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ABSTRACT 

The effect of five process variables on the transformation of 16 selected 

PPCP/EDCs during drinking water ozonation was systematically studied through 25"1 

fractional factorial designed experiments. Dissolved Organic Carbon (DOC) content, 

ozone dose, and their interaction were most significant for all 16 compounds, and 

accounted for 60-98% of the observed variability in the transformation efficiencies. 

Temperature was a significant factor for most of the fast-reacting compounds (ko3 >104 

M'V1), accounting for up to 20% of the change in transformation efficiency, but was not 

significant for the slow-reacting compounds (k03 <103 IVf's"1). Ozone exposure of > 1.0 

mg L"1 min"1 resulted in > 80% transformation of all the 16 compounds at both low (5 °C) 

and high (23 °C) temperatures. However, this transformation is expected to be strongly 

dependent on the nature of the DOC for the slow-reacting compounds. 
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CHAPTER 1: INTRODUCTION 

1.1 Environmental Side Effects Of PPCPs/EDCs- Current Status 

The occurrence of endocrine-disrupting compounds (EDCs) as well as pharmaceuticals 

and personal care products (PPCPs) in the aquatic environment has raised growing 

concerns and research interests recently (Daughton et al., 1999; Heberer et al., 2002; 

Snyder et al., 2003). In the context of pollution, the United States Environmental 

Protection Agency defines pharmaceuticals and personal care products (PPCPs) as 

contamination from any product or its chemical constituents used by individuals for 

personal health or cosmetic reasons or used to enhance growth or health of livestock in 

the agribusiness (USEPA, 2008). Included in this list are thousands of chemical 

substances, including prescription and over-the-counter therapeutic drugs, veterinary 

drugs, fragrances, and cosmetics. Of particular concern is a sub-set of bioactive PPCPs, 

which are routinely detected in the environment, and are known or suspected to have 

toxic or other harmful side effects. In this context, chemicals that can cause the disruption 

of endocrine related processes, called endocrine disrupting chemicals (EDCs) are of 

particular concern in the aquatic environment. Chemicals in this group that are routinely 

detected in the aquatic environment include some PPCPs (e.g., 17a-ethinylestradiol), as 

well as others (e.g., metals, bisphenol A). Therefore, PPCPs/EDCs is used as a general 

term to represent all of these compounds in literature. With the development of advanced 

analytical instruments and methods, a variety of PPCPs/EDCs have been detected in 

wastewater effluents and drinking water supplies (Daughton et al , 2000; Kolpin et al., 

2002), or even worse in drinking water, in the lower nanograms per litre range (Ternes et 
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al., 2001). Figure 1 shows various routes by which human and veterinary therapeutics are 

released to the environment. 

Pharmaceutical compounds are designed either to be highly active and interact with 

receptors in humans and animals or to be toxic for a number of infectious organisms, 

including bacteria, fungi and parasites. Once released into the environment, 

pharmaceuticals are transported and distributed to air, water, soil or sediment. A wide 

range of subtle impacts has been reported on lower animals that have receptor systems 

similar to humans and animals used in agriculture, as well as infectious organisms that 

have a crucial role in the functioning of ecosystems, as listed in Table 1.1. 

Figure 1.1 Routes of PPCPs/EDCs entering the environment (source: Boxall, 2004). 

Although no harmful health effects on human have been reported due to PPCPs/EDCs 

contamination of the aquatic environment, effects from long-term exposure to individual 
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or a combination of several PPCPs/EDCs are not known. Applying the precautionary 

principle, the best strategy might be to minimize environmental contamination and 

removal of these compounds to the extent possible during drinking water treatment. 

Table 1.1 Reported subtle effects of some selected PPCPs/EDCs detected in surface water 
(adapted from Boxall, 2004) 

Compounds Medicine Class Reported Effects Reference 

Inhibition of basal 
Sulfamethoxazole Antibiotic 

ethoxyresorufin-0-deethylase Laville et al., 

(EROD) activity in cultures of 2004 
Carbamazepine Anticonvulsant 

rainbow trout hepatocytes 

Tylosin 

Ibuprofen 

Erythromycin 

Tetracycline 

17a-Ethinylestradiol 

Antibiotic 

Anti-inflammatory 

Antibiotic 

Antibiotic 

Contraceptive 

Impacts on the structure of soil 

microbial communities 

Stimulation of growth of 

cyanobacteria and inhibition of 

growth of aquatic plants 

Endocrine-disrupting effects on 

fish, reptiles and invertebrates 

Westergaard et 

al., 2001 

Pomati et al., 

2004 

Young et al., 

2002 

1.2 Removal of PPCPs/EDCs by Different Treatments 

Municipal wastewater treatment plants are a dominant source of release of PPCPs/EDCs 

to the aquatic environment. The residual concentration in drinking water is therefore 

governed by the efficiency of their removal by wastewater and water treatment processes. 

Conventional activated sludge municipal wastewater treatment has been shown to 

degrade several PPCPs/EDCs to varying extent, i.e., from complete to very poor, 

depending on their physicochemical properties (Joss et al., 2005; G6bel et al., 2007). 

Studies have demonstrated that traditional water treatment trains, mainly consisting of 

coagulation, flocculation, sedimentation, and filtration, are not capable of efficient 
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removal of PPCPs/EDCs (Zhang et al., 1999; Adams et al., 2002). Activated carbon 

adsorption, including granular activated carbon (GAC) and powder activated carbon 

(PAC) were effective in removal of some pharmaceuticals (Ternes et al., 2002; 

Westerhoff et al., 2005). However, the individual removal efficiency varies greatly and 

depends on the properties of the activated carbon sorbent (e.g. surface area, pore size 

distribution, surface charge, oxygen content), as well as the properties of the solute (e.g., 

shape, size, charge, hydrophobicity) (Ternes et al., 2002; Snyder et al., 2003). Amongst 

membrane filtration processes, reverse osmosis and nanofiltration have been shown to 

provide an excellent barrier for most PPCPs/EDCs. Polar and charged compounds, which 

interact with membrane surfaces, are better removed than less polar or neutral compounds 

(Snyder et al., 2003). However, membrane processes suffer from the disadvantage of 

producing waste concentrate or brine that must be disposed of. Chemical oxidation of 

PPCPs/EDCs by chlorine is selective, and in general not very effective (Westerhoff et al., 

2005). Several studies have reported on the oxidation of PPCPs/EDCs by advanced 

oxidation processes (AOPs). These processes include the application of ozone, hydrogen 

peroxide, and ultraviolet light, either individually or in combination (Crittenden et al., 

2005). The processes involve formation of highly reactive OH radicals ('OH), which is a 

very potent and non-selective oxidant. The reported oxidation efficiencies with ozone 

range from medium to high for many PPCPs/EDCs of concern depending on their 

chemical structures and functional groups (Zwiener and Frimmel, 2000; Acero et al., 

2001; Ternes et al., 2002 and 2003; Westerhoff et al., 2005). 

Treatment with ozone has been implemented or is being considered as an upgrade by 

several municipalities to improve the microbiological safety and reduce the formation of 

disinfection by-products during post-chlorination of the treated drinking water. The 
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transformation of PPCPs/EDCs and other organic contaminants during the process would 

therefore be an added benefit of the process. However, the efficiency of transformation of 

PPCPs/EDCs by ozonation is expected to be affected by several process variables, the 

effect of which has not been systematically or extensively studied. 

1.3 Background- Occurrence of PPCPs/EDCs in Detroit River 

Detroit River connects Lake St. Clair and Lake Erie, and is the source of drinking water 

for approximately 4.5 million residents of metropolitan Detroit, Michigan, USA and 

Windsor, Ontario, Canada (Jasim et ah, 2006). Due to considerable loading of urban and 

agricultural runoff, sewage treatment plant discharges at the head of the river, and 

frequent combined sewer overflows, the sources, types and concentrations of 

PPCPs/EDCs in the river water are of ecological and human health concern. 

The present study is a part of a larger project, sponsored in part by the American Water 

Works Association Research Foundation (AwwaRF), the Ontario Ministry of the 

Environment (MOE), and the Windsor Utilities Commission (WUC). In an earlier part of 

the study, the occurrence of 51 PPCPs and EDCs was examined over a 13-month period 

in the Detroit River Watershed. The sampling locations were chosen to follow the 

transport and fate of the target pollutants from the effluent of the Little River Sewage 

Treatment Plant (STP), Windsor, Ontario to the finished drinking water supplied to the 

Cities of Detroit and Windsor. Based on the results from this study (unpublished data), a 

set of 16 PPCPs/EDCs was selected for the current study. The selected substances are 

listed in Table 1.2. Thirteen compounds were selected in this study because they 

exhibited the highest frequencies of detection in the Detroit River Watershed. The 

remaining three chemicals (i.e., tetracycline, monensin and indomethacin) were selected 
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because they have only recently been added to MOE's list of monitored PPCPs/EDCs, 

and have not been widely monitored or reported. 

Table 1. 2 Compounds to be studied in bench-scale experiments 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Compound Name 

Erythromycin 

Tylosin 

Lincomycin 

Sulfamethazine 

Sulfamethoxazole 

Sulfachloropyridazine 

Tetracycline 

Monensin 

Carbamazepine 

Ibuprofen 

Naproxen 

Indomethacin 

Gemfibrozil 

Bezafibrate 

Clofibric Acid 

Bisphenol A 

Description 

Antibiotic (macro lide) 

Antibiotic (macrolide) 

Antibiotic (macrolide) 

Antibiotic (sulfonamide) 

Antibiotic (sulfonamide) 

Antibiotic (sulfonamide) 

Antibiotic 

Antibiotic 

Anticonvulsant 

Anti-inflammatory 

Anti-inflammatory 

Anti-inflammatory 

Lipid regulator 

Lipid regulator 

Lipid regulator 

Plasticizer 

Among these selected PPCPs/EDCs, 8 compounds are antibiotics. Erythromycin and 

tylosin are macrolide antibiotics, which are similar in structure, mechanism of action, and 

spectrum. Erythromycin inhibits bacterial protein synthesis and is often used for people 

with allergy to penicillins. Tylosin is a veterinary drug for the treatment of disease in food 

producing animals. Lincomycin is a lincosamide antibiotic having an antibacterial 

spectrum similar to macrolides (Ikehata et al., 2006). Sulfachlorpyridazine, 

sulfamethazine and sulfamethoxazole are sulfonamide antibiotics and have a common 
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core chemical structure, i.e., para-aminobenzene (see Appendix C). Tetracycline inhibits 

bacterial protein synthesis by attacking the ribosome (Merck & Co., 1999). Monensin is 

an antibiotic blocking protein transport in side the cells and extensively used in beef and 

dairy cattle industries. 

Carbamazepine is an anticonvulsant widely used to control generalized tonic-chronic 

seizures (Merck & Co., 1999), and was found to be highly resistant to biodegradation 

(Clara et al., 2004). Ibuprofen, naproxen and indomethacin are anti-inflammatory drugs to 

reduce pain and fever (Merck & Co., 1999). Gemfibrozil and bezafibrate are lipid 

regulators used for a range of metabolic disorders. Clofibric acid is a hydrolyzed 

metabolite of lipid regulator clofibrate. Bisphenol A is the only compound that is not a 

pharmaceutical. It is a plasticizer widely used in plastics manufacturing, for example, 

plastic bottles, food and beverage can linings and dental sealants. Identified as an 

endocrine-disrupting chemical, bisphenol A is able to duplicate, block or exaggerate 

hormonal responses. 

1.4 Objectives of This Project 

The objective of the current study is to examine the effect of process variables on the 

transformation of select PPCPs/EDCs of concern during ozone treatment of raw 

(untreated) source water. To ensure proper control of water quality parameters, the use of 

simulated raw water is envisaged. The present study is focused on conducting bench-

scale experiments to include the following specific objectives: 

- Select a suitable matrix for simulated raw water 
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- Select suitable ranges for five selected process variables (pH, DOC, temperature, 

ozone concentration, contact time) and a two-level fractional factorial design for the 

experiments 

- Establish & protocol for spiking the 16 selected PPCPs /EDCs into the simulated raw 

water 

- Conduct the 16 bench-scale experiments under the designed experimental conditions 

and monitor for several parameters including PPCP/EDC, DOC and ozone 

concentrations 

- Examine kinetics of ozone decay under selected experimental conditions 

- Statistically examine the results of the experiments to identify the importance of the 

selected process variables and their impact on PPCPs /EDCs transformation during 

the ozonation process. 

- Develop recommendations for utilities regarding ozonation treatment for the 

transformation of PPCPs/ EDCs, based on the results of the current study. 
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CHAPTER 2: LITERATURE REVIEW- OZONATION 

2.1 Selected Properties of Ozone and Its Applications in Water Treatment 

Ozone, O3, is a colorless and metastable gas at ambient temperatures with a pungent 

odour that can be detected at level as low as 0.01 to 0.05 ppm. Its density is 1.5 times that 

of oxygen and is 12.5 times more soluble in water (solubility in water 0.494 m3/m3 at 0 

°C) (NCR, 1987). It is applied to water as a gas generated onsite by passing dry 

compressed air or pure oxygen across an electrode. Ozone is used as a strong 

oxidant/disinfectant in water treatment in a variety of applications, which include (1) 

disinfection, (2) oxidation of iron, manganese and sulfides, (3) oxidation of taste and 

odour compounds, (4) oxidation of micropollutants, (5) removal of color, (6) control of 

disinfection by-products (DBP) precursor and (8) reduction of chlorine demand 

(Crittenden et al., 2005). 

2.2 Ozone Decomposition Mechanisms and Kinetics 

2.2.1 Ozone Reactions and Decomposition 

Ozone can react with compounds in aqueous solutions (e.g., water) by two types of 

reactions: direct reaction by molecular ozone and indirect reaction by hydroxyl radical 

species that form when ozone decomposes in water (Hoigne et al., 1976). Molecular 

ozone directly oxidizes inorganic species (e.g., Fe2+, Mn2+, Br" and NH3) in water matrix, 

also selectively attacks the electron-rich bonds contained in specific functional groups in 

organics (e.g., aromatics, olefins and amines) (Hoigne et al., 1983). In comparison, the 

indirect reaction has a much less selectivity but a quick reaction rate by hydroxyl radicals, 
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which possesses a higher oxidizing potential than molecular ozone (2.8 V vs 2.07 V) (Ku 

et al., 1996; Hoigne, 1997). However, the formation of free radicals from ozone is 

affected by either the solution pH or the presence of some scavengers in the water to be 

treated. The following diagram illustrates these two general reactions of ozone in water, 

where Si represents all compounds in water (Langlais et al., 1991). 

03 + Si -» Products 

03 + OH" -> «OH (radical) + Si -* Products 

Although the two reactions proceed simultaneously and compete for substrate, they may 

be differentiated by using radical scavengers (e.g., carbonate and bicarbonate) to inhibit 

indirect free oxidation but without affecting the direct oxidation reaction (Chiang et al., 

2006). 

Ozone decomposition in aqueous solution plays a very important role in the application of 

ozonation processes and has been studied for several decades (Ku et al., 1996). Kinetic 

studies have shown that the decay of ozone in natural waters can be generally expressed 

as a two-stage first-order kinetic reaction. The first stage, i.e. the initial ozone demand 

phase, is marked by a sudden depletion of ozone that occurs within the first seconds of 

introduction, and is considered to be caused by those substances readily oxidized by 

ozone, such as organic and inorganic compounds (Urfer et al., 1999). The second stage is 

a slower radical chain reaction, which behaves according to first-order kinetics. This 

reaction is first-order in ozone concentration, and the decomposition rate can be measured 

at a given pH and in presence of excess radical scavengers, which prevent secondary 

reactions (Langlais et al., 1991; Urfer et al., 1999). 

HSB model, proposed by Hoigne, Staehelin, and Bader, is often cited in the literature to 

describe the spontaneous decomposition of ozone (Langlais et al., 1991; Westhoff et al., 
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1997). This radical chain process is believed to be initiated, promoted, and inhibited by 

many compounds in the raw water source. Langlais et al. (1991) defined initiators of the 

free-radical reaction as "compounds capable of inducing the formation of a superoxide 

ion (0{) from an ozone molecule", which include hydroxide ion (OH"), H2O2/HO2", Fe2+, 

formate, humics, as well as ultraviolet radiation at 253.7nm. In pure water, where no 

other initiators exist, the self-decomposition of ozone is initiated by reaction with the 

hydroxide ion (OH"). Promoters are "all organic and inorganic compounds capable of 

regenerating the O2" superoxide anion from the hydroxyl radical". The rate constant of the 

O2'" formed with ozone is very high (l.lxlO9 M'V1). Therefore, the conversion of less 

ozone-selective OH radicals into the highly selective O2" promotes the chain reaction (Pi 

et al., 2005). Common promoters include O3, humic acids, aryl groups, formic acid, 

glyoxylic acid, primary alcohols and phosphates. Inhibitors are "compounds capable of 

consuming the OH radicals without regenerating the superoxde anion O2"". Bicarbonate 

and carbonate ions, alkyl groups, tertiary alcohols, and humic substances are within this 

group. Some important decomposition reactions initiated by hydroxide ions are given as 

follow (von Gunten, 2003a; Crittenden et al., 2005): 

0 3 + OH' -+ H02" + 0 2 h = 70 M'V1 (2.1) 
03 + H02"-*03 ' " + H02' ^2 = 2.8xl06M"1s"1 (2.2) 

H02
,<-»02 '" + H+ Ka=1.6xl0-525°C (2.3) 

0 3 + 02"->0 3 " ' + 0 2 ^3 = l-lx109M"1s"1 (2.4) 

03*" + H + ^ H 0 3 ' £4=5 .2x l0 I 0 MV (2.5) 

H0 3 ' - » ' 0H + 0 2 Jfcs^l^xloV1 (2.6) 

Among these elementary reactions, step (2.1) is the initiation reaction of ozone self-

decomposition, which is only fast at high pH. While increasing pH can be costly in 

realistic water treatment, addition of hydrogen peroxide (therefore dissociating to H02") 
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represents a cheap solution (reaction 2.2), and this leads to an advanced oxidation process 

(AOP). The overall stoichiometry of these reactions is given as following reaction, which 

shows that 1.5 moles of ozone is needed to produce 1 mole of »OH. 

303 + 0 H - + H + ^ 4 0 2 + 2 O H (2.7) 

2.2.2 Parameters Affecting Ozone Decay 

Because of the powerful oxidizing capability and high instability of ozone, the 

decomposition mechanism is considered to be very complicated and is greatly affected by 

water quality and process parameters such as temperature, pH, alkalinity, DOC, ozone 

dosage, and UV intensity. The effects of some very important parameters on ozone 

decomposition are described as following: 

Temperature 

Temperature affects the solubility of ozone in water and its reaction rates causing ozone 

to decomposition, i.e., direct reaction and indirect reaction of ozone (Hoigne, 1994; Urfer 

et al., 1999). Higher temperature results in less soluble and less stable ozone in water, but 

the reaction rate with the substrate increases (Langlais et al., 1991). Mizuno et al. (2007) 

developed an ozone self-decomposition model based on a second-order in ozone 

concentration, and calculated that 2.2 times enhancement of rate constant with each 5 °C 

increase of temperature in the range of 15 - 30 °C. Elovitz et al. (2000) studied the effect 

of varying reaction temperatures on the rate of ozone depletion at an initial dose of 1.0 

mg/L and pH 8.0 and found 7-fold increase in the rate constants of secondary phase, i.e., 

first-order kinetic phase, with increasing temperatures from 5 to 25 °C. Interestingly, 
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temperature has limited effects on hydroxyl radical reactions since »OH reaction have 

activation energies typically on the order of 5 - 10 kJ/mol. 

pH 

The stability of ozone is strongly affected by the pH value of the water. The direct effects 

on ozone decomposition can be seen from the initiation reaction between ozone and 

hydroxide anions (OH') (reaction 2.1 in Section 2.2.1). Therefore, lowering the pH 

decreases the concentration of OH" thus producing a stabilizing effect on molecular ozone, 

which in turn favours direct reaction pathway. Whereas high pH values accelerate ozone 

decomposition, consequently favouring the indirect reaction pathway. Mizuno et al. (2007) 

also calculated 5-times enhancement of decomposition rate constant with increase of one 

pH unit based on their model. Elovitz et al. (2000) also reported 34-fold increase in the 

rate of ozone depletion with increasing pH from 6.0 to 9.0. In addition to the hydroxide-

initiated ozone decomposition reaction, as pH increases, O3 would be more reactive with 

deprotonated acid and phenol moieties in the dissolved organic matter (DOM) thus 

increasing the rates of direct electrophilic attack of O3 with DOM. Changes in pH value 

can also affect the rate of ozone consumption through pH-dependent reactions in the O3 

decomposition chain cycle involving reaction intermediates such as HO' and 03*". These 

concomitant effects make it difficult to construct a mechanistic interpretation of the effect 

of reaction pH on the O3 kinetics. Similarly to temperature, pH has limited effect on 

oxidation reactions involving »OH (Elovitz et al., 2000). 
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Alkalinity 

In most natural waters with pH values of 6 to 9, alkalinity is the combined concentration 

of bicarbonate ions (HCO3") and carbonate ions (CO32") (Davis et al. 1998). HC03" and 

CO32" species act as inhibitors in the O3 decomposition cycle by scavenging chain carrier 

•OH radicals, but not generating superoxide (02~) or other species that accelerate the 

decomposition of O3 (Urfer et al., 1999; Hoigne, 1994). Increased carbonate alkalinity 

therefore enhances the stability of the ozone molecules, but an apparent levelling off 

effect was observed with increasing HCO3" / CO32" concentration (Formi et al., 1982; 

Staehelin et al., 1982; Tomiyasu et al., 1985; Elovitz et al., 2000). The reason for the 

levelling phenomenon is still unclear. Elovitz et al. (2000) showed a two-fold decrease in 

the rate of zone depletion when the carbonate alkalinity was increased from 0 - 1 . 5 mM. 

The chain termination reactions by carbonate alkalinity can be expressed by following 

equations (von Gunten, 2003a): 

•OH + C03
2 ' -* C0 3 "+ OH", k - 3.9xl08 M'V1 (2.8) 

•OH + HCO3"-» C03*"+ H20, k = 8.5x10 6MV (2.9) 

Ozone Dose 

Ozone dose is a key control parameter in full-scale ozonation plants. Therefore, it is 

important to understand its effect on observed ozone decomposition kinetics. Different 

research groups have demonstrated that the rate of ozone decay varies with the applied 

ozone concentration in surface water, ground water and wastewater (Park et al., 1999; 

Sladic, 2001; Buffle et al., 2006a). Buffle et al. (2006a) reported that, in ozonation of 

wastewater, ozone consumption prior to 350 ms increases with increasing dose, but the 

rate of ozone decomposition decreases. Park and co-workers showed that decay rate 
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constant, k, decreased exponentially with an increase of ozone dose from 1 to 6 mg/L 

(Park et al., 1999). The peculiarity of kinetics raises the importance to test different levels 

of ozone doses covering the range of interest for the treatment process at certain 

temperature. 

Organics 

Organics in water are naturally occurring or from human sources (Langlais et al., 1991). 

Natural organic matter (NOM) is the term used to describe the complex matrix of organic 

chemicals originating form natural sources that are present in all water bodies (Crittenden 

et al., 2005). NOM is measured most commonly using total organic carbon (TOC) as a 

surrogate measure. TOC is composed primarily of two fractions: dissolved organic carbon 

(DOC), which can pass through a 0.45 jam filter, and particulate organic carbon (POC), 

those retained on the filter (Crittenden et al., 2005). DOC seems to be the water quality 

parameter that has a stronger influence on the efficiency of the ozonation process. NOM 

can affect the ozone stability in two ways: it can either directly react with ozone or 

indirectly affect its stability through scavenging of OH radicals (von Gunten, 2003a). 

Direct reactions cause an instantaneous ozone demand that are generally attributed to 

double bonds, activated aromatic systems, amines and sulfides (yon Gunten, 2003a). 

Schulze et al. (1999) showed that a raw water with TOC = 3.9 mg/L had an ozone 

demand 2 to 4 times higher than a settled water sample with TOC = 1 . 5 mg/L. 

Scavenging OH radicals by NOM can either inhibit or accelerate the chain reaction of 

ozone decomposition depending on if there is formation of superoxide radicals (02"). 

Previous studies have also shown that the effects of NOM on ozonation are dependent of 

the nature and concentration of organic compounds. Rechhow et al. (1992) performed 
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ozonation experiments on various fractions of DOM and observed that humic and fulvic 

acid fractions were responsible for most of the ozone consumption. Pi et al. (2005) found 

that some aromatic compounds (e.g., benzoate) tremendously accelerated ozone 

decomposition in buffered water although their direct reactions with ozone are very low 

(i.e., very low ko3,). Based on their findings and detection of H2O2 as an intermediate, 

they proposed a new reaction pathway, which is different from HSB model. Elovitz et al. 

(2000) studied six waters having moderate and similar DOC concentration and alkalinity, 

and found a three-fold difference in O3 depletion rates. They also concluded that the 

large-scale biogeochemical factors (e.g., limestone, temperature climate) rather than local 

environmental factors (e.g., local run-off, point-source pollution) dictate the behavior of 

the water towards ozonation. Buffle and co-workers studied ozone decomposition in 

wastewater, and found that ozone was quickly consumed within 350 ms, and no residual 

ozone could be measured beyond 20 seconds. In addition, ozone decomposition seemed 

not to follow apparent first-order kinetics as it would during the second phase of natural 

water ozonation (Buffle et al., 2006a). The effects of NOM on ozone decomposition can 

be elucidated from following equations (von Gunten, 2003a): 

Direct reactions with O3 

0 3+NOMl-*NOMlox (2.10) 

03+ NOM2 -> NOM2+' + 03*" (2.11) 

Propagation reactions to produce 02*" 

•OH + NOM3 -> NOM3 + H20 or NOM3« + OH- (2.12) 

NOM3' + 0 2 -> NOM3-02* -»NOM3+ + 0 2 ' ' (2.13) 

Chain termination reactions 

•OH + NOM4 -* NOM4 + H20 (2.14) 
NOM4* + 0 2 -» NOM4- 02" -> no 02* "formation (2.15) 
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Other parameters that have an influence on ozone decomposition include UV light 

intensity and anion species in aqueous solution. Increasing UV intensity resulted in 

increased decomposition rate of ozone, but this effect seemed to be dominating only in 

acidic solution; whereas the decomposition of ozone by the reaction with OH" could be 

the predominant reaction in alkaline solutions (Ku et al., 1996). Sotelo et al. (1989) 

studied that effect of anions on the self-decomposition rate in aqueous solution and found 

the decomposition rate of ozone was highly dependent on the type of anions dissolved in 

solutions. Anions in aqueous solutions could scavenge hydroxyl radicals generated from 

O3/OH" therefore inhibiting the degradation rate of dissolved organic matter. However, 

different scavenging abilities of these anions have been suggested based on a wide range 

of the rate constant values (e.g., 105 - lO^M'V1) between hydroxyl radical reaction with 

various anions (Ku et al., 1996). Table 2.1 shows the summary of selected factors that 

influence stability of ozone in aqueous solutions. 

Table 2.1 Factors that influence stability of aqueous ozone residuals 
Increases stability 

LowpH 

High alkalinity 

Low TOC 

Low temperature 

Reduces Stability 

High pH 

Low alkalinity 

High TOC 

High temperature 

2.3 Removal of PPCPs/EDCs by Ozone Oxidation 

2.3.1 Removal of PPCPs/EDCs from Pure, Simulated and Natural Source Waters 

Ozonation of selected PPCPs/EDCs has been studied by many different research groups. 

Since the biggest concern over the occurrence of these chemicals is their presence in 

drinking water sources, which can directly impact human health, most studies have 
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focused on their removal from drinking water sources. Zwiener and Frimmel (2000) 

selected clofibric acid, ibuprofen, and diclofenac as target chemicals, and examined their 

removal by ozone in Milli-Q ultra-pure water. Although diclofenac was well removed 

(97%), removal efficiencies for ibuprofen, (12%) and clofibric acid (8%) were low. They 

concluded that ozone reacts as a selective oxidant, and the substituted aminogroup in 

diclofenac is a possible center for the readily reaction with ozone. No comments on the 

low reactivity of ibuprofen and clofibric acid were provided. In 2002, Ternes and co­

workers investigated the elimination of bezafibrate, clofibric acid, carbamazepine and 

diclofenac during drinking water treatment processes under laboratory conditions and at 

two full-scale water treatment plants in Germany (Ternes et al., 2002). Within varying 

ranges of temperature (9.9 - 23 °C) and dissolved organic carbon (DOC) concentrations 

(1.3 - 2.4 mg/L), carbamazepine and diclofenac were well removed (>97%) even with the 

low applied ozone dose of 0.5 mg/L. Intermediate to high removals (50 - 80%) were 

observed for bezafibrate with increased ozone doses of 1.5 - 3 mg/L. However, only a 

reduction of <40% was achieved for clofibric acid even at the high ozone dose of 3.0 

mg/L. The authors stated that deprotonated secondary aromatic amines in diclofenac and 

nonaromatic double bonds in carbamazepine were responsible for the high reactivity with 

ozone. The medium reactivity of bezafibrate was attributed to its more slowly reactive 

disubstituted benzene rings; and missing active sites susceptible to direct ozone attack 

was deemed to be responsible for very slow reaction of clofibric acid. 

Adams et al. (2002) reported rapid and efficient conversions (>95%) of 

sulfachlorpyridazine and sulfamethazine by ozonation in pre-filtered Missouri River 

water samples. More than 95% of initial concentration of 50 ug/L was transformed for 

both compounds in < 2 minutes with an applied ozone dose of 0.3 mg/L. Reactions 
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occurred even faster in distilled/deionized water systems. More recently, Westerhoff and 

co-workers conducted series of bench-scale experiments to examine the fate of 62 

different PPCPs/EDCs during simulated drinking water treatment processes (Westerhoff 

et al., 2005). Three drinking water suppliers and one model water were used with initial 

PPCPs/EDCs concentrations ranging from 10-250 ng/L. The DOC ranged from 3.0 to 

4.0mg/L, ozone dosage used was 2.5-4.0mg/L, and contact time was 3.0 minutes. An 

average removal of 80% was observed for ibuprofen, 88% for sulfamethoxazole, 98% for 

gemfibrozil, 91% for naproxen and 99% for carbamazepine. 

2.3.2 Removal of PPCPs/EDCs from Wastewater 

Occurrence of PPCPs and EDCs in effluent from municipal sewage treatment plants 

(STPs) or wastewater treatment plants (WWTPs) also raised many concerns since some 

of these treated wastewaters are discharged into receiving waters, others may used in 

agricultural fields, and therefore become the major source of pharmaceuticals in the 

aquatic environment (Ternes, 1998; Kolpin et al., 2002). Effluents from STPs or WWTPs 

usually have much high amount of DOC, COD, and total suspended solid (TSS), which 

will require higher O3 dosage (e.g., 5 - 1 5 mg/L) than that applied in water treatment. 

Two pilot studies on removal of PPCPs/EDCs from wastewater were performed by the 

Ternes and Huber groups, respectively (Ternes et al., 2003; Huber et al., 2005). In their 

experiment, Ternes and co-workers demonstrated that sulfamethoxazole, erythromycin, 

carbamazepine can be well removed (>92 - 98%) at O3 dosage of 5 mg/L (contact time 18 

min.); ibuprofen and clofibric acid were only half removed (48 - 50%). Increasing O3 

dosage to 10 or 15 mg/L only increased removal of ibuprofen and clofibric acid to >62% 

and >59%, respectively. However, certain compounds in iodinated X-ray contrast media 
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(ICM) group, for example diatrizoate, only exhibited removal efficiencies for not higher 

than 14% even at highest O3 dosage (Ternes et al., 2003). 

Huber and co-workers investigated the influence of suspended solids on the oxidation of 

24, pharmaceuticals in an effluent of conventional activated sludge treatment (GAS) 

(Huber et al., 2005). Their results showed that suspended solids have only a minor 

influence on the oxidation efficiency of nonsorbing micropllutants. Estimation of 0 3 

absorption by sludge particles based on film theory proved that only 0.4% of the O3 

transferred into the bulk solution is consumed by sludge particles. This also explains why 

oxidation by «OH is relatively unaffected by suspended solids. Because the highest share 

of O3 reacts in the bulk liquid, •OH is formed in the bulk liquid as well and does not come 

into contact with sludge particles due to its extremely short lifetime. However, the 

negative impact of suspended solids cannot be neglected because once micropollutants, 

especially microorganisms, are sorbed to sludge particles or floe, oxidation and 

disinfection efficiency will be difficult to achieve because they will only experience a 

relatively low O3 exposure (Huber et al., 2005). 

2.3.3 Kinetics of Oxidation with Ozone 

In the case of ozonation, kinetics of oxidation of PPCPs/EDCs can be represented by the 

second-order rate constant for the reactions of selected PPCPs/ EDCs with ozone (ko3) 

and OH radical (koH). It has been shown that the second-order rate constants determined 

in pure aqueous solution could be applied to predict the behavior of pharmaceuticals (i.e. 

removal efficiency) in natural waters (Huber et al., 2003). Determination of ko3 usually 

relies on three methods: ozone in excess, pharmaceuticals in excess, and competition 

kinetics. While the first two methods are usually limited to rate constants that are lower 
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than about lOOOJVfV1, competition kinetics is suitable for compounds with high rate 

constants (Huber et al., 2003). Determination of rate constants is therefore case specific, 

and dependent on temperature and pH value. 

Because of the non-selective and fast reactive properties of hydroxyl radical OH, k0H can 

only be determined by competition kinetics. In the experiments determining koH, p-

chlorobenzoic acid (pCBA) has been selected as reference exhibiting a rate constant of 

koH= 5><109m"1s"1 (Buxton et al., 1988). OH radicals were generated either by photolysis 

of H2O2 at 313 nm if the compound is photo-stable, or with y-radiolysis if compounds 

undergo direct photolysis. The data were evaluated based on Equation 2.16, where koH(R) 

and koH(M) are the rate constants for the reference (R) and target compound (M), 

respectively. The irradiation time is represented by t. koH values for most of important 

micropollutants ranged from 3.0-10 x 109 fvfV1 (Huber et al., 2003; Dodd et al., 2006). 

jm = jm^B (2.16) 
\[M(0)J/ \ [R(0) ] / k0H(R) 

2.3.4 Prediction of Oxidation of PPCPs/EDCs 

Most of our understanding of oxidation rate determination and by-product identification 

comes from empirical laboratory studies. Because the ozonation is selective and case-

specific, this approach for discovering the behavior of contaminants is time-consuming, 

expensive, relies upon advanced measurement techniques, and often requires synthesis of 

by-products that are not commercially available. Therefore, good prediction of oxidation 

of PPCPs/EDCs becomes very important. 
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Chemical Structure-Reactivity Linkage - Qualitative 

Qualitative prediction for reactivity of some PPCPs/EDCs with ozone can made by 

examining the existence of certain functional group(s) in their chemical structures. Since 

ozone is a strong oxidant, it reacts well at sites of high electron density, such as activated 

aromatic ring, hydroxyl or amine functionalities, or double bonds (Zwiener and Frimmel, 

2000; Ternes et al , 2002; Westerhoff et al., 2005). Consequently, deprotonated species 

are more active than protonated analogues. Electron-donating (e.g., hydroxyl, amine) or 

electron-withdrawing (e.g., carboxyl) functional groups lead to increasing and decreasing 

reactivity, respectively. In addition, Hammett-based correlations have previously related 

organic compound structures to their reactivity with common drinking water disinfectants, 

but such correlations have been limited to single aromatic-ring analogues (Gallard et al , 

2002). 

Prediction Based on Second-order Rate Constant - Quantitative 

Oxidation of micropollutants during ozone treatment involves primary oxidant ozone 

molecules and secondary oxidant hydroxyl radicals »OH formed during ozone 

decomposition. The oxidation of micropollutant C during an ozonation process therefore 

consists of two oxidation pathways, and can be formulated according to a rate law such as 

Equation (2.17) and quantified by using integrated forms of Equation (2.18) or (2.19) 

(von Gunten, 2003 a): 

-d[C]/dt=ko3[C][03] + kOH[C][.OH] (2.17) 

ln[C(t)/ C(0)]= -(J[03]dt) k03 -(J['OH]dt) kOH (2.18) 

ln[C(t)/ C(0)]= -(J[03]dt)( k03 + kOHRct) (2.19) 
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where I[03]dt is called 03-exposure and can be determined by integrating the measured 

O3 concentrations over time during ozone decomposition. |[«OH]dt is called »OH-

exposure, which can be calculated either with help of Rct value; or simply by use of a 

probe compound that has a known &OH and that does not react with 03, Le., using Equation 

(2.20) and letting k03 equal to 0 (zero). The Rct concept was developed by Elovitz and 

von Gunten (1999), and equals the ratio of the "OH-exposure to the 03-exposure. It 

compared the potential for oxidation by #OH to the potential for oxidation by O3. Rct 

values for a given water matrix and ozonation condition can be experimentally 

determined from the experimentally measured decrease in concentration of an ozone-

resistant compound (e.g., /?-chlorobenzoic acid) and ozone (Haag and Yao, 1993; Elovitz 

and von Gunten, 1999). 

Rct values during both the initial and the second phase of ozone decomposition are highly 

dependent on the nature and content of organic matter, but decrease exponentially during 

the initial phase before reaching a constant value in the second phase (Buffle et al., 

2006b). von Gunten (2003a) reported that typical range of Rct value 10'9~10'7 for the 

secondary phase of ozonation in natural waters and > 10" during the initial phase or 

throughout an advanced oxidation proess. In many natural water applications, the initial 

phase may not be distinguishable and the Rct value may be calculated based on the second 

phase. In case it is distinguishable and significant, separate Rct values may be calculated 

for the two phases and the expected transformation of the micropollutant quantified using 

Equation (2.19). Equation (2.19) shows that for a micropollutant with a k.oH value of 

5xl09 M'V1, an Rct value of 3.6x10'7 will be required for 90% transformation at an ozone 

exposure of 1 mg/L.min (assume kC>3 is very low). 
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This cited model was believed to work reasonably well for some compounds that exhibit 

a low reactivity to O3 such as clofibric acid and iopromide, but failed for predicting the 

residuals of fast-reacting compounds with O3 during ozonation of municipal wastewater 

effluents (Huber et al., 2005). The authors attributed the observed strong deviations to the 

complexity of ozonation process in the presence of sludge particles or colloids. Despite of 

the prediction failure, oxidation by »OH can always be calculated even for compounds 

that react fast with O3. Consequently, the comparison of the predicted oxidation by »OH 

with the measured residual (Cm) allows for assessing the relevance of the two oxidation 

pathways for a selected compound according to the following Equation 2.20 (von Gunten, 

2003a; Huber et al., 2005), where ibuprofen (IBU) was used as a probe compound to 

determine 'OH-exposure. 

1 In 

to 

CucjOrt 

.CmjCG) 

Cp,mW' 

Cp,mPJ 

; *"OH,P 

where f(»OH) designates the fraction of oxidation by »OH , and l-f(»OH), the fraction of 

oxidation by O3. The knowledge of these values is important for predicting different 

products formed depending on different oxidation pathways. 

2.4 Oxidation of PPCPs/EDCs by Advanced Oxidation Processes (AOPs) 

Some water supplies may contain toxic synthetic organic compounds (SOCs) that must be 

removed or destroyed to protect public health. As mentioned in Chapter 1, advanced 

oxidation processes involve highly reactive hydroxyl radicals, which have rate constants 

usually 3 - 4 orders of magnitude greater than other oxidants such as chlorine and ozone. 
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Therefore AOP is a viable option to oxidize the SOCs completely into carbon dioxide, 

water, and mineral acids (e.g., HC1). 

Two most extensively studied ozone-based AOPs for the treatment of PPCPs/EDCs are 

O3/H2O2 and O3/UV (Z wiener and Frimmel, 2000;,Huber etal., 2003; Ternes et al.,2003; 

von Gunten, 2003a). In the O3/UV system, photolysis of ozone in aqueous solutions was 

found to lead to the production of hydrogen peroxide and oxygen molecules after a 

sequence of reactions. Then the hydrogen peroxide either reacts with O3 or is split by UV 

to produce hydroxyl radicals »OH (Peyton et al., 1983; Reisz et al., 2003; Crittenden et al., 

2005). 

0 3 + H20(i) + UV light - • H202 + 0 2 (2.21) 
H202 + UV light -» 20H» (2.22) 

203 + H202 -* 20H» + 302 (2.23) 

The combination of ozone with hydrogen peroxide is the most commonly applied AOP. 

The elementary reactions that are involved in the production of «OH from H2O2/O3 are 

similar to ozone self- decomposition except that the initiation occurs through hydrogen 

peroxide dissociation. Reaction (2.1) in section 2.2.1 therefore is replaced by following 

reaction: 

H202 «-* H02" + H+ Ka = 1.6x 10-12 (2.24) 

However, determining and maintaining a proper ratio of H2O2/O3 may not be easy in 

reality. There are several issues that affect the proper dosages of H2O2 and O3. Since 

ozone tends to be more reactive with background organic matter and inorganic species 

than H2O2, the applied ozone dosage will have to be higher than estimated from 

stoichiometry. However, an excess O3 dosage has the potential of wasting O3 and 

scavenging »OH through following reaction: 

•OH + 0 3 -> H02 '+ 02 , £=1.0xl0 8~2.0xl0 9MV (2.25) 
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This reaction is fast and important since it consumes both ozone and hydroxyl radicals, 

therefore lowers the oxidation capacity of the system. On the other hand, if hydrogen 

peroxide is over-dosed, the excessive H202 is not easily removed, and not only raises 

health concern, but, also consumes chlorine and interferes with disinfection (Crittenden et 

al., 2005). It may also scavenge «OH via the following reactions: 

•OH + H0 2 - -»H0 2 ' + OH- Jfc=7.5xl09M"V1 (2.26) 

•OH + H202 -> H02 ' + H20 k=2.7xl07Mlsl (2.27) 

It is no surprise that many efforts were made to determine the optimal concentrations of 

these two oxidants, as well as the proper ratio for the treatment. Huber et al reported that 

by applying 0.7mg/L H202and 2.0mg/L O3 (i.e. ratio of H2O2/O3=0.35), oxidation of the 

ozone-resisting compound ibuprofen was increased from 40% to over 80% for a contact 

time of 10 min (Huber et al. 2003). In a separate study, Zwiener and Frimmel (2000) 

achieved about 15-30% degradation of both clofibric acid and ibuprofen at a 

concentration of 0.4mg/L H202 and l.Omg/L O3 (i.e. ratio 0.40), and more than 90% at an 

increased oxidant concentration of 1.4mg/L H202 and 3.7mg/L 0 3 (i.e. ratio 0.38). 

It is worthy to note that the efficiency of an AOP also strongly depends on the OH radical 

scavenging capacity of the water matrix by scavengers such as HCO3", CO32' and DOC 

(Langlais et al., 1991; Huber et al., 2003), as shown in equation (2.28): 

•OH scavenging capacity = kon, DOC * [DOC]+ £0H, HC03"x [HCO3"] 

+ Wo32-*[C03
2-] (2.28) 

where AOH, DOC, ^OH, HCO3~ and &OH, CO3 " are the second-order rate constants for the 

reaction of natural organic matter, bicarbonate, carbonate with »OH radicals, respectively. 

It was demonstrated that the main advantage of the AOPs lies in the acceleration of the 

ozone transformation process, and the same oxidation degree can be achieved in a much 



27 

shorter contact time (Acero et al., 2001). Comparison of these two 03-based AOPs is 

given in Table 2.2. 

Table 2.2 Advantages & disadvantages of 03-based AOPs (adapted from Crittenden et al., 2005) 
Selected AOPs Advantages Disadvantages 

O3/H2O2 Waters with poor UV light 

transmission may be treated 

Special reactors not required 

•O3 production can be expensive & 

inefficient process 

• Gaseous O3 in off-gas must be removed 

• Maintaining & determining proper 

O3/H2O2 dosage may be difficult 

• Low pH is detrimental 

O3/UV 1 No need to maintain precise 

O3/H2O2 dosage 

' Residual O3 degrade rapidly 

• O3 absorbs more UV light than 

equivalent H2O2 

• Use O3 & UV to produce H2O2 - very 

inefficient compared to adding H2O2 

• Special reactors required 

• Ozone in off-gas must be removed 

• Volatile compounds will be stripped 
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CHAPTER 3: METHODOLOGY 

3.1 Selection of Variables 

The impact of ozone treatment is largely influenced by variables 'such as pH, temperature, 

DOC content, ozone concentration and contact time. The range for these parameters, as 

listed in Table 3.1, was selected based on typical values in surface drinking water source 

literature. The high and low values for each of the parameters were chosen for the two-

level fractional factorial design of the experiments. Ozone is very reactive and unstable, 

with its reactivity affected by several variables including pH, temperature, and DOC 

content. 

Table 3.1 Values for the 2-levels of the five variables selected for bench-scale experiments 

Variables 

Level 1 

Level 2 

pH 

6.8 

8.1 

DOC content 

(mg/L) 

0.8 

4.5 

0 3 Dose 

(mg/L) 

.1.0 

3.0 

Contact Time 

(min.) 

2 

6 

Temperature 

(°C) 

5 

23 

3.2 Experimental Design 

A one-half fractional factorial (25"1) experimental design was performed using Minitab to 

obtain the experimental conditions for the 16 designed experiments with five variables. 

The experiments were selected in a random order, and each experiment was conducted in 

triplicate. Factorial designs have several advantages. They are more efficient than one-

factor-at-a-time experiments. Furthermore, a factorial design is necessary when 

interactions may be present to avoid misleading conclusions. Finally, factorial designs 
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allow the effects of a factor to be estimated at several-levels of the other factors, yielding 

conclusions that are valid over a range of experimental conditions (Montgomery, 2005). 

3.3 Preparation of Simulated Water 

The simulated water was prepared from ultrapure water (>18 MQ.) produced by the Milli­

es water purification system. A DOC stock solution of ~100 mg.C/L made from 

Suwannee River natural organic matter (SR-NOM, reverse osmosis isolation, purchased 

from International Humic Substances Society) was used to achieve the desired DOC 

content. This stock solution was prepared by dissolving 0.25g SR-NOM in 1-L Milli-Q 

water and filtering through 1.5um membrane filter. 1 M NaHC03 solution was used to 

adjust pH values of all samples. A 20 ft VWR incubator was employed for temperature 

control. 

3.4 Spiking Procedure 

To avoid the problem of precipitation of the target chemicals, the stock spiking solution 

for the target substances was prepared in pure methanol at the MOE laboratory. The final 

concentrations for the spiked contaminants in simulated water ranged between 200 and 

1600 ng/L. These levels of concentrations are at least 30 times the method detection 

limits (MDLs)(see Table 3.2), and within a factor of five of their maximum detected 

concentrations in the Detroit River watershed for all the target contaminants. Prior to 

adding the stock spiking solution into simulated water, methanol evaporation by pure N2 

gas was performed. This procedure minimized addition of organic carbon from methanol 

but without causing the losses of PPCPs/EDCs spiked. 
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Table 3.2 Initial spiked concentrations of PPCPs/EDCs prior to ozonation and their method 
detection limits (MDL) 

Compound Names 

Erythromycin 

Tylosin 

Lincomycin 

Sulfamethazine 

S u lfachloropyridazine 

Sulfamethoxazole 

Tetracycline 

Monensin 

Carbamazepine 

Ibuprofen 

Naproxen 

Indomethacin 

Gemfibrozil 

Bezafibrate 

Clofibric acid 

Bisphenol A 

Cone. (ng/L) 

1470.0 

1010.0 

336.3 

318.9 

630.0 

349.2 

1554.0 

805.0 

226.2 

1000.0 

348.0 

1100.0 

180.0 

242.0 

375.0 

1414.0 

MDL (ng/L) 

16 

20 

0.86 

2.3 

4.6 

1.7 

26 

23 

1.0 

32 

2.1 

29 

1.4 

2.7 

9.4 

48 

MDL/Conc. 

92 

51' ' 

391 

139 

136 

204 

60 

35 

226 

31 

166 

38 

128 

90 

40 

29 

Carbamazepine-d 10 

Ibuprofen-d3 

Gemfibrozil-d6 

Clofibric acid-d4 

Bisphenol A-d 16 

118.5 

433.0 

182.3 

139.5 

951.0 

1.0 

32 

1.4 

9.4 

48 

118 

13.4 

130 

14.8 

19.8 
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3.5 Ozone Treatment 

Ozone was generated using a laboratory-scale ozone generator (Ozonia North America, 

NJ). Fresh stock liquid ozone solution (-30 mg O3/L) was prepared by bubbling an 

oxygen carrier gas into refrigerated distilled water for about 30 minutes. The decay of 

ozone in the stock solution was minimized through the use of an ice bath. After a quick 

measurement of ozone concentration in the stock solution, determined aliquots of the 

stock solution were transferred to 2-L silanized glass reactors containing the water sample. 

A stopwatch was immediately started to record the time. After ozonation, a 5% (w/w) 

Na2Sa03 solution was used to quench ozone residual. 

Milli-Q water 
adjusted to 
pH &DOC 

Surrogate chemicals spiking 

9L bottle 
2 L silanized amber bottle 

(1) Methanol evaporation 
(2) Native chemicals spiking 

(1) Quenching reagent 
(2) Surrogate spiking 

1 L sample 
bottles 

1 Blank 
Sample 

2 Control 
Samples 

Ozone generation 

(1) Ozone 
(2) Quenching reagent 
(3) Surrogate spiking 

1 L sample bottles 

2 L silanized amber bottles 

6 Treated *> 
Samples 

Shipped to MOE in ice-packed coolers 

Figure 3.1 General procedures of bench-scale experiments. 
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A general procedure of bench-scale experiment is given in Figure 3.1. Important steps 

included water matrix simulation (i.e., pH and DOC adjustment), methanol evaporation 

and 16 target chemicals spiking, ozone generation and ozone treatment. Deuterated forms 

of five, of these chemicals, i.e., gemfibrozil-d6, ibuprofen-d3, clofibric acid-d4, bisphenol 

A-dl6 and carbamazepine-dlO, were also added as surrogates after the experiments to 

correct for recovery. For the remaining eleven chemicals, the deuterated forms were 

either unavailable or cost-prohibitive. All samples were then stored in a refrigerator at 4 

°C, and shipped for PPCP/ EDC analyses to the Laboratory Services Branch, MOE in ice-

packed coolers by overnight courier within 24 - 48 hrs of collection. 

3.6 Ozone Decay Study and Exposure Determination 

Ozone decay experiments were performed using the simulated water matrix without 

addition of target PPCPs/EDCs. For each study listed in Table 3.3, a control experiment 

was run in parallel under the same conditions but without the addition of DOC. At the 

higher temperature (23 °C), samples were collected for analyses at 0.5, 1.0, 1.5, and 2.0 

minutes, and each minute after until the 12th minute. At the lower temperature of 5 °C, 

the sample collection was continued until the 22nd minute. 

Table 3.3 Operating conditions of ozone decay studies 

No. 

1 

2 

3 

4 

Temperature 

(°C) 

5 

23 

5 

23 

DOC content 

(mg/L) 

4.5 

4.5 

0.8 

0.8 

Starting ozone 

concentration 

(mg/L) 

3 

3 

3 

3 

pH 

6.8 

6.8 

6.8 

6.8 

5 23 0.8 3 8.1 



33 

Ozone exposures of the experiments (up to 2 minutes) were determined based on two 

methods. For the experiments under the same conditions where ozone decay studies were 

performed, ozone exposures were determined by integrating, the > measured ozone 

concentrations over time, i.e., the areas under ozone decay curves. These experiments 

included those conducted with O3 dosage of 3.0 mg/L. Similar results were also obtained 

for these experiments by fitting an exponential model (when DOC = 4.5 mg/L) or linear 

model (DOC = 0.8 mg/L) based on 2-point measurement (i.e., ozone residuals before and 

after treatment). Therefore for remaining experiments with a low O3 dosage, 1.0 mg/L, 

and without receiving decay studies, ozone exposures were determined in a same manner, 

i.e., assuming an exponential model or linear model were also applicable to O3 dosage 1.0 

mg/L when DOC content was high and low, respectively. 

3.7 Analytical Methods 

3.7.1 Parameters Analysis at University of Windsor 

Ozone Residual 

Ozone concentrations of stock solutions, and ozone residuals after each experiment, were 

measured using a Spectronic 20D+ spectrophotometer (600nm wavelength) following the 

Standard Methods (4500-O3)/Indigo Colorimetric Method (APHA, 1998). 

Dissloved Organic Carbon (DOC) 

DOC contents in stock solution and simulated water were analyzed using a Shimadzu 

TOC-VCSH total organic carbon analyzer, according to the Standard High-Temperature 

Combustion Method (531 OB) (APHA, 1998). Prior to each measurement, fresh Milli-Q 
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water samples (>18 MQ) were run at least three times to clean the sample injection 

system. Laboratory control samples were also regularly analyzed to confirm the 

performance of the instrument. 

pH 

The pH values were measured on a VWR meter (Model 8100; VWR, Canada), which was 

calibrated prior to each use. During each experiment, samples were collected before and 

after ozone treatment for pH measurement. 

3.7.2 PPCPs/EDCs Analysis at MOE 

PPCPs/EDCs extraction and analyses were conducted at the Applied Chromatography 

Section, Laboratory Services Branch, Ontario Ministry of the Environment (MOE). The 

procedure used, as provided by the Applied Chromatography Section follows. 

Sample Preparation 

Laboratory QC samples (one pure water blank and two pure water spikes) and bench-

scale samples, each of 800 mL, were prepared for solid phase extraction using Waters 

(Millford, MA, USA) HLB cartridges (6 mL, 200 mg). 

To the blank sample, only isotope-labeled surrogates were added, while both native 

PPCPs/EDCs and isotope-labeled surrogates were spiked into two pure water spike 

samples. After adding 4 g of ethylenediaminetetraacetic acid disodium salt (NaaEDTA), 

laboratory QC and bench-scale samples were homogenized on a laboratory roller 

(Wheaton Science, NJ, USA) for 10 min, followed by addition of 20 mL of 0.25 M 
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aqueous ammonium acetate solution. The pH value of each sample was adjusted to 

6.95±0.05 using 50% (w/v) NaOH, 10% (w/v) NaOH and 10% (v/v) H2S04 solution. 

The Hydrophilic-Lipophilic Balance (HLB) cartridges were sequentially conditioned with 

5 mL each of methanol and water before the Solid Phase Extraction (SPE). Following 

extraction, the HLB cartridges were rinsed with 5 mL of 5% (v/v) methanol-water, dried 

by air, and the target compounds eluted from the SPE cartridges with 5 mL methanol. 1 

mL of the eluate from each sample was evaporated to dryness with N? at 30 °C on Dionex 

SE 500 Evaporator, and reconstituted by using 0.1 mL of internal standard solution. 

Calibration standards were also prepared along with each batch of samples for 

instrumental analysis. 

Instrumentation 

Analyses were performed using an Agilent 1100 LC (Mississauga, Ontario, Canada) 

coupled with an Applied Biosystems API 4000 Q-trap mass spectrometer (Foster City, 

CA, USA) using an ESI interface. Multiple reaction monitoring (MRM) data were 

acquired and processed for all compounds in either positive or negative ion mode. An LC 

column (Thermo Electron, Bellefonte, PA, USA, Hypersil Gold, C-18, 100 x 2.1 mm, 3 

l̂ m) was used in two separate chromatographic runs with acidic and neutral mobile 

phases, respectively (Table 3.4 and Table 3.5). The column was maintained at room 

temperature and the injection volume 20 uL. Curtain, collision, nebulizer, and auxiliary 

gases of the MS-MS were set at 10, 5, 35 and 45, respectively. Source temperature was 

kept at 500°C for positive mode and 400°C for negative mode. Ion spray voltage, 

declustering potential, entrance potential, and collision cell exit potential used were 5200, 



36 

60, 10 and 10 V for the positive and -4200, -80, -10 and -3 V for the negative 

Electrospray Ionization (ESI), respectively. Multiple reaction monitoring parameters were 

optimized by direct infusion of individual target compound using a syringe pump. The 

most intense ion pair for target analytes and their respective optimized parameters were 

chosen for the analysis. Values of collision energy (CE) are listed in Table 3.6. 

Table 3.4 LC gradient condition for ESI positive mode analysis. A, 0.03% HFBA 
(heptafluorobutyric acid) in water, B, acetonitrile 

Total Time (min) 

0.0 

13 

15 

17 

28 

Flow Rate (jil/min) 

200 

200 

200 

200 

200 

A(%) 

85 

0 

0 

85 

85 

B(%) 

15 

100 

100 

15 

15 

Table 3.5 LC gradient condition for ESI negative mode analysis. A, 10 mM 
ammonium acetate in water; B, acetonitrile 

Total Time (min) 

0 

15 

17 

Flow Rate (^I/min) 

200 

200 

200 

A(%) 

90 

15 

90 

B (%) 

10 

85 

10 

27 200 90 10 
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Table 3.6 Mass spectrometry parameters 

Compound name MRM transition Collision energy (eV) 

ESI positive mode detection 

Carbamazepine 

Erythromycin 

Ibuprofen 

Lincomycin 

Monensin 

Naproxen 

Sulfachloropyridazine 

Sulfamethazine 

Sulfamethoxazole 

Tetracycline 

Tylosin 

Dio-Carbamazepine 

D3-Ibuprofen 
13C6-Sulfamethazine (IS) 
,3C3-Ibuprofen (IS) 

ESI negative mode detection 

Bezafibrate 

Bisphenol A 

Clofibric acid 

Gemfibrozil 

Ibuprofen 

Indomethacin 

Dj6-Bisphenol A 

D3-Clofibric acid 

D6-Gemfibrozil 

D3-Ibuprofen 
13C3-Ibuprofen (IS) 

360/274 

227/133 

213/127 

249/121 

205/161 

356/312 

241/142 

217/131 

255/121 

208/164 

208/163 

-25 

-35 

-20 

-15 

-10 

-15 

-40 

-15 

-15 

-10 

-10 

237/194 

734/158 

207/161 

407/126 

694/676 

231/185 

285/156 

279/186 

254/156 

445/410 

916/174 

247/204 

210/164 

285/186 

210/163 

20 

32 

15 

32 

40 

20 

20 

23 

21 

22 

50 

25 

15 

25 

15 
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3.8 Analytical Data Processing 

Results from two bench-scale experiments, ExperimentlO and 7 (referred herein as Expt. 

A and B, respectively) are discussed below to elucidate the procedure used for data 

analyses. The results,(Tables 3.7 and 3.8) showed that the varying sample matrix for 

different experiments had an effect on chemical recoveries. The effect is particularly 

prominent for five of the 16 target chemicals including monensin, tetracycline, 

lincomycin, erythromycin, and tylosin. 

Several observations can be made from the results presented for the two experiments. 

Comparing the results of recoveries for the five chemicals with deuterated surrogates, the 

data (before correction with surrogate) showed that the recoveries for these chemicals 

were affected by the experimental conditions (or the sample matrix). For example, the 

recoveries for the native carbamazepine and its deuterated form ranged between 77 - 93%, 

59 - 77%, and 56 - 68% in the laboratory spikes, Experiment A, and Experiment B 

respectively. However, within the same experiment, the recoveries were more consistent 

and agreed within ± 10%, except for clofibric acid where the agreement was within ± 

20%. After correcting for deuterated form surrogate recovery, the recoveries for native 

carbamazepine were much more consistent and ranged between 107 - 119% for the 

laboratory spikes and the controls from the two experiments. The results also showed 

that the variability between the two duplicates for all samples was typically within ±10%. 

This suggests that although the data for the remaining eleven chemicals cannot be 

corrected using surrogate recoveries to calculate absolute concentrations, it may still be 

possible to compare the relative levels of each chemical between the control and 

treatments within the same experimental run (or with the same background matrix). 
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3.9 Statistical Analysis 

Statistical analyses were conducted to determine factors having significant effects and 

possible interactions between them by using statistical analysis software Minitab 14. 

According to Montgomery (2005), the effect of a factor is defined to be the change in 

response produced by a change in the level of the factor. The interaction occurs if the 

difference in response between the levels of one factor is not the same at all levels of the 

other factors. Significant factors and interactions can be well illustrated with normal 

probability plot of effects, main effects plot and interaction plot. These plots of 16 

selected PPCPs/EDCs were constructed directly from Minitab and given in Chapter 4, 

Section 4.1 and Appendix B. 

In the normal probability plot of the effects, points that do not fall near the line usually 

signal important effects. Important effects are larger and further from the fitted line than 

unimportant effects. Unimportant effects tend to be smaller and centered around zero. If 

there is no error term, Minitab uses Lenth's method (Lenth, 1989) to identify important 

effects. If there is an error term, Minitab uses the corresponding p-values shown in the 

Session window to identify important effects. This plot also distinguishes positive effects 

from negative effects. A main effects plot is a plot of the means at each level of a factor. 

A main effect occurs when the mean response changes across the levels of a factor. Main 

effects plots can be used to compare the relative strength of the effects across factors. A 

more extreme slope indicates a more significant effect on response. An interaction plot is 

a plot of means for each level of a factor with the level of a second factor held constant. 

Once the significant factors have been determined, contribution table of each target 

PPCP/EDC was obtained based on analysis of variance (ANOVA) of these factors by 

using General Linear Model. The contribution percent of each factor to the variation in 
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removal efficiency (response) therefore was determined by dividing individual sequential 

sum of squares (Seq. SS) to total Seq. SS. The R-square (R2) term indicated the 

percentage of variation in removal all these significant factors explain. The error term (i.e. 

combination of insignificant effects) was not included in the R-sq value. • 

Linear regression model obtained from Minitab was also used to fit ozone decay kinetics, 

the second phase (i.e. semi-log plot of ozone residual versus time). The slope of the linear 

regression model therefore was taken as the first-order ozone decay rate constant k. A 

confidence limit for this regression coefficient under certain conditions was constructed 

based on the method of least squares (Johnson, 2005), and compared with others to 

determine whether these ks are statistically significantly different based on 90% 

confidence limits (a = 0.1). More details are given in Chapter 4, Section 4.3 and 

Appendix D. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Experimental Results and Statistical Analysis 

The operating conditions for the 16 bench-scale experiments based on a 2-level fractional 

factorial design are presented in Table 4.1. 

4.1 Five-Factor Fractional Factorial Design for Bench-Scale Experiments 

Experiment 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

pH 

6.8 

6.8 

8.1 

6.8 

8.1 

6.8 

8.1 

8.1 

6.8 

6.8 

6.8 

6.8 

8.1 

8.1 

8.1 

DOC 

(mg/L) 

4.5 

4.5 

0.8 

0.8 

0.8 

0.8 

4.5 

0.8 

0.8 

0.8 

4.5 

4.5 

4.5 

0.8 

4.5 

Variables 

O3 Dose 

(mg/L) 

1 

3 

1 

1 

3 

3 

1 

1 

1 

3 

3 

1 

3 

3 

1 

Contact 

Time (min.) 

6 

6 

6 

2 

6 

2 

2 

2 

6 

6 

2 

2 

6 

2 

6 

Temp. (°C) 

23 

5 

23 

23 

5 

5 

23 

5 

5 

23 

23 

5 

23 

23 

5 

16 8.1 4.5 3 2 5 
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It is generally accepted that ozone reacts with compounds in aqueous solutions (e.g., 

water) by two types of reactions, i.e. direct reaction with molecular ozone and indirect 

reaction by hydroxyl radical species that form when ozone decomposes in water (Hoigne 

et al., 1976). The reactivity of different compounds upon direct ozone attack is well 

represented by their second-order rate constants (ko3). The ko3 values available from the 

literature were presented in Table 4.2. Before discussing the results, compounds with ko3 

values > 5xl04 M'V1 (i. e., bisphenol A, carbamazepine, naproxen, sulfamethoxazole, 

tylosin, lincomycin and tetracycline) are considered fast reacting with ozone (Dodd et al., 

2006) and were put in Group A (Table 4.3). Compounds with k03 values < 5><104M"1s"1 (i. 

e. bezafibrate, ibuprofen and clofibric acid) were put in Group B. The remaining 

compounds (i. e., sulfamethazine, sulfachloropyridazine, gemfibrozil, indomethacin and 

erythromycin and monensin) were put in either Group A or B (Table 4.3) based on the 

similarity of their behavior to the compounds already assigned to Group A or B. 

A summary of the results obtained from 16 experiments is presented in Table 4.4 on the 

basis of different groups. The individual analytical results for the 16 selected 

PPCPs/EDCs for all the 16 experiments are presented in Appendix A. The results show 

that >90% transformation of all chemicals (Groups A and B) were achieved under the 

conditions of higher O3 dose (3.0 mg/L) and lower DOC content (0.8 mg/L) (Expts. 5, 6, 

10, and 14), whereas lower transformation (< 70% for Group A and < 40 % for Group B) 

were observed at the lower ozone dose (1.0 mg/L) and higher DOC content (4.5 mg/L) 

(Expts. 1,7,12,15). 
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Table 4.2 Available second-order rate constants for the selected PPCPs/EDCs 

Compounds 

Bisphenol A 

Carbamazepine 

Naproxen 

Sulfamethoxazole 

Tylosin 

Lincomycin 

Tetracycline 

Sulfamethazine 

Sulfachlorpyridazine 

Bezafibrate 

Ibuprofen 

Clofibric acid 

pKa 

4.5 

1.6,5.7 

7.7 

7.8 

3.3,7.7, 
9.7 

2.6,8 

2,5.9 

3.6 

4.9 

ko3,at20°C, 
(M-y1) 
(1-10) x 106 

~3x 105,pH=7 

2xl05 

~2.5xl06,pH=7 

5.1 x 105,pH=7 
1.4x 106,pH=7.7 
6.7x 105,pH=7 
1.4xl06,pH=7.7 
1.9x 106,pH=7 
3.2xl06,pH=7.7 

590 ± 50, pH=6 

9.6±l,pH=6 

<20 

koH,25°C, 
pH=7, ( M V ) 

(8.8±1.2)xl09 

(9.6±0.5)xl09 

(5.5±0.7)xl09 

5.0xl09 

4.4x109 

(7.4±1.2)xl09 

(7.4±1.2)*109 

(4.7±0.3)xl09 

Reference 

Huber et al., 
2003 

Dodd et al., 
2006 

Ikehata et al., 
2006 

Huber et al., 
2003 

Table 4.3 Compound grouping 
Group A 

Bisphenol A 

Lincomycin 

Tylosin 

Tetracycline 

Group B 

Ibuprofen 

Clofibric acid 

Bezafibrate 

Monensin 

Naproxen 

Carbamazepine 

Sulfamethoxazole 

Sulfamethazine 

Sulfachloropyridazine 

Erythromycin 

Indomethacin 

Gemfibrozil 
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Table 4.4 Summary of experimental results 

0 3 dose 
(mg/L) 

3.0 

1.0 

3.0 

1.0 

DOC 
(mg/L) 

0.8 

0.8 

4.5 

4.5 

Experiment 
No. 

5,6,10,14 

3,4,8,9 

2,11,13,16 

1,7,12, 15 

Transformation efficiency 

Both Group A & B: > 90% 

Group A: > 90% 
Group B: > 90% in exp. 3,4,9 

70 - 90?/o in exp. 8 
Group A: >90% 
Group B: 80 - 90% 
Group A: 50 - 70% 
Group B: 30 - 40% 

0 3 residual (mg/L) 

2 min. 

1.4-2.3 

0.07-0.38 

0.09-0.11 

0.07-0.09 

6 min. 

0.82-1.5 

0.07-0.25 

0.08-0.10 

0.07-0.08 

To identify the relative importance of each process parameter, statistical analysis was 

performed for each target compound by using the statistical software MINITAB 14 at 

90% confidence level (a = 0.1). Results of the statistical analysis are presented in Figures 

4.1 - 4.3 for bisphenol A as an example for Group A compounds and in Figures 4.4 - 4.6 

for ibuprofen as an example for Group B compounds. Due to analytical problems with 

clofibric acid for one experiment (Expt. 1) and erythromycin for two experiments (Expts. 

7 and 12), the statistical analysis could not be conducted for these two chemicals. For the 

remaining 13 chemicals, the results are included in Appendix B. 
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Effect Type 
• Not Significant 
B Significant 

Factor Name 
A pH 
B DOC 
c 0 zone 
D -.Time 
£ Temp. 

Figure 4.1 Normal probability plot for the effect of process variables on the oxidation of 
bisphenol A. 

Figure 4.1 is the normal probability plot for bisphenol A (Group A). The results show 

that from the five variables (designated as A = pH, B = DOC content, C = ozone dose, D 

= contact time, and E = temperature) and all possible two-way interactions, the effects of 

DOC content, ozone dose, temperature and their two-way interactions were significant for 

the oxidation of bisphenol A at 90% confidence level. The effect is positive for factor C 

(ozone dose) and its interactions with both factors B (DOC content) and E (temperature) 

(i.e., transformation increases with increase in value). In addition, 2-way interaction 

between factors A (pH) and D (contact time) also has a significantly positive effect. 

However this effect may actually be due to the 3-way interaction of DOC content, ozone 

dose, and temperature which confounds with the 2-way interaction of pH and contact time 

in the statistical analysis of the 2-level fractional factorial design (Box et al., 1978), which 

will be discussed later. Figure 4.1 further shows that the effects of factors B (DOC 

content) and E (temperature) and their two-way interaction B*E exert significantly 

negative impacts, i.e., transformation decreases with increase in value. The main effects 
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of the variables (DOC content, ozone dose, and temperature) are plotted in Figure 4.2, 

and their interactions effects are plotted in Figure 4.3. The statistical results obtained 

were similar for the other ten Group A compounds (Appendix B) except that temperature 

(and its interactions) were statistically significant for seven of the ten compounds. 

The relative significance of the effects was determined by ANOVA (analysis of variance) 

using Minitab, and the results are presented in Table 4.5. The results show that ozone 

dose, DOC content and their interaction were the dominant factors affecting the 

transformation of bisphenol A in the current study, and accounted for about 73% of the 

observed variability. Temperature and its interactions with DOC content and ozone dose 

accounted for about 20% of the change in transformation efficiency. 
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Figure 4.2 The effect of DOC content, ozone dose, and temperature on the oxidation of bisphenol 
A (a = 0.1). For each factor, lower level = -1 and higher level = 1. 
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Figure 4.3 Plots for significant 2-way interactions between DOC content, ozone dose, and 
temperature for bisphenol A. 
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Table 4.5 Contributions of significant factors towards oxidation of 
bisphenol A at 90% confidence level based on ANOVA analysis 

Source 

B 

C 

E 

B*C 

A*D 

B*E 

C*E 

Error 

Total 

It-Square (R2) 

DF a 

8 

15 

=99.4 % 

Seq SS b 

361.0 

361.0 

100.0 

361.0 

100.0 

100.0 

100.0 

10.0 

1493.0 

Contribution (%) 

24.2° 

24.2 

6.7 

24.2 

6.7 

6.7 

6.7 

0.6 

A- pH; B- DOC; C- 0 3 dose; D- contact time; E- temperature; 
B*C- interaction between B and C 
a DF-degree of freedom;b Seq SS- sequential sum of squares 
'Contribution 24.2%=361.0/1493.0 
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Figure 4.4 Normal probability plot for the effect of process variables on the oxidation of 
ibuprofen. 
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Figure 4.4 is the normal probability plot for ibuprofen (Group B). The results show that 

from the five variables (designated as A = pH, B = DOC content, C = ozone dose, D = 

contact time, and E = temperature) and all possible two-way interactions, the effects of 

DOC content, ozone dose, and their two-way interactions were significant for the 

oxidation of ibuprofen at 90% confidence level. Unlike bisphenol A, temperature or its 

interactions were not statistically significant for the transformation of ibuprofen. The 

effect is positive for factor C (ozone dose) and its interactions with factor B (DOC 

content) (i.e. transformation increases with increase in value). Figure 4.4 further shows 

that factor B (DOC content) exerts a significant negative impact, i.e., transformation 

decreases with increase in value. The main effects of the variables (DOC content and 

ozone dose, and temperature) are plotted in Figure 4.5, and their interactions effects are 

plotted in Figure 4.6. The statistical results obtained were similar for the other two 

compounds in Group B (Appendix B). 

The relative significance of the effects was determined by ANOVA (analysis of variance) 

using Minitab, and the results are presented in Table 4.6. The results show that ozone 

dose, DOC content and their interaction are the dominant factors affecting the oxidation 

of ibuprofen in the current study, and account for about 98% of the observed variability in 

transformation efficiency. 
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Table 4.6 Contributions of significant factors towards oxidation of ibuprofen 
at 90% confidence level based on ANOVA analysis 

Source 

B 

C 

B*C 

Error 

Total 

R-Square (R2) = 

DF a 

1 

1 

1 

12 

15 

= 98.4 % 

Seq SS b 

4032.3 

2809.0 

2116.0 

146.5 

9103.7 

Contribution (%) 

44.3° 

30.9 

23.2 

1.6 

B- DOC; C- 0 3 dose; B*C- interaction between B and C 
a DF-degree of freedom;b Seq SS- sequential sum of squares 
c Contribution 44.3%=4032.3/9103.7 

Table 4.7 Summary of contributions of significant factors affecting the oxidation of target 
chemicals studied at 90% confidence level based on ANOVA analysis 

Contribution (%) 

Compound c B B * c E C * E B * E A * D E m ) r 

Bisphenol A 

Sulfamethazine 

Sulfamethoxazole 

Sulfachloropyridazine 

Lincomycin 

Indomethacin 

Naproxen 

Gemfibrozil 

Carbamazepine 

Tylosin 

Tetracycline* 

Ibuprofen 

Bezafibrate 

Monensin 

24.2 

29.9 

31.6 

29.2 

20.3 

23.1 

31.1 

33.0 

29.1 

31.8 

27.7 

30.9 

31.7 

34.2 

24.2 

29.9 

31.6 

29.2 

20.3 

23.1 

31.1 

33.0 

29.1 

32.9 

42.3 

44.3 

42.1 

40.3 

24.2 

29.9 

31.6 

29.2 

20.3 

23.1 

31.1 

33.0 

29.1 

30.7 

24.2 

23.2 

22.9 

18.8 

6.7 

2.5 

1.2 

2.9 

9.0 

7.4 

1.5 

-

-

-

-

-

-

-

6.7 

2.5 

1.2 

2.9 

9.0 

7.4 

1.5 

-

-

-

-

-

-

-

6.7 

2.5 

1.2 

2.9 

9.0 

7.4 

1.5 

-

-

-

-

-

-

-

6.7 

2.5 

1.2 

2.9 

9.0 

7.4 

1.5 

-

-

-

-

-

-

-

0.6 

0.3 

0.4 

1.0 

3.1 

1.1 

0.7 

1.0 

12.7 

4.6 

5.8 

1.6 

3.3 

6.6 

A- pH; B- DOC; C- 0 3 dose; D- Contact time; E- Temperature 
* Contribution of pH =2.4% 
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A summary of the contributions of significant factors for all the chemicals (excluding 

clofibric acid and erythromycin) based on ANOVA analysis at 90 % confidence level is 

presented in Table 4.7. 

The table shows that the relative effects of the process variables studied on the oxidation 

of the target compounds within each group as well as between Groups A and B were 

similar. As observed for bisphenol A and discussed earlier, the table also shows that 

DOC content, ozone dose and their interaction had the most significant impacts on the 

transformation efficiencies of the other compounds in Group A, and accounted for 60 to 

95% of the observed variability in their transformation. Temperature was observed to be 

significant for the transformation of seven of eleven Group A chemicals including 

bisphenol A, sulfamethazine, sulfamethoxazole, sulfachloropyridazine, lincomycin, 

naproxen, and indomethacin. Furthermore, the interactions of temperature with DOC 

content and ozone dose accounted for 3.6 to 27% of the observed variability in 

transformation. The relatively small (1.2 to 9%) but significant effect of the 2-way 

interaction of pH and contact time on the transformation of these same seven Group A 

chemicals may actually be due to the 3-way interaction of DOC content, ozone dose, and 

temperature which confounds with the 2-way interaction of pH (factor A) and contact 

time (factor D) in the statistical analysis of the 2-level fractional factorial design (Box et 

al., 1978). This argument is further strengthened by the fact that the effect of pH and 

contact time interaction was only significant for the chemicals for which temperature and 

its interactions with DOC content and ozone dose were significant. The pH (factor A) 

was found to be significant only for tetracycline. However, the estimated effect of the 

factor on its transformation is small (<3%). Similarly, for compounds of Group B 

including ibuprofen, bezafibrate, and monensin, DOC content, ozone dose and their 
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interaction had the most significant impact, accounting for 93 to 98% of the observed 

variability in the transformation. Temperature and its interactions were not significant for 

any of the Group B compounds. 

The interaction plots for both Groups A and B compounds, as shown in Figure 4.3 for 

bisphenol A, Figure 4.6 for ibuprofen and included in Appendix B for the remaining, are 

interesting. The results show that although both DOC content and ozone dose had a 

major influence on the transformation of the compounds (Table 4.7), the effect was most 

significant when the DOC content was high (4.5 mg/L) and the ozone dose was low (1.0 

mg/L), as is evident from Figures 4.7 - 4.8 for Group A compounds and Figures 4.9 -

4.10 for Group B compounds. 

Figure 4.7 shows that the transformations of all compounds in Group A were >97% with 

one exception at an ozone dose of 3.0 mg/L at both low and high DOC contents. The 

exception was tetracycline at a DOC of 4.5 mg/L, which was 92%. At the lower ozone 

dose of 1.0 mg/L (Figure 4.8), the transformation was >97% at the lower DOC content 

(0.8 mg/L) but reduced to between 50 to 80% at the higher DOC level (4.5 mg/L). 

For compounds of Group B, similar effects were observed, as shown in Figures 4.9 and 

4.10. At an ozone dose of 3.0 mg/L, the transformations of all compounds of Group B 

were close to 100% at lower DOC loading of 0.8 mg/L and >80% at higher DOC loading 

of 4.5 mg/L as shown in Figure 4.9. At the lower ozone dose of 1.0 mg/L (Figure 4.10), 

the transformation was >90% at the lower DOC content of 0.8 mg/L, but reduced to 

between 30 to 40% at the higher DOC level of 4.5 mg/L. 

The effect of temperature on the transformation of the compounds of Group A was 

similarly influenced by the DOC content and ozone dose, as shown in Figures 4.11 and 

4.12. Figure 4.11 shows that the transformation of Group A compounds exceeded 95% at 
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both low (4 °C) and high (23 °C) temperatures and both low and high DOC contents when 

the ozone dose was high (3.0 mg/L), and also at the low ozone dose of 1.0 mg/L when the 

DOC content was low (0.8 mg/L). At both high DOC content (4.5 mg/L) and low ozone 

dose (1.0 mg/L), increase in temperature significantly reduced the transformation 

efficiency for eight of the eleven Group A compounds statistically analyzed, the 

reductions were estimated to be between 6 - 28%. For tetracycline, the effect was 

opposite to that observed for the other compounds but was not statistically significant. 

The effect of temperature was not statistically significant for any of the compounds of 

Group B. 
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Ibuprofen Clofibric acid Bezafibrate Monensin 

Figure 4.9 Effect of DOC on transformation efficiency for compounds in group B (03=3.0 mg/L). 
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4.10 Effect of DOC on transformation efficiency for compounds in group B (03=1.0 
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Figure 4.11 Effect of temperature on the transformation of Group A compounds (excluding 
experiments with both high DOC content and low ozone dose). 
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Figure 4.12 Effect of temperature on the transformation of Group A compounds at both high 
DOC content (4.5 mg/L) and low ozone level (1.0 mg/L). 
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4.2 Discussion 

The experimental results demonstrate that ozone oxidation is an effective process for the 

transformation of all the 16 PPCPs/EDCs included in the current study. Transformation 

exceeding 90% was observed for all the compounds in Group A in 12 of the 16 

experiments, with lower transformation efficiencies of 50 - 70% only under conditions of 

high DOC and low ozone dose (Table 4.4). The results observed are consistent with 

those observed in the literature where ozone alone was used. For example, Synder et al. 

(2007) reported >90% transformation for carbamazepine, erythromycin, gemfibrozil, and 

naproxen from surface water from three natural sources, at ozone dose of 2.5 - 7 mg/L 

and a contact time of 5 minutes. Adams et al. (2002) reported rapid and efficient 

conversions (>95%) of sulfachlorpyridazine and sulfamethazine by ozonation in pre-

filtered Missouri River water samples in < 2 minutes with an applied ozone dose of 0.3 

mg/L. Several of the compounds in this Group including bisphenol A, carbamazepine, 

naproxen, sulfamethoxazole, tylosin, lincomycin and tetracycline have reported ko3 larger 

than 5><104 M^s'1 (Table 4.2). Their high activities with ozone were attributed to the 

presence of an amino group, an activated aromatic system or a double bond. The 

presence of sulphidic groups also results in a fast reaction with ozone (von Gunten, 

2003a). The proposed active sites of these compounds upon ozone attack are given in 

Table 4.8. Their chemical structures and schematic illustration of ozone attack are given 

in Appendix C. 

Group B compounds were more sensitive to the variables studied in the current study than 

Group A compounds. Transformation exceeding 90% was observed in seven out of eight 

experiments at low DOC concentration with both low and high ozone doses (Table 4.4). 

Oxidation was affected at high DOC content, particularly at the low ozone dose of 1 mg/L 
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when transformation was reduced to between 30 - 40% for all compounds in the Group 

(Table 4.4). With reported ko3 < 103 M'Y1, Group B compounds are regarded as medium 

or slow-reacting with molecular ozone, and their relatively lower reactivity are considered 

due to lack of active functional groups (e.g., monensin), or only possessing weakly 

activated aromatic rings (e.g., ibuprofen), or having electron-withdrawing substituent 

(e.g., clofibric acid) (see Appendix C). 

Table 4.8 Suggested active sites upon ozone attack for group A compounds (adapted from 
Huber et al., 2003; Dodd et al., 2006; Ikehata et al. 2006) 

Group A compounds Suggested reactive site/group Diagram 

Erythromycin 
Lincomycin 
Tylosin 

Sulfamethazine 
Sulfamethoxazole 
S ulfachloropyridazine 

Bisphenol A 

Carbamazepine 

Tetracycline 

Naproxen 
Gemfibrozil 
Indomethacin 

Tertiary amine 
Tertiary amine & sulfur atom 
Tertiary amine and conjugated 
diene 

Aromatic amine 
Aromatic amine 
Aromatic amine 

Phenol 

Non-aromatic C=C double bond 

Phenolic structure, olefinic 
bonds and tertiary amine 

Oxy-activated aromatic ring 

HaN—4 f 

/ ^ \ 
VJ 

H 

OH O 

see Appendix C 

4.2.1 Effect of ozone dose and DOC - Group A Compounds 

Due to their high reactivity with ozone, direct oxidation with molecular ozone is expected 

to be the main oxidation pathway for the transformation of Group A compounds in typical 

drinking water sources ozonation process. Due to a strong interaction between DOC 
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content and ozone, some studies have used specific ozone consumption or DOC-

normalised O3 dose (mg 03/mg DOC) to evaluate oxidation efficiency (Bahr et al., 2007; 

Buffle et al., 2006; Vieno et al., 2007). Zwiener and Frimmel (2000) also concluded that 

for a sufficient degradation of the pharmaceuticals (>90%) the ozone concentration 

should equal to DOC value, but no source water and the compounds studied were 

specified. Therefore, this ratio is expected to change due to the difference in the nature of 

NOM from one source water to another. Since ozone exposure, expressed as a product of 

concentration and contact time or CT value with units of mg/L.min, is expected to be 

directly correlated to oxidation by ozone and is also the parameter used for controlling the 

ozonation process, the relationship between ozone exposure and transformation of Group 

A compounds was examined in the current study. Ozone exposure (CT values) were 

calculated for the 16 experiments, and the transformation efficiencies observed for all the 

Group A compounds have been plotted against the calculated exposure values at 5 and 23 

°C in Figures 4.13 (a) and 4.13 (b) respectively. The figures show that at both the low 

and high temperatures, transformation efficiencies for all Group A compounds exceeded 

97% when the ozone exposure values were > 1.0 mg/L.min. In experiments with high 

DOC content and low ozone dose, ozone exposure values were <1.0 mg/L.min, and the 

transformation efficiencies were reduced to between 50 - 70%. 
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Figure 4.13 Transformation of Group A compounds as function of ozone exposure, a) T= 5 °C; b) 
T= 23 °C. 
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4.2.2 Effect of ozone dose and DOC- Group B Compounds 

Although excellent transformation efficiencies for Group B compounds were observed in 

the present study, the results need to be interpreted with caution. Group A compounds 

have high reaction rate constants with ozone and based on the results of this and previous 

studies, their transformation is expected to be relatively insensitive to water matrix 

properties provided an adequate ozone exposure is ensured. Group B compounds with 

low reactivity with ozone are dependent on the secondary oxidant hydroxyl radicals (•OH) 

for their transformation. Hydroxyl radicals are the strongest oxidants formed in water 

during ozone decomposition. Unlike ozone that is a very selective oxidant, »OH radicals 

are nonselective and react with a large array of both inorganic and organic compounds 

with rate constants ranging between 108 to 1010 M'V1 (Haag and Yao, 1993). However 

the concentration of »OH radicals, and thus the resulting exposure and transformation of 

Group B compounds, is strongly influenced by its reactivity with various components of 

the water matrix, for example, organic matter, alkalinity, temperature and pH (von 

Gunten, 2003a). Amongst them, organic matter has the greatest influence as specific 

organic compounds can participate in the initiation, promotion or inhibition reactions 

during ozone decomposition, which significantly influence »OH exposure. In addition, 

certain organic compounds can directly react with ozone without the formation of »OH 

(i.e., non-initiation). Therefore the extent and nature of the impact of organic matter on 

•OH radical concentration and exposure depends on both its type and content. Detailed 

discussions of these factors affecting ozone decomposition can be found in Chapter 2, 

Section 2.2. 
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Table 4.9 Comparison of selected PPCPs/EDCs ozonation (in DW sources) from literature and 
current study 

Compounds Water Description O3 dose DOC Oxidation Ref. 

(mg/L) (mg/L) (%) 

Ibuprofen Pure water 1.0 0 12 2 

3 DW supplies & 1 MW 2.5-4.0 3.0-4.0 80 (avg.) I 

Lake water; well water 2J) 0.8-3.7 40-77 3-

Simulated water 1.0-3.0 0.8,4.5 31 ->97 * 

Bezafibrate Flocculated natural water 1.5 1.3 -50 4 

Flocculated natural water 3.0 1.3 ~ 80 4 

Lake water ~~~ 0.1-2.0 1.3,3.7 <5 - >97 3 

Simulated water 1.0,3.0 0 , 4 . 5 37->99 * 

Clofibric Acid Pure water L0 ~0 8 ~~2 

Simulated water L2 2A 57±17 4 

Flocculated natural water 2.5-3.0 1.3 <40 4 

Simulated water 1.0,3.0 0.8,4.5 35 - >97 * 

Monensin Simulated water 1.0,3.0 0.8,4.5 28 - >97 * 

Note: DW- drinking water; MW- model water; Ref: l.Westerhoff et al., 2005; 2. Zwiener and 
Frimmel, 2000; 3. Huber et al., 2003; 4. Ternes et al., 2002; * this study 

Due to the strong influence of »OH exposure on the transformation of Group B 

compounds, their oxidation is expected to be strongly influenced by the characteristics of 

the source water, especially the content and nature of DOC. Relating the transformation 

to ozone exposure alone would thus be misleading. Zwiener and Frimmel (2000) 

observed only 8% and 12 % transformation for clofibric acid and ibuprofen in pure water 

with ozone dosage of 1.0 mg/L and contact time of 10 minutes (Table 4.9). Although 

ozone exposure is significant in this case, ozone decomposition is initiated only through 

hydroxide ions (OH") in pure water and »OH exposure is expected to be very low. The 

results obtained in the current study are compared against a few other studies reported in 
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literature in Table 4.9. No studies reporting the transformation of monensin were 

identified. 

In general, the results show that the transformations of Group B compounds were 

accelerated in the presence of organic matter. For ibuprofen, bezafibrate, and chlorfibric 

acid, the range of transformation efficiencies observed in the current study largely 

overlapped that reported in the literature. The highest transformation efficiency observed 

in the current study is somewhat higher than previously reported. However, the reported 

efficiencies vary considerably, which might be due to the influence of the content and 

nature of organic matter. 

To determine the expected transformation of any micropollutant due to •OH exposure, 

Elovitz and von Gunten (1999) introduced the concept of Rct, which was defined as the 

ratio of »OH exposure to ozone exposure. R^ values for a given water matrix and 

ozonation condition can be experimentally determined from the experimentally measured 

decrease in concentration of an ozone-resistant compound (e.g. />-chlorobenzoic acid, 

ibuprofen) and ozone (Haag and Yao, 1993; Elovitz and von Gunten, 1999). Knowing 

the second-order rate constant for the reaction of a micropollutant P with *OH (k OH) and 

ozone (ko3), the expected transformation of P due to both OH and ozone exposures over 

a given time "t" can be estimated using the ozone exposure by the following equation 

(Acero and von Gunten, 2001): 

ln[C(0/C(0)] = -( \[03 ]dt)(k0H Rct +km) (4.1) 

It has been shown that Rct values are very high and variable during the initial ozonation 

period. During the first 200 s Rct values were observed to decrease by two orders of 

magnitude from 2 x 10"6 to 3 x 10'8 for Lake Zurich water studied by Buffle et al. (2006b). 
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These values are comparable to or higher than those observed with ozone-hydrogen 

peroxide advanced oxidation process (Acero and von Gunten, 2001). R^ values then 

became more or less constant in the minute range (Elovitz and von Gunten, 1999; Elovitz 

et al., 2000). Rct values during the second (constant) phase in natural waters have been 

reported to be in range of 10"8 or lower, which could be enhanced with the addition of 

H2O2 (Acero and von Gunten, 2001). 

For an ozone resistant compound such as ibuprofen (low ko3), Equation (4.1) reduces to 

the following: 

l n [C w (t)/cau (0)] = -( j[0, }dt)(k K) (4-2) 

Using Equation (4.2), ozone exposure values calculated for the eight experiments with 

ozone contact time of 2 min, and measured transformation efficiencies for ibuprofen in 

these experiments, average R^ values during the first 2 min were calculated as also shown 

in Table 4.10. 

Table 4.10 Summary of 03-exposure, •OH-exposure and R^ value in current study 

Exp. 

7 

12 

4 

8 

11 

16 

14 

Experimental Conditions 

8.1; 4.5 mg/L; 1 mg/L; 2 min; 23 °C 

6.8; 4.5 mg/L; 1 mg/L; 2 min; 5 °C 

6.8; 0.8 mg/L; 1 mg/L; 2 min; 23 °C 

8.1; 0.8 mg/L; 1 mg/L; 2 min; 5 °C 

6.8; 4.5 mg/L; 3 mg/L; 2 min; 23 °C 

8.1; 4.5 mg/L; 3 mg/L; 2 min; 5 °C 

8.1; 0.8 mg/L; 3 mg/L; 2 min; 23 °C 

O3 exposure 

(moIe/L. sec)/ 

(mg/L.min) 

8.8xl0"4/0.7 

9.6x10"4/0.8 

1.4xl0-3/l.l 

1.6xl0"3/1.3 

2.0xl0_3/1.6 

2.0xl0-3/1.6 

4.0xl0"3/3.2 

OH exposure 

(mole/L. sec) 

7.5x10-" 

5.9x10-" 

4.7x10"10 

2.5xl0-10 

3.1X10"10 

2.5x10-'° 

4.7x10"'° 

Rct 

8.5X10"8 

6.1xl0'8 

3.5xl0"7 

1.6xl0-7 

1.6xi0"7 

lJxlO"7 

1.2xl0"7 

6 6.8; 0.8 mg/L; 3 mg/L; 2 min; 5 °C 6.4xl0"3/5.1 4.7x10"'° 7.3X10"1 
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The calculated average Rct values range between 3.5 x 10"7 - 6.1 x 10"8. These high 

values are within the range of Rct values reported for Lake Zurich water during the initial 

phase of ozone decomposition and higher than those observed with ozone-hydrogen 

peroxide advanced oxidation process (Acero and von Gunten,< 2001). The high values 

suggest that Suwannee River NOM isolate used to adjust DOC levels in this study may 

contain a higher fraction of DOC (e.g. phenols, amines) that initiate a rapid 

decomposition of ozone to produce «OH radicals. This may also explain the higher 

maximum oxidation for Group B compounds observed in the current study, as compared 

to those cited in Table 4.9. The high reactivity of Suwannee River NOM has also been 

reported in the study by Synder et al. (2007), where a rapid and at least a three-fold higher 

ozone consumption was observed for simulated water prepared with Suwannee River 

NOM, as compared to three other waters from natural sources. 

The Ret values, ozone exposure (Table 4.10), and Equation (4.1) can be used to interpret 

the results observed in the present study. At the low DOC content (0.8 mg/L) and low 

ozone dose (Expts. 4 & 8), Rot > 1.6*10"7 and ozone exposure > 1.3 mg/L.min ensured > 

90% oxidation of Group B compounds with reported k.oH values > 7.4 *109 (Table 4.2), 

as shown in Figure 4.9. Since ozone exposure was sufficient to significantly transform 

the compounds at ozone dose of 1 mg/L, increase of ozone dose to 3 mg/L was not seen 

to have an impact on the transformation efficiencies (Figure 4.9). At the high DOC 

content (4.5 mg/L) (Expts. 7 & 12) and low ozone dose, both the ozone exposure and Rct 

values (Table 4.10) were seen to decline resulting in poor transformation efficiencies for 

Group B compounds (Figure 4.10). This suggests that due to the increase in DOC content, 

the enhanced ozone consumption by organic matter of the type that does not result in the 

formation of «OH radical limited its availability for »OH radical production. With 
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increase in the ozone dose to 3 mg/L, the ozone exposure value increased to 1.3 mg/L.min 

and Ret to values > 1.6xlO"7 (Table 4.10), and the transformation of Group B compounds 

was restored to > 80% (Figure 4.9). These results show that ozonation or ozonation-

based AOP may be effective for the transformation of compounds that are slow to or do 

not directly react with ozone. However for such compounds, the extent of transformation 

could be quite variable and strongly dependent on the water matrix, especially the nature 

and content of organic matter. 

Based on the results of the current study, it is suggested that transformation of Group B 

compounds that can be expected for a given water matrix under the ozonation conditions 

applied at a given location may be estimated based on Ret and ozone exposure 

determinations. Ret and ozone exposure values can be separately computed for an initial 

ozonation period of 2 minutes or so and the period beyond (minute range), and the 

expected transformation during each period and total may then be approximately 

estimated using Equation (4.1). For situations where Ret and ozone decomposition rates 

are lower and result in poor transformation efficiencies for Group B compounds, the 

possibility of enhancing the transformation by using ozone-based AOP with the addition 

of H2O2 may be investigated and optimized as discussed by Acero and von Gunten (2001). 

Because of the low applied dosage of ozone and high content of DOC present in 

experiments 1,7, 12 and 15, the much higher transformation efficiencies of ibuprofen and 

clofibric acid (30 - 40%) than pure water system (8 - 12%) were assumed mainly 

attributed to the effect of »OH. For the same operating conditions, however, the average 

transformation efficiencies for fast-reacting compounds (group A) are in the range of 50 -

70% (Table 4.4). It has been an interest to assess the relevance of two oxidation pathways 

for those fast-reacting compounds because different products will be formed depending 
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on the oxidation pathway and identification of by-products and their toxicity will be a 

potential concern for ozonation process. The fraction of oxidation by "OH, f(»OH) , can 

be calculated according to Equation 2.20 (Section 2.3.4). As an example, the f(»OH) of 

carbamazepine was calculated to be 57% in experiment 1, therefore 43% of oxidation was 

attributed to O3 molecules. In the same manner, 29% and 71% of oxidation were caused 

by »OH and O3 respectively in experiment 12. A calculation based on Equation 2.20 by 

Huber et al. (2005) has shown that «OH accounts for 20 - 50% of the parent oxidation in 

wastewater for 4 fast-reacting compounds including naproxen and sulfmethoxazole. They 

concluded that unlike the pure water system, »OH radicals in wastewater cannot be 

neglected despite the high reactivity of selected compounds toward O3. 

4.2.3 Effect of pH, Temperature and Contact Time 

Statistical analyses showed that variables pH, temperature and contact time generally 

showed limited impacts on ozonation in this bench-scale study (see Appendix B). 

Temperature is a significant main effect factor for most of the fast-reacting compounds in 

group A except carbamazepine, gemfibrozil, tylosin and tetracycline at the confidence 

level of 90%. The effect was best illustrated in Figure 4.12 when DOC was at high level 

(i.e., 4.5 mg/L) and ozone at low level (i.e., 1.0 mg/L). The negative effect of temperature 

under these four experimental conditions is contrary to the normal notion of high 

temperature accelerating reaction rate, and might be explained due to the increase of 

ozone decomposition and/or decrease of dissolved ozone in the solution. No obviously 

similar trend was found for slow-reacting compounds. 

Among all the 16 Group A and B target compounds, pH was observed to have a 

significant but small positive effect only for the transformation of tetracycline at the 



72 

confidence level of 90%. Results for the effect of pH in the literature are mixed with 

some studies showing a significant positive effect (Calvosa et al., 1991; Benitez et al., 

1997), whereas the others do not (Venosa, 1972; Farooq et al., 1977; Rice, 1997; Chen, 

2000). Change in pH can influence ozone stability and formation of hydroxyl radicals 

•OH through hydroxide ions (OH"). For speciating chemicals, change in pH can also 

influence transformation if there is a significant shift in species composition. The 

protonated form typically has a higher reaction rate with ozone than the deprotonated 

form (Table 4.2). The lack of effect of pH observed in the current study maybe due to the 

relatively narrow range used, as well as the dominance of other factors such as DOC 

content and ozone dose. The small but significant effect of pH for tetracycline may be due 

to a change in its speciation as one its pKa value (Table 4.2) is within the range of pH 

values used in the current study. However, the effect was not significant for other 

chemicals with similar pKa values. 

Contact time is considered an important parameter in many water treatment processes, 

including the process of ozonation. Due to the high Rct and ozone exposure values 

observed in the current study, compounds of both Group A and B were rapidly 

transformed within 2 min under most experimental conditions. Increasing the contact 

time to 6 min was therefore not observed to be significant for either Group A nor Group 

B compounds. 

4.3 Ozone Decay Study 

To understand the kinetics of ozone decay as a function of the experimental conditions of 

the present study, several ozone decay experiments were performed using the simulated 

water matrix under conditions listed in Table 4.11. 
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Table 4.11 Summary of ozone decay studies 
Expt. 

1 

2 

3 

4 

5 

6 

7 

Temp. 

(°Q 

5 

23 

5 

23 

23 

23 

5 

DOC 

(mg/L) 

4.5 

4.5 

0.8 

0.8 

0.8 

0 

0 

Starting ozone 

cone. (mg/L) 

3 

3 

3 

3 

3 

3 

3 

pH 

6.8 

6.8 

6.8 

6.8 

8.1 

6.8 

6.8 

IOD* 

(mg/L) 

2.5 

2.8 

0.7 

1.9 

1.8 

0.6 

0.2 

Ms'1) 

0.0444 

0.0824 

0.1116 

0.0635 

0.0153 

Half-life* 

(s) 

15.5 

8.4 

6.2 

10.9 

45.1 

* IOD (Initial ozone demand) = (starting ozone concentration) - (ozone concentration at 60s); 
Halflife=0.69/k 

Ozone decomposition in natural water is generally divided into an initial and a second 

phase. However the boundary line of two phases is not clearly defined. Buffle and co­

workers (Buffle et al., 2006a and 2006b) defined t <20s as the initial phase and others 

used t<60s (Rakness et al., 1999; Westerhoff et al., 1999; Sladic, 2001). The initial phase 

in the current study was assumed to be 60 s, and the data beyond was analyzed for 

calculating the first-order kinetic constant and half-life for the second phase of ozone 

decompositions as reported in Table 4.11. At the high DOC content of 4.5 mg/L (Expts. 1 

& 2), ozone consumption was very rapid and the residual ozone concentration reduced to 

about 0.2 mg/L or lower in about 2 min. Due to these low concentrations and the reduced 

sensitivity of the indigo method, the first-order rate constant for the second phase was not 

determined for these experiments. For Experiments 4 and 5, about 60 - 63% of the ozone 

was consumed during the first minute in the presence of 0.8 mg/L DOC at high 

temperature of 23 °C, whereas the consumption was about 30% in DOC-free water (Expt. 

6). These numbers are similar to those reported by Westerhoff and co-workers 
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(Westerhoff et al., 1999). The first-order decay rate constants obtained at the high 

temperature in waters with or without DOC (Expts 5 & 6) are also in agreement with 

those reported in literature (Ku et al., 1996; Sladic, 2001). 

Regression analyses were performed to determine the influence of the pH range used in 

the current study on ozone decomposition rate at 23 °C and 0.8mg/L DOC (graphs a and b 

in Figure 4.15). The analyses obtained using the software Minitab gave a confidence limit 

(90%, a = 0.10) of regression coefficient (3 (i.e. slope) as (- 0.1116 ± 0.0114) for graph a, 

and (-0.0824 ± 0.0125) for graph b (for detailed calculation, see Appendix D). These two 

confidence limits do not overlap indicating that statistically, the first-order decay rate 

constant at pH 8.1 is significantly different from pH 6.8 at 90% confidence level under 

the given conditions. However, the initial ozone demands under both conditions are 

similar, i.e., 1.9 mg/L vs 1.8 mg/L (Table 4.11), which is consistent with the previous 

finding that pH has no effect on direct reactions between ozone and compound. 
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Figure 4.14 Ozone residual profile, DOC = 0.8 mg/L, starting O3 =3.0 mg/L. 
a) T = 23 °C, pH = 8.1; b) T = 23 °C, pH = 6.8, and c) T = 5 'C, pH = 6.8. 
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Figure 4.15 First-order decay profile, DOC = 0.8 mg/L, starting 0 3 =3.0 mg/L. 
a) T = 23 *C, pH = 8.1; b) T = 23 *C, pH = 6.8, and c) T = 5°C, pH = 6.8. 
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Figure 4.16 Ozone residual profile, starting 0 3 = 3.0 mg/L. a) DOC = 0 mg/L, pH = 6.8, T = 5 °C; 
b) DOC = 0 mg/L, pH = 6.8, T = 23 °C, and c) DOC = 4.5 mg/L, pH = 6.8, T = 5 *C. 
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Regression analyses were also performed under other operating conditions, as presented 

in Figures 4.15 and 4.17, and compared to assess the effect of other process variables on 

the decay rate constant. Significantly different decay rate constants (k value) of 

experiments 3 and 4 (0.0444 vs 0.0824 s"1), and experiments 6 and 7 (0.0635 vs 0.0153 s'1) 

were indicative of strong influence of temperature on O3 decay. The k values for 

experiments 3 and 7 (0.0444 vs 0.0153 s"1) were also significantly different at lower 

temperature of 5 °C, which indicated the significant effect of DOC loading. However, no 

significant difference was found between k values of experiments 4 and 6 (0.0824 vs 

0.0635 s"1), suggesting that at higher temperature of 23 °C, the DOC loading effect was 

overshadowed by temperature effect during the second phase of ozone decomposition. 

The much higher initial ozone demand of experiment 4 (1.9 mg/L) than that of 6 (0.6 

mg/L) suggested that most of the reactive DOC in experiment 4 was quickly oxidized by 

ozone, thus limited the impact of DOC on ozone decay during second phase. 

Although ozone is rapidly consumed by DOC in water matrix, it is interesting to point out 

that no obvious reduction of DOC was observed after each decay study experiment 

completed. Similarly, no significant difference of DOC was measured before and after 

ozone treatment for all the bench-scale experiments. It is believed that ozone reacts 

preferentially with molecular structures that absorb UV light as opposed to completely 

oxidizing organic carbon to CO2 and water (Amy et al., 1988). Ozone provides a 

significant contribution to breaking down organic compounds, but ozonation alone has a 

negligible effect on the overall concentration of DOC in raw water (Qasim et al., 2000). 

Although no intermediate oxidation products for DOC are analyzed, pH values of treated 

samples are generally 0.2 - 0.6 units lower than that of the control samples (untreated), 

which indicates that some organic acid were produced during ozonation. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The research examined the effect of five process variables (DOC content, ozone dose, 

ozone contact time, pH and temperature) on the transformation of 16 select PPCPs/ EDCs 

in a laboratory-scale simulated drinking water ozonation process. Within the range of 

experimental conditions examined, the results revealed the following: 

• Ozonation is an effective process for significant transformation (up to >90%) for 

all of the 16 PPCPs/EDCs examined. 

• Ozone dose, DOC content and their interaction were the most significant factors, 

which accounted for 61-98 % of the variability in observed transformation rates 

for the chemicals studied. 

• Temperature and its interaction with ozone dose and DOC content significantly 

affected the transformation for seven (bisphenol A, lincomycin, indomethacin, 

sulfamethazine, sulfamethoxazole, sulfachloropyridazine and naproxen) of the 

twelve Group A chemicals, and accounted for up to 27% of the observed 

variability. Temperature did not significantly affect the transformation for any of 

the four Group B chemicals. 

• The effect of DOC content and temperature were insignificant or marginal when 

ozone exposure was high. At ozone exposure values > 1.3 mg/L.min, 

transformation efficiencies > 90 % were observed for Group A and > 70 % for 

Group B chemicals under all conditions. Transformation efficiency for Group B 
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chemicals is however expected to be strongly influenced by the nature and content 

of the natural organic matter present. 

5.2 Engineering Significance 

Ozone is becoming a popular primary disinfectant instead of chlorine in many water 

treatment plants. Also, much research, including the current study, also demonstrated that 

ozonation is an effective process to transform most of the PPCPs/EDCs of concern. 

Therefore disinfection using ozone may have an added benefit of transforming several 

emerging chemicals of concern that are routinely being detected in source drinking waters. 

The present study examined the effect of several variables on the transformation of select 

PPCPs and EDCs by treatment with ozone. The results show that ozone dose and organic 

matter content of the raw water are two important variables controlling the transformation 

of PPCPs/EDCs during the drinking water ozonation process. The extent of 

transformation for a given chemical is affected by its reaction directly with molecular 

ozone (characterized by ko3) and with hydroxyl radicals (characterized by koH), a 

powerful secondary oxidant generated during the ozonation process. 

The results of the present study can be used to derive some general guidelines for water 

treatment utilities to obtain a first estimate of the expected transformation of a given 

PPCP/ EDC during their ozonation process designed to achieve a disinfection criterion. 

As with other disinfection processes, disinfection process using ozone is designed and 

monitored using a specified ozone exposure or CT value, a product of ozone 

concentration and time of exposure or contact, which is derived based on guidelines by 

the regulation agency. Table 5.1 shows the required CT values for Giardia and virus 

inactivation by ozone, under the "Guidance manual for compliance with the filtration and 
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disinfection requirements for public water systems using surface water sources" (AWWA, 

1991). For example, to achieve 2.0-log removal of Giardia and 4-log removal of viruses 

from a typical natural water source during ozonation treatment, a minimum CT value of 

1.3 mg/L.min is required at 5 °C (Table 5.1). 

Table 5.1 CT values (mg/L. min) for Giardia and virus inactivation by ozone (AWWA, 1991) 
Giardia (Log) 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

<1 

0.48 

0.97 

1.50 

1.90 

2.40 

2.90 

5 

0.32 

0.63 

0.95 

1.30 

1.60 

1.90 

Temperature (°C) 

10 15 

0.23 

0.48 

0.72 

0.95 

1.20 

1.04 

0.16 

0.32 

0.48 

0.63 

0.79 

0.95 

20 

0.12 

0.24 

0.36 

0.48 

0.60 

0.72 

25 

0.08 

0.16 

0.24 

0.32 

0.40 

0.48 

Virus (Log) 

2.0 

3.0 

4.0 

0.90 

1.40 

1.80 

0.60 

0.90 

1.20 

0.50 

0.80 

1.00 

0.30 

0.50 

0.60 

0.25 

0.40 

0.50 

0.15 

0.25 

0.30 

For compounds with reported or estimated ko3 >104 M'V1, the present study has shown 

that this CT value (03-exposure) may be sufficient to achieve >90% oxidization (Figure 

4.13). Estimates of transformation at lower CT values may have to be determined through 

actual measurements. For compounds with lower ko3 (<104 M'V1), estimation of 

hydroxyl radical exposure may be needed in addition to quantify the expected 

transformation. Such an estimate may be obtained by the water utility through the 

determination of an Rct value for their source water for the target ozone CT value used by 

the utility. A laboratory procedure for the determination of R^ value using an ozone-
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resistant probe compound proposed by Elovitz and von Gunten (1999) can be used. Since 

Rct value is expected to be strongly influenced by the organic matter content, the value 

should be determined for several typical raw water characteristics experienced by the 

utility, to obtain an idea of the expected variability in hydroxyl radical exposure as a 

function of the raw water characteristics. Based on the Rct value and ozone CT value, the 

expected minimum transformation of compounds with low ko3 (<~50 M'V1) and koH > 

5xi09 M's"1 may be estimated using Table 5.2. 

Table 5.2 03-exposure (mg/L. min) needed to achieve specific percent transformation of 
an Q3- resistant compound (kp3 <~50 M" s" ; kpH = 5x109 M'V1) as a function of R^ value 

Rct 

10"* 

lO"7 

4xl0"7 

10-6 

50* 

11 

1.1 

0.3 

0.11 

03-exposure 

60 

14 

1.4 

0.4 

0.14 

needed 

70 

19 

1.9 

0.5 

0.19 

(mg/L. min) 

80 

25 

2.5 

0.6 

0.25 

90 

36 

3.6 

0.9 

0.36 

*Estimated transformation (%) 

Table 5.2 has been derived using the mathematical model derived by Elovitz and von 

Gunten (1999). For compounds with intermediate ko3 values (> 50 and <104 NT's"1) the 

expected transformation would be greater than that estimated using Table 5.2 and less 

than the estimate for compounds with ko3 > 10 M" s" . 

5.3 Recommendations 

Future research should include better understanding the nature of the by-products and 

their toxicities as well as the reaction mechanism. The objectives will consist of studying 
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by-products of the reactions between ozone and water matrix and by-products formed 

from the reaction of ozone with specific PPCPs/EDCs. Currently, the major by-product of 

concern for ozonation processes is bromate, which is formed in bromide-containing 

waters. A low drinking water standard of 10 ug/L has been set for bromate by the EU and 

the U.S. Therefore, disinfection and oxidation processes have to be evaluated to fulfill 

these criteria. Generally speaking, bromate formation is not a problem with ozone doses 

that are necessary to oxidize fast-reacting PPCPs/EDCs (Huber et al, 2003). However, 

the effects of initially generated »OH on the formation of bromate cannot be ignored 

(Buffle et al., 2004). Lowering of pH and ammonia addition are the. main control 

measurements to be proposed (von Gunten, 2003b). However, conflicting results of 

ammonia addition on bromate formation have been observed (Glaze et al., 1993; Krasner 

et al., 1993). Chlorine-ammonia process (CI2-NH3), consisting of prechlorination 

followed by ammonia addition prior to ozonation was also studied and a 4-fold decrease 

in bromate formed was observed when compared to the ammonia-only process (Buffle et 

al., 2004). But this process still requires a full-scale investigation. Iodate is another by­

product formed during ozoantion of iodide-containing waters, but is considered non-

problematic because it transformed back to iodide endogenically (von Gunten, 2003b). 

Chlorate is only formed during ozonation if a preoxidation of the water with chlorine 

and/or chlorine dioxide is applied. The toxicological impact of chorate is unclear and 

more studies are required to permit regulation. Information is also lacking on higher 

molecular weight organic by-products. 

Ozonation of PPCPs/EDCs produces by-products. Some oxidation by-products were 

identified and found to pose as serious a health risk as the parent compounds, such as 

atrazine (Beltran, et al , 1994 and 2000). Other by-products pose less risk than the parent 
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compounds such as 17p-estradiol (Alum et al., 2004). In the current study only the 

transformation of primary 16 target compounds was investigated, thus further research is 

essential to identify and confirm the structures of metabolites formed by ozonation and to 

clarify the kinetic behavior. To achieve this, by-product(s) of a selected PPCP/EDC must 

be synthesized and identified then screened for toxicity assessment. Prior to these, a 

suitable toxicity assessment method must be established because current standard 

ecotoxicity tests are probably inappropriate for assessing long-term subtle effects of many 

PPCPs/EDCs and their by-products (Boxall, 2004). 
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Appendix A: Summary of Transformation Efficiencies 

Table A-1. Transformation Efficiency of Carbamazepine 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 „ 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation 
REP1 

67 
>99 
>99 
>99 
>99 
>99 
60 
>99 
>99 
>99 
>99 
83 
>99 
>99 
73 
>99 

REP 2 

62 
>99 
>99 
>99 
>99 
>99 
57 
>99 
>99 
>99 
>99 
81 
>99 
>99 
71 
>99 

efficiency (%) 
REP 3 

65 
>99 
>99 
>99 
>99 
>99 
57 
>99 
>99 
>99 
>99 
87 
>99 
>99 
73 
>99 

AVG 

65 
>99 
>99 
>99 
>99 
>99 
58 
>99 
>99 
>99 
>99 
84 
>99 
>99 
72 
>99 

Table A-2. Transformation Efficiency of Monensin 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
P H 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

O3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 
REP1 

41 
87 
95 
97 
>97 
>97 
53 
74 
94 
>97 
96 
43 
91 
>97 
40 
88 

REP 2 

28 
80 
97 
>97 
>97 
>97 
41 
71 
96 
>97 
92 
47 
88 
>97 
39 
84 

REP 3 

34 
88 
96 
>97 
>97 
>97 
48 
75 
96 
>97 
92 
44 
87 
>97 
50 
83 

AVG 

34 
85 
96 
>97 
>97 
>97 
47 
73 
95 
>97 
93 
45 
89 
>97 
43 
85 
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Table A-3. Transformation Efficiency of Tetracycline 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

O3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 .,. 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 

REP1 

60 
90 
>98 
95 
>98 
96 
72 
97 
96 
>98 
88 
42 
98 
>98 
52 
96 

REP 2 

49 
89 
>98 
95 
>98 
97 
62 
97 
96 
>98 
83 
49 
98 
>98 
57 
95 

REP 3 

54 
91 
>98 
95 
>98 
97 
61 
97 
96 
>98 
83 
45 
98 
>98 
60 
95 

AVG 

54 
90 
>98 
95 
>98 
97 
65 
97 
96 
>98 
85 
45 
98 
>98 
56 
95 

Table A-4. Transformation Efficiency of Lincomycin 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 
R E P 1 

79 
>99 
>99 
>99 
>99 
>99 
71 
>99 
>99 
>99 
>99 
95 
>99 
>99 
93 
>99 

REP 2 

73 
>99 
>99 
>99 
>99 
>99 
66 
>99 
>99 
>99 
>99 
92 
>99 
>99 
92 
>99 

REP 3 

76 
>99 
>99 
>99 
>99 
>99 
65 
>99 
>99 
>99 
>99 
94 
>99 
>99 
93 
>99 

AVG 

76 
>99 
>99 
>99 
>99 
>99 
67 
>99 
>99 
>99 
>99 
94 
>99 
>99 
93 
>99 



Table A-5. Transformation Efficiency of Erythromycin 

Run 

1 
2 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
PH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency 
REP1 

16 
56 
91 
93 
93 
90 
-35 
87 
87 
>99 
62 
-60 
76 
98 
22 
89 

REP 2 

2 
57 
91 
89 
93 
94 
-14 
84 
85 
>99 
15 
-25 
81 
98 
32 
89 

REP 3 

25 
30 
92 
93 
93 
88 
17 
87 
89 
>99 
54 
-78 
79 
98 
21 
84 

(%) 
AVG 

14 
48 
91 
92 
93 
91 

86 
87 
>99 
44 

79 
98 
25 
87 

Table A-6. Transformation Efficiency of Sulfamethazine 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 

Co 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 
23 
23 
5 
5 

Transformation efficiency (%) 
REP1 

79 
>99 
>99 
>99 
>99 
>99 
74 
>99 
>99 
>99 
>99 
86 
>99 
>99 
82 
>99 

REP 2 

65 
>99 
>99 
>99 
>99 
>99 
68 
>99 
>99 
>99 
>99 
81 
>99 
>99 
85 
>99 

REP 3 

71 
>99 
>99 
>99 
>99 
>99 
69 
>99 
>99 
>99 
>99 
86 
>99 
>99 
82 
>99 

AVG 

72 
>99 
>99 
>99 
>99 
>99 
70 
>99 
>99 
>99 
>99 
84 
>99 
>99 
83 
>99 



Table A-7. Transformation Efficiency of Sulfachloropyridazine 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
PH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 
REP1 

68 
>99 
>99 
99 
99 
>99 
55 
98 
>99 
>99 
>99 
82 
>99 
>99 
71 
>99 

REP 2 

54 
>99 
>99 
99 
99 
>99 
49 
98 
>99 
>99 
>99 
77 
>99 
>99 
77 
>99 

REP 3 

59 
>99 
>99 
99 
99 
>99 
58 
98 
>99 
>99 
>99 
81 
>99 
>99 
73 
>99 

AVG 

60 
>99 
>99 
99 
99 
>99 
54 
98 
>99 
>99 
>99 
80 
>99 
>99 
74 
>99 

Table A-8. Transformation Efficiency of Sulfamethoxazole 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation 
REP1 

61 
>99 
>99 
>99 
>99 
>99 
50 
>99 
>99 
>99 
>99 
71 
>99 
>99 
63 
>99 

REP 2 

45 
>99 
>99 
>99 
>99 
>99 
45 
>99 
>99 
>99 
>99 
64 
>99 
>99 
67 
>99 

efficiency (%) 
REP 3 

51 
>99 
>99 
>99 
>99 
>99 
52 
>99 
>99 
>99 
>99 
71 
>99 
>99 
63 
>99 

AVG 

52 
>99 
>99 
>99 
>99 
>99 
49 
>99 
>99 
>99 
>99 
69 
>99 
>99 
64 
>99 
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Table A-9. Transformation Efficiency of Tylosin 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 

PH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 
4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 
1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

03 Time 
(min) 
6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 
23 
23 
5 
5 
23 
5 
5 
23 
23 
5 
23 
23 
5 
5 

Transformation efficiency (%) 

REP1 

65 
>98 
>98 
97 
>98 
>98 
73 
>98 
>98 
>98 
97 
72 
97 
>98 
78 
>98 

REP 2 

56 
>98 
>98 
97 
>98 
>98 
69 
>98 
>98 
>98 
94 
68 
98 
>98 
73 
97 

REP 3 

63 
>98 
>98 
97 
>98 
>98 
68 
>98 
>98 
>98 
96 
65 
98 
>98 
76 
98 

AVG 

61 
>98 
>98 
97 
>98 
>98 
70 
>98 
>98 
>98 
96 
68 
98 
>98 
76 
98 

Table A-10. Transformation Efficiency of Naproxen 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 

pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 
4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 
1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

03 Time 
(min) 
6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 
23 
23 
5 
5 
23 
5 
5 
23 
23 
5 
23 
23 
5 
5 

Transformation efficiency 

REP1 

64 
>99 
>99 
>99 
>99 
>99 
65 
>99 
>99 
>99 
>99 
78 
>99 
>99 
70 
>99 

REP 2 

58 
>99 
>99 
>99 
>99 
>99 
53 
>99 
>99 
>99 
>99 
74 
>99 
>99 
69 
>99 

REP 3 

54 
>99 
>99 
>99 
>99 
>99 
55 
>99 
>99 
>99 
>99 
78 
>99 
>99 
69 
>99 

(%) 
AVG 

59 
>99 
>99 
>99 
>99 
>99 
58 
>99 
>99 
>99 
>99 
77 
>99 
>99 
69 
>99 



Table A-l 1. Transformation Efficiency of Bezafibrate 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation 
REP1 

8 
90 
97 
98 
>99 
>99 
41 
87 
96 
>99 
96 
43 
90 
>99 
41 
87 

REP 2 

20 
87 
96 
98 
>99 
>99 
38 
88 
97 
>99 
94 
39 
90 
>99 
41 
86 

efficiency 
REP 3 

35 
89 
96 
98 
>99 
>99 
36 
87 
97 
>99 
92 
42 
90 
>99 
37 
87 

(%) 
AVG 

21 
89 
96 
98 
>99 
>99 
38 
87 
97 
>99 
94 
41 
90 
>99 
40 
87 

Table A-l2. Transformation Efficiency of Indomethacin 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation 
REP1 

51 
>97 
>97 
95 
>97 
>97 
62 
>97 
>97 
>97 
>97 
91 
>97 
>97 
83 
>97 

REP 2 

57 
>97 
>97 
95 
>97 
>97 
55 
>97 
>97 
>97 
>97 
88 
>97 
>97 
82 
>97 

efficiency (%) 
REP 3 

66 
>97 
>97 
95 
>97 
>97 
55 
>97 
>97 
>97 
>97 
91 
>97 
>97 
82 
>97 

AVG 

58 
>97 
>97 
95 
>97 
>97 
57 
>97 
>97 
>97 
>97 
90 
>97 
>97 
82 
>97 



Table A-13. Transformation Efficiency of Gemfibrozil 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

O3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

O3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
CO 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 
REP1 

51 
>99 
>99 
>99 
>99 
>99 
50 
>99 
>99 
>99 
>99 
61 
99 
>99 
54 
>99 

REP 2 

52 
>99 
>99 
>99 
>99 
>99 
48 
>99 
>99 
>99 
>99 
56 
97 
>99 
55 
>99 

REP 3 

51 
>99 
>99 
>99 
>99 
>99 
49 
>99 
>99 
>99 
>99 
60 
99 
>99 
54 
>99 

AVG 

51 
>99 
>99 
>99 
>99 
>99 
49 
>99 
>99 
>99 
>99 
59 
98 
>99 
54 
>99 

Table A-14. Transformation Efficiency of Clofibric acid 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
PH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

O3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

O3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 
REP1 

94 
82 
92 
>97 
>97 
97 
38 
77 
93 
>97 
87 
41 
83 
>97 
42 
79 

REP 2 

94 
80 
91 
96 
>97 
97 
36 
78 
93 
>97 
86 
40 
82 
>97 
40 
78 

REP 3 

94 
83 
91 
97 
>97 
>97 
35 
77 
93 
>97 
84 
40 
83 
>97 
39 
79 

AVG 

94 
82 
91 
97 
>97 
97 
36 
77 
93 
>97 
86 
40 
83 
>97 
40 
79 
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Table A-15. Transformation Efficiency of Bisphenol A 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
pH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
fC) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency 

REP1 

65 
>97 
>97 
>97 
>97 
>97 
75 
>97 
>97 
>97 
>97 
90 
>97 
>97 
87 
>97 

REP 2 

66 
>97 
>97 
>97 
>97 
>97 
68 
>97 
>97 
>97 
>97 
86 
>97 
>97 
86 
>97 

REP 3 

66 
>97 
>97 
>97 
>97 
>97 
68 
>97 
>97 
>97 
>97 
90 
>97 
>97 
87 
>97 

(%) 
AVG 

66 
>97 
>97 
>97 
>97 
>97 
70 
>97 
>97 
>97 
>97 
89 
>97 
>97 
87 
>97 

Table A-16a. Transformation Efficiency of Ibuprofen (ESI +) 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
P H 

6.8 
6.8 
8,1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 
4.5 
4.5 
0.8 
4.5 
4.5 

O3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 
REP1 

42 
90 
97 
>97 
>97 
>97 
41 
84 
96 
>97 
91 
33 
90 
>97 
39 
86 

REP 2 

40 
85 
96 
>97 
>97 
>97 
45 
86 
96 
>97 
90 
37 
88 
>97 
39 
85 

REP 3 

37 
91 
96 
>97 
>97 
>97 
43 
84 
96 
>97 
89 
38 
90 
>97 
31 
84 

AVG 

40 
89 
96 
>97 
>97 
>97 
43 
85 
96 
>97 
90 
36 
89 
>97 
36 
85 



Table A-16b. Transformation Efficiency of Ibuprofen (ESI -) 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Factors 
PH 

6.8 
6.8 
8.1 
6.8 
8.1 
6.8 
8.1 
8.1 
6.8 
6.8 
6.8 
6.8 
8.1 
8.1 
8.1 
8.1 

DOC 
(mg/L) 

4.5 
4.5 
0.8 
0.8 
0.8 
0.8 
4.5 
0.8 
0.8 
0.8 
4.5 

,4.5 
4.5 
0.8 
4.5 
4.5 

0 3 Dose 
(mg/L) 

1 
3 
1 
1 
3 
3 
1 
1 
1 
3 
3 
1 
3 
3 
1 
3 

0 3 Time 
(min) 

6 
6 
6 
2 
6 
2 
2 
2 
6 
6 
2 
2 
6 
2 
6 
2 

Temp 
(°C) 
23 
5 

23 
23 
5 
5 

23 
5 
5 

23 
23 
5 

23 
23 
5 
5 

Transformation efficiency (%) 
REP1 

44 
88 
96 
>97 
>97 
>97 
43 
82 
96 
>97 
91 
46 
90 
>97 
44 
85 

REP 2 

43 
86 
95 
>97 
>97 
>97 
40 
83 
95 
>97 
91 
41 
87 
>97 
41 
84 

REP 3 

41 
88 
95 
>97 
>97 
>97 
38 
80 
96 
>97 
89 
43 
90 
>97 
44 
85 

AVG 

43 
87 
95 
>97 
>97 
>97 
40 
82 
96 
>97 
90 
43 
89 
>97 
43 
85 



Appendix B: Statistic Analysis to Determine Main Effect Factors and Interactions 

1. Carbamazepine 

Normal Probability Plot of the Effects 
(response is Removal Efficiency, Alpha = .10) 
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2. Bisphenol A 
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Normal Probability Plot of the Effects 
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99 

70 

60 
50 
40 
30-
20-

10 

Y5-| r e — T " 

-10; 

tenth's PSE = 0.75 

-5 

...•.£.. 

-• ic 

ice.. 
IAD 

10 

Effect Type 
Not Significant 
Significant 

Factor Name 
A pH 
B DOC 
C Ozone 
D Time 
E Temp. 

98-

£ . 96-

fr 
c 
fit 

I9 4-

5 
| 90-

I 
88-

Main Effects Plot (data means) for Removal Efficiency 

/ 

/ 

- l l 
Ozone 

98-

1 >§96-

?^: v 
-'C 
B 

)::fV; 
n 

l » -
8 
o 90-

S 
£ 

88-

Main Effects Plot (data means) for Removal Efficiency 

\ 

\ 

- l l 
DOC 



103 

98 

& 
i 

1 r • 
re 

i 92; 

Main Effects Plot (data means) for Removal Efficiency 

Temperature 

96H 

c 
8 
X 92-

i? 

E
ff

ic
ie

nc
y,

 
O

S
 

O
S

 

* 84-A
C

U
I 

8 80-

a) Interaction of Ozone and DOC 

/ 
/ 

/ 
/ / / / / / / / 

/ / / 
/ / / 

-1 1 

DOC 

— * - 1 

Ozone 

98-

~ 96' 
. ; . | ; 9 4 -

# 92-

J 90-

I 88-

| 86-

& 
84-

82-

b) Interaction of Ozone and Temperature 

• • 

-1 1 
Temp. 

Oione 



'•: 9 8 -

,. . ^ • 96-. 

,1 ̂  
1 sa­
ls 
| 86-

84-

82-

c) Interaction of DOC and Temperature 

X 
X 

X 
X 

\ 
X 

X 
X 

X 

\ 
X 

X 
X 

X 

- • • • ' • : ' : . • ! • • • • " " • : . • • • ' 1 : • ' • 

DOC 

~m~ l 

\ T e m p . • • : . • . ' • ; - • ' : -

ANOVA Table 
Source 

B 

C 

E 

A*D 

B*C 

B*E 

C*E 

Error 

Total 

DF a 
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15 

Seq SSb 
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10.0 

1493.0 

Contribution c(%) 
24.2 

24.2 

6.7 

6.7 

24.2 

6.7 

6.7 

0.6 

R-Sq =99.4 % 

A- pH; B- DOC; C- 0 3 dose; D- contact time; E- temperature; 
B*C- interaction between B and C 

a DF-degree of freedom;b Seq SS- sequential sum of squares 
c Contribution 24.2%=361.0/1493.0 
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B 

C 

E 

A*D 

B*C 

B*E 

C*E 

Error 

Total 

DF 

8 

15 

SeqSS 

272.3 

272.3 

121.0 

121.0 

272.3 

121.0 

121.0 

41.0 

1341.9 
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Source 

B 

C 

E 
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Error 
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DF 
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Contribution (%) 
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R-Sq =98.9 % 
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ANOVA" 
Source 
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Contribution (%) 
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23.2 
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R-Sq = 98.4 % 
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13. Tylosin 

Normal Probability Plot of the Effects 
(response is Removal Efficiency, Alpha = .10) 
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Normal Probability Plot of the Effects 
(response is Removal Efficiency, Alpha = .10) 
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Appendix C: Chemical Structure and Proposed Attack Sites by Ozone (adapted from 
Ikehata et al, 2006) 
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Appendix D: Calculation of Confidence Limit for Linear Regression Coefficient P 
(slope) (reference: Johnson, R. Miller & Freund's probability and statistics for engineers, 
7th Edition, Pearson Prentice Hall, 2005.) 

For graph a in Figure 4.15, T=23°C, pH=8.1 

Regression Analysis 

The regression equation is 
InR = - 0.04894 - 0.1116 t (R=ln[03]t/[03]60s) 

S = 0.0754570 R-Sq = 96.9% R-Sq(adj) = 96.6? 

Analysis of Variance 

Source DF SS MS F P 
Regression 1 1.78015 1.78015 312.65 0.000 
Error 10 0.05694 0.00569 
Total 11 1.83709 
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Fitted Line Plot 
InR = -0.04894-0.1116 t(minj . 
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t(min) 

3. Linear regression 

S 0.0754570 
R-Sq 96.9% 
R-Sq(adj) 96.6% 

Confidence (90%, a=0.10) limits for regression coefficients 

p= b ± ta/2Se • Sxx ("1/2) 

since b=-0.1116 
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to/2, d f ~ t o,05, 1 0 - 1-812 

Se = 0.0754570 

(Sxy)2/Sxx= 1.78015 

Sxy/Sxx = b=-0.1116 

Therefore, 

Sxy= -15.9512, Sxx= 142.93 

The confidence limits for (3 is 

-0.1116 ± 1.812 x 0.0754570 * 142.93 ("1/2) = -0.1116 ± 0.0114, i.e., (-0.1230, -0.1002) 

For graph b in Figure 4.15, T=23°C, pH=6.8 

Regression Analysis 

The regression equation is 
InR = 0.04067 - 0.08237 t 

S = 0.0894284 R-Sq = 92.8% R-Sq(adj) = 92.1% 

Analysis of Variance 

Source DF SS MS F P 
Regression 1 1.12691 1.12691 140.91 0.000 
Error 11 0.08797 0.00800 
Total 12 1.21488 

In a same manner, the confidence limits for P is calculated as 

-0.08237 ± 1.796 x 0.0894284 x 166.0929 ("1/2) = -0.0824 ± 0.0125, i.e. (-0.0949, -0.0699) 
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