
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1998

Retrieving function components from a reuse library. Retrieving function components from a reuse library.

Qiuyan An
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
An, Qiuyan, "Retrieving function components from a reuse library." (1998). Electronic Theses and
Dissertations. 3346.
https://scholar.uwindsor.ca/etd/3346

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3346?utm_source=scholar.uwindsor.ca%2Fetd%2F3346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Retrieving Function Components
From a Reuse Library

by
Qiuyan An

A Thesis
Submitted to the Faculty of Graduate Studies and Research

Through the School of Computer Science in Partial
Fulfillment of the Requirements for the Degree of

Master of Science at the
University of Windsor

Windsor, Ontario, Canada
1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1+1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques
395. rue Wellington
Ottawa ON K1A0N4
Canada

Your him Votrm rmfmrmncm

Our film Notrm rmfmrmncm

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distnbuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-52505-8

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Oiuvan An 1998
© All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVED BY:

C 2J
Dr.Ywmg Gil Parle - Supervisor (School o f Computer Science)

Dr. Subir Bifid/opadh^ky - Department Reader (School o f Computer Science)

Dr. K. Y. Fung — External Reader (Dept, o f Math. & Statistics)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

Abstract

Increasing software development productivity is not enough to close the gap between

the software demands in industry and software that can be provided in practice. Software

reuse is claimed to be the only realistic approach to solve this problem [17]. As the

reusable components are growing, we are faced the challenge of modulating, structuring

and storing these components into reuse library so as to achieve faster and effective

retrieval for reuse.

In this thesis we investigate an approach of structuring a function library and an

efficient type-based retrieval method based on this structured library. In searching for

functions, the trivial difference of the argument order of a function is disregarded. The

library structuring is based on component grouping and component linking based on

reusability relations among components. A prototype system W ISER was also developed

as a tool for achieving exact matched retrieval as well as relaxed matched retrieval.

WISER also allows users to browse the structured library as an aid in finding potentially

reusable components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV

To my parents
my brother and sister

my husband Xiaobo and my son David

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to acknowledge the support and guidance provided by Dr. Y. Park,

whose time, dedication and effort has contributed in guiding me through this thesis.

Without his patience and guidance it would have been impossible to complete this thesis

in this time frame. I am grateful to Dr. Subir for proving valuable suggestions and

comments that aided in my progress. I would also like to thank Dr. K.Y. Fung for being

willing to serve as my external reader.

Special thanks to my husband Xiaobo for his encouragement and support and my

lovely son David for the relaxation time he gave me.

Last but not least. I would like to thank all my colleagues in the grad lab for providing

a friendly atmosphere throughout my Master program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

TABLE OF CONTENTS

Abstract...iv

Acknowledgements.. vi

List of Figures... x

List of Tables...xii

1 Introduction... 1

1.1 Software R euse... 1

1.2 Functional Programming.. 3

1.2.1 Higher-order Functions... 4

1.2.2 Polymorphic Functions... 5

1.3 Type-based Retrieval of Functional Components................................. 8

1.4 Overview of the Thesis.. 10

1.4.1 Motivation..10

1.4.2 The Objective of the Thesis.. 11

1.4.3 Thesis Statements... 12

1.4.4 Organization of the Thesis... 12

2 A Structured Approach to Type-based Retrieval... 13

2.1 Comparison between T ypes.. 13

2.2 Functions with More General Set_type... 17

2.3 Functions with More Specific Set_type.. 18

2.4 Functions with Extra-arguments... 18

2.5 Structure of the Reuse Library..18

2.5.1 Intra-library L inks..19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.2 Inter-library Links... 20

2.5.3 Sample of Structured Software Library............................ 21

2.6 Structure of a Record...21

3 A Prototype System W ISER ...24

3.1 System D esign.. 24

3.2 Code Documentation ...25

3.2.1 Insertion... 25

3.2.2 Retrieval...42

3.2.3 Deletion..49

3.2.4 Browsing..51

4 Program Development Using W ISER ... 53

4.1 User Interfaces..53

4.1.1 Examples of Browser.. 55

4.1.2 Examples of Retrieval.. 56

4.1.2.1 Exact M atch... 56

4.1.2.2 General M atch.. 64

4.1.2.3 Specific M atch...69

4.1.2.4 Extra-argument M atch ..71

4.1.3 Examples of ShowAll...72

4.1.4 H elp .. 74

4.2 Server Side Interfaces .. 74

4.2.1 Examples of Insertion...75

4.2.2 Example of Deletion..77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Conclusions and Future W ork... 81

5.1 Conclusions... 81

5.2 Future W ork .. 82

APPENDIX... 83

BIBLIOGRAPHY.. 85

VITA AUCTORIS..87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IX

List of Figures

Figure 1 Reuse-oriented software development process.................................... 3

Figure 2 The use of types as search k e y .. 8

Figure 3 Example of intra-library links...19

Figure 4 Example of inter-library links...21

Figure 5 Sample of our software reuse library..22

Figure 6 Overview of W ISER ... 25

Figure 7 Structure of insertion..26

Figure 8 Insertion of root records.. 27

Figure 9 Insertion of {[a], b} -> a into two-argument structure..........................28

Figure 10 Insertion of {a, [b]} -> [b] into two-argument structure.......................29

Figure 11 Insertion of {[[a]], b} -> b into two-argument structure.......................29

Figure 12 Insertion of {[a], [a]} -> [a] into two-argument structure.................... 30

Figure 13 Two-argument structure before insertion of {a, a} - > a 31

Figure 14 Incorrect insertion of {a, a} •> a into two-argument structure.............31

Figure 15 Correct insertion of {a, a} -> a into two-argument structure............... 32

Figure 16 Insertion of {[a], [a]} -> [a] into two-argument structure......................33

Figure 17 Before insertion of {[a], [a]} -> num into two-argument structure34

Figure 18 After insertion of {[a], [a]} -> num into two-argument structure.........35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 19 Structure of retrieval... 44

Figure 20 Example of search p a th ...49

Figure 21 Structure of deletion.. 50

Figure 22 Example of deletion..50

Figure 23 Example of browsing... 51

Figure 24 User interface.. 54

Figure 25 Browser window for #arg = 2 ..55

Figure 26 Browsing {a, b} -> a ...55

Figure 27 Browsing {a, a} -> a ...56

Figure 28 Exact match of num -> boo l...57

Figure 29 Exact match of a -> [a] -> [a] ..58

Figure 30 Exact match of [a] -> a -> [a] ...59

Figure 31 Exact match of (a->bool) •> [a] -> [a] ..60

Figure 32 Exact match of [a] -> (a->bool) -> [a] ..61

Figure 33 Exact match of num -> [a] - > a ..62

Figure 34 Exact match of [a] -> num -> a ... 63

Figure 35 Exact match of (a->b->a) -> a -> [b] - > a 64

Figure 36 Exact match of a -> (a->b->a) -> [b j - > a 65

Figure 37 Exact match of (a->b’>a) ->[b] -> a - > a ... 66

Figure 38 Exact match of num -> num -> n u m ... 67

Figure 39 General match of num -> num -> n u m ... 68

Figure 40 Exact match of a -> a -> a ... 69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 41 Specific match of a -> a -> a .. 70

Figure 42 Exact match of a -> a ...71

Figure 43 Extra-argument match of a -> a .. 72

Figure 44 ShowAll window for #arg = 2 .. 73

Figure 45 Help w indow ...74

Figure 46 Insertion of “const" .. 75

Figure 47 Insertion of “drop while" ..76

Figure 48 Insertion of “filter ...77

Figure 49 Confirmation of insertion of “const”, “dropwhile” and “filter".. .78

Figure 50 Deletion of “dropwhile".. 79

Figure 51 Confirmation of deletion of “dropwhile" ..80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

List of Tables

Table 1 Type constructor..6

Table 2 Example on monomorphic ty p e ... 7

Table 3 Example on polymorphic ty p e ... 8

Table 4 Structure of record ...22

Table 5 Relations between two basic types..36

Table 6 Examples of the comparisons between two list types...................37

Table 7 Exact_match algorithm ...44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiii

Chapter 1 Introduction

1.1 Software Reuse

Software reuse was formally introduced in the late 1960’s attributed to the “software

crisis”, which is still the concern in today’s industry. Software reuse is defined as the

“process of using existing software artifacts rather than building them from scratch” [1],

The “artifacts” includes every aspect of software lifecycle, documentation, specification,

analysis, and source code.

Basically, the reuse-oriented software development process is composed of three

phases: storage phase, retrieval phase and adaptation phase [14], Figure 1 shows the

process of reuse-oriented software development.

In storage phase, the software developer is responsible for putting the reusable

components into a library, which will be used in the next phase. As the library grows, the

issue of storing components becomes more serious. The software developers need to

understand not only each component in the library but also the relationships between

these components in order to store the components in a logically structured way. An

abstraction over the component features is required.

In the retrieval phase, the library users try to find the desired component(s) from the

library by applying his/her query. If the exact match can not be achieved, a potentially

reusable relaxed match may be found. After some minor modifications on the retrieval

result, the user can reuse it in his own application.

There are two types of approach for retrieving reusable components from a library.

One is termed “syntactic-based” retrieval, another is called “semantic-based” retrieval.

Syntactic-based retrieval deals with the syntax of the components. Keyword-based

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retrieval and facet-based retrieval belong to this type [19, 20]. Syntactic-based retrieval is

easy to use and is very popular in today’s software reuse market. The disadvantage of

syntactic-based retrieval is that the users must have a knowledge base of the reuse source

and the keyword set. Semantic-based retrieval deals with the meaning of the reusable

components. It can be further divided into three categories: formal specification-based

retrieval, execution-based retrieval and type-based retrieval. Formal specification-based

retrieval makes use of specification language [2, 3, 5, 6. 7,18], which is proved to be ideal

but hard to implement. Execution-based retrieval and type-based retrieval can be seen as

an approximation of formal specification-based retrieval. Execution-based retrieval deals

w ith the retrieval of executable components [4, 16]. The user provides the sample input

and output either manually or systematically, the retrieval system then executes the

components w'ith the input and comparing the retrieval results with the output provided

by the user. Execution-based retrieval can provide precise query result, but it is an

expensive retrieval method due to the real execution on every related component. Type-

based retrieval uses the component type as search key to query the library [9, 10, 11, 12,

13. 15]. Type is the specification over components, there are maybe many components in

the library sharing the same type, so the retrieval result based on type is not precise, but it

can serve as a filter and give a big cut over the unrelated components. Type-based

retrieval approach can be integrated with other approaches such as execution-based

retrieval to achieve more precise result.

The final phase deals with the adaptation of the components.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1 Reuse-oriented Software Development Process

Software reuse process

Storage
Retrieval Adaptation

Type-based Execution-based

Svn tactic-based Semantic-based

Formal specification -based

1.2 Functional Programming

As software becomes more complex, it is more important to structure it well. Well-

structured software is easy to write, easy to debug, and provides a collection of modules

that can be reused to reduce future programming costs. Functional programming has

come of age over the last fifteen years. A variety of robust and efficient implementations

of functional languages have been developed. A functional language is taught in many

Universities as the first programming language.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Functional programming is based on the simplest of models, namely that of finding

the value of an expression. Function programming consists o f many built-in functions

like +, which we can use to form expressions. We define functions by means of

equations, like

addD x y - 2*(x + y)

which we use to calculate the value of an expression like addD 2 (add 3 4). We calculate

the value in this procedure:

addD 2 (addD 3 4)

= 2 *(2 + (addD 3 4))

= 2 * (2 + 2*(3 + 4))

= 32

On top of this simple model we can build a variety of facilities, which can give

functional programming its distinctive flavor. These include higher-order functions,

whose arguments and results are themselves functions; polymorphism, which allows a

single definition to apply simultaneously to a collection of types: and infinite data

structures which are used to model a variety of data objects.

Miranda language is used in this thesis. Miranda language also has support for large-

scale programming, including user-defined algebraic types, such as lists, trees and so on;

abstract types and modules. These contribute to separating complex tasks into sub-tasks,

making the components of systems independent of each other, as well as support software

reuse.

1.2.1 Higher-Order functions

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“A function which takes a function as argument, or delivers one as result, is called a

higher-order function” [8]. The functions in function programming environment are the

first class citizens and can be both passed as parameters and returned as results. Higher-

order functions promote software reuse in functional programming environment because

they allow partial parameterization.

In Miranda every function of two or more arguments is actually a higher-order

function. For example, foldr is a higher-order function, it is defined by

foldr op k [] - k

foldr op k (a:x) - op a (foldr op k x)

All the standard list processing functions can be obtained by partially parameterising

foldr. Here are some examples:

product = foldr (*) 1

reverse = foldr postfix []

where postfix a x = x ++ [a]

sum = foldr (+) 0

Let's see another example. “member is a library function such that "member x a"

tests if the list x contains the element a , this function returns True or False as

appropriate. By partially parameterising member we can derive many useful predicates,

such as:

vowel = member [‘a ’, ‘e ’, ‘i ’, ‘o ’, ‘u ’]

month = member [“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”,

“Sep”, “Oct”, “Nov”, “Dec”]

1.2.2 Polymorphic Functions

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Functional languages are strong typed, that is, every element of an expression and

sub-expression has a type, which can be deduced at compiled time. Thus any expression

which can not be assigned a sensible type is regarded as illegal and is rejected before

evaluation. Strong typing does not required the explicit type declaration of functions

Type can be inferred automatically.

Basic or primitive types are predefined and their values are built into the evaluator. In

Miranda, there are three primitive types, called num, bool, and char. Integer and floating

point numbers share the same type num, the distinction between integer and floating

point numbers is handled at run time. There are two values of type bool, called True and

False. The type char comprises the ASCI character set.

There are also composite types in functional language. Three type constructors are

used to form these types. is used to form function type; “(*, *)” is used to form pair

type: "[/ ' is used to form list type. For example, list a linearly ordered collection of

values that can have an infinite number of elements inside it but they must all be in the

same type. For example:

[1,2, 3] which is of type [num]

[False, True] which is of type [bool]

[[I], [2], [3]] which is of type [[num]]

Table 1 gives an example on type constructor

Table 1 Type constructor

Type Description
a -> b Function with argument type a and return type b
(a, b) Pair with left component type a and right component type b
[a] List containing elements of type a

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The variables a, b, c ... can be used as type variables, which means they are unknown

types. In other words, one type variable can represent many types at the same time.

In summary, a type is either a type variable, a primitive type or a composite type.

Types containing no type variables are called monomorphic types. Table 2 gives us

an example of monomorphic type.

Table 2 Example on Monomorphic type

avgr___
Find the average of the list of numbers____________________________
avgr :: [num] -> num__
avgr r [1 = 0__
avgr f a] - a__

j avgr a = sum a /lenlist a

Types containing one or more type variables are called polymorphic types. Table 3

shows us a polymorphic function. In polymorphic function, type variables can be

replaced by any types. For example, we can use primitive type num to replace a in the

function reverse, then by applying the “reverse” function to a list of numbers, say

[1, 2, 3], we get the result [3, 2, I]. That is: reverse[l, 2, 3] = [3, 2, I]. If we replace a

with char, then for the sample input [a, b, c, d], we got the output [d, c, b, a]. That is

reverse [a, b, c, d] = [d, c, b, a]. This example highlights the fact: Functions with

polymorphic types can perform the same operation on some different data types.

Another point is that the same type variable in a particular function stands for the same

type at one time. For example, in function reverse, you can not replace one type variable

a with num and another with char. This conforms to the unification theory. Type variable

should be replaced unifiably to get an instance type.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3 Example on polymorphic type

reverse__________________________
Reverse a finite list_________________
reverse a] -> [a] ______________
reverse =foldl prefixf]___________
_________ where prefix xs x = x : xs

1.3 Type-based Retrieval of Functional Components

Most traditional libraries in functional programming are alphabetical or coarsely

sorted by subject matter. They are tedious to search. Sometimes the library can be

searched by specification, but even library functions were formally specified, it would not

be possible to decide whether two specifications are equivalent or not. Based on this

observation, we can choose type as search key in the retrieval, because type can be seen

as an approximation of using specification as the search key and it is decidable [7].

Figure 2 shows us the use of types as search key.

Figure 2 The use of types as search key

nura*>(al->ral

num

nutn~>nnm»>rnuml

->ral->ral fdroo. take)

C l num->num->fnuml fcomdiv) ^

a->fal->ral f const, eliminate) C. [al->a fhd. last)

(a->b->a)->a->b >a (foldl}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One obvious problem in the type-based retrieval is that functions of more than one

argument might be written with the arguments listed in any order. From the software

developer’s view, when he inserts the components in the library, he should have the

flexibility to arrange the arguments of a component in any order without reformulating

the arguments in exactly the same order as previous inserted components of the same

type. But even he did so, it is still helpless to the user. Because there is no communication

between the developer and the user about how the argument order of a component in

library is arranged. From the user’s view, a library user, who is looking for a particular

function, should be able to specify the number of arguments, the input argument types

and the output type of the function, but he has no way of knowing which choice of

argument order is used in the library. Therefore, when searching a library, we don’t

simply want to see all functions of a given type, but all functions that could have this type

if the order of the arguments is changed. In other words, we want to retrieve a set of

functions which have the same argument number, same argument types and return type,

the trivial difference of the order of arguments should be disregarded. Here is an example

from Figure 2. Suppose we are looking for a two-argument function, what we know is

that one argument type is num, another argument type is [a], the return type is [a]. The

order of arguments is unknown. Then there are two possible types for this function:

num -> [a] -> [a]

[a] -> num -> [a]

All the functions in library with both of the types listed above should be retrieved,

that is, both drop and take are the candidates for reuse.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Based on this idea, we’ll define a type called set_type, which can denote all the

function types without distinguishing the difference of the argument order.

The orders of argument types increases rapidly if the function has more than two

arguments. In the worst case, say each argument carries a different type from each other,

if we have n arguments, the possible function types should be nl.

We need an algorithm of comparing the relationships between types, precisely

speaking, an algorithm for comparing two function set_types. When you query the

library with a giving function type, you got all candidates that have this set_type. This

algorithm w ill be stated in 2.1. Here is the strategy for type-based retrieval. When using

type-based retrieval, the system does not search every component in the library. Type

information of the components are stored in several text files. When a retrieval is

requested, the system will search these text files and check if any match exists.

1.4 Overview of the Thesis

1.4.1 Motivation

Reuse-oriented development environment is claimed to be the healthy direction for

software technology development. Software reuse can increase software quality and

reliability because the reusable software components have been used and tested before.

Software reuse can increase software productivity. Software reuse can also shorten the

software release time to market, reduce maintenance cost [1, 14].

The fast growth of the Internet makes the research and collaboration on software

reuse using the World Wide Web especially encouraging. Internet has created a market

potential that much bigger than any one before.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We are facing the challenge of storing the large amount of software components into

the reuse library in an efficient way so as to achieve effective retrieval.

There are two problems in the current reuse area in functional programming

environment. The traditional approaches to reuse are basically relying on sequential

searches to find suitable candidates [10, 11, 12], this leads to the problem of having to

search the library many times before finding the candidate for reuse, especially in the

case of relaxed retrieval, because in this case the library user needs to reformulate his

query, there is no links between components in the library. The components are only

listed sequentially. Another problem, as proposed in 1.3, is the argument order problem

[9. 15].

So far few work has been done to solve both of the problems. The work done in this

thesis is to explore a practical method to modulate the function components based on type

information by disregarding the difference of argument order and store them into a reuse

library in order to achieve an effective retrieval.

1.4.2 The Objective of This Thesis

The objective of this thesis work is to investigate the use of a structured software

library whose components are modulated by the type information. In particular, this

thesis will focus on the first two phases of reuse-oriented software development process:

the storage phase and the retrieval phase.

A prototype system called WISER is also designed and implemented for Miranda

programming environment. This system provides library users with a friendly interface.

This library allows users to browse and retrieve the components and can also provide

“help” information for inexperienced users.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4.3 Thesis Statem ents

The thesis will defend the following statements:

1. Investigating of a type-based approach of modulating and storing software

components in a library by disregarding the difference of the argument order and

retrieving the components based on the reusable relations among the components.

2. Implementation of a prototype system based on our approach for functional

programming environment in Miranda.

3. This system can be accessible from remote area through World Wide Web under

client/server model.

1.4.4 Organization of the thesis

This thesis is organized into five chapters:

Chapter 1 gives a brief overview of the background knowledge involved in this thesis

work, which includes software reuse, functional programming, type-based retrieval and

an overview of the thesis.

Chapter 2 explains the details of the component module, the structuring of the library

which entails the various relations that exist among the component modules. Also the

structure of the record is explained.

Chapter 3 describes the detailed design and implementation of the prototype system

called WISER.

Chapter 4 describes W ISER’s interfaces and give some examples on how to use

WISER.

Chapter 5 highlights the conclusions along with the future work.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2 A Structured Approach to Tvoe-based Retrieval

2.1 Comparison between Types

Formal specification characterizes the functionality of the components with well-

defined syntax, it is ideal for the retrieval of reusable components, but it is generally hard

to decide and implement. We have to choose a simple form of specification in terms of

type. We summarize several reasons as why types can be used as search key in reuse-

oriented program development, especially in functional programming environment:

1. Types are inherent in functions, they do not need to be derived or manufactured. They

are available for use.

2. Type is a good filter. You can eliminate unrelated types quite easily.

3. Types are very important for reliable software. Strong typing can cause programming

errors detected early at compile time.

Before proceeding, let’s specify some name conventions in this thesis.

1. Lower case letter a, b, c, d are used for variable types.

2. For simplicity, if there are more than one type variable need to be used, we choose

them by following the alphabet ascending order, that is, use a first, then b. then c ...

For example, we use a -> b to denote the most general type for two-argument

functions rather than b -> a. Another example, in a two-argument function, both the

argument types are type variables which are not necessarily same, but the return type

is same as the first argument type. By following this rule, we use function type a -> b

-> a rather than b -> a -> b.

is used to construct function types. We need to define a new concept set_type.

We will use symbol “{* ,* }” to denote set_type, here stands for any argument type.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Set_type composes all the function types with the same number of arguments, same

argument types, same return type but different order of arguments. For example, we have

a two-argument function, one argument type is a, the other argument type is num, the

return type is a. We use {a, num} -> a (or {num, a} -> a) to denote it rather than using

both a -> num -> a and num -> a •> a. As the number of arguments increases, there are

more permutations on the order of argument types. We can see that set_type is a more

compact, complete and powerful module than the single function type.

Let's take some time to explore the relations between set_types. The underline

meaning of this comparison can be deployed in library search. One set_type denotes

query type, one set_type denotes library identifiers (component module).

First, let’s define the term general/specific.

General/specific: If type E can be assigned to any ground types that is an instance of

type A . then type E is more specific than type A and A is more general than type E.

Let's use T and T ’ to denote two function types. S and S ’ denote two function

set_types. The functions have the same number of arguments, say n

T:: AJ -> A2 ... An -> B

T’:: A1’-> A 2 ’ ... An’ -> B ’

S = { Tl, T2, ... Tn}

S ’ = { T l ’, T2’, ... Tn’}

Relation 1: Two function types are equal.

T = T ’ O if for all / <i < n

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

there exists A i= A i’,

B = B ’

then T = r

e.g. T:: a -> num -> bool

T’:: a -> num -> bool

Relation 2: T’ is more general than T and T is more specific than T’. Type T is an

instance of T ’ if T can be obtained from T* by relevant linear consistent substitution of

type for previous defined type variables that occurs in type T’.

T < T ’, T ’ > T O if for all 1 < i < n

there exists Ai < A i’ or A i = A i’,

B < B i’ or B = B i\

but not T = T’

then T < T\ T’> T

e.g. T :: [num] -> num -> bool

T ’ :: [a] -> a -> bool

Relation 3: T and T’ has no relation.

if not exist T = T\ T < T’, T > T’

then T and T’ has no relation

e.g. T:: [a]-> [a]-> a

T ’:: [num] -> num -> bool

Relation 4: Two function set_types are equal. If S and S ’ contains the same set of

argument types and same return type, then S = S ’,

e.g. S:: [[a], a} -> bool

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S ’:: [a, [a]} -> bool

Relation 5: 5 ’ is more general than S and S is more specific than S ’.

S < S ’ . S ’ > S O if for / <7 < n, 1 < j < n

there exists Ti < Tj’

then S < S ’

e.g. S:: {num, [num]} -> bool

S ’:: {[a], a} -> bool

Relation 6: 5 and S ’ has no relation.

if not exist S = S ’, S < S ’, S > S ’

then S and S ’ has no relation

e.g. S:: {[a], a} -> a

S ’:: {[a], a} -> num

We implement an algorithm based on the above definitions for comparing the

relations between set_types. We only introduce the basic idea about the algorithm. See

chapter 3 for detail. Basically there are four steps in the algorithm.

1. Compare two element types. The element type means the argument type and the

return type. For example, a type variable is more general than any primitive type.

2. Compare two function types based on 1. If a function type can be derived by

replacing the type variables in another function unifiably, this function is more

specific than that function. For example, num -> [char] •> [char] can be obtained by

replacing all the occurrences of type variable a in num -> [a] -> [a]. Sometimes two

functions have no relation. For example, a •> a -> a has no relation with a ->[a]->[a].

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Compare one function type with one function set_fype. This is done by comparing

this function type with all the function types in this set_type until a relation is found

or the search exhausts.

4. From relation 4, 5, 6, we can derive the relation for two function set_type.

2.2 Functions with More General Set_type

Assume the library is well designed and the user is not allowed to insert component

into library. Then there are at least two reasons for retrieving functions with more general

set_type:

1. If an exact match is found yielding functions that are of no significance to the user,

then more general functions should be pursued.

2. Sometimes the user can not formulate the most general type for his required function,

but instead he can give an instance of that function type, then the desired function

would be more general than the query type. In this case, the library structure helps the

user find his desired function.

For example, if the user searches a function which compares two numbers and gives the

bigger one. If he uses {num, num} -> num as search key to query the library, he got the

results 'add". “comb”, and “gc&\ By investigating the source code of these functions,

the user found that none of them can satisfy his requirement. Based on this exact match,

the user can apply the general match and find the function “m a x i”, which compares two

elements and returns the bigger one. By replacing the type variable a with num, the user

got his desired function.

We use some strategies when we implement this algorithm. For example, when we

compare two function types, we compare their return types first, if their return types have

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

no relation, we can conclude that these two function types have no relation. Further

comparison in this case is not necessary. This algorithm is therefore very efficient.

2.3 Functions with More Specific Set_type

In 2.2, we discuss the issue of specializing the library function to meet the user’s

desire. Here we discuss an opposite situation, generalizing the specific function to meet

the user’s requirement.

When the exact match or general match function(s) in the library still can not meet

the user’s requirement, there may be some specific functions useful. If the source code is

written very well, the user can reuse them by simply generalizing the source code.

For example, if a user wants to find a function which is used to insert an element into

a list of elements, the query type is [a, [a]} -> [a], by applying exact-match, none of the

retrieval results can satisfy the user’s desire. If he performs a specific match based on the

exact match, he can get a function called “numlnsert”. which is for inserting a number

into a list of numbers. By just modifying the type number to type variable a.

"numlnsert” can be reused easily.

2.4 Functions with Extra-argument

When implementing a same purpose function, different programmer may give

different type. For example, one program may implement the function “numsort” with

type [num] -> [num], another programmer may use type {(num -> num -> bool), [num]}

-> [num]. So the extra-argument function has reuse value. We should apply it into our

library design.

2.5 Structure of the Reuse Library

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the implementation of the reuse library, we virtually divided the whole library into

sub-libraries based on the number of arguments for the functions. All the functions with

the same number of arguments are in the same sub-library. To do this, we keep separate

text file for each sub-library, the text files are used as the management system of server,

all the relations among the components are reflected on the text files. All the functions

(source code) are actually stored in somewhere on disk.

Based on the analysis o f 2.1 to 2.4. we can specify two categories of relations, named

intra-library links and inter-library links. (Here library means sub-library).

2.5.1 Intra-library Links

Intra-library links deal with general relation and specific relation between functions.

Based on these relations and the set_type concept, we can construct a graph, which

visually reflect the various relations and give you an intuitive feeling about the structure.

Figure 2 is a sample graph.

Figure 3 Example of Intra-library Links

(a, b) -> c

fa, b} -> a {[a], num} -> a {[num], a} -> [a]{num,num}->[num]

{(a->bool), [a]} -> [a] {a, [a]} -> a {a, a} -> a {num, [a]} -> [a]

------------ \
{num, num} -> num {booI.bool}-> bool {[a], [a]} -> [a] (num. [cbar]}->[cbar]

From the graph, we can have the following observations:

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. One node (module) may have more than one immediate parent and immediate child.

For example, the node with set_type {a, b} -> a has one immediate parent (a, b} ~> c

and four immediate children {(a->bool), [a]} •> [a], {a, [a]} -> a, (a, a} -> a and

{num, [a]} -> [a].

2. Root node is the most general set_type, it has no parent.

3. Leaf node is the most specific node in the current path in the graph, it has no child for

the time being. Some leaf node can not be specialized any more, like {num, num} ->

num, {bool, bool} -> bool and {num, [char]} -> [char]. But some leaf node still have

the potential to be specialized, like {[a], [a]} -> [a], a can be replaced by other types.

4. By navigating the graph, the user can obtain all the functions with general set_type

and specific set_type. The search is not only restricted to the immediate ones.

5. The library is assumed to contain many components. In most of the case, the user can

find the exact matched set_type. The further general match and specific match are all

based on the exact match. If the exact match set_type is not in the library, we can not

perform the flexible match retrieval. For security and maintenance reason, we do not

allow the general user to have “write” and “modify” permission to the library. If this

is allowed, the library will be messy and out of control.

2.5.2 Inter-library Links

Inter-library links reflect the extra-argument relations between components. Inter-

library links provide us with one more option if our desired functions can not be obtained

from previous efforts. Figure 4 shows us an example of inter-library relation. From the

graph, we observe that the inter-library link is one-directional, it starts from the library

with less arguments, ends with the library with one more argument.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4 Example of Inter-library links

f(num->num->bool),
num. [num]} ->bool

{(char->char->bool),
bool,[bool] }->bool{char, [char]}

-> h n n l

2.5.3 Sample of structured Software Library

The reuse library is constructed by using both the intra-library relation and inter-

library relation. The library is designed based on these relations so as to promote the

automatic retrieval. In the case of exact match not satisfying the user’s requirement, the

user does not need to reformulate his query. General match, specific match and extra

argument match can be performed automatically based on the choice of the user.

Figure 5 is a sample of our software reuse library containing all kinds of links

mentioned above.

2.6 Structure of a Record

Each sub-library information is kept in a separate text file. Because the library is

dynamic changing as the insertion or deletion occurs, so we must use the random access

file to keep information. In the implementation of random access file, we choose fixed-

length record method (160 bytes per record). There are five fields in a record. They are

set_type, function names, general links, specific links and extra-argument links. One

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

record can be seen as a module which encapsulates the information about the five fields.

Table 4 shows the structure of a record.

Figure 5 Sample of Our Software Library

a-> b
{(a->a->a),[a]}->a

[a]->a a->a

numl->num

{num. [char]} ->[cbar]

bool->bool

{bool, bool }->bool

Table 4 Structure of a Record

I {Fi} {Gi} {S i } {Ei}

Z represents the set_type

Fi represent all the functions with set_type Z

G i represents the offsets of all the immediate more general set_type(s) of Z

S i represents the offsets of all the immediate more specific set__type(s) of Z

Ex represents the offsets of all the immediate extra-argument set_type(s) of Z

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To gain a fully understanding of the record, let’s see the following sample record:

{hum \[a]\[a]}{drop \take}{160}{1920}{ }

We can deduct from this record that the functions “drop" and “take" has the set_type

{num, [a]} -> [a]. At offset 160, you can find a record whose set_type is more general

than {num, [a]} -> [a]. At offset 1920, you can find a record whose set_type is more

specific than {num, [a]} -> [a]. There is no extra-argument link for this record.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 A Prototype System WISER

A prototype system WISER is designed and implemented by using our approach.

WISER stands for Windsor Software basE for Reuse. It is an interactive software

reuse system which is directed at the storage and retrieval phases of the reuse-oriented

program development. It is based on client/server model. At the server side, the library

developer can perform insertion, deletion, browsing and retrieval operations. At the client

(user) side, the library users can perform browsing, retrieval, showAll operations, a

“help” information is also provided for inexperienced users.

Reuse by W ISER is on the source code level. When the user writes code in

Miranda, he/she can query W ISER to find desired functions. Programming by reuse

takes many advantages than writing the programs from scratch.

All the features of W ISER rely on the process of determining whether a query type

falls into an existing set_type in library. The user is required to supply information about

the number of arguments, the types of arguments and return type. The order of argument

types of the function is not required.

This chapter covers the design of WISER, and focuses on the analysis of insertion,

deletion, retrieval and browsing based on the structured library.

3.1 System Design

WISER is designed to help users in their program coding phase. Figure 6 is an

overview of W ISER structure.

We list some considerations during WISER design process:

1. Only the library developers have the “write” right to the components in the library.

This means that insertion and deletion can only be done by the library developers.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6 Overview of WISER

functions

library

X

functions

query
management

retrieve

browse

delete

insert

2. This system allows replacement of component. This is done by first deleting the old

component and then inserting the new one.

3. Once the library is established, the concerns will be put on the automatic retrieval

phase. WISER supports exact match as well as relaxed match (general match,

specific match, extra-argument match), this greatly increases the potential reuse value

of the components. The users have more options to get his/her desired functions.

4. A Browser is provided to overview the structured library as an aid in finding

potentially reusable components.

5. “showAll” is a shortcut to view the list of components in a specified sub-library

without providing type information.

6. A “help” is provided for facilitating inexperienced users.

7. The interface should be user-friendly.

3.2 Code Documentation

3.2.1 Insertion

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Insertion is the most complex operation in W ISER system design. Some conditions

must be checked in order to insert the component into right position in the structure.

Figure 7 is basic structure of insertion.

Figure 7 Structure of Insertion

start

initialize root

user query

query OK

no yes

call insertion

yes
type exist

no
yes

create new record name exist

no

call freeze update record

call checkchild

library

stop

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

According to this structure, the insertion starts with the library developer supplying

the required information, which should include the number of arguments, the types of

arguments and the function return type. The argument types can be given in any order. A

confirmation is then submitted by the system in response to the query so that corrections

can be made in case of errors in the query. Then the function is inserted into the library in

accordance with its type. If there does not exist a set_type in the library that corresponds

to the query type, a new node will be created. Some conditions must be checked to

enforce correct insertion. If there is a type in library corresponding to the query type, a

further check is done by the system to see if the function name already exists. If the

function name does not exist, the record will be updated by adding the function name in

the corresponding field of the record, the various links of this record keeps untouched.

Otherwise, if the function name does exist in the library, no insertion is needed, and the

insertion procedure is terminated.

The test involved in the insertion is to decide the relations between two set_types. To

do this, we use the relation 4, 5, 6 as explained in 2.1. By using these relations we can

proceed to insert function components into the reuse library correctly. Before any

insertion performed, the root of each file for the structured library must be set. The root is

a record containing the most general type of all records in the file. Furthermore, they are

linked together based upon the extra-argument relation. Figure 8 is the library structure

after the insertion of the root record.

Figure 8 Insertion of root records

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Take node {a,b} -> c as example, the record representing this node is {a\b\c}{} { } { }{0}.

which means that this two-argument root node has no function name attached to it. it has

no general and specific links and it has an extra-argument link pointing to the offset of 0

in the three-argument file.

The insertion is in the form of records with fields as we discussed in 2.6. Insertion

consists of determining the insertion record’s children, parents and extra-argument links

as well as updating the various existing links.

To gain a better understanding to insertion, we give two examples in order to

highlight all the techniques involved in insertion. In the first example, we will discuss

insertion based on the polymorphic relations. In the second example, we have a chance to

see how the extra-argument relation is deployed in insertion.

Example 1: We assume that the root node is the only node in the two-argument

structure. We proceed to insert the type {[a], b} -> b into this structure. Figure 9 shows

this two-argument structure. This is because:

{[a], b} -> b < {a, b } -> c

Figure 9 Insertion of {[a], bj -> b into two-argument structure

fa. b) -> c

ffal. bl -> b

Next we insert the type {a, [b]} •> [b] into the structure yielding Figure 10. This is

because:

{a, [b]} -> [b] < {a, b} -> c

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{a, [b]} -> [b] has no relation with {[a], b} -> b

Figure 10 Insertion of {a, [b]J -> [b] into two-argument structure

la. b) -> c

ffal.bl -> b

We continue insert {[[a]], b,} -> b giving figure 11. This is because:

{[[a]],b}->b < {a, b} -> c

{[[all b } -> b < {[a], b} -> b

{[[a]], b} -> b has no relation with {a, [b]}-> [b]

Figure 11 Insertion of {[[a]], bj -> b into two-argument structure

{a. b) -> c

ffal. bl -> b {a, [b]} ->[b]

The insertion seems to be based upon instances alone and once an instance is found

we link it as we did in Figure 9, 10, 11. However this is partially correct as shown in

Figure 12 when we insert the type {[[a]], [b]} -> [bj. The relevant links were formed

because:

{[[a]],[b]}->[b] < {a, b} -> c

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{[[a]], [b]} ->[b] < fa ,[b j}-> [b]

{[[a]],[b]}->[b] < {[[a]], b} -> b

{[[a]],[b]}->[b] < {a, [b]} -> [b]

Figure 12 Insertion of {[[a]], [b]J -> [b] into two-argument structure

fa. b) -> c

f fa l .b) -> b

{[[a]].[b]J -> [b]

So far we have shown that a node in the structure may have more than one parent. We

need to search from left to right, from top to bottom to determine whether or not it has

more parents. This search process is recursively performed. Part of our function insertion

tests for these conditions mentioned above.

Suppose we have the structure as shown in Figure 13. We now insert type {a, a} -> a.

According to this structure we have:

{a, a} -> a < {a, bj -> c

{a, a} -> a has no relation with {[a], b} -> b

{a, a} -> a has no relation with {a, [b]} ->[b]

Based on this analysis, we have the structure as shown in Figure 14. Unfortunately, this is

not entirely correct since we know:

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 13 two-argument structure before insertion of {a, a) -> a

fa. bl -> c

f fa l .b l -> b {a. [b]} ->[b]

ffnuml. fnumll -> fnuznl

{[[a]], [b]} -> [b]

C ^ T f f a l l . ffall 1 -> f f a l T j ^ >

Figure 14 Incorrect insertion of the insertion of (a, a} -> a into two-argument structure

fa. b) -> c

fa. a l -> af f a l . b l - > b {a. [b]} ->[b]

ffnuml. fnumll -> fnuml

{[[a]], [b]} -> [b]

C H ~ n T a l l fra il) -> ffa ll

{a, a} -> a > {[num], [num]} -> [num]

{a, a} -> a > {[[a]], [[a]]} ->[[a]]

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

So we need go back and check almost all the existing nodes to see if it is an instance of

the new inserted node. One node may have more than one child in the structure.

Furthermore if a type is found to be an instance of the inserted one, it should be further

checked to ensure its links does not exist already. Our function checkchild was used in

testing this condition. Furthermore, once an instance is found none of its instances needs

to be checked since they too will be instances of the inserted type, although not the

immediately ones. Pan of our function insertion tests this condition. Figure 15 shows the

correct structure after insertion of {a, a} -> a.

Continue to insert type {[a], [a]} -> [a] into the structure of Figure 15, we produce the

structure of Figure 16.

Figure 15 Correct insertion of (a, a} -> a

(fnuml. fnumll -> fnuml

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 16 Insertion of {[a], [a]} -> [a] into two-argument structure

(a. bl -> c

(a. a) -> affal. b) -> b {a. [b]} ->[b]

C ^ jr ia i i . bl -> b ffal. fall -> fal

{[[a]], [b]} -> [b] ffnuml. fnumll -> fnuml

m all, ffalll -> ffall

From this graph, we observe that:

{[a], [a]} -> [a] < {a, b] -> c

f[a],[a]}->[a] < {[a], b} -> b

{[a], [a]} -> [a] has no relation with {[[a]], b} -> b

Which shows {[a], [a]} -> [a] is an instance of {[a], b} -> b. Continue along we have:

{[a], [a]} -> [a] < {a, [b]} -> [b]

{[a], l al} ->(o] has no relation with {[[a]], [b]} -> [b]

{[a], [a]} ■>[a] > {[num], [num]} -> [num]

Which shows that type {[a], [a]} -> [a] is a child of type [a, [b]} -> [b] and also {[a], [a]} -

> [a] has a child of type {[num], [num]} ->[num]. Continue along we have:

{[a], [a]} -> [a] < {a, a] -> a

{[a], [a]} -> [a] > {[num], [num]} -> [num]

{[a],[a]].> [a] > {[[a]], [[a]]} -> [[a]]

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Which shows that type {[a], [a]} -> [a] is a child of type [a, a] -> a and type {[a], [a]} ->

[a] has children of type {[num], [num]} -> [num] (already exists so ignored) {[[a]], [[a]]}

•> [fa]]- In this case, {[[a]], [[a]]} -> [[a]] takes all the children of [a, a] -> a, but not

takes all the children of {[a], b] -> b and [a, [b]} -> [b]. The function insertion also tests

for the children changing condition.

There is a final condition. When an exact match of type occurs, the function name is

inserted into the record if it does not exist already. The function insertion is also used

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

here.

Example 2:

Figure 17 Before insertion of {[a], [a]} -> num into the structured library

>num

C ^Jnum l
(fnuml.fnumll->num

{[char], [cbar]}->cbar

Figure 18 After insertion of {[a], [a]} •> num into the structured library

a->b

a->a

{[a],[a]}->a

char -> char

> num
(fnuml.Tnuml 1->num

d {[char],[char]} ->char

Assuming the current library structure is as Figure 17. We proceed to insert function

of type {[a], [a]} -> num into this structure. Figure 18 is the structure after insertion of

{[a], [a]} -> num. This is because:

{[a], [a]} -> num < {a, b] -> c

{[a], [a]} -> num has no relation with {[a], [a]} -> a

So we create a new node of type {[a], [a]} -> num. Continue checking:

{[a], [a]} -> num > {[num], [num]} -> num

{[a], [a]} -> num has no relation with {[char], [char]} •> char]

Type {[a], [a]} -> num has a child of type {[num], [num]} -> num. This is done by

calling function checkChild. The related records affected by the insertion ({a, b] -> c

and {[num], [num]} -> num)need to to updated at corresponding field.

By freezing one of the arguments in type {[a], [a]} -> num. we get the new type [a] ->

num. We find this new type [a] -> num is in the #arg = 1 sub-library. That is, [a] -> num

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has an extra-argument match type {[a], [a]} -> num in #arg = 2 sub-library. Function

freeze is used to create this extra-argument link. The record of type [a] -> num is

updated at the extra-argument field.

From above analysis about the various conditions, we can conclude that insertion is a

complex operation in the structured library, care must be taken when we perform a

correct insertion. The insertion is best accomplished by using recursion. Type checking is

the most important part in the insertion. We will describe the algorithm for checking

relations between two function types. This check_function algorithm is heavily used in

the algorithm of insertion.

Here is the algorithm for checking relations between two function types:

check_function(/'::7 ',/" T’)

Suppose f :: T = AJ -> A2 ... -> An -> B

f :: T' = A 1 ’ -> A 2 ’ ... -> A n ’ -> B ’

Stepl: function check_token(toke_type2, token_type2) is used to decide the relation

between Ai and A i\ B and B \

Table 5 Relations between two basic types

: num bool char [*] (*, V a, b, c ...

num — no relation no relation no relation no relation <

bool no relation = no relation no relation no relation <

char no relation no relation no relation no relation <

(*] no relation no relation no relation see note 2 no relation <

(*, *) no relation no relation no relation no relation see note 2 <

a, b, c ... > > > > > see note 3

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have six kinds of basic types which can be used as argument types and return type

except function type according to the discussion in 1.2.2. Let’s define all the relations

between any two kinds of basic types. Table 5 shows the comparison results. Let’s give

the explanation about the table.

note 1: Any primitive type is equal to itself and more specific than any type variable, but

has no relation with other primitive type, pair type or list type.

note 2: Both of list type and pair type have no relation with primitive types (num, bool,

char) and are more specific than type variables. They have no relation with each other.

List type may or may not have relation with another list type, this can be decided by

taking off the surrounding and “7” and comparing the component type of the list using

this algorithm recursively. For example, when we compare two list type [a] and [num],

we take off the surrounding and and get the component type a and num. We know

a > num. then we can conclude that [a] > [num]. Table 6 are some examples of the

comparison between two list types. The same comparison mechanism can be applied for

the comparison of two pair types.

Table 6 Examples of the comparison between two list types

[a] [num] [[a]] [(num, bool)]

[a] — > > >

[num] < no relation no relation

note 3: A type variable is always general than primitive type, list type and pair type and

equal to itself. According to our name convention, if a particular type variable appears

before another type variable in the alphabet list, then this type variable is more specific

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than the later one. For example, type variable a is more specific than type variable b and

c.

note 4 : If the argument type or return type is a function type (higher-order function), we

call function check_function to decide the relation. (See step 2).

Step 2: function check_function(/:: T, f ’:: T’) is used to decide the relation between

f : : T and f :: T

The six basic types are the building blocks in constructing a function type. The

comparison of function types is the process of comparing all the corresponding argument

types or return tpes, as we described in 2.1. We use some strategies to perform the

function comparisons in order to reduce the checking time. For example, we can compare

the return types first. If there is no relation between the return types, we can conclude that

the two function types have no relation. The following is the description:

if (f::T == II string comparison!

then/:.- T = f : : T ’

el.se

if B has no relation with B ’

then/ : : T has no relation w ith /’ :: T’

else

if B ~ B ’

flag = decide_statusf A l, A 2 , ... An, A l ’, A 2 ’, ... A n ’);

if flag == 0

f :: T has no relation w ith/*:: T ’

if flag == 1

/ : : T - T ■: T’

if flag = 2

/ : : T > f :: T

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if flag = 3

T< f :: T ’

else if B < B’

find lype variable Tv in B ’ and corresconding more specific type Ts in B

replace every Tv in B ’ with Ts, get new argument types A l_ n e w ’, A2_new’, ..., An_new’

flag = decide_status(A7, A2, An, A l_new ’, A 2 jn ew ’, ..., An_new ’)

if flag == 1

f :: T < f :: T ’

else

f :: T has no relation w ith /’ T ’

else if B > B'

find type variable Tv in B and corresconding more specific type Ts in B ’

replace every Tv in B with Ts, get new argument types A l_new , A2_new An_new

flag = decide_statusG4/_neH-, A2_new, ...An_new, A l ’, A 2 ’,... A n ’)

if tlag = 1

/ : : T < f :: T ’

else

f :: T has no relation w ith /’ T ’

Here is the description of algorithm decide_status:

decide_status(A l, A2, ... An, A l ’, A 2 ’, ... A n ’)

for 1 < i < n, 1 <j < n

compare A i with A /’

if Ai has no relation with all Ay’

f :: T has no relation w ith/’ T ’

else

if Ai > Ay’

flag = 2

if A i - A j ’

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

flag = 1

staius_array[i] = flag: // siore the comparison result of two types

if (number of 1) = n // check bow many l ’s in status_array

return 1;

else if (number of 1) + (number of 2) = n

return 2;

else if (number of 1) + (number of 3) = n

return 3;

else

return 0;

We describe carefully the detailed algorithm of insertion.

1. Before any insertion can take place, the root of each file must be set. The root is a record containing the

most general type of all record's type in that particular file. Furthermore they are linked together based

upon the extra argument relations.

Given the user query (number_ol_argument, query_funclion_type. function_name), decide which file

will be used to insert the function, that means, which sub-library will take in the query function,

if number_of_argument = 1

file: A rgl.dat root record: {alb}{ }{ }{ }{0}

if number_of_argumenl = 2

file: Arg2.dat root record: {alblc}{ }{ }{ } {0}

if number_of_argumcnt = 3

file: Arg3.dat root record: {alblcld}{ }{ }{ }{0}

2. Insertion is the most complex operation in the library system. Before and after insert a new node, a set of

conditions must be checked to make sure that every kind of link is correct and complete.

Compare the query_function_type Tq with the particular sub-library function type 77 starting from the

root record of the sub-library. Before we insert new node into the library, we set new_node_exist = 0;

if check_function(7’̂ , 77) = 1 //Tl = Tq

if function_name field of the record is empty

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

insert new_node into file

insert source code into sublibrary

new_node_exist = 1

else

If query_function_name already exists in function_name field of record

message (“already exist”)

stop

else

insert new_node into file

insert source code into library

new_node_exist = 1

else if check_function(Tq. Tl) = 2 // T1 > Tq

if specificjink field of record is empty

if new_node_exist = 1

update the existing links

else

insert new_node into file

insert source code into sub-library

new_node_exist = 1

if number_of argument > 1

call freeze

else

compare Tq with all the specific_linked children types Tli

if all the Tli have no relation with Tq

insert a new_node into file

insert source code into sub-library

new_node_exist = 1

if number_of argument > 1

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

call freeze

call checkchild

else

i = 0

while i < number_of_specific_links

compare the relation of Tq with Tli //call function modify(Tli, Tq)

ifTq has no relation with Tli

call checkchild

else

call insertion(Tli, Tq) //recursion

else if check_unction(Tq. Tl) == 3 //Tl < Tq

if new_node_exist = 0

insert new_node into file

insert source code into sub-library

if number_of_argument > 1

call freeze

else update links

3.2.2 Retrieval

Retrieval can be seen as the major purpose of W ISER system. The system allows for

retrieving exact matched functions as well as general matched, specific matched and

extra-argument matched functions. Retrieval conforms to the process of navigating the

graph constructed by the various links among components in the library. Figure 19 shows

the structure of the retrieval process.

According to Figure 19, the user submits his query in the form of the function’s type

and the number of arguments contained in it. The argument types can be given in any

order. A confirmation is then asked by the system so that changes can be made if the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

query contains some errors. Next a search is done on the library. The search is first

narrowed down by focusing only on those components containing the number of

arguments specified by the user. This is implemented by using the file containing the

number of arguments specified.

If a query type is an instance of a type that belongs to a record in the library, then you

need only check the descendents of that record. Table 5 outlines function exact_match

that can be used to find functions corresponds to the query type. Before calling this

function, a check is made with the root record of the corresponding argument file to

determine if an exact match of type already exists, in which case it would return the

functions associated with that record and also its offset. Otherwise, exact_match is called

with its parameters being instantiated to the query type, zero (0) and the number of

arguments contained in the type, respectively. By using the record stored at record_offset,

the function can go through all that record’s children until one is found that either

performs an exact match, in which case the components stored with it are returned along

with its offset, or is more general than the query type, in which case the search is

restricted to the descendents of it. Furthermore this function calls itself recursively

thereby narrowing down the search further.

During the retrieval process, if a record is found whose set_type produces an exact

match with the query type, the functions associated with that record will be retrieved, the

offset of the record is also remembered. Furthermore, if the exact match result can not

satisfy the user’s requirement, the relaxed matches can be achieved by traversing the

library using the various linked offsets associated with this record. If an exact match can

not be found, the retrieval process is terminated. Exact match is the basis for all the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relaxed matches.

Figure 19 Structure of Retrieval

user query

no
— query OK

library

type exists
no

----------- ▼-------
exact mach general match specific extra-argument

match match

Table 7 Exactmatch algorithm

Function exact_match(query_type, record_offset, num_args)

gel all children Cl, C2 ...Cn of record al record_offset;

for I = Cl ...Cn

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

get t>pe Ti from Ci;

type.offsei = offset of Ci;

if retrieval.type < Ti then

if retrieval.type = Ti

return function names along with type.offset;

found = true;

exit for loop;

end if

end for loop

if found == true

found = false;

return exact_match(retrieval_type, type.offset, num.args);

end if

end Function

There are two ways in which the method exact_match determines when the query

type does not match the library type. The first possibility is that we meet a leaf record that

is more general than the query_function_type (See the following example 2). The

second possibility is that we are at a record whose type is more general than the

query_function_type but none of its children performs an exact type match and also

none is more general than the query type (See example 4).

The exact_match method returns the offset of the record which contains the type that

performed the exact match, because this offset will be used to find general, specific and

extra-argument matches.

The process of finding more general functions is accomplished by returning all

functions stored with records that are ancestors of the record. This is done recursively by

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using the general offset links. The same is done for more specific functions, the only

difference is that it uses the descendants of the record along with the specific offset links.

Finally, for the extra argument functions, the file containing types with one more

argument than the query_function_type is used and the functions associated with the

offsets stored in the record’s extra_argument offset link field are retrieved. Taking

general_match as example, let’s describe the algorithm which is similar as

specific_match and extra_argument_match:

get exact_match_offset and seek the record in this offset

find all the general_match_offset for this record

if general_match_offset field is empty

"no general match functions"

stop

else

go to all the record whose offset equals general_match_offset and

retrieve all the function names from function_name field

return the function_names

By studying the retrieval process, we have the following observations:

1. Retrieval is firstly narrowed down in terms of the number of arguments.

2. Retrieval process is applied recursively.

3. Exact match is the basis to other relaxed matches.

Figure 20 gives some examples of retrieval paths. From the graph, we can see that

there exist more than one search path leading to a component. Such as num -> num. You

can follow path a -> b to a -> num to num -> num , and you can also follow path a -> b

to a -> a to num -> num. But in our algorithm, there is no ambiguity. Once we find the

relation between the query type and library component type, we do not need to check its

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sibling(s) of the library node. The order of the nodes at the same level (all the children of

a parent) is decided at insertion time. For intuition, the same level nodes in this graph are

listed from left to right according to their insertion order. For example, a -> num is

inserted before a -> a. {a, b] -> a is inserted before {(a -> a -> a), [a]} -> a. This

convention in this graph aids us to understand in the following examples why we do not

need to investigate all the components in the library for a match.

Example 1: This example is to search function(s) with type [a] *> [a], we have the

following comparisons:

[a] •> [a] < a -> b

[a] -> [a] has no relation with a -> num

[a]-> [a] < a -> a

[a] -> [a] has no relation with num -> num

[a] -> [a] = [a] -> [a]

So we find the exact match. Based on the exact match, we find its general match

type is a-> a. extra-argument match type is {num, [a]} -> [a].

Example 2: The second example uses [num] -> [num] as search key. We have the

following comparisons:

[num]-> [num] < a

[num] -> [num] < a -> num

[num] -> [num] has no relation with num -> num

[num] -> [num] < a -> a

[num]-> [num] has no relation with num -> num

[num] -> [num] < [a] -> [a]

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We already reach the leaf node [a] -> [a] in the graph and still can not find the exact

match type. This implies that the query type is not in the library. The query

[num] •>[num] fails yielding exact match.

Example 3: The query type is {[char], num}-> [char]. We have the following

comparisons during the search:

[[char], num}-> [char] < [a, b] -> c

{[char], num}-> [char] < {a, b] -> a

[char], num}-> [char] has no relation with {a, a] -> a

{[char], num}-> [char] < {num, [a]} -> [a]

{[char], num}-> [char] = {num, [char]}-> [char]

Finally we find the exact match node. Based on this exact match, we find the general

match type is {num, [a]} '>[a].

Example 4: The example deals with query type {[num], num] ->[num]. We know:

{[num], num] -> [num] < {a, b] -> c

{[num], num] ->[num] < [a, b] ->a

{[num], num] -> [num] has no relation with {a, a} -> a

{[num], num] -> [num] < {num, [a]} -> [a]

{[num], num] -> [num] has no relation with {num, [char]} -> [char]

In this case, [num, [a]}->[a] is more general than our query type, but its child has no

relation with our query type. We can conclude that this query type is not in the library.

From this graph, we can see that the retrieval is narrowed down by a breath-first

search. The search time is greatly reduced comparing to sequential search.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 20 Examples of search path

a->b
{(a->a->a),[a]}->a

a->num {num,[a]}->[a]a->a

{num,[char}}->[char]

{bool,bool} ->bool

3.2.3 Deletion

A function can be implemented in many ways. If the software developer has a better

implementation of a function, he may want to replace it with the better one. The replace

procedure goes through two steps. Firstly, the old function needs to be deleted. Secondly,

the new function needs to be inserted. It is quite possible that the new function has the

same type as the old one. So when we do deletion, we just remove the function name

from the corresponding record, if there is no more function names in the record after this

deletion, we still keep this record, because later on an insertion on the same set_type will

be performed. Finally, the source code of the old function is taken away from the library.

This design idea is practical and makes deletion much easier. Figure 21 is the structure of

deletion.

Deletion algorithm is similar to retrieval algorithm. For deletion, after you find the

component with the same type and name, you just need to delete the name from the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

record and remove the source code from the library.

Figure 21 Structure of Deletion

(start t

-------------► user query

no query OK

yes
f— ▼ —«**

__ -
library

__

no error message
delete OK

yes

stop

Figure 22 Example or Deletion

a -> b
fa.bl->c

a -> a ■> num

char -> char
{fnuml.fnuml)->num[num] -> num

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 22 gives us an example of deletion. Assuming we have two functions f l and 12

attached to type {[a], [a]} -> num. After deleting function f l , the structure is the same.

Now we continue to delete function f2 from the structure. According to our design

algorithm, the structure keeps the same. Now the type {[a], [a]) -> num contains zero

function. In other words, we allow empty node (no function attached to the node) exist in

the structured library.

3.2.4 Browsing

Figure 23 Example of browsing

a -> b (a, b} -> c (a, b, c) -> d

a -> a

[a] -> num

[a] -> a

[a] -> [a]

Num -> num

bool •> bool

{num, num} -> num

{bool, bool} -> bool

{[a], [a]} -> [a]

{(a->a->a), [a]} -> a

{a, b} -> a

{(a, a } -> bool

{a, a} •> a

{(a->bool), [a]} -> [a]

{a, [a]} -> [a]

{(a->b->b), b, [a]} -> [a}

{(a->b->a), a, [b]} -> a

{(a*>bool), (a->a), a}->a

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Browsing is an operation that allows the library user to view the structure of the

library so as to find potential reusable functions. Figure 23 shows a sample structure of

browsing. Using the browser, the user can control which pan of the structure to browse

by changing the number of arguments along with moving up, down and cross the

structure. Browsing always begins from the root node. The user can visit all the nodes in

the structure based on the various links. The user can choose different paths to search for

an appropriate function by using the browser.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Program Development Using WISER

This chapter describes W ISER’s user-friendly interfaces developed by using Java

programming language. Some examples will be given on the various operations applied

to the system.

4.1 User Interface

On the user side, an applet window is used as the interface to get the user’s query and

display the feedback from the server side. Figure 24 is the user interface. The upper

portion of the user interface is a brief description of various operations supported by

WISER. They include browse, retrieve. showAll and help. The lower portion of the user

interface composes three panels. The north panel contains four buttons listed sequentially

from left to right, named “Browse”. “Retrieve”, “showAll” and “Help”. The user

chooses one operation by clicking on one of the buttons.

The center panel is further divided into three parts. The upper part is used to collect

user's input. In this pan. there are three textFields and one choiceButton. One textField is

the #arg textField. another is arg type(s) textField. The choiceButton is provided with

four kinds of matches. “Exact' ’, “GeneraF, “Specific” and “ExtraArg”. The middle pan

of the center panel is a list for displaying the array of candidate function names. The

lower pan of the center panel is a textArea. When the user click one of the items

(function names) in the list of middle part, the source code of this particular function is

displayed in this textArea.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 24 User Interface

M H H H B M M T T d l x l
Applet

Windsor Internet Soltware-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll Display all the functions for a specific argument number

Help: A readme file for library beginners

Browse | Retrieve | ChOwAlf | Help |
. . . . i

#arg: j argtype(s): j ; return type: j ; j Exact n r j

^ 1

«JM l .

•Appty I Reset ! -
Bat |

Applet started.

The south panel contains three buttons. When “A p p ly” is clicked, the user’s query will be

sent to server through the socket connection. When “Reset” is clicked, the user’s

previous input shown on the window will be cleared. The “Reset” button is used to start

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a new transaction. “Exit” is used to terminate this user’s session. All the interactions with

WISER are processed through this user interface.

4.1.1 Example of Browser

A browser is implemented to allow the user to view the software reuse library

structure and find potential candidate functions. Figure 25 is the browser window. It pops

up when you clicks the “Browse” button and specify the #arg on the User Interface Main

Window. The browsing procedure always begins from the root of corresponding sub

library.

Figure 25 Browser Window for #arg = 2

general match:

a|b|c extraArg match:

a|b|c|d

specific match:

a|b|a
(a-»a->a)|[a]|a
(a-»b)|[a]|[b)
(a->a)|a|[a]

Figure 26 Browing {a, b} •> a

general match:

a|b|c

j a'lb'la const extraArg match:

specific match: a|[a]|[a]
a|a|a
num|[a]|fa]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From this window you can see all the set_types associating with a particular set_type

({a, b} -> c in this case, represented by a\b\c). By clicking one of the set_types in the

three lists, the user can get the functions bearing this set_type and all the set_types of

immediately more general, more specific and having extra argument(s). Figure 26 is an

example on clicking on a\b\a. Figure 27 is an example on clicking on aiala.

Figure 27 Browsing {a, a f -> a

general match.

a|a|a max2|min2 extraArg match:

specific match:

numlnumlnum
bool|bool|bool
[a]|[a]I[a]

From Figure 27 we can see that there are two functions bearing set_type (a, a} -> a,

which are max2 and min2. Set type {a, a} -> a has one immediate general set type {a, b)

-> a and three immediate specific set types {num, num} -> num, {bool, bool} -> bool

and {[a], [a]} -> [a]. Following the links a user can traverse the whole library in order to

find the desired candidates.

4.1.2 Examples of Retrieval

4.1.2.1 Exact Match

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 1: Suppose we want to find a function which can determine if a given number

is a prime or not. We query W ISER using type num -> bool. By specifying the #arg = 1,

arg type(s) = num. return type = bool and performing an exact match, we got three

functions with type num •> bool. By investigating the source code, we find function

"'prime'' is our desired function. Figure 28 is the window for this retrieval.

Figure 28 Exact Match of num->bool

A p p le t V ie w e r C lie n tA p p le t c l a s s

Applet

Windsor Internet Software-basE for Reuse - WISER

Retrieval Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll Display all the functions for a specific argument number

Help: A readme file for library beginners

H R m

Browse Retrieve j showAll 1 Help

arg 1 argtype(s): j num i return type: | b001 ̂ {Exact ;i |

I even
odd

prime
Determine whether a number is prime or not

prime :: num -» bool
prime n = (divisors n = [1, n])

. i f *
Apply R e s e t Bot

Applet started.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 2: Figure 29 is an example of retrieving a function which concatenates an

element to the head of a list of elements. We use a -> [a] -> [a] as query type. Finally we

find function “concat” fulfills our requirement.

Figure 29 Exact Match of a •> [a]-> [a]

■ ■ ■ ■ 0 5 1 x 1
Applet -

Windsor internet Software-basE for Reuse - WISER

Retrieval. Perform type based retrieval

Browse Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help A readme file for library beginners

Browse | Retrieve j shewtti] Help |
i

*arg |2 arg type(s): | a|[a 1 return type: | [a] [Exact

eliminate
insert

1 concat H
Add an element to the head of a list of elements

concat :: a -» [a]-> [a]
concat a [] = la]
concat a (b : x) = a : b : x

d . j f *

Apply . . 1. Reeet j Exit |

Applet started. |

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WISER is designed to disregard the difference of argument order. Figure 30 is the

same retrieval as figure 29 except the argument order of query type is different. The same

retrieval result has been achieved.

Figure 30 Exact Match of [a] -> a •> [a]

Ig jgA pple t V iew er C lien lA p p le t c la s s R f »] E3
Applet

Windsor internet Software-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help: A readme file for library beginners

Browse J Retrieve | showAll J________ Help

#arg [2 argtype(s): I [a]|a 1 return type: j [a] IExact i i j j

eliminate
insert

Iconcat m
Add an elementto the head of a list of elements j

concat :: a -» [a]-> [a]
concat a [] = la)
concat a (b :x) = a : b :x

Apply " T
VW.VA'MViV.'.W.V.VW/.VW.WAW.V.V.V.VAW/.WW.Vi • -.J

/ Reset " I Exit |
Applet started.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 3: Suppose we want to find a function which can filter a list with a predicate.

We use query type (a -> bool) -> [a] -> [a] as search key and perform exact match

operation, we find the desired result as shown in Figure 31. Changing the argument order

of (a->bool) and [a], the query type is changed to [a] -> (bool) -> [a]. We get the same

retrieval result based on this query type, as shown in Figure 32.

Figure 31 Exact Match of (a->bool) •> [a] •> [a]

A p p le t V ie w e i C lie n tA p p le t c la s s

Apple!

Windsor Internet Software-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll Display all the functions for a specific argument number

Help A readme file for library beginners

Browse J . Retrieve showAlf 1 Help

*arg arg type(s): (a-»bool)|[a]

[dropwhile

takewhile

return type: [la] | Exact » |

filter
Filter a list with a predicate

filte r:: (a-=>bool) -> [a] -> [a]
filter p [] = []
filter p (x : xs) = x : filter p xs. if p x

= filter pxs, otherwise

J j
Apply R e s e t Exit

Applet started.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 32 Exact Match of [a j •> (a->bool) •> [a]

3
*PPW , '

Windsor Internet Software-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help A readme file for library beginners

Browse |_______ Retrieve______ | V showAtl_______j________ Help |

*arg. J 2 arg type(s): j [a]|(a->bool) rel

dropwhile

takewhile

turn type: | [a] |Exact

Apply

filter J | !
Filter a lis t with a predicate

filte r:: (a-»bool) -» [a] -» [a]
filter p [] = [1
filter p (x : xs) = x : filter p xs, if p x

= filter p xs, otherwise

| Reset { &dt]

Applet started. j

Example 4: If we know the index of an element in a list and want to find this element

from the list, we can query WISER with type num. -> [a] -> a. Figure 33 shows us the

^ A p p le t V iew ei C lie n lA p p le t c l a s i H R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exact match result. If we reverse the order of [a] and num and use [a] -> num -> a as

search key. the result is the same as shown in Figure 34.

Figure 33 Exact match of num -> [a] -> a

jS jj A p p le t V ie w e i C lien lA p p le t c l a n

Applet

Windsor Internet Software-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help" A readme file for library beginners

Srowse Retrieve ehowAil Me$

#arg arg type(s): num|[a] return type: ji Exact *

Apply

indexlist
List-index: (xs ! n) returns the nth element of xs

(!) :: [a] -» num -> a
(x : xs) I 0 = x
(x : x s)! (n + 1) = x s ! n

i j J *

....... R eset { EMI

Applet started.

Example 5: We give the last three-argument example to highlight the fact that the order

of arguments can be disregarded in the retrieval by using WISER. Suppose we want to

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retrieve the source code for the important function foldl, which is the building block for

many useful complex functions. We use search key (a -> b -> a) -> a -> [b] -> a to query

WISER, Figure 35 is the result. If we use a -> (a •> b -> a) -> [b] -> a as search key.

Figure 36 is the result. If we use (a -> b -> a) -> [b] •> a as search key. Figure 37 is the

result. There are total six permutations for three different arguments. We omit the other

three permutations here.

;; Applet , ̂ , ; ' ' ,

W indsor Internet Software-basE for Reuse - WISER

Retrieval Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll. Display all the functions for a specific argument number

Help: A readme file for library beginners

Browse j Retrieve ' | showAlt | Help]

*arg [T * arg type(s): j (a]|num return type: j a |Exact j j j j

Figure 34 Exact Match of [a] •> num •> a

^ s ^ A p p le t V ie w e r C lien lA p p le t c la s

indexlist
List-index : (xs ! n) returns the nth element ofxs

(x : x s)! 0 = x
(x :x s)!(n + 1) = x s !n

(!) :: [a) -> num -> a
= x

bJ
Apply Rteet j E£t

A p p let started

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 35 Exact Match of (a -> b -> c) -> a -> [b] -> a

{S3A p p le t V iew ef C lie n lA p p le t c la s s H R D

Windsor Internet Software-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help. A readme file for library beginners

Browse 1 Retrieve 1 ShowAll 1 Help

#arg- j” arg type(s): j (a->b-»a)|a|[bl return type: | a j Exact jjr.

foldl
Fold-left

foldl :: (a-»b-»a) -> a -» [b] -» a
foldl f a [] = a
foldl f a (x : xs) = strict (foldl f) (f a x) xs

l l
Apply R eset Bdt

Applet started.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 36 Exact Match of a -> (a -> b •> a) -> [b] -> a

A p p le t V ie w e r C lie n lA p p le t c la s s

***** ' 'V '' O ■' -
Winasor intemei Software-pasE for Reuse - VViSER

RF1E1

Retrieval: Perform t/pe based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help A readme file for library beginners

Browse_______ |_______ Retrieve]_______ showAlf]________ Help

*arg: [3 argtype(s): [a|(a->b->a)|[b] return type: | a |Exact

foldl
Fold-left

&

foldl :: (a-»b-»a)-» a-» [b]-» a
foldl f a [] = a
foldl f a (x:xs) = strict (foldl f) (f a x) xs

J ' . X ' - . / . j T 1

Apply j .. R e s e t -] Exit " 1
Applet started.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 37 Exact Match of (a -> b •> a) -> [b] -> a -> a

Applet ^ .7 7;/: _ ' : ' 21*
Windsor Internet Software-basE for R euse- - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help: A readme file for library beginners

A p p le ! V ie w e r C lie n lA p p le t c ld i s

Browse 1 Retrieve 1 showAlt H elp J
‘ #arg: | ~ i arg type(s): j (a-»b-»a)|[b]|a | return type: | a ; [Exact jsrj

foldl
Fold-left

foldl :: (a-»b-»a) -» a -> [b] -» a
foldl f a [] = a
foldl f a (x:xs) = strict (foldl f) (f a x) xs

Apply R e se t B d t

Applet started.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the above five examples we can prove that the retrieval result in WISER is not

affected by the order of argument types. You can always retrieve the same function(s) if

you use the same set_type.

4.1.2.2 General Match

Figure 38 Exact match of num -> num -> num

r m m
Applet - ̂ _ , . , ; ^ _

Windsor Internet Software-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help: A readme file for library beginners

^ fg A p p le l V iew er C lien lA p p le t c la s s

Browse j Retrieve j sriowAll]________ Hetp_______

#arg |"2 arg type(s): j num|num return type. j"nurrT"""""""" 1 Exact v |

gcd J i l
divide
power
substract
times

■ i ^

perm
Calculate the permutation

perm n r : : num -> num -> num
perm n r = fact n / fact (n - r)

 __________ Apply j R eset ~ ____________ &&

Applet started.

If we want to find a function which returns the maximum of two numbers. We use num

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-> num -> num as search key. By performing exact match operation, we got a list of

functions. By examining the source code for these functions, we find that none of them

seems to match our requirement, as shown in Figure 38. If we perform general search.

Figure 39 General Match of num •> num -> num

VAPPW^ ________ ,____ ^ _
Windsor Internet Sottware-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help A readme file for library beginners

Browse | Retrieve j ' shcwAif I Help |

#arg: |~2 argtype(s): | num|num return type: | num j |General * |

f I H r V
min2

Apply

max2
Return the maximum of two elements

max2 :: a -> a -» a
max2 x y = x. if x » y

= y, otherwise

Lil
R eset Bat

Applet started.

we find a function called “max2” which returns the maximum of two elements. If we

replace the type a for “max2” with type num, we can get our desired function very easily.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.2.3 Specific Match

Suppose we want to retrieve a function which can be used to calculate the

combinations of the given elements. We query WISER with a -> a -> a, the exact

matched functions “max2” and “#nin2” do not match our goal, as show in Figure 40.

Figure 40 Exact Match of a -> a -> a

Applet

Windsor Internet Soltware-basE for Reuse - WISER

Retrieval Perform type based retrieval

Browse: Navigate the library strucuture 1

ShowAll Display all the functions for a specific argument number I

Help A readme file for library beginners
|

Browse | Retrieve j ShowAll j Help |
■:

*arg |2 argtype(s): Jala 1 return type: | a 11Exact m l ;

m in2

max2 m l
Return the maximum o f two elements

; ’:‘v >:

max2 : :a - » a - » a
max2xy =x, i f x > y

= y, otherwise

A

i ! ' ‘

jlsJ
. /.. A1... ' . . . / . . X . . / . . . / . . ■Me.v.v.v

I

Apply
1

~ sp a 4 A'' * A
R e s e t J E x t |

Applet started. \

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The specific matched function “comb” is similar as our goal, which performs

combination over numbers, that is, the problem domain is smaller than our goal, as

shown in Figure 41. By slightly modifying the source code (changing the type num to

type a), we can get our desired function.

Figure 41 Specific Match of a -> a -> a

A p p le t V iew er C lie n lA p p le t c la s s

Applet , ; -

Windsor Internet Soltware-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help: A readme file for library beginners

Browse Retrieve ShowAll H elp

£arg ["2 arg type(s): j a|a return type:

|add P

gcd H I
divide
power
substract P j

comb
Calculate the combination

comb :: num -» num -» num
comb n r = perm n r* fac t r

m J 1

Specific p]

Apply R e se t EXH
Applet started.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.2.4 Extra-Argument Match

Suppose we want to find a function which can create a constant valued function. We

use a -> a to query W ISER and perform exact match. The retrieved function “wf ’ does

not match our requirement. By performing extra-argument match, we got a function

called “const”, which is exactly what we want. Figure 42 and 43 illustrate this situation.

Figure 42 Exact Match of a -> a

A p p le t V iew er C lie n lA p p le t c la s s

Applet

Windsor Internet Soltware-basE for Reuse - WISER

Retrieval: Perform type based retrieval

Browse Navigate the library strucuture

ShowAll Display all the functions for a specific argument number

Help A readme file for library beginners

Browse Retrieve | ShowAll j Help

#arg: p arg type(s): return type: (Exact 3

The identity function

id x = x

Apphr R eset

Applet started.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rtoTxi

Retrieval: Perform type based retrieval

Browse: Navigate the library strucuture

ShowAll- Display all the functions for a specific argument number

Help: A readme file for library beginners

Browse | Retneve | ShowAll | Help
I — - ■■■■........... ■ III"""......................1

*arg- |1 argtype(s): ja return type: ja : lExtraArg i» | i

max2
min2

I const M
Create a constant-valued function i

const : :a-» b -> a
const kx = k

• '■ :

u c - : ^ . . j f 1
Apply I , Y , BSt j

Applet started. j

4.1.3 Examples of showAII

72

Figure 43 Extra-argument Match of a -> a

A p p le t V ie w e r C lie n lA p p le t c la s s

Applet

Windsor Internet Software-basE for Reuse - WISER

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘shovvAH” is used to display a list of function names in a particular sub-library. The

user only needs to press ‘‘showAll” button and specifies the #arg. Figure 44 is the

showAll window for#arg = 2. If the user selects a function from the list, say “eliminate”,

the source code of this function will be displayed in the textArea. The list holding the

functions is scrollable.

Figure 44 ShowAll Window for #arg = 2

A p p le t V iew e i C h e n tA p p le t c l a s s (5i[“]E3
Applet -

Windsor Internet Software-basE for Reuse - WISER

Retrieval Perform type based retrieval

Browse Navigate the library strucuture

ShowAll: Display all the functions for a specific argument number

Help A readme tile for library beginners

8rowse Retrieve showAll i Help
#arg: arg type(s): return type: [j Exact i f]

filter i l l
takewhile
concat :<>

{insert y
Jmax2 m

eliminate Wj
This function eliminates an element from a list

eliminate :: a -» [a] -> [a]
eliminate x [] = [] /y:|
eliminate x (y : ay) = ay. x = y

= y : elim inate x ay. otherwise

1 i 6* S>< ^->3:'? <

Apply - 1 " V - CftOTOT "jZ; ̂> T V ~ * SdtT :, ^]
Applet sianea.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.4 Help

A help window is designed to facility inexperienced users. It displays a README

file, which describes detailed information about how to perform various operations over

WISER. Figure 45 is the help window.

Figure 45 Help Window

Windsor Internet Software-basE for Reuse - WISER Version 1.0
July 16.1998

Introduction:

WISER is an interactive Internet search engine. It is used to retrieve functional
; components based on function types.

Browse, Rretrieve and showAll are provided to users.

in the case of retrieval, the user needs to provide the number o f arguments, the
function type and choose a match categoy (i.e.,exact match, general match, specific
match , extra argument match. For example, if you want to retrieve a function with two
arguments, one argument type is [a], another argument type is num, the function return
type is a. Then at the #arg field, you specify 2 as the number of arguments. At arg
type field, you type [a]|num, or num|[a], at return type field, you type a. Then you
specify one kind o f match. If Apply button is used to send your query. Reset button is
to refresh the screen and start another query. Exit is to close the screen.

J j___________ \ :>

4.2 Server Side Interface

WISER is designed to allow only library developers to perform ‘Insert” and “delete”

operation. In order to investigate these two operations, let’s take a look at the server side

interface. The server side interface is similar as the lower portion of user interface except

it contains different operations. “StartServer” is used to establish the socket connection

between server side and user side. “Insert” is used to put function component into the

library, “Delete” is used to take away existing function component from the library,

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“Browse” is used to list all the component names in a specified sub-library. “Retrieve”

facilities the library developers to retrieve functions locally on the server side. These

operations are based on the #arg and function type information. The function type

represents all the argument types and return type delimited by “I” with the return type

listed last (the argument types can be given in any order). A ChoiceButton is used to

select exact match as well as flex matches for retrieval. Figure 46 is a sample server side

interface. Let’s use some examples to describe insertion and deletion in detail.

4.2.1 Examples of Insertion

Examplel: The library now is empty, we first insert function “const" into the

library, "const” is a two arguments function of type (a, b} -> a. Figure 46 is the insertion

window for " const”. We specify #arg = 2. function type = a\b\a. The header pan is the

Figure 46 Insertion of “const”

Exact*arg

const
Create a constant-valued function

const
cons tkx = k

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function name (the first line in the textArea) and the explanation o f the function. A blank

line is used to separate source code part from the header part.

Example 2: We press “Reset” and continue to insert function “dropwhile" of type

{(a -> bool), [a]} -> [a] into the library. We specify #arg = 2, (a -> bool)\[a]\[aJ is the

function type. Figure 47 is this insertion window.

Figure 47 Insertion of “dropwhile”

startSetYer Insert

*arg [*2 ’ function type: j (a-»bool)|[a]|[a] jExact iS j

1

dropwhile
Remove the longest initial segment o f a list
all of whose elements satisfy a given predicate

dropwhile :: (a->bool) -» [a] -> [a]
dropwhile p [] = []
dropp(x:xs) = dropwhile p xs, if p x

= x:xs, otherwise

* i i i i Mt-m i m *

L
Apply R eset________ J_________ Ext!

Example 3: We continue to insert function “filter" of type {(a->bool), [a]}-> [a] into

library. Figure 48 shows us the insertion window. We use “Browse” to confirm that

function “const" is inserted into library. To do this, just click on “Browse” and specify

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

#arg = 2. and then press “Apply”. Figure 49 shows us the window after we successfully

insen function “const”, ‘ ‘dropwhile” and “filter*'.

Figure 48 Insertion of “filter’'

mm m m am rnarn
I H H i H B K T p T x l

siartServer In sert | D ele te , | B r o w se j R etrieve j
» , , - - i

*arg: J 2 function type: j (a->bool)|[all[al 1 Exact U

1
. Ml

filter
Filter a list with a predicate

m
filter :: (a-»bool) -> [a] -> [a]
filter p [] = []
filter p (x : xs) = x : filter p xs, if p x

= filter p xs, otherwise

J

J \ " Apply]| R e se t 1 B# |

4.2.2 Example of Deletion

Now we have three functions “const”, “dropwhile” and “filter" in the library as

shown in Figure 49. If we want to delete function “dropwhile" from the library, we first

press the button “Delete”, then specify #arg = 2 and function type = (a -> bool)\[a]\[a] ,

and then type the function name “dropwhile” in the first line of lextArea and press return

key. After “Apply” is pressed, function “dropwhile" will be deleted from the library.

Figure 50 is the window for deletion of “dropwhile". Figure 51 is the confirmation

window for the deletion of “dropwhile". Comparing Figure 49 and Figure 51, we can see

that function “dropwhile" is no longer in the library any more.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 49 Confirmation of Insertion of “const”, “dropwhile” and “filter’'

startServer in ser t j D eleftt |
■ 1 Browse 1 , R etrieV8 .]

#arg]2 function type: | j | Exact
. . . M

jcon st
Idropwhile

[

f i l t e r
Filter a list with a predicate

filter :: (a->bool) -> [a] -> [a]
filterp [J = [)
filter p (x : xs) = x : filter p xs, if p x

= filter p xs, otherwise

Li
Aopfy R eset Exit

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 50 Deletion of “dropwhile”

gtarfSwer j iaw t j PU tt j growst j .■ RtW>w |

*arg [T " function type: j (a->toool)|[a]|[a]) Exact !P |

1

dropwhile

J M

ApptiT

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 51 Confirmation of Deletion a t “dropwhile”

sta rtS eiv sr | in so tt | Q g ltte | B row se j R etrieve

#arg:

filter :>*■!
Filter a list with a predicate

filter :: (a->bool) -> (a] - > [a]
filter p [] = []
filterp (x:xs) = x : f i l terpxs, i f p x

= filter p xs, otherwise

2 T 1LJ
Apply I R e s e t I , Exit

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 Conclusions and Future Work

This chapter summaries the conclusions of this thesis work and outlines the future work.

5.1 Conclusions

In this thesis we have investigated a structured software library to support reuse-

oriented program development, and developed a prototype system called W ISER.

The major purpose of this thesis is to maintain an evolving structured software base

with various tools to allow for effective insertion, deletion, retrieval and browsing. This

system also describes how the components in the library are grouped and linked by the

number of arguments, the polymorphic and extra argument relations, thereby allow easy

access to related functions. Because the users have no way to know the order of

arguments associated with functions in the library, WISER is designed to ignore the

difference of the argument order by using a new module based on set_type concept. A

breadth-first like algorithm is used to search functions. All the user’s interactions with

W ISER are Window-based so as to allow easy input/output. The complexity of the

retrieval system proves to be linear in terms of the number of types for the worst case. In

average it is much better.

Based on the work carried out in this thesis we have the following conclusions:

1. Using WISER with its structured software library based on function types

disregarding the order of arguments provides a practical approach for reuse-oriented

program developments, especially for reuse in the large.

2. Type-based retrieval method is not precise but can give a big cut over the candidate

components. This method can be integrated with other method to achieve more

precise result.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. WISER supports automatic retrieval.

4. WISER supports both exact match and relaxed matches.

5. WISER can be posted to WWW. All the users can access it from remote area by

using the browsers like Netscape.

6. The average performance is better than sequential search.

7. A user-friendly, easy-to-use interface is provided.

8. WISER is an open system and can grow to be very large.

9. WISER can be used as an aid in functional programming coding phase.

5.2 Future Work

Retrieval from a reuse library based on type information using our approach can get

suitable candidate functions. However, the number of components retrieved is

unpredictable. So the accuracy of this method is low. Therefore this approach needs to be

complemented with other techniques so as to narrow down the candidate functions to the

most appropriate one(s).

This structured approach with the argument order disregarded can be extended to

other reuse area, for example retrieval based on functional composition, retrieval on other

programming components, such as classes in Object-Oriented programming environment.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

One argument random access file (argl.dat)

{alb}{ }{ }{ }{0}

{[a]lnum}{lenlist}{0}{320}{ }

{[num]lnum}{avgrlproductlsum}{ 1601480}{ }{ }

{[a] la} {hdllastlmaxlmiddlelmin} {0} {320164011760} {144012560}

{[[a]] l[a]} {listConcat} {480} { }{ }

{ala} {id} {0} {9601112012400} {1601640}

{numlnum} {factlfibllstdiv} {800} { } {800}

{[a] l[a]} {boolSumlelizerolinitlsortlreverseltl} {800}{1440) {32014801112011280}

{numl[num]} {divisorslpridivlupto} {0}{ } {2400}

{[num]l[num]}{sieve}{1120}{ }{ }

{(a.b)la}{fst}{0}{ }{ }

{[bool]lbool}{andlor}{480}{ }{ }

{numlbool}{evenloddlprime}{0}{ }{ }

{numl[(num, num. num)]}{triads}{0}{ }{ }

{([a],[b])l[(a,b)]}{zip}{0}{ }{ }

{boollbool} {negation} {800} { } {960}

Two arguments random access file (arg2.dat)

{alblc}{ }{ }{ }{0}

{albla} {const} {0} {3201480164011280} { }

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{(a->bool)l[a]l[a]} {dropwhilelfilterltakewhile} {160} { }{ }

{al[a]l[a]}{concatleliminatelinsert}{ 160} { }{ }

{alala} {max2lmin2} {160} {800196011120} { }

{numlnumlnum} {addlcorablgcdldividelpowerlsubstractltimeslperm} {640} { } { }

{boollboollbool}{disjunlconjun}{640}{ }{ }

{[a]l[a]l[a]}{concatlistlmergeldifflist}{640}{ }{ }

{numl[a]l[a]}{dropltake}{ 160}{ }{ }

{(a->a->a)l[a]la}{foldrllfoldll}{0}{ }{ }

{(a->b)l[a]l[b]}{map}{0}{ }{ }

{(a->a)lal[a]}{iterate}{0}{ }{ }

{alalbool}{lessllessequlgreatequlgreaterlnotequ}{0}{ }{ }

{[(a.[char])]lal[char]}{assoc}{0}{ }{ }

{[a]lalbool}{member}{0}{ }{

(numlnumlfnum] }{comdiv}{0}{ }{ }

{[a]inumla}{indexlist}{0}{ }{ }

Three argum ents random access file (arg3.dat)

{alblcld}{ }{ }{ }{ }

{(a->b->a)lal[b] la} {foldl} {0} { }{ }

{(a->b->b)lbl[a]lb}{foldr}{0}{ }{ }

{(a->b->a)lal[b]l[a]}{scan}{0}{ }{ }

{(a->bool)l(a->a)lala}{until}{0}{ }{ }

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLOGRAPHY

[1] Krueger. W., (1992) “Software reuse”, ACM Computing Surveys, 24(2):131-183

[2] Cheng. J., (1994) “A reusablility-based software development environment” ACM

SIGSOFT, Software Engineering Notes, 19(2): 57-62.

[3] Cheng, B. and Jeng. J. (1992) “Formal methods applied to reuse”, Proceedings o f the

Annual Workshop on Software Reuse.

[4] Podgurski. A and Pierce, L. (1993) “Retriving reusable software by sampling

behavior”, ACM Transaction on Software Engineering and Methodology, 2(3): 286-303.

[5] Zaramski, A. and Wing, J. (1993) “Signature Matching: A Key to Reuse.”

Proceedings o f the ACM SIGSOFT Symposium on Foundation o f Software Engineering,

pp. 1 8 2 - 190.

[6] Zaramski. A. and Wing. J. (1995) “Specification Matching of Software Components”.

Proceeding o f the ACM SIGSOFT Symposium on Foundation o f Software Engineering.

[7] Rollins. E. and Wing. J. (1991) “Specifications as Search Keys for Software

Libraries”. Proceeding o f the International Conference on Logic Programming.

[8] Bird. R. and Walder, P. (1988) “Introduction to Functional Programming.” Prentice

Hall.

[9] Park. Y. and Ramjisingh. D. (1995) “Software Component Base for Reuse in

Functional Program Development.” Proceedings o f the International Conference on

Computing and Information, pp. 1022 - 1039

[10] Rittri, M. (1991) “Using Types as Search Keys in Function Libraries.” Journal o f

Functional Programming, 1(1): 71 — 89

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[11] Rittri. M. (1990) “Retrieving Library Identifiers via Equational Matching of Types.”

In M. E. Stickel. editor. Int. Conf. On Automated Deduction, vol.449 o f Lecture Notes in

Artificial Intelligence, pp. 603-617, Springer-Verlag.

[12] Rittri. M. (1993)”Retrieving Library Functions by Unifying Types Modulo Linear

Isomorphism.” Chalmers University o f Technology and University o f Goteborg.

[13] Runciman. C. and Toyn, I. (1991) “Retrieving Reusable Software Components by

Polymorphic Type.” Journal o f Functional Programming 1 (2): 191 —211.

[14] Zand, M. H.and Samadzadeh, M. K., (1994) “Software Reuse: Issues and

Perspectives”, IEEE Potentials fo r Engineers, August/September 1994, pp. 15 - 19.

[15] Ramjisihgh D.. (1994) “Software Base for Reuse-oriented Program Development”.

Master thesis. University of Windsor.

[16] Bai. P.. (1995) “Execution-based Retrieval of Reusable Software Components”.

Master thesis. University of Windsor.

[17] An. Q.. (1997) “Software Reuse in Object-oriented Programming”, Survey o f

Background Reading. University of Windsor.

[18] Mili. A.. Mili, R. and Mittermeir, R. (1994) “Storing and Retrieving Software

Components: A Refinement-based approach”. Proceeding o f the International

Conference on Software Engineering.

[19] Marrek, Y., Berry, D. and Kaiser, G. (1991) “An Information Retrieval Approach for

Automatically Constructing Software Libraries”, IEEE Transactions on Software

Engineering, 8(17), 800 - 813.

[20] Prieto-Diaz, R. and Freeman, P. (1987) “Classifying Software for reusability”.

Software. pp6-16.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Qiuyan An (Nancy) was bom in 1965 in Beijing, China. She graduated from Dayu

High School in 1984. From there she went on to Tsinghua University where she

obtained a Bachelor degree in Electrical Engineering in 1989. She is currently a

candidate for the Master’s degree in Computer Science at the University of Windsor and

hopes to graduate in the Fall o f 1998.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Retrieving function components from a reuse library.
	Recommended Citation

	tmp.1618836111.pdf.35aRq

