University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Performance analysis of Web services-based systems with
sensitivity analysis.

Tony Huang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Huang, Tony, "Performance analysis of Web services-based systems with sensitivity analysis." (2005).
Electronic Theses and Dissertations. 3043.
https://scholar.uwindsor.ca/etd/3043

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3043&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/3043?utm_source=scholar.uwindsor.ca%2Fetd%2F3043&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Performance analysis of Web services-based systemswith sensitivity analysis
Huang, Tony
ProQuest Dissertations and Theses; 2005; ProQuest

Performance Analysis of Web Services-based Systems with
Sensitivity Analysis

by
Tony Huang

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada
2004

© 2004 Tony Huang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-04954-5
Our file Notre référence
ISBN: 0-494-04954-5
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DREIESS

Abstract

By the time the architecture of a software system is decided in the life-cycle of software
development, performance problems become very costly, if not impossible, to fix. It is,
therefore, necessary to push performance analysis back to the architectural design stage
as an effective means to improve the performance of software systems. This is especially
true for web services-based systems, where system performance is of paramount

importance.

There are typically three steps in performance evaluation of software architectures. The
first step is to transform the architecture of a software system in forms of annotated UML
models into a performance model, such as the layered queueing network model (LQN).
Experiments on the performance model are then conducted in the second step with a
performance analysis tool, such as the LQN solver. Experiment results are finally fed
back to architecture design in the last step for refinement of UML models according to

the quantitative analysis of software performance.

Nevertheless, accurate analysis results require performance analysis to take sensitivity
analysis into consideration in between the second and third steps. Unfortunately, little
research has been done in this regard. This thesis carries out a study in performance
analysis with sensitivity analysis. It develops a new method that uses the design of
experiments (DoE) techniques to quantitatively analyze the sensitivity of a system’s
performance output due to the effect of the system’s input factors, and the interaction
between those factors. The goal of this research is to provide more accurate feedback to

software designers on the development of service-oriented software systems.

iti

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To my parents,

for the encouragement of a lifetime.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

I would like to begin by thanking my supervisor, Dr. Xiaobu Yuan, for the energy and
enthusiasm he invested in this research. His guidance has been essential in the success of
this work. I would like to acknowledge Dr. Dorina C. Petriu from Carleton University for
useful discussions about the Web Service-based Clinical Decision Support system. I
would also like to thank my thesis committee members, Dr. Ezeife, Dr. Rieger and Dr.
Wu, who have been all generous and patient. Their confidence in my abilities has been

unwavering, and has helped to make this thesis a solid work.

Finally, I would like to thank my family and friends for their moral support. I am forever
indebted to my parents and my sister for their understanding, endless patience and
encouragement when it was most required. They are the continuous source of my strength

and hope.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

ABSTRACT ..ottt sntesessesasssessssssssssasssssans 11
DEDICATION ..coirriririrrrinccresneesncsanss . v
ACKNOWLEDGEMENTcccoovnrinnertrsressssssesasessasssssansssosessssssssassans A"
LIST OF TABLESoiiiircirrcrenimstiennnesenissensssensssnsesssssesensssssones VIII
LIST OF FIGUREScooriiitrienirneinenssnseesessensssssesesssssnssassassnisssonsssssesssansseans IX
1. INTRODUCTION ...ocriiisiiinnisnnscnsnessessssenssnnsnssasesesssssossssssssassesasansarssasasssns 1
1.1 IMOTIVATION L1 ttitiitiitetr et ee s eeeeeee s e e et et e s et e s e e e se st st s e s s sase e seseaa e s saanarbsatasaeasassssasessasaenannsssesesenssnssssvasesnrerananens 2
1.2 CONTRIBUTIONS ...ttt ee ettt e bbb et e sbe e b b s b b e sbb e s s e s b s s s e e b e s e s enbeeas 2
1.3 ORGANIZATION ...ttt sttt ettt et b et b bt sttt b e bt sh e b e sa st a b sasshesassnssaens 3

2. LITERATURE REVIEW....oriiieniineseniiissnsesesasesismsessesssssnssssassssssssssstessisssass sassnssssssesssanssseses 5
2.1 COMPONENT-BASED SOFTWARE ENGINEERING (CBSE)ccciiiiiiiiriieiiireiesctiesiin et esiee s senesren e 5
2.1.1 Definition 0f COMPORNERLc..c.ccoiieiiiiiiieiiieieet sttt sttt an et r et bt 6
2.1.2 Component-based Development LIfecycle............cocoovoiiiiiiiiiiiiiiiic e 6

2.2 SERVICE-ORIENTED ARCHITECTURE (SOA) AND WEB SERVICES-BASED SYSTEMS ..c.cooceerenerirncrereenes 8
2.2.1 Service-Oriented AVCRITECIUFEc...cc.ccev i vttt st e s s ese e sbesntae e s 9
2.2.2 Web Services-based SYSIEMScocioi ittt ettt 11

2.3 SOFTWARE PERFORMANCE ENGINEERING (SPE) ...icuviiiiiiiiieiiieeeire s rneeeve s snreseee s svess e e ssbeesanenseson 14
2.3.1 UML Performance Profile and SPEc.cc..coooviriiiiiii ettt 15
2.3.2 Layered Queueing Network Model (LON)..........ccocoiiiiiiiitciineie e 22
2.3.3 Performance Assessment of Software ArCRILECIUFe..............c.cccoiiiioiiiiiiii e 24
2.3.4 Performance Analysis with the Annotated UML Modelcccocoviiiiiiniciciiiiiiiiii 32

3. PROPOSED METHODcovioiinieriiinessmsniinississsasessssnsssssssssssesssssssssessasssssssssssnsssssasens sonsass 36
3.1 PROBLEM DIOMAIN L.ttt e et ettt s e e e e s e b e s e absana 36
3.2 SENSITIVITY ANALYSIS {SA) 1oitiiiiiii e ittt eet e ettt e e et eeestbeeasee e e snb e e e aseteesatnaessstseaesansreesonanesasbenesans 36
3.3 THE ROLE OF EXPERIMENTATION IN SOFTWARE ENGINEERINGooviiiiiiiiiiieriiiiniinreneseeseninreeesaesnnnes 37
3.4 DESIGN OF EXPERIMENT (DOE)iiiiiiiiiee ittt sttt svae e et sbe e st e snen e sntsmanesosesnnnesanes 37
341 ANalySis Of VAFIANCEccvioi ittt 41
3.4.2 Analysis of Variance with One RepliCate......................cccocviiiiiiiiiiiiiiiiieciee e 45

3.4.3 Multiple COMPAFISONSc.ooiiiiiirieiiiie ettt e 48

4. EXPERIMENTS AND RESULTS......ccoovmrrereniirrininsnennens 51
4.1 EXPERIMENTAL ENVIRONMENTooiuiiiiiiiiiieriniiiieriere sttt st s sb st s sh s sbnsmae s onrenas 51
4.2 EXPERIMENTS AND DATASET ...ouviviiiiiiiiioiiii it sttt st sras s ae e s 52

4.2.1 Performance Analysis of the Web Services-Based Clinical Decision Support System (CDSSs).. 53

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Performance Analysis of the Web Services-Based Clinical Decision Support System (CDSSs).. 53

4.2.2 Data Collection With the LOQN SOIVEFccccccveeierirernierisseissiseienesisieseeseesesenssenssseseessssesens 55

4.3 EXPERIMENTAL RESULTScouveiitieriieteierectictccerenteteerreseteseessesasnssesesasessessecnsesasensesnsensestorsssssesssensesns 56

5. CONCLUSIONS AND FUTURE WORK 62
5.1 CONTRIBUTION OF THE RESEARCHooviieiiiiiintiieestesateeseetessestaesssessaesesosesnssasesessenssesesssessessnesasesnes 62
5.2 DIRECTIONS OF FUTURE WORKccuvietiiuietireinieriesiesssensssssossessssssssesseesssssessseeesasassssesssasessnesssesesssenns 62
BIBLIOGRAPHY 64
VITAAUCTORIS 70

vil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 3.1 Tensile strength (psi) of asphalt SPECIMENSc.eeceeeeccerirrmrrere e 38
Table 3.2 Table of means for treatment deSIZNcveervrierrnie e 39
Table 3.3 The Analysis of Variance Table for Two-Factor Factorial Treatment Design 43
Table 3.4 Tensile strength (psi) of asphalt SPECIMENSccvvvvercerrirrirerece s 44
Table 3.5: Cell and marginal means for tensile strength of asphaltic concrete specimens............ 44

Table 3.6: Analysis of variance for tensile strength of asphalt specimens in a 4 x 2 factorial

Yok T 0L 0 1<) oL OO OUR PO PR 45
Table 3.7 Two-factor Analysis of Variance, with one replicate.......c.cccoonevivnicinnccinniinnn, 47
Table 3.8 Impurity data with one replicate........cc.ccvmiiiiriiinneceee e 47
Table 3.9 Analysis of Variance summary table for data given in table 3.8cccovvniininins 48
Table 4.1 Dataset (response time) for replicating Applic_CPU processorscccecvviviveivinnnens 57
Table 4.2 Analysis of Variance Summary Table for dataset of replicating Applic_CPU. 58
Table 4.3 Dataset (utilization) for replicating Applic. CPU processorsccovevevvnniiinsnresinanins 60

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 2.1 Service termMinOlOZYcvererurrurrerrereesesiesseseesesssesiestsseesesseseseesssessessssessesmerssessssasssionsanes 9
Figure 2.2 Logical customer MOGELc.eecvieieeriecieiieieeicceesieerer e sresessee e e ssesessssasneneessesses 13
Figure 2.3 Generic component diagram.........c.ceeeervereenereeertenirienerereensentieeseniesissnnsssessssssssresses 13
Figure 2.4 XML Web ServiCe deSIZN.....c.cceurueerierreinrirceeririreriesestriesieesrsssisisssassssssssscsssssssssrsassones 14
FIGUTE 2.5 StETEOLYPES. .. eeveeeirecerrerieectierassesseeeetessestsssessestesssssesssassensessesessessessessassassoncesesssssionsns 16
Figure 2.6 TagZed VAIUES.....ccccecvreerereeieirienrernresiste e et e ssessssessssrssesseseatsseatesesseseseseeseossansasseses 17
FIgure 2.7 CONSIIAINESccoueiueereereeeiiecrereeseentesee e seestese st esesseat e esesee st ssessseessatssesesnsessnessassssenessans 17
Figure 2.8 The Clinical Appointment SYStEIMc..oeeieuruereerrerrteiencreneecnererieeeesesrereseseesesienesisess 19
Figure 2.9 Sequence diagram for processing in-range dataccoccecvvereevonveneenesrenserecsseneensns 21
Figure 2.10 The queueing network model of a file SEIVETcccvvreevvrveeerecrrncrierireeneercene s 22
Figure 2.11 Layered Queueing Network model for web-based ticket reservation system............ 24
Figure 2.12 Use Cases for the Building Security System (BSS).....cccoeveeeverremerrirnrcnenreccenecenenc 28
Figure 2.13 Deployment of the Building Security SYStemcccoeevverriererirenerencrrenceenesinnensone 29
Figure 2.14 Annotated Sequence Diagram for the Access Control Scenario........coeeceveeecvencenenenn 31
Figure 2.15 Layered Queueing Network model for the Building Security Systemc.cceue.e... 34
Figure 4.1 Deployment of the web services infrastructure (OPNI-Web)c.cccceemvrecnenrerenices 52
Figure 4.2 Annotated UML sequence diagram for web services invocation.........ccoeevercrivvvecinens 54
Figure 4.3 Layered queucing network model for web services invocation...........ceeeerevveenverenenes 55
Figure 4.4 Response times TOr tasKS.ccvvvveeeieeecrireieireicesreieeersssessesvesssenseessensassasesssasssens 56
Figure 4.5 Utilization fOr PrOCESSOTS.c..erverurrtriririrretreereerrteeestesessetressensaesesaesesssaressesenssonenene 56
Figure 4.6 Replicating Applic_CPU ProCESSOTS.ccetrurueeeeriereeeenreriercesreseresenmseensasenessssssesesene 57
ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

In past decades, software has become increasingly complex and large. The traditional

approach to software development has tried to solve those problems by concentrating on
one software system at a time. This approach fails to recognize the evolutionary aspect of
the system and creates pressure for meeting budgets, deadlines, and quality requirements
of each individual system. The key to solving the problem lies in the concept of
reusability. A new software development paradigm - the component-based development
(CBD) — has emerged to solve that problem. In CBD, software systems are constructed by
assembling pre-existing components (or re-usable components), rather than being

developed from scratch.

The industry is advancing to a new service-oriented paradigm. A software system can be
considered to be composed of a collection of interacting services, instead of components,
resulting in a service-oriented architecture (SOA). Each service provides access to a
well-defined collection of functionality. When the services use the Internet as the
communication mechanism, the inter-service infrastructure becomes web services-based.
The CBD practices provide a tried and tested foundation for the implementation of a

service-oriented architecture [BJK02].

In the following sections, we will introduce performance analysis of the service-oriented
architecture (SOA) and web services-based systems with sensitivity analysis; furthermore,

we will highlight the contributions of this thesis, and outline the organization for the rest

of the chapters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Motivation

The performance aspect of a web services-based system is of paramount importance and
the performance analysis should be conducted as early as possible in software

development cycle when performance problems are least expensive to fix.

Software architecture plays an important role in determining the performance of the
system and once the architecture is chosen, it would be very costly to fix the performance
problems. In the service-oriented and component-based paradigm, the architectural
design is divided into two phases: functionality-based architectural design, and software
architecture assessments with respect to driving quality requirements, such as
performance [Crn03]. During the second phase of the architectural design, a performance
assessment method such as PASA, a method for Performance Assessment of Software
Architectures, is employed to determine whether an architecture is capable of supporting
its performance objectives [WS02]. PASA uses the principles and techniques of software
performance engineering (SPE) to identify critical use cases, select key performance

scenarios, identify performance objectives, conduct architectural analysis, and so on.

1.2 Contributions

During the architectural analysis step of the PASA method, quantitative performance
analysis can be conducted. In order to conduct quantitative performance analysis of an
UML (Unified Modeling Language) model of a software architecture annotated with
performance information, three steps are involved [PS02]:
1. The UML model of the software architecture is translated into a performance
model, such as the Layered Queueing Network (LQN) model.

2. An existing performance analysis tool, such as the LQN solver, is used to solve

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the performance model.

3. Eventually, the results of the LQN solver are fed back into the UML model.

In between steps 2 and 3, before the results of performance analysis are fed back into the
UML model, studying the sensitivity of performance (output) of a system due to the
effect of system factors (input) in a quantitative way is quite important. Sensitivity
analysis (SA) can be used to analyze the interaction between factors and the effects of
each individual factor quantitatively. In service-oriented architectural design, however,

little research has been done in this regard.

This thesis applies a mathematical technique, Design of Experiments (DoE), in sensitivity
analysis, and develops a method to optimize the software architectural design of a web
services-based system. By introducing sensitivity analysis into performance analysis, it
produces more accurate feedback to software designers, and ultimately, helps to reduce

the cost of software development.

1.3 Organization

The rest of this thesis will be organized as follows: Chapter 2 discusses the background of
all the related fields, i.e. component-based software engineering (CBSE),
Service-oriented Architecture (SOA), Web Services-based systems, and software
performance engineering (SPE). The analytic model — Layered Queueing Network (LQN)
model — for performance evaluation will be introduced. Many approaches to the
evaluation of software architecture using SPE principles and techniques will be reviewed.
In particular, PASA, A Method for Performance Assessment of Software Architectures,
will be described in detail. Quantitative performance analysis process with an annotated

UML (Unified Modeling Language) model will also be examined. Chapter 3 presents the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem domain, introduces sensitivity analysis (SA), and describes Design of
Experiments (DoE) techniques in detail. Chapter 4 describes the Web Services-Based
Clinical Decision Support System (CDSSs) upon which the experiments are based and
presents experimental results of performance analysis for the CDSSs system with
sensitivity analysis. Finally, chapter 5 provides the conclusions, restates the contributions

of this thesis, and points to future research directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Literature Review

2.1 Component-based Software Engineering (CBSE)

In past decades, software has become increasingly complex and large. The traditional
approach to software development has tried to solve those problems by concentrating on
individual software systems one at a time. The approach is designed to cope with budgets
and delivery deadlines of each individual system, but fails to recognize the evolutionary
aspect of the system. The failure of such a solution soon became evident. The key to
solving these emerging issues is to realize that software development needs to adapt to
changes more rapidly and deal with complexity more effectively. The solution lies in the
concept of reusability; thus, software product does not need to be developed from scratch.
The Component-based Development (CBD) has become the right direction to pursue. In

CBD, software systems are constructed by assembling pre-existing components.

Component-based Software Engineering provides support for the development of
software systems as assemblies of components, the development of components as
reusable entities, the maintenance of systems by customizing components, and the

updating of systems by replacing components [Crn03].

The construction of systems from components and the building of components require
methodologies and processes subject to a wide range of issues, such as development and
maintenance aspects, organizational, legal, and marketing issues, to name a few. The
CBD is certainly still maturing. Many of the methodologies within component-based
software engineering (CBSE) have either not been developed at all or are not yet
established in practice. In other words, there are still so many areas that researchers in

this field can work on. In conclusion, the progress of software development will rely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heavily upon the success of CBSE.

2.1.1 Definition of Component

So, what is a software component? There are some different definitions (each from a
different perspective) of component-based software engineering (CBSE). One of the most
popular definitions of a component is Szyperski’s [Szy98]:
A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third-parties.

The above definition concentrates on the use of components. The most distinguishable
feature of a component is the separation of its interface from the implementation. This
separation has two characteristics: first, the integration of a component into a software
system should be independent of the software development lifecycle. In other words, it
should not be required to re-compile or re-link the application when a component is
updated. Second, the component implementation is only visible via its interface. This
implies that a complete specification of a component must include not only its functional
interface, but also non-functional characteristics (such as performance), tests, and so on.

Component interface is only part of the component specification.

Components can generally be classified into three categories: special-purpose
components, developed in-house and specifically for the system; reused components,
developed internally for multiple purposes; and commercial off-the-shelf components

(COTS) [HCO1].

2.1.2 Component-based Development Lifecycle

The component-based software engineering (CBSE) addresses the requirements, and

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problems similar to those encountered elsewhere in software engineering. The
implication of this is that many methods, tools and principles of software engineering can
be applied in a similar way as in other types of software systems. However, there is one
distinction: CBSE comprises both component development and system development with
components. The requirements in these two cases are slightly different, thereby
necessitate different approaches. The major problem in developing components is in
acquisition and elicitation of requirements in combination of commercial-off-the-shelf
(COTS) component selection [MN98]. The dilemma is this: when the process starts with
requirements, it is highly likely that a COTS component meeting all requirements may
never be found; when the component selection begins too soon in the process, the

resultant system may not satisfy the requirements.

The specification in component-based development (CBD) consists of two steps: first, it
is the specification of the system architecture in terms of functional components and their
interaction. This step gives a logical view of the system; second, it is the specification of
system architecture in terms of physical components. This step gives a physical view of
the system. The design in CBD consists of system architecture design and component
identification and selection [Crn03]. In the early design phase, the major focus is on the
software architecture. The system architectural design, which structures the system into
independent components, are divided further into two phases: the first phase of this
architecture design is functionality-based architectural design; the second phase is
software architecture assessment during which the main performance requirements are
evaluated. A performance assessment method such as PASA, a method for Performance
Assessment of Software Architecture, is used to determine whether a architecture is

capable of supporting its performance objectives (see discussion in section 2.3.3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Service-oriented Architecture (SOA) and Web

Services-based Systems

Building an enterprise-scale software system is not an easy undertaking, and few new
systems nowadays are designed from scratch. Rather, it is common for a software
architect to employ an existing solution by presenting existing data and transactions
through new channels such as an Internet browser, or by describing new business logic
that manipulates an existing repository of data. Commercial vendors, such as IBM and
Microsoft, provide software infrastructure products (i.e. WebSphere and .NET) that focus

on assembly of systems from distributed services.

In order to improve performance, scalability, operational systems are often distributed
across many machines. An enterprise solution has to coordinate functionality executing
on those machines. The key to flexibility is to expose functionality as services. A service
can make use of other services in a natural way independent of their physical location. A
system can be considered as comprised of a collection of interacting services, each of
which provides access to a collection of functionalities. A system evolves through the
addition of new services. The service-oriented architecture (SOA) defines the services of
which the system is comprised, specifies the interactions that occur among the services,

and maps the services into one or more implementations in particular technologies.

The relationship between services and the well-established concept of software
components will be explored; and similarly, the component-based development
approaches that provide a solid foundation for implementation of a service-oriented
architecture will be examined. Interface-based design is crucial to both service and
component design; however, there are certain constraints and criteria that distinguish

interfaces exposed by service and component design. The Unified Modeling Language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(UML) is employed to describe both logical and implementation designs for both service
and component design. Much of the attention will be focused on Web Services as a

vehicle for exploring issues related to the implementation of services.

2.2.1 Service-Oriented Architecture

In the simplest of terms, service-oriented architecture is a way of designing a software
system to provide services to either end-user applications or other services through
published and discoverable interfaces. A web service is defined as follows [BJK02]:
A service is generally implemented as a course-grained, discoverable software
entity that exists as a single instance and interacts with applications and other
services through a loosely coupled (often asynchronous), message-based

communication model.

The current component-based development practices provide “a tried and tested
foundation” for the implementation of a service-oriented architecture [BJK02]. The
terminology for services is, in many ways, much the same as those used to describe
component-based development. However, as shown in figure 2.1 [Gra02], there are terms

specific to Web Services.

Publish

Figure 2.1 Service terminology

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o A service provider can be regarded as the “server side” of a client-server
relationship between the service provider and the service requestor; a service
provider is responsible for creating a service description, publishing the service
description to one or more service registries, and receiving service innovation
messages from one or more service requestors.

e A service requestor can be regarded as the “client side” of a client-server
relationship between the service provider and the service requestor; a service
requestor is responsible for finding a service description published to one or more
service registries, and for using service descriptions to bind to or invoke services
hosted by service providers.

o The service registry can be regarded a “match-maker” between service requestor
and service provider; the service registry is responsible for advertising service
descriptions of service providers and allowing service requestors to search the

collection of service descriptions.

As shown in figure 2.1, a service provider publishes its service description to a service
registry and advertises the details of the service to a community of service requestors. A
service requestor tries to find a service by first stating search criteria (e.g. type of services,
various other aspects of the service such as quality of service and so on). The service
registry matches the find criteria against its own collection of published service
descriptions. Once the service is found, the service requestor binds to or invokes the

service of the service provider directly.

There are key characteristics for effective use of services:
o Interface-based design — An interface is used to define a set of public method
signatures, logically grouped but providing no implementation (in short, an

interface defines a contract between a service provider and a service requestor).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The key is the separation of implementation from interfaces. Services implement
separately defined interfaces. The benefit of this is that a service can implement
multiple interfaces and multiple services can implement a common interface.

e Discoverable — Services need to be found not only by interface identity and by
service kind.

e Loosely coupled — Services are connected to other services and clients using
standard, dependency-reducing, decoupled message-based method such as
extensible mark-up language (XML) document exchanges.

o Coarse-grained — Operations on services are frequently implemented to
encompass more functionality and operate on a larger data set (compared with a
component-interface design).

e Single instance — Each service is a single, always running instance that a number
of clients communicate with. This is unlike component-based development, which

instantiates as many components as necessary.

Performance (e.g. response time) is of paramount importance in a Service-oriented
Architecture (SOA). In fact, high quality solutions are the result of early architecture
decisions supported by a number of well-understood design techniques. Software
Performance Engineering (SPE) principles and techniques need to be applied in such an

architectural design stage (we will discuss SPE in section 2.3).

2.2.2 Web Services-based Systems

Web services are an emerging technology and one way to achieve Service-oriented
Architecture (SOA). In the short term, Web Services are accessed via widespread web
protocol, such as Hyper Text Transfer Protocol (HTTP) and data formats, such as the
Extensible Mark-up Language (XML). Web services may not always be located on the

World Wide Web and they can reside on an Intranet, or anywhere on the network. One of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the key points is that a web service’s implementation and deployment platform are

independent of the application that is invoking this service.

The following is the definition of Web Services from the World Wide Web Consortium
(W3C) Web Services Architecture Group:
A web service is a software application identified by a URI (Uniform Resource
Identifier), whose interfaces and binding are capable of being defined, described
and discovered by XML (Extensible Mark-up Language) artefacts and supports
direct interaction with other software applications using XML based messages

via Internet-based protocols.

There are three key components of web service systems [Gra02]:
~ o Wire: web services employ XML for message encoding, and the Simple Object
Access Protocol (SOAP) for handling data transmission capabilities.

e Description: A web service interface is specified using the Web Services
Description Language (WSDL), which specifies the operations provided by a web
service. Those operations are accessible through standardized XML messaging.

e Discovery: The service requestor discovers the web service in the web service

directory using Universal Description Discovery and Integration (UDDI).

The conception that all web services use XML messages, with SOAP over HTTP is not
quite true. In fact, a web service might transport binary data, not necessarily messages in
XML format; a web service is not required to use SOAP encoding for message bodies;

and a web service may use SMTP (or other means), rather than HTTP as transport.

2.2.2.1 A Customer Model Example

An example of customer relationship information being managed, as defined in the UML

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class diagram, is shown in Figure 2.2 [BJK02] below:

Account
Appointment Contact +Fax ; string
+Hotes ; string L +Mabile 1 string le + Phore @ string)
+5Subject 1 string |+ Appointmerts |+ Phone string | + Contacts + AccountState ¢ string
+ Location : string + Name 1 sting +Addtess:§2xmg
+Mame : string

Figure 2.2 Logical customer model

Such a logical model would be translated into an implementation model for

component-based applications and then for service-based applications as shown in Figure

2.3 [BJKO02] below:

. wimerfaces
i wartifects FAccount
Acocount
+gethame{ §
+seflame{ }
s o)
+getPhone | }
+zetfhone [)
+getFax{ }
wimplerentations +oatfax{ }
Account {1 + getCantacts {
+satContacts | }

Figure 2.3 Generic component diagram

Ultimately, the generic service design in Figure 2.3 can be modeled using a UML profile

specific to Web service design and development as shown in Figure 2.4 [BJK02] below.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hebDocuments
GetAccountDataRequest ocakiast
+ Acoountleme 1 Soing
«“WebDocumente
Account
E 2
+Mame : Sring “WebDocumants y
+ Address 1 Shing : “ GetAccounDataResporse srasides
+ AocountState 3 String
+ Phooe § Sting
+ Faor 1 Soing ANebDocs - -
GetAppointmentsRequest | MyCalendarSve
+ ForDte : DateTime
“WebDocuments | * ~ <WebDocumants Y
Appointment [GetAppoitmentsResponse ——
+ AgptDate : DateTime w&’fﬁa r
+ bocaden String . — ‘g
* Suhfect 1 String siabDocuments B :Newmmnt »
+ Notes 1 String fewApportmentCall z Dol)
X
+ ForContact ; String

Figure 2.4 XML Web service design

The UML Profile introduces only two additional stereotypes for <<WebService>> and
<<WebDocument>>. The published aspects of a web service, as defined in WSDL, can

be easily visualized by using the existing interface semantics in UML.

2.3 Software Performance Engineering (SPE)

Performance is the degree to which a software system or component meets its objectives
for timeliness [Smith90]. Timeliness is measured in terms of response time and
throughput. The response time is the time required to respond to a request. For instance, it
may be required that an online shopping system provides a result within one-fourth
second after a customer presses the “submit” button on a commercial web site. The
throughput of a system refers to the number of requests that can be processed in some
specified time interval. For instance, a telephony switch may be required to process
500,000 calls per hour. Performance is an essential aspect of any software system and
consequences of performance failures are usually devastating, often resulting in damaged

customer relations, business failures, lost income, and cancelled projects.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software Performance Engineering (SPE) is a systematic, quantitative approach to
constructing software systems that meet performance objectives [Smith90]. SPE is an
engineering approach to performance, and it uses model predications to evaluate

trade-offs in software functions, resource requirements, size of hardware, and so on.

There are three kinds of performance evaluation techniques: analytic modelling,
measurement, and simulation. Analytic modelling uses mathematical expressions to
derive the performance results for a system under study; the measurement technique is
possible only if a system already exists; a simulation depends upon a model of a system

being studied. For our purpose, analytic modelling is the best technique due to fact that
the cost (in terms of money and time) is the smallest among the three. The analytic model
- the layered queueing network (LQN) model - will be used in the quantitative
performance analysis during the architectural design. The LQN model is well suited to
analyzing software performance because the model represents layered resources in a

natural way and scales up well for large systems [JWO0O].

In this chapter, we will introduce UML Profile for Schedulability, Performance, and Time
in section 2.3.1; we will describe the layered queueuing network (LQN) model in section
2.3.2; we will also discuss the performance assessment of software architecture in section
2.3.3. In particular, we will discuss the PASA method, a method for Performance
Assessment of Software Architecture, in detail. Finally, we will focus on the quantitative
performance analysis process with the annotated UML model in architectural analysis

stage in section 2.3.4.

2.3.1 UML Performance Profile and SPE

In order to apply SPE early in the service-oriented development process, the SPE process

needs to be integrated tightly with the software development life cycle. The key to

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accomplish this is to capture the performance related information along with other
aspects of the software design and architecture. The Unified Modeling Language (UML)
[BIR99], the most widely used software design notation, provides the necessary level of
integration. To assist users of UML to describe the performance aspects of a software
design, a language extension called UML Profile for Schedulability, Performance, and
Time (UML profile for SPT) has been adopted by OMG (Object Management Group).

2.3.1.1 UML Profile for SPT

UML Profile for SPT extend UML by providing stereotypes, tagged values, and
constraints to represent performance requirements, the resources used by the system, and

so on [LMSO03].

2.3.1.1.1 Stereotypes

A stereotype allows the user to create new model elements that are derived from existing
UML elements, but are specific to a particular problem domain. As shown in Figure 2.5
below, The stereotype, which is a string enclosed in guillemets (<<>>), indicates that this

node is a processor.

Figure 2.5 Stereotypes

2.3.1.1.2 Tagged Values

A tagged value consists of a pair of strings, i.e. a tag and a value. This pair of string holds
information about a model element. The purpose of the tagged values is to include new

properties for model elements: the tag is the name of a property (e.g. processorSpeed) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the value is the value of the property (e.g. 300 MHz) for the model element (see Figure
2.6).

Figure 2.6 Tagged Values

2.3.1.1.3 Constraints

A constraint is a condition or restriction that defines additional model semantics. A
constraint, a string enclosed in braces ({}), may be attached either to an individual model
element or a collection of elements. Figure 2.7 shows an example of a constraint for a

bank account.

Bal:Currency {bal >= 0}

Figure 2.7 Constraints

Stereotypes and tagged values are used to capture information about the environment in
which the software resides (e.g. network speed, processor type, and so on); the constraints

are used to specify performance objectives (e.g. response time or CPU utilization).

2.3.1.2 Use Cases and Scenarios

The SPE emphasizes the system’s use cases and the scenarios that describe them. From a
software development point of view, use cases and scenarios provide a means of
understanding the system’s requirements, architecture, and design; from a performance
point of view, use cases allow the user to identify the workloads that are significant to

performance, i.e. the collections of requests made by the users of the system and

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scenarios that allow the user to derive the processing steps involved in individual
workload. By carefully reviewing the system’s use cases, the user is able to identify the
functions of the system that are crucial to its performance. The scenarios within each use
case that have the greatest impact on performance are called performance scenarios. By
carefully examining the performance scenarios, the user is able to identify the processing
steps that execute when the functions of the system are invoked. The processing steps are

the invoked operations that are due to each interaction (message) in the scenario.

2.3.1.2.1 Use Cases

A use case is “a set of sequences of actions, including variants, that a system performs
that yields an observable result of value to an actor” [BJR99]. An actor is defined as an
entity, such as a user or another system, outside the system that interacts directly with the

system.

Use cases serve two main purposes:

o Specify the requirements for the system: By specifying the sequences of actions
that the system can perform, use cases describe the intended behaviour (or
functional requirements) of the system from the view point of its external actors.
Non-functional requirements, such as reliability, security, and performance can be
specified as annotations to use case diagrams.

e Model the context of the system: the system boundary describes which actors
interact with the system, the meaning of these interactions and which features are

parts of the system.

Use case diagrams are employed to identify the functions of the system that are most
important to performance. These critical use cases refer to those that are crucial to the

functionalities of the system, that have an impact on responsiveness of the system, or that

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represent a risk when performance goals may not be satisfied. Use case diagrams,
however, are limited to their semantic content; therefore, individual scenarios are relied

upon to describe each critical use case.

An example of a UML diagram for a clinical appointment system is shown in figure 2.8

>

Cancel appointment

///iake appointment . Check patient record
=include ==

patient

X

scheduler

Request medication

Pay hill \\ defer payment
/: ‘ﬁ-\

clerk

doctor

Figure 2.8 The Clinical Appointment System

There are four actors: patient, doctor, clerk and scheduler. They interact with the clinic
system. There are many use cases such as make appointment, check patient record,
cancel appointment, and pay bill. The Includes relationship is used whenever one use
case needs to use the functionality provided by another use case. The Extends relationship

is used whenever one use case extends the functionality provided by another use case.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.1.2.2 Scenarios

A scenario is simply an instance of a use case and it comprises a sequence of steps
describing the interactions between the objects during a particular execution of the
software system. The scenario shows the participating objects and the messages (an event

or an invocation of one of the object’s methods) flowing between them.

Scenarios are represented in UML interaction diagrams, i.e. sequence diagrams or
collaboration diagrams. Sequence diagrams emphasize the time-ordering of messages,
while collaboration diagrams emphasize the structural organization of the collection of
interacting objects. Although they are semantically equivalent, sequence diagrams are

employed more often for constructing performance models.

This Sequence Diagram shows the flow of processing through a use case. Any actors
involved in this use case are show at the top of the diagram. Each arrow represents a
message passed between objects. The Sequence Diagram display objects, not classes.
An example of a sequence diagram for a data acquisition system is shown in figure 2.9
[WSO02]. This system that receives data from multiple sources, translates and formats
incoming messages, applies business rules to interpret and process messages, updates a

data store with the received data.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

anis

SHSER

1 o
>
|
|
Il

SRR N

in-range data

ing

1gram for process
21

I3
e

i

Figure 2.9 Sequence d
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.2 Layered Queueing Network Model (LQN)

Queueing Network Model (QNM) is a model that includes several queue-servers
connected in a network. The key computer system resources (e.g. CPU or hard disk) are

represented as queues and servers. A service represents a component of the environment

that provides certain service to the software. The queue represents jobs waiting for
services. The term job refers to a computation entering the system, makes requests of
computer system resource(s). If a server is busy when a request arrives, the job making
the request has to wait until the server is available. An example of queueing network is
shown in Figure 2.10. The circles, such as the workstations, CPU, and I/O represent the

server and the rectangles (labelled 1, 2, and 3) represent the queues to these servers.

Ny~

N Workstations
2sec. 14
- 21) - 3
N 3/4 __O__
CPU 1O
PS, 120ms. FCFS, 80ms.

Figure 2.10 The queueing network model of a file server

Queueing Network (QN) is used to represent the computer system performance. The
simplest form of QN model is the product-form model, which can be computationally
efficiently solved by Mean Value Analysis (MVA). In the product-form QN model, a

request is not permitted to hold more than one resource at the same time, i.e.,

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simultaneous resource possession is not allowed.

2.3.2.1 Layered Queueing Network Model (LQN)

LQN extends the QN model. The main difference between the LQN model and the QN
model is in the server. A server that receives a client request and block client process in
the service queue can also be a client to other servers. In this case, this server requires
nested services while serving its own clients. Multi-tier or layered distributed systems
cannot be modeled directly by MVA. The synchronization blocking from nested
sub-services is a form of simultaneous resource possession. The problem can be solved
by algorithms such as the Method of Layers (MOL) and Stochastic Rendezvous Network
(SRVN). The idea is simply this: first, break a multi-tier distributed system into a
collection of two-layer systems; second, solve these systems individually using Mean
Value Analysis (MVA); third, use the output (or result) of one system as the input to
another two-layer system. Eventually, solve for the whole system. Although the overall
approach between MOL and SRVN is similar, they differ substantially in their
implementation. For MOL, linearizer MVA is used; for SRVN, approximate MVA is used.

Figure 2.11 shows the layered model for a web-based ticket reservation system. In figure
2.11, “Browser”, “WebServer”, and “TicketDB” are the tasks. Tasks are the interacting
entities in the layered queueing model. And tasks carry out operations and have properties
of resources that include a queue, a discipline, and a multiplicity. “UserCPU”, and
“ServerCPU” are called host processors. A task has a host processor, which models the
physical entity that executes the operations. A task also has one or more entries which
represent operations that a task may perform. For instance, “connect”, “display”,
“reserve”, and “confirm” are all entries of the task, “WebServer”. Finally, an arrow from
an entry, says, “confirm” to another entry, say, “updateTDB” represents a call. A call

refers to requests for service from one entry to an entry of another task.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wHeract | Srowser

[Z=55]
__.wf"”?%l \
- » —

connect [display |reserve |conhirm | WebServer | Mgm@g
S oy

[t —

quety DB [update IDB

>(SmﬂCBH
e’

T —

Figure 2.11 Layered Queueing Network model for the web-based ticket reservation
system

2.3.3 Performance Assessment of Software Architecture

So, what is software architecture and what is the role of software architecture in CBD?
Software architecture and components are certainly closely related. But, what is software
architecture? According to Bass, Clements and Kazman, software architecture, is defined
as follows [BCK98]:
The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally

visible properties of those components and the relationships among them.

Software architecture is, traditionally, focused on in the early stage of software design
when the overall structure of the system is determined to meet both functional and
non-functional requirements. Component-based technologies focus on composition and

deployment, closer to or at execution time. During the system execution phase, the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

component-based systems still consist of clearly separated components. During this stage,

the system architecture is still recognizable and thus remains an important factor.

Ultimately, the roles of component architecture is to regulate the interaction between
components and their environment, to define the roles of components, standardize tool
interfaces, and to regularize user interface aspects both for end users (where applicable)

and for assemblers [Szy98].

The functionality provided by a software application is undoubtedly important. However,
one also needs to take into account how well a software system achieves its quality
objectives such as performance reliability/availability, to name but a few. Over the
lifetime of a software application, the cost is determined more by whether its quality

objects are met than by its functionality.

Performance evaluation of software architecture plays an important role in this aspect. In
[WS02], Smith makes a comment that, “while a good architecture cannot guarantee
attainment of quality goals, a poor architecture can prevent their achievement.” Kazman
further comments that, “quality attributes of large software systems are principally

determined by the system’s software architecture.” [KKB+98]

Architectural decisions are made very early in the software development process and they
are also most costly to fix if the architecture is found to be inappropriate for meeting
quality objectives upon the completion of the software. In other words, the payoffs would
be the greatest if the impact of architectural decisions on quality objectives can be
assessed at the time that they are made. In the industry, it is not unheard of that software
systems have to be re-designed, or re-implemented due to performance problems. In the

most extreme cases, projects have to be cancelled.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Even though decisions made at every stage of the software development process are
important, the architectural decision would make the greatest impact on performance.
Performance problems are likely due to architectural design rather than inefficient coding,.
Clements and Northrop [CN96] make the following comments:

Whether or not a system will be able to exhibit its desired (or required) quality

attributes is largely determined by the time the architecture is chosen.
2.3.3.1 Methods of Evaluation of Software Architectures

There are several approaches in this regard. One of them is PASA, a method for
Performance Assessment of Software Architectures, developed by Smith. PASA uses
software performance engineering principles and techniques to identify potential areas of
risk within the architecture relating to performance. The approach helps to identify the
strategies to minimize or even eliminate those risks. PASA makes use of architectural
style for analysis with a focus on general characteristics of the architecture together with
design guidelines [WS02]. Williams and Smith introduce an approach to performance
evaluation of software architectures [WS98]. The PASA extends that work with the
inclusion of architectural styles and performance anti-patterns as analysis tools and tries

to formalize the architecture assessment process.

Kazman and his co-workers have developed two related approaches: the Software
Architecture Analysis Method (SAAM) [KAB+96] and Architecture Tradeoft Analysis
Method (ATAM) [KKB+98]. The SAAM uses scenarios to derive information about
whether an architecture can meet certain quality objectives such as performance. ATAM
is an extension of SAAM and takes into account the interaction among quality objectives
and identifies architectural features that can be affected by more than one quality attribute.

Then evaluation of tradeoffs is made based on these sensitivities. Both SAAM and ATAM

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consider a number of quality attributes, such as reliability, modifiability, and performance.
ATAM utilizes Attribute-Based Architectural Styles (ABASs) [KK99], which extends the
concept of an architectural style by including a framework for reasoning about

architectural decisions regarding a specific quality attribute.

Balsamo and colleagues describe an approach to performance evaluation of software
architecture [BIM98]. This method is based on the use of the Chemical Abstract Machine
(CHAM) formalism and automatically derives a Queueing Network Model (QNM) from
a CHAM description of the architecture. This method focuses on connecting design
notations to performance models. Some similar approaches also exist, such as [GVCO00,

CMO00, PK99].

Grahn and Bosch characterize three architectural styles, i.e., blackboard, layered, and
pipe-and-filter [GB98]. This approach focuses on the general performance characteristics
of each style rather than techniques for evaluating individual models. They use a
simulation technique to ascertain the effects of varying the number of components in each

style.

2.3.3.2 Performance Assessment of Software Architecture (PASA)

The PASA method consists of ten steps presented below [WS02]:
1) Process Overview — The step is designed to familiarize managers and developers with
the assessment process, the reasons for an architectural assessment, and the outcomes

for such assessment.

2) Architecture Overview — The development team presents the current or planned

architecture.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3) Identification of Critical Use Cases — The externally visible behaviours of the software
that are crucial to responsiveness or scalability are identified. An example of a UML

Use Case diagram for a Building Security System is shown in Figure 2.12 [LMS03].

{ : J—
!'/;ccgss\
\\iommi

User e

p | BN

Video e Bequiterstore™ Database

Camera \\Eﬁ w/;

] f/gauage ~h\/

Manager

Figure 2.12 Use Cases for the Building Security System (BSS)

The Building Security System (BSS) manages security in a building such as a hotel.
There are four actors in the diagram: User, Video camera, Manager, and Database; and
there are four use cases: Access control, Log user entry/exit, Acquire/store video, and
Manage access rights. The Access Control Use Case, which includes the Log user
entry/exit Use Case, checks the access rights of the card-holder in a database, and triggers
an actuator in the door frame to permit access when card reader events occur. The
Acquire/Store Video Use Case addresses a given number (e.g. 10) of video surveillance
cameras one at a time, polls each camera to send its latest frame, and stores it in a

database. The Manage access rights Use Case manages access rights of the user.

The corresponding UML deployment diagram for the BSS system is shown is in Figure
2.13 [LMSO03] to represent the physical relationships among software and hardware

components in the delivered system. In figure 2.5, Processors, such as ApplicCPU and

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DB_CPU are stereotyped as <<PAhost>> and hardware devices that are not processors

are stereotyped as <<PAresources>>.

A < e
<o P ATBSUTTR | P ATeSUTTE <P Araomrrese DA reseunres
SecunryCard DoorLock Ydea Disk
Reader Actostor , Lamera {PAcapacity=2}
[<<PAresoumcer LAN L,,-I
o e
=P Ahosts == PAhosC
ApplicCPU BB CPU
Aprpes Database
LControlier
den
Contoller

Figure 2.13 Deployment of the Building Security System

4) Selection of Key Performance Scenarios — For each critical use case, the scenarios that
are important to performance are identified. The sequence diagram of a key
performance scenario for the Building Security System (BSS) - Access Control scenario
- is shown in figure 2.14. However, there is no performance annotation (stereotypes,
tagged values, and constraint defined in UML Profile for SPT) present at this point.

Performance annotations are added later.

5) Identification of Performance Objectives — Measurable, quantitative, and precise
performance objectives that support the key performance scenarios for each situation
or performance study of interest are identified. For example, the Access Control
scenario shown in figure 2.6, performance objectives such as how many hard disks
are needed, how many threads are necessary, what is the response time requirement
and so on should be determined at this point.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6) Architecture clarification and discussion — Participants discuss the architecture and the
specific features that support the key performance scenarios in more detail. Problem

areas are explored further in this step.

7) Architectural Analysis — The architecture is analyzed to determine whether it will

meet the performance objectives.

This step, which is one of the most critical steps in the PASA method, is further divided
into three sub-steps:
1) Identification of the underlying architectural style(s)
Software architectural styles or patterns describe the structural organization of a
set of systems that share common features. If architectural styles or patterns are
representative of one of the common architectural styles, analysts can utilize the
general performance characteristics of the style to assess the performance of the
architecture. Patterns are discussed in [MCMO00].
ii) Identification of performance anti-patterns
Conceptually, anti-patterns are similar to patterns in that they both represent
recurring solutions to common design problems. The difference, however, lies in
the fact that anti-patterns produce negative consequences [SWO00]. Anti-patterns
are generally restructured (or re-factored) to overcome the negative consequences.
iii) Performance modeling and analysis
The previous sub-steps are qualitative analysis approaches. This sub-step is a

quantitative analysis approach.

The first two sub-steps, i.e. identification of architectural styles and performance

anti-pattern, are the qualitative analysis and are not the focus of this thesis; therefore, we

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will omit the details of these two sub-steps. In the performance modeling and analysis
sub-step, the quantitative performance analysis is conducted. At this point, performance
annotations (stereotypes, tagged values, and constraints defined in UML profile for

SPT) are added.

As shown in figure 2.14 [LMS03], the access scenario for the Building Security System
(BSS) is described in the sequence diagram annotated with stereotypes and tagged

values defined in UML Profile for SPT.

ol Ot
JFascorenselalem - (poiss0n’ B8 8

PArREDTING ={{ rﬁq“ /pErcentie’ S5, {1, ¥l cePAoontaxi>>
prad’"percantie, 9‘ ElearRy}
£
H & | =PAresOUmEw> c P AIBEINS S e PATBEFIFLEo wxPAIBEOUINE > =< PASESOLICEs >
| CardReader Dopriock Alarm Acr.ess _Database ~ Disk
y l,’ Controller PAcapackv=il] {Phcapactv-2}
User ¢ T T T ’ T
3 i I 1 1
J-(; 1 1 ¥ i 1 :
Torooranty E E E | :
¥ 4 J s PAEEpo !
1 wePlghaps. ¥ H 1 3
readCard,_ {Pademanks ;sm’ m;ﬁ 1.5 meg H{PATRmAnd=/3sMT, | t
' Pmean’, (1.8, mehg | 3
! admit {cardinfo} ': 5 l {
i [1 <cPASED |
H ; ! \ipademanuerasmd, earr,
3 i 1 1 (15, 'mEY), PApeod 3.4}
H : pry " L ins_cache] readOiatal)
! ! {PAdemanC~{ 38md’,
2 i ‘mean, {18, MBI ‘ »
H ; 7 i
3 1 I t
3 1 I '
H H <xPhsiaps | Phemant={asmd’ | !
i 1 {PAdelay=/asmd, T ‘mean’, {&3, wsi '
i 5 E?
1 I {50), “Aprod - i _lchecthgM{ 1 ¢
1 1 [OK] openDoor)) -+ 1 '
enterBuilding ! o + <P !
= T JRASEmant=: L TEET, t
T : L 0.2, 'me), PABISI=0.2) t
; i t Ineed ta g ingE\eenﬁ} {
3
: i : l wxPABIED i
§ H }] |§§Memam-{'m !
! 3 i writeEvend(} '“mean @Bomeg
: ! ! L% Ll ribeReci) ¥
H 1 ; wea, (18, mEW | l |
; i 1 o o A F T T
H 3 1 Jk i
H 3 1
' ! ! !
} H 3 ¢

:
¥
¥
K
¥

Figure 2.14 Annotated Sequence Diagram for the Access Control Scenario

In figure 2.14, the arrival process is stereotyped as <<PAopenLoad>> and is defined by

the tagged values as a Poisson process with a mean inter-arrival time of 0.5 seconds, and

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

states a percentile requirement on the response time (i.e., 95% responses within one
second). The Database process is tagged with 10 threads, by {PAcapacity = 10}, and the
disk is tagged with 2 disks. A step in the sequence diagram is stereotyped as <<PAstep>>.
The tag PAinterval refers to the interval between successive repetitions of the same
scenario. The value of this tag is one of ‘req’, ‘asmd’, ‘pred’, or ‘meas’, standing for
required, assumed, predicted, or measured. For instance, the getRights step has an
assumed mean host (CPU) demand of 1.8 ms which is expressed as:

PAdemand = (‘asmd’, ‘mean’, (1.8, ‘ms’)).

8) Identification of Alternatives — Alternatives for meeting performance objectives are

identified when a problem is discovered.

9) Presentation of Alternatives — Results and recommendations are presented to managers

and developers.

10) Economic Analysis — The costs and benefits of the study and the resulting

improvement.

2.3.4 Performance Analysis with the Annotated UML Model

In the step 7 of PASA, architectural analysis, during the sub-step of performance
modeling and analysis, quantitative performance analysis of an UML model (annotated
with performance information) is conducted. There are three steps involved in the

performance analysis:

1. The UML model needs to be translated into a performance model (e.g. the Layered
Queueing Network model — discussed in section 2.3.2).

2. An existing performance analysis tool (e.g. the LQN solver) is used to solve the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance model.

3. The results of performance analysis are imported back into the annotated UML model.

The performance annotation of a UML model is enabled by the UML Profile for
Performance, Schedulability, and Time, proposed by OMG (see discussion in section
2.3.1). The UML profile makes it possible for constructing models that can be employed
for making quantitative predications with respect to characteristics such as performance.
The proposed performance profile extends the UML meta-model with stereotypes, tagged
values, and constraints. All those UML extensions enable performance annotations (e.g.

resource demands) to be attached to a UML model.

In order to conduct the first step of the performance analysis process, Petriu and
colleagues propose a graph-grammar-based method for translating a UML model
(annotated with performance information) into a Layered Queueing Network (LQN)
performance model [PS02]. The input to the transformation method is an XML
(Extensible Mark-up Language) file that comprises an annotated UML model in XML
format, and the output is the corresponding LQN model description file that can be read
directly by the LQN solver [Franks00]. The LQN model structure is generated from the
high-level software architecture and UML deployment diagrams indicating the allocation
of software components to hardware devices. The LQN model parameters are derived
from key performance scenarios models. Similar work has been done by Balsamo and
co-worker [CMOO]. A survey of techniques developed in the recent years for transforming

UML models into performance models is given in [BSO1].

Figure 2.15 [LMSO03] shows the corresponding Layered Queueing Network model
(translated from the annotated UML model) for the Building Security System (BSS) that
we have discussed earlier. Logical resources such as “Users”, “CardReader”, and

“AccessController” are represented by “tasks” (in bold rectangle). And tasks carry out

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

operations represented by “entries” (in rectangle), such as “User”, “readCard”, and
“admit” for tasks “Users”, CardReader”, and “AccessController” respectively. A task has
a “host processor”, which models the physical entity that executes the operations. For
example, “UserP”, and “cardP” are the host processors for the tasks “Users” and
“CardReader” respectively. Finally, an arrow from an entry, say, “User” to another entry,
say, “readCard” represents a “call”. A “call” refers to requests for a service from one

entry to an entry of another task.

acquireLoop | VideoController User [UJsers
[1.8 rate={).5/sec
5N l{l} User?
i

readCard JCardReader

procOnelmage | AcquireProc
[1.30]

0

alloc | BuffestManager
65,0

E {forwarded)

admit | AccessController I

T
\,, [alaom [Alarm

s L 0.0 _
", (forwarded)

leck 17 .0ck

(1.0

getkmage |passimage JAcquireProc? ismrelnge StoreProc

120] | f[09.0 [33.0] [0, 500]
G0 0 @
re!easeBuiIBuﬂ\,{gfg writelmg [readRighis|writeEvent] DataBase
[05,0] 7200 | psoy | (L3801 f (10 threads)

04.0 ¢l
csa,aai @40 éml
writeBlock readData | writeRec | sk C?L.
1161 {1304 [3.01 (2 threads) \i ‘

Figure 2.15 Layered Queueing Network model for the Building Security System

In order to conduct the second step of the performance analysis process, one needs a
performance analysis tool to solve the performance model. One such tool is the Layered

Queueing Network Solver (LQNS). LQNS combines the strengths of SRVN and MOL

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

solvers to broaden the modelling scope and improve the accuracy of solutions to layered
quequeing networks (for a discussion of the layered queueing network model, see section
2.3.2). The input of LQN solver is the demands at various components such as disks and
processors. The outputs of the LQN solver produce are the service time, utilizations,

throughputs of the software system.

Before the results are imported back to the UML model in the third step of the
performance analysis, sensitivity analysis (SA) can be done to study the sensitivity of the
performance (output) of a system due to its factors (input) and analyze the interaction
between these factors and the effect of each individual factor in a quantitative way. The
ultimate goal of SA is to optimize the software architectural design (see chapter 3 for

detail discussions).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Proposed Method

3.1 Problem Domain

In section 2.3.4, steps of quantitative performance analysis process have been discussed.
In this traditional approach, between steps 2 and 3, after the performance model is solved
by an existing performance analysis tool (e.g. the LQN solver), and before the results of
the performance analysis is fed back into the annotated UML model, sensitivity analysis
to be conducted to quantify the effects of system factors' (or parameters), the interactions
among them and to optimize the software design. In the area of service-oriented
architecture (SOA) and Web Services-based systems, little work has been done in this

regard.

3.2 Sensitivity Analysis (SA)

The purpose of sensitivity analysis (SA) is to evaluate the sensitivity of a system or
system model to some variation in factors (or parameters) of the system, and to quantify
their effects if possible. Design of Experiments (DoE) is offered as an empirical method
of sensitivity analysis. DoE can be applied to any system in order to determine both the

significance of a factor’s effect and an estimate of that effect [Tew92].

Experiments are conducted by investigators in almost all fields of inquiry, usually to
discover something about a particular process or system. An experiment refers to a test or
a series of tests in which purposeful changes are made to the input variables of a process
or system so that an investigator can observe and identify the reasons for changes that are

observed in the output response. Experimentation plays a crucial role in new product

' System factors refer to parameters that can have an impact on the performance of the
system, such as number of users, number of CPUs, or number of threads.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

design, manufacturing process development, and process improvement.

3.3 The Role of Experimentation in Software

Engineering

Basili suggests that software engineering should follow the model of manufacturing and
other engineering disciplines to develop an experimental paradigm for the field [Bas96].
The author advocates that more research needs to be done to help establish “a scientific

and engineering basis” for software engineering.

Some terms related to experimentation have been introduced in this paper and will be
defined here for the benefit of further discussion regarding experimentation. A hypothesis
is a tentative assumption made in order to draw out and test its logical or empirical
consequence. A study is an act or operation for the purpose of discovering something
unknown or of testing a hypothesis. An experiment is a study undertaken in which the
investigator has control over some conditions in which the study takes place and control
over the independent variables being studied. And the term controlled experiment is
defined as an experiment in which the subjects are randomly assigned to experimental
conditions, the investigator manipulates an independent variable, and the subjects in
different experimental conditions are treated similarly with regard to all variables except

the independent variable [Bas96].

3.4 Design of Experiment (DoE)

First, there are a number of terminologies that need to be introduced. Factorial Treatment
Designs refer to all possible combinations of the levels of factors which are investigated
in each complete trial or replication of the experiment. Factorial treatment design is an

important type of design of experiment. For instance, if levels of factor A is a and levels

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of factor B is b, each replicate contains all ab treatment combinations.

The effect of a factor is defined as the change in response caused by a change in the level
of the factor. This is also called a main effect since it refers to the primary factors of
interest in the experiment. In some cases, the difference in response (output) between the
levels of one factor is not the same at all levels of the other factors. When this happens,

there is an interaction between the factors [Hicks83].

To demonstrate these concepts, an example {Alm81] is given below:
Asphalt pavements undergo water-associated deteriorations such as cracking, potholes,
and surface ravelling. The weakened pavement occurs when there is a break in the

adhesive bond between aggregate and the asphaltic cements that make up the pavement.

The purpose of the research is to find improved pavements that are more resistant to
deterioration. Two factors are identified to have an effect on specimen bonding strength:

a) the aggregate type used in the asphalt mixture. b) the methods used to compact the
specimen during construction. Specimen bonding tensile strength values are shown in

Table 3.1 below for the four treatments.

Aggregate Compaction Method (B) Aggregate
Type (A) Static (B1) | Kneading(B2) | Means

Silicious (A1) 68 60 64
Basalt (A2) 65 97 81
Compaction Means 66.5 78.5 72.5

Table 3.1 Tensile strength (psi) of asphalt specimens

Factors are defined as types of treatments such as compaction method and aggregate type.
The levels of the factors are defined as different categories of a factor. The levels of

compaction method are static and kneading and the levels of aggregate type are silicious

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rock and basalt. The levels of the factors are denoted as A, Aj; By, By; and so on. There
are two factors A and B each with two levels and there are 2 x 2 = 4 treatment
combinations, i.e., AiBi, AiBy, A,B;, and A,B,. In Table 3.1, 68, 60, 65, and 97 are
referred to as cell mean, which is denoted as y; Since there may be more than one
replicate for each cell, the value is averaged over all the replicates, hence the name cell
mean. The means on the margins of the table are the averages of the cell means and are
referred to as the marginal means. In table 3.1, 64, and 81 are the marginal means for

aggregate type; 66.5 and 78.5 are the marginal means for compaction method. The grand

. - 1
or overall mean is the average of all the cell means, y.. = 2 (Yt yizt y21 + y22). In

table 3.1, 72.5 is the grand mean (or overall mean).

The result is summarized in Table 3.2:

B Factor A
A 1 2 Means
— 1
yu= g (yi1+ y12)
1 Y11 Y12
— 1
Vo= Py (Y21 + y22)
2 Y21 Y22
—_); .1 = ;) = _
1 1 u=y.=
—(y11 + —(Vi,+
Factor B > (yirt y20) 5 (Y2t y2) 1 byt vt
Means 4 Yuut yizrya Ty

Table 3.2: Table of means for treatment design

The main effect for aggregate type is ;2. - ;1. = 81 — 64 = 17. This means that the

difference in tensile strength between basalt and silicious rock specimens is 17 psi in
favour of the basalt when averaged over both compaction methods. When we look at the
effect of aggregate type (A) on tensile strength with kneading method (B;), we have y» -

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

yi2= 97 — 60 = 37. This means that the average tensile strength of basalt specimens is
greater than that for silicious rock specimens, which is the same as the conclusion drawn
by the main effect. When we look at the effect of aggregate type (A) on tensile strength
with static method (B,), we have y»; - y11 = 65 — 68 = -3. This means that the average
tensile strength of silicious rock specimens is greater than that for basalt specimens,
which contradict the conclusion drawn by both the case under kneading method and by

the main effect. When this happens, we say there is an interaction effect.

The model that describes for a general Two-factor factorial treatment design is as follows:

Assume that levels of factor A is a and levels of factor B is b.

i=12,..,a
Yik=f + ai+ Bi+(oB)+ €ix {j=12,.b (3.1
k=12,...n

where y ik is the observed response (output) of the experiment when factor A is at the ith
level (i=1, 2, ...,a) and factor B is the jth level (j =1, 2, ..., b) for the kth replicate (k =1,
2, ...,n), p is the overall mean effect, ¢ iis the effect of the ith level of the factor A,

[3jis the effect of the jth level of the factor B, (o8); is the effect of the interaction

between ¢;jand f;, and € is a random error component. In the two-factor factorial

treatment design, we are interested in determining whether factor A and B treatments

interact. Thus, we test the following hypotheses:
Hy: (Otﬁ)ij = Q for all i,j
H;: at least one (8)ij # O for somef,

And, we are also interested in treatment effects for factor A and factor B. Specifically, we
are interested in testing hypotheses about the equality of treatment effects.

For factor A:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ho: o1= a2=..= @,
Hi: o, # a, forsomei, k
For factor B:

Ho: 1= p2=..= B,

Hi: o, # ¢, forsomej, m

We test these hypotheses using two-factor analysis of variance. Analysis of Variance is a

design of experiment procedure that is used to analyze the significance of various factors

in factorial treatment design.

3.4.1 Analysis of Variance

Let yi. denote the total observations under the ith level of factor A, y; denote the total of

all observations under the jth level of factor B, yjdenote the total of all observations in

the ijth cell, and y . denote the grand total of all the observations. Define ;1 ; P, Vi

-)_)ij_ ,; .. as the corresponding marginal mean for factor A, marginal mean for factor B,

cell means, and grand mean. Expressed mathematically as follows:

b n y
Vi 2 22V Y o

= i.. zbn 1:].,2, .o
D %) R P T
g = e ik J = an]J= 1, 24,
n —_— yl
Vo 2¥u Y- TF i=12,
a b n - y
NI N R
i=1 j=1 k=1 abn
41

., a (3.2)
., D
a J=1,2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The total sum of squares can be written as

YYY O, —Z)Zzizi[(yf—’yf)+(}j—f> 53)

i=l j=1 k=1 i=l j=1 k=1

+(y,] y, +y)+(;v,,k Yy, v,)T

=bni(;:—y____)2 +anz(’yj—
i=1 j=1

a b
+1) Y ¥y =y =y, +)

i=1 j=1

Q

n

ZZ(yyk yy

i=l j=1 k=1

Note that the total sum of squares has been partitioned into a sum of squares due to factor
A (SS4); a sum of squares due to factor B (SSg); a sum of squares due to the interaction
between A and B, (SSag); and a sum of squares due to error, (SSg). In equation 3.3, we
can see from the last component on the right-hand side that there needs to be at least two

replicates (n = 2) to obtain an error sum of squares.

Equation 3.3 can be written symbolically as

SSt=SSA + SSg + SSas + SSg (3.4)

For each sum of squares, there is a degree of freedom (DF) associated with it. DF
represents the number of independent variable. Each sum of squares divided by its

degrees of freedom is a mean square.

We can either accept or reject null the hypotheses using F test. The value of F test is the

ratio of mean squares, such as MS,/MSg, MSg/MSg, MS,z/MSg. This value is then compared

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with a table value F o 4p1,4p Where @ is confidence level, dfl is the degree of freedom
associated with the numerator of the mean square , df2 is the degree of freedom
associated with the denominator of the mean square. If the value of F test exceeds the

table value, then we reject the null hypothesis; otherwise, we accept the null hypothesis.

The results are summarized in table 3.3 as follows:

Source of Sum of Degree of

Variation Squares Freedom Mean Square Fo

A treatments SSu a-1 MSA=S8Ss/(a-1) Fo=MSA/MSg

B treatments SSg b-1 MSg=SSg/(b-1) Fo= MSg/MSg
(a-1)b-

Interaction SSap 1) MSag=SSag/(a-1)b-1) Fo=MSss/MSE

Error SSg ab(n-1) MSg = SSg/ ab(n-1)

Total SSt abn -1

Table 3.3 The Analysis of Variance Table for Two-Factor Factorial Treatment Design

a b n | 2
2 V.
SSt = ;;;yyk abn (3.5)
1 ¢ 2 J’...z
SSA- E;J’z _a_bn (3.6)
1 & 2 y...2
SSg- an;y.j. abn (3.7)
1 & 2 y...2
SSqr = "‘1’ <]z::,y,, “E (3.8)
SSas= SSgt- SSA - SSp (3.9)

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SSE: SST — SSAB - SSA- SSB

(3.10)

As an example of how all of this works, let us expand the example shown in Table 3.1.

This example is shown in table 3.4 [Alm81] as follows:

Compaction Method
Kneading
Aggregate
Type Static Regular Low Very Low
68 126 93 56
63 128 101 59
Basalt 65 133 98 57
71 107 63 40
Silicious 66 110 60 41
66 116 59 44

Table 3.4 Tensile strength (psi) of asphalt specimens

For each cell in table 3.4, we have three replicates and the means computed as the

averages of the three (as shown in table 3.5) are called cell means. The averages of the

cell means are referred to as the marginal means. Aggregate means and compaction mean

are marginal means. The overall mean (i.e. 78.8) is the grand mean.

Compaction Method

Kneading Aggregate
Aggregate Very Means (_);)
Type Static Regular Low Low
Basalt 65.3 129 97.3 57.3 87.3
Silicious 67.7 111 60.7 41.7 70.3
Compaction -

— y.=

means ()) 66.5 120 79 49.5 78.8

Table 3.5 Cell and marginal means for tensile strength of asphaltic concrete specimens

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source of Degrees of Sum of Mean

Variation Freedom Squares Square Fy
Compaction (C) 3 16243.50 5414.50 569.95
Aggregate (A) 1 1734.00 1734.00 182.53
Interaction (AC) 3 1145.00 381.67 40.18
Error 16 152.00 9.50
Total 23 19274.50

Table 3.6 Analysts of variance for tensile strength of asphalt specimens in a4 x 2

factorial arrangement

The F test for interaction, Fg= MSac / MSg =381.67 / 9.50 = 40. 18 in Table 3.6, shows a
significant interaction between compaction method and aggregate type due to the fact that
Foexceeds Fos,3,16 = 3.24. The main effects for compaction method and aggregate type
are also significant. For compaction method, Fo= MS¢ / MSg = 5414.50 / 9.5 = 569.95.
exceeds Foos,3 16 = 3.24; for aggregate type, Fo= MS, / MSg = 1734.00 / 9.5 = 182.53.

exceeds Fo,os, 1,16 = 4.29.

3.4.2 Analysis of Variance with One Replicate

When there is one replicate for each cell, the calculation would be a little different. Tukey
[Hicks83] gave a method to test for non-additivity in a two-way classification with one
replicate per cell. The following equations are applied to calculate sum of squares for
factor A and factor B, where a and b are the number of levels for factor A and B

respectively:

2

2
C Vi Y-
SS,A = ; b ab (3.11)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b 2 2
Ey-j i

SSg = =, ab (3.12)
J:
a b y Y 2

SSt= Z,El,yy b (3.13)
i=l j=

The Tukey test for non-additivity is used to determine if interaction is present. In this case,
we have a residual term, which is partitioned into two components: non-additivity
(interaction) component and error component. The rest of the calculation would be the

same as the case for multiple replicates.

The sum of squares for non-additivity (SSx) is computed as follows
a b 2
[zzyijyi.y.j). (SSA +585, +y7)]2

S SN= i=1 j=1 a

abSs,SS, G.14)

The sum of squares for error is computed as follows:

S SError: S S residual ~ S SN (3.15)

The value of F test is computed as follows

SS,
Foss,.., M@= -1)-1] 316

The results are summarized in the analysis of variance table 3.7

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source of Sum of Degree of Mean

Variation Squares Freedom Square Fo
A treatments SSa a-1 MS, Fo
B treatments SSg b-1 MSg Fo
Residual SS residual (@a-1)b-1) Fo
Non-additivity SSy 1 MSy
Error SS gror (@-1)b-1)-1 MSe
Total SSTotal ab-1

Table 3.7 Two-factor Analysis of Variance, with one replicate

For example, the impurity of a product is affected by two factors during the

manufacturing process — temperature and pressure — as shown in table 3.8

Pressure
Temperature (°F) 25 35 Yi
100 5 6 1
125 3 4 7
150 1 3
Y 9 13 22

Table 3.8 Impurity data with one replicate

The sums of squares are

0y’ 2 1 22°

SS, = z_z-__&_ = —(117+7* +4%) - =12.3333
= b ab 2 2)(3)
by, vy 227

SSp= Y - = 297 +13%) - =2.6667
‘4 a ab 3 2)3)

a b '.2 222
SSr= 22 o (52432 412 162 +42 4+32) - =15.3333
= X2y s = NGO

and

SSesidias =587 =S8, —85,=15.3333 -12.3333 - 2.6667 = 0.3333

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a b

D2 vy, =)0+ (6)(13)(11) ... +(3)(13)(4) = 2098

i=l j=1

a b 5
[zzyuyzyj _y(SSA +SSB +_-¥_~_-__)]2
SSN= i=1_j=1 ab

abSs ,SS,

_ [2098-22(12.3333 +2.6667 +80.6667)]’
(2)(3)(12.3333)(2.6667)

=0.225

SS, =SS, -85, —S85,=0.3333-0.225=0.1083

The results are summarized in table 3.9

Source of Degrees of Sum of Mean
Variation Freedom Squares Square Fo
Temperature 2 12.33 6.17 57.13
Pressure 1 2.67 267 2472
Nonadditivity 1 0.225 0.225 2.08
Error 1 0.108 0.108
Total 5 0.333

Table 3.9 Analysis of Variance summary table for data given in table 3.8

3.4.3 Multiple Comparisons

When main effects are significant, in other words, if the null hypotheses of equal

treatment means, i.e. Ho: ;= p;fori # j, is rejected, we are interested in comparing
treatment means, and finding the one that is significantly different from others. The
procedure for making these comparisons are usually called multiple comparison method.
In many practical situations, we want to compare only a pair of means and we can
determine which means differ by testing the differences between all pairs of treatment

means. In this case, Tukey s test for multiple comparisons is used for this purpose.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tukey’s test declares two means significantly different if the absolute value of their
sample exceeds

MS,

n

T,=94@, 9 (3.17)

where o is the confidence level (usually 0.05), a is the sample size, and fis
the degree of freedom associated with MSg

Equivalently, we can construct confidence intervals for all pairs of means as follows:

(1=, —ga(a)2 ,y_i.—y_j.+qa<a,f>w/]‘fE)

n

12] (3.18)
Obviously, if this confidence interval includes zero, we would be unable to reject the null

hypothesis of equal treatments.

Let us look again at the example of data in table 3.5 for tensile strength of asphaltic
concrete specimens and perform multiple comparisons on the compaction method. Since
the interaction is significant in this case, therefore, by definition, the conclusions drawn
under different aggregate type (i.e. basalt and silicious) would be different. So, we will
conduct multiple comparisons of the compaction method when the aggregate type is

silicious.

First, 1, « 18 computed. T} 5= @05 (41 6)1’ S _ (4.05)(9—352)=7.21.
n

Then we will construct the confidence interval (with confidence level at 95%) for each

treatment difference.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Static vs. Regular: 67.7-111=-43.3

The confidence interval is (-43.3-7.21,-43.3+7.21) or (-50.51, -36.09)*
Static vs. Low: 67.7-60.7=-7.0

The confidence interval is (-7.0 - 7.21, -7.0 + 7.21) or (-14.21, 0.21)
Static vs. Very Low: 67.7—-41.7=26

The confidence interval is (26 — 7.21, 26 + 7.21) or (18.79, 33.21)*
Regular vs. Low: 111 - 60.7 = 50.3

The confidence interval is (50.3 — 7.21, 50.3 + 7.21) or (43.09, 57.51)*
Regular vs. Very Low: 111 - 41.7=69.3

The confidence interval is (69.3 — 7.21, 69.3 + 7.21) or (62.09, 76.51)*
Low vs. Very Low: 60.7-41.7=19

The confidence interval is (19-7.21, 19 + 7.21) or (11.79, 26.21)*

The confidence intervals with an asterisk indicate that the differences between the two
treatment means are significant (since they do not include zero). We can conclude from

the calculations above that the only treatment mean difference that is not significant is the

one between static and low compaction methods when the aggregate type is silicious.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Experiments and Results

In this chapter, we will introduce the Web Service-based system — the Web
Services-based Clinical Decision Support Infrastructure - for our experiments, describe

how we collect data from this system, and analyze the result from the collected data.

4.1 Experimental Environment

The web services-based infrastructure to support Clinical Decision support systems
(CDSSs) processes multi-domain medical data from neonatal, perinatal, and obstetrical
domains [CPF04]. The goal of the use of CDSSs, such as Artificial Neural Network
(ANNs), Case-Based Reasoning (CBR) tools, and alert detection systems is to reduce
medical errors and support the physician’s decision-making process [FWO03]. The
relevance of offering such CDSSs as services within the Hospital Information System
(HIS) becomes apparent since eventually, such services will be accessed from remote

locations.

The current web services infrastructure for supporting CDSSs is called OPNI-Web.
Services in such a system are categorized as being either core or composite web services.
A core web service offers basic functionality that will be invoked by multiple higher-level
applications. Composite web services represent high-level applications, which are
comprised of two or more core services to offer a complete system composition scenario
as seen from the physician’s perspective. There are three kind of major composite web
services which can be invoked via OPNI-Web user interface:
e Outcome Predication: Outcome Predication invokes two core web services:
Trained AutoANN Processing processes the data based on a retrieved optimal
minimum data set, and Replace Missing Values uses a hybrid CBR-ANN system

to replace missing patient data variables required for effective ANN outcome

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predication. When the ANN output predications exceed pre-specified physician
set thresholds, Trained autoANN Processing will invoke Alert Generation.

e Matching Cases: The case-based reasoning tool matches an individual patient’s
condition to the most similar past cases when this service is invoked.

e Alert Generation: This service is generally invoked by the Outcome Predication

service.

The UML (Unified Modeling Language) deployment diagram in figure 4.1 [CPF04]
depicts the system architecture. All nodes are connected through the Hospital Information
System (HIS) intranet. During performance analysis, multi-processor usage will be

considered for each server.

% w v rdinator % CcDSS
e ==t et
zs 7

Userinterface WebServiceReguestor EPR
: ‘_l_] <<daploy>>
i

i <<deploy>> <<deploy>> <<geploy>>

T SRR T

<<PArgsource>> Intranet

FITTIYE]
k<wireless communicatipn>> [Gateway g

Figure 4.1 Deployment of the web services infrastructure (OPNI-Web)

4.2 Experiments and Dataset

In this section, we will show how quantitative performance analysis with sensitivity

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analysis is conducted using Design of Experiment (DoE) techniques to optimize the

software design and provide solid feedback to the software designers.

4.2.1 Performance Analysis of the Web Services-Based Clinical Decision Support

System (CDSSs)

In section 2.3.4, we have discussed the steps of performance analysis during the
architectural analysis stage of the PASA method, A Method for Performance Assessment

of Software Architecture, as follows:

1. The UML model needs to be translated into a performance model (e.g. the Layered
Queueing Network model — discussed in section 2.3.2)

2. An existing performance analysis tool (e.g. the LQN solver) is used to solve the
performance model.

3. The results of performance analysis are imported back into the annotated UML model.

We will follow these steps to conduct performance analysis for the Web Services-Based

Clinical Decision Support System.

First, a key performance scenario, encompassing the entire functionality for web service

invocation, is selected as shown in Figure 4.2 [CPF04] below.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<<PAstep>>
(PArespTime =((req,‘percentie’, 100, (10, '), <<PAcontext>>

{'pred’,'percentile’, 100", $UserRY)) }

/
/ <<PAl > <<P. <<F PA PAl > <<PA > PA <<PA P,
/ WS- WS- SOAP1 XML1 CDSS SQAP2 ML2 EPR DISK
/ Regquestor Coordinator
7
User / ! T
1/
d requestWs () <<Ppstep>> '
Al {PAdemand=(asmid’, ‘mear’, (25, msi
:' protocolPrdcessing {) !
/ !
r 1
/ <<PAstep>> [
/ {PAdemands=(psmd’, mear’, 0.03, | pryvr—
PAenOp—(rr:r:vBh(Soacketsyy | _.f[PAdemand=(asmd,
- g -7 |'mean’, (2.1, ‘ms))}
<<PAclosedLoad>> transmitWSR4quest () .-~ |
{PApopuilation = . H
$NUsers } T i} ,r"]
~“<<PAstep>> |
{PAdemand=(asmd?
‘mean’, (12.5, ‘ms’);
unpack () _ | H
™ <<PAstep>>
b Souinteniai {PAdemand=(asmd"’
‘mean’, (12.5, ‘ms")i Fhaten
<< >> PAstel
parseXMLDoc() {PAdemand=(asmd, A do d=2?;>m "
. ‘meary’, (0.8, 'ms’))} ‘mean’, (50, ‘ms”),
G- R b N PArep = 8}
Y
processWebSenvice() L h
T ; \
retriedeEPR ~, \
0 Y |\, native XML DB_Read ()
h -
S, S —— B — K —mmm———=-= =
<<PAstep>>
o {PAdemand=(asmd',
validate {) -4 |'mean’, 5, 'ms))
<<PAstep>>) || ________ I *:r 2 H
P ademand=(asmer, [~w | [€ N 1 [
hised e ~
mean’, (1875, ms) s transformxiLDoc () 5
<__‘i __________________ . :
<<PAstept>>]
{PAdemand=(asmd’, :
‘mean’, (500, ‘ms")} 1
<<PAstep>> n
PAdemand=(asmd, | _ CDSS_Processing () (PM:"Zﬁsdtj;:md"
mean’, (125, ‘ms))} e parseXMtDoc() 'mean’, (1.2, ‘ms")}
. o
7
updatdEPR () A,'
M native XML DB Whrite ()
<<PAstep>> ~ .
{PAdemand=(asmd’, . { :
‘mean’, (0.7, ‘ms"))} WebServiceDone() "] K____‘, _____
it I D 2 e]
~<Phstep>s . determineQutputFormat () ! !
{PAdemand=(‘asmd', ‘mean’, 0.03, <<PAstep>> 1
ms)), (PAdemand=(hemd. : PAGemand=(asnd,
PAextOp = (network, $packets)} 'mean’, (2, 'ms;))} : ‘mean', (60, ms),
~ pack{) o, : PArep = 12}
AN mmwmm e Lo <<PAstep>> 1
“stransmitw SResbly) =4 {PAdemand=(asmd’, h h
display() > ‘mean’, (25, ‘ms’))} ! !
1 1 1
T !) \

Figure 4.2 Annotated UML sequence diagram for web services invocation

Then, the UML model is translated into Layered Queueing Network model as shown in
Figure 4.3 [CPF04] below.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

’WS Requestor User 4»@
(1.0]

protocolProcessing
{ [45, 0] SOAPO
(1,0
transmitW SRequest
’ [1.03, 0] Network @
\—4,(1, 0)
[WSControl B
‘ (2.8, 0] WSCoordinator WSP
(1,0} N
determineOutputFormat
2, 0p] W SInterface (1,0) 4 1,0) (1, 0)
pack unpack parse
‘ [25.0] | [12.5,0] | SOAP! [12.5, 0] XML1
"transmitW SResult l“’ 0)
Network NetP :
- 11.03,0] prc[;;:ggs4c%]ss CDSSControl A(":F;,':j—
]
iﬁy 0) i(h 0) i(1 , 0)
validate 1 parse ' transform
XML2
] [5, 0] [12.5, 0] [18.75, 0] (,0) (1,0
RetrieveEPR |UpdateEPR DB_
[50.8. 0] 161.2, 0] EPR Database
(8,0) l l (12, 0)
Disk
[5, 0]

Figure 4.3 Layered queueing network model for web services invocation.

However, before the results of performance analysis are imported back into the UML
model, we need to collect data (using the LQN solver) to conduct sensitivity analysis. We
will describe the performance modeling tool - the LQN solver - that is used to collect data

for our experiments in the next section - section 4.2.2.

4.2.2 Data Collection with the LQN Solver

Our experiments have been carried out using the Layered Queueing Network (LQN)
solver which can be downloaded from the Real-Time and Distributed Systems Group
(RADS) web site at department of Systems and Computer Engineering in Carleton

University (http://www.sce.carleton.ca/rads/index.html). The LQN solver is a

performance modeling tool that is available on a variety of operating systems, such as

Linux, Unix, and Windows. The input of LQN solver is the demands at various

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components such as disks and processors. The outputs of the LQN solver produce are the
service time, utilizations (e.g. CPU utilization), throughputs of the software system. We
collect the experimental data from the LQN solver output file. In figure 4.4, a section of a
LQN solver output file that comprises response times for tasks is shown; in figure 4.5, a

section of a LQN solver output file that comprises utilization for processors is shown.

Task Name Entry IName Phase 1 Phase 2
UserT User Q 11048.9
SOAPOT protocolProcessingE 10055.1 0
MNetworkT transmitE 10009.8 0
WS CoordinatorT WSControlE 2210.78 o]
WSInterfaceT determineOutput’™WSE 2.47253 0
SOAPIT unpackSOAPE 13.4156 0
packSOAPE 26.8312 Q
AT AT parselE 14.7503 a
CDSSControlT processCDSSE 2206 47 0
>3AT2T walidateE 47.8046 4]
parseE 55.3046 s}
transformE 61.5546 0
EPRT retrieve EPRE 110.8 Q
updateEPRE 101.2 o}
DBDiskT DBDiskE 5 8]

Figure 4.4 Response times for tasks

Ttilization and waiting per phase for processor: "WSP

Task Name Prin Entry Name Ttilization Phl wait Ph2 wait
W SCoordinatorT 0 10 WSControlE 0.0126642 0.115019 O
WSInterfaceT 0 1 determineQCutput™WSE 0.009046321 0472556 0
SOAPIT 0 1 unpackSOAPE 0.05653%94 0.915669 4]

' prackSOAPE 0.113079 1.83134 0
SOAPIT Total 0.169618

AL 1T 0 1 parselE 0.05653%4 2.25043 0O

Total processor utilization: 0.247868

Utilization and waiting per phase for processor: Applic_ CPTU

Task Name Prin Entry Name Utilization Phl wait Ph2 wait
CDSSControlT 0 10 processCDSSE 2.26339 39.2307 0
HXhAL2T 0 1 walidateE 0.0226142 42.8075 O
parseE 0.0565355 42.8075 O
transformE 0.0848033 42.8075 O
HAL2T Total 0.163853
Total processor utilization: 2.42734

Figure 4.5 Utilization for processors
4.3 Experimental Results

In this section, we will demonstrate how sensitivity analysis with Design of Experiments
techniques is performed to optimize the software design. We have implemented our

system using Java.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4 shows how the response times change while varying both number of

processors and number of CDSSControl threads.

25 —e— 4 CDSSControl threads
20 * —a— 6 CDSSControl threads
- —=— D CDSSControl threads
e« 15 i — .
(]
£
i= 10 —
@
o
H 5
3
o O
o

0 2 4 6
Number of Processors

Figure 4.6 Replicating Applic_CPU processors

The data for Figure 4.4 is shown in Table 4.1 as follows (response times are in seconds):

#CDSSControl Threads (Response time) #Processors
Processors 4 6 10 Means y,
1 21.65 20 19 50.22
2 15.65 14.43 13.18 14.42
3 12.44 10.85 10.05 11.11
4 11.73 10.13 9.68 10.51
5 11.6 10.06 9.66 10.44

Table 4.1 Dataset (response time) for replicating Applic_CPU processors

Factorial Treatment Design:

We have two factors in this case: number of Applic CPU processors (#Processors or
factor A) and number of CDSSControl threads (# CDSSControl Threads or factor B). For
the #Processors factor, there are five levels, i.e. 1, 2, 3, 4, and 5 processors; for the
#CDSSControl Threads factor, there are three levels, i.e. 4, 6, and 10 threads. There are
two hypotheses:

For interaction,

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hy. (af3)ij= 0 for all i, j

H;. at least one (a8);; # O for some 1, j
For main effects, for #Processors (factor A)

Hp: y1= y2=.= ya

Hi: ;i, ¢y_k for some i, k

For #CDSSControl Threads (factor B)

Ho: ya=yao=._= ;-b

Hi: y,;#y, forsomej,m

Due to the fact that we do not have a design alternative to the key scenario (depicted in
Figure 4.2), we only have one replicate. Therefore, we apply Tukey’s test for

non-additivity.

The Analysis of Variance results are summarized in Table 4.2 as follows:

Source of Degrees of
Variation Sum of Squares Freedom Mean Square FO
Processors 209.439 4 52.36 1558.3
Threads 13.681 2 6.8405 203.59
Non-additivity 0.0961 1 0.0961 2.86
Error 0.235 7 0.0336
Total 223.451 14

Table 4.2 Analysis of Variance Summary Table for dataset of replicating Applic_CPU2 .

We can draw conclusions from table 4.2 as follows (note that we choose confidence level
at 0.95 when we select F value from the table):

a) For the interaction effect, we have 2.86 < Fy ¢s,1,7= 5.59 (from the table). Therefore,

> Non-additivity refers to the interaction effect.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the null hypothesis is rejected and there is no significant interaction present.

b) For the main effect of #Processor, we have Fg s, 4, 7= 4.12 (from the table).
Therefore, the main effect of #Processor is significant.
Similarly, for the main effect of #Threads, we have Fy s 2, 7= 4.74 (from the table).

Therefore, the main effect of #Threads is significant.

When the main effect is significant, that indicates that there is at least one treatment mean
which is significantly different from others. However, we do not know which one is
substantially different from others. In order to find which one, we can apply a technique

called multiple comparisons. In this case, we use Tukey’s test for multiple comparisons.

MS
We first compute the value for T, = ¢, (a, f) 1/ E =5.06%*0.1833 =0.9275
n

Then we compare among different processors. Note that the ones with an asterisk indicate
that the difference (in seconds) between marginal means of response times of the two

processors is significant.

1vs.2: y, —y, =20.22—14.42=5.80

The confidence interval is (5.8 — 0.9275, 5.8 + 0.9275) or (4.8725, 6.7275)*
1vs.3: y, -y, =2022-11.11=9.11

The confidence interval is (9.11 — 0.9275, 9.11 + 0.9275) or (8.1825, 10.0375)*
1vs.4: y, -y, =2022-10.51=9.71

The confidence interval is (9.71 — 0.9275, 9.71 + 0.9275) or (8.7825, 10.6375)*
1vs.5: y, -y, =20.22-10.44=9.78

The confidence interval is (9.78 — 0.9275, 9.78 + 0.9275) or (8.8525, 10.7075)*
2vs.3: y, —y, =1442-11.11=331

The confidence interval is (3.31 — 0.9275, 3.31 + 0.9275) or (2.3825, 4.2375)*
2vs. 4y, —y, =1442-10.51=3.91

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The confidence interval is (3.91 — 0.9275, 3.91 + 0.975) or (2.9825, 4.8375)*
2vs.5: y, —y, =14.42-1044=3.98

The confidence interval is (3.98 — 0.9275, 3.98 + 0.9275) or (3.0525, 4.9075)*
3vs. 4 y, —y, =11.11-10.51 = 0.60

The confidence interval is (0.60 — 0.9275, 0.60 + 0.9275) or (-0.3275, 1.5275)
3vs. 50 y, —y, =11.11—-10.44 =0.67

The confidence interval is (0.67 — 0.9275, 0.67 + 0.9275) or (-0.2575, 1.5975)
4vs.5: y, —ys =10.51-10.44=0.07

The confidence interval is (0.07 — 0.9275, 0.07 + 0.9275) or (-0.8575, 0.9975)

We note that starting from three processors, the difference in response times becomes
insignificant. In other words, when the number of processor is three, increasing the
number of processors will not significantly affect the response time. In this case, response
time becomes insensitive to any number of processors exceeding three while varying the

number of #processor. Therefore, we conclude that the optimum number of processors is

three.

In order to prove that our conclusion is correct, and therefore prove our methodology is

correctly applied, we have collected another set of data as shown in Table 4.3.

#CDSSControl Threads (Utilization)

processors 4 6 10
2 1.612 1.73 1.97
3 1.99644 2.26 2.42
4 21 2.4 2.51
5 2.1 2.4 2.51

Table 4.3 Dataset (utilization) for replicating Applic_CPU processors

The only difference between table 4.1 and table 4.3 is that the output of the table is the

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CPU utilization (percentage of time that CPU is busy) in table 4.3, not response time (as
in the case of table 4.1).

We note that the largest number in table 4.3 is 2.51. That means that no matter what the
number of processors is, the CPU utilization is not larger than three processors (or CPU),
each running at 100%. Therefore, we can conclude that the optimal number of processors

is three, the same conclusion that we reached after our sensitivity analysis.

In this case, design of experiment (DoE) techniques are applied to study how the changes
in the levels of input factors (e.g. increase number of processors from 1 to 2) affect the
changes (difference in treatment means) in the performance (e.g. response time) of the
web services-based system and analyze the interaction between the factors and the effect
of each individual factor in a quantitative way, thereby, providing more accurate feedback

to software designers on the development of service-oriented software systems.

The above sensitivity analysis demonstrates how Design of Experiment (DoE) techniques
assist in choosing the optimal system configurations such as the number of processors.
However, sensitivity analysis with DoE techniques can be applied to many other areas to
improve the performance aspect of the architectural design and provide solid feedback to
software designers. The software development cost of a web services-based system will

be greatly reduced in this way.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Conclusions and Future Work

The performance of a Web Services-based system is critical in today’s competitive
marketplace. By the time that software architecture is chosen, performance problems
become very costly, if not impossible to fix. Therefore, performance analysis needs to be
pushed back in the early stage of the software development cycle, during the architectural

design stage.

5.1 Contribution of the Research

During the architectural analysis of a service-oriented architecture, quantitative
performance analysis is carried out. Before the results of performance analysis are
imported back into an annotated UML (Unified Modeling Language) model of the
architecture, sensitivity analysis can be used to study how system factors (e.g. number of
users, number of processors, or number of threads) affect the performance of the system

and to quantify the sensitivity. However, little research has been done in this area.

This thesis proposes that Design of Experiments (DoE) techniques be employed in
sensitivity analysis to quantify each factor’s effect on the performance of the system and
analyze the interaction effect between factors, and to optimize the architectural design of
a service-oriented architecture. The ultimate goal of such an approach is to provide the
software designers solid feedback at an early stage of the software development cycle to
improve the performance of the Web Services-based system and to reduce the cost of

software development of a Web services-based software system.

5.2 Directions of Future Work

There are a number of directions that researchers can pursue in the future.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e To evolve the Design of Experiment Methodology

Sensitivity analysis using Design of Experiment (DoE) techniques is currently
performed to analyze two factors and to quantify the effect for each individual factor and
the interaction between them. In the future, researchers should be able to analyze
more factors (i.e. three or more), each with multiple factor levels, and conduct sensitivity

analysis on these factors using DoE techniques.

e To provide a CASE (Computer-Aided Software Engineering) tool environment

In service-oriented architecture (SOA), sensitivity analysis (SA) for performance analysis
during the architectural design stage can be used to optimize the design and substantially
reduce the development cost due to performance problems. SA also provides solid
feedback to the software designers. In the future, a CASE tool environment needs to be
developed to integrate more performance analysis methodology such as sensitivity
analysis using DoE techniques to provide such feedback. In this case, the CASE tools
should have user-friendly graphical user interfaces for the ease of use by the software

designers.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Alm81] Al-Marshed A.M., Compaction Effects on Asphaltic Concrete Durability M.S.

thesis, Civil Engineering, University of Arizona.

[Bas96] Basili V.R., The Role of Experimentation in Software Engineering: Past, Current,
and Future, Proceedings of ICSE-18, IEEE, 442-449, 1996

[BCK98] Bass L., Clements P., and Kazman R., Software Architecture In Practice,

Addison & Wesley, 1998

[BIM98] Balsamo S., Inverardi P., and Mangano C., An approach to performance
evaluation of software architectures, Proceedings of the First International
Workshop on Software and Performance (WOSP1998) (Santa Fe, New Mexico,
USA), ACM, October 1998, pp. 178 — 190

[BJK02] Brown A., Johnson S., and Kelly K. Using Service-Oriented Architecture and
Component-Based Development to Build Web Service Applications. Rational

Software Corporation - IBM, 2002.

[BJR99] Booch G., Jacobson 1., and Rumbaugh J., The Unified Modeling Language User
Guide, Reading Mass.: Addison-Wesley, 1999

[BS01] Balsamo, S., Simeoni, M.: On transforming UML models into performance
models. In Proc. of Workshop on Transformations in the Unified Modeling

Language, Genova, Italy (2001)

[CMO0] Cortellesa V., and Mirandola R., Deriving a queueing network based

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance model from UML diagrams, Proceedings of Second International
Workshop on Software and Performance (WOSP2000), Ottawa, ACM, Canada,
2000, pp. 58 - 70

[CN96] Clements P.C. and Northrup, L.M. Software architecture: an executive overview,
Technical Report No. CMU/SEI-96-TR-003, Carnegie Mellon University,
Pittsburgh, PA, February, 1996.

[CPF04] Catley C., Petriu D., and Frize M. Sofiware Performance Engineering of a Web
Servie-Based Clinical Decision Support Infrastructure, Proceedings of the fourth
international workshop on software and performance (WOSP2004), Redwood

Shores, California, ACM, January, pp 130 - 138
[Crn03] Crmkovic, 1., Component-based software engineering - new challenges in
software development, Proceedings of the 25th International Conference on

Information Technology Interfaces, ITI 2003. pp. 9 — 18

[Fow02] Fowler M., Public versus Published Interfaces, IEEE Software, March/April
2002 (Vol. 19, No. 2)

[FWO03] Frize M., and Walker CR., Development of an Evidence-Based Ethical
Decision-Making Tool for Neonatal Intensive Care Medicine, Proc. IEEE
EMBS Conf. Sept. 2003

[Franks00] Franks G., Performance Analysis of Distributed Server Systems, Report
OCIEE-00-01, Jan. 2000, PhD. thesis, Carleton University

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[GB98] Grahn H., and Bosch J., Some initial performance characteristics of three
architectural styles, Proceedings of the First International Workshop on
Software and Performance (WOSP 98), Santa FE, NM, October, 1998, pp.
197 — 198.

[Gra02] Graham S. Building Web Services with Java: Making Sense of XML, SOAP,
WSDL, and UDDI. SAMS Publishing, Indianapolis, 2002.

[GVCO00] Grassi V., Vergate T., and Cortellesa V., Performance evaluation of mobility
based software architectures, Proceedings of the Second International
Workshop on Software and Performance (WOSP 2000), Ottawa, Canada,
September, 2000, pp. 44 — 46.

[HCO1] Heineman G.T., Councill W.T. Component-Based Software Engineering:
Putting the Pieces Together, Addison & Wesley 2001

[Hicks83] Hicks C.R., Fundamental Concepts in the Design of Experiments, 3" Ed., Holt
Rinehart & Winston 1983.

[JWO00] Jogalekar P., and Woodside M., Evaluating the scalability of Distributed Systems,
IEEE Trans. on Parallel and Distributed System, v11 n6 pp 589-603, June 2000.

[KK99] Klein M. and Kazman R., Attribute-based architectural styles, Technical Report
No. CMU/SEI-99TR-022, Software Engineering Institute, Carnegie-Mellon

University, Pittsburgh, PA, October, 1999.

[KAB+96] Kazman R., Abowd G, Bass L., and Clements P., Scenario-based analysis of

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software architecture, IEEE software, vol. 13, no. 6 pp. 47-55, 1996.

[KKB+98] Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H., and Carriere J.,
The architecture tradeoff analysis method, Proceedings of the Fourth

International Conference on Engineering of Complex Computer Systems

(ICECCS98), August, 1998.

[LMS03] Lavagno L., Martin G, Selic B., UML for Real: Design of Embedded Real-Time

Systems, Kluwer Academic Publishers, 2003.

[MCMO0] Merseguer J., Campos J., and Mena E., 4 pattern-based approach to model
software performance, Proceedings of the Second International Workshop on
Software and Performance (WOSP2000) (Ottawa, Canada), ACM, September
2000, pp. 137 - 142

[MNO98] Maiden N. and Ncube C. Acquiring Requirements for Commercial Off-The-
Shelf Package Selection, IEEE Software, Vol. 15, No. 2, Mar., 1998

[PK99] Pooley R. and King P., The Unified Modeling Language and Performance
Engineering, IEEE Proceedings - Software, Vol. 146 No 1, February 1999,
pp 2-10

[P0oo00] Pooley R., Software engineering and performance: a roadmap. In Proc. of the

conference on the future of Software engineering, pages 189—-199, 2000.

[PS02] Petriu D.C., Shen H., Applying the UML Performance Profile: Graph Grammar

based derivation of LON models from UML specifications", Computer

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Performance Evaluation - Modelling Techniques and Tools, Lecture Notes in

Computer Science 2324, pp.159-177,Springer Verlag, 2002.

[Smith90] Smith, C. U. Performance Engineering of Software Systems, Reading, MA,
Addison-Wesley, 1990.

[SWO00] Smith C.U. and Williams L.G., Software performance antipatterns,
Proceedings of Second International Workshop on Software and Performance

(WOSP2000), Ottawa, ACM, Canada, 2000, pp. 127 — 136

[SW93] Smith C. U. and Williams L.G., Software performance engineering: a case study
including performance comparison with design alternatives, IEEE Transactions

on Software Engineering, Volume: 19, Issue: 7, July 1993, pp. 720 — 741.

[SW02] Smith C.U. and Williams L.G. Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software Addison-Wesley, 2002

[Szy98] Szyperski, C. Component Software — Beyond Object-Oriented Programming,
Addison-Wesley 1998

[Tew92] Tew J.D., Using Central Composite Designs in Simulation Experiments,

Proceedings of the 1992 Winter Simulation Conference, IEEE, 529-538, 1992

[WS02] L.G. Williams and C.U. Smith, P4SA%™: g method for the performance
assessment of software architectures, Proceedings of the third international
workshop on software and performance (WOSP2002) (Rome, Italy), ACM, July
2002, pp. 179 — 189

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[WS98] Williams L.G. and Smith C.U., Performance evaluation of software architectures,
Proceedings of the First International Workshop on Software and Performance

WOSP1998) (Santa Fe, New Mexico, USA), ACM, October 1998, pp. 164 -177

[Wo0002] Woodside M., Tutorial Introduction to Layered Modeling of Software

Performance, Carleton University, 2002.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

NAME: Tony Huang
PLACE OF BIRTH: Beijing, China
EDUCATION: Unive rsity of British Columbia, Vancouver, B.C.

1995 - 1998 B.Sc.

Universit y of Windsor, Windsor, ON.
2002 — 2004 M.Sc.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Performance analysis of Web services-based systems with sensitivity analysis.
	Recommended Citation

	tmp.1618420692.pdf.AXwwE

