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ABSTRACT 

This thesis proposes a multi-objective, mixed integer, non-linear programming model 

of cellular manufacturing systems (CMS) design to maximize the system reliability 

and minimize the total system cost simultaneously. The model involves multiple 

machine types, multiple machines for each machine type, multiple part types, and 

alternative process routes for each part type. Each process route consists of a sequence 

of operations. System reliability associated with machines along process routes can be 

improved by increasing the number of parallel machines subject to acceptable cost. 

Assuming machine reliability to follow a lognormal distribution, the CMS design 

problem is to optimally decide the number of each machine type, assign machines to 

cells, and select, for each part type, the process route with the highest overall system 

reliability while minimizing the total cost. The total cost consists of the variable cost 

of manufacturing operations, the inter-cell material handling cost, the penalty cost of 

machine under-utilization, and machine annuity cost. Genetic algorithm (GA) is 

proposed as the solution procedure, and is applied to solve this practical-sized CMS 

design problem. It is shown that, with its characteristics of random selection, 

crossover, and mutation, GA is capable of finding a heuristic solution within a 

reasonable amount of computational time. 
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CHAPTER 1 

INTRODUCTION 

 

In a cellular manufacturing system (CMS), machines are grouped into a limited 

number of cells. Compared with conventional manufacturing systems (job shops, flow 

shops, etc.), the techniques of part family and machine cell formation of CMS is 

advantageous in reducing set up times, throughput times and material handling cost, 

as well as enhancing production efficiency (Wemmerlov and Hyer, 1989; 

Wemmerlov and Johnson, 1997; Askin and Estrada, 1999) because each machine is 

capable of handling different operations for different parts. However, most research 

on CMS design in the past 30 years is subject to the assumption that machines are 

100% reliable. System reliability is one of the major factors influencing the 

performance of CMS. Machine breakdowns result in higher production costs, longer 

production period (if the failed machine cannot be repaired/maintained within an 

expected time), and other manufacturing problems. Moreover, machine rerouting of 

parts to address the machine failure issue is not as easy in CMS as in job shops, even 

though each part may be processed using different machine routes. Unlike the parallel 

configuration of job shops, the series configuration of CMS requires intercellular 

transportation arrangement for rerouting. Therefore, system reliability is more 

important in the evaluation of CMS performance.  

To overcome the challenges of machine breakdowns, Das et al. (2006) proposed an 

effective CMS design approach, which considers system reliability in the allocation of 

parts to available machine routes. In this thesis, their model is extended to consider, in 
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addition to routing flexibility, the optimal number of machines allocated to increase 

the system reliability. More machines improve reliability; however, they increase the 

system cost as well. A CMS design study is thus developed in terms of both efficiency 

and cost-effectiveness.  

The thesis proposes a multi-objective, mixed integer, non-linear programming model 

of CMS design to maximize the system reliability and minimize the total system cost. 

Different process plans are available for each part type. Each process plan consists of 

a sequence of operations, and each operation can be performed by different machines, 

which are configured as a series structure. Accordingly, the level of reliability for 

each process route is decided by the reliability of the machines along the route as well 

as the number of redundant machines.  

It is known that reliability can be enhanced by increasing the number of parallel 

machines. However, this also increases the probability of incurring high penalty costs 

associated with machine under-utilization, as well as the associated annuity costs. In 

addition, different machines are assigned to different cells, so the inter-cell movement 

of parts between operations affects the cost performance. Using the concept of 

alternative process routes, reducing the inter-cell movements among the parts is 

another way to reduce the cost. The machine availability is taken into account to 

estimate the effective capacities of machines by allocating operations to machines.  

The CMS design problem is thus how to optimally decide the number of each 

machine type, assign machines to cells, and select, for each part type, the process 

route with the highest overall system reliability, while minimizing the total cost.      
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In this thesis, genetic algorithm (GA) is proposed as the heuristic solution method to 

solve the model, and is applied to solve a practical-sized CMS design problem. With 

its characteristics of random selection, crossover and mutation, GA is capable of 

finding a heuristic optimal solution within a reasonable amount of computational time. 

The thesis is organized as follows. Chapter 2 contains a review of the related literature, 

and provides the motivation of the thesis, and the extensions that are made compared 

to the model put forward by Das et al. (2006). In Chapter 3, machine availability is 

described. Assuming that machine reliability follows a lognormal distribution, the 

integration of the machine reliability into system objectives is developed in Chapter 3. 

The extended CMS model is described in detail in Chapter 4. The model is proposed 

to both maximize the system’s reliability and minimize the total cost. The total cost 

consists of the variable cost of manufacturing operations, the inter-cell material 

handling cost, the penalty cost of machine under-utilization, and the machine annuity 

cost. The genetic algorithm used in the optimal search to solve this large practical-

sized problem is described in Chapter 5. A numerical example with 24 part types, 14 

machines, and 3 cells is given in Chapter 6 to demonstrate the application of the 

model and the genetic algorithm. Chapter 7 lists the result of the numerical example 

solved by the genetic algorithm. Based on the detailed data about system reliability 

and system’s overall cost, the CMS performance is analyzed under various scenarios 

depending on the weights assigned to each objective. Chapter 8 gives the discussion 

and conclusions for this thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Literature Survey 

Machine reliability is an important factor influencing the expected output of the CMS. 

In the design of an effective CMS, two aspects of  reliability planning are considered. 

First, parts are allocated to machine routes with the highest possible system reliability 

among the available machine routes. Second, in case of machine breakdown, parts can 

be rerouted flexibly to reduce the impact of machine failures. The enhancement of the 

performance in terms of reliability is often accompanied by an increase in the system 

cost. So, an effective CMS design needs to consider reliability and cost 

simultaneously.  

In the past 30 years, effective CMS design models were developed by considering 

various costs and constraints (Wemmerlov and Hyer, 1986; Joines et al., 1996; Selim 

et al., 1998; Mansouri et al., 2000). However, since machine rerouting of parts to deal 

with machine failures is not as easy in CMS as in job shops, only a limited number of 

researchers have considered the effect of machine reliability in their design 

approaches. Although some CMS design models (Wicks and Reasor, 1999; Caux et 

al., 2000) used alternative machines routes to reduce costs and balance part flows,  

they did not take machine failure into account. 

The importance of appropriate reliability planning on CMS output performance has 

been studied by a number of researchers. Logendran and Talkington (1997) compared 

both mean work in-process and mean throughput time in CMS and job shops 

considering machine breakdown. Their study indicated that performance on mean 
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throughput time was better in CMS only when preventive maintenance was performed. 

So it was concluded that reliability is an important design factor in CMS. Seifoddini 

and Djassemi (2001) compared the performances of CMS and job shops considering 

different configurations. They pointed out that, compared with the parallel 

configuration of a job shop, the series configuration of CMS limits the flexibility of 

rerouting to handle machine failure. Their study demonstrated that the effect of 

machine reliability on system performance is more noticeable in CMS. Neither study 

developed a reliability-related design model.  

 In their work on cellular manufacturing systems, Jeon et al. (1998) focused on 

developing a cell configuration which works through alternative routes to deal with 

the problems caused by machine breakdowns. The proposed model minimized the 

inventory handling cost, penalty cost, and waiting cost.  However, the research work 

did not take reliability into consideration explicitly.  Diallo et al. (2001) pointed out 

the fact that machines are unreliable and attempted to develop a cell formation model 

to deal with machine breakdowns through alternative process plans. Moreover, the 

reduction of intercell interactions and the non-availability of machines were also 

discussed in their paper. 

Recently, Das et al. (2006) focused on reliability considerations as well as the entire 

system cost when dealing with a CMS design model. Moreover, a reroute process 

plan was proposed to enhance system’s efficiency. Simulated annealing (SA) and 

genetic algorithm (GA) were combined as a heuristic method to search the local 

optimal solution of the proposed model. Regarding the reliability consideration, both 

exponential distribution and Weibull distribution were used to model machine 

reliabilities, and the model results were compared under the both conditions (Das, 

2008). Das et al. (2008) extended their previous work by integrating preventive 
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maintenance planning with manufacturing system cost and machine system reliability 

in the CMS design model. The model also included an algorithm to determine 

effective preventive maintenance intervals for the CMS machines and minimize the 

maintenance costs subject to acceptable machine reliability. The results demonstrated 

that, compared to a CMS model without preventive maintenance planning, preventive 

maintenance improves the system reliability and decreases the total cost significantly. 

 

2.2 Motivation 

The CMS design research proposed in this thesis extends the work of Das et al. (2006) 

in four ways:  

First, in the model of Das et al. (2006), only one unit of each machine type was 

assigned. If the machine fails, all the parts that are planned to be processed on this 

machine either have to be rerouted, or have to wait for the machine to be repaired if 

there is no option to reroute. In the proposed model, more than one unit of each 

machine type is available to assign. Multiple machines improve the availability and 

reliability of the machine type in question; however, the total cost increases as the 

number of machines increases. Therefore an optimal number of machines needs to be 

determined. 

Second, in addition to the operating and refixturing costs, the objective function also 

includes the purchase cost recovery component of the machine, i.e., the annuity cost 

charged to recover the initial purchase cost, which is often a significant part of the 

overall system cost.  
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Third, machine failures are assumed to follow a lognormal distribution, whereas Das 

et al. (2006) considered the failure distributions to be either exponential or Weibull. 

In this thesis, the system reliability is computed assuming the machines failure times 

are independent and identically distributed as lognormal. Like the hazard rate of a 

Weibull distribution, the hazard rate of a lognormal distribution is not always constant 

over time. Lognormal distributions can take on a variety of shapes with different 

shape and location parameters. It is also often observed that data fitting a Weibull 

distribution will also fit a lognormal distribution (Ebeling, 1997). Additionally, a 

lognormal distribution can deal with both increasing and decreasing failure rates. 

Further discussion in support of the use of a lognormal distribution is found in Section 

3.2.5. 

Fourth, the CMS design problem proposed in this thesis is expected to be a large, 

combinatorial model and difficult to solve exactly. Therefore, a Genetic Algorithm 

(GA)-based heuristic procedure is applied to solve the model. One of the advantages 

of GA is that it can avoid potentially wrong search directions that may lead the final 

solution far away from its optimum location. In each iteration, a set of chromosomes 

act to inherit advantageous characteristics in order to generate new chromosomes. The 

action of crossover tracks the search tendency and leads each generation of 

chromosome to be closer to the optimal solution. The action of mutation maintains the 

versatility of the chromosome to keep the final solution from being trapped in a local 

optimal area. Another advantage of GA is that, compared with traditional methods 

such as tabu searches and simulated annealing algorithms, it searches the final 

heurstic optimal solutions with a set of candidate solutions in parallel in each search 

step, not a single candidate solution; other heuristic algorithms search their answers 
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through candidate solutions one by one (Mitsuo and Cheng., 1997). Therefore GA 

requires fewer iterations to search for an optimal solution. Also, GA does not require 

derivative information or other auxiliary knowledge; only objective functions, 

constraints, and the corresponding fitness levels influence the search direction of a 

GA. GA uses probabilistic transition rules, not deterministic ones. It works on an 

encoding of the parameter set rather than the parameter set itself, except where real-

valued individuals are used (Zalzala and Fleming., 1997). Moreover, GA is easily 

extended and combined with other methodologies. In general, it tends to be 

particularly effective at exploring various parts of the feasible region and gradually 

evolving toward the best feasible solutions (Hillier and Lieberman, 2005). 

 

2.3 Objectives 

The objectives of the thesis are summarized as follows: 

1. To develop a mathematic model of the CMS considering the reliability of 

machines, and considering the possibility of using more than one unit of a 

machine type. That is, the model involves multiple machine types, multiple 

machines for each machine type, multiple part types, and alternative process 

routes for each part type. 

2. To investigate the application of lognormal distribution in the design of CMS. 

With different shape parameter, lognormal distributions can take on a variety 

of shapes to deal with both increasing and decreasing hazard rates. 
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3.  To develop a GA solution for the model. Due to the non-linear nature of the 

proposed model, the genetic algorithm is applied as a solution procedure to 

solve a practical-sized CMS design problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

MACHINE RELIABILITY ANALYSIS 

 

3.1 Machine availability consideration 

In practice, no machine can be considered 100% reliable. A machine either performs 

functions when it is up, or waits for repair when it breaks down. “Availability is the 

probability that a machine performs its function at a given point in the time or over a 

stated period of time when the machine is operated or maintained in a prescribed 

manner.” (Ebeling, 1997). The point availability and interval availability expressions 

can be obtained as follows (Ebeling, 1997): 

The point availability A(t), i.e. the instantaneous availability at time , is the 

probability of machine functioning at time t.  

0t ≥

The interval availability between t1 and t2, can be expressed as  

2

2 1
12 1

1 ( )
t

t t
t

A A t dt
t t− =
− ∫                                                                                             (3-1) 

In addition, the steady state availability, lim ( )TA A→∞ T= , can be defined as inherent 

availability  

lim ( )inh T
MTTFA A T

MTTF MTTR→∞= =
+

                                                                    (3-2) 

where MTTF is the mean time to failure and MTTR is the mean time to repair. 
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In this thesis, machine interval availability, computed using a lognormal distribution, 

is taken into account to estimate the effective machine capacity. Because inherent 

availability is based on both failure time and repair time distribution, a lognormal 

distribution was used to estimate machine availability. 

Thus, availability of each machine type can be estimated from the following function: 

j
j

j j

MTTF
A

MTTF MTTR
=

+
                                                                                             (3-3) 

where Aj is the availability of machine type j, MTTFj and MTTRj are the mean time to 

failure and repair for machine type j, respectively. 

The assumptions  made are listed below.  

1. For each machine type, the failure mode and repair mode are independent.   

2. The information about MTTF and MTTR for each machine type is available 

from the maintenance files. 

3. Machine breakdowns occur independently according to a lognormal 

distribution. 

4. MTTF and MTTR do not change during the planning period. 

5. Preventive maintenance is not considered. 
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3.2 Machine reliability consideration 

 

3.2.1 The reliability function 

The machine reliability function r(t) can be defined as the probability that the 

machine will perform its function over a given time period t. The reliability function 

is represented by: 

                                                                                                          (3-4) ( ) Pr{ }r t t T= ≤

where T is the continuous random variable representing the time to failure of the 

machine,  , , , and 0T ≥ ( ) 0r t ≥ (0) 1r = ( ) 0tlim r t→∞ = . For a given value of t,  is 

the probability that the time to failure is greater than or equal to t. 

( )r t

 

3.2.2 Failure Distribution Function  

If it is defined that  

( ) 1 ( ) Pr{ }F t r t T t= − = <                                                                                           (3-5) 

where F(0)=0 and , then F(t) is the probability that a machine failure 

occurs before a given time t, and F(t) is defined as the cumulative distribution 

function (CDF) of the failure times for machines. The probability density function 

(PDF) for the failure distribution is defined by:  

( ) 1tlim F t→∞ =

( ) ( )( ) dF t dr tf t
dt dt

= = −                                                                                               (3-6) 
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where  and ( ) 0f t ≥
0

( ) 1f t dt
∞

=∫ . 

 

3.2.3 Reliability Function for Lognormal Distribution     

The hazard rate of a lognormal distribution is not constant over time. Lognormal 

distributions may be used to model increasing, decreasing and even constant failure 

rates. The machine reliability function in the lognormal distribution is represented by 

the following equation: 

1( ) 1 ( ln )
med

tr t
s t

= −Φ                                                                                                  (3-7) 

where s is the shape parameter and the location parameter tmed is the median time to 

failure. 

The mean time to failure MTTF of the lognormal distribution is given by: 

2exp( / 2)medMTTF t s=                                                                                              (3-8) 

Because it is time-dependent, the hazard rate of the lognormal distribution cannot be 

analyzed analytically but can be numerically calculated. The hazard rate of a 

lognormal distribution shows a pattern that increases to a maximum and then 

decreases to zero as time approaches infinity (Gupta and Lvin, 2005). Figure 3.1 

shows the lognormal hazard rate at standard deviations σ =0.3, 0.5, 0.7 (Sweet, 1990). 
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Figure 3.1 Hazard rate of lognormal distribution (Sweet, 1990) 

 

3.2.4 Machine Reliability Consideration in a Part-type Process-plan Route 

To show how to correspond the machine reliability function to a part-type process-

plan route, a small numerical example was developed as shown in Table 3.1. Each 

part type may be processed under two process plans. In each process plan, there are 

three operations which may be performed by different machines along different 

process routes. For example, part type 1 may be processed in any of the eight process 

routes shown in Table 3.2. Each route is represented by a 4-digit number where the 

first digit represents the part type, the second digit represents the process plan, and the  

Table 3.1 A sample route for 4 part types and 5 machines 

Process Plan 1 Process Plan 2 Part Type 
Operation 1 Operation 2 Operation 3 Operation 1 Operation 2 Operation 3

1 M3 M2 M4 M5   M2 M4 M3 M1 M4 
2 M2 M4 M5 M3 M1 M3 M2 M5 
3 M1 M4 M3 M2 M2 M4 M5 M2 M4 M1 M3 
4 M1 M3 M2 M4 M5 M4 M5 M1 M4 
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Table 3.2 Process routes for part type 1 

Process Route Machine Sequence 
1101 M3 M4 
1102 M3 M5 
1103 M2 M4 
1104 M2 M5 
1201 M2 M3 M1 
1202 M2 M3 M4 
1203 M4 M3 M1 
1204 M4 M3 M4 

 

last two represent the route. For example, 1201 represents part type 1, process plan 2 

and process route 01, which corresponds to the machine sequence M2-M3-M1 with a 

system’s reliability: 

1201 1 2 3( ) ( ) ( ) ( )t R t R t R tℜ =                                                                            (3-9) 

The machines of the same type in a cell are in parallel, with the corresponding 

machine reliability at time t given by: 

( ) 1 [1 ( )] jm
j jR t r= − − t                                                                                  (3-10) 

where  is the reliability of a machine type j at time t, and ( )jr t jm  is the number of 

machines of type j. 

The reliability of each machine type j follows the lognormal distribution: 

1( ) 1 ( ln )j
j med j

tr t
s t

= −Φ
                                                                             

(3-11) 

Then, system reliability along process route 1201 can be written as: 
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31 2
1201

1 1 2 2 3 3

1 1 1( ) [1 ( ln ) ][1 ( ln ) ][1 ( ln ) ]mm m

med med med

t tt
s t s t s t

ℜ = −Φ −Φ −Φ
t

    
(3-12) 

or, 

1201
1,2,3

1( ) [1 ( ln ) ]jm

j j medj

tt
s t=

ℜ = −Φ∑
                                                            

(3-13)
 

where we use  to define system reliability corresponding to machine types 1, 

2 and 3 for process (1201). The system reliability for other process routes is computed 

in the same way. Maximizing the reliability of each process route for parts by 

choosing appropriate process plans, machine types, and numbers leads to an optimal 

performance of the entire CMS system with the respect to reliability and cost.  

1201( )tℜ

 

3.2.5 Lognormal distribution in reliability studies 

With different shape parameters, σ , and location parameters tmed, the lognormal 

distribution can take on a variety of shapes. With such characteristics, lognormal 

distributions are used for many types of life data, for example, semiconductor life, 

electrical insulation life, crack propagation, and metal fatigue (Ireson et al., 1996). 

Jia et al. (1993) studied the fatigue design of machine tools by considering 

probabilistic reliability. In their model, machine tool fatigue lives are assumed to be 

lognormally distributed. They proposed a theoretical formula to calculate the 

equivalent fatigue load for reliability. 

Because it is essential to collect and analyze field failure data for the purpose of 

assessing and improving the reliability of computerized numerical control (CNC) 

16 

 



17 

 

lathes, Wang et al. (1999) studied field failure data collection and collation. They 

analyzed the data by applying a lognormal distribution to calculate the time between 

successive failures (TBF) and by using the Kolmogorov-Smirnov test to verify the 

goodness of the fit of the data to a lognormal distribution.  

Enginarlar et al. (2005) analyzed lean buffering in serial production lines with 

machine up-and-down time. Based on the consideration of Weibull, gamma, and 

lognormal distributions, they provided a method to select and study the lean level of 

buffering (LLB). They found that LLB mainly depended on the coefficients of  the 

variation in machine up-and-down time distribution, and was sensitive to CVdown 

rather than CVup.  

It is pointed out by Mullen (1998) that the distribution of an event rate is lognormal 

because of the multiplicative processes in software systems; a lognormal distribution 

fits the empirical failure rates well.  He proposed a model to analyze two series of 

failure data and the likelihood of data arising from lognormal based model and Log-

Poisson based model. The results demonstrated that the lognormal based model fits a 

wide variety of reliability growth patterns.  

Gokhale and Mullen (2008) gave an overview of the lognormal distribution. They 

discussed the emerging applications for lognormal distributions and summarized the 

evidence to confirm that it can be successfully applied to analyze problems in 

software reliability engineering.  

 

 

 



CHAPTER 4 

MATHEMATICAL MODEL 

 

The following details are to describe the multi-objective model for cellular 

manufacturing systems. 

 

4.1 Notations 

Indices:  

{1,2,.., }k K∈  Cells 

{1,2,.., }j J∈  Machine types 

{1,2,.., }i n∈  Part types 

{1,2,.., ( )}p P i∈  Process plans for part type i 

(ip) A combination of part type and process plan 

{1,2,.., ( )}o O i∈ p

J

 Operations of (ip) 

{1,2,.., }ipoJ ∈  Set of machine types that can perform operation o of (ip) 

Parameters:  

jA  Availability of machine type j 

18 

 



jAN  Annuity cost of machine type j 

jb  Available capacity of machines type j cluster 

( )ojC ip  Operation and refixturing cost corresponding to operation o of 

(ip) on machine j 

jcp  Penalty cost of non- utilization of machine type j  

id  Demand of part type i 

ijk j k

H
∧ ∧

 Inter-cell transportation cost of moving part type i from machine 

j in cell k to machine  in cell  to perform the next operation  ĵ k̂

N  Number of years to recover the machine purchase cost 

jP  Present cost of machine type j 

q  Interest rate per year 

( )jr t  Reliability of machine type j at time t  

( )jR t  Reliability of machine type j cluster at time t 

js  Shape parameter of log normal distribution for machine type j 

medjt  Median time to failure of machine type j 

( )ojTF ip  Time to refixture for operation o of (ip) on machines type j 

( )ojTO ip  Time to perform operation o of (ip) on machines type j 
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UM Maximum number of machines in a cell 

Decision Variables:  

jm  Number of units of machine type j in the cluster 

jkM  =1 if machine type j cluster is assigned to cell k,  

=0 otherwise 

( )ojkX ip  =1 if operation o of (ip) is assigned to machine type j cluster in 

cell k,  

=0 otherwise 

( )Z ip  =1 if part type i is processed under process plan p,  

=0 otherwise 

 

4.2 Objective Functions 

We assume that there is a set of machines types {1,2,.., }j J∈ to process a set of part 

types with corresponding demands d{1,2,.., }i∈ n i during the planning time. A part 

type may be processed under any of the process plans {1,2,.., ( )}p P i∈ . A 

combination of part type and process plan is expressed as (ip), and 

is the set of operations performed to process the (ip) combination. 

The machines that can perform operation o of (ip) is represented by the set 

.   

{1,2,.., ( )}o O i∈ p

{1,2,.., }ipoJ J∈
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There are two objective functions in this model. The first objective function, defined 

as objective function 1, calculates the overall system reliability through all part-type 

process-plan routes:     

Maximize objective function 1 = 
( )

1 1

P in

ip
i p

R
= =
∏∏

                                                 
(4-1) 

where 
( )

11

( ) ( )
ipo

O ip K

ip j ojk
j J ko

R R t X ip
∈ ==

= ∑ ∑∏       ,i p∀                                                          (4-2) 

Equation (4-2) generates a composite expression by adding up the machine reliability 

along all the feasible process routes for each (ip) combination. During the 

optimization process, the operation allocation variable Xojk(ip) is compelled to assign 

only one machine to each operation of the (ip) in order to comply with constraints (4-

9) and (4-10), which are noted in Section 4.3. Consequently, for each (ip) 

combination, the solution will include the reliabilities of the machines for only one 

selected process route. 

The first objective function is searched to select the appropriate sets of part-type 

process-plan routes and machine types with its numbers to maximize the entire 

reliability of the system. 

The second objective function, defined as objective function 2, computes the total 

system cost, which consists of the variable cost of manufacturing operations (VCM), 

the inter-cell material handling cost (MHC), the penalty cost of machine under-

utilization (MNC) and machine annuity cost (MAC). 

Minimize objective function 2 = VCM MHC MNC MAC+ + +                  (4-3) 

21 

 



The various components of this objective function are computed as follows. 

The variable cost of manufacturing operations VCM computes the operation and 

refixturing costs : ( )ojC ip

22 

 

ojk

( ) ( )

1 1 1 1
( ) ( )

ipo

P i O ipn K

i oj
i p o j J k

VCM d C ip X ip
= = = ∈ =

= ∑ ∑ ∑ ∑ ∑
                                                

(4-4) 

( )ojkX ip  is a binary variable which is equal to 1 when operation o of (ip) is performed 

on a machine of type j in cell k, and zero otherwise. di is the demand of part type i. 

The inter-cell material handling cost MHC computes the total inter-cell transportation 

cost of the parts as they move from machine j in cell k to machine  in cell  to 

perform the next operations (o+1): 

ĵ k̂

                         (4-5) ∑ ∑ ∑ ∑ ∑∑
=

−

= ∈ ∈ ≤≤
+

= +

=
)(

1

1)(

1 ,1
)1(

1 )1(

)()(
iP

p

ipO

o Jj Jj Kkk
kjoojkkjijk

n

i
i

ipo oip

ipXipXHdMHC
) )

))))

ijk j k

H
∧ ∧

 is the cost of moving a unit of part type i from machine j in cell k to machine  

in cell  to perform the next operations (o+1). 

 

ĵ

k̂

The penalty cost of machine under-utilization MNC computes a penalty on the portion 

of a machine’s capacity that is not utilized: 

( ) ( )

1 1 1 1 1

( ) ( )
1 (

[1 (1 ) ]j

P i O ipJ n K
oj oj

j i ojkm
j i p o kj j

TO ip TF ip
)MNC cp d X ip

A b= = = = =

⎡ ⎤+
= −⎢ ⎥

− − ⋅⎢ ⎥⎣ ⎦
∑ ∑ ∑∑ ∑

                  
(4-6) 

where   is the penalty cost of non- utilization of machine type j.  is the 

Time to perform operation o of (ip) on machines type j and  is the time to 

jcp ( )ojTO ip

( )ojTF ip



refixture for operation o of (ip) on machines type j. jA  is the availability of machines 

type j, and  is the available capacity of machine type j. The expression 

 is the effective capacity of machine type j cluster.  

jb

[1 (1 ) ]jm
jA− − ⋅ jb

Finally, the machine annuity cost MAC computes the annualized cost of recovering 

the machine purchase cost: 

1

J

j j
j

MAC AN m
=

=∑
                                                                                      

(4-7) 

where (1 )
(1 ) 1

N

j j N

q qAN P
q
+

=
+ −                                                                                     

(4-8)
 

jAN  is the annuity cost of machine type j, mj is the number of machines of type j,  

is the present cost of machine type j, q is the interest rate, and N is the number of 

years to recover the machine purchase cost. 

jP

The second objective function is searched to select the appropriate sets of part-type 

process-plan routes and machine types with its numbers to minimize the overall cost 

of the system. 

 

4.3 Constraints 

( )

1

( ) 1
P i

p

Z ip
=

=∑          i∀                                                                                               (4-9)   

This constraint ensures that a part type i is processed under a single process plan. 

( )Z ip  equals to 1 if part type i is processed under process plan p, and zero otherwise. 
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1
( ) ( )

ipo

K

ojk
j J k

X ip Z ip
∈ =

=∑ ∑                                                                            (4-10)   , ,i p o∀

This constraint establishes a correspondence between the selections of a process plan 

for a part type i, and assigns the operations of that part to machines in cells where they 

have been allocated.       

1

1
K

jk
k

M
=

=∑      j∀                                                                                                  (4-11)   

This constraint ensures that machine type j is allocated to cell k. It is pointed out that 

‘machine type j’ infers a machine cluster which consists of  units in  parallel. jm jkM  

equals to 1 if machine type j cluster is assigned to cell k, and zero otherwise. 

1

J

jk
j

M UM
=

≤∑                                                                                                   (4-12)   k∀

The above constraint limits the total number of machines of each type in a cell.  

( ) ( )

1 1 1

( )
P i O ipn

ojk jk
i p o

X ip M
= = =

≥∑∑∑     ,j k∀                                                                            (4-13)   

This constraint ensures that, before assigning operations to a machine type j, it has to 

be placed in a cell k. 

( ) ( )

1 1 1

[ ( ) ( )] ( ) [1 (1 ) ]j
P i O ipn

m
i oj oj ojk j jk

i p o

d TO ip TF ip X ip b M A
= = =

+ ≤ −∑ ∑∑ j−        ,j k∀              (4-14)   

This constraint ensures that the capacity of a machine cluster is not exceeded while 

allocating operations to it.                    

( ), ( ),ojk jkX ip Z ip M  are binary variables                  , , , ,i p o j k∀      

24 

 



Finally, this constraint identifies the variables as 0-1 integer. 

 

4.4 Model Summary 

Maximize objective function 1 = 
( )

1 1

P in

ip
i p

R
= =
∏∏

                                             
(4-1)   

where 
( )

11

( ) ( )
ipo

O ip K

ip j ojk
j J ko

R R t X ip
∈ ==

= ∑ ∑∏     ,i p∀ .                                                      (4-2)   

Minimize objective function 2 = VCM MHC MNC MAC+ + +                (4-3)   

where 

( ) ( )

1 1 1 1
( ) ( )

ipo

P i O ipn K

i oj
i p o j J k

VCM d C ip X ip
= = = ∈ =

= ∑ ∑ ∑ ∑ ∑ ojk

                                                
(4-4) 

∑ ∑ ∑ ∑ ∑∑
=

−

= ∈ ∈ ≤≤
+

= +

=
)(

1

1)(

1 ,1
)1(

1 )1(

)()(
iP

p

ipO

o Jj Jj Kkk
kjoojkkjijk

n

i
i

ipo oip

ipXipXHdMHC
) )

))))

               

(4-5)

 

( ) ( )

1 1 1 1 1

( ) ( )
1 (

[1 (1 ) ]j

P i O ipJ n K
oj oj

j i ojkm
j i p o kj j

TO ip TF ip
)MNC cp d X ip

A b= = = = =

⎡ ⎤+
= −⎢ ⎥

− − ⋅⎢ ⎥⎣ ⎦
∑ ∑ ∑∑ ∑

                  
(4-6) 

1

J

j j
j

MAC AN m
=

=∑
                                                                                        

(4-7) 

where (1 )
(1 ) 1

N

j j N

q qAN P
q
+

=
+ −                                                                                      

(4-8)
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Subject to constrains as follows: 

( )

1

( ) 1
P i

p

Z ip
=

=∑          i∀                                                                                                (6-9)   

1
( ) ( )

ipo

K

ojk
j J k

X ip Z ip
∈ =

=∑ ∑                                                                               (6-10)   , ,i p o∀

1

1
K

jk
k

M
=

=∑      j∀                                                                                                      (4-11) 

1

J

jk
j

M UM
=

≤∑                                                                                                     (4-12) k∀

( ) ( )

1 1 1

( )
P i O ipn

ojk jk
i p o

X ip M
= = =

≥∑∑∑     ,j k∀                                                                             (4-13) 

( ) ( )

1 1 1

[ ( ) ( )] ( ) [1 (1 ) ]j
P i O ipn

m
i oj oj ojk j jk

i p o

d TO ip TF ip X ip b M A
= = =

+ ≤ −∑ ∑∑ j−        ,j k∀               (4-14) 

( ), ( ),ojk jkX ip Z ip M  are binary variables                  , , , ,i p o j k∀  
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CHAPTER 5 

A HEURISTIC SOLUTION METHOD BASES ON GENETIC 

ALGORITHM 

 

The idea of a genetic algorithm (GA) emanates from the biological theory of 

evolution which was proposed by Charles Darwin in the middle of 1800s.  Being a 

stochastic global search method, GA begins with a population of random trial 

solutions. In each generation, it evaluates the “fitness” of each chromosome as a 

candidate solution, select better chromosomes to randomly modify and combine, 

generates new chromosomes, and then proceeds to next iteration. In this thesis, the 

“fitness” is measured by the objective functions (4-1) and (4-3). In addition, 

occasional mutation is used to help the genetic algorithm explore perhaps better 

chromosomes than previously explored. Lastly, iteration is terminated when the 

stopping criterion is satisfied, e.g., a given number of iterations or a given tolerance is 

reached. Then the chromosome with the fittest value is closest to the optimal solution.  

Given the example presented in Table 3.1, a chromosome sample is represented by 14 

genes. Genes 1 to 5 represent the optimal numbers of machines of each type. Genes 6 

to 10 denote the cell number, to which the machine group of a given type is allocated. 

The Genes 11 to 14 represent the process routes assigned to part types. Consider the 

example, S=(2 1 2 2 2) (1 2 2 1 2)  (1201 2201 3102 4101). It identifies that 2 

machines of type 1, one machine of type 2, and 2 machines of type 3, 4 and 5, 

respectively, are chosen; two machines of type 1 and two machines of type 4 are 

allocated to cell 1, while machines of type 2, type 3 and type 5 are allocated to cell 2; 
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part type 1 is processed in process route 01 under process plan 2, part type 2 is 

processed in process route 01 under process plan 2, and so on.  

The first step of genetic algorithm is to generate a set of chromosomes randomly. 

Then GA evaluates these chromosomes by a fitness function. In this thesis, evaluation 

is performed by ranking the chromosomes in terms of their values of the objective 

function. After evaluation, the chromosomes with a higher ranking are selected to 

perform the crossover and mutation operations. The new chromosomes generated by 

the crossover operation inherit the ‘excellent’ features of the old chromosomes; the 

mutation operation induces a new chromosome with new features that are not 

inherited from the old chromosomes.  

To illustrate how crossover and mutation work, we consider an example with two 

chromosomes (initial solutions). 

(1 2 1 2 2):(1 2 2 1 2):(1201,2201,3101,:4201) 

(2 2 1 1 2):(2 1 2 2 1):(1101,2102,3202,:4101) 

The interchange between the two chromosomes occurs around the crossover point and 

generates a new chromosome with potentially better solutions. 

(2 2 1 1 2):(1 2 2 1 2):(1101,2102,3202,:4201) 

(1 2 1 2 2):(2 1 2 2 1):(1201,2201,3101,:4101) 

On the other hand, mutation changes one or more genes in one chromosome to result 

in a new chromosome. 

(1 2 1 2 2):(1 2 2 1 2):(1201,2201,3101,:4201)     (before mutation) 
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(1 2 1 2 2):(1 2 1 1 1):(1201,2102,3101,:4201)     (after mutation) 

In this case, the crossover point and mutation point are chosen randomly. After a 

series of extensive experiments by setting different probability values, it was found 

that the genetic algorithm corresponding to this model converges well when the 

probability of crossover and the probability of mutation are set at 0.9 and 0.01, 

respectively.  

After crossover and mutation, a new population is generated. Again, the newly-born 

chromosomes are evaluated and ranked by fitness function, and selected to be the 

candidate chromosomes for processing crossover and mutation to generate the next, 

new population. In each iteration, the process of candidate chromosomes follows the 

steps: evaluation, selection, crossover and mutation. Iterations continue until a 

heuristic optimal solution is reached based on the defined stopping criterion. In this 

case, the stopping criterion is a given number of iterations.  
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CHAPTER 6 

A NUMERICAL EXAMPLE 

 

A numerical example with 14 machine types is employed to show how the model 

works. There are 2 units of each machine type available to be allocated to 3 cells. 

There are 24 part types, each having more than one operation that may be performed 

on 2 or 3 alternative machines. For example, as Table 6.1 indicates, part type 1 can be 

processed under either process plan 1 or process plan 2. Process plan 1 will perform 3 

operations, while process plan 2 will perform 2 operations. In process plan 1, 

operation 1 can be performed by machine type 4, operation 2 can be performed by 

machine type 1 or type 5, and operation 3 can be performed by machine type 7. Thus, 

the machine sequence for part type 1 through process plan 1 is M4-M1-M7 or M4-

M5-M7. Similarly, it is evident that each part type has several process routes to 

execute the corresponding operations. The number of cells is 3 and the maximum 

number of machine types in each cell is assumed to be 5.  

For each machine type, the MTTF and MTTR is generated randomly following the 

uniform distributions U(160,360) and U(8,48), respectively, to satisfy the requirement 

that the machine availability may fluctuate between 80% and 95% (Askin et al., 1997). 

The parameter Tmed must be selected to be less than MTTF due to the definite positive 

characteristics of the lognormal distribution.  

Transportation cost among the machines within a cell is assumed to be $1 per unit. 

Inter-cell transportation cost is assumed to be $3 per unit. The planning period T is 75 
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hours. It is expected that the machine costs will be recovered in three years at an 

interest rate of 10% per year.  

Table 6.1 indicates part demands, processing times and costs of operations for the 

given parts performed by given machines, and the alternative process routes for the 

numerical example with 14 machine types and 24 parts. 

Information regarding the parameters of each machine type is shown in Table 6.2, 

including MTTF, MTTR, Tmed, penalty costs for machine non-utilization, machine 

capacities, and present costs. 

The input data in both Table 6.1 and Table 6.2 are the same as the data used by Das et 

al. (2006). Due to the following two reasons, however, the results in this thesis cannot 

be compared to Das’s results. First, the results obtained in this thesis are based on the 

lognormal distribution, whereas in Das et al. (2006), the Weibull distribution is used 

to represent machine reliability. Second, the model developed in this thesis is 

nonlinear; that is, the objective function includes a non-linear term, and one constraint 

(Equation 4-14) is also non-linear. The model in Das et al. (2006) is a linear integer 

model. 

 



Table 6.1 Demand, operation time, cost and process routes for part types 

Process Plan 1 Process Plan 2 Part Type Demand Data 
Operation 1 Operation 2 Operation 3 Operation 4 Operation 1 Operation 2 Operation 3 

Machine M4 M1 M5 M7     M1 M7 M13     
Time (hrs) 5 6 8 4     3 6 5    1 20 
Cost ($) 9 7 7 8     8 4 6     
Machine M4 M5 M6 M7         M1 M4 M5 M12 M13 

Time (hrs) 7 8 6 7       9 7 4 8 6 2 10 
Cost ($) 8 7 8 9         8 9 8 5 9 
Machine M2 M3 M10     M2  M3  M3 M11 M13     

Time (hrs) 8 3 6     6      7     10 9 7    3 30 
Cost ($) 6 4 8     2      3       9 8 7     
Machine M2 M3 M5 M11 M13     M2 M10 M12 M5 M11 

Time (hrs) 9 5 6 11 9     6 7 6 7 8 4 40 
Cost ($) 5 4 7 7 4     8 4 4 9 4 
Machine M8 M9 M11     M6 M12 M9 M11 M14 

Time (hrs) 4 7 5     8 9 5 4 7 5 10 
Cost ($) 9 7 7     6 12 9 9 6 
Machine M1 M13         M4 M7 M5 M9 M12 

Time (hrs) 6 6       7 8 5 6 7 6 50 
Cost ($) 5 5         5 4 8 7 4 
Machine M3 M7 M10 M12 M13 M3 M4 M5 M11 M12 

Time (hrs) 3 6 7 5 5 7 6 8 9 8 7 20 
Cost ($) 6 6 6 4 5 9 6 7 9 6 
Machine M12 M13         M4 M5 M7 M8     

Time (hrs) 5 7       9 10 4 4    8 30 
Cost ($) 6 8         7 8 6 4     
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Table 6.1 Cont’d 

Process Plan 1 Process Plan 2 Part Type Demand Data 
Operation 1 Operation 2 Operation 3 Operation 4 Operation 1 Operation 2 Operation 3 

Machine M6 M8 M8 M9 M11 M13 M14 M2 M8 M11 M14 
Time (hrs) 5 7 4 8 6 6 5 5 5 4 7 9 40 
Cost ($) 5 5 6 6 7 8 8 5 9 6 6 
Machine M6 M10 M9 M9       M9 M12 M14 

Time (hrs) 4 5 7 6       9 7 6 10 10 
Cost ($) 5 7 6 7       7 6 6 
Machine M6 M9 M12 M12 M14     M7 M9 M10 M14     

Time (hrs) 5 6 6 6 4     5 6 7 6    11 20 
Cost ($) 6 7 8 7 6     7 5 6 7     
Machine M6 M8 M12 M9 M14     M8 M12 M10 M14    

Time (hrs) 6 7 5 5 6     8 4 7 6    12 10 
Cost ($) 6 9 9 5 4     6 8 4 6    
Machine M9 M12 M13 M14         M6 M10 M8 M13     

Time (hrs) 9 7 7 8       7 8 6 5    13 10 
Cost ($) 5 5 9 7         9 4 9 8     
Machine M6 M8 M9 M13       M9 M12 M13 M14    

Time (hrs) 6 5 8 9       6 7 6 5    14 50 
Cost ($) 8 5 5 4       6 8 7 5    
Machine M6 M10 M8 M9 M13     M1  M3  M14 M8 M10 M14 

Time (hrs) 5 6 9 4 3     9      7        4 8 7 6 15 30 
Cost ($) 6 4 7 8 7     7      4        8 6 8 5 
Machine M6 M9 M8 M13       M9 M12 M5 M14    

Time (hrs) 8 6 7 8       6 5 6 7    16 50 
Cost ($) 4 9 7 4       9 8 4 8    
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Table 6.1 Cont’d 

Process Plan 1 Process Plan 2 Part Type Demand Data 
Operation 1 Operation 2 Operation 3 Operation 4 Operation 1 Operation 2 Operation 3 

Machine M1 M4 M5 M8 M7 M13     M1 M10 M12 M13 M14 
Time (hrs) 6 4 5 4 5 6     3 6 7 8 9 17 20 
Cost ($) 9 4 4 5 3 8     8 7 9 7 9 
Machine M4 M13 M12 M14       M1 M13 M6 M10    

Time (hrs) 4 8 6 5       5 7 4 6    18 30 
Cost ($) 9 7 6 6       5 8 6 7    
Machine M4 M7             M1 M13 M5 M9     

Time (hrs) 7 6           9 8 6 7    19 40 
Cost ($) 4 7             7 5 7 7     
Machine M4 M7 M5 M9 M7     M1 M4 M12 M14 M9 M13 

Time (hrs) 6 5 3 4 3     5 6 5 6 3 4 20 10 
Cost ($) 3 5 4 5 3     6 8 7 6 3 5 
Machine M3 M7 M11 M14         M2 M6 M10 M12     

Time (hrs) 7 6 8 7       7 6 7 5    21 20 
Cost ($) 7 5 5 7         7 7 8 6     
Machine M6 M10 M8 M13         M9 M13 M5 M14     

Time (hrs) 6 5 6 7       6 7 6 8    22 30 
Cost ($) 3 7 9 4         7 7 7 8     
Machine M4 M13 M5 M11 M13     M1 M6 M9 M11 M13 

Time (hrs) 7 7 5 8 9     8 4 5 6 7 23 50 
Cost ($) 9 9 5 5 6     8 5 7 5 6 
Machine M10 M13 M11 M12         M2 M10 M3 M13     

Time (hrs) 5 6 7 8       7 8 5 6    24 10 
Cost ($) 8 5 5 7         5 7 4 6     
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Table 6.2 Machine data for numerical example 

Machine 
Type 

MTTF 
(hrs) 

MTTR 
(hrs) 

Tmed 
(hrs) 

Capacity 
(hrs) 

Penalty Cost for 
non-utilization ($) 

Present 
Cost ($) 

1 282 35 234 1000 425 8500 
2 288 24 226 1000 470 7500 
3 190 37 177 700 408 6000 
4 198 24 185 1000 319 9600 
5 241 18 203 700 375 5500 
6 207 10 191 2000 490 4900 
7 312 30 270 700 485 5700 
8 311 35 259 1800 430 8300 
9 175 15 163 1000 472 8000 
10 200 27 179 1000 336 8900 
11 191 20 170 1000 419 7400 
12 168 30 155 1000 470 4500 
13 346 40 280 2000 452 6600 
14 217 40 189 1000 444 7800 
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CHAPTER 7 

RESULTS 

 

The algorithm is coded in MATLAB 7.1 and run on a PC (1.6GHZ, 1 GB of RAM) to 

solve the numerical example with 14 machine types, 3 cells and 24 part types. The 

heuristic optimal solutions provide the best options for the number of units of each 

machine type, the machine-cell assignments and the selected process routes.  

The solutions are obtained using the genetic algorithm which optimizes the following 

composite objective function: 

                   Max ObjV=W1*Obj1-W2*Obj2                                                            (7-1) 

subject to the constraints described in section 6. Obj1 represents objective function 1 

(system reliability as considered in equation(4-2)), and Obj2 represents objective 

function 2 (the total cost as considered in equation(4-3)). W1 and W2 are the weights 

assigned to objective functions 1 and 2, respectively. The weights are specifically 

chosen so as to reflect the relative importance of Obj1 and Obj2 in the composite 

objective ObjV. The model is solved using various combinations of W1 and W2.  

The model is first used to solve two extreme cases: (W1:W2)=(1:0) and 

(W1:W2)=(0:1). In the case of (W1:W2)=(1:0), only the reliability function (Obj1) is 

maximized, regardless of the cost, to obtain the highest reliability associated with the 

heuristic solution; that is, an upper bound is determined on the reliability function. In 

contrast, in the case of (W1:W2)=(0:1), only the total cost function (Obj2) is 

minimized,  
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regardless of the reliability, to obtain the lowest total cost achievable, i.e., a lower 

bound on the total cost function is determined.  Next, gradually increasing weights are 

assigned to the reliability function, ranging from W1=100 to W1=1,000,000, (while 

keeping W2 =1), representing a total of 16 test cases. The model is solved in each 

case, and the results are summarized in Tables 7.1-7.4. 

Table 7.1 summarizes the objective function values for the 16 test cases, and Table 

7.2 lists the corresponding cell assignments. The first case corresponds to (W1:W2) 

=(1:0). Here, the algorithm starts with 10 randomly selected chromosomes as a set of 

initial solutions, which results in the highest reliability function value of only 0.5432, 

and the corresponding chromosome:  

(2 2 1 1 1 1 2 2 2 2 2 2 1 2) (1 3 1 1 2 2 2 3 2 3 3 1 3 1) (1201 2202 3205 4202 5202 6204 7201 8204 
9103 10201 11102 12101 13202 14101 15206 16203 17105 18201 19201 20203 21102 22103 23103 
24103) 
 
The chromosome consists of three parts. The first part has 14 genes, each representing 

the number of units of each machine type. The second part has 14 genes which show 

the assignment of machines to cells. The last part has 24 genes denoting the process 

route for each part type.   

After 1000 iterations, the genetic algorithm reached the following heuristic solution: 

(2 2 2 2 1 2 2 2 2 2 2 1 2 2) (3 3 2 2 1 1 1 3 2 3 3 1 1 2) (1201 2102 3204 4102 5201 6101 7101 8201 
9101 10102 11201 12101 13201 14101 15101 16101 17107 18204 19101 20102 21203 22101 23202 
24203) 

with a composite objective function (ObjV) value of 0.9760, which is derived from 

        ObjV= W1*Obj1 - W2*Obj2 

                 =1*0.9760 - 0*90,060 

                 =0.9760. 
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Test
Case 

W1 W2 Obj1 Obj2 ObjV 
CPU Time 
(seconds) 

1 1 0 0.9760 90,060        0.9760 67.953 
2 0 1 0.1953 51,024 -51,024 59.547 
3 100 1 0.2021 51,139 -51,118 58.844 
4 1,000 1 0.2053 51,222 -51,017 54.750 
5 10,000 1 0.2941 51,720 -48,779 58.609 
6 25,000 1 0.3015 51,667 -44,130 62.719 
7 50,000 1 0.8180 65,919 -25,017 59.516 
8 75,000 1 0.9401 78,190 -7,683.5 60.297 
9 100,000 1 0.9466 81,907 12,755 58.406 
10 250,000 1 0.9685 83,939 158,190 58.719 
11 500,000 1 0.9745 84,387 402,840 51.750 
12 600,000 1 0.9746 86,308 498,470 62.813 
13 700,000 1 0.9759 86,519 596,630 61.609 
14 800,000 1 0.9759 86,360 694,380 53.422 
15 900,000 1 0.9759 86,192 792,140 66.938 
16 1,000,000 1 0.9759 85,811 890,080 55.373 

Table 7.1 Performance summary 
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Table 7.2 Machines assignments to cells 

Test 
Case Cell1 Cell2 Cell3 

1 M5+2 M6+2 M7+M12+2 M13 2 M3+2 M4+2 M9+2 M14 2 M1+2 M2+2 M8+2 M10+2 M11 
2 M1+M6+M7+M8+M13 M2+M9+M11+M12+M14 M3+M4+M5+M10 
3 M4+M5+M7+M12+M13 M3+M9+M10+M14 M1+M2+M6+M8+M11 
4 M1+M2+M3+M5+M11 M4+M6+M8+M12 M7+M9+M10+M13+M14 
5 M1+M2+M3+M6+M13 M4+M5+M8+M9+M12 M7+M10+M11+M14 
6 M1+M2+M6+M7+M11 M4+M5+M12+M14 M3+M8+M9+M10+M13 
7 M1+M4+M10+M11 2 M2+2 M5+2 M12+2 M13+2 M14 M3+M6+M7+M8+M9 
8 2 M2+M8+2 M10+M11+2 M12 2 M1+M3+M4+M6 2 M5+2 M7+2 M9+2 M13+2 M14 
9 M6+2 M7+2 M9+M11+2 M13 2 M1+2 M2+2 M5+2 M12 M3+M4+2 M8+2 M10+2 M14 

10 M4+2 M5+2 M8+2 M9+M11 2 M1+2 M2+2 M3+2 M6+2 M13 2 M7+2 M10+M12+2 M14 
11 2 M1+M5+2 M7+M10 2 M2+2 M3+2 M6+2 M8+2 M13 2 M4+2 M9+M11+2 M12+2 M14 
12 2 M1+2 M2+2 M7+2 M14  2 M3+2 M4+M5+2 M9 2 M6+2 M8+2 M10+M12+2 M13 
13 2 M1+2 M8+2 M9+2 M4 2 M2+M5+2 M6+M11+M12 2 M3+2 M4+2 M7+ 2M10+2 M3 
14 2 M2+2 M3+2 M4+M5+M11  2 M6+2 M7+2 M8+2 M10+M12 2 M1+2 M9+2 M3+2 M4 
15 2 M3+2 M10+M12+2 M13 2 M4+2 M6+2 M8+2 M9+M11 2 M1+2 M2+2 M5+2 M7+2 M14 
16 2 M1+2 M4+2 M7+2 M10+M12 2 M2+ 2M3+2 M11+2 M14 2 M5+2 M6+2 M8+2 M9+2 M13 
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This value indicates that the reliability function has improved from 0.5432 to 0.9760.   

The cell assignments in this case are shown in Table 7.2, and are as follows: 

Cell 1: M5, 2 of M6, 2 of M7, M12, 2 of M13 

Cell 2: 2 of M3, 2 of M4, 2 of M9, 2 of M14 

Cell 3: 2 of M1, 2 of M2, 2 of M8, 2 of M10, 2 of M11 

In the second test case, when only the total cost function is considered, i.e., when 

W1:W2 =0:1, the heuristic solution is: 

(1 1 1 1 1 1 1 1 1 1 1 1 1 1) (1 2 3 3 3 1 1 1 2 3 2 2 1 2) (1201 2104 3201 4102 5204 6101 7202 8204 
9202 10101 11204 12202 13102 14104 15204 16102 17105 18201 19101 20101 21103 22202 23201 
24201) 

with a composite objective function (ObjV) value of -51,024, which is derived from 

        ObjV=W1*Objective function 1+W2* objective function 2 

                 =W1*Obj1-W2*Obj2 

                 =0*(0.9760) - 1*(-51,024) 

                 = -51,024. 

Because the emphasis in this case is on minimizing the total cost regardless of the 

reliability, the model assigns only one unit of each machine type to the cells, as shown 

in the following cell assignment (table 7.2):   

Cell 1: M1, M6, M7, M8, M13 

Cell 2: M2, M9, M11, M12, M14 

Cell 3: M3, M4, M5, M10 
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It may be of interest to note that system reliability in this case is only 0.1953. The first 

two cases, therefore, establish an upper bound on reliability of 0.9765, and a lower 

bound on the total cost of 51,024. 

In a similar manner, the other test cases corresponding to various weight 

combinations (W1 and W2) are evaluated as shown in Tables 7.1 and 7.2. The 

optimization process in essence generates a set of Pareto ‘optimal’ solutions, striking 

a balance between the two objectives depending on the importance attached to each; 

as the weight assigned to the reliability objective (Obj1) increases, the model attempts 

to generate solutions with higher system reliabilities, which is possible by increasing 

the number of parallel machines in each cluster, thus increasing the total costs.    

In test cases 3 to 13, the weight of objective function 2 remains as 1 (W2=1), but the 

weight of objective function 1 gradually varies from 100 to 700,000. As a result, the 

objective function 1 value is increased from 0.2021 to 0.9759, whereas, the 

importance of the total cost (objective function 2) diminishes correspondingly; the 

value of objective function 2 increases from 51,139 to 86,519.  

In test cases 14 to 16, as the weight of objective function 1 increases to 1,000,000, the 

value of the objective function 1 remains unchanged at 0.9759, the upper bound on 

system reliability. On the other hand, the performance of the total cost function 

improves; the value of objective function 2 decreases from 86,360 to 85,811.  

The performance values of the reliability function (Obj1) and the total cost function 

(Obj2) are illustrated in Figures 7.1 and 7.2, respectively. It is observed that the 

reliability function (Obj1) improves dramatically when the weights (W1:W2) change 

from (100:1) to (75,000:1), improves very slowly up to (W1:W2) = (75,000:1), and  



Figure 7.1 System reliability corresponding to test cases 2-16 

 

 

Figure 7.2 Total cost corresponding to test cases 2-16 
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remains relatively stable beyond that point. Similarly, when the weights (W1:W2) 

change from (25,000:1) to (75,000:1), the total cost function increases significantly. 

At   (W1:W2) =(700,000:1), it reaches its highest value, and thereafter, it slightly 

decreases. The selection of the ‘best’ solution is left to the decision-maker (i.e., 

producers) to strike a balance between reliability and costs. 

Table 7.3 displays the process routes selected for each part type in each test case. 

Thus, in test case 1, part type 1 is processed using process route 1201, which 

prescribes that operation 1 will be performed on machine M1, and operation 2 on 

machine M7. The other entries in the table are interpreted in a similar fashion. 

Finally, Table 7.4 displays the ‘optimal’ number of the units of each machine type in 

each case. We can see from Tables 7.3 and 7.4 that, for cases 13-16, the number of the 

units of each machine type as well as the process routes for each part type in each 

case remain the same, indicating that the genetic algorithm converges to a heuristic 

solution which is fairly stable in terms of the system reliability.  



Table 7.3 Process routes for each part type 

Case 1 Case 2 Case 3 Case 4 
Part 
Type Process 

Route Machine Sequence Process 
Route Machine Sequence Process 

Route Machine Sequence Process 
Route Machine Sequence

1 1201 M1-M7 1201 M1-M7 1201 M1-M7 1201 M1-M7 
2 2102 M4-M7 2104 M5-M7 2104 M5-M7 2104 M5-M7 
3 3204 M3-M13 3201 M2-M11 3201 M2-M11 3201 M2-M11 
4 4102 M2-M3-M13 4102 M2-M3-M13 4102 M2-M3-M13 4101 M2-M3-M11 
5 5201 M6-M9-M14 5204 M12-M11-M14 5203 M12-M9-M14 5203 M12-M9-M14 
6 6101 M1-M13 6101 M1-M13 6101 M1-M13 6101 M1-M13 
7 7101 M1-M7-M10-M13 7202 M3-M5-M12 7204 M4-M5-M12 7201 M3-M5-M11 
8 8201 M4-M7 8204 M5-M8 8201 M4-M7 8202 M4-M8 
9 9101 M6-M8-M9-M13 9202 M2-M12-M14 9202 M2-M12-M14 9202 M2-M12-M14 

10 10102 M6-M9 10101 M6-M8 10101 M6-M8 10101 M6-M8 
11 11201 M7-M10 11204 M9-M14 11203 M9-M10 11203 M9-M10 
12 12101 M6-M8-M9 12202 M6-M12-M14 12102 M6-M8-M14 12201 M6-M12-M9 
13 13201 M6-M8 13102 M9-M14 13102 M9-M14 13102 M9-M14 
14 14101 M6-M8 14104 M8-M13 14202 M9-M14 14202 M9-M14 
15 15101 M6-M8-M9 15204 M3-M10-M14 15204 M3-M10-M14 15204 M3-M10-M14 
16 16101 M6-M8 16102 M6-M13 16203 M12-M5 16102 M6-M13 
17 17107 M4-M8-M7 17105 M4-M5-M7 17105 M4-M5-M7 17105 M4-M5-M7 
18 18204 M13-M9 18201 M1-M5 18201 M1-M5 18201 M1-M5 
19 19101 M4 19101 M4 19101 M4 19101 M4 
20 20102 M4-M9-M7 20101 M4-M5-M7 20103 M7-M5-M7 20104 M7-M9-M7 
21 21203 M6-M10 21103 M7-M11 21103 M7-M11 21101 M3-M11 
22 22101 M6-M9 22202 M9-M14 22202 M9-M14 22202 M9-M14 
23 23202 M1-M6-M13 23201 M1-M6-M11 23201 M1-M6-M11 23101 M4-M5-M11 
24 24203 M10-M3 24201 M2-M3 24201 M2-M3 24201 M2-M3 
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Table 7.3 Cont’d 

Case 5 Case 6 Case 7 Case 8 
Part 
Type Process 

Route Machine Sequence Process 
Route Machine Sequence Process 

Route Machine Sequence Process 
Route Machine Sequence

1 1201 M1-M7 1201 M1-M7 1102 M4-M5-M7 1201 M1-M7 
2 2102 M4-M7 2101 M4-M6 2104 M5-M7 2104 M5-M7 
3 3204 M3-M13 3204 M3-M13 3202 M2-M13 3206 M10-M13 
4 4102 M2-M3-M13 4102 M2-M3-M13 4104 M2-M5-M13 4203 M2-M12-M5 
5 5201 M6-M9-M14 5201 M6-M9-M14 5203 M12-M9-M14 5203 M12-M9-M14 
6 6101 M1-M13 6101 M1-M13 6201 M4-M5-M12 6101 M1-M13 
7 7204 M4-M5-M12 7204 M4-M5-M12 7204 M4-M5-M12 7102 M1-M7-M12-M13 
8 8202 M4-M8 8202 M4-M8 8101 M12-M13 8203 M5-M7 
9 9202 M2-M12-M14 9105 M8-M8-M9-M13 9202 M2-M12-M14 9202 M2-M12-M14 

10 10101 M6-M8 10101 M6-M8 10201 M9-M12-M14 10104 M10-M9 
11 11201 M7-M10 11203 M9-M10 11202 M7-M14 11204 M9-M14 
12 12101 M6-M8-M9 12101 M6-M8-M9 12202 M6-M12-M14 12201 M6-M12-M9 
13 13203 M10-M8 13101 M9-M13 13103 M12-M13 13101 M9-M13 
14 14103 M8-M8 14104 M8-M13 14204 M12-M14 14202 M9-M14 
15 15203 M3-M8-M14 15203 M3-M8-M14 15205 M14-M8-M14 15202 M1-M10-M14 
16 16102 M6-M13 16102 M6-M13 16203 M12-M5 16104 M9-M13 
17 17104 M1-M4-M13 17105 M4-M5-M7 17106 M4-M5-M13 17101 M1-M5-M7 
18 18202 M1-M9 18202 M1-M9 18103 M13-M12 18204 M13-M9 
19 19101 M4 19101 M4 19203 M12-M5 19102 M7 
20 20102 M4-M9-M7 20104 M7-M9-M7 20206 M4-M12-M13 20104 M7-M9-M7 
21 21103 M7-M11 21103 M7-M11 21202 M2-M12 21104 M7-M14 
22 22102 M6-M13 22101 M6-M9 22203 M13-M5 22201 M9-M5 
23 23202 M1-M6-M13 23201 M1-M6-M11 23104 M13-M5-M13 23104 M13-M5-M13 
24 24203 M10-M13 24203 M10-M13 24104 M13-M12 24104 M13-M12 
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Table 7.3 Cont’d 

Case 9 Case 10 Case 11 Case 12 
Part 
Type Process 

Route Machine Sequence Process 
Route Machine Sequence Process 

Route Machine Sequence Process 
Route Machine Sequence

1 1201 M1-M7 1201 M1-M7 1201 M1-M7 1201 M1-M7 
2 2104 M5-M7 2104 M5-M7 2102 M4-M7 2101 M4-M6 
3 3206 M10-M13 3204 M3-M13 3204 M3-M13 3206 M10-M13 
4 4104 M2-M5-M13 4102 M2-M3-M13 4102 M2-M3-M13 4102 M2-M3-M13 
5 5203 M12-M9-M14 5201 M6-M9-M14 5201 M6-M9-M14 5201 M6-M9-M14 
6 6101 M1-M13 6101 M1-M13 6101 M1-M13 6101 M1-M13 
7 7102 M1-M7-M12-M13 7101 M1-M7-M10-M13 7102 M1-M7-M12-M13 7101 M1-M7-M10-M13 
8 8204 M5-M8 8203 M5-M7 8201 M4-M7 8201 M4-M7 
9 9105 M8-M8-M9-M13 9105 M8-M8-M9-M13 9101 M6-M8-M9-M13 9105 M8-M8-M9-M13 

10 10104 M10-M9 10101 M6-M8 10101 M6-M8 10102 M6-M9 
11 11203 M9-M10 11201 M7-M10 11202 M7-M14 11201 M7-M10 
12 12101 M6-M8-M9 12101 M6-M8-M9 12101 M6-M8-M9 12101 M6-M8-M9 
13 13203 M10-M8 13202 M6-M13 13201 M6-M8 13201 M6-M8 
14 14104 M8-M13 14103 M8-M8 14101 M6-M8 14102 M6-M13 
15 15103 M10-M8-M9 15101 M6-M8-M9 15102 M6-M98-M13 15101 M6-M8-M9 
16 16203 M12-M5 16102 M6-M13 16102 M6-M13 16102 M6-M13 
17 17101 M1-M5-M7 17201 M1-M10-M13 17107 M4-M8-M7 17107 M4-M8-M7 
18 18202 M1-M9 18202 M1-M9 18204 M13-M9 18204 M13-M9 
19 19102 M7 19102 M7 19101 M4 19102 M7 
20 20104 M7-M9-M7 20104 M7-M9-M7 20104 M7-M9-M7 20104 M7-M9-M7 
21 21104 M7-M14 21104 M7-M14 21204 M6-M12 21203 M6-M10 
22 22202 M9-M14 22102 M6-M13 22101 M6-M9 22101 M6-M9 
23 23204 M1-M9-M13 23202 M1-M6-M13 23202 M1-M6-M13 23202 M1-M6-M13 
24 24104 M13-M12 24203 M10-M13 24104 M13-M12 24203 M10-M3 
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Table 7.3 Cont’d 

Case 13 Case 14 Case 15 Case 16 
Part 
Type Process 

Route Machine Sequence Process 
Route Machine Sequence Process 

Route Machine Sequence Process 
Route Machine Sequence 

1 1201 M1-M7 1201 M1-M7 1201 M1-M7 1201 M1-M7 
2 2102 M4-M7 2102 M4-M7 2101 M4-M6 2102 M4-M7 
3 3204 M3-M13 3204 M3-M13 3204 M3-M13 3204 M3-M13 
4 4102 M2-M3-M13 4102 M2-M3-M13 4102 M2-M3-M13 4102 M2-M3-M13 
5 5201 M6-M9-M14 5201 M6-M9-M14 5201 M6-M9-M14 5201 M6-M9-M14 
6 6101 M1-M13 6101 M1-M13 6101 M1-M13 6101 M1-M13 
7 7101 M1-M7-M10-M13 7101 M1-M7-M10-M13 7101 M1-M7-M10-M13 7101 M1-M7-M10-M13 
8 8201 M4-M7 8201 M4-M7 8201 M4-M7 8201 M4-M7 
9 9101 M6-M8-M9-M13 9101 M6-M8-M9-M13 9101 M6-M8-M9-M13 9101 M6-M8-M9-M13 

10 10101 M6-M8 10101 M6-M8 10102 M6-M9 10102 M6-M9 
11 11201 M7-M10 11201 M7-M10 11201 M7-M10 11201 M7-M10 
12 12101 M6-M8-M9 12101 M6-M8-M9 12101 M6-M8-M9 12101 M6-M8-M9 
13 13201 M6-M8 13201 M6-M8 13201 M6-M8 13201 M6-M8 
14 14101 M6-M8 14102 M6-M13 14101 M6-M8 14102 M6-M13 
15 15101 M6-M8-M9 15101 M6-M8-M9 15101 M6-M8-M9 15101 M6-M8-M9 
16 16102 M6-M13 16101 M6-M8 16102 M6-M13 16102 M6-M13 
17 17107 M4-M8-M7 17107 M4-M8-M7 17107 M4-M8-M7 17107 M4-M8-M7 
18 18204 M13-M9 18204 M13-M9 18204 M13-M9 18204 M13-M9 
19 19101 M4 19101 M4 19101 M4 19101 M4 
20 20102 M4-M9-M7 20102 M4-M9-M7 20102 M4-M9-M7 20102 M4-M9-M7 
21 21203 M6-M10 21203 M6-M10 21203 M6-M10 21203 M6-M10 
22 22101 M6-M9 22101 M6-M9 22101 M6-M9 22101 M6-M9 
23 23202 M1-M6-M13 23202 M1-M6-M13 23202 M1-M6-M13 23202 M1-M6-M13 
24 24203 M10-M3 24203 M10-M3 24203 M10-M3 24203 M10-M3 
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Table 7.4 Number of units of each machine type 

Test 
Case M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 1 2 1 1 2 1 1 1 1 1 1 2 2 2 
8 2 2 1 1 2 1 2 1 2 2 1 2 2 2 
9 2 2 1 1 2 1 2 2 2 2 1 2 2 2 
10 2 2 2 1 2 2 2 2 2 2 1 1 2 2 
11 2 2 2 2 1 2 2 2 2 1 1 2 2 2 
12 2 2 2 2 1 2 2 2 2 2 1 1 2 2 
13 2 2 2 2 1 2 2 2 2 2 1 1 2 2 
14 2 2 2 2 1 2 2 2 2 2 1 1 2 2 
15 2 2 2 2 1 2 2 2 2 2 1 1 2 2 
16 2 2 2 2 1 2 2 2 2 2 1 1 2 2 
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CHAPTER 8 

DISCUSSIONS AND CONCLUSIONS 

 

8.1 Discussions 

This thesis presents a multi-objective, mixed integer, non-linear programming model 

for the design of cellular manufacturing systems considering the reliability aspects of 

machines. The CMS design problem involves multiple machine types, multiple 

machines for each machine type, multiple part types and alternative process routes for 

each part type. The model attempts to strike a balance between system reliability and 

total cost. Total cost consists of the variable cost of manufacturing operations (VCM), 

the inter-cell material handling cost (MHC), the penalty cost of machine under-

utilization (MNC) and machine annuity cost (MAC). The optimal number of units of 

each machine type, the alternative process routes for each part, and the effective 

machine-cell assignments are simultaneously determined to maximize the overall 

system reliability while minimizing the total cost. Genetic algorithm is applied to 

solve this optimization problem. The algorithm solves the model efficiently and 

determines “heuristic optimal” solutions within reasonable amounts of computational 

times.  

Machine reliability is analyzed using a lognormal distribution due to its versatility in 

dealing with both increasing and decreasing failure rates over time. Machine 

availability is also considered to estimate the machine’s effective capacity which 

affects the system performance. The model also includes the annuity cost as a 

performance factor. It accounts for a large proportion of the total cost.   



50 

 

To demonstrate the application of the model and the genetic algorithm, a numerical 

example is provided, and the results are analyzed over a wide range of possibilities to 

investigate the appropriate trade-offs between reliability and total cost. For the model 

chosen, the genetic algorithm was shown to converge to a heuristic solution that was 

fairly stable in terms of system reliability. 

The genetic algorithm coded in MATLAB is easy to implement. It solves the model 

efficiently and effectively, and within reasonable amounts of computational time. 

Different from other algorithms which search the solution space one point at a time, 

GA searches for a candidate solution by considering a set of points all at once, and 

therefore, it need less iterations to search for the solution.  

 

8.2 Contributions 

The contributions of the thesis are summarized as follows: 

1. This thesis proposed a multi-objective, mixed integer, non-linear programming 

model to maximize the system reliability and minimize the total cost 

simultaneously, while determining the number of units of each machine type 

and  selecting  process routes for each part type. 

2. Lognormal distribution was applied to analyze machine relibility and 

availibility for the CMS design. 

3.  A heuristic method based on genetic algorithm was successfully used to solve 

the non-linear problem for the model with a lognormal distribution. 
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APPENDICE in CD FORMAT 

MATLAB FILES 

 

A.1 Matlab programs to solve the numerical model with 14machine types and 24 

part types (Programs coded in Matlab are contained in the CD.) 
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