
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2004

Efficient signature system using optimized elliptic curve Efficient signature system using optimized elliptic curve

cryptosystem over GF(2(n)). cryptosystem over GF(2(n)).

Xiaoguang Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Wang, Xiaoguang, "Efficient signature system using optimized elliptic curve cryptosystem over GF(2(n))."
(2004). Electronic Theses and Dissertations. 1883.
https://scholar.uwindsor.ca/etd/1883

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1883&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1883?utm_source=scholar.uwindsor.ca%2Fetd%2F1883&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Signature System using Optimized Elliptic Curve

Cryptosystem over GF(2")

By

Xiaoguang Wang

A Thesis
Submitted to the Faculty o f Graduate Studies and Research

Through School o f Computer Science
In partial fulfillment o f the requirements for

The Degree o f Master o f Science at the
University o f Windsor

Windsor, Ontario, Canada

2004

© 2004 Xiaoguang Wang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-92455-6
Our file Notre reference
ISBN: 0-612-92455-6

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Elliptic curve cryptography was proposed independently by Neil Koblitz and Victor

Miller in the middle o f 80’s. The security o f Elliptic Curve Cryptography depends upon

the elliptic curve discrete logarithm problem. For providing the same strength, it uses a

smaller key size than that for RSA. This advantage makes it particularly suitable for some

devices and applications, which have a resource constraint.

Digital Signature Systems are one o f the most important applications o f cryptography. In

Y2K IEEE has included two Elliptic Cryptography based methods in its new standard

P I363. The elliptic curve cryptosystem uses “point” operations like point doubling and

addition. As a consequence, optimization of point operations plays a key role in

determining the efficiency of computation. Today’s technology easily permits the

fabrication o f multiple simple “processors” on a single chip. For such devices, a serial-

parallel computation has been proposed by Adnan and Mohammad [AM03][AM03a] for

a faster computation o f elliptic algorithms. This thesis presents a new optimized point

operations algorithm for elliptic curve cryptosystems over GF(2n). We have designed and

implemented the new algorithm for a more efficient digital signature system.

Keyword: Elliptic Curve Cryptosystem, Point Addition, Point Multiplication, Point

Doubling, Projective Coordinate, Jacobian Coordinate, Chudnovsky-Jacobian

Coordinate, DSA, ECDSA, ECDLP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

The work presented in this thesis would not be possible without the help o f many people.

I would first like to acknowledge the support of my thesis supervisor and Master degree

supervisor, Professor Dr.Akshai Aggarwal for his invaluable advice and ideas on the

research. His support and expertise led me in the right direction, whenever we were faced

with hard problem in the past two years.

I thank Dr. Huapeng Wu for his advice which enriched my knowledge in elliptic curve

cryptography.

I would also like to thank my colleagues in our Research Group . In particular, I would

like to show my appreciation to Mr. Lu Xin and Mr. Marmagna Desai for their kind and

warm-hearted help. I thank the members of our Research Group for providing a great

atmosphere to work

Finally, I would like to give special thanks to my family. Specially, I thank my wife, Mrs.

Yuhong Meng for her support, encouragement and understanding .

To all o f you thank you very much.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

ABSTRACT.. I ll

ACKNOW LEDGEM ENTS.. IV

LIST OF FIGURES...VII

LIST OF TABLES... VIII

1 INTRODUCTION..1

1.1 E lliptic C u r v e C r y p t o g r a p h y : M a r k e t A p p l ic a t io n .. 1
1 .2 T h e m e t h o d s o f p e r f o r m a n c e Im p r o v e m e n t f o r E C C ..2

1.2.1 M ethods o f optimization on Point M ultiplication ..2
1.2.2 M ethods o f Optimization on po in t operation using mixed coordinate system s .. 3
1.2.3 Optimization on Serial-Parallel computation o f E C C ..4

1.3 T h e s is S t a t e m e n t ..5
1 .4 S t r u c t u r e o f t h e s is d o c u m e n t ..5

2 REVIEW OF THE LITERATURE.. 6

2 .1 C r y p t o g r a p h ic S y s t e m s ...6
2.1.1 E lliptic Curve D iscrete Logarithm Problem(ECDLP) ..6
2.1.2 Comparison between RSA and EC C based Public key sy stem ...6

2 .2 E lliptic C u r v e C r y p t o g r a p h y ... 7
2.2.1 E lliptic Curve over R2... 7
2.2.2 E lliptic Curve over fin ite f ie ld s ..12

2.2.2.1 Elliptic Curve over F w ith p > 3 .. 12

2.2.2.2 Elliptic Curve over F „ .. 12

2.2.2.3 Point Operations o f Elliptic Curves over F „ ...13

2.2.2.4 Curve M ultiplication..15

3 THE RELATED W ORK... 16

3 .1 In t r o d u c t io n .. 16
3 .2 P o in t M u l t ip l ic a t io n (C u r v e M u l t ip l ic a t io n) ...16

3.2.1 The Binary method...17
3.2.2 The m-ary m ethod .. 18
3.2.3 M odified m-ary method..19
3.2.4 Window methods ...20
3.2.5 Signed m-ary sliding window m ethod .. 21
3 .2 .6 Cost A n a lysis ..22

3 .3 F ie l d In v e r s io n a n d M u l t ip l ic a t io n ... 23
3.3.1 The form ulae in Affine Coordinate System ...23
3.3.2 The Formulae in P rojective Coordinate System ...24

3.3.2.1 Conversion Between Affine and Projective Coordinate System s...24
3.3.2.2 Curve Operations in the Projective Coordinate System .. 25

3.3.3 The form ulae in Jacobian Coordinate System ..26
3.3.4 The form ulae in Chudnovsky Jacobian System ..27

3 .4 S e r ia l -P a r a l l e l c o m p u t a t io n in E C C ... 2 8
3.4.1 Serial-Parallel computation o f EC C using Jacobian Coordinate System (J-P-E C C) 28

4 THE OPTIMIZED SERIAL-PARALLEL COMPUTATION OF ECC OVER GF(2N) 33

4 .1 F ir s t it e r a t io n o f S e r ia l -P a r a l l e l c o m p u t a t io n o f E C C u s in g P r o je c t iv e C o o r d in a t e

(P -P -E C C) S y s t e m ...33
4 .2 M o t iv a t io n o f C C -P -E C C ..3 6
4 .3 In t r o d u c t io n t o C C -P -E C C A l g o r it h m ... 3 6

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.1 Requirement o f Software Implementation in CC-P-ECC. ...37
4.3.1.1 M ixed Coordinate System ... 37
4.3.1.2 The Algorithm for Point M ultiplication... 37
4.3.1.3 Optimal Normal B asis...37

4.3.2 The Equation o f E C C over GF(2n) with Chudnovsky Jacobian Coordinate System 42
4.3.3 Poin t addition and doubling using Chudnovsky Coordinate System ..42

4 .4 T h e a p p l i c a t io n w i t h CC-P-ECC: ECDSA ... 4 7
4.4.1 WHY USE ECDSA IN APPLICATION .. 47
4.4.2 ECDSA DESCRIPTION...47
4.4.3 ECDSA IMPLEMENT A TION ..49

4.4.3.1 ECC Key G eneration..50
4.4.3.2 ECDSA Signature.. 50
4.4.3.3 ECDSA V erification... 51
4.4.3.4 ECD SA with CC-P-ECC..52

5 EXPERIMENTS AND RESU LTS...53

5 .1 D e s c r ip t io n o f t h e E x p e r im e n t ... 5 4
5. 1.1 System Requirement ..54
5.1.2 Selection o f E lliptic Curve and Param eters ..54
5.1.3 Simulation o f Serial-Parallel computation o f E C C ..55

5 .2 M e a s u r e m e n t s ..55
5.2.1 Conventional ECC computation on various coordinate system s ...55

5.2.1.1 Conventional ECDSA with Projective Coordinate System ..56
5.2.1.2 Conventional ECDSA with Jacobian Coordinate System .. 56
5.2.1.3 Conventional ECDSA with Chudnovsky Coordinate System ...57
5.2.1.4 Performance A n alysis ...58

5.2.2 Serial-Parallel EC C computation on various coordinate system ..58
5.2.2.1 Measurement o f ECDSA with serial-parallel multiplier simulator using Projective Coordinate
System (P-P-E C C)... 59
5.2.2.2 Measurement o f ECDSA with serial-parallel multiplier simulator using Jacobian Coordinate
system (J-P-ECC)..59
5.2.2.3 Measurement o f ECDSA with serial-parallel multiplier simulator using Chudnovsky Jacobian
Coordinate System (C C -E C C)...60
5.2.2.4 Comparison o f Execution Time with simulation o f Serial Parallel Computation...............................61

6 CONCLUSION AND FUTURE W O R K ..63

6 .1 C o n c l u s io n ..63
6 .2 F u t u r e w o r k ..6 4

APPENDIX A IMPLEMENTATION OF CC-P-ECC.. 65

APPENDIX B IMPLEMENTATION OF P-P-ECC/J-P-ECC..82

APPENDIX C DSA WITH MESSAGE AND HASH MESSAGE.. 94

APPENDIX D SAMPLE OUTPUT OF SERIAL-PARALLEL COMPUTATION...................................96

APPENDIX E EXPERIMENTAL DATA...105

REFERENCES...112

VITA AUCTOR1S... 115

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

F ig u r e 2 .2 .1 P l o t o f E ll ipt ic C u r v e ..8
F ig u r e 2 .2 .2 A d d it io n o f E C p o in t s .. 9
F ig u r e 2 .2 .3 A d d it io n o f p o in t s P a n d -P E C ..10
F ig u r e 2 .2 .4 D o u b l in g o f E C P o i n t ..11
F ig u r e 2 .2 .5 T h e h ie r a r c h y o f el l ipt ic c u r v e o p e r a t io n ..15
F ig u r e 3 .2 .1 B in a r y M e t h o d A l g o r it h m .. 18
F ig u r e 3 .2 .2 PorNT M u l t ip l ic a t io n m -a r y M e t h o d ...18
F ig u r e 3 .2 .3 P o in t M u l t ip l ic a t io n o f W in d o w M e t h o d ..2 0
F ig u r e 3 .2 .4 S ig n e d m -a r y W in d o w M e t h o d ..2 2
F ig u r e 3 .4 .1 D a t a f l o w g r a p h o f p o in t d o u b l in g w it h J -P -E C C ... 30
F ig u r e 3 .4 .2 D a t a f l o w g r a p h f o r a d d in g t w o p o in t s w it h J -P -E C C .. 31
F ig u r e 4 .1 .1 F l o w C h a r t o f P o in t A d d it io n w it h P -P -E C C ... 3 4
F ig u r e 4 .1 .2 F l o w C h a r t o f P o in t D o u b l in g w it h P -P -E C C ..35
F ig u r e 4 .3 .1 D a t a f l o w o n P o in t D o u b l in g w it h C C -P -E C C .. 45
F ig u r e 4 .3 .2 D a t a f l o w o n P o in t A d d it io n w it h C C -P -E C C ..4 6
F ig u r e 4 .4 .1 D ig it a l S ig n a t u r e w it h m e s s a g e d ig e s t in e l l ipt ic c u r v e C r y p t o s y s t e m 4 9
F ig u r e 4 .4 .2 E ll ipt ic C u r v e K e y G e n e r a t io n S u b r o u t i n e ...5 0
F ig u r e 4 .4 .3 E C D S A s ig n a t u r e s u b r o u t in e ...51
F ig u r e 4 .4 .4 E C D S A v e r if ic a t io n s u b r o u t i n e ..5 2
F ig u r e 5 .2 .1 C o m p a r is o n o f r u n n in g t im e u s in g P -E C C , J-E C C a n d C C -E C C .. 58
F ig u r e 5 .2 .2 C o m p a r is o n o f E C D S A w it h P -P -E C C , J-P -E C C a n d C C -P -E C C ..6 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

T a b l e 3 .2 .6 .1 C o s t o f p o in t m u l t ip l ic a t io n f r o m [B S S 9 9] ...2 2
T a b l e 3 .3 .4 .1 C o s t C o m p a r is o n b y m ix in g d i f f e r e n t c o o r d i n a t e s E C p o in t o p e r a t i o n 2 8
T a b l e 3 .4 .1 .1 C o s t c o m p a r is o n o n c u r v e o p e r a t io n b e t w e e n S e r ia l a n d S e r ia l - p a r a l l e l

COMPUTATION...32
T a b l e 5 .2 .1. 1 C o m p a r is o n o n C o n v e n t i o n a l ECDSA u s in g t h r e e c o o r d i n a t e s y s t e m s 58
T a b l e 5.2.2.1 R u n n in g T im e o f ECDSA w it h P-P-ECC, J-P-ECC a n d CC-P-ECC......................................61
T a b l e 5 .2 .2 .1 R e s u l t o f 4 4 t im e s r u n n in g t im e u s in g P-ECC.. 105
T a b l e 5.2.2.2 R e s u l t o f 44 t im e s u s in g J-ECC..106
T a b l e 5 .2 .2 .3 R e s u l t w it h 4 4 t im e s u s in g C C -E C C .. 107
T a b l e 5.2.2.4 R e s u l t o f r u n n in g 44 t im e s in ECDSA u s in g P-P-ECC.. 108
T a b l e 5 .2 .2 .5 R e s u l t o f r u n n in g t im e in ECDSA u s in g J-P-ECC.. 109
T a b l e 5.2.2.6 Re s u l t o f r u n n in g t im e in ECDSA u s in g CC-P-ECC..110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v iii

1 INTRODUCTION

Elliptic Curve Cryptosystem (ECC) has begun to be paid more attention, because the EC

Discrete Logarithm problem seems hard to be cracked. So a much smaller key size with

an equal security in encryption can be used in ECC [Wi99]. Point addition and doubling

o f ECC require inversion operation. Inversion is the most expensive operation over

GF(2n). To eliminate inversion operation, several coordinate systems had been

considered in elliptic curve point operation. The coordinate system is chosen such that

point addition and doubling can be implemented with the smallest number o f field

multiplications. To make the point operations faster, Adnan and Mohammad proposed a

serial-parallel computation architecture (J-P-ECC) for point addition and doubling in

ECC [AM03]. After exploiting the inherent parallel mechanism at both algorithmic level

and the arithmetic level o f ECC using Jacobian coordinate system, it uses serial-parallel

computation in point addition and doubling. This requires computation o f 3 field

multiplications with 3 digital serial multipliers in parallel instead of sequential

computation with only one digital serial multiplier.

In my thesis, we propose an optimal serial-parallel computation architecture o f ECC

(CC-P-ECC) over GF(2"). It chooses the coordinate system that has the least

multiplication instruction cycles with 3 digital serial multipliers.

Computation efficiency of elliptic curve cryptosystem is a major research field in that it is

an important factor in implementing ECC in some devices with constrained environment.

Computation efficiency involves scalar multiplication optimization, mixed coordinate

systems and serial - parallel computation in point operation.

1.1 Elliptic Curve Cryptography: Market Application

The strength o f elliptic curve (EC) cryptosystem is based on EC Discrete Logarithm

problem. [AMR+02]. “ The brute force method to solve the EC Discrete Logarithm

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem is (computationally) infeasible.” [Wi99]. In other words, this problem is so hard

to crack that its key reduction in size is highly considered when compared to the key used

by other cryptosystems. The typical example is that it is able to challenge RSA, one of

the most popular public key cryptosystems. Although some critics are still skeptical about

the reliability o f this method, recently some companies have developed several

encryption techniques, using properties o f elliptic curve. A good example is as follows:

“February 16, 2004 - Certicom Corp. (TSX: CIC), a leading provider o f wireless security

solutions, has licensed its Elliptic Curve Cryptography (ECC) to Neopost, the leading

European and number two worldwide supplier of mailing solutions. Neopost is using the

Security Builder® Crypto™ toolkit to embed ECC-based security into its mailing

systems to create a secure, cost-effective way to generate Digital Postage Marks (DPMs)

that meet the stringent requirements o f the North American postal officials. In addition to

being the only technology providing digital signatures that meet the small footprint

requirements for DPMs, ECC enables Neopost’s systems to perform smaller signatures at

a faster speed than competing systems” [Certi04].

1.2 The methods of performance Improvement for ECC

As we know performance of elliptic curve cryptosystem is determined by computation

efficiency on point operations including point multiplication, point addition and doubling.

So the techniques for performance improvement of ECC focus on optimization on Point

Multiplication or Point addition/doubling in Serial and Serial-Parallel computation

architecture, respectively.

1.2.1 Methods of optimization on Point Multiplication

“Point Multiplication is a special case of the general problem of exponentiation in abelian

groups and it is related to the shortest addition chain problem for integers.” [BSS99]

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition: The shortest addition chain problem fo r integers is defined as follows:

“Let A: be a positive integer (the input), Start from the integer 1, and computing at each

step the sum of two previous results, what is the least number of steps required to reach

k T [BSS99].

Due to point multiplication’s central role in public key cryptography, efficient algorithms

for short addition chain have continued to receive much attention.

In this thesis, we will focus on the case o f ECC over finite field o f characteristic two.

Some general methods can be used to compute Point Multiplication. Typically, there are

several efficient algorithms stated by Blake and Serroussi [BSS99] as follows:

• Binary method

• m-ary method

• Sliding window method

• Signed m-ary Window method

Chapter 4 will describe the above method.

1.2.2 Methods of Optimization on point operation using mixed

coordinate systems

The computation of point addition and doubling in ECC includes field division arithmetic

operation. The ratio o f time taken for Inversion and Multiplication is the order o f 3~10

[BBS99], If their ratio is over 1:10, eliminating inversion operation is essentially required

in ECC. So the task is to find out a coordinate system representing point that uses the

least quantity of field multiplications in point addition and doubling for implementing an

inversion operation.

In general, the following coordinate systems are used in elliptic curve cryptosystem as

follows [CM098]:

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Affine coordinate

P(x, y) represent point over Elliptic curve

• Projective coordinate

P (x ,y)-> P (X , Y, Z)

x = X/Z; y = Y/Z;

• Jacobian coordinate

P(x, y) -> P(X, Y, Z)

x = X/Z2, >’ = Y/Z3;

• Modified Jacobian coordinate

P(x. y) —> P(X, Y, Z, aZ4)

x = X/Z2, y = Y/Z3

• Chudnovsky Jacobian coordinate

P(x,y) ^ P (X ,Y ,Z ,Z 2,Z 3)

x = X/Z2, y = Y/Z3;

Chapter 2 will give a further explanation about the coordinate systems used in elliptic

curve cryptosystems.

1.2.3 Optimization on Serial-Parallel computation of ECC

As discussed in Sectionl.2.2, we know that field inversion operation can be eliminated by

mixing various coordinate systems. If ECC operations are put in a sequence on the basis

of the time consumed for executing it on a computing node, field inversion will be the

first and field multiplication operation will be the second costliest operation. With

exploiting inherent parallel mechanism in point addition and doubling, there exist a way

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to speedup field multiplications with serial-parallel architecture as described by Adnan

and Mohammad [AM03].

1.3 Thesis Statement

Although Serial-Parallel computation o f ECC proposed by Adnan and Mohammad

[AM03], compared with serial ECC architecture on point operation, has an improvement

on performance, we found it is possible to achieve furthermore optimization.

After carefully analyzing dependency relation inside point operation, this thesis gives a

solution with optimal normal base over GF (2") on serial-parallel ECC architecture. Not

only theoretically is it proved to improve on performance, experimental results show that

it obtains considerable improvement over the system proposed by Adnan and Mohammad

[AM03] on serial-parallel ECC architecture over GF (2”).

1.4 Structure of thesis document

The thesis is organized as follows: Chapter 2 discusses Literature Review and Chapter 3

will give related works. Chapter 4 explains new proposed algorithms. Chapter 5 analyzes

the experimented data and Chapter 6 summarizes the thesis and points out future work.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 REVIEW OF THE LITERATURE
In this Chapter, an introduction to elliptic curve cryptography is given. The architecture

designed for elliptic curve cryptosystem with a digital serial multiplier is given.

2.1 Cryptographic Systems

In this Section, a brief review of RSA and the comparison between RSA and Elliptic

Curve Cryptosystem is described.

2.1.1 Elliptic Curve Discrete Logarithm Problem(ECDLP)

EC D IP is the discrete logarithm problem applied to elliptic curves over a finite held .

which is defined as follows.

Given. Q and l i find x for which

Q = [x]Y

where x e |l , . . . ,# T - l} and. 0 , Fare points on elliptic curve E(K), K is a finite Held.

So far , there is no known sub-exponential time algorithms to compute x given O and

V I’BSS99|. Although, the indcx-caleuius method is a sub-exponential time algorithm for

solving the discrete logarithm problem, it is not applicable to multiplicative groups in a

finite field |BSS99| such as the elliptic curve group. The most efficient algorithm, known

is the Pollard- p method [Pol75]. It is parallelized ami the expected running is

y[m /(2r) with r processors [OW99]. However, the running time .is still, exponential in n.

Therefore the methods lor computing ECDLP are much less efficient, than, those for

factoring or DLP . As a result, ECC provides shorter key sizes than, others public key

cryptosystems with the same security level.

2.1.2 Comparison between RSA and ECC based Public key system

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RSA is the most widely used public key cryptosystem. It was first proposed by Ron

Rivest, Adi Shamir and Leonard Adleman in 1977 [RSA78]. The algorithm mainly

depends on the difficulty o f working out the factorization of a large integer n, where n is

a product o f two prime numbers p and q, o f about the same size. If p and q are known, it

is relatively easy to calculate n =p*q. However it is intractable to compute p and q if n is

known. (This problem is called the problem of factorization o f n, where n is a very large

integer.)

Elliptic curve cryptography can be also used for public key cryptosystem . It offers secure

communication mechanism. The difference is that the strength o f RSA is based on the

integer factorization problem while that o f ECC is based on elliptic curve discrete

logarithm problem (ECDLP) [Odl84]. ECC has one obvious advantage over RSA in that

ECC always has a smaller key size than RSA with equivalent strength of security.

Strength of security is in terms of the time to break the cryptosystem. In other words,

ECC provides a more secure cryptosystem than RSA for the same key length. [Wi99]

2.2 Elliptic Curve Cryptography

Elliptic curves were proposed for cryptographic purposes by Koblitz [Ko87] and

Miller [Mi86] in 1985. The discrete logarithm problem over the group o f points on an

elliptic curve over finite field is a one-way function because there is no sub-exponential

attack known for solving this problem) W 199]. This makes elliptic curve more attractive

than other public key cryptosystem. The section gives an introduction to elliptic curves

cryptography. It is followed by a discussion of the curve addition and curve doubling

operations on elliptic curve over real numbers. Afterwards, elliptic curve over finite fields

as well as their operations are described.

2.2.1 Elliptic Curve over R2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This section introduces elliptic curve over real numbers. Elliptic curves E over the real

numbers (R2) are sets o f points in the form of (x,y), x ,y ,a A,a6 e R that satisfy the

equation

y 1 = x3 + a4x + a6 (2.3.1)

together with a special point O, called the point at infinity which is an identity element.

The variables x and y represent a point on elliptic curve and cover a two dimensional

(affine) coordinate plane R x R. Elliptic curve E over R 2 is said to be defined over R ,

denoted by E(R). Elliptic curve over real numbers can be used to form a group (E(R),+)

consisting o f the set of points (x, y) e R x R together with an addition operation + on

E(R)

Figure 2.1.1 shows a plot o f an elliptic curve over R.

*4

Figure 2.2.1 Plot of Elliptic Curve

Curve Addition and Doubling

The point addition (ESUM, also known as curve addition) operation + is defined on the

set E(R) o f points (x,y). By the rule of identity, the point at infinity O is the point that

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

added to any point on the elliptic curve, gives the same point. Therefore for

all P = (x , y) e E (R) ,

p + o = o + p = p

For each point P (x ,y) e E (R) , the square root of Equation 2.3.1 gives

So two v-coordinate values are given by each unique value o f x. The point (x,-y), denoted

- P e E{R) , is called the negative o f point P and specified as

Addition on E(R) is defined geometrically. Suppose there are two distinct points P and Q,

P,Q& E (R) . The law o f addition in the elliptic curve group is P+Q=R, R e E (R) . The

geometric relationship is shown in Figure 2.2.2.

In order to find the point R, first connect the points P and Q by a line L. By

simultaneously solving equations L and E, an equation of degree three is derived with

exactly three solutions. Therefore the line L is guaranteed to intersect the curve A on a

third point, say - R e E (R) . The point R can be obtained by negating the y-coordinate of

-R.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P + (- P) = (x, y) + (x - y) = O (2.3.2)

Figure 2.2.2 Addition of EC points

9

7-P

«X

Figure 2.2.3 Addition of points P and -P EC

In the case that the two points are P and -P Figure 2.2.3, the line connecting P and -P

intersects the elliptic curve at a third point which is the special point O lying on every

vertical line in the coordinates plane.

In an operation o f point addition, if points P ,Q e E (R) are added where P=Q, then the

tangent line to the elliptic curve at point P is taken instead (shown in Figure 2.2.4). For

this case, it is a point doubling (EDBL) operation where R=2P.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2.4 Doubling o f EC Point

The following formulae express the definition of point addition and doubling

mathematically

•P = C W i)

0 = (x2, y 2)
R = P + Q = (x3, y 3)

where P ,Q ,R e E (R) 5 and

x3 = 0 2 — x, —x 2

y 3 = 0(x l + x3) - y x if P * Q

y 2 - y i0

or

Xj ~Xy

3xy + a 4
0 = — i— if P = Q

2 y x

l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2 Elliptic Curve over finite fields

This section introduces elliptic curve over finite fields, the prime fields (Fp) and the

binary finite fields (Fr).

2.2.2.1 Elliptic Curve over Fp with p > 3

A prime field Fp is generated by using a large prime p [LN94]. The operations o f elliptic

curve over Fp is similar to E(R). Instead o f calculations on real numbers, the calculations

modulo a large prime are taken. Therefore an elliptic curve E is defined over Fp , denoted

by E(Fp), if x ,y ,a A,a6 e Fp and 4a\ +21 a] + 0 satisfying the equation

y 2 = x 3 + aAx + a6

Points on this curve form a group. Therefore the elliptic curve group (E(Fp),+) is set of

points (x,y) (for x ,y e F p) and an operation + (addition) which satisfies the axioms in

Section 2.2.2.

The order o f a point A on E (F) is the smallest positive integer r such that

A + A + + A = 0i j

r

The order o f the curve is the number o f points of E(Fp) , denoted by #E (F p) . By

Hasse's theorem [Kob87a] [Men93], #E(Fp) = p + 1 - t , where \t\ < 2-Jp .

2.2.2.2 Elliptic Curve over Fr

A non-supersingular [AMS95] elliptic curves E defined over a finite field

Fr (characteristic = 2), denoted by E(Fr) , is the set of solutions, (x,y) for x ,y e Fr , to

the simplified forms of the Weierstrass equation

y 2 + arxy + a3y = x3 + a 2x 2 + aAx + a6 (2.3.3)

where al,a 2,a i ,aA,a 6 e Fr , namely

y 2 +xy = x 3 + a2x 2 + a6 (2.3.4)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where a6 ^ 0 and x ,y ,a 2,a 6 e Fy . Again, an identity element (point o f infinity)#, is

included in both curve. Elliptic curve E over Fy also forms a group (E(Fr),+) that

satisfies the axioms in Section 2.2.2.

The curves o f Equation 2.3.4 are called non-supersingular curves and are suitable for

cryptographic applications [BSS99]. From a hardware implementation perspective, ECs

over Fr are thought to be very practical. The advantages o f using ECC are

• Owing to ECC offering the highest security per bit o f any known public key

cryptosystem, therefore a smaller memory can be used

• ECC hardware implementations use less transistors, as an example, a VLSI

implementation of a 155-bit ECC processor has been reported which uses only

11,000 transistors [AMV93], compared with an equivalent strength 512-bit RSA

processor which used 50,000 transistors [PID92].

2.2.2.3 Point Operations of Elliptic Curves over Fr

A non-supersingular [AMS95] elliptic curve E over Fy , E (F „) was selected for the

implementation of elliptic curve cryptosystem. E (F „) is the set o f all solutions to the

Equation 2.3.4 with coordinates in the algebraic closure o f E [Men93], where

a2,a6 e F „ a n d a6 ^ 0 . Such an elliptic curve is a finite Abelian group [Men93]. The

number o f points in this group is denoted by #E (F2„). The ECC can be implemented by

affine coordinates or by other coordinate system. For different coordinates systems, the

computation of the curve operations are also different. In Chapter 3, other coordinate

systems are specified.

Elliptic Curve Operations in Affine Coordinates

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this section, the elliptic curve cryptosystems that will be used are based on the discrete

logarithm problem over E (F „) and the basic computation which must be made is curve

multiplication (Point multiplicaiton). Curve multiplication is expressed as a sequence of

point additions and point doublings. Similar to EC over real numbers, point addition and

point doubling are defined geometrically. It is hard to represent an elliptic curve over a

finite field graphically, however, the method o f finding the point of addition and doubling

are the same as shown at Section 2.3.1.

Assume a non-supersingular elliptic curve E over F2„ given in affine coordinates and P,

Q are two points on E(F2„) . Let P = (x1,y 1) , Q = (x2, y 2) , then negative o f P is

- P = (x1, y l + x 1) e E (F ln)

P + Q = R = (x3, y 3) e E (F 2„).

If P * Q

0 = y±±y±_
x 1 + x2

From [SOOS95], if Q * - P then

x 3 — 0 + 0 + Xj + x 2 + o2

y 3 =(*! + x3)0 + x3 + y x

(2.3.5)

Otherwise if P = Q

0 = ^ + x,

x3 — 0 + 0 + a2

y 3 = x f + (6 + l)x3

(2.3.6)

Iin affine coordinates, point addition (ESUM) and point doubling (EDBL) require three

and two multiplications, respectively and one field inversion that is far more expensive

than field multiplication.)

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.2.4 Curve Multiplication

Multiplication (EMUL) is defined by repeated addition, i.e.

Q = cP

= P + P + ... + P

(2.3.8)

(2.3.9)

This can be computed by using Binary method algorithm that will be described in

Chapter 3.

Elliptic curv*
Multiplisat; ioa

<®MOM

A d d a tico
(SSOKJ

Field Squaring Fi#ld
Jftslit iplieat iso

Sllipcic cum
S O U M i.T f

fEBESJj)

Figure 2.2.5 The hierarchy of elliptic curve operation

The hierarchy of elliptic curve operation is shown in Figure 2.2.5. Curve multiplication

is computed via point additions (ESUM) and doubling (EDBL) which are in turn

computed from field operations.

Summary

In this chapter, the fundemental theory for understanding elliptic curve cryptography is

given. The introduction to elliptic curves over real numbers and finite fields was

presented. The basic operations, point addition and point doubling of elliptic curve were

also described in details. Afterwards, elliptic curve discrete logarithm problem is

presented. It specially empasizes that there is no known sub-exponential time algorithm

to solve ECDLP.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 The Related Work

Software Implementations of elliptic curve are presented in this chapter. Point Operations

o f elliptic curve cryptosystem under different coordinate are introduced. Algorithms on

Serial and Serial-Parallel will be given, respectively. Afterwards, cost analysis under

different coordinate systems is followed next.

3.1 Introduction

In general, the implementations of efficient elliptic curve cryptosystem are focused on the

optimization o f the algorithms for point (Curve) multiplication and point

doubling/addition. In this Chapter, both aspects will be discussed in details.

3.2 Point Multiplication (Curve Multiplication)

From algebra point o f view, Point Multiplication in elliptic curves is a special case o f the

general problem of exponentiation in abelian groups. Its solutions are techniques

available from all the techniques for the general problem and shortest addition chain

problem for integers. The idea of the shortest addition chain is as follows:

“Let A: be a positive integer (the input). Start from the integer 1, and computing at each

step the sum o f two previous results, what is the least number of steps required to reach

A” [BSS99],

To find efficient algorithms for group exponentiation, a lot o f efforts have been made by

researchers due to point multiplication’s central role in public key cryptography.

To obtain faster computation, certain idiosyncrasies o f the elliptic curve version of the

problem can be considered as follows:

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• “Elliptic curve subtraction has virtually the same cost as addition, so the search

space is expanded to include addition-subtraction chains and signed

representations” [BSS99],

• “In tuning-up algorithm, the relative complexities of general point addition and

point doubling have to be considered. This relation depends on the coordinate

system used and on the relative complexities o f field inversion and

multiplication” [BSS99]

• “For certain families of elliptic curves, specific shortcuts are available that can

significantly reduce the computational cost o f point multiplication” [BSS99],

To make analysis simple on computation, we will only consider the case o f finite fields of

characteristic two in this thesis. Some typical efficient methods for point multiplication

are given in the following sections.

3.2.1 The Binary method

Algorithm of Binary method is described in Figure 3.2.1. In the Algorithm 3.2.1, it

relies on the binary expansion of k. It requires / -1 point doublings and W-1 point

additions (Operations involving infinite point O are not counted), where / is the length

and W the weight (number o f ones) o f the binary expansion o f &.[BSS99].

Algorithm 3.2.1 Point Multiplication: Binary method

INPUT: A point P, an /-bit integer k = kj2 ,kj e {0,1}

OUTPUT: Q = [k] P.

1. O.

2. Fory = l-l to 0 by -1 do:

3- Q <- [2] Q,

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. if kj = 1 then Q <— Q + P.

5. Return Q

Figure 3.2.1 Binary Method Algorithm

3.2.2 The m-ary method

In m-ary method, k is represented using m-ary expansion, where m = 2r for some integer

r > 1. Binary method is a special case in case o f r = 1. The m-ary method is described in

Figure 3.2.2 as follows:

• Algorithm 3.2.2: Point Multiplication: m-ary method

INPUT: A point P, an integer k = kjtri ,k j {0, 1, ... , m-1}

OUTPUT: Q = [it] P.

Pre-computation.

1. P i <- P.

2. For / = 2 to m-1 do P, <— P,.i + P. (We have P, =[/]P)

3. O.

Main loop.

4. F o r/ = d-\ to 0 by -1 do:

5. Q <— [m] Q. (This requires r doubling)

6 . Q <- Q + p kj.

7. Return Q.

Figure 3.2.2 Point Multiplication m-ary Method

The algorithm is easily verified, following Honer’s rule [Knu81]:

[m] (...[m]([m]([^ i]P)+ M P) + •••) + [*o]P = [k\P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From Algorithm 3.2.2, the number o f doubling in the main loop of the m -ary methods is

(d-l)r (the first iteration is not counted, as it starts with Q = O). Since d= \ l ! r J, where I

is the length o f the binary representation of k, the number o f doubling in the m-ary

method may be up to r-1 less than the l-l requires by the binary methods[BSS99].

3.2.3 Modified m-ary method

• Algorithm 3.2.3: Point Multiplication: Modified m-ary method

INPUT: A point P, an integer k = kjrri, kj e {0, 1, ... , m-1}

OUTPUT: Q = [k] P.

Pre-computation

1.Pi < ^ P ,P 2 <- [2\P

2 . For / - 2 to (m-2)12 do P2, n <— P2l-y + P2-

3 .Q < - O.

Main loop

4. Forj = d-1 to 0 by -1 do:

5. If k j f 0 then do:

6 . Let Sj, hj be such that k - - 2 s1 h j , hj odd.

7. [2r^]Q.

8- Q <— Q + p hj ■

9. Else sj <— r

10- Q = [2 Sj]Q.

11. Return Q.

In Algorithm 3.2.3, one point doubling and 2M-1 point addition in the pre-computation

phase are required, and at most n - 1 point doublings and <i-l point addition are required in

the main loop [BSS99].

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.4 Window methods

The m-ary method may be regarded as a special case o f the window method, where bits
of the multiplier k are processed in blocks of (windows) length r. The algorithm of
Window method is as follows.

• Algorithm 3.2.4 Point Multiplication: Sliding Window Method

INPUT: A point P, an /-bit integer k = ^ J 0 kj2! ,kj e {0,1}

OUTPUT: Q = [Jfc] P.

Pre-computation:

1. Pi < -P ,P 2 < -[2]P

2. For /= 1 to 2r~l do P2i+i <- P iu + P2-

3. ; <- l-l , Q <- O.

Main loop

4. W h ile j> 0 d o :

5. If kj = 0 then Q <- [2] Q ,j <-j -1;

6 . Else do:

7. Let t be the least integer such that

8 . j - 1 + 1 < r and kt = 1 ,

9. hj <r~(kjkj.i...kt)2,

10. Q ^ [T t+1]Q+ Phj

1 1 . j <— t - l .

12. Return Q.

Figure 3.2.3 Point Multiplication of Window Method

Upon the analysis [BSS99], the benefit using slide window can be given in that there is

an effect equivalent to using fixed windows, one bit larger, without increasing the pre-

computation cost. The total number o f windows processed (and consequently, the number

of general point additions in the main loop) behaves like l(r + 1) in comparison to l/r for

the m-ary method. This is proven in [LH94].

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.5 Signed m-ary sliding window method

The method that combined m-ary and signed methods is described in this section. In this

method, a non-redundant signed m-ary representation is used, for example, digit set B =

{-2m +1, ... , -1, 0, 1,..., 2'"1} with windows of size up to r. The positive multiplier k is

decomposed as follows:

k = Y ubiT ' , b l e B \{ 0 } ,e , e Z > 0 ,
;=o

where ei+l - e, > r , Q < i < d - 2 .

k with the binary representation can be decomposed as Algorithm 3.2.5a.

Algorithm 3.2.5a Signed m-ary Window Decomposition

INPUT: An integer k = k j2 J, kj e {0,1},k t = 0.

OUTPUT: A sequence of pairs {(bl,el) } ^

1 . d <—0 , 7 ^— 0 .

2 . while j < I do:

3. If kj- 0 theny <—_/ +1.

4. Else do:

5. t <- min {l , j + r -1}, hd <-(ktkt.i...kj)2.

6 . If ^ > 2 M thendo:

7. bd <r-hd — 2r,

8 . increment the number (AA/.i.. .^+1) 2 by 1 .

9. Else bd <— hd-

1 0 . cd ^— j, d ^— d 1 ,j ^— t+ 1 .

1 1 . return the sequence (bo,e0), (bi,ei), ..., (bd-u £d-1)

After decomposing the k using Algorithm3.2.5a, the Signed m-ary Window method may

be implemented as follows:

Algorithm 3.2.5b Signed m-ary Window method

2 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INPUT: A point P, and {(b, , e,)}f=0' such thatk = r ‘•

OUTPUT: g = [fc]P

Pre-computation

1. P i < - P , P 2 <- [2]P.

2. For / = 1 to 2r~2- 1 do P21-1 + Pi-

3-

Main loop

4. For i = d-2 to 0 by -1 do:

5. g < - [2 ^ - e‘]Q.

6 . If bj > 0 then Q <r-Q + Pb ,

7. Else Q < -Q - P_bi

8 . g < - [2 e"]g

9. Return g .

Figure 3.2.4 Signed m-ary Window Method

3.2.6 Cost Analysis

Table 3.2.6.1 lists a more detailed analysis of the cost o f computing [k]P in terms o f field

arithmetic operations. As usual, M and I indicate field multiplication and field inversion

respectively. The result shows that the signed m -ary window method is superior to the

unsigned methods.

Table 3.2.6.1 Cost of point multiplication from [BSS99]

Curve

Total

Cost

Methods Coordinate r ops M I I=2M 7=10M

Binary affine n/a 151 302 151 755 1812

Modified m -ary affine 4 128 256 128 640 1536

sliding w indows affine 4 124 248 124 620 1488

signed m -ary affine 5 122 244 122 610 1464

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It is also shown when the ratio I :M is relatively high over 1:10, total Cost exceeds two

times than in I:M = 1:3 As a consequence, in case o f I :M over 10, field inversion operation

should be highly taken into account when implementing elliptic curve cryptosystem.

3.3 Field Inversion and Multiplication

The Algorithms of point multiplication in elliptic curve cryptosystem are analyzed in

section 3.2. It is found that when the ratio I /M is less than 0.1, the cost o f field inversion

in the point addition and doubling becomes significant.

To eliminate field inversion, other coordinate systems are considered to use in point

operations o f elliptic curve cryptosystem. In other word, some mixed coordinate systems

are intended to use. Generally speaking, several coordinate systems besides affine

coordinate system like Projective, Jacobian and Chudnovsky Jacobian coordinate are

adopted in elliptic curve cryptosystem over GF(2n). They will be given in details in the

following sections.

3.3.1 The formulae in Affine Coordinate System

This section introduces point operations o f elliptic curve cryptosystem using affine

coordinate over GF(2n). Affine coordinate is most easy to use and understand. Point

representation is as P(x,y). The procedure of point operations in elliptic curve

cryptosystem is as follows [AMR+02].

A nonsingular elliptic curve E over GF(2n) is givers by:

y 2+ xy = x3 + ci2X + 0 6 (3.1)

where a2, e GF(2"), * 0.

• Point Addition formula in affine coordinate

Let P = (xi, y\) and Q = (X2,yi) be points on the elliptic curve E. Then. P + Q = (xi, y 1)

+ {X2,yi) = R(x3, y3), where P f - Q

2 = (yi + y 2)/(xi+x2)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X3 = X + X + X i + X2 + 0-2

>>3 = X (X 1+ X 3) + x 3 + y {

(3 .2)

It requires 1 / + 2M operations for point addition in affine coordinate.

• Point Doubling formula in affine coordinate

The addition o f a point to itself (Doubling a point) on the elliptic curve is computed

as show below:

It requires 1 / + 3M operations for point doubling in affine coordinate.

3.3.2 The Formulae in Projective Coordinate System

A non-supersingular curve E(Fr) can be equivalently viewed as the set of all points

E '(F „) in the projective plane P 2 (Fr) which satisfy [Men93]

By using projective coordinates, the inversion operation which is needed in Point

addition and Point Doubling operating using affine coordinates can be eliminated and it

is covered in the following sections.

3.3.2.1 Conversion Between Affine and Projective Coordinate Systems

Provided that for any point (a,b) e E(Fr) in affine coordinates can be viewed as a 3-

tuple (x , y , 2) e E '(F) in projective coordinates with x = a, y = b and z = 1. Moreover, a

point (tx,ty,tz) in projective coordinates with t * 0 , is regarded as the same point as

(x ,y ,z). Therefore the conversion methods between affine and projective coordinates are

given as follows:

2P (xi, yi) = if(x3 , yi)\ where P = Q;

X = xi + y\/x\

x3 = 22 + X + # 2

T3 = xi2 + (X,+l)x3

(3.3)

y 2z + xyz = x 3 + a 2 x 2 z 2 + a6z (3.4)

M (a,b) = M ’(a,b, 1)

N'(p,q,r) = N\^A,l) = N(-̂A)
r r r r

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2.2 Curve Operations in the Projective Coordinate System

From procedure point of view, the method of formulating the equations o f addition and

doubling in projective coordinates is the same as for affine. In fact, conversion is taken

on each projective point and then applied to Equation 3.2 and Equation 3.3.

Let P'= (x{ : y l : z x) e E'(Fr),Q'= (x2 : y 2 :1) e E'(Fr) and F i t Q where F ,Q are in

projective coordinates. Since P '= (x, /z , '■ y j z { : 1), we can apply Equation 3.2 to point

P (x J z l , y l / z r) and Q(x2 , y 2) for E(Fr) in affine coordinates to find

F + Q '= R '(x 3 : y 3 :1) . Then

, B 2 B A
x , — — — -I--------- 1-------1- Cl-,,

(3.5)
B ,X\ y,

y 3 - —(— + x3) + x3 + —
A z, z x

where A = (x2z l +x ,) and B = (y 2z x +_y,) [Men93]. In order to eliminate the inversion

operations, the denominators of the expressions for x3 and y 3 have to be eliminated. By

setting z3 = A sz x and from the property o f projective coordinates, x3 = x3 z 3 and

y 3 = y 3z 3 , if P + Q = (x3 : y 3 : z3) , then

x3 = AD

y 3 = CD + A 2 (Bxx + A yx), (3.6)

z 3 = 4̂3 Zj

where C=A+B and D = A 2 (A + a2z x) + z xB C .

Similarly, the formulae for 2P - (x3 : y 3 : z3) are,

x3 = AB,

y 3 = x xA + B (x2 + y xz x + A),

z 3 = A 3

where A = x,z, and B = a6z x + xx . The resulting point can be converted back to affine

coordinates by multiplying each coordinate by z3_1. Note that there is no inversion

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operation when calculating in projective coordinates. Therefore inversion can be

eliminated by performing curve multiplication in projective coordinates.

3.3.3 The formulae in Jacobian Coordinate System

Following the Jacobian coordinate [CM097][BSS99], point (xi, y i) are projected to

(J J . Z) , Z f 0 where x = XIZ2 andy = 7/Z3. Elliptic curve equation becomes:

Y2 +XYZ = J7 * + a2X 2Zz + aeZ6 (3.7)

• The formulae for point addition using Jacobian Coordinate as follows:

P = (X u Yu Zi); Q = (X2, Y2, Z2); P+Q = (X3, Y3, Z3) where P ^ Q o v - Q

X l = XyZ2

A. 2 = X2 Zi2

X 3 — X i + x 2

A, 4= Y\Z2

X 5 = Y 2Z l 3 (3.8)

X () = X 4 + A- 5

X 7 = Z\ X 3

X 8 = X (X2 + X iY2

Z3 = X jZ2

X 9 = X 6 + Z3

X 3 — ci2Z 2 + A.6A.9 + A.33

73 = X 9X 3 + X 8 X 2

It requires 20 M for point addition in Jacobian coordinate

• The formulae for point doubling of P using Jacobian Coordinate is given by:

P = (Xu YU Zi); P + P = (X3i Y3, Z 3)

Z3 =J7iZ ! 2

X 3 = (Xi + a i)4

A. = Z3 + X 2 + 7iZi (3.9)

73 = X \ Z 3 + XX3

It requires 10 M for point doubling in the Jacobian coordinate.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.4 The formulae in Chudnovsky Jacobian System

Upon the Chudnovsky-Jacobian coordinate described by DV Chudnovsky, GV

Chudnovsky[CC8 6] and Cohen[CM097], point (xi, yi) are projected to (X,Y,Z,Z2,Z3) , Z

± 0 where x = XIZ1 andy = 7/Z3. Elliptic curve equation is:

Y2 +XYZ = X* + a2X 2Z2 + a # (3.10)

• The formulas for point addition using Chudvosky-Jacobian coordinate is as

follows[BSS99]:

P = (Xu Yh Zu Zi2, Z i3); Q = (X2, Y2, Z2, Z22, Z23); P+Q = (X3, Y3, Z3, Z32, Z33) where

P ^ Q o r - Q

11 = X iZ 22

X 2 = X 2Z x2

A, 3 = A, i + A, 2

A. 4 = YiZ2

X 5 = 7 2Zi3

A,6= A-4+A,5 (3-11)

X 7= Z\ X 3

X 8 = X (X2 + A 7 Y2

Z3 = A 7 Z2

z 32 = z 32

z 33 = z 33

A. 9 = A, 6 + Z3

X3 = a2Z 2 + A,6A,9 + A,33

73 = X 9X3 + X 8 X 2

It requires 20 M for point addition in the Chudnovsky Jacobian coordinate.

• The formulae for point doubling of P using Chudnovsky-Jacobian coordinate

is given:

P = (Xu Yu Zu Z i2, Z i3); P + P = (X3, 7 3, Z3, Z32, Z33)

z 3 =X !Z , 2

z 32 = z 32

Z3 3 = Z3 3 (3.11)

X 3 = (Xi + a62)4

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X = Z3 + X l2 + YlZi

Y3 = X L% +)X 3

It requires 10 M for point doubling in the Chudnovsky Jacobian coordinate

We summarize several coordinate conversions in this section and give a comparison on

Cost o f Computation in Table 3.3.4.I.

Table 3.3.4.1 Cost Comparison by mixing different coordinates EC point operation

Doubling Addition

Affine coordinate 1 1+ 2 M 1 1 + 3 M

Projective Coordinate 13 M 1M

Jacobian coordinate 10 M 20 M

Chudnovsky Jacobian 10 M 20 M

In case o f the ratio I /M less than 0.1, o f all coordinate systems, cost in affine coordinate

system is highest. As a consequence, in that case, other coordinate systems except for

affine coordinate are recommended in the implementation. And the implementation using

Jacobian or Chudnovsky-Jacobian coordinate is a better choice.

3.4 Serial-Parallel computation in ECC

3.4.1 Serial-Parallel computation of ECC using Jacobian Coordinate

System (J-P-ECC)

The costs o f point addition and doubling, for elimination of inversion are discussed in

section 3.3. The computation uses only a digital serial multiplier. The computation using

Jacobian and Chudnovsky coordinate systems are also described in Section 3.3. By

exploring the inherent parallelism that exists in point addition and doubling o f elliptic

curve E over GF(2"), the architecture using 3 digital serial-parallel multipliers in elliptic

curve cryptosystem has been proposed by Adnan [AM03]. The architecture makes point

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addition and doubling faster. Efficiency over the algorithms in section 3.3 is significantly

improved. The detail of serial-parallel computation on point addition and doubling in

elliptic curve cryptosystem is given next.

The algorithm describes computation o f point addition and doubling using Jacobian

coordinate system (J-P-ECC) as given in section 3.3.4

In this algorithm, field addition in point operation is exclusive-OR, which is much faster

than field multiplication and inversion. Due to field inversion being eliminated by mixing

coordinate system, field Multiplications becomes the costliest operations in point

operation. Finding least field multiplication in ECC becomes important.

Its principle is in that three field multiplications are paralleled to execute using 3 digital

serial parallel multipliers within an instruction cycle. Computation cost is reduced to 1M

in point addition and 6 M in point doubling. The flow charts are given in Figure 3.4.1

and Figure 3.4.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

bZ

Xi + bZY 1Z 1+X 1 +Z3

x+.y

x ® y

Figure 3.4.1 Data flow graph of point doubling with J-P-ECC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4.2 Data flow graph for adding two points with J-P-ECC

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cost Analysis

In this section, J-P-ECC is described in detail. Comparison between Serial and Serial-

parallel computation is given in Table 3.4.1.1. Although serial-parallel computation may

occupy more space in hardware, the efficiency is increased quite noticeably. From

efficiency point o f view, serial parallel computation used in ECC is worth doing.

Table 3.4.1.1 Cost comparison on curve operation between Serial and Serial-parallel computation

Cost Comparison Doubling Addition

Affine coordinate 1 / + 2 M 1 1 + 3 M

Projective Coordinate 13M 7M

Jacobian coordinate 10 M 20 M

Chudnovsky Jacobian 10 M 20 M

Serial-Parallel EC with

Jacobian coordinate system

6 M 1M

Summary

This chapter gives some solutions for implementing efficient elliptic curve cryptosystems

including the aspect of Point Multiplication and Point Addition/Doubling. The former

focuses on the techniques for the mathematics problem “Shortest add chain”. The latter

uses field multiplication rather than inversion for cost reducing. It adopts the methods by

mixing other coordinates with affine (2-Dimension) coordinate to eliminate field

inversion. At last, upon further cost reducing, the algorithms J-P-ECC using serial-

parallel computation is introduced. Comparing with conventional sequence computation

in Table 3.4.1.1, this algorithm can reduce over half of field multiplication operations

than in conventional ECC. It is proven that serial-parallel computation o f ECC is an

efficient way o f software implementation o f elliptic curve cryptosystem.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 The optimized Serial-parallel computation of ECC

over GF(2n)

Software implementation of elliptic curve cryptosystem over GF(2n) has been introduced

in Chapter 3. For reducing computational cost, field inversion is eliminated by mixing

coordinate systems, as shown in Section 3.2, 3.3 and 3.4. Table 3.4.1.1 shows that serial-

parallel computation by using three digital serial parallel multipliers is superior to the

conventional approaches described in section 3.2, 3.3, which use only serial computation

using a digital serial multiplier in elliptic curve cryptosystem. This serial parallel system

[AM03] is called J-P-ECC.

After analyzing the inherent parallel mechanism of section 3.3, we propose two new

algorithms, P-P-ECC (described in section 4.1) and CC-P-ECC (described in section 4.2).

O f these three algorithms, CC-P-ECC, that uses Chudnovsky Jacobian coordinate in ECC

over GF(2"), is found to have a better computational efficiency than J-P-ECC and P-P-

ECC.

4.1 First iteration of Serial-Parallel computation of ECC using

Projective Coordinate (P-P-ECC) System

Elliptic curve E over GF(2n) using projective coordinate is represented in equation 3.4.

The formula o f point addition and doubling using projective coordinate is given from

equation 3.5, 3.6.

To make the operation faster, serial-parallel computation is used in point addition and

doubling of elliptic curve cryptosystem with projective coordinate system (P-P-ECC).

The flow chart of its point addition and doubling are represented in Figure 4.1.1 and

Figure 4.1.2.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BCBx

Bxx + A yx

A 2 (A + a2zx) + z xBC = D

CD + A 2 (Bxx + Ay 2)

Figure 4.1.1 Flow Chart of Point Addition with P-P-ECC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1.2 Flow Chart of Point Doubling with P-P-ECC

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From Figure 4.1.1, 4.1.2, it is concluded that P-P ECC requires 6M and 4M in point

addition and doubling, respectively.

4.2 Motivation of CC-P-ECC

With carefully analysis of Point addition and Doubling in Figure 3.4.1 and Figure 3.4.2,

some problems are noticed in that parallel multiplier without full load over GF (2")

reaches 60% in point doubling and 14% in point addition. It is undoubtedly a resource

waste in serial-parallel computation. However, in Section 3.3.3, some operations like

Z 22 ,Z,2are required to be computed in advance. If digital serial parallel multipliers are

available, it may certainly speed up elliptic curve cryptosystem. Our goal is to choose an

optimized Serial-Parallel Computation o f ECC (CC-P-ECC) to make computation of

ECC more efficient. O f the coordinate systems described in Section 3.2, besides

Projective coordinate, Chudnovsky Jacobian coordinate matches our requirement of

Serial-Parallel Computation of ECC. Moreover, it has better performance than P-P-ECC.

Point doubling and addition o f ECC over GF{2n) for CC-P-ECC' is given in the

following sections.

4.3 Introduction to CC-P-ECC Algorithm

CC-P-ECC is used to compute point doubling and addition o f elliptic curve cryptosystem

over GF(2n). It is qualified on the requirement o f efficient ECC as follows:

• In case o f the ratio of I :M over 1:10, field inversion is considered as the most

costly computation. To eliminate field inversion, Chudnovsky coordinate system

can also be used to represent point o f elliptic curve in point addition and doubling.

• Moreover, CC-P-ECC may be considered for reducing the number o f field

multiplications.

Architecture o f CC-P-ECC is the same as in Figure 3.4.1. It can execute three field

multiplications in parallel for a multiplication instruction. The operations are under

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimal normal basis. Exclusive-OR is used to compute field addition operation, which is

much faster than field multiplication. Therefore performance o f CC-P-ECC is mainly

determined by field multiplication. By reducing rounds of 3-field multiplications, the

efficiency o f elliptic curve cryptosystem must prove.

In section 3.4, J-P-ECC is introduced [AM03]. It uses serial-parallel architecture o f

elliptic curve cryptosystem. In case o f parallelizing computation of field multiplications,

different coordinate systems have different performance. On comparing Projective,

Jacobian and Chudnovsky Jacobian coordinate systems, this thesis proves that CC-P-

ECC has much better performance than J-P-ECC and P-P-ECC. Moreover, as o f today, it

is the most efficient algorithm known for ECC.

4.3.1 Requirement of Software Implementation in CC-P-ECC

4.3.1.1 Mixed Coordinate System

P-P-ECC and J-P-ECC have been introduced in Chapter 3, In CC-P-ECC, affine and

Chudnovsky Jacobian coordinate system is mixed in the computation o f point

computation o f ECC. Point P is represented as P (X , Y, Z, Z 2, Z 3) .

4.3.1.2 The Algorithm for Point Multiplication

To simplify software implementation o f elliptic curve cryptosystem, the evaluation of

ECC algorithm is regarded on binary method o f point multiplication described in section

3.1.1.

4.3.1.3 Optimal Normal Basis

Computation o f ECC is over binary finite field. There are two kind o f number

presentation recommended by IEEE: Polynomial Normal basis and Optimal Normal

Basis [IEEE 1363]. In this theisis, we adopt Optimal Normal Base over GF(2n).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W hy use O ptim al N orm al Basis?

Optimal normal basis (ONB) is a special case of normal basis. Only AND, XOR and

ROTATE operations are required in the normal basis. So it is easier to implementat the

operations in hardware or software. Moreover, all of these operations are very fast on a

compute node. Hence this thesis uses optimal normal basis as the choice for imlementing

elliptic curve cryptosystem [Ros98a. pp-76].

W hat is Norm al Basis?

Assume that /? is an element in the field jF , the polynomial representation is

P = aoXn + ... + a\x +ao

where n<m.

A normal basis can be formed using the set

{ P P\ ..., P p\ P p , P)

If a finite field o f characteristic 2 (i.e. p=2) is chosen, every element A in the field F-i

can be uniquely represented in the form

;=o

where a, € Fj and. p e F r

There are several operations among the elements over F r , which are Addition, Squaring,

multiplication and inversion[IEEE1363], They will be discussed next.

A ddition

Given that A, B are elements in the field. F

n- 1

1= 0

rt- 1

B = ' £ b JP 2‘
j =0

Addition is defined by

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f n -1
A + B =

V < = o

A (n- 1 ^

/ V>=0
(4.2.1)

Equation 4.2.1 can be rewritten as
72-1

A + B = ^ ai +bM V/=o

where au bj are added modulo 2. Since there is no carry in finite field arithmetic, the

operation o f addition can be implemented as a bit-wise exclusive-OR (XOR) operation.

Squaring

Given that e lem ents in finite field GF(T), then,4 to the power 2 is as follows:

(n-\ \ 2
a 2 =

; = 0 ;

= ! « > ') '
7=0

n~ 1 .

- Z * ^ 2
(=0

jit *\0 m
Regarding the rules o f finite field , there exists an equation /? = f t . So the squaring

equation above can be rewritten as :

A 2 =a,_x/ i + ' f i alf " (4.2.2)
1=0

In equation 4.2.2, there is a conclusion that squaring an element over Fr involves

shifting each coefficient up to the next term and rotating the most significant coefficient

down to the least significant position that is, rotate left operation.

Multiplication

Multiplication over field Fr is more complex than Addition and Doubling . The detail is

described as follows:

Given that A and B in finite field Fr

7=0

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n-1

B =

and

/=0

77-1 77-1 77-1

C = A x B = X X a,bt f f = Y , c , f
7—0 y'=0 7=0

therefore
77-1

p r p v (4.2.3)
k =0

where Xyk e (0, 1}. Then multiplication can be written to be
77-1 77-1

c*= Z Z V flA (4-2-4)/=o y=o

where 0 < k < n-l .B y raising both sides of Equation 4.2.3 to the power o f 2~l, then

f =PIJP1H = 0-2-5)
Jt=0 k = 0

■jO
Equating the coefficients of /? in the above equation, yields

Xyi = a i_1 j_l 0 for all 0 < i,j,l < n -1 (4.2.6)

Therefore Equation 4.2.4 can be written as

<*= E X W * . ô = I Z W m (4 -2-7)
(=0 /= 0 1=0 7=0

Regarding the description of optimal normal basis [MOVW89], ONB is one with the

minimum number o f nonzero terms in Equation 4.2.4, or equivalently, the minimum

possible number of nonzero terms in Xy for a specific k.

There are two types o f optimal normal bases [MOVW89], Type I and Type II.

The definition of Type I:

An optimal normal basis exists in Fr if

1. «+l is a prime

2. 2 is a primitive in Fn+l

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rule 2 means 2 raised to any power in the range 0 to n modulo n+ 1 must result in a

unique integer in the range 1 to n.

for a Type IIONB, there exsits an optimal normal basis in Fr if

1 2/7+1 is prime, and either

2a. 2 is a primitive in F2n+l, or

2b. 2n +1 = 3(mod4)and 2 generates the quadratic residues inF 2n+1.

Like Type I, rule 2a means that every 2k modulo (2/7+1) lies in the range 1 to 2n (0< k<

2n-l). Therefore 2 is called the generator for all the possible locations in the 2/7+1 field.

Rule 2b means that even if 2k mod (2n + 1) does not generate every element in the range

1 to 2n, however, half o f the points in the field formed by rule 2a can be hit. It is because

V2*~ mod(2n +1) can be taken. The points generated by rule 2b are in the form o f perfect

squares [Rei87][Ros98a].

Inversion

Inversion of a is represented by a -1 and is defined as below.

aa~l = lm od/i

where a and n are elements in field Fr . The algorithm used for inversion is derived from

Fermat's Little Theorem

a - ' = a 2"-2 ={ar ~1- 1)2 (4.2.11)

for all a ^ Oin Fr . The method used was proposed by Itoh and Tsujii [IT88], based on

the following decomposition which minimizes the number of multiplications (squarings

are much cheaper in a normal basis). If n is odd, then

(n~l ^ ̂ n-1 ^
2 n~x - 1 = 2 2 - 1 2 T +1

v yV /

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and can be computed using one field multiplication provided a 2 2 _1 is given. The cost of

squaring is ignored because it is insignificant compared with multiplication. On the other

hand, if n is even, then

2"”1 -1 = 2 (2 " ~ 2 - l) + l = 2

therefore

^ n-2 V n -2 >

2 2 - 1 2 2 +1 +1

2| 2 2 -1

a = a
2 2 +1 +1

n - 2

2 2 -1 •which takes two field multiplications if a is given.

4.3.2 The Equation of ECC over GF(2n) with Chudnovsky Jacobian

Coordinate System

As Chudnovsky Jacobian described in [CC86][CM097], point (xi, yi) is projected

to (X,Y,Z,Z2,Z3) , Z f 0 where x = XIZ2 and y = T/Z3. Elliptic curve equation is as

follows:

Y2 +XYZ = A 3 + a2X2Z2 + a(, t

Where a2, e Fq, q=2n , a$ ±0

4.3.3 Point addition and doubling using Chudnovsky Coordinate

System

• The formulae for point addition are as follows:

F = (X 1,F1,Z 1,Z 12,Z 13) ; Q = (X 2,Y2,Z 2, Z; , Z l) - P + Q = (X 3,Y3, Z 3, Z 2, Z 33)

where P ± Q or -Q

z, = x ,z 22

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The formulae for point doubling of P are given by:

P = (X l j r i ,Z 1,Z 12,Z 13); P + P = (X 3,Y3,Z 3, Z ; , Z 33)

z 3 = x . z 2

X 3 = (X 1+ a62)4

/L = z 3 + X f +YlZ l

Y3 = X 4Z3 + a x 3

Based on the formulas given above, CC-P-ECC algorithm, an attempt has been made

today more field multiplications in 3 digital serial parallel multipliers in every round. Not

only does it exploit hardware resource up to maximum, it also saves more rounds o f field

multiplication. The Flow Chart about point addition and doubling are given in Figure

4.3.1 and Figure 4.3.2, respectively.

In CC-P-ECC, Point Addition requires 5 round field multiplications and 4 in Point

Doubling. Compared with J-P-ECC in Figure 3.4.1 and Figure 3.4.2, CC-P-ECC

algorithm’s computation saves up to 20% and 28.6% on point doubling and addition,

respectively.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the analysis of CC-P-ECC, the advantages are summarized as follows:

• Performance improvement on point computation like Point Addition and

Doubling

• Three digital serial Parallel Multipliers are used in CC-P-ECC architecture

• No change in hardware architecture described in J-P-ECC

• Easier software Implementation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

x ® y

Figure 4.3.1 Data flow on Point Doubling with CC-P-ECC

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— hf. + z

Figure 4.3.2 Data flow on Point Addition with CC-P-ECC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 The application with CC-P-ECC: ECDSA

The description o f CC -P-ECC had been given in section 4.2. This section introduces one

important application using CC -P-ECC, ECDSA [IEEE 1363].

4.4.1 WHY USE ECDSA IN APPLICATION

Like DSA in public key cryptosystems, ECDSA is also required in some applications

using elliptic curve cryptosystem.

ECDSA purpose is to sign on a hashed message with someone’s private key to generate a

new hash message with a pair of string. Then this message is passed to the person who

requires it. The receiver can verify that the message has been signed by the sender.

4.4.2 ECDSA DESCRIPTION

As discussion above, ECDSA is an important application using Elliptic Curve in public

key cryptosystem [IEEE 1363].

ECDSA uses a random EC KEYPAIR, along with the signer’s private key, to create the

signature. In the phase o f verification, you use public key to decrypt the signature. If it

matches the hash values, it verifies the signature.

As elliptic curve described in section 2.3, let P be the base point with order n on curve E,

which satisfies equation 2.3.4. We call the signer’s private key s and the public key Q =

sP. L e t‘s take a random value k and random point R= kP. The message hash is e and has

been generated to be less than n. The first step in DSA is to take the x component o f R

modulo the order of the curve to get the first signature component:

c - x mod « (4.6.1)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second component is then computed as:

d = k l (e + sc) (4.6.2)

According to the IEEE [IEEE1363], the process o f verifying the signature from equation

(4.6.1) and (4.6.2) requires computation of three values after computing the hash o f the

message (called e'):

h = m odn
h j = e'hm odn (4.6.3)

h2 = chmodn

These values are used to compute a point on the public elliptic curve with the formula:

R '= hxP + h2Q (4.6.4)

If the x component o f equation (4.6.4) does not equal equation (4.6.1), the message is

assumed to be different from the original signed document. The reason is as follows:

The first equation in equation (4.6.3) can be rewritten with equation (4.6.2):

h = k(e + sc)~i . (4.6.5)

With this, the last two equations in equation (4.6.3) expand to:

k = e'k(e + sc)~1
(4.6.6)

h2 = ck(e + sc)

Putting the above fully expanded terms into equation (4.6.4) gives:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R'=e'k(e + sc) lP + sck(e + sc) lP (4.6.7)

where also substituted equation Q = sP .Clearly there Eire common terms, which reduce

down to:

R'= k(e'+sc)(e + sc)~lP (4.6.8)

The factors (e'-h5'c)(e + sc)~1 will erased only if the hash o f the original message, the

signer’s key, and the published signature are correct.

(c ,d) ,M

Insecure
Channel

R '(x ',y ') = hlP + h2Q
r '= r 1 m nrl n

h = d~l m od77

/?j = e /z mod 77

/z, = ch mod 77

5-signer’s private key
/ ’-base point order n over
Curve E
kG [1..n-1]- random value

e = H (M)
R (x ,y) = kP

c — c

Failure

v verified

Figure 4.4.1 Digital Signature with message digest in elliptic curve Cryptosystem

4.4.3 ECDSA IMPLEMENTATION

In Figure 4.4.1, Implementation o f ECDSA is composed of three components, ECC Key

Generation, Digital Signature and Message Verification. The three parts in detail are

given in the following section.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.3.1 ECC Key Generation

ECKGP is used to compute identity public key Q with specific private key s. Private key

is a random number that is modulo order n o f Base Point. Then it is multiplied by Base

Point to compute counterpart public key. Its flow chart is as Figure 4.4.2.

End

Start

Generate random key
(randkey)

R andkey modulas Base
point Order to get
remainder k, private key

k is multiply by Base
Point P ,kP = Q , public
key

Figure 4.4.2 Elliptic Curve Key Generation Subroutine

4.4.3.2 ECDSA Signature

ECDSA Signature is a function o f signing a hashed message with someone’s private key

to generate a new message with a pair of strings before sending it to the Destination. It

first hashes the given message. Then use signer’s private key and random point’s public

key to compute a pair of string. Finally, it passes the original message with generated pair

string to destination. The procedure is shown in Figure 4.4.3.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

END

START

Hash Message e = hash (M)

Send Message {M, (c,
d)} to destination

Select random value k k e [l..n-l]

Compute random point kP,
where P is base point

Compute point (c, d)
with signer’s private key

c = x mod n

d = k l {e + sc)

Figure 4.4.3 ECDSA signature subroutine

4.4.3.3 ECDSA Verification

After the message signed by specific private key is passed to the verifier, there requires

message check if the message is original. ECDSA verification is designed for this

particular mission. From the discussion in section 5.3.2, ECDSA verification subroutine

uses signer’s public key Q , hashed Message e’ and a pair o f string (c, d) passed from

“signer” to compute a string c’. If c is equal to c \ the message is sent from the correct

signer or not otherwise. The procedure is as follows:

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

START

e '= H (M)
Q = sP

h =-- d ' 1 mod n
h, = e h mod n
h 2 = ch mod n

R '(x ',y ') = hxP + h2Q

c'— x 'm odn

^END

N

r
Verification
failureVerification

Figure 4.4.4 ECDSA verification subroutine

4.4.3.4 ECDSA with CC-P-ECC

With introduction to Elliptic curve cryptosystem in Chapter 2, we know Point

Multiplication composed of Point Addition and Doubling plays an import role on security

and performance. In this thesis, because point multiplication with CC-P-ECC is used in

ECC key generation, signature and verification subroutine o f ECDSA, it undoubtedly can

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

make ECDAS to be improved on computational efficiency. For performance, Chapter 5

will give some experiments and results.

Summary

In this section, CC-P-ECC Algorithm over GF(2") is given in detail. The computational

costs for CC-P-ECC are less than those for J-P-ECC by 20% and 28.6% on Point

Doubling and Addition respectively. P-P-ECC saves 20% and 14.2% respectively as

compared to J-P-ECC. Thus CC-P-ECC is the best candidate for ECDSA. The

experiment results of ECDSA for CC-P-ECC and the other two parallel systems are

given in Chapter 5.

5 Experiments and Results

This section describes the experiments for testing the performance o f CC-ECC, P-ECC

and J-ECC. The measurement is done for the Key Generation, Digital Signature and

Message Verification processes. Besides cost comparison among Projective, Jacobian

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and Chudnovsky Jacobian coordinate system with a digital serial multiplier, it also

includes the measurements with multiple serial parallel multipliers for J F I (C . P P

5.1 Description o f the Experiment

In this section, a description of the experimental platform is given. The values o f the

selected elliptic curve parameters are also provided.

5.1.1 System Requirement

Hardware

We adopt Davinci Server, which is located in the school o f Computer Science of

University o f Windsor, as my test platform. The reason we use it is that it is suitable for

high performance computation. It has 12 CPUs and plenty of storage space for multiple

users to use simultaneously. The operating system is UNIX System,

Software

The operating System is Solaris 9 Unix system. Rosing Software Package [Ros98a] is

used to measure Digital Signature of elliptic curve cryptosystem. This software is

programmed with C Language. So all test subroutines are programmed with C Language.

We choose cc.exe as C compiler, which is included in the core package of Solaris UNIX.

5.1.2 Selection of Elliptic Curve and Parameters

Based on DIGITAL SIGNATURE STANDARD [FIPS1862] recommendation, Random

Curve and Koblitz Curve may both be adopted in Polynomial [IEEE 1363] basis and

Normal basis in a practical application. In my experiment, Koblitz curve with normal

B asis is chosen. The K oblitz Curve over Binary F ield 2” has the form:

y 2 + xy = x 3 + a2x 2 +1 (5.1)

where a2 = 0 or 1.

O f the Field Representation, optimal normal basis with Type I described in Chapter 4

(Page 38 - 40) is chosen in this experiment.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The parameter used in the experiment:

• Galois Field (2113)

• Coefficient « 2 = 1, «6= 1

• Base Point (Gt,Gv)

Gx : lf43c 6942bla4 9aaaac4a b572fdbf

Gv : 10145 c084d629 96208f8e 44d9f291

5.1.3 Simulation of Serial-Parallel computation of ECC

Simulation of Serial-Parallel Computation is proposed to execute 3 field multiplication

operations with 3 digital serial parallel multipliers once a time. Every field multiplication

is individually executed in a separated process. In our experiment, three field

multiplications can be executed in three separated processes created almost at the same

time.

In this thesis, three digital serial-parallel multipliers are used to parallelize field

multiplications in point addition and doubling o f ECC. In the UNIX environment, ECC

program employs 4 processes. One is to control the main function. The other three

processes are used to simulate 3 independent field multiplication operations.

5.2 M easurements
The measurements are divided into two groups. One group is tested in the conventional

elliptic curve cryptosystem, which has one digital serial multiplier in elliptic curve

system. The other are tested for serial-parallel computation under simulation

environment. Execution times of ECDSA including signature and verification are

measured. The measured subroutines include Key Generation, Signature and Verification.

5.2.1 Conventional ECC computation on various coordinate systems

ECDSA has already been introduced in Chapter 4. In this section, the tests are done with

different coordinate systems. Test parameters are specified in section 5.1.2. The

parameters used in the test are given again in every test.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Conventional ECDSA is measured with a digital serial multiplier in various coordinate
systems as follow.

5.2.1.1 Conventional ECDSA with Projective Coordinate System

This test is purposed to measure execution time of Key Generation, Signature and

Verification with point represented by Projective Coordinate System. The result is shown

in Test I. To measure more accurately, a number o f readings are taken. The average

value is calculated to represent the execution time.

Test I:
Kobli tz 113
a2 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f

a 6 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base point
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation time=0.340000 seconds using P ro jec t ive Coordinate
S ig n er ' s s e c re t key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers publ ic key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take time=0.340000 seconds using P ro jec t ive coordinate
f i r s t component of s igna tu re : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=0.690000 seconds using P ro jec t ive Coordinate
Message V e r i f ie s

Table 5.2.2.1 in the Appendix C shows the other readings. Average Value o f Key

Generation, Signature and Verification are 0.341, 0.3460 and 0.695 sec, respectively.

5.2.1.2 Conventional ECDSA with Jacobian Coordinate System

The following test is done with the Jacobian Coordinate System. The result is shown as

Test II.

Test II:

56

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Kobli tz 113
a2 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
a 6 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
random poin t
x : 7dl7 b7 423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base po in t
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation time=0.310000 seconds using Jacobian Coordinate
S ig n er ' s s ec re t key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take time=0.310000 seconds using Jacobian Coordinate
f i r s t component of s igna tu re : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=0.610000 seconds Jacobian Coordinate
Message V e r i f ie s

The average o f Key Generation, Signature and Verification are 0.3034, 0.3084, 0.6125

sec. (Table 5.2.2.2 in Appendix C)

5.2.1.3 Conventional ECDSA with Chudnovsky Coordinate System

The following data is measured in the Conventional ECDSA with the Chudnovsky

Jacobian Coordinate System.

Test III:
Kobli tz 113
a2 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
a 6 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base po in t
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Key Generation t ime=0.300000 seconds using Chudnovsky Coordinate
S ig n er ' s s ec re t key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take t ime=0.320000 seconds using Chudnovsky Coordinate
f i r s t component of s igna tu re : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature t ime=0.620000 seconds using Chudnovsky Coordinate
Message V e r i f i e s

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The average o f Key Generation, Signature and Verification are 0.3041, 0.3084, 0.6134

sec (Table 5.2.2.3 in Appendix C).

5.2.1.4 Performance Analysis
Table 5.2.1.1 Comparison on Conventional ECDSA using three coordinate systems

Time (Seconds) Key Generation Signature Verification
P-ECC 0.341 0.3460 0.695
J-EC C 0.3034 0.3084 0.6125
CC-ECC 0.3041 0.3084 0.6134

ECDSA using P-ECC, J-ECC and CC-ECC

- 0.8
©

” 0.6
®
E
H 0.4
o>
| 0.2
c3
* 0

■■
P-ECC

a Key Generation

■ Signature

□ Verification

IE ,

J-ECC

Coordinates

CC-ECC

Figure 5.2.1 Comparison of running time using P-ECC, J-ECC and CC-ECC

From Table 5.2.1.1 and Figure 5.2.1, comparing ECDSA the three coordinates o f elliptic

curve cryptosystem, Jacobian and Chudnovsky coordinate is almost the same and the

Projective is slower than Jacobian and Chudnovsky around 11%, 11%, 12% with Key

Generation, Message Signature and Message Verification, respectively. So Jacobian and

Chudnovsky Jacobian should be the better solution for implementing ECDSA using a

digital serial m ultiplier.

5.2.2 Serial-Parallel ECC computation on various coordinate system

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following section gives the measurement on ECDSA using simulation o f serial

parallel computation with projective, Jacobian and Chudnovsky coordinate system,

respectively.

5.2.2.1 Measurement of ECDSA with serial-parallel multiplier
simulator using Projective Coordinate System (P-P-ECC)

The measurement o f ECDSA using P-ECC is taken and the data is given in TEST IV and
Table 5.2.2.4 in Appendix C

TEST IV:
Kobli tz 113
a2 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
a 6 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
random poin t
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base poin t
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation t im e = l l .160000 seconds using P ro jec t ive Coordinate
S i gn e r ' s s ec re t key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take t im e = l l .120000 seconds using P ro jec t ive coordinate
f i r s t component of s igna tu re : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=21.930000 seconds using P ro jec t ive Coordinate
Message V e r i f ie s

The Average execution time in the ECDSA using P-P-ECC is 9.99, 9.97 and 19.74

seconds on Key Generation, Signature and Verification, respectively.

S.2.2.2 Measurement of ECDSA with serial-parallel multiplier
simulator using Jacobian Coordinate system (J-P-ECC)

ECDSA measurement using J-P-ECC is described in this section. Data about Key

Generation, Signature and Verification using J-P-ECC is shown in Test V and

Table5.2.2.5 in Appendix C.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TEST V:

Kobli tz 113
a2 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
a 6 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
random point
x : 7dl7 b7 423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base point
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation time=13.960000 seconds using Jacobian Coordinate
S ig n er ' s s e c re t key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take time=12.880000 seconds using Jacobian Coordinate
f i r s t component of s igna tu re : c0c2 421b5284 57235894 76f9862a
second component of s igna tu re : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=26.520000 seconds Jacobian Coordinate
Message V e r i f i e s

Average execution time in the ECDSA using J-P-ECC is 10.62, 10.57, 20.76 seconds on

Key Generation, Signature and Verification, respectively.

S.2.2.3 Measurement of ECDSA with serial-parallel multiplier
simulator using Chudnovsky Jacobian Coordinate System (CC-
ECC)

The following test is for the measurement of ECDSA with CC-P-ECC. The result is

shown in Table VI and Table S.2.2.6 in Appendix C.

TEST VI:
Kobli tz 113
a2 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
a 6 : l f f f f f f f f f f f f f f f f f f f f f f f f f f f f
random poin t
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac
Base point
x : l f43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291
Key Generation t ime=8.710000 seconds using Chudnovsky Coordinate

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S ig n e r ' s s ec re t key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers pub l ic key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559
Signature take t ime=9.080000 seconds using Chudnovsky Coordinate
f i r s t component of s igna tu re : c0c2 421b5284 57235894 76f9862a
second component of s igna ture : 8ca2 aldccee5 7cde9114 a74ff0a3
Verify Signature time=17.880000 seconds using Chudnovsky Coordinate
Message V e r i f i e s

In the measurement of ECDSA with CC-P-ECC, Average execution time are 8.73, 8.67

and 17.18 for Key Generation, Signature and Verification, respectively.

S.2.2.4 Comparison of Execution Time with simulation of Serial Parallel
Computation

In TEST IV, V, VI, Execution time o f ECDSA is measured using simulation o f Serial-

Parallel computation using different coordinate systems. The comparison on P-P-ECC,

J-P-ECC and CC-P-ECC are made in the Table 5.2.2.I. The result shows that ECDSA

with CC-P-ECC achieves best performance among the three algorithms. It is faster than

J-ECC by 17.8%, 17.8% and 17.2% on Key Generation, Signature and Verification. It is

faster than P-ECC by 12.6%, 13.0% and 13.0% as well on Key Generation, Signature and

Verification respectively.

Table 5.2.2.1 Running Time of ECDSA with P-P-ECC, J-P-ECC and CC-P-ECC

Coordinate
Type

Time of Key
Generation (Second)

Time of Signature
(Seconds)

Time of
Verification
(Seconds)

J-P-ECC 10.62 10.57 20.76
P-P-ECC 9.99 9.97 19.74
CC-P-ECC 8.73 8.67 17.18

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ECDSA using J-P-ECC, P-P-ECC, CC-P-ECC

■ Time of Signature

m Time of Key Generation
(Second)

o> 10 - c

1 51 i □ Time of Verification
(Seconds)

(Seconds)

J-P-ECC P-P-ECC CC-P-ECC

Coordinate

Figure 5.2.2 Comparison of ECDSA with P-P-ECC, J-P-ECC and CC-P-ECC

Summary

The experiments on ECDSA using a digital serial multiplier and Simulation o f Serial

Parallel computation using 3 digital serial multipliers are given in this Chapter. The

comparison in both conditions is made. For ECC with a serial multiplier, Jacobian and

Chudnovsky Coordinate gives almost same performance but both o f them are better than

Projective Coordinate System. In case of Serial-Parallel Computation, ECC with

Chudnovsky Jacobian coordinate had the best performance among the three algorithms.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

6 Conclusion and Future Work

As elliptic curve discrete logarithm problem (ECDSLP) makes elliptic curve

cryptosystem to be noticed as an important alternative in the public key cryptosystem

family. The Cryptosystems based on elliptic curve cryptography is going to be used

widely for the application in the future [Certi04]. As a consequence, the methods that

make its implementation on software or elliptic curve processors more practical and

efficient are o f importance. In this thesis, our goal is to find an efficient algorithm of

elliptic curve cryptography that can be implemented using digital serial parallel

multipliers.

6.1 Conclusion

The CC-P-ECC algorithm over GF(2") using 3 digital serial parallel multiplier is

proposed in this thesis. This new algorithm results in considerable reduction in execution

time. While it exploits the inherent parallelism in the computation o f doubling and

addition of points over elliptic curve GF(2n), the new algorithm explores a new way that

reduces rounds o f field multiplications in point addition and doubling operation to save

execution time. The evaluation o f ECDSA is done by using a series o f experiments. The

result shows that the two proposed method (CC-P-ECC and P-P-ECC) have a

considerable improvement over J-P-ECC, in terms o f Serial-Parallel computation o f ECC

with digital serial parallel multipliers. It is also found that CC-P-ECC is the best

algorithm out o f the three.

In Chapter 4, the methods for point multiplications had been introduced. Binary method

used in this thesis is the simplest among them. As a matter of fact, CC-P-ECC can also be

tuned by using m -ary method, window method, or by signed m-ary window method

described by blake[BSS99].

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Future work

The CC-P-ECC algorithm proposed in this thesis requires 3 digital serial parallel

multipliers in hardware. If we decrease the quantity o f digital serial parallel multipliers,

CC-P-ECC performance may not be the best.

Because point multiplication o f elliptic curve cryptosystem is essential in public key

calculation and key exchange, faster methods for Point Multiplication of elliptic curve

cryptosystem may be devised in the future.

The key is to find new FASTER methods o f point multiplication better than those

available. It is the same problem as finding algorithms for solving “shortest addition

chain problem fo r integer” defined in Chapter 4. With its special role in elliptic curve

cryptography, exploration o f faster methods is still an active and challenging research

field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Appendix A Implementation of CC-P-ECC

The implementation o f CC-P-ECC consists o f several components mentioned in

[Ros98a]. It uses some important files as follows:

DSA.c, onb integer, elliptic.c

Major functions includes: ECDPKQ, onb_DSA_signature(), onb_DSA_verify(),

cj_eliptic_m ul(), c j_esum (); cj_edb(), parallel_mul(), opt_mul(); We will give the

detail in the following section.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DSA.C

End

start

/* Key Generation
ECKGP(&Base, &Signer);

/* ECDSA Verification function */
onb DSA Verify (Message, 1024, &Base, &Signer.pblc_key, &signature);

/*ECDSA Signature using private key generated in ECKGP */
onb DSAjSignature (Message, 1024, &Base, &Signer.prvt_key, signature);

/* create a message to be signed */
for (i=0; i<1024; i++) {

Message [i] = i;}

Create Koblitz curve
/*form =1 is Koblitz curve or random curve as form=0*/
Base.crv.form = 1;

one(&Base.crv.a2);
one(&Base.crv.a6);
print_curve(" Koblitz 113", &Base.crv);

Create base point of known order
/ * * /

rand_point(&temp, &Base.crv);
print_point("random point", &temp);
edbl(&temp, &Base.pnt, &Base.crv);
print_point(" Base point ",&Base.pnt);

Compute curve order from koblitz data
char string 1 [MAXSTRING] = "5192296858534827627896703833467507"; /*N
113 */
ascii_to_bigint(&stringl, &prime_order);
int_to_field(&prime_order, &Base.pnt_order);
null(&Base.cofactor);

66

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specification

Program Name: DSA.C [Ros98a]

IEEE P1363 includes ECDSA as one o f the standards for digital signatures. So we have
used ECDSA module for testing our algorithm ECDSA module is to test signature o f a
hashed message using a private key and verify it with its public key in Elliptic Curve
Cryptosystem.

This function presets elliptic curve as Koblitiz Curve over GF(2113), Point Order is set as
5192296858534827627896703833467507. Cofactor =2.

Using the parameters above, it generates the random point in the range o f specified curve.
It then uses point doubling operation to generate a base point for Elliptic curve point
operation.

ECKGP generates a pair o f keys: private & public key. DSA signature uses a hashed
message SHA-1(FIPS 180). The next step is to sign this hashed message using Signature
function, onb DSA signature () and verify the encrypted message with its public key in
onb_DSA_verify() function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

ECKGP(&Base, &Signer);

End

start

random_field(&rand_key);

field_to_int(&rand_key,
&key_num);

field_to_int(&Base-
>pnt_order, &point_order);

in t to _field(&remainder,
&Key->prvt_key);

int_div(&key_num, &point_order,
"ient, &remainder);

cj_elptic_m ul(&Key->prvt_key, &Base->pnt, &Key->pblc_key,
&Base->crv);

Specification

Program Function: ECKGP (&Base, &Signer) [Ros98a]

This is a part o f onb integer.c. This function uses random number modulo order o f base
point. The remainder is the signer’s private key. In CC-P-ECC, the public key is the
product of signer’s private key and base point.

The 6th module cj_elptic_m ul(&Key->prvt_key, &Base->pnt, &Key->pblc_key,
&Base->crv) is designed as a part o f the thesis work. This replaces eliptic mul
(k,p,n,curve) in ECKGP () of [Ros98a].

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

onb_DSA_signature()

Start

End

/* create random value and generate random point on public curve */
ECKGP(publiccurve, &random_key);

/* compute hash of input message */
hash to int (Message, length, hash_value);

/* multiply that by signers private key and add to message digest
modulo the order o f the base point, hash value + private key * c value

field_to_int(secret key, &key_value);
int_mul(&key_value, &c_value, &temp);
int_add(&temp, &hash_value, &temp);
int_div(&temp, &point_order, "ient, &k_value);

/* convert x component of random point to an integer modulo the order
of the base point. This is first part of signature.

field_to_int(&public_curve->pnt_order, &point_order);
field_to_int(&random_key.pblc_key.x, &x_value);
int_div(&x_value, &point_order, "ient, &c_value);
int_to_field(&c_value, &signature->c);

/* final step is to multiply by inverse o f random key value modulo order
of base point.

field_to_int(&random_key.prvt_key, &temp);
mod_inv(&temp, &point_order, &u value);
int_mul(&u_value, &k_value, &temp);
int_div(&temp, &point_order, "ient, &sig_value);
int_to_field(&sig_value, &signature->d);

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specification
Function: onb_DSA_signature()[Ros98a]

This function is used for signing a message using ECC to generate a pair o f value. It then
passes the message to the other party. It is a part of program onb integer.c [Ros98a], In
the second module, ECKGP has been modified as stated on page 6-76

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

onb DSA Verification
Start

/* generate hash of message */
hash_to_int(Message, length, &hash_value);

/* convert x value of verify point to an integer modulo point order */
field_to_int(&Verify.x, &temp);
int_div(&temp, &point_order, "ient, &check_value);

/* compute inverse of second signature value */
field_to_int(&public_curve->pnt_order, &point_order);

field_to_int(&signature->d, &temp);
mod_inv(&temp, &point_order, &d_value);

/* compare resultant message digest from original signature */
int_null(&temp);
int_sub(&c_value, &check_value, &temp);
while(temp.hw[0] & 0x8000)

int_add(&point_order, &temp, &temp);
/* ensure positive zero */

/* find hidden point from public data */
cj_elptic_m ul(&hl_field, &public curve->pnt, &Templ, &public_curve-

>crv);
cj_elptic_m ul(&h2_field, signerjpoint, &Temp2, &public curve->crv);

esum(&Templ, &Temp2, &Verify, &public_curve->crv);

/* compute elliptic curve multipliers:
h i = hash value * d_value, h2 = c * d value

int_mul(&hash_value, &d_value, &temp);
int_div(&temp, &point_order, "ient, &hl);
int_to_field(& hl, &hl_field);
field_to int(&signature->c, &c_value);
int_mul(&d_value, &c_value, &temp);
int_div(&temp, &point_order, "ient, &h2);
int_to_field(&h2, &h2_field);

71

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

1f

/* return error if result of subtraction is not zero */
INTLOOP(i) if (temp.hw[i]) return(O);

retum(l);

Er-

Specification
Function Name: int onb_DSA_Verify(Message, length, publiccurve, signer_point,
signature) [Ros98a]. This is a part of onbinteger.c.

This function receives signature from signer with Original Message and verifies it by
using ECDSA verification procedure. The 4th module has been designed as a part o f the
thesis work. eliptic_mul() has been replaced by cj_eliptic_m ul() as specified on page:74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

c j_elp tic_m iil(&Key->prvt_key, &Base-
>pnt,
&Key->pblc_key, &Base->crv);

yes

No

end

Start

null (&r->x);
null (&r->y);

opt_mul(&p->y,&jpZ3,&jp.Y);

jp.Z3 = jpZ3;

opt_mul(&jp.Z,&jp.Z,&jpZ2);

notzero = 0;

optmul(&p->x,&j pZ2,&j p .X);

jp.Z2 = jpZ2;

one(&jp.Z);

opt_mul(&jpZ2,&jp.Z,&jpZ3);

copy(k, &number);

SUMLOOP (i) notzero |= number.e[i];

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

notzero

number.efNUM W
ORD])& 1L

blncd[bit_count
]=1

b itco u n t—;

b itco u n t = 0;

blncd[bit_count] =1;

blncd[bit_count] = 0;

j r .X = jp .X ;
j r Y = jp .Y ;
jr.Z = jp.Z;
jr.Z2 = jp .Z 2;
jr.Z3 = jp .Z 3;

null(&jr.X);
null(&jr.Y);
null(&jr.Z);
null(&jr.Z2);
null(&jr.Z3);

number.e[NUMWORD] &= ~0 « 1;
rot_right(&number);
bit_count++;
notzero = 0;
SUMLOOP (i) notzero |= number.e[i];

74

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j>=0

yes

yes

b ln c d [j]= l

End

j= b itco u n t-l

c j e s u m (&jp, &jr,
&jtemp, curv);
ir = itpm rv

cj_edbl(& jr, &jtemp, curv);
jr = jtemp;

opt_mul(&j r .Z,&j r . Z,&ttemp);
opt_inv(&ttemp,&onej rz2);
opt_mul(&onejrz2,&jr.X,&r->x);
opt_mul(&ttemp,&jr.Z,&tttemp);
opt_inv(&tttemp ,&onej r z3);
opt_mul(&onejrz3,&jr.Y,&r->y);

Specification
Function Name: c j eliptic mul (&Key->prvt_key, &Base->pnt, &Key->pblcJkey,
&Base->crv)

This function implements point multiplication o f elliptic curve using Chudnovsky
Jacobian system with serial-parallel computation. The data in the range of order o f base
point is multiplied by base point to get another point. In this function, Chudnovsky
coordinate system is used to represent a point on the elliptic curve. Binary method(refer

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to section 3.2.1) is used as Point Multiplication. This has been designed as a part of the
thesis work. This replaces elptic_mul() in elliptic.c.

c j edbl (p i, p3, curv)

End

Start

a 6 1 4 = curv->a6:

SUMLOOP (i) afa.e[i] = temp3.e[i] A p3->Z.e[i];

SUMLOOP (i) p3->Y.e[i] = temp4.e[i] A temp5.e[i];

parallel_mul(&p 1 ->X,&p 1 ->X,&X12,&p 1 ->Z,&p 1 -
> Y,&Z 1Y 1 ,&a614,&p 1 ->Z2,&temp 1);

SUMLOOP (i) temp3.e[i] = X12.e[i] A Z lY l.e[i];
SUMLOOP (i) temp2.e[i] = pl->X.e[i] A tempi.e[i];

parallel_mul(&X 12,&X12,&X14,&p 1 ->X,&p 1 -
>Z2,&p3->Z,&temp2,&temp2,&temp22);

parallel_mul(&X 14,&p3 ->Z,&temp4,&p3 ->Z,&p3 -
>Z,&p3->Z2,&temp22,&temp22,&p3->X);

parallel_mul(&p3->Z2,&p3->Z,&p3->Z3,&afa,&p3-
>X,&temp5,&afa,&p3->X,&temp5);

Specification

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function name: c j edbl (p i, p3, curv)

This function is used to calculate point doubling operation using serial-parallel
computation. p3 = 2pi, Chudnovsky coordinate system is used to represent the point. It
requires 4 round serial-parallel multiplication operations. This has been designed as a part
o f this thesis work. It replaces edbl(pl,p3,curv) in elliptic.c [Ros98a],
c J edbl calls parallelm ul four times, parallelm ul is described on page 80.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

c j esum (p i, p2, p3, curv)
Start

p3->Z2 = Z32;

parallel_mul(&p 1 ->X,&p2->Z2,&afal ,&p 1 ->Y,&p2-
>Z3 ,&afa4,&p 1 ->Y,&p2->Z3 ,&afa4);

SUMLOOP (i) afa9.e[i] = afa6.e[i] A p3->Z.e[i];
SUMLOOP (i) afa8.e[i] = templ.e[i] A temp2.e[i];

parallel_mul(&p3->X,&afa9,&temp7,&Z32,&p3-
>Z,&Z33,&Z32,&p3->Z,&Z33);

parallel_mul(&p2->Z,&afa7,&p3->Z,&afa7,&p2-
>Y,&temp 1 ,&afa6,&p2->X,&temp2);

SUMLOOP (i) temp5.e[i] = temp3.e[i] A temp4.e[i];
SUMLOOP (i) p3->X.e[i] = temp5.e[i] A afa33.e[i];

parallel_mul(&afa6,&afa9,&temp3,&p3->Z,&p3-
>Z,&Z32,&afa3,&afa3,&afa32);

SUMLOOP (i) afa3.e[i] = afal.e[i] A p2->X.e[i];
afa7 = afa3;
SUMLOOP (i) afa6.e[i] = afa4.e[i] A p2->Y.e[i];

parallel_mul(&curv-
>a2,&Z32,&temp4,&afa8,&afa32,&temp6,&afa32,&afa3,&afa33);

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f
SUMLOOP (i) p3->Y.e[i] = temp6.e[i] A
temp7.e[i];

Specification
Function Name: c j e s u m (p i, p2, p3, curv)

Point Addition is implemented in this function, p 3=pi+p2 . Point representation uses
Chudnovsky Jacobian Coordinate system. It requires 5 round serial-parallel
multiplication operation. This has been designed as a part o f this thesis work. It replaces
esum(pl,p2,p3,curv) in elliptic.c [Ros98a].cJ_esum uses the module parallel_mul five
times.

parallelm ul

End

Start

Create process 2
0 pt_mul(a2 ,b2 ,c2);

Create process 3
opt_mul(a3 ,b3 ,c3);

Create process 1
opt_m ul(al,bl,cl);

Specification
Function Name: parallel Mul(al,bl,cl,a2,b2,c2,a3,b3,c3)

This function is programmed to parallel 3 processes to calculate 3 optimal normal basis
multiplications at a time. Unix fork() is used to create process. Each o f three o p tm u l
Store the resulting data in a file (called filel, file2 and file3 , respectively) so that the data
can be called by the main process. This has been designed as a part o f this thesis work.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

opt_m ul(a, b, c)

i < NUMB ITS

yes

i < NUMBITS

Start

j+ +

copy(a, &amatrix[0])

copy(&amatrix[i-l], &amatrix[i]);
rot_right(&amatrix[i]);

zero index = Lambda[0][0];
SUMLOOP (i) c->e[i] = copyb.e[i] &
amatrix[zero_index] .e[i];

clear result and copy b to protect original
null(c);
copy(b, ©b);

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rot_right(©b);
zero index = Lambda[0][j];
one in d ex = Lambda[l][j];
SUMLOOP (i) c->e[i] A= copyb.e[i] &

amatrix[one index].e[i]);
(amatrix[zero_index] .e[i]

(END)

Specification
Function Name: opt_mul()

This is a part o f onb.c [Ros98a]. It is used to calculate multiplication of optimal normal
basis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Appendix B Implementation of P-P-ECC/J-P-ECC
Most o f the Program is the same as in CC-P-ECC. Only the following parts are different:

For P-P-ECC,
In onb integer.c, ECGPK() and onb_DSA_verify() call the function p_elptic_mul(
&Key->prvt_key, &Base->pnt, &Key->pblc_key, &Base->crv)

In eliptic.c , p_eliptic_mul(k,p,r,curv) call the functions p_esum(pl,p2,p3,curv) and
p_dbl(pl,p3,curv)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p_eliptic_mul()

! notzero

End

Notzero != 0

Start

b itco u n t = 0;

null (&r->x);
null (&r->y);

copy(k, &number);
notzero = 0;
SUMLOOP (i) notzero |= number.e[i];

/* Convert Base point from Affine to projective Coordinate*/
one(&projp.Z);
opt_mul(&p->x,&projp.Z,&projp.X);
opt_mul(&p->y,&pro_p.Z,&pro_p.Y);

number.e[NUMWORD] &= ~0 « 1;
rot_right(&number);
bit_count++;
notzero = 0;
SU M LO O P (i) notzero |= num ber.efil;

if ((number.e[NUMWORD])& 1L) blncd[bit_count] =1;
else blncd[bit_count] = 0;

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blncd[bit_cou
n t] = l

yes

yes

End

J--

b itco u n t—;

j= bit_count-l

null(&pro_r.X);
null(&pro_r.Y);
null(&pro_r.Z);

p j e s u m (&pro_p,
&pro_r, &pro_temp,
riir\A ’

pro_r.X = pro_p.X;
pro_r.Y = pro_p.Y;
p ro r .Z = pro_p.Z;

pJ_edbl(&pro_r, &pro_temp,
curv);
nro r = nrn tpm ri'

opt_inv(&pro_r.Z,&oneproz);
opt_mul(&oneproz,&pro_r.X,&r->x);
opt_mul(&oneproz, &pro_r. Y,&r->y);

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specification
Function Name: p j eliptic mul (&Key->prvt_key, &Base->pnt, &Key->pblc_key,
&Base->crv)

This function implements point multiplication of elliptic curve using Projective system
with serial-parallel computation. The data in the range of order o f base point is multiplied
by base point to get another point. In this function, Projective coordinate system is used
to represent a point on the elliptic curve. Binary method (refer to section 3.2.1) is used as
Point Multiplication. This has been designed as a part o f the thesis work. This replaces
elptic_mul() in elliptic.c.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

p esum (p i, p3, curv)

End

Start

parallel_mul(&A3, &pl->Z, &p3->Z, &A3, &pl->Z,
&temp5, &A3, &pl->Z, &temp6);

parallel_mul(&A2,&A,&A3,&A2,&A,&temp5,&A2,&A,
&temp6);

parallel_mul(&B,&p 1 -
>X,&BX1 ,&C,&B,&BC,&A,&A,&A2);
SUMLOOP (i) tempi.e[i] = a2Zl.e[i] A A.e[i];

parallel _mul(&A2,&temp3,&temp4,&A,&D,&p3-
>X,&D,&C,&CD);
SUMLOOP (i) p3->Y.e[i] = CD.e[i] A temp4.e[i];

parallel_mul(& A,&p 1 -> Y,&AY 1 ,&p 1 -
>Z,&BC,&ZlBC,&A2,&templ,&temp2);

SUMLOOP (i) temp3.e[i] = BXl.e[i]
AYl.e[i];

parallel_mul(&p2->X,&p 1 ->Z,&X2Z 1 ,&p2-> Y,&p 1 -
>Z,&Y2Z1 ,&curv->a2,&p 1 ->Z,&a2Z 1);
SUMLOOP (i) A.e[i] = pl->X.e[i] A X2Zl.e[i];
SUMLOOP (i) B.e[i] = pl->Y.e[i] A Y2Zl.e[i];
SUMLOOP (i) C.e[i] = A.e[i] A B.e[i];

Specification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function Name: p j_ esu m (p i, p2, p3, curv)

Point Addition is implemented in this function, p3 =pi+p2 . Point representation uses
Projective Coordinate system. It requires 5 round serial-parallel multiplication operation.
This has been designed as a part of this thesis work. It replaces esum(pl,p2,p3,curv) in
elliptic.c [Ros98a].p_esum uses the module parallel mul six times.

End

Start

parallel_mul(&p 1 ->X,&p 1 ->Z,&A,&p 1 -
>Z,&p 1 ->Z,&Z 12,&p 1 ->X,&p 1 ->X,&X 12);

parallel_mul(&A2,&A,&p3-
>Z,&temp2,&B,&temp4,&A,&B,&p3->X);
SUMLOOP (i) p3->Y.e[i] = temp4.e[i] A X14A.e[i];

parallel_mul(&A,&A,&A2,&Z14,&curv-
>a6,&temp3,&X14,&A,&X14A);
SUMLOOP (i) B.e[i] = temp3.e[i] A X14.e[i];

parallel_mul(&p 1 ->Y,&p 1 ->Z,&Y1Z 1, &Z 12,&Z 12,&Z 14,
&X12, &X12, &X14);
SUMLOOP (i) tempi.e[i] = A.e[i] A Y lZ l.efij;
SUMLOOP (i) temp2.e[i] = X12.e[i] A tempi.e[i];

Specification
Function name: p_edbl (p i, p3, curv)

This function is used to calculate point doubling operation using serial-parallel
computation. p3 = 2pi, Projective Coordinate system is used to represent the point. It
requires 4 round serial-parallel multiplication operations. This has been designed as a part
of this thesis work. It replaces edbl(pl,p3,curv) in elliptic.c [Ros98a].
p edbl calls parallel mul four times, parallel mul is described on page 80.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For J-P-ECC,
In onbinteger.c, ECGPK() and onb_DSA_verify() call the function j_elptic_mul(
&Key->prvt_key, &Base->pnt, &Key->pblc_key, &Base->crv)

In eliptic.c , j_eliptic_mul(k,p,r,curv) call the functions j_esum(p 1 ,p2,p3,curv) and
j_dbl(pl,p3,curv)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j clptic mul(&Key->prvt_key, &Base->pnt,
&Key->pblc_key, &Base->crv);

yes

!notzero==0

No

end

Start

null (&r->x);
null (&r->y);

opt_mul(&p->y,&jpZ3,&jp.Y);

notzero = 0;

opt_mul(&p->x,&j pZ2,&j p .X);

one(&jp.Z);

°pt_mul(&jp.Z,&jp.Z,&jpZ2);

copy(k, &number);

optm ul(& j pZ2 ,&j p ,Z,&j pZ3);

SUMLOOP (i) notzero |= number.e[i];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

?

notzero

number.e[NUMW
ORD])& 1L

blncd[bit_count
] = 1

bitcount--;

b itco u n t = 0;

blncd[bit_count] =1;

blncd[bit_count] = 0;

j r X — jp.X;
j r .Y = jp .Y ;
jr .Z = jp .Z ;
jr.Z2 = jp .Z2;
jr.Z3 = jp .Z 3;

null(&jr.X);
null(&jr.Y);
null(&jr.Z);
null(&jr.Z2);
null(&jr.Z3);

number.e[NUMWORD] &= ~0 « 1;
rot_right(&number);
bit_count++;
notzero = 0;
SUMLOOP (i) notzero |= number.e[i];

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

yes

yes

b ln c d [j]= l

End

J--

j= bit_count-l

j_edbl(&jr, &jtemp, curv);
jr = jtemp;

opt_mul(&jr.Z,&jr.Z,&ttemp);
opt_inv(&ttemp, &onej rz2);
opt_mul(&onejrz2,&jr.X,&r-

>x);

opt_mul(&ttemp,&jr.Z,&ttte

Specification
Function Name: je l ip t ic m u l (&Key->prvt_key, &Base->pnt, &Key->pblc_key,
&Base->crv)

This function implements point multiplication of elliptic curve using Jacobian system
with serial-parallel computation. The data in the range o f order o f base point is multiplied
by base point to get another point. In this function, Jacobian coordinate system is used to
represent a point on the elliptic curve. Binary method (refer to section 3.2.1) is used as

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Point Multiplication. This has been designed as a part of the thesis work. This replaces
elptic_mul() in elliptic.c.

j_edbl (pi, p3, curv)

End

Start

parallel_mul(&p 1 ->X,&p 1 ->X,&X12,&p 1 ->Z,&p 1 -
> Y,&Z 1Y1 ,&p 1 ->Z,&p 1 ->Z,&Z 12);

parallel_mul(&temp 12,&temp 12,&p3 -
>X,&temp 12,&temp 12,&p3 ->X,&temp 12,&temp 12,&p3 ->X);

parallel_mul(&theta,&p3 ->X,&temp3 ,&theta,&p3 -
>X,&temp3,&theta,&p3->X,&temp3);

parallel_mul(&p3 -
>Z,&X 14,&temp2,&temp 1 ,&temp 1 ,&temp 12,&temp 1 ,&tem
n 1 9Y

a614= curv->a6;
parallel_mul(&Xl 2,&X 12,&X 14,&Z 12,&p 1 ->X,&p3 -
>Z,&Z 12,&a614,&bZ 12);
SUMLOOP (i) theta.e[i] = Z1 Yl.e[i] A X12.e[i] A p3->Z.e[i];
SUMLOOP (i) tempi.e[i] = pl->X.e[i] A bZ12.e[i];

Specification
Function name: j edbl (p i, p3, curv)

This function is used to calculate point doubling operation using serial-parallel
computation. p3 = 2pi, Jacobian coordinate system is used to represent the point. It

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requires 4 round serial-parallel multiplication operations. This has been designed as a part
o f this thesis work. It replaces edbl(pl,p3,curv) in elliptic.c [Ros98a].
j edbl calls parallelm ul six times, parallelm ul is described on page 80.

je s u m (p i, p2, p3, curv)

End

Start

SUMLOOP (i) p3->Y.e[i] = temp6.e[i]
temp7.e[i];

parallel_mul(&p2->Z,&p2->Z,&Z22,&p2->Z,&p2-
>Z,&Z22,&p2->Z,&p2->Z,&Z22);

parallel mul(&afa6,&p2->X,&temp3,&afa6,&afa9,&temp5,&p3-
>Z,&p3 ->Z,&Z3 2);

parallel_mul(&afa7,&p2->Y,
&temp4,&afa3 2,&afa3 ,&afa3 3 ,&curv->a2,&Z3 2,&temp6);

STTMT O O P t it afaR p fil = fp m n 3 p fil A te m n 4 p f i l -

parallel_mul(&temp 1 ,&p 1 -
>Y,&afa4,&afa3 ,&afa3 ,&afa32,&afa7,&p2->Z,&p3->Z);

STTMT O O P f it a fab p fil = a fa 4 ph'l A n ? -> Y pRl-

parallel_mul(&p 1 ->X,&Z22, &afal ,&Z22,&p2-
>Z,&temp 1 ,&Z22,&p2->Z,&temp 1);

SUMLOOP (i) afa3.e[i] = afal.e[i] A p2->X.e[i];

Specification
Function Name: j esum (p i, p2, p3, curv)

Point Addition is implemented in this function, p3=pi+p2 . Point representation uses
Jacobian Coordinate system. It requires 7 round serial-parallel multiplication operation.
This has been designed as a part o f this thesis work. It replaces esum(pl,p2,p3,curv) in
elliptic.c [Ros98a].j_esum uses the module parallel mul seven times.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C DSA with Message and Hash Message
Koblitz 113
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Key Generation time=0.240000 seconds using affine Coordinate
Signer's secret key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers public key
x : 282b a9e578bl bcd0319 24bdb6fc
y : 2950 906bb03b 415e5ad8 4bd2c559

Message is:
Slabs o f concrete and metal came crashing down from the ceiling onto a seated waiting

area at about 7 a.m. Sunday (0500 GMT/1 a.m. ET).

Part of the raised terminal structure then collapsed onto airport service vehicles
underneath.

The collapse left a hole 50 meters (yards) by 30 meters in the long, tunnel-like building.

"It's like a scene after an earthquake," one firefighter said.

Officials said there was nothing to indicate a terrorist attack.

Hundreds of rescue workers rushed to the scene, and temporary hospitals were set up on
the tarmac and inside the terminal.

Interior Minister Dominique de Villepin, inspecting the site, said there were five
confirmed dead and "perhaps six." Officials earlier said six people were killed.

Hubert de Mesnil, director general of Paris airports, said all the dead were likely
passengers, The Associated Press reported.

De Mesnil said there was "absolutely nothing" in the past to indicate a structural problem.

"It's the structure that gave way, the structure itself," h

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m essagedigest is:
1017204939-1721243125456559152-1119359275800469993

Signature take time=0.240000 seconds using affine Coordinate
first component o f signature : c0c2 421b5284 57235894 76f9862a
second component of signature : 8a4f c6e37485 calad3a8 536fcacd
Message is:
Slabs of concrete and metal came crashing down from the ceiling onto a seated waiting

area at about 7 a.m. Sunday (0500 GMT/1 a.m. ET).

Part o f the raised terminal structure then collapsed onto airport service vehicles
underneath.

The collapse left a hole 50 meters (yards) by 30 meters in the long, tunnel-like building,

"ft's like a scene after an earthquake," one firefighter said.

Officials said there was nothing to indicate a terrorist attack.

Hundreds o f rescue workers rushed to the scene, and temporary hospitals were set up on
the tarmac and inside the terminal.

Interior Minister Dominique de Villepin, inspecting the site, said there were five
confirmed dead and "perhaps six." Officials earlier said six people were killed.

Hubert de Mesnil, director general o f Paris airports, said all the dead were likely
passengers, The Associated Press reported.

De Mesnil said there was "absolutely nothing" in the past to indicate a structural problem.

"It’s the structure that gave way, the structure itself," h

message_digest is:
1017204939-1721243125456559152-1119359275800469993

Verify Signature time=0.490000 seconds using affine Coordinate
Message Verifies

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D Sample output of Serial-Parallel
Computation

The following output shows one bit operation within binary methods when executing Key
Generation

Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21335 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21336 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point

96

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21337 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21340 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21338 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21339 21334

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21341 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21342 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21343 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21344 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21345 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21346 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7b7423658 5f8dae64d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21347 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21348 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7b7423658 5f8dae64d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21349 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first multiplier and its parent using processes : 21350 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21351 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21352 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21353 21334
, Current Process 21334 Koblitz 113
form = 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21354 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7b7423658 5f8dae64d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21355 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21357 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21356 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21358 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

first multiplier and its parent using processes : 21359 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl 7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

second multiplier and its parent using processes : 21360 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : lffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942b la4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Third multiplier and its parent using processes : 21361 21334
, Current Process 21334 Koblitz 113
form = 1
a2 : 1 ffff ffffffff ffffffff ffffffff
a6 : 1 ffff ffffffff ffffffff ffffffff

random point
x : 7dl7 b7423658 5f8dae64 d624d542
y : 100a4 823ecl33 6fld883c a95f43ac

Base point
x : lf43c 6942bla4 9aaaac4a b572fdbf
y : 10145 c084d629 96208f8e 44d9f291

Process=21334 Key Generation time=0.090000 seconds using Chudnovsky Coordinate
Signer's secret key : 1988 296d3d8c a8d08ecf 91ff45bf
Signers public key
x : 16c2 c3ed78d 8232c3a3 a510d008
y : 3673 989ddd2b 3ee2febe 9a4f0549

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E Experimental Data
Table 5.2.2.1 Result of 44 times running time using P-ECC

Number Key Generation Signature Verification
1 0.33 0.34 0.69
2 0.34 0.34 0.7
3 0.34 0.35 0.7
4 0.34 0.35 0.69
5 0.33 0.35 0.67
6 0.35 0.35 0.71
7 0.35 0.34 0.7
8 0.34 0.34 0.7
9 0.34 0.36 0.69
10 0.33 0.35 0.69
11 0.34 0.35 0.69
12 0.35 0.35 0.69
13 0.34 0.35 0.7
14 0.34 0.34 0.7
15 0.35 0.35 0.7
16 0.34 0.34 0.69
17 0.34 0.35 0.67
18 0.35 0.34 0.69
19 0.33 0.35 0.68
20 0.34 0.35 0.69
21 0.34 0.33 0.69
22 0.34 0.36 0.69
23 0.34 0.35 0.7
24 0.34 0.33 0.7
25 0.35 0.34 0.7
26 0.34 0.36 0.69
27 0.34 0.36 0.71
28 0.36 0.35 0.68
29 0.35 0.35 0.69
30 0.32 0.34 0.69
31 0.35 0.36 0.69
32 0.34 0.34 0.65
33 0.33 0.34 0.69
34 0.34 0.35 0.72
35 0.34 0.34 0.72
36 0.34 0.34 0.7
37 0.32 0.35 0.68
38 0.35 0.35 0.7
39 0.35 0.34 0.72
40 0.35 0.35 0.7
41 0.35 0.34 0.7

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42 0.34 0.33 0.69
43 0.34 0.34 0.68
44 0.34 0.35 0.69

Table 5.22.2 Result o f 44 times using J-ECC

Number Key Generation Signature Verification
1 0.31 0.31 0.61
2 0.3 0.32 0.61
3 0.3 0.31 0.61
4 0.31 0.31 0.6
5 0.3 0.3 0.61
6 0.3 0.31 0.61
7 0.29 0.31 0.62
8 0.3 0.31 0.62
9 0.3 0.3 0.62
10 0.3 0.31 0.62
11 0.31 0.3 0.62
12 0.3 0.31 0.62
13 0.31 0.32 0.6
14 0.3 0.3 0.61
15 0.3 0.29 0.61
16 0.3 0.31 0.6
17 0.3 0.3 0.6
18 0.3 0.31 0.6
19 0.3 0.32 0.61
20 0.3 0.31 0.61
21 0.3 0.32 0.61
22 0.31 0.3 0.61
23 0.31 0.31 0.6
24 0.31 0.3 0.61
25 0.3 0.3 0.62
26 0.3 0.31 0.6
27 0.31 0.3 0.6
28 0.3 0.31 0.62
29 0.32 0.32 0.62
30 0.3 0.31 0.65
31 0.3 0.3 0.66
32 0.31 0.31 0.63
33 0.3 0.31 0.61
34 0.3 0.31 0.6
35 0.3 0.32 0.61
36 0.3 0.31 0.59
37 0.3 0.32 0.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38 0.33 0.31 0.62
39 0.31 0.31 0.61
40 0.3 0.3 0.63
41 0.31 0.32 0.61
42 0.3 0.3 0.61
43 0.3 0.31 0.63
44 0.3 0.3 0.59

Table 5.2.2.3 Result with 44 times using CC-ECC

Number Key Generation Signature Verification
1 0.3 0.32 0.62
2 0.3 0.3 0.59
3 0.3 0.33 0.64
4 0.31 0.31 0.6
5 0.3 0.3 0.63
6 0.3 0.32 0.61
7 0.3 0.31 0.61
8 0.29 0.3 0.6
9 0.31 0.32 0.61
10 0.31 0.31 0.62
11 0.31 0.31 0.61
12 0.31 0.3 0.61
13 0.3 0.3 0.61
14 0.3 0.29 0.62
15 0.32 0.3 0.6
16 0.31 0.3 0.62
17 0.31 0.31 0.62
18 0.31 0.3 0.62
19 0.3 0.31 0.62
20 0.31 0.3 0.62
21 0.3 0.31 0.62
22 0.31 0.31 0.62
23 0.32 0.33 0.6
24 0.3 0.31 0.62
25 0.31 0.31 0.6
26 0.3 0.31 0.64
27 0.3 0.32 0.61
28 0.3 0.3 0.61
29 0.3 0.29 0.6
30 0.29 0.3 0.61
31 0.3 0.3 0.61
32 0.3 0.3 0.61
33 0.31 0.31 0.6

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34 0.3 0.3 0.61
35 0.31 0.31 0.62
36 0.31 0.31 0.6
37 0.31 0.32 0.62
38 0.3 0.3 0.61
39 0.3 0.32 0.63
40 0.31 0.32 0.62
41 0.3 0.31 0.6
42 0.3 0.31 0.62
43 0.3 0.32 0.62
44 0.3 0.31 0.61

Table 5.2.2.4 Result o f running 44 times in ECDSA using P-P-ECC

Number K ey Generation (Seconds) Signature (Seconds) Verification (Seconds)
1 9.9 10.18 19.02
2 9.48 9.6 18.7
3 9.95 9.52 18.65
4 9.76 9.26 18.94
5 9.76 9.56 18.47
6 9.54 9.29 18.44
7 9.58 9.28 18.88
8 9.21 9.4 18.6
9 9.77 9.66 19.67
10 9.65 9.59 18.79
11 9.33 9.45 18.78
12 9.5 9.37 18.22
13 9.52 9.14 19.07
14 9.76 9.78 20.43
15 10.09 10.03 20.09
16 10.25 9.97 20.03
17 10.34 10.72 20.54
18 9.88 9.89 19.54
19 10.58 9.74 19.27
20 9.89 10.11 20.18
21 10.03 10.04 20.11
22 10.01 10.01 20.21
23 10.06 10.44 19.82
24 10.51 10.36 20.16
25 10.68 9.89 20.09
26 9.78 9.68 18.79
27 9.86 9.49 19.51
28 10.2 11.04 20.05
29 11.1 9.94 20.97

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30 10.13 10.1 20.7
31 9.67 9.49 19.11
32 9.67 10.36 19.56
33 10.25 10.43 19.8
34 10.29 10.32 20.85
35 9.91 10.02 19.89
36 10.03 10.45 20.14
37 10.07 10.6 20.01
38 10.19 10.59 20.56
39 10.36 10.11 20.79
40 9.87 10.5 20 .83
41 10.42 10.15 20.55
42 10.16 10.51 20.84
43 10.53 10.23 20.59
44 10.04 10.31 20.49

Table S.2.2.5 Result of running time in ECDSA using J-P-ECC

N um ber Key G eneration (Seconds) Signature (Seconds) Verification (Seconds)
1 10.54 10.52 20.53
2 10.31 10.35 20.46
3 10.68 10.64 21.2
4 10.62 10.46 20.72
5 10.5 10.64 20.53
6 10.73 10.59 20.9
7 10.58 10.66 20.91
8 10.96 10.7 20 .89
9 10.69 10.64 20.84
10 10.74 10.77 21.32
11 10.87 10.42 20.98
12 10.52 10.69 20.91
13 10.73 10.48 20.68
14 10.64 10.84 20.92
15 10.4 10.59 20.73
16 10.73 10.69 20.84
17 10.89 10.62 20.89
18 10.56 10.65 20.96
19 10.67 10.69 20.87
20 11.1 10.91 21.14
21 10.72 10.63 20.87
22 10.63 10.62 20.83
23 10.76 11.14 20.99
24 10.5 11.03 21.25
25 10.75 10.6 20.76

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26 10.67 10.71 20.77
27 10.41 10.49 20.4
28 10.67 10.76 20.96
29 10.64 10.62 20.55
30 10.69 10.48 20.38
31 10.49 10.32 20.2
32 10.67 10.47 20.72
33 10.65 10.46 21.5
34 10.4 10.41 20.79
35 10.85 10.54 20.43
36 10.25 10.37 20.27
37 10.54 10.45 20.65
38 10.56 10.28 20.27
39 10.66 10.51 20.73
40 10.73 11.04 20.79
41 10.45 10.32 20.46
42 10.5 10.62 20.71
43 10.45 10.86 21.76
44 10.58 10.59 20.79
45 10.79 10.7 20.53
46 10.57 10.22 20.37
47 10.62 10.21 20.52
48 10.81 10.54 20.51
49 10.5 10.67 20.91
50 10.61 10.22 20.79
51 10.57 10.24 20.31
52 10.18 10.17 20.42

Table 5.2.2.6 Result o f running time in ECDSA using CC-P-ECC

N um ber K ey G eneration (seconds) Signature (Seconds) V erification (seconds)
1 8.77 8.67 16.81
2 8.72 8.38 16.84
3 8.79 8.69 17.36
4 8.85 9.14 17.49
5 9 8.8 17.77
6 8.78 8.89 17.84
7 8.91 9 16.87
8 8.88 8.72 17.61
9 8.95 8.34 17.26
10 8.63 8.64 17.2
11 8.52 8.58 17.43
12 8.36 8.29 17.03
13 8.68 8.69 17.16

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 8.73 8.86 17.18
15 8.77 8.53 16.86
16 8.44 8.75 16.8
17 8.58 8.44 16.67
18 8.51 8.67 17.25
19 8.79 8.61 16.91
20 8.94 8.77 17.3
21 8.9 8.83 17.25
22 8.94 8.8 17.28
23 8.71 8.75 17.01
24 8.6 8.49 16.87
25 8.53 8.53 16.94
26 8.74 8.65 16.69
27 8.68 8.58 17.13
28 8.71 8.63 17.22
29 8.73 8.57 17.01
30 9.04 8.72 17.46
31 8.89 8.51 17.49
32 8.63 8.62 16.89
33 9.04 8.73 17.2
34 8.88 8.92 17.8
35 8.95 8.64 17.46
36 8.66 8.6 17.29
37 8.62 8.57 16.94
38 8.57 8.48 16.89
39 8.44 8.61 17.04
40 8.59 8.56 16.73
41 8.73 8.51 17.41
42 8.71 8.48 17.34
43 8.46 8.57 17.03
44 8.54 8.86 16.82
45 8.72 8.58 17.19
46 8.65 8.5 16.71
47 8.77 9.17 17.27
48 8.78 8.72 17.59
49 8.85 8.8 17.54
50 8.52 8.74 17.41
51 8.87 8.71 17.56
52 8.84 8.84 17.22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References
[AM03]Adnan Abdul-Aziz Gutub and Mohammad K.Ibrahim, “Power-Time Flexible
Architecture For GF(2k) Elliptic Curve Cryptosystem Computation” , Proceedings o f the
13th ACM Great Lakes Symposium on VLSI, 2003

[AM03a]Adnan Abdul-Aziz Gutub and Mohammad K.Ibrahim, “HIGH RADIX
PARALLEL ARCHITECTURE FOR GF(P) ELLIPTIC CURVE PROCESSOR”
IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003.

[AMR+02]Essame, AI-Daoud, Ramlan Mahmod, Mohammad Russhadan, Adem
Killcman, “A New Addition Formula fo r Elliptic Curves over GF(2nf \ IEEE
TRANSACTIONS ON COMPUTERS, VOL.51, NO.8, AUGUST 2002

[AMS95]Alfred Menezes, Minghua,Qu, Scott, Vanstone , “Memorandum IEEE P I363,
Part 6: Elliptic Curve System” Aug 22, 1995.
http://citeseer.ni.nec.com /m enezes95elliptic.htm l

[AMV93]G.B.Agnew,R.C.Mullin and S.A.Vanstone. 'A n implementation o f elliptic
curve cryptosystem over F ^ , ”. IEEE Transactions on Selected Areas in
Communications, 11:804-813,1993

[BSS99]I. Blake, G. Seroussi, N. Smart, “Elliptic Curves in Cryptography”, pp:60-72.
Cambridge, U.K: Cambridge Univ. Press, 1999.

[CC86] D.V.Chudnovsky and G.V. Chudnovsky “Sequences o f numbers generated by
addition in form al groups and new primality and factorization tests” Advanced in
Applied math., 7 (1986), 385-434

[Certi04]http://www.certicom.com/index.php?action=company,press_archive&view=283

[CM097]H.Cohen, A.Miyali and T.Ono, “Efficient elliptic curve exponentiation”,
Advanced in cryptography-Proceddings o f ICICS’97, Lecture Notes in Computer Science,
1334(1997), Springer-Verlag, 282-290

[CM098]Henri Cohen,Atsuko Miyaji, Takatoshi Ono, “Efficient elliptic curve
exponentiation using mixed coordinates ”

[FIPS186-2] “DIGITAL SIGNATURE STAND ARD(DSSS)”, FEDERAL
INFORMATION PROCESSING STANDARDS PUBLICATION 2000 January 27

[HR83]M.Hellman and J.Reyneri. Fast computation o f discrete logarithms in GF(q). In
advances in Crytpology: Proceedings of Crypto’82. Plenum Press, 1983

[IEEE 1363]IEEE Standard 1363, IEEE Standard Specifications For Public-Key
Cryprography,1999

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://citeseer.ni.nec.com/menezes95elliptic.html
http://www.certicom.com/index.php?action=company,press_archive&view=283

[IT88]T.Itoh and S.Tsujii. “A fa st algorithm fo r computing multiplicative inverses in
GF(2m- using normal bases'”. Info. And Comput., 78(3):171-177,1988

[Ko87]Neal Koblitz. “Elliptic curve cryptosystem”. Mathematics of
Computation/American Mathematical Society, 48(177): 203-209,1987

[Kob87a]N.Koblitz. “A Course in Number Theory and Cryptography”, Springer-Verlag,
1987

[knu81]A.W.Kunth.“The Art o f Computer Programming, 2-Semi-numerial
Algorithms”.Addison-wesley, 2nd edition, 1981.

[LH94]K.-Y.Law and L.C.K.Hui. “Efficiency o f SS(1) square-and-multiply
exponentiation algorithms”.Electronics Letters, 30, 2115-2116, 1994.

[LN94]R.Lidl and H.Niederreiter. “Intorduction to Finite Fields and Their Applications” .
Cambridge University Press, 1993

[Men931A.J.Menezes. “Elliptic Curve Public Key Cryptosystems'”, Kluwer Academic
Publisher, 1993

[Mi86]Victor S.Miller. “Use o f Elliptic Curves in Cryptography ” Advance in
Cryptology - CRYPTO’85, LNCS 218, pp.417-426, 1986

[MOV97]A.J.Menezes,P.C van Oorschot, and S.A.Vanstone, Handbook o f Applied
Cryptography. Boca Raton,FL:CRC Press, 1997

[MOVW89]R.C.Mullin, I.M.Onyszchuk, S.A.Vanstone, and R.M .W ilson.” Optimal
normal bases in GF(pn) ”. Discrete Applied Mathematics, 22:149-161,1988/89

[Odl84]A.Odlyzko. “Discrete logarithms in finite fields and their cryptographic
significance”. In advances in cryptology Eurocrypt’84, pages 224-314. Springer-Verlag,
1984

[OW99]P. van Oorschot and M. Wiener, “Parallel collision search with cryptanalytic
applications”, Journal o f Cryptology 12 (1999), 1-28.

[PH78] S. Pohlig and M. Heilman, “An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance”, IEEE Transactions on Information
Theory 24 (1978), 106-110.

[PID92]J.StemP.Ivey, S.Walker and S.Davidson. “Anultra-high speed public key
encryption processor”. In Proceedings of the IEEE Custom Integrated Circiuts
Conference,pages 19.6.1-19.6.4,1992

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Pol75]J.M.Pollard. “A MonteCrlo method fo r factorization” .BYl ,15{3)\331-334,1915

[Pollard78] J. Pollard, “Monte Carlo methods for index computation (mod /?)”,
Mathematics o f Computation 32 (1978), 918-924.

[Rei87]H.Reisel. “Prime Numbers and Computer Methods fo r Factorization”, 2nd Edtion.
Birkhauser, 1987

[Ros98a]M.Rosing. “Implementing Elliptic curve Cryptography”. Manning, 1998.

[RSA78]R.Rivest, A.Shamir and L.Adlemann. “A method fo r obtaining digital signatures
and public-key cryptosystems. Communication of the ACM, 21:120-126, 1978

[SOOS95]R.Schroeppl, H.Orman, S.O’Mally and O.Spatscheck. “Fast key exchange with
elliptic curve systems”. Communication of the ACM, 21:120-126, 1978.

[Wi99] William Stallings, CRYPTOGRAPHY AND NETWORK SECURITY: Principle and
Practice, SECOND EDITION.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

VITA AUCTORIS

NAME:

PLACE OF BIRTH

YEAR OF BIRTH

EDUCATION

Xiaoguang Wang

P.R. China

1969

The 57th High School, Tianjin, P.R. China

1984- 1987

China University of GeoSciences, WuHan, HuBei

1 9 8 7 - 1991 B.Sc.

University o f Windsor, Windsor, Ontario

2002-2004 M. Sc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

	Efficient signature system using optimized elliptic curve cryptosystem over GF(2(n)).
	Recommended Citation

	tmp.1616005133.pdf.8g_U5

