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ABSTRACT 

Many steel structures were built during World War I and II. More than twenty percent 

of steel bridges in the USA are structurally deficient. The cost for rehabilitation in 

most cases is far less than the cost of replacement. Moreover, the rehabilitation 

generally takes less time than replacement. Due to the limited methods available to 

mitigate this problem, new materials were explored in recent years to adopt cost-

effective technique to address this issue. 

This thesis focuses on the use of Carbon Fiber Reinforced Polymer (CFRP) sheets as a 

competitive technique to restore the capacity of surface corroded steel beam. 

Rehabilitation was achieved by bonding the CFRP fabrics on to the corroded area of 

the bottom flange of steel beams. A series of tests and finite element analyses were 

also conducted. 

Results showed that the ultimate load capacity of the rehabilitated structures can be 

restored using this method; however, ductility reduces. 
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1 INTRODUCTION 

1.1 General 

Advanced composites have been used since World War II. The carbon fiber reinforced 

polymer (CFRP) was first used in the military during 1950s (Hollaway, 1993). 

Currently due to its incomparable strength-to-weight ratio, CFRP is used extensively 

for products needs to achieve lightweight and durable products, such as applications in 

aerospace, automotive fields. In the recent past, the CFRP has been introduced to civil 

engineering infrastructure. Because of the high strength-to-weight and stiffness-to-

weight ratio, CFRP is widely used in corrosion and fatigue repair, strengthening, etc. 

1.2 Statement of problem 

The Federal Highway Administration (FHWA) of the United States of America (USA) 

has developed a program to rate bridges on the nation's highways through biannual 

inspection. At the end of 2005, 21.5% of the steel bridges are classified as structurally 

deficient (US DOT, 2005). Similar bridge inventory in Canada is not available. 

However, the Province of British Columbia alone owns over 700 structures that are 

classified as steel bridges (Tam and Stiemer, 1996). The significant temperature 

fluctuations and extensive use of deicing salts cause serious corrosion in a large number 

of existing bridges. 

Corrosion repair with steel plate is the most common and conventional method. 

Although this method is effective, other serious problems could be introduced to the 

steel structure, such as fatigue problem, future galvanic corrosion, and additional dead 

load to the structure. Recently, Carbon Fiber Reinforced Polymer (CFRP) and other 

fiber polymers have been introduced in corrosion repair. This repairing method does not 

affect structure's fatigue life, and does not increase the dead weight as much as the 

conventional repair method does. 

Significant studies were conducted on use of CFRP composite for rehabilitation and 

strengthening of existing concrete structures. However, only a few studies were 

undertaken on repair of corroded steel members and steel structures using CFRP 

composites. 
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1.3 Objectives and scope 

The present research was initiated to examine the rehabilitation technique of surface 

corroded steel beams using carbon fibre reinforced polymer (CFRP) sheets. 

Consequently, the following are the primary objectives of this research project: 

(a) To study if the load carrying capacity of beam with corrosion on its bottom flange 

can be restored to the level of virgin (undamaged) beam using CFRP fabric 

(sheet). 

(b) To determine the changes in the ductility due to the repair and rehabilitation. 

(c) To model the structural behaviour of rehabilitated corroded beam using finite 

element (FE) method. 

(d) To determine the influence of depth and length of the corrosion on the required 

thickness of CFRP using the FE model developed. 

The scope of the current project was limited to the W200x21 steel beam. A total of nine 

full-scale tests on W200x21 steel beams were carried out. 

The numerical simulations of the full-scale corroded steel beam rehabilitated with 

CFRP sheets were performed using ABAQUS, a commercially available finite element 

analysis software package. The primary objective of the numerical tool was to be able 

to predict behaviour similar to that observed in the full-scale beam tests. The other 

objective was to expand the database in order to obtain information when repairing the 

corroded steel beams with different lengths and depths of corrosion. 

1.4 Organization of thesis 

The thesis is broken into five major chapters and two other small chapters: the first 

chapter (Introduction, Chapter 1) and the very last chapter (Summary and Conclusions 

and Recommendation, Chapter 7). Chapter 2 summarizes the findings obtained from 

the literature on the issues, such as previous studies on corrosion repair with CFRP, 

debonding issue, and galvanic corrosion of carbon and steel. Chapters 3 and 4 discuss 

the full-scale test program and the results obtained from the tests. In the following two 
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chapters, that is, in Chapters 5 and 6, numerical modeling of the full-scale tests and the 

comparison of behavior obtained from experiments and numerical simulations are 

discussed. A parametric study was also included in Chapter 6. 
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2 LITERATURE REVIEW 

2.1 General 

The Federal Highway Administration (FHWA) of the United States of America (USA) 

has developed a program to rate bridges on the nation's highways through biannual 

inspection (US DOT, 2004a). At the end of 2005, a total of 595,605 bridges were in 

use in the United States. There are 190,850 bridges, roughly one third, utilizing steel as 

the main carrying structural element. Of the steel bridges, 21.5% are classified as 

structurally deficient (US DOT, 2005). It should be noted that these numbers do not 

include bridges designed specifically for railroads and pedestrians (U.S. DOT, 2004)). 

The primary reasons for deterioration of the bridges include corrosion, fatigue, increase 

in dead load, and permitted live load (Tavakkolizadeh and Saadatmanesh, 2001 a). 

Similar bridge inventory in Canada was not able to be found. However, the Province of 

British Columbia alone owns over 700 structures that are classified as steel bridges 

(Tarn and Stiemer, 1996). The significant temperature fluctuations and extensive use of 

deicing salts cause serious corrosion in a large number of existing bridges (See Figure 

2.1 for detail). 

Corrosion is one of the major factors affecting the long-term serviceability of steel 

bridges. There are five main forms of corrosion: general corrosion, pitting corrosion, 

crevice corrosion, stress corrosion, and galvanic corrosion. General corrosion is a 

general loss of surface material and is most frequently seen. Pitting corrosion mostly 

occurs in high stress areas. This type of corrosion could be dangerous, because the 

corrosion extends into the metal while showing little sign of corrosion on the surface. 

Crevice corrosion is caused by low concentrations of dissolved oxygen, such as 

underneath peeling paint. Stress corrosion occurs when metal is under tensile stress and 

in a corrosive environment. Galvanic corrosion is degradation of a metal by an 

electrochemical reaction with its environment (Kayser and Nowak, 1989). Corrosion 

reduces the cross-sectional area of bridge members and weakens the structural 

elements. The corroded areas of structural elements need to be repaired such that they 

are able to provide full services that they were designed for. 
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2.2 Corrosion Repair 

There are many different methods available for repairing of corroded members. 

Corrosion repair with steel plate is the most common used conventional method. 

Recently, Carbon Fiber Reinforced Polymer (CFRP) and other fiber polymers have 

been introduced in corrosion repair. This section presents a literature review of the 

subject and highlights the main differences between corrosion repair with steel plate 

and with CFRP. 

2.2.1 Corrosion Repair with Steel 

Corrosion repair with steel is involves by welding or bolting a piece of steel plate or flat 

onto the corroded steel element after cleaning out the corrosive products. Although this 

method is effective, due to lack of quality control of welds, rivets and bores and the 

introduction of large initial discontinuities, fatigue problems become the major issue for 

these structures. In cold regions, low temperatures decreases the toughness of the steel, 

which can lead to brittle failures (Tavakkolizadeh and Saadatmanesh, 2001a). Another 

concern is welding and bolting as it couples two piece of metals together, and forming a 

concentration cell leading to future galvanic corrosion. Moreover, this method often 

results in stress concentration and thermal locked-in residual and these stresses further 

weaken the system (Matta et al., 2005). 

2.2.2 Corrosion Repair with CFRP 

Significant studies were conducted on use of CFRP composites for rehabilitation of 

concrete structures. The studies were directed to strengthening of structures in shear 

(Harajli and Soudki, 2003), in flexural (Lamanna et al., 2004), and in bond behavior 

(Soudki and Sherwood, 2003). However, only a few studies were undertaken on repair 

of corroded steel structure using CFRP composite. 

Corrosion repair with CFRP composite involves epoxy bonding of the CFRP composite 

to steel after cleaning the corroded steel. There are two forms of CFRP composite. One 

is CFRP dry fabric, also known as CFRP wrap or CFRP fabric, and the other one is 

CFRP laminate, also as known as CFRP plate or CFRP strip. CFRP dry fabric is 

flexible, and can be wrapped around structural members. Polymer (adhesive) is required 

to apply the CFRP dry fabric on the job site to produce the CFRP composite and bond 
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the CFRP dry fabric to the structural. CFRP laminate is pre-manufactured CFRP 

composite; there is no air content in the polymer resin, thus ensuring the highest 

quality. When the cross-section is same, CFRP laminate generally contains more CFRP 

fabric than CFRP composite made out with CFRP dry fabric. Unlike repairing concrete 

using CFRP, CFRP laminate is commonly used to repair steel structure, because steel 

has a higher tensile elastic modulus than concrete. CFRP dry fabric can also be used for 

repair of steel structure, but many layers are required. 

Since no welding or bolting is required when repairing with CFRP laminate, steel 

structures repaired with CFRP is expected not to affect structure's fatigue life 

(Tavakkolizadeh and Saadatmanesh, 2001a). Due to the lightweight of CFRP, it creates 

savings on labor, machine and application time. However, the cost of CFRP materials 

is much higher than steel plates; therefore, the cost of CFRP materials is offset by these 

savings. Repair with CFRP laminate may be more expensive than steel plate. However, 

the process as a whole is still economically comparable as to the conventional method 

of repairing with steel. Since the weight of CFRP is much lighter, using CFRP 

materials to repair does not increase dead weight as much as steel plate does. 

2.2.3 Previous studies on corrosion repair with CFRP 

A series of tests on corrosion repair using CFRP laminates on four full-scale corroded 

girders was conducted by Gillespie et al. (1996a, 1996 b, and 1997). Gillespie et al. 

(1996a, 1996 b, and 1997) conducted large-scale tests on two 6.4 m long corroded steel 

girders, with 40% loss in the tension flange and 29% stiffness loss. The girders were 

repaired by bonding CFRP laminates to the two faces of the corroded flange of the 

girder (Figure 2.2). The study indicated that the flexural strength and stiffness increases 

were significant (100% and 25%, respectively). The repaired girder achieved the 

desired load level without any failure of the adhesive. The load deformation curve 

(Figure 2.3) also shows that the girder exhibited good ductile behavior with large 

plastic deformations. 

In a study conducted by Tavakkolizadeh and Saadatmanesh (2001b), the effectiveness 

of CFRP for repairing damaged steel-concrete composite beams was investigated. 21.4 

mm, 42.7 mm or 85.5 mm depth cuts were made in the beam by a 1.27 mm blade at the 

mid-span on both sides of the bottom flange to simulate 25, 50, and 100 percent area 
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loss of the flange. One, three, and five layers of CFRP fabric sheet(s) covered 3.95 m 

of the bottom flange, while the span of the steel beam was 4.78 m. The CFRP sheet 

was 75 mm wide, and placed side by side on the steel girder. Figure 2.4 shows the test 

setup, Figure 2.5(b) and (c) shows the cross section view and corrosion detail. Figure 

26, 27 and 28 shows the load deformation curves for the 25% loss and one-layer, 50% 

loss and three-layer, and 100% loss and five-layer repairing system respectively. The 

ultimate flexural load capacity of the girders increased by 20, 80, and 10 percent for 

damaged beams of 25, 50, and 100 percent with one, three, and five layers of CFRP 

layers respectively. The technique restored the elastic stiffness of the girder to 91, 102, 

and 86 percent of the virgin girder for damaged beams of 25, 50, and 100 percent with 

one, three, and five layers of CFRP layers respectively. The post-elastic stiffness of the 

girder also increased 21,19 and 32 times as compared with the virgin girder. 

Liu et al. (2001) notched a 100 mm (4 in) section from one side of the tension flange of 

a Metric W310x21 (Imperial W 12x14) girder to simulate the loss of steel area in the 

flange due to corrosion. The girder was repaired with a 100 mm (3.94 inch) wide by 

1.4 mm (0.055 inch) CFRP laminate covering the full length and quarter length of the 

beam. The girder was then tested with a point load applied at the mid-span (three point 

bending) until failure occurred (Figure 2.9). Figure 2.10 shows the load vs. 

deformation curves. The unitl, unit2, unit3, and unit 4 represent the virgin beam, the 

corroded beam, retrofit with full length of CFRP, and retrofit with quarter length of 

CFRP, respectively. The experimental results obtained from this study showed an 

increase in bending stiffness and plastic load carrying capacity of corroded steel 

members can be achieved from the application of CFRP laminates to the tension flange 

of corroded steel members. The failure mode was peeling off the CFRP laminates. The 

peeling occurred at the termination point along the length of CFRP laminates. The 

ductility of the retrofitted system is less than the virgin beam. The mid span deflection 

is about 1/120, 1/240 and 1/360 of the clear span for virgin beam, repaired with full 

length of CFRP, and repaired with quarter length CFRP respectively. 

Miller et al. (2001) used CFRP laminate to repair a corroded bridge girder. The girder 

of the bridge experienced bending stiffness loss in the range of 13% to 32%. The 

bridge corroded fairly uniform along the length of each girder with the majority of 

section loss occurring in the tension flange and web. Repair was done by bonding a 
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single layer of 5.3 mm thick CFRP laminate covering the whole length of the inner and 

outer faces of the tension flange (Figure 2.11). The elastic stiffness of the four repaired 

girders increased from 10% to 37%. The average ultimate bending capacity increased 

by 21%. A field repair was also conducted by them to check the applicability of the 

repair method in the field. Six 5.3 mm thick CFRP plates were bonded side by side to 

cover the entire inner flange face. To evaluate the effectiveness of the strengthening 

scheme, diagnostic load tests were performed before and after the application of the 

CFRP plates. The test measured strain at the center of the inner face of the tension 

flange of the girder as a three-axle dump truck was driven in the right traffic lane 

(above the girder) with the driver's side wheels on the marked lane line. Figure 2.12 

shows the test result. Comparison of the strain for the pre- and post-load tests revealed a 

reduction of 11.6% in strain; it is an increase of 11.6% in flexural stiffness. 

A total of 10 scaled-model steel-concrete composite beams (steel beam-concrete slab 

system) were tested by Al-Saidy et al. (2004). Corrosion was simulated by removing 

50% and 75% of their bottom flange and then repaired by adding CFRP plate to restore 

their original strength. Two types of repairing methods were used. The first repairing 

method involved bonding of CFRP plate to the bottom of the web (Figure 2.13a). This 

method is suitable for the flange that is all corroded. In the second repair method, 

CFRP laminate was bonded to the bottom flange (Figure 2.13b). All beams were tested 

in four-point bending static loading, see Figure 2.14 for test setup. The load 

deformation curves for all the specimens are in Figure 2.15, 2.16, and 2.17. The 

following notation was adopted to describe the specimen in the load deformation curves. 

Undamaged beams are designated with "U", while the designation for damaged beams 

starts with the letter "D". In the damage control beam "D" was used alone to indicated 

that no repair was installed. In repaired beams, the letter "D" is followed by two 

numbers that indicated the percentage of damage to the bottom flange. For example, 

"50" means that 50% of the original bottom flange area was removed ("damaged"). 

This number is followed by a letter-number combination such as "Rl" to reflect the 

repair scheme used. This combination is followed by a letter and two numbers, such as 

"E29" to reflect the modulus of the elasticity in ksi of the CFRP plate being used. The 

result indicate that the strength of damaged beams can be fully restored to its original, 

undamaged state with the use of CFRP plates, however, only about 50% of the the 
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elastic flexural stiffness can only be restored. In addition, ductility is slightly reduced 

with the addition of CFRP plates. 

2.3 Debonding Issue 

After steel reaches its yielding point, the steel can no longer carry any additional load 

and undergoes plastic deformation. However, the behavior of CFRP material is linearly 

elastic to failure. Therefore, the steel beam strengthens with the use of CFRP, after the 

steel has yielded, the additional load will transfer through the bond to the CFRP until 

failure occurs either due to debonding of CFRP or due to the rupture of the CFRP 

ruptures. Several studies using experiments and finite element analysis showed that the 

bond is one the weakest link for this type system. (Gillespie et. al. 1996 a, b; Edberg et 

al. 1996; Sen et. al. 1995 and 2001). 

The most commonly used CFRP in the 90s was less than 60% as stiff as steel (Sen et. 

al., 1995) (Figure 2.18). This means, before the steel yields, CFRP will deform more 

than steel under the same load. The likelihood of a cohesive failure in the adhesive is 

where there is shear and peeling stress concentrations, which is most likely near the two 

ends of the CFRP laminate. Considering surface preparation alone is not expected to 

solve this problem. Sen et al. (2001) used additional bolts to augment the load transfer 

capacity of the epoxy adhesive in their experiments. Use of small and large quantities 

of bolts was also suggested to minimize the magnitude of localized stress 

concentrations and to reduce the tendency for transverse CFRP laminate fractures. It 

was also suggested that CFRP laminates with stiffness close to that of steel be used to 

minimize debonding problem. The debonding issue for steel repairing will not take 

places as long as the steel behavior elastically. (Sen et al., 2001). However, after the 

steel has yielded, the debonding issue is raised again as the steel is expected to deform 

rapidly compared to the CFRP. 

Transfer of load from beam to CFRP occurs through shear mechanics of the epoxy. The 

shear forces in the epoxy are large relative to the bending forces and large curvatures 

are generally present. However, for large girders, the span length causes shear forces to 

be small relative to bending forces and large curvatures at the midpoint. To prevent this 

failure mode in large girders, tape the composite over a sufficient length (Gillespie et al. 

1996 a). 
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Peel stress occurs when a CFRP composite is being lifted or peeled from the steel and 

takes places at the edges of the CFRP composite. The CFRP laminate should be beveled 

to a 45 degree angle at all terminations to reduce the peel stresses. This is a typical 

procedure for composite joints and has proven to effectively limit peel stresses (Vinson 

and Sierakowski, 1987). Two other methods to reduce the peel stress problem were 

also suggested. Liu et al. (2001) suggested application of Glass Fiber Re-enforced 

Polymer (GFRP) sheets to the longitudinal laminates. The GFRP sheets need to be 

wrapped around the tension flange and part of the web. Sen et al., (1995) used three 

piece steel clamps to hold the bottom flange and CFRP laminates. 

The possion ratio of CFRP is in the range of 0.2 to 0.4. The possion ratio of steel is 

approximately 0.3. The different in poisson ratio can cause edge failures. This problem 

can be easily solved by using CFRP laminates with Poisson ratios in the primary to 

transverse direction, similar to that of steel. (Gillespie, 1996 a). 

2.4 Galvanic corrosion of carbon and steel 

Galvanic corrosion occurs when two dissimilar metals are electrochemically coupled, 

welded, or bolted. It is assumed that the galvanic corrosion occurs if there is direct 

contact between a CFRP material and steel (Tavakkolizadeh, and Saadatmanesh, 2001 

a). Several studies were performed to understand dependence of corrosion rates on 

various factors. It was found that the galvanic corrosion was directly related to the 

thickness of the epoxy coating (Tavakkolizadeh, and Saadatmanesh, 2001 a). 

Corrosion testing in both seawater and a deicing salt solution was conducted and the 

following was found: (i) A 0.1mm thin film of epoxy was used, the corrosion rate 

would decrease by seven and five percent, (ii) Using 0.25mm of epoxy, the corrosion 

rate decreased by twenty-one and twenty-three percent respectively, (iii) Sizing agents 

also decrease the galvanic corrosion rate of CFRP's. It was proven that acetone was the 

most effective solvent for removing the sizing agent, and lowered the corrosion rate by 

fifty percent, (iv) By using a nonconductive layer of fabric between CFRP's and steel, 

such as E-Glass, can electrically insulate the two materials from each other and prevent 

galvanic corrosion (Tavakkolizadeh, and Saadatmanesh, 2001 a, b; Liu et al. 2001; 

Gillespie et al. 1996). Thus, direct contact between CFRP and steel needs to be avoided. 

Since fibers on both strips are covered by an epoxy resin matrix, during manufacturing 
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or application process, the direct contact between CFRP fabric and steel surface is 

expected not to be present (Nozaka et al. 2005). As a result, the galvanic corrosion is 

minor, and can be ignored. 

2.5 Composite materials 

2.5.1 General 

Composite materials are engineered materials made from two or more constituents with 

significantly different physical or chemical properties, which remain separate and 

distinct within the finished structure. A composite is a combination of a matrix (such as 

polyester, vinyl ester, nylon, epoxy, and phenolic) and reinforcement (such as glass, 

carbon, or other reinforcing material). The matrix material surrounds the reinforcement, 

to maintain the reinforcing material in its proper positions. The matrix material also 

distributes the load evenly over the reinforcing agent, in order to achieve a higher 

ultimate load capacity than either the matrix or reinforcing material alone. Composite 

materials may also contain filers, additives, and core materials to adjust the final 

product. (Wikimedia Foundation Inc., 2007c) 

Composite materials have been widely used in every day life for centuries. For 

example, concrete can be a composite material, using steel and aggregate to reinforce 

the cement. Other examples include plasterboard, plywood, and white cast iron. 

Although most of the composite materials are not formed naturally, some do exist such 

as wood, mother of pearl, and bone. 

2.5.2 Fiber Reinforced Polymer (FRP) 

Fiber reinforced polymer (FRP) uses several polymers for the matrix, and different 

kinds of fibers to reinforce. The FRP is typically referred to by the name of its 

reinforcing fiber (such as CFRP stands for Carbon Fiber Reinforced Polymer). The 

polymer of choice is usually epoxy, but other plastics, such as polyester or vinyl ester, 

are also sometimes used. Due to the wide variety of matrix and reinforcement materials 

available, composite material can be designed to provide a wide range of mechanical 

properties including tensile, flexural, impact and compressive strengths in order to 

satisfy the special needs for different projects. (Wikimedia Foundation Inc., 2007b) 
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2.5.3 Advantages of FRP 

Other than the well-known and incomparable strength-to-weight ratio, FRP has shown 

incredible resistance to environmental factors, such as: (a) Freeze and thaw; (b) Ultra­

violet protection; (c) Chemical and temperature changes; and (d) Fire resistance. FRP 

materials have low water absorption ability and therefore, they are able to resist the 

damaging effects of freezing water expansion. FRPs can be fabricated with a surface 

layer containing a pigmented gel coating or have an UV inhibitor included as an 

additive to the composite matrix to resist weathering and UV light. FRP can be 

specially formulated to provide long-term resistance to nearly every chemical and 

temperature environment. As a result, FRP can be fabricated such that it is able to 

withstand the effects of de-icing salt and/or saltwater spray from the ocean. FRP 

material can be built with special fire resistant resins to make the FRP composite fire 

resistant. 

2.5.4 Carbon Fiber 

Carbon fiber, as shown in Figure 2.19, is made out of long, thin fibers of carbon and 

transferred into graphite. A common method of making carbon fiber is the oxidation 

and thermal pyrolysis of polyacrylonitrile (PAN). PAN is the raw material commonly 

used to make carbon fiber, which usually contains 93-95% of Carbon. PAN has long 

chain molecules, and when heated in the correctly, molecules bond side by side, 

forming a single round fiber. Pitch or Rayon can also be used to manufacture lower 

quality carbon fiber. The carbon fiber can be further heated to achieve higher 

mechanical property values. When heated in the range of 1500 to 2000° C 

(carbonization), the highest tensile strength (5650MPa) carbon fiber can be produced, 

while a higher modulus of elasticity (531GPa) can be produced between 2500 to 3000 

°C (graphitizing). Carbon fibers are separated into different categories based on the 

modulus elasticity: standard modulus (250GPa), intermediate modulus (300Gpa), and 

high modulus (>300Gpa). CFRP's are generally anisotropic materials. This means, 

CFRP's have different stiffness's and other mechanical properties depending on which 

direction the force or moment is applied. (Wikimedia Foundation Inc., 2007a) 
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2.5.5 Epoxy 

Epoxy is a thermosetting epoxide polymer that cures when mixed with a catalyzing 

agent, also known as a hardener. Epoxy can be designed to meet almost any 

application. It can be used on wood, glass, metal, stone, and some plastics. It can be 

flexible or rigid when cured, fast setting or extremely slow. Epoxy has an unrivaled 

heat and chemical resistance compared to common adhesives. The epoxy and catalyst 

should be mixed carefully to avoid small air bubbles from entering the mix, since the 

strength will reduce significantly when air bubbles are present. (Wikimedia Foundation 

Inc., 2007d) 

Epoxy is formed by oxygen, hydrogen, and Carbon atoms. There is one epoxy group at 

each end of the epoxy molecule (See Appendix I for details). When mixing with the 

proper catalyst, an exothermic reaction will occur, resulting in the epoxy and catalyst 

molecules cross-linking together. The energy required to break the covalent bond 

occurring during the reaction is enormous, which in turn creates an epoxy matrix 

resistant to high stress. 

2.5.6 Applications of CFRP 

Modern advanced composites have been used since World War II. CFRP was first used 

in the military during 1950s (Hollaway, 1993). Currently due to its incomparable 

strength-to-weight ratio, CFRP is used extensively for producers needs to achieve 

lightweight and durable products. It has many applications in aerospace, automotive 

fields, as well as boats, tripods, laptops, and fishing rods. It also has applications in the 

production of bicycles, especially high-end racing bicycles, because of its vibration 

absorbing ability. 

CFRP has been introduced to civil infrastructures recently. Because of the high 

strength-to-weight and stiffness-to-weight ratio, CFRP is widely used in corrosion and 

fatigue repair, strengthening, etc. Furthermore, CFRP can extend its applications to 

wrapping around beams in order to limit shear stresses. 
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2.6 ASTM Standards 

Theoretically carbon fibre should have same strength in tension and compression. 

However, CFRP composite is weak in compression because of air voids and other 

defects presents in CFRP products. CFRP is used to repair or strengthen material in the 

tension zone. As a result, the tensile properties of CFRP and epoxy are the key factor 

for the user when choosing a CFRP composite strengthening system for a project. In 

most cases, the tensile property is established by the manufacture. The following 

section shows the ASTM international standard testing methods for both CFRP 

laminate and epoxy. 

2.6.1 Standard tensile test for CFRP 

ASTM D3039/D 3039M - 00 (ASTM 2006a) standard recommends a test method to 

determine tensile properties of polymer matrix composite materials. The test specimen 

should be 250 mm in length by 15 mm wide with 138 mm gauge length. The thickness 

of the specimen is depending on the thickness of the CFRP. Because CFRP strips are 

very thin, four special tabs are required for gripping the specimen by the test machine, 

and to transfer the load into the specimen (Figure 2.20). The tab was made of GFRP 

board of electro sonic and model # 64p44we. Each specimen had four tabs of 56mm x 

15mm attached to CFRP using epoxy. By use of a tab with lesser bevel angels provides 

smooth transition into the coupon. Control of fiber alignment is critical in this test. 

When fiber alignment is improper, some fibers may break earlier than others, causing 

the actual cross-section to be reduced, resulting the measured prosperities lower than 

the actual value. This test is a strain controlled test; the standard rate is O.Olmin"1. 

2.6.2 Standard tensile test for epoxy 

The standard test method for tensile properties of plastics as recommended in ASTM 

D638-03 (ASTM 2006f) is used to establish the tensile strength of the epoxy. The test 

specimen shall conform to the dimensions shown in Figure 2.21. The speed of the test 

need to be 5 mm/min ± 25% while the nominal strain rate is 0.1 mm/mm x min. Tensile 

strength is calculated by dividing the maximum load in Newton (or pounds-ft) by the 

original minimum cross-sectional area of the specimen. Percent elongation, modulus of 

elasticity, secant modulus, and Poisson's ratio can also be determined from this test. 
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2.6.3 Standard shear stress test for epoxy 

Shear stress is created by two surfaces sliding over each other. Shear stress distributed 

across the bond in an entirely different way (See Figure 2.22 for details). In the 

following section, a standard testing method for lap shear of FRP (ASTM, 2006e) is 

discussed. 

The standard testing method for lap shear adhesion of fiber reinforced plastic (FRP) 

bonding is the testing of lap shear bond strengths, using composite materials such as 

FRP's bonded to steel. The dimension of the coupon sample is 25.4 mm by 101.6 mm 

(1 inch x 4 inch). The nominal thickness of the bonding is 0.76 mm (0.03 inch) (See 

Figure 2.23 for detail). The specimen loading rate need to be 13 mm (0.5 inch)/min. A 

minimum of five lap shear samples need to be tested. Individual peak load values in 

kPa (or psi) and average maximum and minimum values are recorded, as well as the 

test temperature, bond conditions, and failure type. 

2.6.4 Standard test method for cleavage and peel stress 

Cleavage stress occurs when a ridge joint is forced opened at one end (See Figure 2.24). 

Peel stress occurs when a flexible substrate is being lifted or peeled from the other 

substrate (See Figure 2.25). The stress distribution for cleavage and peel stresses are 

similar, mostly concentrated at one end (See Figure 2.26). There are two common test 

methods to determine the cleavage/peel stress. These two methods are discussed in the 

following sections. 

2.6.5 Standard test method for strength properties of adhesives in 

cleavage peel by tension loading 

This method determines the strength properties of adhesives in cleavage peel by tension 

loading and gives information as to the performance of substrate/adhesive combinations 

under cleavage/peel forces (ASTM, 2006c). The test specimens is 25.4 mm (1 inch) 

wide by 177.3 mm (7 inch) long, but bonded only over approximately 76 mm (3 inch) 

of the length. (See Figure 2.27 for detail) 20-guage steel gripping wires are inserted in 

the unbounded end, and then attached to the testing machine jaws. The load is applied 

at a constant speed of 12.7 mm (0.5 inch)/min. A minimum of 10 test specimens for 
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each adhesive is required. The cleavage/peel resistance is measured over at least a 50.8 

mm (2 inch) length of the bond line after the initial peak. 

2.6.6 Standard test method for climbing drum peel for adhesives 

This method is more complicated. The test is done by clamping the assembly in a 

universal test machine (see Figure 2.28) to determine the peel resistance of adhesive 

bonds between relatively flexible and rigidly adhered bonds; and the relatively flexible 

facing of a sandwich structure and its core. (ASTM, 2006d). 

2.6.7 Standard tensile test for steel 

ASTM E 8M-04 (ASTM, 2006b) specifies the standard test method for determining 

tensile properties of metallic materials. The test specimen shall be conformed to the 

dimensions shown in Figure 2.29. The thickness of the specimen is dependent on the 

thickness of the material. The speed of testing should be set for strain rate in between 

0.05 and 0.5 m/m/min. Yield strength, ultimate strength, percent Elongation, modulus 

of elasticity, and Poisson's ratio are determined from this test. 

2.7 Summary 

Corrosion is a common problem for steel bridges and can occur anywhere on the steel 

member, such as the flange (Figure 2.30), web (Figure 2.31) and in between 

connections (Figure 2.32). The most common types of corrosion for steel beams are 

general corrosion, crevice corrosion, and galvanic corrosion. 

Lots of research has been done repair and rehabilitation on concrete. But only a few 

studies are on steel. In previous studies on steel, uses of CFRP to repair corrosions of 

real bridges or simulated corrosions of the flange have been looked at. Strength and 

stiffness of the steel member have increased significantly. However, some of the 

corrosion simulations are very aggressive, such as removing 75% of the tension flange. 

This will most likely not occur in a real life situation because the bridge should be 

inspected regularly. No study in current literature did surface repair on general 

corrosion. 
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Figure 2.1: Corroded bridge (Conor Watkins, 2006) 
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Figure 2.2: Test setup (Gillespie et al. ,1996a, 1996b, and 1997) 
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Figure 2.3: Load-deformation curve (Gillespie et al. ,1996a, 1996b, and 1997) 
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Figure 2.6: Load versus deflection of girder with 25% loss in flange area and repaired 
with one layer of CFRP sheet (Tavakkolizadeh and Saadatmanesh, 2001b) 
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Figure 2.7: Load versus deflection of girder with 50% loss in flange area and repaired 
with three layers of CFRP sheet (Tavakkolizadeh and Saadatmanesh, 2001b) 
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Figure 2.8: Load versus deflection of girder with 100% loss in flange area and 
repaired with five layers of CFRP sheet (Tavakkolizadeh and Saadatmanesh, 2001 b) 
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Figure 2.9: Test set-up (Liu et al., 2001) 
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Figure 2.13 (a): Repair method 1 
(b): Repair method 2 

(Al-Saidyetal.,2004) 
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Figure 2.14: Test set up (Al-Saidy et al. ,2004) 
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Figure 2.15: Comparison of measured midspan deflection in Beams U, D50, and 
D50R1E29 (Al-Saidy et al. ,2004) 
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Figure 2.16: Comparison of measured midspan deflection in Beams U, D50, and 
D50R2E29 (Al-Saidy et al. ,2004) 
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Figure 2.17: Comparison of measured midspan deflection in Beams U, D75, and 
D75R1E29 (Al-Saidy et al. ,2004) 
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Figure 2.18: Typical CFRP and steel stress vs. strain behavior 
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Figure 2.19: Carbon fiber dry fabric (sheet) 

K 
56mm 

K >K-

250mm 

138mm 
- * 

T" 
tab 15mm 

• 5° - 90° 
thickness of 
the materia 0- 1.5mm 

Figure 2.20: Tension test specimen sketch - D3039/D 3039M - 00 

(ASTM, 2006a) 

28 



4mm 
K-

fc 

25.4mm 

R= 12.7mm 

~7K 
> ^ 

f. 
3.18mm 

Li-

gauge length = 7.62mm W 
9.53mm M 

/F 
9.53mm 

A. 

63.5mm 
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Figure 2.22: shear stress distribution 

(Plexus Structural adhesive, 2006) 
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Figure 2.23: Lap shear overlay - ASTM D5868-01 

(ASTM, 2006e) 

Figure 2.24: Cleavage stress 

(Plexus Structural adhesive, 2006) 

Figure 2.25: Peel stress 

(Plexus Structural adhesive, 2006) 
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Figure 2.26: Cleavage and peel stress distribution 

(Plexus Structural adhesive, 2006) 
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Figure 2.27: Cleavage peel test specimen - ASTM D3807-98 

(ASTM, 2006c) 
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Figure 2.28: Assembly of peel apparatus - ASTM D1781-98 

(ASTM, 2006d) 
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Figure 2.30: Corrosion on the flange 

(US DOT, 2004b) 
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Figure 2.31: Corrosion on the web 

(Network, 2000) 
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Figure 2.32: Complicated joints, hard for water to evaporate, corrosion between 

connections (Conor Watkins, 2006) 
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3 EXPERIMENTAL PROGRAM 

3.1 Introduction 

The object of the experimental study was to examine the rehabilitation technique of 

surface corroded steel beams using carbon fiber reinforced polymer (CFRP) sheets. 

The experimental program, consisting of ten steel wide flanged I-shaped beam 

specimens, was set to evaluate the effectiveness of the CFRP sheets used as an 

external reinforcement for the rehabilitation of the surface corroded steel beams. This 

chapter describes the test specimens (configuration, materials, and fabrication), 

instrumentation, experimental setup, procedure for a three point bending test, and the 

rehabilitation scheme using CFRP sheets were used in this study. 

3.2 Experimental Program 

Ten specimens were designed, fabricated, and tested in the University of Windsor 

Structure Laboratory. Table 3.1 summarizes the primary variables for the specimens. 

The test specimens are called using specific identification labels. The following 

names/labels were used to describe the specimen. The TS, CV, CC, and RC denote 

Trial specimen, Control Virgin (uncorroded) specimen, Control Corroded specimen, 

and Rehabilitated Corroded specimen, respectively. For rehabilated specimens, longer 

labels (names) were required. For example, for specimen RC-W67-T2.4-G1, W67 and 

T2.4 denote width, and thickness of the CFRP were 67 mm and 2.4 mm, respectively. 

The last letter Gl indicates that the specimen belongs to group one. All specimens, 

excluding the trial specimen (TS), were divided into two groups. There were four 

specimens in Groupl, which included CV-G1, CC-G1, RC-W67-T2.4-G1, and RC-

W133-T2.4-G1. The Group2 contained five specimens, which are: CV-G2, CC-G2, 

RC-W133-T2.4-G2, RC-W133-T1.2-G2, andRC-W133-T0.6-G2. 

3.3 Description of Test Specimen 

All the specimens were 1800 mm long and made of standard wide flange I-shaped 

cross-section W200x21matric (W8xl4 Imperial) (Figure 3.1). The center to center 

support length of the specimens was 1600 mm. 
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3.3.1 Detail of the corrosion 

The surface corrosion was simulated by machining the bottom flange of the beam. The 

corrosion was introduced at the mid-length of the outer face of the bottom flange 

(Figure 3.2). A circular arc shaped 100 mm long corrosion was machined (Figure 3.3). 

HAAS TOOLROOM MILL TM1 machine was used to make the corrosion (Figure 

3.4). The plan view of the corrosion was trapezoidal and could not be made 

rectangular because the beam flange is not perfectly level, the actual flange slightly 

tilted (Figure 3.5). Figure 3.6 is a photo of a corrosion and Figure 3.7 is the plan view 

of the corrosion. Figure 3.8 is the three-dimensional sketch of the corrosion. The 

length of the corrosion was 100 mm long in the longitudinal direction of the beam 

(direction-3) at the edge of the flange and 80 mm long at the web-flange connection. 

The width of the corrosion was 64 mm along the width of the beam (in direction-1) as 

shown in Figure 3.7. The corrosion spread over the half of the flange width. Thus, the 

corrosion was symmetrical about the mid-span of beam in direction-3, but was 

unsymmetrical in direction-1. Variation of corrosion depth in direction-3 was between 

4 mm at its mid-length to no corrosion at ends (Figure 3.8). Variation in direction-1 

was from 4 mm at the edge of flange to 2.6 mm at the web-flange corner. Figures 3.9 

and 3.10 show the details of two-dimensional cross-section view of the corrosion at 

the outer edge of the flange and at the web-flange intersection, respectively. 

3.3.2 Details of trial virgin specimen (TS) 

The trial specimen (TS) was placed on a pin support on one end and roller support on 

the other end with a 1600 mm clear (center to center) span. Two U shaped steel 

frames were welded to the stiff wide beam at 610 mm from center to avoid any sudden 

lateral movement of the beam (Figure 3.11 and 3.12). The U shaped steel frame is 

30mm away from the specimen flanges. A three point bending load was applied on the 

TS specimen until it failed. The specimen failed in lateral torsion buckling. Four linear 

potentiometers (LP) were used to acquire the deformation history of the beam. The 

location of the LP can be seen in Figure 3.11. Figure 3.12 shows a picture of the test 

set up for this specimen, while Figure 3.13 shows the specimen after failure. Figure 

3.13(b) shows the flange buckling under the load and Figure 3.13(c) shows the lateral 

torsion buckling. 
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The load-deformation behavior for this specimen is shown in Figure 3.14. This 

specimen yielded at a load of 170 kN (shown by point Y) and 7.4 mm vertical 

deformation at its mid-span. The vertical deformation in this figure was measured 

through LP8 (Figure 3.11). The ultimate load (shown by point U) was 180.7 kN and 

the deformation was 9.33 mm. Figure 3.15 shows the deformation response obtained 

from LP7, LP8, and LP9 at 40 kN, 140 kN, 160 kN, 170 kN, and end of loading 

process. The specimen deformed slowly until it reached its ultimate load (U), then 

deformed rapidly while the load dropped. The deformation was almost symmetric 

about load application point along direction-3 until ultimate load (180.7 kN) was 

applied. However, the deformation became unsymmetrical before end of loading 

process because of lateral torsion buckling. Figure 3.16 is the load and mid-span 

lateral deformation curve, which shows after reaching the ultimate load, the specimen 

deformed laterally rapidly. The deformation was recorded through LP5 (Figure 3.11). 

The location of the salient points identified by Y, U, and F in Figure 3.14 and Figure 

3.16, are the yield point, ultimate load point, and failure load point, respectively. 

The failure mode for specimen TS was lateral torsion buckling shown in Figure 3.13, 

even though calculation (Appendix II) shows that the specimen was not expected to 

fail in lateral torsion buckling. The reason of the lateral buckling for this specimen 

seems to be that the load was not probably applied perfectly in the center, and there 

was no lateral support to prevent the torsion. The top flange underneath the load also 

buckled. Therefore, for specimens in groups 1 and 2, lateral supports (LS) were 

provided to prevent lateral torsion buckling. Steel round blocks (SB) were also used 

between top and bottom flanges to avoid the flange buckling under the load 

application point. 

3.3.3 Details of the Group 1 specimens 

Four lateral supports (LS) and two steel round blocks (SB) were installed on each side 

of specimen for all specimens of group 2. The LS for both top and bottom flanges 

were located at 180 mm and 610 mm away from the mid-length (Figure 3.17). Two 

types of lateral supports were used. The first type (Type 1) of LS was built by 

welding a 100 mm high x 75 mm wide x 10 mm thick steel plate to an angle 

(L51x51x7.9). The LS were then bolted against strong steel column (Figure 3.18). 

This LS is shown by X in Figure 3.17. The other type (Type 2) of LS was made using 
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300 mm high x 100 mm wide x 30 mm thick steel plates. The plates were welded to U 

shaped steel frames and then the U shaped frames were welded to the wide beam 

(Figure 3.19). They were located at 610 mm on either side of beam's mid-length 

(shown by X in Figure 3.17). The SB were installed at 110 mm away from the beam's 

mid-span where there were no strain gauges (shown by • in Figure 3.17). When this 

location was infeasible due to strain gauges, the SB were installed 140 mm away from 

center (Figure 3.17). The steel blocks were 30 mm in diameter (Figure 3.20). 

All the specimens in group 1 failed due to web buckling, some less severe than others. 

Consequently, web stiffeners (WS) were used in all specimens of group 2. 

Furthermore, a flange stiffener (1000 mm long x 110 mm wide x 6 mm thick steel 

plate) was also welded on to the top of the beam to avoid flange buckling under the 

load. 

3.3.4 Details of the Group 2 specimens 

Two WS (180 mm long x 60 mm wide x 8 mm thick steel plates) were welded either 

side of the web at the center of the steel beam, for all specimens of group2 (Figure 

3.21). A steel plate of 1000 mm long x 110 mm wide x 6 mm thick was welded to top 

flange of each specimen of group 2 to avoid the top flange from buckling (Figure 

3.22). LS and SB used for specimens of group 1 were used in all specimens of group 

2 as well. 

3.4 Material Properties 

The materials used in the tests include steel, epoxy(Saturant), filler putty, primer, and 

CFRP dry fabric. 

3.4.1 Steel 

The steel beam used in this study was of W350 grade steel. They were purchased 

separately from the Victoria Steel Corporation and the Border Steel Ltd. located in 

Windsor, Ontario. Eight coupon specimens (Figure 3.23) were cut from these steel 

beams. Four coupon specimens from the beams purchased from the Victoria Steel 

Corporation, and remaining four from the beam purchased from the Border Steel Ltd. 

Tensile tests were conducted on coupon specimens according to ASTM E 8M-04 
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(ASTM, 2006b) as described in section 2.6.7, to obtain their material behaviors. A 300 

kN (both tension and compression) capacity Tinus Olsen Universal Testing Machine 

was used for these tests (Figure 3.24). Figure 3.25 shows a failed steel coupon 

specimen. Figure 3.26 and Figure 3.27 show the strain vs. stress relationships obtained 

from the tensile material tests of Victoria steel and Border steel, respectively. The 

following notations were adopted in Figures 3.26 and 3.27 to describe the specimen. 

Victoria means the coupon specimen was cut from a beam purchased from Victoria 

Steel Corporation, Border means the coupon specimen was cut from a beam 

purchased from Border Ltd. Following Victoria or Border, is a letter-number notation, 

W# or F#. W and F, denote whether the coupon specimen was cut from the web (W) 

or from the flange (F) of the beam. The number denote the number of the specimen. 

Therefore, Victoria-Wl denotes the first coupon specimen cut from the web of the 

beam purchased from Victoria Steel Corporation. 

The average of the modulus of elasticity was calculated to be 219.3 GPa and the first 

yield and ultimate stress were 420.7 MPa and 552.06 MPa as shown in Table 3.2. 

3.4.2 Composite materials 

The composite strengthening system used in the tests was the MBrace composite 

strengthening system, which is manufactured by The Chemical Company, BASF and 

Sikawrap Hex dry fabric (230c) manufactured by Sika Canada Inc. The composite 

strengthening system includes MBrace Primer, MBrace Putty, MBrace Saturant, and 

MBrace CFRP dry fabric (CF 160). 

MBrace Primer is a low viscosity polyamine cured epoxy. MBrace Primer is the first 

component applied to a substrate in order to create a high bond base coat for the 

MBrace system (BASF 2006b). MBrace Putty is a high viscosity epoxy paste, which 

is used to even out small defects and create a smooth surface for MBrace system to be 

applied (BASF 2006c). MBrace Saturant is a low viscosity epoxy that is used to 

impregnate and reinforce MBrace dry fabric (CF 160) and bond CFRP on the steel 

substrate (BASF 2006d). MBrace Primer, Putty, and Saturant are all with different 

viscosities for various uses. Each one is a two-components epoxy (resin and hardener), 

with a mix ratio of 3:1 (resin to hardener) by volume. MBrace CF160 is composed of 

a high strength carbon fiber dry fabric. The carbon fibers are held in a unidirectional 

39 



alignment with glass fiber (BASF 2006a). MBrace CF160 needs to be impregnated 

and reinforced by the MBrace Saturant. Once the MBrace system is fully installed on 

the beam, it acts as an externally bonded CFRP reinforcement system to increase the 

strength and structural performance of the beams. Material properties for MBrace 

composite strengthening system reported by the Manufacture are listed in Table 3.3. 

Due to the unavailability of the MBrace CF160 dry fabric during last phase of test 

program, Sikawrap Hex 230c was used to repair specimens of group3. Sikawrap 

produces several dry fabric products , however Sikawrap Hex 230c was chosen for 

this study because its ultimate (fracture) tensile strength and elastic modulus were 

similar to those of MBrace CF160. See Table 3.3 for material properties for Sikawrap 

Hex 230c. Since thickness of Sikawrap Hex 230c is thinner than MBrace CF160, 

more numbers of layers of Sikawrap Hex 230c was necessary to achieve the 

equivalent thickness of the MBrace CF160. 

3.4.3 Carbon Fiber Reinforced Polymer tensile test 

Two different CFRP tensile coupon specimens were prepared and tested to determine 

the mechanical properties of MBrace CF160 CFRP. The quasi-static tensile tests were 

conducted as recommended by ASTM D3039/D 3039M - 00 (ASTM 2006a) standard, 

as discussed in section 2.6.1. The tensile coupons specimen from group 1 was made 

from MBrace CF160 composite and the coupon specimens for other group was made 

from MBrace CF160 dry fabric. Tabs with 15° bevel angle, which was made out of E-

GFRP (E-glass fiber reinforced polymer) board produced by Electro Sonic (model # 

64p44we) were attached to the end of coupon specimens using MBrace Saturant to 

provide a soft interface and grip. A 300 kN capacity (both tension and compression) 

Tinus Olsen Universal Testing Machine was used to apply the tension load (Figure 

3.28). Figures 3.29 and 3.30 show the coupon specimens before and after the test. 

Figure 3.31 and 3.32 show the strain vs. stress relationships for CFRP laminate and 

CFRP dry fabric specimens, respectively. The following notations were adopted in 

Figures 3.31 and 3.32 to describe the specimen. The letter W indicates that the coupon 

specimen was made from MBrace CFRP composite, and the letters W/O means the 

coupon specimen was made from MBrace dry CFRP fabric. Following W or W/O, is a 

number notation, denote the number of the specimen. Therefore, Wl denotes the first 

coupon specimen made from MBrace CFRP composite (laminate). The average of the 
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tensile modulus for CFRP laminate was obtained as 243 GPa while The manufactures 

specifies a value of 227 GPa. Note, the carbon fiber specimen Wl was first loaded to 

60 kN, reloaded, and then loaded to fail. 

As mentioned in section 1.6.1, fiber alignment is critical in these tests, especially for 

dry fabric. When there is no epoxy (Saturant) to distribute the load evenly among 

fibers, some fibers break before others, decreasing the effective area of the cross 

section, resulting in the reduction of the modulus of elasticity. The average of the 

tensile modulus of the CFRP dry fabric was calculated by taking the slope of each 

curve between 50 kN and 400 kN loads, where all the curves are essential linear and 

very similar. The average of the tensile modulus for CFRP dry fabric was obtained as 

224 GPa ((230+190+252)/3). 

Due to the high variation in test data obtained from dry CFRP fabric specimens as 

shown in Figure 3.32, the data was not used in this study. 

3.4.4 Shear stress test of epoxy 

Three coupons were tested according to ASTM D5 868-01 (ASTM, 2006e), Section 

2.6.3. A 300 kN capacity (both tension and compression) Tinus Olsen Universal 

Testing Machine was used for the test. Figure 2.23 shows a sketch of the specimen. 

Steel flat and CFRP laminate were bonded with the MBrace Saturant epoxy. The steel 

flats were cut out from the flange of the steel beam purchased from the Victoria Steel 

Corporation, the dimensions of the steel flat were 101.6 mm long x 25.4 mm wide x 

6.4 mm thick. The CFRP laminate was made by saturating a large piece of MBrace 

CF 160 dry fabric with MBrace Saturant. After cured in room temperature for seven 

days, the CFRP laminate was cut into 101.6 mm long x 25.4 mm wide pieces. The 

thickness of the CFRP laminate was 0.79 mm. The nominal thickness of the bond was 

0.76 mm. It was controlled by putting the cut CFRP laminate on top of a 110 mm long 

x 25.4 mm wide x 7.16 mm aluminum flat while curing as shown in Figure 3.33. 

Figure 3.34 shows the failed shear coupon specimens. A linear potentiometer (LP) 

with 200 mm (8 in.) gauge length was used to measure the vertical movement of the 

lower crosshead of the testing machine, which is equal to the deformation of the 

specimen. Figure 3.35 shows the stress vs. strain curves obtained from the test. The S# 

was adopted in Figures 3.35 to describe the specimen. The letter S means it is a Shear 
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stress epoxy coupon specimen, and the number denotes the specimen number. The 

average of ultimate shear stress was calculated to be 14.6 MPa. 

3.5 Rehabilitation Method 

Any successful rehabilitation depends on the proper preparation of the structural 

element. This section includes surface preparation, resin constituent materials and 

their mixing, and method of application of CFRP to corroded steel beams. 

3.5.1 Surface preparation 

One of the most important steps in a successful rehabilitation of a structural member is 

the surface preparation of the repaired structural component. Therefore, careful 

attention was given to prepare the steel surface before application of CFRP fabrics. 

1. The surface was sand blasted using 12-20 mesh industrial coarse sand to a 

"white metal" finish (Figure 3.36) to ensure good bonding between CFRP and 

steel surface. 

2. After sand blasting, the steel beam was cleaned by compressed air. 

3. A thin layer of MBrace Primer was then applied to the surface to penetrate the 

pore structure of the steel substrates and to provide a high bond base coat 

(Figure 3.37). 

4. The corrosion was filled by using either MBrace Putty (Figure 3.38) or layers 

of small piece of CFRP fabric (Figure 3.39) to ensure a smooth surface (Table 

3.1). Only one specimen (RC-W67-T2.4-G1) was filled the corrosion with 

MBrace putty. For all other rehabilitated specimens, short pieces (100-95 mm 

long) of CFRP fabric (several layers) were used instead. 

3.5.2 Saturating resin preparation 

Correct proportioning and proper mixing are important when using epoxy resin 

systems. Improper preparation of the resin can lead to premature debonding of CFRP 

laminate, resulting in the loss of composite action. 

Sever defects may be introduced to the system during mixing. Air can be drawn into 

the resin during mixing and remain as small air bubbles, which can reduce the strength 

of the composite system significantly. Improper mixing can result in chemical 
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inconsistency, meaning that some regions contain high percentages of hardener, while 

others may contain no hardener at all. The efficiency of the resin system depends on 

the appropriate use of the mix ratio of the chemicals (epoxy ingredients). Errors in the 

mixing ratio can result in under-cure. 

The two components of the epoxy resin were mixed manually; since small quantity of 

epoxy resin was required. Attention was paid to the mix ratio (3:1 by volume of Part 

A and Part B) to ensure the proper mixing of epoxy. Mixing was performed at a slow 

rate to avoid drawing an excessive amount of air into the matrix. The mixing was 

continued for a minimum of three minutes to ensure thorough and proper mixing. 

3.5.3 Application of CFRP 

1. The CFRP sheet was cut into the required size. 

2. Once the epoxy was mixed, it was applied to both surfaces of the CFRP sheets 

using a paint roller to ensure the CFRP was saturated (impregnated) properly with 

epoxy (Figure 3.40). 

3. Subsequently, the saturated CFRP was applied on the beam and the epoxy resin 

was applied again onto the surface of the CFRP. 

4. These steps were repeated for every single layer of CFRP wrap and CFRP cross 

wrap. 

5. After applying the CFRP wraps and cross wraps, a layer of thin plastic sheet and a 

layer of cardboard on top of plastic sheet were placed and clamped with large 

paper clips (Figure 3.41). This ensured the CFRP composite finished surface was 

smooth after curing, making it easier to apply strain gauges on the cured finished 

CFRP composite. The beams were left at room temperature for 7 days to cure 

before the test. 

Thickness of the CFRP wraps for various specimens was varied because, for specimen 

RC-W67-T2.4-G1, RC-W133-T2.4-G1, and RC-W133-T2.4-G2, 2.4 mm thick CFRP 

sheets were bonded to the outer face of the bottom flange (which means three layers 

of MBrace CF160 or eight layers of Sikawrap Hex 230c). For specimen RC-W133-

T1.2-G2, 1.2 mm thick CFRP sheets were used (which means four layers of Sikawrap 

Hex 230c). For specimen RC-W133-T0.6-G2, 0.6 mm thick CFRP sheets were used 

(which means two layers of Sikawrap Hex 230c). The lengths of CFRP sheets varied 
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by six mm from one layer to the next (for example, first layer was 1000 mm long, 

second layer was 994 mm long, and third layer was 988 mm long), to avoid the stress 

concentration at CFRP termination points. The width of the CFRP wrap was 67 mm 

for RC-W67-T2.4-G1 (Figure 3.42) and 133 mm for all the other RC specimens 

(Figure 3.43). CFRP laminates were installed with the fibers oriented in the beam's 

latitudinal direction (direction-3). 

Subsequently, CFRP cross wraps (fiber oriented along the width of the beam, 

direction-1) were applied to the beam using the same CFRP application method. Five 

50 mm wide cross wraps were applied on specimen RC-W67-T2.4-G1 with a 212.5 

mm clear spacing in between (Figure 3.44). For the rest of the repaired corroded (RC) 

specimens, a 200 mm wide cross wrap was applied at the center (on the corrosion) and 

three 70 mm wide cross wraps on each side of the corrosion (Figure 3.45). The clear 

distance between each cross wraps was 70 mm. When MBrace CF160 was used, one 

layer of the dry fabric formed each cross wrap; and when Sikawrap Hex 230c was 

used, two layers of the dry fabric formed each cross wrap. 

3.6 Instrumentation 

The instruments used in these tests were: strain gauges (3 mm and 13 mm gauge 

length) to measure strain in steel and CFRP, linear potentiometers to measure beam's 

deflections, a manual hydraulic pump along with a 445 kN (100 kips) capacity loading 

jack, universal donut shaped load cell of 445 kN (100 kips) capacity, and two 

universal donut shaped load cells of 222 kN (50 kips) capacity to obtain the applied 

loads and reactions. 

3.6.1 Strain gauges 

The strain gauges (SG) used in this study was purchased by the OMEGA Engineering 

INC located in Unite Kingdom. The SGs used on steel surface was Model SGD-

3/350-LY11. This SG is 3.2 mm long x 2.5 mm wide grid area, 350 ohms resistance, 

+ 0.25% tolerance, and 2.01% gauge factor. The SGs used on CFRP composite was 

Model SGD-13/1000-LY11. This model has 13 mm long x 7.2 mm wide grid area, 

1000 ohms resistance, ±0.35% tolerance, and 1.99% gauge factor. 

44 



SGs were used to study the composite action and load transfer between steel and 

CFRP composite. No SG was used on the CV specimen. For the specimen CC-G1, 

seven SGD-3/350-LY11 SGs were used. Figure 3.46 shows the locations of the SGs 

for specimen CC-G1. Two SGs (number 6 and 7) were installed at the center of the 

inner side of the bottom flange, one in the lateral direction (direction-1, shown by ••» ), 

one in the longitude direction (direction-3, shown by •) . Another two SGs (number 4 

and 5) were installed at the same locations as SG6 and 7,but on the top surface of 

bottom flange (Figure 3.46). One SG (number 1) was applied in direction-3 at the 

mid-span on the bottom face of top flange, and two SGs (number 2 and 3) were 

applied on the web in direction-3. For each of the RC (rehabilated corroded) beams, 

five SGD-3/350-LY11 SGs were installed to the top surface of the bottom flange 

(shown by SI, S2, S3, S4, and S5 in Figure 3.47). Five SGD-13/1000-LY11 SGs were 

installed on the surface of CFRP at the same position of the SGD-3/350-LY11 SGs 

(shown as CI, C2, C3, C4, and C5 in Figure 3.47). For the specimen CC-G2, five 

SGD-3/350-LY11 SGs were applied at the same locations as was for RC specimens. 

Effect was made to locate SG SI and SG CI on the same vertical axes (direction 2) 

and same for others as well. However, it was impossible to achieve that and it is 

believed that locations for CFRP strain gauges (CI, C2, C3, C4, and C5) and its 

corresponding steel strain gauges (SI, S2, S3, S4, and S5) were not exactly on the 

same vertical aces (direction 2) 

The surface of the steel beam/CFRP composite was grinded using a pneumatic grinder, 

and then rubbed with "MCA-1 M" Preparation Conditioner A. Then, the surface was 

rubbed again using "MN5A-1" Neutralizer. M-Coat A air-cruing polyurethane coating 

was applied to the surface of the steel/CFRP composite to accelerate the bonding. The 

SG was installed to the steel or CFRP composite surfaces using "M-Bond 200" 

adhesive. A polyethylene sheet was applied over the SG and pressed for 

approximately one minute to ensure the proper bonding. After making sure that the 

SG was securely bonded and would not detach from the applied surface, the 

polyethylene sheet was removed. Lastly, the gauge terminal was soldered with the 

conductors of the lead wire cable and coated using "M-Bond adhesive (catalyst-c)". 

All strain gauges were tested and checked thoroughly before and after repairing using 

a digital ohmmeter. Vishay Ltd. manufactured all the chemicals mentioned in this 

paragraph. 
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3.6.2 Linear potentiometers (LP) 

Deflections at three points on the bottom surface of beam's bottom flange and one 

point on the vertical face of bottom flange of the steel beam were continuously 

monitored using linear potentiometers (LP) (Figure 3.48). The three LPs on the 

bottom surface of bottom flange had 10 cm (4 in.) stroke while the other one had 5 cm 

(2 in.) stroke. They were pre-calibrated in order to find the gauge factor. 

3.6.3 Loading system 

The load was applied by a manual hydraulic pump through a loading jack of 445 kN 

(100 kips) capacity. Figure 3.49 shows a sketch of the test setup. The capacity of the 

loading jack was 100 tons. Load data were acquired by the data acquisition system 

through the universal load cell. The load was applied by the 100 tons loading jack. 

The load was then transferred to the bearing plate, which is 700 mm long x 132 mm 

wide x 12 mm thick, and acted at the top center of the beam as marked before (Figure 

3.50). 

The specimen was supported on pin and roller supports (Figure3.49). The reaction was 

at the supports were recorded through two 50 kips load cells (Figure 3.49). The load 

cells were installed on to stiff wide beams as shown in Figure 3.51. All load cells were 

calibrated using 600 kN capacity (both tension and compression) Tinus Olsen 

Universal Testing Machine. Figure 3.52 to 3.54 show the calibration curve for each 

load cell. 

3.6.4 Data acquisition system 

The model of the analog input module was Data Scan 7021, manufactured by Adept 

Scientific located in England. Each of the modules had eight channels. Four analog 

input modules were connected in the data acquisition system. A total 8, 14, 13 and 18 

data channels were required to collect the data for the CV, CC-G1, CC-G2, and fixed 

RC specimens respectively. The local measurement speed was set to be one reading 

per second. Data collection was facilitated using Dalite software, recording all 

readings electronically into a computer file (Figure 3.55). 
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3.6.5 Test set-up 

Test setup is shown in Figure 3.49 and 3.50. After the CFRP composite air-dried for 

seven days, the location of the support, loading point, linear potentiometers (LP), 

lateral support, and steel round blocks were marked. The specimen was then placed on 

the pin and roller supports (Figure 3.49). 

Steel angles were connected to the frame to support the LPs, which were adjusted and 

placed at their marked positions. All instruments (strain gauges, linear potentiometers, 

load cells) were checked and connected to the data acquisition panel, which was 

connected to the computer to record all readings. Figure 3.56 and 3.57 show the 

sketch of test set up of specimens of group 1 and group2, respectively. The load was 

applied until the specimen failed. Figure 3.58 to Figure 3.75 illustrate the testing 

process for all group 1 and 2 specimens. 

3.7 Summary 

This chapter described the specimens (configuration, materials, and fabrication), 

instrumentation, experimental setup, loading procedure, and the rehabilitation scheme 

using CFRP laminates. 
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Table 3.2: Mechanical properties of steel beam 

Victoria 1 
Victoria 2 
Victoria 3 
Victoria 4 
Border 1 
Border 2 
Border 3 
Border 4 
Average 

Modulus of 
Elasticity 

(GPa) 
256 
239 
180 
219 
181 
247 
232 
201 
219 

Ultimate 
Stress 
(MPa) 

530 
537 
533 
540 
543 
573 
602 
558 
552 

First Yield 
Stress 
(MPa) 

417 
438 
432 
447 
432 
436 
447 
457 
438 

Average E from Victoria = 224 GPa 
Average E from Border = 225 GPa 

Average yield strength from Victoria = 535GPa 
Average yield strength from Border = 569 GPa 

Average ultimate strength from Victoria = 434GPa 
Average ultimate strength from Border = 443 GPa 
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Figure 3.1: Cross-section ofW200x21 beam 
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Figure 3.2: Location of the corrosion 
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Figure 3.3: Detail of the corrosion geometry (cross-sectional view) 

Figure 3.4: HASS TOOL ROOM MILL TM1 machine 
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Figure 3.5: Actual shape of the flange 
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Figure 3.6: Photo of the corrosion (plan view) 
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Figure 3.8: Three-dimensional sketch of the corrosion 

54 



Bottom Flange-

100 mm 

Figure 3.9: Two-dimensional view of the corrosion at the outer edge of the flange 
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Figure 3.10: Two-dimensional view of the corrosion at the web-flange intersection 

7 
I Load 

3 * P 

'/t 101.5 mm ^ 
• W W c i • • • * ^ 

m 
20 mm Wmn! 4 0 0 m m 

190 mm / . «. . . 
(a) Side view 

a 

400 mm T T " 
210 mm 

f̂—rn 
20 mm 

190 mm 

LB 

zr~. 
o 
CO 

0 (b) Bottom plan view 

° 2 inch LP • 4 inch LP | U shaped steel frame 

Figure 3.11: A sketch of test setup for TS 
(a) Side view 
(b) Bottom plan view 
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Figure 3.12: Test setup for TS 

Figure 3.13: (a) Specimen TS after completion of test 
(b) Flange buckled under the load 
(c) Side view of the beam shows lateral torsion buckling 
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Figure 3.14: Load vs. mid span vertical deformation for TS 
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Figure 3.15: Vertical deformation response for TS 
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Figure 3.16: Load vs. mid span lateral deformation TS (P5) 
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Figure 3.17: Locations of lateral supports and steel blocks 
(a) Front view 
(b) Top plan view 
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Figure 3.18: 75 mm wide later support 

Figure 3.19: 100 mm wide later support 
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Figure 3.20: Steel blocks 

60 



(a) Side view 

# 
60 mm 

Two web stiffenersH 

(b) Top view 

180 mm 

(c) Photo of the WS 

Figure 3.21: Web stiffness 
(a) Side view 
(b) Top view 
(c) Photo of the WS 
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Figure 3.22: Flange stiffeners 
(a) Side view 
(b) Top view 
(c) Photo of the plate 
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Figure 3.23: Steel coupon specimens 
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Figure 3.24: Tensile test setup for coupon tests 
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Figure 3.25: Failed steel coupon specimen 
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Figure 3.26: Stress vs. strain curve for steel tensile test (Victoria Steel Corporation) 
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Figure 3.27: Stress vs. strain curve for steel tensile test (Border Steel Ltd.) 

64 



Figure 3.28: CFRP tensile test set-up 

(a) CFRP laminate specimen Tabs 

(b) CFRP dry fabric specimen 

Figure 3.29: CFRP coupon specimens 
(a) CFRP laminate specimen 
(b) CFRP dry fabric specimen 
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(a) CFRP laminate specimen 

(b) CFRP dry fabric specimen 

Figure 3.30: CFRP failed specimens 
(a) CFRP laminate specimen 
(b) CFRP dry fabric specimen 
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gure 3.31: Stress-strain relationships obtained from CFRP laminate specimens 
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Figure 3.32: Stress-strain relationships obtained from CFRP dry fabric specimens 
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Figure 3.33: Epoxy shear coupon specimens (curing) 

67 



wg^^^^^B 

« K 

i 

a 
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Figure 3.35: Shear stress-strain behaviors of epoxy (MBrace Saturant) 
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Figure 3.36: White metal finish after sand blasting 

Figure 3.37: After applying MBrace Primer 
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Figure 3.38: Corrosion filled with MBrace Putty 

Figure 3.39: Corrosion filled with CFRP 
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Figure 3.40: CFRP saturated in Saturant 

Figure 3.41: Curing of the CFRP 
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Figure 3.42: Specimen RC-W67-T2.4-G1 with 67 mm wide CFRP composite 

Figure 3.43: Specimen with 133 mm wide CFRP composite 
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Figure 3.46: Strain gauge locations for CC-G1 
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Figure 3.47: Strain gauge locations for all RC specimens of Gl and all specimens of G2 
(a) Side view, and (b) Bottom view 
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Figure 3.48: Locations for linear potentiometers 
(a) Side view 
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Figure 3.49: Sketch of test setup 
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Beam 

Figure 3.50: Photo of test set up: load cell and jack 

Figure 3.51: Stiff wide beam under the support 
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Figure 3.52: 445 kN (lOOkips) load cell calibration curve 
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Figure 3.53: 223 kN (50kips) load cell (2) calibration curve 
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Figure 3.54: 222 kN (50kips) load cell (3) calibration curve 
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Figure 3.55: Data acquisition system 
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Figure 3.57: Test setup for specimens of Group2 
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Figure 3.58: CV-G1 before test 

Figure 3.59: (a) CV-G1 after test 
(b) Top flange buckled slightly 
(c) No visible sign of torsion buckling 
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Figure 3.60: CC-G1 before test 

Figure 3.61: (a) CC-G1 after test 
(b) Steel thinning at the corrosion area 

(c) Slightly lateral torsion buckle 
(d) Web buckled 
(e) Flange buckled 
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Figure 3.62: RC-W67-T2.4-G1 before test 

Figure 3.63: (a) RC-W67-T2.4-G1 after test 
(b) CFRP debonding 
(c) Flange buckling 
(d) Lateral torsion buckling 
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Figure 3.64: RC-W133-T2.4-G1 before test 

Figure 3.65: (a) RC-W133-T2.4-G1 after test 
(b) Web buckling 
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Figure 3.66: CV-G2 before test 

Figure 3.67: (a) CV-G2 after test 
(b) Web buckled at roller support 
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Figure 3.68: CC-G2 before test 
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Figure 3.69: (a) CC-G2 after test 
(b) Cracking at the center of the corrosion 
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Figure 3.70: RC-W133-T2.4-G2 before test 

Figure 3.71: (a) RC-W133-T2.4-G2 after test 
(b) No web buckling at roller support 
(c) Flange buckled slightly at roller support 
(d) Web buckled at pin support 
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Figure 3.72: RC-W133-T1.2-G2 before test 

Figure 3.73: (a) RC-W133-T1.2-G2 after test 
(b) Web buckled at pin support 
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Figure 3.74: RC-W133-T0.6-G2 before test 

Figure 3.75: (a) RC-W133-T0.6-G2 after test 
(b) No flange buckling under the load 
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4 EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 General 

The objective of this study was to develop an alternative in-service repair method for 

corroded steel structure using Carbon Fiber Reinforced Polymer (CFRP). The viability 

and reliability of this repair system depends largely on the effectiveness of load transfer 

between CFRP composite and steel. A total of nine specimen were tested to study the 

effectiveness of this repair method. The test results are discussed in the following sections. 

The responses obtained from the specimens in terms of strain in steel, strain in CFRP, 

deflection, and ultimate load are described and presented in this chapter. Failure 

mechanisms obtained from these tests are also discussed in the chapter. The summary of 

the test results are presented in Table 4.1 to 4.4. 

4.2 Behavior of Groupl Specimens 

As mentioned in Chapter 3, groupl contained one control virgin specimen (CV-G1), one 

control corroded specimen (CC-G1), and two rehabilitated corroded specimens (RC-

W67-T2.4-G1 and RC-W133-T2.4-G1). All four specimens were supported latterly using 

eight lateral supports as discussed in section 3.3.3. Four steel round blocks were also 

mounted between top and bottom flanges under the load application point to reduce the 

flange buckling (Figure 3.16). However, no web stiffeners were used in these specimens. 

4.2.1 Specimen CV-G1 

This is a control virgin (no corrosion) specimen. The load-deformation behavior for this 

specimen is shown in Figure 4.1. The deformation obtained from LP8 (Figure 3.48) is 

usually used for plotting the load-deformation behaviors for all the specimens unless 

otherwise specifically mentioned. This specimen yielded at 202 kN load (point Y) and 7.0 

mm vertical deformation. The ultimate load was 243 kN (point U) and the vertical 

deformation was 31.5 mm. This beam specimen exhibited large elastic-plastic 

deformation. The test was discontinued at 247 kN (point F) and the vertical deformation 

at 34.0 mm, to avoid damages of the equipment. This specimen did not fail either due to 
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lateral torsion buckling, or due to web buckling. The location of the salient points 

identified by Y, U, and F in the figure depicts the global yield load point, ultimate load 

point, and failure load point, respectively. 

Figure 4.2 shows the deformation response obtained from LP7, LP8, and LP9 (Figure 

3.48) at 60 kN, 200 kN, 230 kN, 243 kN, and end of loading process. Like the trial 

specimen (TS), this specimen also deformed rapidly after it reached its yield load. The 

difference between deformations at "end of loading process" and at "unloaded condition" 

is the elastic deformation. The deformation which remained after unloading was the 

plastic deformation. Figure 4.3 is the load and mid-span lateral deformation (LP5) curve, 

which shows there was negligible lateral deformation for this specimen. 

The failure mode of this specimen was ductile as shown in Figure 3.59a. There was no 

indication of lateral torsion or web buckling (Figure 3.56c). Figure 3.59b shows that the 

top flange buckled slightly under the load. Specimen CV-G1 showed a significant 

increase in ductility as compare to TS. 

This specimen was tested to obtain strength and ductility of the undamaged (virgin) beam 

specimen and thus no strain gauges (SG) were used in this specimen. Therefore, no strain 

data is available. 

4.2.2 Specimen CC-G1 

4.2.2.1 Load-deformation behavior and failure mode 

The load-deformation behavior for this specimen is shown in Figure 4.4. This specimen 

yielded at 165 kN load (point Y) and 5.7 mm mid-span vertical deformation. The ultimate 

load was 215 kN (point U) with a deformation of 13.4 mm. The test was stopped at 184 

kN (point F) and at vertical deformation of 38.2 mm, to avoid damages of the equipment. 

The locations of the salient points identified by Y, U, and F, in the figure, indicate the 

global yield load point, ultimate load point, and failure load point, respectively. 
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This specimen first yielded at the corrosion followed by the severe web buckling at mid-

span (Figure 3.6Id). At that time, the top flange under the load buckled as well (Figure 

3.61e). There was a slight lateral torsion buckling (Figure 3.61c) and it could be because 

of the non-symmetric in cross-section and loading. However, flange at corrosion did not 

tear or rupture. 

Figure 4.5 shows the deformation response obtained from LP7, LP8, and LP9 (Figure 3.6) 

at 50 kN, 180 kN, 200 kN, 215 kN, end of loading, and at unloaded condition. Figure 4.6 

shows the load and mid-span lateral deformation (LP5) curve. This curve shows that after 

the ultimate load was applied, the web buckled (Figure 3.6Id). 

4.2.2.2 Strain distribution 

A few strain gauges (SG) were used in this specimen to study the strain distribution at the 

corrosion with respect to the beam's web (See Figure 3.46 for strain gauge locations). 

Strain-deformation behaviors obtained from this specimen are shown in Figure 4.7. 

Similar plot but for strain-load behaviors obtained from this specimen are shown in 

Appendix IV Figure A4.7. The locations and orientations of the strain gauges (SGs) are 

shown in Figure 3.46. In Figure 4.7, SG numbers are shown in parenthesis. The 

deformation was the vertical mid-span deformation obtained from the linear 

potentiometer (LP) 8 (See Figure 3.48). 

The strain values obtained from longitudinal SG 3, 4, and 6 are positive (which means 

tension), and the strain obtained from longitudinal SG 1 and 2 are in negative (which 

means compression). It is because SG 3, 4, and 6 were oriented in the beam's longitude 

direction, and located below neutral axis, while SG 1 and 2 were located above the 

neutral axis and were oriented in the longitude direction of the beam. The values of strain 

obtained from SG 5 and 7 are also negative, because these gauges were oriented in the 

lateral direction of the beam and located on the top and bottom surfaces of the bottom 

flange, respectively (Figure 3.46). Figure 4.8a, b, and c shows the strain distribution of 

SG SI, S2, S3, S4, and S6 at 100 kN, 165 kN (yield load), and 215kN (ultimate load), 

respectively. The y-axis shows the distance from the bottom of the flange to the SG. The 

SG S6 failed before the yield load was applied, and SG S4 failed before the ultimate load 
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was applied. In Figure 4.48a, the plane section remained plane expect the bottom of the 

bottom flange (SG6) until 100 kN load was applied. Figure 4.48b shows the plane section 

remained plane expect the bottom flange (SG 4 and 6) until yield load (165 kN) was 

applied. SG 6 failed when the global vertical deformation reached three mm. Figure 4.48c 

shows the plane section did not remain plane for the entire cross-section of the beam 

when ultimate load (215 kN) was applied. SG4 failed when the global vertical 

deformation reached about 10 mm. 

It can be seen from Figure 4.7 that the slopes of the strain increment for all strain gauges 

except SG 6 (located at center of corrosion and on corrosion face) are relatively small in 

between point O (start of loading) and point Y (yield). The strain of SG 6 started to 

increase relatively at higher rate at about global deformation of three mm. It could be 

because the strain gauge was located on the curved corroded surface (see Figure 3.46) and 

thus, the SG experienced high stress and strain concentration. The stain value for this SG 

dropped quickly soon after and it may be because of debonding of the gauge. The strain 

gauge did not probably bond well to the steel because of high curvature, thus resulting in 

early debonding. 

Strain values for longitudinal SG 1, 2, and 3 (Figure 3.46), which were located on the top 

flange and web of the beam, increased slowly between point Y (yield load) and U 

(ultimate load), while strains for SG 4, 5, and 7, which were located on the inner (top) and 

outer (bottom) surface of the bottom flange, increased relatively faster. It should be noted 

that SG5 and 7 were transverse gauges. The SG 4 seems to started debonding when the 

deformation reached about 10 mm, and it eventually debonded completely. 

In between points U (ultimate load) and F(end of test), strains for all strain gauges 

increased rapidly, especially at SG 4. The strain for SG 1 increased rapidly when the 

deformation reached 16 mm, this is due to top flange buckling. The strains for SG 2 and 3 

also increased, and this is due to the web buckling. 
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4.2.3 Specimen RC-W67-T2.4-G1 

4.2.3.1 Load-deformation behavior and failure mode 

This was a corroded specimen rehabilitated with 67 mm wide CFRP, covering half width 

of the flange (Figure 3.42). Thickness of CFRP composite was 2.4 mm (three layers of 

BASF CF160 dry fabric). The load-deformation behavior for this specimen is shown in 

Figure 4.9. This specimen yielded at a load of about 200 kN (point Y) and 6.7 mm 

vertical deformation. The ultimate load was 236 kN (point U) and the vertical 

deformation was 11 mm. The specimen failed at 192 kN (point F) and at vertical 

deformation of 23.7 mm, due to CFRP debonded at its longitudinal termination line along 

lateral direction at the mid span area of the beam (Figure 4.10). The Figure 4.10 shows 

the cross-section of the specimen cut at its mid-span. The location of the salient points 

were identified by Y, U, F, 1 2, and 3 in the figure, indict the global yield point, ultimate 

load point, failure load point, first, second, and third debonding noises, respectively. 

Figure 4.11 shows the deformation response obtained from LP7, LP8, and LP9 (Figure 

3.48) at 60 kN, 200 kN, 225 kN, 236 kN, end of loading process, and at unload condition. 

Figure 4.12 is the load and mid-span lateral deformation (LP5) curve. This figure 

indicates that after reaching the ultimate load (U), the beam started to move laterally, 

because of the CFRP debonding. 

It seems that the putty (corrosion filler) first debonded when the global deformation 

reached 4.38 mm (point 1 in Figure 4.9) and much before yield load (point Y) was 

applied. However, the debonding did not affect the global load vs. vertical deformation 

curve (Figure 4.9). The debonding of the CFRP occurred several times at different 

locations once the steel beam reached its yield. However, the major CFRP debondings are 

only identified in these figures (points 2 & 3). Because of each of these two debonding, 

the load capacity dropped and the beam started to twist in lateral torsion (LT) buckling 

mode. The type 2 (Figure 3.19) lateral supports at bottom flange were not provided in this 

specimen and this might be the primary reason for not being able to stop the torsion of the 

beam. 
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The failure of this specimen occurred due to the debonding of CFRP followed by LT 

buckling, as shown in Figures 3.63b and 4.10. Therefore, for the next specimen (R.C-

W133-T2.4-G1), CFRP covering full flange width (133 mm) and wider cross wraps were 

used. The flange of this specimen also buckled as shown in Figures 3.63c and 4.13. 

Figure 4.10 and 4.13 are pictures of a section of the beam cut off at the mid-span of the 

beam. Figure 3.63d shows there was torsional buckling which also occurred because of 

the CFRP debonding. Due to the CFRP debonding, this test (RC-W67-T2.4-G1) was 

discontinued and the specimen was unloaded when the global deformation was about 23 

mm. The ultimate load capacity of this specimen could go up to the range what the vergin 

specimen (CV-G1 in Figure 4.1) exhibited. However, the ductility dropped significantly. 

4.2.3.2 Strain distribution 

Strain-deformation behaviors obtained from this specimen are shown in Figures 4.14 to 

4.18. Similar plots but for strain-load behaviors obtained from this specimen are shown in 

Appendix IV Figures A4.14 to A4.18. The locations of the SGs are shown in Figure 3.47. 

The SGs used for measuring strain on steel surface and CFRP surface are denoted by S 

and C, respectively. The strain-deformation behaviors obtained from all steel strain 

gauges (SI to S5) show a similar pattern. However, the strain magnitude increased from 

SG S5 to S4, SG S4 to S3, SG S3 to S2, and SG S2 to SI. The patterns of strain-

deformation behavior of all CFRP strain gauges (CI to C5) are also very similar. 

However, the strain magnitude increased from SG C5 to C4, SG C4 to C3, SG C3 to C2, 

andSGC2toCl . 

It can be seen from Figures 4.14 to 4.18 that the strain values obtained from all SGs 

increased linearly and slowly till point 1 when the filler putty debonded. The slopes of the 

strain increment for steel and CFRP are similar, indicating perfect bonding between 

CFRP composite and steel. The main reason for this seems to because of the strain 

compatibility between beam flange and bottom of CFRP (Figure 4.19). The minor 

differences in the could be because of the SGs used for CFRP (13 mm) are larger (longer 

and wider) than the SGs used for steel (3 mm) and the location of the steel SG could be 

slightly different from location of corresponding CFRP SG. Starting from point 1, the 
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putty debonded gradually from the steel, which in general caused the strain in the CFRP 

to increase much rapidly and the strain in the steel increased slightly, except for SG SI. 

This was because the load at the corrosion may not have fully transferred from the steel to 

the CFRP through the putty, indicating that the filling the corrosion with filler putty is not 

a good choice. Shortly after the putty debonded, the CFRP around the putty (corrosion) 

started debonding as well (See point Y of C2 at Figure 4.15), and the beam reached its 

yield load capacity. Shortly after the putty debonded, the SG SI failed at about 8 mm 

vertical deformation. 

Major debonding of the CFRP occurred twice in between point U and F at point 2 and 3. 

Strain in the CFRP decreased every time when CFRP debonding occurred, while strain in 

steel remained unchanged. Immediately after the CFRP debonding, the strain in CFRP 

started to increase until the next debonding in CFRP occurred. However, the strain in 

steel strain gauges remained nearly unchanged except for SG S2. After the debonding 

occurred at point 3, CFRP debonding was visible (Figure 4.12). The SG S2 shows the 

strain of the steel increased faster than other SGs on steel (S3, S4 and S5). It is because 

SG S2 is located at thinner steel flange at the corrosion area. After third debonding noise 

was heard, the strain value obtained from other SGs showed small increase in both steel 

and CFRP strain. The strain value in SG CI became negative at about 17 mm vertical 

deformation, indicating that the CFRP locally became compressive. 

4.2.4 Specimen RC-W133-T2.4-G1 

4.2.4.1 Load-deformation behavior and failure mode 

This was a corroded specimen rehabilitated with 133 mm wide CFRP. Thickness of the 

CFRP was 2.4 mm (three layers of BASF CF160 dry fabric). The load-deformation 

behavior for this specimen is shown in Figure 4.20. Specimen RC-W133-T2.4-G1 yielded 

at a load of 227 kN (point Y) (202 kN for CV-G1) and 6.9 mm vertical deformation. The 

ultimate load was 251 kN (point U) (243 kN for CV-G1) and the vertical deformation was 

9.1 mm as shown in Figure 4.20. The specimen failed at 129 kN (point F) and the vertical 

deformation of 17.2 mm, due to severe web buckling (Figure 3.65b). Thus, this specimen 
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exhibited yield and ultimate load capacities higher than control virgin (CV-G1) specimen. 

However, because of severe web buckling, the ductility dropped significantly. The 

location of the salient points were identified by Y, U, F, 1, 2, and 3 in the figure, 

indicating the global yield point, ultimate load point, failure load point, first and second 

debonding noises, and severe web buckle, respectively. 

Figure 4.21 shows the deformation response obtained from LP7, LP8, and LP9 (Figure 

3.48) at 60 kN, 210 kN, 240 kN, 251 kN, end of loading process, and at unloading 

condition. Figure 4.22 is the load and mid-span lateral deformation (LP5) curve. This 

figure indicates after reaching the ultimate load (U), there was lateral movement because 

of the web buckled rapidly (Figure 3.65b). 

Small cracking noises were heard when the load reached points 1 and 2. However, no 

visible debonding of the CFRP was noticed. After reaching its ultimate load (U), the 

beam started to buckle at the web, resulting rapid drop in the load capacity. This 

specimen failed due to web buckling as shown in Figure 3.65b. Therefore, web stiffeners 

were welded to all the Group 2 specimens to avoid web buckling. 

4.2.4.2 Strain distribution 

Strain-deformation histories obtained from this specimen are shown in Figures 4.23 to 

4.27. Similar plots but for strain-load histories obtained from this specimen are shown in 

Appendix IV Figures A4.23 to A4.27. The locations of the SGs are identified in Figure 

3.47. The strain-deformation behaviors obtained from all steel strain gauges (SI to S5) 

show a similar pattern. However, the strain magnitude increased from SG S5 to S4, SG 

S4 to S3, SG S3 to S2, and SG S2 to SI. The patterns of strain-deformation behavior of 

all CFRP strain gauges (CI to C5) are also very similar. However, the strain magnitude 

increased from SG C5 to C4, SG C4 to C3, SG C3 to C2, and SG C2 to CI. In general, 

strain magnitude reduced as SG location moved towards the corrosion. Strain gauges C2 

and S3 did not work. 

It can be seen from Figure 4.23 to Figure 4.27 that the strain increased linearly and slowly 

until point Y. Also the slopes of the strain increments for steel and CFRP are similar. In 

between points Y and U, two small cracking sounds were heard indicating the debonding 
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of the CFRP. After first debonding, the difference between the strains in steel and CFRP 

gradually increased. After debonding, the steel SGs above corrosion area (SI, S2, and S3) 

show higher strain than the corresponding CFRP SGs (CI, C2, and C3). This is due to 

thinner steel flange at the corrosion area. Here, interpolation for strain data of SG C2 and 

S3 are assumed. After the beam reached its ultimate load (U), the web started to buckle 

causing the load and the strains to drop. 

4.2.5 Summary of groupl specimens 

The steel for CV-G1 and CC-G1 specimens first yielded followed by large elastic-plastic 

deformation (high ductility). The test for undamaged or virgin (CV-G1) specimen was 

discontinued at about 34 mm (large) deformation to avoid damage in equipment. The 

corroded control specimen (CC-G1) also exhibited large elastic-plastic deformation until 

it failed due to sudden severe web buckling at mid-span. The rehabilitated specimens 

exhibited different behaviors than the CV-G1 and CC-G1 specimens, because of addition 

of CFRP composites. The rehabilitation technique was able to restore the load capacity to 

the level of undamaged or virgin beam (CV-G1). However, ductility of the rehab beams 

reduced significantly (64.8% for RC-W67-T2.4-G1 and 71.1% for RC-W133-T2.4-G1). 

Restoring the ultimate load of corroded of steel beams can be achieved by bonding CFRP 

to the steel beam as shown in Figure 4.28. By using a 67mm wide CFRP, specimen RC-

W67-T2.4-G1 was able to achieve the same ultimate load as the control beam. Specimen 

RC-W133-T2.4-G1 increased its ultimate load by 3.3 percent compared to the control 

beam. (See table 4.3 for details). However, specimen RC-W133-T2.4-G1 had the lowest 

ductility amongst all group 1 specimens. Thus, the addition of CFRP makes the beam 

stiffer and less ductile. 

The rehabilitation technique resulted in decreased in stiffness by 4.3% for both RC-W67-

T2.4-G1 and RC-W133-T2.4-G1 (Table 4.4 and Figure 4.28b). Stiffness is not associated 

with width of the CFRP composite in this project, as wider CFRP composite does not 

correspond to higher stiffness value. 
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For specimen RC-W67-T2.4-G1, putty was used to fill in the corrosion. The putty was 

completely debonded and crushed under the load. Thus, use of filler putty is not a good 

choice for this kind of repair. For specimen RC-W133-T2.4-G1, CFRP sheets were used 

to fill in the corrosion with only minor debonding. Therefore, the use of CFRP sheets to 

level the corrosion was utilized in all future tests. 

All of the specimens in group 1 had web and flange buckling, some less severe than 

others. Thus, web stiffeners were used in tests of group2 to avoid web buckling at mid-

span under the load application point. Furthermore, flange stiffener was also used to 

avoid flange buckling under the load point. 

4.3 Behavior of Group2 Specimens 

As mentioned in Chapter 3, group2 contained one control virgin specimen (CV-G2), one 

control corroded specimen (CC-G2), and three fixed specimens (RC-W133-T2.4-G2, RC-

W133-T1.2-G2, and RC-W133-T0.6-G2). All specimens had web stiffeners to prevent 

web buckling at mid-span, and flange stiffener to prevent flange buckling at top flange as 

discussed in section 3.3.4. Also the specimens were supported laterally at both top and 

bottom flanges using four lateral supports at each side of the beam specimens. Four steel 

round blocks were also mounted between top and bottom flanges under the load 

application point to reduce the flange buckling. 

4.3.1 Specimen CV-G2 

The load-deformation behavior for this specimen is shown in Figure 4.29. This specimen 

yielded at a load of 233 kN (point Y) and 6.9 mm vertical deformation. The ultimate load 

was 322 kN (point U) and the vertical deformation was 32.8 mm. The specimen failed at 

197 kN (point F) and the vertical deformation was 36.5 mm, due to web buckling at the 

roller support (Figure 3.67b). The location of the salient points identified by Y, U, and F 

in the figure, depict the global yield load point, ultimate load point, and final load 

application point. The test was then discontinued. 
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Figure 4.30 shows the deformation response obtained from LP7, LP8, and LP9 (Figure 

3.48) at 80 kN, 275 kN, 305 kN, 322 kN, end of loading process, and at unloaded 

condition. Figure 4.31 is the load and mid-span lateral deformation (LP5) curve, which 

shows that there was about 2 mm of lateral deformation for this specimen. 

After the ultimate load applied to the specimen, the Web buckled at the roller support as 

shown in Figure 3.67b, resulting the load to drop rapidly as shown in Figure 4.29. The 

lateral support close to the roller support failed at point F, and the test was discounted. 

This specimen (CV-G2) exhibited high ductility and did not fail either due to LT buckling, 

or due to top flange buckling, or due to buckling of web at mid-span. 

This specimen was tested to obtain strength and ductility of the undamaged (virgin) beam 

specimen and thus no strain gauges (SG) were used in this specimen. Therefore, no strain 

data is available. 

4.3.2 Specimen CC-G2 

4.3.2.1 Load-deformation behavior and failure mode 

The load-deformation behavior for this specimen is shown in Figure 4.32. Specimen CC-

G2 yielded at a load of 212 kN (point Y) and 7.1 mm vertical deformation. The ultimate 

load was 260 kN (point U) and the vertical deformation was 20.2 mm. The specimen 

failed at 251 kN (point F) and the vertical deformation of 28.3 mm, due to steel cracked 

and splitted at the center of the corrosion (See Figure 3.69b). The location of the salient 

points identified by Y, U, F, 1 and 2 in the figure, depicts the global yield load point, 

ultimate load point, failure load point, steel beginning to tear, and complete flange tearing, 

respectively. 

Figure 4.33 shows the deformation response obtain from LP7, LP8, and LP9 (Figure 3.48) 

at 65 kN, 220 kN, 250 kN, 260 kN, end of loading process, and at unloaded condition. 

Figure 4.34 is the load and mid-span lateral deformation (LP5) curve. This specimen 

exhibited about 3 mm of total lateral deformation. This lateral deformation occurred due 

to steel at the center of the corrosion reached its yield and cracked. 
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This specimen failed by steel yield followed by tearing (splitting) of the bottom flange at 

the center of the corrosion as shown in Figure 3.69b. The test was discontinued when the 

deformation reached about 30 mm to avoid damages in the equipments. There was no 

web or flange buckling (see Figure 4.35 for details). Figure 4.35 shows a picture of a 

section of the beam cut of from its mid-span. 

4.3.2.2 Strain distribution 

A few strain gauges (SG) were used in this specimen to study the strain distribution at the 

corrosion with respect to the beam's web (See Figure 3.47 for strain gauge locations). 

Strain-deformation behaviors obtained from this specimen are shown in Figures 4.36 and 

4.37. Similar plot but for strain-load behaviors obtained from this specimen are shown in 

Appendix IV Figures A4.36 and A4.37. Strain-deformation behavior for SG SI is shown 

on a separate figure since the SG experienced much higher strain than others did. It could 

be because the strain is located at thinnest part of the steel flange of corrosion area. 

It can be seen from Figure 4.36 and 4.37 that the strain increased linearly and slowly until 

point Y and the slopes for all the strain increments are similar. Right after the yield point, 

the steel started to yield and the strain obtained from SG SI increased rapidly until point 1. 

At point 1, the steel at the center of the corrosion started to tear and as a result, the strain 

at each measured location dropped rapidly. However, strains in SG SI dropped 

significantly (Figure 4,36) since the gauges was located very close to the separation line. 

At point 2, the bottom flange steel was completely torn and separated at the center of the 

corrosion. In between points 2 and U, the strains obtained from SG S2 and SG S3 began 

to increase, while the strains in SG S4 and SG S5 decreased slightly. After ultimate load 

was applied to the specimen, the strains obtained from SG S2, SG S3, SG S4 and SG S5 

continuously increased even though the load remained almost unchanged. This may be 

because the bottom flange steel was separated (splitted) at mid-span. 
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4.3.3 Specimen RC-W133-T2.4-G2 

4.3.3.1 Load-deformation behavior and failure mode 

This was a corroded specimen rehabilitated with 133 mm wide covering full width of 

flange and 2.4 mm thick (eight layers of Sikawrap Hex 230c) CFRP composite. The load-

deformation behavior for this specimen is shown in Figure 4.38. This specimen yielded at 

a load of 255 kN (point Y) (specimen CV-G2 yield at 212 kN) and 7.6 mm vertical 

deformation. The ultimate load was 354 kN (point U) (specimen CV-G2 was 260 kN) 

with a vertical deformation of 13.8 mm. The specimen failed at 160 kN (point F) and 

vertical deformation of 16.5 mm (specimen CV-G2 was 36.5 mm), due to web buckling 

at the pin support (Figure 4.39). The location of the salient points identified by Y, U, F, 

and 1 in the figure depicted the yield point, ultimate load point, failure load point, and the 

CFRP debonding noise, respectively. 

Figure 4.40 shows the deformation response obtained from LP7, LP8, and LP9 (Figure 

3.48) at 90 kN, 300 kN, 335 kN, 254 kN, end of loading process, and at unloaded 

condition. The vertical deformation became unsymmetrical after the ultimate load (point 

U) was applied. Deformation at 400 mm away on the right of the mid-span of the beam 

(LP9) was 6.9 mm larger than the deformation at 400 mm away on the left of the mid-

span of the beam (LP7). After unloading, the deformation difference between LP9 and 

LP7 was 6.7 mm. The unsymmetry in vertical deformation could be due to the web 

buckling at the pin support as shown in Figure 4.39. This Figure shows the end part of the 

beam. 

Figure 4.41 is the load and mid-span lateral deformation (LP5) curve, which shows that 

there was very small (0.46 mm maximum) lateral deformation in this specimen. This 

lateral deformation could be because of the unsymmetrical cross-section. 

This specimen failed due to sever web buckling at the pin support, as shown in Figure 

3.7Id. The test was discontinued shortly after the web buckled at pin support. Ductility of 

this specimen reduced significantly (see Table 4.2). There was no web or flange buckling 

at the mid-span (under the load application point) as shown in Figure 4.42. Figure 3.71b 
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shows the web buckled at roller support, and Figure 3.71c shows the flange buckled 

slightly at roller support. Although CFRP debonding noise was heard at point 1, no 

visible sign of debonding could be found (See figure 4.43 for details). Figure 4.42 and 

4.43 show a piece of specimen cut out from the mid-span of the beam specimen. 

4.3.3.2 Strain distribution 

Strain-deformation behavior obtained from this specimen are shown in Figures 4.44 to 

4.48. Similar plot but for strain-load data obtained from this specimen are shown in 

Appendix IV Figures A4.44 to A4.48. The locations of the strain gauges are shown in 

Figure 3.47. The strain-deformation behaviors obtained from all steel strain gauges (SI to 

S5) show a similar pattern. However, the strain magnitude increased from SG S5 to S4, 

SG S4 to S3, SG S3 to S2, and SG S2 to SI. The patterns of strain-deformation behavior 

of all CFRP strain gauges (CI to C5) are also very similar. However, the strain magnitude 

increased from SG C5 to C4, SG C4 to C3, SG C3 to C2, and SG C2 to CI. In general, 

strain magnitude reduced as SG location moved towards the corrosion. Strain gauges C2 

and S3 did not work. 

It can be seen in Figures 4.44 to 4.48 that the strain increased almost linearly until point Y. 

Also the slopes of the strain increments for steel and CFRP are similar. Beyond yield 

point (Point Y), the differences between the strains in steel and the CFRP increased 

indicating that the load may not have fully transferred from the steel to CFRP beyond 

yield point (Point Y). However, as mentioned earlier, no visible sign of debonding was 

found on the specimen. After debonding occurred (point 1), the specimen resumed 

increasing its load, increasing the strains in steel and CFRP until point U (ultimate load). 

In between point Y and U, a small CFRP debonding sound was heard at point 1, 

indicating the CFRP started to debond, causing all the strains to drop slightly at all 

measuring points. At ultimate load (point U), the web at the pin support buckled and the 

load dropped suddenly. The strains for the CFRP under the corrosion (CI to C3) dropped 

significantly. This may be due to sudden drop of load capacity at ultimate load (point U). 

After the sudden drop in strain, the strain in SG CI to C3 increased slightly till the end of 

loading. This is because SG CI to C3 were located at the corrosion area resulting higher 
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strain (tie action) in these gauges. The strains at all other locations (SG C4, C5, and SG 

SI to S5) dropped at much lower rate from ultimate load (point U) to failure load point 

(point F). 

4.3.4 Specimen RC-W133-T1.2-G2 

4.3.4.1 Load-deformation behavior and failure mode 

This was a corroded specimen rehabilitated with 133 mm wide covering full flange width 

and 1.2 mm thick (four layers of Sikawrap Hex 230c) CFRP composite. The load-

deformation behavior for this specimen is shown in Figure 4.49. Specimen RC-W133-

T1.2-G2 yielded at a load of 250 kN (point Y) (specimen CV-G2 yield at 212 kN) and 8.0 

mm vertical deformation. The ultimate load was 330 kN (point U) (specimen CV-G2 was 

260 kN) and the vertical deformation was 20.9 mm. The specimen failed at 189 kN (point 

F) and the vertical deformation was 27.8 mm (specimen CV-G2 was 36.5 mm), due to 

web buckled at pin support. The locations of the salient point identified by Y, U, F, 1 and 

2 in the figure, indicates the specimens global yield load point, ultimate load point, failure 

load point, CFRP debonding noise and severe web buckle at pin support respectively. 

Figure 4.50 shows the vertical deformation response obtained from LP7, LP8, and LP9 

(Figure 3.48) at 80 kN, 280 kN, 315 kN, 330 kN, end of loading process, and at unloaded 

condition. The deformation became unsymmetrical after the ultimate load (point U) was 

applied. At the end of the loading process (point F), the vertical deformation at 400 mm 

away on the right side of mid-span of the beam specimen (LP9) was 7.7 mm larger than 

the vertical deformation at 400 mm away on the left side of mid-span of the beam 

specimen (LP7). At unloaded condition, the vertical deformation difference between LP9 

and LP7 was 4.2 mm. This seems to be due to the web buckling at the pin support (See 

Figure 4.51 and Figure 3.73b). Figure 4.51 shows a small section of beam cut out from 

the pin support end of the beam specimen. Figure 4.52 depicts the load and mid-span 

lateral deformation (LP5) curve, which shows there was about 2 mm of lateral 

deformation of the beam specimen. 
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Small debonding noise was heard when the load reached point 1. The CFRP debonding 

were later found after taking a small section of the specimen at mid-span of the beam (see 

Figure 4.53). After reaching the ultimate load, the load started to drop slowly, and the 

web at the pin support started to buckle. When the deformation reached point 2, the 

buckling became significant, resulting in the rapid drop in the load capacity (Figure 4.49). 

This test was then discontinued. No web or flange buckling at the mid span of the 

specimen occurred (Figure 4.54). This specimen exhibited more ductility than specimen 

RC-W133-T2.4-G2, but little lesser ductility than CV-G2. 

4.3.4.2 Strain distribution 

Strain-deformation behavior obtained from this specimen are shown in Figures 4.55 to 

4.59. Similar plot but for strain-load behavior for this specimen are shown in Appendix 

Figures IV A4.55 to A4.59. The locations of the strain gauges are shown in Figure 3.47. 

The strain-deformation behaviors obtained from all steel strain gauges (SI to S5) show a 

similar pattern. However, the strain magnitude increased from SG S5 to S4, SG S4 to S3, 

SG S3 to S2, and SG S2 to SI. The patterns of strain-deformation behavior of all CFRP 

strain gauges (CI to C5) are also very similar. However, the strain magnitude increased 

from SG C5 to C4, SG C4 to C3, SG C3 to C2, and SG C2 to CI. In general, strain 

magnitude reduced as SG location moved towards the corrosion. Strain gauges C2 and S3 

did not work. 

It can be seen in Figures 4.55 to 4.59 that the strain increased linearly and slowly until 

point Y. Also, the slopes of the strain increment for steel and CFRP are similar. Between 

points Y and U, one cracking sound was heard at point 1 and the load dropped slightly 

(Figure 4.49). SG CI and SG C3 failed soon after this debonding (point 1). Figure 4.58 

shows that the strain in SG C4 dropped rapidly at point 1, indicating debonding occurred 

around location C4. The strain in all other steel SGs (SG S2, SG S3, and SG S5) dropped 

slightly. The strain for the CFRP SG C2, C4, and C5 increased rapidly. This could be 

because the steel was already yielded, and CFRP was carrying the additional load. 

Because of this debonding, the differences between strains in the steel and the CFRP 

increased. This indicates that the load did not fully transfer from the steel to the CFRP. 
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However, as mentioned before, during the test, no visible sign of debonding was found on 

the specimen. After debonding occurred, the specimen resumed increasing loads (Figure 

4.49) and the strains for the CFRP continued to increase while the strain for steel 

remained nearly unchanged. The steel SG at the center of the corrosion (SG SI) failed 

when the global deformation reached 19 mm. The specimen reached its ultimate load 

point at 330 kN and 20.9 mm vertical deformation (Figure 4.49). Between points U 

(ultimate load) and 2 (large buckling in the web at pin end), the strains in all SGs (Steel 

and CFRP SGs) expect SG C2 remained unchanged while the load decreased rapidly and 

deformation increased very little. The incense in strain at location C2 is because SG C2 is 

located at thinner steel flange at the corrosion area. The strains for the CFRP SG C2 

failed at point U. However, the strains in SG S4, and SG S5 dropped slightly and strains 

in remaining SGs at all other locations increased slightly. 

4.3.5 Specimen RC-W133-T0.6-G2 

4.3.5.1 Load-deformation behavior and failure mode 

This is a corroded specimen rehabilitated with 133 mm wide covering the full flange 

width and 0.6 mm thick (two layers of Sikawrap Hex 230c) CFRP composite. The load-

deformation behavior for this specimen is shown in Figure 4.60. This specimen had a 

yield load of 215 kN (point Y) (specimen CV-G2 yield at 212 kN) and 6.5 mm vertical 

deformation. The ultimate load was 276 kN (point U) (specimen CV-G2 was 260 kN) and 

the vertical deformation was 11.6 mm. The specimen failed at 247 kN (point F) and the 

vertical deformation was 31.4 mm (specimen CV-G2 was 36.5 mm), due to CFRP and 

steel splitted at mid-span of the beam (at the corrosion). The locations of the salient points 

identified by Y, U, F, 1 2, and 3 in the figure, depict the yield point, ultimate load point, 

failure load point, CFRP first, second, and third debonding noise, respectively. 

Figure 4.61 shows the deformation response obtained from LP7, LP8, and LP9 (Figure 

3.48) at 70 kN, 235 kN, 260 kN, 276 kN, end of loading process, and at unloaded 

condition. Figure 4.62 is the load and mid-span lateral deformation (LP5) curve, which 
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shows that the steel at the corrosion starts to rip (point 1) until the failure load point 

(shown by point F). There was about 3 mm of total lateral deformation. 

Small debonding noise was heard when the load reached point 1, indicating CFRP 

debonding, due to the deformation at the corroded area of the steel. The CFRP cross-

wraps adjacent to corrosion also ruptured and debonded at this point. After reaching the 

ultimate load, two more loud cracking sounds (point 2 and 3) were heard. At point 3, both 

CFRP splitted and fibers broken, and steel fractured at the corroded area as shown in 

Figure 4.63 to 4.65. These figures show a section of the beam cut from mid-span of the 

beam specimen. 

The failure mode of this specimen was the steel yield, followed by the CFRP splitting and 

steel rupture at the corrosion area. After point 3 (third debonding of CFRP), the loading 

capacity dropped to CC-G2 level, indicating that rehabilitation method at this point 

became totally ineffective. Since the specimen could no longer increase its load, the test 

was discounted when the deformation reached 30 mm. Figure 3.75b shows there was no 

flange buckling under the load application point. This specimen did not experience web 

buckling. 

4.3.5.2 Strain distribution 

Strain-deformation data obtained from this specimen are shown in Figures 4.66 to 4.70. 

Similar plot but for strain-load data obtained from this specimen are shown in Appendix 

IV Figures A4.66 to A4.70. The locations of the SGs are shown in Figure 3.47. The 

strain-deformation behaviors obtained from all steel strain gauges (SI to S5) show a 

similar pattern. The patterns of strain-displacement behaviors of all CFRP strain gauges 

(CI to C5) are also very similar. 

It can be seen from Figures 4.66 to 4.70 that the strain increased linearly and slowly until 

point Y. In addition, the slopes of the strain increment for steel and CFRP are similar. 

Between points Y and U, one cracking sound was heard. At this point, slightly drop in 

strain occurred at SG SI, S3, S4, S5, C4, and C5. The strain at all other locations dropped 

significantly. This is because the CFRP debonded under the corrosion. Immediately after 
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this debonding, the strain in the steel gauges SG SI and SG S2 increased rapidly, and 

strain of CFRP obtained from SG CI and SG C2 were relatively low, as a result of the 

CFRP debonding. Strain in SG SI dropped shortly to a lower value, this is because the 

steel under the corrosion was starting to rupture. Since the CFRP debonded under the 

corrosion, the load was carried by CFRP beyond location C3. Due to the large amount 

load was carried by CFRP beyond location C3, CFRP ruptured at location C3 and C4. As 

a result, SG C 3 and SG C4 failed shortly after debonding (point 1). 

In between point U (ultimate load) and point 2 (second cracking sound), the strain in SG 

SI and CI dropped, while the strain in other SG increased. This is because the steel was 

rupturing. After the beam reached the ultimate load, two more cracking sounds were 

heard (points 2 and 3). When the second cracking sound (point 2) were heard, strains in 

SG CI, C2, C5, S2, and S5 drop significantly, strains in SG SI, S4 and S5 drop slightly. 

This is because more CFRP debonding happed and steel is continue to rupture under the 

corroded area. The strains in SG S3 increased significantly at the same time, this is 

because SG S3 is located at the edge of the corrosion, where the steel bottom flange is 

thinner. After point 3 (third cracking sound), all the strain obtained from all locations 

except SG SI and SG S5 dropped to less than 1000 micro-strain. This means the load was 

no longer carried by the steel or CFRP at locations 1, 2, 3 and 4. At this point, the CFRP 

splitted and fibers broken, and steel fractured. 

4.3.6 Conclusion on group2 specimens 

The control virgin (undamaged) and control corroded specimens failed primarily due to 

the steel yield (Table 4.3). The rehabilitated specimens exhibited different behavior than 

the control specimen, because of the addition of CFRP matrix. The results of the 

rehabilitation technique was successful in restoring the ultimate load to the level of 

control virgin beam as shown in Figure 4.71. 

4.3.6.1 Yield load 

Yielding load is associated with tension steel strain. Table 4.1 illustrates the summary of 

the maximum strains in steel and CFRP at different loading stages for steel and CFRP in 
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the tension zone. As mentioned before, the CFRP composites were applied on the outside 

surface of the bottom flange which sustained more strain than the inner surface of the 

bottom flange. The yielding load was affected due to use of CFRP matrix. Table 4.3 

illustrates the measured yield and ultimate loads for all specimens, a percentage increase 

of 9.4%, 7.3% and -7.7% between specimens CV-G2 and RC-W133-T2.4-G2, RC-W133-

T1.2-G2, and RC-W133-T0.6-G2 respectively. A negative sign indicates decrease in load 

capacity. Thus, RC-W133-T2.4-G2 and RC-W133-T1.2-G2 showed increase in yield load 

capacity, but RC-W133-T0.6-G2 failed to go to the level of control virgin specimen. 

4.3.6.2 Ultimate load 

Table 4.3 summarizes the ultimate load carrying capacity for each group. The 

rehabilitation technique resulted in increase in load carrying capacity by 9.9%, 2.5%, and 

-14.3% for RC-W133-T2.4-G2, RC-W133-T1.2-G2 and RC-W133-T0.6-G2, 

respectively, when compared to CV-G2. A negative sign indicates decrease in load 

capacity. Thus, RC-W133-T2.4-G2 and RC-W133-T1.2-G2 showed increase in ultimate 

load capacity, but RC-W133-T0.6-G2 failed to go to the level of control virgin specimen. 

It should be noted from these results that the thickness of the CFRP is important in the 

rehabilitation method. The maximum depth of corrosion in this project was 4 mm (Figure 

3.8), and the optimum thickness of the CFRP matrix required in this project was 1.2mm 

(four layers of Sikawrap Hex 230c). 

4.3.6.3 Stiffness 

Table 4.4 summarizes the stiffness for each group. The rehabilitation technique resulted 

in increase in stiffness by 8.4%, 5.7%, and 2.3% for RC-W133-T2.4-G2, RC-W133-T1.2-

G2 and RC-W133-T0.6-G2, respectively (Table 4.4 and Figure 4.71b). Stiffness is 

associated with thickness of the CFRP composite in this project, as thicker CFRP 

composite correspond to higher stiffness value. 

4.3.6.4 Ductility 

Ductility is the ability of a structure to undergo large deformation before its failure. It is 

an important requirement in the design of any structural element. Ductile structure can 

109 



exhibit large plastic deformation before failure; therefore, it provides visual indications to 

provide the opportunity for remedial actions prior to complete collapse. 

Ductility is defined as the global deformation at the first sign of failure, which is 

presented in Table 4.2 for all specimens. As expected, control virgin specimens exhibited 

the most ductile behavior. Since the retrofit applications result in an extra reinforcement, 

the bending stiffness of the specimen (EI) increases as the thickness of the CFRP 

increases. The bending stiffness increased by 10%, 5.4% and 3% for RC-W133-T2.4-G2, 

RC-W133-T1.2-G2 and RC-W133-T0.6-G2 respectively, when compared to CV-G2 (See 

Appendix II for details). Ductility is associated with bending stiffness in this project, as 

higher values of bending stiffness correspond to lower ductility. The ductility changed 

from 35.1 to 13.8 mm (61% reduction) for RC-W133-T2.4-G2 (eight layers of Sikawrap 

Hex 230c) compared to CV-G2. This changed from 35.1mm to 25.9 mm (26% reduction) 

for RC-W133-T1.2-G2 (four layers of Sikawrap Hex 230c); and from 35.1 mm to 31 mm 

(12% reduction) for RC-W133-T0.6-G2 (two layers of Sikawrap Hex 230c) (Table 4.2). 

4.3.6.5 Strain 

Table 4.1 illustrates a sample of the strains during different loading stages for the steel 

and CFRP. The highest strain for both the steel and CFRP were found at the center of the 

corrosion (locations CI and SI). Strains measured at locations C5 and S5, the strain 

measure location furthest from the center of the corrosion, have the lowest values. The 

strain in the steel is similar to that of the CFRP until debonding occurred. Once 

debonding occurred, the load could not fully transfer to the CFRP through the bonding, 

and the different strains between CFRP and steel increased. 

4.4 Summary 

This chapter discussed all the test results, which include vertical deformation, ultimate 

load, lateral deformation, strain in steel, and strain in CFRP. 
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Figure 4.1: Load vs. mid span (LP8) vertical deformation behavior of CV-G1 
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Figure 4.2: Vertical deformation response for CV-G1 
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Figure 4.4: Load vs. mid span (LP8) vertical deformation behavior of CC-G1 
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Figure 4.5: Vertical deformation response for CC-G1 
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Figure 4.7: Local strain vs. deformation CC-G1 (Strain Gauge 1-7) 
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Figure 4.9: Load vs. mid span (LP8) vertical deformation behavior of RC-W67-T2.4-G1 

Figure 4.10: RC-W67-T2.4-G1: CFRP debonding 
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Figure 4.11: Vertical deformation response for RC-W67-T2.4-G1 
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Figure 4.12: (a) Load vs. mid span (LP5) lateral deformation behavior of 
RC-W67-T2.4-G1 and (b) Details of view "A" 
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Figure 4.13: RC-W67-T2.4-G1: Flange and web buckled under the load 
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Figure 4.14: (a) Local strain from SG CI & SI vs. deformation for RC-W67-T2.4-G1 

and (b) Details of View "A" 
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Figure 4.15: Local strain from SG C2 & S2 vs. deformation for RC-W67-T2.4-G1 

6000 1 O Y & U 0 2 0 3 v F 

5 10 15 20 25 
Deformation (mm) 

Figure 4.16: Local strain from SG C3 & S3 vs. deformation for RC-W67-T2.4-G1 
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Figure 4.17: Local strain from SG C4 & S4 vs. deformation for RC-W67-T2.4-G1 
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Figure 4.18: Local strain from SG C5 & S5 vs. deformation for RC-W67-T2.4-G1 
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Figure 4.20: (a) Load vs. mid span (LP8) vertical deformation behavior of 

RC-W133-T2.4-G1 and (b) Details of View "A" 
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Figure 4.22: Load vs. mid span (LP5) lateral deformation behavior of 
RC-W133-T2.4-G1 
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Figure 4.23: Local strain from SG CI & SI vs. deformation for RC-W133-T2.4-G1 
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Figure 4.24: Local strain from SG S2 vs. deformation for RC-W133-T2.4-G1 
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Figure 4.25: Local strain from SG C3 vs. deformation for RC-W133-T2.4-G1 
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Figure 4.26: Local strain from SG C4 & S4 vs. deformation for RC-W133-T2.4-G1 

132 



4000 

3500 

c 
« 2500 
w 
2 2000 
1 

1500 H 

o y 

0 

1 Q2 AU 0 3 v F 

20 

-i r 

5 10 15 
Deformation (mm) 

Figure 4.27: Local strain from SG C5 & S5 vs. deformation for RC-W133-T2.4-G1 
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Figure 4.28: (a) load vs. vertical deformation behavior of group 1 specimens 
and (b) detail of view "A" 
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Figure 4.29: Load vs. mid span (LP8) vertical deformation behavior of CV-G2 
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Figure 4.30: Vertical deformation response for CV-G2 
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Figure 4.31: (a) Load vs. mid span (LP5) lateral deformation behavior of CV-G2 

and (b) Details of view "A" 
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Figure 4.32: Load vs. mid span (LP8) vertical deformation behavior of CC-G2 
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Figure 4.33: Vertical deformation response for CC-G2 
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Figure 4.34: (a) Load vs. mid span (LP5) lateral deformation behavior of CC-G2 
and (b) Detail of view "A" 

138 



Figure 4.35: CC-G2, no web or flange buckled 
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Figure 4.36: Local strain from SG SI vs. deformation for CC-G2 
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Figure 4.37: Local strain from SG S2 to S5 vs. deformation for CC-G2 
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Figure 4.38: Load vs. mid span (LP8) vertical deformation behavior of 
RC-W133-T2.4-G2 
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Figure 4.39: RC-W133-T2.4-G2, web buckled at pin support 
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Figure 4.40: Vertical deformation response for RC-W133-T2.4-G2 
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Figure 4.41: (a) Load vs. mid span (LP5) lateral deformation behavior of 
RC-W133-T2.4-G2 and (b) Details of view "A" 
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Figure 4.42: RC-W133-T2.4-G2, no web or flange buckle 
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Figure 4.43: RC-W133-T2.4-G2, no visible sign of debonding at mid-
span 
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Figure 4.44: Local strain from SG CI & SI vs. deformation for RC-W133-T2.4-G2 

£ 5000 -
i— 

o 4000 -| 
i— 
_o 

^ 3000 -

2000 -

1 A U v F 

'0 20 5 10 15 
Deformation (mm) 

Figure 4.45: Local strain from SG C2 & S2 vs. deformation for RC-W133-T2.4-G2 
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5000 

4000 A 

c 
~ 3000 
o 
o 

2000 A 

1000 A 

o y 1 & U 'v F 

5 10 15 20 
Deformation (mm) 

Figure 4.47: Local strain from SG C4 & S4 vs. deformation for RC-W133-T2.4-G2 
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Figure 4.48: Local strain from SG C5 & S5 vs. deformation for RC-W133-T2.4-G2 

350 -I 

300 -

_25Q -
Z 

| *200 -
w 
o 
-J 150 -

100 -

50 -

n °o 

o Y 

j/d 

i 

l i f 

f* 
1 

00* X 

J 

/ 

/ 
/ 1 

D O 

1 

1 

1 

? F 

i i 

10 20 30 
Deformation fmm) 

40 50 

Figure 4.49: Load vs. mid span (LP8) vertical deformation behavior of 
RC-W133-T1.2-G2 
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Figure 4.50: Vertical deformation response for RC-W133-T1.2-G2 
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Figure 4.51: RC-W133-T1.2-G2, web buckled at pin support 
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Figure 4.52: (a) Load vs. mid span (LP5) lateral deformation behavior of RC-W133-T1.2-
G2 and (b) Details of view "A" 
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Figure 4.53: RC-W133-T1.2-G2, CFRP debonding 

Figure 4.54: RC-W133-T1.2-G2, no web or flange buckled at the central of the beam 
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Figure 4.55: Local strains from SG CI & SI vs. deformation for RC-W133-T1.2-G2 
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Figure 4.56: Local strain from SG C2 & S2 vs. deformation for RC-W133-T1.2-G2 
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Figure 4.57: Local strain from SG C3 & S3 vs. deformation for RC-W133-T1.2-G2 
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Figure 4.60: Load vs. mid span (LP8) vertical deformation behavior of 
RC-W133-T0.6-G2 
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Figure 4.63: RC-W133-T0.6-G2, CFRP wrap and cross-wrap splitting 

T2 Debonding of longitudinal CFRP 

Figure 4.64: RC-W133-T0.6-G2, CFRP debonded 
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Figure 4.66: Local strain from SG CI & SI vs. deformation for RC-W133-T0.6-G2 
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Figure 4.68: Local strain from SG C3 & S3 vs. deformation for RC-W133-T0.6-G2 
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5 FINITE ELEMENT ANALYSIS 

5.1 General 

All the five specimens and the parameter study were modeled using ABAQUS Standard 

Version 6.6-1 (which will be referred to as ABAQUS in future discussion), a 

commercially available general purpose finite element (FE) package developed by Hibbitt, 

Karlsson & Sorensen, Inc [HKS 2006]. This software package was selected for several 

reasons. It allows the beams to undergo large deformation using finite (large) strain 

formulations. This software also offers different efficient shell elements for both thin and 

thick shells, and non-linear constitutive models with various material hardening rules, 

such as isotropic, kinematic, and mixed hardening rules. 

Another advantage is that ABAQUS offers both load and displacement controlled 

solution schemes. A load-controlled scheme is necessary to model the initial elastic loads 

applied to the beams, while displacement-controlled schemes are necessary to pass the 

elastic yielding load point and carry out elastic-plastic analysis. In addition, ABAQUS 

allows partial control on the solution process and convergence criteria. Consequently, 

faster or slower solution processes can be chosen and convergence criteria can either be 

relaxed or tightened by the user. 

Full-scale tests on five beam specimens and the parameter study made a significant 

contribution in understanding the effect of surface corrosion and repair of corroded beam 

with CFRP composite. However, the experimental test is time consuming and expensive, 

and cannot provide all the information that might be required for thorough research. As a 

result, mathematical or numerical model analysis is an alternative solution for predicting 

the behavior of a corroded beam and the effects of CFRP repair. 

The primary objective in developing a numerical tool is to be able to predict behaviors 

similar to that observed from group 2's five beam tests. A secondary objective is to 

develop a parameter study included thirty-six rehabilitated beam specimens to study the 

influence of the thickness and length of corrosion on the minimum thickness of CFRP 
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required to repair the corroded beam. The finite element (FE) models of beam specimens 

were calibrated using the test data obtained from this study. 

5.2 Finite Element Method 

Classical mathematical solution techniques like those using partial differential equations 

are generally not useful for most practical structural engineering problems because the 

geometry and load history are too complicated. In these cases, numerical methods such as 

finite element method (FEM) need to be adopted. The FEM has advantages over most 

other numerical analysis methods. For example, FEM is applicable to any field problem 

and there is no restriction on geometric, boundary conditions, loadings, and material 

properties. 

In the first step of finite element analysis (FEA), the whole structure is divided into sets 

of small (finite) pieces (elements), each set with the same geometric pattern and physical 

assumption, and the stiffness of each element is formulated. Each finite element is 

interconnected with the adjacent element through their nodal points, where there is nodal 

force acting at each node and the node is subjected to displacement. For each element, a 

standard set of equilibrium equations can be developed as: 

[ K ] x {U } = { P } (5.1) 

Where [K\ is the structure stiffness matrix, {£/} is the nodal displacement matrix, and {P} 

is applied load matrix. Superimposing these element equations mathematically into a 

matrix format assembles these elements to form the whole structure. After applying the 

boundary conditions, required loads, and displacement, the matrix equation is solved to 

find the unknown parameters. Substituting these values into the matrix, displacement and 

stress distribution everywhere within the element are calculated. A detailed discussion of 

FEM and solution process can be found elsewhere (for example, Bhatti, 2005). 
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5.3 Details of Finite Element Models 

Different considerations that were made during numerical modeling are discussed in the 

following subsections, which also discuss the types of solution techniques that were used 

and the options available in ABAQUS. 

5.3.1 Element 

The specimens were divided into a mesh of finite elements. Four-node shell element 

(S4R) was used for the models and analyses. The S4R is a general-purpose 4-node 

quadrilateral stress/displacement shell element with reduced integration (one intergration 

point) and a large-strain formulation. Each of the four nodes has six degrees of freedom, 

namely three translations (uj, 112, and wj) in the direction of three axes (x, y, and z), and 

three rotations (#/, #2, and 63) about these three local axes. Element formulation of this 

element does not suffer from unconstrained hourglass modes and transverse shear locking 

(HKS, 2006). 

The S4R, being a general-purpose shell element, can be used to model the behavior for 

both thick and thin shells. This element has the capability of modeling transverse shear 

deformation. It uses thick shell theory as the shell thickness increases and becomes 

discrete Kirchhoff thin shell element as the thickness decreases. The transverse shear 

deformation becomes very small as the shell thickness decreases (HKS 2006). Thick 

shells are needed in cases where transverse shear flexibility is important. They are not 

required if the shell is thin because, for thin shells, the shear deformation is negligible. 

For the current study, thin shell formulation was required. 

Default values of shear stiffness in ABAQUS are based on the ratio of area of the element 

to thickness of the element, discussed in the ABAQUS manual (HKS, 2006). The default 

values are adjusted automatically by ABAQUS if necessary to avoid shear locking in the 

elements. However, the default values can be changed if the default shear stiffness 

becomes too large and a shear locking occurs during the analysis. Only the default values 

were used in the current analysis and no problems were noticed. 
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This element accounts for finite membrane strains and allows for change in thickness. 

Membrane strains are those strains that exist in the shell, especially in a thin shell, but are 

not due to bending. They are suitable for large deformation and finite strain analysis and 

found effective in modeling the severe local buckling in flange and web under the load 

conditions of the experimental tests. The derivatives of the position vector of a point on 

the deformed reference surface with respect to the same point on the undeformed 

reference surface gives the membrane strains on the surface. This allows for a variation in 

the thickness of the shell element at different load increments, as occurred in the actual 

pipe test specimens. The strains that result from bending are assumed to be small and 

derived from the derivatives of the normal to the reference surface. 

This S4R element uses has an isoparametric formulation, which means that the element 

displacements are interpolated in the same way as the geometry interpolation. Therefore, 

it is assumed that each nodal point coordinate necessary to describe the geometry of the 

element, there corresponds one nodal point displacement. 

The default number of integration points through the thickness of the shell is five and the 

default value was used for the modeling. However, it is possible to change the number of 

default integration points. Simpson's rule is used to approximate the integration. The 

section points through the thickness of the shell are numbered consecutively, starting with 

point 1 at the "bottom" surface of the shell. The S4R has only one integration point on its 

mid-surface and it is a reduced integration element. Reduced integration uses a lower-

order integration to form the element stiffness. Reduced integration usually provides more 

accurate results (provided the elements are not distorted), and significantly reduces 

running time, especially in three dimensions. Reduced integration does not cause any 

change in the convergence rate and often improves the displacements and stress 

predictions significantly. 

Reduced integration may however, introduce some "hourglass" deformation modes. This 

S4R element has hourglass control to prevent it to from an hourglass mode. An hourglass 

mode is a mode of deformation, other than conventional rigid body motion, that does not 

develop any strain energy. Consequently, like rigid body motion, this mode of 
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deformation poses similar numerical instability in the solution process. The hourglass 

mode can be associated with in-plane (membrane deformation modes) displacements or it 

may be due to rotational (bending modes) modes (HKS, 2006a). Element S4R 

formulation in ABAQUS provides control on both of these modes. ABAQUS uses a small 

artificial stiffness associated with rotation about the shell normal to prevent hourglass 

modes. The default stiffness values are given in HKS (2006b). The default stiffness 

values used are sufficiently small such that the artificial energy content is negligible. 

However, this default value can be changed if found that default values are not enough to 

stop the hourglass modes from happening. Only the default values were used in the 

current analyses and no difficulties were noticed. 

5.3.2 Geometry and Boundary Conditions 

A typical geometry that was used in the numerical analysis for this project is shown in 

Figure 5.1. The displacements U]t U2, and wj and the rotations 82 and 83 were restrained to 

simulate a pin support (point C). For the left support (roller) (point B), only displacement 

U2 and rotation 62 were restrained to simulate a roller support as used in the test. These 

two points (point B and point C) in the test setup were 100mm away from the right/left 

bottom ends of the beam. For beam specimens, this distance (100 mm) does not have any 

significance because these points were connected to the bottom ends of the beam in such 

a way that the portion of the model between pivot point and adjacent bottom ends of the 

beam behaved like a rigid body. 

Multi-point constraints (MPC) algorithm were used between the nodes on the bottom 

ends of the beam and the adjacent pivot point (Point B and Point C in Figure 5.1) to 

simulate physical connectivity of the beam ends to the nearest support. The MPC-BEAM 

was used to constrain the degree of freedoms of the nodes (slave nodes) on the bottom 

flange at the ends of the beam to the degree of freedoms of the points (B and C) and thus, 

allowing the portions of the structure in between the beam specimen and the nearest pivot 

node to behave like a rigid body. The MPC-BEAM acts very similar to a rigid beam 

element except no element exists in the earlier case, and thus, reducing significant 

processing efforts and time. Consequently, the ends of the beam bottom flange were 
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subjected to the same boundary conditions that were applied to the nearest pivot point 

(master node). 

A flange stiffener, 1000 mm long x 110 mm wide x 6 mm thick steel plate, was welded to 

the center top flange of the beams to avoid flange buckle under the load application point 

as shown in Figure 3.22. For simplicity in numerical modeling and analysis, this plate 

was simulated by moving the nodes in that area up by 3 mm and increasing the thickness 

by 6 mm (see Figure 5.2 for details). A point load was applied in the negative y direction 

on the load point (master node, Point A in Figure 5.1) same way as it was applied on the 

test specimen. MPC-BEAM algorithm was used between the nodes, which are located at 

the top flange of the beam and located within 100 mm to the mid-span, and the load point 

(point A) to simulate the jack acting on the loading plate. 

The corrosion was modeled by moving the nodes in corrosion zone up by maximum 2 

mm at the center of the corrosion, and reducing the thickness of the bottom of the beam 

flange gradually (see Figure 5.3 for details). 

Layers of MBrace CFRP and epoxy were simulated together as one thick layer of MBrace 

composite system assuming no separation between two CFRP composite layers. Thus, the 

number of nodes and elements reduced significantly. Therefore, a smaller stiffness matrix 

was required, leading to save in solution processing time drastically. The nodes of the 

CFRP composite were constrained to the bottom of the beam flange by using MPC 

algorithm. Thus, a perfect bonding between CFRP composite and bottom flange of the 

beam was modeled. As a result, the cross wraps (ties) used in experiments were not 

required for the FE model. 

Lateral support systems were modeled by constraining displacement ui at required nodes, 

while the steel blocks were modeled by constraining displacement U2 between necessary 

nodes on the top flanges of the beam (master) and the adjacent nodes on the bottom 

flange (slave) (See Figure 3.17 and 3.20 for locations). The web stiffeners were model by 

constrained displacement ui, and rotation 62 and 63 of the web at the mid span of the 

beam (See Figure 3.21 for location). 
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The filler material, MBrace putty or CFRP, was filled into the corroded hole in order to 

have a leveled surface for CFRP bonding in the experimental. The filler material alone 

does not affect structure's behavior, because of its short bonding length. Therefore, the 

filler material was not simulated in the program. 

The installed thickness for MBrace primer is 0.075mm approximately. The primer was 

applied on the corroded surface to enhance the bonding. The effect of MBrace primer was 

not required in the numerical models. 

5.3.3 Material Properties 

Two different materials were used in the numerical modeling and analysis. They are steel 

and CFRP composite. The following subsections discuss material properties for these 

two materials. 

5.3.3.1 Steel 

A total of eight tension coupon specimens from the steel beam were tested to obtain the 

uniaxial stress-strain behavior of the beam material. Test procedures and test results are 

discussed in Sections 2.6.7 and 3.4.1, respectively. All eight steel tension coupon tests 

indicated almost identical behaviors. Table 5.1 presents the average material property in 

nominal sense. Figure 5.4 shows the graphical representation of the same "average" 

behavior for all five tension coupons. 

The Point U is the ultimate load point and its coordinates are shown in the parenthesis. 

The nominal values of fracture stress and fracture strain were determined after the 

completion of the material tests. Subsequently, the Point F corresponding to the fracture 

nominal stress and fracture nominal strains as shown in Figure 5.4. No data could be 

recorded in between ultimate load point (U) and the fracture (F) and consequently, the 

material behavior was assumed to be linear in between these two points as shown in 

Figure 5.4. 

The material properties obtained from the axial tensile coupon tests were expressed in 

"engineering stress" and "engineering strain" (nominal) values (Figure 5.4). These 
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engineering (nominal) values were computed based on classical strength of material 

definitions for the undeformed original cross sectional dimensions. They are reasonably 

good for linear elastic and small strain analyses. The current finite element models were 

required to run up to very large deformations and strains. Therefore, "true stress-true 

strain" behavior as presented in Figure 5.5 was required. The ultimate load and fracture 

points are indicated in this figure by the same notations U and F, respectively. ABAQUS 

however, requires "true stress" and "true plastic strain" behavior irrespective of type of 

analysis. The true stress (<rtrue) and true plastic strain (e£) are calculated using the 

following expressions (HKS, 2006b). 

(T
lrue=(Tnom(l + £nom) (5-2) 

and 

E 

where amm is the nominal or engineering stress, enom is the nominal or engineering strain 

recorded from the material tests, and E is the modulus of elasticity. The true stress and 

true plastic strain behavior obtained based on the nominal values in Table 5.1 and using 

Equations (5.2) and (5.3) is shown in Figure 5.6. 

A yield criterion specifies the state of multi-axial stress corresponding to the start of 

plastic flow. The default in ABAQUS is the classical Mises yield criterion. This is good 

enough for initially isotropic metals like the one used in the test beam specimens. This 

criterion was used for the current finite element models. The yield criterion assumes that 

the yield of the metal is independent of the equivalent pressure stress. 

The associated plastic flow rule was used to relate the plastic strain increments to the 

current stresses and stress increments subsequent to yielding. Associated plastic flow 

means that, as the material yields, the inelastic (plastic) deformation rate is in the 

direction of the normal to the yield surface. This assumption is generally acceptable for 

most metals including the beam material in the current model. 
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A hardening rule describes how the yield surface or yield condition changes with 

progressive yielding, so that the conditions (i.e. stress states) for subsequent yielding can 

be established. ABAQUS/Standard 6.6-1 (HKS, 2006b) provides options of various work 

hardening rules for metals: a perfect plasticity (no strain hardening) model, a nonlinear 

isotropic hardening model (called isotropic hardening model), a kinematic hardening 

(called as linear kinematic hardening) model, and mixed hardening model (called as 

nonlinear isotropic/kinematic hardening model). 

A perfect plasticity model assumes that the yield surface does not change with the plastic 

deformation. It does not represent the true behavior of the beam materials that experience 

significant hardening after yielding. Therefore, it was not used for the current numerical 

modeling and analysis. 

The isotropic hardening material model assumes that the center of yield surface remains 

at the same location while expanding or shrinking in size as the plastic strains develop as 

shown in Figure 5.7(a). The isotropic hardening material model in ABAQUS is nonlinear 

and a full range of stress-strain behavior can be defined. Both strain hardening and strain 

softening can be defined. Since no reversals in elastic-plastic strain occurred in the test 

specimens, isotropic material hardening model was used in this study. 

In the kinematic hardening model, it is assumed that the size and shape of the yield 

surface remains constant but the yield surface translates in stress space (like a rigid body) 

with progressive yielding as shown in Figure 5.7(b). Bauschinger effect associated with 

stress reversals are considered in this hardening model. The Bauschinger effect means, 

when applying a tensile or compressive load beyond its elastic limit, the elastic limit for 

the compression or tension, respectively will reduce considerably, see Figure 5.8 for 

detail. In other words, the Bauschinger effect demonstrates that the material in the other 

direction becomes weaker due to stress reversal. Bauschinger effects are important when 

elastic-plastic strain reversals take place, such as one due to cyclic loads. Since no cyclic 

load was applied in the specimens, the kinematic hardening model was abandoned from 

use in this study. Uses of isotropic material hardening models provided global behaviors 

similar to the actual behaviors observed from the laboratory tests. 

168 



A combination of isotropic and kinematic hardening rules that are used in the mixed 

hardening model leads to a more general hardening rule. It provides more flexibility in 

describing the hardening behavior of the material. This hardening rule will give better 

predictions, but requires calibration that is more detailed and difficult. Since no reversals 

of elastic-plastic strain occurred in the test specimens, mixed hardening model was not 

necessary. 

The hardening rule used in this project is the isotropic hardening model (Figure 5.6). 

5.3.3.2 MBrace Strengthening system 

Coupon tests were conducted for MBrace epoxy, MBrace CFRP dry fabric and MBrace 

CFRP composite. Test procedures and test results are discussed in Sections 2.6 and 3.4.2. 

The test result indicated that MBrace CFRP fabric and composites system exhibit linear 

elastic behavior. Only the MBrace CFRP composite was used in ABAQUS model. The 

values used in ABAQUS for modeling material behavior of CFRP composite are tensile 

modulus, poisson ratio, and rupture ratio are 243 GPa, 0.4 and 1.67%, respectively. 

5.3.4 Mesh Selection 

5mm long element were used throughout the whole specimen to avoid the influence of 

non-uniform mesh size on the behavior of the specimens. However, the specimen width 

is not uniform in the test, because of the dimension of the specimen. The specimens were 

categorized into two groups in accordance to their lengths, these are: (1) horizontal or 6 

mm width elements, (2) vertical or 5 mm width elements. These numbers were chosen 

due to the geometric size of the I-beam. The horizontal (6 mm width) elements formed 

the flange of the beam, the aspect ratio for this kind element is 5:6 (length: width = 5 mm: 

6 mm). The vertical (5 mm width) elements formed the web of the beam, the aspect ratio 

for this kind element is 1:1 (length: width = 5 mm: 5 mm). 
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5.3.5 Load Histories 

The load that was applied to the test specimens was also applied to the numerical models. 

The axial point load P as was applied in several increments. Only the maximum numbers 

of increments, minimum increment size, and maximum increment size need to be defined 

in the ABAQUS input file. The ABAQUS solution scheme then finds out the optimum 

increment size and consequently the total number of increments required. 

The load was applied in two steps. In the first step, load control was used until the 

specimen reached its ultimate load. In the second step, displacement control was used 

until the specimen failed. 

5.3.6 Solution Strategy 

Various nonlinear solution techniques are available these days. ABAQUS offers three 

nonlinear solution methods: Newton's methods (full Newton's method and modified 

Newton's method), Quasi-Newton's method, and Modified Riks method. 

In the full Newton's method, the stiffness matrix [K] must be formed and solved in every 

iteration at each nodes and every direction as shown in Figure 5.9. Consequently, total 

solution time is high. Therefore, this method is usually avoided in large finite element 

codes. The most commonly used alternative to Newton is the modified Newton method, 

in which the [K] is recalculated only occasionally. This method is suitable for moderate 

nonlinear problems involving softening behavior; however, it should not be used in 

severely nonlinear analysis. 

In quasi-Newton method, a series of approximate [K\ is used rather than exact [K\, the 

trade-off is that more iterations are required to converge, compared to Newton as shown 

in Figure 5.10. Thus, for some practical cases, quasi-Newton methods are more economic 

than full Newton, but in other cases, they are more expensive. 

Riks method is a linearized arc-length solution method. It is capable of tracing the 

complicated stable and unstable equilibrium paths. In the Riks method, the basic 

algorithm remains the Newton's method. The only difference here is that the increment 
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size is limited by moving a given distance along the tangent line to the current solution 

position and searching for equilibrium in the plane that passes through the point and 

orthogonal to the tangent line, rather than to the tangent line that represents elastic 

material stiffness. A graphical representation is shown in Figure 5.11. This method 

however, fails to trace the equilibrium path if snap-through or snap-back behavior exists 

as presented in Figure 5.12. In that case, a cylindrical arc-length method is required and 

ABAQUS/Standard does not have this option in it. 

The default solution technique in ABAQUS is Newton's method. ABAQUS automatically 

moves between full Newton's method and modified Newton's method (HKS, 2006a) 

based on the difficulties in updating [K\ and the convergence rate. All the discussions 

made in earlier paragraphs are based on a load-controlled method. However, both load 

and displacement controls are available with Newton's method in ABAQUS. Two 

different control methods are discussed in the subsequent sections. 

There are two ways to control the solution process: load control and displacement control. 

In a load-controlled method, an exact load level is specified for each loading step. 

Displacements {u} are found by solving the elastic load deformation relationship 

(Equation 5.1). This method works well until the solution process reaches the limit point 

(point 3 in Figure 5.9, 5.10,5.11, 5.13, and 5.14). At the limit point (Point 3 in Figures 5.9 

and 5.10), the stiffness matrix becomes singular and the solution path diverges. This is 

shown in Figure 5.13. In the displacement-controlled method, increments of one or more 

displacements are specified and the remaining unknown displacements {u} are found by 

solving the same equation (5.1). The advantage with this method is that the stiffness 

matrix is better conditioned. Here, one or more displacements are known in the {u} 

vector and consequently only the reduced stiffness matrix, obtained from [K] needs to be 

inverted, thus the whole stiffness matrix [K] never turns out to be singular. The graphical 

representation of the displacement control method is shown in Figure 5.14. The 

advantage with this control is obvious from this figure. An intersection between a 

vertical line (line drawn at a desired increment in the displacement) and equilibrium path 

(load-deformation curve) can always be found. 
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Newton's methods are suitable for the current beam problems. Consequently, Newton's 

method with displacement control was adopted for the analysis of the models. Not much 

difficulty was noticed in passing the limit points. 

5.3.7 Iteration and Convergence 

ABAQUS incorporates an empirical algorithm designed to provide an accurate, and at the 

same time economical solution of the equilibrium equations of nonlinear systems. For 

structural stress analysis, ABAQUS uses four parameters: displacement, rotations, force, 

and moment to check the convergence at each increment. Default tolerance values are 

assigned with these parameters and they need not be adjusted for most cases. In difficult 

cases, however, the solution procedure may not converge with the default controls or may 

use an excessive number of increments and iterations. It may be useful to change certain 

control parameters. The default value of tolerance for force and moment is 0.005, and 

displacement and rotation is 0.01. Only default values were used for the current analyses. 

ABAQUS uses a scheme based predominantly on the maximum force residuals (force and 

moment), following each iteration. By comparing consecutive values of these quantities, 

it determines whether convergence is likely in a reasonable number of iterations. If 

convergence is deemed unlikely, ABAQUS adjusts the load increment; if convergence is 

deemed likely, it continues with the iteration process. A minimum increment size is 

specified (either ABAQUS default or user's defined) to prevent excessive computation in 

case of limit load or modeling error and consequently the process stops. 

5.4 Summary 

Finite element models for the test specimens were made and analyzed using the 

ABAQUS software package. The major difficulty faced during the current modeling was 

simulating the boundary conditions similar to the actual test, which was overcome 

successfully by using a modified pin-roller support, only constraining displacement 112 as 

described in Section 5.3.2. Results of current finite element analyses are discussed and 

compared with the test results in Chapter 6. 
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Table 5.1: Nominal stress and strain values 

Nominal Strain (%) 

0 

0.05 

0.10 

0.19 

0.96 

2.02 

4.04 

6.01 

8.03 

10.02 

12.02 

14.01 

16.05 

18.02 

20.09 

22.06 

24.58 

34.00 

Nominal Stress (MPa) 

0 

91.23 

202.72 

430.79 

414.10 

427.56 

452.00 

479.59 

499.79 

510.22 

517.38 

521.94 

523.90 

524.54 

524.54 

524.55 

525.01 

390.62 
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Figure 5.4: Nominal stress-strain behavior until fracture 
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6 COMPARISON OF EXPERIMENTAL AND FEA RESULTS 

6.1 General 

A detailed discussion on modeling techniques adopted for the numerical analyses using 

finite element method (FEM) is made in last chapter. This chapter discusses the results 

obtained from the finite element analyses (FEA) and compares these results with the test 

results. The primary objective of the numerical analysis was to develop a numerical tool 

that is able to simulate the complicated global and local behaviors observed from the test 

specimens. However, primary calibration of the numerical models was done based on 

global behavior only. A good correlation between the test and FEA models was obtained 

for the specimens. 

6.2 Validation ofFE Model 

The following subsections discuss the comparisons of test behavior and numerical 

analyses for all group 2 specimens. As mentioned in Chapter 3, group2 contained one 

control virgin specimen (CV-G2), one control corroded specimen (CC-G2), and three 

rehabilitated specimens (RC-W133-T2.4-G2, RC-W133-T1.2-G2, and RC-W133-T0.6-

G2). All specimens had web stiffeners to prevent web buckling at mid-span, and flange 

stiffeners to prevent top flange buckling under load as discussed in section 3.3.4. In 

addition, the specimens were supported at top and bottom flanges laterally using eight 

lateral supports to avoid lateral torsion buckling. Four steel round blocks were mounted 

between the top and bottom flanges under the load application point to reduce the flanges 

from buckling. 

6.2.1 Specimen CV-G2 

Specimen CV-G2 was the control virgin specimen in the series of group 2 specimens. The 

ultimate load for this specimen was 322 kN, and similarly, for the finite element analysis 

(FEA) model, the ultimate load of the specimen was 314.6 kN. The global load-

deformation behaviors obtained from the test and from FEA are presented in Figure 6.1, 

and similar behavior was also obtained. However, in the test, sever and sudden web 

buckling occurred at roller supports because the lateral support system near that support 
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broke. Thus, the load dropped quickly and significantly. This was not simulated in the 

numerical modeling to keep the modeling and analysis relatively simple, and thus, sudden 

and quick drop in the load capacity in the numerical model was not obtained. The lateral 

support system in FEA model was modeled by constraining displacement ui at particular 

nodes as mention in section 5.3.2, thus was able to stop the web from buckling in FEA. 

A good correlation was observed between the test and FEA global load-deformation 

behavior. The ultimate load obtained from numerical analysis is about 2.3% lower than 

the test value. The stiffness of elastic curve obtained from the numerical analysis is 17.3% 

higher than that obtained from the test data (Table 6.1). This is because, in the FE model, 

the beam's curvature at the web-flange intersection and at the tips of the flanges were not 

considered (Figure 6.2a). Also, in FE model, finite elements (5 mm x 5 mm and 5 mm x 6 

mm) were used. Therefore, the cross-section of the beam in FEA is slightly larger than 

the in the test specimen as shown in Figure 6.2b. Another reason could be the beam used 

in the test are not perfect W200x21 beam, which means the flange of the beam was not 

exactly 6.4 mm thick and the web was not exactly 5 mm thick. 

Figure 6.3.a and b show the final deformed shape of beam obtained from test. The final 

deformed shape of Specimen CV-G2 obtained from FEA is shown in Figure 6.3c. A good 

correlation between the deformed shapes obtained from test and finite element analysis 

(FEA) was found. Both figures showed that no web or flange buckling under the load 

application point (mid-span). Figure 6.3b shows the web buckling at the roller support for 

test specimen. The FE analysis did not show this web buckling (Figure 6.3c). The web 

buckling occurred in the test was due to large lateral force. The lateral supports in FEA 

model was able to stop the top flange move laterally, thus, no web buckled in FEA model. 

6.2.2 Specimen CC-G2 

Specimen CC-G2 was the control corroded specimen of group 2. The ultimate load for 

this specimen was 260 kN, and the finite element model predicted ultimate load of 261.4 

kN. The global load-deformation behavior that was obtained from the test and FEA 

analysis are presented in Figure 6.4. Similar behavior is again observed from both test and 

FEA. 
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A good correlation was observed between the test and numerical (FEA) global load-

deformation behavior. The maximum load obtained from the numerical analysis is about 

0.5% higher than the test value. The stiffness of elastic curve obtained from numerical 

analysis is 17.2% higher than that obtained from the test data. Consequently, the 

deformation corresponding to the ultimate load for the analytical model is lower than that 

for test specimen. 

The final deformed shape of Specimen CC-G2 obtained from the test is shown in Figures 

6.5a and 6.5b and that obtained from the FEA is shown in Figure 6.5c. A good correlation 

between these two deformed shapes obtained for this specimen is observed. Both FEA 

and test did not show web or flange buckling for this specimen. However, the tearing of 

the bottom flange at center corrosion observed from test specimen (Figure 6.5b) was not 

modeled in numerical analysis. This would require separation of geometry in FE analysis 

and thus, would make the FE modeling and analysis extremely complicated. 

6.2.3 Specimen RC-W133-T2.4-G2 

Specimen RC-W133-T2.4-G2 was a corroded specimen repaired with 2.4 mm thick (eight 

layers of Sikawrap Hex 230c dry fabric) Carbon Fiber Reinforced Polymer (CFRP) 

composite. The ultimate load for this specimen was 354 kN, and the finite element 

analysis (FEA) model exhibited an ultimate load of 353.8 kN, and thus, the difference is 

0.06%. The load-deformation behavior obtained from the test and FEA are presented in 

Figure 6.6. Similar load-deformation behavior for this specimen was also obtained from 

numerical analysis and test. 

A good correlation was observed between the test and FEA global load-deformation 

behavior. The maximum load obtained from numerical analysis is about same as the test 

value. The stiffness of elastic curve obtained from the numerical analysis is 15.9% higher 

than that obtained from test data (see Figure 6.6). Consequently, the deformation 

corresponding to the ultimate load for the FE1A model is a little lower than that for the test 

specimen. 
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The final deformed shape of Specimen RC-W133-T2.4-G2 obtained from test is shown in 

Figure 6.7a and b and that obtained from FEA is shown in Figure 6.7c and d. A good 

correlation between the deformed shapes obtained from test and FEA is found between 

these two deformed shapes. Both figures show that there is no web or flange buckling 

under the load application point for this test specimen. Both Figures 6.7b and 6.7d show 

the web lateral buckling at the roller support. 

6.2.4 Specimen RC-W133-T1.2-G2 

Specimen RC-W133-T1.2-G2 was a corroded specimen repaired with 1.2 mm thick (four 

layers of Sikawrap Hex 230c dry fabric) CFRP composite. The ultimate load for this 

specimen was 330 kN, and the finite element analysis (FEA) model exhibited the ultimate 

load of 330.5 kN. The load deformation behavior obtained from the test and FEA are 

presented in Figure 6.8 and a similar behavior is noticed. 

A good correlation is observed between the test and analytical global load-deformation 

behavior. The maximum load obtained from numerical analysis is about 0.15% higher 

than the test value. The stiffness of elastic curve obtained from the numerical analysis is 

14.4% higher than that obtained from test data (see Figure 6.8). Consequently, the 

deformation corresponding to the ultimate load for the FEA model is a little lower than 

that for the test specimen. The load dropped faster in the numerical model than the test 

specimen after reaching the ultimate load. This could be due to the friction that was 

present between the lateral support (LS) and beam in the test specimen, but the same was 

not simulated in the FE model to make the model relatively simpler. 

The test specimen finally failed due to buckling of web at roller support. The final 

deformed shape of Specimen RC-W133-T1.2-G2 obtained from test is shown in Figure 

6.9a and 6.9b. The final deformation obtained from FEM analysis is shown in Figure 6.9c 

and 6.9d. A good correlation between the deformed shapes obtained from test and finite 

element analysis (FEA) are found from these figures. Both figures show that no web or 
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flange buckling occurred at the mid-span. Both Figures 6.9b and 6.9d show the web 

buckling at the roller support. 

Localized strain behaviors obtained from test and FEA are shown in Figures 6.10 to 6.19. 

As shown in Figures 6.10a to 6.19a, after the strain in steel increases above 0.2% (yield 

strain), the difference between the strain values obtained from test and FEA increased. 

This is primarily because of the strain values obtained from the FEA are true (logarithmic) 

strain values, and the strain values obtained from experimental test are not. The other 

reason is that the FEA assumes perfect bond between CFRP matrix and steel substrate 

whereas in test there was shear deformation between these two materials. Figures 6.10b to 

6.19b show the strain values obtained from both test and FEA until the steel yielded 

(0.2% strain value). However, a small difference is found between test and FEA 

displacement-strain behaviors shown in these figures. A possible reason could be that the 

strain gauges used in the test to obtain the strain values for CFRP and steel differ in sizes 

to those in the FEM analysis. The actual strain gauges were 13 mm long x 7.2 mm wide 

for CFRP and 3.2 mm long x 2.5 mm wide for steel, while the area of the elements in the 

FEA was 5 mm long x 6 mm wide. Another possibility could be the strain gauges were 

installed slightly off the targeted locations. 

6.2.5 Specimen RC-W133-T0.6-G2 

Specimen RC-W133-T0.6-G2 was a corroded specimen repaired with 0.6 mm thick (two 

layers of Sikawrap Hex 230c dry fabric) CFRP composite. A good correlation is observed 

between the test and analytical global load-deformation behavior until application of 

ultimate load (276 kN) where the debonding of CFRP occurred in the test specimen as 

shown in Figure 6.20. The stiffness of elastic curve obtained from the numerical analysis 

is 11% higher than that obtained from test data (see Figure 6.20). In the test, the major 

debonding of CFRP matrix occurred after the ultimate load was applied. The CFRP was 

no long able to share the load and became ineffective, therefore the load dropped to the 

level of control corroded specimen (CC-G2). However, CFRP debonding was not 

modeled in FE model and therefore, the CFRP matrix was bonded perfectly to the steel 
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substrate all along. Therefore, the load in FE model was able to transfer to the CFRP 

matrix through the bonding and thus, the load in FEA continued to increase. 

6.3 Parametric Study 

Full-scale test data showed that bonding CFRP matrix to the beam was able to restore the 

ultimate load to the level of virgin (undamaged) beam specimen. However, based on test 

data, it could not be concluded if this rehabilitation method would still be able to restore 

the ultimate load to the corroded beam and of maximum ductility could be obtained when 

sizes (depth and length) of the corrosion changes. Thus, a detailed parametric study was 

undertaken to determine numbers of layers of CFRP required rehabilitating the corroded 

specimens with various depth and length of this circular corrosion. The depth of the 

corrosion was varied between 1 mm to 6 mm with 1 mm increments. The length of the 

corrosion was varied from 50 mm to 175 mm with 25 mm increments. A total of 36 (6x6) 

beam specimens were therefore analyzed using FE method for this study and the results 

are discussed next. 

In this parametric study, it was assumed that the rehabilitation is successful if the 

rehabilitated corroded beam reaches its original ultimate strength (ultimate strength of 

virgin or undamaged beam) with a minimum 20 mm vertical deformation before failed in 

one of the failure modes (flange buckling, web buckling at mid-span or at the supports, or 

rupture of CFRP matrix). Then the thickness of CFRP matrix required to be able to make 

the rehabilitation successful was found for each specimen. The results are shown in Table 

6.2. The graphical representation of the parametric study is shown in Figure 6.21. 

Both Table 6.2 and Figure 6.21 show that length of corrosion does not influence the 

required thickness of CFRP matrix. This may be due to the fact that the length of CFRP 

composite was 100 mm and this is large enough for all the corrosion lengths chosen in 

this study. The other reason could be modeling of perfect bond between CFRP composite 

and steel substrate in the FEA model. A tri-linear relationship between the corrosion 

depth and required CFRP thickness was obtained (Figure 6.21). This figure shows that 
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optimum required thickness of CFRP composite (laminate) is less than the depth of 

corrosion when corrosion depth is higher. 

6.4 Conclusion and recommendation 

The previous chapter presented numerical modeling and solution techniques of test 

specimens. The model is able to simulate and predict the behavior of rehabilitated 

specimens if no debonding between CFRP matrix and steel substrate occurs. This chapter 

presents the results obtained from the FEA and compares these results with the test 

results. The comparisons show that a numerical tool like ABAQUS is able to simulate 

the tests results successfully. However, further improvement in the FE model needs to be 

undertaken in future studies. Some of these modifications are discussed below. 

(a) Saturant needs to be modeled as an individual component in order to simulate CFRP 

debonding. 

(b) Saturant and CFRP bonded to steel using contact modeling in order to simulate 

CFRP debonding. 

(c) Reduction of element size at each load concentrated area to achieve results that are 

more accurate. 

(d) Tearing of steel and CFRP matrix needs to be modeled using a suitable failure 

model. 

Full-scale tests were carried out to study the effects of corroded beams when repaired 

with different thicknesses of CFRP. Detailed parametric studies were then undertaken 

using FE methods to study the influence of corrosion thickness and corrosion length on 

the minimum thickness of CFRP required to repair the corroded beam. The following 

conclusions are made based on the current study. 

(a) Both experimental test data and numerical analysis indicate that the strength can 

be fully restored by using CFRP to repair the corrosion. 

(b) The parametric study shows that thicker CFRP is required when a larger 

percentage of the bottom flange depth is lost. However, the relationship is not 
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directly proportional. The optimum required thickness of CFRP composite 

(laminate) is less than the depth of corrosion when corrosion depth is higher, 

(c) The parametric study shows that the length of corrosion does not affect the 

required thickness of the CFRP complete. 
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Table 6.1: Stiffness of elastic curve 

CV-G2 

CC-G2 

RC-W133-T2.4-G2 

RC-W133-T1.2-G2 

RC-W133-T0.6-G2 

Stiffness obtained 
from FEA 

42.1 

39.0 

45.2 

43 

40.0 

Stiffness obtained 
from test 

34.8 

32.3 

38.0 

36.8 

35.6 

Difference in 
stiffness (%) 

17.3 

17.2 

15.9 

14.4 

11.0 

Table 6.2: Thickness of the CFRP required (mm) 

L
en

gt
h 

of
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he
 

co
rr
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n 
(m

m
) 

50 

75 

100 

125 

150 

175 

Depth of the corrosion (mm) 

1 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

2 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

3 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

4 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

5 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

6 

1.8 

1.8 

1.8 

1.8 

1.8 

1.8 
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Figure 6.1: Load deformation curve for CV-G2 (FEA and Test) 
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Figure 6.4: Load deformation curve for CC-G2 (FEA and Test) 
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Figure 6.5: Final deformed shape of test CC-G2 specimen 
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Figure 6.6: Load deformation curve for RC-W133-T2.4-G2 (FEA and Test) 

195 



=i-.3^,yrf.iisas^li£ 

jaHlHgBfffi 

'"^^•iil^ 
'•w:V|S« 

Web buckled 
•:••. v - ..••.-x,a«$sv.-,'ef 

Pin support 

Figure 6.7: Final deformed shape of test RC-W133-T2.4-G2 specimen (a) Test, 
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196 



350 -i 

0 10 

- RC-W133-T1.2-G2 FEA 
RC-W133-T1.2~G2Test 

20 30 
Deformation (mm) 

40 50 

Figure 6.8: Load deformation curve for RC-W133-T1.2-G2 (FEA and Test) 
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Figure 6.10: (a) Strain of steel at location 1 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.11: (a) Strain of steel at location 2 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.12: (a) Strain of steel at location 3 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.13: (a) Strain of steel at location 4 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.14: (a) Strain of steel at location 5 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.15: (a) Strain of CFRP at location 1 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.16: (a) Strain of CFRP at location 2 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.17: (a) Strain of CFRP at location 3 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.18: (a) Strain of CFRP at location 4 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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Figure 6.19: (a) Strain of CFRP at location 5 (FEA v.s. test) 

and (b) Strain before steel yield (0.2%) 
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7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This chapter summarizes the research and findings, and provides conclusions on the work 

completed under the scope of the thesis. This chapter also recommends further work that 

is necessary and can be undertaken in future studies. 

7.1 Summary 

Field observations found a large numbers of steel bridges with various levels of corrosion. 

It is understood that conventional method of repair for the corroded steel bridge could 

lead to other problems, such as fatigue problem, brittle failures, and galvanic corrosion. 

Recently, Carbon Fiber Reinforced Polymer (CFRP) and other fiber polymers have been 

introduced in corrosion repair of steel structural members. As a result, this research 

program was set to examine the rehabilitation technique of surface corroded steel beam 

using CFRP sheets (fabrics). 

As a first step towards the examination of the rehabilitation technique of surface 

corroded steel beams using CFRP sheets, two groups consisting of nine steel beam 

specimens were undertaken and tested to understand the behaviour of the rehabilitated 

beams. 

This experimental data indicated that the repair technique using CFRP sheets is a valid 

one. The global behaviour of the corroded and virgin beam specimens was stable and 

ductile. The rehabilitated beams were able to restore strength of un-corroded (virgin) 

beams but provided less ductile behaviour. 

Once the experimental program was completed, a finite element (FE) model was 

developed to simulate the test behaviour of five beam specimens of group 2. The primary 

objective was to develop a numerical tool that is able to predict behaviour similar to that 

observed from the five test specimens in group 2. The global behaviour and deformed 

shapes of numerical models correlated well with the experimental results. The 

observations from numerical (FE) analyses were similar to the observations from 

experimental studies. A parameter study on thirty-six rehabilitated beam specimens were 
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undertaken to study the influence of corrosion depth and corrosion length on the optimum 

required thickness of CFRP. 

7.2 Conclusions 

A number of conclusions are drawn based on the experimental and analytical results of 

this study and these are as follows. 

(a) The rehabilitation technique was successful in restoring the ultimate load capacity of 

corroded beam to the level of the control virgin (un-corroded) beam. 

(b) The ductility of rehabilitated beams is lower than virgin beam. The ductility reduces 

as the total thickness of CFRP composite layers increase. 

(c) The numerical parametric study shows that the optimum thickness of CFRP 

composite is usually less than the corrosion depth. The relationship between the 

required thickness of CFRP composite and depth of corrosion is tri-linear as shown in 

Figure 6.21. 

(d) Parametric study shows that the length of corrosion has no influences on the required 

thickness of CFRP for restoring strength to the level of virgin (un-corroded) beam. 

7.3 Recommendations 

This research provided a number of significant contributions toward the objectives of the 

project. In order to achieve more confidence in the understanding of the behaviors of 

using CFRP to rehabilitate corroded steel beams, more research works are recommended. 

(a) Additional experimental work and/or finite element analysis are required to examine 

the influence of parameters like different shapes of the corrosion, and different size 

(width, length, and thickness) of the corrosion. 

(b) Additional experimental work and finite element analysis are required to examine the 

surface corrosion repair on other steel members. 
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(c) In FE modeling and analysis, saturant should be modeled as an individual component 

in order to simulate CFRP debonding. 

(d) The bond between steel and saturant, as well as saturant and CFRP needs to be 

modeled and it may be achieved by using contact algoritm. 

(e) FE model can be refined with finer mesh to reduce the stiffness of the load-

deformation curve. 

(f) Tearing of steel and CFRP matrix needs to be modeled. 
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Appendix I 

o 
H2C—"CH-CH2-

epoxy group 

- , ., CH3 /——\ ~| 1 \ CH3 r—\ 0 

o--fl V - c—ft V-O-CHI-CH-CH2-O--<^ y— c—fl y— O-CH,—CH-CH, 

epoxy gwup 

One of the common type epoxy molecule, n is in the range between 0 and 25. 

N 
I 
R 
I 

H " II 
a diamine 

A catalyst could be used with the epoxy shown above. 
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"CHa—CH-
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OH 

When the epoxy and catalyst mixed together, the exothermic reaction will occur, and link 

the epoxy molecule and catalyst molecule together. 

Wikimedia Foundation Inc. 2007a 
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The reaction occurs through out the epoxy and the final product is a cross linked network. 
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Appendix II 

All pages are refer to Handbook of Steel Construction Seventh Edition (Canadian 
Institute of Steel Construction, 2000) 

W200*21 
1. 

Page 1-25 

Type 3 Beam 

2. 
Page 5 -98 

Lu = 1930mm > 1600mm OK 

No lateral torsion buckling 

No lateral support needed 

3. 
Page 1-43 web stiffener 

Br = <j>bi x wx (N + l0t)Fy = 0.80 x 5 x (100 +10 x 6.4)x 350 

= 229600 N = 230 kN> ultimate load = 208 kN 

Br = 1 A5fu x w2 x (FyEf5 = 1.45 x 0.8x 52 x (350 x 200000)°5 

= 242631N = 242 MN > ultimate load = 208 kN 

No web stiffener is needed 

133mm wide xl5mm long x 12mm thick plate is required 

4. 

Page 5-98 Failure load {at yield point) 

Mr = 60.5kNm^ = 67.22kNm 

PF 
— = 67.22kNm 
4 

P = 134.22&V 
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1 cm** = 110 x 63 +110 x 6 x (218.8 -129.6J2 +133 x 6.43 +133 x 6.4 x (212.6 -129.6)2 + 

5 x 2033 + 5 x 203 x (107.9 -129.6)2 +133 x 6.43 +133 x 6.4 x (3.2 -129.6)2 

= 67.1xl06mm4 

1. CV-G2 
ZIcomroi = Esteel x Icontrol = 200GPa x 67.1 x 106mm" = 13420Nm2 

2. CC-G2 
Icut =64x4 3 +64x4x(2 -129 .6 ) 2 =4 .2x l0 6 mm 4 

1 corroded = 1'control ~ I cut = 6 2 . 9 X 1 0 * m m 4 

EIcorroded = E steel x I corroded = 200 GPa x 62.9 x 106 mm4 = 12580 Nm2 

3. RC-W133-T2.4-G2 

Thickness of CFRP = 2.4mm 

IcFRPiAmm = 133 x 2.43 +133 x 2.4 x 129.62 = 5.4 x 106 mm4 

El corroded = Esteel X •* corroded + EQFRP X V corroded + *CFRP2Amm ) 

= 200GPax62.9xl06mm4+227GP«x(4.2xl06mm4+5.4xl06mm4) 

= 14759.2Nm2 

10% incensement 

4. RC-W133-T1.2-G2 

Thickness of CFRP = 1.2mm 

W1.2.™ = 133 x 1.23 +133 x 1.2 x 129.62= 2.7 xlO6 mm4 

El corroded ~ Ested * 1 corroded + EQFRP X Vcorroded + * CFRP 12mm) 

= 200GPax62.9xl06mm4+227GPa x(4.2xl06mm4+2.7xl06mm4) 

= 14146.3Nm2 

5.4% incensement 

5. RC-W133-T0.6-G2 

Thickness of CFRP = 0.6mm 

ICFRP06mm = 133 x 0.63 +133 x 0.6x 129.62 = 1.3 x 106mm4 

^* corroded = ^steel X 'corroded "*" ^CFRP X V corroded "*" * CFRP\2mm ) 

= 200GPa x62.9xl06mm4+227GPa x(4.2xl06mm4+1.3xl06mm4) 

= 13828.57Vm2 

3% incensement 
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CV-G2 
RC-W133-T2.4-G2 
RC-W133-T1.2-G2 
RC-W133-T0.6-G2 

Stiffness (Nm:) 
13420 

14759.2 
14146.3 
13828.5 

Incensement (%) 
_. 

10 
5.4 
3 
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Appendix IV 
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Figure A4.7: Local strain vs. load CC-G1 (Strain Gauge 1-7) 

225 



45000 

35000 

| 25000 
o 

15000 

: ? 1 OY AU a 2 ^ 3 _V F 

1 Strain gauge failed 

250 

Load (kN) 

(b) 
Figure A4.14: (a) Local strain from SG CI & SI vs. load for RC-W67-T2.4-G1 

and (b) Details of View "A" 

-2000 J 

226 



16000 

14000 

12000 -

1 ,0000 < 
v> 
o 
£ 8000 \ 

s 6000 \ 

4000 

1 O Y &U D 2 03 vp 

0 50 100 150 
Load (kN) 

200 250 

Figure A4.15: Local strain from SG C2 & S2 vs. load for RC-W67-T2.4-G1 

6000 -i ^ i 0 y ^ y Q 2 <)3 ^ F 

c 4000 -

§ 3000 

0 50 100 150 200 250 
Load (kN) 

Figure A4.16: Local strain from SG C3 & S3 vs. load for RC-W67-T2.4-G1 
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Figure A4.17: Local strain from SG C4 & S4 vs. load for RC-W67-T2.4-G1 
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Figure A4.18: Local strain from SG C5 & S5 vs. load for RC-W67-T2.4-G1 
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Figure A4.23: Local strain from SG CI & SI vs. load for RC-W133-T2.4-G1 
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Figure A4.24: Local strain from SG S2 vs. load for RC-W133-T2.4-G1 
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Figure A4.25: Local strain from SG C3 vs. load for RC-W133-T2.4-G1 
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Figure A4.26: Local strain from SG C4 & S4 vs. load for RC-W133-T2.4-G1 
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Figure A4.27: Local strain from SG C5 & S5 vs. load for RC-W133-T2.4-G1 
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Figure A4.36: Local strain from SG SI vs. load for CC-G2 
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Figure A4.37: Local strain from SG S2 to S5 vs. load for CC-G2 
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Figure A4.44: Local strain from SG CI & SI vs. load for RC-W133-T2.4-G2 
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Figure A4.45: Local strain from SG C2 & S2 vs. load for RC-W133-T2.4-G2 
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Figure A4.46: Local strain from SG C3 & S3 vs. load for RC-W133-T2.4-G2 
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Figure A4.47: Local strain from SG C4 & S4 vs. load for RC-W133-T2.4-G2 
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Figure A4.48: Local strain from SG C5 & S5 vs. load for RC-W133-T2.4-G2 
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Figure A4.55: Local strains from SG CI & SI vs. load for RC-W133-T1.2-G2 
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Figure A4.56: Local strain from SG C2 & S2 vs. load for RC-W133-T1.2-G2 
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Figure A4.57: Local strain from SG C3 & S3 vs. load for RC-W133-T1.2-G2 

Figure A4.58: Local strain from SG C4 & S4 vs. load for RC-W133-T1.2-G2 
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Figure A4.59: Local strain from SG C5 & S5 vs. load for RC-W133-T1.2-G2 
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Figure A4.66: Local strain from SG CI & SI vs. load for RC-W133-T0.6-G2 
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Figure A4.67: Local strain from SG C2 & S2 vs. load for RC-W133-T0.6-G2 
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Figure A4.68: Local strain from SG C3 & S3 vs. load for RC-W133-T0.6-G2 
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Figure A4.69: Local strain from SG C4 & S4 vs. load for RC-W133-T0.6-G2 
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Figure A4.70: Local strain from SG C5 & S5 vs. load for RC-W133-T0.6-G2 
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