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CHAPTER I

1.0 Introduciion

A doubly-excited atomic state is produced by the simultaneous
excitation of two electrons from the ground electronic state of the atom.
Typically such states are imbedded in the ionization continuum associated
with single excitation as shown in Fig.l. The configuration interac-
tion of the doubly-excited state with the continuum allows the state to
decay to the ground state of the parent jon with the emission of‘an
electron. A well studied example is the 252p1P state of helium which can
be produced by photoabsorption from the ground 1s2!s state (Madden and
Codling, 1965). The 2s2p’P state tends to decay to He+(ls) ground state
plus an outgoing continuum P electrom. The above process of electron
emission from a doubly-excited state is known as autoionization.

Autoionization can be regarded as the outgoing half of an
elastic scattering event by the parent ion. The inverse process, di-
electronic recombination, is also possible with the autoionizing state
appearing as a resonance in the elastic scattering of the electrons by
the ground state of the parent ion. The incoming electron as reviewed
by Tayldr {1575 excites one of the target ion's electrons into an
outer orbit leaving a hole or potential well near the centre of the
atomic system through which the incoming electron tunnels and becomes
temporarily trapped by the screened nuclear potential. The resulting
'compound state' decays either by autoionization or by the emission of
radiation in the absence of collisions with a third body. The funda-

mental events leading to the formation of autoionizing states are sum-

marized in Fig. 2.
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1.1 Historical Survey

Pig;re Auger (1923, 1925) was the first to observe autofonizat-
jon, Passing X-rays into a cloud chamber that was filled with a gas, he
observed the tracks left by the electrons which were emitted by the atoms
in the gas. Studying hydrogen, argon, chlorine, iodine, krypton, he
found thgt many short range tracks diverged from points of impact at low-
er concentr;tions. He concluded that each primary ionization was accom-
panied by one or two secondary ionizations. Auger interpreted this
~ phenomenon as being caused by the emission of one inmmer electron from
the atom, leaving the parent ion in an autoionizing state.

Later Compton and Boyce (1928) observed the ultraviolet spec-
tra when helium, neon and argon were bombarded by electrons. In helium,
lines at 320.38 & and 309.04 & were tentatively identified as transitioms
from the doubly excited states 2p2s, 2p2p to the continuum states 1s2s,
1s2p respectively.

Kruger (1930) further studied the ultraviolet spectum of
helium. Although he did not find any line at 309.04 4, he observed lines
at 320.329 & (the 320.38 & line of Compton and Boyce) , at 321.186 4, at
322,517 &. The transitions he assigned to these lines were 2p23P—152p3P,
2p21$—152p1P, 2p215-152p1P respectively.

Predissociation, which is the molecular amalog of autoionizat-
ion, was first examined by Rice (1933). Above the dissociation limit of
a molecule there lie quasi-discrete band spectra, giving rise to weakly
quantized states embedded in a conéinuum. Excitation of the molecule
into these states is followed by either a radiative transition to a low-

er state or dissociation of the molecule. Rice found that the rotation



levels were broadened, distorted out of shape, shifted‘in position and
had rather complicated secondary structures.

In 1934, Whiddingtén and Priestly (1934) observed the energy
loss spectrum of a beam of electrons passing through helium. Using
electron beams having energiés ranging from 100 volts to 600 volts,
energy losses of 59.25 *,12 volts were observed. Since the energy ab-
sorbed by a transition from the 1s? ground state to the 2p? doubly-
excited state is approximately 58.6 electron volts, Whiddington and
Priestly concluded that this was. the transition being observed. They
also noted that there seemed to be iﬁdications of structure in the energy
loss spectrum, although it was not completely resolved by their apparatus.

In 1935, Massey and Mohr (1935) calculated cross sections for
the electron impact excitation of éoubly—excited states of helium, using
the Born approximation and approximate wave functions for the initial
and final states. The calculated relative intensities and angular dis-
tributions agreed qualitatively, but not quantitatively with the experi-
mental results of Priestly and Whiddington (1934, 1935) for the transit-
ions from the ground state to the 252p1P and 3sZplP doubly-excited states.

From the late 1930's to the mid 1950's little progress was
made, either experimentally or theoretically. But in the late 1950's
computers came into general use and a revival of interest in the theory
of doubly~-excited Sfates occurred. Also the experimental techniques
necessary to resolve the resonances became available. By the mid 1960's
both theoretical and experimental fields were progressing at a rapid rate.
In 1958, Holgien (1958) introduced the multiconfiguration stabilization
method (MCS) for calculating the positions of doubly-excited states,

and in 1961, Fano further developed and applied Rice's theory of 1933,



A major theoretical advance occurred in 1962, when Feshbach
(1958, 1962) presented a unified theory of nuclear reactions in terms of
sroiection operators P and Q (see Section 2.0.3). As shown by 0'Malley
and Geltman .(1965), and Fano and 006per (1965), the Feshbach projection
operator formalism can be applied directly to autoionizing resonances in
atoms. Also during this time, Burke and co-workers (see Burke, 1968 for
a review) obtained a number of resonances directly from close-coupling
scattering calculations. A large number of calculations using the abéve
techniques have since been published as reviewed by Burke (1968) and Tay-
lor (1970). The very accurate projection operator calculations by Bhatia
and Temkin (1969) and Bhatia (1972) are of particular interest. This
thesis is an extension and application of the 1/Z expansion perturbation
technique developed by Drake and Dalgarne (1971) as described in Chapter
11,

Much of the above theoretical work was stimulated by the very
accuraté measurements of Madden and Codling (1963). Using the National
B reau of Standards 180-Mev electron synchrotron as their continuum light
source, they were able to obtain accurate measurements of the positions,
widths, line shapes, and oscillator strengths of transitions from the
ground state to the radiatively allowed P autoionizing resonances of
helium and other inert gases.

In 1964, Lassettre and his co-workers began to publish a num-
ber of papers on the electron~impact sbectra of a variety of gases such
as He, HZ' methane, ethane, cyclohexane, ethylene, water, nitrogen, carbon
monoxide, oxygen, using an extremely accurate electron~spectrometer.

Recently, results from beam-foil spectroscopy have come into

prominence. In this work, an ion beam is accelerated through a thin



exciter foil causing further ionizatiom, excitation and electron pickup
in the beam ( Bickel et al, 1969 ). The rapid multiple éolliSions occur-
ring are efficient in producing multi-excited electronic states. Many
doubly-excited states decaying to singly-excited states by photon emiss~
jon can be observed in this way (Berry et al, 1972a)

Also in experiments involving a gas target instead of a thin
foil, resonances such as in electron-helium ( Simpson et al, 1965 ) and
jon-helium (Rudd, 1965) inelastic scattering were observed., (For a

review, see also McGowan, 1970.)

1.2 Astrophysical Importamnce

Autoionizing resonances are important in astrophysical problems
for two reasons. TFirst, they serve a§ indicators of the physical condit-
ions present in a given regiom. Second, they function as decay modes or
channels through which a stellar region can leak its ehergy to the out-
side.

Because transitions involving autoionizing resonances are '
typically broad with characteristic line shapes, they are readily and
uniquely identifiable (Goldberg, 1966). Such lines by their absence or
presence can indicate which species of atoms are not or are present in
a stellar plasma and in what ionized states they exist. Also the rela-
tive intensities of those lines excited by the stellar continuum indicate
the relative zbundances of the species present in the plasma. Conversely
if the abundances are known, then the observations of transitions involv-
ing autoionizing states can be used to deduce the intensity of the stel-
lar continuum and the electron temperature (Burgess, 1966) . The pro-

cess of dielectronic recombination through am autoionizing state has
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been found to be of gre;t importance in determining the ionization
balance in the high temperature stellar plasmas such as the Solar Corona
(Walker and Runge, 1971). In fact, before autoionizing tranmsitionms
were taken into account, there was a discrepancy between the temperature
of the Solar Corona as deduced from the observed Doppler widths of the
ngorbidden" emission lines to Fet?, Fe¥13, cat!" and as deduced from
jonization balance calculations. The Doppler width method gave a
temperature that was twice the temperature resulting from ionization
balance calculations (Burgess, 1966).

Until recently it has not been possible to observe many of
these transitions in astrophysical spectra because the earth's upper
atmosphere is opaque to ultraviolet light. However the advent of
orbiting satelite observatories has now made it possible to observe

* these valuable spectra.

1.3 Outline of Thesis

The remainder of the thesis is divided into two chapters:
one containing the formal theory of autoionization, the other describing
the calcﬁlations, results and conclusions.

In Chapter II the S-matrix formulation of scattering theory
is presented. This is followed by a discussion of 2 particular problem
of scattering, -autoi;nizing resonances. The scattering resonance
problem is then formulated in terms of the Feshbach Q,P projection
operator formalism and an expression for the resonant phase shift is
derived. From this, an expression for the resonance width and an inter-
pretation of the resonance energy is made.

The specific method used to calculate the resonances in this

thesis: the 1/Z expansion perturbation method is then presented in

o
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detail for zero-order nondegenerate and degenerate casés. Also an
appropriately modified formula for the resonance width is described.

In Chapter III, numerical methods used to calculate the
positions and widths of the nondegenerate'ZpZID and the zero-order
degenerate (2d3d % 2p3p)3D states are outlined. The results obtained
are tabulated and compared with results found by other authors. The
advantages of the method are discussed and compared with other methods.

Finally suggestions for future work are proposed.



CHAPTER 1II

2.0 Resonance Scattering Theory

2.0.1 S-Matrix Formulation of Scattering Theory
In general the time-independent Schrodinger equation for the

total system of target atom and incident electron is
-> > > > >
?Ho(r1) + Ha(rj) + V(r], rj) - E} ?(ri, si) =0 (2.0)

where Ha is the atomic Hamiltonianm, Ho is that of the incident electron,
V is the interaction, ;i is the position coordinate of the ith electron
relative to the fixed nucleus, and s; is its spin coordinate.

The asymptotic solution for the equation is a linear combin--
ation of all possible asymptotic solutions satisfying the Pauli exclus=-
ion principle. The Pauli principle is satisfied if ¥ is antisymmetric

-5
in the interchange of any pair of rj, s;. Since

lin v(é'l, £) =0 ) 2.1
r,> J

1

It follows that the asymptotic solutions will be products of the
independent electron and atomic systems respectively. Before collision,

the electron is a free particle with wave function

iko'T ‘
= 0°T1
Y= xso(s]) (2.2)

+
where ko = Bg/h, ;; being the momentum of the incident electron.

XS (s]) is the initial spin state of the incident electron. Similarly
o -

10
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the target atom will initially be in a state wo(?s, sj). Therefore a

possible asymptotic solution is

2.2
b s a5 €0 ug Gy o) 2.3)
1 o

After collision the target atom can be in any energetically accessible

state wY. If the change in kinetic energy of the scattered electron
is AK.E. then

2 2
E.=[E-E | =_1|p-~- N
e = [55 ] = Loy, 2.4)

> >
where Py is the momentum of the scattered electron. Since ky=py then
h

2

29 _ _ .
b - )] = 2ale 2 2.5)

h

The scattered electron can be represented asymptotically by an out-
going spherical wave multiplied by an angle-dependent function
on(ﬁg, QY). Therefore the asymptotic wave function of the scatter-

ed electron is written in the form

by = £y (o ch) %ﬂ‘ﬁ Xg(ep) (2.6)
1
where foY (ﬁo, iy) is called the scattering ampiitude. The quantity
IfOY (ﬂo, IzY)[2 represents the probability of the electron being
scattered from ﬁo into the direction ﬁy. The scattering amplitude
foY (ﬁo, QY) can be related to the differential cross section do which

is defined as
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do = number of particles scattered into solid angle dQ per unit time (2.72)
incident flux '

A A 2
~ A hk fQY(k°’ kY‘).l r12dsz
2| T |

dao (k s k)=m (2.7b)
Yo tk,
E ~ 2 A
dog, (e, k) = EYI Fo,(koslp) | dky - (2.7¢)
[¢]

foY (ko ky) depends on the interaction for its functional form.
Therefore the general asymptotic form for the wave function of

the electron-atom system is

> . 1k, T >
¥ (r,, s,)— X (s,) e Ty (r., s.)
i ir1+w So. 1 o 373

+ 15 e @, E) U@, s,
vS XS(SI) f} OY( o kY) wy(rg’ SJ) (2.8a)
> N ' : >
¥ (ri, Si) = ?ko (ri, Si) + wSCAT.(ri’ si) (2.8b)

where Wko is the incoming plane wave and ¥g.,p 1is the scattered wave.
¥5cat, vanishes if there is no interaction.

Usually the wave function is expanded in terms of the complete

set of target eigenfunctions

Y, s) = By (F) x(s) wYG‘J., s5) (2.9)

YS

Expanding in terms of the angular momentum eigenfunctions is called a

>
> Ko. T, -
partial wave expansion. The plane wave ei 0°*1 "can be expanded as

> > :
ik .rq _ 4 1A = * T -
e* 0"l =41 T ilo i1, (korl) z Ylomo(kO)Yl m (rl) (2.10)
1, m, oo

where jl (kor1) is the spherical Bessel function with the asymptotic
o

form
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lim jlo (korl)-—>-sin(kor] - lo'n/ 2)
kor]—"* © kor]
Therefore
> >
iko 'r.l * A - FS
lim e =2t I Z Y k) Y (kY)
r,—> @ kr, 1 m 1omo ° 1omo

~i(k r.-1 7/2) itk r,-1 w/2) 141
x {e ol o -e ol o }i o

~

where r, = ky' Similarly we expand

A A

f (k ,k)=IZc, (k)Y (k)
oy o’y n Im“ 0o’ "ImYY
with .
¢ (k) = <on(ko,1;Y>| T, &)
-or A
A 2 * A
clm(ko) =1 % m Y1a (ko)
lm oo 0O
o o
where :
b, =<Y, (k)£ (k,k)| T (k)
1omo lomb 0 o,Y oY Im Yy

A matrix T, the tranmsition matrix, can be defined as

. 1-1 -1
_ T 7o
Tfyosolomolyslm) = /EokY i

S (ko)onlYlm (kY)>
2 co

so that

A 1"'1’!'.!

y= 2r £ £ 2321°  T(y.slm]yslm)
]

°% °Y Kk 1w lm 0000

(2.11)

(2.12)

(2.13a)

(2.13b)

(2.14a)

(2.14b)

(2.15)

(2.16)
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Also a matrix S can be defined as
T(quolomol*{slm) = G(Yosolomolyslm)-s (Yosolom'olyslm) (2.17)
where G(Yosolomolyslm) is a kronecker delta

GCYosolomolelm) = GY Y sso,s 610’1 8

2 ,n
0 o’

Using the S matrix formulation for fo (ko,kY)'and the asymptotic form

> > Y

ik -r
)

o
for e and substituting into w(ri,si) as 1, + ® leads after rearrange-

ment to (Geltman, 1969)

1+

> o * % X
U(r,,s)—>212 I3 L I _i Y, k)Y (k)
$254 r{‘*‘” yeln lu -z lomo o” Im Y
o o (k.yko) r-l

-i(k r,-17/2)
x ot (o E o) [s0r,s tg lvstm oY

i(kYr1—lﬂ/2)]

- S(Yosolomolelm) e
(2.18)

Physically the wave function has been expanded in terms of the complete
set of scattering state eigenfunctions with the absolute squares of
the amplitude coefficients representing the probabilities of finding
the electron-atom system in the corresponding scattering state. The
difference between the complete solution w(;i’si) given by (2.18) and
the incoming plane wave Wko is the scattered wave WSCAT (;i,si) given

by the second term of (2.8), i.e.

- ikYI'.] A A >
?(ri,si) - Yko =3 Xs(sl) e fo (ko’k1) ?Y(rj,sj) (2.19)

Ys T, Y
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Using the partial wave expansion for wk and comparing with (2.18)
0

shows that

on(xo, k) = 2l ITIZ {5(Yos°1°mo]Yslm)-S(YosolomolYslm)}

1m Im
00 -
X Ylomo (ko) Ylm (kY) (2.20)

The scattering amplitude is related to the cross-section by (2.7¢).

Since physical laws are invariant under time reversal it

follows that

s = - -
(Yosolomolelm) s(ysl-m|y s 1 o ) (2.21)

S can also be shown to be unitary from the conmservation of total flux.

2.0.2 Scattering Resonances

Physically resonances correspond to the.temperary trapping
of the scattered particle by the target.- Scattering resonances can be
divided into two basic types.

First, the interaction potential may have a well, caused for
example, by the repulsive angular momentum barrier. The incoming particle
may then "tunnel through" the barrier and be temporarily trapped. Since
this type of resonance depends on the shape of the interaction potential
it is called a shape resonance. A second type of resonance occurs
when the incoming particle excites the target causing a structural
Ehange which temporarily binds the particle. Such a resonance is called
a closed channel resonance if the excited target state is energetically

forbidden. The resonances considered in this thesis are of the latter

o
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type. For example, the 252p1P resonance of helium lies below the
excitation threshold for the n=2 states of Het. Closed channel res-
onances of this type appear in the elastic scattering cross—-section
of electrons by the parent iom, and so ii&}=|§6l. Furthermore, the
S-matrix does not conmect states of different angular momentum since
the interaction potential is spherically symmetric. it is also diagonal
in spin if spin-orbit interactions are neglected. We may thus write
SCYosolomolelm) =-6€Yos°10m°[Yslm) Sl(k),. where Sl(k) is an analytic
function of k and 2353 is the energy of the incoming electron. It

2m
follows from the unitary and time-reversal properties of SI(k) that

-1

% % -
and §; k) = Sl(—k ) (2.22)

Thus a pole at k is accompanied by a second pole at - and
a zero at -k. Poles along the positive imaginary k-axis correspond to
bound states and those in the lower k-plane correspond to scattering
resonances.

Consider an autoionizing resonance under elastic scattering
conditions where an atom is excited from its ground state into a
resonant state by a free electron, and after a period of time decays
back to its ground state and ejects the electron.

If a pole'lies at k;kR and is of the resonance state type,
then Sl(k) has an associated pole -kR* and zeroes kR*,-kR. Sl(k) can

be rewritten as

5, () = 1K) (2.23)

1 g
(k) (HE)
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vhere g; (k) is an analytic function of k near the pole. In order to

ensure Sl(kR) = o let gy (k) be redefined as (k+kR) gl(k). Therefore

S0kt ga < (2.26)
) G |

*
Expanding the analytic function gl(k) in a Taylor series about k=kR

results in
k+
s, 0= a0+ ekt g '
S ] 0 R )+ Gk g | el
(2.25)
Since Sl(kR%) = 0 therefore gl(kR*) =0, thus
Sl(k) = ‘k:f kR):(k'- kR*) eZiSI Q-eZisl (2.26)
(e + 1% (- k)
where the phase shifts 51!, 51 are defined by the relatioms
,Sl(k) = e2i61(k) (2.27a) ‘
(k) I (216, () (2.27b)
ety
If ky = B - iy then
H8® L gty k-p -y 2 ® (2.282)

(k- B+1iy) (k+8 +1y)

Therefore
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\ 1
Q216,00 _ 2 g2 4 4P -y 20O (2.28b)
K2 - (8% +¥H) + 2iky

which can be solved for 61(k) to obtain

5,0) = ‘51" @ - tan' R (2.29)
PA=N]

where ER = EE (B2 + Yz), ER = g? Yk
2m 2 m

The above is well known as the Breit-Wigner one-level resonance
formula for a resonance at energy ER and width TR. By definition k is

*
real and positive and lies close to the zero at~kR .

2.0.3 The Projection Operator Formalism

The projection operator formalism allows one to calculate the
positions and widths of scattering resonances without finding a detailed
solution to the scattering problem. Following Feshbach (1962) and
0'Malley and Geltman (1965) the complete Hilbert space of bound and
scattering states may be split into two subspaces P space and Q space

such that if P and Q are the corresponding projection operators then
> -+ > ->
»Y(’I],S]; rZ’SZ) = (@+0Q ‘i‘(r],sl; 1"2,52) (2.30)

P space and Q space are defined so that as ) + o the asymptotic wave
function has no components in Q space and lies entirely in P space.
That is
> Cwe > -
PYG as3 Ty Y015 Tp%)) psmpronic (2.312)

r,orr, >®
197 5
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and

Q¥(ryssy3 Ty,S9)—" 0 (2.31b)

r1 or r2‘+ ®

In general (E-E) Y = 0, so that

QEE) (B+Q ¥=0 (2.32a)
Therefore Q¥ = Q1 Qe ¥ (2.32b)

Q(E-E) Q

where the relations

2

Q" =Q . (2.33a)

P2 =P {2.33b)

Qp.=PQ=0 (2.33¢c)
have been used. Similiarly

PE-E) @+Q ¥=0 (2.34)
or on substitution for Q¥

P{E + HQ 1 Qi - E}P¥ =0 {2.35)

Q(E - B) Q

Since QY asymptotically vanishes {eq. 2.31b), it then follows that Q
space can be spanned by 2 complete set of bound state functions Yn(§l,¥2)

such that
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Byt Gpt) =5 Y, @) 7)) (2.36)
where Q, H Q° are defined as

Q= i | Y > <Yn| | (2.37a)

HQQ = QHQ . (2.382)

Similiarly defining HPP’_HQP’ HPQ as

By, = PHP | ' (2.38b)
HQP = QHP | (2.38¢)
HPQ = PHQ o (2.384)

it follows that

PHQ 1 ap= By 2% T 1 (2.39)
Q(E - H)Q " E-¢
n
and therefore
| (B, + g H.PQIYn> <Yn]HQP -E}P¥=0 (2.40)

E-¢
n

Let E lie closest to ES in the set of an's and consider the Hamiltonian

equation rewritten in the form

A - EIPY = -y [T <Y, | ' s/ | (2.412)

€ . —
n S

:{HPP +Z HPQ. n><Yn]HQP
n+s E -
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Let PY' be the solution of the homogeneous equation

(' -E) ¥'=0 . (2.41b)

where (2.41¢)

7 = ' . .
B = Hp+ I Hp|Y > [8),
ofs 2L B 0 QP
E-¢
n
which is the background scattering problem in the absence of the

resonance. 0'Malley and Geltman (1965) showed>that the solution to

(2.412) can be written in the form

> 1 > | > ] t 1
BELn el Dy (e X (547
o o0

A A 1 +1 18 10 (ko)

Ni° e siall oy '-1,1/2 48 (6,0}

-
L korl

' 2 "~
- 2mk°[<W ,HPQYS>[ cos{k r, 1,m/2+67 " (k )}
2 Ee A

kr,!'

h o1

(2.42) |

where As = <YS|HQP G HPQIYS> (2.43)

and G is the Green's function satisfying the equation

) > > > >
{Hpp + nis BpqlTy> Tyl Bp - B} € Gy 7y 1" T,

g

-1, ) (2.44)

= cs(r’1 - ?1') 5(7.-’2
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Defining a new phase shift n(ko) where

. 2
tan (k) = -2mk_|<¥', an_Y§>[ (2.45)

v pr—
h. EESAS

it follows that

> o > % ~
P?if(rl,rz) —12'.31 1})\((1'2, '52) XSO(S1) ’f!lomo(ko) Ylomo(rI) | (2.46)
00 : :

N 5 1.5 PY 30 - '
% 1707 ¢ 070" sin {kor] _:E‘E-P 61o(ko) + n(ko)}

2
korl cos n(ko)

P 3 OO
“1
+7 (ko) and from the Breit-Wigner one jevel resonance formula

But since ¥(%,,%,) p¥ (f,,F,) it follows that 8, (k) =18y k)
¢ -0 (o]

eanls. &) - 6§ @)} IR
1o 1 0
) o . 2 (E—ER)
therefore it follows that
2 _
2mk_ |<¥", By, Ys>| = Tp (2.47)
hz E—eS-AS 2 (E—ER)

In the vicinity of a resonance the wave function will have a very large
ampiitude and this can only happen if cos n(ko)-+ 0 or tan N (ko)—* ®,
Tan 1 (ko)—b- ® when E approaches £ + As. Therefore (ss + AS) must

jndeed be the resonance position ER Therefore

. 2
Tp = 2mk |<yr, Epq YS>| (2.48)

Thz
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vhere FR is the half-width as shown by the relation
2

{ tan n(ko)}' {E-ER} = i ' (2.49)

N

Far from resonance PY = PT‘ltherefore n(ko) must be small and rise

to_‘%at resonance. At the halfway point n(ko) = _%_ therefore tan _{L(E-ER) =

BB = Ty and thus the halfwidth (B-E) at (k) = § is indeed [,
2

2.0.4, Methods of Calculating Resonances

Methods of calculating resonance positions and widths can be
divided into three categories as follows:

1. Detailed Scattering Calculations:. In principle ome can
simply calculate scattering cross-sections as a function of emergy,
using, for example, the close-coupling method introduced by Massey and
Mohr (1932) and extensively developed by Burke (for recent reviews see
Burke, 1968 and Taylor, 1970). Any resonances then appear when the cross-
section is plotted as a function of energy, provided that the appropriate
closed channels are included in the calculation. Although electron-
atom scattering resonances were first discovered by Burke and co-workers
in this way, the method is extremely time consuming and becomes completely
impractical when more than a few channels are involved.

2. Q-Projection Operator Methods: By definition the eigenvalue
spectrum of QHQ is entirely discrete at least up to and just above the
resonance position. It follows that the eigenvalues € of QHQ can be
bounded by a standard variational calculation. If the resonance is
narrow, then the configuration interaction of Q space with the continuum

P space is weak and the compound state wave function is well described
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in the region of physical space near the nucleus by a bound state type
trial solution. In addition, the residual energy shift A =E_- €,
arising from the interaction with P space, though difficult to evaluate,
is small. Recent caiculations by this methdd are referenged by Bhatia
and Temkin (1969) and Bhatia (1972). The major disadvantages are that
the exact target eigenfunctions must be known in order to comstruct the
Q operator and the emergy shift As is not included.

3. Energy Stabilization Methods: An alternative procedure
introduced by Holgien and Midtdal (1966) and Miller (1966) does not
require a knowledge of the exact target eigenfunctions. In essence,
one simply diagonalizes the Hamiltonian in a finite basis set and looks
for roots which stabilize in eﬁergy as an exponential parameter is
varied. Perkins (1969) has shown that recent configuratisa interaction
calculations by Holdien and Midtdal (1971a, 1971b) yield upper bounds
to the eigenvalues of QHQ in this way, although their results are of
low accuracy. The accuracy can in principle be improved by use of a
correlated basis set, but the resulting eigenQalues are no longer
bounds to the resonance positions since components of the continuum P
space are automatically included and an additional criterion must be
introduced to eliminate spurious results. Essentially, the difficulty
is that one is not sure whether a given solution to the variational
problem is an approximation to an autoionizing state, or to a scattering
state lying near by Drake a&d Dalgarno(1971) have suggested a 1/Z
expansion perturbation procedure with an adjustable screening parameter
to circumvent this.difficulty. The advantages of the method are that
the exact target eigenstates need not be known, and a substantial part
of the energy shift is included. In addition, the variational root

corresponding to the autoionizing state can be uniquely identified. The
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If the corresponding energy eigenvalues are re-expressed in units which

are 1 ]2 the size of the old units, then the proper form of the

(Zo
Hamiltonian in terms of the 1 expansion results
Z
_ -1
EH=H + Z, Vv (2.52a)
where
N 2
Bo=3 {-9,°-11 (2.52b)
—] —
i=1 2 T,
i
N
V= 1l -0z 1 (2.52¢)
i>3 rij i=1,ri
Z =2-0 (2.52d)

The choice of Q épace is arbitrary provided that the eigenfunctions
spanning ‘it vanish in the limit as r, Or I, + o, The 1/Z perturbation
expansion method is generated by choosing Q space to contain oaly ome
eigenfunction @SO of Ho. @so is just the product of hydrogenic orbitals
which describe fhe autoionizing state in zero-order and is therefore

known exactly. Then

_ o} 0
Q= o.°> <2 | (2.53)

where H 0 © =E °¢ °. Also it follows that
0Ss S S

o _ 0 -1 ° 1 _ Ofyl. O ,
B @s = (Es +2, B 87 , B =< [vie > {2.54)

Since H.. has no other eigenfunctions (by this particular definition of

Q
Q space), it follows that g'= HPP (from eq. 2.41c). Also since HoQ =

ESOQ and PQ = 0 it follows that -
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Therefore the total resonance energy eigenvalue Es, Es = &g + AS is

E=E%+2 1g"
s s g S

ed O o =1
=<e |Ble "> + 2, <@

fon =1 _ -1 o
where Igs>--zo P (ES B??) PVI@S >
Multiply through by (ES—HPP) to obtain
-1 )
- > = >
E H?P)IES Z; PV[@S
Thus E<t [g>=<¢_[H]E>+2 '1<g VERS
s °s!®s s s o] s s
Add equation (2.59) to equation (2.56) to obtain
01~ O a ) 0
E{<@ o> + <€ [g>} = <@ ” + ¢ [B[0 %+ >

Defi ¥y = o T o - =
ine s @s + Eer Note that ¢s Qws and gs Pws. Then (2.60)

becomes

Es = <wslﬂl"“;

<11)S |1ps>

If ws is taken to be a trial functiongﬁ;,tthen equationt (2.61) .is. the

starting point for a standard Rayleigh-Ritz variational calculation in

-2 o -1 o
+2, <0 |VR(EE,,)" pvie ">

(2.55a)
(2.55b)

(2.56) -

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)
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which the trial function is varied to find the stationary values of f;.
However unlike the situation for bound states, autoionizing states are
jmbedded in the scattering continuum and the trial value of the energy
%s is not an upper bound to the exact energy. One cannot even say that
the stationary values of E; become more accurate (i.e. closer to the
exact resonance position) as the trial function becomes more flexible.
We therefore impose the subsidiary condition that <ws[¢s> =1 +.<gs|gé>
be a minimum with respect to variations in the screening parameter O.
This minimizes the perturbation corrections and guarantees that ws
resembles as closely as possible (on the average) the zero-order function
) °, which is knéwn a priori. In this way, spurious results can be
eliminated and the variational eigenvalue belonging to the autoionizing
state corresponding to @SO can be uniquely identified. |
The method of calculation is as follows. We introduce a

finite orthonmormal correlated M dimensional basis set ¢i satisfying

< y[B o> = € 8y5 LI = Toees M (2.62)

-

The ¢i's are constructed from linear combinations of correlated functions
of the form r1a r2b r12c e_ar1_8r2 with o and B set equal to their
hydrogenic values. One of the ¢i’ say ¢s will then be the exact

hydrogenic reference state @so with eigenvalue e, = Eso and the trial

~
function ws may be written

g o]
T =0+ I a0 : (2.63)
its

Thus automatically satisfying the normalizationcondition<wsl@so> = 1.

The variational coefficients ai are determined by substituting (2.63)

!



29

into (2.61) and setting SES =0, i*s. This gives rise to the set of
Ba,

- i > = <
non-linear equations (where Vij ¢i|V|¢j> )

M ~
115 TR TR (g5 = Bg) = sy » jds (2.64)

which must be solved iteratively since i; is given in terms of the a, by
equations.(2.61) and (2.63). The resulting value of‘isvis identical to
the value that would be obtained by the direct diagonalization of the
total Hamiltonian H in the same basis set, but the above procedure is
much more efficient once the orthonormal functions ¢i.have been con-

structed. Results for the 1D and 3D resomances of helium will be

presented in the next chapter.

2.1.2 The Perturbation Fxpansion

The method described above can be re-expressed as 2 perturbation
series involving powers of Zc—l. The advantages of doing S0 are that
results are obtained for‘the entire helium isoelectronic sequence in a
single calculation, and a direct conmection is established between the
doubly excited zero~-order states @SO and the autoionizing resonances.
We will assume for the moment that the zero-order states are mon=
degenerate. The degenerate case is discussed in the following sectiom.

The correlated basis set ¢i(i + s) spams & subspace of P

space defined by

Po= I R <, | (2.65)

17 i

P, space contains functions approximating both bound and continuum

1
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states in the region of physical space near the nucleus where the
amplitude of the resomant scattering function is large. Thus part of
the shift arising from the interaction of @SO with the continuum can

be .aken into account. However, the spectrum P1HP1 remains entirely

discrete and the solution to the modified problem specified by

[0.> = [o.% + zc,'1 P, (E - HPIP‘I)-] p,v[e >  (2.66)

which was obtained iteratively in the previous section, can also be
generated in terms of a standard Rayleigh-Schriédinger perturbation
expansion in powers of ZU-T. The method is summarized by Lowdin

(1966) for bound states and can be applied directly to equation (2.66).

Writing
N
- max
¥ g%+ 1 z By @ (2.67)
s s a=1 Y ]
' Nmax
¥ =5°+ 3 z 2gp0® (2.68)
s s n=1 g s

the results may be expressed in terms of the recursion relations (Drake

and Dalgarno, 1971)

(@) _ (a-1) . T _® ., (@p)
VT s 7] 6 <byf - 22 B 9> <4l g9
=" s p=I. 5
. E - €. T E~ -¢,
s i : s i
n-1
Es(n) = <ws(n 1) lv'®s°> -2 Es(p)<\bs(n_p)l@so> (2.70)

p=1
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The direct iterative calculation of (2.64) in effect sums the perturbation
series for a particular value of Z while avoiding possible divergence
difficulties arising from the use of a finite basis set. The advantages
of the perturbation expression approach above are that a direct connection
is estaplishéd between the zero-order solution @so and the autoionizing
state, and results are obtained for the entire isoelectronic sequence

in a single calculation.

2.1.3 The Zero-Order Degenerate Case

)

Consider for example the 2p3p°D and 2s3d°D resonances. These
states are degenerate in zero-order and the perturbation theory must be
appropriately modified. In the case of an m-fold zero-order degeneracy

such that

s o 3j=1,2,3, cieeym (2.71)

Q space must be extended to include the complete degenerate subspace

of the m zero-order eigenfunctions @s °. Therefore
k|

°l . (2.72)

If the Q space degenerate eigenfunctions are to be eigenfunctions of

H, th
4 then .
ool %= (Es°+Zo_—1Es.‘1)|CI> %> Esl=<®S°IV|<I>S°> (2.73a)
*k k. Sk K "k K
or

1

J

M
e %< °lm +z
=1 ] Sj [¢} g X

[o} = o] -1 1 0>
j v[@sk> € +2, Eski)lés (2.73b)
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i

8 In

Thus we must impose the condition that <®s.°[V|¢Sk°> = ESk 3k
other words the eigenfunctions must diagonalize tﬂe perturbation V.

In general the perturbation V will remove the zero—or&er degeneracy of
the m eigenfunctiqns of Ho and cause m autoionization resonances to be
formed. The set @s.o can be redefiﬁed as m linearly indepeﬁdent linear
combinations of theJold set @s.o . The new set @S‘o can be chosen

to diagonalize V and be orthonormal. Since any lineir combination of
degenerate.eigenfupctions is itself a degenerate eigenfunction, the new
set @s © will still be m-fold degenerate for Ho. Consider H' defined

3
in the discussion of the Feshbach P,Q projector formalism

B = Hy + ‘nis Hpo Yo <Y, Hop (2.41c)

E - €

In the nondegenerate case H' reduced to HP? since Q space spanned only
the eigenfunction space ]YS> <Ys] = ]¢s°> <®s°]. In the m-fold zero-

order degenerate case

v -1 o -1
B =Hy+ I PIHO +2] v]@s. > < IHO +z, Ve (2.742)
ik i i
E-E°-E]
S S,
3
B °o_roo0 ) oy _ o_ 1 ) .
s 8 =E e °and P]@S' >=0. ButVp, 0 °=E, & ~andin
] ] h ] R
general
Qe %40 (2.75)
J
Therefore
' -2 0 o
B =H,+ I 2 "V, o ><p_ |V (2.76b)
P 0 My” 7y @
E-E°-E_!
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-1 -1

Also in the nondegenerate case H?Q = ZG qu, HQP =12 - VQP' Since
Q space is still spanned by eigenfunctions of Ho then
= -1 ’ S
HPQ Zo VPQ {2.55a)
-1
HQP Z - VQP (2.55b)

holds for the degenerate case. Therefore the total resonant emnergy

Es may be written as

k
- - LI
g =£%+2 E '+2 s °|RE - K yVevje O (2.76)
S, s g s ) s s P s
X k k k
where EPP' = B' as defined in equation (2.74c) and the total wave
i . function is
E o> (2.77)

. o -1 - 1 =1
|‘1JS>_|<1>Sk>+z0 P (B - Hyp) PV[tDsk.

Using the same argument as for the non-degenerate case, Es may be
A k

written in the standard variational form -

E =<¥ |gl¥ > (2.78)
Sk Sk S.k
<ws‘ 'l'w's' >

k "k

where <&¥_ |8 %> =1
s, ''s

"k Tk

As in the nondegenerate case "?sk can be represented by the

expansion

) ¥ =06 °+ % a0, (2.79)
: xSk ks Tt

er—————— 4 S 0
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Thus, the zero-order deéenerate case can be treated in exactly the same
way as the non-degenerate case, provided that V is diagonalized in zero-
order. M zero-order degenerate states give rise to M non-degenerate

distinct resonances when the perturbation V is switched on.

2.1.4 Calculation of the Width

From Section 2.0.3 it was determined that the width PR in the

P, Q projection operator formalism is

Cp_ mk ' 2 \
Iy = _2_g |<¥', Bpq 1A (2.48)
h

where P¥" is normalized to unit asymptotic amplitude, i.e.

t > > . >
P¥ (rl,sl;.rz,s%?::j: i ﬁo_xso(sl)»wy(rz, s5)
] - <00,

~

x 1oty * e yy

N A6 (ko)
1m o "1m (r]) € 9 °

[e I ¢) Cc 0
‘sin fkr, -1 I+8, " &)} (2.80)
x o1 °3 1, (6} _
kr
o1

The formula for the width assumes a more familiar form if PY' is re-

normalized to unit density of states on the energy scale; i.e. so that

JeYy* ey dr dr, = 8- E) (2.81)

with E = 132
2m

This is accomplished by the replacement of Py’ by the following:
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- . '[Zko mr' ! (2.82)
32

so that

o
o

ﬂhﬁ 00

—r &

1 > > . 12k mi}% >

PY (r),85 rz,sz)'—‘f*{ ] DI -Xso(s1) wYﬁrz, S,)
T

1

S oS R A8y, (k)
x1 Y1 n (ko) Y1 m (rl) e o O
[ J¢] . [o ]}
. ]
;,sin {kor1 -1, %. + 510 (ko)} (2.83)
) kor1 )
\]
and Iy = <Y, A 1] . (2.84)

which is Fermi's well known "Golden Rule" for umit demsity of states on
the energy scale.

The above result cannot be applied directly in the preseat
work because the trial function used to conmstruct the autoionizing
state is not constrained to lie in Q space, even though it vanishes
asymptotically. An appropriately modified expression for the width
can be obtained from time-dependent perturbation theory as follows. Let
ws be the variational approximation to the autoionizing state obtained
previously and let Xy be a solution to the background scattering problem

in the absence of the resonance specified by

X 1. - 'V -
? (EE) P X =0 P ¥ = % (2.85)

with P =1 -y <ug (2.86)

An arbitrary solution to the complete time-dependent Schrodinger

equatibn
ih oY = HY (2.87)
ot




36
“can then be written in the form

Ve o (e, T, ot X v B e/h (2.88)
E,

Substitution of (2.88) into (2.87) then leads-to the set of equations

-for the expansion coefficients (after multiplying by <Xk| elEkt/ h )

. .‘ . t
ih dey + 1h < 0> deg &S
i ki's 3% S

it t | 1wyt
) i"<xk[H - Eklxk'> ! e}‘*‘kk * <Xk[H B Eshps> €s® e

(2.89)

withwkn=Ek-En.
h

where we have not assumed that <Xk|1])S> = 0. The first-order perturbation

result is obtained by setting ¢ =1, ¢ = 0. Also -(Es is related.to the
® ; dt

width of the resonance by . )

mde =ch i = (2.90)
dt 2cS dt 2
With the above substitutions (2.89) becomes

dhode, = < |E - Eg + Tl ¥ kst (2.91)
i o =
2

For narrow resonances LR <<|ESI and can be neglected. As shown by

Merzbacher (1970) equation (2.91) can be integrated and the quantity

d zle (t:)]2 approximated to obtain
dt k k
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T, = onf<x JB-E [0 2| o E) (2.92)

with k= [m] &
h

in agreement with (2.84), but with HPQ replaced by H-Es and pf(Es) =1
An advantage of (2.92) is that X need not be orthogonalized to ws since
the'repiacement X = X + aws does not. change Pp.

X is itself a difficult function to evaluate since it
satisfiés the scattering equation (2.85), but since (H—Es) ws= 0 near the
nucleus, X need only be known in the asymptotic region in evaluating
(2.92) (Miller, 1970). The solution for the Schroedinger equation in

the asymptotic region closely resembles a product of screened hydro-

genic functions since the 1 term in H is closely approximated by 1
T

12 1
as r]-'* o,
Therefore
: 2 2
B == 07 - 0,0+ L - @GDNp = E 4y (2.93)
2 2 T r '
12 1

and »

¥ = P¥p = Y= ,f;' {1s (Z)kd (2-1) * kd(Z—l‘)ls.(Z)} (2.94)

where 1s(Z), kd(2-1) are the hydrogenic functions for the ground state
and continuum state with nuclear charge Z and Z - 1 respectively. The
continuum state kd(Z) is a hypergeometric function which when normalized

to unit energy demsity has the asymptotic form (Bhatia and Temkin, 7969).

ki@ o~z (2% sin G 4 = 10/2) g @ (2.95)
1 7Tk r, i

where n = (1—5Z ) arg (L + 1<42) + Z 1n 2kr, with 1=2
,0 * &
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The necessary integrals involving Coulomb functions occurring in (2.92)
can be calculated analytically in closed form with formulas summarized

by Bransden and Dalgarno (1953).



CHAPTER III

In this chapter we first describe how the theory developed
in Section 2.1 was applied to the ZPZJD and (2p 3p # 25 3d) D
resonances of two-electron ioms. The results are then presented and

compared with other theoretical and experimental data.

3.0 Description of the Calculations

The calculations performed in this work can be divided into

the following steps.

3.0.1 Definition of the Basis Sets
The trial functions for the D states of even parity were

constructed from linear combinations of functions of the form

N . -0ry ~-Br, A A
k M
o= (140, ) L2 a,., T ety (r,, T,)
12 13k ijk "1 "2 12 02 1* 72
N -
k -or,-Br, oM . O
+(1 ¢ $IL 3 T2 Y
( 12) L a'ivg PO r2 12 1 211(r1,;2).
where YLl . (r],rz) = mi <1.l 1Ly 2|I..M> Yl (r1) lem (rz) (3.2)
12 12 2
and <1 m 1.m |[IM> is a vector coupling coefficient (Edmonds, 1957) and

™4™
P12 in (3.1) denotes the interchange of the labels 1 and 2 with the (+)
sign being used for singlet states and the (-) sign being used for
triplet states. The first set of terms in (3.1) represents the vector

coupling of ans and a d electron to form a D state, and the second set

represents the vector coupling of two p electroms to form a D state. In

39
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the following, the former terms are called sd-type and the latter are
called pp'-type. Both kinds of angular functions must be included in

the expansion to obtain completeness, even if the basis set contains

powers of ¢ Th

19+ The powers of ., T, and T,, were chosen to satisfy the

relations

120, §>2, K0, i+j+k<N

1'>1, 3'>1, k'>0, i'+j'+k'<N’
A1l integral combinations of (i, j, k) and (i', j', k') were included
for given values of N and N'.

The non-linear parameters ¢. and B were set equal to their

hydrogenic values so that the exact zero-order states would be included

in the basis sets.

3.0.2 Diagonalization of the Zero-Order Hamiltonian
If the expansion (3.1) contains (N+N') linearly independent
terms, then (MN') linearly independent functions ¢n’ n=1,..., N4N'

can be constructed by imposing the requirements

<Gplo5> =8 | (3.2)

<¢anol¢n'> = Enan,n' . (3.3)
as demanded by equation (2.62). Our choice of basis set implies that one
of the ¢n’ say ¢s is the exact hydrogenic reference state @SO while the
remaining ¢n, n+s f?rm a variational approximation to the orthogonal
complement in Hilbert space (see eq. 2.63). The integrals required in
the evaluation of the matrix elements (3.2) and (3.3) are calculated
analytically as described in appendix I and the matrix'diagonalizations

performed by Jacobi's method.
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3.0.3 Iterative Calculation of Autoionizing Resonances

After calculating the perturbation matrix elements Vij =
<¢1|V|¢j>, the resonance positions are obtained from the iterative
solution §f eéuaticns (2.64). If a trial value of is is substituted,
then (2.64) becomes 2 set of N+N' linear inhomogeneous equations in
N+NL unknowns which can be solved for the coefficients a; in (2.63)
and (2.64). A new value of ﬁ; js then calculated from (2.61) and the
procedure is repeated until convergence is reached. Since the approx-

imate resonance position is known in advance, only a few iterations are

usually required. The coefficients a, determine a variational approx-

imation to the resonance wave function ws in the form

~

20
¥ = e, * Loay ¢

i%s
As discussed following eq. (2.61), an additional condition

must be imposed to avoid spurious results. The procedure followed is

to calculate
n=<glP>=1+ I 2z
s'’'s 1 1
iTS
and then minimize N with respect to changes in the screening parameter

¢g. The iterative calculation is therefore repeated for several values

of 0 and the optimum value found graphically. .

3.0.4 Perturbation Calculation of Autoionizing Resonances
Alternatively, the iterative procedure can be expanded in a
1/Z expansion perturbation series as explained in Section 2.1.2. The
equations for each order in 1/Z are then 1inear and can be solved
directly, rather than iteratively. The coefficients in the pertur-

bation expansions (2.67) and (2.68) for E; and Eg are generated step

by step from the recursion relations (2.69) and (2.70). Once the



42
expansion coefficients are known, the perturbation series can be summed

for any value of Z.

3.0.5 Calculation of the Resorance Width

After calculating the resonance wave function by the iterative
or 1/Z expansion procedure, the width FR is obtained from (2.92).
However, since ws is not normalized to unity, the equation should be

corrected to read

2. 2
Iy = 2n[w|” 7 ]<u v >] (3.5)
where W= <$;|H - Eslxk> s (3.6)

and xk is the symmetrized (or anti-symmetrized hydrogenic product).

. 5> > > >
Xk = ‘712.. {Xk (r-!’ rz) > xk (rz, I'.l)} 3.7
> > 5> >
X (rT,rz) =1s (r1, Z) kd (rz, z-1) (3.8)
with s Gy =2zl ‘ (3.9)
Y
and kd (r,2) —~_ /2_ sin {kr + Z InZkr - 7 + n]} (3.10)
r—-ovVik k ‘ '

This continuum function corresponds physically to an inner hydrogenic is
electron with eigenvalue -22/2 moving in the field of the full nuclear
. charge Z and an outer hydrogenic continuum electron moving in the field

of the screened nuclear charge Z-1. The momentum hk of the continuum

o
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electron is adjusted so that the total energy equals the resonance

energy; i.e.

22 +id-k
7

in atomic units. In this approximation the evaluation of W simplifies

as follows. The total Familtonian H can be written

> > > > > > > >
H =H =
o(r‘l’rZ) + V(r.l,rz) Ho(rz,r]) + V(rz,r])

vhere H (7,,2.) =-1V.2-1V.2-7 -z
2 2 T T
1 2
> >
and V(r1,r2)= _1_ -1
T2 %

. > > > o > > > > > >
Then since Ho(r.‘,rz) xk(rl,rz) =E, xk(r],rz) and Ho(rz,r.l) xk(rz,r.l)

>
= IE:s xk(rz,;1), the matrix element W becomes

-~

W= /1 <11)S V(r.l,rz) xk(r.l,rz) * V(rzr.l) xk(rz,r])>

2

The necessary integralc can be calculated analytically in closed form

with formulas summarized by Bransden and Dalgarno (1953).

3.11)

(3.12)

(3.13)

(3.15)
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3.1 Results

Energy eigenvalues and widths were calculated for the three
D autoionizing resonances: 2p?!D , (2p 3p  2s 3d) D, The results
for ZpZiD resgnance are discussed first.

A considerable amount of theoretical and experimental data
on the 2p2!D resonance is available for comparison with our work.
Results from our largest basis sets (10sd, 33pp) and (43pp) are given
in tables 1, 2, 3. The optimum value for the screening parameter
0 = .430 for the iteration method was found by plotting the normal-
jzation versus 0 for several values of the screening parameter (see
table 5). However this vsiue could not be used in the 1/Z expansion
approach because the perturbation series was poorly convergent. Much
better results were obtained with the smaller values 6f ¢ =0.0
and 0.7 used to obtain the résonance positions given in Table 2. The
expansion coefficients are given in Table 3.

Table 5 shows that the energy is relatively insensitive to
the screening parameter over the range of values tabulated. In con-
trast the width FR depends much more sensitively on the value of the
screening parameter as shown by the B results in Table 5. Fortunately
as shown in Table 6 this sensitivity decreases very rapidly with
increasing Z. For Z = 2 the width of the He resonance more than
doubles as O ranges between 0.0 and 0.1. However for Z=3 the change
in the width is less than 6%. For larger values of Z, the 1/Z expan-
sion for the resonance energies are estimated to be accurate to better
than * .05¢eVand the widths to 6.

Examination of Table 4 reveals that the proportions of the sd
and pp'-type angular momentum eigenfunctions within the basis sets,

have a significant effect on the resonance positions. For example
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TABLE 3
2p% 1D RESONANCE

1/Z EXPANSION ENERGY COEFFICIENTS

(10sd,33pp) Basis (43pp) Besis

Energy Energy
Coefficlent Coefficient
Order (In Zo? A.U.) Order (In Zo~ A.U.)
0 ~2,500000 x 107% 0 _2.500000 x 107t
1 1,351562 x 1072 1 1.851563 x 101
2 -5.547969 x 10~2 2 -9.910277 x 10-2
3 -1,1662L5 x 10-2 3 7 5,930965 x 10-2
b 6.374751 x 102 4 -2.316759 % 10-2
5 9,397231 x 10-2 5 -9.853327 x 10-3
3 9.796411 x 10-2 6 2.043806 x 10-2
7 23 480858 x 10-2 7 -7.743570 x 10-3
8 -1.510917 x 10-% 8 -1.204865 x 10-?
9 5.672820 x 107t 9 1.674555 x 10-2
10 -1.290572 10 -1.390922 x 10-3
11 2.107047 11 -1.732526 x 10~2
12 -2.151426 12 1.679837 x 10-2
13 -6.769245 x 10-1 13 5,143362 x 10-2
14 1.,007573 x 101 14 -2.485771 x 10-2
15 -3.025612 x 101 15 1.668032 x 10-2
16 6.082279 x 101 16 1.527151 x 10-2
17 -8.375%65 x 101 17 -3.527463 x 10-2
18 3.981212 x 10% 18 1,388390 x 1072
19 1.989354 x 102 19 3.216994 x 10-2
20 -8.261710 x 102 20 -L.86772 x 10-2

Screening Perameter
- used was o = 1.00

25 -1
E = %y Bo t Zo‘El+ E, + E3Z°_ $ ees

Screening Psremeter
used was o = 0.0
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basis sets containing only pp'-type angular functions yield resonance
positions near 10.13 eV and 59.82 v for H- and He respectively,
while basis sets containing both pp' and sd type angular functions
Yield resonance positions near 10.15 eV and 59.95 eV Tespectively.
The above results illustrate the necessity of including both kinds of
angular function, even for a state which is described in zero-order
as a 2p2'1p configuration. The latter results are o be taken as more
accurate. Similar effects appear also iﬁ the resonance widths.

Our results are compared with other experimental and theoretical
data in Tables 7 and 8. The overall agreement is very good for all

the members of the helium sequence. For H., McGowan (1969) has measured

the resonance position to be at 10;13 eV * .015 eV, Close coupling
calculations by McGowan showed a D Tesonance at 10.149 eV which
agrees well with our result of 10.147 eV, however, Burke's (1968)
result is 10.125 eV. For He, Berry et al (1972) have tentatively
identified transitions to the 2p?!D state from 2p3d’'D and 2p3d’P states.
Although our predicted wavelengths 3334,5 & and 2934 R are closer to
the experimental wavelengths 3372+2 &, 2285:1 R for the 2p? 1p-2p3dlp,
ZPZID- 2p3d1? transitions respectively than the theoretical results
given by Berry et al (1972a) they appear still too far from the experi-
mental results. Also the 0.07 eV width of the 252D should give rise
to a spectral line about 70 4 wide, while Berry et al quote their results
to within a few . Such discrepancies would indicate that the trans-
ition assignments of 2p2lp - 2p3d'D, 2p21p - 2p3dIP for the respective
lines at 3372 + 2 4, 2885 + 1 § are questionable.

We now present the results for the pair of states (2p3p * 2s3d)3D.
Although these are the lowest-lying *p resonances of even parity,

relatively little data are available for comparison. Results for the
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TABIE 7

He I ISOEIECTRCNIC SEQUENCE

COMPARISON OF MEASURED AND THECRETICAL

WAVE IENGTES (I %)

1s2p 1p --»2p2 1p

Aton or

Ion Experiment Our Result
He I 320.63
14 II - 141,14
Be ~ III 78.92¢ :78.83
B IV 50.22% 50,177 -.
c v 34,708, 3. 694
N VI . 25.406
0 VII 19.421%,1 19.401
Ne IX 12,3559 12.369
Mg XI 8.550% 8.522
Si XIII. 6.265% 6.281
b Perrot and Stewart (1968)
'8 Goldberg and Clogston (1939)

Peacock et al (1969)

k Walker and Rugge (1971)
e Goldsmith (1969)
f Edlen and Tyren (1939)
h TFeldman and Cohen (1969}

i Roth znd Elton (1968)
1 Meekins et al (1970)

Other Theoretical
Results

319.8°
41,2P
78.87P
50,170
34,778
25.468
19,438
12.345)
8.548%
6.263%
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lower state are presented in Tables 9, 10.. In this case the optimum
value for the screening parameter 0 = .4000 found by the iteration
‘method also produced a 1/Z expansion series with good convergence
(see Table 10). | |

The width for the lower lying state of He was calculated
to be 1.58 X 107 eV. Thus the autoionization probability is so small

that radiative transitioms to lower states should be observable.

Our results for He are in good agreement with other theor-
etical results as shown in Table 11. Berry (1972b) has observed lines
at 125.8 & and 955 R in 1i II identified as tramsitioms from the lower
%D resonance to the 132p3§'and 2s2p3P states respectively. The wave-
lengths agree with our predicted values of 125.8 & and 959.9 &.

These jdentifications appear reasonable since the width of
the resonance is so small. Théﬁ is, the resonance is almost completely
decoupled from the continuum and is thus more likely to undergo a
radiative transition than an autoionizing onme. However the 0.01 eV
width of the 232p3P state raises some doubt to the correctness of the
second transition assignment (Drake, 1972). In the case of helium
Berry et al (1972a) have assigned to the lines 292.8 & and 2577 A the
transitions 1s2p°P - pp 23-°D, 2s2p°P - pp23-3D respectively. Our
theoretical results of 294.1 & and 2580 & agree quite well.

The higher (2p3p * 2s3d) D state has not yet been observed.
Results for the higher state a;e presented in Tables 12, 13. Again
the optimum ¢ found from the iteration procedure produced a convergent
1/Z expansion. The width for the He resonance was ca}culated to be
2.23X 10—4 eV. Our results for He are in close agreement with other
theoretical calculations as shown in Table 14,

The 1/Z expansion method is computationally simpler than that
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~ TABIE 9
THE LOWER (2p3p + 2s3d) 3D RESONANCE
ITERATION AND 1/Z EXPANSION RESULTS FOR T

HELIUM ISOELECTRONIC SEQUENCE USING A
(25sd, 25pp) BASIS WITH o = %000

Parent Resonance Energy (In ev)

Ion Above Ground State
#He I 63.119

He I~ 63.126

Li II 159.841

Be III 301.139

B IV.. 487,027

c Vv © 717 ..507

N VI . 992,530

0 VII .- 1312.246

F VIII = 1676,506

Ne IX .. 2085.362
%y . 10,32

* Iteration Result

#% goreening Parameter o=0.0



56

TABIZ 10
THE LOWER (2p3p + 2s3d) 3D RESONANCE

1/2 EXEANSION ENERGY CCEFFICIENTS FOR THE
(25sd, 25pp) BASIS WITH o = 4000

Energy Coefficient

Order (In 2,2 A.U.)
0  -1,805556 x 10-1
1 -6.307417 x 10-2
2 -2.219984% x 10-2
3 b.219685 x 1073
b -3.364130 x 10-3
5 1.160912 x 10-3
6 -2.402681 % 10-*
” -9.861181 x 10-5
8 2.001833 x 10-%
9 -9.468510 x 1079

10 6.958154 x 10-5
11 -6.4:96531 x 10-5
12 6.050782 x 10-5
13 4.198586 x 10-9
10 -7.570341 x 10-5
15 4,762316 x 10-5
16 -5.743411 x 19-5
17 3.465624 x 10-5
18 5.881102 x 10-6
19 3.673783 x 10-5
20 4,302018 x 10-5
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TABIE 12
THE HIGHER (2p3p % 2s3d) JD RESONANCE
TTERATION AND 1/Z EXPANSION RESULTS FOR THE

HELIUM ISCELECTRONIC SEQUENCE USING A
(25sd, 25pp) BASIS WITH o= .4300

Parent Resonance Energy (In eV)
Ion Above Ground State
*He I © 63.750
He I - 63.757
i 1II. 161.001
Be III 302.807
B IV ' 489,196
c V- 720.175
N VI 995, 7l
0 VIL 1315.907
F  VIII . 1680.662
Ne IX. 2090,012

*Tteration Result
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TABIE 13
THE HIGHER (2p3p + 2s3d) 3D RESONANCE

1/Z EXPiNSION ENERGY CCEFFICIENTS FCR THE
(25sd, 25pp) BaSIS WITH o = 4300

Energy Coefficient

Order (InZ2 AU.)

0 -1.805556 x 10-1
1 -5.575676 x 10-2
2 -2.663710 x 10-2
3 6.658920 x 10-%
4 4.630566 x 10-3
5 -3.976807 x 10-%
6 1.007597 x 10~3
7 -8.339323 x 10-%
8 1,648211 x 10-3
9 3.402156 x 10-%
10 6.147293 x 10-%
11 1.339402 x 10-k
12 b,597267 x 10-5
13 -1.480566 x 10-3
b 2.872248 x 10-%
15 -1.567826 x 10-3
16 1.210010 x 10-3
17 -9.029224 x 10-%
18 2.370231 x 10-3
19 -1.253187 x 10-3
20 2.909570 x 10-3
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of Bhatia and Temkin (1969) and is capable of producing very accurate
resulté., For example, the lower (2p3p 233d) 3D resonance of He was
calculated in this work to lie 63.119 eV above the ground state, using
a 50 term basis set. The experimental vaiue is 63.116 £.001 eV above
the ground state (Berry et al, 1972). Bhatia's (1972) Q-projection
operator calculation yielded 63.118 eV for the resonance position,
but his calculation required a 112- term Hyleraas basis set and a

separate evaluation of the energy shift.

3.2 Suggestions for Future Work

The experimental results of Berry et al should be re-
examined in the light of our calculations and those of Bhatia (1972)
especially those transitions involving the 2p21D state. Calculations
of the oscillator strengths for transitions from the D states would be
helpful in making identifications. Also the properties of the higher
lying D states should be calculated.

The 1/Z expansion method can be extended to the 1Li isoelectronic
sequences. In the case of Li, both doubly and triply excited resonances
occur. |

It has been shown that the proportion of sd and pp'-type angular
functions in the basis set significantly affects the resonance position.
Therefo;e some criterion is needed for optimizing the angular momentum

composition of the basis set.



APPENDIX I

Calculation of Matrix Elements

A1l necessary matrix elements M, except those involving Coulomb

functions, can be expressed as a sum of terms Mi

M=IM {a.1)
i . .
with each term havihg the generél form

1 ? %

m, m, n, m,
M, = <Flab,emBly ) (4.2)
1 2 1 72
_ _a_b_ c -ory-Bry
where F(a,b,c,0,8) = 1T, Ty @ Aa.3)
m ~ A
1 %2
=Y (r,) Y (r,) (A.4)
11 12 11m1 1 12m2 2

and the angle brackets denote the complete gix-dimensional integration
< > = f r-zsine dr,do d¢.‘r 'zsiﬁe dr,d6.,d¢ (A.5)
. 1 11V 12 2772772772 '

>
T

Zl , the integration

Since the integrand contains powers of Ty = [;1 -
is most easily performed by changing the variables of integration so

that (Margenau and Murphy, 1956)

© I, o 21

T
< >= [r‘dr]frzdrzf r1,9%;, [sind a8, [ do, { ax (A.6)
0 0 0 0 0
)
) >
where X is the angle of rotation about the direction of r, as shown in

Fig.3.
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(S

2 Electron Coordinate System

Fig. 3:h
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(A.6) now contains an explicit integration over I, but the polar angles

92, ¢2 for electron 2 are mo longer independent variables and must be re-

expressed in terms of the independent variables rl,rz,f12,9],¢1,x as
described below.

However, it is first necessary to re-express the products of

four spherical harmonics in (A.2) as a sum of products of two spherical

harmonics by use of the relation (Edmonds, 1957, eq. 4.6.5.)
L1
. L+ Mo, S .
ARNATORE O R 5 1) [(211'+1)(-211+1)(2L+1)]
1™ ™ L1=|11'-1]|
, . T

: ] - 1
X ‘11 l1 L 1] 11 L1 YLl;M1 ORCR);
1
o 00 m,' oy M
Using the analogous expres-

wue%mf%vmd{a;ﬂka3ﬂsmML
~ -i

vt (2)* Yl (2), .the angular functions can be written
2

sion for Yl o
2 2

n'm,' * m
1 T2 o B} -

1 T
L' bt

1 1 1 1
11 +11 12 +12v m1 +Mzhn2
= _ 5 '
L =l§ -1, L -I:ZL 1] > oy pty) <Gyt
1 1 71 2 172 72 4T

with o1, = {@L+1) LD @ N
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As mentioned above the angles 62, ¢2 are not irdependent

variables, but the spherical harmonic Y. 6,, ¢,) can be written
L2-M2 2° 2

in terms of the independent variables by means of

L

. B 2 *
2 2 n 2 2
L2 %
where D_M is a rotation matrix for a co-ordinate transformation in
2’ -

which the Z-axis is rotated into the r, direction, and 612,¢]2 are the

polar angles of r2 relative to , (see Fig. 3). Using also the relation

L
o 1
':IL]M1 (81567)" = [2Ly*] DM],O (91:81>X) (4.10)

4T

and the orthogonality of the rotation matrices

21 21 7. L L

1 2 %
D (0:,045X) D (¢,,6,,X) sind, d6.d¢.dx
o o 0 Myl TUTUA TG U L
- & S, % ra L, @)
L 1,72 el by e

together with (A;9), we obtain the basic angular integral

2T 2T T

*
fr. ., (8,,00) Y, o (8,,4,) sindde,d¢,dx
0 0 0 LIMI 171 L2 MZ 2°72 11
2 [ '
= 81 18 S Y (6,.,,9,,)
e R T R R b L0 1z
- om 8 5. . P (cosd,) (4.12)
Ml’—MZ LI’LI 1 12

Thus the angular function (A.8) becomes, on integrating over 91,¢1,x
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] |
2T 21 7 o' m, * ml m,
0 b b lirarl g o] sin®d8dédx
1 7 172
» Ty ! 1.'1. 1L
= s"]! 2 IZ.IMAX C(llt,ll,L) c(lz'slz’L) ! !
2 I=1.._.. 0 00
. MIN \ ’
1.'1, L) (YL 1L
1 Y
x 1 22012 T2 R (eost ) (A.13)
] t -
m, ', M{j0 O O m,' m, M
with L= Max (1,71 ]]1,-1, ], u])
- . [ \ ]
LMAX = Min (1, ., 1, +12)
= L = =m_ !
and M= - o, + o,

. 2 2 2 . .
Since c:osel2 =1, + T, =Ty s PL(coselz) is a function of r,, Ty, and

2r1r2
Tigs and is to be included in the integrand for the three remaining

radialiintegrals in (A.6).

The radial integrals to be calculated are then of the form

® ® r.+r

172
IL (a,b,c,0,B) = I rldr1 f r2dr2 f Ty dr12
0 0 [T4=T,]
172
-0r.-fr
abc 1772
X r, T, Ty, e PL(COSSIZ) (A.14)

A useful recursion relation exists which allows the calculation
of IL (a,b,c,0,B) for all L once I0 and I] are known for a range of

powers a,b and c. The recursion relation can be derived by considering

matrix elements of the angular momentum operator 12 2= 13 of the
i id}
form 2
10 01
L=<y ofs Ig, F@bsesB) o ¢} (A.15)
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1f 12 2 operates to the left, then 1=0, If 12 2 operates to the right,
b}

’
1
10
s
L O

e triple radial integral (A.14)

then using (A.12)

! boel
0 1
»12 2 F(a,b,c,0,8)> = 0

3

L= %'(F(a,b,c,u,B) P. (cosd ))+ <
L 12 . 0L

' (A.1.6)

where the outer round brackets denote th

and the angle brackets denote the complete six-dimensional integral as

before. Since

1, Fla;byes8) = © PlaH bH,e-2) 102 (4.17)
. i
: A A i -0.) -i(9,~97)
and (eyey) = sindy siny Pt "y (8.18)
i 2
equation (A.16) becomes
T.L(a,b,c,a,B)
= ¢e< sinel sine2 {e o-e } F(atl,b+1,6-2)>
L 0 : 0 LI °
: (A.19)

After re-expressing the above as a sum of products of two

spherical harmonics and using (A.12) to perform the angular integrations,

the recursion relation reduces to

I (a,b,c,a,8) = _C {ILH (a+1 ,b#1,c-2,0,8) - IL_l(a+1,b+1,c-2,CL,B)}
2L+1
(A.20)
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or

IL'H. (a,b:csass) = (%) IL(a-1 ,b-1,c+2,a,8) + IL-] (a,b,c,GL,B) (A.21)

This is a recursion relation for integrals containing the
Legendre polynomial PL(coselz) and is not equivalent to the well known
recursion relation for the Légendre polynomials themselves. The plan
of the calculation is to compute Io(a,b,c,a,B)for sufficiently many

values of a,; b and c,'and store the results in a table. Then, using

__2 2 2
cose12 = r] + r2 - r]2 s I] is

Zr]r2

I, =% {Io(a-l,b+1,c,a,6) + Io(a+l,b-1,c,a,6) - Io(a—l,b—l,c+2,a,8)}
' o (A.22)

All other I can then be obtained from the recursion relation (A.21).

ot

The integral

-arl-Br2

fr1+r2 a b ¢
e

dr,.r.’r, r

-] ©
I(a1,b-1,c-1,0 B) = [ dr, [ dr, 1251 T2 12
0o .10

Ir]"rzl

is evaluated as follows. First, the range of integration over T and

T, is split into two parts depending on whether or not r1>r2 so that

© -aor © b -Br2 r1+r2

Io(a-1,b-T,e-1,0,8) = [ r,% e ¢
0

dr f r, e dr, f ) Iy dr]2
2 2™
~0r r. tr

] dr, f 12 r,,© dr

12
T,-T

mb B ©
-Br a
+ f r, e 2 drz f r, e
t 2™

0 1

The integrations over 2P yield
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r.tr '
(e o, CBen) ean 2im
rer, T2 T2 2 I )Tz T (8.24)
172 e+l i=0
and
RINLD | €/2) (..
L2 s _94 241
BRSPS TR b Byt (&.25)
21 ctl  i=0
wheré[;-;_J is a binomial coefficient and (c/2) denotes the greatest

integer in c¢/2. The integration over ry and r, can then be performed

with the help of the formula

rn! e (A.26)

4= ]
j=0 un3+j!

™~

f rI_1 e-ar dr = -

to obtain the final result

To(a-1,b-1,0-1,0,8)

_, e [c+1] ¢ g ! LY q'! (p'+)!
F Do @) o T P g0 o T e
with  p = ar2i] | (.27)
q = btc-2i
p' = bH2it]
q' = ate-2i

Notice that all contributions to (A.27) are of the same sign so that
there is no possibility of numerical cancellation.

Collecting results and using (A.13) the integral Mi in (A.2) is
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X IL(a,b,c,OL,B)

M+m1'+m2" LMAX
-1) z ce(d,', 1,,1) e(l,',1,,L)
= . 11 2 272
2 LN
[ \ [ t \I[ 1
y 1.l 1, L l2 1 112 12
l—ml' m, M l‘O 0 OJl-mz' o,

(4.2

(o2}
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