A. D. (1947). Matrix and Tensor Calculus. John Wiley
and Sons, Inc., New York.

Morrison, D. F. (1967). Multivariate Statistical Methods.
McGraw-Hill Book Company, Inc., New York.

Mulaik, S. A. (1971). A note on some equations of confirmatory
factor analysis. Psychometrika 36 63-70.

Murdoch, D. C. (1971). Linear Algebra for Undergraduates.
John Wiley and Sons, Inc., New York.

Neudecker, H. (1967). On matrix procedures for optimizing
differentiable scalar functions of matrices. Statistica
Neerlandica 21 101-107.

Neudecker, H. (1968). The Krernecker matrix product and some of
its applications in ec' metrics. Statistica Neerlandica
22 69-82.

Neudecker, H, (1969a). A note on Kronecker matrix products and
matrix equation systems. Siam J. Appl. Math. 17 603-606.

Neudecker, H. (1969b). Some theorems on matrix differentiation
with special reference to Kronecker matrix products.
J. Amer. Statist. Assoc. 64 953-963.

Olkin, I. (1951). On Distribution Problems in Multivariate
Analysis. Institute of Statistics Mimeograph Series,
Report No. 8, University of North Carolina.

Olkin, I. (1953). Note on the Jacoblan of certain matrix
transformations useful in multivariate analysis.
Biometrika 40 43-46,

Olkin, I. & Roy, S. N. (1954). On multivariate distribution
theory. Ann. Math. Statist. 25 329-339.

Olkin, I. & Sampson, A. R. (1969). Jacobians of Matrix
Transformations and Functional Equations. Technical Report
No. B0, Department of Statistics, Stanford University.

Potthoff, R. F. & Roy, S. N. (1964). A generalized multivar-
iate analysis of variance model useful specially for
growth problems. Biometrika 51 313-326.




208

Powers, D. L. (1971). On the differentials of certain matrix
functions. Canadian J. Math. 23 282-286.

Rao, C. R. (1965). Linear Statistical Inference and its
Applications. John Wiley and Sons, Inc., New York.

Rao, C. R. & Mitra, S. K. (1971). Generalized Inverse of
Matrices and its Applications. John Wiley and Sons, Inc.,
New York.

Rinehart, R. F. (1966a). The differential of a primary matrix
function. Rend. Circ. Mat. Palermo 15 209-215.

Rinehart, R. F. (1966b). P and D in PTXP = dg{hy, Ags--vs Al

= D as matrix functions of X. Canadian J. Math. 18
832-837.

Rothenberg, T. J. & Leenders, C. T. (1964). Efficient estimat-
ion of simultaneous equation systems. Econometrica 32

57-76.

Roy, S. N. (1957). Some Aspects of Multivariate Analysis.
John Wiley and Sons, Inc., New York.

Scheffé, H. (1959). The Analysis of Variance. John Wiley and
Sons, Inc., New York.

Singh, R. P. & Tracy, D. S. (1970). Applications of matrix
derivatives to estimation problems in factor analysis.
Contributed Paper for the 1970 Annual Meeting of the

American Statistical Association.

Srivastava, J. N. (1966). On testing hypotheses regarding a
class of covariance structures. Psychometrika 31 147-164.

Stroud, T. W. F. (1968). Comparing Conditional Distributions
under Measurement Errors of Known Variances. Technical
Report No. 28, Department of Statistics, Stanford
University.

Stroud, T. W. F. (1971). On obtaining large sample tests from
asymptotically normal estimators. Ann. Math. Statist. 42
1412-1424,

Tan, W. Y. (1968-69). Some results on multivariate regression
analysis. Nanta Mathematica 3 54-71.

Tracy, D. S. & Dwyer, P. S. (1969). Multivariate maxima and
minima with matrix derivatives. J. Amer. Statist. Assoc.
64 1576-1594

Tracy, D. S. & Singh, R. P. (1970a). Differentiation of
functions of matrices with scalar relationships among



209

elements. Contributed Paper at the 1U4-~th Ontario
Mathematical Meeting on February 7, 1970.

Tracy, D. S. & Singh, R. P. (1970b). Matrix differentiation
after partitioning, and other results. Ann. Math.
Statist. 41 1150.

Tracy, D. S. & Singh, R. P. (1971a). Matrix derivative
approach to analysis of covariance structures. Proceed-
ings of 38-th Session of International Statistical
Institute 289-293.

Tracy, D. S. & Singh, R. P. (1971b). A new matrix product and
its applications. Ann. Math. Statist. 42 1798.

Trawinski, I. M. & Bargmann, R. E. (1964). Maximum likelihood
estimation with incomplete multivariate data. Ann. Math.
Statist. 35 647-657.

Turnbull, H. W. (1927-29). On differentiating a matrix.
Proc. Edinburgh Math. Soc. Ser. 2, 1 111-128.

Turnbull, H. W. (1930-31la). A matrix form of Taylor's theorem.
Proc. Edinburgh Math. Soc. Ser. 2, 2 33-54.

Turnbull, H. W. (1930-31b). Matrix differentiation of the
characteristic function. Proc. Edinburgh Math. Soc.
Ser. 2, 2 256-264.

Turnbull, H. W. (1948). Symmetric determinants and the Cayley
and Capelli operators. Proc. Edinburgh. Math. Soc.
Ser. 2, 8 76-78.

Turnbull, H. W. (1949). Note upon the generalized Cayleyan
operator. Canadian J. Math., 1 48-56.

Wallace, A. H. (1953). A note on the Capelli operators
associated with a symmetric matrix. Proc. Edinburgh Math.
Soc. Ser. 2, 9 7-12.

Wilks, S. S. (1962). Mathematical Statistics. John Wiley and
Sons, Inc., New York.

Wrobleski, W. J. (1963). Extensions of the Dwyer-MacPhail
Matrix Derivative Calculus with Applications to Estimation
Problems Involving Brrors-in-Variables and
Errors—-in-Equations. Technical Report, Office of Research
Administration, University of Michigan.




VITA AUCTORIS

Birth August 15, 1943 Varanasi, India

B. Sc. (Hons.) 1962 Banaras Hindu University
M. Sc. 1964 Banaras Hindu University
M. Sc. 1969 University of Windsor

At present Statistical Consultant, National Health Grant
Project 606-21-72, School of Social Work, University of Windsor,

Windsor, Ontario.

210



	University of Windsor
	Scholarship at UWindsor
	1972

	SOME GENERALIZATIONS IN MATRIX DIFFERENTIATION WITH APPLICATIONS IN MULTIVARIATE ANALYSIS.
	RANA PRATAP. SINGH
	Recommended Citation


	tmp.1363975211.pdf.HDYA_

