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Abstract
Computing shape and deﬁth from stereo vision and shading is one of
the important perceptual tasks in early vision. This thesis work 1is
aimed at understan&ing the computational issues involved in
reconstructing a viewed surface in three dimension.

In using stereo vislon to computé\depth, stereo correspondence
between points in the left and right images can be reliably achieved
only at points of intensity changes. Owing to the need for computing
depth at every point in the image, interpolation of this sparse depth
data becomes necessary. Since several surfaces can fit a given sparse
grid, an appropriate choice comes from imposing additional
constraints. In our work, we propose that the interpolant should not
only introduce any additional discontinuitiés (other than those
dictated by the intenmsity changes), but also that they should preserve
those discontinuities. A class of interpolants known as Shepard’s
surfaces, is shown here to satisfy this constraint. The Shepard’s
interpoiants have been implemented here and the result from testing
them on Random DOt Stereograms shows that stereo vision can function
alone without any additional visual cues. The natural stereo pair
shows that even when intensity changes are sparse the reconstruction
preserves the shape although, the interpolant exhibits a tendency to
consider spurious stereo matches also as a potential data point.

Besides depth from stereopsis, shape information also becomes
important to reconstruct the surface, An important shape cue 1s
available in the smooth shading that an object renders. From the

perspective of obtaining shape description (instead of surface normals

iii



alone), we propose a method to compute relative depth, nermals and
principal curvatures of the surface. Shape information is intrinsic to
the surface and is independent of viewer position. Since continuity in
normals is ensured through these shape descriptors, the numerical
error introduced in the process of reconstruction is shown to be
independent of coordinate axes chosen. Our method involves
minimization of a global objective function formulated by imposing the
following constraints: (i) continuity and integrability of the
normals, (ii) minimal deviation from the irradiance values, and (iii)
unit normal. Minimizing the objective function with respect to the
normals n, relative depth z and shape descriptor A, results in direct
computation of all these quantities. In addition, the principal
curvatures are shown to be computable from the shape descriptor used
here.

Shape and depth information may alsc be available from cother
visual cues. We show that depth information at arbitrary set of points
can be included as additional set comstraints in the shape computing
algorithm. Also, any known set of normals can also be exploited to
improve the convergence of the shape from shading algorithm, besides
smoothly incorporating the additional source of information.

This work, in essence, has resulted in developing a framework that

delivers shape Information in the form of local curvatures and depth

at every point in the image plane.
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Chapter 1
An overview

1 Introduction

This dissertation deals with computational modeling of the two
most important early visual tasks - stereo depth perception and shape
from shading. Stereo depth computation involves two steps: (i)
locating corresponding pairs of feature points in the two images and
(ii) interpolating the depth values at the feature points to obtain
depth every where. The problem of shape recovery from shading involves
computing local orientation, relative depth and curvature information
of the surface. The research efforts undertaken here are concerned
with stereo data interpolation and shape computing from Iintensity
information.

The major contributions of our study include

(i) suggestion of a stronger constraint to choose the best

interpolant for stereo data

(ii) proposing a fast and efficient interpolant called Shepard's

Metric scheme for filling the sparse depth map

(iii) laying the emphasis on local shape recovery in the form of

curvatures besides estimating the surface normals and

(iv) a robust technique to compute surface normals, curvatures

and relative depth from intensity images.

Until very recently, every early visual problem was considered to
be modular and independent in nature as suggested by David Marr [Mar
82]. An important concern is raised about this mnotion in this

dissertation. The interplay between various early visual problems is



an essential attribute to achieve fast and efficient surface
estimates. For instance, rough estimates of shape and depth at
occluding boundaries influence considerably the accuracy as well as
speed in computing sﬁape at the interior of the surface as found in
this work along with several others too [IkH 81, FrC 87]. In additionm,
the issue of integrating shape and depth from shading and stereo
vision has been addressed. This is done by making use of the quick and
rough estimates of depth from stereo vision in the shape from shading
algorithm developed here.
| This chapter is intended to provide an overview of early vision
research. Section 2 lays the Ffoundation for the computational approach
adopted in our work. Section 3 presents a coarse organization of the
vision system. Section 4 provides a comprehensive account of the
literature on surface reconstruction. In section 5, the motivation for
the present work is laid out. Section & concludes with an organization
of this dissertatiom.
2 Computational Vision
One of the goals of early visual perception is depth and shape
estimation. The perceived depth and shape information is later used in
the higher levels for two purposes: (i) to extract an invariant
description of the objects in the scene and (ii) to recomstruct the
spatial structure of the scene. The term spatial structure here refers
-to the spatial arrangement of the objects and their inter-
relationships. Discovering this spatial structure in the scene is a
very challenging task since the geometry of projecting the three

dimensional world into the two dimensional retinae or a camera image



plane results in a massive loss of informatiom content.

Human vision is extremely adept at recovering the surface
information through various visual cues present In the sceme. Such
visual cues include Binocular disparity, smooth shading rendered on
the objects, motion parallax from moving objects, textural
deformations and even the focusing mechanisms employed for visual
adaptation. A very promising apprqach to solve the early visual
problems has been developed by David Marr [Mar 82]. We begin with the
description of this ‘approach here.

In essence, perceptual tasks could be understood from at least 3

distinct and independent levels. They are
(i) a computational theory for the specific problem
(ii) an algorithm and a formal representation for the data
(iii) a suitable implementation (neural or machimne hardware).
At the first level, the task at hand is thoroughly analyzed to answer
questions such as what 1is the goal of computation, why is it
appropriate and what is the logic of the strategy by which it can be
carried out? Thus, the goal of the specific perceptual problem 1s set
forth first, followed by an understanding of the physics of that
problem. The term physics includes geometry involved, regularities and
constraints of the three dimensional world and so forth.

At the second level, the main question to be answered is how this
computational theory can be faithfully translated inte a methodology
or a procedure. Also concerned at this level is the issue of efficient
representation of data involved. The choice of representation and the

algorithm are closely related to each other. That is, performance of




the algorithm can very well depend on the ease with. which the
representation scheme could help to manipulate data,.

The third level incorporates a study of machine hardware or the
type of architecture Qn which the chosen representation and algorithm
can be realized, The choice of architecture could have a profound
effect on efficiency and economy of resources. For instance, an
algorithm that uses only local information from its mneighbors can be
jimplemented with a higher level of throughput in a cellular
architecture as compared to a general purpose connection machine.

It may be noticed that the three levels described here are not
completely decoupled. As an example, the choice of hardware need not
be totally independent of the algorithm., Instead, the insight into the
neural architecture could very well influence the choice of an
algorithm that would rum on such a computing system. In fact, a
serious question that needs to be answered here i1s what do we gain by
addressing the problem at three distinct levels. The reasoning is as
follows,

Several algorithms can be be suggested to implement a
computational theory. A comparison of these algorithms should only be
done by analyzing how faithfully they implement the computational
theory. In the absence of a computational theory, they can only be
judged solely on their performance on a few instances of the problem.
Such a judgment could be misleading. On the other hand, a deficiency
in the computational theory itself can lead to errors in computation.
To give an example for this situation consider the computational

theory of stereopsis proposed by Marr and Poggio [MaP 79]. They used



an invalid assumption that depth varies continuously almost every
where. But the assumption is violated at all the edges in the scene.
Instead, the assumption that depth varies continuously along the edges
is quite walid and' needs to be in any algorithm for solving
correspondence. Furthermore, separating the implementational issues
from those related to computational theory and algorithm does help to
avoid micro-level details.. and hence a better understanding of the
problem,

The effectiveness of this approach can be judged by the rigorous
computational theories and algorithms developed in early vision [Mar
82]. Unfortunately a principled approach like this could become
difficult to handle at higher levels of vision since distinetion
between the three different levels vanishes. Problems dealt with in
this dissertation do yield to this type of analysis and hence this
section was devoted for defending this approach.

3 A Hierarchical Framework for Understanding Vision

The massive size of raw semsory input suggests that unless an
efficient scheme to abstract useful information is built, it is quite
difficult to achieve what human vision does in a few milli seconds.
Furthermore, retinal images themselves dec mnot contain the three
dimensional information about the viewed object per se. Instead, they
only contain some "geometric invariants” of the object. The task of
the beginning stages of vision is essentially to recover surface
information from the images.

A flow diagram for visual information processing is given in

Figure 1.1. The first stage of information processing that occurs at
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the level of Ganglion cells soon after the incidence of light rays on
the retinae, correspond to analyzing brightness values. Called primal
skétch, by Marr [Mar 77a, Mar 80], this stage is involved in obtaining
two dimensional information such as edges, markings, dots, contrast
etc. from the images.

The immediate processes following the extraction of primal sketch
are related to three dimensional reconstruction of the scene. There
appear to be multiple cues that aid the process of reconstructiom. The
most important one among them is the binocular disparity. The
influence of binocular disparity in vivid depth perception can be
understood using the following simple experiments. In the first
experiment, a finger or a pencil is held in front of the eyes and the
eyes are fixed on this object. A second object is mnow placed in the
field of view and aligned with the first object as viewed from the
right eye. Now, if the fingers are viewed from the left eye, the
nearer object seems to move to the right as the one of the objects is
moved back and forth. The lateral shift introduced here is the
binocular or stereo disparity. It can be seen that this shift is
inversely proportional to the distance of the object from the eyes. In
the second experiment, to see why binocular vision is so important,
one of the eyes is closed. Now, the two hands are stretched to any
arbitrary length in front of the open eye and their index fingers are
allowed to meet each other. It is easy to see that it takes a few
trials to get them meet, while with both the eyes open this will
happen at the first trial. The effect is more pronounced if sharply

pointed objects are used instead of fingers.



The second impertant cue for reconstruction is the smooth shading
available on the objects rendered by the viewing geometry. Thus,
photographs of even unfamiliar objects convey their shape under the
absence of binocular'disparity. Pictures appear vivid because of the
shading effect the artists provide. For a non dynamic situation (both
viewer as well as the scene are stationary), shading seems to provide
a stronger sense of shape [Gib 50] than any other monccular cue. Also,
mathematically, it is a totally data driven process. That is, the
system does mnot mneed to know a priori anything specific about the
surface under view.

The remaining cues shown in Figure 1.1 enrich the perception,
although they alone are quite weak in supporting surface perception.
For instance, perspectivity suggests that points c¢lose to the
vanishing point should be far away from the viewer. However, size
constancy of the objects is assumed and hence a priori knowledge of
the size of the object could be necessary often, Motion parallax is
quite strongly suggestive of spatial structure but yet requires
relative motion between the scene and the viewer. On the same token,
texture imposes shape constraints for a given distribution of its
primitives [Wit 81]. Nevertheless, naturally found objects are not
often rich in texture.

Given the observation that multiple cues are available for three
dimensional receoustruction of the viewed surface, the next stage in
Figure 1.1 serves as a common medium where all the channels of surface
information could be integrated. A specific view of an object is

representative of its class of objects only to a certain extent.It is



clearly infeasible to store all views of the same object. If some kind
of intrinsic information of the object can be extracted from the
specific view of the object, then this intrinsic information, due to
its invariant naturé, can facilitate the process of recognition.
However, this computation can be dome at the previous stages such
that the shape and depth computing processes themselves would directly
deliver object intrinsic information. For the sake of clarity, a
separate module has been allocated in the block diagram. The ultimate
goal of vision being recognition, the stream of visual information
flow concludes with a process that associates the collected data with
the known characteristics of corresponding object in memory.

The perceptual problems addressed in this thesis are concerned
with the first two levels in the visual hierarchy. In the following
section a comprehensive literature of various models and computational
theories for surface reconstruction in early vision is provided.

4 Literature on Surface Reconstruction

The last two decades have witnessed a strong growth in the
computational vision literature especially on visual surface
construction. In addition, advances in human vision research have
fueled the growth considerably. A comprehensive review of the relevant
reported literature is presented here. Individual sections are devoted
for stereo vision, shading, motion parallax and texture since these
are the most important depth and shape cues in aiding visual surface
reconstruction.

4.1, STEREO VISION

In stereo vision, (Figure 1.2) the two eyes slightly converge to a



Figure 1.2 Geometry of Stereo Vision
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distant point in the visual field so that their optical axes meet at a
point, called the fixating point. The image of the fixating point
falls on the fovea. The neighboring points in the visual space project
to different points-on the retinae at some distance away from the
image of the fixating point. In general, this distance may not be
equal in the twc images. The amount of ;hift a specific point
undergoes when projected to corresponding positions in the two images
is called its retinal disparity. It can be easily shown from the
geometry of the stereo imaging that this disparity is inversely
proportional to the distance of the point of interest in space from
the imaging plane which can be obtained using a simple triangulation
procedure [MaL 82].
4.1.1. Correspondence Problem

Stereopsis involves three steps [PoP 84]. They are: (L)
identifying a region or a point in one image (2) locating the
corresponding shifted position of this point in the other 1mage
(correspondence problem) and (3) measuring the disparity between the
corresponding pair to transform it into depth. The second step is the
most difficult ome. To illustrate the difficulties involved consider
the typical stereo imaging geometry shown in Figure 1.2. Let G, F and
N be three points lying in the visual field. Let the left and right
images for these points be CL, FL and NL, and CR, Fé“%a?d N
respectively. Clearly, the point C in the left image has potentizlly
at least three matches on the right. Similarly the points F and N also
have three potential matches in the right image, of which only one is

the correct match. The incorrect matches, referred to as false targets

11



here, pose the need to devise a reliable method to disambiguate the
corresponding pairs from all the potential pairs. The false target
problem can be shown to be severe as follows., If we have N points on
the left image to be.matched with N points on the right image, then
there are N’- N false targets since only N of szairs are correct
pairs. If N is large the false target problem is clearly a serious
issue,

Beginning with Wheatstome’s work on stereoscope, a great deal of
attention has been devoted to the study of stereo vision. The early
work in this area has been confined to biological studies until
Julesz’s work on computer generation of Random Dot Stereograms (RDS)
[Jul 60, Jul 71]. To prove that retinal stereo disparity alone is
sufficient to provide depth sensation, he constructed a stereogram
with a randomly generated texture. The images of the stereo pair
differ only in a pre-selected central portion of the image. When
fused, the stereogram gives a vivid feeling of depth in the central
portion showing that even though the images are monocularly
non-sensical, binocularly they offer the percept of two distinet
surfaces. Julesz's RD$ studies have resulted in his cooperative model
of global sterecpsis ({Jul 71}. This model involves relating the
equilibrium achieved by an array of magnetic dipoles to the disparity
detectors found in human vision by modeling the stereo fusion process
as the interaction between magnetic dipoles. Although, this mechanical
model helped understanding several biological phenomena it was far
from providing a computational understanding.

The first generation of cooperative neural/computational models

12
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for stereo vision were proposed [MaP 76] following the findings of
disparity detectors in animal vision by Hubel and Wiesel [Huw 77]. All
these models share the concept of cooperative computation in a three
dimensional field 6f disparity detecting elements. The three
dimensional structure is a regular arrangement of columns, where each
column denotes a specific disparity value or depth in 3-d space.
Elements detecting similar disparity values but with input from
different areas of the visual field are housed in the same column.
Marr and Poggio presented a computational simulation of their model
that involves elements with binary activation levels. Although, their
model demonstrated that stereo fusion is achievable in case of binary
instances such as RDS it proved to be difficult to extend the model
for a real life application with multiple gray levels.

The second generation of non-cooperative models for stereopsis
were proposed [MaP 79, MaF 81, Gri 85] with solving correspondence
between feature points as the main objective. The feature points are
the points which reflect strong characteristics such as discontinuity
of intensity. The correspondence problem involves finding the lateral
translation of an identified feature point in one image to another
feature point in the other image. Correspondence is established in a
multi-step process, beginning with an initial list of hypothesized
pairs. Disambiguation between competing matches is achieved by
applying constraints such as continuity of disparity in a local
region, compatibility of local contrast, etc. For instance, the Marr-
Poggio algorithm [MaP 79] achieves disambiguation by probabilistic

means. The input to their algorithm is the set of zerc crossings
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detected by convolving Laplacian of the Gaussian with the. images. An
important result of their study is that within w, the channel width
employed for Gaussian smoothing, the probability of finding a zero
crossing in the other.image is less than 0.3 while it is less than 0.7
for 2w. Thus, if a match is found within & then its candidacy deserves
a consideration._Further disambiguation is achieved by taking into
account its contextual information. However, his assumption that
disparity vary continuously in a local region is violated across the
edges. Since, edges are also captured by zero crossings this
assumption is invalid.

A significant contribution to the computational theory of stereo
vision, due to Mayhew and Frisby [MaF 81], is that the disparity
varies continuously along the zers crossings (and not across the zero
crossings). Known as figural continuity constraint, this constraint
forms the basis of a powerful theory to solve the correspondence
problem. Grimson incorporated the figural continuity constraint in the
later version of his algorithm [Gri 85]. It needs to be pointed out
here that in order to derive a new set of probabilistic limits he
further assumed that the two images are uncorrelated, violating the
basic nature of binocular wvision. A contour based algorithm for
computing correspondence has been proposed by Srinivasan et al [SrR
87], by exploiting the fullest disambiguating power of figural
continuity. This method involves employing a hypothesis testing
paradigm to distinguish between the correct and incorrect pairing of
features. The candidate hypotheses are that (i) a given pair is the

actual corresponding pair and (ii) the given pair is an incorrect pair
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(negation of (i)). A statistical decision rule is invoked to decide in
favor of one of the two hypotheses. The method has been tested on
natural as well as random dot stereograms, A detailed account of this
method and a compreheﬁsive treatment on stereopsis are provided in the
Master’s thesis of Srinivasan [Sri 87]. It may, however, be noted here
that algorithms for the solving correspondence problem deliver depth
only at points of intensity changes. In the remainder of this section,
we review the work undertaken on interpolation of depth values in the
sparse set of intensity changes.
4.,1.2. Surface Interpolation

The human vision possesses the tendency to fill-in and
interpolate/extrapolate the visual data in many instances of form and
surface perception. One such widely known instance is the subjective
contours [Mar 82]. In the case of subjective contours {shown in Figure
1.3) the strong contrast at the corners of the square influences the
early visual processes to extend (extrapolate) the edge from the
corners thus creating an apparent sqaure standing out. Notice that the
gray level inside the figure is the same as the ome outside, yet the
brightness of the region inside the apparent square looks different
from the background. Intermittently placed dots have also been known
to induce continuous contours along them (interpolation).

While, the afore-mentionmed examples explain interpolation /
extrapolation in two dimensional vision only, to demenstrate a similar
effect in three dimensional vision, Grimson devised an interesting
experiment as follows. He created a stereogram to induce the

perception of a shape, a cross-section of which is shown in Figure
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Figure 1.3 Subjeclive Conlours Suggestive of Line Interpolation
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_— Perceived Shape

I True Shape

Figure 1.4 Grimson's Experiment on Continuous Nature of Interpolation
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1.4. By intentionally leaving a small portion unfilled with
disparities, he showed that his subjects experienced the percept of a
continuous surface even in the unfilled region. It may be noted that
the percept correspon&ing to the dotted line is also another plausible
candidate. Two conclusions can be drawn from this experiment. (i)
Stereopsis itself should be supportive of interpolation in surface
perception. (ii) The interpclated surface is smooth and continuous.
Thus, in order to reconstruct the entire viewed surface, the sparse
depth map obtained from matching the corresponding points needs to be
filled-in. In contrast with the rich literature on the correspondence
problem, relatively very 1little work has been done on sterec data
interpolation.

A computational theory of stereo data interpolation was first
proposed by Grimson [Gri 82, Gri 83a). This theory incorporates an
important constraint that the interpolant should not introduce any
additional discontinuities other than those present in the form of
zero crossings in the depth map. Grimson showed that an interpolant
which can satisfy this constraint is yielded by the minimal solution
to the functional given below:

$CE) = [ [ [ (657 6x)% + 2 (S£%/ §x 6y) + (8 / 6y)% dx dy ]”2
----- (1.1)

This functional is a measure of smoothness and minimizing the

quadratic variation amounts to fitting the smoothest surface which is

at least twice differentiable every where, On the other hand, the

points at which the depth is available from binocular correspondence

could represent actual discontinuities in the local orientation of the
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surface, e.g. edges. Thus, the interpolant tends to yield surfaces
that appears "rounded" at edges and the discontinuous edges are lost.
However, minimizing the quadratic variation introduces better noise
immunity, especially. noticeable in several instances, as stereo
algorithms often generate spurious matches.

Interpolation of sparse data in a two dimensional grid has been
considered in many other applications such as geological data
extraction [Sch 76]. The nature of data in such applications are
different from the the sparse depth map computed in stereopsis,
because the data points need not represent edge points and there is no
explicit need to preserve the edges. Considerations for the choice of
interpolant employed in such cases include computational requirements
and visually pleasing appearance. A part of the contribution in this
research work is to introduce an important constraint that
characterizes the stereo data and to use the constraint for an
appropriate choice of the interpolant.

4,2, SHAPE FROM SHADING

The local orientation of the surface under view is in many ways
responsible for the irradiance it renders to the viewer. The smooth
shading of intensity on a uniform, non-reflective, continuous piece of
surface can be attributed to various factors including local surface
orientation, light source locatloen and reflectance properties of the
surfage. Horn, modeled image generation as,

1(x,y) = 6(z, Z, L ¥ #) L aeee (L.2)
where, I(x,y) is the intensity value at a point (x,¥) in the image

plane, z and =z are the partial derivatives of the surface at a
x y
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corresponding point on the surface, 1 is the light source vector, v is
the viewer direction and p is the reflectance of the surface. The
intensity can be directly related to the surface orientation and the
light source alone if'some generic assumptions can be made. Typically,
in the literature, such assumptions are:

(i) Lambertian and

(1i) illuminated with a single point source at infinicty.
Under orthogonal projection the intemsity can be shown to be

I(x,y) =p(1 . m ---- (1.3)
where, n is the unit normal involwving the partial derivatives as

n=lz, 2, 1 /] L=, z, =11 || ---- (1.8
The objective of shape from shading methods is to recover the

normal n from the I(x,y) and known or unknown 1light source
information.

Some of the important contributions to this area have come from
Horn {Hor 75, Hor 77], Ikeuchi and Horn [IkH 81}, Pentland [Pen 86],
Brooks and Hornm [BrH 85] , Lee and Rosenfeld [LeR 85], Frankot and
Chellappa [FrC 87] and Ferrie and Levine [FeL 89]. In general, these
algorithms can be classified into local or global methods depending on
the mnature of utilizing the intensity information. Local methods
involve using the intensity information or its derivatives only at the
point of interest, while global methods incorporate the notiom of
iterative computation of the solution constrained by global
consistency. A taxonomy of the shape from shading algorithms 1is
provided in Figure 1.5.

4.2.,1. Local schemes
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Figure 1.5 A Taxonomy of Shape from Shading Methods
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Local methods for computing shape from shading was first proposed
by Pentland [Pen 86]. This algorithm was based on an assumption that
the surface is locally spherical. He obtained a description of the
surface orientation in terﬁs of ’'tilt’ and ’'slant'. Although, his tilt
estimator offers a good performance, the slant estimator suffered from
loss of accuracy since it specifies only upper and lower limits for
the slant quantity. However, Pentland’s assumpgion of local sphericity
is strong and restrictive and non-umbilicalxsy:faces are quite common.
Lee and Rosenfeld [LeR 87] have proposed a variation of Pentland's
approach to improve the estimation of ’'slant’, by reconstructing the
surface in the illumination coordinate system. Ferrie and Levine [Fel
89] have derived conditions under which accurate estimates of 'tilt!
and 'slant’' may be obtained.

Local methods suffer from the problem of poor neoise immunity since
they make use of only local information. Thus, noise at a specific
point in the image can give rise to inconsistent estimates of
orientation when compared to its neighbors. Furthermore, intensity
derivatives are used in these methods, making the estimates even less
reliable.

4.2.1 Global Methods

Global methods make use of local constraints such as continuity of
normals to arrive at global interpretation of the scene. Ikeuchi and
Horn [IkH 81] proposed the first global method to compute shape by
solving a variational problem as follows: Minimize,

e~ [J WEL+ £) + (g + gD + A [I(x,y) - R(£,g))")ax &y

----- (1.5)
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where, subscripted quantities are the partial derivatives of the
respective functions and £ and g are the stereographic projections of

z, and z_ glven by

[ 5]

£ = 2 z [sqre(l + 2%+ zj) -1] 7 22+ 2D

Y

(3]

+ z7)

2
x
2
x ¥y

2
x
and g = 2 zy[sqrt(l + zi + z:) -1 / (=
The above minimization problem requires the pre-computation of the
reflectance map R(f,g) that denotes the "expected" irradiance quantity
for a given surface orientation. In practice, it is difficult to
obtain the reflectance map for a given surface since it requires
considerable amount of a priori knowledge. Horm and his associates
abandoned the method for this reason and years later, Brooks and Horn
proposed another global algorithm {BrH 85]. Their iterative scheme
involved minimizing a quadratic functional

JI (1 - pam))? A (ni-i-ni) + p|[n®-1]] ax @y --- (1.6)
with respect to n. In the above expression,

A is a scalar weight that emphasizes a smooth solution

p(x,y) is a Lagrange multiplier to ensure that n has unit length

and n_ and n are the first partial derivatives of n.
However, it has been pointed out [FrC 87] that the solution based on
the above technique may not always yield good results since the
estimates of zxand z, may not satisfy the integrability constraint.
Furthermore, this algorithm experiences considerably long convergence
period as found in our implementation.

Frankot and Chellappa, in a recent paper [FrGC 87], have proposed a

modification of the technique of Brooks and Horn [BrH 85] by

incorporating an additional constraint to ensure integrability. In
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this approach, the authors use a finite sum of Fourier hasis functions
to represent surface height 2z and minimize a distance measure
Az AZ
d = zZ-z )% (z -2z )dx d - .
JI -2y (z-2)x &y (1.7)
with respect to the PFourier coefficients in the representation of =z.

~ .y N
zand z are the current estimates of z and z . The authors have
x b4 : x ¥

e

obtained reliable results even when no a priori information on the
oceluding boundaries is available, However, the need to use DFT and
IDFT would impose an additional computatiomal burden on the algorithm.

The motivation for the major part of this dissertation was derived
from the current state of the art in shape from shading, in
particular, global techniques.
4.3 STRUCTURE FROM MOTION PARALLAX

Relative motion between an observer and the objects in a scene can
render a vivid feeling of relative depth. Displacement in the images
of moving objects in a monocular series of frames, (e.g. movie) can be
a useful source for computing relative depth or structure of the
scene. In general, the algorithms proposed in the literature to
compute structure from motion can be divided into two approaches,
namely, correspondence based and optic flow based. In the first
approach, a measurement of image displacement (similar to sterea
correspondence) is obtained at a number of points representing strong
features (e.g. point of intensity changes) followed by the computation
of motion parameters and relative depth. In the second approach, the
two dimensional motion of every point (if not, at least densely) in
the image plane is first obtained, followed by the estimation of

motion parameters. In both the approaches, an important assumption is
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made that the object undergoing motion preserves its rigidity. Motion
in 3-d space can be represented as
P=T+0xP ---- (1.8)
where, T is the translational velocity and @ is the rotational
velocity and P is the positional wvector. The objective of motion
estimation is to compute the components of T and Q1. To compute the
relative depth, under perspective projection, the image plane
coordinates of the projection of a moving point P can be written as,
XxX=X/Zandy=Y /2  ------ (L.9)
The projection of P in the image frame, denoted by p, can be seen to
have moved to a new location due to the motion of P and thus, its
velocity can be shown to be related to P by the following.
u=%k= [xT/2-T/2]+[xy8 - 1+ x%) a +ya]l

------ (1.10)

vey= lyT/2-T/Z]+ %y 0 +Q+y)a -xa]
------ (1.11)

The dotted quantities here represent the time derivatives. In the
above expressions, u and v, the image velocities are known. Once the
motion parameters T and 0 are computed, Z can be obtained from (1.10)
and (1.11). However, it may be noted here that since Z appears in the
denominator as a ratio with translation T and Z is also unknown before
computing T, motion parameters can only be estimated up to a constant
factor. Thus, the computed Z is a‘relative depth measure.
4,3, Correspondence Based Methods

Correspondence is obtained between successive frames of the

imagery in the same way as stereo correspendence between left and



rigﬁt images 1is obtained. Ullman ([Ull 79] proposed . the first
correspondence based motion estimation based on an orthographic
coordinate system. Although, his model was very simple by solving a
set of linear equatidns, the assumption of orthographic projection in
dynamic scene analysis imposes restrictions on the object moving
towards or away from camera. Roach and Aggarwal [RoA 79] proposed to
solve the problem via perspective imaging coordinates. Their methed,
however, involved a large search space motivating further refinements
of the idea.

Later, Tsai and Huang [TsH 8l1], investigated the problem by first
restricting the instances to locally planar objects. By exploliting the
constraints of planar geometry, they showed that a set of "secondary
motibn“ parameters are first obtained followed by the estimation of
actual motion parameters by solving a sixth-order polynomial. They
refined the idea in their later wversion to incorporate curved
surfaces. An important result established by their work is that given
unambiguous correspondences of eight object points in general
positions, the motion parameters can be established uniquely from the
singular decomposition of the matrix E = TR. A parallel result was
also derived by Longuet-Higgins LoH 81]. These ideas were extended to
straight line correspondences instead of point correspondence,
resulting in a better noise stability,

A major disadvantage of the correspondence based methods is
obtaining the correspondence itself, Unlike stereo correspondence,
motion correspondence suffers from motion blur too. Furthermore, since

these algorithms make use of information available only at a few
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points in the image, they tend to be very noise sensitive. -
4.3.2 Optic Flow Based Methods

The optic flow techniques rely on local spatial and temporal
derivatives of the‘ image intensity values, instead of spatial
correspondence. Horn and Schunk [HoS 81) showed that a useful
constraint can be derived from rigidity and smoothness assumptions.
That is, with image velocities u and v,

I(x + uft, y + vét, t + §t) = I(x, vy, ) ee-- {1.12)

Using this constraint, Bruss and Horn [BrH 81l] proposed their
least-squares based algorithm to compute the motion parameters,
Although the algorithm performed poorly on scenes with edges (hence
discontinuous optic flow), their idea paved the way to motivate
several others to construct optic flow based structure estimation. In
a parallel effort, Jain introduced the notion of using the Focus of
Expansion to compute optic flow and demonstrated interesting results
[Jai 83].

Successive refinements to the theory came from Adiv [Adi 83], and
.Negahdaripour and Horn [NaH 87]. Recently, Subbarao [Sub 89] proposed
a technique that involves temporal derivatives of the image apart from
spatial derivatives that were considered until now. Verri and Pogglo
[VeP 89] have also recently added their critical evaluation of the
usefulness of optic flow to compute structure.

For dynamic scene analysis, motion parallax contributes to much
more relative depth and shape information, than cues such as focus

adaptation and size constancy.
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4.4, SHAPE FROM TEXTURE

Regular textures in perspective imagery present a uniform change
in the distribution of the texture elements. The changes include slow
variation in the deﬁsity of the texture layout and skewed texture
elements. A significantly small attention to recover shape from
texture has been found in the literature. This may be partly explained
Eyrsthe fact that regular textures are rare in nature and thus
applications are much restrictive.

The models proposed in the literature [Wit 81, DaJ 83] , in
general, attempt to extract the basic texture elements first, followed
by the estimation of surface orientation from any deviation from the
distribution of the texture elements. Variation in the distribution of
texture elements are found by evaluating the repetitive occurrence of
directional edges. Witkin {Wit 81] proposed a maximum likelihood model
for recovering surface orientation by relating regular variatioms of
the texture elements to the slant and tilt of the surface. Davis et al
[DaJ 83] improved his technique by presenting two algorithms, one of
them based on computing the edge direction histogram and the other
based on the maximum likelihood principle. All these methods assume
that the edge directions are isotropically distributed.

The crucial problem of all these methods is the extraction of
texture elements. Very recently, Blostein and Ahuja [BlA 89] suggested
an approach to efficiently identify texture elements by combining this
process with extraction of the scene layout, Their method is based on
generating a list of candidate texture elements by using a variable

spatial scale filter such as v?G. The best candidate is suggested by a
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planar surface patch that best describes the expected distribution of
the texture elements.

Useful insights into how human vision reconstructs surface
orientation from texture have been achieved by the psychophysical
studies of Stevens [Ste 83]. However, such ideas are yet to be
incorporated into any machine vision algorithm.

5 Motivation for this work

Most of the progress in the area of vision has been realized in
understanding early vision. Two reasons emerge to answer why early
vision is studied well. First, the recent advancements in single cell
electrode methods to analyze characteristics of individual cells in
the visual stream have given rise to a much better understanding of
early vision than higher levels. Secondly, since early vision allows
mathematical modeling of the processes invoelved, it offers an ease in
understanding such processes.

In addition to the reasons provided here for choosing to work with
early vision, we will also describe below, the motivational theme for
studying stereopsis and shape from shading. Stereo vision has been
shown to be one of the most reliable ways to estimate depth. The crux
of stereopsis is to identify the corresponding items in the left and
right image, followed by extraction of a depth measure. Correspondence
can be established without any ambiguities only at points that possess
strong features. In general, since these poiﬁts are only a few in
number, the problem here is how to use the depth measurement at these
points to compute depth at every other point. This particular problem,

although being addressed as scattered data interpolation in general,
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has a different implication in vision. A computational framework for
this problem was provided by Grimson [Gri 82, Gri 83a2]. An
understanding of his theory reveals that a stronger form of the
constraint he imposed on the interpolant is desirable. Our motivation
for suggesting a modified computational theory and a faithful
implementation for that theory originates here,

With the objective of building the equivalent of a 2 1/2 d sketch,
the approach taken here is to model the integrating process of
combining stereopsis and a morocular shape computing process. A rich
monocular source of shape information is the smooth shading on an
object. Since it is a more commonly occurring form of shape cue than
any other monocular cue, our goal here is to model shape computing
from shading. The current literature on shape from shading is far from
being as rich as compared to the 1literature on stereopsis. The
reported work stems from a perspective that de-links shape from
shading from any other surface computing process. That is, only after
the surface reconstruction is over, the shape inference process is
assumed to begin. In contrast, shape from shading should actually use
local shape constraints in the process of reconstructing the surface
since shape information is intrinsic to the object. Hence our pursuit
is to devise a method that uses local shape constraints to arrive at
globally consistent estimates, while the computed shape in this
process is a very useful byproduct.

In short, from a perspective of developing the 2 1/2 d sketch, it
is necessary to view that surface computing processes are not

independent.. A concern for generating object intrinsic information
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remains the motivation for this work.

6 Organization of this dissertation

Beginning with chapter 2, interpolation of sparse data from
stereopsis is the subject of chapter 2. In chapter 3, a model for
describing shape is presented. An algorithm for computing shape from
shading using this local shape descriptor is described in chapter 4.
The issue of integrating depth from stereopsis and shape from shading
is addressed in chapter 5. The conclusions and details of further work

are discussed in chapter 6.
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Chapter 2
Surface InEerpolation

1 Introduction

The problem of interpolating sterec data needs to be understood
with not only pure mathematical considerations, but also with
considerations about the wvisual geometry. Because the constraints
about the wvisual world are best understood at the level of a
computational theory, a good starting point here is to analyze a
computational theory of interpolation,

2 A computétional theory of Surface Interpolation

It may be recalled, from chapter 1, that stereo correspondence can
not take place at all points in the image but only at points of
intensity- changes. In order to reconstruct the surface in its
entirety, the sparse stereo data needs to be interpolated to deliver
depth at every point. Given the sparse depth map, wvirtually an
infinite number of surfaces can be fitted. This can be illustrated
using an example in a two dimensional plane. Consider the set of
peints shown in Figure 2.la. Several interpolants can be used to
interconnect these points, suggested by the alternatives in Figure
2.1. To distinguish the "best fit" from the rest, we need to employ a
few constraints such as smoothness and minimal mean-square deviation
from the original data. Such useful constraints form the central part
of a computational theory.

2.1 PROBLEM STATEMENT
Let f(x, y) be a function of depth at points P(x, y) defined in

the grid (x, y). For convenience, we will order P(x, y) in a set Q =
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Figure 2.1 A two dimensional example for showing multiple
candidates of interpolants
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(Px}; k = 1,N. Given the known data set G = {st E(x, v Jrn fi} and
G cQ, find £(x, y) for all Pk € Q. '
2.2 SURFACE CONSISTENCY CONSTRAINT

A few observations on the nature of data points Pk's we have here
can be translated to form a very useful constraint for interpolation.
Firstly, the sparse set of data points at which we have the stereo
disparity are the points of intensity changes. Secondly, the intensity
changes can only come from either surface discontinuities or surface
albedo changes. This means that since surface discontinuities are
truly captured by =zero crossings of the v?G filtered image, the
interpolant should not introduce any additional discontinuities in the
surface. Thus, in the two dimensional example given in Figure 2.1,
except the choice b every other choice would introduce additional
edges. The surface consistency constraint of Grimson {Gri 83b] is
based on these observations. 1t appears here as,

"The absence of zero crossings constrains the possible surface
shapes at a given point.”

Developed from this constraint was his surface consistency theorem
[Gri 83b], which relates the probability of a zero croséing introduced
by an interpolant and shape of the surface. Using this theorem he
showed that the best surface fit ‘£’ for the set of points P in W is
the minimal solution for the quadtratic variation of the interpolant
function. This functional was described in chapter 1 as equation (1)
and for convenience it is reproduced here.

(E) = [ [ (5F 7 6x)% + 2 (6£%/ 6x 6y) + (6£ / 6y)° ax dy

------- (2.1)
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By associating a measure of such quadratic wvariation  with each
possible surface, a hyper surface of solutions is generated with a
dimension of (N2+ 1). The minimal point on this hyper surface
generated by the funcfional given by (2.1), corresponds to the desired
surface. It should be mnoted here that the candidate surfaces
represented by this functional are ensured to be at least twice
differentiable and hence obey the surface consistency constraint. By
requiring that the quadratic variation is minimal the intepolant bears
a great deal of similarity to least squares regression type of curve
fitting of points in two dimension..

2.3 MODIFICATIONS TO GRIMSON’S GCOMPUTATIONAL THEORY

Qur motivation to study the problem of stereo data interpolation
towards further enrichment of Grimson's theory stems from the
following observations.

(i) The requirement that the interpolant should not introduce any
new zero crossing has been rightly captured in Grimson's theory of
interpolation. Evidently, if the visual system uses only continuity as
a criteria then sharp corners and edges in any percept are
unaccountable. However, the surface consistency constraint of Grimson
does not explicitly specify whether the existing zero crossings are
preserved by the interpolant or not. That is, the discontinuicies in
the interpolated surface should dictate zero crossings at the same
original locations and all those original zero crossings must appear
as representatives of discontinuities even after interpolation. Hence,
a modified form of surface consistency constraint should read:

" The interpolant must preserve all (and only all) of those zero
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crossings that correspond to the discontinuities in the surface at the
same locations. "

(ii) To satisfy the above constraint, the interpolant should be
chosen such that it is at least twice differentiable every where
except at the data points (zero crossings), where it should net even
be differentiable once but just be merely continuous.

(iii) Computing the depth using this interpolant should also be
computationally less expensive and parallely implementable. Because of
choosing the smoothest surface, Grimson's quadratiec wvariation
algorithm not only fails te satisfy the modified constraint but also
is computationally quite expensive (see Section 5.2).

{iv) The interpolant should also facilitate combining any
estimates of surface orientation from other cues since our ultimate
goal is to build the 2 1/2 d sketch,

Shown in the following section, is a scheme due to Shepard ([She
76] that was originally developed for f£illing scarce data in the
domain of geophysical experimentation. Before a detailed treatment of
Shepard’'s surfaces, an informal preview would help to get a better
understanding here. Imagine a set of thin poles fixed on a scattered
fashion Iin a grid, representing the depth data at those points.
Fitting Shepard’'s interpolants is metophorized to laying a thin
membrane over these poles. The curvature of sagging in the membrane
due to gravity can be controlled by adjusting the tension in the
membrane. In a similar fashion, the fit of Shepard’'s surfaces can be
adjusted through proper choice of the parameters of the interpolant.

The central idea of this scheme, thus seems to be simple, but yet
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yields remarkable results as implemented in this work.
3 Shepaxd's Metric Interpelant

Let f(P) be a function of the point P = (x,y) defined for all the
points in a bivariaée real plane RZ. Assuming that the points are
arranged in an ordered set w = {Pihﬁl with all of them being
distinct, we shall denote the following quantities. The function value
fi corresponds to peoint Pl. The Euclidean distance between a generic

point P and Pi is di. Then the Shepard’s function at a generic mnon

data point P is specified as

N N
£) =L £ @ dj]/[z I d j] --- (2.2)

i=1 i#¥j 1=1 194j
2 2
where, di=-||P-Pi||={(x'xi)“l"(}"}'i) )

It can easily be seen that £(P) is continuous and interpolates F
at all points in w. The continuity of £ results because the di's are
continuous and the denominator of (2.2) mnever vanishes, because the

points are dist<net. The evaluation of (2.2) at point Pk thus gives,

£p) - [ £ m|lp-P |] m|fe-pl|] = £
L CADPACILEAD RS

since all other terms vanish.
The numerator and denominator of (2.2) have many terms in common.

A simpler form is

H
em - [I£sa] /(3 1] 2.
juy i=1 :
Since the Pi's are distinet, 2.2 can also be written as,
N
£(P) _1-):1 £ 4, (Bi P, P,...B)

where,

37



N
¢1(P:P1.P2,--.PN>—;I [12-2,[I/[T m{le-2|]]
k] imljfi

so that ¢1(P;P1,P2,...Pﬂ)are the cardinal basis functions and they
possess a very imporfant property that they are almost amalytic (and
hence infinitely differentiable) everywhere except in the vicinity of
data points. This property is the most desirable property in the realm
of stereo data interpolation to satisfy the modified wversiom of
surface consistency constraint discussed earlier. To strengthen our
argument for using Shepard’s interpolants for filling stereo data we
shall discuss some important properties of this interpolant in the
following section.
3.1 PROPERTIES OF SHEPARD'S SURFACES

A considerable amount of study of Shepard’s surfaces has been
published. This scheme 1is quite simple but yet possesses very
interesting properties ([BaD 83, GoW 78]. Any interpolant should
satisfy an important requirement, namely, it should be bounded between
the infinimum and the supremum of the function values in the data set.
That is,

min(fi) <= f(P) <= max(fi) Pisl<=1<=N,

It is quite easy to verify. that 2.2 does indeed satisfy this
requirement.

Shepard's scheme also possesses an interesting asymptotic
behavior. If, for instance, a non-data point is far from a cluster of
data points, then the interpolant takes the average value of the
cluster since every individual point in the cluster has equal

influence over the non-data point, That is,
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N
lim f(P) =1 /N Yf ¥i>dl<=i<=N.
i
di--->cn i=1

It may be recalled from the previous sections that we could
control the amount of sagging of the membrane surface laid over the
data points. To see how this can be done, an additional parameter 'p'
is introduced in (2.3)

N N
£@=[Lf 71/ [11/4] ---2.9
i=1

i=1

The effect of introducing p can be directly seen to influence the
support offered by each data pole. Figure 2.2 shows different
instances of interpolation in the one dimensional data set for
different values of pu. It is interesting to note that for p > 2, the
surface becomes ’'flat’ near the data points., For 0 < p < 1 sharp cusps
are noticed at the data points. This particular characteristic has
been studied well in [Far 86]. Since, for p = 2 the interpolant
resembles the least square quadratic fit but yet not differentiable at
data points, we shall use this value.

Finally, since the contribution due to farther points in the grid
is quite minimal ([l/di]is small), the computational expense incurred
in computing them can be avoided by limiting the influence of data

points to a confined neighborhood of small radius r. Thus we have,

N N
sy = [ 35/ ]/[L1/d]%ind <r (2.6
i=1 im1

In our implementation the local version shown in 2.6 has been
used. The critical issue is how "local" the scheme should be such that

we do not lose much of the information. Evidently, this question has a
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P = 10.0

Figure 2.2 Effect of #in Shepard's Interpolant
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direct bearing on the distribution of data points in the grid. A
discussion for our choice of r and a justification for this choice are
provided in the next sectiom.

All the properties discussed in this section hold good for any
other metric other than the Euclidean metric. The metric used in our
implementation defines distance between two points in the grid as the
maximum difference in x and y coordinates. That is,

d = max{xp-xn, yp-yn}
where, (xP, yp) and (xn, yn) are the coordinates of the data and
non-data points respectively in the image plane.

4 Shepard’s Surfaces over Stereo Data

We shall show here how the choice of Shepard’s interpolants for
stereo data interpolation makes it the appropriate one. It may be
recalled from Section 2.3 that the modified version of surface
consistency constraint requires that the interpolant should be at
Jeast twice differentiable at all non data points while not even
differentiable once near the data points, One of the salient features
of Shepard’s surfaces is that they behave analytic at all non data
points. However, the fitted surface is not even differentiable once
near the data points, although it appears continuous visually. This
particular property satisfies the surface consistency constraint
faithfully. |

To consider the issue of deciding on how "local" the interpolation
neighborhood can be, the notion of spatial frequency channels in early

vision is discussed here. Because the information seems to be captured

at different levels ({Mar 77a], it makes sense to compute 2zero
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crossings of the LoG at different resolutions. Thus, the. the filter
width or the standard deviation we choose for the Gaussian allows us
to extract edge information at a certain scale. Furthermore, the
standard deviation a- of Gaussian controls the density of the =zero
crossings present in the particular channel. Hence ¢ itself can be
taken to be directly related to the width of neighborhood for
interpolation. From our experiments it suffices to use one ¢ as @he
width of interpolation.
5 Results and discussion

As indicated earlier, since the RDS is one of the rigorous ways to
test a stereo vision module, we consider here a 128 X 128 RDS (Figure
2.3 and 2.4) generated with a central square in the middle given a
disparity of about 5 pixels. For most humans this is well within the
fusion range. After the generation of RDS, the left and right images
were convolved with LoG to obtain the intensity changes. The width of
Gaussian was chosen to be 5 pixels. This choice is supported by the
biological finding that the lowest spatial frequency channel human
vision employs corresponds to 4 pixels [Gri 85, MaP 79]. The spzrse
depth map is generated using a contour based stereo algorithm [SrK
87]. (see Figure 2.5 ). Figure 2.6 showsxthe filled depth map as
brightness values. Clearly, the edges of square in depth are preserved
quite well.

Also, considered here is a scene containing a basketball (Figure
2.7 and 2.8). The camera was fixed with the wall on the background.
The result of reconstructed surface is shown in Figure 2.9 as a

perspective plot of the surface. It may be noticed that stereo
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Figure 2.4 Right Random Dot Stereogram
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Figure 2,6 Interpolated RDS
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Figure 2.8 Right picture of the basket ball
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Figure 2.10Interpolated surface (with the hidden surface removed)
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correspondence algorithms can leave a few spurious matches and these
spurious matches indeed cause difficulties as noisy data.
Unfortunately, the Shepard’s interpolant considers these points also
as valid data pointé resulting in a few thorn like peaks at these
points. However, the reconstructed surface does preserve its shape.
The reason for this is because, the interpolation scheme is similar to
a weighted average scheme. Under noisy data conditions the quadratic
fit of Grimson might tend to smooth out the effect of noise rendering
the result more visually pleasing.
5.1 COMPUTATIONAL COMPLEXITY

Though it is difficult to obtain a precise count of basic
operations, it can however be specified in terms of two parameters as
follows. Consider the local form of the interpolation scheme given by

expression

N N
£ - [ Y£ /71 /[L1/7&]viad <r---(2.6)
i=1 i=]

In the local scheme N depends on the radius of interpolation and in
our case it is the lowest ¢ used in zero crossing detection. Also, N
depends on the density of zero crossings in the image which could vary
from scene to scene. Hence, we shall use two factors, o and 8, to
denote the number of pixels within the given radius, and the density
of zero crossings, respectively. With N = ef, we have, for every
nondata point in the image, (af + 1) divisions, af multiplications and
2a¢f additions to compute expression (2.6). Since there are (1L - &
m’nondata points in an m x m frame, we have (1 - B8) m? (e + 1)

divisions, (1 - B) m’aB multiplications and 2af (1 - B) m additions.
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With @ = 5°= 25 and B8 = 0.4, the number of divisions involved can be
shown to be 6,6 nﬁ, the number of multiplications 6 mF and number of
additions as 12 m’. Evidently, the locality of interpolation plays a
key role in the amouﬁt of computation; this is reasonable because the
denser the information available, the shorter the time it should take
to complete the grid without having any need to compute depth at the
data points., In general, there are about 25 n’ basic operations.
5.2 COMPARISON WITH GRIMSON'S APPROACH

The important differences arise both in the computational theory
level and the algorithmic implementational level. At the computational
theory level, the need to preserve the originmal discontinuities is
totally absent in Grimson's computational theory. This suggests that
his minimal quadratie variation fit does tend to smooth out all the
edges, At the algorithmic level, ;he computational requirements for
Shepard’s scheme is only 25 m® basic operations as opposed to 68 m’
operations per iteration in Grimson's algorithm. The difference stands
out, especially, when we notice that the number of iterations Grimson
reported is of the order of hundreds, while Shepard's scheme 1is
non-iterative. Furthermore, since there is no need to compute the
interpolant value at data points, Shepard's scheme amounts to decrease
in the computational time. However, in the minimal quadratic wvariation
fit, the dimension of the hyper surface increases for every additional
data point resulting in the increase of computational requirements. In
short, for a quick and rough estimate for the depth values, Shepard’s
scheme is quite superior to Grimson's algorithm. In early vision, this

type of quick and rough estimates are more important than slow and
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accurate recovery of shape and depth. Such quick estimates are also
useable in other shape estimation processes such as shading.

An important aspect in which Grimson's method excels is its better
performance over noisy stereso data. Because of its second order
differentiable property (every where continuous), it tends to smooth
out noise if the mean square level of the noise is comparable to the
data. However, since noise is also considered to be a potential data
point by Shepard’'s scheme, it does not suppress the noise problem.
Thus, depth estimates tend to be less accurate in such cases. This
emerges to be a potential problem, since often stereo algorithms may
not deliver 100% correct matches.

6 Summary

Interpolation, both in form and depth, has a definite place in
human vision. In depth reconstruction stereopsis, as a primary source
of depth, depth information is provided only at points that have
strong features (points of intensity changes). Thus, interpolation
becomes essential in order to f£ill the sparse depth map. Although the
problem of scattered data interpolation has been studied well outside
the realm of stereo vision, Grimson’s theory of interpolation is the
only attempt ever made to rigorously study this problem. In our work,
the weak surface consistency constraint is modified to impose stronger
conditions on the choice of interpolant. Since, Grimson's quadratic
fit method may not satisfy the stronger form of surface consistency
constraint, our choice of Shepard’'s metric interpolation scheme is
defended here. With the depth at every point being available, a part

of our objective, namely to reconstruct the surface is achieved.
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Chapter 3
Shape Analysis

1. Introductien

The ultimate goél of computer vision is to extract some form of
invariant description of the objects in order to recognize them.
Several possibilities exist to describe wvisible surfaces of the
objects, For example, in computer graphics, standardized descriptions
of local patches such as Coon's and-Bezier patches [Yor Bl] have been
used., However, since the shape of an object is invariant under
transformations such as translation and rotation it becomes important
to devise invariant schemes to describe surfaces by representing them
with shape characteristics such as curvatures. A few representatives
of earlier attempts on using curvatures specifically for describing
shapes of objects include Besl and Jain [BeJ B86], Pentland [Pen 84]
and Horn and Tkeuchi [HoI 83]. An impressive demonstration of how
Gaussian and mean curvatures provide a convenient form of representing
shape is presented by Besl and Jain. Pentland, in his attempt to solve
shape from shading, discusses differential geometry of surfaces from a
perspective of locally describing a surface as an umbilical patch,
Horn and Tkeuchi restrict themselves to description of convex surfaces
by a discrete approximation to Gaussian curvatures. Our approach
parallels with that of Besl and Jain in the following respect. We
begin with the motivation of locally describing shapes towards the
goal of formulating a wvision problem (in our case, shape from shading)
in terms of the shape quantities.

The purpese of this chapter is to provide a comprehensive
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treatment of shape description. The motivation is that a local shape
descriptor derived in this chapter can be used to formulate the
problem of shape from shading directly in terms of quantities
representing the shape and surface normals. Section 2 provides a
review of differential geometry of surfaces. A polynomial shape
fitting approach, resulting in a convenient local shape descriptor, is
described in Section 3. Section 4 lists the conclusive remarks on our
approach,
2, Differential Geometry of Surfaces

In order to provide the motivation for using a local shape
descriptor, a short review of the analytical results in differential
geometry of surfaces is presented in this section. We begin with a

parametrized description of a surface in 3-d space.

S = {(x,y,2) € R? x=f(u,v); y=g(,v); z = h(u,v)}
---- (3.1)
where £(u,v), g(u,v) and h(u,v) are continuous functions of the
parameter palr (u,v). Following the notations adopted by Besl and Jain
[BeJ 86)], the first and second fundamental forms of describing S are

given by,

011 c’:12 du
$(u,v,du,dv) = dp + dp = [du av] [ _ .
2

and
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where,
p is the generic point on the surface, n is the normal at p and, a and

B are given by

@, =P, P, +@,=P*P ande =a =p-p --- (3.4

ﬁ =P M ﬂ22 = va' n and ﬂ:z = ﬂ21 = Puv. no==s (35)

11 uu

Intuitively speaking, the first fundamental form (3.2) describes
corresponding changes in surxrface for small changes in parameter space,
while the second fundamental form (3.4) describes the corresponding
change in normals as well as the surface for small changes in the
parameter space,

Equations (3.2) and (3.3) together contain adequate information
about the surface. Also, the matrices « and S are very useful
quantities here to compute the Gaussian and mean curvatures. A
powerful analytical result established in differential geometry
relating a« and g with curvatures is as follows [Doc 76]. A matrix

known as Weingarten mapping matrix can be formed out of e and g, given

to be
A v I ) A PP PR (3.6)
and the curvatures are related to W as
Gaussian curvature K = det(W) ---- (3.7)
and Mean curvature H = 1/2 trace (W) ---- (3.8
The existence of a ' is conditionmed on the fact that the

parametrization functions are continuous. Further details such as

dichotomy between principal curvatures and, Gaussian and mean
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curvatures can be found in [BeJ 86, Doc 76]. The issue of. paramount
importance here is how to formulate the problem of shape extraction
from intensity measurements, so that a shape descriptor similar to W
can be directly computable. The next section is specifically aimed
at addressing this issue.

3. Shape Characterization

The simplest approach to extracting shape information from
measurements is to first obtain an algebraic description of the
surface and then compute the shape parameters by differentiation. For
example, instead of the implicit representation given by 3.1, we can
obtain an explicit characterization

z = £(x,y) ---- (3.9

and compute the shape information as a function of the first and
second derivatives of the surface. The primary difficulty with such an
approach is that these partial derivatives increase as tan(f#) where 4
is the angle between the normal to the surface and the z axis. Thus,
for instance, near the points at which the surface quickly recedes
from the viewer the partial derivatives numerically reach extremely
high wvalues. This poses some computational difficulties Dbecause
computing shape near the occluding boundaries requires subtraction of
fwo (nearly equal) numerically large quantities resulting in a loss of
accuracy.

A sensible approach to this problem is to formulate the early
visual processes in such a way that shape quantities can be directly
computed instead of obtaining shape by successively differentiating z.

Thus, if a shape fit for the surface normals is first obtained, the
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surface itself can then be constructed by integrating, resulting in a
more numerically robust technique as opposed to differentiation.

Local shape of the surface can be described in many ways. For
example, parametrized local patches around an intrinsic axis of the
object have been used earlier {Yor 81, MaN 78]. Finding such intrisic
frames can be avoided if we could characterize the surface in terms of
the principal curvatures. Since principal curvatures are intrinsic to
the surface and do not depend on the coordinates used, they seem to be
the most appropriate candidates for invariant description of the
surface. We shall discuss, in the next section, a shape fitting
technique that overcomes the problems associated with the explicit
formulation in (3.9) described before.

3.1 SHAPE FITTING AND A LOCAL SHAPE DESCRIPTCR

Let S be a surface and p a point on it. Let n{(p) be the unit
normal to the surface at the point p. In the shape £fitting
formulation, we begin with implicitly describing S in the form of a
function of its normals as follows.

n(p) = f(p) Vpes.  ----- (3.10)
where, p = [xl, X, x3}T and n = [nl, n, nS]T. Then the surface can
be constructed by integrating the differential equation
anp-ndx +ndx +ndx=20 . {3.1L)
11 2 2 3 3
where, [dxl, dxz, de]T is a wvector in the tangent space at p.
Interestingly, if (3.10) is viewed as a function from R --> R? without
restricting p to be on S, then (3.10) describes a family of surfaces
characterized by (3.11). Any surfaée in thiz family is specified by

the constant of integration chosen for (3.11). Furthermore, surf:ces
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off this family share an important virtue, namely, their shape
information. This can be seen by examining the derivative of f(p),
expressed below as,
dn = A dp D (3.12)

where A is a matrix of partial derivatives of the components of n.
Thus, .intuitively, A with its second partial derivatives of the
surface, contains the shape information. A fofmal definition of the
shape fitting formula in the form of a low order polynomial fit for
(3.10) helps to understand this point better. A first order Taylor's
approximation of the normal at a point in a generici coordinate system

(xl, xz.'xs) can be expressed as,

X -%
1
0 o, 0
n(xl, X, Xs) =n(x1_, X ,xs) + Al x "X,
0
X_-%X
3
where A = [én / 6x1.6n / 6x2,6n / Sxa].
Or equivalently, |
0
X - X
1 1
0o _ 0 _0 ) 0
n(xl,xz,xa) - n(xl,xz,xa) - A ®, - X, (3.13)
)
X - X
3 3

Now, writing the differential equation of (3.11) in a symmetric form,

we have,
0
X, - %
1; 1
1/2 [n( )+ n(x‘J % xo)] x - x° |=0 ----(3.14)
/2 [n(x,x,.%, 1% %, , " %, [0 .
0
X - X
3 3
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Since A contains the shape information (the derivatives of the normal)
A may be referred to as ’‘shape matrix '. In general, the linear fit is
adequate for most surfaces found in nature, though extension to
quadratic and higher order polynomials is straight forward. In order
to understand how this formulation eliminates the disadvantages of
explicit schemes, a discussion on the properties of the shape
descriptor A is given below.

3.2 PROPERTIES OF THE SHAPE MATRIX ‘A’

The major concerns in computing a local shape descriptor are (i)
its robust behaviour at points near the occluding boundaries, (ii) the
accuracy of shape fit in an arbitrary coordinate system (iii) the ease
in recovering curvature information from the descriptor and (iv) its
ability to deliver the partial derivatives of the surface that are
integrable. We shall address every one of these 1issues in the
following sections.

3.2.1 Robustness and Bounded Behaviocur of the Shape Descriptor

One of the serious difficulties with the explicit fermulation
(3.9) is that the parameters in the right hand side of (3.9), increase
without bound as we approach the occluding boundaries. Clearly, if the
viewing point (z axis) is moved in such a direction that the occluding
boundaries would come in to the center of the wvisual field, then the
unbounded behaviour at those points can be checked. This means that
the choice of the coordinate system decides the numerical behaviour of
the parameters. In the case of the shape fitting formula in (3.13) the

following theorem shows that the norm of A is independent of choice of
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coordinates.

Theorem 2.1: The euclidean norm of A is invariant under euclidean
change of coordinates.

Proof: To demonstrata that A does possess this property, consider
euclidean motion imparted to the surface so that its coordinates are

changed. Let the quantities in the new coordinates be denoted with " ,

that is,
X X
1 1
x, | = D+ R X, -«--(3.15)
X X
3 3

where R'R = I and D is a displacement vector, then we have
n(p) = R n(p) and n (p Yy=Rni{p ). ---- (3.18)
Here, p and p' are neighbors in the original coordinates. It may be

noted that euclidean displacement of the surface does not alter the

normals. The shape fitting formula (3.13) can now be written as,

Ay =n(p ) +A(G-D )
and hence,
A=-RAR. cee- (3.17)
since, R is an orthogonal matrix,
hali=1lall s (3.18)
Thus, the magnitude of A is independent of the coordinates. Since
elements of A parameterize the surface, this result shows that the

ngize" of the parameters do not depend on the coordinates chosen. O

3.2.2 Sensitivity in an Arbitrary Coordinate Systenm
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Just as the way the parameters of the explicit formulation (3.9)
exhibit an undesirable behaviour at occluding boundaries, the accuracy
of the shape "fit at those points suffers too. This is due to the
reason that accuracy of any polynomial fit for the surface depends on
the magnitudé'of the partial derivatives of z with respect to x and y.
Again, 1f the viewing point (hence the z-axis) can be moved to bring
those points inte center of wvisual field, then accuracy can be
improved. Thus, the accuracy depends on the choice of the coordinates
used to describe the surface. On the contrary, as the following
theorem shows, the accuracy of the shape fit using (3.13) is intrinsic
to the surface and does not depend on the choice of the coordinates.

Theorem 3.2: Suppose that the exact formula for the normal vector is

given by,

0

X - %

1 1
n(x ,x ,x) = n(x0 x’ xu) + A | x - = | + E(x ,x , x_)
1'72' 3 172’7 2 2 1772 T

0
X, - X ----(3.1%)

where, E is the error in the fit. Then the euclidean norm of E is
invariant under a euclidean change of coordinates.
Proof: After a change in coordinates as euclidean motion is applied by
(4.16), the error E is given by

~ A ~ ~

E (xl,xz,xa)- R E(xl,xz,xa)

Y

Since R is an orthogonal matrix || E || - |] E]]. D

That is, the error is independent of the coordinates. Thus,

instead of obtaining a numerically ill conditioned function z(x,y) and
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then compute the curvatures by numerically differentiating this
function, the shape fitting approach by locally fitting the shape
descriptor A, followed by integrating the resulting quantity to
compute z(x,y) is insensitive to the choice of coordinates.
3.2.3. Recovering Principal Curvatures

Since principal curvatures prove to be a convenient way to
represent local shape, an important requifement of the shape
descriptor is to provide an easy means to obtain the curvature map of
the surface. In order to establish the result that curvatures are
easily computable from the shape matrix A we will first prove the
following result, regarding the invariance of the tangential manifold
under A. Later, we will show that the eigen values of A restricted to
the tangent space represent the principal curvatures.
Theorem 3.3: The tangent space TM = { n }L is invariant under A.
Equivalently, n is a left eigen vector of A.
Proof: Since rfn = 1, we have nF dn - 0. That is, dn € TM. Using
(3.12) it can be seen that for any dp € TM, dn = A dp € TM. Hence, A
maps a vector in TM into a vector in TM.

Since nF A dp = O whenever o dp = 0, we have
A=At e (3.20)
That is, n is a left eigen vector of A. O

Since TM is invariant under A, it makes sense to talk of the
restriction of A to TM. i.e how A maps vectors in TM. An important
property of the restriction of A to the tangent space TM is stated in
the next theorem.

Theorem 3.4: The restriction of A to TM is a self-adjoint operator
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(i.e the restriction of A to TM is a symmetric matrix). Furthermore,
the eigen values of the restriction of A to the TM are the principal
curvatures and these are independent of the coordinates chosen.
Proof: Note that the restriction of A to M is dn, the differential of
n. The twe properties of dn can be found in [Doe 76]. O

Instead of the principal curvatures, the Gaussian (K) and the mean
(H) curvatures are preferred since principal curvatures are
directional quantities besides being noise sensitive. Furthermore, 1t
can be shown that these values uniquely characterize a given surface
[Doc 76, Theorem of Bonnet].
3.2.4. Integrability of Normals

Integrability of the surface normal estimates becomes an issue
especially in the shape fitting approach, since eventually the
relative depth values need to be obtained by integrating the normals.
The theorem 3.4 provides the necessary and sufficient condition for
the integrability of (3.11) because the restriction of A to the
tangent space is symmetric. However, the theorem is not easy to use
since it pertains only to the restriction of A to TM. The surface is
completely characterized by the action of A on vectors in TM and its
action on vectors outside TM is irrelevant as far as the description
of the surface is concerned. Let
A=~A(I-va) - (3.21)

where, v is arbitrary. Then for any dp € TM i.e. dp l n, Ap= A P.
Thus, there are several shape matrices "A" (that only differ on how
they behave outside TM) that describe the surface. The following.lemma

shows that we can restrict the choice of "A"™ matrices by specifying
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how it behaves outside TM.
Lemma 3.1. For a given surface, we can always find a shape matrix A
such that n is both a left and right eigen vector.
Proof: In (3.21) lef v be chosen as v = A n - o mn where ¢ 1is
arbitrary. Then
Kn-An- Annrn-i-annrn-an, since nrn-l. m]

Thus if we restrict our attention to only those A’ s for which n is
also a right eigen vector, the condition for integrability is much
simpler than the one specified by theorem 4.4,
Theorem 3.5: Suppose that n is both a left and right eigen vector of
A, Then a necessary and sufficient condition for (3.11) to be
integrable (i.e. cross partial derivatives be equal) is that A be
symmetric.
Proof:
Necessity: From theorem 3.4, A has two orthogonal eigen vectors on TM.
Since m is also a right eigen vector of A, A has three orthogonal
eigen vectors. Hence A is symmetric.
Sufficiency: Suppose that A is symmetric. We have

§z/6x = z = - nl/n:s and §z/6x = zy - - nz/n3
Thus,

n’ 6%z /6x 6y = n, 6n/8x - n, 6n,/6x - (3.22)
By usirg

6n3/6x- AS:L- A33 1'11/:1:5

6n2/6x- A - Aza nl/n:5
in (3.22) we get

2 2
n §z f6x by = - A“ nlnz/na-t- n2A31+ nA, - nA --- (3.23)
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Similarly,

n: &%z /6% 6x = - Aaa nlnz/n3+ n2A13+ .nlAaz - n3A12"' (3.24)
From the symmetry of A it is clear that the two cross partial
derivatives are equall |

It is interesting to note that the proof of sufficiency does not
use the fact that n is an eigen vector of A, However, this can easily
be established using the result of theorem 3.3 and the fact that for a
symmetric matrix any right eigen vector 1is also a left eigen vector.
The importance of the theorem is that this condition is also necessary
if we restrict our shape matrices.

It may be noted that A changes continuously for an arbitrary
surface, although it remains unchanged for some surfaces such as
spheres and cylinders. Suppose that we know A at a point p. Now to
compute A its neighbor p, the projection of A to the tangent manifold
at the point p is considered. Hence if n is the unit normal at the
point p, then the projection of A to the tangent space at p is given

by,
- =T - =T
= (I -nn)A(I-nn) ---- (3.25)
proj
Using the continuity of the eigen values and eigen vectors of a
symmetric matrix to the parameters of the matrix, it is easy to show

that the restriction of & to the tangent space at p is approximately

equal to A  to first order terms in (p - p). Thus, given A matrix
proj

at a point and the normals at nearby points, we can compute the shape .-

information at the nearby points by using (3.25).
The invariance of the magnitude of the parameters (A) and accuracy

of the fit to change of coordinates is an extremely important
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property. For most smooth surfaces occurring naturally and for
machined parts, the scene can be viewed as consisting of surfaces with
slowly varying shape. In this case, the shape interpolation will have
considerably smaller error (truncation error) than any polynomial
surface fit. Thus, a segmentation algorithm can be developed using the
shape fitting formulation and searching for rapid changes in the shape
matrix A. An application of these ideas in CAD based object
recognition can be found in [NaJ 88].
4, Summary

To recapitulate, the most convenient form of invariant description
of shape characteristics is a map of Gaussian and Mean curvatures. The
polynomial shape fitting formulation introduced here provides an easy
means to compute these quantities. In short, our approach exhibits the
following advantages: (i) The magnitude (in a well defined norm sense)
of the parameters that are used in the polynomial fit is independent
of the choice of coordinates. (ii) The accuracy of the fit is alsoc
independent of the choice of the coordinates. (iii) The shape
information (Gaussian curvatures / principal curvatures) is obtained
from the eigen values of a symmetric matrix, a numerically robust
problem. (iv) The depth map z(x,y) 1is obtained by integrating a

differential equation, thus providing a measure of robustness.
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Chapter 4
Computing Shape from Shading
1. Introduction

Human vision is extremely adept at inferring shape from monocular
images alone. The occluding contours with smeoth shading that the
object renders the viewer can serve as a strong clue for inferring
their shape. It appears that when the scene is rich in edge details,
the human vision system appears to use stereopsis to infer depth at
edge locations and then reconstruct the object in three dimension with
the aid of shape computing processes. On the other hand, when the
visual instance (e.g. viewing a photograph) 1is devoid of binocular
disparity, the system has to rely totally on monocular shape computing
processes. Also, binocular vision is unreliable in situations where
the object is tooc far away. Thus, every wvisual cue appears to contain
rich shape and depth information only for a certain wisual geometry,
In this sense, shading provide shape information for smooth objects
with uniform reflective surfaces.

This chapter presents a detailed treatment of the shape from
shading problem and a new technique to estimate shape using shape fit
methods. The following remarks provide the motivation to investigate
the shape from shading problem.

First, current techniques reported in the literature are concerned
with estimating the surface normals alone, There is no specific
attempt to describe (quantitatively or qualitatively) the nature of
the surface at any local point. Presumably, shape inference is a

secondary process involving surface fitting strategies.
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Second, local shading analysis is quite error prone and noise
sensitive in general and hence a global model should be our pursuit.

Third, global models proposed in the literature suffer from one or
more of the following.difficulties:

(a) Not being able to deliver an integrable surface.

(b) Being Computationally quite expensive.

(c) Treat shape inference process as a secondary one.

Fourth, since shape information is much more important than depth
alone for recognition, a method that delivers local shape information
becomes necessary,

With the ultimate goal to reconstruct the viewed surface, the
problem of computing surface normals is posed here with an implicit
emphasis on recovering the relative depth and local shape (curvature)
information. The major thrust of this approach is that:

The surface derivatives are recovered first followed by
integration of the derivatives to obtain the relative depth.

Based on this notion, a global objective function is derived here
in terms of the surface normals, the local shape descriptor described
in Chapter 3 and the infensity values, Iterative procedures are
suggested to minimize the objective function resulting in fast
estimation of shape and relative depth.

This chapter is organized as follows. The imaging geometry and the
physical constraints of the shading process are described in Section
2. A precise statement of the problem is provided in Section 3.
Section 4 describes the proposed approach using tﬂe polynomial shape

fitting formulation introduced in Chapter 3. The results of
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implementation are reviewed in Section 5. We conclude the chapter with

some important remarks in Section 6.

2, Imaging Geometry

The imaging procéss is complicated involving multiple geometrical
phenomena. The intensity at a point on the image plane can be
represented by the following expression, with three components:

I(x,y) = Isp + Ire + Ib ----- (4.1)

where, Isp is the specular component, Ire is the reflectance component
and Ib is the background intensity compoment. The primary shading
information is contained in the reflectance component, Ire. The
specular component is responsible for the shiny appearance for glassy
objects while the background intensity component illuminates the
object from multiple reflections of the neighboring objects. In
studying the shape information contained in the basic intensity
values, the contribution due to every one of the three components of
(4.1) needs to be separated. Since such a separation is not possible,
we constrain ourselves with imaging situations where there are no (i)
specularities, (ii) multiple reflections from neighboring objects and
(iii) the surface is Lambertian. These constraints reduce the image
generation due to Ire' the reflectance compenent alone.

For a smooth Lambertian surface (at least twice continuously
differentiable), the intensity wvalue at a point is not only a function
of the local surface orientation, but also viewing angle, illuminant
angle and the surface reflectivity. Thus, for a scene with a single

light source,

I(x,y) = G(zf zy, L, VU, p)------ (4.2)
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where z. and zy. are the first partial derivatives of the 'surface, 1
is the light source direction, v is the viewer direction and p is the
surface reflectivity constant. The reflectance function G can be
further simplified td depend only on the local surface orientation if
an orthogonal projection, as shown in Figure 4.1, can be assumed.

Under the conditions stated above, an expression for the intensity
has been derived as [Hor 77],

I(x,y) = p(2 . ) -e-- (4.3)
where, I(x,y) is the intensity at a point, (x,y) in the image plane
(Figure 4.1)
n= [nr nz,na]T is the unit normal vector at (x, ¥, Z).

T . . .
1= [lf 1, 13} is the unit light source vector.

2
Also, the first partial derivatives of the surface can be shown to be,
z = §z/6x = -nl/na. zy= §z/8y = -nz/na. ------ (4.4)
If the surface is described as z = £(x,y) then the unnormalized normal
N is given by
N=([z,z, -1]7 =~----- (4.5)
The normalized vector is then obtained as
nwN/ [ NN Y2 e (406)
A precise statement of the problem based on the above description of
the imaging geometry helps to conceive the real issues. To avoid any
confusion with the xX,y’'s in three dimension, the image intensities on

the two dimensional grid will be denoted by g(i,j) instead of I(x,y).

3. Problem statement —

The problem of surface reconstruction and shape determination can

be stated as
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L  The Light Source
N Normalat P

V¥  Viewer Direction Paralle! to Z-Axis

Figure 4.1 Imaging Geometry for Shading
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Given the intensity values, g{(i,j) of a surface on the image plane,
compute the following quantities.

(1) the normal n for every point in the image plane,

(ii) 2(i,j) the image plane distance along the viewer direction
{relative depth),

(iii) a shape descriptor that would locally characterize the
surface.
Tne solution to this problem is derived from (4.3) under the following
assumptions:

(i) the surface is Lambertian

(ii) the illumination is a point source

(iii) the surface is smooth (at least twice continuously

differentiable)

(iv) the location of boundaries are known a priori.

While the First two assumptions simplify the model of the imaging
process, the last two assumptions are used in formulating the problem
in terms of a shape descriptor discussed in the following section.

4. Shape Extraction from Shading via Shape Fitting

A mathematical Formulation of the problem of computing shape from
shading information, utilizing the shape fitting concepts discussed in
Chapter 3, is presented in this section. This formulation also
provides a depth map of the scene captured in the image plane. We
begin with the polynomial shape fit given by equation (3.13) im
Chapter 3. That is, the normals at the generic point (x,y,z) can be

related to the normal at the neighbor (x? y? zo) as,
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x - x°
n(x,y,z) = n(xo,yn,zo) +A |y~ yu === (4.7)
z -z
where A = [én/éx, 6&n/8y, 6n/bz], a matrix with columns of partial
derivatives of the normal. The crux of our approach is to relate the
normals modeled by (4.7} to the intensity measurements in such a way
that the resulting objective function can be direckly minimized to
give normals, the local shape descriptor A and the depth z,
4.1. FORMULATION OF THE MINIMIZATION PROBLEM
In order to derive an objective function to solve for shape,
surface normals and depth, the following constraints are imposed here.
(i) The surface normals in the neighborhcod of a local peoint (i,j)
should be smooth and modeled by equation (4.7)

{ii) The surface normals should satisfy the following equation.

{iii) The norm of the normals i.e n?n =1,
(iv) The computed intensity

T . o P
p1n(i,j) =g (i, 1)
Without any loss of generality, it may be assumed that

0 <= g (i,j) <=1 and p = 1.
All the above requirements can be satisfied in the following

formulation.
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Minimize J = } [ J (.3 + 3,5 3 (L) ]---- (4.9)

where,
- am ) X il n¢i,i) - n¢k,1) - aa ||?
' K,1
€ n(i,})
3, = am oy L Il mE3) + k)72 1ol l®
' k,1
€ n(i,j)

5, = v G - e’

where, B and y are appropriately chosen weights,

i-k
A = j-1
z(1,j) - 2(k,1)

n(i,j) is the neighborhood of (i,3)

and Ni’_ is the number of elements in n{(i,j).
The optimum estimates of n, z, and A are obtained by minimizing J
subject to the unit normal constraint

|| nei) 115 = 1.

In this formulation, J1 is the smoothness measure for the normals,
Jzensﬂres that nTA is small, and Jsrepresents the measurement error.

A few direct observations about this formulation are in order
here. First, our formulation yields depth information as a direct
by-product of the algorithm, while works of Brooks and Horn (BrH 85},

Froukot and Chellappa [FrC 87] focus on estimating the normals or the

partial derivatives 6z/6x and 6z/6y first and then the depth
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information is obtained cthrough integration after ensuring that
integrability conditions are satisfied.\Second, the requirement that A
is symmetric guarantees integrability of §z/éx and §z/6y (Theorem 3.5,
chapter 3) and integrability is thus implicit in our formulation.
Third, by forcing tlie normals in a neighborhood to satisfy (4.7), the
thape matrix A is incorporated into the formulation and thus, the
local shape information is also computed along with normals and depth.
All these advantages are in addition to the theoretical significance
of shape fitting discussed earlier in chapter 3.
4,2. SOLUTION METHODOLOGY
A straight forward approach to minimize (4.9) would be to solve
for n, A and z simultaneously. However, for computational efficiency,
the problem is divided into two subproblems here.
Problem 1 (Pl) : Given n, z at every peint, find A in the 1least
squares sense that fits the interpolating equation (4.9), 1i.e.,
minimize Y J. with respect to A.( a standard least squares fit).
i3
Problem 2 (Pz) : Given A, find n and z in the least squares that
minimizes } J.
i3
The second phase utilizes the intensity measurement g(i,j) to
obtain the estimates of n and z. Alithough this is a uonlinear least
squares fit, an efficient algorithh can be derived by exploiting the
sparse structure implicit in the neighborhood dependence.
Because of the equality constraint |I n(i,j) ||2 = 1, the

objective function is nonlinear in n but for a fixed n, it is
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quadratic in z. This fact can be taken into advantage by partitioning
1-"2 as,
P21 : Given n(i,j) find z(i,j) that minimizes J. P22 : Given
z(i,j) find n(i,j) that winimizes J.
Thus, the overall structure is as follows:0) Start with initial
estimates of n, z and A
1)Repeat
Repeat
Solve P21
Solve P22
Until convergence
. Solve P1
Unéil comvergence.

The Problem P21 is solved by block Gauss-Seidei approach (for a
parallel implementation Gauss iteration would be more appropriate)
where two adjacent rows are obtained in one step. The block
Gauss-Seidel scheme is seen to be the best way to exploit the sparse
nature of the system. An extemsive treatment on this scheme may be
found in Tarjan [Tar 76]. P22 can be solved inHa similar fashion by
using ﬁ?e Newton - Raphson algorithm coupled with the block Gauss -
Seidel ;cheme. In the test cases run here, it was found out that the
standard Gauss - Seidel approach itself was found to be adequate. P11
is a linear squares problem that can be solved by standard techniques.
We discuss below in detail how the solutions for the three problems
P , P and P22 cén be solved.

11 21

4,2,1 - Solution for Pll- Estimation of Shape Matrix A
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The algorithm for estimating A in a local region centered at (i,j)
assumes that the surface normals n and depth z are known a priori. An
examination of the objective function J defined in (4.9) reveals that
only Jl explicitly depends on the shape matrix A. Although A is
uniquely defined at each point {i,j) the approach taken here assumes
that A is piecewise constant i.e. the shape fitting formula (4.7) is
applicable to a region in the surface. The image plane is divided inco
non-overlapping segments and A is assumed to be constant in each of
the regions. Then for each region, J is quadratic in the elements of
A. By direct differentiation and imposing the requirement of symmetry,

A car. ' be obtained as the solution to the Lyapunov equation:
3

AEN + N As =M+ H? ..... (4.10)
where,
N=) T oas e (4.11)
1,5 k,1
= "1,3 i
M=3 T [n(i,1) - o(k1)] a7 ----- (4.12)
1,5 k,1L
€n .

'7§hére,'(i,j) is over the region under consideratien.
4.2.2, Solution for Pmﬁ Estimation of z For the Given n

To compute the depth z éu every point given the surface normals,
it may be observed that J in (4.9) is quadratic in z. Differentiating
J with respect to z(i,j) and setting it to zero we obtain

T [ AAs-n@,])+nkl) +

k,lEqi 3
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B ((a(L,3) +n,(k1)) (n(i,3) + n(k,1)) 47= 0 --- (4.14)

It may be noticed that (4.14) is a sparse system of linear equations.
Thé egquation fo; the point (i,j) involves z(i,j) and z(k,1) where
(k,1) belongs to the neighborhood s This system can be solved for
z by the Gauss-Seidel technique. The sparse nature of this system has
been expleoited in our implémeﬁtation by adopting the block
Gauss-Seidel method suggestgd by Tarjan [Tar 76].
4.2.3, Solution for F - Estiﬁgtign of n

In order to enforce the requirement that the normals be of unit
length, Lagrange multipliers A(i,j) are introduced here and the

objective function is augmented as

3 =J XML (L - (J'-,J').I:l‘l(i.,]')}2 -e-- (4.13)
1,9

Differentiating with respect to n(i,j) and setting it to =zero we

obtain

T [n(i.3)-n(k,1)-Aa]+B88T n(i,i) + v’ -g(1,1)1)

BLEM,

=X(i,3) n(i,j) ----(4.186)

The above equation can be further simplified to

Y
n(i,j) + — 11'n(i,j)+ L BA aATa(i, i)
4,3 klEn

, 7
= ﬁgv(i,j) + ' g(i,3) 1 + x(1,3) a(L,j) ----(4.17)
, 1,3

where nav(i,j) is given by
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1
n (i,1) = ) ‘ZE {n(k,1) + A A ----(4.18)
av |ni,j, ..,a.' r]i,j

where lnhjl is the number of elements in nld . It is interesting to
interpret (4.17). From (4.7) n{(i,j) = rgv(i,j) to first order terms,
and J.Tn(i,j) = :g(i,j) when a good reconstruction of the image is
available, and A'n(i,j) ~ O to first order terms. Hence from (4.17), A

= 0 to first order terms. This fact can be exploited in solving

(4.17), as follows.

Let
v T T
C-T+—— 1'+ T pana <e--(4.19)
|74, 4] k1€
1 Y
n(i,j)=6 [n (i,j) + — g(i,j)l] ----(4.20)
0 av n
EPF
Then,
n(i,3) = n (i,3) + A 67 n(i,j) -eee (4.21)

It is easy to show that HG-IH <= 1. Also, (4.21) can be expanded as,

{(i,j, have been omitted for simplicity)

n=n + 2 G'l(nD + A G )
=-n + A G-Ino + A% (n‘J + A G-"n)
=n + A6 #2356 n + ... ceee (6.22)
Hence,

T T T -1
1-1j1n-n0n0+2AnuG n0+... ---- (4.23)
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Neglecting 2% and higher order terms, it can be shown that

1 - nl(i,3) n (1,9
A(i,j) = T Y ----(4.24)
20 (1,3) 67 n (L,3)

and

1 - n (i,3) n (i.3)

n(i,§) = (i,3) + 6'n (i,3)

2 my(1,3) 67 n (1,3) e (4.25)
Sinmce G is a 3 X 3 matrix, (4.25) does not impose any major
computational burden.
5. Rgsults and Discussion

The shape computing algorithm, described in the previous sections,
was tested on synthetic and real world images. The algorithm has also
been tested for its noise tolerance by experimenting with synthetic
imagery. In all these <cases, the initial set of z, n and A was
generated to be a "consistent” set in that appropriate z and A are
fitted for a given set of normals.
5.1 Studies with Synthetic Images

In generating synthetic images, Lambertian surfaces, illuminated
by a single source, were assumed. Thus, thg irradiance equation (4.3)
can be wused to generate these synthetic images. The following
considerations were given to select the type of surfaces generated
here.

(i) Surfaces with constant curvatures would help ug to find how

sensitive the estimated shape information is. |

(ii) Surfaces that have both positive as well as negative
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curvatures that are quickly varying, should help us, findi how

faithfully the shape interpclation algorithm follows undulating

slopes.

(iii) Surfaces that undergo self occlusion due to oblique

illumination should ;uggest us how well the algorithm perform at

points that reach zero image inténsity values very quickly.

To test the algorithm on surfaces with slow varying or constant
curvatures, a synthetic sphere was generated with the light source on
the z-axis. Figures 4.2 and 4.3 describe the intensity image of the
sphere, and its reconstructed shape respectively. Also, tested here
was the performance of Brooks and Horn's algorithm (see Figure 4.4),
Although wvisually, the reconstruction appears to be similar in both
the cases, at points (near the occluding boundary) where the surface
fastly recedes away from the viewer our algorithm performs quite well
as compared to the method of Brooks and Horn. The mean square error in
normals at these points for the same number of iterations (30
iterations) is 0.00047 in our case and 0.0014 in their case. To test
the algorithm in the cases where the intensity values reach zero
quicﬁly, (but the points of the surface need not recede from the
viewer), the same sphere illuminated from the side (source on the x -
axis so that intensity wvalues reach zero rapidly near the ZOY plane)
was considered here. Figures 4.5 through 4.6 demonstrate the
illuminated part of the sphers and its reconstructed shape in the
illuminated region. Finally, fox the cases where positive and negative
curvatures co-exist, such that the transition from positive to

negative curvatures is also quite rapid, we cinsidered an undulating

78



Figure 4.2 A synthetic sphere with light source on z axis

Figure 4.3 Reconstructed surface using the shape-fit approach
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Figure 4.4 Reconstructed spheré' using Brook's and Horn's Method
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Figure 4.5 A synthetic sphere with light source on x axis

- Jrdts
CVAWLVLY

| e Taral

Figure 4.5 Reconstructed surface on the illuminated part
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surface that is circularly symmetric and illuminated from an oblique
angle (see Figures 4.7 and 4.8 for its intensity image and its true
shape). The ability of the algorithm to preserve the trend of
curvatures is shown iﬁ Figure 4.9. Noticeably, the reconstructed shape
tends to smoothen the areas where the curvature varies very rapidly.
However, it should be observed that the reconstruction preserves the
undulation pfimarily due to the inclusion of shape information through
shape matrix A. The resulting solution when the shape fit was not
included is shown in Figure 4.10. Brooks and Horn’s algorithm
converged to a horse saddle type of surface in this case (Figure
4.11). Interestingly, when the light source is moved to the z axis
(see Figure 4.12), several surfaces are possible candidates tnat can
generate the same image. Running our algorithm in this case, the
result was one such possible solution that 1is convex everywhere
(Figure 4.13).

To show the shape information the algorithm delivers, a sphere of
radius 30 was inscribed in an image of 32 X 32 and the algorithm was
tested in updating A for every 4 X 4 region. The principal curvatures
are provided in Table 4.1. It may be noted that except at the border
regions, the average curvatures are found to be around 0.03 while the
true curvatures are 0.033.

To show the fast convergence, the decrease in average mean square
error between true mnormals and computed normals at every iteration for
the sphere is shown in Figure 4.14. In the same graph the convergence
for the Brooks and Horn's method is depicted by the dotted curve,

Consistently, in all the cases of slow varying surfaces, convergence
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Figure 4.7 A synthetic undulating surface with oblique illumination

Figure 4.8 The true shape of the undulating surface
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Figure 4.9 Reconstructed surface with shape fit formulation

Figure 4.10 Reconstructed surface without inclusion of 'A' matrix
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Figure 4.11 Reconstructed surface using Brook's and Horn's method
Li
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Figure 4.12 Undulating surface with light source on the z axis

Figure 4.13 One of the possible solutions as converged
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Figure 4.14 Convergence in mean square error of normals on the surface
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% Comparison done on running the algorithms on the same VAX 11/785 system
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-0.029 | -0.073 | -0.058 | -0.651 | -0.048 | -0.046 ! -0.043 } 0.033
-0.012 | -0.030 | -0.030 | -0.032 | -0.034 | -0.034 | -0.035 } -0.024

-0.032 | -0.053 | -0.044 | -0.040 | -0.041 [ -0.045 | -0.057 | 0.083
-0.018 | -0.031 | -6.032 | -0.032 | -0.032 | -0.033 ] -0.033 | -0.031

-0.033 | -0.044 | -0.038 [ -0.033 | -0.034 | -0.039 | -0.047 { -0.065
-0.023 | -0.033 | -0.031 | -0.031 | -0.032 | -0.033 | -0.03% | -0.031

-0.034 | -0.042 | -0.036 | -0.033 | -0.034 | -0.037 | -0.044 | -0.053
-0.025 | -0.034 | -0.032 | -0.031 | -0.030 | -0.033 |} -0.033 | -0.033

-0.035 | -0.043 {-0.039 | -0.033 | -0.037 |-0.038 | -0.045 | -0.039
-0.025 | -0.034 | -0.035 | -0.035 | -0.033 | -0.032 | -0.033 | -0.034

-0.035 ] -0.048 | -0.041 | -0.039 | -0.039 | -0.042 | 0.030 | 0.06%
-0.024 ]1-0.034 |-0.034 | -0.035 | -0.035 | -0.033 | -0.033 | -0.034

-0.034 | -0.059 | -0.049 | -0.045 | -0.046 | -0.051 | -0.063 | -0.095
-0.020 | -0.033 | -0.034 | -0.035 | -0.035 | -0.034 | -0.032 | -0.032

-0.032 | -0.040 | -0.047 | -0.051 | -0.056 | -0.067 {-0.098 ; -0.099
-0.008 | -0.031 {-0.032 | -0.C34 |-0.035 | -0.034 |-0.032 | -0.029

Table 4.1 Principal curvatures at the center of each segment
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to the final shapes was notiéed to occur with in 10 passes. -Additional
testing performed on planes and cylinders also iﬁéicated that when the
curvature 1is zero, the algorithm performed as consistently as
spherical surfaces, éven‘though the spape descriptﬁr A has a smaller
role to play in convergence in such caées.
5.2 Studies with Real World Images

In experimenting with real world images, two of the images were
chosen to observe the potential for reconstructing sufféé;: with slow
varying curvatures and the third image was considered for both its
positivé and negative curvatures. The first image is that of a basket
ball (with its markings removed) 1lit almost frontally. The light
source information provided to the algorithm was a very coarse
estimate without any actual measurement of the illumination geometry.
Figures 4.15 and 4.16 show the picture of the ball and its
reconstruction respectively. The second image was that of a flower
pot. Interestingly, while curvature is zero in one of the directions,
in the other direction, curvature changes constantly. Figures 4.17 and
4.18 show the picture of the flower pot and its reconstruction
respectively. The third image is that of a well curved base of a lamp.
The results are shown in Figures 4.19 and 4.20. In all the real world
image experiments it was found that the algorithm reached the shape
presented here in about 20 passes.
5.3 Studi;s on Noise Sensitivity

The sensitivity of the algorithm to measurement noise (intensity)
can be measured by generating white noise with a range of variances

for a synthetic data set. The performance of the algorithm is given
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Figure 4.16 Reconstricted shape where intensity was available
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Figure 4,17 Image of a flower pot illuminated from an oblique froat

Figure 4,18 Reconstructed shape at the illuminated regions
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Figure 4{19 Image of the smooth base of a lamp

Figure 4.20 Reconstructed shape at illuminated points
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here in terms of the error indices defined below.
&)

E = ):(z-;)z /S

(2)

E = lZ(z-;)z / Yz

z

2

E, - Illa-all*/s

where the quantities with the * are estimated values and S is the
total number of pixels in the image. Similar indices are also defined
for Gaussian and mean curvatures,

With the conventional definition of Signal to Noise ratio [Pra 78]
given as,
| S/N = -20 log ( sqre(% (I - 12 / 7 1%y}
the performance of the algorithm has been observed for a synthetic
sphere with radius approximately the size of the image. The error
Indices are tabulated in Table 4.2. The S/N values used here range
from approximately 40 db to 3db.

A graceful degradation of performance occurs as the noise power
incfeases. That is, with a S/N figure of 40 db and higher the
algorithm almost reconstructs the original surface. As we lower the
5/N ratio we find that although error indices of the normals and the
curvatures are not very high, the error indices for z tend to grow
larger. However, notice that below 6 db the z error indices are not
reliable anymore since at some of the points the intensity values of
the corrupted image is below zero (and hence masked from doing any
computation). The true indicators in such cases with low signal

strength turns out to be the normal and curvature error indices and
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Signal / Neise Ralie

Error- Measures 38.90 db 24,92 ¢b | 18.90 db | 15.37 db | 12.88 db ] 5.33 db 3.33 db
1
Ei ) - Error in Z 0.0134 0.0837 0.1840 0.2747 0.3709 | 0.2612 0.3164
5(2) - Errorin 2 0.0552 0.2645 0.442% 0.5424 0.6155 | 0.2662 0.2209
z
E - Errorin N 0.0018 0.0052 G.0107 0.0140 0.0166 | 0.0221 0.0229
n
E =~ Errorin 0.0000035 | 0.0000075 | 0.0000334 [ 0.0000423 | 0.0000436| 0.000047 | 0.000G49
ge Gaussian Curv.
E - Errorin 0.0000673 | 0.0000870 | 0.0002004 |0.0002410 | 0.0002508 0.000289 | 0.000312
mec  Mean Curv.

Table 4.2 Noise Sensitivity on a Synthetic Sphere of Radius 30 Unils
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they do indicate further eccentricity of the converged surface. A
cross sectional slice of the converged surface depicting the estimated
z-values is shown for different S/N ratios in Figure 4.21.

The following oﬁservation is implied from this behaviour. The
intensity values for the surface chosen here are slowly varying in the
centre (hence small wvariance) while near the image boundaries the
intensity changes quickly. The direct effect of adding white noise in
this situation is that the algorithm attempts to fit the best possible
smooth surface that satisfies the data at least in a "global sense".
Thus, the converged surface tends to get elongated in the center,
resulting in a paraboleid with larger foci as the S/N grows (see
Figure 4.21), Yet another point to mnotice is that the smoothness
constraints with additional shape information through the shape matrix
A appear to stabilize the algorithm to a large extent. We leave this
section with the note that this result may be correborated in human
vision by experiments similar to Mingolla and Todd [MiT 86, ToM 83].
5.4 Effect of Initial Conditions and Speed of Convergence

As true with any other iterative procedures, a good set of
initial conditions can drive the algorithm to faster convergence.
Since the shape of the surface is not a priori known to us, one of the
best possible input condition would be the intensity map itself. In
case of the lamp-base image experiment, the effect of using intensity
map as the initial conditien significantly improved the convergence
rate (about 12 passes to 8 passes). Further improvements on the speed
can be seen when the algorithm is first run on 32 X 32 sampled

versions of the original images, as the up-scaled and smoothed version
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of the converged surface on the 32 X 32 wversion provides a better
initial condition, The real world images experimented here were tested
in this fashion.
6. Summary

The problem of reconstructing the shape from the intensity
information has been a provably difficult one. Since, several surfaces
with different viewing conditions can give rise to the same image, it
imposes the severity in obtaining a solutien. Thus, unless some
generic constraints are specified (even then multiple solutions are
unavoidable), it becomes difficult to pick the required solution. This
work was essentially aimed at building a model te reconstruct the
shape with importance given to control error, better speed and
obtaining curvatures locally. The crux of the approach is to embed the
concept of specifying local shape variation into the method as opposed
to the current trend in postponing shape computing to the end of the
surface reconstruction problem. A few interesting points here are:

(1) The surface reconstruction as well as shape estimation are
achieved simultaneously.

(ii) Depth estimation results as a byproduct even without an
additional process of imposing integrability, etc,

{1ii) The use of local shape description, wvia the A matrix, is
demonstrated here by showing that curvature information can easily be
obtained from this shape descriptor.

(iv) Tests with synthetic and real imagery show that the algorithm
converges to robust and accurate estimates of shape, normals and

depth.
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Chapter 5
Integrating depth and shape
1. Introduction
The richness 6f information present in every wvisual cue is
significantly tied to the sceme. A scene characterized by surfaces
with a lot of albedo changes and discontinuities can be exploited
quite well by stereo vision. Similarly, if the scene contains objects
that are smoothly varying in shape and irradiance then the shape from
shading process can deliver reliable results. Each visual cue imposes
its own restrictions in order to extract the shape and depth
information from the wvisual data. Thus, the issue here is how visual
cues can be combined in a graceful way such that the richness of
perception is preserved, no matter which source is dominant.
Only recently, this problem has begun to receive some attention
[AlB 88]. An easy approach to this problem is to formulate the early
visual tasks in such a way that the available partial information
become constraints that need to be satisfied by the shape computing
process. If the partial information is in the form of surface
derivatives, then the smoothness constraint incorporated in computing
shape implicitly uses the partial information to propagate to the
neighbor regions. However, if the partial information is in the form
of depth at some points, then additional set of constraints must be
derived to require that the reconstructed surface preserves the depth
at these points. In this chapter, we address the issue of combining
any a priori. knowledge of depth and shape with the surface

reconstruction process from shading.
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2. Problem statement

We shall represent the image plane as a grid G. We define the

following quantities as,

P={p, | p €6}

D= [pj | =z = zJ and pJ e G}

N = (pk [ n=n and P, € G)
and P ¢ G, D ¢ 6, and N ¢ G. That is, with known depth at points
points Pd in the set D and knewn normal n at points Pn in the set N,
compute n and z for every point p in G. The solution to this problem
is obtained using the shape computing algorithm described in Chapter
4. While, depth information is obtainable through stereopsis, normals
are available at the ocluding boundaries by analyzing the occluding
contours [Kov 82, Mar 77b]. In the following section, we show how this
additional piece of information can be combined with shape from
shading to reconstruct the surface.
3. Shape from Shading as an Integrating Module

An important observation about combining a priori normals and

depth is as follows. It is not necessary that depth is available only
at points where the normal is available or D N N need not be empty.
For instance, at places where a surface discontinuity is present,
stereopsis can deliver depth, but due to the surface continuity
requirement, the shape from shading process can not compute normals at
those points. Thus, because of the arbitrary nature of availability of
normal and depth, it becomes difficult to implement the 2 1/2 d sketch
using the common pool idea of Marr and Nishihara [MaN 78]. Instead, a

straight forward approach is to incorporate any known or early
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available depth and normal in a shape computing process. We describe
below first the addition of known depth and later the addition of
known normals in aiding the process of surface reconstructien.
3.1 Incorporating Kﬁown Depth and Wormals iIn the Shape Fitting
Paradigm

The approach adopted here is to append additional comstraints in
the shape from shading formulation discussed in the previous chapter.
We add the additional terms JA and Js to (4.9) derived in chapter 4,
as follows,

let J=)J +J+J +J +1J
1 2 3 4 3

where,
J o= (N ) el || n¢i,i) - n(k,1) - &4 |]?
1 d k,l
€ n(i,j)
= am o gLty sac2at s |
' k,1
€ n(i,j)

3, = v GTa@D - e’

3= Loz (1,3 -2z, (510

P,,; €0

3, - Y ol n (1,3) - n, (i,3) H*®

pi,j e N
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where, a, 8, v, ¢ and A are appropriately chosen weights,

i-k
A o= |3-1
2(i,3) - z(k,1)

n(i,j) is the neighborhood of (i,j)
Ni ; is the number of elements in 5(i,j)

ze(i,j) represents the estimated depth at points Pi ;

zt(i,j) is the depth available from stereopsis at Pi )
na(i,j) is the estimated normal at occluding contours

nt(i,j) is the normal available at occluding contours

The optimum estimates of n, z, and A are obtained by minimizingJ
subject to the constraint

[| n¢i,i) ||P=1. --e-- 5.2

as before in chapter 4.

The effect of adding the extra set of above constraints only
slightly alters the solution to the minimization problem. Thus, in
fitting z for the given set of n and A, we obtain the solution

by including an additional term with (4.14) as follows.

YL [ A(AA -0, + kD) +

kien,

B (0 (1,1) +n,(k, 1)} (n(i,5) + n(k,1)} &" +

2oz (1,3) -z (L,3) =0  --eeen (5.3)

plh1 €D
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The effect of the extra term is to fix the z in the block Gauss
Seidel wupdation scheme, at the points where depth 1is known.
In incorpoerating thé known normal information, we mnotice that the
continuity constraint plays a key role. The effect of this constraint
is to allow the known normals to propogate. The earlier work on
combining normals from occluding contours with shape from shading
include Ikeuchi and Horn [IkH 81), Frankot and Chellappa [FrC 87] and
Brooks and Hoxrn [BrH 85]. Ikeuchi and Horn use normals at the
occluding contours as boundary conditions for solving the irradiance
equation, However, in [FrC 87], the boundary information is allowed to
propagate to other points through the iterative process that updates
normals, similar to our method. The advantage in our method is that
the derivatives of the normals (A matrix) are also used in the process
of propagation.

3.2 Experimentation

In order to demonstrate the potential of our method to integrate
depth with shape from shading, a synthetic sphere was created with the
occluding boundaries inside the image frame. The depth at the
occluding boundaries was simulated to be different from the
background. The result of reconstruction is shown in Figure 5.1. It
may be noticed that the boundary of the sphere is located well above
the background since the depth at the boundaries were specified to be
much above the background (about 15 units).

In another experiment the normals at the occluding boundary was

specified for the same synthetic sphere and the reconstructed surface
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Figure 3,1 Reconstruction of a synthetic sphere with non-zero
background depth information
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is shown in Figure 5.2. In comparing this result with the case when
normals at occluding boundary was not included (Figure 5.3),
little difference is noticeable in the reconstructed surface. However,
there appears to be é slight improvement in the numerical figures of
the shape information near the boundary (of the order of precision
around fifth or higher decimal point). This is not surprising
because the role of normals at the occluding boundaries is primarily
to guide the convergence to one of the two possible solutions (concave
or convex). The noticeable improvement is found to be the increase in
speed of convergence for the same error figure. While it took 10
iterations for the reconmstruction in Figure 5.3, it took only 7
iterations in the case when normals at the occluding boundary was
specified,.

In yet another experiment, the stereo pilctures of a coffee cup
were taken and processed for the stereo depth with VG (large filter
width to avoid surface markings) filtered edge maps (see Figures 5.4
and 5.5). Results of integrating the depth and shape are shown in
Figure 5.6. Noticeably, the handle of the cup suffers some loss of
accuracy since the shading informating in that area was not large
enough to drive the convergence to a much smoother solution. A much
higher resolution imaging can alleviate this problem to quite a large
extent.

Shape information in the form of normals available from other
processes such as shape from textures can also be added in a similar
fashion. On the same token, depth information from the analysis of

motion parallax, can also be integrated using the method described
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Figure 5.4 Left image of a coffee cup stereo-pair

Figure 5.5 Right image of the coffee cup stereo-pair
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before.

4. Summary

Any given instance of the wvisual imagery can contain an
arbitrarily set of viéual cues to reconstruct the surface. A method to
integrate shape and depth information from these cues is the focus of
this chapter. As an extension to the algorithm for shape form shading
presented earlier, depth from stereopsis can be incorporated using an
additional set of constraints. Also discussed here is the implicit
ability of the algorithm to include any shape information in the form
of normals that could be available from other processes.

The primary advantage of using shape from shading as the
integrating stage is that it offers robustness and better error

immunity due to the inherent nature of shape fit,
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Chapter 6
Summary and Conclusions
1. Recapitulation
The principal oEjective of the research work described in this
dissertation was to develop a £framework to reconstruct a viewed
surface in depth and shape using stereo vision and shading.

To achieve this goal we first investigated the underlying problems
in using stereo disparity to compute depth at every point in the image
plane. Stereo vision requires matching of corresponding points in the
two images and then computing depth at these points. However,
correspondence can be established only at points that hold strong
features such as points of intensity changes. Since, any given scene
can only contain a few intensity changes, our first problem was to
find an appropriate scattered data interpolant to obtain depth at all
points.

The computational theory of Grimson for surface interpolation was
found to possess an inherent difficulty in handling surfaces with
sharp discontinuities. A stronger surface consistency constraint that
ensures that discontinuities are preserved by the interpolant with out
addition of any new zero crossings, Wwas proposed here. A direct
implication.of this constraint is that the interpolant should not be
differentiable at the zero crossings, while they must be at least
twice differentiable at every other point. A class of surfaces known
as Shepard’s metric interpolants are found to possess this property.

The Shepard’s interpolants have been implemented here on Random

Dot Stereograms as well as natural stereo pairs. The result from
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testing on RDS shows that stereo vision can function alone without any
additional wvisual cues. The natural stereo pair shows that even when
intensity changes are sparse, the reconstruction preserves the shape.
In addition, since stéreopsis is one of the earliest modules in vision
it appears to deliver the quick and coarse estimates of depth that may
be used by other surfﬁce construction processes. In that sense,
Shepard’s interpolant proves to be one of the best candidates for the
purpose of stereo data interpolatiom,

Besides depth from stereopsis, shape information also becomes
important to reconstruct the surface. An important shape cue is
available in the smooth shading that an object renders. Our next goal
was to study the problem of computing shape from shading and build a
scheme that delivers surface intrinsic information such as 1local
curvatures. The methods proposed in the literature were found to solve
this problem from a different perspective altogether. That is, the
final objective for these methods is not to compute curvatures but
only the normals. Thus, to achieve curvatures the normals have to be
differentiated and near the occluding boundaries such a
differentiation is highly noise prone.

Instead, in our formulation we begin with local shape descriptors.
Interestingly, shape information is intrinsic to the surface and is
independent of viewer position. Since continuity in normals is ensured
through these shape descriptors, the numerical error intreduced in the
process of reconstruction is shown to be independent of coordinate
axes chosen. By imposing constraints of continuity, integrability of

shape descriptor, minimal measurement error and unit normal, a global
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objective function is minimized with respect to the normals to obtain
the normals. Also, obtained here as a byproduct is the relative depth
at every point in the image plane. The principal curvatures are shown
to be computable from-the shape descriptor used here,

The above method has been tested over a variety of synthetic and
natural images. The performance was found to be quite satisfactory in
terms of speed, error in reconstruction and robustness amidst the
presence of noise.

As it has been stressed from the begimning, our overall concern in
this work is to ensure that any shape and depth information that may
be available from other visual cues should be easily incorporated into
reconstructing the surface. To show that our framework addresses this
concern, it was shown earlier that depth information at an arbitrary
set of points can be included as additional set constraints in the
shape computing algorithm. Also, any known set of normals can also be
exploited to improve the convergence of the shape from shading
algorithm, besides smoothly incorporating the additional source of
information.

In conclusion, the contributions of this work include the
following:

(i) Visual surface interpolation has been studied to propose 2
stronger form of surface consistency constraint and thereby dealing
with surface discontinuities with more ease.

(ii) Shepard's metric interpolants are shown te implement this
constraint quite faithfully besides being a computationally less

expensive scheme.
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(iii) The notion of local shape description is emphasized to
suggest that shape computing processes can deliver surface information
in a more robust fashionm.

(iv) Based on tﬁe above mnotion, an algorithm for solving shape
from shading has been proposed. Some salient features of the algorithm
are

(a) relative depth is also delivered besides normals
(b) local principal curvatures are also computed.

{(v) Shape and depth from any other source has been shown to be
integrated with shape from shading, thereby suggesting that the entire
framework can deliver viewer independent surface information from raw
visual data,

In the following section we discuss an outline on how this
information can be used to advantage in building a complete vision
system. We also attempt to describe a few issues that the work has
generated for further investigatiom,

2. Future directions

Possible future work may be sketched at two different levels. At
more of a lower level, the following are some important issues that
need some attention.

1. Beginning with surface interpolation, even though Shepard’s
surfaces provide an efficient means to obtain a quick estimate of
depth, it is quite sensitive to noise in stereo matching. Some form of
weighted smoothing can be done if we a priori know the actual data
points. Since it is difficult to distinguish the data points from

noise points, one way to get around the difficulty (not necessarily
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the best way) is to estimate local peaks and set those peaks to an
average of its neighbors. Such secondary processes add to the
computational problems, there by totally nullifying the advantage of
the method itself.
2. The shape from shading algorithm definitely exhibits faster
convergence in most of the cases considered here except the undulating
surface. Besides the speed of 1its convergence, the issue of
convergence itself needs to be addressed. With relevance to the shape
from shading algorithms, the only attempt to establish analytical
proof of convergence is that of David Lee [Lee 85]. Similar attempt
needs to be undertaken here too. In addition, although estimation of
normals and the shape matrix are very fast, the estimation of z for
the normals and shape matrix at the current iteration is considerably
slow. Speeding up the algorithm is yet another problem that deserves
some investigation.
3. A similar model for shape from texture can be constructed by simply
replacing the irradiance constraint with a constraint that relates the
orientation to the distribution of texture elements.

At a much higher level, two plausible directions are indicated
below,
1. Every perceptual task may be analyzed at three different
levels, namely computational theory, algorithm and representation, and
physical implementation. However, we were only concerned about the
first two levels in this work and the issues related to physical
implementation are yet to be addressed. Interestingly, the Shepard’s

interpolant as well as the shape from shading algorithm hold very
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strong potential for parallel implementation. With the recent results
in analog VLSI [Mea 89] and resistive networks [Hut 89}, it is
possible to reduce the shape computing problem to an energy or entropy
minimization problem.lSuch networks [HoT 85] have been primarily built
for computing scalar quantities from global minimization. The issue
here is how these networks can be adopted for our problem of computing
the normals. The nonlinear unit normal constraint adds additional
complexity to this issue.
2. Referring to the hierarchy of wvision described in chapter 1, we
find that this work spans from raw visual images to viewer independent
curvature infermation. The following stage is to abstract the
curvatures into larger entities that specify regional properties.
Since, the ultimate goal is recognition of objects with their spatial
relationships preserved, the current day neural nets can be exploited
to build associative schemes that learns to recognize. In two
dimension the recognition problem has been addressed in various ways.
In three dimension, the issue becomes enormously complex that only a
very few attempts have been at least partially successful.

What seems like an effortless process, vision continues to pose
much tougher challenges than it appeared to. A much deeper
understanding is bound to evolve with sustained growth in interest

among this vast vision research community.
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Glossary

Fusion Range:

- The disparity. bound within which human stereo vision can
successfully fuse the binocular retinal images.
Fovea:

- The central region of the retina inwhich the resolution of
perception is very high in comparison with the periphery.
RDS:

- Random Dot Stereogram; It is created by generating a random
texture in the left image, while the right image is a copy of the left
image with a pre-identified portion shifted laterally.

LoG or V'G:

- The Lapalcian of Gaussian; It is a non-directional operator used

to obtain intensity changes in the images.
Lambertian Surfaces:
- Surfaces which exhibit the property that the quantity of light

emitted in all directions is equal.
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