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Abstract

Elliptic curve cryptography was proposed independently by Neil Koblitz and Victor 

Miller in the middle o f 80’s. The security o f Elliptic Curve Cryptography depends upon 

the elliptic curve discrete logarithm problem. For providing the same strength, it uses a 

smaller key size than that for RSA. This advantage makes it particularly suitable for some 

devices and applications, which have a resource constraint.

Digital Signature Systems are one o f the most important applications o f cryptography. In 

Y2K IEEE has included two Elliptic Cryptography based methods in its new standard 

P I363. The elliptic curve cryptosystem uses “point” operations like point doubling and 

addition. As a consequence, optimization of point operations plays a key role in 

determining the efficiency of computation. Today’s technology easily permits the 

fabrication o f multiple simple “processors” on a single chip. For such devices, a serial- 

parallel computation has been proposed by Adnan and Mohammad [AM03][AM03a] for 

a faster computation o f elliptic algorithms. This thesis presents a new optimized point 

operations algorithm for elliptic curve cryptosystems over GF(2n). We have designed and 

implemented the new algorithm for a more efficient digital signature system.

Keyword: Elliptic Curve Cryptosystem, Point Addition, Point Multiplication, Point 

Doubling, Projective Coordinate, Jacobian Coordinate, Chudnovsky-Jacobian 

Coordinate, DSA, ECDSA, ECDLP
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1 INTRODUCTION

Elliptic Curve Cryptosystem (ECC) has begun to be paid more attention, because the EC 

Discrete Logarithm problem seems hard to be cracked. So a much smaller key size with 

an equal security in encryption can be used in ECC [Wi99]. Point addition and doubling 

o f ECC require inversion operation. Inversion is the most expensive operation over 

GF(2n). To eliminate inversion operation, several coordinate systems had been 

considered in elliptic curve point operation. The coordinate system is chosen such that 

point addition and doubling can be implemented with the smallest number o f field 

multiplications. To make the point operations faster, Adnan and Mohammad proposed a 

serial-parallel computation architecture (J-P-ECC) for point addition and doubling in 

ECC [AM03]. After exploiting the inherent parallel mechanism at both algorithmic level 

and the arithmetic level o f ECC using Jacobian coordinate system, it uses serial-parallel 

computation in point addition and doubling. This requires computation o f 3 field 

multiplications with 3 digital serial multipliers in parallel instead of sequential 

computation with only one digital serial multiplier.

In my thesis, we propose an optimal serial-parallel computation architecture o f ECC 

(CC-P-ECC) over GF(2"). It chooses the coordinate system that has the least 

multiplication instruction cycles with 3 digital serial multipliers.

Computation efficiency of elliptic curve cryptosystem is a major research field in that it is 

an important factor in implementing ECC in some devices with constrained environment. 

Computation efficiency involves scalar multiplication optimization, mixed coordinate 

systems and serial - parallel computation in point operation.

1.1 Elliptic Curve Cryptography: Market Application

The strength o f elliptic curve (EC) cryptosystem is based on EC Discrete Logarithm 

problem. [AMR+02]. “ The brute force method to solve the EC Discrete Logarithm

1
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problem is (computationally) infeasible.” [Wi99]. In other words, this problem is so hard 

to crack that its key reduction in size is highly considered when compared to the key used 

by other cryptosystems. The typical example is that it is able to challenge RSA, one of 

the most popular public key cryptosystems. Although some critics are still skeptical about 

the reliability o f this method, recently some companies have developed several 

encryption techniques, using properties o f elliptic curve. A good example is as follows: 

“February 16, 2004 -  Certicom Corp. (TSX: CIC), a leading provider o f wireless security 

solutions, has licensed its Elliptic Curve Cryptography (ECC) to Neopost, the leading 

European and number two worldwide supplier of mailing solutions. Neopost is using the 

Security Builder® Crypto™ toolkit to embed ECC-based security into its mailing 

systems to create a secure, cost-effective way to generate Digital Postage Marks (DPMs) 

that meet the stringent requirements o f the North American postal officials. In addition to 

being the only technology providing digital signatures that meet the small footprint 

requirements for DPMs, ECC enables Neopost’s systems to perform smaller signatures at 

a faster speed than competing systems” [Certi04].

1.2 The methods of performance Improvement for ECC

As we know performance of elliptic curve cryptosystem is determined by computation 

efficiency on point operations including point multiplication, point addition and doubling. 

So the techniques for performance improvement of ECC focus on optimization on Point 

Multiplication or Point addition/doubling in Serial and Serial-Parallel computation 

architecture, respectively.

1.2.1 Methods of optimization on Point Multiplication

“Point Multiplication is a special case of the general problem of exponentiation in abelian 

groups and it is related to the shortest addition chain problem for integers.” [BSS99]

2
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Definition: The shortest addition chain problem fo r  integers is defined as follows:

“Let A: be a positive integer (the input), Start from the integer 1, and computing at each 

step the sum of two previous results, what is the least number of steps required to reach 

k T  [BSS99].

Due to point multiplication’s central role in public key cryptography, efficient algorithms 

for short addition chain have continued to receive much attention.

In this thesis, we will focus on the case o f ECC over finite field o f characteristic two. 

Some general methods can be used to compute Point Multiplication. Typically, there are 

several efficient algorithms stated by Blake and Serroussi [BSS99] as follows:

• Binary method

• m-ary method

• Sliding window method

• Signed m-ary Window method

Chapter 4 will describe the above method.

1.2.2 Methods of Optimization on point operation using mixed 

coordinate systems

The computation of point addition and doubling in ECC includes field division arithmetic 

operation. The ratio o f time taken for Inversion and Multiplication is the order o f 3~10 

[BBS99], If their ratio is over 1:10, eliminating inversion operation is essentially required 

in ECC. So the task is to find out a coordinate system representing point that uses the 

least quantity of field multiplications in point addition and doubling for implementing an 

inversion operation.

In general, the following coordinate systems are used in elliptic curve cryptosystem as 

follows [CM098]:

3
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• Affine coordinate

P(x, y ) represent point over Elliptic curve

• Projective coordinate 

P (x ,y )-> P (X , Y, Z) 

x = X/Z; y  = Y/Z;

• Jacobian coordinate 

P(x, y) -> P(X, Y, Z)

x = X/Z2, >’ = Y/Z3;

• Modified Jacobian coordinate 

P(x. y) —> P(X, Y, Z, aZ4)

x = X/Z2, y  = Y/Z3

• Chudnovsky Jacobian coordinate 

P(x,y) ^ P ( X ,Y ,Z ,Z 2,Z 3)

x = X/Z2, y  = Y/Z3;

Chapter 2 will give a further explanation about the coordinate systems used in elliptic 

curve cryptosystems.

1.2.3 Optimization on Serial-Parallel computation of ECC

As discussed in Sectionl.2.2, we know that field inversion operation can be eliminated by 

mixing various coordinate systems. If ECC operations are put in a sequence on the basis 

of the time consumed for executing it on a computing node, field inversion will be the 

first and field multiplication operation will be the second costliest operation. With 

exploiting inherent parallel mechanism in point addition and doubling, there exist a way

4
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to speedup field multiplications with serial-parallel architecture as described by Adnan 

and Mohammad [AM03].

1.3 Thesis Statement

Although Serial-Parallel computation o f ECC proposed by Adnan and Mohammad 

[AM03], compared with serial ECC architecture on point operation, has an improvement 

on performance, we found it is possible to achieve furthermore optimization.

After carefully analyzing dependency relation inside point operation, this thesis gives a 

solution with optimal normal base over GF  (2") on serial-parallel ECC architecture. Not 

only theoretically is it proved to improve on performance, experimental results show that 

it obtains considerable improvement over the system proposed by Adnan and Mohammad 

[AM03] on serial-parallel ECC architecture over GF (2”).

1.4 Structure of thesis document

The thesis is organized as follows: Chapter 2 discusses Literature Review and Chapter 3 

will give related works. Chapter 4 explains new proposed algorithms. Chapter 5 analyzes 

the experimented data and Chapter 6 summarizes the thesis and points out future work.

5
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2 REVIEW OF THE LITERATURE
In this Chapter, an introduction to elliptic curve cryptography is given. The architecture 

designed for elliptic curve cryptosystem with a digital serial multiplier is given.

2.1 Cryptographic Systems

In this Section, a brief review of RSA and the comparison between RSA and Elliptic 

Curve Cryptosystem is described.

2.1.1 Elliptic Curve Discrete Logarithm Problem(ECDLP)

EC D IP  is the discrete logarithm problem applied to elliptic curves over a finite held . 

which is defined as follows.

Given. Q and l i  find x for which

Q = [x]Y

where x e  |l , . . . ,# T - l}  and. 0 , Fare points on elliptic curve E(K), K  is a finite Held.

So far , there is no known sub-exponential time algorithms to compute x given O and 

V I’BSS99|. Although, the indcx-caleuius method is a sub-exponential time algorithm for 

solving the discrete logarithm problem, it is not applicable to multiplicative groups in a 

finite field |BSS99| such as the elliptic curve group. The most efficient algorithm, known 

is the Pollard- p  method [Pol75]. It is parallelized ami the expected running is

y[m /(2r) with r processors [OW99]. However, the running time .is still, exponential in n.

Therefore the methods lor computing ECDLP are much less efficient, than, those for 

factoring or DLP . As a result, ECC provides shorter key sizes than, others public key 

cryptosystems with the same security level.

2.1.2 Comparison between RSA and ECC based Public key system

6
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RSA is the most widely used public key cryptosystem. It was first proposed by Ron 

Rivest, Adi Shamir and Leonard Adleman in 1977 [RSA78]. The algorithm mainly 

depends on the difficulty o f working out the factorization of a large integer n, where n is 

a product o f two prime numbers p  and q, o f about the same size. If p  and q are known, it 

is relatively easy to calculate n =p*q. However it is intractable to compute p  and q if  n is 

known. (This problem is called the problem of factorization o f n, where n is a very large 

integer.)

Elliptic curve cryptography can be also used for public key cryptosystem . It offers secure 

communication mechanism. The difference is that the strength o f RSA is based on the 

integer factorization problem while that o f ECC is based on elliptic curve discrete 

logarithm problem (ECDLP) [Odl84]. ECC has one obvious advantage over RSA in that 

ECC always has a smaller key size than RSA with equivalent strength of security. 

Strength of security is in terms of the time to break the cryptosystem. In other words, 

ECC provides a more secure cryptosystem than RSA for the same key length. [Wi99]

2.2 Elliptic Curve Cryptography

Elliptic curves were proposed for cryptographic purposes by Koblitz [Ko87] and 

Miller [Mi86] in 1985. The discrete logarithm problem over the group o f points on an 

elliptic curve over finite field is a one-way function because there is no sub-exponential 

attack known for solving this problem) W 199]. This makes elliptic curve more attractive 

than other public key cryptosystem. The section gives an introduction to elliptic curves 

cryptography. It is followed by a discussion of the curve addition and curve doubling 

operations on elliptic curve over real numbers. Afterwards, elliptic curve over finite fields 

as well as their operations are described.

2.2.1 Elliptic Curve over R2
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This section introduces elliptic curve over real numbers. Elliptic curves E  over the real 

numbers (R2) are sets o f points in the form of (x,y), x ,y ,a A,a6 e  R that satisfy the 

equation

y 1 = x3 + a4x + a6 (2.3.1)

together with a special point O, called the point at infinity which is an identity element. 

The variables x and y  represent a point on elliptic curve and cover a two dimensional 

(affine) coordinate plane R  x R. Elliptic curve E  over R 2 is said to be defined over R  , 

denoted by E(R). Elliptic curve over real numbers can be used to form a group (E(R),+) 

consisting o f the set of points (x, y)  e  R x R together with an addition operation + on 

E(R)

Figure 2.1.1 shows a plot o f an elliptic curve over R.

*4

Figure 2.2.1 Plot of Elliptic Curve 

Curve Addition and Doubling

The point addition (ESUM, also known as curve addition) operation + is defined on the 

set E(R) o f points (x,y). By the rule of identity, the point at infinity O is the point that

8
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added to any point on the elliptic curve, gives the same point. Therefore for 

all P = ( x , y ) e E ( R ) ,

p + o = o + p = p

For each point P (x ,y ) e E (R ) , the square root of Equation 2.3.1 gives

So two v-coordinate values are given by each unique value o f x. The point (x,-y), denoted 

-  P e E{R ) , is called the negative o f point P  and specified as

Addition on E(R) is defined geometrically. Suppose there are two distinct points P  and Q, 

P,Q& E (R ) . The law o f addition in the elliptic curve group is P+Q=R, R e  E (R ) . The 

geometric relationship is shown in Figure 2.2.2.

In order to find the point R, first connect the points P and Q by a line L. By 

simultaneously solving equations L and E, an equation of degree three is derived with 

exactly three solutions. Therefore the line L is guaranteed to intersect the curve A on a 

third point, say -  R e  E ( R ) . The point R can be obtained by negating the y-coordinate of 

-R.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.

P + (- P ) = (x, y) + ( x - y )  = O (2.3.2)

Figure 2.2.2 Addition of EC points

9



7-P

«X

Figure 2.2.3 Addition of points P and -P EC

In the case that the two points are P  and -P Figure 2.2.3, the line connecting P  and -P 

intersects the elliptic curve at a third point which is the special point O lying on every

vertical line in the coordinates plane.

In an operation o f point addition, if  points P ,Q e  E (R ) are added where P=Q, then the 

tangent line to the elliptic curve at point P  is taken instead (shown in Figure 2.2.4). For 

this case, it is a point doubling (EDBL) operation where R=2P.

10
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Figure 2.2.4 Doubling o f EC Point

The following formulae express the definition of point addition and doubling 

mathematically

•P = C W i)

0  = (x2, y 2)
R = P + Q = (x3, y 3)

where P ,Q ,R e  E (R ) 5 and

x3 = 0 2 — x, —x 2

y 3 = 0(x l + x3) - y x if  P *  Q

y 2 - y i0

or

Xj ~Xy

3xy + a 4
0 = — i— if P = Q

2 y x

l l
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2.2.2 Elliptic Curve over finite fields

This section introduces elliptic curve over finite fields, the prime fields ( Fp ) and the 

binary finite fields ( Fr  ).

2.2.2.1 Elliptic Curve over Fp with p > 3

A prime field Fp is generated by using a large prime p  [LN94]. The operations o f elliptic 

curve over Fp is similar to E(R). Instead o f calculations on real numbers, the calculations 

modulo a large prime are taken. Therefore an elliptic curve E  is defined over Fp , denoted 

by E(Fp),  if  x ,y ,a A,a6 e  Fp and 4a\ +21 a] + 0 satisfying the equation

y 2 = x 3 + aAx + a6

Points on this curve form a group. Therefore the elliptic curve group (E(Fp),+) is set of 

points (x,y) (for x ,y  e F p) and an operation + (addition) which satisfies the axioms in 

Section 2.2.2.

The order o f a point A on E ( F ) is the smallest positive integer r such that

A + A + .... + A = 0i  j

r

The order o f the curve is the number o f points of E(Fp) , denoted by #E (F p ) . By 

Hasse's theorem [Kob87a] [Men93], #E(Fp ) = p  + 1 - t , where \t\ < 2-Jp .

2.2.2.2 Elliptic Curve over Fr

A non-supersingular [AMS95] elliptic curves E  defined over a finite field 

Fr  (characteristic = 2), denoted by E(Fr ) ,  is the set of solutions, (x,y) for x ,y  e  Fr  , to 

the simplified forms of the Weierstrass equation

y 2 + arxy + a3y  = x3 + a 2x 2 + aAx + a6 (2.3.3)

where al,a 2,a i ,aA,a 6 e  Fr  , namely

y 2 +xy = x 3 + a2x 2 + a6 (2.3.4)

12
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where a6 ^  0 and x ,y ,a 2,a 6 e  Fy . Again, an identity element (point o f infinity)#, is 

included in both curve. Elliptic curve E  over Fy  also forms a group (E(Fr ),+) that 

satisfies the axioms in Section 2.2.2.

The curves o f Equation 2.3.4 are called non-supersingular curves and are suitable for 

cryptographic applications [BSS99]. From a hardware implementation perspective, ECs 

over Fr  are thought to be very practical. The advantages o f using ECC are

• Owing to ECC offering the highest security per bit o f any known public key 

cryptosystem, therefore a smaller memory can be used

• ECC hardware implementations use less transistors, as an example, a VLSI 

implementation of a 155-bit ECC processor has been reported which uses only 

11,000 transistors [AMV93], compared with an equivalent strength 512-bit RSA 

processor which used 50,000 transistors [PID92].

2.2.2.3 Point Operations of Elliptic Curves over Fr

A non-supersingular [AMS95] elliptic curve E  over Fy  , E (F  „) was selected for the

implementation of elliptic curve cryptosystem. E (F  „) is the set o f all solutions to the

Equation 2.3.4 with coordinates in the algebraic closure o f E  [Men93], where 

a2,a6 e F „ a n d  a6 ^ 0 .  Such an elliptic curve is a finite Abelian group [Men93]. The

number o f points in this group is denoted by #E (F2„). The ECC can be implemented by

affine coordinates or by other coordinate system. For different coordinates systems, the 

computation of the curve operations are also different. In Chapter 3, other coordinate 

systems are specified.

Elliptic Curve Operations in Affine Coordinates

13
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In this section, the elliptic curve cryptosystems that will be used are based on the discrete 

logarithm problem over E (F  „) and the basic computation which must be made is curve

multiplication (Point multiplicaiton). Curve multiplication is expressed as a sequence of 

point additions and point doublings. Similar to EC over real numbers, point addition and 

point doubling are defined geometrically. It is hard to represent an elliptic curve over a 

finite field graphically, however, the method o f finding the point of addition and doubling 

are the same as shown at Section 2.3.1.

Assume a non-supersingular elliptic curve E  over F2„ given in affine coordinates and P, 

Q are two points on E(F2„) .  Let P  = (x1,y 1) ,  Q = (x2, y 2) , then negative o f P  is

- P  = (x1, y l + x 1) e E ( F ln)

P + Q = R = (x3, y 3) e E ( F 2„).

If P * Q

0  = y±±y±_
x 1 + x2

From [SOOS95], if  Q * - P then

x 3 — 0  + 0  + Xj + x 2 + o2 

y 3 =(*! + x3)0 + x3 + y x

(2.3.5)

Otherwise if  P = Q

0 = ^  + x,

x3 — 0  + 0  + a2 

y 3 =  x f  +  ( 6  +  l)x3

(2.3.6)

Iin affine coordinates, point addition (ESUM) and point doubling (EDBL) require three 

and two multiplications, respectively and one field inversion that is far more expensive 

than field multiplication.)

14

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



2.2.2.4 Curve Multiplication

Multiplication (EMUL) is defined by repeated addition, i.e. 

Q = cP 

= P + P + ... + P

(2.3.8)

(2.3.9)

This can be computed by using Binary method algorithm that will be described in 

Chapter 3.

Elliptic curv* 
Multiplisat; ioa

<®MOM

A d d a tico
(SSOKJ

Field Squaring Fi#ld 
Jftslit iplieat iso

Sllipcic cum
S O U M i.T f

fEBESJj)

Figure 2.2.5 The hierarchy of elliptic curve operation

The hierarchy of elliptic curve operation is shown in Figure 2.2.5. Curve multiplication 

is computed via point additions (ESUM) and doubling (EDBL) which are in turn

computed from field operations.

Summary

In this chapter, the fundemental theory for understanding elliptic curve cryptography is 

given. The introduction to elliptic curves over real numbers and finite fields was 

presented. The basic operations, point addition and point doubling of elliptic curve were 

also described in details. Afterwards, elliptic curve discrete logarithm problem is 

presented. It specially empasizes that there is no known sub-exponential time algorithm 

to solve ECDLP.

15
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3 The Related Work

Software Implementations of elliptic curve are presented in this chapter. Point Operations 

o f elliptic curve cryptosystem under different coordinate are introduced. Algorithms on 

Serial and Serial-Parallel will be given, respectively. Afterwards, cost analysis under 

different coordinate systems is followed next.

3.1 Introduction

In general, the implementations of efficient elliptic curve cryptosystem are focused on the 

optimization o f the algorithms for point (Curve) multiplication and point 

doubling/addition. In this Chapter, both aspects will be discussed in details.

3.2 Point Multiplication (Curve Multiplication)

From algebra point o f view, Point Multiplication in elliptic curves is a special case o f the 

general problem of exponentiation in abelian groups. Its solutions are techniques 

available from all the techniques for the general problem and shortest addition chain 

problem for integers. The idea of the shortest addition chain is as follows:

“Let A: be a positive integer (the input). Start from the integer 1, and computing at each 

step the sum o f two previous results, what is the least number of steps required to reach 

A” [BSS99],

To find efficient algorithms for group exponentiation, a lot o f efforts have been made by 

researchers due to point multiplication’s central role in public key cryptography.

To obtain faster computation, certain idiosyncrasies o f the elliptic curve version of the 

problem can be considered as follows:

16
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• “Elliptic curve subtraction has virtually the same cost as addition, so the search 

space is expanded to include addition-subtraction chains and signed 

representations” [BSS99],

•  “In tuning-up algorithm, the relative complexities of general point addition and 

point doubling have to be considered. This relation depends on the coordinate 

system used and on the relative complexities o f field inversion and 

multiplication” [BSS99]

• “For certain families of elliptic curves, specific shortcuts are available that can 

significantly reduce the computational cost o f point multiplication” [BSS99],

To make analysis simple on computation, we will only consider the case o f finite fields of 

characteristic two in this thesis. Some typical efficient methods for point multiplication 

are given in the following sections.

3.2.1 The Binary method

Algorithm of Binary method is described in Figure 3.2.1. In the Algorithm 3.2.1, it

relies on the binary expansion of k. It requires / -1 point doublings and W-1 point

additions (Operations involving infinite point O are not counted), where / is the length 

and W  the weight (number o f ones) o f the binary expansion o f &.[BSS99].

Algorithm 3.2.1 Point Multiplication: Binary method

INPUT: A point P, an /-bit integer k  = kj2 ,kj  e  {0,1}

OUTPUT: Q = [k] P.

1. O.

2. Fory = l-l to 0 by -1 do:

3- Q <- [2] Q,

17

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



4. if  kj = 1 then Q <— Q + P.

5. Return Q

Figure 3.2.1 Binary Method Algorithm

3.2.2 The m-ary method

In m-ary method, k is represented using m-ary expansion, where m = 2r for some integer 

r > 1. Binary method is a special case in case o f r = 1. The m-ary method is described in 

Figure 3.2.2 as follows:

•  Algorithm 3.2.2: Point Multiplication: m-ary method

INPUT: A point P, an integer k  = kjtri ,k j {0, 1, ... , m-1}

OUTPUT: Q = [it] P.

Pre-computation.

1. P i <- P.

2. For / = 2 to m-1 do P, <— P,.i + P. (We have P, =[/]P)

3. O.

Main loop.

4. F o r/ = d-\ to 0 by -1 do:

5. Q <— [m] Q. (This requires r doubling)

6 . Q <- Q + p kj.

7. Return Q.

Figure 3.2.2 Point Multiplication m-ary Method

The algorithm is easily verified, following Honer’s rule [Knu81]:

[m] ( ...[m ]([m ]([^ i]P )+ M P ) + •••) + [*o]P = [k\P
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From Algorithm 3.2.2, the number o f doubling in the main loop of the m -ary methods is 

(d-l)r (the first iteration is not counted, as it starts with Q = O). Since d=  \ l ! r  J, where I

is the length o f the binary representation of k, the number o f doubling in the m-ary 

method may be up to r-1 less than the l-l requires by the binary methods[BSS99].

3.2.3 Modified m-ary method

• Algorithm 3.2.3: Point Multiplication: Modified m-ary method

INPUT: A point P, an integer k = kjrri, kj e  {0, 1, ... , m-1}

OUTPUT: Q = [k] P.

Pre-computation

1.Pi < ^ P ,P 2 <- [2\P

2 . For / -  2  to (m-2)12 do P2, n <— P2l-y + P2-

3 .Q < -  O.

Main loop

4. Forj = d-1 to 0 by -1 do:

5. If k j f  0 then do:

6 . Let Sj, hj be such that k  - -  2 s1 h j , hj odd.

7. [2r^  ]Q.

8- Q <— Q + p hj ■

9. Else sj <— r

10- Q = [ 2 Sj]Q.

11. Return Q.

In Algorithm 3.2.3, one point doubling and 2M-1 point addition in the pre-computation 

phase are required, and at most n - 1 point doublings and <i-l point addition are required in 

the main loop [BSS99].

19
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3.2.4 Window methods

The m-ary method may be regarded as a special case o f the window method, where bits 
of the multiplier k  are processed in blocks of (windows) length r. The algorithm of 
Window method is as follows.

• Algorithm 3.2.4 Point Multiplication: Sliding Window Method

INPUT: A point P, an /-bit integer k  = ^ J 0 kj2! ,kj  e  {0,1}

OUTPUT: Q = [Jfc] P.

Pre-computation:

1. Pi < -P ,P 2 < -[2 ]P

2. For /=  1 to 2r~l do P2i+i <- P iu  + P2-

3. ;  <- l-l , Q <- O.

Main loop

4. W h ile j> 0 d o :

5. If kj = 0 then Q <- [2] Q ,j  <-j -1;

6 . Else do:

7. Let t be the least integer such that

8 . j  - 1 + 1  < r and kt = 1 ,

9. hj <r~(kjkj.i...kt)2,

10. Q ^ [ T t+1]Q+ Phj

1 1 . j  <— t - l .

12. Return Q.

Figure 3.2.3 Point Multiplication of Window Method

Upon the analysis [BSS99], the benefit using slide window can be given in that there is 

an effect equivalent to using fixed windows, one bit larger, without increasing the pre- 

computation cost. The total number o f windows processed (and consequently, the number 

of general point additions in the main loop) behaves like l(r + 1 ) in comparison to l/r for 

the m-ary method. This is proven in [LH94].

20
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3.2.5 Signed m-ary sliding window method

The method that combined m-ary and signed methods is described in this section. In this 

method, a non-redundant signed m-ary representation is used, for example, digit set B  = 

{-2m +1, ... , -1, 0, 1,..., 2'"1} with windows of size up to r. The positive multiplier k  is 

decomposed as follows:

k = Y ubiT ' , b l e B \{ 0 } ,e ,  e Z > 0 ,
;=o

where ei+l - e, > r , Q < i < d - 2 .

k  with the binary representation can be decomposed as Algorithm 3.2.5a.

Algorithm 3.2.5a Signed m-ary Window Decomposition

INPUT: An integer k  = k j2 J, kj e  {0,1},k t = 0.

OUTPUT: A sequence of pairs {(bl,el) } ^

1 . d  <—0 , 7  ^— 0 .

2 . while j  < I do:

3. If kj- 0 theny <—_/ +1.

4. Else do:

5. t <- min {l , j  + r -1}, hd <-(ktkt.i...kj)2.

6 . If ^ > 2 M thendo:

7. bd <r-hd — 2r,

8 . increment the number (AA/.i.. .^+1 ) 2  by 1 .

9. Else bd <— hd-

1 0 . cd  ^— j, d  ^— d 1 ,j  ^— t+  1 .

1 1 . return the sequence (bo,e0), (bi,ei), ..., (bd-u £d-1)

After decomposing the k  using Algorithm3.2.5a, the Signed m-ary Window method may 

be implemented as follows:

Algorithm 3.2.5b Signed m-ary Window method

2 1
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INPUT: A point P, and {(b, , e,)}f=0' such thatk  = r ‘•

OUTPUT: g  = [fc]P 

Pre-computation

1. P i < - P , P 2 <- [2]P.

2. For / = 1 to 2r~2- 1 do P21-1 + Pi- 

3-

Main loop

4. For i = d-2 to 0 by -1 do:

5. g < -  [ 2 ^ - e‘]Q.

6 . If  bj > 0 then Q <r-Q + Pb ,

7. Else Q < -Q -  P_bi

8 . g < - [ 2 e"]g

9. Return g .

Figure 3.2.4 Signed m-ary Window Method

3.2.6 Cost Analysis

Table 3.2.6.1 lists a more detailed analysis of the cost o f computing [k]P in terms o f field 

arithmetic operations. As usual, M  and I  indicate field multiplication and field inversion 

respectively. The result shows that the signed m -ary window method is superior to the 

unsigned methods.

Table 3.2.6.1 Cost of point multiplication from [BSS99]

Curve

Total

Cost

Methods Coordinate r ops M I I=2M 7=10M

Binary affine n/a 151 302 151 755 1812

Modified m -ary affine 4 128 256 128 640 1536

sliding w indows affine 4 124 248 124 620 1488

signed m -ary affine 5 122 244 122 610 1464

22
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It is also shown when the ratio I :M  is relatively high over 1:10, total Cost exceeds two 

times than in I:M =  1:3 As a consequence, in case o f I :M  over 10, field inversion operation 

should be highly taken into account when implementing elliptic curve cryptosystem.

3.3 Field Inversion and Multiplication

The Algorithms of point multiplication in elliptic curve cryptosystem are analyzed in 

section 3.2. It is found that when the ratio I /M  is less than 0.1, the cost o f field inversion 

in the point addition and doubling becomes significant.

To eliminate field inversion, other coordinate systems are considered to use in point 

operations o f elliptic curve cryptosystem. In other word, some mixed coordinate systems 

are intended to use. Generally speaking, several coordinate systems besides affine 

coordinate system like Projective, Jacobian and Chudnovsky Jacobian coordinate are 

adopted in elliptic curve cryptosystem over GF(2n). They will be given in details in the 

following sections.

3.3.1 The formulae in Affine Coordinate System

This section introduces point operations o f elliptic curve cryptosystem using affine 

coordinate over GF(2n). Affine coordinate is most easy to use and understand. Point 

representation is as P(x,y). The procedure of point operations in elliptic curve 

cryptosystem is as follows [AMR+02].

A nonsingular elliptic curve E  over GF(2n) is givers by:

y 2+ xy  = x3 + ci2X + 0 6  (3.1)

where a2, e  GF(2"), * 0.

• Point Addition formula in affine coordinate

Let P  = (xi, y\) and Q = (X2,yi) be points on the elliptic curve E. Then. P +  Q = (xi, y  1) 

+ {X2,yi) = R(x3, y3), where P f - Q  

2  = (yi + y 2 )/(xi+x2)

23
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X3 = X + X + X i  + X2 + 0-2 

>>3 = X (X 1+ X 3 )  +  x 3  + y {

(3 .2 )

It requires 1 / + 2M  operations for point addition in affine coordinate.

• Point Doubling formula in affine coordinate

The addition o f a point to itself (Doubling a point) on the elliptic curve is computed 

as show below:

It requires 1 /  + 3M  operations for point doubling in affine coordinate.

3.3.2 The Formulae in Projective Coordinate System

A non-supersingular curve E(Fr ) can be equivalently viewed as the set of all points 

E '(F  „) in the projective plane P 2 (Fr ) which satisfy [Men93]

By using projective coordinates, the inversion operation which is needed in Point 

addition and Point Doubling operating using affine coordinates can be eliminated and it 

is covered in the following sections.

3.3.2.1 Conversion Between Affine and Projective Coordinate Systems

Provided that for any point (a,b) e  E(Fr ) in affine coordinates can be viewed as a 3-

tuple (x , y , 2) e  E '(F  ) in projective coordinates with x = a, y  = b and z = 1. Moreover, a

point (tx,ty,tz) in projective coordinates with t * 0 , is regarded as the same point as 

(x ,y ,z). Therefore the conversion methods between affine and projective coordinates are 

given as follows:

2P  (xi, yi) = if(x3 , yi)\ where P  = Q;

X = xi + y\/x\ 

x3 = 22 + X + # 2  

T3 = xi2 + (X,+l)x3

(3.3)

y 2z  + xyz = x 3 + a 2 x 2 z 2 + a6z (3.4)

M (a,b ) = M ’(a,b, 1)

N'(p,q,r) = N\^A,l) = N( -̂A)
r r r r

24
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3.3.2.2 Curve Operations in the Projective Coordinate System

From procedure point of view, the method of formulating the equations o f addition and 

doubling in projective coordinates is the same as for affine. In fact, conversion is taken 

on each projective point and then applied to Equation 3.2 and Equation 3.3.

Let P'= (x{ : y l : z x) e  E'(Fr  ),Q'= (x2 : y 2 :1) e  E'(Fr  ) and F i t  Q  where F ,Q  are in 

projective coordinates. Since P '=  (x, /z , '■ y j  z { : 1), we can apply Equation 3.2 to point 

P ( x J z l , y l / z r) and Q(x2 , y 2) for E(Fr ) in affine coordinates to find

F + Q '= R '(x 3 : y 3 :1) . Then

, B 2 B A
x ,  — — — -I--------- 1-------1- Cl-,,

(3.5)
B ,X\ y,

y 3 - —(— + x3) + x3 + —
A z, z x

where A = (x2z l +x , )  and B = (y 2z x +_y,) [Men93]. In order to eliminate the inversion 

operations, the denominators of the expressions for x3 and y 3 have to be eliminated. By

setting z3 = A sz x and from the property o f projective coordinates, x3 = x3 z 3 and

y 3 = y 3z 3 , if  P + Q = (x3 : y 3 : z3) ,  then 

x3 = AD

y 3 = CD + A 2 (Bxx + A yx), (3.6)

z 3 = 4̂3 Zj

where C=A+B and D = A 2 (A + a2z x) + z xB C .

Similarly, the formulae for 2P -  (x3 : y 3 : z3) are,

x3 = AB,

y 3 = x xA + B (x2 + y xz x + A), 

z 3 = A 3

where A = x,z, and B = a6z x + xx . The resulting point can be converted back to affine 

coordinates by multiplying each coordinate by z3_1. Note that there is no inversion
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operation when calculating in projective coordinates. Therefore inversion can be 

eliminated by performing curve multiplication in projective coordinates.

3.3.3 The formulae in Jacobian Coordinate System

Following the Jacobian coordinate [CM097][BSS99], point (xi, y i)  are projected to 

( J J . Z ) , Z f  0 where x = XIZ2 andy  = 7/Z3. Elliptic curve equation becomes:

Y2 +XYZ = J7 * + a2X 2Zz + aeZ6 (3.7)

• The formulae for point addition using Jacobian Coordinate as follows:

P = (X u Yu Zi); Q = (X2, Y2, Z2); P+Q = (X3, Y3, Z3) where P ^ Q o v - Q  

X l = XyZ2 

A. 2 = X2 Zi2 

X 3 — X i + x 2 

A, 4= Y\Z2

X 5 = Y 2Z l 3 (3.8)

X () = X 4 + A- 5

X 7 = Z\ X 3

X 8 = X (X2 + X iY2

Z3 = X jZ2

X 9 = X 6 + Z3

X 3 — ci2Z 2 + A.6A.9 + A.33

73 = X 9X 3  + X 8 X 2

It requires 20 M  for point addition in Jacobian coordinate

•  The formulae for point doubling of P  using Jacobian Coordinate is given by:

P = (Xu YU Zi); P + P  = (X3i Y3, Z 3)

Z3 =J7iZ ! 2 

X 3 = (Xi + a i  )4

A. = Z3 + X 2 + 7iZi (3.9)

73 = X \ Z 3 + XX3 

It requires 10 M  for point doubling in the Jacobian coordinate.
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3.3.4 The formulae in Chudnovsky Jacobian System

Upon the Chudnovsky-Jacobian coordinate described by DV Chudnovsky, GV 

Chudnovsky[CC8 6 ] and Cohen[CM097], point (xi, yi) are projected to (X,Y,Z,Z2,Z3) , Z 

± 0 where x = XIZ1 andy = 7/Z3. Elliptic curve equation is:

Y2 +XYZ = X* + a2X 2Z2 + a #  (3.10)

• The formulas for point addition using Chudvosky-Jacobian coordinate is as 

follows[BSS99]:

P  = (Xu Yh Zu Zi2, Z i3); Q = (X2, Y2, Z2, Z22, Z23); P+Q = (X3, Y3, Z3, Z32, Z33) where

P ^ Q o r - Q

11 = X iZ 22

X 2 = X 2Z x2

A, 3 = A, i + A, 2

A. 4  = YiZ2

X 5 = 7 2Zi3

A,6= A-4+A,5 (3-11)

X 7= Z\ X 3 

X 8 = X (X2 + A 7 Y2 

Z3 = A 7 Z2

z 32 = z 32 

z 33 = z 33

A. 9 = A, 6 + Z3 

X3 = a2Z 2 + A,6A,9 + A,33 

73 = X 9X3 + X 8 X 2 

It requires 20 M  for point addition in the Chudnovsky Jacobian coordinate.

• The formulae for point doubling of P  using Chudnovsky-Jacobian coordinate 

is given:

P  = (Xu Yu Zu Z i2, Z i3); P  + P  = (X3, 7 3, Z3, Z32, Z33)

z 3 =X !Z , 2 

z 32 = z 32

Z3 3 = Z3 3 (3.11)

X 3 = (Xi + a62 )4
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X = Z3 + X l2 + YlZi 

Y3 = X L%  + )X 3

It requires 10 M  for point doubling in the Chudnovsky Jacobian coordinate

We summarize several coordinate conversions in this section and give a comparison on 

Cost o f Computation in Table 3.3.4.I.

Table 3.3.4.1 Cost Comparison by mixing different coordinates EC point operation

Doubling Addition

Affine coordinate 1 1+  2 M 1 1 + 3  M

Projective Coordinate 13 M 1M

Jacobian coordinate 10 M 20 M

Chudnovsky Jacobian 10 M 20 M

In case o f the ratio I /M  less than 0.1, o f all coordinate systems, cost in affine coordinate 

system is highest. As a consequence, in that case, other coordinate systems except for 

affine coordinate are recommended in the implementation. And the implementation using 

Jacobian or Chudnovsky-Jacobian coordinate is a better choice.

3.4 Serial-Parallel computation in ECC

3.4.1 Serial-Parallel computation of ECC using Jacobian Coordinate 

System (J-P-ECC)

The costs o f point addition and doubling, for elimination of inversion are discussed in 

section 3.3. The computation uses only a digital serial multiplier. The computation using 

Jacobian and Chudnovsky coordinate systems are also described in Section 3.3. By 

exploring the inherent parallelism that exists in point addition and doubling o f elliptic 

curve E over GF(2"), the architecture using 3 digital serial-parallel multipliers in elliptic 

curve cryptosystem has been proposed by Adnan [AM03]. The architecture makes point
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addition and doubling faster. Efficiency over the algorithms in section 3.3 is significantly 

improved. The detail of serial-parallel computation on point addition and doubling in 

elliptic curve cryptosystem is given next.

The algorithm describes computation o f point addition and doubling using Jacobian 

coordinate system (J-P-ECC) as given in section 3.3.4

In this algorithm, field addition in point operation is exclusive-OR, which is much faster 

than field multiplication and inversion. Due to field inversion being eliminated by mixing 

coordinate system, field Multiplications becomes the costliest operations in point 

operation. Finding least field multiplication in ECC becomes important.

Its principle is in that three field multiplications are paralleled to execute using 3 digital 

serial parallel multipliers within an instruction cycle. Computation cost is reduced to 1M  

in point addition and 6 M  in point doubling. The flow charts are given in Figure 3.4.1 

and Figure 3.4.2

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.
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bZ

Xi + bZY 1Z 1+X 1 +Z3

x+.y

x ®  y

Figure 3.4.1 Data flow graph of point doubling with J-P-ECC
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Figure 3.4.2 Data flow graph for adding two points with J-P-ECC
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Cost Analysis

In this section, J-P-ECC is described in detail. Comparison between Serial and Serial- 

parallel computation is given in Table 3.4.1.1. Although serial-parallel computation may 

occupy more space in hardware, the efficiency is increased quite noticeably. From 

efficiency point o f view, serial parallel computation used in ECC is worth doing.

Table 3.4.1.1 Cost comparison on curve operation between Serial and Serial-parallel computation

Cost Comparison Doubling Addition

Affine coordinate 1 / + 2 M 1 1 + 3  M

Projective Coordinate 13M 7M

Jacobian coordinate 10 M 20 M

Chudnovsky Jacobian 10 M 20 M

Serial-Parallel EC with 

Jacobian coordinate system

6 M 1M

Summary

This chapter gives some solutions for implementing efficient elliptic curve cryptosystems 

including the aspect of Point Multiplication and Point Addition/Doubling. The former 

focuses on the techniques for the mathematics problem “Shortest add chain”. The latter 

uses field multiplication rather than inversion for cost reducing. It adopts the methods by 

mixing other coordinates with affine (2-Dimension) coordinate to eliminate field 

inversion. At last, upon further cost reducing, the algorithms J-P-ECC using serial- 

parallel computation is introduced. Comparing with conventional sequence computation 

in Table 3.4.1.1, this algorithm can reduce over half of field multiplication operations 

than in conventional ECC. It is proven that serial-parallel computation o f ECC is an 

efficient way o f software implementation o f elliptic curve cryptosystem.
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4 The optimized Serial-parallel computation of ECC 

over GF(2n)

Software implementation of elliptic curve cryptosystem over GF(2n) has been introduced 

in Chapter 3. For reducing computational cost, field inversion is eliminated by mixing 

coordinate systems, as shown in Section 3.2, 3.3 and 3.4. Table 3.4.1.1 shows that serial- 

parallel computation by using three digital serial parallel multipliers is superior to the 

conventional approaches described in section 3.2, 3.3, which use only serial computation 

using a digital serial multiplier in elliptic curve cryptosystem. This serial parallel system 

[AM03] is called J-P-ECC.

After analyzing the inherent parallel mechanism of section 3.3, we propose two new 

algorithms, P-P-ECC (described in section 4.1) and CC-P-ECC (described in section 4.2). 

O f these three algorithms, CC-P-ECC, that uses Chudnovsky Jacobian coordinate in ECC 

over GF( 2"), is found to have a better computational efficiency than J-P-ECC and P-P- 

ECC.

4.1 First iteration of Serial-Parallel computation of ECC using 

Projective Coordinate (P-P-ECC) System

Elliptic curve E  over GF(2n) using projective coordinate is represented in equation 3.4. 

The formula o f point addition and doubling using projective coordinate is given from 

equation 3.5, 3.6.

To make the operation faster, serial-parallel computation is used in point addition and 

doubling of elliptic curve cryptosystem with projective coordinate system (P-P-ECC). 

The flow chart of its point addition and doubling are represented in Figure 4.1.1 and 

Figure 4.1.2.
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BCBx

Bxx + A yx

A 2 (A + a2zx) + z xBC = D

CD + A 2 (Bxx + Ay 2)

Figure 4.1.1 Flow Chart of Point Addition with P-P-ECC
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Figure 4.1.2 Flow Chart of Point Doubling with P-P-ECC
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From Figure 4.1.1, 4.1.2, it is concluded that P-P ECC requires 6M  and 4M  in point 

addition and doubling, respectively.

4.2 Motivation of CC-P-ECC

With carefully analysis of Point addition and Doubling in Figure 3.4.1 and Figure 3.4.2, 

some problems are noticed in that parallel multiplier without full load over GF  (2") 

reaches 60% in point doubling and 14% in point addition. It is undoubtedly a resource 

waste in serial-parallel computation. However, in Section 3.3.3, some operations like 

Z 22 ,Z,2are required to be computed in advance. If  digital serial parallel multipliers are 

available, it may certainly speed up elliptic curve cryptosystem. Our goal is to choose an 

optimized Serial-Parallel Computation o f ECC (CC-P-ECC) to make computation of 

ECC more efficient. O f the coordinate systems described in Section 3.2, besides 

Projective coordinate, Chudnovsky Jacobian coordinate matches our requirement of 

Serial-Parallel Computation of ECC. Moreover, it has better performance than P-P-ECC. 

Point doubling and addition o f ECC over GF{2n) for CC-P-ECC' is given in the 

following sections.

4.3 Introduction to CC-P-ECC Algorithm

CC-P-ECC is used to compute point doubling and addition o f elliptic curve cryptosystem 

over GF(2n). It is qualified on the requirement o f efficient ECC as follows:

• In case o f the ratio of I :M  over 1:10, field inversion is considered as the most 

costly computation. To eliminate field inversion, Chudnovsky coordinate system 

can also be used to represent point o f elliptic curve in point addition and doubling.

• Moreover, CC-P-ECC may be considered for reducing the number o f field 

multiplications.

Architecture o f CC-P-ECC is the same as in Figure 3.4.1. It can execute three field 

multiplications in parallel for a multiplication instruction. The operations are under
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optimal normal basis. Exclusive-OR is used to compute field addition operation, which is 

much faster than field multiplication. Therefore performance o f CC-P-ECC is mainly 

determined by field multiplication. By reducing rounds of 3-field multiplications, the 

efficiency o f elliptic curve cryptosystem must prove.

In section 3.4, J-P-ECC is introduced [AM03]. It uses serial-parallel architecture o f 

elliptic curve cryptosystem. In case o f parallelizing computation of field multiplications, 

different coordinate systems have different performance. On comparing Projective, 

Jacobian and Chudnovsky Jacobian coordinate systems, this thesis proves that CC-P- 

ECC has much better performance than J-P-ECC and P-P-ECC. Moreover, as o f today, it 

is the most efficient algorithm known for ECC.

4.3.1 Requirement of Software Implementation in CC-P-ECC

4.3.1.1 Mixed Coordinate System

P-P-ECC and J-P-ECC have been introduced in Chapter 3, In CC-P-ECC, affine and 

Chudnovsky Jacobian coordinate system is mixed in the computation o f point 

computation o f ECC. Point P  is represented as P (X , Y, Z, Z 2, Z 3) .

4.3.1.2 The Algorithm for Point Multiplication

To simplify software implementation o f elliptic curve cryptosystem, the evaluation of 

ECC algorithm is regarded on binary method o f point multiplication described in section 

3.1.1.

4.3.1.3 Optimal Normal Basis

Computation o f ECC is over binary finite field. There are two kind o f number 

presentation recommended by IEEE: Polynomial Normal basis and Optimal Normal 

Basis [IEEE 1363]. In this theisis, we adopt Optimal Normal Base over GF(2n).
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W hy use O ptim al N orm al Basis?

Optimal normal basis (ONB) is a special case of normal basis. Only AND, XOR and 

ROTATE operations are required in the normal basis. So it is easier to implementat the 

operations in hardware or software. Moreover, all of these operations are very fast on a 

compute node. Hence this thesis uses optimal normal basis as the choice for imlementing 

elliptic curve cryptosystem [Ros98a. pp-76].

W hat is Norm al Basis?

Assume that /? is an element in the field jF , the polynomial representation is

P = aoXn + ... + a\x +ao

where n<m.

A normal basis can be formed using the set

{ P P\  ..., P p\  P p , P )

If a finite field o f characteristic 2 (i.e. p=2) is chosen, every element A in the field F-i 

can be uniquely represented in the form

;=o

where a, € Fj and. p  e  F  r

There are several operations among the elements over F  r  , which are Addition, Squaring, 

multiplication and inversion[IEEE1363], They will be discussed next.

A ddition

Given that A, B  are elements in the field. F

n- 1

1= 0  

rt- 1

B = ' £ b JP 2‘
j =0

Addition is defined by
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f  n -1
A + B  =

V < = o

A ( n- 1 ^

/  V>=0
(4.2.1)

Equation 4.2.1 can be rewritten as
72-1

A + B = ^ ai +bM V/=o

where au bj are added modulo 2. Since there is no carry in finite field arithmetic, the 

operation o f addition can be implemented as a bit-wise exclusive-OR (XOR) operation.

Squaring

Given that e lem ents in finite field GF(T), then,4 to the power 2 is as follows:

(n-\ \ 2
a 2 =

; = 0 ;

= ! « > ' ) '
7=0

n~  1 .

-  Z * ^ 2
(=0

jit *\0 m
Regarding the rules o f finite field , there exists an equation /? = f t  . So the squaring

equation above can be rewritten as :

A 2 =a,_x/ i  + ' f i alf "  (4.2.2)
1=0

In equation 4.2.2, there is a conclusion that squaring an element over Fr  involves

shifting each coefficient up to the next term and rotating the most significant coefficient 

down to the least significant position that is, rotate left operation.

Multiplication

Multiplication over field Fr  is more complex than Addition and Doubling . The detail is 

described as follows:

Given that A  and B  in finite field Fr

7=0
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n-1

B =

and

/=0

77-1 77-1 77-1

C = A x B = X X  a,bt f  f  = Y , c , f
7—0 y'=0 7=0

therefore
77-1

p r p v  (4.2.3)
k =0

where Xyk e  (0, 1}. Then multiplication can be written to be
77-1 77-1

c*= Z Z V flA  (4-2-4)/=o y=o

where 0 < k < n-l .B y  raising both sides of Equation 4.2.3 to the power o f 2~l, then

f  =PIJP1H = 0-2-5)
Jt=0 k = 0

■jO
Equating the coefficients of /? in the above equation, yields

Xyi = a i_1 j_l 0 for all 0 < i,j,l < n -1 (4.2.6)

Therefore Equation 4.2.4 can be written as

<*= E X W * .  ô = I Z W m  (4 -2-7)
(=0 /= 0  1=0 7=0

Regarding the description of optimal normal basis [MOVW89], ONB is one with the 

minimum number o f nonzero terms in Equation 4.2.4, or equivalently, the minimum 

possible number of nonzero terms in Xy for a specific k.

There are two types o f optimal normal bases [MOVW89], Type I and Type II.

The definition of Type I:

An optimal normal basis exists in Fr  if

1. «+l is a prime

2. 2 is a primitive in Fn+l
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Rule 2 means 2 raised to any power in the range 0 to n modulo n+ 1 must result in a 

unique integer in the range 1 to n.

for a Type IIONB, there exsits an optimal normal basis in Fr  if 

1 2/7+1 is prime, and either 

2a. 2 is a primitive in F2n+l, or

2b. 2n +1 = 3(mod4)and 2 generates the quadratic residues inF 2n+1.

Like Type I, rule 2a means that every 2k modulo (2/7+1) lies in the range 1 to 2n (0< k< 

2n-l). Therefore 2 is called the generator for all the possible locations in the 2/7+1 field. 

Rule 2b means that even if  2k mod (2n + 1) does not generate every element in the range 

1 to 2n, however, half o f the points in the field formed by rule 2a can be hit. It is because

V2*~ mod(2n +1) can be taken. The points generated by rule 2b are in the form o f perfect 

squares [Rei87][Ros98a].

Inversion

Inversion of a is represented by a -1 and is defined as below.

aa~l = lm od/i

where a and n are elements in field Fr  . The algorithm used for inversion is derived from 

Fermat's Little Theorem

a - ' = a 2"-2 ={ar ~1- 1)2 (4.2.11)

for all a ^  Oin Fr  . The method used was proposed by Itoh and Tsujii [IT88], based on

the following decomposition which minimizes the number of multiplications (squarings 

are much cheaper in a normal basis). If n is odd, then

(  n~l ^  ̂ n-1 ^
2 n~x - 1  = 2 2 - 1 2 T  +1

v yV /
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and can be computed using one field multiplication provided a 2 2 _1 is given. The cost of 

squaring is ignored because it is insignificant compared with multiplication. On the other 

hand, if  n is even, then

2"”1 -1  = 2 (2 " ~ 2 - l ) + l  = 2

therefore

^ n-2  V  n -2  >

2 2 - 1  2 2 +1 +1

2| 2 2 -1

a = a
2 2 +1 +1

n - 2  

2  2 -1  •which takes two field multiplications if a is given.

4.3.2 The Equation of ECC over GF(2n) with Chudnovsky Jacobian 

Coordinate System

As Chudnovsky Jacobian described in [CC86][CM097], point (xi, yi) is projected 

to (X,Y,Z,Z2,Z3) , Z  f  0 where x = XIZ2 and y  = T/Z3. Elliptic curve equation is as 

follows:

Y2 +XYZ =  A 3 +  a2X2Z2 + a(, t  

Where a2, e Fq, q=2n , a$ ±0

4.3.3 Point addition and doubling using Chudnovsky Coordinate 

System

• The formulae for point addition are as follows:

F  = (X 1,F1,Z 1,Z 12,Z 13) ;  Q = (X 2,Y2,Z 2, Z; , Z l ) -  P + Q = ( X 3,Y3, Z 3, Z 2, Z 33) 

where P ± Q or -Q

z, = x ,z 22
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• The formulae for point doubling of P  are given by:

P  = (X l j r i ,Z 1,Z 12,Z 13); P + P = (X 3,Y3,Z 3, Z ; , Z 33)

z 3 = x . z 2

X 3 = ( X 1+ a62)4 

/L = z 3 + X f  +YlZ l 

Y3 = X 4Z3 + a x 3

Based on the formulas given above, CC-P-ECC algorithm, an attempt has been made 

today more field multiplications in 3 digital serial parallel multipliers in every round. Not 

only does it exploit hardware resource up to maximum, it also saves more rounds o f field 

multiplication. The Flow Chart about point addition and doubling are given in Figure 

4.3.1 and Figure 4.3.2, respectively.

In CC-P-ECC, Point Addition requires 5 round field multiplications and 4 in Point 

Doubling. Compared with J-P-ECC in Figure 3.4.1 and Figure 3.4.2, CC-P-ECC 

algorithm’s computation saves up to 20% and 28.6% on point doubling and addition, 

respectively.
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From the analysis of CC-P-ECC, the advantages are summarized as follows:

• Performance improvement on point computation like Point Addition and 

Doubling

• Three digital serial Parallel Multipliers are used in CC-P-ECC architecture

• No change in hardware architecture described in J-P-ECC

• Easier software Implementation
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x  ® y

Figure 4.3.1 Data flow on Point Doubling with CC-P-ECC
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— hf. +  z

Figure 4.3.2 Data flow on Point Addition with CC-P-ECC
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4.4 The application with CC-P-ECC: ECDSA

The description o f CC -P-ECC had been given in section 4.2. This section introduces one 

important application using CC -P-ECC, ECDSA [IEEE 1363].

4.4.1 WHY USE ECDSA IN APPLICATION

Like DSA in public key cryptosystems, ECDSA is also required in some applications 

using elliptic curve cryptosystem.

ECDSA purpose is to sign on a hashed message with someone’s private key to generate a 

new hash message with a pair of string. Then this message is passed to the person who 

requires it. The receiver can verify that the message has been signed by the sender.

4.4.2 ECDSA DESCRIPTION

As discussion above, ECDSA is an important application using Elliptic Curve in public 

key cryptosystem [IEEE 1363].

ECDSA uses a random EC KEYPAIR, along with the signer’s private key, to create the 

signature. In the phase o f verification, you use public key to decrypt the signature. If it 

matches the hash values, it verifies the signature.

As elliptic curve described in section 2.3, let P  be the base point with order n on curve E, 

which satisfies equation 2.3.4. We call the signer’s private key s and the public key Q = 

sP. L e t‘s take a random value k and random point R= kP. The message hash is e and has 

been generated to be less than n. The first step in DSA is to take the x component o f R 

modulo the order of the curve to get the first signature component:

c -  x mod « (4.6.1)
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The second component is then computed as:

d = k l (e + sc) (4.6.2)

According to the IEEE [IEEE1363], the process o f verifying the signature from equation 

(4.6.1) and (4.6.2) requires computation of three values after computing the hash o f the 

message (called e'):

h = m odn
h j = e'hm odn  (4.6.3)

h2 = chmodn

These values are used to compute a point on the public elliptic curve with the formula:

R '= hxP + h2Q (4.6.4)

If the x component o f equation (4.6.4) does not equal equation (4.6.1), the message is 

assumed to be different from the original signed document. The reason is as follows:

The first equation in equation (4.6.3) can be rewritten with equation (4.6.2): 

h = k(e + sc)~i . (4.6.5)

With this, the last two equations in equation (4.6.3) expand to:

k  = e'k(e + sc)~1
(4.6.6)

h2 = ck(e + sc)

Putting the above fully expanded terms into equation (4.6.4) gives:
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R'=e'k(e + sc) lP + sck(e + sc) lP  (4.6.7)

where also substituted equation Q = sP .Clearly there Eire common terms, which reduce 

down to:

R'= k(e'+sc)(e + sc)~lP  (4.6.8)

The factors (e'-h5'c)(e + sc)~1 will erased only if the hash o f the original message, the 

signer’s key, and the published signature are correct.

(c ,d ) ,M

Insecure
Channel

R '(x ',y ')  = hlP + h2Q
r '=  r 1 m nrl n

h = d~l m od77 

/?j = e /z mod 77 

/z, = ch mod 77

5-signer’s private key 
/ ’-base point order n over 
Curve E
kG [ 1..n-1 ]- random value

e = H ( M ) 
R (x ,y ) = kP

c  — c

Failure

v verified

Figure 4.4.1 Digital Signature with message digest in elliptic curve Cryptosystem

4.4.3 ECDSA IMPLEMENTATION

In Figure 4.4.1, Implementation o f ECDSA is composed of three components, ECC Key 

Generation, Digital Signature and Message Verification. The three parts in detail are 

given in the following section.
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4.4.3.1 ECC Key Generation

ECKGP is used to compute identity public key Q with specific private key s. Private key 

is a random number that is modulo order n o f Base Point. Then it is multiplied by Base 

Point to compute counterpart public key. Its flow chart is as Figure 4.4.2.

End

Start

Generate random key 
(randkey)

R andkey  modulas Base 
point Order to get 
remainder k, private key

k  is multiply by Base 
Point P ,kP  = Q , public 
key

Figure 4.4.2 Elliptic Curve Key Generation Subroutine

4.4.3.2 ECDSA Signature

ECDSA Signature is a function o f signing a hashed message with someone’s private key 

to generate a new message with a pair of strings before sending it to the Destination. It 

first hashes the given message. Then use signer’s private key and random point’s public 

key to compute a pair of string. Finally, it passes the original message with generated pair 

string to destination. The procedure is shown in Figure 4.4.3.
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END

START

Hash Message e = hash (M)

Send Message {M, (c, 
d)} to destination

Select random value k k e  [l..n-l]

Compute random point kP, 
where P  is base point

Compute point (c, d) 
with signer’s private key

c = x mod n 

d  = k l {e + sc)

Figure 4.4.3 ECDSA signature subroutine

4.4.3.3 ECDSA Verification

After the message signed by specific private key is passed to the verifier, there requires 

message check if the message is original. ECDSA verification is designed for this 

particular mission. From the discussion in section 5.3.2, ECDSA verification subroutine 

uses signer’s public key Q , hashed Message e’ and a pair o f string (c, d) passed from 

“signer” to compute a string c’. If c is equal to c \  the message is sent from the correct 

signer or not otherwise. The procedure is as follows:
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START

e '=  H  ( M  ) 
Q = sP

h =-- d ' 1 mod n
h, = e h mod n
h 2 = ch mod n

R '(x ',y ')  = hxP + h2Q 

c'— x 'm odn

^END

N

r
Verification
failureVerification

Figure 4.4.4 ECDSA verification subroutine

4.4.3.4 ECDSA with CC-P-ECC

With introduction to Elliptic curve cryptosystem in Chapter 2, we know Point 

Multiplication composed of Point Addition and Doubling plays an import role on security 

and performance. In this thesis, because point multiplication with CC-P-ECC is used in 

ECC key generation, signature and verification subroutine o f ECDSA, it undoubtedly can
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make ECDAS to be improved on computational efficiency. For performance, Chapter 5 

will give some experiments and results.

Summary

In this section, CC-P-ECC Algorithm over GF(2") is given in detail. The computational 

costs for CC-P-ECC are less than those for J-P-ECC by 20% and 28.6% on Point 

Doubling and Addition respectively. P-P-ECC saves 20% and 14.2% respectively as 

compared to J-P-ECC. Thus CC-P-ECC is the best candidate for ECDSA. The 

experiment results of ECDSA for CC-P-ECC and the other two parallel systems are 

given in Chapter 5.

5 Experiments and Results

This section describes the experiments for testing the performance o f CC-ECC, P-ECC 

and J-ECC. The measurement is done for the Key Generation, Digital Signature and 

Message Verification processes. Besides cost comparison among Projective, Jacobian
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and Chudnovsky Jacobian coordinate system with a digital serial multiplier, it also 

includes the measurements with multiple serial parallel multipliers for J F I ( C . P P

5.1 Description o f the Experiment

In this section, a description of the experimental platform is given. The values o f the 

selected elliptic curve parameters are also provided.

5.1.1 System Requirement

Hardware

We adopt Davinci Server, which is located in the school o f Computer Science of 

University o f Windsor, as my test platform. The reason we use it is that it is suitable for 

high performance computation. It has 12 CPUs and plenty of storage space for multiple 

users to use simultaneously. The operating system is UNIX System,

Software

The operating System is Solaris 9 Unix system. Rosing Software Package [Ros98a] is 

used to measure Digital Signature of elliptic curve cryptosystem. This software is 

programmed with C Language. So all test subroutines are programmed with C Language. 

We choose cc.exe as C compiler, which is included in the core package of Solaris UNIX.

5.1.2 Selection of Elliptic Curve and Parameters

Based on DIGITAL SIGNATURE STANDARD [FIPS1862] recommendation, Random 

Curve and Koblitz Curve may both be adopted in Polynomial [IEEE 1363] basis and 

Normal basis in a practical application. In my experiment, Koblitz curve with normal 

B asis is chosen. The K oblitz Curve over Binary F ield  2” has the form:

y 2 + xy = x 3 + a2x 2 +1 (5.1)

where a2 = 0 or 1.

O f the Field Representation, optimal normal basis with Type I described in Chapter 4 

(Page 38 - 40) is chosen in this experiment.
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The parameter used in the experiment:

•  Galois Field (2113)

• Coefficient « 2  = 1, «6= 1

• Base Point (Gt,Gv)

Gx : lf43c 6942bla4 9aaaac4a b572fdbf

Gv : 10145 c084d629 96208f8e 44d9f291

5.1.3 Simulation of Serial-Parallel computation of ECC

Simulation of Serial-Parallel Computation is proposed to execute 3 field multiplication 

operations with 3 digital serial parallel multipliers once a time. Every field multiplication 

is individually executed in a separated process. In our experiment, three field 

multiplications can be executed in three separated processes created almost at the same 

time.

In this thesis, three digital serial-parallel multipliers are used to parallelize field 

multiplications in point addition and doubling o f ECC. In the UNIX environment, ECC 

program employs 4 processes. One is to control the main function. The other three 

processes are used to simulate 3 independent field multiplication operations.

5.2 M easurements
The measurements are divided into two groups. One group is tested in the conventional 

elliptic curve cryptosystem, which has one digital serial multiplier in elliptic curve 

system. The other are tested for serial-parallel computation under simulation 

environment. Execution times of ECDSA including signature and verification are 

measured. The measured subroutines include Key Generation, Signature and Verification.

5.2.1 Conventional ECC computation on various coordinate systems

ECDSA has already been introduced in Chapter 4. In this section, the tests are done with 

different coordinate systems. Test parameters are specified in section 5.1.2. The 

parameters used in the test are given again in every test.
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Conventional ECDSA is measured with a digital serial multiplier in various coordinate 
systems as follow.

5.2.1.1 Conventional ECDSA with Projective Coordinate System

This test is purposed to measure execution time of Key Generation, Signature and 

Verification with point represented by Projective Coordinate System. The result is shown 

in Test I. To measure more accurately, a number o f readings are taken. The average 

value is calculated to represent the execution time.

Test I:
Kobli tz 113
a2 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f

a 6 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base point
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation time=0.340000 seconds using P ro jec t ive  Coordinate 
S ig n er ' s  s e c re t  key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers publ ic  key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take time=0.340000 seconds using P ro jec t ive  coordinate  
f i r s t  component of s igna tu re  : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re  : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=0.690000 seconds using P ro jec t ive  Coordinate 
Message V e r i f ie s

Table 5.2.2.1 in the Appendix C shows the other readings. Average Value o f Key 

Generation, Signature and Verification are 0.341, 0.3460 and 0.695 sec, respectively.

5.2.1.2 Conventional ECDSA with Jacobian Coordinate System

The following test is done with the Jacobian Coordinate System. The result is shown as 

Test II.

Test II:
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Kobli tz 113
a2 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
a 6 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
random poin t
x : 7dl7 b7 423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base po in t
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation time=0.310000 seconds using Jacobian Coordinate 
S ig n er ' s  s ec re t  key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic  key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take time=0.310000 seconds using Jacobian Coordinate 
f i r s t  component of s igna tu re  : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re  : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=0.610000 seconds Jacobian Coordinate 
Message V e r i f ie s

The average o f Key Generation, Signature and Verification are 0.3034, 0.3084, 0.6125 

sec. (Table 5.2.2.2 in Appendix C)

5.2.1.3 Conventional ECDSA with Chudnovsky Coordinate System

The following data is measured in the Conventional ECDSA with the Chudnovsky 

Jacobian Coordinate System.

Test III:
Kobli tz  113
a2 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
a 6 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base po in t
x : l f43c  6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Key Generation t ime=0.300000 seconds using Chudnovsky Coordinate 
S ig n er ' s  s ec re t  key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic  key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take t ime=0.320000 seconds using Chudnovsky Coordinate 
f i r s t  component of s igna tu re  : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re  : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature t ime=0.620000 seconds using Chudnovsky Coordinate 
Message V e r i f i e s
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The average o f Key Generation, Signature and Verification are 0.3041, 0.3084, 0.6134 

sec (Table 5.2.2.3 in Appendix C).

5.2.1.4 Performance Analysis
Table 5.2.1.1 Comparison on Conventional ECDSA using three coordinate systems

Time (Seconds) Key Generation Signature Verification
P-ECC 0.341 0.3460 0.695
J-EC C 0.3034 0.3084 0.6125
CC-ECC 0.3041 0.3084 0.6134

ECDSA using P-ECC, J-ECC and CC-ECC

- 0.8
©

”  0.6 
®
E
H 0.4  
o>
|  0.2 
c3
*  0

■■
P-ECC

a  Key Generation 

■  Signature 

□  Verification

IE ,

J-ECC

Coordinates

CC-ECC

Figure 5.2.1 Comparison of running time using P-ECC, J-ECC and CC-ECC

From Table 5.2.1.1 and Figure 5.2.1, comparing ECDSA the three coordinates o f elliptic 

curve cryptosystem, Jacobian and Chudnovsky coordinate is almost the same and the 

Projective is slower than Jacobian and Chudnovsky around 11%, 11%, 12% with Key 

Generation, Message Signature and Message Verification, respectively. So Jacobian and 

Chudnovsky Jacobian should be the better solution for implementing ECDSA using a 

digital serial m ultiplier.

5.2.2 Serial-Parallel ECC computation on various coordinate system
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The following section gives the measurement on ECDSA using simulation o f serial 

parallel computation with projective, Jacobian and Chudnovsky coordinate system, 

respectively.

5.2.2.1 Measurement of ECDSA with serial-parallel multiplier 
simulator using Projective Coordinate System (P-P-ECC)

The measurement o f ECDSA using P-ECC is taken and the data is given in TEST IV and 
Table 5.2.2.4 in Appendix C

TEST IV:
Kobli tz 113
a2 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
a 6 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
random poin t
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base poin t
x : l f43c  6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation t im e = l l .160000 seconds using P ro jec t ive  Coordinate 
S i gn e r ' s  s ec re t  key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic  key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take t im e = l l .120000 seconds using P ro jec t ive  coordinate  
f i r s t  component of s igna tu re  : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re  : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=21.930000 seconds using P ro jec t ive  Coordinate 
Message V e r i f ie s

The Average execution time in the ECDSA using P-P-ECC is 9.99, 9.97 and 19.74 

seconds on Key Generation, Signature and Verification, respectively.

S.2.2.2 Measurement of ECDSA with serial-parallel multiplier 
simulator using Jacobian Coordinate system (J-P-ECC)

ECDSA measurement using J-P-ECC is described in this section. Data about Key 

Generation, Signature and Verification using J-P-ECC is shown in Test V and 

Table5.2.2.5 in Appendix C.
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TEST V:

Kobli tz  113
a2 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
a 6 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
random point
x : 7dl7 b7 423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base point
x : l f43c  6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation time=13.960000 seconds using Jacobian Coordinate 
S ig n er ' s  s e c re t  key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic  key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take time=12.880000 seconds using Jacobian Coordinate 
f i r s t  component of s igna tu re  : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re  : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=26.520000 seconds Jacobian Coordinate 
Message V e r i f i e s

Average execution time in the ECDSA using J-P-ECC is 10.62, 10.57, 20.76 seconds on 

Key Generation, Signature and Verification, respectively.

S.2.2.3 Measurement of ECDSA with serial-parallel multiplier 
simulator using Chudnovsky Jacobian Coordinate System (CC- 
ECC)

The following test is for the measurement of ECDSA with CC-P-ECC. The result is 

shown in Table VI and Table S.2.2.6 in Appendix C.

TEST VI:
Kobli tz 113
a2 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
a 6 : l f f f f  f f f f f f f f  f f f f f f f f  f f f f f f f f
random poin t
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base point
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation t ime=8.710000 seconds using Chudnovsky Coordinate
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S ig n e r ' s  s ec re t  key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic  key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take t ime=9.080000 seconds using Chudnovsky Coordinate 
f i r s t  component of s igna tu re  : c0c2 421b5284 57235894 76f9862a
second component of s igna ture  : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify  Signature time=17.880000 seconds using Chudnovsky Coordinate 
Message V e r i f i e s

In the measurement of ECDSA with CC-P-ECC, Average execution time are 8.73, 8.67 

and 17.18 for Key Generation, Signature and Verification, respectively.

S.2.2.4 Comparison of Execution Time with simulation of Serial Parallel 
Computation

In TEST IV, V, VI, Execution time o f ECDSA is measured using simulation o f Serial- 

Parallel computation using different coordinate systems. The comparison on P-P-ECC, 

J-P-ECC and CC-P-ECC are made in the Table 5.2.2.I. The result shows that ECDSA 

with CC-P-ECC achieves best performance among the three algorithms. It is faster than 

J-ECC by 17.8%, 17.8% and 17.2% on Key Generation, Signature and Verification. It is 

faster than P-ECC by 12.6%, 13.0% and 13.0% as well on Key Generation, Signature and 

Verification respectively.

Table 5.2.2.1 Running Time of ECDSA with P-P-ECC, J-P-ECC and CC-P-ECC

Coordinate
Type

Time of Key 
Generation (Second)

Time of Signature 
(Seconds)

Time of
Verification
(Seconds)

J-P-ECC 10.62 10.57 20.76
P-P-ECC 9.99 9.97 19.74
CC-P-ECC 8.73 8.67 17.18
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ECDSA using J-P-ECC, P-P-ECC, CC-P-ECC

■ Time of Signature

m Time of Key Generation
(Second)

o> 10 - c

1 51 i □ Time of Verification
(Seconds)

(Seconds)

J-P-ECC P-P-ECC CC-P-ECC

Coordinate

Figure 5.2.2 Comparison of ECDSA with P-P-ECC, J-P-ECC and CC-P-ECC

Summary

The experiments on ECDSA using a digital serial multiplier and Simulation o f Serial 

Parallel computation using 3 digital serial multipliers are given in this Chapter. The 

comparison in both conditions is made. For ECC with a serial multiplier, Jacobian and 

Chudnovsky Coordinate gives almost same performance but both o f them are better than 

Projective Coordinate System. In case of Serial-Parallel Computation, ECC with 

Chudnovsky Jacobian coordinate had the best performance among the three algorithms.
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6 Conclusion and Future Work

As elliptic curve discrete logarithm problem (ECDSLP) makes elliptic curve 

cryptosystem to be noticed as an important alternative in the public key cryptosystem 

family. The Cryptosystems based on elliptic curve cryptography is going to be used 

widely for the application in the future [Certi04]. As a consequence, the methods that 

make its implementation on software or elliptic curve processors more practical and 

efficient are o f importance. In this thesis, our goal is to find an efficient algorithm of 

elliptic curve cryptography that can be implemented using digital serial parallel 

multipliers.

6.1 Conclusion

The CC-P-ECC algorithm over GF(2") using 3 digital serial parallel multiplier is 

proposed in this thesis. This new algorithm results in considerable reduction in execution 

time. While it exploits the inherent parallelism in the computation o f doubling and 

addition of points over elliptic curve GF(2n), the new algorithm explores a new way that 

reduces rounds o f field multiplications in point addition and doubling operation to save 

execution time. The evaluation o f ECDSA is done by using a series o f experiments. The 

result shows that the two proposed method (CC-P-ECC and P-P-ECC) have a 

considerable improvement over J-P-ECC, in terms o f Serial-Parallel computation o f ECC 

with digital serial parallel multipliers. It is also found that CC-P-ECC is the best 

algorithm out o f the three.

In Chapter 4, the methods for point multiplications had been introduced. Binary method 

used in this thesis is the simplest among them. As a matter of fact, CC-P-ECC can also be 

tuned by using m -ary method, window method, or by signed m-ary window method 

described by blake[BSS99].
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6.2 Future work

The CC-P-ECC algorithm proposed in this thesis requires 3 digital serial parallel 

multipliers in hardware. If we decrease the quantity o f digital serial parallel multipliers, 

CC-P-ECC performance may not be the best.

Because point multiplication o f elliptic curve cryptosystem is essential in public key 

calculation and key exchange, faster methods for Point Multiplication of elliptic curve 

cryptosystem may be devised in the future.

The key is to find new FASTER methods o f point multiplication better than those 

available. It is the same problem as finding algorithms for solving “shortest addition 

chain problem fo r  integer” defined in Chapter 4. With its special role in elliptic curve 

cryptography, exploration o f faster methods is still an active and challenging research 

field.
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Appendix A Implementation of CC-P-ECC

The implementation o f CC-P-ECC consists o f several components mentioned in 

[Ros98a]. It uses some important files as follows:

DSA.c, onb integer, elliptic.c

Major functions includes: ECDPKQ, onb_DSA_signature(), onb_DSA_verify(), 

cj_eliptic_m ul(), c j_esum (); cj_edb(), parallel_mul(), opt_mul(); We will give the 

detail in the following section.
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DSA.C

End

start

/* Key Generation 
ECKGP( &Base, &Signer);

/* ECDSA Verification function */
onb DSA Verify ( Message, 1024, &Base, &Signer.pblc_key, &signature);

/*ECDSA Signature using private key generated in ECKGP */
onb DSAjSignature (Message, 1024, &Base, &Signer.prvt_key, signature);

/* create a message to be signed */ 
for (i=0; i<1024; i++) {

Message [i] = i;}

Create Koblitz curve
/*form =1 is Koblitz curve or random curve as form=0*/ 
Base.crv.form = 1; 

one(&Base.crv.a2); 
one(&Base.crv.a6);
print_curve(" Koblitz 113", &Base.crv);

Create base point of known order
/ * * /

rand_point( &temp, &Base.crv); 
print_point("random point", &temp); 
edbl( &temp, &Base.pnt, &Base.crv); 
print_point(" Base point ",&Base.pnt);

Compute curve order from koblitz data
char string 1 [MAXSTRING] = "5192296858534827627896703833467507"; /*N 
113 */
ascii_to_bigint(&stringl, &prime_order); 
int_to_field( &prime_order, &Base.pnt_order); 
null( &Base.cofactor);
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Specification

Program Name: DSA.C [Ros98a]

IEEE P1363 includes ECDSA as one o f the standards for digital signatures. So we have 
used ECDSA module for testing our algorithm ECDSA module is to test signature o f a 
hashed message using a private key and verify it with its public key in Elliptic Curve 
Cryptosystem.

This function presets elliptic curve as Koblitiz Curve over GF(2113), Point Order is set as 
5192296858534827627896703833467507. Cofactor =2.

Using the parameters above, it generates the random point in the range o f specified curve. 
It then uses point doubling operation to generate a base point for Elliptic curve point 
operation.

ECKGP generates a pair o f keys: private & public key. DSA signature uses a hashed 
message SHA-1(FIPS 180). The next step is to sign this hashed message using Signature 
function, onb DSA signature () and verify the encrypted message with its public key in 
onb_DSA_verify() function.
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ECKGP( &Base, &Signer);

End

start

random_field( &rand_key);

field_to_int( &rand_key, 
&key_num);

field_to_int( &Base- 
>pnt_order, &point_order);

in t to  _field( &remainder, 
&Key->prvt_key);

int_div( &key_num, &point_order, 
&quotient, &remainder);

cj_elptic_m ul( &Key->prvt_key, &Base->pnt, &Key->pblc_key, 
&Base->crv);

Specification

Program Function: ECKGP (&Base, &Signer) [Ros98a]

This is a part o f onb integer.c. This function uses random number modulo order o f base 
point. The remainder is the signer’s private key. In CC-P-ECC, the public key is the 
product of signer’s private key and base point.

The 6th module cj_elptic_m ul( &Key->prvt_key, &Base->pnt, &Key->pblc_key, 
&Base->crv) is designed as a part o f the thesis work. This replaces eliptic mul 
(k,p,n,curve) in ECKGP () of [Ros98a].
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onb_DSA_signature()

Start

End

/* create random value and generate random point on public curve */ 
ECKGP( publiccurve, &random_key);

/* compute hash of input message */ 
hash to int ( Message, length, hash_value);

/* multiply that by signers private key and add to message digest 
modulo the order o f the base point, hash value + private key * c value

field_to_int( secret key, &key_value); 
int_mul( &key_value, &c_value, &temp); 
int_add( &temp, &hash_value, &temp); 
int_div( &temp, &point_order, &quotient, &k_value);

/* convert x component of random point to an integer modulo the order 
of the base point. This is first part of signature.

field_to_int( &public_curve->pnt_order, &point_order); 
field_to_int( &random_key.pblc_key.x, &x_value); 
int_div( &x_value, &point_order, &quotient, &c_value); 
int_to_field( &c_value, &signature->c);

/* final step is to multiply by inverse o f random key value modulo order 
of base point.

field_to_int( &random_key.prvt_key, &temp); 
mod_inv( &temp, &point_order, &u value); 
int_mul( &u_value, &k_value, &temp); 
int_div( &temp, &point_order, &quotient, &sig_value); 
int_to_field( &sig_value, &signature->d);
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Specification
Function: onb_DSA_signature()[Ros98a]

This function is used for signing a message using ECC to generate a pair o f value. It then 
passes the message to the other party. It is a part of program onb integer.c [Ros98a], In 
the second module, ECKGP has been modified as stated on page 6-76
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onb DSA Verification
Start

/* generate hash of message */
hash_to_int( Message, length, &hash_value);

/* convert x value of verify point to an integer modulo point order */ 
field_to_int( &Verify.x, &temp);
int_div( &temp, &point_order, &quotient, &check_value);

/* compute inverse of second signature value */
field_to_int( &public_curve->pnt_order, &point_order); 

field_to_int( &signature->d, &temp); 
mod_inv( &temp, &point_order, &d_value);

/* compare resultant message digest from original signature */ 
int_null(&temp);
int_sub( &c_value, &check_value, &temp); 
while( temp.hw[0] & 0x8000)

int_add( &point_order, &temp, &temp);
/* ensure positive zero */

/* find hidden point from public data */ 
cj_elptic_m ul( &hl_field, &public curve->pnt, &Templ, &public_curve- 

>crv);
cj_elptic_m ul( &h2_field, signerjpoint, &Temp2, &public curve->crv); 

esum( &Templ, &Temp2, &Verify, &public_curve->crv);

/* compute elliptic curve multipliers:
h i = hash value * d_value, h2 = c * d value

int_mul( &hash_value, &d_value, &temp); 
int_div( &temp, &point_order, &quotient, &hl); 
int_to_field( & hl, &hl_field); 
field_to int( &signature->c, &c_value); 
int_mul( &d_value, &c_value, &temp); 
int_div( &temp, &point_order, &quotient, &h2); 
int_to_field( &h2, &h2_field);
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o

1f

/* return error if  result of subtraction is not zero */ 
INTLOOP(i) if  (temp.hw[i]) return(O); 

retum(l);

Er-

Specification
Function Name: int onb_DSA_Verify( Message, length, publiccurve, signer_point, 
signature) [Ros98a]. This is a part of onbinteger.c.

This function receives signature from signer with Original Message and verifies it by 
using ECDSA verification procedure. The 4th module has been designed as a part o f the 
thesis work. eliptic_mul() has been replaced by cj_eliptic_m ul() as specified on page:74
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c j_elp tic_m iil( &Key->prvt_key, &Base- 
>pnt,
&Key->pblc_key, &Base->crv);

yes

No

end

Start

null (&r->x); 
null (&r->y);

opt_mul(&p->y,&jpZ3,&jp.Y);

jp.Z3 = jpZ3;

opt_mul(&jp.Z,&jp.Z,&jpZ2);

notzero = 0;

optmul(&p->x,&j pZ2,&j p .X);

jp.Z2 = jpZ2;

one(&jp.Z);

opt_mul(&jpZ2,&jp.Z,&jpZ3);

copy( k, &number);

SUMLOOP (i) notzero |= number.e[i];
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notzero

number.efNUM W  
ORD])& 1L

blncd[bit_count
]=1

b itco u n t—;

b itco u n t = 0;

blncd[bit_count] =1;

blncd[bit_count] = 0;

j r .X = jp .X ; 
j r Y  = jp .Y ; 
jr.Z  =  jp.Z; 
jr.Z2 = jp .Z 2; 
jr.Z3 = jp .Z 3;

null(&jr.X);
null(&jr.Y);
null(&jr.Z);
null(&jr.Z2);
null(&jr.Z3);

number.e[NUMWORD] &= ~0 «  1; 
rot_right( &number); 
bit_count++; 
notzero = 0;
SUMLOOP (i) notzero |= number.e[i];
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j>=0

yes

yes

b ln c d [ j]= l

End

j= b itco u n t-l

c j e s u m  (&jp, &jr, 
&jtemp, curv);
ir =  itpm rv

cj_edbl(& jr, &jtemp, curv); 
jr  = jtemp;

opt_mul(&j r .Z,&j r . Z,&ttemp); 
opt_inv(&ttemp,&onej rz2); 
opt_mul(&onejrz2,&jr.X,&r->x); 
opt_mul(&ttemp,&jr.Z,&tttemp); 
opt_inv(&tttemp ,&onej r z3); 
opt_mul(&onejrz3,&jr.Y,&r->y);

Specification
Function Name: c j  eliptic mul ( &Key->prvt_key, &Base->pnt, &Key->pblcJkey, 
&Base->crv)

This function implements point multiplication o f elliptic curve using Chudnovsky 
Jacobian system with serial-parallel computation. The data in the range of order o f base 
point is multiplied by base point to get another point. In this function, Chudnovsky 
coordinate system is used to represent a point on the elliptic curve. Binary method(refer
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to section 3.2.1) is used as Point Multiplication. This has been designed as a part of the
thesis work. This replaces elptic_mul() in elliptic.c.

c j  edbl (p i, p3, curv)

End

Start

a 6 1 4 =  curv->a6:

SUMLOOP (i) afa.e[i] = temp3.e[i] A p3->Z.e[i];

SUMLOOP (i) p3->Y.e[i] = temp4.e[i] A temp5.e[i];

parallel_mul(&p 1 ->X,&p 1 ->X,&X12,&p 1 ->Z,&p 1 - 
> Y,&Z 1Y 1 ,&a614,&p 1 ->Z2,&temp 1);

SUMLOOP (i) temp3.e[i] = X12.e[i] A Z lY l.e[i]; 
SUMLOOP (i) temp2.e[i] = pl->X.e[i] A tempi.e[i];

parallel_mul(&X 12,&X12,&X14,&p 1 ->X,&p 1 - 
>Z2,&p3->Z,&temp2,&temp2,&temp22);

parallel_mul(&X 14,&p3 ->Z,&temp4,&p3 ->Z,&p3 - 
>Z,&p3->Z2,&temp22,&temp22,&p3->X);

parallel_mul(&p3->Z2,&p3->Z,&p3->Z3,&afa,&p3-
>X,&temp5,&afa,&p3->X,&temp5);

Specification
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Function name: c j  edbl (p i, p3, curv)

This function is used to calculate point doubling operation using serial-parallel 
computation. p3 = 2pi, Chudnovsky coordinate system is used to represent the point. It 
requires 4 round serial-parallel multiplication operations. This has been designed as a part 
o f this thesis work. It replaces edbl(pl,p3,curv) in elliptic.c [Ros98a], 
c J  edbl calls parallelm ul four times, parallelm ul is described on page 80.
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c j  esum (p i, p2, p3, curv)
Start

p3->Z2 = Z32;

parallel_mul(&p 1 ->X,&p2->Z2,&afal ,&p 1 ->Y,&p2- 
>Z3 ,&afa4,&p 1 ->Y,&p2->Z3 ,&afa4);

SUMLOOP (i) afa9.e[i] = afa6.e[i] A p3->Z.e[i]; 
SUMLOOP (i) afa8.e[i] = templ.e[i] A temp2.e[i];

parallel_mul(&p3->X,&afa9,&temp7,&Z32,&p3-
>Z,&Z33,&Z32,&p3->Z,&Z33);

parallel_mul(&p2->Z,&afa7,&p3->Z,&afa7,&p2- 
>Y,&temp 1 ,&afa6,&p2->X,&temp2);

SUMLOOP (i) temp5.e[i] = temp3.e[i] A temp4.e[i]; 
SUMLOOP (i) p3->X.e[i] = temp5.e[i] A afa33.e[i];

parallel_mul(&afa6,&afa9,&temp3,&p3->Z,&p3-
>Z,&Z32,&afa3,&afa3,&afa32);

SUMLOOP (i) afa3.e[i] = afal.e[i] A p2->X.e[i]; 
afa7 = afa3;
SUMLOOP (i) afa6.e[i] = afa4.e[i] A p2->Y.e[i];

parallel_mul(&curv-
>a2,&Z32,&temp4,&afa8,&afa32,&temp6,&afa32,&afa3,&afa33);
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f
SUMLOOP (i) p3->Y.e[i] = temp6.e[i] A 
temp7.e[i];

Specification
Function Name: c j e s u m  (p i, p2, p3, curv)

Point Addition is implemented in this function, p 3=pi+p2 . Point representation uses 
Chudnovsky Jacobian Coordinate system. It requires 5 round serial-parallel 
multiplication operation. This has been designed as a part o f this thesis work. It replaces 
esum(pl,p2,p3,curv) in elliptic.c [Ros98a].cJ_esum uses the module parallel_mul five 
times.

parallelm ul

End

Start

Create process 2 
0 pt_mul(a2 ,b2 ,c2 );

Create process 3 
opt_mul(a3 ,b3 ,c3);

Create process 1 
opt_m ul(al,bl,cl);

Specification
Function Name: parallel Mul(al,bl,cl,a2,b2,c2,a3,b3,c3)

This function is programmed to parallel 3 processes to calculate 3 optimal normal basis 
multiplications at a time. Unix fork() is used to create process. Each o f three o p tm u l 
Store the resulting data in a file (called filel, file2 and file3 , respectively) so that the data 
can be called by the main process. This has been designed as a part o f this thesis work.
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opt_m ul(a, b, c)

i < NUMB ITS

yes

i < NUMBITS

Start

j+ +

copy( a, &amatrix[0])

copy( &amatrix[i-l], &amatrix[i]); 
rot_right( &amatrix[i]);

zero index  = Lambda[0][0]; 
SUMLOOP (i) c->e[i] = copyb.e[i] & 
amatrix[zero_index] .e[i];

clear result and copy b to protect original 
null(c);
copy(b, &copyb);
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rot_right( &copyb); 
zero index  = Lambda[0][j]; 
one in d ex  = Lambda[l][j]; 
SUMLOOP (i) c->e[i] A= copyb.e[i] &

amatrix[one index].e[i]);
(amatrix[zero_index] .e[i]

(  END )

Specification
Function Name: opt_mul()

This is a part o f onb.c [Ros98a]. It is used to calculate multiplication of optimal normal 
basis
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Appendix B Implementation of P-P-ECC/J-P-ECC
Most o f the Program is the same as in CC-P-ECC. Only the following parts are different: 

For P-P-ECC,
In onb integer.c, ECGPK() and onb_DSA_verify() call the function p_elptic_mul( 
&Key->prvt_key, &Base->pnt, &Key->pblc_key, &Base->crv)

In eliptic.c , p_eliptic_mul(k,p,r,curv) call the functions p_esum(pl,p2,p3,curv) and 
p_dbl(pl,p3,curv)
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p_eliptic_mul()

! notzero

End

Notzero != 0

Start

b itco u n t = 0;

null (&r->x); 
null (&r->y);

copy( k, &number); 
notzero = 0;
SUMLOOP (i) notzero |= number.e[i];

/* Convert Base point from Affine to projective Coordinate*/ 
one(&projp.Z);
opt_mul(&p->x,&projp.Z,&projp.X);
opt_mul(&p->y,&pro_p.Z,&pro_p.Y);

number.e[NUMWORD] &= ~0 «  1; 
rot_right( &number); 
bit_count++; 
notzero = 0;
SU M LO O P (i) notzero |= num ber.efil;

if  ((number.e[NUMWORD])& 1L) blncd[bit_count] =1; 
else blncd[bit_count] = 0;
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blncd[bit_cou
n t ] = l

yes

yes

End

J--

b itco u n t—;

j=  bit_count-l

null(&pro_r.X);
null(&pro_r.Y);
null(&pro_r.Z);

p j e s u m  (&pro_p, 
&pro_r, &pro_temp, 
riir\A ’

pro_r.X = pro_p.X; 
pro_r.Y = pro_p.Y; 
p ro r .Z  = pro_p.Z;

pJ_edbl(&pro_r, &pro_temp, 
curv);
nro r =  nrn tpm ri'

opt_inv(&pro_r.Z,&oneproz); 
opt_mul(&oneproz,&pro_r.X,&r->x); 
opt_mul(&oneproz, &pro_r. Y,&r->y);
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Specification
Function Name: p j  eliptic mul ( &Key->prvt_key, &Base->pnt, &Key->pblc_key, 
&Base->crv)

This function implements point multiplication of elliptic curve using Projective system 
with serial-parallel computation. The data in the range of order o f base point is multiplied 
by base point to get another point. In this function, Projective coordinate system is used 
to represent a point on the elliptic curve. Binary method (refer to section 3.2.1) is used as 
Point Multiplication. This has been designed as a part o f the thesis work. This replaces 
elptic_mul() in elliptic.c.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.

85



p esum (p i, p3, curv)

End

Start

parallel_mul(&A3, &pl->Z, &p3->Z, &A3, &pl->Z, 
&temp5, &A3, &pl->Z, &temp6);

parallel_mul(&A2,&A,&A3,&A2,&A,&temp5,&A2,&A,
&temp6);

parallel_mul(&B,&p 1 -
>X,&BX1 ,&C,&B,&BC,&A,&A,&A2);
SUMLOOP (i) tempi.e[i] = a2Zl.e[i] A A.e[i];

parallel _mul(&A2,&temp3,&temp4,&A,&D,&p3- 
>X,&D,&C,&CD);
SUMLOOP (i) p3->Y.e[i] = CD.e[i] A temp4.e[i];

parallel_mul(& A,&p 1 -> Y,&AY 1 ,&p 1 - 
>Z,&BC,&ZlBC,&A2,&templ,&temp2);

SUMLOOP (i) temp3.e[i] = BXl.e[i] 
AYl.e[i];

parallel_mul(&p2->X,&p 1 ->Z,&X2Z 1 ,&p2-> Y,&p 1 - 
>Z,&Y2Z1 ,&curv->a2,&p 1 ->Z,&a2Z 1);
SUMLOOP (i) A.e[i] = pl->X.e[i] A X2Zl.e[i]; 
SUMLOOP (i) B.e[i] = pl->Y.e[i] A Y2Zl.e[i]; 
SUMLOOP (i) C.e[i] = A.e[i] A B.e[i];

Specification
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Function Name: p j_ esu m  (p i, p2, p3, curv)

Point Addition is implemented in this function, p3 =pi+p2 . Point representation uses 
Projective Coordinate system. It requires 5 round serial-parallel multiplication operation. 
This has been designed as a part of this thesis work. It replaces esum(pl,p2,p3,curv) in 
elliptic.c [Ros98a].p_esum uses the module parallel mul six times.

End

Start

parallel_mul(&p 1 ->X,&p 1 ->Z,&A,&p 1 - 
>Z,&p 1 ->Z,&Z 12,&p 1 ->X,&p 1 ->X,&X 12);

parallel_mul(&A2,&A,&p3- 
>Z,&temp2,&B,&temp4,&A,&B,&p3->X); 
SUMLOOP (i) p3->Y.e[i] = temp4.e[i] A X14A.e[i];

parallel_mul(&A,&A,&A2,&Z14,&curv-
>a6,&temp3,&X14,&A,&X14A);
SUMLOOP (i) B.e[i] = temp3.e[i] A X14.e[i];

parallel_mul(&p 1 ->Y,&p 1 ->Z,&Y1Z 1, &Z 12,&Z 12,&Z 14, 
&X12, &X12, &X14);
SUMLOOP (i) tempi.e[i] = A.e[i] A Y lZ l.efij;
SUMLOOP (i) temp2.e[i] = X12.e[i] A tempi.e[i];

Specification
Function name: p_edbl (p i, p3, curv)

This function is used to calculate point doubling operation using serial-parallel 
computation. p3 = 2pi, Projective Coordinate system is used to represent the point. It 
requires 4 round serial-parallel multiplication operations. This has been designed as a part 
of this thesis work. It replaces edbl(pl,p3,curv) in elliptic.c [Ros98a]. 
p edbl calls parallel mul four times, parallel mul is described on page 80.
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For J-P-ECC,
In onbinteger.c, ECGPK() and onb_DSA_verify() call the function j_elptic_mul( 
&Key->prvt_key, &Base->pnt, &Key->pblc_key, &Base->crv)

In eliptic.c , j_eliptic_mul(k,p,r,curv) call the functions j_esum(p 1 ,p2,p3,curv) and 
j_dbl(pl,p3,curv)
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j  clptic mul( &Key->prvt_key, &Base->pnt, 
&Key->pblc_key, &Base->crv);

yes

!notzero==0

No

end

Start

null (&r->x); 
null (&r->y);

opt_mul(&p->y,&jpZ3,&jp.Y);

notzero = 0;

opt_mul(&p->x,&j pZ2,&j p .X);

one(&jp.Z);

°pt_mul(&jp.Z,&jp.Z,&jpZ2);

copy( k, &number);

optm ul(& j pZ2 ,&j p ,Z,&j pZ3);

SUMLOOP (i) notzero |= number.e[i];
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?

notzero

number.e[NUMW  
ORD])& 1L

blncd[bit_count
] = 1

bitcount--;

b itco u n t = 0;

blncd[bit_count] =1;

blncd[bit_count] = 0;

j r X  — jp.X; 
j r .Y = jp .Y ; 
jr .Z = jp .Z ; 
jr.Z2 = jp .Z2; 
jr.Z3 = jp .Z 3;

null(&jr.X);
null(&jr.Y);
null(&jr.Z);
null(&jr.Z2);
null(&jr.Z3);

number.e[NUMWORD] &= ~0 «  1; 
rot_right( &number); 
bit_count++; 
notzero = 0;
SUMLOOP (i) notzero |= number.e[i];
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yes

yes

b ln c d [ j]= l

End

J--

j=  bit_count-l

j_edbl(&jr, &jtemp, curv); 
jr  = jtemp;

opt_mul(&jr.Z,&jr.Z,&ttemp);
opt_inv(&ttemp, &onej rz2); 
opt_mul(&onejrz2,&jr.X,&r-

>x);

opt_mul(&ttemp,&jr.Z,&ttte

Specification
Function Name: je l ip t ic m u l  ( &Key->prvt_key, &Base->pnt, &Key->pblc_key, 
&Base->crv)

This function implements point multiplication of elliptic curve using Jacobian system 
with serial-parallel computation. The data in the range o f order o f base point is multiplied 
by base point to get another point. In this function, Jacobian coordinate system is used to 
represent a point on the elliptic curve. Binary method (refer to section 3.2.1) is used as
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Point Multiplication. This has been designed as a part of the thesis work. This replaces 
elptic_mul() in elliptic.c.

j_edbl (pi, p3, curv)

End

Start

parallel_mul(&p 1 ->X,&p 1 ->X,&X12,&p 1 ->Z,&p 1 - 
> Y,&Z 1Y1 ,&p 1 ->Z,&p 1 ->Z,&Z 12);

parallel_mul(&temp 12,&temp 12,&p3 -
>X,&temp 12,&temp 12,&p3 ->X,&temp 12,&temp 12,&p3 ->X);

parallel_mul(&theta,&p3 ->X,&temp3 ,&theta,&p3 - 
>X,&temp3,&theta,&p3->X,&temp3);

parallel_mul(&p3 -
>Z,&X 14,&temp2,&temp 1 ,&temp 1 ,&temp 12,&temp 1 ,&tem 
n 1 9Y

a614= curv->a6;
parallel_mul(&Xl 2,&X 12,&X 14,&Z 12,&p 1 ->X,&p3 - 
>Z,&Z 12,&a614,&bZ 12);
SUMLOOP (i) theta.e[i] = Z1 Yl.e[i] A X12.e[i] A p3->Z.e[i]; 
SUMLOOP (i) tempi.e[i] = pl->X.e[i] A bZ12.e[i];

Specification
Function name: j edbl (p i, p3, curv)

This function is used to calculate point doubling operation using serial-parallel 
computation. p3 = 2pi, Jacobian coordinate system is used to represent the point. It
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requires 4 round serial-parallel multiplication operations. This has been designed as a part 
o f this thesis work. It replaces edbl(pl,p3,curv) in elliptic.c [Ros98a]. 
j edbl calls parallelm ul six times, parallelm ul is described on page 80.

je s u m  (p i, p2, p3, curv)

End

Start

SUMLOOP (i) p3->Y.e[i] = temp6.e[i] 
temp7.e[i];

parallel_mul(&p2->Z,&p2->Z,&Z22,&p2->Z,&p2-
>Z,&Z22,&p2->Z,&p2->Z,&Z22);

parallel mul(&afa6,&p2->X,&temp3,&afa6,&afa9,&temp5,&p3- 
>Z,&p3 ->Z,&Z3 2);

parallel_mul(&afa7,&p2->Y,
&temp4,&afa3 2,&afa3 ,&afa3 3 ,&curv->a2,&Z3 2,&temp6); 

STTMT O O P  t it  afaR p fil =  fp m n 3  p fil A te m n 4  p f i l -

parallel_mul(&temp 1 ,&p 1 -
>Y,&afa4,&afa3 ,&afa3 ,&afa32,&afa7,&p2->Z,&p3->Z); 

STTMT O O P  f it  a fab  p fil =  a fa 4  ph'l A n ? -> Y  pRl-

parallel_mul(&p 1 ->X,&Z22, &afal ,&Z22,&p2- 
>Z,&temp 1 ,&Z22,&p2->Z,&temp 1);

SUMLOOP (i) afa3.e[i] = afal.e[i] A p2->X.e[i];

Specification
Function Name: j esum (p i, p2, p3, curv)

Point Addition is implemented in this function, p3=pi+p2 . Point representation uses 
Jacobian Coordinate system. It requires 7 round serial-parallel multiplication operation. 
This has been designed as a part o f this thesis work. It replaces esum(pl,p2,p3,curv) in 
elliptic.c [Ros98a].j_esum uses the module parallel mul seven times.
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Appendix C DSA with Message and Hash Message
Koblitz 113 
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Key Generation time=0.240000 seconds using affine Coordinate 
Signer's secret key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers public key
x :  282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559

Message is:
Slabs o f concrete and metal came crashing down from the ceiling onto a seated waiting 

area at about 7 a.m. Sunday (0500 GMT/1 a.m. ET).

Part of the raised terminal structure then collapsed onto airport service vehicles 
underneath.

The collapse left a hole 50 meters (yards) by 30 meters in the long, tunnel-like building. 

"It's like a scene after an earthquake," one firefighter said.

Officials said there was nothing to indicate a terrorist attack.

Hundreds of rescue workers rushed to the scene, and temporary hospitals were set up on 
the tarmac and inside the terminal.

Interior Minister Dominique de Villepin, inspecting the site, said there were five 
confirmed dead and "perhaps six." Officials earlier said six people were killed.

Hubert de Mesnil, director general of Paris airports, said all the dead were likely 
passengers, The Associated Press reported.

De Mesnil said there was "absolutely nothing" in the past to indicate a structural problem. 

"It's the structure that gave way, the structure itself," h
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m essagedigest is:
1017204939-1721243125456559152-1119359275800469993

Signature take time=0.240000 seconds using affine Coordinate 
first component o f signature : c0c2 421b5284 57235894 76f9862a
second component of signature : 8a4f c6e37485 calad3a8 536fcacd
Message is:
Slabs of concrete and metal came crashing down from the ceiling onto a seated waiting 

area at about 7 a.m. Sunday (0500 GMT/1 a.m. ET).

Part o f the raised terminal structure then collapsed onto airport service vehicles 
underneath.

The collapse left a hole 50 meters (yards) by 30 meters in the long, tunnel-like building, 

"ft's like a scene after an earthquake," one firefighter said.

Officials said there was nothing to indicate a terrorist attack.

Hundreds o f rescue workers rushed to the scene, and temporary hospitals were set up on 
the tarmac and inside the terminal.

Interior Minister Dominique de Villepin, inspecting the site, said there were five 
confirmed dead and "perhaps six." Officials earlier said six people were killed.

Hubert de Mesnil, director general o f Paris airports, said all the dead were likely 
passengers, The Associated Press reported.

De Mesnil said there was "absolutely nothing" in the past to indicate a structural problem. 

"It’s the structure that gave way, the structure itself," h 

message_digest is:
1017204939-1721243125456559152-1119359275800469993

Verify Signature time=0.490000 seconds using affine Coordinate 
Message Verifies
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Appendix D Sample output of Serial-Parallel 
Computation

The following output shows one bit operation within binary methods when executing Key 
Generation

Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y :  100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y :  10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21335 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y :  10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21336 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
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x : lf43c 6942b la4 9aaaac4a b572fdbf
y :  10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21337 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21340 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21338 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21339 21334
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, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21341 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21342 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21343 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff
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random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21344 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21345 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y :  100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21346 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x :  7dl7b7423658 5f8dae64d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
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Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21347 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21348 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x :  7dl7b7423658 5f8dae64d624d542
y :  100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21349 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
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first multiplier and its parent using processes : 21350 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : lffff ffffffff ffffffff ffffffff 
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21351 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21352 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21353 21334 
, Current Process 21334 Koblitz 113 
form = 1
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a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21354 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x :  7dl7b7423658 5f8dae64d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21355 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21357 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
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X : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21356 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21358 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21359 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
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x : lf43c 6942bla4 9aaaac4a b572fdbf 
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21360 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21361 21334 
, Current Process 21334 Koblitz 113 
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7  b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Process=21334 Key Generation time=0.090000 seconds using Chudnovsky Coordinate 
Signer's secret key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers public key
x : 16c2 c3ed78d 8232c3a3 a510d008
y : 3673 989ddd2b 3ee2febe 9a4f0549
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Appendix E Experimental Data
Table 5.2.2.1 Result of 44 times running time using P-ECC

Number Key Generation Signature Verification
1 0.33 0.34 0.69
2 0.34 0.34 0.7
3 0.34 0.35 0.7
4 0.34 0.35 0.69
5 0.33 0.35 0.67
6 0.35 0.35 0.71
7 0.35 0.34 0.7
8 0.34 0.34 0.7
9 0.34 0.36 0.69
10 0.33 0.35 0.69
11 0.34 0.35 0.69
12 0.35 0.35 0.69
13 0.34 0.35 0.7
14 0.34 0.34 0.7
15 0.35 0.35 0.7
16 0.34 0.34 0.69
17 0.34 0.35 0.67
18 0.35 0.34 0.69
19 0.33 0.35 0.68
20 0.34 0.35 0.69
21 0.34 0.33 0.69
22 0.34 0.36 0.69
23 0.34 0.35 0.7
24 0.34 0.33 0.7
25 0.35 0.34 0.7
26 0.34 0.36 0.69
27 0.34 0.36 0.71
28 0.36 0.35 0.68
29 0.35 0.35 0.69
30 0.32 0.34 0.69
31 0.35 0.36 0.69
32 0.34 0.34 0.65
33 0.33 0.34 0.69
34 0.34 0.35 0.72
35 0.34 0.34 0.72
36 0.34 0.34 0.7
37 0.32 0.35 0.68
38 0.35 0.35 0.7
39 0.35 0.34 0.72
40 0.35 0.35 0.7
41 0.35 0.34 0.7
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42 0.34 0.33 0.69
43 0.34 0.34 0.68
44 0.34 0.35 0.69

Table 5.22.2  Result o f 44 times using J-ECC

Number Key Generation Signature Verification
1 0.31 0.31 0.61
2 0.3 0.32 0.61
3 0.3 0.31 0.61
4 0.31 0.31 0.6
5 0.3 0.3 0.61
6 0.3 0.31 0.61
7 0.29 0.31 0.62
8 0.3 0.31 0.62
9 0.3 0.3 0.62
10 0.3 0.31 0.62
11 0.31 0.3 0.62
12 0.3 0.31 0.62
13 0.31 0.32 0.6
14 0.3 0.3 0.61
15 0.3 0.29 0.61
16 0.3 0.31 0.6
17 0.3 0.3 0.6
18 0.3 0.31 0.6
19 0.3 0.32 0.61
20 0.3 0.31 0.61
21 0.3 0.32 0.61
22 0.31 0.3 0.61
23 0.31 0.31 0.6
24 0.31 0.3 0.61
25 0.3 0.3 0.62
26 0.3 0.31 0.6
27 0.31 0.3 0.6
28 0.3 0.31 0.62
29 0.32 0.32 0.62
30 0.3 0.31 0.65
31 0.3 0.3 0.66
32 0.31 0.31 0.63
33 0.3 0.31 0.61
34 0.3 0.31 0.6
35 0.3 0.32 0.61
36 0.3 0.31 0.59
37 0.3 0.32 0.6
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38 0.33 0.31 0.62
39 0.31 0.31 0.61
40 0.3 0.3 0.63
41 0.31 0.32 0.61
42 0.3 0.3 0.61
43 0.3 0.31 0.63
44 0.3 0.3 0.59

Table 5.2.2.3 Result with 44 times using CC-ECC

Number Key Generation Signature Verification
1 0.3 0.32 0.62
2 0.3 0.3 0.59
3 0.3 0.33 0.64
4 0.31 0.31 0.6
5 0.3 0.3 0.63
6 0.3 0.32 0.61
7 0.3 0.31 0.61
8 0.29 0.3 0.6
9 0.31 0.32 0.61
10 0.31 0.31 0.62
11 0.31 0.31 0.61
12 0.31 0.3 0.61
13 0.3 0.3 0.61
14 0.3 0.29 0.62
15 0.32 0.3 0.6
16 0.31 0.3 0.62
17 0.31 0.31 0.62
18 0.31 0.3 0.62
19 0.3 0.31 0.62
20 0.31 0.3 0.62
21 0.3 0.31 0.62
22 0.31 0.31 0.62
23 0.32 0.33 0.6
24 0.3 0.31 0.62
25 0.31 0.31 0.6
26 0.3 0.31 0.64
27 0.3 0.32 0.61
28 0.3 0.3 0.61
29 0.3 0.29 0.6
30 0.29 0.3 0.61
31 0.3 0.3 0.61
32 0.3 0.3 0.61
33 0.31 0.31 0.6
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34 0.3 0.3 0.61
35 0.31 0.31 0.62
36 0.31 0.31 0.6
37 0.31 0.32 0.62
38 0.3 0.3 0.61
39 0.3 0.32 0.63
40 0.31 0.32 0.62
41 0.3 0.31 0.6
42 0.3 0.31 0.62
43 0.3 0.32 0.62
44 0.3 0.31 0.61

Table 5.2.2.4 Result o f running 44 times in ECDSA using P-P-ECC

Number K ey Generation (Seconds) Signature (Seconds) Verification (Seconds)
1 9.9 10.18 19.02
2 9.48 9.6 18.7
3 9.95 9.52 18.65
4 9.76 9.26 18.94
5 9.76 9.56 18.47
6 9.54 9.29 18.44
7 9.58 9.28 18.88
8 9.21 9.4 18.6
9 9.77 9.66 19.67
10 9.65 9.59 18.79
11 9.33 9.45 18.78
12 9.5 9.37 18.22
13 9.52 9.14 19.07
14 9.76 9.78 20.43
15 10.09 10.03 20.09
16 10.25 9.97 20.03
17 10.34 10.72 20.54
18 9.88 9.89 19.54
19 10.58 9.74 19.27
20 9.89 10.11 20.18
21 10.03 10.04 20.11
22 10.01 10.01 20.21
23 10.06 10.44 19.82
24 10.51 10.36 20.16
25 10.68 9.89 20.09
26 9.78 9.68 18.79
27 9.86 9.49 19.51
28 10.2 11.04 20.05
29 11.1 9.94 20.97
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30 10.13 10.1 20.7
31 9.67 9.49 19.11
32 9.67 10.36 19.56
33 10.25 10.43 19.8
34 10.29 10.32 20.85
35 9.91 10.02 19.89
36 10.03 10.45 20.14
37 10.07 10.6 20.01
38 10.19 10.59 20.56
39 10.36 10.11 20.79
40 9.87 10.5 20 .83
41 10.42 10.15 20.55
42 10.16 10.51 20.84
43 10.53 10.23 20.59
44 10.04 10.31 20.49

Table S.2.2.5 Result of running time in ECDSA using J-P-ECC

N um ber Key G eneration (Seconds) Signature (Seconds) Verification (Seconds)
1 10.54 10.52 20.53
2 10.31 10.35 20.46
3 10.68 10.64 21.2
4 10.62 10.46 20.72
5 10.5 10.64 20.53
6 10.73 10.59 20.9
7 10.58 10.66 20.91
8 10.96 10.7 20 .89
9 10.69 10.64 20.84
10 10.74 10.77 21.32
11 10.87 10.42 20.98
12 10.52 10.69 20.91
13 10.73 10.48 20.68
14 10.64 10.84 20.92
15 10.4 10.59 20.73
16 10.73 10.69 20.84
17 10.89 10.62 20.89
18 10.56 10.65 20.96
19 10.67 10.69 20.87
20 11.1 10.91 21.14
21 10.72 10.63 20.87
22 10.63 10.62 20.83
23 10.76 11.14 20.99
24 10.5 11.03 21.25
25 10.75 10.6 20.76
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26 10.67 10.71 20.77
27 10.41 10.49 20.4
28 10.67 10.76 20.96
29 10.64 10.62 20.55
30 10.69 10.48 20.38
31 10.49 10.32 20.2
32 10.67 10.47 20.72
33 10.65 10.46 21.5
34 10.4 10.41 20.79
35 10.85 10.54 20.43
36 10.25 10.37 20.27
37 10.54 10.45 20.65
38 10.56 10.28 20.27
39 10.66 10.51 20.73
40 10.73 11.04 20.79
41 10.45 10.32 20.46
42 10.5 10.62 20.71
43 10.45 10.86 21.76
44 10.58 10.59 20.79
45 10.79 10.7 20.53
46 10.57 10.22 20.37
47 10.62 10.21 20.52
48 10.81 10.54 20.51
49 10.5 10.67 20.91
50 10.61 10.22 20.79
51 10.57 10.24 20.31
52 10.18 10.17 20.42

Table 5.2.2.6 Result o f running time in ECDSA using CC-P-ECC

N um ber K ey G eneration (seconds) Signature (Seconds) V erification  (seconds)
1 8.77 8.67 16.81
2 8.72 8.38 16.84
3 8.79 8.69 17.36
4 8.85 9.14 17.49
5 9 8.8 17.77
6 8.78 8.89 17.84
7 8.91 9 16.87
8 8.88 8.72 17.61
9 8.95 8.34 17.26
10 8.63 8.64 17.2
11 8.52 8.58 17.43
12 8.36 8.29 17.03
13 8.68 8.69 17.16
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14 8.73 8.86 17.18
15 8.77 8.53 16.86
16 8.44 8.75 16.8
17 8.58 8.44 16.67
18 8.51 8.67 17.25
19 8.79 8.61 16.91
20 8.94 8.77 17.3
21 8.9 8.83 17.25
22 8.94 8.8 17.28
23 8.71 8.75 17.01
24 8.6 8.49 16.87
25 8.53 8.53 16.94
26 8.74 8.65 16.69
27 8.68 8.58 17.13
28 8.71 8.63 17.22
29 8.73 8.57 17.01
30 9.04 8.72 17.46
31 8.89 8.51 17.49
32 8.63 8.62 16.89
33 9.04 8.73 17.2
34 8.88 8.92 17.8
35 8.95 8.64 17.46
36 8.66 8.6 17.29
37 8.62 8.57 16.94
38 8.57 8.48 16.89
39 8.44 8.61 17.04
40 8.59 8.56 16.73
41 8.73 8.51 17.41
42 8.71 8.48 17.34
43 8.46 8.57 17.03
44 8.54 8.86 16.82
45 8.72 8.58 17.19
46 8.65 8.5 16.71
47 8.77 9.17 17.27
48 8.78 8.72 17.59
49 8.85 8.8 17.54
50 8.52 8.74 17.41
51 8.87 8.71 17.56
52 8.84 8.84 17.22
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