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ABSTRACT

Distributed query processing is one of the technical problems that need to be
solved in Distributed Database Management Systems. Query Processing deals
with designing algorithms that analyze queries and converts them into a series of
data manipulation operations. The problem is how to decide on a strategy for

executing each query over the network in the most cost effective way.

Through the past years, the research focus in distributed query processing has
been on how to realize join operations with different operators such as Semi-join,
Two-way Semijoin, and Pipeline N-Way joins. However, these operations will be

executed sequentially, which may increase the data transfer cost.

A new algorithm, filter based pipeline N-way join algorithm, is presented to
reduced data transfer cost. It makes use of filter concept and ensures the lower
data access cost. This algorithm has three phases. Phase One: Use bloom filter to
do forward semijoin and build tuple connectors. Phase Two: Do backward
semijoin and build pipeline cache planner. Phase Three: Send Pipeline Cache

Planner to query site.

The main goal for this new algorithm is to reduce data transfer cost while

maintain low I/O cost as pipeline N-way join algorithm.

v
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Chapter 1

Introduction

Distributed database system technology is one of the major recent developments in
the database systems area. In this chapter, we give a brief introduction on some

important concepts and notations.

1.1 What is a Distributed Database System?

A Distributed Database System (DDBS) can be defined as a collection of multiple,
logically interrelated connected databases over a computer network. It is not a system
where the database resides at only one site, but is distributed among a number of sites.
To form a DDBS, files should not only be logically related, but there should be

structure among the files, and access should be via a common interface.
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1.1.1 Advantages and Problems of DDBSs

Based on the features of distributed Database Management System (DBMS), it has a
better performance than separated databases. In detail, a distributed DBMS fragments
the conceptual database, enabling data to be stored in proximity to its points of use
(also called data localizing). This has three advantages:

1. Reduce Overhead

Since each site handles only a portion of the database, contention for CPU and I/O
services is less than in centralized databases. Suppose, you want to do query, and
if you do it within local centralized database, the I/O will be much less than do it
in distributed database.

2. Localization
Localization can reduce remote access delays that are usually involved in wide
area networks. Most distributed DBMS are structured to obtain maximum benefit
from data localization. Full benefits of reduced contention and reduced
communication overhead can be obtained only by a proper fragmentation and
distribution of the database.

3. Provide intro-query and inter-query

Intra-query parallelism is achieved by executing multiple queries at the same time.
Inter-query parallelism means to break up a single query into a number of
subqueries each of which is executed at a different site, accessing a different part
of the distributed database.

Though DDBS provides some benefits, it produces problems too. Here are some

problem areas that exist in DDBSs.
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1. Distributed Query Processing

Query processing deals with designing algorithms that analyze queries and
convert them into a number of data manipulation operations. The problem is how
to decide on a strategy which can minimize the cost.

2. Distributed Concurrency Control [OV99b]

Concurrency control involves the synchronization of accesses to the distributed
database, so that the integrity of the database is maintained. It deals with the
isolation and consistency properties of transactions. With no doubt, concurrency
control is one of the most extensively studied programs in DDBS field.

3. Distributed Database Design

Distributed database design deals with how the databases and applications are
placed across the sites. Basically, it has two alternative ways: partitioned and
replicated. In a partitioned scheme, the database is divided into a number of
disjoint partitions each of which is placed in a different site. Replicated design can
be either place the entire database in each site or each partition of the database is

stored at more than one site.

1.2 Query Optimization Processing

Query optimization refers to the process of producing a query execution plan (QEP)
which represents an execution strategy for the query. The selected plan minimizes an
objective cost function. A query optimizer has three components: a search space, a

cost model and a search strategy (see Figure 1.1).
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The search space is the set of alternative execution plans to represent the input query,
where query execution plans define the order in which the operations are executed.
These plans are equivalent, in the sense that they yield the same result but they differ
in the execution order of operations and the way these operations are implemented,

and therefore on performance.

The cost model includes cost functions to predict the cost operators, statistics and
base data and formulas to evaluate the sizes of intermediate results. To be accurate,
the cost model must have good knowledge about the distributed execution
environment.

The search strategy uses the cost model to explore the search space and selects the

best plan. It indicates which plans are examined and in which order.
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The selection of the optimal query processing strategy normally requires the
prediction of execution cost of the alternative candidate orderings prior to actually
executing the query. The execution cost is defined as a weighted combination of I/O,
CPU, and communication costs. To simplify the problem, the local processing cost
(I/0 and CPU costs) is ignored, and it is assumed that the dominant cost is
communication. The problem is NP-hard in nature [OV99a], and the approaches are

usually heuristic.

Query Processing Steps

Given a distributed query, how to generate an optimal processing strategy has been of
great interest to a number of researchers [AHY78a, AHY78b, CC83, J82, LCC82,
PW82, PWC+81, WE77]. In these papers, a given distributed query is processed
through the following three phases:
1. Local processing phase
At each site involved in the query processing, all local processing such as
selections from relations and projections on the joining and target attributes is

performed.

2. Reduction Phase
Some operators can be used to reduce cost, i.e. Semijoin. A semijoin program (a
sequence of semijoins [PW81]) is generated by a query optimization algorithm.
The semijoin program reduces the sizes of relations and/or intermediate results in

a cost-effective way and thus, minimizes the total amount of data transmission.
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3. Final query processing phase
The final query-processing site is selected and the reduced relations and/or
intermediate results are sent to that site. The final processing phase performs an

N-way join either at the query site or in another site on behalf of the query site.

In this framework, the core phase is the reduction phase, and its primary concern is to
generate the most efficient semijoin program to reduce the transmission cost. Several
algorithms have been proposed, such as for simple queries [AHY78a], tree queries

[CKM80, DY80], chain queries [DPY84], and star queries [CL84a, CL84b].

1.3 Organization of the thesis

This thesis consists of five chapters. Chapter 1 gives a brief introduction to distributed
database systems and its query optimization process. Some relevant background
information such as Joins, Semijoin, Two-way semijoin, Pipeline N-way join, and
Filter based algorithms will be discussed in Chapter 2. In Chapter 3, new algorithm H
will be proposed. An illustrated example shows how the algorithm H works. Chapter
4 gives the experimental system and evaluation results. Finally, in Chapter 5,

conclusion and future work are discussed.
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Chapter 2

Background Review

In distributed query processing, many approaches use join, semijoin and some other
algorithms. This chapter provides background information on these algorithms. An in

depth look is taken at some strategies.

2.1 Assumptions and Notation

In this chapter, a number of algorithms will be discussed and all of them are based on

the following assumptions:

e A distributed relational database management system with a number of
independent nodes distributed geographically and connected via a point-to-point

network.
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¢ Each node has local processing and storage capabilities.
e The relations are distributed amongst the nodes and all nodes can access all data.
e Only selected-projection-join (SPJ) queries are considered.

e A uniform and independent distribution of attribute values is assumed.

During query processing, certain information is available for use in constructing a

strategy:

For each relation R;, we have the following:

e R; stands for attribute j in Relation i

e | Rj|is the number of tuples in the relation.

For each projection dj;, the projection of relation i over attribute j, we have the

following:

e | d;|is the cardinality of the projection of relation i over attribute .

e | D (dy) | is the cardinality of the domain for attribute dj;. It is the number of
possible values in the domain, not the number of the actual values occurring in the
database. Besides, we assume that the cardinality is finite and known.

e p(dy) is the selectivity of the projection dj, which is the portion of tuples
participating in the join. It is commonly defined as | d;; | / | D (dy) |.

e Domain is the set of allowable values for the attribute.

e Selectivity is the ratio of distinct attribute values over the attribute domain size.

Here is one example. Suppose we have relation R; with domain 100. It is shown as

Figure 2.1.
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A B C
1 3 6
2 2 4
3 3 8
4 4 65
5 1 8
6 4 4

FIGURE 2.1 RELATION R,

Based on definition, R;; refers to attribute A, Ry, refers to attribute B, and R refers

to attribute C.

The projection of attribute A are 1, 2,3,4,5 and 6, therefore | d;; | = 6; the projection
of B are 3,2,4,1 so | dy2 | = 4; same as attribute C, its projection is 6, 4,8,65 so | dj3 | =

4

Since we assume the domain size for relation R is 100, therefore we can say

D (1) |=|D(di2) |=]D(d13) |=100

By definition, we know the selectivity can be got by | d;; |/ | D (d) |- So,
p(d1r) =] du | /| D (di1) | = 6/100 =0.06
p(dip) =|di2 | /| D (di2) | = 4/100=0.04

p(di3)=|di3|/| D (dy3) | =4/100 = 0.04

2.2 Join Algorithm

JOIN is Cartesian product followed by selection. It joins two tables together on the

basis of common values in a common column.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R1 R2

A|B AlC
1|4 2 |3
2 |6 3 (5
4 |7 5 |15
5 |6 6 |11
7 | 4 7 |2
8 |8 hE

A |B C

2 |6

5 |6 15

7 |4 2

FIGURE 2.2 JOIN ALGORITHM

Suppose we have two relations R1 and R2. R1 has two attributes A and B. R2 also
has two attributes A and C. We can see both relations have the same attribute A.
Therefore the result of joining these two relations will have three attributes A, B and
C. The transmission cost is the whole size of relation R1 and R2. So, when we
migrate from centralized database systems to distributed database systems, the Join

operator becomes the most costly process.

Ordering of joins is an important aspect of centralized query optimization. Two basic
approaches exist to order joins in fragmented queries. One tries to optimize the
ordering of joins directly, whereas the other replaces joins by combinations of

semijoins in order to minimize communication costs. Distributed INGRES and R*

10
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algorithms are representative of algorithms that use joins rather than semijoins

[OV99c].

2.2.1 INGRES Algorithm

INGRES uses a dynamic optimization algorithm [WY76] that recursively breaks up a
calculus query into smaller pieces. It combines the two phases of calculus-algebra
decomposition and optimization. A query is first decomposed into a sequence of
queries having a unique relation in common. Then each monorelation query is
processed by a “one-variable query processor (OVQP)”. The OVQP optimizes the
access to a single relation by selecting, based on the predicate, the best access method
to that relation. For example, if the predicate is of the form <A = value>, an index
available on attribute A would be used. However, if the predicate is of the form <A #

value >, an index on A would not help, and sequential scan should be used.

The query optimization algorithm of Distributed INGRES is derived from the
algorithm used in centralized INGRES [OV99b]. Therefore, it consists of
dynamically optimizing the processing strategy of a given query. The objective
function of the algorithm is to minimize a combination of both the communication
time and response time. However, these two objectives may be conflict. For example,
increasing communication time may well decrease response time. Thus, the function
can give a great weight to one or the other. Note this algorithm ignores the cost of
transmitting the data to the result site. And the algorithm takes the advantage of

fragmentation but only horizontal fragmentation is handled for simplicity.

11
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2.2.2 R* Algorithm [SK+76]

System R performs static query optimization based on the exhaustive search of the
solution space. The input to the optimizer of System R is a relation algebra tree
resulting from the decomposition of an SQL query. The output is an execution plan

that implements the “optimal” relational algebra tree.

The distributed query optimization algorithm of R* is a substantial extension of the
techniques developed for System R’s optimizer. It uses a complicated approach where
an exhaustive search of all alternative strategies is performed in order to choose the
one with the least cost. Although predicting and enumerating these strategies is costly,
the overhead of exhaustive search is rapidly amortized if the query is executed
frequently. Query compilation is a distributed task in R*, coordinated by a master site,
where the query is initiated. The optimizer of the master site makes all intersite
decisions, for example the selection of the execution sites, parts of the relation, and
the method for transferring data. The apprentice sites, which are the other sites that
have relations involved in the query, make the remaining local decisions and generate
local access plans for the query. The objective function of the System R*’s optimizer

is the general total time function, including local processing and communication costs.

2.2.3 SDD-1 Algorithm [BGW+81]
The query optimization of SDD-1 is derived from an earlier method called hill-
climbing algorithm [WE77], which has the distinction of being the first distributed

query-processing algorithm. In this algorithm, refinements of an initial feasible

12
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solution are recursively computed until no more cost improvement can be made. This
algorithm is quite general in that it can minimize the arbitrary objective function,

including the total time and response time.

2.3 Semijoin Algorithm

Semijoin has become the most popular operator recently to replace the Join operator,
since it reduces the relation sizes and minimizes the cost of transmission. Many
algorithms based on semijoin have been developed to process distributed semijoins
[AHY78a, AHY83, BGW+81, C82, CBY84, CGS79, CL84b, EM78, GS82, KTY82,
P84, P85, PM79, SY80, VG84, YC84]. The semijoin acts as a size reducer for a

relation much as a selection does.

The steps to do the semijoin are [M81, W82]:

1. Send the projection R;[A] from site i to j.
2. Reduce R; by eliminating tuples whose attributes A are not matching any value in
Ri[A].

Step one is the cost of the semijoin, and step two returns the benefit of the semijoin.

Cost and Benefit of Semijoin
Consider a semijoin R; X A R; when R; and R; are at different sites. Let the
transmission cost be one per data unit transmitted. Then, the cost of the semijoin is

S(Ri[A]), where

13
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S(R) is the size of relation R. Suppose this semijoin reduces R; to R;’. Then the
benefit is S(R;)-S(R;’)[S88]. A cost effective semijoin is a semijoin whose benefit

exceeds the cost.

Projection qf Join

R Attritmte R R
A B 1
4 1 3
6 3 4 tuples removed
2 4 9
7 4
5 9

FIGURE 2.3 SEMI-JOIN

Here is one example, see Figure 2.3. There are two relations R; and R;. R; is in site i,
and R; is in site j. The join attribute of relation R; and R; is B, therefore, we first
project the attribute B over site 1, and then transfer them to site j to reduce the relation

R;.

Here, we can see the cost of using the Initial Feasible Solution is 10 units, 5 units in A
plus 5 units in B. The cost of the semijoin is 4 units, since only 4 units have been
transferred. The benefit is 12-4= 8, which is the original relation with 12 units minus
the reduced relation 4 units. Since cost is less than the benefit we can say that it’s a

cost-effective semijoin. Therefore, we can say that this semijoin is cost effective.

14
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2.4 Two-way Semi-join Algorithm

In distributed query processing, a semijoin is used to reduce the relation which can
minimize the total amount of data being transferred. The two-way semijoin is an
extension of semijoin, for more cost effective distributed query processing. The two-
way semijoin is compared to the semijoin in terms of the reduction power and the

propagation of reduction effects.

Formally, the result of a two-way semijoin of R; and R; on attribute A is a set of two

relations {Ry’, R’} where Ry’ (Ry’) is the projection on the attributes of R; (R;) of the
join R; b< A R;. Let us denote the two-way semijoin of R; and R; on attribute A by
R; ™M 4R, Then,

R; I ARjZ{RiD(ARj,Rj[XARi}

The steps to do the 2-way semijoin are [KR91]:

1. Send the projection R;[A] from site i to j.

2. Reduce R; by eliminating tuples whose attributes A are not matching any value in
Ri[A]. This is the forward reduction of the semijoins. During the forward
reduction of R;, partition R;[A] into Ri[A]x and Ri[A]um Where R;[A]r, is the set of
values in R;[A] which match one of Rj[A], and Ri[A]um is Ri[A] - Ri[A]m.

3. Send either Rj[A]um or Ri[A]n whichever is less in size from site j back to i.

4. Reduce R; using either Ri[A]um or Ri[A]m, If Ri[A]n is used, then tuples whose
attribute A are not matching any of Ri[A]n, will be eliminated. If R;[A]nm is used,

then tuples whose attribute A are matching one of Ri[A]ny are eliminated.

15
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We can see that the first two steps are exactly the same as semijoin, but how can this

improve the query processing?

Cost and benefit of two-way semijoin
Step 2 and step 4 will result in the benefit for the two-way semijoin. Therefore, the

benefit would be: [S (Ri) — S (R)] + [S (R) - S R)]

The cost of the query processing is during the step of 1 and 3. The total cost woule be:

S (Ri[A]) +S (Ry’[AD = S (Ri[A]) + S (Ri[Am)

Same as semijoin, a cost-effective two-way semijoin is a two-way semijoin whose

benefit exceeds the cost.

Now we use the same sample queries as semijoin, but apply two-way semijoin

algorithm this time. Here is the example of two-way semijoin:

Projection of Join Attribute B

Ri l R;
A |B 1 » B C
3
/ ;
tuples removed 9 tuples removed

FIGURE 2.4 TWO-WAY SEMI-JOIN
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We have two relations R; and R; at two different sites. R; has two attributes A and B.
R; also has two attributes B and C. Therefore, the join attributes for R; and R; is B.
The first step is to project the join attribute B, therefore 4 units (cost) have been
transferred from site i to site j. Then, by comparing the value of attribute B in site j,
four tuples, which are 8 units (benefit), will be removed. We can see that, up to this
step, they are exactly the same as semijoin. Step 3 is to do the backward semijoin.
The projection of attribute B in site j will be divided into two parts, one will match
the projection of attribute B in site j, and the rest will be put in the other. After that,
one of them, which are less, will be sent back to site i to reduce the relation R;.
Therefore, in the above example, we can see that two units 3, 4 (cost) will be sent

back to site i, and 4 units (benefit) in relation R; are reduced.

The cost of the above example is: 4 + 2 = 6 units. The benefit is §+4 = 12 units. Since
the benefit is greater than the cost, we can say that it’s a cost-effective two-way

semijoin.

Some existing heuristic algorithms based on semijoin [ACV+84, AHY83] can be
modified by replacing the semijoin with two-way semijoin. The query processing
strategy generated by a heuristic algorithm is, in general, suboptimal. The properties
that an optimal semijoin program should possess have been studied [AR91] and the
algorithms for improving semijoin programs have been proposed [A79, B70, BR88b,
J82, RK91, Y87]. Most of these improving techniques for semijoin programs are

applicable to query processing strategies using two-way semijoin as well.

17
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Cost and Benefit of Two-way Semijoin
Step 2 and step 4 will result in the benefit for the two-way semijoin. Therefore, the

benefit would be: [S (Ri) — S (Ri")] + [S R) - S (R})]

The cost of the query processing is during the step of 1 and 3. The total cost would be:

S Ri[AD +S Ry[AD = S (Ri[A] + S (Ri[Alm)

Same as semijoin, a cost-effective two-way semijoin is a two-way semijoin whose

benefit exceeds the cost.

2.5 Pipeline N-way Join Algorithm

In distributed database where data transmission is not the dominant cost factor in
query processing, pipelining can be very efficient. The main goal of a pipeline
algorithm is to eliminate the need for shipping, storing, and retrieving foreign
relations and/or intermediate results on the local disks of the query site during the

processing of an N-way join [KR91].

In order to understand the algorithm, we need to know the following notations.

e Tuple connectors: Some temporary relations constructed on the fly. It has tuple ID
and real data.

e Tuple identifier (TID): For each relation R; participating in the N way join, its

tuple connector C; is a projection of R; on all the joining attributes and a tuple

18
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identifier. The TID in C; makes the correspondence between the tuples of R; and
C; one-one. For example, @R 12 stands for Relation 1 tuple 2.

e Pipeline cache planner: contains N-tuples of TID’s of joinable tuples.

Steps for Pipeline join algorithm

1. Forward Reduction & Local Processing Phase
- Site storing R; receives from the site storing R;.; the projection of the
joining attribute needed for the forward reduction.
- Tuple connector C; is constructed
- N tuple connectors reflect both forward reduction and local site processing.
2. Backward Reduction and Collection Phase
- A site containing R; receives from the site of Ri+; and Ciy; tuple connector
and joins it with its own C;.
- The pipeline cache planner is an N-Way relation that holds the TID’s of
all joinable tuples of the N relations.
3. Pipeline Execution Phase
- Pipeline cache planner is sent to the query site and used for synchronizing

the tuple requests from the N sites in order to assemble the result.

Here is the example. We have 3 different relations in 3 different locations. @R is

tuple ID.

19
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R1
@Rl |A|B|C|E
@R11 |5 |4 |3 |6
@R12 |1 |4 ]2 |4
@R13 |3 [3 |2 |3

e

R2
@rR2 |A|D
@R21 |1 |4
@R2 |5 |6
@R23 |7 |5

@R3 |B|C|F
@RrR31 |3 |2 |9
@R32 |5 |2 |6
@R33 |6 |7 |5
@R34 |4 |3 |4

FIGURE 2.5 PIPELINE N-WAY JOIN ALGORITHM EXAMPLE

We can see that A, B, and C are join attributes. Phase one is to build C; in local site

and send C; to Rj41.

Step 1.1: Build C; Connector in R). Since R| is the first relation and there is no other

relation can be forwarded to R;, C; Connector is the projection of Join attributes in R;.

Since E is not a join attribute, it won’t be included.

C1 Connector

@Rl |A|B|C
@R11 |5 |4 |3
@R12 [1 |4 |2
@R13 |3 |3 |2

FIGURE 2.6 TUPLE CONNECTORS C,;

Step 1.2: Send Projection of Join attributes in C; Connector to R;. In this case, 9 units,

which is the cost, will be forwarded to R,.
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Step 2.1: Build C; Connector in R, which is to join R; and C; Connector. Since D is

not a join attribute, only A, B, C will be included.

C2 Connector

@rR2 |A|B|C
@Rr21 | 1
@R22 |5 |4 |3

FIGURE 2.7 TUPLE CONNECTORS C;

Step 2.2: Send Projection of Join attributes in C, Connector to R3. In this case, 6 units

will be forwarded to Rj.

Step 3.1: Build C; Connector in R3, which is to join R3 and C, Connector. Since F is
not a join attribute, it won’t be included in C3 Connector.

C3 Connector

@rR3 |A|B|C
@R34 | 5

FIGURE 2.8 TUPLE CONNECTORS C3

Step 3.2: Since all the relations have been processed. This is the end of Phase one.

In phase one, total cost is 9+6=15units.

During the next phase, it is a backward reduction, and pipeline cache planner (PCP)

will be made.

21
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Step 4.1: To build C3” Connector in site R3. Since there is no C4’ Connector, C3’

Connector will the same as C3 Connector.

C3’ Connector

@R3 |A|B|C
@R34 |5

FIGURE 2.9 TUPLE CONNECTORS C3’

Step 4.2: To form PCP3. Since there is only one relation, PCP contains one attribute
which is the tuple ID.
@R3

@R3
@R34

FIGURE 2.10 PCP3

Step 5.1: To build C2’ Connector in site R2. That is C3' Connector join C2 Connector.
C3’ Connector has one tuple and C2 Connector had two tuples. Comparing the value
of join attributes A, B, and C’ projection, only the second tuple in R2 will be
remained which is the result of C2° Connector. The cost is 4 (3 units plus 1 tuple ID).

C2’ Connector

@R2 |A|B|C
@R22 | 5

FIGURE 2.11 TurPLE CONNECTORS C,’
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Step 5.2: To form PCP2.

@R2
@rR2 | @r3
@R22 | @r34

FIGURE 2.12 PCP2

Step 6.1: To build C1’ Connector in site R1. That is C2' Connector join C1 Connector.
C2’ Connector has only one tuple, and C1 Connector has three tuples. However, by
matching the join attributes, only the first tuple in C1 Connector will be in C1°

Connector. The cost is 4 (3 units plus 1 tuple ID).

C1’ Connector

@Rl |A|B|C
@R11 |5

FIGURE 2.13 TUPLE CONNECTORS Cy’

Step 6.2: To form PCP1.
@R3

@Rl | @r2 | @r3
@R11 | @R22 | @R34

FIGURE 2.14 PCP1
Finally, The pipeline cache planner will be sent to the query site. In this example, the

total cost is 2 + 4 + 6 = 12 units. Therefore, the total cost for all three phases is 15 + 8

+ 12 = 35 units.
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Now, let’s check if the tuple ID in PCP is correct or not. In PCP1, it has one tuple

with value of @R11, @R22, and @R34.

R1 R2 R3
@Rl |A|[B|C|E @R2 |A|D @R3 |B|C|F
@R11 [5 |4 |3 |6 @R22 |5 | 6 @R34 |4 |3 |4

FIGURE 2.15 REDUCED RELATIONS

If ship all the relations R1, R2, and R3 to query site and join them there. We will get
the same result as shown in figure 2.15. Therefore, we can say we can get the same

results as we choose IFS.

The main advantages of this algorithm are [Y85]:

¢ No intermediate results are generated.

e Tuple connectors, which are smaller in size. It means that we do not have to store
the reduced relations. We save space and transmission costs are reduced.

e The original relations are only accessed once during the algorithm.

e No reduced relations are transferred to the query site.

Caching some or all of the delivered tuples can optimize the pipeline planner.
Optimal caching for the planner is equivalent to optimal materialization of views
stored in ViewCaches [BS92]. Elsewhere, it has been shown that optimal
materialization is NP-complete [CC83]. Optimization of the planner is dependent on

the availability of memory buffers and the sophistication of the algorithms.
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2.6 AHY Algorithm

For a special class of simple queries, Hevner and Yao developed algorithm
PARALLEL and SERIAL [AHY83] that find strategies with, respectively, minimal
response time and total time. In [VG84], Henver and Yao extended these algorithms
to Algorithm G that processes general distributed queries. Apers [MP91] showed that
this algorithm had some serious drawbacks. The analysis of the quality of the derived
processing strategies is difficult. Both Henver [P85] and Apers [WE77] recognized
these problems and developed the improved algorithm GENERAL. It is more clearly
understood and more usable as a distributed query optimization algorithm than

Algorithm G.

Generally Speaking, AHY algorithm has three steps:

1. Do all initial local processing.
Local processing includes the computation of restrictions, projections, and semi-
joins between relations that reside in the same node.

2. Decompose the query into simple queries.

3. Integrate the decomposed queries from step 2 into a near optimal execution

strategy.

There are two primary versions of Algorithm GENERAL. To minimize response time
of a processing strategy, using Algorithm PARALLEL and procedure RESPONSE

emphasizes parallel data transmissions. To minimize the total time of a processing

25
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strategy, serial time transmissions are emphasized by the use of algorithm SERIAL

and procedure TOTAL in algorithm GENERAL.

Since there exists some identical data transmissions, which leads to increase in total
time, the third version of Algorithm GENERAL (corrective) is developed. Therefore,

the redundancy problems can be solved.

Algorithm GENERAL can be applied to any general distributed query environment. It
is relatively simple to program and has added the flexibility that all versions can be

implemented.

2.7 Composite Semijoin

A composite semijoin is a semijoin in which the projection and transmission involve
multiple columns. In most of the algorithms multiple semijoins may be performed in
common source and common result sites. In this situation, it may be beneficial to do

the semijoin as one composite rather than as multiple single column semijoins. The

idea of using composite semijoins is mentioned also in [AY79, CGS79].

Now let’s look at one example of the composite semijoin. Suppose we have two
relations R1 and R2. R1 has three attributes X, Y, and M. R2 also has three attributes
X, Y, and N. Therefore, the join attributes are X and Y. The projection of join
attribute X is value 1, 2, and 3. The projection of join attribute Y is value aa, bb and

CC.
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R1 R2
X Y M X Y N
1 aa 434 1 cc 5
1 bb 54 1 aa 3
2 cc 34 2 bb 4
3 ccC 12 3 bb 9
X Y N
1 aa 3

If we use one single join attribute of relation R1 which is either X or Y to reduce

relation R2, then no tuples will be reduced. However, there will be significant

FIGURE 2.16 COMPOSITE SEMIJOIN

reduction when a composite semijoin is used. Using projection of two join attributes

X and Y to reduce the relation R2, then only one tuple will be left.

R1
X Y M
| aa 434
1 bb 54
2 cC 34
3 cc 12

Here is another example. We have two relations R1 and R2. The join attributes of

R2
X Y N
1 aa 4
1 bb 5
2 cc 33
3 cC 143

FIGURE 2.17 COMPOSITE SEMIJOIN 11

relation R1 and R2 are X and Y. If we use the composite semijoin instead of semijoin,

no tuples will be reduced in relation R2, and meanwhile the cost is increased since 8
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units have been transferred. Therefore, the composite semijoin doesn’t have the

benefit all the time; it depends on the situation and how you use it.

2.8 Dynamic Query Processing

More researchers turn their attention to multi-query optimizations [AHY78b, G84,
H79, ML86, MOLO00, S88, ST89, W85, YCB+86] and dynamic query processing
[ACV+84, CES86, IB86, L83, Y86]. Furthermore, most researchers concentrate on the
important class of select-project-join queries [H79]. They assume a single query
environment and static processing. In a single query environment, performance of a
single query is optimized, while static processing implies that an optimized strategy is

not modified (it remains static) once its execution commences.

2.8.1 Heuristic Algorithm
In order to find an optimizing algorithm to formulate/form a strategy, which is a
sequence of relational operations and locations for their execution to process a given

query, Heuristic algorithm was proposed [CY93].

Algorithm for a complete space of strategies [CY93]

Input: Query q
Selectivities
Statistical information (about the relations)
Network locations of relations
Delay (due to CPU processing and network data transfer unit of data)

Output: Space of strategies
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Procedure:

Step 1: Create elements of level 0 — relations referred to by the query
Calculate their cost (delay) and size (the execution of restriction and
projections)
Remove attributes (which are neither target nor joining)

Step 2: do step 3 forp=1,2,3...m

Step 3: Insert elements representing results of p join executions into the level p of the
graph of strategies by executing step 4 for px =p-1,p-2 ..., Lp/2 ]

Step 4: Let the graph level py be such that p=1+ px+ py (px=>0, py=>0)
Representing a relation R; of each element of the level px
Search the level py for elements which can be joined with R; , and
representing each such element a relation Ry
Create z new elements,each representing the result of the join of R; with R;
executed at one of the z unique network locations
Calculate their size and delays and insert them in the level p of the graph of

the strategies and save the information

Example: We have three relations represented by tree. Nodes stand for relations, and

edges stand for join attributes.

Riae R2b Ryc o2 R3d

Ry Re Rs
W X Y

FIGURE 2.18 HEURISTICS ALGORITHM
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Relation R1 has join attribute with R2, and relation R2 has join attribute with R3. In

this algorithm, we don’t care about what the join attributes are. Note, these relations

are located in different sites, W, X, and Y respectively.

Tevel: 2

Tevel: 1

Tevel: 0

FIGURE 2.19 HEURISTICS ALGORITHMII

First, we list all three relations in level 0, so in this case we have three nodes. Next,
build level 1 by combining all the possible joins. Therefore, we have 6 combinations:
R1 JOIN R2 and results were sent to R1 W; R1 JOIN R2 and results were sent to R2
X; R1 JOIN R3 and results were sent to R1 W; R1 JOIN R3 and results were sent to
R3 Y; R2 JOIN R3 and results were sent to R2 X; R2 JOIN R3 and results were sent
to R3 Y. Continue till level m is completed. (You can pick any number of m) Finally,
after calculating the cost, we will pick one of these paths, which is the optimal

solution.

Heuristic algorithm

This algorithm is a modification of OPT GV, which will decide the sequence and

network locations for executing joins [BR88a]. In this algorithm, one more input N is
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used. In the above example we can see that OPT GV will be infinitely and
exponentially increased. If say, we decide to stop at level N, and then we will pick the
best solution in level N, and remove all the unnecessary join nodes in and below level
N. Therefore, we will have less computation and cost when moving up to N+1 level.
So, N becomes quite important. An increase in the value of N results in an increase in

overhead, but the execution delay of strategies would be lower.

2.8.2 AJL (Abort Join Last) Method

Normally, after a query is parsed into a canonical form, an optimizing algorithm
formulates a query processing strategy (QPS), which specifies the sequence in which
relational operations are executed and the network locations of their execution [BS92].
In QPS formulation, estimating techniques are used to determine the size of
intermediate results [BLM89, C84, CE86, CY93, ES80, IB86, ST89, W82]. In
Adaptive approach, execution strategy is monitored and corrections are made if the

estimation of the intermediate result is inaccurate.

Within the field of adaptive query processing there remains the important question of
when to correct a strategy. Two general methods have been proposed. The first is
reformulation, in which the unexecuted portion of the strategy is reformulated at
every intermediate stage on the basis of available updated information. If the new
strategy is estimated to reduce cost, then correction is appropriate. The second
method is the threshold method, in which reformulation occurs only when
intermediate results exceed a predetermined threshold or lie outside a specified band

of values. [BR88b] refines this approach by the use of one threshold value per
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intermediate result. [BR88a] addresses both the monitoring and execution phases of
strategy execution. AJL method is another alternative way, which can decide the

correction [BS92].

Three phases for adaptive processing [BS92]

1. Initial (static) QPS formulation
2. Strategy execution

3. Strategy correction

Alternative Strategy Example:

(Rl.a 61 R2.b) (R2.c 61 R3.d) (R3.e 61 R4.f) (R4.g 61 R5.h)

FIGURE 2.20 AJL RELATIONS

We have 5 relations in different sites. It will be presented by tree structure.

FIGURE 2.21 STRATEGY PRESENTED BY A TREE
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The join procedure is shown in Figure 2.21 R1 JOIN R2, R3 JOIN R4 as R12 stored
in site Y, R12 JOIN R5 stored in Y, and R11 JOIN R12 as R31 stored in Y. The
alternative strategy instead of join R3 and R4 presented in Figure 2.2 is R11 JOIN R3

stored in V, and R4 JOIN R5 stored in Y (Figure 2.22).

FIGURE 2.22 ALTERNATIVE STRATEGY

Now using AJL method, we can decide when and whether we shall use the alternative
strategy. Here is the procedure:

1. Given a query, a formulator is used to derive a processing strategy. The
strategy is distributed to cohorts, which then cooperate in transferring
relations and executing relational operations according to the strategy’s
instructions.

2. Concurrently with the strategy’s execution, an alternative strategy is formed
for each intermediate result.

3. During the course of the join execution, sampling methods are used to

estimate the size of the result. This estimate is then used to update the
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estimated delay of the current strategy and compare it with the delay of the
alternative strategy. If the alternative strategy has a lower expected delay,
correction takes place and the current strategy will be aborted and the
alternative strategy is used. Otherwise, the original strategy is allowed to

continue.

LAJD L LAIL t.CI0 Time t
FIGURE 2.23 STRATEGY TIMING DIAGRAM

So, in this example, during the original execution of R3 join R4, the alternative
strategy will be formed. We will use the sampling data to estimate the total cost and
compare it with the alternative strategy. That means, at 10/100 execution of R3 JOIN
R4, we will use 10/100 data to estimate the total data. If the alternative strategy is
better than the original one, then we will abort the original one. We can also choose

20/100 or any other number instead of 10/100.

We can see that the fraction of the join used by the sampling method to determine the

size of the join result is quite important. If we can estimate just before the execution
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which is 0/100, t. AJO (Abort Join Optimal), the sampling cost will be eliminated.
However, it’s not realizable and we have to assume we have perfect priori knowledge
of the intermediate result sizes. If we use CJO (Complete join optimal), which is
100/100, only the join is completed is a new strategy formulated and instituted for the
remaining unprocessed portion of the strategy, then the sampling cost will be

increased while the estimation is more accurate.

2.9 Filter Based Algorithm

The difficulty of the optimization of the general queries in a distributed database
system is the sequence and location of the operation. Traditionally, join or semijoin
based algorithms are used to get the optimal solution. Compared with that, the cost of
constructing the filter is much less. Moreover, it’s cheaper to transfer a filter over the
network than a relation. The disadvantage of using a filter is the collisions which
occur as a result of two or more attributes values hashing to the same address in the

array.

2.9.1 Bloom Filter Based Algorithm
The term “Bloom filter” comes from Bloom [LT95]. By definition [SL83], a Bloom
filter is an array of bits which functions as a very compact representation of the value
of a join attribute [JM93]. The steps for constructing a Bloom filter are:

1. Construct an array and set all bits to zero.

2. For each value of the join-attribute use hashing.

3. For each address produced, set the corresponding bit into the array to one.
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Obviously, using Bloom filter, the transfer cost will be greatly reduced. However, the
problem of collisions occurs. In order to solve this problem, one big Bloom filter can
be split into a number of small Bloom filters [B70, BR88]. This also leads an efficient

usage of main memory [M90].

Given two relations Ri and Rj with join attribute A. The steps for this Algorithm are
[TC92]:
1. Calculate the bit array size and initialize to zero.
2. For each join attribute value in R;[A], use a hash semijoin described in
[CCY92] to produce d address in the bit array. Set the corresponding bit to 1.
3. Ship the bit array to the site of R;.
4. For each join attribute value in R[A], produced addresses in the bit array
using the same d hash function. If d address in the array is set to 1, then the

tuple kept, otherwise, reject the tuple.

Example:
R RJ

No Name 1 No ID

0
2 Peter / 1 1 4512
3 Jerry / 1 \ 3 4517

1 0
5 George / 0 0 4 4435

FIGURE 2.24 BLOOM FILTER OPERATION
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There are two relations, R; and R;. The join attribute is No. First we create array of
bits, and initialize it to zero. Since the value in attribute No of relation R; is 1, 3, and 4.
We set the related bits to 1, and ship the array to site i. We produce one array in site i
and initialize it to zero. Since the values of join attribute No is 2, 3, and 5. We set
these bits to 1. Finally, we compare two arrays of bits. If the value does not match,
then tuple will be rejected. Therefore in this example only one tuple with No 3 will

remain. All the rest will be removed.
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Chapter 3

Algorithm H

In this chapter, a new algorithm is presented and detailed example also indicates the

processing steps.

3.1 Motivation

The pipeline N-way join algorithm eliminates intermediate results and reduces
relations access cost. However, its join sequence is sequential, and data transfer cost
is increased. A new algorithm which applies the pipeline idea to a filter based
algorithm is proposed. This algorithm is the combination of pipeline N-way join

algorithm and an algorithm developed in [JM03]. The main goal of this new
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algorithm is to reduce data transfer cost while maintain low I/O cost as in pipeline N-

way join algorithm.

3.2 Description of the Algorithm

This algorithm uses reduction filters. Each filter is an array of bits that functions as a

very compact representation of the value of a join attribute in a relation. A “perfect”

hash function is used to set bits in the filter.

This algorithm can process general queries consisting of an arbitrary number of
relations and join attributes. Each query is represented by a graph and an adjacency
list. Filter based pipeline N-way join algorithm consists of three phases: forward

reduction, backward reduction and query processing phase.

Phase One

1. Select the relations with the lowest in-degree (number of join attributes) for
processing.

2. Build Tuple Connector (C;) in local site by using existing filters.

3. Construct filters for all join attributes. If a filter is already available then update
the values.

4. Use adjacency list to “remove edges” from query graph, that is, reduce the in-
degree of each relation in the list by 1.

5. Mark relation as processed and put it in queue.

Repeat all steps until all relations have been processed once.

Phase Two

1. Get relation R; from queue, construct tuple connector C;’.
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2. Build pipeline cache planner (PCP;).

Repeat all steps until the queue is empty.

Phase Three

1. Send Pipeline Cache Planner to query site

In order to understand the algorithm, we will use the same example as N-way pipeline

join algorithm. We have 3 different relations in 3 different locations. @R is tuple ID.

R1
@Rl |A|B]|C|E
@R11 |5 |4 |3 |6
@R12 |1 |4 |2 |4
@R13 |3 |3 |2 |3

R2
@R2 |A|D
@R2l |1 |4
@R22 |5 |6
@R23 |7 |5

FIGURE 3.1 ALGORITHM H EXAMPLE

R3
@R3 |B|C|F
@R31 |3 [2 |9
@R32 |5 |2 |6
@R33 |6 |7 |5
@R34 |4 |3 |4

In order to get join attributes, we build Matrix first. Initially, we set all the bits to 0.

Then we check the attributes in Relation R1. Since R1 has attributes A, B, C, and E.

We set bits from 0 to 1. Same as R2 and R3, we set bits to 1.

From the above figure, we can see that more than one relation have the same

A|B|{C|D|E |F
Rt |t {1 j0¢11 |0
RR|!I 0[O0 }1]0 |0
R3|[O0([1 [1 100 |1

FIGURE 3.2 MATRIX

attributes A, B, and C. And only one relation contains attribute D, E, and F. Therefore,

we can conclude that A, B, C are join attributes.
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Next, we build adjacency list.

3IRIE=JA R EIB|R3 4 C|R3

2 |R3 1B |RlI =—4C [RI]

1 | T /v

FIGURE 3.3 A-LIST
R1 has three join attributes A, B, and C. It has the same join Attribute A with R2, and
has the same join attributes B, and C with R3. So, we put 3 in its head node and link
join attributes to R2 and R3. R2 has one join attribute A. Therefore we set 1 in head
node and link it to R1 which has the same join attribute A. Finally, we check R3, and

it has two join attributes B, and C. So, we put 2 in its head node and link it to R1.

e Phase One

Step 1.1

According to the algorithm, we start phase one first, which is forward reduction. We
scan the A-list, and we find that 1 is the smallest number in head node. So, we
process R2 first. Since R2 is the first relation to be processed, C2 will be the

projection of R2’ join attributes.

@rR2 | A
@Rr21 | 1
@R22 |5
@R23 | 7

FIGURE 3.4 C2 CONNECTOR
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Step 1.2

We construct filters for join attributes A and get:

Filter A: 1,5,7

Step 1.3

Use adjacency list to “remove edges” from query graph, that is, reduce the in-degree

of each relation in the list by 1. Mark relation as processed and put it in queue. Since

R1 is linked to R2, head node will be reduced from 3 to 2. R2 is processed, so it is

marked as
-1.
2 R1
-1 R2
2 R3
FIGURE 3.5 HEAD NODES
Step 2.1

Scan the A-list, and we find that 2 is the smallest number in head node. So, we

process R1 and make C1 in local site. We project C2 connector’ join attributes, join it

with R1 and get C1 Connector:

@R1 B
@R11 4
@R12 4

FIGURE 3.6 C1 CONNECTOR
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Cost

Since projection of C2 connector’s join attribute, which is the value of 1, 5, and 7 are

forwarded to R1. The cost is 3 units.

Step 2.2

Update filter A, and construct filters B and Ct
Filter A: 1,5
Filter B: 4

Filter C: 2,3

Step 2.3

Since R1 is linked to R3, head node will be reduced from 2 to 1. R1 is processed, so it

is marked as -1.

-1 | Rl
-1 | R2
1 R3

FIGURE 3.7 HEAD NODES

Step 3.1

Scan the A-list, and we find that 1 is the smallest number in head node. So, we

process R3 and make C3 in local site. We project C1 connector’ join attributes, join it

with R3 and get C3 Connector:
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@R3 |A|B]|C

@R34 |5 |4 |3

FIGURE 3.8 C3 CONNECTOR

Cost

Since projection of C1 connector’s join attribute, which has 6 units are forwarded to

R3, The cost is 6 units.

Step 3.2

Update filter A, B and C:
Filter A: 5
Filter B: 4

Filter C: 3

Step 3.3

R3 is processed, so it is marked as -1.

-1 | Rl
-1 | R2
-1 | R3

FIGURE 3.9 HEAD NODES

Since all the relations have been processed, we will move to phase two. The total cost

in phase one is 3+6=9 units.
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e Phase Two
Step 1.1
Get relation from queue which is R3, and construct tuple connector C3’. Since it is

the first relation in queue. C3’ connector is same as C3.

@rR3 |A|B]|cC

@R34 |5 |4 |3

FIGURE 3.10 C3’ CONNECTOR

Step 1.2

Construct Pipeline Cache Planner in site R3.
@R3
@R34

FIGURE 3.11 PCP3

Step 2.1

Get relation from queue which is R1, and construct tuple connector C1°. C1’ is the
join of C1 and projection of C3’s attributes. C1 Connector has two tuples and C3
Connector has one tuple. Comparing the value of join attributes, only one tuple will

be included in C1’ Connector.

@rR3 |A|B]|cC

@R34 |5 |4 |3

FIGURE 3.12 C1’ CONNECTOR
Cost

Since the projection of C3’ connector’s attributes is forwarded to C1, the costis 4 (3

units plus 1 unit of tuple ID).
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Step 2.2

Construct Pipeline Cache Planner in site R1.

@R1 | @R3
@R11 | @R34

FIGURE 3.13 PCP1

Step 3.1

Get relation from queue which is R2, and construct tuple connector C2°. C2’ is the

join of C2 and projection of C1’s attributes.

@Rl |A|B]|C

@RI11 |5 |4 |3

FIGURE 3.14 C2’ CONNECTOR
Cost

Since the projection of C1’s attributes is forwarded to C2, the cost is 4 (3 units plus 1

unit of tuple ID).

Step 3.2

Construct Pipeline Cache Planner in site R2.
@R1 | @R2 | @R3
@R11 | @R22 | @R34

FIGURE 3.15 PCP2

Since all the relations have been processed in queue, we will move to phase three.

The total cost in phase one is 4+4=8 units.
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e Phase Three

We send Pipeline cache planner to query site. In this case, the total cost is 2+4+6=12

units.

The total cost in this example is 9 + 8 + 12 = 29 units.

Now, let’s check if the tuple ID in PCP is correct or not. In PCP2, it has one tuple

with value of @R11, @R22, and @R34.

R1 R2
@R1 B E @R2 |A|D @R3 F
@R11 @R22 |5 |6 @R34 4

FIGURE 3.16 REDUCED RELATIONS

If ship all the relations R1, R2, and R3 to query site and join them there. We will get

the same result as shown in figure 3.16. Therefore, we can say we can get the same

results as we choose IFS.
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Chapter 4

Experiments and Evaluation

In order to confirm whether algorithm H has better performance than the Pipeline N-
way join algorithm and IFS, I implemented Pipeline N-way join algorithm and
algorithm H. Various experiments based on a large number of queries were made also.

In this chapter, we detail the experimental scenario and summarize results.

4.1 Assumptions
The proposed algorithm H is based on the following assumptions:
1. A distributed relational database management system is connected via a point-

to-point network.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. The relations are distributed amongst the nodes and all nodes can access all
data. Each relation has at least one join attribute.
3. Only selected-projection-join (SPJ) queries are considered. No other
operations such as UNION, INTERSECTION, and DIFFERENCE are used.
4. A perfect hash function is assumed when building filters.
5. Each attribute is a 64-bit word
6. The cost model is:
CX)=Co+X
For simplicity, Co= 0. X is the number of data transmitted. We used “word” as

the unit.

4.2 Methodology
The framework for evaluating algorithm H is based on the comparison with Pipeline
N-way join algorithm and IFS (Initial Feasible Solution). IFS is one algorithm which

ships all the relations to query site and performs Join operations there.

4.2.1 Experimental System

The experimental system includes six parts. They are Database related statistical
information generator, relation generator, IFS, pipeline N-way join algorithm,
algorithm H, and analysis program. Both pipeline N-way join algorithm and

algorithm H were fully implemented by me.
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Todd Bealor [TB95] member of the Database Research Group in University of
Windsor programmed statistical information generator and relation generator. They
will be described in detail in 4.2.2. IFS will be introduced in 4.2.3. Pipeline N-way
join algorithm was discussed in 2.5, and algorithm H was discussed in chapter 3. In

4.2.4, we will describe analysis program in detail.

4.2.2 Statistical Information Generator [TB95]
Database Research Group programmed statistical Information Generator. It has the
following characteristics:
e Relations and Attributes
Each query consists of 3 to 6 relations, and 2 to 4 join attributes. Therefore, there
are twelve combinations.
e Number of tuples in a relation
Each relation has between 150 and 2000 tuples.
e Attribute Domain Size
Domain is the set of allowable values for the attribute.
The size of each join attribute domain is in the range between 100 and 600.
o Selectivity
Selectivity is the ratio of distinct attribute values over the attribute domain size.
It shows the reduction power of projection. If the ratio is low, then it has high
selectivity and reduction power. Vice versa, if the ratio is high, then it has low

selectivity and reduction power. For example, the ratio 0.1 has higher selectivity
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and more reduction power than that of ratio 0.9. In this experiment, the ratio is

between 0.1 and 0.9.

All the above are implemented by program create _query.c and relbuilder.c. They
were written in language C. Next, we describe these two programs in more detail.

e create query.c

This program generates statistics information. The inputs are the number of
relations and join attributes. For example, create_query 3 2 generates three
relations and two join attributes. The output has three parts. They are dbstats,
domains and summarize information for each relation.
(1) dbstats
This file contains the number of relations and joining attributes. It also shows
relation cardinality, attribute cardinality and selectivity.
(2) domains
This files shows domain size for each join attribute.
(3) Statistics information for each relation
Some files will be generated depends on the relation numbers. If there are two
relations, then two output files will be produced. Each files contains relation
cardinality, number of join attributes, and for each join attribute, it shows

attribute label, size of attribute and its domain.

Now, let’s see one example. Execute create_query 4 2, it generates:
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dbstats

42

1400 0 0.000000 580 0.644444
3500 790 0.840426 480 0.533333
900  00.000000 670 0.744444
4400 5100.542553 0 0.000000
domains

940

900

Rel0

140011 580 900

Rell

350020 790 9401 480 900
Rel2

90011 670 900

Rel3

440010 510 940

From the file dbstats, we can know that it has 4 relations and 2 join attributes. The

first relation only has one join attribute. For relation 1, 1400 is relation cardinality,

580 is attribute cardinality and 0.644444 is the selectivity. For relation 2, 3500 is

relation cardinality, 790 is the first attribute’s cardinality and 0.840426 is its
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selectivity; 480 is the second attribute’s cardinality and 0.533333 is its selectivity.
Line 4 and line 5 indicates Relation 3 and 4’s information.

In file domains, 940 and 900 are domain size for each join attribute.

Finally, it generates statistics information for each relation. In this example, since
there are four relations, four files will be generated. Rel0 includes relation cardinality
1400. The first 1 means it has one join attribute, and second 1 is the attribute label.
580 is the size of join attribute and 900 is its domain. Rell, Rel2, and Rel3 are the

same.

e relbuilder. ¢
Based on the output of create_query.c, relbuilder.c creates real relation. Input for

relbuiler.c is a relation number. The output file starts with “R”.

In the above example, since create_query 4 2 generates four relations, relbuilder 3,
relbuilder 2, relbuilder 1, and relbuilder 0 will be executed. As a result, real relation

R3, R2, R1, and RO will be generated. Here is some data from RO:

RO
1
1
0 338
1 306
2 548
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3 486

4 234

In first line, number 1 means it has one join attribute. In second line, number 1 is the

label of attribute. From line three, it shows tuple number and real data.

4.2.3 Initial Feasible Solution (IFS)

Initial feasible solution is an algorithm which ship all the relation to query site

directly. In order to evaluate the pipeline N-way join algorithm and algorithm H, we

develop IFS program and compare cost with proposed method.

To be comparable, we use same example illustrated in pipeline N-way join algorithm

and algorithm H.
R1
@R1 A|B|C|E
@RI11 |5 |4 [3 |6
@R12 11 14 (2 |4
@R13 (3 |3 |2 |3

R2
@rR2 |A|D
@RrR21 |1 |4
@rR22 |5 |6
@rR23 |7 |5

FIGURE 4.1 IFS EXAMPLE

R3
@R3 |B|C|F
@R31 |3 |2 |9
@R32 |5 |2 |6
@R33 [6 |7 |5
@R34 |4 [3 |4

There are three relations and sit in different sites. R1 has 16 units, R2 has 8 units, and

R3 has 12 units. Therefore, total transmission cost for algorithm IFS is 16+8+12=36

units.
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4.2.4 Analysis Program
In order to evaluate algorithm H, we construct an analysis program which shows the
improved percentage.

Here is the evaluation method.

IFS vs. Pipeline N-way join algorithm:

CIFS - C pipeline N-way join algorithm

CIFS

* 100% = percentage improved

IFS vs. algorithm H:

CIFS . C algorithm H

Cirs

* 100% = percentage improved

Pipelines N-way join algorithm vs. algorithm H

C pipeline N-way join algorithm - C algorithm H

C * 100% = percentage improved
pipeline N-way join algorithm

4.3 Results and Evaluation
Since each query contains 3 to 6 relations and 2 to 4 join attributes, it has 12
combinations. To simplify the problems, for each algorithm with each combination,

the average cost is based upon 100 queries.
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4.3.1 Pipeline N-Way Join Algorithm vs. IFS

First, we compare the data transmission cost between Pipeline N-way join algorithm

and IFS.

TYPE Cirs Cn-way joiN aLgoritam | Yo IMPROVED
32 11608 11051 4.80%
4-2 13097 12047 8.02%
5-2 19244 16248 15.57%
6-2 22745 18535 18.51%
3-3 18108 17350 4.19%
4-3 23242 21078 9.31%
5-3 26745 23174 13.35%
6-3 31395 25976 17.26%
3-4 22424 18452 6.41%
4-4 26933 21392 7.98%
5-4 35223 26894 8.90%
6-4 39120 29542 9.33%

FIGURE 4.2 PIPELINE N-WAY JOIN ALGORITHM VS. IFS

The first column indicates query type. For each combination cost will be shown in

second and third column. Based on analysis program, improved percentage is record

in fourth column.

e  For each type cost of IFS is higher than Pipeline N-Way join Algorithm.

e  No matter what algorithm is used, with the same join attribute, if there are more

relations, the cost will be higher. For example: Cs.2 > Cs52 > Cy4 > C35,

e  No matter what algorithm is used, with the same relation number, if there are

more join attributes, the cost will be higher. For example: C34 > C33> Cs,,

e  The average improved percentage is around 10+%.
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Here is the graph that shows cost.

Pipeline N-way Join Algorithm vs. IFS

¢ [FS # N-Way Join Algorithm

45000
40000
35000
30000
25000
20000
15000
10000

5000

Unit

32 42 52 62 33 43 53 63 34 44 54 64

Type

Figure 4.3 Pipeline N-way join Algorithm vs. IFS - Graphic

4.3.2 Algorithm H vs. IFS

Now, we compare the data transmission cost between IFS and algorithm H.

TYPE Cirs CALGORITHM H % IMPROVED
3-2 11608 9842 15.21%
4-2 13097 10542 19.51%
5-2 19244 14025 27.12%
6-2 22745 15754 30.74%
3-3 18108 15348 15.24%
4-3 23242 18349 21.05%
5-3 26745 20129 24.74%
6-3 31395 22145 29.46%
3-4 22424 18452 17.71%
4-4 26933 21392 20.57%
5-4 35223 26894 23.65%
6-4 39120 29542 24.48%

FIGURE 4.4 ALGORITHM H vs. IFS

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



From the above figure, we can see that:

. For each type cost of IFS is higher than Algorithm H.

e  No matter what algorithm is used, with the same join attribute, if there are more
relations, the cost will be higher. For example: C¢.3 > Cs3 > C43 > Cs3.

) No matter what algorithm is used, with the same relation number, if there are
more join attributes, the cost will be higher. For example: C44 > C43> Cy.

e  The average improved percentage is around 20+%.

Here is the graph that shows cost.

Algorithm H vs. IFS

¢ IFS = Algorithm H

45000
40000
35000
30000

25000

Unit

20000
15000
10000

5000

32 42 52 62 33 43 53 63 34 4 4 54 64
Type

FIGURE 4.5 ALGORITHM H vS. IFS - GRAPHIC
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4.3.3 Algorithm H vs. Pipeline N-way join algorithm

Finally, we compare the data transmission cost between algorithm H and Pipeline N-

way join algorithm.

TYPE CN-WAY JOIN ALGORITHM Ch % IMPROVED
3-2 11051 9842 10.94%
4-2 12047 10542 12.49%
5-2 16248 14025 13.68%
6-2 18535 15754 15.00%
3-3 17350 15348 11.54%
4-3 21078 18349 12.95%
5-3 23174 20129 13.14%
6-3 25976 22145 14.75%
34 18452 18452 12.08%
4-4 21392 21392 13.69%
5-4 26894 26894 16.19%
6-4 29542 29542 16.72%

FIGURE 4.6 ALGORITHM H vS. PIPELINE N-WAY JOIN ALGORITHM

From the figure, we can get that:

e  For each type cost of Pipeline N-way join algorithm is higher than Algorithm H.

e  No matter what algorithm is used, with the same join attribute, if there are more

relations, the cost will be higher. For example: Cg > Cs.3 > Ch2> Cs,

e  No matter what algorithm is used, with the same relation number, if there are

more join attributes, the cost will be higher. For example: C34 > C33> Cs5,

e  The average improved percentage is around 10+%.
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Here is the graph that shows cost.

Algorithm H vs. Pipeline N-Way Join Algorithm

¢ N-Way Join Algorithm # Algorithm H

40000 N )
35000
30000
25000
20000
15000
10000

5000

Unit

32 42 52 62 33 43 53 63 34 44 54 64
Type

FIGURE 4.7 ALGORITHM H VvS. PIPELINE N-WAY JOIN ALGORITHM - GRAPHIC

4.4 Evaluation
After doing a large number of queries, we can get the conclusion that algorithm H is

has the lowest transmission cost compares with the other two.

Both IFS and Pipeline N-way join algorithm ship relations to other sites. However,
they have two differences. In IFS relations ship to query site without being processed,
while in Pipeline N-way join algorithm projection of join attributes will be sent to
query site. Besides, in IFS shipping relations is one way, and in Pipeline N-way join
algorithm it has forward and backward transmission. Obviously, pipeline N-way join
algorithm improved Initial Feasible Solution, however it’s only 10+%. The reason

why the improved percentage is not that high is pipeline N-way join algorithm has
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two-way reduction, therefore it sends part of the original relations once and

temporary relations (Tuple Connectors).

Algorithm H applies pipeline idea to a filter based algorithm. Both Algorithm H and
Pipeline N-way join algorithm have three phases, and there are no intermediate
results generated. The main difference is in Algorithm H relations are not processed
sequentially. The other difference is Algorithm H uses filer concept, therefore
transmission cost is lower than using projection of join attributes. Since the
experiment only carries 4 to 6 relations and 2 to 4 join attributes. The sequence of
process relations maybe same in both algorithm H and pipeline N-way join algorithm.

Therefore, the advantage of using algorithm H is not that obvious.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion
Query optimization is one of the major research areas in distributed database systems.
The problem is to find a strategy for executing each query over the network in the

most cost-effective way.

In the last two decades, a variety of algorithms has been studied to improve
performance. In this thesis, we have discussed some of the main algorithms, such as
Join, Semijoin, two-way semijoin, filter based join algorithm. Based on past research,
a new algorithm, filter based pipeline N-way join algorithm, is presented to reduced

data transfer cost.
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Algorithm H keeps the advantages that pipeline N-way join algorithm has. During the
query processing, no intermediate results have been generated. All the relations are
only accessed once, therefore, it has low I/O cost. Instead of sending projection of
join attributes, Algorithm H makes use of filter concept and it creates filter for each

join attribute.

From a large number of experiments described in Chapter 5, we can make the
conclusion that algorithm H has a better performance than that of IFS and Pipeline N-
way join algorithm. Compare to IFS, it has 20+% improved. And it has 10+%

improved percentage compared with Pipeline N-way join algorithm.

5.2 Future Work
Though algorithm H has lower data transmission cost than IFS and Pipeline N-way

join algorithm, there are some small problems to be concerned.

First, to simplify the problem, we use perfect hash function in algorithm H. However,
in real situation some other hash functions will be used which leads the problem of
collision. Collisions always exist in filter-based algorithms; more research on this

area should be studied.

Secondly, in our experiments, selectivity is in the range between 0.1 and 0.9.

However, selectivity is also one fact to evaluate the algorithm, it shall be classified

into three categories. For example, in the range between 0.1 and 0.3, we named it as
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high selectivity. In the range between 0.4 and 0.7, it’s a middle selectivity. And in the
range between 0.4 and 0.7, it’s a low selectivity. In the future, we need to do more

tests based on different selectivity range.
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