
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2007 

Characterization of S-denitrosation and disulfide reductase Characterization of S-denitrosation and disulfide reductase 

activity of protein disulfide isomerase activity of protein disulfide isomerase 

Arun Raturi 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Raturi, Arun, "Characterization of S-denitrosation and disulfide reductase activity of protein disulfide 
isomerase" (2007). Electronic Theses and Dissertations. 4631. 
https://scholar.uwindsor.ca/etd/4631 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4631&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4631?utm_source=scholar.uwindsor.ca%2Fetd%2F4631&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Characterization of A-Denitrosation and Disulfide 
Reductase Activity of Protein Disulfide Isomerase: 

Role in Vascular Function

by 

Arun Raturi

A Dissertation
Submitted to the Faculty o f Graduate Studies and Research 

through Chemistry and Biochemistry 
in Partial Fulfillment o f the Requirements for 

the Degree o f Doctor o f Philosophy at the 
University of Windsor

Windsor, Ontario, Canada 
2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-35093-5 
Our file Notre reference 
ISBN: 978-0-494-35093-5

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© Arun Raturi 2007 
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

PDI (protein disulphide-isomerase) is widely distributed across eukaryotic tissues, 

making up approximately 1% of the total protein content of cells. One of the most studied 

functions of PDI is its ability to catalyze isomerization and rearrangement of disulphide 

bonds in the endoplasmic reticulum. Recently, its S-denitrosation activity has also been 

demonstrated. The present study was initiated to characterize PDI mediated denitrosation 

as well as disulfide reduction by using novel assays and methods.

We present here simple UV-visible spectrophotometric and fluorometric assays to 

monitor denitrosation of S-nitrosoglutathione (GSNO) by PDI. This was achieved by 

monitoring the loss of the S-NO absorbance at 343 nm as well as with the aid of the 

fluorogenic nitric oxide (NOx) probe 2,3-diaminonaphthalene. Our results further 

suggested that final product of this catalytic denitrosation is NO’. Overall, we have 

provided evidence that PDI can be S'-nitrosated to form PDI-SNO which, in turn, can be 

denitrosated by PDI suggesting the potential role of this enzyme in the transport of nitric 

oxide across the membrane.

We have utilized oxidized glutathione to develop a series of fluorescent probes and to 

establish sensitive fluorometric assays for the continuous determination of disulphide 

reductase activity of PDI. The most effective probe was dieosin glutathione disulfide

iv
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(Di-E-GSSG) that gave -70-fold increase in the fluorescence signal upon reduction of the 

disulfide bond. This probe was used to monitor disulfide reductase activity of PDI with a 

sensitivity range that has not been reported in literature. The assay was used to study the 

dithiol equilibrium state of PDI under variable [GSH] / [GSSG] ratios.

We have shown that platelet derived microparticles contain protein disulfide isomerase 

and this surface associated PDI is involved in promoting platelet aggregation. We also 

detected increased levels of PDI-containing microparticles in patients with type II 

diabetes (T2D). These findings strongly suggest that platelet hypersensitivity observed in 

T2D can partially be attributed to microparticle-surface-PDI activity.
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CHAPTER 1

General Introduction

Protein Disulfide Isomerase: 

Structure, Function and Localization
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1.1 Protein disulfide isomerase

Protein disulfide isomerase (PDI) (E.C. 5.3.4.1) is a ~55 kDa protein that was first 

isolated and characterized by Anfinsen and coworkers (Goldberger et al., 1963). It is 

primarily located in the endoplasmic reticulum (ER) where it assists in the proper folding 

of proteins through disulfide isomerization. However, this enzyme has been extensively 

studied in past decades for its multifunctional roles and non- ER locations (Turano et al., 

2002).

1.1.1 Overall Structural Organization

PDI is a multidomain protein and, as shown in Figure 1.1, its structure is organized in 

five domains (a, b, b', a f, c) (Darby et al., 1996). The a and a' domains are catalytically 

active due to the presence of one active site in each domain and show high degree of 

homology to each other as well as to thioredoxin. In contrast, b and b ' are inactive 

domains and show homology only to each other but not to thioredoxin. The active site 

present in a or a ' domain has two cysteine residues separated by two amino acids, glycine 

and histidine, through which PDI mediates its activity.

53c g h c 56XT 397c g h c 400

Figure 1.1 Simple domain architecture of human PDI (Darby et al., 1996).
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1.1.2 Crystal Structure of Yeast PDI

Most of the information related to structural organization of human PDI in the literature 

has come from the NMR studies on individual a and b domains conducted by Kemmink 

et al. (1996, 1997). However, very recently, Schindelin and coworkers (Tian et al., 2006) 

have obtained the crystal structure of full length yeast PDI and have extensively 

described its three dimensional structure which has tremendously improved our 

knowledge towards better understanding of PDI structure. Although the described crystal 

structure is of yeast PDI, it is expected that mammalian PDI will share structural 

homology with the former owing to similarities in primary structure and domain 

boundaries.

The crystal structure showed that PDI active sites, as predicted earlier, adopt a 

thioredoxin fold that is composed of five p sheets and 4 a helices in the sequence of 

papapappa (Figure 1.2). The active site consensus sequence (CGHC) in a or a'domain is 

present towards the N-terminus of second a helix. The b and b f domains also resemble 

the thioredoxin fold with noted differences. While the b domain lacks the third a helix 

and has a shorter second helix, b' domain lacks the first P strand and has an extra short a 

helix before the fourth helix. The overall arrangement of four domains is asymmetrical in 

such a way that a domain is in contact with both b and b ’ domains, whereas a ' domain 

only interacts with b ' domain. In addition, a and a ' domains are more flexible in spatial 

movement as compared to rigid b and b ’ domains.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. B.

Figure 1.2 Structure of yeast PDI (Tian et al., 2006)

A. Ribbon diagram of PDI: a domain in violet, b domain in cyan, b ' domain in golden, a' 
domains in red, and the c domain in green, ‘x’ represents the loop connecting a ' and b ' 
domains. B. Secondary structure diagram of the canonical thioredoxin fold with a helices 
in green and P strands in red. The location of the active site is indicated by a red oval and 
arrow. Reprint with permission from Elsevier (Tian et. al, 2006)

1.1.3 Active site arrangement

One of the most important findings derived from the crystal structure of PDI is the 

determination of the adjacent positioning of the two active sites with respect to each 

other. The structure shows that PDI adopts a ‘U’ shape in such a way that b and b' 

domains form its base and a and a' domains are facing each other in the inside of ‘U’ 

structure. The proper folding of proteins by PDI is potentially facilitated by this shape in 

two ways: 1) Internal surface of ‘U’ is rich in hydrophobic residues that participate in the 

interaction of PDI with misfolded proteins and 2) The two active sites are separated by a 

distance of 28 A that can accommodate a protein of ~ 100 residues.

4
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1.1.4 Hydrophobic features of b and b ' domains

The NMR study of human PDI (Kemmink et al., 1996) as well as the crystal structure of 

yeast PDI has shown that both b and b ' domains have hydrophobic patches surrounding 

the active sites (Figure 1.3). These patches, in association with hydrophobic residues of 

the a and a ' domains, form a continuous hydrophobic surface that provides an ideal 

substrate binding platform for misfolded proteins. Although the b domain has a 

hydrophobic patch that contributes to the overall hydrophobic platform and makes it 

larger, the primary substrate binding site is present in b' domain. Pimeskoski et al. 

(2004) have shown that in human PDI, residue 1272 of b' domain is crucial for the 

substrate binding. Overall, it has been suggested that while b' domain is important for 

the effective protein folding, b domain potentially increases the rate of refolding (Tian et 

al., 2006).

Figure 1.3 Hydrophobic Surface Features of PDI (Tian et aL, 2006)

A. Packing interactions in PDI. The b domain (cyan) is located between the a and a f 
domains. B. Peptide binding pockets in the b ' domain. Residues in the center are present 
at the bottom of the hydrophobic pocket. Reprint with permission from Elsevier (Tian et. 
al, 2006)

A. B.
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1.1.5 PDI family proteins

To date, there are seventeen members of human PDI family that have been identified and 

are shown to be present in endoplasmic reticulum (Table 1.1) (Ellgaard and Ruddock, 

2005a). Although members of the same family, these homologues may differ from each 

other in many features such as number of active sites, length, N-glycosylation or domain 

architecture. For example ERdj5 contains 4 active site domains, ERp72, ERp46 and PDIr 

contain 3 active site domains whereas ERp27, ERp28, ERdj5, ERpl8 and TMX4 contain 

only one active site domain. PDI, ERp57, PDIp, ERp65 and P5 contain 2 active site 

domains and show high degree of sequence similarity as well as similar domain 

organization suggesting their similar physiological function(s).

Table 1.1 Members of PDI family. Adapted from Ellgaard and Ruddock (2005a)

Name SwissProt
accession

Length ER retention a-Like
domains

ERdj5 Q8IXB1 793 KDEL 4
ERp72 PI3667 645 KEEL 3
PDIr QI4554 519 KEEL 3
ERp46 Q8NBS9 432 KDEL 3
PDI P07237 508 KDEL 2
ERp57 P30101 505 QEDL 2
PDIp Q13087 525 KEEL 2
ERp65 Q8N807 584 KEEL 2
P5 Q15084 440 KDEL 2
ERpl8 Q95881 172 EDEL 1
ERp44 Q9BS26 406 RDEL 1
TMX Q9H3N1 280 Unknown 1
TMX2 Q9Y320 296 KKDK 1
TMX3 Q96JJ7 454 KKKD 1
TMX4 Q9H1E5 349 Unknown 1
ERp27 Q96DN0 273 KVEL 0
ERp28 P30040 261 KEEL 0
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1.1.6 Physiological role in the endoplasmic reticulum

Depending upon its redox state, PDI can catalyze three types of reactions: oxidation, 

reduction or isomerization. As shown in Figure 1.4A, in completely oxidized state, PDI 

would preferably perform oxidation of protein thiols by transferring oxidizing equivalents 

from its active site. On the other hand, in completely reduced state, it can either perform 

reduction or isomerization of disulfide bonds (Wilkinson and Gilbert, 2004) (Figure 

1.4B). Note that there is no net change in redox state of PDI in the isomerization 

reaction.

A. Oxidation / reduction

Oxidation

SlBSTRA'lHS SH HS SH

SUBSTRA

Reduction

B. Isomerization

SUBSTRA’IHS SH

HS SH

SUBS’! RA

HS SH

HS SH

Figure 1.4 Reduction, oxidation (A) and isomerization (B) of disulfide by PDI.
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PDI is primarily located in the ER where its concentration is very high (Terada et al., 

1995) (~7 pg per mg of total ER protein) because of higher level of expression as well as 

its high stability (Ohba et a l, 1981). Here, its primary function is isomerization of 

disulfide bonds required for the proper folding of proteins and polypeptides.

The rearrangement of misfolded proteins requires breaking of improperly paired disulfide 

bonds and then reforming them in correct disulfide format. The first step in this process is 

the nucleophilic attack by the N-terminal active site cysteine which is exposed to the 

solvent and has an unusually low pKa. This leads to the formation of a trans-disulfide 

intermediate between PDI and substrate. At this stage, according to Gilbert and 

coworkers (Schwaller et al., 2003), there are two possibilities (Figure 1.5):

i) The second cysteine in the substrate, with spatial proximity to reaction site, displaces 

PDI thereby starting an intramolecular disulfide rearrangement within the substrate until 

the C-terminal active site cysteine reduces the substrate-PDI disulfide. This mode of 

rearrangement of disulfide bonds requires only reduced form of PDI.

ii) PDI escapes after reducing the substrate which initiates intermolecular disulfide 

rearrangement. This leads to cycles of reduction and oxidation of substrate until it attains 

stability to resist any further isomerization. Unlike intramolecular rearrangement, this 

mechanism requires both reduced and oxidized PDI.

8
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Mlsfolded
Substrate

INTRAMOLECULAR
ISOMERIZATION

HS. ^SH

H S ^ ^ S — S

Native
HSs. SH Substrate

HS—

HS. .SH

HS
HSQ ;

Reduced
Substrate

Figure 1.5 Intra- and Inter-molecular rearrangements of disulfides by PDI 

(Schwaller et aL, 2003).
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1.1.7 Non-ER location of PDI: Cell surface protein disulfide isomerase (csPDI)

As previously described, PDI is primarily located in endoplasmic reticulum and is known 

for its ability to catalyze rearrangement of disulphide bonds in its lumen. However, it is 

now well established that PDI is also secreted from a variety of cell types like 

hepatocytes (Terada et a l, 1995), endothelial cells (Hotchkiss et a l, 1998), pancreatic 

cells (Yoshimori et a l, 1990), leukocytes (Bennett et a l, 2000) and platelets (Chen et a l,

1995) and binds to the cell surface through electrostatic interactions (Terada et a l, 1995). 

The mechanism by which PDI escapes from the ER is not well understood as it contains 

an ER-retention sequence and, ideally, should not leave the ER lumen. One mechanism 

proposed for its escape is through its association with other proteins that are destined for 

secretion (Johnson et a l, 2001). This mechanism is supported by the fact that b ' domain 

of PDI contains large hydrophobic patches that may serve as suitable binding site for 

peptides and proteins.

The physiological role of csPDI in different cell lines is currently under investigation in 

various studies where it has been reported to play important role in cell adhesion and in 

many diseases.

1.1.7.1 csPDI in cell adhesion

The role of PDI in cell adhesion is attributed to reduction or reshuffling of exofacial 

disulfides by its catalytic activity. For example, Bennett et al. (2000) have shown 

evidence that PDI regulates leukocyte adhesion by maintaining the conformation of L- 

selectin. L-selectin is a cell membrane adhesion protein that is expressed on the majority
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of leukocytes, including peripheral blood T and B lymphocytes, neutrophils, eosinophils, 

basophils, monocytes and NK cells. Shedding of L-selectin is regulated by its redox state. 

When in reduced state, its conformation is resistant to proteolytic cleavage (Figure 1.6) 

whereas in oxidized state the extracellular moiety of L-selectin is cleaved resulting in loss 

of adhesive property of the leukocytes. It was proposed that reduced csPDI prevents the 

shedding of L-selectin by maintaining it in reduced state. This observation was supported 

by the fact that treatment of non-activated leukocytes with anti-PDI antibody also 

promoted L-selectin shedding (Bennett et al., 2000).

L-selecfci

Non*CleavaM e
Conformation

L-selectin

Gteavable

SH HS

HS

Sheddase Shedtiase

Figure 1.6 Regulation of L-selectin shedding by reduced csPDI (Bennett et a l , 2000)

Sheddase mediated proteolytic cleavage of L-selection is only possible after blocking 

reductive activity of PDI.

11
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1.1.7.2 csPDI in platelet activation

The role of surface thiols in platelet response was first studied by Aledort et al. (1968) 

when they showed that platelet aggregation can be inhibited by pre-treating them with 

membrane impermeable thiol blocker. This observation was further supported by 

Macintyre and Gordon (1974) who showed that addition of DTT potentiates platelet 

aggregation only in the presence of fibrinogen. It is now well established that exofacial 

thiols are required for reshuffling of disulfide bonds in integrins causing its activation 

that eventually mediates platelet aggregation. The role of PDI in integrin activation was 

demonstrated by the observations that platelet aggregation was inhibited in the presence 

of its inhibitors (Essex and Li 1999; Essex et a l, 2001; Lahav et a l, 2000). Later, Lahav 

et a l. (2002) studied the binding of fibrinogen to its integrin receptor, GPIIbllla, and 

demonstrated that the stable binding between the two requires disulfide reshuffling that is 

mediated by PDI.

1.1.7.3 csPDI in NO transport

Nitric oxide (NO1) is a heterodiatomic free radical with multiple physiological actions 

such as vaso-relaxation, neurotransmission, regulation of platelet function, and non­

specific immune responses (Ignarro, 1991; Kandel and O’Dell, 1992; Radomski et a l, 

1987). NO' mediated induction of vasorelaxation or inhibition of platelet function is, in 

part, through activation of soluble guanylyl cyclase. Nitrosation of cellular thiols results 

in the formation of S-nitrosothiols that prolongs its half-life and may act as an alternative 

source of cellular NO' (Stamler et a l, 1992a, 1992b).

12
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The transport of NO' across the membrane is presumed to be mainly by diffusion 

(Goretski and Hollocher, 1988) that is facilitated by its charge neutrality, small size and 

relative low reactivity. As thiols can liberate NO' from S-nitrosothiols, it is possible that 

NO' transport across the membrane may be regulated by transnitrosation reactions 

involving membrane thiols. Zai et al., (1999) presented a transnitrosation mechanism 

catalyzed by cell-surface PDI that may regulate cellular entry of NO'. Later, a mechanism 

was proposed by which the NO' released from S'-nitrosothiols by csPDI can nitrosate 

intracellular thiols at the membrane-cytosol interface (Ramachandran et al., 2001) 

(Figure 1.7). The role of csPDI in denitrosation, and S'-nitrosation is described in detail in 

Chapter 2.

2ESNO— 21SH +2NO 202
CsPDI

" V
Membrane

2N20 3

Cytosol

RS[I RSNO

Figure 1.7 Postulated mechanism for intracellular NO transport catalyzed by csPDI 

(Ramachandran et aL, 2001).
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1.1.7.4 csPDI in diseases

Several independent studies have demonstrated the involvement of csPDI in pathogen- 

host cell interactions. For example, it was shown that uptake of diphtheria toxin by host is 

possible only after the reduction of its disulfide bond by csPDI (Mandel et a l, 1993). 

Abell and Brown (1993) further showed that entry of Sindbis virus requires PDI 

reductase activity. Interestingly, it has been reported that csPDI is crucial for human 

immuno deficiency (HIV) envelope fusion as well as virus entry (Ryser et al., 1994; 

Fenouillet et a l, 2001, Markovic et al. 2004). It was suggested that entry of virus requires 

PDI mediated disulfide reduction of viral envelope glycoprotein gpl20. Recently, it was 

shown that presence of native PDI on the surface of epithelial cells is required for the 

infection by Chlamydia trachomatis which is a leading bacterial agent causing sexually 

transmitted disease (Stephens and Carolyn, 2006). The attachment of Neospora caninum, 

a protozoan that causes abortion in cattles, to its host cell was also shown to be regulated 

by csPDI (Naguleswaran et al., 2005).

1.1.8 Chaperone activity of PDI

A protein is defined as a chaperone if it assists the correct, non-covalent assembly of a 

protein but is not a component of this protein when performing its normal biological 

function(s). PDI falls in this category because, apart from its isomerase activity, it 

inhibits the aggregation of misfolded or partially folded proteins in the ER lumen by 

binding to protein domains that are prone to self assembly. The chaperone activity of PDI 

is independent of its isomerase activity and does not require the -CGHC- active sites as

14
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demonstrated by its ability to promote in vitro reactivation and inhibition of aggregation 

during refolding of denatured proteins with no disulfide. It is suggested that the peptide 

binding site of PDI required for chaperone activity is located between a' and c domain 

because PDI without c domain does not show any chaperone activity (Dai and Wang,

1997). Chaperone activity of PDI has been shown to assist in-vitro folding of proteins 

like rhodonase (Song and Wang, 1995), lysozyme (Puig and Gilbert, 1994), alcohol 

dehydrogenase (Prim et a l, 1996), glyceraldehyde-3-phosphate dehydrogenase (Cai et 

al., 1994) and citrate synthase (Primm et a l, 1996), by inhibiting their aggregation.

1.1.9 PDI as a subunit of other enzymes

PDI functions as a subunit in two enzyme complexes, the collagen prolyl 4-hydroxylases 

(Kivirikko and Myllyharju, 1998) and microsomal triglyceride transfer protein (Wetterau 

et a l, 1990). Prolyl 4-hydroxylase is essential for the synthesis of collagen and catalyzes 

the hydroxylation of prolines in procollagen during its synthesis (Kivirikko and 

Myllyharju, 1998). It is a tetramer consisting of two catalytic a  subunits and two P 

subunits identical to PDI (Pihlajaniemi et a l, 1987). PDI is also a component of 

microsomal triacylglycerol transfer protein (an a|3 heterodimer of PDI and a 88 kDa p 

subunit), that is essential for the assembly of apoB lipoproteins and catalyzes the transfer 

of neutral lipid onto nascent lipoprotein particles (Wetterau et al.., 1990). When 

complexed with either prolyl-4-hydroxylase or the microsomal triacylglycerol transfer 

protein, PDI does not show isomerase activity and its role is to keep highly insoluble <x 

subunits of both enzymes catalytically active and in solution (Vuori et a l, 1992; 

Wetterau et al. 1990). This function is likely to be related to the peptide binding and
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chaperone functions of PDI, and therefore does not have involvement of active site 

dithiols (Lamberg et al., 1996). Also, PDI might help in keeping the prolyl-4-hydroxylase 

in the ER lumen, since the a subunits lack the ER retention sequence.
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Chapter 2

Characterization of S'-Denitrosation 
Activity of PDI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1 Introduction

2.1.1 Nitric oxide

The identification of Nitric oxide (NO') as endothelium-derived relaxing factor (EDRF) 

was one of the most fascinating discoveries of 1980s (Furchgott and Vanhoutt, 1989; 

Ignarro et al. 1987; Moncada et al., 1987; Palmer et al., 1987) which had a great impact 

on our understanding of signal transduction and many cellular processes in mammals. It 

is now well established that, owing to its unique chemical properties, NO’ is a potent 

biological mediator and regulate many cellular processes in the body.

2.1.1.1 Chemical properties

NO' is a simple, diatomic molecule that exists in the colorless gaseous form at room 

temperature. The Lewis dot structure of NO’ clearly demonstrates that it is a free radical 

with one unpaired electron (Figure 2.1 A). In order to complete its octet, it is expected that 

NO’ would diamerize to form N2 O4 . However, this is not the case and can be explained 

by its molecular orbital diagram. The molecular orbital diagram of NO’ shows one 

unpaired electron in 71* antibonding orbital which gives it a bond order of 2.5 (Figure 

2.IB). Upon dimerization, NO would form N2 O4 with no net gain in the bonding (overall 

bond order of 5). Therefore dimerization is not entropically favored and NO' exists as a 

monomer at room temperature. Moreover, The N-N bond distance in N2 O4 is unusually 

long (2.263 A) (McKellar et al., 1995) which makes this bond very weak (bond energy 2- 

4 kcal/mol) (East et al., 1998).
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Figure 2.1 Lewis diagram (A) and molecular orbital diagram (B) of NO'

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1.1.2 Biosynthesis of NO'

NO' is synthesized by a group of enzymes called nitric oxide synthase (NOS) which are 

found in three forms: Neuronal NOS (nNOS or NOS 1), Inducible NOS (iNOS or NOS 2) 

and Endothelial NOS (eNOS or NOS 3). Irrespective of its form, the catalytic formation 

of NO' by NOS is by 5 electron oxidation of terminal guanidium nitrogen of L-arginine 

(Figure 2.2) in the presence of O2  and the cofactors nicotinamide adenine dinucleotide 

phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), 

heme and tetrahydrobiopterin (BH4). The overall reaction consumes 1.5 moles of 

NADPH and 2 moles of oxygen to form 1 mole of NO'.

NADPH + 0 2 NADP+ + H2o l 1/2 NADPH + 0 2 1/2 NADP+ + H20  +  N O ’

L-arginine Nw-Hydroxyarginine Citrulline

Figure 2.2 Synthesis of NO' from L-arginine (Ignarro, 2000)
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A schematic alignment of cofactor binding sites of the three NOS isozymes is as follows:

h2n- {

Oxygenase Domain Reductase Domain

Heme
_JL ___

“ l|---------------------------------------- 1
CaM FMN FAD NADPH cofactor binding sites

—COOH neuronal NOS 
161 kDa

H2N—

Heme CaM FMN FAD NADPH_x__
—COOH inducible NOS 

131 kDa

Heme CaM FMN FAD NADPH

H,N- n ci n rn COOH endothelial NOS 
133 kDa

Figure 2.3 Comparison of three NOS forms (Ignarro, 2000)

All three forms of NOS exist as homodimer where each monomer consists of two major 

domains: i) N-terminal oxygenase domain that has binding site for BH4  and L-arginine 

and ii) C-terminal reductase domain that binds to FMN, FAD and NADPH. The 

calmodulin (CaM) binding sequence is present in the interdomain linker between the 

oxygenase and reductase domains. The physiological concentrations of Ca2+ in cells 

regulate the binding of CaM to NOS 1 and NOS 3 that initiates the electron transfer from 

the flavins to the heme moieties leading to the formation of NO'. On the contrary, CaM is 

always tightly bound to the NOS 2 and therefore is a Ca2+-insensitive isoform.
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2.1.1.3 Other Nitrogen oxide species

In the aqueous solution, NO' reacts with O2 to form NO ' 2  (nitrite) (Eq-1):

4NO- + 0 2 + H20     4N02 + H+ Eq. 1

This reaction is of second order with respect to NO' and therefore the half life of NO' 

depends upon its initial concentration (Ford et al., 1993). If we assume that NO' reacts 

only with O2 , its half life would be 100 to 500 seconds. However, it has been shown that 

NO' can react with numerous other biological molecules and therefore have a half life of 

few seconds in biological systems (Stamler et al., 1992b).

Other possible NO' derivatives are listed in Figure 2.4. NO' can undergo one electron 

reduction to form NO' with a bond order of 2 or one electron oxidation to form NO+ with 

a bond order of 3. Reaction of NO' with oxygen generates nitrogen dioxide (NO2 ), which 

is a stronger oxidizing agent with the reduction potential of 1.04 V for NO2 /NO2 ' couple 

(Stanbury, 1989). These derivatives are implicated in some important biological reactions 

(Stamler etal., 1992b).
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Figure 2.4 Redox derivatives of NO' (Ignarro, 2000).

2.1.1.4 Physiological function of NO': Activation of soluble guanylate cyclase (sGC)

sGC is an enzyme that catalyzes the conversion of guanosine triphosphate (GTP) to 

cyclic guanosine monophosphate (cGMP) in the presence of magnesium ion (Mg2+) 

(Figure 2.5A). This reaction has a Km value of -100 pM and Vmax of 0.1 pmol/min/mg 

of protein. Interestingly, in the presence of NO', the Km and Vmax for the same reaction 

is 30 pM and 10-20 pmol/min/mg respectively indicating a 3-fold increase in the affinity 

for substrate and 100-200-fold increase in the specific activity of the enzyme (Ignarro, 

1991). These data clearly demonstrate that NO' activates sGC.
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The mechanism of activation of sGC by NO' involves its binding to heme group of the 

enzyme. This has been proposed because addition of NO' to heme-deficient sGC did not 

cause any activation of enzyme (Ignarro et a l, 1984). When heme is bound to sGC, the 

axial ligand bonding imparts steric hindrance to the binding of substrate (GTP) that 

results in low catalytic activity (Figure 2.5B). Upon binding of NO' to the iron of heme 

group, there is a conformational change that leads to the cleavage of axial bond between 

iron and the enzyme (Figure 2.5B). This conformational change exposes the catalytic site 

of enzyme resulting in higher Vmax and lower Km.

cGMP is one of the most important secondary messengers and is widely known for the 

relaxation of smooth muscles by activating cGMP dependent protein kinases (Lincoln 

and Cornwell, 1993). This effect can be enhanced by activation of sGC by NO' or NO' 

donors (Butler et al. 1995). In platelets, NO' mediated activation of sGC results in the 

inhibition of platelet aggregation (Radomski et al., 1987). Activation of sGC by nNOS 

generated NO' in the neurons has been shown to modulate neurotransmission (Kandel and 

O’Dell, 1992). In addition to the NO' responses through sGC activation, it has been 

suggested that NO' produced in macrophages is involved in non specific immune 

response by phagocytic and non-phagocytic removal of invading pathogens (Beckman et 

al., 1990; Moncada et al., 1991).
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Figure 2.5 Synthesis of cGMP (A) and mechanism of activation of sGC (B). 

(Ignarro, 2000)
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2.1.2 S-Nitrosothiols

Thiols (RSH) are the most abundant electrophiles present in vivo that readily reacts with 

NO’ to form S'-Nitrosothiols (RSNOs). It has been demonstrated that RSNOs, like NO’, 

exhibit vasorelaxant and antiplatelet activities through the release of NO’ (Myers et a l, 

1990; Stamler et a l, 1992a, 1992b). RSNOs are more stable than NO’ and therefore it is 

suggested to be ‘store house’ of NO’ in the body.

2.1.2.1 Formation of RSNOs

RSNOs are synthesized in vitro by the reaction of RSH with nitrous acid (HNO2 ) at lower 

pH (less than 3) (Eq-2):

HN02 + RSH ---------► RSNO + H20  E q .2

However, use of extremely low pH in this reaction limits this method for the synthesis of 

only low molecular weight RSNOs (CysNO or GSNO) and not for protein S-nitrosothiols 

because:

i) At low pH, proteins are susceptible for denaturation

ii) Acidified nitrite can modify non-thiols such as aromatic ring, alcohol or amines.

The most common method for the synthesis of protein-5-nitrosothiols is the 

transnitrosation reaction between small molecular weight RSNOs and protein thiols (Eq- 

3):
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RSNO + R'SHprotein R'SNOprotein + RSH Eq.3

Although the exact mechanism by which RSNOs are formed in vivo is still unclear, it has 

been suggested that the primary nitrosating agent under physiological condition is 

dinitrogen trioxide (N2 0 3). The overall reaction can be represented as follows (Scheme 

1.1):

2NO + 0 2 = ^ >  2N 02

N 02 + NO- > N20 3 = +ON N 02'
+ON N 02'  + RSH > RSNO + HN02

Scheme 1.1 Nitrosation of RSH under physiological conditions

The solubility of NO' in water is 2 mM at 1 atmospheric pressure which increases 6 - to 8 - 

fold in nonpolar solvents or in lipid membrane (Shaw and Vosper, 1977). Therefore, 

formation of N2 O3 would be favored in hydrophobic environment owing to the higher 

concentrations of NO' and 0 2.

RSNOs are characterized by absorbance band in UV-YIS region at 343 nm and 540 nm 

with the extinction coefficient o f  980 M"1cm"1 and 18 M '1cm ' 1 respectively (W illiams

1996). Therefore the formation or consumption of RSNOs can be monitored 

spectrophotometrically by monitoring change in absorbance at 343 nm.
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2.1.2.2 Decomposition of RSNOs

i) By Metal ions: The stability of RSNOs in the solution greatly depends upon the 

presence of contaminating metal ions such as copper, mercury and iron (Vanin et a l, 

1997; Williams, 1996). Copper mediated degradation of RSNOs is a two step process 

(Askew et al., 1995). In the first step cupric ion (Cu2+) reacts with thiolate to generate 

cuprous ion (Cu+). In the second step, Cu+ reacts with RSNO to generate NO, Cu2+ and 

RSSR (Vanin et a l, 1997) (Scheme 2.1):

Cu2+ + RS" X -

Cu+ + RSNO .........  - Y -

2RS- ------------- - RSSR

Scheme 2.1 Denitrosation of RSNO by copper (Askew et a l, 1995; Vanin et a l, 1997)

ii) By transnitrosation: In this process the NO' group is transferred directly from donor 

S-nitrosothiols to acceptor thiol without net release of NO'. However, the release of NO' 

can be facilitated by this process if the transfer is from more stable RSNO such as GSNO 

and generate less stable RSNO such as CysNO.

iii) By photochemical decomposition: It has been reported that UV radiation of RSNO 

causes hemolytic fission of S-NO bond to generate alkyl thiyl free radical (RS") and NO' 

(Sexton et a l, 1994). The RS' then reacts with another molecule of RSNO to generate
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disulfide (RSSR) and NO'. Similar products are shown to be formed upon thermal 

decomposition of RSNOs (Scheme 2.2).

RSNO — RS-  + NO-

RS- + RSNO ----------- - RSSR + NO-

Scheme 2.2 Photolysis and thermal decomposition of RSNO.

iv) By enzymatic decomposition: It has been demonstrated in many in vitro studies that 

RSNO degradation can be mediated by many enzyme systems such as y glutamyl 

transpeptidases (yGT) (Lipton et al., 2001), xanthine / xanthine oxidase (Trujillo et al.,

1998), thioredoxin/thioredoxin reductase (Nikitovic and Holmgren, 1996), Cu/Zn 

superoxide dismutase (SOD) (Johnson et al., 2001; Jourd’heuil et al., 1999) and 

glutathione dependent formaldehyde dehydrogenase (GDFDH) (Jensen et al., 1998; Liu 

et al., 2001). Liu et al., (2001) have shown that GDFDH deficient E.coli, yeast and mice 

have increased levels of cytosolic S-NO proteins as compared to wild types, suggesting 

its role in RSNO degradation. Similarly, consumption of GSNO by SOD has been 

reported in various studies where it is suggested to play neuroprotective role in central 

nervous system (Johnson et al., 2001; Jourd’heuil et a l, 1999). yGT catalyzes the 

breakdown o f  GSNO to form glutamate and S-nitrosocysteinyl glycine (CGSNO). 

CGSNO is less stable than GSNO and therefore release of NO' is facilitated by yGT 

activity. Moreover, CGSNO diffuse across the cell membrane more readily than GSNO.
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Although PDI is primarily known for isomerization of disulfide bonds, an additional 

novel activity of PDI is its ability to denitrosate RSNO. On the cell surface, the RSNO 

denitrosation activity of PDI has been shown to play a role in the transfer of S- 

nitrosothiol-bound NO into cytosol (Bell et al., 2006; Ramachandran et al., 2001; Zai et 

al., 1999).

The present study was initiated because the RSNO denitrosation activity of PDI has not 

been well characterized. Here this was accomplished by directly monitoring the PDI- 

dependent loss in the S-NO bond at 343 nm and by using a fluorogenic NOx trapping 

probe. We have also shown that PDI stores the NO' released from RSNOs, probably in 

the form of N2 O3 and can transfer it to intra- and intermolecular thiols. These significant 

findings could implicate PDI in both efflux and influx of RSNO-boundNO'.
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2.2 Materials and Equipment

2.2.1 Materials

Acetone; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

4-(9-Acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-l-oxyl(Ac-Tempo);

Sigma-Aldrich Canada Ltd., Oakville, Ontario

Ammonium persulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Ammonium sulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Biorad Protein Assay (Bradford Reagent); Bio-Rad Laboratories USA, Hercules, 

California

Dimethyl formamide (DMF); Sigma-Aldrich Canada Ltd., Oakville, Ontario

2.3-diaminonaphthalene (DAN); Sigma-Aldrich Canada Ltd., Oakville, Ontario

4.4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-.s-indacene-3-propionic acid (BODIPY FL), 

Invitrogen Canada Inc., Burlington, Ontario

Copper sulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Eosin isothiocyanate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Ethylene diamine tetraacetic acid; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Fluoroscein isothiocyanate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Homocysteine; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Monoclonal anti-PDI antibody RL90; Abeam USA, Cambridge, MA 

Oxidized glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Phenylarsine oxide; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Potassium phosphate; Sigma-Aldrich Canada Ltd., Oakville, Ontario
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Reduced glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Rhodamine 1,2,3; Invitrogen Canada Inc., Burlington, Ontario

Sephadex G-25; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Sodium Chloride; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Sodium phosphate monobasic; Sigma-Aldrich Canada Ltd., Oakville, Ontario

2.2.2 Equipment

Agilent 8453 UV-VIS Spectrophotometer;
Agilent Technologies Canada Inc, Mississauga, Ontario

BioRad Fraction Collector Model 2110;
Bio-Rad Laboratories (Canada) Ltd., Mississauga, Ontario

Hemocytometer;
Reichert Co, Buffalo, NY

Jouan CR3i Centrifuge;
Jouan Inc., Winchester, Virginia

Labconco FreeZone 4.5 Liter Benchtop Freeze Dry Systems;
Laconoco Corporation, Kansas City, Missouri

Mettler AJ100 Balance;
Mettler Toledo Canada, Mississauga, Ontrio

Microtiter 96-well Solid Plate;
Thermo Electron Corp. Canada, Burlington, Ontario

Northen Eclipse 6.0 Imaging Software;
Empix Imaging Inc., Mississauga, Ontario

NUAIRE Biological Safety Cabinet Class II Type A/B3;
Thermo Electron Corp. Canada, Burlington, Ontario

Orion Model 420A pH Meter;
Thermo Electron Corp. Canada, Burlington, Ontario
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Stir Plate 360 Series;
VWR International, Mississauga, Ontario

Varian Eclipse Fluorescence Spectrophotometer;
Varian Canada, Mississauga, Ontario

Zeiss Axiovert 200inverted Fluorescence Microscope;
Empix Imaging Inc., Mississauga, Ontario
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2.3 Methods

2.3.1 Purification of Protein Disulfide Isomerase

E. coli strain BL21 (DE3) and expression vector pET-28a were used for expression of 

recombinant human PDI. Cloning and expression of PDI gene was performed by Dana 

Seslija as described earlier (Seslija, 2005). The plasmid encodes a fusion protein 

containing the entire human PDI sequence with an N-terminal His6 tag (Pihlajaniemi et 

al.., 1987). Purification of recombinant PDI from the soluble fraction of cell lysate was 

done using Ni-CAM™ HC Resin (Sigma), a high capacity nickel affinity matrix. PDI 

bound to the resin was eluted using 250 mM imidazole in 50 mM Tris-HCl, pH 8.0, and 

was collected in 2.0-mL fractions. The fractions containing PDI were pooled and dialyzed 

against 0.1 M potassium phosphate buffer, pH 7. Protein quantification was performed 

using the Bradford assay (Bradford, 1976). The purity of protein was ascertained by gel 

electrophoresis and Western blot.

2.3.2 PDI Assay Buffer

PDI assay buffer contained 0.1 M potassium phosphate buffer, pH 7.0, and 2 mM EDTA. 

This buffer was used throughout the study unless otherwise specified.

2.3.3 Synthesis of «S'-Nitrosoglutathione

Prior to synthesis of S’-nitrosoglutathione, [free thiol] in the GSH was determined with 

DTNB (Jiang et al.., 1999). A stoichiometric amount of acidified NaNC>2 was reacted 

with GSH for 30 min at 4 °C. Upon completion of reaction, the pH of the solution was
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then adjusted to 7.4. Lastly, GSNO was recrystallized by the slow addition of ice-cold 

acetone and was resuspended in the appropriate buffer.

2.3.4 Direct Monitoring of PDI Denitrosation Activity with UV-visible Spectroscopy

The denitrosation activity of PDI was determined by monitoring the changes in 

absorption of GSNO (343 nm) as a function of time with different reducing agents. The 

reaction was performed in PDI assay buffer containing 100 pM GSNO and 3 pM PDI 

with varying concentrations of GSH (25 pM to 10 mM) to determine the ideal GSH 

concentration for optimizing GSNO denitrosation. The activity was also monitored with a 

fixed concentration of GSH (1.2 mM) and varying concentrations of GSNO (10-500 pM) 

to estimate its Km. All measurements were performed using a Bio-tek Instruments ELx 

8 0 8ru Ultra microplate reader and Agilent 8453 UV-visible spectrophotometer at 25 °C.

2.3.5 Monitoring PDI denitrosation activity by fluorescent spectroscopy

2,3 diamino naphthalene (DAN) (10 mM) was prepared in dimethyl fomramide and used 

as a stock solution for all the studies. DAN (100 pM) was incubated with varying 

[GSNO] (0.5 pM to 8 pM) for 15 min in the presence of HgCl2 (100 pM) in PBS buffer 

(0.1 mM, pH 7.4). The final pH was increased to 11 by adding 10 pL of NaOH (10 mM) 

and the reading was taken flurometrically between 390 nm and 500 nm with excitation at 

375 nm.

For measuring catalytic denitrosation, GSNO (20 pM) was incubated without or with PDI 

(1 pM) in PBS buffer (0.1 mM, pH 7.4) supplemented with GSH (100 pM) for 15 min
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followed by the addition of 10 pL NaOH (10 mM, final pH 11). Net naphthatrizole 

(NAT) formation was monitored fluorometrically with excitation at 375 nm and emission 

between 390 and 500 nm. All the fluorescence studies were performed at 25 °C using a 

Varian Eclipse fluorometer. Study of PDI denitrosation kinetics was done using 1 pM 

PDI dissolved in PBS buffer (0.1 mM, pH 7.4) containing 100 pM DAN in the presence 

of 500 pM GSH and varying concentrations of GSNO (10-200 pM) in a fluorescence 

cuvette (total volume 2.5 mL).

2.3.6 Preparation of Oxyhemoglobin and Methemoglobin

Oxyhemoglobin was prepared by reduction of human hemoglobin with dithionite in 100 

mM potassium phosphate, pH 7.4, followed by chromatographic separation on Sephadex 

G-25 column (10 mm x 100 mm) using the same buffer. Methemoglobin was prepared by 

oxidizing human hemoglobin with 5% excess of potassium ferricyanide in 100 mM 

potassium phosphate, pH 7.0, followed by chromatographic separation of unreacted 

species using Sephadex G-25 column equilibrated with the same buffer. Oxyhemoglobin 

and methemoglobin were prepared fresh prior to each experiment.

2.3.7 Hemoglobin Assay

The final product of GSNO cleavage by PDI was examined using the hemoglobin assay 

(Amelle and Stamler, 1995). Oxyhemoglobin assay is used to detect NO-, which serves as 

an oxidizing agent thereby converting oxyhemoglobin to methemoglobin (Bazylinski and 

Hollocher, 1985; Stone and Marietta, 1994).The reaction is accompanied by a decrease in
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absorbance at 542 and 580 nm and an increase at 630 nm, indicative of methemoglobin 

formation. The reaction mixture contained 30 pM oxyhemoglobin, 1.2 mM GSH, 100 

pM GSNO (blank), and 2 pM PDI (sample), in 100 mM potassium phosphate buffer, pH 

7.4, containing 1 mM EDTA. NO- generation was monitored by methemoglobin 

reduction to oxyhemoglobin and subsequent increase in 542 and 580 nm accompanied by 

a decrease in 630 nm. Assay solution contained 30 pM methemoglobin, 1.2 mM GSH, 

100 pM GSNO (blank), and 2 pM PDI (sample), in 100 mM potassium phosphate buffer, 

pH 7.0, including 1 mM EDTA. All spectra were recorded from 500 to 700 nm at 

specified time intervals. The extinction coefficient for oxyhemoglobin at pH 7.0 is 13,900 

M“'cm_1 and 14,400 V T 'cnf1 at 542 and 580 nm, respectively, whereas the GSNO 

extinction coefficient at 545 nm is 15 MT’cm- 1  (Hart, 1985) and is therefore considered 

insignificant. All measurements were performed using Agilent 8453 UV-visible 

spectrophotometer in a 1 -cm path length quartz cuvette.

2.3.8 Detection of PDI Radicals with Ac-Tempo

According to previous reports, Ac-Tempo, a paramagnetic nonfluorescent conjugate of 

nitroxide and acridine, interacts with glutathionyl radicals resulting in increased 

fluorescence of the acridine moiety of Ac-Tempo (Borisenko el al., 2004). Ac-Tempo 

concentration was determined by measuring absorbance at 359 nm (c = 10.4 mM- 1  cm-1) 

(Borisenko el al., 2004) using an Agilent 8453 UV-visible spectrophotometer. 

Fluorescence measurements were recorded on a Varian Cary Eclipse fluorescence 

spectrometer, with the excitation and emission wavelengths of 360 and 440 nm, 

respectively. PDI radical formation was detected by mixing stoichiometric amounts of
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PDI and GSNO (2 pM) with Ac-Tempo (10 pM) followed by a time-based measurement 

of radical generation. The possibility of Ac-Tempo reacting with GS- coming from GSNO 

was eliminated by separate experiments that used DTT and GSH as reducing agents (data 

not shown). Also, additional evidence that PDI is responsible for GSNO denitrosation that 

results in PDI radical formation was conducted with the use of BSA (2 pM) instead of 

PDI. The standard plot of free radical formation was constructed by photolysis (355 nm) 

using an Applied Photophysics Laser Flash photolysis spectrometer; varying 

concentrations of GSNO (1-20 pM) were photolyzed for 40 s in the presence of Ac- 

Tempo, and the fluorescence was observed at 440 nm (ex. 360 nm). The standard plot 

was generated and used for thiyl/dithiyl radical quantification whenever required.

2.3.9 Generation of a Standard Curve with DAN

Varying concentrations of GSNO (200 nM to 25 pM) were incubated with DAN (200 

pM) and HgCk (100 pM) for 10 min in PBS (0.1 mM, pH 7.4) at room temperature. The 

fluorescence readings were taken at 415 nm (ex. 375 nm). The quantification of released 

NOx, when required, was estimated using this standard curve.

2.3.10 Preparation of red-PDI and S-Nitrosated PDI (PDI-SNO)

PDI was treated with 10-fold molar excess of DTT for 30 min at room temperature and 

dialyzed overnight in 20 mM phosphate buffer, pH 6.3, at 4 °C. The concentration of free 

thiols was measured with DTNB (Jiang et al.., 1999). PDI-NO was prepared by 

incubating reduced PDI with 5-fold molar excess of DEA-NO for 30 min at room
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temperature. The NO" concentration was determined by NO" meter using HgCl2 

(Borisenko et al.., 2004) as described below.

2.3.11 Nitric Oxide Determinations Using NO Meter

The NO-meter experiments in this chapter were performed by my colleague, Inga 

Sliskovic.Soluble nitric oxide was measured using the ISO-NO Mark II equipped with 

WPIMKII NO electrode. A standard curve for NO" was generated by adding GSNO (10- 

100 pM) to 0.1 M phosphate buffer, pH 7.0, containing 100 pM HgCl2 .

PDI-NO (1.0 pM) was placed in the vial containing 0.1 mM phosphate buffer, pH 7.4, 

and the electrode was blanked using this mixture. At 20 s, 100 pM HgCb was added, and 

the NO generation was monitored until NO was no longer detected. In the parallel 

experiment, 2.0 pM red-PDI was added to PDI-NO to verify whether PDI alone could act 

upon PDI-NO. In a control experiment, BSA (2.0 pM), used instead of red-PDI, did not 

result in NO generation.

To demonstrate the involvement of the active-site thiols, NEM-blocked PDI was 

incubated with DEA-NO for 30 min at room temperature, generating NO-saturated PDI. 

3.0 pM of this NO-saturated PDI was placed in the vial containing 0.1 mM phosphate 

buffer, pH 7.4, and the current was measured for 2 min. At 40 s, 100 pM HgCl2 was 

added to remove any S-NO present in the sample. Finally, at 130 s, 500 pM GSH was 

added to potentially scavenge N2 O3 postulated to be present in hydrophobic domains of 

PDI. Also, this experiment was preformed in the reverse order by first adding GSH (500 

pM) followed by the addition o f HgCb (100 pM). The control was obtained in a similar
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way, using NEM-blocked PDI without exposure to DEA-NO. Actual NO concentration 

was determined from the standard curve. The control was obtained in a similar manner, 

using the buffer without PDI.

2.3.12 Quantification of Thiols in PDI

10 pM PDI was incubated with 10 mM DTT for 1 h and then separated through a G-25 

sephadex column. 1.2 pM PDI was then incubated with DTNB for 30 min at different 

time intervals, and absorbance was monitored at 412 nm in 100 mM Tris-HCL buffer, pH 

8  (c = 13600 MTl cm- 1  at 412 nm) (Ellman, 1959).

2.3.13 Monitoring PDI-SNO Formation by UV-visible Spectroscopy

Freshly isolated native PDI (10 pM) was treated with DEA-NO for 30 min and then 

separated through a G-25 column. The absorption spectrum of PDI-SNO was then 

monitored between 300 and 450 nm. The NO was removed by adding Hg to the above 

solution, and the quantification of S'-nitrosation was done at 340 nm by taking the molar 

extinction coefficient of 980 M- 1  cm- 1  (Williams, 1996).
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2.4 Results

2.4.1 The effect of GSH on PDI denitrosation activity

It is well established that free thiols like dithiothreitol or GSH are required to maintain 

the thiol-disulfide exchange activity of PDI (Grey, 1997; Lyles and Gilbert, 1991; Primm 

and Gilbert, 2001; Ramachandran et al.., 2001; Sideraki and Gilbert, 2000; Zheng and 

Gilbert, 2001). The same should be true for the PDI mediated RSNO denitrosation 

activity because denitrosation would also require the regeneration of free thiols. In an 

attempt to determine the ideal RSNO / RSH ratio for maximal PDI denitrosation activity, 

the denitrosation of a constant amount of GSNO (100 pM) was monitored as a function of 

[GSH] in the presence and absence of PDI (Figure 2.6). The largest ratio of enzymatic 

rate to blank rate of - 6  was obtained with 1.2 mM GSH. This concentration of GSH was 

subsequently used in the KM estimations. At higher concentrations of reducing agent, it is 

expected that the transnitrosation reaction will take over thr net denitrosation reaction and 

therefore there would be decrease in the activity at higher [GSH] (Figure 2.6). 

Interestingly, no enzymatic denitrosation was observed when DTT or homocysteine were 

the reducing agent (Figure 2.7 and Figure 2.8).

2.4.2 Kinetic Characterization of PDI-catalyzed RSNO Denitrosation

The initial rates of denitrosation were monitored spectrophotometrically at 340 nm for the 

loss of S-NO absorbance with 3 pM human recombinant PDI and 1.2 mM GSH as a 

function of [GSNO] (10-500 pM). Initial rates versus [GSNO] data were well
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accommodated with the Michealis-Menten equation and the apparent Km estimated for 

GSNO was 65 ± 5 pM (Figure 2.9).
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Figure 2.6 Denitrosation of GSNO by PDI in the presence of GSH.

The rate of denitrosation of GSNO (100 pM) as a function of [GSH] in the presence 

(squares) and absence (diamonds) of PDI (3 pM) was monitored by the loss of the S-NO 

absorbance at 343 nm. The experiment was performed in PDI assay buffer. The error bars 

represent S.D. (n = 5).
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Figure 2.7 Denitrosation of GSNO by PDI in the presence of DTT

The rate of denitrosation of GSNO (100 pM) as a function of [DTT] in the presence 

(squares) and absence (diamonds) of PDI (3 pM) was monitored by the loss of the S-NO 

absorbance at 343 nm. The experiment was performed in PDI assay buffer.
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Figure 2.8 Denitrosation of GSNO by PDI in the presence of Hcys

The rate of denitrosation of GSNO (100 pM) as a function of [Hcys] in the presence 

(squares) and absence (diamonds) of PDI (3 pM) was monitored by the loss of the S-NO 

absorbance at 343 nm.
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Figure 2.9 PDI denitrosation kinetics and estimation of Km

Samples containing PDI (3 pM) were mixed with 1.2 mM GSH, and denitrosation was 

monitored at 343 nm as a function of time. The rates were corrected by subtracting the 

blank rates (without PDI) and plotted against increasing GSNO concentrations.
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2.4.3 Use of DAN to develop fluorescent assay for PDI denitrosation

This is the first time that DAN was used to study PDI denitrosation activity. DAN is 

relatively non fluorescent compound. However, when incubated with NOx (NC>2 ~, NO3- , 

and N2 O3 (Girard and Potier, 1993; Jourd'heuil et al.., 2000), its amino group gets N- 

nitrosated and forms napthotriazole (NAT) (Figure 2.10) which is a highly fluorescent 

compound with characteristic peaks at 390, 406, 427, and 450 nm when excited at 375 

nm (Figure 2.11). Therefore, the release of nitric oxide from RSNOs by metals such as 

copper or mercury (Figure 2.10) can be detected and quantified by monitoring the 

increase in the fluorescence at these wavelengths. As evident from Figure 2.11, the 

fluorescence increase is proportional to [GSNO] even at lower micromolar range. The 

fluorescence measurement in these samples were done after increasing the pH to 11 as 

NAT fluorescence is more sensitive and stable at higher pH (Wink et a l, 1999).

RSNO + Cu2*flHg2*

Figure 2.10 Reaction of DAN with NO derivatives.
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Figure 2.11 Reaction of DAN with GSNO

DAN (100 pM) was incubated with varying [GSNO] (0.5 pM to 8  pM) for 15 min in the 

presence of HgCb (100 pM) in PBS buffer (0.1 mM, pH 7.4). The final pH was increased 

to 11 by adding NaOH (10 mM) and the fluorescence was measured between between 

390 nm and 500 nm (ex. 375 nm).
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The denitrosation of GSNO by using DAN was studied in the presence of GSH which 

acted as a reducing agent for reactivating the oxidized PDI active-site thiols after one 

denitrosation cycle. As can be seen in Figure 2.12, the increase in fluorescence was ~8 - 

fold higher in the presence of PDI as compared to GSH alone indicating catalytic 

reduction of S-NO bond by PDI.

DAN was then tested for its ability to continuously report on the PDI denitrosation 

activity at physiological pH (7.4) (Figure 2.13). In these experiments DAN was mixed 

with GSNO and GSH and the fluorescence was monitored at 406 nm (ex. 375 nm) with 

respect to time. Under these conditions fluorescence did not increase. Upon addition of 

PDI there was a rapid increase in the rate of fluorescence, indicating that DAN could be 

employed for monitoring the kinetics of PDI-catalyzed RSNO denitrosation. The initial 

rates of NAT formation were monitored as a function of [GSNO] with a view of 

estimating the affinity of PDI for GSNO. The initial rate vs [GSNO] data were well 

accommodated by the Michaelis-Menten equation with a Km of 65 ± 5 pM for GSNO 

(Figure 2.14).
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Figure 2.12 Denitrosation with and without PDI

DAN incubated with GSNO and PDI (triangles) for 30 min showed eightfold higher 

fluorescence than GSNO alone (squares) in PBS buffer. The final pH was increased to 

11 by adding NaOH (10 mM) and the fluorescence was measured between between 390 

nm and 500 nm (ex. 375 nm).
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Figure 2.13 Effect of PDI addition on the rate of NAT formation

The initial mixture contained DAN (100 pM) and GSH (500 pM) in PBS (pH 7.4) 

(triangles). Sample cuvette (squares) contained additional PDI (1 pM). GSNO was added 

with mixing to sample cuvette and blank cuvette after 4 min and the rate was monitored 

for another 1 0  min.
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Figure 2.14 Fluorometric study of PDI kinetics

GSH (500 pM) was mixed with variable [GSNO] in 3 mL cuvette containing PDI (1 pM) 

in PBS (pH 7.4) and denitrosation rate was monitored with emission at 406 nm and 

excitation at 375 nm. Experimental values (squares) were plotted against best-fit line 

(dark line). The blank rates were subtracted from the net rate to get normalized PDI 

denitrosation rate.
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The end product of PDI-dependent GSNO denitrosation could be either NO- or NO-. To 

this end, hemoglobin assay was performed (Amelle and Stamler, 1995) for identifying the 

actual product of PDI denitrosation activity. Oxyhemoglobin assay has been used in past 

to detect NO-, which serves as an oxidizing agent and converts oxyhemoglobin to 

methemoglobin (Bazylinski and Hollocher, 1985; Stone and Marietta, 1994). The 

reaction is accompanied by a decrease in absorbance at 542 and 580 nm and an increase 

at 630 nm, indicative of methemoglobin formation. Upon incubation of oxyhemoglobin 

with GSNO, GSH, and PDI, a time-dependent decrease at 542 and 580 nm and an 

increase at 630 nm indicated methemoglobin formation, suggesting that the major product 

of reaction was NO- (Figure 2.15). To eliminate the possibility that NO- was produced, 

which can under certain circumstances be converted to NO-, we did a methemoglobin 

assay with PDI and GSNO (data not shown). If NO- were produced, it would reduce 

methemoglobin that could be monitored by an increase in absorbance at 540 nm and 580 

nm accompanied by a decrease at 630 nm. Because methemoglobin spectrum in the 

presence of PDI and GSNO was stable for over 20 min, we concluded the amount of NO- 

possibly being produced was below the detection limit.
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Figure 2.15 Monitoring NO release by hemoglobin assay

Oxyhemoglobin assay contained 30 pM oxyhemoglobin, 1.2 mM GSH, 100 pM GSNO, 

and 2 pM PDI in 100 mM potassium phosphate, 1.0 mM EDTA, pH 7.4. A decrease at 

542 and 580 nm and a resulting increase at 630 nm were an indication of NO- production. 

The reaction was over in ~ 6  min. Inset, plot of decrease in absorbance at 540 nm as a 

function of time.
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2.4.4 PDI Radical Formation as a Result of GSNO Denitrosation

To obtain additional evidence for the catalytic mechanism of PDI denitrosation activity, a 

fluorogenic thiyl radical probe, Ac-Tempo, was used. Previous studies have shown that 

Ac-Tempo, upon interacting with thiyl radicals, produces a fluorescent signal (Borisenko 

el al, 2004). Here we set out to determine whether PDI would form a thiyl radical as a 

result of GSNO denitrosation. First, GSNO was added to Ac-Tempo alone. The lack of 

fluorescent product formation suggested that there is no spontaneous interaction between 

probe and GSNO. However, when equimolar (2 pM) PDI plus GSNO were added to Ac- 

Tempo (10 pM), a continuous, time-dependent increase in fluorescence was observed. 

The rate of thiyl radical formation (Figure 2.16, squares) closely paralleled NO 

production upon mixing of equimolar (2 pM) PDI and GSNO (Figure 2.16, diamonds). A 

comparison of the NO and thiyl/dithiyl stoichiometry indicated that 0.8 ±0 .12  mol NO 

was produced per 3.0 ± 0.43 mol thiyl/dithiyl radical formed.
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Figure 2.16 Detection of thiyl/dithiyl radical formation by Ac-Tempo and NO 

production by oxyhemoglobin

Ac-Tempo (10 pM) was mixed with 2 pM PDI (homodimer) and 2 pM GSNO, and the 

fluorescent signal was measured over time (squares). In parallel experiments, ~40 mM 

oxyhemoglobin (HbCb) was mixed with 2 pM PDI and 2 pM GSNO, and the decrease at 

542 nm (indicative of NO-induced methemoglobin formation) was monitored over time 

(diamonds). Inset, standard plot of Ac-Tempo fluorescence (in relative fluorescence units 

(RFU) as a function of [GS-] generated by flash photolysis (355 nm) of varying 

concentration of GSNO.
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2.4.5 PDI Can Release NO from PDI-SNO

Many studies have indicated that NO’ and O2  concentrate in hydrophobic loci of 

biological milieus and react to produce the highly reactive nitrosating agent N2 O3 (Goss 

et al.., 1999; Liu et al.., 1998; Nedospasov et al.., 2000; Rafikova et al.., 2000). Nudler 

and co-workers (2002) have shown that the accumulated N2 O3 in the hydrophobic 

pockets of BSA could nitrosate thiols. In the case of PDI, the most likely candidate for S- 

nitrosation would be the active site thiols of PDI itself. If this is the case, the PDI-SNO 

could be denitrosated by metals such as copper or mercury. For these experiments, a NO 

electrode was used as a direct method for measuring soluble [NO] (Pfeiffer et al.., 1998; 

Zhang et a l ., 2000)

The NO electrode was placed in the buffer containing NO-saturated PDI (1.0 pM) (Figure 

2.17A and 2.17B) and the current was monitored for 20 s to ensure that there was not a 

spontaneous generation of NO occurring. At 20 s, HgCL (100 pM) was added. This 

resulted in an instantaneous increase in current that corresponded to [NO] of 4 ± 0.5 

pM/1.0 pM PDI (Figure 2.17A). A similar experiment was performed, using red-PDI (2 

pM) instead of HgCl2 . This also resulted in an increase in current corresponding to 4 ± 

0.5 pM NO (Figure 2.17B) suggesting that PDI-SNO can also be denitrosated by another 

molecule of catalytically active PDI. Therefore, the possible NO' released from PDI-SNO 

was determined to be ~ 4.5 pM NO/l.O pM PDI, under our experimental conditions.
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Figure 2.17 Monitoring denitrosation rate using NO meter

A. PDI-SNO (1 pM) was placed in the vial and the NO meter was blanked using this 

solution. After a stable signal was obtained, at 20 s, 100 pM HgCl2  was added, and the 

NO generation was monitored until saturation was obtained. The blank that was used 

contained only buffer instead of PDI-SNO. B. PDI-SNO denitrosation by PDI was same 

as the above except that PDI was added instead of HgCl2 .
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To investigate the possibility that PDI is able to store NO in the form of N2 O3 in its 

hydrophobic pockets (Rafikova et al.., 2000), we incubated NEM-blocked PDI with 

DEA-NO. This method ensured that there is no PDI-SNO formation. Upon addition of 

100 pM HgCl2 to NEM-blocked NO-saturated PDI, no change in current was observed. 

However, when 100 pM GSH was added to the sample, a slower increase of current was 

observed (Figure 2.18), and the concentration of NO generated was found to be "*10 ± 1 

pM NO/l.O pM PDI. The interpretation of these results is that in NEM blocked PDI, 

intramolecular S-N =0 cannot be formed. Therefore NO generated in the presence of 

HgCh (Figure 2.18) is coming from GSNO that is formed from the reaction between 

N2 O3 in NEM-PDI hydrophobic domains with added GSH. Addition of GSH in NEM- 

blocked PDI not exposed to DEA-NO (data not shown) did not produce any NO, 

supporting our hypothesis. The same experiment was preformed in reverse order. Upon 

adding GSH to NEM-blocked PDI previously exposed to DEA-NO, no NO generation 

was observed (Figure 2.18, thick line). However, upon adding HgCh, NO release was 

observed.
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Figure 2.18 PDI ability to store NO

NEM-blocked PDI (3 pM) was saturated with NO, as described under "Experimental 

Procedures." At 50 s, addition of 100 pM HgCb (dashed line) or 500 pM GSH (thick 

line) did not result in change in current. Addition of 500 pM GSH (thick line) or 100 pM 

HgCE (dashed line) at 120 s resulted in a steady increase in current until saturation was 

reached. Inset, control obtained by addition of BSA instead of PDI to PDI-SNO, followed 

by the addition of HgCl2 .
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2.4.6 Monitoring oxidation of red-PDI and PDI-SNO formation

The stability of PDI thiols was tested by first fully reducing it and then monitoring the 

thiol decay at room temperature by DTNB assay (Figure 2.19A). It was observed that 

almost '-50% of the thiols were reoxidized in 2.5-3 h. Freshly purified PDI was also 

found to have 50-60% reduced thiols. When freshly purified PDI was nitrosated by DEA- 

NO and then separated by G-25 column, it showed a peak at -340 nm (Figure 2.19B, dark 

line). The peak disappeared after the addition of 100 pM Hg (Figure 2.19B, dashed line). 

The corrected spectrum showed 50% PDI nitrosation (Figure 2.19B, inset). To compare 

the activity of native PDI and PDI-SNO, the insulin turbidity method was employed. The 

assay was performed in the absence of any reducing agent. Whereas native PDI was 

found to be active (no turnover), no activity was observed with PDI-SNO (Figure 2.20). 

PDI-SNO, once formed, was fairly stable for more than 2.5 h and could be denitrosated 

by DTT.
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Figure 2.19 Monitoring oxidation of red-PDI and PDI-SNO formation

A. 10 pM PDI was incubated with 10 mM DTT for 1 h and then separated through a G- 

25 column. 1.2 pM PDI was then incubated with DTNB at different time intervals, and 

absorbance (A) was monitored at 412 nm in 100 mM Tris-HCL buffer, pH 8. B. 10 pM 

freshly isolated native PDI was treated with DEA-NO for 30 min and then separated 

through a G-25 column. The absorption spectrum of PDI-SNO was then monitored 

between 300 and 450 nm before (dark line) and after (dotted line) the addition of 100 pM 

HgCl2.
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Figure 2.20 Insulin turbidity assay of native-PDI and PDISNO

Insulin (100 |aM) was incubated with native-PDI (10 p,M) or PDISNO (10 pM) and 

increase in absorbance was monitored at 630 nm as a function of time.
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2.5 Discussion

The S-denitrosation activity of PDI, although demonstrated in several studies 

(Ramachandran et al.., 2001; Zai et al.., 1999), has not been well characterized. Here we 

set out to kinetically analyze the GSNO denitrosation activity of human recombinant PDI. 

It has been well established that PDI requires thiol reductants to perform its thiol- 

disulfide exchange activity (Essex et al.., 1999). Therefore, it is not surprising that the 

GSNO denitrosation activity probed here was also dependent on thiol-reducing agents. 

GSH turned out to be the best reducing agent when the loss in the absorbance of S-NO 

bond at 343 nm was used to monitor the denitrosation. However, no significant 

denitrosation was observed when DTT or homocysteine was used as the reducing agent. 

This suggests that PDI denitrosation activity is specific to the presence of glutathione, 

which is the primary reducing agent in the cell with a concentration of >1 mM (Pastore et 

al.., 2003). The PDI-dependent denitrosation reaction as a function of [GSNO] was 

probed via two independent methods: directly via the loss of the S-NO bond absorbance 

at 343 nm or indirectly with DAN. The Km for GSNO estimated by spectrophotometric 

method was found to be -65 ± 5 pM (Figure 2.9), whereas DAN assay gave a value of 65 

± 5 pM (Figure 2.14). Before proceeding further, we set out to determine the final product 

of GSNO denitrosation by PDI. Hemoglobin assay (Figure 2.15) showed that it is NO- 

and not NO" being formed during the GSNO denitrosation by PDI, which is in agreement 

with a previous study presented on GSNO denitrosation (Nikitovic and Holmgren, 1996). 

On the basis of results obtained, we propose the PDI denitrosation mechanism as shown 

in Scheme 2.3.
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Scheme 2.3 PDI denitrosation mechanism

One of the vicinal thiols of PDI active site subunit a, undergoes transnitrosation reaction 

(I) in the presence of RSNO, followed by the attack of the second cysteine at N of the S- 

N=0 resulting in formation of a nitroxyl disulfide intermediate (III). The final product 

after one enzymatic turnover is an oxidized protein active site of subunit a and NO- (V 

and VI)
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In this mechanism, one of the vicinal thiols (Scheme 4 ,1) in the CXXC sequence of PDI 

active site undergoes a transnitrosation reaction with the RSNO substrate (Scheme 4, II). 

The second active site cysteine then attacks the nitrogen of the S-N=0 yielding a nitroxyl 

disulfide intermediate (Scheme 4, III). The formation of this intermediate could be 

facilitated via delocalization of electrons in N=0 to yield N-O, which could be stabilized 

via a positively charged side chain in the vicinity of the active site, such as His160 in the a- 

domainor His589 in the a-domain (GenBank™ accession number AK027647 [GenBank]). 

A one-electron oxidation results in the formation of nitroxyl disulfide radical (Scheme 4, 

IV), which could rearrange to yield an oxidized (-S -S-) PDI active site plus NO- 

(Scheme 4, V and VI). The formation of such a nitroxyl disulfide intermediate was 

proposed by Houk et al. (2003) in a recent computational study. In order for this 

mechanism to work, there is a requirement for an electron acceptor which could be the 

oxidized active site thiols of PDI itself in the antiparallel arrangement as proposed by 

Solovyov and Gilbert (2004). In support of this, it has been reported that PDI active site is 

the most oxidative (-180 mV) (Wilkinson and Gilbert, 2004) of all other members of 

thioredoxin family. In addition, it has been reported that oxidized active site thiols in 

DsbD (PDI-like protein) can serve as electron transporter (Collet et al.., 2002; Rietsch et 

al.., 1997). The flow of electrons within DsbD have been proposed to occur via 

succession of disulfide exchange reactions (Rietsch et al.., 1997).

Additional evidence for thiyl radical production was obtained with the Ac-Tempo probe. 

When equimolar GSNO was mixed with PDI, thiyl/dithiyl radicals were generated 

(Figure 2.16) supporting the proposed mechanism. In contrast, GSNO alone or BSA used
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instead of PDI did not result in production of radicals, nor did PDI and GSNO in the 

presence of GSH, which would reduce the thiyl/dithiyl radicals. In further support of the 

proposed mechanism, the rate of thiyl/dithiyl radical formation paralleled NO formation. 

The estimated stoichiometry of the reaction indicates that 3 mol of thiyl/dithiyl radical is 

formed per 1 mol of NO. This stoichiometry is well accommodated by Scheme 4, 

suggesting that the two active sites S- plus the S-S- (i.e. 3 mol of thiyl/dithiyl) plus 1 mol 

of NO- (Scheme 4, IV and V) form in a concerted manner rather than sequentially.

It was observed that almost half-of the reduced PDI was reoxidized within 2.5 h (Figure 

2.19A) after which it remained fairly stable. Furthermore, upon exposure of native PDI to 

DEA-NO, all of the free thiols of PDI could be nitrosated. Interestingly, when HgC^ or 

PDI was added to this fully ^-nitrosated PDI-SNO, -50% of the S-NO was rapidly 

released as NO (Figure 2.19B).

We further confirmed that active site thiols of PDI were essential for the release of NO 

from DEA-NO-exposed PDI. In these experiments, the free thiols of PDI were blocked 

with NEM. When PDI-NEM was exposed to DEA-NO and production of NO was 

monitored in the presence of HgCl2 , NO release was not observed. However, NO was 

released when thiols in the form of GSH was introduced to this mixture (Figure 2.17, light 

line).

In conclusion, the results presented here have very important implications with respect to 

the role of PDI in the transport of NO equivalents from NO-producing cells to the serum 

and in the release of NO from RSNOs. Our results show that PDI denitrosates GSNO
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when NO levels are low, as is the case on the cell surface. However, in the presence of 

large amounts of generated NO, as in the intracellular environment of endothelial cells, 

PDI becomes a NO carrier via an N2 0 3 -mediated auto-S'-nitrosation of its active site 

thiols. Because PDI is continuously excreted, this might be an important route for the 

transport of intracellular NO equivalents to the serum. Once excreted, PDI-SNO can be 

denitrosated by PDI yielding NO on the cell surfaces of endothelial cells and platelets. 

This could be a cyclic process because it has been speculated that excreted PDI may be 

recycled back into intracellular environment (Terada et al.., 1995).
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Chapter 3

Development of Fluorescent Probes for 
Monitoring Disulfide Reductase Activity 

of PDI
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3.1 Introduction

The catalytic activity of PDI is generally monitored by either the insulin turbidity assay 

or scrambled RNase assay. The insulin turbidity assay is based on monitoring increase in 

turbidity at 630 nm caused by the reduction of disulfide bond between the a- and p- 

chains of insulin (Lundstrom and Holmgren, 1990). Once the disulfide bond in broken, 

the two chains separate from each other and p-chain precipitate resulting in increase of 

turbidity. The Scrambled RNase assay is based on PDI-dependent isomerization of 

scrambled RNase to its catalytically active, native form that, in turn, acts on its substrate 

RNA (Hilson et al., 1984) or cCMP (Lyles and Gilbert, 1991) resulting in the increase in 

absorbance monitored at 260 nm or 295 nm respectively. These assays are performed in 

the presence of reducing agents like DTT or GSH that are required to reduce enzyme 

active site after one turn over. Although the assays are widely used for estimating enzyme 

activity, there are several issues associated with them:

(i) There is always significant non-enzymatic blank rate due to the presence of reducing 

agent that makes the assays unsuitable for detecting activity in the samples with smaller 

enzyme concentrations

(ii) Long lag phases make it difficult to estimate true initial rates.

(iii) Non-stoichiometric increase in the enzymatic rates with insulin assay with 

stoichiometric increase in enzyme concentration.

(iv) Assays are insensitive to study single turnover of enzyme in the absence of reducing 

agent or at lower concentrations of reducing agents and

(v) Assays cannot be performed with precision in crude samples like platelet suspensions 

containing small amounts of enzyme.
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3.1.1 Fluorescence self quenching

When two identical fluorescent molecules are in close proximity, their fluorescence is 

quenched due to homo resonance energy transfer (Jablonski, 1955) resulting from 

intermolecular interaction between two molecules. This phenomenon is termed 

fluorescence self-quenching (FSQ) and is generally characterized by decrease in quantum 

yield, anisotropy and fluorescence life time. If the distance between these two molecules 

is increased, their interaction with each other would decrease resulting in the increase in 

fluorescence. This phenomenon has been exploited in the past to study biochemical 

processes such as protease activity (Jones et al., 1997), protein dimerization (Wendt et 

al., 1995) protein folding (Zhuang et a l, 2000) and distance measurement (Kalinin et al., 

2003). As FSQ requires labeling of protein by same fluorescent molecule, the labeling 

technique is much simpler than fluorescence resonance energy transfer (FRET), where 

attachment of two different molecules is required to monitor quenching. However 

quenching observed in FRET is generally very high as compared to FSQ and therefore it 

is more commonly used and preferred technique than the latter.

3.1.2 Use of Fluorescence-quenched substrates for monitoring PDI activity

Fluorescence-quenched peptides have been used in past for quantitative analysis of PDI 

disulfide reduction activity using disulfide linked synthetic peptides containing a 

fluorescent probe and a quencher (Christiansen et al.., 2004; Westphal et al.., 1998) 

(Figure 3.1). However, synthesis for these peptides requires expensive chemicals and
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peptide synthesizer that restricts its wider acceptance as a commonly used assay for PDI 

activity. Moreover, the performance of assay has not been established in crude samples.

Figure 3.1 Fluorescent peptide as a PDI substrate.

We have previously described that o-aminobenzoyl-S'-nitrosohomocysteine could be used 

as a probe for thiol detection (Root and Mutus, 2003). The excitation overlap between 

isatoicanhydride and S-NO (343 nm) quenches the fluorescence of former, which, in turn, 

could be removed by denitrosating the probe with the help of thiols.

The PDI pseudo-substrates presented here are prepared by single step synthesis using 

readily available oxidized glutathione. Furthermore the observed self-quenching of the 

fluorescent probes in the disulfide linked probe negates the need for incorporation o f  

quencher. The assay was optimized to monitor disulfide reduction activity with purified 

human recombinant PDI and platelet surface PDI in standard fluorometer and was shown 

to be more kinetic-friendly and more sensitive compared to commonly used PDI assay.

Fluorescent molecule Quencher

i-NH2
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3.2 Materials and Equipment

3.2.1 Materials

Acetone; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Ammonium persulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Ammonium sulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Biorad Protein Assay (Bradford Reagent); Bio-Rad Laboratories USA, Hercules,

California

4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-5-indacene-3-propionic acid (BODIPY FL),

Invitrogen Canada Inc., Burlington, Ontario

Copper sulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Eosin isothiocyanate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Ethylene diamide tetraacetic acid; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Fluoroscein isothiocyanate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Monoclonal anti-PDI antibody RL90; Abeam USA, Cambridge, MA

Oxidized glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Phenylarsine oxide; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Potassium phosphate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Reduced glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Rhodamine 1,2,3; Invitrogen Canada Inc., Burlington, Ontario

Sephadex G-25; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Sodium Chloride; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Sodium phosphate monobasic; Sigma-Aldrich Canada Ltd., Oakville, Ontario
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3.2.2 Equipment

Agilent 8453 UV-VIS Spectrophotometer;
Agilent Technologies Canada Inc, Mississauga, Ontario

BioRad Fraction Collector Model 2110;
Bio-Rad Laboratories (Canada) Ltd., Mississauga, Ontario

Hemocytometer;
Reichert Co, Buffalo, NY

Jouan CR3i Centrifuge;
Jouan Inc., Winchester, Virginia

Labconco FreeZone 4.5 Liter Benchtop Freeze Dry Systems;
Laconoco Corporation, Kansas City, Missouri

Mettler AJ100 Balance;
Mettler Toledo Canada, Mississauga, Ontrio

Microtiter 96-well Solid Plate;
Thermo Electron Corp. Canada, Burlington, Ontario

Northen Eclipse 6.0 Imaging Software;
Empix Imaging Inc., Mississauga, Ontario

NUAIRE Biological Safety Cabinet Class II Type A/B3;
Thermo Electron Corp. Canada, Burlington, Ontario

Orion Model 420A pH Meter;
Thermo Electron Corp. Canada, Burlington, Ontario

Stir Plate 360 Series;
VWR International, Mississauga, Ontario

Varian Eclipse Fluorescence Spectrophotometer;
Varian Canada, Mississauga, Ontario

Zeiss Axiovert 200inverted Fluorescence Microscope;
Empix Imaging Inc., Mississauga, Ontario
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3.3 Methods

3.3.1 PDI Assay Buffer

PDI assay buffer contained 0.1 M potassium phosphate buffer, pH 7.0 and 2 mM EDTA. 

This buffer was used throughout the study unless otherwise specified.

3.3.2 Preparation of di (o-aminobenzoyl) glutathione disulfide (diabz-GSSG)

Oxidized glutathione is incubated with 10 fold molar excess of isatoic anhydride in 

phosphate buffer (100 mM sodium phosphate, EDTA 2 mM, pH 8.5) for four h at room 

temperature. 100 pM of this sample is then passed through Sephadex G-10 column (100 

mm x 10 mm) and 500 pL aliquots are collected with the help of fraction collector. The 

samples were tested for maximum fluorescence on a Varian Cary Eclipse fluorescence 

spectrometer with excitation at 312 nm and emission at 415 nm after addition of 10 mM 

DTT. All the fractions that show 95-100% increase in the fluorescence are pooled and 

stored at -80 °C.

3.3.3 Preparation of Abz-GSH

Abz-GSH was prepared by treating 10 mM diabz-GSSG with 100 mM DTT for 1 h and 

then separating the mixture with Sephadex G-10 column. First few aliquots showing high 

absorbance at 312 nm were pooled together and quantified using e = 4600 M '1cm'1 

(Churchich, 1993). Auto oxidation of Ant-GSH (10 pM) was studied in the presence of 

Cu2+ (10 pM ).
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3.3.4 Quantification of [abz-GSH] formation

Increase in fluorescence was monitored as a function of [abz-GSH] (e = 4600 M"'cm"1) 

(Churchich, 1993) and the standard plot was generated with excitation at 312 nm and 

emission at 415 nm. This standard plot was used wherever quantification of reduction of 

[Diabz-GSSG] to [Abz-GSH] was required.

3.3.5 Mass Spectrometry

Oxidized glutathione and the purified diabz-GSSG were analyzed by MALDI-TOF mass 

spectrometry by Dr. Vacratsis, University of Windsor, Canada. All spectra were acquired 

on a Voyager DE-Pro (Applied Biosystems) equipped with a nitrogen laser operating at 

337 nm. The matrix used was cyanocinnamic acid dissolved in 50% acetonitrile 

containing 1% formic acid. MALDI- post source decay (PSD) was performed to obtain 

structural information on the parent ions.

3.3.6 PDI Purification

Recombinant human PDI was expressed using E. coli strain BL21 (DE3) and expression 

vector pET-28a as described elsewhere (Seslija, 2005). This plasmid encodes a fusion 

protein containing the entire human PDI sequence with an N-terminal His6 tag 

(Pihlajaniemi et al. 1987). Recombinant PDI was purified from the soluble fraction of the 

cell lysate using Ni-CAM™ HC Resin (Sigma), which is a high-capacity nickel-affmity 

matrix. Bound PDI was eluted using 250 mM imidazole in 50 mM Tris/HCl (pH 8.0) and 

collected in 2.0 mL fractions. The fractions containing PDI were pooled and dialyzed
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against 0.1 M potassium phosphate buffer (pH 7.0). Protein quantification was performed 

using the Bradford assay (Bradford, 1976).

3.3.7 PDI-dependent disulfide reduction kinetics

PDI disulfide reduction activity was monitored in PDI assay buffer by adding PDI (2.5 

nM to 1 pM) to diabz-GSSG (15 pM) in the presence of 30 pM DTT. The increase in 

fluorescence was monitored at 415 nm with excitation at 312 nm. The activity was 

inhibited using phenylarsine oxide (16) (10 pM).

3.3.8 Cu2+-catalyzed oxidation of abz-GSH

Cu2+ (10 pM) was added to the cuvette containing abz-GSH (-10 pM) in 100 mM 

Phosphate buffer and the fluorescence change was monitored with excitation at 312 nm 

and emission at 415 nm. After 5 min, 50 pM DTT was added followed by the addition of 

0.5 pM PDI to the sample and fluorescence change was monitored for another 20 min.

3.3.9 Reduction or oxidation of PDI

25 pM PDI was reduced or oxidized by incubating it with 10 mM DTT or 10 mM GSSG 

respectively for 3 h at room temperature. The excess of DTT or GSSG was removed by 

using sephadex G-25 column. The thiol content of reduced or oxidized PDI was 

calculated using DTNB assay (Ellman, 1959).
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3.3.10 Platelet isolation

Suspensions of washed human platelets were obtained by the method of Mustard et al., 

(1989). Briefly, samples of peripheral venous blood were mixed 6:1 with ACD (acid 

citrate dextrose; 25 g/L trisodium citrate dihydrate, 15 g/L citric acid monohydrate and 20 

g/L dextrose). Whole blood was centrifuged (15 min at 190 g at 37 °C) to yield platelet- 

rich plasma. Platelets were isolated by centrifugation (15 min at 2000 g at 37 °C) and 

washed three times in Tyrode-albumin solution (pH 7.4). The first wash contained 

heparin (2 units/mL) and apyrase (1 unit/mL); the second only apyrase (1 unit/mL); and 

the third wash contained Tyrode's solution without apyrase and heparin. Platelets were 

quantified using a hemocytometer.

3.3.11 Monitoring Platelet csPDI activity

Samples of washed human platelets were prepared in Tyrode's solution to final 

concentration of 10 x 10* mL'1. 15 pM Diabz-GSSG was incubated with 10 pM DTT and 

Platelets (50 pL) and the activity was monitored continuously as a function of time. In 

addition, Variable volumes of Platelet (0, 25 pL, 50 pL) were incubated with diabz- 

GSSG (15 pM), in 1.2 mL PDI assay buffer for 15 min and centrifuged at 5000 rpm for 5 

min. The supernatant was added to cuvette and fluorescence was monitored with 

excitation at 312 nm and emission at 415 nm. In addition, 50 pL of platelet was incubated 

with anti-PDI antibodies (10 pg/mL) in parallel to inhibit the activity of PDI (Lahav et 

al., 2002).
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3.4 Results

3.4.1 Synthesis of Diabz-GSSG

Isatoic anhydride (IA) is a fluorescent molecule with an anhydride functionality that 

reacts with terminal amino groups of proteins and peptides (Churchich, 1993). Here, IA 

was reacted with glutathione disulfide (GSSG, oxidized glutathione) to yield di-(o-amino 

benzoyl) glutathione disulfide (Abz-GSSG) (Figure 3.2)

To confirm successful formation of diabz-GSSG, MS/MS sequencing was performed 

(Figure 3.2). The molecular ion at m/z = 851.06 representing the diabz-GSSG was 

detected and subjected to MALDI-post source decay (PSD) sequencing (Figure 3.3, 

upper). The resulting fragmentation pattern was compared to the fragmentation pattern of 

a GSSG standard (Figure 3.3, lower) where several diagnostic GSSG fragmentation ions 

were observed. Additional fragment ions representing the Abz moiety were detected to 

unambiguously verify successful diabz-GSSG synthesis. In particular, the abundant 

fragment ion mass at m/z = 603 (Figure 3.3, upper) corresponds to the loss of glutamate- 

Abz. This indicates that the Abz moiety is located on the glutamate portion of GSSG as 

intended.
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Figure 3.2 Reaction of GSSG with Isatoic anhydride

Two molecules of isatoic anhydride react with two free amino groups of oxidized 

glutathione at pH 8.5 to give one molecule of diabz-GSSG.
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Figure 3.3 MALDI-PSD analysis of diabz-GSSG

Shown is the MS/MS fragmentation pattern of the diabz-GSSG parent ion (MH+) at m/z 

851 (Upper spectrum) and the GSSG standard parent ion (MH+) at m/z 612.7 (Lower 

spectrum). Fragment ion masses corresponding to structural features of diabz-GSSG and 

GSSG are labeled. MH+ - Abz, E, G, indicates the loss of amino benzoyl, glutamate, or 

glycine respectively. Common fragment ions observed between the standard and diabz- 

GSSG are indicated by asterisks (Upper spectrum).
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3.4.2 Fluorescence of diabz-GSSG is sensitive to the reduction of the disulfide bond

Diabz-GSSG was fluorescent (ex. X max =312 nm, emission Xmax= 415 nm), however, 

upon addition of thiol reducing agent (250-fold molar excess) the fluorescence increased 

by -100% (Figure 3.4). The fluorescent fraction, assumed to be abz-GSH, was separated 

from the excess DTT by chromatography on Sephadex G-10. The fluorescence of this 

compound was not altered by the addition of 300-molar excess of DTT, indicating that 

the observed enhancement diabz-GSSG fluorescence upon DTT addition is not due to 

interactions between DTT and the fluorophore. The most likely explanation of the 

fluorescence enhancement phenomenon is that in diabz-GSSG, the random movement of 

the o-aminobenzoyl residues brings them in close proximity of one another thus resulting 

in fluorescence self-quenching. Upon disulfide reduction the distance constraints are 

removed and the fluorescence increases. In order to test this hypothesis, molecular 

dynamic simulations (Alchemy 2000, Tripos, St.Louis MO) were carried out on diabz- 

GSSG. The simulations indicated that the aminobenzoyl residues can potentially come as 

close as 73 nm in a periodic fashion thus supporting the fluorescence self-quenching 

hypothesis (Figure 3.5).
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Figure 3.4 Fluorescence spectra of diabz-GSSG and abz-GSH

Diabz-GSSG (15 pM) spectrum in PDI assay buffer was taken with excitation at 312 

nm and emission at 415 nm (dotted line). The same sample was then incubated with 10 

mM of DTT for 15 min to completely convert diabz-GSSG to abz-GSH and the spectrum 

was taken under the same condition (dark line).
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Figure 3.5 Molecular dynamics of diabz-GSSG

A. A plot of inter-benzoylamino distance as a function of time was performed by 

simulation of diabz-GSSG with Alchemy 2000 (Tripos, St. Louis MO). The initial 

temperature was 298 K, the simulation was run for 4 ps. B. The predicted diabz-GSSG 

conformation at a minimum inter-benzoylamino distance.
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Further evidence for the fluorescence self-quenching being related to disulfide bond 

formation was obtained from Cu2+-catalyzed oxidation of abz-GSH. When Cu2+ was 

added to the cuvette containing abz-GSH (~15 pM) and DTT (50 pM), a rapid decrease 

in the fluorescence was observed suggesting that once the fluorophores are linked via a 

disulfide bridge the fluorescence is quenched (Figure 3.6 continuous line).

When PDI (-0.5 pM) was added to this solution, the fluorescence increased to the same 

level observed for abz-GSH (Figure 3.6, dotted line). The results obtained with PDI were 

very significant in that -10 mM DTT is required to achieve the same thiol reduction rates 

observed with 0.5 pM PDI (i.e the reduction conditions in Figure 3.4). This suggested 

that diabz-GSSG could be employed to assay the disulfide reduction activity of PDI as 

well as other enzymes.

3.4.3 Diabz-GSSG a pseudo-substrate for PDI

Diabz-GSSG (15 pM) is resistant to reduction by DTT (50 pM) (Figure 3.7, diamonds). 

Upon introduction of PDI (0.5 pM) to this solution, the fluorescence increased in a time 

dependent manner thus reporting disulfide bond cleavage (Figure 3.7, triangles). The 

PDI activity was completely inhibited in the presence of phenylarsine oxide, a known 

vicinal thiol blocker (Bennett et al., 2000) (Figure 3.7, squares). For inhibition 

experiment, PDI (10 pM) was first incubated with PAO (100 pM) for 30 min and then 

added to reraction mixture such that final concentration of PAO is 5 pM.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cu2+

16

14

12

10

8
6 PDI
4

2

0
0 10 20 30 40 50

Time (min)

Figure 3.6 Cu2+-catalyzed oxidation of abz-GSH

Cu2+ (10 pM) was added to the cuvette containing abz-GSH (-15 pM) in phosphate 

buffer (100 mM, pH 7) and the fluorescence decrease was monitored at room temperature 

with excitation at 312 nm and emission at 415 nm (continuous line). When PDI (-0.5 

pM) was added to this solution after 5 minutes, the fluorescence increased to the same 

level observed for abz-GSH (continuous line). No change in the fluorescence was 

observed in sample containing no Cu2+ (dotted line). The total fluorescence produced was 

converted into [abz-GSH] via a standard curve.
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Figure 3.7 Detection of enzymatic activity and its inhibition by PAO

Diabz-GSSG (15 pM) was incubated with DTT (50 pM) in PDI assay buffer, pH 7 at 

room temperature in the presence of 0.5 pM PDI (triangles), 0.5 pM PDI blocked by 

PAO (squares) or DTT alone (diamonds).
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If the fluorescence increase is enzymatic, the initial rates should vary directly with [PDI]. 

This was shown to be the case (Figure 3.8) and the assay is sensitive to estimate as low as

2.5 nM PDI activity under present experimental condition. The initial rates of Abz-GSH 

formation were monitored as a function of [Diabz-GSSG] with a view of estimating the 

affinity of PDI for Diabz-GSSG. The initial rate vs [Diabz-GSSG] data were well 

accommodated by the Michaelis-Menten equation with an estimated Km of 15 ± 1 pM 

(Figure 3.9).

It is well established that free thiols like dithiothreitol (DTT) or GSH (Holmgren, 1979; 

Chen et al., 1995) are required to maintain the thiol-disulfide exchange activity of PDI. 

Here PDI (1 pM, 4 pM in active sites; considering PDI as a homodimer) was incubated 

with diabz-GSSG (10 pM) and an excess DTT (50 pM). This yielded ~ 20 pM abz-GSH 

(Figure 3.10, squares) whereas diabz-GSSG (10 pM) incubated with DTT (50 pM) alone 

yielded no fluorescence increase (Figure 3.10, diamonds). In order to test the ability of 

diabz-GSSG to detect a single turnover, PDI (1 pM) was again incubated with diabz- 

GSSG (10 pM) but only in the presence of enough DTT to support one turnover (i.e. 4 

pM) (Figure 3.10, triangles). Under these conditions, fluorescence increase equal to ~ 6 

pM of abz-GSH was generated. This could be repeated with 2 subsequent additions of 

DTT (4 pM) to the sample. The total fluorescence increase upon addition of 3 aliquots of 

DTT corresponded to ~16 pM abz-GSH likely the result of incomplete reduction of 

enzyme active sites under near stoichiometric DTT: enzyme ratios.
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Figure 3.8 Linearity of enzymatic activity

Diabz-GSSG (15 pM) was incubated with DTT (50 pM) in PDI assay buffer, pH 7 at 

room temperature in the presence of varying concentration of PDI (2.5 nM to 1 pM) and 

rates of abz-GSH formation were monitored as a function of time. The total fluorescence 

produced was converted into [Abz-GSH] formed per minute via a standard curve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5

c  o 
E
|  2.5 

T  2
V)
9 1.5
N

S I
W *

0.5

0 25 50 75 100 125
[diabz-GSSG](// M)

Figure 3.9 Estimation of KM

PDI (0.5 |j.M) was incubated with variable concentration of diabz-GSSG (1 (aM -150 

|uM) in PDI assay buffer at room temperature and initial rates of abz-GSH formation 

were monitored as a function of [Diabz-GSSG]. The total fluorescence produced was 

converted into [Abz-GSH] via a standard curve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

c
E

20

155*. 
o w
> I

g  10H
i

N

« 5

□

1

cP□PzP°lCfcPDl
^poncriD [^□□□□□□□PdnDqacPncPixinDO

I .
^ aaM M A ^ aa M A

n iA

5 10 15 20 25 30
Time (min)

Figure 3.10 Single turnover of enzyme

PDI (1 pM) was incubated with diabz-GSSG (10 pM) and the disulfide reduction activity 

was monitored after the addition of 50 pM DTT (squares). In a separate sample, PDI (1 

pM) was incubated with diabz-GSSG (10 pM) and 3 separate aliquots of 4 pM DTT 

were added as indicated by arrows (triangles). Fluorescence change of diabz-GSSG (10 

pM) was also monitored in the presence of 50 pM of DTT alone (diamonds).
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To further illustrate the sensitivity of the assay, 1 pM of completely reduced PDI, 

oxidized PDI or oxidized PDI with 4 pM DTT was incubated with diabz-GSSG (10 pM) 

and the rate was kinetically monitored for 30 min (Figure 3.11). While no increase in 

fluorescence was seen with oxidized PDI, equivalent fluorescence increase was observed 

with reduced PDI or oxidized PDI with equimolar DTT (Figure 3.11).

3.4.4 Monitoring platelet csPDI activity

Platelets have shown to have PDI on their surface and its activity has been studied in past 

using scrambled RNase assay (Essex et al., 1995). However this discontinuous assay 

shows significant non-enzymatic rates. Here, we have developed diabz-GSSG assay for 

monitoring platelet csPDI activity. 15 pM Diabz-GSSG was incubated with 10 pM DTT 

and Platelets (50 pL) and the activity was monitored as a function of time. While no 

significant increase in fluorescence was observed without platelets (Figure 3.12A, 

squares), a time dependent increase was observed in sample containing platelets (Figure 

3.12A, diamonds). This result clearly demonstrates that csPDI activity can be 

continuously monitored in a single step using this probe. The sensitivity of the assay can 

further be improved by centrifuging the samples before reading the fluorescence. To this 

end, platelets (0 pL-50 pL) were incubated with 15 pM Diabz-GSSG in the presence of 

10 pM DTT for 15 min at room temperature and then centrifuged at 5000 rpm. The 

supernatant was tested for fluorescence at 415 nm with excitation at 312 nm. While no 

increase in fluorescence was observed in diabz-GSSG samples without platelets, 

stoichiometric increase in fluorescence was observed with corresponding increase in
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platelet concentration suggesting reduction of diabz-GSSG by platelet csPDI (Figure 

3.12B). The activity was completely inhibited by PDI antibodies.

oxy PDI oxy PDI+DTT blank

Figure 3.11 Reduction of probe by reduced or oxidized PDI

1 pM of completely reduced PDI, oxidized PDI (1 pM) or oxidized PDI (1 pM) with 

DTT (4 pM) was incubated with diabz-GSSG (10 pM) and the abz-GSH formation was 

monitored for 5 min.
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Figure 3.12 Monitoring platelet csPDI activity

A. 15 pM diabz-GSSG was incubated with 10 pM DTT and the activity was monitored 

in the absence (squares) or presence (diamonds) of 50 pL Platelets B. Platelets (0 pL, 25 

pL & 50 pL) were incubated with 15 pM diabz-GSSG in the presence of 10 pM DTT for 

15 min at room temperature and then centrifuged at 5000 rpm. The supernatant was 

tested for fluorescence at 415 nm with excitation at 312 nm. csPDI activity of platelets 

(50 pL) was completely inhibited in the presence of anti-PDI antibodies (10 pg/mL).
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3.4.5 FSQ in GSSG with other fluorescent molecules

Although we have shown here that diabz-GSSG is sensitive probe for monitoring 

disulfide reductase activity, the level of quenching observed is only 50%. In an attempt to 

increase upon the sensitivity of probe, we modified GSSG by substituting isatoic 

anhydride with other fluorescent molecules and then observing the level of quenching. 

As shown in Figure 3.13, fluorescent molecules that showed significant quenching other 

than isatoic anhydride were fluorescein, rhodamine, texas red and bodipy and gave ~ 5- 

fold, ~ 4.5 fold, ~ 4-fold, ~25-fold and ~ 70-fold increase upon disulfide reduction 

respectively. Therefore, the sensitivity of the assay described before can be improved by 

simply replacing isatoic anhydride with these molecules as all of them show higher level 

of quenching. Based on percentage of quenching, dieosin glutathione disulfide (Di-E- 

GSSG) is, by far, the best probe for monitoring PDI activity as it is relatively non- 

fluorescent and gives very significant increase upon reduction of disulfide bond by either 

PDI or excess of reducing agent such as DTT (100 mM). Application of (Di-E-GSSG) 

as a probe for montoring PDI activity is described in detail in Chapter 4.

Although diabz-GSSG is least sensitive fluorescent molecule as compared to other 

derivatives of GSSG shown in Figure 3.13, it is the most stable derivative and, unlike 

other derivatives, can be stored at room temperature for 7 days without any appreciable 

loss in the fluorescence increase.
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Figure 3.13 Relative fluorescence self quenching observed in GSSG using different 

fluorescent molecules.
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3.5 Discussion

Fluorescence self-quenching (FSQ) has been used previously in various biochemical 

techniques (Wendt et al., 1995; Zhuang et al., 2000) including monitoring enzymatic 

activity (Wu et a l, 1995; Jones et al., 1997). Here, we have used this phenomenon to 

develop a probe, diabz-GSSG, which has two amino benzoyl moieties attached to two 

free amino groups of oxidized glutathione. The structure of diabz-GSSG was confirmed 

by mass spectrometry. The fragmentation pattern of the diabz-GSSG along with the 

fragmentation pattern of the authentic GSSG standard revealed diagnostic GSSG 

fragment ions. Most importantly, fragment ions were detected that corresponded to the 

benzoyl moieties attached to the glutamate portion of GSSG, unambiguously verifying 

the successful synthesis of diabz-GSSG.

In order for FSQ to occur, the two amino benzoyl rings of diabz-GSSG must on average 

come closer than 100 nm. In order to test this, molecular dynamic simulations were 

performed. The simulations indicated that the o-aminobenzoyl residues could potentially 

come as close as 73 nm in a periodic fashion (Figure 3.5) suggesting the possibility of 

FSQ. This hypothesis was confirmed when ~2-fold increase in fluorescence was observed 

upon complete reduction of disulfide bond by DTT (10 mM) that removed the distance 

constraint resulting in the increase of fluorescence (Figure 3.6). The probe was then 

tested for enzymatic reduction by PDI in the presence of minimal concentration of DTT 

(50 pM). While no increase in fluorescence was observed with DTT alone (Figure 3.7, 

diamonds), the rapid increase in fluorescence was observed in time dependent manner in
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the presence of PDI (0.5 pM) suggesting enzymatic reduction of disulfide bond (Figure 

3.7, triangles). The final product of disulfide reduction of one molecule of diabz-GSSG 

would be two molecules of abz-GSH. If diabz-GSSG were to show the phenomenon of 

FSQ, there should be -50% decrease in fluorescence upon re-oxidation of abz-GSH to 

diabz-GSSG. To this end, the auto-oxidation of abz-GSH was studied in the presence of 

cupric chloride, a commonly employed thiol oxidizing agent. The fluorescence decreased 

rapidly upon addition of cupric chloride to the sample containing abz-GSH confirming 

the FSQ due to the oxidation of abz-GSH to diabz-GSSG (Figure 3.6). This quenching 

was completely reversed by the addition of PDI plus DTT which reduced diabz-GSSG 

back to abz-GSH. Similar results were obtained when o-amino benzoyl cysteine (abz- 

Cys) was oxidized in the presence of Cu2+ to yield diabz-Cys. These results clearly 

illustrate the usefulness of abz-GSH / diabz-GSSG as a thiol redox probes.

One of the most important advantages of the diabz-GSSG fluorescent assay 

presented here is its higher sensitivity compared to two most commonly used assays. 

Scrambled RNase assay and insulin turbidity assay have long initial lag phases owing to 

which the actual initial rates for enzymatic activity cannot be determined. The diabz- 

GSSG assay presented here, shows instantaneous increase in fluorescence upon addition 

of PDI thus enabling the estimation of true initial rates. Diabz-GSSG was further used to 

study the single turnover of enzyme in the presence of minimal amount of DTT (Figure 

3.10) or in the absence reducing agents (Figure 3.11) and results obtained clearly 

demonstrate the sensitivity as well as its potential usefulness as a kinetic probe to explore 

the active site environments of PDI and other members of the thioredoxin family of 

proteins.
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Although Fluorescence-quenched peptides have been used in past for quantitative 

analysis of PDI disulfide reduction activity (Christiansen et al., 2004; Westphal et al., 

1998) with sensitivity comparable to diabz-GSSG assay presented here, the method of 

preparation of these disulfide linked peptides is not straight forward. The probe presented 

here is synthesized in one simple step by incubating readily available chemicals, isatoic 

anhydride and oxidized glutathione. The end product of the reaction is always diabz- 

GSSG with no by-products that makes the purification process very simple.

Cell surface PDI activity has been studied earlier using scrambled RNase assay (Essex 

et al., 1995). Here, we have optimized this assay to study platelet csPDI activity (Figure 

3.12). This method of continuously monitoring platelet csPDI activity in one step is much 

simpler and more sensitive than previously described assay. The scRNase assay requires 

incubation of platelet with scRNase in the presence of reducing agent that would convert 

fraction of scRNase to native active form. The sample is then centrifuged and the 

supernatant that contains native RNase is transferred to solution containing its substrate 

RNA or CTP to further monitor the native RNase activity at 260 nm or 295nm 

respectively. Apart from this additional step required for scRNase assay, there is always 

significant blank rate associated with the process due to non-enzymatic conversion of 

scrambled RNase into native active form in the presence of DTT alone which makes the 

process less sensitive compared to diabz-GSSG assay. Platelet csPDI has shown to be 

actively involved in disulfide isomerization (Essex et al., 1999; Lahav et al. 2002) as well 

as denitrosation (Root et al., 2004) which affect the process of platelet aggregation. 

Studies involving platelet csPDI activity is not straightforward due to lack of sensitive
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probes. Owing to the sensitivity of diabz-GSSG assay, the probe can be very useful for 

these studies. Moreover, it could be effectively used for studies involving the effect of 

redox buffers or reactive oxygen species (ROS) on platelet csPDI activity and its 

consequences on platelet functions.

Based on similar method of preparation as described for diabz-GSSG, we have 

synthesized series of glutathione disulfide derivatives by coupling it to variable 

fluorescent probes. It was observed that eosin derivative (Di-E-GSSG) showed maximum 

level of quenching (Figure 3.13) and therefore, potentially, is the most sensitive probe for 

monitoring PDI reductase activity.

In summary, here we have presented a series of new simple fluorescent disulfide probe 

for continuous detection of PDI disulfide reduction activity. The probe synthesis is 

simple, straight forward and inexpensive. The assay is rapid, sensitive and can be applied 

to cellular samples. The assay could be easily optimized for fluorescence plate reader and 

used for high throughput screening of PDI inhibitors from chemical libraries. The assay 

can be used for monitoring single turnover of enzyme and to estimate true initial rates of 

disulfide reduction in crude sample preparations.
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Chapter 4

Characterization of Redox State of PDI 
under Variable Redox Environments 
Using a Sensitive Fluorescent Assay
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4.1 Introduction

The activity of PDI, as described earlier, depends upon the redox state of its two active 

sites (Chapter 1, page 7). The enzyme will work as an oxidase when its active site is in 

the disulfide form whereas it will work as a reductase or isomerase when it is in the 

dithiol form. Therefore, it has been suggested that PDI dependent rearrangement of 

disulfide bonds in the ER lumen is thermodynamically controlled by its redox 

environment. Cellular redox environment is widely believed to be regulated by the ratio 

of reduced and oxidized form of glutathione (GSH / GSSG) which is significantly 

different in the cytosol, secretory pathways and extracellular environment.

4.1.1 Oxidation of PDI by GSSG

Formation of disulfide bond in the cytosol is not thermodynamically favored because of 

very high concentration of GSH (1 mM to 10 mM) and high [GSH] to [GSSG] ratio 

(30:1 to 100:1) which makes cytosolic environment highly reducing (Hwang et al., 

1992). However, in the ER lumen, the concentration of GSSG is relatively higher and 

[GSH] to [GSSG] ratio is 1:1 to 3:1 (Hwang et al., 1992). This ratio has been shown to be 

ideal for in vitro oxidative folding of proteins (Bass et al., 2004; Hwang et al., 1992). 

Therefore, it is believed that GSSG is essential for oxidation of PDI active site, which, in 

turn, facilitates oxidative folding.
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The oxidation of PDI dithiols by GSSG can be represented by Eq. 1

/ SH A
P D I ^  + GSSG  w  PDI + 2GSH Eq. 1

SH

Here, oxidized glutathione reacts with reduced active site of PDI to form oxidized PDI 

and 2 molecules of GSH.

The equilibrium constant for this reaction can be represented by Eq. 2

[PDISS2] [GSH]2
K0X = ---------------------------------------  Eq. 2

[PDISH2] [GSSG]

where Kox is equilibrium constant for glutathione buffer system.

As evident from Eq 2, the KoX would correspond to the concentration of [GSH]2 / 

[GSSG] when red-PDI / ox-PDI = 1

The reduction potential for PDI active site can be obtained by substituting this value of 

Kox in Nemst equation (Eq. 3)

DT

E = E° - ——— IdKox Eq. 3 
nF

Where E is reduction potential for active site, E° is standard reduction potential for 

glutathione buffer system, R is gas constant and F is Faraday constant. Therefore by 

knowing the value for Kox> E can be calculated.
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4.1.2 Methods for calculating reduction potential of PDI

(i) By using scRNAse assay and iodoacetic acid (IAA) (Hawkins et al., 1991): In this 

method, the active site of PDI was first blocked by alkylation using IAA and the effect of 

blocking on the isomerase activity was then measured using scRNase assay. The reaction 

of IAA with thiols can be represented as shown in Figure 4.1.

The extent of alkylation of PDI active sites by IAA will depend upon its redox state in 

glutathione buffer system.

activity of IAA-untreated PDI. The alkylation of PDI thiols permanently blocks them and 

as a result, they would not participate in isomerization of scRNase. Therefore, the 

fraction of isomerase activity would be the measure of redox state of PDI.

L-Cysteine Modified Cysteine residuelodoacetate

Figure 4.1 Reaction of IAA with cysteine

The effect of blocking PDI active sites on its activity was calculated by comparing it with
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This method gave the equilibrium constant of 45 pM which corresponded to redox 

potential of -110 mV. This value is very small compared to values obtained from other 

methods. It was later suggested that the trapping of active site thiols by IAA is not 

precise in the presence of high concentrations of GSH because the rate at which active 

site thiols reacts with IAA is comparable to reduction of active site disulfide with GSH 

(Darby and Creighton, 1995). Due to this, IAA traps more active site thiols then are 

actually present by ‘pulling’ the equilibrium resulting in very low value of KqX.

(ii) By using radioactive IAA (Lundstorm and Holmgren, 1993): In this method the 

radioactive IAA was used to alkylate PDI active site thiols equilibrated in glutathione 

buffer system in the similar fashion as in method (i) except that the reaction was 

performed in denaturating condition (6 M guanidium hydrochloride). The equilibrium 

constant obtained by this method was 3 mM corresponding to redox potential of -170 

mM. The higher value obtained here as compared to method (i) is believed to be 

associated with denaturating condition because the disulfide bonds of unfolded proteins 

are more stable than native proteins. Therefore, the disulfide bonds would be more 

resistant to cleavage by GSH and the ‘pulling effect’ of IAA at equilibrium, as discussed 

in method (i), would be minimal resulting in more accurate blocking and higher value of 

Kqx (Darby and Creighton, 1995).

(iii) By monitoring IAA blocked PDI in HPLC (Darby and Creighton, 1995): This 

method was used to study the redox properties of a and a ' domains of PDI separately. 

The active sites of a and a ' domains were acid trapped with IAA after equilibration in 

variable [GSH] / [GSSG] in denaturating as well as non-denaturating conditions followed
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by their HPLC analysis. It was shown that all the products of this trapping reaction can 

be resolved by HPLC and the relative amounts of dithiols or disulfide can be estimated 

based on the extent of blocking of active site by IAA. This method gave the average Kox 

value of 0.9 mM and 1.87 mM for a and a ' domain respectively.

(iv) By gel shift assay (Schwaller et al., 2003): In this method, the redox state of PDI 

was captured by using Mal-PEG, a conjugate of polymeric polyethylene glycol and 

maleimide. PDI is incubated with Mal-PEG after equilibration in variable ratio of [GSH] 

/ [GSSG]. The Mal-PEG would react with cysteines of reduced PDI and cause a shift in 

the position of PDI band in SDS-PAGE depending upon extent of labeling. For example, 

the shift of one or two SH groups would indicate that one of the two active sites is 

oxidized, whereas a shift of three or four SH groups would indicate a completely reduce 

PDI. The fraction of reduced active sites was estimated by integrating the band intensities 

and gave the value of 0.7 mM for KoX.

In summary, all the methods that have been used in past to calculate equilibrium constant 

gave significantly different values in glutathione buffer system ranging from 45 pM to 3 

mM suggesting the dependence of value obtained in the method of estimation. The 

artifacts associated with the particular method, in part, may be responsible for the 

differences in estimated equilibrium constant.

Here, we have synthesized a fluorogenic pseudosubstrate for PDI and used it to develop 

an assay for studying its redox properties. The assay is sensitive enough to detect the 

thiols of reduced enzyme in the absence of any reducing agent. Therefore, the redox state 

of PDI can be reported as a function of change in the activity of reduced enzyme. We
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have utilized this assay to study redox state of active site dithiols of PDI under variable 

[GSH] / [GSSG] buffer systems and extended our study to see the affect of these variable 

redox ratios on platelet surface PDI activity.
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4.2 Materials and Equipment

4.2.1 Materials

Acetone; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Ammonium persulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Ammonium sulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Biorad Protein Assay (Bradford Reagent); Bio-Rad Laboratories USA, Hercules,

California

Eosin isothiocyanate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Ethylene diamide tetraacetic acid; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Monoclonal anti-PDI antibody RL90; Abeam USA, Cambridge, MA 

Oxidized glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Phenylarsine oxide; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Potassium phosphate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Reduced glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Rhodamine 1,2,3; Invitrogen Canada Inc., Burlington, Ontario 

Sephadex G-25; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Sodium Chloride; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Sodium phosphate monobasic; Sigma-Aldrich Canada Ltd., Oakville, Ontario
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4.2.2 Equipment

Agilent 8453 UV-VIS Spectrophotometer;
Agilent Technologies Canada Inc, Mississauga, Ontario

BioRad Fraction Collector Model 2110;
Bio-Rad Laboratories (Canada) Ltd., Mississauga, Ontario

Hemocytometer;
Reichert Co, Buffalo, NY

Jouan CR3i Centrifuge;
Jouan Inc., Winchester, Virginia

Labconco FreeZone 4.5 Liter Benchtop Freeze Dry Systems;
Laconoco Corporation, Kansas City, Missouri

Mettler AJ100 Balance;
Mettler Toledo Canada, Mississauga, Ontrio

Microtiter 96-well Solid Plate;
Thermo Electron Corp. Canada, Burlington, Ontario

Northen Eclipse 6.0 Imaging Software;
Empix Imaging Inc., Mississauga, Ontario

NUAIRE Biological Safety Cabinet Class II Type A/B3;
Thermo Electron Corp. Canada, Burlington, Ontario

Orion Model 420A pH Meter;
Thermo Electron Corp. Canada, Burlington, Ontario

Stir Plate 360 Series;
VWR International, Mississauga, Ontario

Varian Eclipse Fluorescence Spectrophotometer;
Varian Canada, Mississauga, Ontario

Zeiss Axiovert 200 inverted Fluorescence Microscope;
Empix Imaging Inc., Mississauga, Ontario

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 Methods

4.3.1 PDI assay buffer

PDI assay buffer contained 0.1 M potassium phosphate buffer (pH 7.0) and 2 mM EDTA. 

This buffer was used throughout the study unless otherwise specified.

4.3.2 Preparation of dieosin glutathione disulfide (Di-E-GSSG)

GSSG was incubated with 10-fold molar excess of eosin in phosphate buffer (100 mM 

sodium phosphate and 2 mM EDTA, pH 8.5) at room temperature (25 °C). 100 pL 

aliquots were taken at different time intervals and passed down G-25 column (100 mm x 

10 mm) using PDI assay buffer and 500 pL aliquots were collected with the help of a 

fraction collector. Free eosin binds to the top of the G-25 column and did not elute in 

phosphate buffer.

The elution time for GSSG alone, as estimated by monitoring absorbance increase at 220 

nm in separate experiment, was 6 min. After 30 min of incubation time, an intense pink 

band that eluted at -5  min was tested for fluorescence increase before and after addition 

of DTT (10 mM). The fluorescence increase of the fluorescent fractions was ~2-fold at 

30 min and increased as a function of reaction time, reaching a plateau after 6 h (-70- 

fold) suggesting completion of reaction and the attachment of two eosin moieties to two 

free amino termini o f  GSSG. A ll the fractions that showed —70-fold increase in the 

fluorescence were pooled and stored at -80 °C. The purity of the product was ascertained 

by thin layer chromatography (TLC) in a methanol-acetone solvent system (30:70).
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4.3.3 Preparation of eosin-GSH

Eosin-GSH (EGSH) was prepared by treating 100 pM of purified Di-E-GSSG with 10 

mM DTT for 30 min and then separating the mixture with a Sephadex G-25 column. The 

eluted sample did not show any increase in the fluorescence after addition of DTT (10 

mM), confirming that all the Di-E-GSSG has been converted to EGSH. The aliquots were 

pooled together and quantified using molar absorption coefficient e = 88000 M'^cm'1 

(Lettinga, 2004).

4.3.4 Quantification of EGSH formation

Increase in fluorescence was monitored as a function of [EGSH] (e = 88000 M'^cm'1) 

(Lettinga, 2004) and the standard plot was generated with excitation at 525 nm and 

emission at 545 nm. This standard plot was used wherever quantification of the reduction 

of [Di-E-GSSG] to [E-GSH] was required.

4.3.5 PDI purification

Recombinant human PDI was expressed using the Escherichia coli strain BL21 (DE3) 

and expression vector pET-28a as described elsewhere (Seslija, 2005). This plasmid 

encodes a fusion protein containing the entire human PDI sequence with an N-terminal 

His6 tag (Pihlajaniemi et al., 1987). Recombinant PDI was purified from the soluble 

fraction of the cell lysate using Ni-CAM™ HC resin (Sigma), which is a high-capacity 

nickel-affinity matrix. Bound PDI was eluted using 250 mM imidazole in 50 mM 

Tris/HCl (pH 8.0) and collected in 2.0 mL fractions. The fractions containing PDI were
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pooled and dialysed against 0.1 M potassium phosphate buffer (pH 7.0). Protein 

quantification was performed by the Bradford assay (Bradford, 1976).

4.3.6 Kinetics of PDI-dependent disulphide reduction

PDI disulphide reduction activity was monitored in PDI assay buffer by adding PDI (5 

nM to 20 nM) to Di-E-GSSG (150 nM) in the presence of 5 pM DTT. The increase in 

fluorescence was monitored at 545 nm with excitation at 525 nm.

Alternatively, the kinetics of reduction were also monitored by visible spectrophotometry 

at 525 nm or 550 nm as a function of time in the presence of 5 pM DTT and 100 nM 

PDI.

Reduction of substrate by red-PDI was studied under different redox environment by first 

incubating PDI in variable [GSH] / [GSSG] (1:1 to 20:1, [GSH] 200 pM to 4 mM and 

[GSSG] 200 pM) for 15 min and then transferring 10 pL (15 nM PDI) to PDI assay 

buffer containing 150 nM Di-E-GSSG. The final [GSH] and [GSSG] in the reaction 

mixture was from 1-20 pM and 1.6 pM respectively.

4.3.7 Reduction or oxidation of PDI

PDI (50 pM) was reduced or oxidized by incubating it with 10 mM DTT or 10 mM 

GSSG respectively for 3 h at room temperature. The excess of DTT or GSSG was 

removed by using a Sephadex G-25 column where the elution time for PDI was 2 min 

which was well separated from either GSSG or DTT with the elution time of greater than
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6 min. The thiol content of reduced or oxidized PDI was calculated using the DTNB 

[5,5'-dithiobis-(2-nitrobenzoic acid); Ellmaris reagent] assay (Ellman, 1959).

4.3.8 Platelet isolation and monitoring psPDI activity

Samples of peripheral venous blood were mixed 6:1 with acid citrate dextrose (25 g/L 

trisodium citrate dihydrate, 15 g/L citric acid monohydrate and 20 g/L dextrose). Whole 

blood was centrifuged (190 g for 15 min at 37 °C) to yield platelet-rich plasma. Platelets 

were isolated by centrifugation (700 g for 15 min at 37 °C) and washed two times in 

HEPES buffer containing 2 mM EDTA (pH 7.4). Platelets were quantified using a 

haemocytometer.

Final concentration of washed human platelets was adjusted to 10*109 mL'1 prepared in 

HEPES buffer containing 2 mM EDTA. Di-E-GSSG (150 nM) was incubated with 5 pM 

DTT and variable concentration of platelets (1><107 to 8x 107 mL'1) and the activity was 

monitored continuously as a function of time. For redox study, platelets were incubated 

with variable [GSH] / [GSSG] (10:1 to 1:1, [GSH] 500 pM and [GSSG] 50 to 500 pM) 

for 15 min and then 10 pL of platelet was added to the reaction mixture (150 nM Di-E- 

GSSG in HEPES-EDTA buffer) such that final concentration of platelets was 4xl08 mL'1 

and final [GSH] or [GSSG] did not exceed more than 5 pM.
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4.4 Results

4.4.1 Di-E-GSSG a new pseudosubstrate for PDI

PDI pseudosubstrate Di-E-GSSG is similar in function to a reagent recently introduced 

from our lab (Raturi et a l, 2005). Oxidized glutathione was incubated with 5 molar 

excess of eosin isothiocyanate at pH 8.5 for 8 h so that the two free amino groups of 

GSSG are conjugated covalently to two eosin moieties forming Di-E-GSSG. The probe 

was separated from unreacted eosin isothiocyanate using chromatography on Sephadex 

G-25. The close proximity of the eosin moieties resulted in the self-quenching of their 

fluorescence and made the molecule relatively non-fluorescent (Figure 4.2, dashed line) 

(ex. X max = 525 nm, emission A,max = 545 nm). However, upon addition of thiol reducing 

agent such as DTT (10 mM), the fluorescence increased by -70-fold (Figure 4.2, dark 

line) due to the reduction of disulfide bond that released the distance constraints between 

two eosin molecules. We then studied the reduction of probe (150 nM) in the presence of 

minimal concentration of DTT (5 pM) with or without PDI (5 nM to 20 nM). While no 

increase in fluorescence was observed with DTT alone (Figure 4.3, diamonds), an 

instantaneous increase of signal was observed as a function of time in the sample 

containing PDI demonstrating its disulfide reductase activity (Figure 4.3 circles, squares 

and triangles). Therefore the attractive feature of Di-E-GSSG is that its disulfide bond is 

more resistant to reduction by DTT than the active site disulfides of PDI. This means 

that with nanomolar amounts of PDI, its reductase activity can be continuously monitored 

in the presence of as much as 5 pM DTT (Figure 4.4, diamonds) without any appreciable
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blank rates. The reductase activity of PDI increased as a function of [Di-E-GSSG] with 

the apparent Km of 650 nM ± 40 nM (Figure 4.4). The kcat and catalytic efficiency 

(kcat/KM) were estimated to be 3.5 ± 0.25 sec'1 be 8.9 X 104± 180 M'1 sec'1 respectively.

4.4.2 Absorption spectra of Di-E-GSSG

Another interesting feature of Di-E-GSSG is its spectral behaviour in visible range when 

it is reduced either by PDI or excess of reducing agent (Figure 4.5A and 4.5B). Upon 

complete reduction of probe (1.6 pM) by PDI (100 nM) in the presence of DTT (5 pM), 

the absorbance at 520 nm increases by 85% while there is decrease in 550 nm absorption 

by 60% with the isobestic point at 540 nm (Figure 4.5A). An isobestic point is defined as 

the wavelength at which the absorption or extinction coefficient of two or more species in 

identical. Therefore, these ratiometric changes in the visible spectra can also be used to 

estimate the catalytic activity of enzymes of PDI family (Figure 4.5B). As shown in 

figure 4.5B, with 100 nM of PDI, the reaction is over in 60 seconds which demonstrates 

the better sensitivity as well as rapidity of this assay over other UV-Vis 

spectrophotometric assays such as insulin turbidity and scRNAse assays where the time 

taken to visualize PDI activity under similar experimental condition is more than 30 

minutes (Lundstrom and Holmgren, 1990).
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Figure 4.2 Maximum fluorescence increases in Di-E-GSSG after reduction

150 nM of Di-E-GSSG spectrum in PDI assay buffer was taken with excitation at 525 nm 

and emission at 545 nm (dashed line). The same sample was then incubated with 10 mM 

DTT for 15 min to completely convert Di-E-GSSG into EGSH and rescanned (solid line).
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Figure 4.3 PDI disulfide reductase activity

Di-E-GSSG (150 nM) was incubated with DTT (5 pM) in PDI assay buffer (pH 7) at 

room temperature in the absence of any PDI (diamonds) or in the presence of 5 nM 

(circles), 10 nM (squares) and 20 nM (triangles) PDI.
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Figure 4.4 Estimation of Km

Estimation of KM: 40 nM of PDI was incubated with variable concentration of Di-E- 

GSSG (50 nM - 5 pM) in PDI assay buffer at room temperature and initial rates of E- 

GSH formation were monitored as a function of [Di-E-GSSG]. Theoretical best fit of 

the data to the Michaelis Menten equation (solid line): Km = 650 units and Vmax =125 

units.
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Figure 4.5 Ratiometric changes in visible spectra

A. Change in absorption spectra of Di-E-GSSG (1.6 pM) was monitored between 500 nm 

and 580 nm after reduction by PDI (100 nM).at 30 sec intervals. B. Change in absorption 

at 520 nm and 550 nm was monitored as a function of time.
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4.4.3 Reduction of Di-E-GSSG by red-PDI

To further check the sensitivity of assay, red-PDI (4 nM to 32 nM) was added to probe in 

the absence of any reducing agent and the disulfide reduction (with no turnover), was 

monitored as a function of time. As shown in Figure 4.6 and Figure 4.7, the increase in 

substrate reduction was proportional to [PDI] even at lower nM range. Moreover, 4 nM 

of PDI released -15.5 nM EGSH (Figure 4.6, triangles), confirming the sensitivity of 

assay at the lower [PDI] as 1 mole of red-PDI (2 active sites) should ideally give 4 mol of 

EGSH.

In order to compare the substrate specificity of PDI with Di-E-GSSG and PDI with 

GSSG, Di-E-GSSG reduction by red-PDI was monitored in the presence of variable 

[GSSG] (Figure 4.8). Di-E-GSSG (150 nM) was incubated with varying [GSSG] ( 0 - 4  

mM) followed by addition of PDI (15 nM) and the substrate reduction was studied with 

excitation at 525 nm and emission at 545 nm. The inhibition constant for substrate 

inhibition with GSSG was found to be 200 ± 30 pM suggesting that PDI has much higher 

affinity for Di-E-GSSG as compared to GSSG and there would be no significant decrease 

in red-PDI activity with no turnover even in the presence of up to -20 pM GSSG in 

reaction mixture.
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Figure 4.6 Di-E-GSSG reduction by red-PDI

Red-PDI was added to the reaction mixture containing Di-E-GSSG (150 nM) and and 

the disulphide reduction of substrate was monitored at 4 nM (diamonds), 8nM (hollow 

squares), 16 nM (hollow triangles) and 32 nM (filled squares) of red-PDI.
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Figure 4.7 Reduction of Di-E-GSSG is linear with increasing [red-PDI]
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Figure 4.8 Inhibition of substrate reduction by PDI in the presence of variable 
[GSSG]

Di-E-GSSG (150 nM) was incubated with varying [GSSG] (0 nM to 4 mM) followed by 

addition of PDI (15 nM) and the substrate reduction was studied with excitation at 

525 nm and emission at 545 nm.
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4.4.4 Monitoring oxidation of PDI by Di-E-GSSG assay

PDI (50 pM) was reduced by incubating with 10 mM DTT for one hour followed by 

separation by G-25 column and its auto-oxidation was studied as a function of time at 

room temperature by DTNB assay. As shown in Figure 4.9 (squares), PDI (2 pM) is quite 

stable in reduced state in PDI assay buffer and shows only -15% ± 7% oxidation in the 

interval of 5 h.

We then studied PDI-dithiol oxidation under the same conditions using our assay by 

hypothesizing that the loss in the reduced PDI activity could be attributed to conversion 

of fraction of red-PDI into oxidized PDI. In other words, reduction of probe by partially 

red-PDI compared to fully red-PDI would directly represent the fraction of red-PDI 

(fraction of oxidized PDI = 1 -  residual activity). Red-PDI was added to 150 nM of Di-E- 

GSSG and the reduction of the probe was monitored as a function of time. The assay, 

similar to the DTNB assay, showed a loss of 16.5 ± 2% of thiols in 5 h (Figure 4.9 

triangles) suggesting that Di-E-GSSG assay is rapid and simple technique to estimate 

redox state of PDI-dithiols and other proteins of the PDI super-family.

We then studied the oxidation of red-PDI by H2 O2 , a known potent thiol oxidant, and 

compared it with oxidation by GSSG, an important component of redox buffer in 

physiological environment. To this end, 2 pM of red-PDI was incubated with 100 pM of 

H2 O2 (Figure 4.10 diamonds) or GSSG (Figure 4.10 squares) and the substrate reduction 

was monitored by adding 10 pL of PDI (final conc. 15 nM) to the assay buffer containing
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150 nM of Di-E-GSSG at the interval of every 5 min for 1 h. As shown in Figure 4.10, 

the oxidation of PDI by GSSG was found to be 10-fold faster than H2 O2 with the 

estimated half lives of 2 min and 20 min respectively.
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Figure 4.9 Monitoring auto-oxidation of PDI

red-PDI (2 pM) was incubated with DTNB (10 mM) in PDI assay buffer, pH 8 for 10 

min at various time intervals and reading was taken at 412 nm (squares). PDI- substrate 

reduction (with no turnover) was measured in parallel by adding 10 nM of red-PDI to 150 

nM Di-E-GSSG (diamonds) and fraction of red-PDI was calculated by converting final 

fluorescence units into mol of thiols using the standard curve for [EGSH].
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Figure 4.10 Oxidation of PDI by H2O2 or GSSG

PDI (2 |iM) was incubated with 100 pM GSSG (squares) or H20 2 (diamonds) or just 

with buffer (triangles) for variable time intervals (0 to 60 min). An aliquot of PDI, (15 

nM final concentration) was then removed after 15 min and added to 150 nM Di-E- 

GSSG. The fluorescence was monitored 545 nm (ex. 525 nm). The fluorescence units 

were converted to [EGH] by using the standard curve.
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4.4.5 Substrate reduction by PDI in redox buffers with variable [GSH] / [GSSG]

Glutathione is the most abundant thiol in the cells and it has been shown that the ratio of 

thiol to disulfide ([GSH] / [GSSG]) affects the protein folding in the presence or absence 

of PDI. Previous reports have shown the dependence of PDI isomerase activity on the 

ratio of [GSH] to [GSSG] using scRNase assay (Lyles and Gilbert, 1991; Hawkins et al., 

1991; Lundstorm and Holmgren, 1993). Here we set out to study the fraction of red-PDI 

under different ratio of GSH to GSSG using our fluorescent substrate. The fraction of 

reduced PDI was estimated under variable [GSH] / [GSSG] ratio (1:1 to 20:1) by 

monitoring the decrease in the reduction of substrate by PDI. To this end, red-PDI (2 pM) 

was incubated with variable [GSH] / [GSSG] ([GSH] 200 pM to 4 mM and [GSSG] 200 

pM) for 15 min at room temperature and then 10 pL (final [PDI] = 15 nM) was added to 

the reaction mixture containing 150 nM of Di-E-GSSG.

As shown in Figure 4.11, incubation of PDI with GSSG alone (200 pM) resulted in its 

complete oxidation whereas 10-fold excess of GSH over GSSG generated completely
I

reduced PDI. Incubation of PDI for 30 min or 1 h in redox buffer gave same fraction of 

red-PDI and therefore 15 min of time interval was chosen for all the experiments in order 

to minimize the auto-oxidation of GSH during incubation. These experiments, when 

performed after removing unreacted GSSG or GSH from PDI by chromatography on 

Sephadex G-25 before adding to the reaction mixture, showed same activity as without 

separation confirming that presence of GSSG or GSH at these concentrations (GSH 1 pM 

to 20 pM and GSSG 1.6 pM) in reaction mixture do not alter no-tumover rates of PDI
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and thus purification of excess GSSG or GSH is not required. Moreover, owing to very 

low affinity of PDI for GSSG (Figure 4.8) as compared to Di-E-GSSG, presence of low 

concentrations of GSSG is not expected to alter the rates of EGSH generation by red- 

PDI.
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Figure 4.11 Estimation of fraction of red-PDI with variable GSH/GSSG ratio

2 pM of PDI was incubated with fixed concentration of GSSG (200 pM) and varying 

concentration of GSH (200 pM to 4 mM) at room temperature followed by addition of 10 

pL of sample (Final [PDI] = 15 nM) to reaction mixture containing 150 nM Di-E-GSSG 

and . The fluorescence was monitored 545 nm (ex. 525 nm). The theoretical hyperbolic 

curve (solid line) is plotted using Michaelis Menten equation and by taking equilibrium 

constant value o f  2.5.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Figure 4.12, the redox state of PDI was plotted as a function of [GSH]2 / [GSSG], The 

plot was similar to Figure 4A showing the increase in reduced PDI fraction with the 

increase in [GSH]2 / [GSSG] and gave the value for KoX of 1.1 ± .075 mM. This value is 

similar to the value of -1.3 mM reported by Darby and Creighton (1995) and comparable 

to the values of -0.7 mM reported by Gilbert and coworkers (2003) and -3  mM by 

Lundstrom and Holmgren (1993).

This experiment suggests that GSSG, that seems to be potent oxidant for PDI-dithiols, 

inhibits PDI disulfide reductase activity in concentration dependent manner. To further 

confirm this observation, we performed insulin turbidity assay, a well known PDI 

reductase assay (Lungstrom and Holmgren, 1990), at fixed [GSH] and varying [GSSG]. 

To this end, insulin (65 pM) was incubated with GSH (1 mM) and PDI (0.5 pM) and the 

enzymatic reduction was monitored as a function of time against increasing [GSSG] 

(Figure 4.13). As expected, the initial reductase activity decreased linearly with 

increasing [GSSG] thus confirming our previous observation that GSSG can inhibit 

reductase activity at near physiological concentrations.
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Figure 4.12 Caclulation of K,)X

Plot of red-PDI fraction against [GSH]2 / [GSSG] was constructed with fixed 

concentration of GSSG (200 |aM) and varying concentration of GSH (50 |J.M to 4 mM) 

under the similar conditions as described above. Theoretical best fit hyperbolic curve was 

created using Michaelis Menten equation and Kox value of 1.1 mM (solid line).
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Figure 4.13 Inhibition of Insulin reduction by PDI

PDI (0.5 pM) was incubated with insulin (65 pM) in the presence of increasing 

concentration of [GSSG] (200 pM to 4 mM) at fixed concentration of [GSH] (ImM) and 

rate of reduction was measured as a function of turbidity at 620 nm.
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4.4.6 Monitoring psPDI activity using fluorescent assay

PDI has been shown in past to account for ~40 % of total surface thiols (Jiang et al., 

1999) on platelets and is critical for platelet activation and secretion (Bennett et al., 2000; 

Lahav et al., 2002). Here, we optimized Di-E-GSSG assay for continuous monitoring of 

psPDI activity. Di-E-GSSG (150 nM) was incubated platelets (107 / mL to 8xl07 / mL) 

plus DTT (5 pM) and the fluorescence change was monitored as a function of time. 

While no significant increase in fluorescence was observed without platelets, a platelet- 

density dependent increase was observed in platelet-samples (Figure 4.14A and 4.14B) 

demonstrating that psPDI activity can be directly and continuously monitored using this 

assay. The platelet activity (4xl07 / mL) was inhibited to 80% by using RL90 anti-PDI 

antibody confirming that majority of surface reductase activity is contributed by psPDI 

(Figure 4.14A, filled triangles and Figure 4.14B). To our knowledge, this is the most 

sensitive assay to monitor surface reductase activity that can be extended to other cell 

lines containing surface PDI.

It has been suggested earlier that attachment of PDI to the platelet surface is by 

electrostatic interactions (Terada et al., 1995). We set out to explore the role of 

hydrophobic interaction with surface because of the fact that PDI has large hydrophobic 

patches through which it may bind to exofacial portions of transmembrane proteins.We 

tested this hypothesis by incubating platlelets (8xl07/ mL) with varying concentration of 

isopropanol (IPA) (0.25% to 10%), for 5 min followed by the separation of supernatant 

from platelet by centrifugation at 2000 g for 15 min. The supernatant was then tested for 

PDI activity using Di-E-GSSG assay and subjected to western blot analysis (Figure 4.15).
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The activity as well as PDI band intensity increased with the increase in IPA 

concentration suggesting that PDI, in part, may be attached to the platelet surface by 

hydrophobic interactions.

4.4.7 Effect of variable [GSH] / [GSSG] on psPDI-reductase activity

As we have observed that red-PDI activity was inhibited in the presence of [GSSG], we 

studied the effect of increasing [GSSG] (50 pM to 500 pM) at fixed [GSH] (500 pM) on 

psPDI reductase activity (Figure 4.14B). As expected, the reductase activity was also 

inhibited with the decrease in [GSH] / [GSSG] ratio and when the ratio approached 1:1 

(Figure 4.16, filled diamonds), the activity overlapped with platelet sample containing no 

GSH or GSSG (Figure 4.16, hollow squares). This observation is important in view of the 

fact that csPDI primarily has a reductive role on the exofacial surface of cells (Couet et 

al., 1996; Mandel et al., 1993; Tager et al. 1997). It suggests that under oxidative stress 

or lower [GSH] / [GSSG] ratio in plasma, the reductive function of psPDI can be 

significantly inhibited.
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Figure 4.14 Monitoring psPDI activity

A. Di-E-GSSG (150 nM) was incubated with DTT (5 pM) and 107 / mL (squares), 2xl07 

/ mL (hollow triangles), 4xl07 / mL ( hollow diamonds) and 8xl07 / mL (filled squares) 

of platelets and the activity was monitored as a function of time. Platelets activity (4xl07 

/ mL) was also measured in parallel in the presence of RL90 anti-PDI antibody (filled 

triangles). Incubation of probe with DTT alone (5 pM) did not show any significant 

reaction (filled circles). B. The replot of the initial rates of [EGSH] generation (m in1) by 

psPDI.
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Figure 4.15 Washing of psPDI by IPA

Platlelets (8xl07 / mL) were incubated with varying concentration of isopropanol (IPA) 

(0.25% to 5%) for 5 min followed by the separation of supernatant from the platelets by 

centrifugation at 2000g for 15 min. The supernatant was then tested to PDI activity using 

Di-E-GSSG assay as described earlier and subjected to western blot analysis.
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Figure 4.16 psPDI activity in variable [GSH] / [GSSG]

Platelets (4xl08 / mL) were incubated with 500 pM GSH and 50 pM (filled squares), 100 

pM (hollow triangles), 200 pM (hollow diamonds) and 500 pM (filled diamonds) GSSG 

for 15 min and then the activity was measured as described above. One sample of 

platelets was tested without any addition of [GSH] or [GSSG] (hollow squares). 

Incubation of substrate with GSH alone (20 pM) is represented by filled circles.
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4.5 Discussion

Here, we have synthesized a fluorescent probe by covalently attaching two eosin 

molecules to the two free amino groups of glutathione disulfide so as to form Di-E- 

GSSG. The proximity of two eosin molecules leads to fluorescent self-quenching and 

makes the molecule relatively non-fluorescent. Upon addition of PDI (5 nM to 20 nM) at 

minimal concentration of DTT (5 pM), there was ~70-fold increase in fluorescence that 

saturates within 4 min, thus demonstrating the sensitivity as well as rapidness of the assay 

for reductase activity (Figure 4.2 and Figure 4.3).

This assay can be easily optimized to monitor the reductase activity of other enzymes of 

the PDI family. Even at these low concentrations, the assay was shown to reduce the 

substrate (~4 moles of EGSH per mole of PDI monomer) in the absence of any reductant. 

This encouraged us to exploit the assay for studying the redox state of PDI after 

incubating it in variable [GSH] / [GSSG] buffer. After equilibration of PDI redox state, it 

was incubated with the probe and substrate reduction with no turnover was monitored as 

a function of [GSH] / [GSSG] (1:1 to 20:1). The decrease in generation of reduced 

substrate was proportional to oxidation of reduced PDI and thus reported the fraction of 

red-PDI. Redox properties of PDI have also been studied in past using scRnase assay 

(Hawkins et al., 1991; Lundstorm and Holmgren, 1993). In these methods PDI was 

incubated in variable [GSH] / [GSSG] ratio followed by blocking o f  reduced thiols with 

alkylating agent like iodoacetate. The alkylated PDI, after the removal of excess 

iodoacetate by dialysis or gel Alteration, was then tested for its ability to convert scRNase 

into native active form and the loss in activity was attributed to loss of active site thiols of
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PDI. This method of determining thiol content of PDI seems to differ from our method in 

two ways; 1) It involves an additional step of blocking of reduced thiols of PDI with 

iodoacetate and 2) Unlike our assay where the fraction of PDI-dithiols were directly 

calculated from the loss of red-PDI activity, in this method fraction of reduced PDI was 

calculated based on percentage of residual isomerase activity. However, the value 

obtained for Kox with our method (Figure 4.12) is comparable to the values reported in 

literature using this method (Hawkins et al., 1991) or other methods (Darby and 

Crieghton, 1995; Schwaller et al., 2003) and corresponds to the redox potential of ~ -155 

mV for PDI active site thiols.

The ratio of [GSH] / [GSSG] in cells varies from 30:1 to 100:1 making the environment 

highly reducing. Therefore under these conditions formation of disulfide bond is highly 

unlikely. Figure 4.11 shows that [GSH] / [GSSG] >8:1 gives complete one turnover and 

thus keeps PDI in completely reduced state suggesting the presence of only reduced form 

of PDI in cytosol (Turano et al., 2002) or in any other environment where this, or higher 

ratio is maintained. However, Hwang et al. (1992) showed that the lumen of endoplasmic 

reticulum, a place for protein folding and disulfide bond formation, is 20 to 100 times 

more oxidizing than cytosol where the ratio of [GSH] / [GSSG] is 1:1 to 3:1. Our data 

(Figure 4.11) shows that at the ratio of ~ 2.5:1, half of PDI is in the reduced state 

suggesting that in the ER PDI is likely to be present in -50% oxidized and -50% reduced 

state. This observation is interesting in view of the fact that Schwaller et al. (2003) have 

proposed that catalysis of disulfide bond by PDI involves cycle of oxidation and 

reduction of substrate for proper folding. It is possible that redox ratio of 3:1 in ER favors
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protein folding mediated by PDI by keeping it in half oxidized and half reduced state so 

that it can contribute effectively to the cycles of oxidation and reduction.

This assay was also optimized in the plate reader where it can detect continuous 

reductase activity even with 100 fmol of PDI (data not shown) and therefore, to our 

knowledge, is the most sensitive assay for monitoring disulfide reductase activity. In 

view of its high sensitivity, the assay is suitable for studying PDI activity on the exofacial 

surface of the various cells where it is expected to be in picomolar range. Figure 4.14 

shows the assay can be used for continuous monitoring of psPDI activity. The presence 

of PDI on the surface of various cell lines is generally confirmed by immunological 

techniques. However, study of continuous exofacial reductase activity is severely 

hindered because of the lack of sensitive assay. We believe this assay, owing to its 

simplicity and sensitivity, can be easily extended to study cell surface reductase activity 

in various cell lines like hepatocytes, endothelial cells, fibroblasts, T-cells or monocytes 

where the presence of surface PDI has already been established.

When we challenged surface reductase activity of platelet with increasing [GSSG] (100 

pM to 500 pM) at fixed [GSH] (500 pM), there was dose dependent decrease in activity 

suggesting the oxidation of PDI-dithiols by GSSG (Figure 4.15). Although the 

mechanism for the reduction of csPDI is not yet known, plasma [GSH] / [GSSG] ratio 

may contribute to the redox state of PDI. It has earlier been reported that short term 

exposure of cells to GSSG leads to overall decrease in surface thiols suggesting its 

regulatory role in maintaining the thiol content of exofacial proteins. Previous studies
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have shown that the entry of HIV vims requires the exofacial reductive activity of PDI 

(Matthias and Hogg, 2003) or thioredoxin (Sahaf et al., 2005) and therefore it can be 

hypothesized that reducing extracellular environment would promote reductive function 

of these enzymes that would facilitate viral entry in cells and the progression of disease. 

In line with this hypothesis, Sahaf et al. (2005) have shown that while the intracellular 

GSH level is low in HIV patients, the surface thiol content is higher suggesting that the 

exofacial surface in these patients are more reducing.

In summary, the work described here presents a new tool to monitor disulfide reductase 

activity of PDI with a sensitivity range that has not been reported in past. The assay was 

used to study the dithiol equilibrium state of PDI under variable ratio of GSH / GSSG and 

suggests that PDI in the ER is expected to be in closer to half reduced and half oxidized 

state whereas at the ratio > 8:1, it is completely in reduced state. It also suggests that 

GSSG may play important role on the regulation of redox state of surface thiols where 

the primary function of PDI like proteins is believed to be reductive.
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Chapter 5

Platelet Derived Microparticles have 
Surface Associated PDI: Implications for 

Platelet Aggregation and Type n  Diabetes
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5.1 Introduction

5.1.1 Platelets

Platelets are irregularly-shaped, colorless non-mitotic fragments present in the blood that 

are derived from the bone marrow cells called megakaryocytes. The formation of 

platelets from mitotic stem cells is regulated by thrombopoitin, a glycoprotein hormone, 

through a process known as thrombopoisis. Microscopically, platelets look like flattened 

discs or spiky ovals, with an average size of 1 to 3 pm.

(i) Structure: The overall structure of the platelet can be explained by the help of Figure

5.1. It contains an outer phospholipid bilayer, a microtubular cytoskeleton, secretory 

granules, mitochondria and lysosomes.

The outer coat of platelet’s phospholipid bilayer is characterized by glycoproteins (GP). 

GP have essential roles in platelet activity and play a central role in platelet secretion and 

aggregation. The two most crucial surface receptors are GPIblla and GPIIb-IIIa for the 

binding of collagen and fibrinogen respectively. The surface of the platelet contains an 

open canicular network, through which its granular contents are secreted.

The internal surface has a dense tubular system that stores calcium ions and, together 

with cytoskeleton, regulates the shape of platelets once they are activated (Fuse, 1996). 

Internally, platelets contain dense bodies, alpha granules, lysosomes and mitochondria. 

The alpha granules are comprised of von Willebrand factor, platelet factor 4, platelet 

derived growth factor (PDGF), fibrinogen, fibronectin factor V and thrombospondin
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while the dense granules contain ATP, ADP, calcium and serotonin. Once activated, 

these granules secrete their content through the open canicular network. The activation 

of platelet by various physiological agonists is mediated by their interaction with surface 

receptors that are summarized in Table 5.1.

alpha granule
mitochondria

dense granuleglycoprotein

phosholipid bilayer

Figure 5.1 Overview of platelet structure and composition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144



Table 5.1 Summary of platelet activators and their platelet surface receptors

Agonist Surface receptor

Collagen GPIblla, GPVI

Fibrinogen GP Ilb-IIIa

Thrombin PARI, PARI

ADP P2Y1 and P2Y12

Adrenaline alpha 2

Thromboxane A2 TP

von-Willebrand factor GPIb-IX-V

Human neutrophil elastase CtlIbP3

Serotonin 5HT-2c

(ii) Function: The primary function of platelets are in hemostasis, a physiological 

process to minimize the blood loss at the time of vascular injury. Under basal condition 

platelets are non-adhesive and circulate in the resting stage without any interaction with 

the endothelium. Upon vascular injury, the subendothelial matrix is exposed to the 

platelets that initiate the surface interaction between collagen and surface receptors. 

Collagen interacts either directly with its receptor GPIblla or indirectly through von 

Willebrand factor to receptor GPIb/IX. The platelet-platelet interaction occurs by the
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binding of fibrinogen to its receptor GPIIbllla resulting in the formation of primary 

hemostatic plug. Fibrinogen is further converted into insoluble network of fibrin by the 

catalytic activity of thrombin that eventually leads to the formation of an insoluble clot.

In general, the activation of the platelet by its agonists, such as thrombin and collagen, 

stimulates hydrolysis of membrane phospholipids that leads to the generation of more 

inositol 1,4,5-biphosphate (IP3 ). The elevated levels of IP3 results in the increase of 

intracellular calcium levels which cause polymerization of monomeric G actin into 

double helical microfilament called F actin as well as phophorylation of myosin 

(Leopold and Loscalzo, 1995). These modifications in the actin and myosin stimulate a 

change in shape of platelets. Platelet activation further results in the transport of 

phosphotidyl ethanolamine and phosphotidyl serine, negatively charged phospholipids, 

from the internal membrane to the outside. Due to this, the external surface of platelet 

becomes negatively charged and provides an ideal catalytic surface for the propagation of 

aggregation and secretion. It has been shown that the binding between collagen or 

fibrinogen to its integrin receptor, GPIblla or GPIIbllla, requires disulfide reshuffling 

that is mediated by PDI (Essex et al. 1999, Lahav et a l, 2002).

5.1.2 Microparticles

Microparticles are small vesicles that are derived from a variety of cell types upon 

activation or during apoptosis. These were first described by W olf (1967) as ‘platelet 

dust’ that were present in normal human plasma as minute particles and showed 

procoagulant activity comparable to intact platelets (Hardisty and Hutton, 1966; Wolf, 

1967). Later it was suggested that these microparticles are generated by the fracturing of
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membrane buds from extended platelet peudopods (Crowford, 1971). Although the 

majority of microparticles circulating in the plasma are derived from platelets (PMP), 

they can also be derived from erythrocytes, monocytes, granulocytes, lymphocytes and 

endothelial cells.

5.1.2.1 Characterization and detection of microparticles

The size of microparticles, irrespective of their origin, is very small ranging in size from 

0.1 to 1 pm. One interesting feature of MPs is that they have many exofacial antigens that 

are also exposed in their parent cells. Due to this, the cellular origin of microparticles can 

be ascertained by using antibodies against specific surface antigen. Table 5.2 summarizes 

the unique surface antigen present in microparticles derived from various cell types. 

Another important feature of microparticles is that their exofacial suface is negatively 

charged because phosphotidyl serine (PS),a negatively charged phospholipid that is 

present in inner membrane in non-stimulated cells, is exposed to the surface. Therefore, 

all the microparticles are positive to annexin V, a protein that binds to negatively charged 

phospholipids.
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Table 5.2 Surface antigen in microparticles

Cell type Antigens

Platelet allbp3 , CD42b, CD31, P-selectin, CD61

erythocytes Glycophorin A

granulocyte CD6 6

Lymphocyte CD4, CD8

Endothelial cells CD62E, CD31, CD34, CD51, CD 146

Microparticles are generally detected using flowcytometry which is a powerful technique 

for monitoring, characterizing, counting and sorting microscopic particles. In this 

technique, the microparticles are characterized by size (forward scatter, FSC), density 

(side scatter, SSC) and positive signal obtained by labeling their surface antigens with 

fluorescently labeled antibodies (Table 5.2). The intensity of fluorescence obtained is the 

indirect measure of the amount of antigen exposed onto the surface of microparticles. 

Apart from flow-cutometry, electron microsopy and enzyme-liked immunosorbent assay 

(Nieuwland and Sturk, 2002) are other techniques that can also be utilized for their 

detection.
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5.1.2.2 Generation of microparticles from platelets

Stimulation of platelets with endogenous agonists such as thrombin, collagen, 

thromboxane, serotonin, epinephrine or ADP results in their activation and secretion. 

Upon activation, platelets generate microparticles by membrane vesiculation. The 

mechanism resulting in generation of microparticles by activated platelets is still unclear 

and a matter of investigation. Preliminary evidence suggests that, upon activation, there is 

an increase in intracellular levels of calcium ions that result in the activation of enzyme 

calpain (Horstman and Ahn, 1999; Nieuwland and Sturk, 2002). This enzyme has been 

shown to degrade cytoskeletal proteins and inhibition of its activity inhibits agonist 

induced microparticle formation (Shcherbina and Remold, 1999). This observation is 

supported by the fact that addition of calcium ionophore directly enhances the generation 

of microparticles. Alternatively, microparticles are also generated upon prolonged storage 

of platelets (George et al., 1986; Keuren et a l, 2006).

5.1.2.3 Role of PMPs in coagulation and diseases

It is now well established that, in vitro, microparticles can both initiate and propagate 

coagulation (Ando et al., 2002; Nomura, 1998; Warkentin et al., 1994) The procoagulant 

activity of microparticles is generally attributed to the presence of negatively charged 

exofacial surface that binds to Gla-domains of coagulation factors (Va, IXa and Villa) in 

the presence of calcium ions and provides more binding site per unit surface area as
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compared to activated platelets (Sabatier et al., 2002). In addition, it has been shown that 

MP have surface exposed tissue factor (TF), a 45 kDa transmembrane protein that binds 

to factor VII and catalyzes the conversion of factor X (inactive) into factor Xa (active) 

which, in turn, converts prothrombin into thrombin and hence propagate aggregation. 

Recently it was shown that 10% of PMP expresses active tissue factor that, in part may 

be responsible for microparticle mediated aggregation.

The procoagulant activity of microparticles can be quantified using the thrombin 

generation assay where the conversion of chromogenic substrate by thrombin is 

monitored spectrometrically (Diamant et al., 2002). In this system, microparticles supply 

the procoagulant surface and a possible initiator of coagulation, e.g. tissue factor, and 

plasma provides the necessary coagulation factors. In this assay, the generation of 

thrombin is completely dependent on the presence of microparticles, and in their absence 

no coagulation occurs.

The clinical relevance of PMP is currently under investigation in many diseases. Studies 

have shown significant differences between level of PMP circulating in healthy subjects 

and those found in patients suffering from various diseases such as cardiovascular 

diseases (VanWijk et al., 2003), diabetes mellitus (Diamant et al. 2002; Nomura et al., 

1995), sepsis (Nieuwland et al., 2000) and severe hypertension (Preston, 2003). PMPs 

have also been shown to be an important component of the human atherosclerotic plaque 

(Mallat et al., 1999). Interestingly, the number of clinical disorders associated with 

elevated PMPs is increasing with new investigations.
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Here we have shown by using fluorescent spectrophotometry, flowcytometry and 

immunological techiniques that platelet derived microparticles have surface-associated 

PDI (msPDI). Recently an increased level of microparticles were found in patients with 

type II diabetes (T2D) and was suggested to be related to enhanced platelet activation 

(Koga et al., 2006; Nomura et al., 1995). We have explored the role of microparticle 

surface PDI (msPDI) in platelet activation and aggregation and its possible implications 

in T2D.
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5.2 Materials and Equipment

5.2.1 Materials

Ammonium persulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Ammonium sulfate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Biorad Protein Assay (Bradford Reagent); Bio-Rad Laboratories USA, Hercules, 

California

Bovine Insulin, Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Eosin isothiocyanate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Ethylene diamide tetraacetic acid; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Monoclonal anti-PDI antibody RL90; Abeam USA, Cambridge, MA 

Oxidized glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Phenylarsine oxide; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Potassium phosphate; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Reduced glutathione; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Sephadex G-25; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Sodium Chloride; Sigma-Aldrich Canada Ltd., Oakville, Ontario 

Sodium phosphate monobasic; Sigma-Aldrich Canada Ltd., Oakville, Ontario

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2.2 Equipment

Agilent 8453 UV-VIS Spectrophotometer;
Agilent Technologies Canada Inc, Mississauga, Ontario

BioRad Fraction Collector Model 2110;
Bio-Rad Laboratories (Canada) Ltd., Mississauga, Ontario

Cytomics FC500 flow cytometer
Beckman Coulter, USA

Hemocytometer;
Reichert Co, Buffalo, NY

Jouan CR3i Centrifuge;
Jouan Inc., Winchester, Virginia

Labconco FreeZone 4.5 Liter Benchtop Freeze Dry Systems;
Laconoco Corporation, Kansas City, Missouri

Mettler AJ100 Balance;
Mettler Toledo Canada, Mississauga, Ontrio

Microtiter 96-well Solid Plate;
Thermo Electron Corp. Canada, Burlington, Ontario

Northen Eclipse 6.0 Imaging Software;
Empix Imaging Inc., Mississauga, Ontario

NUAIRE Biological Safety Cabinet Class II Type A/B3;
Thermo Electron Corp. Canada, Burlington, Ontario

Orion Model 420A pH Meter;
Thermo Electron Corp. Canada, Burlington, Ontario

Stir Plate 360 Series;
VWR International, Mississauga, Ontario

Varian Eclipse Fluorescence Spectrophotometer;
Varian Canada, Mississauga, Ontario

Zeiss Axiovert 200inverted Fluorescence Microscope;
Empix Imaging Inc., Mississauga, Ontario
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5.3 Methods

5.3.1 Preparation of Dieosin-GSSG and Dieosin-Insulin

Dieosin-GSSG was prepared as described previously (Chapter 4, page 110). For 

preparing Dieosin-Insulin, Insulin (200 pM) was incubated with 5 fold excess of eosin 

isothiocyanate in phosphate buffer (100 pM sodium phosphate and 2 mM EDTA, pH 8.5) 

for 8  h at room temperature (25 °C). The sample (100 pL) was passed through a 

Sephadex G-25 column (100 mm x 10 mm) at 1 h intervals and 500 pL aliquots were 

collected with the help of a fraction collector. Aliquots were quantified for Insulin 

content by Bradford assay and for eosin by using e=88000 M'^cm ' 1 (Lettinga, 2004). 

Extent of eosin labeling was estimated by dividing [eosin] with [insulin]. It was observed 

that the predominant product after 4 hours of incubation was dieosin insulin. This sample 

was tested for maximum fluorescence on a Varian Cary Eclipse fluorescence 

spectrometer with excitation at 525 nm and emission at 545 nm after the addition of 10 

mM DTT. All the fractions that showed 4-fold increase in the fluorescence were pooled 

and stored at -80 °C.

5.3.2 Diabetic Inclusion criteria: Healthy versus Diabetics

Healthy human subject (n=10), ages 35-70 years were chosen to participate in the study 

only if they showed no overt symptoms of disease and were taking no medication. 

Diabetic human subjects, ages 35-70 (n=10) were chosen to fulfill the criteria of the 

Expert Committee on the Diagnosis and classification of Diabetes Mellitus (Type 2).
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Patients on diet treatment alone or diet treatment in combination with oral hypoglycemic 

agents were included in the study. However, subjects taking investigational agents, 

insulin or that were pregnant were excluded from the study. The experimental protocol 

was approved by University of Windsor Research Ethics Board.

5.3.3 Isolation of Microparticles

Platelet derived microparticles present in the plasma were isolated as described by 

George et al. (1982) with some modifications. Briefly, 1 unit of blood was centrifuged at 

1000 g for 20 min at room temperature to separate platelet from plasma. The supernatant 

was separated and centrifuged at 5000 g twice for 15 min. The supernatant from the 

second centrifugation was then centrifuged at 35000 g for 45 min and the pellet obtained 

was stored in -80 °C after two washes in 100 |iL of PBS and labeled as plasma-MP. For 

MP derived after platelet activation, the platelets obtained from first centrifugation was 

washed twice with HEPES-ACD buffer then 5 ml of lx l0 10 platelets/mL was activated 

with 1U of thrombin for 15 min. The fractions were first centrifuged at 2000 g for 15 

minutes and then the supernatant was centrifuged at 35000 g for 45 min at room 

temperature. The pellet was washed twice in PBS and then stored at -80 °C in PBS. 

Microparticle count was adjusted to 2.5x107/mL for disulfide reductase activity.
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5.3.4 Monitoring platelet aggregation

Platelet aggregation (109 /mL) was studied with (hollow circles) or without (filled circles) 

thrombin. 5 pL (filled triangles) and 10 pL (filled squares) of MP (2.5xl07 /mL) were 

added to the platelet suspension and the effect on aggregation was studied as a function 

of decrease in transmittance at 630 nm, 10 pL of MP was also added in parallel after 30 

min incubation with anti PDI antibody (hollow squares).

5.3.5 Kinetics of PDI-dependent disulphide reduction

PDI disulphide reduction activity was monitored in PDI assay buffer of MPs (10 pL to 20 

pL of 2.5xl07 /mL) to dieosin-GSSG (150 nM) in the presence of 2 pM DTT. The 

increase in fluorescence was monitored at 545 nm with excitation at 525 nm. The activity 

was inhibited using anti-PDI antibody (RL90) (10 pg/mL).

5.3.6 Analysis by Flow cytometry

Flow cytometry experiments were performed by Dr. Hudson, University of Windsor, 

Canada. Microparticles were analyzed in a Cytomics FC500 flow cytometer (Beckman 

Coulter, USA). Forward (FSC) and side scatter (SSC) were set at logarithmic gain and 

triggering were set at FSC. MP origin from platelet was established via binding to CD61 

antibody (1:50 dilution). Surface characterization of MP was done using Annexin V and 

PDI antibody. For quantification of diabetic and non-diabetic plasma samples, 100 pL of 

plasma was directly analyzed for the presence of MP and the quantification was done as 

described earlier (Bode et al., 1991).
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5.4 Results

5.4.1 Monitoring MP-surface associated reductase activity using Dieosin glutathione 

disulfide (Di-E-GSSG)

As described earlier, in Di-E-GSSG, the fluorescent moieties are covalently attached to 

two N-terminal residues in GSSG that results in fluorescence self-quenching (FSQ) and 

makes the molecule relatively non-fluorescent. Upon addition of PDI, Di-E-GSSG 

disulfide bond was cleaved releasing proximity constraints and the fluorescence is 

enhanced by ~70-fold (Raturi and Mutus, 2006).

Owing to the sensitivity of the assay, we used it here for monitoring platelet derived 

microparticle-associated surface (msPDI) reductase activity. To this end, microparticles 

were added to the solution containing, Di-E-GSSG and DTT (2 pM). As shown in Figure

5.2, while no significant reduction of probe was observed with DTT alone, the sample 

containing microparticles showed continuous disulfide reductase activity. More 

importantly, this activity was blocked to ~85 % by RL90 PDI-antibody suggesting that 

the disulfide reductase activity is contributed by PDI present on the microparticles 

surface. The western blot of MPs showed the presence of a band at ~58 kDa (Figure 5.2, 

inset) that was immunoreactive to anti-PDI antibody thus establishing the presence o f  

msPDI in microparticles.
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Figure 5.2 Activity and western blot analysis of msPDI

5 (iL of MP (2.5xl07 / mL) was added to PDI assay buffer containing 150 nM di-E- 

GSSG and 2 pM DTT and the activity was monitored as a function of time. In the figure 

‘blank’ represents Di-E-GSSG incubated with DTT alone. The increase in fluorescence 

was converted to [EGSH] produced by using a standard of plot of [EGSH] vs 

fluorescence. Western blot of 20 pL MP shows an anti-PDI reactive band at 58 kDa.
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5.4.2 Flow-cytometry analysis of MP

To further demonstrate the presence of surface associated PDI in MPs, plasma isolated 

MPs were subjected to flow-cytometry. The dot-plot showed the subpopulation of MPs 

that were identified by size (FSC/SSC) as well as by platelet positivity against FITC 

labeled annexin V [Figure 5.3, (i) and (ii)] and anti-PDI antibody [Figure 5.3, (iii) and 

(iv)]. The platelet origin of MPs was confirmed by using CD61 antibody. The Incubation 

of MPs with FITC-labeled anti-PDI antibody showed ~55 % positive binding (Figure 5.4) 

in the same subpopulation that showed positive binding to annexin V-FITC and CD61 

confirming the presence of msPDI.
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Figure 5.3 Flow cytometry of MP

MP were characterized first by FITC labeled Annexin V (i) and then by FITC labeled 

anti-PDI antibody (iii). Labeling with both markers gave uniform size distribution in the 

same region [(ii) and iv)].
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Figure 5.4 Immunoreactivity of MP with different antibodies

Anti-PDI antibody showed positive binding in same subpopulation which was positive 

for CD61 and Annexin V.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161



5.4.3 Role of msPDI in platelet aggregation

Earlier reports have suggested that microparticles enhance the activation of platelets 

(Berkmans 2001; Nomura, 2001). We set out to explore the role of msPDI on platelet 

aggregation. Addition of 20 pL of microparticles (2.5x107 /L) in platelet suspension 

increased the aggregation by 50% (Figure 5.5, triangles) supporting the previous reports 

of its proaggregatory affect. We hypothesized that this effect could be due to the msPDI 

that facilitates surface-surface interaction through disulfide isomerization. To test this we 

incubated MPs with RL90 anti-PDI antibody for 30 min followed by two washes to 

remove unbound antibody. Interestingly, the increase in activation was completely 

inhibited to control levels in the presence of anti-PDI antibody (Figure 5.5, hollow 

circle). These results strongly suggest the role of msPDI on the platelet aggregation.

5.4.4 MP levels in T2D and control subjects

The elevated levels of MP have been reported in numerous stress conditions including 

type 2 diabetes (Koga et al., 2006; Nomura et al., 1995). Here we compared the relative 

MP as well as MP-PDI content of plasma from normal (n=T0) and T2D (n=10) subjects. 

As seen in Figure 5.6, the T2D plasma samples contained 50% more MPs per 100 pL of 

plasma. More significantly, the MP-PDI content (Figure 5.6) was ~ 80% larger in T2D 

than in controls.
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Figure 5.5 Aggregation of platelet in the presence of MP

Platelet aggregation (109 / mL) was studied with (hollow circles) or without (filled 

circles) thrombin. 5 pL (filled triangles) and 10 pL (filled squares) of MP (2.5xl07/ mL) 

were added to the platelet suspension and the effect on aggregation was studied as a 

function o f  decrease in transmittance. 10 pL o f  MP was also added in parallel after 30 

minutes incubation with anti PDI antibody (hollow squares).
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Figure 5.6 The quantification of MP from diabetic and non diabetic subjects was done 

using flow cytometry. For each nm, the volume loaded was fixed to 100 pL. Inset shows 

the western blot analysis of MP for the presence of PDI that is obtained from 10 mL of 

diabetic or non-diabetic plasma.
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5.4.5 Degradation of Insulin by msPDI

Insulin has two polypeptide chains, a  and p, that are joined together by two disulfide 

bonds. It is well established that PDI can break these bonds that leads to the separation of 

two chains. Here, we utilized fluorescently labeled insulin at near physiological plasma 

concentrations to test whether msPDI can cleave disulfide bonds of insulin.

Di-E-Insulin, similar to Di-E-GSSG, has two molecules of eosin attached to N-terminus 

of a  and (3 chains causing fluorescence self quenching. Upon reduction of disulfide 

bonds by PDI, there is ~4-fold increase in the fluorescence (Figure 5.7). Therefore, PDI 

mediated enzymatic reduction of insulin can be estimated by monitoring fluorescence 

increase caused by separation of two chains after reduction. The reduction of Insulin by 

PDI was found to be linear with increasing concentration of Di-E-Insulin (Figure 5.7B) 

even at lower nanomolar levels. Therefore assay is suitable to study csPDI mediated 

reduction of insulin at its near-physiological plasma concentrations. As can be seen in 

Figure 5.8, while no increase in the fluorescence was observed in sample containing Di- 

E-Insulin and DTT (Figure 5.8, diamonds), addition of MP (Figure 5.8, squares) caused 

time dependent increase in the fluorescence suggesting reduction of insulin by msPDI. 

More importantly, the reductase activity was completely inhibited in the presence of 

RL90 antibody confirming that the reduction of insulin was attributed to surface PDI 

(Figure 5.8, triangles). The fact that diabetic patients have higher number of circulating 

MPs in the plasma (Figure 5.6) clearly suggests higher levels of msPDI mediated 

reduction of Insulin.
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Figure 5.7 Reduction of Di-E-Insulin by either DTT or PDI

A. Maximum fluorescence before (dashed line) and after (dark line) the addition of PDI 

in the presence of 5 pM DTT B. Reduction of [Di-E-Insulin] by either DTT (10 raM) or 

PDI (10 nM) showed complete linearity with Increasing [Di-E-Insulin].
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Figure 5.8 Reduction of Di-E-Insulin by msPDI

100 nM of Di-E-Insulin was incubated with 5 pM DTT in the absence (triangles) or 

presence (squares) of MP (107/mL) and the fluorescence increase was monitored as a 

function of time at 525 nm. The assay was also performed in the presence of MP and 

RL90 antibody (diamonds).
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5.5 Discussion

In this study we have described, for the first time, the presence of PDI on the surface of 

microparticles. The activity of PDI was studied using fluorescently labeled glutathione 

disulfide (Di-E-GSSG) that clearly demonstrated the presence of surface PDI in 

catalytically active form (Figure 5.2). The presence of msPDI was further confirmed by 

western blot analysis (Figure 5.2, inset) as well as by flow-cytometry (Figure 5.3).

The procoagulant activity of microparticles is known for decades and has been compared 

to intact platelet aggregation (Wolf, 1967). The bleeding disorder associated with Scott 

syndrome and Castaman's disease has been attributed to low levels of plasma 

microparticles (Castaman et al., 1997; Toti et a l, 1996). On the contrary, elevated levels 

of plasma microparticles are shown to be present where there is thromboembolic risk or 

vascular damage (Kahn et al., 1973) as well as in cardiovascular disease (VanWijk et al., 

2003) and diabetes mellitus (Koga et al., 2006; Nomura et al., 1995).

In agreement with previous studies, we also observed that platelet aggregation increases 

significantly in the presence of MP (Figure 5.5). Moreover, levels of platelet derived 

microparticles as well as msPDI were higher in T2D by 50 % and 80 % respectively as 

compared to control (Figure 5.6 and inset). However, this proaggregatory effect of MP 

was reversed to control levels in the presence o f  RL90 antibody (Figure 5.5, hollow  

circles) that clearly demonstrates the role of PDI in MP mediated proaggregation. In 

view of the large contribution of msPDI to platelet aggregation demonstrated here,
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elevated numbers of MP containing larger than normal PDI activity could potentially be a 

major contributing factor to platelet hyperactivity observed in T2D.

We have also shown here that msPDI can break insulin into its two polypeptide chains by 

reducing the disulfide bonds between them. The biological action of insulin is mediated 

via its binding to insulin receptor (IR), a transmembrane tyrosine kinase consisting of two 

exofacial a-subunits and two intracellular 6-subunits. Insulin binds to the extracellular «- 

subunit that results in the conformational changes in the protein leading to 

autophosphorylation of tyrosine residues of the p-subunit (Figure 5.9) (Tiang, 2005; Le 

Roith and Zick, 2001).

glucose uptake 

ycogen synthesis
"jjp* lipid metabolism.

protein synthesis anti-apoptosis 
initogenesis/cell growth

Figure 5.9 Insulin signaling after receptor binding (Tiang, 2005).
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This autophosphorylation of IR results in activation of the receptor kinase and tyrosine 

phosphorylation of substrates for IR that serve as docking sites for downstream effectors 

(Figure 5.9). It is likely that PDI mediated insulin degradation will impair its binding to 

receptor that may contribute, in part, to the development of insulin resistance. This 

hypothesis is supported by an earlier finding where it was shown that defect in insulin 

binding to its receptor may lead to insulin resistance (Roach et al., 1994).

The procoagulant activity of microparticles is generally attributed to the presence of 

negatively charged exofacial surface that binds to Gla-domains of coagulation factors 

(Va, IXa and Villa) in the presence of calcium ions and provides more binding site per 

unit surface area as compared to activated platelets (Diamant et al., 2004). In addition, it 

has been shown that MP have surface exposed tissue factor (TF), a 45 kDa 

transmembrane protein that binds to factor VII and catalyzes the conversion of factor X 

(inactive) into factor Xa (active) which, in turn, converts prothrombin into thrombin and 

hence propagate aggregation. Recently Chen et a l, (2006) showed that the TF is 

generally in its cryptic form where its exofacial Cysl86-Cys209 disulfide bond is in the 

reduced state and its activation requires formation of disulfide bond. This hypothesis was 

based on the observation that addition of reducing agent diminished TF activity while 

addition of oxidizing agent potentiated it. Our results, together with this observation, 

demonstrate the need of studying the co-localization of PDI and TF on MP membrane. It 

is possible that activation of TF is mediated by the catalytic activity of PDI that converts 

the cryptic form of TF into active disulfide form. Higher levels of TF exposing MP have
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been reported in uncomplicated T2D (Diamant et al., 2002). This could be linked to 

elevated aggregation in diabetic patients through PDI activity which is likely to be in 

oxidized state on account of elevated oxidative-stress in T2D. Therefore, PDI would 

more effectively convert reduced-cryptic form of TF into its disulfide-active form on 

account of its high reduction potential that makes it a better oxidant for protein thiols.
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Chapter 6

Conclusions
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Although PDI is primarily known to act on disulfide bonds or thiols, its S'-denitrosation 

activity has also been reported in several studies. However, this activity has not been well 

characterized. Here we set out to kinetically analyze the GSNO denitrosation activity of 

human recombinant PDI. In Chapter 2 we studied the denitrosation activity of PDI by 

means of simple and sensitive assays. To date, the only probe used for monitoring the 

denitrosation activity of PDI is N-dansyl-S-nitrosohomocysteine (DansylHCysNO). We 

have presented another means for monitoring the denitrosation activity of PDI. DAN is a 

relatively nonfluorescent compound and reacts with NOx to form the highly fluorescent 

compound napthotriazole NAT. Our findings suggest that DAN is a highly sensitive tool 

for studying PDI denitrosation activity which is also unique in deciphering the fate of 

nitric oxide once it is released from RSNOs. Furthermore, S-nitrosoglutathione (GSNO) 

denitrosation activity of recombinant human PDI was kinetically optimized and 

characterized by monitoring the loss of the S-NO absorbance at 343 nm.

By using these sensitive assays, we have proposed a catalytic mechanism for PDI that 

involves a nitroxyl disulfide intermediate. Our results suggest that it is NO- and not NO- 

being formed during the GSNO denitrosation by PDI, which is in agreement with a 

previous study presented on GSNO denitrosation. It has been established that PDI is 

continuously secreted from cells like endothelial cells that are net producers of Nitric 

oxide. Our study has demonstrated that PDI can be S'-nitrosated to form PDI-SNO which, 

in turn, can be denitrosated by PDI suggesting that this enzyme could be intimately 

involved in the transport of nitric oxide across the membrane.
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In Chapter 3 and Chapter 4, we set out to characterize PDI-disulfide reductase activity. 

Disulfide reductase activity of PDI is generally monitored by insulin turbidity assay or 

scrambled RNase assays, both of which are performed by UV-visible spectroscopy and 

thus lacks required sensitivity. We have established a sensitive fluorimetric assay for 

continuous determination of disulphide reduction activity of PDI. A new fluorogenic 

pseudosubstrate designed for PDI is Di-E-GSSG that is relatively non-fluorescent and 

gives ~70-fold increase in the fluorescence signal upon reduction of disulfide bond. The 

substrate was used to develop highly sensitive disulfide reductase assay that can detect as 

low as 100 femtomoles of PDI. The assay is sensitive enough to detect enzyme activity in 

the absence of any reducing agent and thus, to our knowledge, is the most sensitive assay 

for monitoring disulfide recustase activity of PDI.

We have utilized this assay to study the oxidation kinetics of PDI-dithiols under variable 

redox environment. Based on our findings we have reported that, PDI would be in ~ Vi- 

reduced state where [GSH] / [GSSG] ratio is between 1:1 to 3:1, conditions similar to the 

lumen of endoplasmic reticulum or in the extracellular environment. On the other hand, 

ratio of ~ 8:1 or higher, such as in cytosol, would keep PDI in completely reduced state. 

Furthermore, we showed that GSSG plays important role on the regulation of redox state 

of surface thiols of platelets where the primary function of PDI like proteins is believed 

to be reductive.
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In Chapter 5 we utilized our sensitive fluorescent assays as well as immunological 

techniques and flow cytometry to demonstrate that the platelet derived microparticles 

contain protein disulfide isomerase. These microparticles were previously reported to 

enhance platelet activation. Our results suggest a central role for surface associated PDI 

on the proaggregatory effect of microparticles on platelets. In addition, we detected 

increased levels of PDI-containing microparticles in patients with type II diabetes. This 

observation strongly suggests that platelet hypersensitivity observed in diabetes can 

partially be attributed to microparticle-surface-PDI activity.

In order to characterize PDI’s role in cellular processes, it is imperative to know the 

physicochemical basis by which it identifies its substrates. Recently we have obtained 

evidence that substrates dihedral angles play important role in substrate recognition by 

PDI (unpublished results). Future studies could be aimed towards finding a correlation 

between the substrate-dihedral angles and PDI disufide reductase activity. In addition, 

we have recently observed that PDI is also secreted into the plasma in its catalytically 

active form at the levels where it can inactivate insulin by breaking the disulfide bonds 

between the two chains. It would be interesting to study the physiological implications of 

soluble plasma PDI in normal and diseased state (T2D) and identify the cellular 

parameters that result in enhanced secretion of PDI into blood stream.
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Appendix

A. Buffers

i) Acid Citrate Dextrose (ACD)

25 g/L trisodium citrate dehydrate 
15 g/L citric acid monohydrate 
20 g/L dextrose

ii) E.coli Lysis buffer

100 mM Tris-HCL 
200 mM NaCl 
2 mM EDTA 
100 pg/mL Lysozyme 
50 pg/mL DNAse I 
50 pg/mL RNAse 
2 mM PMSF 
1% Triton X 100 
Adjust to pH 8

iii) Phosphate buffer saline (PBS)

8 g/L NaCl 
1.44 g/L Na2HP04 
0.24 g/L KH2P 0 4 
0.2 g/L KC1 
Adjust to pH 7.4

iv) PDI assay Buffer

14.2 g/L K2HP04 
3.8 g/L KH2P 04 
0.58 g/L EDTA 
Adjust to pH 7.0
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v) Terrific Broth (TB)

12 g/L Tryptone 
24 g/L Yeast Extract
9.4 g/L K2 HP0 4 

2 g/L KH2PO4 

35 mg/L kanamycin 
Adjust to pH 7.2

vi) Tyrode Buffer
8.0 g/L NaCl 
0.2 g/L KC1
1.0 g/L NaHC03 

0.05 g/L NaH2 P 0 4  

0.2 g/L MgCl2 .6H20  
0.44 g/L CaCl2 .6H20
3.5 g/L bovine serum albumin
1.0 g/L dextrose 
Adjust to pH 7.4

B. DTNB Assay for total thiol quantification

DTNB stock solution (10 mM) was prepared in 0.1 M TrisHCL pH 8.0. Free 

thiols were quantified by adding 100 pL of the DTNB stock solution to 800 pL of 

0.1M phosphate buffer pH 8.0 and 100 pL of unknown thiol containing protein 

solution. Free thiols concentration were determined by measuring absorbance of 

the nitrothiolbenzoate anion (A, = 412 nm) using the extinction coefficient of 

13600 L mol''em"1 (Ellman, 1959).

C. Protein estimation

Standard curve was generated by adding 100 pL of BioRad Protein Assay reagent 

with a series of known BSA concentrations (0 - 20 pg / mL). Unknown protein 

samples (100 pL) were mixed with 800 pL of PBS and 100 pL of BioRad’s

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



reagent. The solutions were allowed to react for 15 min followed by absorbance 

measurements at 595 nm. The protein concentration in the unknown solution was 

obtained from the standard curve.

D. SDS-Polyacrylamide Gel Electophoresis

i) Preparation of the Resolving Gel

4.0 mL of H20
3.3 mL of 30% Acrylamide mix
2.5 mL of 1.5 M Tris (pH 8.8)
0.1 mL of 10% SDS
0.1 mL of 10% ammonium persulfate
0.002 mL of TEMED

The mixture was added to the gel casting cassettes. The cassettes were filled to ~2 nm

from the top and layered with tert-butanol.

ii) Preparation of the Stacking Gel

tert-butanol was removed and the gel was rinsed with H2 O after the polymerization 

of separating gel (approx. -30 min). The stacking gel was prepared by combining the 

following reagents:

3.4 mL of H20
0.83 mL of 30% Acrylamide mix 
0.63 mL of 1.0 M Tris (pH 6.8)
0.05 mL of 10% SDS
0.05 mL of 10% ammonium persulfate
0.005 mL TEMED
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iii) Sample Preparation

20 pL of protein sample was mixed with 20 pL of loading buffer and heated to 100 

°C for 10 min. The molecular weight marker was loaded into the first lane, followed 

by 10 pL of each sample loaded their respective wells.
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