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Abstract

Thermal analysis is the study o f heat evolution as a molten alloy transforms to a solid. 

Studying the evolution o f heat results in a temperature, time relationship in the form of a 

cooling curve. Specific characteristics o f the 319-aluminum cooling curve are described 

and related to specific metallurgical properties. Variations in the cooling curves 

represent changes within the solidification o f the alloy and are correlated to changes in 

the metallurgical properties.

In the present work, an aluminum thermal analysis system (AITAS) is constructed to 

withstand the rigors o f day to day foundry conditions. Complete automation has been 

introduced to reduce the number o f variables introduced by the operator to the system. 

This includes automatic analysis and storage o f the results in a database, which allows for 

later statistical evaluation. Methods of noise filtering and automatic temperature 

detection have all been improved over previous systems in order to reduce measurement 

error.

Experimental work concluded that AIT AS is capable o f determining the degree o f silicon 

modification as a result of strontium additions. In addition, A1TAS is able to determine 

which aluminum-copper phases are present including the area fraction o f each in the 

aluminum 319 alloy.

ii
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Chapter 1. Introduction

1.1. Background

Thermal Analysis (TA) uses a cooling curve which shows a temperature drop during 

solidification, its time derivatives, thermodynamic descriptors and algorithms for the 

quantitative determination of several characteristics o f the solidification process in a test 

sample. These characteristics can be related to the melt and consequently actual casting 

properties. An advanced TA system can be designed for on-line control o f melt 

processing and prediction o f the casting properties prior to the mould filling operation.

Most commercial TA systems lack the technical capabilities for comprehensive and 

automated assessment o f the melt’s metallurgical characteristics. In addition, 

simplification and/or analytical errors in both software and hardware design result in 

inherent discrepancies between TA results and the test sample structure. For example, 

the AluDelta TA system used for the evaluation o f the AlSi eutectic temperature utilizes 

the reference eutectic temperature o f an unmodified “generic” 319 alloy (562+/-2.3 °C). 

However, this temperature depends on the melt’s chemical composition, its treatment and 

solidification conditions. Any change in the actual versus “generic” metallurgical 

characteristics o f the melt can result in error in the evaluation of the Si modification level.

During his work at the Industrial Research Chair (IRC), the author was responsible for 

the development of an advanced version of the two thermocouple TA system called the

l
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“Aluminum Thermal Analysis System” (A1TAS). Preliminary trials have shown the

technical capabilities o f this system comply with Ford’s requirements, which include the

following:

• automated and repeatable determination of the Al-Si eutectic growth temperature;

• robust operation of the industrial stand;

• complete documentation of test results for further analysis.

1.2. Objectives of this Work

1. To manage and contribute to the development of an advanced thermal analysis

system (AITAS) for the characterization o f the 319 aluminum alloy solidification 

process.

2. To define characteristics and procedures used by A1TAS for the quantitative and

automated analysis of the test sample solidification process.

3. To demonstrate the uses o f A1TAS in metallurgical studies.

2
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Chapter 2 Literature Review

2.1 Thermal Analysis of Binary Alloys

Thermal analysis is the study of heat evolution during the solidification process. 

Thermocouples placed within the molten sample as it cools monitors the temperature 

variations during solidification. This information is then presented as a function of time 

in the form of a cooling curve. The variations or deflections on the curve are created 

when solidification reactions take place in the cooling sample. Depending on the 

temperature o f these deflections, it is possible to determine which particular reaction is 

taking place.

t
i
0
1<DH

Time ►

Figure 2.1 -  Schematic of a cooling curve of an Al-Si binary alloy [1].

A schematic cooling curve of an Al-Si binary alloy is shown in Figure 2.1. The first 

deflection in the cooling curve (marked A), represents the initial nucleation of the

3
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primary phase within the liquid metal. This point is termed the liquidus temperature and 

is defined as the temperature at which the primary phase crystals first nucleate. In the 

case o f an Al-Si binary, the first phase to nucleate is a -A l dendrites. Between points A 

and B, the a -A l dendrites continue to grow and the solid fraction increases. At B, a 

eutectic transformation occurs and the Si enriched liquid phase surrounding the a-Al 

dendrites begins to solidify. The transformations continue in two distinct phases until the 

sample is solid (point C).

2.2. Binary Aluminum -  Silicon Phase Diagram

Binary phase diagrams are generated through cooling curve analysis. Binary alloys of 

varying composition are allowed to solidify under equilibrium and arrest points are 

recorded and plotted on a temperature -  composition diagram. Figure 2.2 displays the 

relationship between the cooling curve analysis and a binary phase diagram.

i-

100% BTime 100% A

Figure 2.2 -  Diagram showing how cooling curve analysis information is transferred to a 
phase diagram [2],

4
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The Al-Si phase diagram is shown in Figure 2.3. The Al-Si system has a eutectic 

composition o f 12.2% Si and a eutectic temperature o f 577°C. The solubility o f silicon in 

aluminum reaches a maximum of 1.5 at.% or 1.56 wt.% at the eutectic temperature.

1414 °C

577 °C

12.2 %

Atomic Percent Silicon SiA1

Figure 2.3 -  Al-Si phase diagram [3].

Alloys with higher than eutectic additions of silicon are termed hypereutectic. In these 

alloys, the first phase to nucleate is the P-Si phase, which results in coarse, plate-like 

structures. The secondary transformation is the Al-Si eutectic structure. Hypoeutectic 

alloys contain silicon in amounts less than 12.2 wt%. In these alloys the first 

transformation is in the form of a-A l dendrites followed by the Al-Si eutectic.

2.3. Aluminum -Silicon Foundry Alloys

Binary alloys discussed in section 2.3 are not suitable for castings as they are relatively 

expensive and have comparatively poor properties with those that have been alloyed

5
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further. Additions o f alloying elements can significantly improve properties such as 

hardness, yield strength, ductility and castability among others.

In hypoeutectic Al-Si alloys (less than 12.2wt% Si) such as the 319 alloy studied in this 

thesis, additions o f magnesium and/or copper greatly improve both the hardness and yield 

strength. It is the increased mechanical properties o f these alloys, which make them 

useful in a variety o f automotive and aerospace applications. In hypereutectic alloys, 

additions o f manganese, nickel, copper and magnesium are used to increase the 

mechanical properties.

2.4. Review of Thermodynamics

In order to study the solidification of the 319-aluminum alloy, it is important to 

understand the basic thermodynamic principals that govern the transformation from a 

liquid phase to a solid phase. To demonstrate these thermodynamic principals we will 

consider a pre metallic element with only a single solid phase. Figure 2.4 displays a 

pressure versus temperature schematic phase diagram of a single component system. Of 

the three phases, solid, liquid and gas, the solid crystalline phase posses the lowest 

internal energy and the highest degree o f order. The liquid represents a phase with 

slightly higher internal energy and slightly larger entropy. Finally the gas phase has the 

highest internal energy and the greatest entropy. The free energy curves for these three 

phases are drawn schematically in Figure 2.5 for each o f the isobaric lines in Figure 2.4. 

In Figure 2.5a), it can be seen that at temperatures below the melting temperature, Tm, the

6
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solid phase has the lowest free energy. At temperatures above Tm the liquid phase has the 

lowest free energy until the boiling temperature or Tb where the gas phase becomes the 

lowest free energy state. Figure 2.5 b) represents the free energy curves where the 

potential for all three phases to coexist. At the triple point temperature, Tt, all three 

phases are stable. Below the triple point temperature, the free energy o f the solid phase is 

lower while above Tt, the gas phase is the most stable. Finally Figure 2.5 c) demonstrates 

the free energy curves at very low pressure. In this case the free energy curve o f the 

liquid phase lies entirely above the gas phase and is never stable. In this situation the 

only transformation which takes place is sublimation at Ts.

Solid Liquid

g
3
<A
V)
fl)

CL a
Triple point Gas

b
c

T em perature

Figure 2.4 -  Pressure-temperature phase diagram for a single component system 
including isobars [38].

iquid

■Gas

cQ>
Solid3

ll_

G as

Sublim ation 
,te m p e ra tu re

.G as
■Liquid

©c
V

a>
Solid-

u.

Gas-

Tt
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■Liquid

>.
Pa>

Solidca>
3

Liquid-

Gas-

Tm Tf)
T e m p era tu re  T e m p era tu re  T em p era tu re

Figure 2.5 -  Free energy curves for the phases in a one component system at three 
different pressures [38].
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2.5. Nucleation

Nucleation of the solid phase within a molten metal occurs in one o f two ways. The solid 

may form at a small foreign particle as in the case o f heterogeneuous nucleation. This is 

the mechanism that drives grain refinement discussed in Chapter 4. Conversly nucleation 

may result from a concentration fluctuation of the atoms or molecules as is the case for 

homogeneous nucleation.

Homogeneous mucleation is difficult as surface energy is generated which opposes the 

loss of energy as the temperature decreases. As a result, a phenomenon referred to as 

undercooling takes place in which the temperature continues to decrease past the melting 

point before the transformation o f liquid to solid can take place homogeneously.

+ Surface energy

Free energy of droplet

tu.

Volume energy

Figure 2.6 -  Free energy of a particle as a function of radius [38]

8
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Equation 2.1 represents the free energy associated with the formation o f the solid particle.

AG = AGV + AGy (2.1)

AGV is the free energy associated with the volume of the particle and AGy represents the 

energy of the surface created. Therefore Equation 2.1 can be writen as:

AG = Air3 + A it1 (2.2)

where Aj and A2 are constants and r is the particle radius. Equation 2.2 is plotted in 

Figure 2.6. and shows that at small radii, the surface free energy is larger than the volume 

free energy and the total free energy is positive. However, as the radii grows in size the 

free energy becomes negative. The radius at which this occurs is called the critical 

radius. Below the critical radius, a particle reduces its free energy by reducing in size and

thus tend to disappear. Particles with radii greater then the critical radius undergo a

decrease in free energy with increasing radius and are stable and tend to grow.

Equation 2.2 may also be written in the form:

AG = 4 /3 tix3AGb + 47tr2y (2.3)

where AGb is the chemical free energy change per atom associated with the transfer of 

atoms from the liquid to vapour phases divided by the volume of an atom.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By setting the derivative o f Equation 2.3 to zero and solving for r0 we obtain:

r0=-2yAGB (2.4)

Substituting Equation 2.4 back into 2.3 we obtain the free energy o f the nucleus at the 

maximum AGro.

AGro= 16tiy3/3(AGb)2 (2.5)

In section 4.5, the effects of undercooling are discussed as to how it pertains to grain 

refinement and its effect on the nucleation o f the aluminum dendrite formation.

10
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Chapter 3. AIT AS -  Aluminum Thermal Analysis System

3.1. AIT AS Hardware

For the AIT AS system to be successful, the stand was designed to withstand the rigors of 

plant operation. To ensure the robustness of the stand, Windsor Aluminum Plant (WAP) 

personnel requested that Montrose Engineering complete the final design o f the stand 

which was then manufactured at the University o f Windsor’s Technical Support Centre.

The stand is contained in a grounded V" steel cabinet to protect against high frequency 

noise and elevated temperatures both of which exist in close proximity to the furnace. 

The A1TAS stand contains a locking mechanism to ensure the consistent location o f the 

thermocouples within the thermal analysis test sample. The thermocouple assembly will 

be raised and lowered using a pneumatic cylinder. Since the lowering of the 

thermocouples introduces a pinch point, a safety cut-off is installed in order to restrict the 

movement o f the cylinder if  the cabinet door is not closed. The A1TAS stand is shown in 

Figure 3.1.

The lowering o f the thermocouple assembly results in the immersion o f two 

thermocouple probes into the molten aluminum located in the centre and near the wall as 

seen in Figure 3.2. In this work, two thermocouples are required to determine the 

difference between the centre of the test sample and the outer wall. This information 

leads to the determination of the dendrite coherency temperature as defined in chapter 4.

11
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Since the thermocouples are to be reused, it is necessary to protect the thermocouples 

with thin walled stainless steel sheaths.

Figure 3.1 - A1TAS stand

Insulation

Insulation

Figure 3.2 - Schematic o f thermal analysis test sample (the location of the thermocouples 
is described in chapter 4).

12
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A KNM-TC42-RS Smartlink Module produced by Keithley was selected for the 

collection o f thermocouple data. The Smartlink module was selected for TA data 

acquisition because it is a compact “all in one” unit that is capable o f performing data 

processing prior to delivering the information to the PC. Recently the IRC has run into 

several limiting features on the Smartlink module, which effect the sampling rate at high 

temperatures. It is therefore recommended that for future work, an alternative data logger 

device is acquired.

3.2. AIT AS Software Capabilities

The A1TAS software was programmed using labview by Jim Hochreiter o f the Technical 

Support Centre. The A1TAS system is capable of:

• Automatic detection of 11 characteristic temperatures as defined in chapter 4 

(additional copper phase temperatures are left for future work, see section 4.4),

• Estimation o f grain size and dendrite arm spacing,

• Measuring the depression o f the Al-Si eutectic temperature due to silicon 

modification,

• Development of thermal analysis database which logs all relevant information.

To accommodate the various uses o f the AIT AS software, three different versions have 

been developed. Each system has additional capabilities depending on its application. 

These three versions include a system for "on the floor" use, a system designed for use by

13
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supervision and finally a system to be used for research and development. Each o f these 

systems will be described in further detail in the following sections.

3.3. AITAS System for Ford Windsor Aluminum Plant and Casting Process and 
D evelopm ent C entre

To begin the operation of the AITAS program, the operator is required to enter a login 

and password. After this step, the AITAS software begins monitoring the thermocouple 

information in order to detect the immersion o f the thermocouples into the molten 

aluminum. This triggers the data logging after which, the operator is given the 

opportunity to enter any comments that he/she may feel pertinent. When the temperature 

o f the TA sample falls to 400°C, the AITAS program terminates the data logging and 

proceeds to the data processing module. Upon the completion o f the data processing, 

three separate files are generated and saved to both the plants network drive and the 

computers own drive. The first o f these files contains a summary of the test including all 

the characteristic temperatures, operator information and comments, as well as operating 

information such as the date, time, file name and location. The second file consists o f all 

o f the information described in the previous section, appended into an EXCEL database. 

This allows Ford engineers to easily plot historical information. The third file contains 

all the raw data for further evaluation by Ford or IRC personnel. In addition to the 

generation o f these files, a complete summary sheet will automatically be printed. A 

schematic of the data flow is given in Figure 3.3. If the AITAS software is unable to 

process the data obtained during the test, a message is placed on the screen in order to 

inform the operator. In addition, a summary file will be generated with a detailed
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description o f the problem and will be sent to the system supervisor and printed within 

the melt room.

Valid
Test

Perform Test

Ready

Login

Thermal Analysis 
Facility

Raw Data File for 
Further Analysis

Summarised Excel 
Data File

Export Data into 
Database or SPC 

Chart

Export 
Information into 

Error Log

Figure 3.3 - Schematic o f data flow 

3.4. System for “On The Floor” Use

This system is designed to have little interaction with the operator. After the initial 

“logging in” process, no other input is required from the user. However, during the test, 

the operator is given the opportunity to insert comments. This may include apparent 

testing conditions that may alter the test results or special trial information, unusual melt

15
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chemistries or casting procedures. These comments are then saved with the data.

The “On-Screen” display will advise the operator o f  the status o f the system, as well as 

give all pertinent information in a simple and easily read chart. In the event o f either a 

system or test failure, the operator will be notified and the test will be repeated.

3.5. Advanced Engineering System

This system is available to the Ford designate responsible for the system’s operation. 

This version o f AITAS gives the operator the opportunity to do further analysis o f the 

thermal analysis test after entering login information. This includes concentrating on 

certain reactions during the solidification and obtaining time, temperature, fraction solid 

and cooling rate information anywhere on the cooling curve. In addition to the 

aforementioned capabilities, personnel may also complete detailed reports using the 

accompanying HiQ software.

3.6. IRC AITAS System for the Continuous Advancement of Thermal Analysis

The IRC system is used primarily for research and development. Statistically designed 

experiments will be used to improve the theoretical models of the AITAS software used 

to determine the grain size, dendrite arm spacing, Si modification and mechanical 

properties o f a given test sample on a continuous basis.

16
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In addition to the industry related applications, the AITAS station is used to demonstrate 

the uses of thermal analysis in metal casting to engineering students. The system is also 

used extensively in lab experiments held in both the graduate and undergraduate courses 

offered on casting technologies.

3.7. Signal Processing

3.7.1. Introduction

Thermal analysis involves accurately identifying features in the first and second 

derivatives o f the cooling curve. However, since a thermocouple acts as an antenna, the 

sampled curve contains unwanted noise, resulting in unusable first and second derivative 

curves. It is therefore vital that the unwanted noise is filtered from the original cooling 

curve in order to be able to detect variations in the derivative curves. The removal o f the 

unwanted noise must be done in such a way as to limit the distortion o f the original 

cooling curve as this would introduce its own error. In this study, Bessel filtering, 

moving average filtering and weighted moving average filtering have all been 

investigated, with the latter method producing the most promising results.

3.7.2. Moving Average Filtering

The derivative operation is similar to running the input through a high-pass filter. 

Therefore, if  any derivative analysis is to be done, high frequency noise must be removed

17
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from the original input signal in order to produce accurate and meaningful results. An 

optimal filter will eliminate all the noise in the signal with no distortion.

Moving average filtering is a form o f non-linear filtering commonly used to smooth sets 

o f data points. Taking the average of a moving region of the input produces the filtered 

signal. The middle value o f this region is replaced by the average o f the neighboring 

points. This method o f noise removal takes advantage o f the fact that the noise added to 

the system has an average value of zero, and averaging the signal out over a period of 

time will remove the noise.

The equation for Moving Average filtering of a discretely sampled signal is shown below 

[5],

1 * = _ n  +  m

f m  ( n )  = > M  ^  , Z  / ( * )  (3-!)2 M  + 1 £ = n̂~ M

where, f\iA is the moving averaged output, f  is the original signal, and 2M+1 is the length 

of the moving average. The moving average length is restricted to be odd because M 

must be a positive integer. Therefore when the moving average is taken, the center point 

is replaced with the average o f its neighbors.

Cooling curve data was taken at 5 samples per second (5 Hz) and stored in a data file. 

For comparison purposes, the cooling curve is also shown filtered through a 10th order 

low-pass Bessel filter. The Bessel filter was used in previous versions o f AITAS and is
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commonly used for noise reduction in similar applications.

Figure 3.4 shows the entire original cooling curve indicating the critical region that will 

be examined more closely. Figure 3.5 shows the critical region o f the original curve, and 

an 11-point moving average filtered version. The Bessel filtered output is also shown on 

this plot for comparison purposes. It can be seen that the moving average filter follows 

the original curve much more accurately than the Bessel filtered version. The Bessel 

filter creates several undesirable distortions. First, the minimum and maximum 

temperature values are between 2 and 2.5 degrees higher in the Bessel filtered curve than 

in the original cooling curve. Second, the difference between the maximum and 

minimum points is larger than one degree in the original curve, but is only 0.5 o f a degree 

in the Bessel filtered plot. Third, the time between the minimum and maximum points is 

less in the Bessel filtered curve than in the original. Since all three o f these 

measurements are used in determining the characteristics o f the casting, the Bessel filter 

will produce incorrect results. Although the moving average filtered versions have more 

noise embedded in the curve, it does not show these types of distortions.
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Figure 3.4 - Original cooling curve showing critical analysis.
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Figure 3.5 - Original curve and moving average with a window length o f 11 (Bessel 
shown for comparison).

In Figure 3.6, the moving average length is increased to 31 points. The resulting curve 

has less noise, however, there is some distortion which results in a shifting of the
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maximum and minimum temperatures of nearly 0.2 °C
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Figure 3.6 - Original curve and moving average with a window length o f 31 (Bessel 
shown for comparison).

3.7.3. Weighted Moving Average Filtering

Although the moving average is adequate for most applications, it does not optimize the 

filtering of the original signal in this particular application as it assumes that the original 

curve is constant over the averaging length. O f course, this is not the case as the cooling 

curve is not simply a flat line. For the moving average filter to work well, the average 

length must be selected relatively small so that the original curve only changes 

negligibly. However, noise removal increases as the moving average length increases, 

so, to achieve an adequate amount o f noise removal the moving average length must be 

increased to a length where the output is not an accurate representation o f the original 

curve.
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To solve this problem, a weighing factor or coefficient is added to each term and the 

method of Least Squares Linear Regression is used to choose these coefficients. Instead 

o f using the assumption that the cooling curve is a flat line, sections o f the curve can be 

fit to polynomials of second or third order. The equation for moving average filtering can 

be changed to include weight coefficients as follows [5]:

Each of the f(k) values are multiplied by the weighted coefficient ak. If these coefficients 

are chosen correctly, the output will produce a smoothed version o f the input signal, and 

its first and second derivatives.

In the Figures 3.7 through 3.10, a comparison between the moving average and weighted 

moving average is made. The same procedure for determining the length o f the window 

was used for the weighted moving average as was used in the previous section.

(3.2)

k = z - M
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Figure 3.7 - Cooling curve with moving average and weighted moving average filtered 
versions, with a window length o f 51.
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Figure 3.8 - Cooling curve with moving average and weighted moving average filtered 
versions, with a window length of 81.
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Figure 3.9 - Cooling curve with moving average and weighted moving average filtered 
versions, with a window length o f 101.
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Figure 3.10 - Cooling curve with moving average and weighted moving average filtered 
versions, with a window length o f 151.

Figure 3.7 shows the original data plotted with the moving average filtered output as well 

as the weighted moving average filtered output. The moving average filtered curve is
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smooth, but it does not follow the original curve as closely as the weighted moving 

average filter output (the moving average curve shows a distortion o f nearly 0.05°C). 

Figures 3.8 through 3.10 display the effect o f increasing the width o f the averaging 

window. In Figure 3.10 the moving average filtered output smoothes out the feature of 

the curve while the weighted moving average output follows it fairly closely. Therefore, 

it can be clearly seen that the weighted moving average produces a better approximation 

of the cooling curve.

3.7.4. Incorporation of Weighted Average Filtering into AITAS

The weighted moving average filter performed on the original curve, as well as the first 

and second derivatives, resulted in cleaner, less noisy versions o f the cooling curve and 

its derivatives. In addition, the weighted moving average filter resulted in the least 

amount of distortion from the original curve. Increasing the frequency o f the data 

collection allows for a longer weighted moving average length window, which results in 

more reduction of the noise levels while reducing the distortion. However, computational 

time limits the length of the window. As a result, I have selected a weighted average 

filter with a window length of 41 was selected as an optimal filtering regime and 

incorporated into the AITAS software.
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Chapter 4. Analysis of Cooling Curve

4.1. Background

A cooling curve can be described as a “finger print” o f the solidification process. Major 

and minor metallurgical reactions that are thermodynamically strong enough in terms of 

the latent heat evolution are manifested on the cooling curve by features such as 

inflection points and slope changes. Upon completion o f the solidification process, the 

test sample structure and its properties can be related to these reactions.

An example o f the AITAS generated cooling curve for the aluminum 319 alloy is 

presented in Figure 4.1. The chemistry can be found in Table 4.1. In order to normalize 

the TA test, zero time corresponds to the liquidus temperature. For the purpose of 

analysis, the cooling curve was divided into three regions that correspond to the 

formation of a-A l dendrites, Al-Si eutectic and Cu rich eutectic(s) respectively.

Table 4.1 -  Chemical Composition o f the A.
Si Fe Cu Mn Mg Ni Zn Ti Sb P Na

7.55 0.39 3.45 0.24 0.33 0.008 0.009 0.122 0.052 0.0015 0.0004

TAS Test Sample (wt%) [15]

Computer aided analysis o f the cooling curve requires utilization o f unbiased procedures 

for statistically precise and accurate detection and evaluation of these characteristic 

points and regions on the curve. In order to reveal the temperature and time, as well as 

more complex relationships, the first time derivative (dT/dt) is used in Figure 4.1. 

Characteristics o f the cooling curve from Figure 4.1 are summarized in Table 4.2.
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Table 4.2 - List o f Characteristic Temperatures with their corresponding symbol.

Description Symbol
1. a-Al dendrite nucleation (liquidus) temperature 1 NUC
2. a- Al dendrite undercooling temperature rfiCttDEN 1 MIN
3. a-Al dendrite growth (recalescence) temperature ft<(x*DEN 

^ G
4. a-Al dendrite coherency point
5. Al-Si eutectic nucleation temperature rfiAl-Si1 EJVUC
6. Al-Si eutectic minimum temperature rjiAI-Si 1 E.MIN
7. Al-Si eutectic growth temperature rpAI-Si 1 E.G
8. Cu rich eutectic nucleation temperature rpCJll1 EJVUC
9. Cu rich eutectic minimum temperature rpCll1 EJVIEV
10. Cu rich eutectic growth temperature rpCll1 E,G
11. End of solidification process (solidus temperature) T end

Region I Region II Region III

o.oi 65(

-0.23 610

-.063 570

.1!

>
0>T3w

.04 H 530

.44 490

.84 450
20346

Time (s)

Figure 4.1 - Cooling curve (in red) generated by AITAS displaying the 1st derivative (in
black) and the baseline(dotted line).

It was shown by Zindel et al. [13] and Backerud et al. [24] that the temperatures in Table

4.2 and shown in Figure 4.1 correspond to the metallurgical reaction discussed in Tables

4.3 and 4.4.
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Based on Figure 4.1 the metallurgical reactions for the Fe and Mg rich phases were not 

observed as distinct peaks on the first derivative. Recent work at the University o f 

Montreal [4] revealed that the Fe phase can only be detected for iron levels higher than 

0.7 wt %. In the 319 alloy a small amount o f Mg is often present in the form of a eutectic 

together with Cu. This is manifested as a convoluted (overlapped) first derivative peak in 

region III.

4.2. Region I - Liquidus and Dendrite Coherency

In Figure 4.1, Region I, four (4) distinct parameters (features) of the cooling curve can be 

distinguished by using the first and second derivatives. A close-up o f this region, Figure

4.2, depicts these features while Table 4.3 summarizes their definitions. Based on these 

measurements and calculations, the grain size and grain refinement can be quantified.
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Table 4.3 - Definitions o f the Characteristic Temperatures located in Region I

Symbol Name Detection Algorithm Definition
t̂ giDEN 1 NUC a -A l dendrite 

nucleation temperature 
(Liquidus)

This is point 1 on the second 
derivative curve projected to the 
cooling curve. (See Figure 4.2). 
This corresponds to the 
intersection of the zero axis with 
the line projected from the 
liquidus peak (dT2/dt2=0).

This is the point at which 
primary a-Al dendrites begin 
to solidify from the melt.

t-oiDEN 
1 MIN a -A l dendrite

undercooling
temperature.

This is point 2 on the first 
derivative and is projected to the 
cooling curve. (See Figure 4.2). 
This represents a local 
minimum temperature on the 
cooling curve. It is determined 
as the point at which the first 
derivative intersects the zero 
line (dT/dt=0).

At this point, the nucleated 
dendrites have grown to such 
an extent that the latent heat 
liberated balances the heat 
extracted from the sample. 
After this point the 
temperature o f the melt 
increases to the steady state 
growth temperature.

yaDEN̂ a,-Al dendrite growth
temperature
(recalescence)

This is point 3 on the first 
derivative projected to the 
cooling curve. (See Figure 4.2). 
This temperature follows 
undercooling and represents a 
local maximum on the cooling 
curve. It corresponds to the 
second zero point on the first 
derivative curve following the 
start of nucleation (dT/dt=0).

If the first derivative curve in 
this region does not intersect 
the zero line, T“DENmin and 
T«deNq temperatures are 
identical and correspond to 
the maximum point on the 
first derivative curve.

A r NUCu Depression of a -A l 
dendrite growth 
temperature

ATa-NUCu can be expressed by equation:

ĵq-NUC _'-pct-NUC ya-NUC (1)
t-<xDEN 1 COH Dendrite coherency 

point
This is point 4 on the AT curve. 
(See Figure 4.2). AT (point 4) 
represents the largest difference 
between Tw and Tc (the wall 
and centre temperature). This 
point can be detected by using 
the two-thermocouple 
technique.

Metallurgically, the dendrite 
coherency point defines the 
temperature at which a 
skeleton network of dendrites 
have formed from the casting 
wall to the centre o f the 
casting.
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Figure 4 .2 - Close-up of Region I displaying a) cooling and 1st, b) 2nd derivatives and
AT curves.
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4.3. Region II - Al-Si Eutectic

In Al-Si-Cu alloys, silicon modification exerts the most significant effect on the Al-Si 

eutectic reaction. In order to quantify the Si modification levels it is necessary to analyze 

and compare modified and unmodified cooling curve parameters. A close-up o f this region, 

Figure 4.3, depicts these features while Table 4.4 summarizes their definitions.
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Figure 4.3 - Close up o f Region II displaying the cooling, 1st and 2nd derivative curves.
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Table 4.4 - Definitions o f all the Characteristic Temperatures located in Region II

Symbol Name Algorithm used for 
Detection

Definition

pAl-SJl1 E,NUC Al-Si eutectic
nucleation
temperature.

This is point 5 on the second 
derivative and is projected 
onto the cooling curve. (See 
Figure 4.3). This corresponds 
to the intersection of the 
second derivative and the zero 
axis prior to the Al-Si eutectic 
peak (dT2/dt2>0).

This is the temperature at 
which silicon particles begin 
to nucleate, forming Al-Si 
eutectic.

pAI-Si
1 E,MIN Al-Si minimum 

eutectic temperature
This is point 6 on the first 
derivative. (See Figure 4.3). 
This temperature represents a 
local minimum on the cooling 
curve and is defined as the 
point at which the first 
derivative intersects the zero 
line following the Al-Si 
nucleation temperature 
(dT/dt=0).

Metallurgically, this 
temperature represents the 
first point at which the latent 
heat generated due to 
eutectic growth equals the 
heat loss from the test 
sample.

pAl-Sl
1 E,G Al-Si eutectic 

growth temperature 
(sometimes referred 
to as the eutectic 
plateau 
temperature).

This is point 7 on the first 
derivative. (See Figure 4.3). 
This point corresponds to a 
second zero point on the first 
derivative curve following the 
Al-Si nucleation temperature 
(dT/dt=0).

Metallurgically, this point 
represents the temperature at 
which considerable eutectic 
growth occurs.
If the first derivative curve 
does not intersect the zero 
line, Tai s ‘e ,m in  and TAI s 'e ,g  

temperatures are identical 
and correspond to the 
maximum point on the first 
derivative curve.

a pAI-SiAl e ,g Depression of Si 
eutectic growth 
temperature (both 
modified and 
unmodified).

ATa|-‘SiEjG can be expressed by equation:

a  p  Al-Si _pAI-Si p  Al-SiAl E,G  — 1 E “ 1 E,MIN

a  p  Al-SiAl E,GMOD The level of Si 
modification

ATa1'SiEjGM0D can be expressed by equation:

* pAl-Si pAI-Si p  Al-Si A1 E,MODIFICATION ”  1 E,UNMODIFIED " 1 E.MODIFIED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4. Region III -  Low Melting Temperature of ALCu and Al-Cu-Si-Mg Eutectic 
Reactions and the End of the Solidification Process

Depending on the melt chemical composition, the cooling rate and liquid metal processing, 

up to three copper rich phases can be present in the test sample. Preliminary metallographic 

analysis revealed the presence of A^Cu phases in the form of blocky coarse particles and 

fine eutectic. In addition, an Al-Mg-Cu-Si phase was identified. At the present time the 

distinct and/or convoluted peaks of the first derivative of the cooling curve can detect the 

combination of these phases. The following Figures (4.4 to 4.6) depict three possible cases. 

Metallographic and convolution analysis for the eutectic characteristic temperatures will be 

left for future work.

0.00

- 0 .20 -

-0.40

3  -0.60

-0.80

360340300 320280
Time (s)

Figure 4.4 -1  st derivative curve showing one defined Al-Cu eutectic peak
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Figure 4.5 - 1st derivative curve displaying a convoluted Al-Cu peak
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Figure 4.6 - 1 st derivative curve displaying two distinct Al-Cu and AlCuMgSi eutectic 
peaks
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4.5. Determination of Grain Size

4.5.1. Literature Search

A uniform dispersion o f fine grains results in castings that have better mechanical and 

physical properties. According to the literature [6], there are four possible methods to 

achieve grain refinement:

• Addition of nucleation agents

• Forced convection

• Varying the solidification parameters

• Ultrasound treatment

According to McCartney[7] as well as Sigworth and Whalen [8] grain refinement is used 

to achieve:

• Better mechanical properties (ex. yield and tensile strength, elongation, hardness)

• Better product surface

• Reduced homogenization time

• Improved distribution o f second phase particles and microporosity on a fine scale

• Improved machineability

• Better feeding in order to reduce shrinkage

• Reduced tendency of hot tearing
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Cooling curves have been used to study grain refinement as the shape of the cooling 

curve at the beginning o f dendrite solidification yields information on grain size. The 

determination o f the most important relations in the primary Al regime for the 319 Al- 

alloy o f the cooling curve are schematically illustrated in Figure 4.7.

Grain refinement occurring during solidification can be indicated as a function of 

undercooling magnitude and undercooling time occurring during liquidus arrest. The 

shape of the cooling curve at the very beginning o f the solidification process gives a good 

indication o f the number o f nuclei present in the melt. When there is a great number o f 

nuclei, the shape o f the curve exhibits little undercooling (as illustrated in Figure 4.8 by

the dotted line). When there are few nuclei, there is more undercooling (which is

illustrated in the Figure 4.8 by the solid line).

The relationship between T“’ DENm in  and T“’ DENg , is mathematically expressed by

equation (4.1). This equation can be used as a criterion for the estimation o f grain size.

a '-pa.-NUC __ T a , DEN - r a ,  DEN I A  1 'i
A l  U “ 1 G - l  MIN (  < -)

The undercooling duration (Atu), can also be used for the determination of the grain size 

(i.e. the larger Atu, the coarser the grain). The duration may be defined as the time 

between the minimum and maximum on the cooling curve in Figure 4.7 and can be 

mathematically expressed by the following:
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, .  _  .a, DEN ,cx, DEN
Atu -  t o  -  t  MIN (4.2)

The duration may be also distinguished by the time running between several 

characteristic points in the region under consideration. Some authors [8], recognize two 

undercooling intervals, (tj and t2). The undercooling arrest time tj is the time interval 

between the Ta’ ^e^nuc  and Ta’ DENm in- The undercooling arrest time t2 is the time interval 

between T°’ DENnuc  an d  T“’ DENg .

T ▲

Refined alloy
-aDEN Unrefined alloyNUC

-aDEN
G

-aDEN
MIN

Time (t)

Figure 4.7 - A part o f the cooling curve showing the definition o f apparent undercooling 
(ATa-NUCU ) and undercooling time (AtU).

In recent literature, several models have been proposed for the assessment o f grain size 

using thermal analysis. Based on laboratory experiments, Chai [9] developed an equation 

which related the grain size (radius, Rf) with the average dendritic growth rate (Va) and 

the solidification time at the dendrite coherency point (t*):
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Rf = V at* (4.3)

Thus, grain size can be estimated using the following equation:

Rf = A t* / (0.86AT* + 316 (fs*)2) (4.4)

Where A is the constant and AT* is the temperature difference between the nucleation of 

a  -A1 crystals and the dendrite coherency point. However, verification o f this model 

revealed a considerable discrepancy between the TA results and metallographically 

measured grain size.

An equation was developed which relates grain size (GS) with characteristic points on the 

thermal cooling curve (ta,DENG and ta,DENNuc) for Al-Si-Cu alloys. The calculated value o f 

GS is expressed in terms of an ASTM scale value (from 1 to 14).

GS — Ao + AiF (4.5)

Where:

A0 = 14.39

A, = -0.36
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The constants Ao and Aj in equation (4.5) were determined by linear regression analysis, 

while the variable F represented the time difference between two characteristic points on 

the cooling curve (expressed in seconds).

Ananthanarayanan et al. [10], investigated the influence o f the cooling rate on the grain 

size in the 319 aluminum alloy. Based on their work, the IRC Team has developed an 

equation, which describes the change in the grain size in relation to the average cooling 

rate:

GS -  10 [3 1347-0 1985(i°g R)1 (4.6)

Where (R) is the average cooling rate determined by dividing the temperature interval 

between liquidus and solidus by the respective time intervals.

Equations 4.1 through 4.4 are related to the grain size before refinement and are a 

function o f different cooling rates. Analysis of the average cooling rate, which has been 

done on the first derivative o f the 319 Al-alloy cooling curve, shows that the cooling rate 

for the temperature solidification interval o f the 319 alloy is practically constant 

(0.37°C/s). Therefore, a new experimental investigation needs to be done in which the 

influence o f melt chemistry and melt processing on the grain size will be included.
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4.5.2. AIT AS Determination of Grain Size Refinement

Currently, the author has chosen to use Equation 4.6, due to the fact that it pertains 

specifically to the 319-aluminum alloy, whereas the other models have been developed 

using the 356-aluminum alloy. The author recommends that further metallographic 

verification be performed and corrections made if need be.
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Chapter 5. The Effect of Strontium on Aluminum -  Silicon Modification

5.1. Silicon Modification Literature Search

In Al-Si foundry alloys, silicon crystals in the eutectic mixture normally grow in a 

faceted manner, which results in poor mechanical properties (see Figure 5.1a). The 

commercial application of these alloys often depends on the modification o f the eutectic 

silicon crystals. This is performed by additions o f strontium [11] or sodium of low 

concentrations, which induce twinning in the growth of the silicon crystal. This twinning 

results in a fine fibrous structure shown in Figure 5.1b.

Figure 5.1 -  a) Unmodified silicon flakes; b) modified fibrous silicon structure (200X) 
[12].

The additions o f these elements cause changes primarily in the nucleation and growth 

mechanisms o f the eutectic silicon phase [13]. This reflects on the final mechanical 

properties of the aluminum-silicon alloy. For instance, it can improve tensile elongation, 

machinability and alter the casting characteristics.
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Figure 5.2 shows the effect of Si modification on the cooling curves for the Al-Si eutectic 

reaction. Modified eutectic solidification occurs at a nearly constant temperature, which 

is about 8-10°C below the unmodified equilibrium eutectic temperature (for the 319 Al- 

Si alloy the equilibrium eutectic temperature is about 562°C). Both the nucleation and 

growth eutectic temperatures are depressed by the addition o f modifiers. See Figure 5.1, 

[14]. The amount of the depression (ATe,g A1’S'), has been correlated with the degree of 

modification[15-17]. The greater the AT value, the more complete the modification is. 

Some authors suggest that the cooling rate [18] should be included together with AT to 

estimate the degree o f modification.

T AI‘SIe„c u n m o d if ie d

—:— ► T im e, (s)

Figure 5.2 -  Section of a cooling curve displaying the depression of Al-Si Eutectic 
Temperature (Dotted line represents a modified alloy) [19].
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5.2. AIT1 AS Determination of Silicon Modification

Currently the A1TAS system is using the same procedure as the current system in place at 

the Windsor Aluminum Plant, AluDelta. The procedure has been previously explained in 

Section 4.3 and is described by equation 5.1.

A npAl-Si___________r-nA l-S i npA l-Si / c  1 \
A 1 E,G,MOD“ l  E,UNMODIFIED-1 E,MODIFIED P - U

5.3. Experimental Work

Following is a portion o f the work completed by the author in collaboration with Dr. M. 

Djurdjevic under the supervision of Dr. J. Sokolowski. This work looked at the effect o f 

strontium on the copper eutectic as contained in the paper entitled “The Effect of 

Strontium on the Microstructure o f the Aluminum-Silicon and Aluminum Copper 

Eutectics in the 319 Aluminum Alloy”.

5.3.1. Objectives

1. To Quantify the relationship between AIT AS cooling curve characteristics, pertaining 

to the AlSi eutectic region with the Sr level and its fading behaviour, using WAP 

ingots remelted in the IRC laboratory

2. To compare the visually determined Si modification level (based on the AFS chart) 

with Sr content and AIT AS measurements
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3. To establish a quantitative relationship between Sr level, AT and the AlSi eutectic 

modification level in AIT AS laboratory test samples, with identical chemical 

compositions, at two different locations of the test sample

5.3.2. Experimental Procedure

WAP 319 aluminum alloy ingots produced by Alchem were used in this experiment. The 

ingots were melted in an electric resistance furnace and kept at a temperature o f 730 +/- 5 

°C. The melt was degassed for 15 minutes using an argon lance, however, no protective 

atmosphere was utilized during melt holding. It was then modified through the addition 

o f 10% Sr master alloy. An incubation time of 15 minutes was allowed prior to 

collecting the first sample. These samples were then taken by submerging a cylindrical 

graphite cup (40mm in diameter, 50mm deep) into the melt.

In order to study the fading effect of Sr over time, four samples were taken in 12 minute 

intervals before the next Sr additions was made. Changes in the AlSi eutectic growth 

temperature (T ai'Sie,g)  as a function of the Sr level, were determined using A1TAS 

cooling curves.

The level of Si modification ( T al‘Sie,g,mod) was determined according to the following 

formula of Equation 5.1. Light optical microscopy specimens were cut from the test 

samples close to the tips o f the thermocouples.
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5.3.3. Results

Figure 5.3 shows that the addition o f Sr increases the AT modification. When the Sr level 

is increased from 8 to 96 ppm the AT modification increases to a maximum of 

approximately 12 °C for those samples taken 15 minutes after the Sr addition. In other 

words, Sr addition increases the level of modification.

566
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Figure 5.3 -  A1TAS determination o f Al-Si eutectic temperature vs. Sr additions showing 
fading times [12].

Figure 5.3 also shows the that the longer holding times (up to 51 minutes) decrease the 

AT modification by up to 2°C in high Sr samples.

Figure 5.4 depicts the relationship between Sr level, AT modification and the resulting Si 

modification level (according to AFS chart). Increasing Sr corresponds with a higher AT 

modification and degree of Si modification. A Si modification level o f #1-3 was
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obtained for a Sr concentration between 8 and approximately 60 ppm. The addition of Sr 

to a level o f approximately 70 ppm produced a modified eutectic structure #4. Further 

addition of Sr to 96 ppm produced the finer fibrous AlSi eutectic structure #5.

14

o
D>0)O
I-"
S?0)a

0 40 60 80 10020
Strontium, (ppm)

Figure 5.4 -  AT vs. Sr addition showing the coresponding AFS modification [12].

Metallographic observation revealed that Sr effects the characteristics of Cu rich phases 

(type and volume fraction) and porosity.

Figure 5.5 shows the relationship between the AFS Grade (i.e. AlSi eutectic modification 

level) and the Sr level at two different locations on the A1TAS test samples. The slightly 

higher solidification rates at the radius o f the wall thermocouple had little effect on AFS 

grade. Therefore, all subsequent analyses are based on the average o f the measurements 

taken at the wall and centre thermocouples.
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Figure 5.5 -  Comparison o f AFS Grade value vs. Sr addition for the wall and centre 
location [19].

Figure 5.6 depicts the relationships between Sr level, AT and AFS Grade for the A1TAS 

test samples.

AFS Grade
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/5  -
■
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100

10 -

Figure 5.6. -  Comparison of AT vs. Sr addition and AFS grade value [19].
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5.3.4. Conclusions

1. The A1TAS accurately quantifies the degree o f AlSi eutectic modification based on 

AFS specifications and can evaluate the degree o f Sr fading over time.

2. There is a strong statistical correlation between the Sr level, AT and the AlSi eutectic 

modification level.
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Chapter 6. The Effect of Strontium on the Formation of Al-Cu Phases

6.1. Literature Search

The melting temperature o f AlCu rich phases determines the maximum temperature that 

319 aluminum alloys can be exposed to during thermal sand removal (TSR) or solution 

treatment without incurring incipient melting. Up to three distinct AlCu phases can form 

during the process o f 319 alloy solidification. These are a high Cu phase (approx. 40% 

wt%Cu), a medium Cu phase (up to 30 wt% Cu) and a low Cu phase (approx. 8wt% Cu). 

These phases can also contain other elements such as Mg (up to 4 wt%) and Si (up to 12 

wt%). IRC research [12] and the existing literature [20-24] suggests that the Sr level has 

an influence on the formation of these phases. However, the precise effect that Sr has on 

the type o f phase formed, its area fraction, solidification characteristics (e.g. nucleation 

and solidus temperature) and melting behaviour has yet to be determined.

The A1TAS system is capable o f determining the general nucleation and solidus 

temperature for all of the Al-Cu rich phases present in the test sample structure based on 

cooling curve data (although it can not distinguish individual phases). However, to avoid 

the problem of incipient melting, it is important to know the melting temperature o f the 

last phase to solidify. Previous IRC work has demonstrated that it is possible to measure 

this temperature using A1TAS data gathered during the heating cycle. This study showed 

that the incipient melting temperature was approximately 15 °C higher then the solidus 

temperature in low Sr level alloys due to the thermal hysteresis effect.
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6.2. Experimental Work

Following is a portion of the work completed by the author in collaboration with Dr. M. 

Djurdjevic under the supervision o f Dr. J. Sokolowski. This work looked at the effect of 

strontium on the copper eutectic as contained in the paper entitled “The Effect of 

Strontium on the Microstructure of the Aluminum-Silicon and Aluminum Copper 

Eutectics in the 319 Aluminum Alloy”. In addition, further work was done on the effect 

o f copper content in Al-Si 3xx series o f alloys in collaboration with Dr. C. Cacers and Dr. 

M. Djurdjevic.

6.2.1. Objective

1. To quantify the influence of the Sr level on the following characteristics o f the AlCu 

rich phases: type and area fraction, nucleation and solidus temperature.

6.2.2. Experimental Procedure

WAP 319 aluminum alloy ingots produced by Alchem were used in this experiment. The 

ingots were melted in an electric resistance furnace and kept at a temperature o f 730 +/- 5 

°C. The melt was degassed for 15 minutes using an argon lance, however, no protective 

atmosphere was utilized during melt holding. It was then modified through the addition 

o f 10% Sr master alloy. An incubation time o f 15 minutes was allowed prior to
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collecting the first sample. These samples were then taken by submerging a cylindrical 

graphite cup (40mm in diameter, 50mm deep) into the melt.

Light optical microscopy specimens were cut from the test samples close to the tips o f the 

thermocouples.

6.2.3. Results

SEM/EDS analysis revealed the presence o f three different AlCu rich phases: high, 

medium and low Cu phases as represented in Figure 6.1a,b. These phases contain some 

additional elements.

50>jum

Figure 6.1 -  SEM micrographs (BSE mode) samples with a) 8ppm and b) 96 ppm Sr, 
respectively. 1 - blocky A12Cu eutectic, 2 -  eutectic Al-A12Cu, 3 -  fine 
A15Mg8Cu2Si6 eutectic types o f copper phases, and 4 -  iron phase [12].

Figure 6.2 shows that the addition o f Sr decreases the area fraction o f the medium Cu 

phase from 1.3 to 0.14% while increasing the high and low Cu phases from 0.44 up to 

1.9%.
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Figure 6.2 -  Area fraction o f Cu phases as a function of Sr content [12].

The Al-Cu eutectic nucleation temperature increased from approximately 504°C to 

512°C when the Sr level was increased from 8 to 96 ppm. See Figure 6.3. This addition 

o f Sr also increases the solidus temperature from approximately 486°C to 496°C. It is 

interesting to note that the solidus temperature rises approximately 30 ppm Sr and then 

becomes essentially stable.
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Figure 6.3 -  Nucleation temperature of Al-Cu rich phases and solidus temperature 
compared to Sr content [12].

6.2.4. Conclusions

1. Increasing the Sr level increases the area fraction of the high Cu phase and the low Cu 

phase while decreasing the area fraction of the medium Cu phase.

2. The peaks on the first derivative o f the cooling curve pertaining to the individual Al

Cu rich phases are convoluted. Consequently, the A1TAS system is unable to 

distinguish them. At present, only a general nucleation and solidification temperature 

o f all the AlCu rich phases is reported.
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Chapter 7 Modeling of Fraction Solid

7.1. Literature Search

Fraction solid is defined as the percentage o f solid phase(s) that precipitates between the 

liquidus and solidus temperature in a solidifying melt. In order to make reliable 

predictions on casting structure and feedability, accurate information is required on the 

fraction solid.

Several methods of determining the fraction solid o f a solidifying melt are presented in 

literature [25-35]. The most common technique employs quantitative metallography in 

which melt specimens are quenched between the liquidus and solidus temperatures. The 

volume fraction o f phases present prior to quenching are measured and related to the 

solid fraction at the time of quenching. Thermal analysis has also been used to calculate 

the fraction solid. Using this method, the amount o f heat evolved during the 

solidification o f the test sample is related to the fraction solid. Differential thermal 

analysis and differential scanning calorimetry have also been used to determine the 

fraction solid. However, these methods require complicated and expensive 

instrumentation. Models available from the literature which calculate the fraction solid 

based on parameters derived from the fundamental analysis of the solidification process 

are displayed in Table 7.1.
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Table 7.1 - Review of models for calculation o f fraction solid [36].

No TYPE OF MODELS COMMENTS
1.

LINEAR[1] f S = T UQ ~T
LIQ l SOl

TLIq- Liquidus temperature, °C 
T sol- Solidus temperature, °C 
T -  Instantaneous temperature, °C

Latent heat is assumed to vary linearly between 
liquidus and solidus temperatures. This model has 
no theoretical basis, but is frequently used due to 
its simplicity.

2. 1 L̂IO ~ ^LEVER RULE [1] f  = . LI(J
s  1 - k  Tm - T

Tm ~ Tm

~ Tsol
k-Distribution coefficient of 
binary alloys
Tm-Melting temperature of pure aluminum

Solidification in this model is assumed to 
progress very slowly and the solid and liquid 
phases coexist in equilibrium in the mushy zone.

3.
SCHEIL’S [1]

1
(  T T 1 

IAiS‘ e,g<T<Tl iq - / s = i -  m
\ l m 1LIQJ

T = t ls,E,G; f s = 1

In this model it is assumed that no solute 
diffusion occurs in the solid phase and also that 
the liquid is perfectly homogeneous.

4.
GRAIN NUCLEATION [3,8]

f g  = 1 - exp^- ̂  • k  ■ ■ aJ

R-Average grain radius, m 
N-Average grain density, m'3

The calculation of fraction solid is based on the 
grain nucleation law and on the assumption that 
the shape of the grains is spherical.

5.
HEA'

t

1

A - 0

I
0

_ Cp 1 
L J0

Cp -Specific hea
L -Latent heat o: 
dT/dt-Cooling ra

r BALANCE [6,9,11

(  d T \  (  d T \

y d t J c c  ^ d t K c _

~ (d T \  f d T '

. d t '  cc

I - ]  - [ - )  VV dt J cc \  d t J zc_

t of an alloy
" solidification 
te

dt

dt

Fraction solid can be calculated by determining 
the cumulative area between the first derivative of 
the cooling curve (cc), and the “zero’ cooling 
curve (hypothetical cooling curve without phase 
transformations) (zc).
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7.2 Experimental Work

Following is a portion o f the work completed by the author in collaboration with Dr. M. 

Djurdjevic, Dr. W. Kierkus, G. Byczynski under the supervision o f Dr. J. Sokolowski. 

This work proposed a new model for predicting the fraction solid based on key 

metallurgical reaction temperatures for the 319 aluminum alloy. This work has been 

published in a paper entitled “Modeling o f Fraction Solid for the 319 Aluminum Alloy”.

7.2.1. Objective

1. To develop a model for the prediction o f fraction solid based on key metallurgical 

reaction temperatures for the 319 aluminum alloy.

7.2.2. Experimental Procedure

319 aluminum alloy ingots obtained from WAP were melted under a protective nitrogen 

atmosphere using a heat resistance furnace. A graphite cup (40mm diameter, 50mm 

eight) was submerged into the melt to collect the sample. No further melt treatment was 

performed. A total o f twelve samples were collected to assure reproducibility and 

repeatability of the results. The average chemical composition o f the samples is 

summarized in Table 7.2. The melt temperature was held at 730 °C (±5°C). The thermal 

analysis was performed using the Fluke Netdaq data acquisition system with N-type 

thermocouples.
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Table 7.2 -  Average chemical composition o f 319 aluminum alloy [36].
Element Si Cu Mg Mn Zn Ti Fe Sr

Wt. % 7.35 3.21 0.29 0.23 0.15 0.12 0.40 0.0025

7.2.3. Results

Experimentally obtained values for the distribution o f fraction solid with respect to 

temperature will be used in the this work for developing a new model for calculation of 

fraction solid. However, before the numerical method for calculation o f fraction solid is 

described it is necessary for the cooling curve to be analyzed.

According to Figure 7.1 the temperature range between liquidus and solidus can be 

separated into three distinct segments. Each segment is related to distinct metallurgical 

reactions that occur during solidification of the 319 alloy. Table 7.3 gives the 

temperature boundaries for characteristic metallurgical reactions pertinent to each 

segment.

Table 7.3 -  Segmentation of cooling curve [36].

Segment of the cooling curve Boundary conditions Metallurgical reactions

I Tu<£TVrA1SiE>G
Nucleation and growth of a -  aluminum 
dendrite network, dendrite thickening.

II X A lS i rp . rpAICll 
1 E,Q 1 ^ 1 E,G

Nucleation and growth of 
Aluminum-silicon eutectic.

III TA1Cu e ,g  >T> Tsql
Nucleation and completion of aluminum 

copper-reaction and solidification process.
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Figure 7.1 -  Cooling curve o f 319 aluminum alloy [36],

During the first segment of solidification process, fraction solid versus temperature can 

be expressed by equation 7.1.

fs ‘ = (T Uq - T)/(Tliq - TAlsiE,G)nl fs A1Si (7.1)

Where: fs 1 -fraction solid, varying between 0 and fs AISr;

fs A1Sl _ fraction solid at the aluminum-silicon eutectic growth temperature; 

T liq - liquidus temperature (nucleation of a -  aluminum dendrites);

T -  running temperature between Tliq and T ^ ^ g;

TAISie,g -  aluminum-silicon eutectic growth temperature; 

nl -  nonlinear factor.
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The relationship between fraction solid and temperature in the second segment o f the 

cooling curve may be described by equation (7.2):

fs " = fs A,Si + (TA1SiE,G - T)/(T AISiE,G - TA1CuE,o)n2 (fs A1Cu - fs A1Si) (7.2)

Where: fs 11 -  fraction solid, varying between fs A1Sl and fs A1Cu;

fs AICu -fraction solid at the aluminum-copper eutectic growth temperature;

T AICue,g -  aluminum copper eutectic growth temperature;

T -  running temperature between T a 1Sie,g and TAICuE;G; 

n2 -  nonlinear factor.

Equation (7.3) describes the relationship between fraction solid and temperature in the 

third segment o f the cooling curve:

fs 10 = fsA1Cu + (T a1Cue,g - T )/(T a1Cue,g - T soi/ 3 (100 - fs A1Cu) (7.3)

Where: fs 111 -  fraction solid, varying between fs AICu and 100%;

T sol -  solidus temperature; 

n3 -  nonlinear factor.

The procedure for calculating fraction solid used in this work is based on a concept 

presented by K. G. Upadhya at al. [32], and H. Huang at al. [30]. In their research on 

356 alloy, T l i q  and T s o l  temperatures were taken from graphs depicting fraction solid as
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a function o f temperature, while the aluminum-silicon eutectic growth temperature was 

taken from Baeckerud’s work [24].

In order to calculate the fraction solid, two coefficients from equations 3 to 5, fs A1Si and fs 

AICu, were derived from the experimental data using the heat balance equation. The non

linear factors (n l, n2 and n3) were not known and thus were matched to the experimental 

data using least squares regression analysis. For the 319 alloy the numerical values of 

these coefficients and factors are listed in Table 7.4.

Table 7.4 - Numerical values for fs AISl and fs A1Cu and nonlinear factors (n l, n2 and n3),
for the 319 alloy [36].

Factors fsA1Sl,(%) fsAICu,(%) nl n2 n3

46.60 92.54 0.80 0.20 0.30

Figure 7.2 compares the fraction solid -  temperature relation described by the different 

models presented in the literature with the model presented in this work. Table 7.5 

compares the fraction solid calculated according to the author’s model with Backerud’s 

results [24].

Table 7.5 - A comparison o f fraction solid calculated according to the present model with
that of Backerud [36].

University of Windsor Model Backerud’s experimental data [24]

Temperature, (°C) Fraction solid, (%) Temperature, (°C) Fraction solid, (%)
604.6 0 604.0 0
600.0 7.8 600.0 12.0
579.0 31.0 579.0 35.0
561.0 67.6 561.0 51.0
507.0 95.2 507.0 94.0
495.0 98.6 495.0 100.0
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Figure 7.2 - Fraction solid as a function of temperature for the various models [36]

The different fraction solid estimates calculated according to Backerud’s model and the 

present model can be attributed to differences in the chemical compositions o f the 319 

alloy used in the two studies (compare Table 7.2 with Table 7.6).

Table 7.6 ■■ Chemical composition o f the 319 aluminum alloy used in Backerud’s study 
[36].

Element Si Cu Mg Mn Zn Ti Fe Sr

Wt. % 6.08 3.27 0.05 0.33 0.66 0.14 0.64 NA
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7.2.4. Conclusions

1. A model for calculating fraction solid versus temperature, based on the thermal 

analysis technique, was developed in this work.

2. The original cooling curve showed that the temperature range between the 

liquidus and solidus temperature could be separated into three distinct segments. 

For each segment, a model for calculating the fraction solid was developed as a 

function of temperature.
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Chapter 8. Conclusions and Recommendations

Thermal analysis is an excellent tool for the quantification of the 319 aluminum alloy 

microstructure.

Improved filtering techniques have improved the use of higher order derivative curves. 

This allows for more precise automatic determination o f characteristic temperatures 

during solidification, which reduces the required interaction between the user and the 

software.

The investigation o f increasing strontium in 319 aluminum alloy showed that A1TAS is 

capable of determining the degree of silicon modification. However, more experimental 

work is needed to understand what influences other alloying elements such as antimony, 

bismuth etc. have on the effectiveness o f strontium as a modifier.

Investigating the effect o f strontium on the morphology of the Al-Cu phases 

demonstrated that AIT AS has the ability to determine which Al-Cu phases are present 

including the area fraction. Further work is required to determine the nucleation 

temperatures o f the individual Al-Cu phases by the deconvolution o f the Copper peaks 

found on the cooling curve.
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Appendix A 

AIT AS Training Manual
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Overall Objectives

■ Identify and control the modification level of 
the Aluminium Silicon Eutectic phase.

u Establish a relationship between the test 
sample solidification characteristics and 
relate these relationships to actual castings 
properties.
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AIT AS Hardware 
The Ford WAP Stand
Top of
$ M r

Amber 
Warning 
light

Self alignment 
ceramic cup 
holder

spipsnsspp

>

K-type
Thermocouple
Assembly

Control Panel
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AIT AS Hardware 
The Stand

m

1 Contains the location of the raw data file and calibration files used.

2 Contains information on the operator and time and date o f the test.

3 Displays the specifications regarding the maximum and minimum 
temperatures recorded and the sampling frequency.

4 Displays all the characteristic temperatures (°C), time (s), fraction solid (%) 
and cooling rate (°C/s).

A Displays the AlSi eutectic temperature depression (A TAI~S'E G). This number is 
used as an indicator of the level of modification.

6 Displays the AFS number that characterises the level of silicon modification.
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AIT AS Hardware 
The Consumables

•  Graphite cup
• replacement required every 30 trials or upon 

damage

•  Stainless steel sheaths
• must be replaced every trial

•  Calibrated K - type thermocouple probes
• replacement required once a month



Sampling Procedure

In order to ensure an unbiased test sample structure, the following 
procedure is recommended:

u Follow all safety measures, which include wearing all safety equipment and
observing all safety rules associated with the handling o f molten aluminum.

■ Place the AITAS stand as close as possible to the sampling point in a location 
that is free from vibration.

■ Verify the installation of thermocouple stainless steel sheaths.
u Pre-heat the thermal analysis graphite cup by placing it near the molten metal

so that it will be free of moisture during sampling in order to prevent a rapid 
temperature change of the test sample.

u Just before sampling, skim off the surface of the liquid metal well.
u Immerse the thermal analysis cup into the metal at an angle of approximately

45° in order to avoid incorporating oxides into the sample.
u Hold the thermal analysis cup 4 to 6 inches under the surface of molten

aluminum for 15 seconds in order to equalise the temperature of the graphite 
cup.

■ Withdraw the thermal analysis cup to collect the test sample. 7~



Sampling Procedure Continued

■ Place the thermal analysis cup on the ceramic holder within the AITAS stand. 
MAKE SURE THE CUP IS LOCATED PROPERLY in the self alignment hole.

m Close the AITAS cabinet door and lower the thermocouple assembly by
pressing the green “Start Button” (must hold until in the down position).

To Remove a Sample:

u Upon completion of a test, press the red “Stop Button”, which will raise the
thermocouple assembly. The test sample and cup will remain attached to the
assembly.

m Remove the graphite cup using the appropriate tongs. CAUTION: THE CUP 
WILL REMAIN HOT (~400°C).

u After the removal of the cup, grasp the sample with the tongs and pull straight 
down. This is important in order to avoid bending the thermocouples.

■ Replace stainless steel thermocouple sheaths.
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AITAS Software 
Main Screen

1. Main control module
- allows the user to either perform a test or verify/change the 
thermocouple calibration information.

2. Status module

- displays the current status of the AITAS software

3. Analysis module
- displays the AlSi Eutectic temperature, depression o f the AlSi 
eutectic temperature compared to an unmodified 319 and the 
level o f modiification (AFS number).

4. Thermocouple error indicator
- notifies the user of a disconnected thermocouple

5. Successful Test Indicator

- Informs the user on whether the test was performed successfully.

6. Advanced Options Button

- access to advanced cooling curve manipulation and 
administrator tasks



AITAS Software Program -  

Logging In
W W W j l i mgmm mm mmmm m u ■WWW

Upon pressing the “Perform Testing” 
button the user will be prompted to 
enter a user name followed by a 
password. The user name can be 
selected out of a available user list 
by pressing the left mouse button 
over the desired name.
If an improper user name or 
password is entered, the system will 
prompt the user to re-enter the 
information up to 3 times where by it 
resets.
Upon completion of the logging in procedure, the system will prompt 
the user to insure that the protective thermocouple sheaths are in 
place. After selecting “Continue”, the system is ready to start 
collecting data. This is demonstrated by a flashing light on the top of 
the AITAS control box.

Available Users
stockwell 
djurdjevic 
hochreiter 
byczynski 
dionne 
pignanelli

enter password

press to continue

7CTOirora~ovcr*rrcnTrc

Select User 
from above, 

then Press to 
Continue



&

CO
Co

iillliiill
ISSIlisiripHSM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
pt

io
ns



AITAS Software 
Verification o f Thermocouples

Procedure for handling thermocouple calibration information:
m Upon receiving calibrated thermocouples, the identification number and 

calibration information will be entered using the AITAS “Calibration 
Information” program. These files will then be saved on the AITAS computer 
in the file folder named “Calibration”.

u When a replacement thermocouple is needed, it is retrieved from the crib 
and inserted into the AITAS stand. Next the thermocouple change is 
recorded in the AITAS software using the “Change Thermocouple” button 
located on the main screen (for detailed instructions please see changing 
thermocouple, page --).

“Verify Thermocouple File” button:
m Upon pressing the “Verify Thermocouple File” button, a window will appear 

which gives the location and identification of the current thermocouples files 
loaded in the AITAS software.

■ If there is and discrepancy between the thermocouple identification 
information loaded in the AITAS system and the thermocouples installed in 
the AITAS stand, corrections should be made immediately. This is done by 
selecting the continue menu and selecting the “Change Thermocouple” 
button on the main screen.
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AITAS Software 
Changing Calibration File

SUBS*!

Verify' 
Thermocouple 

File

Change 
Thermocouple 

File
Jimrsitvii: iviiiihoiPerform

Testing

Tc Filename
pc971204c1 

Tw Filename!
jtc971204w1

Enter Calibration 
Filenames 

(NO extensions) 
Press 

Finished

( )ptions



AITAS Software 
Changing Calibration File

M

“Change Thermocouple File” button:

■ Upon pressing the “Change Thermocouple File” button, a window 
will appear which gives the current identification loaded in the AITAS 
software.

■ If the information for either the centre or wall thermocouple is 
incorrect, replace the current information with the correct 
identification information.

m The thermocouple information is appended to the raw data file so it 
is important to ensure proper identification of the thermocouples in 
use.
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AITAS Software 
Collection o f Data

wm mm mmm

m As the system begins to record, a real time plot appears. This 
informs the user as to the current state of testing. In addition to the 
plot, the maximum temperature recorded is displayed. This 
temperature must be greater then 700°C in order to obtain reliable 
readings.
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Analysis o f Data

■ The determination of all the characteristic 
temperatures, dendrite arm spacing and 
grain size are all described in detail in the 
full report.
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Report Generation 
Data Portion

1 Contains the location o f the raw data file and calibration files used.

2 Contains information on the operator and time/date of the test.

3 Displays the specifications regarding the maximum and minimum 
temperatures recorded and the sampling frequency.

4 Displays all the characteristic temperatures (°C), time (s), fraction solid (%) 
and cooling rate (°C/s).

5 Displays the AlSi eutectic temperature depression, (A TAI'SiE G). This number 
is used as an indicator o f the level of modification.

6 Displays the AFS number that characterises the level of silicon modification.
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Advanced AITAS Capabilities
Options

BfffBl»ia!f tlM iiBPW !iPPW lillPW W IPIPiiPPffW W i^

■ By pressing the “Options”  button, the user will be asked to enter a 
security password. After successfully entering the password, 
additional buttons and switches will become available. These 
include;

1 The “Run previous files” button allows the user to re-analyse files in which 
they can zoom in on certain areas or view additional charts.

2 The second group consists of sampling variables. These include the trigger 
temperatures. Trigger temperatures define when the data logger should start 
and stop recording data. In addition to the triggers, the user can also change 
the sampling frequency and maximum readings. For the current unit, the 
maximum data rate is 5 Hz per channel. Therefore 2000 scans or 4000 total 
readings is the default for the maximum number of readings.
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Advanced AITAS Capabilities 
Options

The “Run Continuous” switch must be in the “ON” position in order to allow 
the user to have manual control of the AITAS software. This would be 
necessary if  the user wanted to zoom in on a certain part of the curve or look 
at additional graphs. If the switch is in the “OFF” position, the user will simply 
re-evaluate the data and return to the initial main screen. This button should 
be in the “OFF” position during testing.

The “Print” switch in the “YES” position allows the user to automatically print 
the cooling curve and the 1st and 2nd derivative curves after each test or 
evaluation in the form of the general report. The “New User” button allows 
the user to add or remove user names and password information to the 
system.

5 The last module determines which filtering routine is used to reduce the noise 
in the original data. At the present time, the IRC suggests the Weighted 
Moving Average filter be used in order to eliminate the greatest amount of 
noise while still retaining the original shape of the curve.
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AITAS Advanced Capabilities 
Main Screen
1 The first module reports the estimated ASTM grain size and dendrite arm 

spacing determined by the mathematical models presented in the detailed 
manual.

2 The second module again displays the filtering procedure used in reducing 
the noise. This must be set prior to running the program on the AITAS Main 
Screen.

3 Module 3 displays the legend for the accompanying graph as well as the print 
and display options. The large circular button under the heading “Print 
Displayed Graphs” will print the current curves shown on the graph (9) in the 
form o f a general report. Next, smaller circular buttons under the heading 
“Print” will print only the corresponding curve in the form of a general report. 
Finally, square buttons control which curves are displayed on the graph (9).

4 Module 4 displays the number o f iterations the program has performed. The
AITAS software continues to iterate in order to allow the user to make 
changes to the display in a real time mode. It is recommended that eight 
iterations are performed before curve manipulation is performed. 91



AITAS Advanced Capabilities
Main Screen

5 Module 5 displays the specifications obtained for the test. These include; the 
sampling frequency, maximum and minimum pour temperature (before 
filtering), the cooling rate and the maximum and minimum temperatures on 
the graph.

6 The manual cursor information is obtained in module 6. The manual cursor is 
located on the graph (9).

7 Module 7 list all the characteristic temperature information including time(s), 
temperature (°C), fraction solid (%) and cooling rate (°C/s).

8 When the system is in continuous running mode, the “Press to Quit’’ button 
must be used in order to return to the main AITAS screen.

9 The main graph is used to display all the curves including the original cooling 
curve, 1st and 2nd derivative curves, A T curve (Tc-Tw), fraction solid and the 
baseline curve (the baseline curve is always displayed with the 1st derivative 
curve).
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AITAS Advanced Capabilities 
Zooming Capabilities
■ By pressing the “Zoom” button (10) an additional window appears with the 

entire cooling curve visible (11). Two boundary bars are present which 
determine which part o f the cooling curve is shown on the main graph.
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