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Abstract

A variety o f mesoporous tantalum oxide supported catalytic systems were synthesized 

and investigated for their activities in nitrogen activation, including the Schrauzer-type 

photocatalytic process and the Haber-Bosch type thermocatalytic process. Mesoporous Ta 

oxide possesses a high thermal stability, high surface area, tunable wall composition and, 

most interestingly, variable oxidation states o f the transitional metal sites. For this reason 

it represents a unique support for heterogeneous catalysis. Modification o f the surface 

properties by doping active metal agents and various thermal treatments can further 

improve the activity. Results obtained in this work showed that for the photocatalytic 

process pure Ta oxide, with suitable band gap near-UV, exhibited relatively low activity;

i  I
however, 1 wt% Fe doping increased the activity by a factor o f  3. For the Haber process, 

the Ba-Ru-Ta material was the most active system. Ru3(CO)i2 proved to be the best 

precursor for the active Ru metal component, and Ba(NC>3)2 was the best precursor for the 

BaO promoter. Remarkably, this system shows a very low activation energy o f 9.3 

kJ/mol as well as a clear involvement o f Ta specie(s) during the catalytic reaction. This 

suggests a different mechanism than that proposed for standard Ru-based Haber synthesis, 

which uses alumina, silica and magnesia supports, might be functioning. The results in 

this thesis clearly show the enormous potential o f mesoporous transition metal oxides in 

catalysis, the first porous support materials offering variable oxidation states. All 

materials in this work were characterized by a combination o f techniques including XRD, 

TEM, nitrogen adsorption, XPS, EDS, and H2-TDA.
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Chapterl. Introduction

1.1 Importance o f Catalysis

1 0 •

The word “catalysis” was coined by Berzelius in 1836 ’ to define acceleration o f a

chemical reaction induced by the presence of material that is chemically unchanged at the

end of the reaction. This material, which acts as an active chemical spectator, is a catalyst.

A catalyst exerts its “catalytic force” by lowering activation barrier, 3 thus speeding up the

chemical reaction, but not changing the properties o f the equilibrated state (Figure 1).

Figure 1. Activation energies and their 

relationship to an active and selective 

catalyst. Ehom - activation barrier for the 

homogeneous reaction; Ecat - activation 

barrier with use o f  catalyst; AH r, change in 

enthalpy o f reactants compared with product. 

(Reprinted from Kolasinski, K. W. Surface 

Science: Foundations o f  Catalysis and 

Nanoscience, John Wiley & Sons, 2002)

Heterogeneous catalysis is a catalyzed reaction in which the catalyst is in a different 

phase from the reactants, for example, liquids and solids, or gases and solids; therefore, 

the reaction occurs at the interface between these two phases.4 Heterogeneous catalysis is 

the foundation o f the chemical industry. The successful implementation o f heterogeneous 

catalysis is not only responsible for billions o f pounds worth o f products required by 

modem society, but also is essential for the reduction o f air and water pollution. “One- 

third of material gross national product in the U.S. involves a catalytic process

1

homogeneous reaction

undealfed 
catalytic reaction

preferred catalytic reaction

Reaction path
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somewhere in the production chain” claimed a recent article concerning the economic 

contribution o f catalysis. 5

However, acceleration of a reaction is not only the crucial factor in catalytic activity; 

an ideal catalyst should have high activity as well as good selectivity, that is, speeding up 

one particular reaction, not simply every reaction. In addition to creating desired products, 

catalysis can also be used to decompose undesirable molecules. Three excellent examples 

of heterogeneous catalysis are listed in Table 1, because o f their particular importance 

both historically and economically.

Table 1. Examples o f  heterogeneous catalysis.

Process Reactants Produces) Catalyst Key factor

Haber-Bosch process h 2+ n 2 n h 3 Fe Activity

Fischer-Tropsch h 2+ c o Methanol, liquid fuels, Fe, or Co Selectivity

chemistry hydrocarbons(HCs),

oxygenates

Three-way catalyst NOx, CO, h 2o , c o 2, n 2 Combo o f Pt, Conversion

and HC Rh, and Pd

The Haber-Bosch process is employed to produce vast amount o f  nitrogen fertilizers 

which underpin modem agriculture.6 Since NH3 is a very thermodynamically stable 

nitrogen hydride, selectivity is not a problem for this catalyst. Therefore, whether or not 

this catalyst can efficiently break the N=N bond, thus activating initially inert N2 with 

high turnover rate {activity), becomes the key to the Haber-Bosch process.

Fischer-Tropsch (F-T) chemistry is the basis o f  the synthetic fuels industry 7 and has a 

far-reaching influence on sustainable development o f  economies that were shut off from 

crude oil; Fischer-Tropsch chemistry also transforms ‘syn gas’ into more useful 

intermediate chemicals. Obviously, selectivity is the most important requirement of F-T

2
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catalyst because numerous products are possible, as we see in Table 1, but only a select 

few are desired for any particular application.

Interest in improving three-way catalytic converters is continuing to rise with 

increasing automobile use.8 Unlike Haber-Bosch process and Fischer-Tropschchemistry, 

three-way catalysts are responsible for the conversion o f noxious exhaust gases to more 

benign chemicals. As environment becomes a key o f the 21st century, more and more 

strict regulations have been imposed on the release o f NOx, CO and CHs in automotive 

emissions worldwide, which represents a big challenge to catalytic chemistry.

1.2 Classification of Heterogeneous Catalysts

The overwhelming majority o f commonly used catalysts can be sorted into four groups: 

metal, oxide, zeolite, and sulfide. Other types o f catalysts o f interest, for example 

halogenation catalysts, because o f their thermal instability under normal operation 

conditions, w ill not be included in this discussion.

1.2.1 Metal Catalysts

Metal catalysts include bulk metal catalysts and supported metal catalysts. Bulk metal 

catalysts are m uch less popular than supported metal catalysts because o f their high cost. 

However, in some cases, bulk metal catalysts can achieve very good selectivity which, 

otherwise, can ’t be replicated by their supported analogues.

Silver, w hen used without a support, represents a very good example o f a bulk metal 

catalyst that promotes selective Oxidation reaction from methanol to formaldehyde.9 

Unlike most o ther metal catalysts, which tend to produce fully oxidized products, silver is 

able to partially oxidize methanol to formaldehyde at an operative temperature o f around 

600°C. Elementary steps o f methanol oxidation over a silver catalyst are showing below,

3
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surface species indicated by (s). The rate-limiting step in the overall reaction is the 

breaking o f a carbon-hydrogen bond (step 1.4). This hydrogen abstraction is carried out 

by a surface silver atom and is followed by rapid desorption o f formaldehyde.

l /2 0 2 -> 0 ( s) (1.1)

2CH30H + 20(s) -> 2CH30  + 20H (S) (1.2)

20H (S) H20  + 0 ( s) (1.3)

2CH30 2 C H 20  + 2H(S) (1.4)

2H(S) -> H2 (1.5)

2CH3OH + l /2 0 2 2CH20  + H2 + H20  (1.6)

Supported silver catalysts could be used to reduce the cost, but they result in 

unacceptable selectivity losses. Furthermore, alloying silver with gold could improve the 

selectivity,10 but commercialization of this superior catalyst is inhibited by the increased 

expense o f such a modification.

Supported metal catalysts offer an obvious advantage over bulk metal catalysts by 

more effectively utilizing an expensive metal. This can be achieved by evenly dispersing 

fine metal particles on a high-surface-area substrate. In this catalytic system, metal 

particles are active agents, and the support provides a medium to deposit and immobilize 

these active agents. In addition, the existence o f a support sometimes can substantially 

modify the catalytic properties o f the metal. Some changes which might be triggered from 

metal-support interactions include:

1) Electronic properties. Small metal particles have the tendency to lose electrons to the 

support and thus assume a small positive charge.

2) Particle sizes and shapes being subjected to the pore sizes o f support, e.g. zeolite.
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3) Oxidation state. The ease o f metal cation substituting into the support lattice can make 

a metal cation difficult to reduce to the zero-valent state.

4) Morphology. A particular metal will wet some support surfaces but not others.

5) Strong metal-support interaction (SMSI). When a noble metal is supported on a 

reduced metal oxide, its H2 and CO chemisorption capacity falls dramatically.11

6) Co-operative mechanisms o f catalysis. When the support also takes part in catalytic 

reaction directly, catalysis might be occurring at active sites on both the metal and the 

support surface, or the metal-support interface.

Despite the several possible metal-support interactions, there are situations where 

catalytic reactions over supported metal catalysts are not different from those on single­

crystal metal surfaces. In this case, well-defined single-crystal surfaces can be utilized to 

study the catalysis mechanism.

1.2.2 Oxide Catalysts

Oxide catalysts have found wide ranges o f uses in, for example, dehydration of 

alcohols, cracking o f hydrocarbons(Al203), dehydrogenation of alkane(Cr20), 

reforming(Mo/Al/0), methanol synthesis(Cu/Zn/0), sulfuric acid synthesis(K/V/0), and 

selective oxidation(Fe/Mo/0, V/P/O). Usually these oxide catalysts don’t need supports, 

but there are some exceptions. A few important factors were found that can affect the 

activity of oxide catalysts.

1) Density (e.g. diluted, concentrated) o f transition metal ions. 12

2) Site (e.g. octahedral, tetrahedral) o f transition metal ions.13

3) Surface properties (e.g. density o f active sites, dangling bonds, special defects), 14 

which are always o f paramount importance for all heterogeneous catalysts.

5
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4) Bulk properties (e.g. electronic mobility, oxygen diffusion), which are o f particular 

importance for selective oxidation and ammoxidation catalysts.15 In both cases, the oxide 

catalysts work as a regenerable reagent and as a reservoir for electrons and oxygen, which 

therefore should readily flow from one site to another.

A molybdate catalyst is also utilized for conversion o f methanol to formaldehyde 

commercially. The major difference from using a silver catalyst is that the hydrogen from 

the methoxy group is abstracted by silver metal in the one case and by a surface oxygen 

in the case o f the molybdate catalyst. Molybdates and vanadates are among the most 

widely used selective oxidation catalysts. The former are frequently supported on alumina, 

and the latter are sometimes supported on titania. Silica sometimes is used as a binder to 

provide strength rather than as a support to provide dispersion.

1.2.3 Zeolites

Zeolites, crystalline aluminosilicate with general formula Mx/n [(A102)x(Si02) y].mH20, 

are probably the most well-known and most widely used catalysts in industry. Unlike the 

above mentioned catalysts, zeolites represent a unique class o f well-defined microporous 

materials used as heterogeneous catalysts with vast cavities accessible to reactants. Thus 

distinguishing between bulk and surface properties becomes much less meaningful.

Zeolites are considered as a special type o f catalyst possessing shape selectivity due to

■a i

their regular pores o f molecular dimensions, exceptional acidity when A1 is present 

instead o f Si4+, and great capability for ion exchange. This shape selectivity can be 

exhibited in three different ways:

1) Reactant-selective catalysis: catalyzing only the reaction o f certain small molecules in 

a reactant mixture;

6
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2) Product-selective catalysis: allowing only the smaller products o f a reaction to leave, 

while larger molecules can stay behind and continue to react;

3) Transition-state-selective catalysis: blocking a particular reaction by inhibiting a very 

large intermediate produced in the cavity.

The number o f acid sites within a zeolite pore is proportional to the aluminum content 

in the framework, providing all interstitial cations have been eliminated.16 These could be 

either Bronsted acid sites (when both proton and aluminium have same concentration, 

i.e.HxSii.xAlx02) or Lewis acid sites (when proton concentration drops below the 

aluminium concentration, as occurs during severe dehydration)(Figure 2). Both Bronsted 

acid sites and Lewis acid sites may be utilized for catalysis such as, for example, cracking 

of petroleum. Further discussion of zeolites comes in section 1.3

Na+ Na+

° \  / 0 'S. / ° \  / 0 N _ / 0 \  /O
Zeolite as synthesized ^Si^ / Sî

o o o  o o  o o No q7 OO O

Hydrogen ion 
exchange

H+ F H+

° \  , / ° \ -  / ° \  ,/ 0 \  y ° \  - / ° \  , / °  
Bronsted acid form of zeolite \  Â.1̂  Ŝi^

O O O O O O O  O Q O O O

+h 2o
-h 2o

(Heating above 500°C)°\ /°\ - /°\ ./0\ ^ +/°
Lewis form of zeolite / ^ \  /H . f ^ \

O O O O O O O  O Q O O O

Figure 2. Scheme for the generation o f Bronsted and Lewis acid sites in zeolites. (Adapted 

from Smart, L. and Moore, E. Solid State Chemistry-An Introduction, 2nd edition, 1992)
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The ion exchange o f interstitial cations with several different cations can be used to 

adjust the acidity, shape selectivity properties o f zeolites, to increase stability, and also to 

add additional catalytic functions into zeolites.

Zeolites can be naturally occurring, for example faujasite, or synthesized under 

hydrothermal conditions, such as ZSM5. The synthetic ZSM5 zeolite, discovered by 

Mobil 17 with channels diameters o f about 5A, is currently being used in a process to 

convert methanol directly to gasoline, and for xylene isomerization.

1.2.4 Sulfide catalysts

Sulfide catalysts are widely used for hydrodesulphurization to remove sulfur from 

natural gas, petroleum, and coal, etc. before chemical processing or fuel utilization, and 

therefore are o f great importance. This reaction can be schematically represented as

-CH-S- + 2H2 -> -CH3 + H2S (1.7)

Cobalt molybdate supported on AI2O3 (cubic phase) represents such a commonly used 

sulfide catalyst.18

1.3 Development History of Mesoporous Materials

The engineering and synthesis o f porous materials with precisely controlled pore 

dimensions is currently a challenge in solid-state chemistry. Given the properties of 

narrow pore size distribution and readily tunable pore size over a wide range, these 

materials are ideal for catalysts, adsorbents and molecular sieves, etc.

According to International Union o f Pure and Applied Chemistry (IUPAC), all the 

porous materials can be classified into three groups based on their predominant pore size

(d):

8
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• Microporous, d < 2nm

• Mesoporous, 2nm < d < 50nm

•  Macroporous, d > 50nm

At present, macroporous materials are o f relatively limited application due to their low 

surface area and non-uniform pores. Microporous zeolites, featured with their large 

surface area, high thermal/hydrothermal stabilities, tailored concentration and strength of 

active sites, and variable intricate channel structure, are suitable for size-specific 

applications in catalysis and separation.

However, zeolites show obvious limitation in processing o f large size reactants. This is 

because they use metal ions, organic ions, or molecules as their structure templates while 

crystallizing, which can be reflected by their extremely narrow pore size distributions in 

the range o f 3 to 13 A .19 This consequently intrigued the scientists to develop new 

materials which maintain the specific advantages o f zeolites, while extending their pore 

dimension into the mesopore regime.

The breakthrough was finally made in 1992 by researchers in Mobil Oil Research and 

Development after they demonstrated a new approach to the synthesis o f a series o f large 

pore silicate termed M41S.20,21 Instead of ion or molecule templates, as in the case of 

zeolites, these new materials use regularly arranged crystalline micelles o f  surfactant 

molecules, which are formed by self-assembly, to direct their structure. Inorganic silicate 

or aluminosiicate species occupies the continuous solvent (water) region to create 

inorganic walls enclosing the template molecules. A so-called “liquid crystal templating” 

mechanism was proposed to be operative during the synthesis o f these mesoporous 

materials. This mechanism is strongly supported by two experimental discoveries:

9
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1) The pore sizes o f M41S materials are directly dependent on the alkyl chain length of 

surfactant;

2) In addition to hexagonal MCM-41, cubic (MCM-48) and layered (MCM-50) 

crystallization products, directly corresponding to cubic and lamellar liquid crystal phases,

99were also synthesized.

Charge Matched Templating:

A /V W V A /W W V S "  [Mx0 0Hy]m' • Coulombic Forces

Neutral Templating:

A /V W V W \a AA/S ' H   ' OuMxHy * Hydrogen Bond

ligand-Assisted Templating:

A A A A A A A A aA A /S— Mx(OR)n * Covalent Bond

Figure 3. A schematic overview o f three liquid crystal templating models.

(Adapted from ref. 31)

While it’s possible that, in the formation o f MCM-41, the surfactant phase acts as 

template for inorganic assembly either by preformed micelles, or the introduction of 

inorganic silicate species itself mediates the hexagonal ordering, Stucky and co-workers 

generalized the latter mechanism to a dynamic, charge matching templating approach 

based on the compensation o f ionic charges,23'26 which demonstrate that the inorganic 

species can promote the formation o f the liquid crystal phase below the critical micelle 

concentration (CMC). A neutral templating approach was also proposed by Pinnavaia and 

co-workers based on hydrogen-bonding interactions and self-assembly between neutral

97 90
primary amine micelles and neutral inorganic precursors. ’ Later on, Antonelli and

10
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Ying developed a ligand-assisted templating route to mesoporous transition metal oxides 

using covalent bonding.30'34 (Figure 3) In addition, by using amphiphilic poly (alkylene 

oxide) block copolymers as structure-directing agents, a very large-pore (up to 140A) 

mesoporous material was reported by Stucky and co-workers.35,36

While siliceous mesoporous materials attract much attention following the discovery 

of M41S materials, there was special interest in developing mesoporous transition metal 

oxides because transition metal oxides possess a much wider range o f physical properties 

in applications such as optics, electronics and sensing, etc. Stucky and co-workers23,24,37 

first reported mesostructured tungsten oxides in 1994 by using the charge matching 

approach, but unfortunately, most o f these phases were lamellar and the few 

mesostructures were thermally unstable, collapsing upon surfactant removal.

The big breakthrough in this area came in 1996 when Antonelli and Ying developed 

the ligand-assisted templating approach.30'33 This novel approach used a dative coordinate 

bond interaction between long-chain amine surfactant molecules and metal alkoxides, 

followed by selective hydrolysis and condensation o f the mixture (Figure 4). No 

preformed micelles were required as in the case o f M41S. However, it is important that 

the surfactant-precursor bond is strong enough to resist hydrolysis, but at the same time 

allowing easy chemical removal of the template after synthesis without damage to the 

mesostructure. Based on this approach, a new family o f mesoporous transition metal 

oxide molecular sieves, termed M-TMS1 (M=Nb, Ta, Ti, Zr), were synthesized 

possessing high surface area and remarkable thermal stabilities, and are now being 

explored for their versatile applications in industry.

11
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/

Hydrolysis El

Figure 4. Schematic representation o f possible synthesis pathway for Nb-TMSl

under a ligand-assisted templating mechanism. (Adapted from ref. 32)

1.4 Current Status of Mesoporous Transition Metal Oxides as Catalysts

One o f the most obvious fields for use o f these mesoporous materials is catalysis. A lot 

o f catalytic experiments have been performed on mesoporous silica/aluminum silicate

materials function as a substrate incorporated with other active agents (e.g. metals, or 

metal oxides). However, in general, these ordered mesoporous materials are of 

comparably less interest because the advantage o f sharp pore size distribution and regular 

pore arrangement doesn’t help to improve the activities remarkably; furthermore, cheaper, 

easily synthesized, and almost as good alternatives are always available. On the contrary, 

there are often no good alternative routes for the synthesis of high surface area transition 

metal oxides, and the added cost incurred by mesostructuring is relatively less important, 

when compared with the advantages they bring such as, for example, finely tuned pore 

size, metal oxide wall structures and compositions, high surface areas and enhanced

oo
based catalysts since the discovery o f M41S. In most of the cases, the mesoporous

12
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accessibility o f the active surface sites. In addition, the variable oxidation states of 

transition metals are another crucial advantage over siliceous M41S for redox catalysts. 

However, despite these facts which suggest promising catalytic applications o f ordered

mesoporous transition metal oxides, so far only a few reports are available on their 

catalytic performance. These are summarized in Table 2.

Table 2. Up to date studies o f mesoporous metal oxides in catalysis.

Mesoporous

system

Conversional

system

Reaction Activity/

selectivity

Reasons

responsible for the 

change

MesoporousTi02 Gel film Photooxidation o f NO t Higher surface area

film 39 to N 0 2

NiO doped Amorphous/ Photocatalytic water T Higher surface area

mesoporous Ta20 5 40 crystalline decomposition to & better NiO

N i0-Ta20 5 H2 + 0 2 dispersion

Phosphated Bulk anatase Photocatalytic i Amorphous walls

mesoporous phase 2-propanol & surface defects

T i02 & Nb20 5 41 dehydrogenation to

acetone

Fe20 3 incorporated Non-porous Cyclohexane oxidation 5% t Higher surface area

mesoporous T i0 2 42 Fe20 3- T i02 to cyclohexanol & & improved

cyclohexanone dispersion of

VOx incorporated Non-porous Propene oxidation to 18 times | surface active sites

mesoporous T i0 243 T i0 2 matrix CO + C 02

Mesostructured Organic, well- n-butane oxidation to Selectivity Limited thermal

V PO 44 crystallized maleic anhydride 10% 1 stability

VPO

1.5 Nitrogen Activation

Molecular nitrogen N 2 is abundant in nature yet very inert due to the strength o f its 

triple bond (940kJ/mol), nonpolarity and high ionization potential (15.058eV). The 

process that takes dinitrogen from the atmosphere into the biosphere in a usable form, i.e.

13
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high-value nitrogen-containing products, is referred to as nitrogen fixation or activation. 

Nitrogen activation is such an important process because nitrogen atoms are not only 

essential for the function o f biological molecules, but they are an important component of 

fertilizers and medicaments as well. Additional uses are related to dyes, explosives, and 

resins. Generally, nitrogen activation falls into three parallel fields: biological, 

homogeneous, and heterogeneous.

Interest in biological nitrogen fixation was stimulated by the observation that some 

soil-dwelling bacteria could fix nitrogen at room temperature. The activation process is 

known to be accomplished by a class o f enzymes called nitrogenases 45 which consist of 

two units - an iron-containing protein and a Fe-Mo protein. Once N2 binds to enzyme 

complex, it is reduced by a series o f six electron transfers. The electrons originate from

N 2 + 6 lT  + 6e' 2NH3 (1.8)

Cell Wall O , Carrier

Photosynthetic 

Sugar -------- COjMitochondrion

V  ^
MgATP MgADP

Reduced

FerredoxinCO, -----------------

Photosynthetic —  »- 

Sugar

Reductase
Proteii Amino Acidsn h 3Oxidized

Ferredoxin Nitrogenase Enzyme Complex

Photosynthetic Sugar

Figure 5. Schematic representation o f a typical bacterial nitrogen-fixing system.

(Adapted from Butler, I. S. and Harrod, J. F. Inorganic Chemistry: Principles 

and Applications, The Benjamin/Cummings Publishing Company, 1989)

the degradation of photosynthetic carbohydrate and are carried to the nitrogenase enzyme 

complex by a reduced ferredoxin. Protons for the formation of ammonia are generated

14
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through hydrolysis o f MgATP to give MgADP and H3PO4. MgATP is regenerated at a 

mitrochodrion where the oxidation o f carbohydrate by oxygen is carried out (Figure 5).

Although the crystal structure o f the Fe-Mo active site o f certain nitrogenase enzymes 

has been characterized,46'48 little progress has been made so far to determine the 

mechanism o f how N2 is taken and then converted to NH3 step by step. Nevertheless, 

interest remains in modeling this process through biomimetic approaches.

1.5.1 Homogeneous Nitrogen Activation

Research in nitrogen activation under homogeneous conditions plays a very important 

role in exploring the mechanism. This is usually performed by using well-defined 

organometallic compounds as catalysts. The classic work from this field has shown that 

this process depends on the metal center, the ligands, as well as the acid used and the 

solvent.49 Coordination o f molecular nitrogen to transition metal complexes can truly 

activate strong N-N bond at mild conditions. Characterization (e.g. X-ray crystallography, 

NMR) o f each intermediate therefore may give us a very good picture about how this 

activation is achieved, most importantly, how ammonia could be produced upon 

stoichiometric protonation and even catalysis.

In 1995, Cummins and co-workers reported the most impressive example o f direct 

cleavage of N=N triple bond to two nitride(N3') ligands in its reaction with Mo(NRAr)3, 

where R is C(CD3)2CH3 and Ar is 3,5-CeH3(CH3)2 (Figure 6).50 The reductive scission of 

the N^N triple bond relies on formation o f N=Mo triple bond, one o f the strongest metal- 

ligand bonds 51 which clearly provides the thermodynamic driving force, as well as a 

soluble dimolybdenum intermediate with a bridging dinitrogen ligand (compound 3). 

Although this purple intermediate was not isolated and analyzed by X-ray crystallography, 

it was observed spectroscopically.

15
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-Moŝ NRAr 3 
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Figure 6. Proposed reactions for dinitrogen cleavage over a three-coordinate 

molybdenum (III) complex. (Adapted from ref. 50)

Instead o f simple displacement o f coordinated N 2 by H2, which is the most common 

case, Fryzuk and co-workers demonstrated, in 1997, that a side-on bound dinitrogen 

zirconium complex {[P2N2]Zr}2(p-r| -N2) could heterolytically cleave dihydrogen to form 

an N-H unit and a bridging hydride(Figure 7, compound 2). In this case, the dinitrogen 

fragment was assumed to be strongly activated as N24' and bound to two Zr4+ centers. A 

similar transformation of coordinated dinitrogen by reaction with primary silances was 

also observed due to the close analogy between H-H and Si-H bonds, which resulted in 

the formation of silylhydrazido species with a bridging hydride ([P2N2]Zr)2(p-T|2: r|2- 

NNSiH2Bu")(p-H). This obtained butylsilyl analogue was isolated from toluene as yellow 

needles and its solution characteristics are very similar to those solution structure for 

compound 2, therefore supporting the proposed solution structure o f ([P2N2]Zr)2(p-r|2: r|2- 

NNH)(p-Fl) ( compound 2).

16
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1 2 

Figure 7. Reaction o f dinulear zirconium complex with H2 to form a N-H unit and 

a bridging hydride, (methyls on the Si atoms have been omitted for clarity)

(Adapted from ref. 52)

In spite o f all this progress in dinitrogen bond cleavage, hydrogenation, and nitrogen 

derivatives (e.g. diazenido, hydrazido) fimctionalization, the discovery o f a catalytic 

system remains challenging. Why? Because the synthesis o f dinitrogen complexes usually 

needs strongly reducing conditions, and the typical reaction patterns o f a coordinated 

dinitrogen moiety involve electrophiles, which could short-circuit the desired process and 

make realization o f a catalytic cycle problematic.

A major advance toward unraveling the stepwise catalytic reduction o f dinitrogen to 

ammonia was achieved in 2003. Schrock and co-workers proposed probably the most 

mechanistically elaborated system at a single molybdenum center.54 By introducing novel 

tetradentate [HIPTN3N ]3' triamidoamine ligand (hexa-iso-propyl-terphenyl, 3,5-(2,4,6-i- 

Pr3C6H2)2C6H3) to the catalyst, and carefully employing {2,6-lutidinium}{BrAr’4} as the 

proton source and decamethyl chromocene as the reductant, they could achieve high 

efficiency o f 66% NH3 yield. Extensive 15N labeling studies, nuclear magnetic resonance 

(NMR) studies and X-ray crystallography were used to fully characterize six

17
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Figure 8. Proposed intermediates in the reduction o f dinitrogen at a single molybdenum 

center through the stepwise addition o f protons and electrons. (Adapted from ref. 54)

intermediates participating in the catalytic reduction o f end-on bound N2 step by step, 

alternating addition o f six protons and six electrons (Figure 8). However, this potentially 

catalytic process was not complete because two steps in this cycle are missing which 

include 1) reduction of {Mo(NH3)}{BrAr’4} to Mo(NH3); and 2) displacement of 

ammonia from M o(NH3) by dinitrogen.

In 2004, Chirlk and co-workers reported their extensive work on zirconium 

complexes containing cyclopentadienyl ligands and showed that the first direct 

observation o f N-H bond formation from N2 and H2, coupled with either N2 cleavage of 

intermediate [(ti5-C5Me4H)2ZrH]2(|J.2, r|2,ri2 -N 2H2) at 45°C, or full hydrogenation to 

ammonia with 10-15% yield at 85°C (Figure 9).55
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1.377(3') A

3 2 4 (60%)

Figure 9. Scheme for hydrogenation o f dinuclear zirconium complex and cleavage o f  N 2. 

(Adapted from ref. 55)

As we know that most dinitrogen complexes display end-on mode coordination in both 

terminal and bridging modes, side-on bound dinitrogen complexes also commonly exist 

as dinuclear metal systems with only one exception.56 In 2001, Fryzuk and co-workers 

reported a very interesting tantalum complex that combines both the side-on and end-on 

modes. Dinuclear tantalum tetrahydride complex ([NPN]Ta)2(p-H)4(where 

NPN=PhP(SiMe2CH2NPh)2) reacts with dinitrogen at room temperature and pressure to 

generate the bridging, side-on end-on dinitrogen complex ([NPN] Ta)2(p-H)2(p-r|2,r|1 -  

N2)(Figure 10).57 This reaction is remarkable since a dinitrogen complex is synthesized 

under mild conditions and avoids using a strong reducing agent. Furthermore, unlike 

many other dinitrogn complex formed by the reductive elimination o f H2, the dinitrogen 

moiety in this complex is strongly activated (N-N bond distance 1.319 A), since the Ta-Ta 

bond in ([NPN]Ta)2(ft-H)4 offers two more electrons for the reduction o f the dinitrogen 

moiety.
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Figure 10. Scheme for formation o f both side-on and end-on dinitrogen coordination 

from a dinuclear tantalum complex. (Adapted from ref. 57)

1.5.2 Heterogeneous Nitrogen Activation - Haber-Bosch Process

Heterogeneous catalysis plays a key role in chemical industry as mentioned in section 

1.1. However, unlike well-defined homogeneous catalysts, most heterogeneous catalysts 

of industrial importance are multicomponent materials that are designed by trial-and-error 

experimentation. Application o f even the most sophisticated physical-chemical 

characterization techniques is usually not sufficient to fully elucidate the reaction 

mechanism.

Haber-Bosch process is responsible for the industrial source o f ammonia. It operates 

under reaction temperature o f around 400°C and total pressure o f  150-300 atm. over a 

Fe-based catalyst system.

N 2 + H2 -»• 2NH3, AH°298= - 46 .lkJ/mol (1.9)

The triply promoted Fe-based catalyst system mainly consists o f Fe3C>4 (94 wt%),

Al2C>3(2.3 wt%), K2O(0.8 wt%), and CaO(1.7 wt%). Among them, alumina acts as 

structural promoter, preventing iron crystallites from sintering; K2O functions as chemical 

promoter, enhancing the specific reaction rate by donating electrons; CaO is just used to 

remove silica impurities which would otherwise combine with an alumina promoter and 

poison the catalyst.
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1.5.2.1 Mechanism and Kinetics

The overall reaction can be written as following elementary steps (* represents an 

active center) : 58

N 2(g) + *<-»■ N r * (1.10)

N 2-* + * <-* 2N-* (1.11)

H2(g) + 2* <->• 2H-* (1.12)

N-* + H-* <-> NH-* + * (1.13)

NH-* + H-* <-»NH2-* + * (1.14)

NHr * + H -*<-» NH3-* (1.15)

NH3-* ~  NH3(g) + * (1.16)

The elementary reaction starts with nitrogen molecule adsorbs at an active center on an 

iron surface, for example F e ( l l l ) ,  then the dissociation o f adsorbed nitrogen proceeds 

gradually while simultaneously forming Fe-N chemisorption bonds. Hydrogen, at the 

same time, could also be easily atomized by iron. The chemisorbed N atom thus readily 

reacts with atomized hydrogen to produce NH, NH2, and finally NH3, which then desorbs 

from the surface into the gas phase, and leaves active centers available for the next 

reaction cycle.

Kinetic studies showed that among these elementary reactions, the dissociative 

adsorption o f nitrogen on the catalyst surface, i.e. step 1.11, is the rate-limiting reaction 

because the total rate o f the reaction equals the dissociation rate o f N 2 at low conversions. 

The low rate o f  ammonia synthesis is mainly attributed to the very low N2 dissociative 

sticking probability, in the range o f 10'7~ 10'6, which also explains why high pressure 

benefits the reaction 1.10. The proposed net activation energy for the reaction is about 

76kJ/mol.

Iron is an effective catalyst for ammonia synthesis, because it lowers the barrier to N2 

dissociation. More importantly, the thus formed Fe-N bond has just the right bond
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strength. If  the metal-nitrogen (M-N) is too strong, as in the case o f early transition metals, 

an inert surface nitride could form, which will hinder further reactions proceeding. On the 

contrary, if  the M-N bond is two weak, the chemisorbed atomic nitrogen N(a) might have 

very short surface residence time, which will result in combination o f two N(a) and 

formation o f  N2 instead o f NH3, this certainly lowers the efficiency o f the catalyst.

1.5.2.2 Structure Sensitivity of Fe Catalyst

It is generally accepted that the Fe catalyst in ammonia synthesis is structure-sensitive. 

This means, classically, that the reaction rate is dependent on the particle size o f catalyst. 

More precisely, it indicates that the reaction rate varies according to different surface 

orientation. Experimental results using a single-crystal iron sample under ultra-high 

vacuum (UHV) conditions showed the reactivity o f five crystal faces in the sequence 

F e ( l l l )  > Fe(211) > Fe(100) > Fe(210) > Fe(110)( Figure 11, Table 3). It was suggested 

that the active sites C7 (Fe atoms with seven nearest neighbors) are crucial factors 

responsible for the reactivity difference.59

c 4 c 6 

C6

Figure 11. Schematic representations o f  

the idealized surface structure o f the (111),

(211), (100), (210), and (110) orientation 

o f iron single crystals. The coordination of 

each surface atom is indicated. (Adapted 

from ref. 60)
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Table 3. Reactivity o f five Fe crystal faces.

Face F e ( l l l )  Fe(211) Fe(100) Fe(210) Fe(llO )

Activity > > > >

Layer(s) exposed 3 2 2 3 1

C7 sites Yes Yes No No No

1.5.2.3 Effects o f Aluminum Oxide

Aluminum oxide is known as a structure promoter in the catalytic system. However, 

simply depositing aluminum oxide on an iron catalyst only results in a decrease o f the 

rate of ammonia synthesis in direct proportion to the amount o f surface covered. This 

suggests that in order to exert the structure promoter effect, aluminum oxide must 

participate in the reaction with iron. In commercial production o f ammonia, this is done 

by fusion o f 2-3% by weight o f aluminum oxide with iron oxide (Fe304).

1.5.2.4 Effects of Potassium

Effects o f  Potassium, the chemical promoter, can be summarized as: 60

1) Promoting the sticking coefficient of nitrogen chemisorption and assisting in making 

all exposed surfaces o f the iron particles equally reactive, e.g. a factor of 280x 

enhancement on Fe(100) versus 10* enhancement on Fe(l 11).

2) Increasing the adsorption energy o f molecular nitrogen. Strong ionic characteristics of 

the potassium-iron bond increase the local ionization potential o f  the surface iron atom. 

Therefore, more electron density transfers to the nitrogen 271* antibonding orbitals from 

the surface, thus lower activation barrier for nitrogen dissociation. Because of their great 

electron donating property, these alkali metal or alkaline earth metal promoters are called 

electronic promoters.
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3) Lowing the adsorption energy of ammonia products. The TPD o f ammonia was 

performed on clean F e ( l l l )  and K /F e (lll) , which shows that the desorption maximum 

shift to lower temperature when potassium is coadsorbed on the surface. Therefore, the 

residence time for the adsorbed ammonia is reduced and more o f the active sites are 

available for the dissociation o f nitrogen.

1.5.3 Ru-based Catalyst-the Second Generation

thHaber-Bosch process is one o f the most important discoveries in 20 century 

considering that ammonia accounts for the second largest inorganic chemical production 

after sulfuric acid. However, the production o f ammonia is also quite an energy­

consuming process, which is responsible for more than 1% of global energy consumption; 

61 therefore, finding a more efficient and energy-saving alternative process has long been 

one of the biggest challenges in modem catalysis, which has profound implication not 

only for fossil-fuel consumption but the worldwide economy as well.

A second generation o f Ru-base catalysts is the best candidates so far for Haber 

synthesis. In fact, a new ruthenium-active carbon-alkali metal system became 

commercially applied in the Kellogg Advanced Ammonia Process (KAAP) in 1990s. 62 

This catalyst system allows ammonia produced at low temperature and pressure and thus 

reduces the energy costs.

When compared with the iron catalyst, the ruthenium-based catalysts possess the 

following characteristics:

1) The Ru/AC-K catalyst shows 10-fold increase in activity over the conventional Fe 

catalyst at the same operating condition. 63

2) The dissociative chemisorption o f nitrogen is still the rate-determining step in the case 

of the Ru catalysts. But contrary to the Fe catalyst, there is no indication o f molecularly
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chemiadsorbed nitrogen, 64 so that elementary reactions 1.2 and 1.3 combine together and 

become one reaction:

N 2(g) + 2* <->■ 2N-* (1.17)

3) Kinetic studies show that the ruthenium catalyst has a lower sticking coefficient for 

nitrogen than the iron catalyst, which is on the order o f 10' 12, and independent of 

ruthenium surface orientation. 64 This means that the ruthenium catalyst is not quite as 

structure sensitive as the Fe catalyst.

4) The order in hydrogen becomes negative 65,66 as compared to a positive order in the 

case of the iron catalyst, which demonstrates an inhibiting effect o f  hydrogen on ammonia 

synthesis. Under synthesis conditions, greater coverage o f H* rapidly saturates the 

ruthenium surfaces and thus blocks the N2 adsorption sites (active surface sites), although 

higher coverage by atomic hydrogen can accelerates stepwise hydrogenation of N*.

5) Because ruthenium is a more expensive metal, a high surface area support is preferred 

on which ruthenium metal can be finely distributed as very small crystals. Only in this 

case, can large fractions o f the metal atoms be exposed to the reactant gases and 

productive catalytic activity be realized for low concentrations (e.g. 1-2%) o f this 

expensive metal catalyst.

There is no doubt that ruthenium is a superior catalyst to iron for ammonia synthesis. 

For this reason, the exploration o f different catalyst supports and promoters which can 

best match ruthenium have been ongoing in an effort to further improve the catalyst.

The pioneering work on activity o f Ru-K/AC was done by Ozaki in 1970s.63 Active 

carbon (A.C), with high surface area o f 1068m /g, can hold potassium by formation 

graphite-potassium complex. In addition, active carbon acts as a medium to transfer 

electrons from  alkali to ruthenium because o f its electron withdrawing property.
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This Ru-K/AC catalyst system was quite successful, and then developed for 

commercial use in 1990s. However, there are two major drawbacks in this system: 1) 

Potassium metal is highly sensitive to water and oxygen, which makes it difficult to 

handle in a large scale, therefore, RbNC>3 was considered as a replacement although less 

effective; and 2) ruthenium also catalyzes the oxidation and methanation o f carbon, ’ 

for this consideration, zeolites and a series of oxides have been explored.

Zeolites are o f particular interest as support candidates of the Ru catalyst system, they 

provide a few special advantages such as 1) the location o f ruthenium particles and alkali 

metal cations are relatively well defined, 2) sizes o f ruthenium particles are limited to the 

sizes of zeolite micropores or cages, therefore, the fraction o f ruthenium exposed was 

greater than those o f nonzeolitic catalysts, 3) the nature o f the cation can be readily 

modified, and 4) the interaction between Ru particles and the strong ionic potential o f the 

zeolite surface offers additional electronic modifications, which are not available in other 

catalytic systems.

By examining ruthenium zeolite X and zeolite Y systems, Ciseneros and Lunsford 

found RuKX being the most active catalyst in the sequence o f RuKX>RuNaX>RuCsX, 

and a RuKX zeolite was much more active than the RuKY one.70 They reached the 

conclusion that activity o f faujasite zeolite-supported ruthenium catalysts strongly 

depends on the zeolite type (Si/Al ratio), the kind o f cation present in the zeolite, as well 

as the size o f  the Ru particles.

AI2O3 and MgO supported Ru catalysts were mainly studied by Aika and co-workers, 

and Ru-Cs/MgO is by far one o f the most promising catalytic systems for ammonia 

synthesis.71,72,73 The authors concluded that the high activity o f Ru-Cs/MgO catalyst 

comes from combination o f the high dispersion o f Ru particles on MgO surface, use o f

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cl-free Ru precursor and basicity o f MgO support. This last factor results in a favorable 

weak interaction between support and promoter, thus enhancing the interaction of the 

promoter and Ru. Surprisingly, lanthanum is the best promoter for AI2O3, which was 

explained by lanthanides being strong metal-support interaction (SMSI) oxides.74

Davis and co-workers also performed studies on Ru catalysts supported on zeolite X, 

MgO, as well as pure silica MCM-41 and demonstrated a RuCsX catalyst could be 

made with higher activity than that o f a RuKX by maximizing Cs loading into the zeolite 

X catalyst, a result consistent with the rank o f promoter basicity. In both o f zeolite X and 

MCM-41 systems, barium becomes the best promoter. The authors also discovered that in 

the presence o f Ba, the apparent activation energy of Ru/MgO can be decreased markedly. 

But this is not applicable for the RuBaX system, which suggests that this effect is not due 

entirely to the existence o f barium, but instead presumably is caused by the combined 

interactions o f the promoter, the support, and the ruthenium metal.

Explanation for the effects o f the support and promoter on catalytic activity are a

•je
matter of contention. In general, surface reactions among Ru particles, the support, and

the promoter (MO) should be considered:

Ru + MO «-»• Ru-OM (1.18)

Support + MO «-» Suppot-OM (1.19)

Ru + Support *-> Ru-Support (1-20)

1.6 Nitrogen Activation on Bis-toluene Ti/Nb Reduced Mesostructure Systems

While nitrogen activation under mild conditions remains a challenge for modem 

catalysis, Antonelli and co-workers reported that mesoporous M-TMS1 (M=Nb, Ti, Ta), 

when carefully reduced by organometallic bis-toluene Ti/Nb, could activate atmospheric
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N2 to nitride at room temperature(Figure 12). Upon hydrolysis with ambient moisture in

7ft 77  78the wall o f  the mesostructure, surface ammonia can be formed and detected. ’ ’ These 

processes use moist air as a source o f protons and bis-toluene Ti/Nb as a reductant. Other 

work has shown that mesoporous Ta oxide with high surface area photocatalytically

Figure 12. Schematic representation o f deposition of Nb atoms from bis(toluene) 

niobium to the inner surface o f a mesoporous oxide to form a low-valent 

metallic oxide coating on the internal surface. (Adapted from ref. 76)

converts water into hydrogen and oxygen at rates higher than that o f  the bulk phase.40 

From these results it can be inferred that appropriately modified mesoporous Ta, Nb, and 

Ti oxides may function as a superior photocatalyst for dinitrogen reduction by water. This 

will be the second chapter o f  the thesis after introduction section.

In order to make a more efficient catalytic process, dihydrogen, which possesses a 

suitable reduction potential to replace bis(toluene) Ti, as well as a small size enabling 

better diffusion properties on surface, will be used to act as both reductant and the proton 

source, as in standard Haber synthesis. While mesoporous tantalum oxide has the highest 

thermal stability among M-TMS1 (M=Nb, Ti, Ta). In addition, pure Ta20s is o f  the right

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



reduction potential to be reduced by H2 to Ta(II)0, which then should react with N2 

according to work by our own group on reduced mesostructures as well as observations 

by Fryzuk 57 and Schrock.54 However, a kinetic barrier exists for hydrogen reduction of 

Ta oxide. This barrier can be overcome by addition o f a noble metal such as Ru or Pt. We 

propose that the Ru will react with the H2 to produce electrons and protons. The electrons 

will reduce the Ta to a lower oxidation state, and this reduced Ta will then attack N2 and 

form surface nitride just like the bis-toluene Ti/Nb reduced mesostructure systems. The 

nitride will then pick up protons from the H2, which has lost its electrons to form 

ammonia. This process is different from standard Haber-Bosch chemistry in which all 

steps occur on the Ru surface. It’s also possible that mesoporous Ta/Ru catalysts can act 

as standard Haber-Bosch catalysts at higher temperature with no involvement o f the 

variable oxidation states o f Ta. Therefore, exploring these materials and their catalytic 

activity in N 2 reduction will constitute the third and fourth chapters o f this thesis.
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Chapter 2. Mesoporous Tantalum Oxide Photocatalysts for Schrauzer- 

Type Conversion of Dinitrogen to Ammonia*

In the past decade, a variety o f photocatalytic systems using semiconducting transition

70 finmetal oxides have been developed for oxidative degeneration o f organic chemicals, ’ 

fixation of carbon dioxide,81,82 evolution of H2 from water,83,84 and reduction of metal 

ions.85 Coupling the controlled pore size and high surface areas o f  mesoporous materials 

with the photocatalytic properties o f many oxides would represent an important advance 

in terms of reaction rates and overall efficiency because o f better diffusion rates and a 

greater number o f reactive surface sites per mol o f catalyst. One o f the more unusual 

photocatalytic processes is the conversion of dinitrogen and water over a metal-doped

• fi6 RR ♦ •  •titanium oxide catalyst. ’ This process uses water as the reductant with high energy UV 

light as the driving force and contrasts to other methods o f dinitrogen activation which are 

the subject o f much current interest.50,52"54,45,89 Initial work by Schrauzer demonstrated 

that electron-hole separation on Fe-doped titania led to highly reactive sites on the surface 

which could trap and reduce dinitrogen. Oxidation of water by the hole provided a source 

of protons and electrons to complete the cycle and make the process catalytic. The doping 

of the metal oxide was found to be a necessary step for high activity for reasons that are 

still not clear, but may be related to the creation o f a permanent space-charge region in 

the material. Further work by Hoshino demonstrated that activities o f n-doped titania 

could be increased by incorporation o f a conducting polymer on the surface, creating a p- 

n junction which aided in the electron-hole separation, and thus increased the efficiency.88 

The rates quoted for these reactions are on the order o f mmol/h/g catalyst. Since these 

* This Chapter is based on the publication - reference 99.
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materials are based on oxides that normally display photocatalytic activity in the bulk 

phase, it appears that the development o f a related mesoporous transition metal oxide- 

based photocatalytic process for nitrogen fixation may indeed be feasible and the rate 

could be improved by increasing the surface area and judicious choice o f dopant. 

However, to date there have been numerous difficulties in exploiting the surface area of 

mesoporous titanium in photocatalytic processes. In 1998 Stone and Davis studied the 

photocatalytic activity o f phosphated titania based mesoporous molecular sieves.41 The 

well-known oxidative dehydrogenation o f 2-propanol to acetone was used as a probe to 

measure the photocatalytic activity o f the materials. The lower photocatalytic activity of 

mesoporous titania compared to the anatase phase was attributed to the amorphous nature 

o f the walls o f these materials and the presence o f phosphorous in the case of the titania 

materials: the low degree o f crystalline wall and the high surface concentration o f defects 

lead to surface electron-hole recombination, and/or the poisoning o f catalytic surface sites 

by the phosphorus remaining from the templates. Since high surface area phosphate-free 

mesoporous titania is now readily available, the presence o f phosphorous in these 

materials should no longer hinder applications,90 however it appears that the low 

crystallinity o f the walls o f the structure may be the tallest hurdle to overcome before the 

development o f functional mesoporous titanium oxide photocatalysts can be realized.91

Although mesoporous Ti oxide has been disappointing as a photocatalyst, Takahara 

and Domen reported more promising activity for mesoporous Ta oxide in the 

photocatalytic decomposition o f water 40 When as-synthesized tantalum oxide, prepared 

by the method o f Antonelli and Ying, 32 was used as a photocatalyst, H2 evolved in a rate 

o f 50pmol/h. In contrast, a sample calcined at 600K after template removal by acid
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treatment and solvent extraction showed higher photocatalytic activity and released both 

H2 and O2 in a stoichiometric ratio, even though a brief induction period was observed. 

The initial H2 evolution was attributed to the decomposition reaction o f the remaining 

surfactants and the stoichiometric evolution o f H2 and O2 started after complete 

consumption of the surfactant template. A NiO loaded sample showed higher 

photocatalytic activity and shorter induction time than those samples without NiO since 

NiO can act as co-catalyst in the water decomposition reaction. The optimal NiO loading 

level for the overall water decomposition was found to be 4.0wt%. The NiO loaded 

samples showed an important trend in increasing photocatalytic activity. Thus, 

mesoporous Ta2C>5 showed better photocatalytic activity than the bulk amorphous and 

crystallized samples due to its higher surface area. These high activities as compared to 

those reported above for titania and niobia were explained by the different band gaps of 

the respective materials. The authors suggest that mesoporous Ta oxide functions as an 

efficient photocatalyst in this case 40 because the very thin walls o f the structure ensure 

that virtually all electron-hole pairs generated are close enough to the surface to allow 

rapid migration and reaction with water.

As mentioned in Chapter 1 that mesoporous Ta oxide, when treated with bis(toluene) 

titanium, converts dinitrogen to ammonia on the surface.78 This is important because it 

demonstrates that the Ti-reduced surface o f the Ta oxide mesostructure can split 

dinitrogen, the first part o f the Schrauzer process, and this reduced species can react with 

ambient moisture to form ammonia. Further, the activity o f mesoporous Ta oxide as a 

photocatalyst in water splitting, suggests it may also be useful in the Schrauzer process. 

The use o f  a Ta oxide surface is also o f special interest due to recent work by Fryzuk57 

demonstrating that organometallic Ta hydrides are capable o f coordinating and partially
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reducing dinitrogen. In this chapter we focus on the photocatalytic behavior of pure 

mesoporous tantalum oxide, Fe3+ doped tantalum oxide, and semiconducting bis(toluene) 

titanium reduced mesoporous tantalum oxide. Fe was used in this system because both 

Schrauzer 86 and Palmisano 87 showed that Fe was the best dopant for the photocatalysis 

in the case o f titanium oxide and also because Fe species are important as active centers 

in the commercial Haber process. Furthermore, X-ray studies on biological nitrogen 

fixation have suggested that a seven-Fe cluster in Fe/Mo nitrogenase is the site of N2 

reduction.

2.1 Experimental Section

2.1.1 Chemical and Catalyst Preparation

All chemicals, except tantalum ethoxides from Alfa Aesar, were obtained from 

Aldrich. Mesoporous tantalum oxides were synthesized following the ligand-assisted 

templating method introduced by Antonelli and Ying.32 Fe3+ doped catalysts were 

prepared by aqueous impregnation o f iron nitrate nonahydrates with mesoporous tantalum 

oxide for 4h with stirring and dried in oven at 110 °C overnight, then calcined in furnace 

at 300 °C for 3-4 h. Bis(toluene) titanium reduced catalysts were prepared by stirring 0.5g 

of the mesoporous solid with 0.5g o f bis(toluene) titanium in 50ml o f toluene. The 

mesoporous solid immediately turns from a light faun color to a deep blue-black. After 1 

day of additional stirring to ensure complete absorption o f the organometallic, the 

reduced material was collected by suction filtration under nitrogen and washed several 

times with toluene. The resulting black material was dried in vacuo at 10' Torr on a 

Schlenk line until all condensable volatile had been removed.
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2.1.2 Apparatus and Procedure for Photocatalysis

All experiments were conducted in a U-shaped Pyrex reactor with a sintered glass frit 

as the fixed bed. A 450W UV photochemical lamp was set up parallel to the reactor at a 

distance of about 8cm. The photocatalytic reactions were initialized by feeding N2
I

(ultrahigh purity), bubbled through deionized water at a constant flow rate o f 60cm /min, 

into the reaction tube. NH3 produced from the reaction was absorbed by a 60ml 0.01N 

HC1 aqueous solution, which was replaced every one hour and kept for subsequent 

quantitative determination by the “indophenol blue method” .87 This method detects both 

NH4+ and NH3 forms o f N, the detection limit was reported to be about 10 pg NH3-N/L, 

and Beer’s law was obeyed up to about 1200 pg NH3-N/L (Figure 1). After 3 h run,

3.5

oCA.Q
<
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Figure 13. Standard curve o f absorbance versus concentration 

for indephenol blue method, 

samples were flushed again by pure helium to measure the adsorbed NH3 on the powder 

surface. However, complete release of trapped NH3 may require heating at 573K or 

higher for several hours. Comparison experiments were also conducted under same 

operation conditions but using inert helium instead o f the mixture o f  N2+H2O as the
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feeding gas. These experiment are important for the Fe(N 03)3 doped catalysts in order to 

eliminate trace amount o f ammonia formed by heat treatment o f the surface nitrate.

2.1.3 Characterization

Nitrogen adsorption and desorption data were collected on a Micromeritics ASAP 

2010. X-ray diffraction (XRD) patterns (Cu Ka) were recorded on a Bruker AXS D8- 

Discover diffractometer with a 2D GADDS detector. All X-ray photoelectron 

spectroscopy (XPS) peaks were referenced to the carbon C-(C, H) peak at 284.8 eY and 

the data were obtained using a Physical Electronics PHI-5500 using charge neutralization. 

Transmission Electron Microscopy (TEM) pictures were obtained by using a H9000 HR- 

TEM operated at 300 kV. The powder was deposited on a SiC>2 coated Cu grid.

2.1.4 Stock Reagents for Indophenol Blue Method

1) Phenol-alcohol reagent: dissolve 5g o f phenol (C6H5OH, 99+%, A C . S reagent) in 

95% ethyl alcohol to a final volume o f 50 ml.

2) Sodium nitroferricyanide(HI) dehydrate(nitroprusside)(Na2Fe(CN)5N0.2H20, 99%, 

A.C.S reagent): dissolve 0.25g in deionized water to a final volume of 50 ml. Store in 

dark bottle for not more than 1 month.

3) Alkaline complexing reagent: dissolve 20g o f sodium citrate dehydrate 

(H0C(C02Na)(CH2C02Na)2.2H20, 99+%, A.C.S reagent) and 1 g o f sodium hydroxide 

in DI water to a final volume o f 100 ml.

4) Sodium hypochlorite (NaOCl, available chlorine >5%): use commercial bleach, as new 

as possible

5) Oxidizing solution: add 20 ml alkaline solution (3) to 5 ml sodium hypochlorite (4). 

Prepare fresh daily.
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2. 2 Results and Discussion

2.2.1 Pure Mesoporous Tantalum Oxide

The X-ray diffraction patterns for a sample o f mesoporous tantalum oxide, and that of 

the material treated in oven at 300°C for 3 h are shown in Figure 14. The intense (100)
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Figure 14. X-ray powder diffraction patterns for (a) mesoporous Ta oxide (SI), 

b)mesoporous Ta oxide after calcination at 300°C for 3h (S7), and c) 1%

Fe3+-doped mesoporous Ta oxide after calcination at 300°C for 3h (S8).

reflection at d=2.7 nm without resolved (110) and (200) reflections, is consistent with a 

wormhole structure rather than a highly ordered hexagonal structure. Apart from a slight 

broadening and diminishing in intensity, the XRD pattern of the calcined material shows 

little difference from that of the starting material, demonstrating that the initial 

mesostructure is largely retained after heat treatment. Figure 15 shows the nitrogen 

adsorption and desorption isotherms o f these materials. Heat treatment results in a 

decrease in specific Brunauer-Emmett-Teller (BET) surface area from 624m /g to 

366m2/g and a corresponding decrease in the cumulative Horvath-Kowazoe (HK) pore 

volume from 0.304cm3/g to 0.103cm3/g, with the pore size remaining at 23 A. Unlike
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MCM-41, which has a sharp pore size distribution and a typical type IV isotherm, these 

materials possess a broader pore size distribution and an isotherm somewhere between 

that of type I and IV due to the pore size, which is on the cusp between the microporous
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Figure 15. Nitrogen adsorption-desorption isotherms for (a) mesoporous Ta 

oxide (SI), (b)mesoporous Ta oxide after calcination at 300 °C for 3h (S7), and 

c) 1% Fe3+-doped mesoporous Ta oxide after calcination at 300°C for 3h (S8).

2 0 n m

Figure 16. TEM o f pure mesoporous Ta oxide (SI).
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and mesoporous regimes. TEM was used to directly image mesoscopic order, particle 

morphology, as well as pore size and wall thickness o f this material. Figure 16 clearly 

shows spherical particles with a wormhole pore structure consistent with XRD pattern; 

the measured pore size is about 25 A, in good agreement with the results from nitrogen 

adsorption; the wall is roughly 15 A, differing slightly from the calculated value of 8 A on 

the basis o f d spacing and HK pore size assuming a perfectly hexagonal unit cell.

Photocatalytic activities o f pure Ta oxide (SI) and Ta oxide after heat treatment (S2, 

S7) are listed in Table 1. Pure tantalum oxide without any treatment only shows low

Table 4. Effects o f  thermal pretreatment and Fe3+ doping on photocatalytic activity.

Sample Catalyst Composition and Pretreatment 
Conditions

BET Surface 
Area (m2/g)

Average Activity 
(over 3h) (pmol/g/h)

SI Pure Ta oxide without any treatment 624 0.263

S2 Pine Ta oxide, fired at 300 °C for 4h 319 0.47

S3 0.3% Fe3+-doped Ta oxide, 300 °C for 4h 225 0.312

S4 0.5% Fe3+-doped Ta oxide, 300 °C for 4h 199 0.739

S5 1% Fe3+-doped Ta oxide, 300 °C for 4h 196 0.79

S6 2% Fe3+-doped Ta oxide, 300 °C for 4h 196 0.35

S7 Pure Ta oxide, fired at 300 °C for 3h 366 0.683

S8 1% Fe3+-doped Ta oxide, 300 °C for 3h 199 0.794

S9 Pure Ta oxide, fired at 300 °C for 3h, then 
reduced with bis(toluene) titanium

293 0.702

activity o f 0.263 pmol/g/h and thermal treatment at 300°C for 3h (S7) improves the 

activity to 0.683pmol/g/h. Prolonged heating time decreases the activity again to 

0.47pmol/g/h (S2). In order to examine the oxidation states o f  surface Ta and possible N  

species in these materials, XPS measurements were carried out. Figure 17 shows the Ta 

4f 5/2 , 7/2 region for pure mesoporous Ta oxide before and after the photocatalytic reaction.
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The emissions at 26.6eV and 28.5eV are characteristic o f Ta (V) and demonstrate that 

there has been little or no change in the oxidation state o f the Ta over the course o f the 

reaction. The N Is  region of this spectrum before and after photocatalytic run are also 

similar (Figure 18), showing a single peak at 405 eV for the Ta 4p 3/2 emission. The 

expected N  Is emission for ammonia or other nitrogen species (396-403 eV) are not seen 

either because the Ta emission is too large and obscures the N emission, or because the 

quantities o f  N  on the surface after the reaction are too small to be detected by XPS.

z

vse
Q

24 2234 32 30 28 26 420 415 410 405 400 395 390

Binding Energy(eV) B inding E nergy(eV )

Figure 17. XPS spectra o f  the Ta 4 f region 

for S7 (a) before photocatalytic reaction, and 

(b) after a 3 h photocatalytic reaction.

Figure 18. XPS spectra o f  the N Is region 

for S7 (a) before photocatalytic reaction, and 

(b) after a 3 h photocatalytic reaction.

The improved activity on heat treatment is not unexpected, because it increases local 

crystallization o f materials, which often leads to more efficient migration of electrons and 

holes through the lattice to the surface. In Schrauzer’s work, conversion from the 

anatase phase to the rutile modification by heat treatment at 1000°C was a prerequisite for 

high activity. In contrast, mesoporous tantalum oxide is considerably photoactive without
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heat treatment, as Domen reported, 40 most probably because o f  the small wall thickness, 

which enables the excited electron to migrate to the surface. While heat treatment in the 

case o f the mesoporous Ta oxides initially improves the activity, prolonged calcination 

causes a diminution o f active surface in addition to an increasing loss o f surface metal 

hydroxide groups, both contributing to a decrease o f photocatalytic activity. In the case of 

very high surface mesoporous materials, this problem becomes even more prominent 

because o f  the apparent incompatibility o f the presence o f  the mesostructure and the 

crystallinity o f the walls. All mesoporous materials reported so far have either amorphous 

wall structures or disconnected nanocrystalline grains embedded in the walls. 

Crystallization o f the walls to bulk oxides occurs upon exhaustive thermal treatment, 

resulting in a collapse of the mesostructure. Thus high surface area and porosity is 

normally offset by crystallinity. In light o f these observations, the difference o f activity 

between S2 and S7 likely results from their different surface area.

2.2.2 Fe3+ Doped Mesoporous Tantalum Oxides

To obtain higher activities, we prepared a series o f Fe3+ doped Ta oxides with different 

loading levels. The XRD pattern and the N2 adsorption and desorption isotherm of 1 wt% 

Fe3+ doped sample are also shown in Figures 14 and 15, respectively. Surprisingly, the 

BET surface area o f this sample decreased by more than two-thirds, i.e. from original 

624m /g to 199m /g, although the HK pore size remains unchanged. After carefully 

examining each step o f preparation, we found the loss in surface area originates mainly 

from the aqueous impregnation o f Fe(N 03)3. This phenomena is not uncommon as75, 92 

the Davis group reported that Ru/MCM-41, when impregnated with C sN 03 in aqueous 

solution, experiences a loss o f surface area to 623 m2/g from 1058m2/g and a loss o f total 

pore volume to 0.417cm /g from 1.015cm /g. This effect is likely related to the surface
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tension o f water confined in the nanopores. Liquid water has a much higher surface 

tension (72.75x1 O'3 N .m '1 at 20°C) than organic solvents (23.7x1 O'3 N .m '1 for acetone, at 

20°C).

XPS spectra o f Fe3+ doped tantalum oxides for Ta 4 f and N Is regions are quite similar 

to those o f pure mesoporous tantalum oxides, except that the two peaks of Ta 4 f 5/2 , 7/2 

show slight broadening and relatively weaker in intensity, which can be attributed to a 

broader distribution o f Ta sites in the walls o f the material. The Fe 2p region in all 

materials could not be resolved due to the very low content of this element.

The activities o f all Fe3+ doped catalysts from experiments are listed in Table 4. 

Clearly, the highest activities appear on the 1 wt% Fe3+ doped samples, S5 and S8. 

Although the underlying reason for this Fe-induced enhancement of activity is not 

completely clear, it may be related to a modification of the band-gap region and/or 

formation of a permanent space charge region in the walls. Fe has always been one o f the

07
best choices for the photocatalytic conversion of dinitrogen to ammonia. For example, 

Palmisano et al.87 demonstrated that the pure TiC>2, with band-gap energy in the near UV, 

is not active under visible light, but doping with Fe extends the light absorbed by Ti02 to 

the visible region. An optimal doping is achieved when a space charge region exists with 

electric force more than 0.2eV, whose thickness is more or less equal to the light 

penetration depth which ensures all the generated electron-hole pairs efficiently 

separated. Tantalum oxides possess a band-gap energy o f 4.0 eV and absorb in near UV 

without doping, so that the modification o f bang-gap region should not be necessary. In 

fact, pure tantalum oxide (S7) demonstrates moderate photocatalytic activity, while the 

activity of the 0.3% Fe3+ doped sample(S3) is actually lower than that o f pure tantalum 

oxide (S2, S7). However this surprising observation can be rationalized when considering
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the additional and offsetting effect o f the loss o f surface area resulting from aqueous 

impregnation.

The nearly identical activities of S5 and S8 are also o f some interest. From the 

standpoint of surface area alone, S8 should have higher activity than S5. After careful 

examination of the experimental data presented in Figure 19 and 20, it becomes evident 

that S5 has more pre-adsorbed NH3 than S8 although they have theoretically the same wt 

% Fe(NC>3)3 doping content. This suggests that more catalytically active Fe is present in 

S5 than in S8, possibly due to the longer calcination time. Since we cannot identify the
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Figure 19. Comparison experiments on 

S8 under UV lamp, (a) Helium is the 

only feeding gas, and (b) a mixture o f  

N2+H20  is the feeding gas.

Figure 20. Comparison experiments on S5 

under UV lamp, (a) Helium is the only 

feeding gas, and (b) a mixture o f N2+H20  is 

the feeding gas.

exact phase(s) o f Fe(III) from XRD and XPS because o f the low level o f Fe, it is not 

possible at this stage to establish any structure property relationships that might elucidate 

the nature o f the active Fe centers. The higher content o f more active Fe in S5 counteracts 

the disadvantage o f lower surface area, bringing the two samples to the same level o f 

activity.
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2.2.3 M esoporous Ta Oxide Reduced with Bis (toluene) Titanium

To im prove the activities of these catalysts by improving electron-hole separation on 

the surface o f the Ta oxide mesostructure, we pursued methods o f  improving surface 

conductivity in these otherwise insulating structures. The development o f a stoichiometric 

process fo r fixing dinitrogen on the surface of a mesoporous oxide reduced with 

bis(toluene) metal species76,77 was an extension o f previous work in which organometallic 

sandwich compounds were used as reducing agents to make low-dimensional molecular 

conductors in the pores o f the mesostructure.93'97 The introduction o f  organometallic into 

the pores w as similar to a classical redox intercalation reaction in w hich an electron donor 

reduces the walls o f the inorganic host to create a material with periodic charge regions 

consisting o f  anionic metal oxide phase and a cationic dopant intercalate phase. In the 

case of bis(toluene) titanium and mesoporous Ta oxide, the organometallic acts as a 

reductant, but does not retain its structural integrity on loss o f electrons, instead losing the 

toluene ligands to essentially deposit Ti atoms on the surface o f the mesostructure while 

also reducing the mesostructure. XPS studies show that there are several Ta and Ti 

environments in this material, including a low valent Ti species that reacts almost 

spontaneously with dinitrogen to create surface nitride.78 Charge balancing of this highly 

reduced mesoporous system requires that the electron-depleted low valent coat have a 

cationic charge and the partially-reduced higher valent coat have a negative charge. This 

morphology should create a depletion zone between the two layers similar to that between 

a p-n junction, which may be useful in promoting electron-hole separation in a 

photocatalytic process involving dinitrogen, since coating o f n-doped titania with a p- 

doped conducting polymer creates a p-n junction with a  depletion region that improves

OQ
the thermodynamics o f nitrogen reduction by water. By analogy, the bis(toluene) Ti-
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reduced mesoporous Ta oxide may thus show very high activity towards dinitrogen in 

photocatalysis. These reduced materials are metallic or semiconductors depending on the 

degree o f reduction, while other reduced mesoporous oxides are insulators. The highly 

conducting nature has been attributed to the low-valent coat on the surface and implies 

that the surface states are continuous in nature. This may provide a further advantage in 

photocatalysis, as surface defects and localized electron traps have been indicated as 

reasons why amorphous oxides usually have poor electron-hole separation properties.41 

Thus, the modification o f mesoporous Ta oxide with bis(toluene) titanium to create a 

metallic oxide coat on the surface o f the material may represent a strategy of overcoming 

electron localization leading to electron-hole pair recombination, since electrons tend to 

drift towards metallic regions on the surfaces o f photocatalysts and these reduced 

mesoporous oxides must have a more continuous band structure with fewer surface 

defects in order to display such high conductivities.

Surprisingly, our catalytic runs with the bis(toluene) Ti reduced mesoporous Ta oxide 

catalyst didn’t give much better results than pure tantalum oxide (see Table 4, S7 vs S9). 

The most likely explanation for this is that although bis (toluene) titanium increases the 

surface conductivity and creates sites capable o f splitting dinitrogen, this surface coat is 

very air sensitive and possibly degrades as O2 is formed over the course o f the reaction. 

For this reason, it may be more effective to coat the inner surface o f the material with a 

more robust semiconducting polymer in order to create an internal p-n junction capable of 

effecting superior electron-hole separation without degrading during the catalytic process. 

Since uniformly coating the inside o f mesoporous materials without clogging the pores is 

not trivial, requiring careful selection of catalyst dopants on the inner surface and control 

of polymer substrate concentrations, this strategy represents the body o f an independent
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study.

2.3 Conclusion

For the first time, the photocatalytic conversion o f dinitrogen to  ammonia over a 

mesoporous Ta oxide based catalyst was studied. All catalysts studied showed low to 

moderate activity and the 1 wt % Fe doped catalysts show comparable molar activities to 

Schrauzer’s initial results. Higher surface area, heat treatment, and Fe content were found 

to increase the activities; however the latter two factors have an adverse effect on the first, 

i.e. surface area, such that optimization is hindered. Treatment o f  the material with 

bis(toluene) Ti had little effect on the photocatalytic activity, most likely due to the 

oxygen sensitivity o f  this material.
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Chapter 3. Electroactive Mesoporous Tantalum Oxide Catalysts for 

Nitrogen Activation and Ammonia Synthesis

After decades o f intense research, the activation o f dinitrogen by transition metals and 

their compounds is still one of the frontiers o f inorganic chemistry. 45'47’ 53,88,89 The 

Haber-Bosch ammonia synthesis is one of the most widely used catalytic processes in 

industry, however the selective functionalization o f dinitrogen and its use as a feedstock 

in the synthesis o f nitrogen-containing organics has remained a challenge. Extensive 

research in the field o f organometallic chemistry has shown that low valent early 

transition metal complexes can either stoichiometrically, 50,52 or catalytically 54 cleave 

dinitrogen as long as the ligand environment around the metal is bulky enough to stabilize 

the coordinatively unsaturated metal center while still allowing access to the active site. 55 

The main challenge in the selective functionalization o f dinitrogen is to couple a strong 

enough reductant and an electrophile in the same system, while also preventing the 

electrophile from quenching the reductant before it can attack the more inert dinitrogen 

molecule. Previous studies showed that mesoporous Ti, Nb and Ta oxides, when treated 

with bis (toluene) Ti/Nb, form ammonia spontaneously on exposure to dinitrogen and

7 ft Q/% Q8
incipient moisture, ' .  ’ ’ suggesting that the only barrier to making this process

catalytic was the re-reduction of the active site. Since it is not practical to use bis 

(toluene) Ti as a reductant, we began to investigate other ways o f making this process 

catalytic. Because mesoporous Ta oxide is more thermally stable than its Nb and Ti 

counterparts and reduced Ta species have been implicated in both molecular-based 57 and 

photocatalytic 99 nitrogen activation, we chose this metal as our catalyst support. Since
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Ru has been used effectively in a wide variety o f Haber systems, ’ ’ ’ we focused 

our studies on a series of Ru-doped mesoporous Ta oxides. The entire catalytic process in 

this case takes place on the Ru clusters in these systems, with the electrochemically inert 

main-group oxide support and promoter thought to modify the dispersion and electronic 

properties o f  the metal grains. In a mesoporous Ta oxide-based system there is the added 

possibility that dinitrogen cleavage could take place at a reduced Ta center, with the 

precious metal dopant functioning as a hydrogenation catalyst to regenerate the low- 

valent Ta sites. Hydrogen in this case would continuously form reduced Ta sites while 

also supplying a source o f protons, thus avoiding the use o f bis (toluene) Ti as a reductant 

and water as the electrophile. Because hydrogen is a strong enough reductant to reduce 

Ta (V) to Ta (II) under the right conditions, it may be expected that such a catalyst could 

have several oxidation states of Ta involved and that this would further influence the 

behavior o f the system as compared to Ru supported on main-group oxides, which do not 

possess variable oxidation states. In order to make meaningful comparisons between our 

Ru-doped mesoporous Ta oxide catalyst and previously studied Haber systems, we 

followed a procedure directly analogous to that used to prepare and activate both Ru- 

MCM-4175 and Ru-MgO catalysts, 100 employing Ru3(CO)i2 as a Ru source and barium 

nitrate as the promoter.

3.1 Experimental Section

In a general procedure, a batch o f 5 wt% ruthenium-doped tantalum oxide catalysts 

were prepared by impregnating mesoporous Ta oxide (2g, synthesized according to 

ref.32) with Ru3(CO)i2 (0.22g, Aldrich) in tetrahydrofuran (THF). After stirring 

overnight, the mixture was evaporated in a rotary evaporator and dried in situ at 70°C for
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4h. The yellow powders were then moved to a reaction tube and evacuated at 300°C for 

3h. The temperature ramping time was 60 minutes.

To obtain the barium-promoted ruthenium catalyst with the molar ratio of B a:Ru=l:l, 

the thermally decomposed 5% Ru-Ta oxide(0.5g) was stirred in a solution of Ba(NC>3)2 

(0.065g, Aldrich) and solvent (H20 : EtOH=50:50; 20ml) for 4h and subsequently dried in 

oven at 120°C overnight. The grey powders were then moved to a U-shaped Pyrex reactor 

with a sintered glass frit as the fixed bed, and further dried at 100°C in vacuo overnight. 

Ultra-High-Purity (99.999%) H2 and low oxygen (99.999%) N 2 were used as synthesis 

gases. To determine the activities at low temperatures (< 250°C), the catalysts were first 

activated by H2 at 350°C for 4h, then pumped in Schlenk line (10'3 torr) at 300°C for 2h to 

remove any residual surface ammonia. After cooling to reaction temperature in vacuum, a 

mixture o f H2+N2 (3:1) was immediately fed into the reactor. The NH3 produced was 

adsorbed by 0.0IN  HC1 aqueous solution and analyzed by the indophenol blue method. 99 

The activities at 350°C were determined in a stream o f synthesis gas from the beginning.

XRD patterns (Cu K a) were recorded on a Bruker AXS D 8-Discover diffractometer 

with a 2D GADDS detector. XPS data were obtained on a Physical Electronics PHI-5500 

using charge neutralization and all peaks were referenced to the carbon C-(C, H) peak at 

284.8 eV. TEM picture was obtained by using a H9000 HR-TEM operated at 300 kV. 

Nitrogen adsorption and desorption data were collected on a Micromeritics ASAP 2010. 

Energy Dispersive X-ray Spectroscopy (EDS) line scans were done on a JEOL JSM- 

5800LV tungsten filament scanning electron microscope operating at an accelerating 

voltage o f 15kV.
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3.2 Results and Discussion

Figure 21(a) shows the X-ray powder pattern (XRD) of a sample o f mesoporous Ta

* • • 32oxide synthesized with dodecylamine according to the method o f Antonelli and Ying.

t
I
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Figure 21. X-ray powder diffraction patterns for (a) mesoporous Ta oxide 

starting material, (b) parent catalyst Ba-Ru/Ta oxide, (c) catalyst after catalytic 

run at 175°C, 3h, and (d) catalyst after H2 regeneration at 350°C, 2h.

9 1This material possessed a BET (Brunnaur, Emmett, Teller) surface area o f 541 m *g" and 

an HK (Horvath Kowazoe) pore size o f 23 A. Figure 21(b) shows the XRD pattern for 

this same material after impregnation with 5 wt % Ru and Ba(NC>3)2 at a molar ratio of 

Ba/Ru =1:1 .  The diminished intensity suggests a loss o f long range order, however the 

BET surface area o f this material was 370 m2«g'1 and the HK pore size was 23 A, 

indicating a retention o f the overall mesoporous structure. When pure water was used for 

the impregnation o f the Ba salt, the surface area was only 250 m2*g'1, possibly because 

damage to the pore structure caused by the higher capillary pressure o f water as compared 

to organic solvents such as methanol. The TEM micrograph o f the sample from Figure 

21(a) doped with 5 wt % Ru clearly shows the disordered wormhole pore structure and
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50-100 nm size o f the individual grains. Higher magnification did not reveal any evidence 

of Ru nanoparticles, but this was not unexpected as the XRD region for metallic Ru 

showed no sign o f  distinguishable reflections. The energy dispersive X-ray (EDS) 

spectrum (Figure 22) o f this sample did, however, provide evidence for Ru incorporation 

in the material. These data are consistent with the presence o f Ru nanoclusters smaller 

than the detection threshold of XRD or TEM.

Ta

T
/

Ta

Ru
Ru

0 5 10 15 20
E/keV — >

Figure 22. EDS spectrum o f 5% Ru-doped mesoporous Ta oxide.

Figure 23 shows a plot o f the natural log o f incremental activity versus time for 

ammonia production by the catalyst under a stream of 1:3 N 2 + H2 at 350 °C. The 

catalyst has a high initial activity o f 163 xlO'6 m obg '^h ' 1 in the first hour, but then the 

rate drops off dramatically in the second hour and continues at a rate o f 1-2 xlO'6 mol»g' 

’•h'1. This initial rate is over 100 times greater than those reported in our mesoporous Ta 

oxide Schrauzer type photocatalysts, 99 and compares favorably to the values reported for 

alumina, silica, or magnesia supported Ru-doped MCM-41 catalysts, which fall in the 

range of 300 xlO'6 m obg '^h ’1.75 Since Ta oxide (441.89 gnnoT1) possesses a greater
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Figure 23. Natural log o f incremental activity versus time 

at 350°C o f the catalyst from Figure 2 lb.

molecular weight than silica (60.08 g'mol"1), magnesia (40.30 g'm oF1), or alumina

(101.96 gnnol'1), these values compare even more favorably when the activities are

compared on a per-mole basis. The drop off in rate after the first hour is not understood

but may be related to a combination o f surface deactivation and loss o f structure, as the

XRD shows a further loss o f mesoscopic order (Figure 21(c)) and the BET surface area 

0 1drops to 229 m *g‘ . While some of the NH3 formed in the initial hour may come from 

residual nitrate, previous studies show that N 2 is an intermediate in nitrate reduction to 

NH3, and also that NH3 is a stronger reducing agent than H2 in reactions with NO2, which 

is formed from nitrate as an initial reduction step. Furthermore, Ba(OH)2 also works as 

a promoter, although the activities are lower than the nitrate. In order to verify that the 

catalyst is actually producing new ammonia in the second hour and the apparent activity 

does not come from ammonia adsorbed to the surface in the first hour, the catalyst after 1 

h o f initial activity at 350 °C was placed under vacuum at 10“3 torr and 350 °C for 1 h 

before the temperature was lowered to ambient and catalysis resumed. The values

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



obtained are from 2-5 xlO"6 m obg '^h '1, virtually the same as those obtained without the 

vacuum step. This firmly establishes that these catalysts are producing new ammonia 

from N2 and H2 under these conditions.

-0.5 -

1.5 2 2.5 3 3.51

T 1/K '1 — >

Figure 24. Arrhenius plot for the catalyst from Figure 21b.

The catalyst demonstrates only slightly lower activities in the second hour at ambient 

temperature than it does at 350 °C also in the second hour. This low degree of 

temperature dependence is somewhat surprising, as standard Ru-based Haber catalysts 

show a strong relationship between temperature and activity. Figure 24 shows the 

Arrhenius plot over a range 295 K to 623 K and the activities are listed in Table 5. 

Samples were first reduced by H2 only at 350 °C for 4h and then left under vacuum for 2h 

at 300°C to remove any adsorbed surface species. The catalyst was then cooled to the

Table 5. Activities at different reaction temperatures.

Temperature
(Kelvin)

Activity k 
(pmolg'1, lh)

Ink
(k: pmolg'T"1)

295 0.64 -0.446
373 0.97 -0.03
448 1.38 0.322
523 2.28 0.824
623 5.52 1.71
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reaction temperature and treated with a flow o f N2 + H2 for lh . The activation energies 

(Ea) calculated from this plot is 9.3 kJbmol'1, roughly 10% o f that calculated for Ru- 

doped catalysts on other supports (Ea for Ru/BaMCM41 is 90 kJnuol"1; Ru/BaMgO is 76 

kJ'mol"1). This, coupled with the somewhat low activities across this temperature range, 

suggests a different mechanism is at work and involving a small number of active sites 

with a low activation barrier. This is consistent with our work on bis (toluene) Ti reduced 

mesoporous Ta oxides, which form ammonia from dinitrogen and moisture almost 

instantly at room temperature, suggesting a low activation barrier to this stoichiometric

78process.

In order to further study the mechanism of ammonia formation, X-ray photoelectron 

spectroscopy (XPS) was conducted at various stages o f the synthesis and catalysis. 

Figure 25 shows the Ta 7/2, 5/2 from the 4 f region. The spectrum for the catalyst before 

the catalytic run is shown in (a) with emissions at 26.8 eV and 28.6 eV respectively. This 

compares closely with the binding energies o f pure mesoporous Ta (V) oxide, which fall 

at 26.9 eV and 28.7 eV, respectively. The spectrum in (b) shows the 7/2, 5/2 emissions 

from the material in (a) after a catalytic run in N2 + H2 for 3 h at 175 °C. There is a clear 

broadening o f these emissions with binding energies as low as 25.1 eV, indicating that 

several reduced surface Ta species are present. For comparison, a sample o f mesoporous 

Ta oxide reduced with 1.0 eq. o f Rb naphthalene shows a 5/2 emission centered at 26.0 

eV. 103 This suggests that lower oxidation states than Ta (IV) are involved in the catalytic 

process. The Ru 3p region for these same samples (Figure 26) displays a commensurate 

shift of the Ru peaks to lower binding energy after a catalytic run, consistent with 

multiple reduced Ru species on the surface. Since pure mesoporous Ta oxide does not
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Figure 25. XPS spectra o f the Ta 4 f  region for (a) parent catalyst Ba-Ru/Ta oxide,

(b) after catalytic run at 175°C, 3h, and (c) catalyst after H2 regeneration at 350°C, 2h.
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Figure 26. XPS spectra o f  the Ru 3p region for (a) parent catalyst Ba-Ru/Ta oxide,

(b) after catalytic run at 175°C, 3h,and (c) catalyst after H2 regeneration at 350°C, 2h.

react with H2 under these conditions, the Ru dopant must act as an interface and lower the 

activation barrier to the reduction o f the Ta species. Reduced Ta has been previously 

implicated 57,78 in stoichiometric N2 activation by organometallic complexes, suggesting 

that these Ru-doped mesoporous Ta oxide catalysts may function via a different 

mechanism than standard Ru-based Haber systems. The latter catalysts are somewhat 

structure sensitive and reaction orders in hydrogen are negative in the Ru systems,
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suggesting that surface coverage by hydrogen can block adsorption o f  dinitrogen and 

retard the rate. In our system it is clear from the XPS that hydrogen must at some stage 

provide electrons to the Ta sites and that some overspill from the Ru particles is thus 

involved. Figure 27 shows a representation o f  a possible mechanism in which electrons

H -  H ,  H ' V, '
N ~ N

R u  
•  -

♦ ■

Scheme 27. Possible mechanism for ammonia formation on Ru-doped mesoporous 

Ta oxide materials showing reduced Ta sites in dark blue.

from H2 are funneled through the Ru particles to the mesoporous Ta network, where they 

reduce certain sites (dark blue) to a form capable o f attacking N2. This mechanism would 

likely depend on the work function, Fermi level and degree o f  Ohmic contact at the 

metal-metal oxide interface as well as the presence o f  conduction pathways across the 

surface. Work by our group has shown that reduced mesoporous transition metal oxides 

can be semiconducting or metallic depending on the composition, suggesting that electron

7 /  7 « A/ AO

transfer across the mesoporous Ta oxide framework is indeed possible. ’ ’

Preliminary kinetic data suggests that the rate decreases with decreased H2 concentration, 

further supporting the role o f  low valent Ta in the process. The nature o f  deactivation is
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under investigation. The role of the Ba promoter in our system is not clear. In standard 

Ru-based Haber systems Aika has linked the promoter to an electronic modification of 

the Ru surface by the promoter to enhance electron donation into the N2 antibonding 

orbital.72 Other workers have argued against this in favor o f a picture where the promoter 

lowers the absorption energy o f ammonia on the Ru surface, thus pushing the equilibrium 

on the surface in favor o f regenerating more ammonia after desorption.101

After several hours o f catalytic activity, the materials were regenerated by treatment 

with H2 at 350 °C for 2h. The BET surface area drops slightly to 220 m2»g' 1 (Table 6) and

Table 6. Surface areas o f  catalyst from Figure 24 after subsequent steps in the catalytic process.

No. Catalyst processing conditions BET surface 
area (m2g'‘)

1 Mesoporous Ta oxide starting material 541
2 5% Ru3(CO)i2-doped Ta oxide after decomposition in vacuo at 

300°C, 3h
470

3 Parent catalyst Ba-Ru/Ta, Ru=5 wt %, Ba/Ru=l 370
4 Parent catalyst after H2 reduction at 350°C, 4h 242
5 Material from 4 after vacuum treatment at 300°C, 2h 237
6 Material from 5 after catalytic run at 175°C, 3h 229
7 Material from 6 after H2 regeneration at 350°C, 2h 220

the main reflection in the XRD diminishes further in intensity as shown in Figure 21(d). 

The binding energy in the Ru 3p region remains relatively constant to that after 

regeneration, but the Ta 5/2, 7/2 emissions sharpen considerably (Figure 25, trace c), 

indicating a change in oxidation state and diminution in the number o f  surface Ta species 

in the lowest oxidation states (ca. 25 eV). The activities o f the catalyst after regeneration 

drop to around 2 x lO ^m obh'^g '1. These data are consistent with a loss o f active sites 

from some surface deactivation process, and demonstrate that hydrogen treatment does 

not completely regenerate the catalyst. This also suggests that the active sites may be 

related to the emissions at ca. 25 eV, which correspond to small amounts o f Ta in very 

low oxidation states. This is fully consistent with the Arrhenius data and observations
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from organometallic chemistry involving the role o f low valent early transition metals in 

nitrogen activation. Since the XPS clearly indicates the role o f reduced Ta in the catalytic 

process, the inefficient regeneration by hydrogen may be related to an increased barrier to 

electron transfer on the surface after a catalytic run, or a change in local coordination 

geometries o f the active site after prolonged heating.

3.3 Conclusion

In summary, mesoporous Ta oxide doped with Ru and Ba is an active catalyst for 

conversion o f N2 and H2 into ammonia. Initial activities are high, but drop and stabilize 

after the first hour and continue for several hours, even at room temperature. The 

Arrhenius plot and XPS data suggest a different mechanism than standard Ru-doped 

Haber catalysts, where the precious metal acts as an electrode interface to reduce surface 

Ta sites, which are then able to attack N2. This system thus takes advantage o f the well- 

documented propensity for low-valent early transition metals to attack dinitrogen, while 

also avoiding exotic electron feedstocks or aggressive electrophiles, often required in 

these systems. The mild temperatures under which the catalyst operates may open the 

door for new reactions involving nitrogen incorporation into organics, most o f which 

cannot survive the high operating conditions o f standard Haber systems. Further studies 

on kinetics and use o f different metal dopants and promoters are required to better 

understand the nature o f the active site and improve activity and longevity o f the catalyst.
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Chapter 4. Support and Promoter Effect of Ru-based Mesorporous Ta 

Oxide Catalysts for Ammonia Synthesis

The activation o f dinitrogen has been one of the holy grails o f inorganic chemistry for 

several decades. 53,104 A recent resurgence o f interest precipitated by several advances in 

organometallic 46, 50, 52’ 54, 55 and materials chemistry 75, 88, 100 only reconfirm the 

importance o f this reaction. While the synthesis o f ammonia using transition metal 

catalysts is one o f the most important catalytic processes in all o f chemistry, the use of 

dinitrogen as a feedstock for the synthesis o f fine organics under mild conditions has still 

remained elusive. Thus, the discovery o f new and milder ways o f selectively cleaving 

and functionalizing the N-N triple bond is one o f the great challenges o f modem 

inorganic chemistry. Over the years various supported transition metal-based catalytic 

systems have been studied for ammonia synthesis. 63,70'75,100 For this particular process 

Ru is generally accepted to be superior to Fe or other transition metals, so most current 

efforts have focused on investigating the effects o f different supports and promoters. 

Common supports include main group oxides such as magnesia, alumina, and silica, 

while the promoters are usually alkali metals, alkali metal oxides/hydroxides, and alkali 

earth metals oxides because o f their strong electron donating abilities, which are believed

77to modify the reactivity o f the active Ru center. Electronegativities o f these promoters 

have been used as a rough criterion to evaluate their mechanism of promotion, which 

often correlates well with the rate o f ammonia production, however this is not always the 

case.74,75, 100 Alkali metals are good electron donors, however these metals are quite 

sensitive to oxygen-containing compounds such as water and dioxygen, consequently are
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turned into oxides or hydroxides. Because o f this concern, oxide promoters might be 

more practical than the metal analogs although the promotion effects are somewhat lower. 

67 In Chapter 3, a new Ru-doped mesoporous Ta oxide catalytic system was established 

which can convert dinitrogen into ammonia over the temperature range o f 295K to 

623K.105 This system was an extension of work we conducted on bis(toluene) Ti reduced 

mesoporous Ta oxides which demonstrated that metallic phases on the surface o f the 

mesostructure are capable of stoichiometrically cleaving the N-N triple bond of
4

7Rdinitrogen at room temperature and then producing ammonia as long as ambient 

moisture was present. Since bis(arene) complexes constitute an exotic and expensive 

source o f electrons in any catalytic process, we developed a new Ru-doped mesoporous 

Ta oxide system which uses H2 as a source o f electrons and protons in the sequential 

reduction o f dinitrogen. This system thus represents a marriage o f state-of-the-art Haber 

catalysis with strategies developed from our electroactive bis(arene) reduced mesoporous 

transition metal oxides. The fundamental difference between this new system and the 

more traditional Haber systems is that the mesoporous framework has a capacity for 

variable oxidation states which magnesia, alumina, and silica do not possess. This opens 

the doorway for the involvement o f reduced Ta in the process, which is particularly 

intriguing given that Fryzuk has found that low-valent Ta complexes readily activate 

dinitrogen under mild conditions. 52 The activities o f this new Ta-based system are 

unusual, exhibiting high initial activity which rapidly drops o ff after the first hour. 

Arrhenius plots provide surprising activation energies o f  only 9.3 kJ/mol, roughly 10% 

that reported for the traditional Ru-based Haber systems. XPS studies on the material 

during several stages o f the process show strong evidence for involvement o f reduced Ta 

species. These data suggest a new mechanism, in which the Ru acts as an interface to
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transfer electron density from hydrogen to neighboring Ta sites on the oxide support, 

which in the reduced form are then able to cleave dinitrogen. In order to better 

understand this new system, the dependence o f activity on type of promoter, promoter 

precursor, Ru precursor, promoter and Ru loading levels, as well as hydrogen activation 

temperature has been performed.

4.1 Experimental Section

4.1.1 Materials and Equipment

All chemicals unless otherwise stated were obtained from Aldrich. All experiments 

were conducted in a U-shaped Pyrex reactor with a sintered glass frit as the fixed bed. 

NH3 produced from the reaction was absorbed by 0.0IN  HC1 aqueous solution, and 

quantitatively determined by the “indophenol blue method” . 99 TEM images were 

obtained by using a H9000 HR-TEM operated at 300 kV. Nitrogen adsorption and 

desorption data and BET surface area were collected on a Micromeritics ASAP 2010. 

H2-TDA measurements were performed on a TGA/SDTA851 (Mettler Toledo) over the 

temperature range from room temperature to 450°C at a heating rate o f 2°C/min, in a

•2
stream o f 96% argon and 4% hydrogen with a flowing rate o f 30 cm /min.

4.1.2 Synthesis

(a) Mesoporous Ta oxide: Mesoporous tantalum oxides were synthesized following 

the ligand-assisted templating method introduced by Antonelli and Ying. 32

(b) Ru-doped mesoporous Ta oxide: In a general procedure, 5 wt% ruthenium-doped 

tantalum oxide catalyst was prepared by impregnation mesoporous Ta oxide with 

Ru3(CO)i2(99%) in tetrahydrofuran (THF). After stirring overnight, the mixture was 

evaporated in a rotary evaporator and dried in situ at 70°C for 4h. The yellow powders
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were then moved to a reaction tube and evacuated at 573K for 3h. The temperature 

ramping time was 60 minutes. When ruthenium chloride hydrate (R.UCI3.XH2O, 99.98%) 

was used as ruthenium precursor, R.UCI3.XH2O was impregnated with mesoporous Ta 

oxide in methanol. After stirring overnight, the organic solvent was removed in a solvent 

storage flask on a Schlenk line.

(c) Nitrates (Ba(N0 3 )2 , CSNO3 and La(N0 3 )3 ) promoted Ru/Ta oxide catalysts: 

To obtain the nitrate promoted catalyst, typically 0.5g Ru-Ta oxide was stirring in a 

solution o f nitrates (Ba(NC>3)2, Alfa Aesar, 99.95%, metals basis; CSNO3, 99%; 

La(N03)3.xH20, 99.9% ) and solvent (H2O: EtOH^OrSO) for 4h and subsequently dried 

in oven at 120°C overnight. The powders were then moved to a U-shaped Pyrex reactor 

with a sintered glass frit as the fixed bed, and further dried at 373K in vacuo overnight.

(d) Ba(OH ) 2  and Barium isopropoxide promoted Ru/Ta oxide catalysts: 

Considering that both Ba precursors, when exposed to CO2 in air, might be converted to 

Ba(CC>3)2, and lose their promoter activity, barium hydroxide (Ba(OH)2, tech. -95% ) was 

impregnated with as-synthesized Ru/Ta in methanol in Argon glove box, after stirring 4 h, 

the solvent was removed in an air-free solvent storage flask on a Schlenk line at 100C; 

Barium isopropoxide (Ba[OCH(CH3)2]2, Alfa Aesar, 20% w/v in isopropanol, density 

0.89) analog was impregnated with Ru/Ta in isopropanol, and the solvent was then 

removed by the same manner.

4.2 Results and Discussion 

4.2.1. Characterization

Since heterogeneous catalyst for ammonia synthesis typically exhibit complicated 

multi-component behavior in which the support, the precious metal dopant, and the
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promoter all play an important role, we undertook a series o f compositional studies in 

order to establish important trends which may shed light on the reaction mechanism. In 

these studies XRD and TEM was used to confirm the mesostructure o f all catalysts. The 

TEM image in Figure 28 clearly shows the disordered wormhole pore structure and 50- 

100 nm size o f the individual mesoporous particles, however individual Ru metal grains

50nm

Figure 28. TEM of 5% Ru-doped mesoporous Ta oxide.

could not be located within the pores. This was not unexpected, as XRD did not show 

any reflections for Ru metal. However, energy dispersive X-ray spectroscopy (EDS) and 

XPS provided firm evidence for the presence o f metallic Ru in the materials. 105 This 

indicates that Ru is finely distributed on the material surface, and the grain size is below 

the detection limit o f TEM or XRD. Figure 29 shows the nitrogen adsorption-desorption 

isotherms o f the mesorporous Ta oxide starting material, the Ba-Ru/Ta catalyst before H2 

reduction, and this same catalyst after H2 reduction. Hydrogen heat treatment at 350°C 

for 4h results in a decrease in specific BET surface are from 541m2/g to 242m2/g, and a 

corresponding decrease in the cumulative Horvath-Kowazoe (HK) volume from
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0.282cm3/g to 0.092cm3/g, with the pore size remaining at 23.3 A. The nitrogen 

adsorption-desorption isotherms show characteristics o f both type I (for microporous) and 

type IV (for mesoporous) because of a broader pore-size distribution and the pore size on 

the cusp between the microporous (d <20 A ) and mesoporous (20 A <d<500 A ) regimes. 

20 This behavior is typical of Ci2-templated mesoporous Nb, Ta, and Ti oxides studied in 

our group. The HK pore-size distribution shows a major peak at 23.3 A, demonstrating 

that the doping process has not compromised the narrow pore size distribution o f the 

parent mesostructure.
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Figure 29. Nitrogen adsorption-desorption isotherms for (a) pure mesoporous Ta 

oxide, (b) catalyst Ba-Ru/Ta (Ru=5wt%, molar ratio Ba/Ru=l) before 

H2 activation, and (c) catalyst from (b) after H2 activation at 350°C for 4h, 

followed by catalytic run at 175°C.

4.2.2 Effect of Reduction Temperature

The rate o f ammonia synthesis was measured over Ru/Ta oxide catalysts promoted 

with Ba(NC>3)2 and CsNC>3 and the effect o f reduction temperature was studied. The Ru 

precursor used for these studies was Ru3(CO)i2 because this precursor proved to be the
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most effective in our previous studies and has also been used successfully in mesoporous 

silica-based Haber systems. The activity o f Ru-doped mesoporous Ta oxide catalysts 

decreases for both promoters when the reduction temperature is increased, as shown in 

Figure 30. The BET surface area o f Cs or Ba promoted catalysts remain about 200- 

220m2/g after 4h hydrogen reduction at 350°C (Table 7). In contrast, the surface area 

drops to 120-150m2/g if  hydrogen treatment is performed at 400°C. While loss o f surface

6

▲ Cs+ 
■ Ba+

5

2

1

0
623 673 723523 573

Reduction temperature (K)

Figure 30. Activity o f ammonia synthesis on 5 wt% Ru-Cs/Ta and Ru-Ba/Ta 

oxides (promoter/Ru=l mol/mol) as a function o f  the reduction 

temperature. The rate was measured at 623K.

Table 7. Promoter effect on the rate o f ammonia synthesis over 5 wt% Ru/Ta oxide.

Promoter Promoter M/Ru BET surface Activity (pmol/g) over 3h
element (M) precursor (mole ratio) area* (m2/g) 298K 448K 623K
None 319 0.22 0.28 0.55
Cs CsNOj 1 213 1.44 1.72 6.37
Ba B a(N 03)2 1 220 1.78 4.35 11.56
La La(N 03)3 1 208 0 0 8.19

* BET surface areas were measured after catalysts were activated by H2 at 623K for 4h, and 

catalytic run at 623K for 3h.

area may explain the drop in activity o f the catalyst after heat treatment, it may also be 

due to a sintering o f Ru metal particles because o f the structural loss o f the support and
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increased diffusion o f Ru particles at higher temperatures, although we could not confirm 

this by XRD. Conversely, the loss o f activity may be related to a migration o f promoter 

oxides from the Ru metal surface or an evaporation o f promoter oxides from the catalyst,

fnas has been observed previously. The decrease in activity at higher temperature is more 

extensive for the CSNO3 promoted catalyst than the Ba(NC>3)2 promoted analogue, 

possibly because the former metal oxide tends to vaporize more easily than the latter 

metal oxide at high temperature. Although catalysts with lower H2 reduction temperature 

at 300°C have somewhat higher surface areas at the range o f 240-260m2/g, the lower 

activities are more likely related to lower decomposition percentage o f the promoter 

precursors. Figure 31 shows the H2-TDA results o f Ba(NC>3)2 promoted Ru catalysts.

0

1
-8aM

100 300 4000 200 500

Templerature (°C)

Figure 31. H2-DTA of Ru/Ta oxide catalysts promoted with B a(N 03)2 

for (a) Ba/Ru= 1, and (b) Ba/Ru=3.

There is a strong exothermal peak between 190-250°C that can be attributed to the 

reduction o f promoter precursors and liberation o f gaseous nitrogen species from surface 

nitrate. The reduction o f nitrate in the presence o f Ru has been shown to occur between
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200 °C and 250 °C. 71, 106 A higher promoter/Ru molar ratio moves the exothermal 

towards higher reduction temperature with a stronger peak. No exothermal peak was 

observed below 450°C in the absence of Ru, which provides further evidence for the role 

of Ru particles in the reduction of nitrate during the activation process. In previous 

studies it was found that much of the initial high activity of the catalysts occurred only if  

this pre-reduction step was not conducted and the entire catalytic run performed in the 

presence o f both N2 and H2. Thus, if  the catalyst is first reduced in H2 and then a catalytic 

run started, the activities are thus generally much lower. Since nitrate reduction in the 

presence o f H2 generally proceeds through an N2 intermediate, the degradation of active 

sites is likely a major contributor to this lower activity. Preliminary kinetic data also 

suggest that the rate o f ammonia production depends more strongly on H2 concentration 

than N2 concentration. These and other kinetic effects are currently under investigation to 

arrive at a more detailed picture o f the nature o f the active site and the detailed reaction 

mechanism. Since this paper is focusing on compositional effects rather than mechanistic 

studies, this is out o f the scope o f this work.

4.2.3 Effect of Different Promoters

Although the most widely accepted mechanism for ammonia synthesis over Ru-based 

catalysts is one in which electron density from the promoter is first donated to the Ru 

metal grains and then transferred to the dinitrogen antibonding orbital to weaken the 

robust N-N triple bond, this is still a matter o f contention as the detailed role of the 

promoter has never fully elucidated. 75 Some disagreements have arisen from conflicting 

experimental observations, however these may be attributed to some extent to the 

different support materials used and promoters used in the various catalytic systems in 

question. ’ ’ Previous studies by a number o f groups have shown that alkali metal Cs
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and alkali earth metal Ba promoters are the two best choices for Ru-based Haber systems. 

The supports employed in these studies include active carbon (A.C.), oxides (MgO, 

AI2O3), zeolite (X, Y) and MCM41 mesoporous silica. One anomaly is that rare earth 

metal La promoters are the most effective for AI2O3 systems. This has been explained by 

a SMSI (strong-metal support interaction) effect, which is related to coverage by the

1 (Y1promoter o f  the precious metal surface when this surface is reduced to a lower valency. 

For the sake o f completeness, all three o f these promoters were selected and tested in our 

Ru-doped mesoporous Ta oxide catalyst system. The activities o f these catalysts are 

compared in Table 7. These results clearly show that Ba is the best promoter for our 

Ru/Ta oxide system. La(NC>3)3 promoted catalysts didn’t show any activity in our system 

below 250°C, but are active above this threshold. This could be attributed to the SMSI 

effect o f La, as observed in the alumina systems.

Rationalizing why the Ba promoter should work best in a system that clearly may 

involve a different mechanism than the standard Haber catalysts (in so far as the variable 

oxidation states o f the Ta oxide support may be involved) requires some knowledge o f the 

role of the support in the traditional systems. It is generally accepted that the presence of 

a K promoter in Fe based Haber systems not only greatly enhances the reactivity of 

previously inactive Fe surfaces (e.g. Fe(llO), Fe(210)), but also lowers the energy of 

adsorption o f  ammonia on the Fe metal. 60 Therefore, as the concentration o f NH3 on the 

surface decreases, more active sites remain available for dissociative adsorption o f N2. 

Studies on thermal desorption spectroscopy of NH3 by Benndorf and Madey suggested a

10Rsimilar mechanism for catalysis on Na-doped Ru (001). Aika and co-workers have 

proposed that rate enhancement by alkali or alkali earth metal promoters in Ru-based 

systems result from electronic promotion. Electron density is donated from the promoter
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to the Ru, lowering its ionization potential, which allows the electrons at the Ru surface to 

be readily donated into the N2 antibonding orbital, thus reducing the activation energy for 

dissociative adsorption o f N2. 109 Relating this observation to our system, it stands to 

reason that the effectiveness of electron transfer from Ru to Ta should rely in part on the 

potential at the surface o f the Ru particles. Thus decreasing the binding energy of 

electrons at the Ru surface should lead to a more effective transfer o f electrons to the Ta 

centers in the generation o f low-valent sites, as long as a suitable electron pathway exists 

between the Ru and the Ta. This would mean that promoters which decrease the binding 

energy of Ru surface electrons would be more effective in generating reduced Ta sites 

than those promoters which increase the binding energy o f surface electrons, and would 

lead to an increase in the reaction rate if, indeed, reduced Ta is involved in the nitrogen 

cleavage step.

The role o f the Ba in our system may not be so simple, however, as various other 

groups have done studies that suggest that electron density is not transferred from alkali 

promoters to the Ru metal, 110 and the electrostatic interaction is limited to the vicinity of 

the a lk a li111 or that efficient electron transfer occurs to oxygen rather than ruthenium. 112 

This is supported by the observation that the addition o f promoters to the catalytic 

systems in question generally does not cause a significant change in the activation 

energies. However when Ba(N03)2 is used as promoter for Ru/MgO catalyst, a large

rjC
decrease in apparent activation energy for ammonia production is observed. But this 

unusual change is apparently not due entirely to the effect o f Ba since this drop in 

activation energy doesn’t occur in the Ba-Ru/zeolite X system; the apparent activation 

energy o f Ba-Ru/zeolite X catalyst is actually similar to the values for alkali-exchanged 

zeolite X. Therefore, the combined interaction o f promoter, the support, and the Ru metal
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is possibly responsible for the change in activation energy. Also, according to Aika’s 

mechanism, Ba should never be superior to Cs as an electronic promoter. However, Ba 

functions as a better promoter than Cs in almost all studied Ru catalyst systems. There 

are several reasons that have been proposed to explain these surprising experimental 

results:

1) Similar electronegativities between BaO and CsOH. The promoters typically exist as 

oxides or hydroxides under reaction conditions. Usually, Ba is considered in the form of 

oxide (BaO) and Cs in the form of oxide or hydroxide (CS2O/CSOH). The values of 

electronegativities o f these compounds are as follows: 1.20 (CS2O), 1.73 (CsOH), 

1.77(BaO). If Cs+ works as CsOH just as on AI2O3, then the value 1.73 is near to 1.77 of 

Ba oxide. 67

2) Promoter ions could be blocking active sites. Barium ion has oxide state o f +2, and Cs

ion of +1, only half as much as Ba2+ as Cs+ is required for charge balance o f the acidic

11̂metal oxide framework.

3) Less mobility o f BaO than CS2O/CSOH. BaO is believed to stay longer than CS2O and 

CsOH on the Ru surface, and contact time between these species is an important factor.

4) Specific surface interaction between support and promoter can play an important role 

and modify the activity o f the promoter depending on the support.

With all o f  these factors potentially at play and evidence for involvement o f low valent 

Ta in the process, it is not yet possible to delineate the exact reason why Ba functions as 

the best promoter in our system. The simplest explanation is that it facilitates electron 

transfer between the Ru and the Ta by modifying the Fermi level o f the Ru, but this 

neglects possible direct interactions between Ba and Ta, or Ba and O, or other factors
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mentioned above. Clearly more experimental work needs to be done on both the 

mechanism and structure o f the active site before more definite conclusions can be drawn.

4.2.4 Effect of promoter/Ru ratio

Since Ba(NC>3)2 was found to be the best promoter in our system, the amount of 

Ba(N03)2 was systematically varied and the activity was measured. The results are 

shown in Figure 32. In the case of 5 wt% Ru/Ta oxide catalyst, a  Ba/Ru ratio of 1:1 gave 

the maximum activity at lower temperature, while 3:1 proved the best at higher 

temperature. The surface o f activated mesoporous Ta oxide, with the BET surface area o f

g
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Figure 32. Activity o f  ammonia synthesis on 5 wt% Ba-Ru/Ta as a function o f  

Ba/Ru mol ratio. A : rate was measured at 448Kon the catalyst reduced 

at 623K; ■: rate was measured at 623K on the catalyst reduced at 623K.
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242m /g, can accommodate 7.13 mmolg' Ba ions or 7.07 mmolg" Ru when Ba ions 

or Ru are closely packed on the surface. 106 The surface quantities o f  Ba2+ and Ru with 

promoter/Ru=l and 5.0 wt % Ru loading are about 0.4 mmolg' 1 and 0.4 mmolg' 1 

respectively, and cover only about 5.6% and 5.7% o f surface o f  Ta oxide, respectively.
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According to A ika’s mechanism, in the case o f an acidic support like Ta oxide, a small 

amount o f an alkaline promoter will be consumed to neutralize the support and so a 

higher promoter/Ru is preferred. Jacobsen and co-workers, by using atomic-resolution in 

situ TEM observed that Ba atoms distributed as single atoms close to the crystal edges 

(B5 sites) and bound to oxygen are responsible for the electronic promotion o f the catalyst. 

114 Since very few such active sites are present in the catalyst, it appears that the majority 

of Ba atoms from relatively large, optimal Ba/Ru ratio (0.3-2.0) 115-117 are used as 

reservoirs to maintain a constant coverage of mobile Ba atoms in the vicinity o f all B5- 

type sites in the catalyst.

While Ru is the active agent for the standard Haber process at high temperature, with 

all bond breaking and forming processes occurring on the metal surface, XPS results 

show that reduced Ta sites on the support are be involved in our system. The activity of 

the catalyst at elevated temperature shows a strong dependence on the Ru/Ba ratio and a 

maximum activity at 3:1, which is similar to traditional Haber catalysts. However, the 

plot at lower temperature shows far less o f a dramatic dependence on this ratio and a 

maximum at 1:1. It is thus conceivable that two mechanisms may be at work in varying 

proportions depending on temperature. At higher temperature the majority o f ammonia is 

generated at the Ru surface, while at lower temperature where traditional Haber catalysts 

are generally inactive, the second mechanism involving reduced Ta predominates. 

Another explanation is that because of the much higher molecular weight o f Ta20s than 

other supports, only 4.5mmol Ta atoms present in 1 gram o f Ta oxide. Excessive 

promoter could thus block the active Ta sites and for this reason a somewhat lower ratio 

is preferable at lower temperature. Catalysts with an even higher ratio o f 5:1 were also
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tested at 350°C and relatively low activity was found. In this case XPS studies showed 

that only about 85% Ba(NC>3)2 was decomposed to BaO under our activation conditions.

4.2.5 Effect of Absolute Ru Loading

Ru /Ta oxides prepared from Ru3(CO)n using different Ru loading were prepared and 

doped with Ba(N03)2 at a Ba/Ru ratio o f 1. The rates o f ammonia synthesis from these 

catalysts at 448 K and 623 K are shown in Figure 33. The rate increases linearly with Ru
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Figure 33. Activity o f  ammonia synthesis at 448K ( A )  and 623K(B) as a 

function o f Ru loading.

loading at 623 K, but increases only slightly before leveling o ff at 448 K. This pattern o f 

greater dependency on dopant levels at higher temperature is consistent with the results 

from Figure 32. Aika and co-workers have observed a linear relationship up to 5 wt% of 

Ru loading over their Ru/MgO systems, which is not unexpected since with the entire 

catalytic reactions take place on the Ru clusters in these systems. However, in our Ru/Ta 

oxide catalysts, the Ru could also function as an interface to funnel electrons from H2 to 

the Ta reducible sites at lower temperature. The fact that activity does not increase with 

Ru loading a t 448 K is in accord with a new mechanism, at least at this temperature, in
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which the number o f reduced Ta active sites might be more important than Ru and the 

rate of reaction depends more strongly on electron transfer between the Ru and the Ta. 

This is in accord with the low activation energies measured previously, which suggest a 

small number o f very active sites. Once the electrons are transferred to the Ta, the 

reaction proceeds rapidly, consistent with the almost instantaneous cleavage of N2 and 

subsequent formation o f  NH3 in bis(toluene) Ti reduced mesoporous Ta oxide. Thus, the 

limiting factor is transfer o f electrons to the Ta and the low activities coupled with low 

activation barrier can be explained by the presence o f only limited effective electron 

transfer pathways in the material. Increasing the temperature does not improve electron 

transport, bu t allows the second mechanism to become more important. This hypothesis 

also suggests that improving electron transport across the surface should lead to more 

reduced Ta sites and higher activities and is supported by the fact that Ba is the best 

promoter and is known to influence the energy of the electrons at the Ru surface and thus 

their facility for mobility across the surface.

4.2.6 Effect of Ba and Ru precursor

Promoter precursor effects o f Ba(OH)2 and Ba(isopropoxide) were examined and 

compared w ith  that o f Ba(NC>3)2 using . The activities were measured in each case after 

hydrogen reduction was complete and all ammonia formed during this initial period 

(arising from  nitrate or residual N2 in the system) ruled out. The results o f this study are 

shown in Table 8. All the Ba salts are effective, with Ba(NC>3)2 giving the best results at 

both 448 K  and 623 K. RUCI3.3H2O was also used as an alternative o f Ru precursor. 

These catalysts were prepared by impregnating RUCI3.3H2O with mesoporous Ta oxide in 

methanol, and  further promoted by Ba(OH)2 and Ba(isopropoxide). The activities o f thus 

prepared catalysts were compared with that o f the standard catalyst and the results also
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shown in Table 8. The trend follows exactly that using Ru3(CO)i2 as the precursor. A 

possible explanation for the observation that Ba(OH)2 is a poorer promoter than Ba(NC>3)2 

may be due to the lower basicity o f BaO originating from the hydroxide rather than 

Ba(N03)2. The reason that Ba isopropoxide didn’t exert a promotion effect may be 

because it didn’t decompose completely to BaO under our operating conditions. From 

Table 8 it can also be seen that RUCI3.3H2O is not as good precursor as Ru3(CO)i2- This

Table 8. Effect o f  Ru and Ba precursor

Ru precursor 
compound (5 wt %)

Ba precursor 
compound

Ba/Ru 
(mole ratio)

BET surface 
area* (m2/g)

Activity (pmol/g/h) 
448K 623K

Ru3(CO)i2 B a(N 03)2 1 220 1.38 5.52
Ba(OH)2 1 252 0.42 0.75
Ba[OCH(CH3)2]2 1 232 0 0.13

RuC13.xH20 Ba(N 03)2 1 225 0.34 1.87
Ba(OH)2 1 249 0.16 0.51
Ba[OCH(CH3)2]2 1 241 0 0.08

* BET surface areas were measured after catalysts were activated by H2 at 623K for 4h (barium 

nitrate precursor), or 2h (other barium precursors), followed by catalytic run at 623K for 3h.

is not surprising based on results from standard Haber systems and has been related to 

three major effects. Ru exists as Ru3+ in the parent catalyst, which has to be reduced 

before nitrate promoters decompose. Ba(NC>3)2 is not reduced with H2 below 450°C in 

the absence o f Ru. On the other hand, because o f the nature o f the precursor and the 

method o f decomposition used, there is already some Ru metal existing in parent 

Ru3(CO)i2 catalyst before H2 treatment, so that Ru-catalyzed nitrate decomposition in this 

case should be more facile. Another major reason that RUCI3.3H2O is a less effective 

precursor is that chloride ions are known to poison the catalyst. Aika and co-workers 

found that much higher activities can be obtained after removal o f  chloride at very higher 

temperatures, for example 1000°C. 118 Magnesia was also found to be one o f the best 

oxide supports for ammonia synthesis, especially when Ru3(CO)i2 was used as precursor.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73 The high activities might be contributed from high Ru dispersion, the chloride-free 

system and the basicity o f MgO. Finally, water vapor from RUCI3.3H2O could also be

71another poison and thus decrease the catalyst activity when used as a source o f Ru.

4.3 Conclusion

For the mesoporous Ta oxide catalytic system, Ru3(CO)i2 and Ba(N03)2 were found to 

be the most effective precursors o f Ru catalysts. La(NC>3)3 showed a poorer promoter at 

mild conditions but a better promoter at high enough temperature than CSNO3 probably 

due to the SMSI effect. Studies on Ru/Ba ratio and absolute Ru loading show different 

behaviors at 448 K and 623 K, suggesting that two mechanisms may be at play, one 

related to the standard Haber process, and a second consistent with the proposal made 

previously on the basis o f  Arrhenius data and XPS that a different mechanism might be 

functioning due to the involvement o f Ta species with variable oxidation states. However, 

the longevity for ammonia synthesis over this catalyst is less than that over other Ru- 

based catalysts. This may be due in part to the gradual loss o f meso-structure during the 

various processing such as wet impregnation and prolonged heating; however other 

factors may also be at play. Further mechanistic investigations o f this new catalytic 

system are ongoing with an effort to better understand the controlling factors and thus be 

able to develop strategies to improve activity and longevity.
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C hapters. Conclusion

The exploration o f mesoporous materials as catalysts or catalyst supports has been an 

area o f much interest since the first M41S series o f mesoporous silicates were synthesized 

in 1992. In spite o f the great amount o f work done in this area, there is only one report of 

MCM-41 used in Haber ammonia synthesis. This is Surprising since nitrogen activation 

remains one o f the biggest challenges in modem catalysis. In this thesis, I have, for the 

first time, synthesized variety o f mesoporous Ta oxide based catalysts and systematically 

explored their reactivity for nitrogen activation in terms o f Schrauzer’s and Haber- 

Bosch’s processes. This electroactive support provides a reaction scaffolding which 

allows photocatalytic conversion o f water and dinitrogen to ammonia, as well as a 

seemingly new reaction pathway for Haber synthesis, which functions at a lower 

temperature than the traditional catalysts and uses low valent Ta as an intermediate in the 

process.

Pure mesoporous Ta oxide is able to photocatalytically convert N2 and H2O to NH3 at 

a rate o f about 0.3pmol/g/h under UV light. This rate is relatively lower when compared 

with Ti oxide as Schrauzer-type catalyst, and is believed to be the result o f an amorphous 

wall structure or disconnected nanocrystalline grains embedded in the walls, which leads 

to poor electron-hole separation and a reduction in catalytic efficiency. Heat treatment 

and suitable Fe3+ doping indeed increase the activity to about 0.8pmol/g/h, which is 

probably attributed to an increase o f crystallization and formation o f permanent space 

charge region in the wall thus improve the electron-hole separation. An attempt to further 

improve electron-hole separation on the surface o f the Ta oxide mesostructure by
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treatment w ith bis(toluene) titanium has little effect on the activity, probably because the 

O2 by-product degrades the very air sensitive surface coat, although an increase of 

conductivity from this surface coating can be expected.

Ru-based thermal catalysis was also conducted using dihydrogen and dinitrogen. The 

capacity for variable oxidation states o f the support and the high surface area and porosity 

is particularly intriguing. In fact, the goal o f this work was to develop a catalytic process 

in which the Ta oxide support was active in the mechanism, thus exploiting the well- 

known propensity for low-valent early transition metals to activate dinitrogen, in 

particular work by Fryzuk 57on Ta-based dinitrogen cleavage.

From previous work it was established that a Haber catalyst requires a precious metal, 

usually Fe or Ru, on a main group oxide support (i.e. magnesia, alumina, silica), as well 

as a promoter (usually a group I or II metal oxide), the role o f which is to tune the 

reactivity o f  the active sites. From our studies on Ru-doped mesoporous Ta oxide, BaO 

appears to be the best promoter. Although this is not unexpected on the basis o f previous 

work, the mechanism in our work and that o f others has not yet been fully elucidated. 

Some related factors established previously include good basicity (although is not as good 

as CS2O), divalent ion charge, strong binding to Ru metal and/or Ta active sites, and 

special interaction with Ru metal and/or support. For the active metal, Ru3(CO)i2 is 

better precursor in our system than RUCI3.3H2O, likely because CF and H2O in the latter 

precursor are thought to poison the catalyst and decrease the activity. Increased Ru 

loading clearly improved the activities o f catalysts at higher temperature (e.g. 350°C) but 

didn’t change the low-temperature activities very much, suggesting reduced Ta specie(s) 

rather than Ru metal dominates the activity at low temperature.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Aika and co-workers proposed a mechanism in which Ru metal is the sole active agent 

for NH3 synthesis in their AI2O3 and MgO systems, and the promoter modifies the surface 

energy o f the Ru electrons at the Fermi level through some form o f electron donation, and 

the electrons at the Ru Fermi level are then donated into N2 anti-bonding orbital. This 

electron donation thus enhances the rate-determine N 2 chemisorption step. Interestingly, 

the reaction order in H2 is negative, a factor attributed to surface competition and excess 

chemisorbed H2 blocking surface sites for N2 binding. In our Ru-doped mesoporous Ta 

oxide catalytic system, this mechanism is clearly not operative. Much lower activation 

energy (Ea=9.3kJ/mol) and very high initial rates, as well as XPS evidence for low valent 

Ta involvement, suggest that our catalyst has a small concentration o f but very active 

sites. 60 The active sites are believed to consist mostly o f Ta specie(s), at least at low 

temperatures, because

(a) This phenomenon is much similar to the observation o f nitrogen cleavage by 

previously studied bis(toluene) Ti reduced Ti/Ta systems.

(b) XPS provides evidence that different Ta specie(s) are involved in the catalytic 

reaction and that activity appears related to a small number of sites at very low Ta binding 

energy.

(c) Linear increase o f Ru loading has little effect on activity at low temperatures. 

Therefore, we proposed a new mechanism for our mesoporous Ta oxide catalytic

systems, in which the Ru acts as an interface to transfer electron density from hydrogen to 

neighboring Ta sites on the oxide support, which in their reduced form are then able to 

cleave dinitrogen. This mechanism is consistent with previous findings in our group as 

well as work by Fryzuk.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In spite o f the ability to activate nitrogen at mild conditions, our Ru/Ta catalysts show 

relatively low activities at higher temperatures (i.e.300°C-400°C) than those previously 

studied systems such as Ru/MgO, R11/AI2O3 and Ru/MCM41. Except the above 

mentioned high molecular weight o f Ta oxide, three other reasons might be considered:

1) Bulk Ta oxide as well as most supported Ta oxide (e.g. on AI2O3, TiC>2, Zr02) itself 

possess only acidic sites; 113, 119 and basic sites are required for effective ammonia 

synthesis.

2) Ru-based catalyst is somewhat structure sensitive (Fe-based catalyst is highly structure 

sensitive). Previous studies showed that an optimum size around 2.0nm is necessary to 

exhibit the highest number o f active Bs-type sites primarily located at crystal edges and 

comers; 120 in our system, Ru particles seem distributed so finely on the surface of 

mesoporous materials, that even XRD and TEM couldn’t resolve the size o f Ru clusters.

3) Doping method has great impact on the distribution o f metal particles within the pore 

structure as well as the stability o f mesostmcture. When wet impregnation is necessary, 

water as a solvent should be avoided to the greatest extent because it destroys the pore 

structure due to capillary forces.

4) Because o f the very active and sensitive properties o f our catalysts, higher purity of 

synthesis gases is desirable to avoid the quick deactivation o f the catalysts.

Future work

New directions in our group following the exciting discoveries reported in this thesis 

include detailed kinetic studies and labeling studies to probe into the role o f nitrate in the 

initial and highly active first hour. In particular, crossover isotope studies with ISN 

labeled N2 and barium nitrate will be carried out in order to prove whether the nitrate
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reduction goes through an N2 intermediate. Varying concentrations o f N2 and H2 will 

also help establish the mechanism of this reaction and whether the ammonia in the first 

hour and that produced after nitrate decomposition is being formed by the same 

mechanism. Other precious metal dopants will also be tried as well as other support 

materials such as mesoporous Nb oxide, in an effort to improve the activities. If the rate 

depends on surface conductivity o f electrons from the precious metal to the active group 

V metal, then obtaining a match between the Fermi levels o f  the two phases will be 

required for an Ohmic contact allowing unhindered electron transfer.

While vanadium oxides (bulk mixed metal oxides and supported metal oxides) have

191  19 ”}seen a lot o f  applications in catalysis ' because o f the existence o f combined redox 

sites and acidic sites, niobium oxides, possessing primary (Lewis) acidic characteristics, 

have also received much attention in recent years 124-127 when used as additives or 

supports. However, the current knowledge o f the physical and chemical properties of 

tantala-based catalytic materials is rather limited.

Because o f its high dielectric constant, Ta oxide is used as optical coating or in 

electronics technology as capacitor material; 128,129 hydrated tantalum oxide is highly 

acidic, and alumina-, zirconia-, and titania- supported tantalum oxide shows dominant 

Lewis acidity, as well as Bronsted acidity at higher Ta coverage due to the presence of 

Ta-OH. Interestingly, silica-supported tantalum oxide gives rise to a considerable redox 

activity as well at higher Ta loading as the interaction between tantala and silica occurs; 

119 Similar to niobium oxide, tantalum oxide easily reacts with many other oxides to form 

mixed metal oxide phases with complex structure, and remarkably enhance catalytic 

activity and selectivity and prolong catalyst life. Finally, the promotion effects o f Ta and
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Nb oxide on environmental catalysts, namely catalysts for the pollution abatement, have 

aroused much attention. 130

Supported tantalum oxides can be physically characterized by XRD, UV-Vis DRS, IR, 

Raman 119 and XANES/EXAFS 131 spectroscopy to determine the nature o f the surface 

species, and chemically probed by the N2 physical adsorption and various chemisorption 

probe molecules (e.g. pyridine, CH3OH 132), as well as H2-TPR(hydrogen temperature

1 -3 ^  1 0 0

programmed reduction) and CH3OH oxidation reaction. ’ However, there is no 

spectroscopic method available to directly describe the outer surface of bulk metal oxide

107
catalytic systems.

Mesoporous materials fall into a size range between molecular and bulk, and therefore 

show unusual physical properties that are not observed in either state. Extensive studies 

are necessary to explore the physical, electronic and reactivity properties o f mesoporous

I <7
Ta oxide and related catalytic systems. For this concern, O appears to be a good probe 

to the local structure. Work in our group with M. E. Smith in England is being conducted 

in order to delineate the microstructure of the walls by this technique.

With excellent acidic property, as well as controlled pore size (20-50A) and high 

surface area (400-900m /g), mesoporous Ta oxide (also Nb oxide) is promising for solid 

acid catalyst and catalyst support in a wide range o f important petrochemical reactions. A 

project to investigate the catalytic properties o f mesoporous Ta and Nb oxides for 

isomerization o f alkanes and alkylation of benzene with olefins is ongoing. The potential 

o f coupling hydrocarbon skeletal rearrangements with nitrogen activation is intriguing 

from the standpoint o f nitrogen incorporation into fine organics. It appears that 

mesoporous Ta oxides require an electron source and an electrophile source (H+ in this
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thesis) to activate N2. Using a hydrocarbon as the electron source and a carbocation 

generated on the surface as the electrophile may indeed lead to interesting reactivity.

The exploration o f mesoporous Ta oxide as the first catalyst support with variable 

oxidation states has thus already led to new reactivity not seen in traditional systems and 

promises to exhibit a rich and diverse chemistry in the future.
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