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ABSTRACT 

This thesis analyzes genetic patterns across botryllid tunicate invasions in North America 

- encompassing the violet tunicate Botrylloides violaceus and the golden-star tunicate 

Botryllus schlosseri. I investigate these species’ entry and spread on the continent by 

using the mitochondrial cytochrome c oxidase subunit I (COI) gene, and 13 (B. violaceus) 

and 12 (B. schlosseri) nuclear polymorphic microsatellite loci. Considerable genetic 

differentiation was detected both within and among East and West coast locales. Also, 

there was substantial variation in the degree of genetic diversity maintained in introduced 

populations, which showed, in general, signatures of long-distance dispersal. Taken 

together, these results indicate the invasions were founded from multiple source regions. 

Also, post-introduction spread along the coasts appears to occur predominantly through 

human-mediated dispersal of sexually-produced propagules. I relate these findings to 

knowledge of the life-history attributes of B. schlosseri and B. violaceus, and to available 

records of their introductions to North America. 
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1.0 - GENERAL INTRODUCTION 

Invasive species and the role of genetics in revealing patterns of invasion 

The introduction of nonindigenous species (NIS) to new environments, one of the most 

pervasive and damaging effects of human activities, is now recognized as a fundamental 

aspect of global environmental change (Carlton & Geller 1993; Ricciardi 2007). The 

alarming ecological and economic consequences of species invasions have prompted a 

surge in invasion-related research devoted to the identification of the factors associated 

with the persistence and spatial expansion of NIS (Lockwood et al. 2007). With the 

integration of genetics to the study of biological invasions (i.e. invasion genetics), much 

progress has been made. For example, genetic approaches have successfully been used to 

identify the sources of introduction and pathways of spread in widely distributed invaders 

(e.g. Cristescu et al. 2001; Roman 2006; Brown & Stepien 2009). Additionally, 

comparisons of native and introduced populations have yielded insights into the extent of 

genetic variation that is lost during an invasion process (reviewed by Roman & Darling 

2007). This information has allowed researchers to infer if the founding populations were 

small or large, and if they were supplemented by later independent release events (e.g. 

Kolbe et al. 2004; Colautti et al. 2005). More recently, genetic studies have also been 

used to advance our understanding of the post-establishment spread patterns of non-native 

species across areas of introduction (e.g. Darling & Folino-Rorem 2009; Rollins et al. 

2009). Collectively, by providing a more complete representation of the invasion process, 

this information is expected to lead to the development of accurate risk assessment, and 

the implementation of sound, science-informed control measures. The motivation for 

using genetics to investigate biological invasions can also be theoretical. As such, NIS 
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introductions are increasingly seen as 'natural' colonization experiments that might be 

used to explore and refine theories regarding the properties of range expansions (e.g. 

Estoup et al. 2004) or to address the speed and predictability of evolutionary processes in 

different geographical settings (e.g. Huey et al. 2000). 

Invasive ascidians - a growing global concern 

Among the numerous NIS recorded to date, ascidians have recently attracted a lot of 

attention, as they are becoming increasingly abundant in marine coastal areas worldwide 

(Lambert 2002) . Their accelerated spread has been attributed to transport by a number of 

anthropogenic dispersal vectors, among which vessel ballast water, hull fouling, and 

aquaculture trade are considered the most important (Carver et al. 2006; Dijkstra et al. 

2007). Once introduced, ascidians can quickly establish, and in more extreme cases 

become dominant members of recipient ecosystems (Lambert 2005; Blum et al. 2007). In 

aquaculture facilities, ascidians are considered a serious biofouling concern, as they 

suffocate target species and cover any available substrate, thereby making harvesting 

difficult and increasing the costs of operations (Coutts & Forrest 2007; Howes et al. 

2007). Invasive ascidians comprise both solitary and colonial forms, several of which are 

now regarded as some of the most successful NIS. These include the solitary species 

Ciona intestinalis and Styela clava, as well as the colonial species Botrylloides violaceus 

and Botryllus schlosseri (Lambert & Lambert 2003; Lambert 2005). All of these species 

have been introduced in North America and are spreading along the coasts. In this 

context, a comprehensive genetic analysis of North American non-indigenous ascidians is 

timely. Information on these species' population genetic structure on the East and West 

coasts would constitute an important resource not only to those tasked to mitigate the 
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negative effects of these invasions in North America, but also to a more general audience 

of invasion and evolutionary biologists.  

Thesis objectives 

In the current study, I focus on the botryllid colonial species B. violaceus and B. 

schlosseri, with the main goal of exploring patterns of genetic diversity and 

differentiation across these species' invasions on the East and West coasts of North 

America. Specifically, in chapter 2, I aim to i) investigate the genetic diversity of B. 

violaceus populations introduced on the West and East coasts, ii) compare the patterns of 

gene flow within and between coasts, and iii) evaluate the relative contribution of sexual 

and asexual reproduction to this species' rapid population expansion. In addition, 

characterization of genetic structure in established populations allowed me to make 

inferences on the colonization history of this species in the two invaded ranges in North 

America. In chapter 3, I aim to i) explore the phylogeographic history of native and 

invasive B. schlosseri populations, ii) determine the post-introduction level of genetic 

variation maintained in North American populations, and iii) identify patterns of gene 

flow and fine-scale genetic subdivision within the native, East and West coast ranges. To 

meet these goals, I use the mitochondrial (mt) cytochrome c oxidase I (COI) gene as well 

as 13 (B. violaceus) and 12 (B. schlosseri) polymorphic microsatellite loci, while drawing 

on recent advances in the analysis of hypervariable genetic data based on Bayesian 

clustering and assignment methods.  
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2.0 - LOOKING AT BOTH SIDES OF THE INVASION: PATTERNS OF 

COLONIZATION IN THE VIOLET TUNICATE BOTRYLLOIDES VIOLACEUS* 

2.1 INTRODUCTION 

Despite growing interest to identify factors that determine the success of widespread 

invaders, we still have a limited understanding of how patterns of colonization vary 

across the large spectrum of environments typically encountered by widely introduced 

species. However, such information is essential not only for recognizing how dispersal 

vectors and life history traits contribute to the spread of invasive species, but also for 

understanding the evolutionary forces that drive invasion success, and ultimately for 

developing effective management strategies. 

Evidence that post-establishment dispersal varies not only between but also within 

species has started to accumulate with the recent expansion in the geographical scale of 

NIS genetic surveys (e.g. Voisin et al. 2005; Darling & Folino-Rorem 2009). 

Collectively, these studies suggest that fine scale population genetic analyses performed 

at multiple spatial scales or settings might be the key to understanding how region-

specific attributes can drive within-species invasion patterns. In this context, studies of 

widespread invaders such as colonial ascidians provide excellent opportunities for 

exploring how invasion history, vector availability, and life history traits influence 

colonization dynamics in different areas of introduction. 

*modified from: Bock DG, Zhan A, Lejeusne C, MacIsaac HJ, Cristescu ME. Looking at both sides of the 

invasion: patterns of colonization in the violet tunicate Botrylloides violaceus. In review at Molecular Ecology 
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Botrylloides violaceus, also known as the violet tunicate, is an invasive colonial ascidian, 

commonly recognized as a biofouling nuisance species. In natural ecosystems, it has been 

shown to overgrow and outcompete indigenous species, at times becoming dominant in 

subtidal benthic communities (Berman et al. 1992). In aquaculture facilities, it smothers 

target species, limits food availability, and covers available substrate making harvesting 

difficult (Carver et al. 2006). B. violaceus is considered native to the Northwest Pacific, 

most likely Japan (Saito et al. 1981). Outside of its native range, it occurs on both coasts 

of North America (Carver et al. 2006) as well as the coasts of Australia, Italy, the United 

Kingdom, Ireland and the Netherlands (Zaniolo et al. 1998; Gittenberger 2007; Minchin 

2007; Perez-Portela et al. 2009). The first non-indigenous population of B. violaceus was 

reported on the coast of California (Lambert & Lambert 2003). However, due to 

taxonomic confusion, the exact date of this introduction - either 1945 (Van Name 1945, 

unconfirmed) or the 1970s (Fay & Vallee 1979, confirmed) - remains uncertain. At 

present, B. violaceus occupies much of the West coast, achieving high abundance from 

Ensenada, Mexico to Alaska (Lambert & Sanayam 2001; Lambert & Lambert 2003). On 

the East coast, the first population is believed to have established in 1972 in 

Massachusetts following an unintentional release of B. violaceus colonies (Carlton 1989; 

Yund & Feldgarden 1992). It has been suggested that the founding individuals descended 

from West coast stocks, most likely from southern California (Yund & Feldgarden 1992; 

Grosholz 2001). Since 1972, the East coast invasion spread rapidly south to Connecticut 

and north to Prince Edward Island (Carver et al. 2006) and Newfoundland (Callahan et al. 

2010). Multiple vectors are considered responsible for dispersal of B. violaceus along the 

West and East coasts. Hull fouling and aquaculture trade are considered the primary 

means (Dijkstra et al. 2007), although ballast water discharge (Dijkstra et al. 2007), 
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rafting of fragmented colony parts (Carver et al. 2006), and spread as epibionts on large 

crustaceans (Bernier et al. 2009) have also been suggested to facilitate dispersal of the 

species. 

Biological characteristics linked to the high invasiveness of B. violaceus include the 

ability to engage in both sexual and asexual reproduction. In particular, asexual budding 

of individual zooids often leads to the formation of large mats which commonly fragment 

and regenerate, leading to an increased local abundance and dispersal potential (Carver et 

al. 2006). B. violaceus is highly effective at reattaching when dislodged from substrates 

(Bullard et al. 2007), thus the common aquaculture management technique of high 

pressure washing is largely ineffective and may, in fact, lead to an increase in colony 

fragmentation and subsequent infestation (Paetzold & Davidson 2010). Although the 

distribution, impacts, and ecology of B. violaceus have been extensively studied, a 

comprehensive examination of genetic patterns associated with this species’ rapid range 

expansion is still lacking. Interestingly, the only study that investigated genetic structure 

of populations established in North America (Lejeusne et al. in press) provides 

mitochondrial based evidence for the occurrence of successive founder effects from the 

West to the East coasts. Extensive genetic divergence between identified cytochrome c 

oxidase subunit I (COI) haplotypes suggested that multiple introductions have occurred 

on the Northwest coast of North America. However, the dramatically reduced levels of 

mitochondrial genetic diversity indicated that a thorough investigation of the invasion 

history of B. violaceus in North America requires the additional use of polymorphic 

microsatellite markers, coupled with intensive sampling efforts.  
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Here, I use mitochondrial COI sequences and 13 polymorphic nuclear microsatellite loci 

to characterize the genetic structure of 25 introduced populations of B. violaceus sampled 

along the West and East coasts of North America. The primary goals of this chapter are 

to: i) investigate the genetic diversity of introduced populations on the West and East 

coasts, ii) compare the patterns of gene flow within and between coasts, and iii) evaluate 

the relative contribution of sexual and asexual reproduction to this species' rapid 

population expansion. Characterization of genetic structure in established populations 

further allowed me to make inferences on the colonization history of B. violaceus in the 

two invaded ranges in North America. 

2.2 MATERIALS AND METHODS 

Sampling and DNA extraction 

A total of 673 colonies of B. violaceus were sampled from 25 North American locations: 

344 (50.7%) colonies from the West coast and 335 (49.3%) from the East coast (Fig. 2.1; 

Table 2.1). A fine-scale sampling scheme was employed for the northern part of the 

current distribution range where rapid spread of B. violaceus is challenging aquaculture 

operations. Sampling was undertaken by SCUBA diving and/or by excising colonies from 

submerged ropes and buoys in harbours, marinas and infested aquaculture facilities. To 

prevent re-sampling of the same colonies, all specimens were taken at least 1 m apart 

from one another. Samples were preserved in 95% ethanol at -20ºC prior to genetic 

analyses. Genomic DNA (gDNA) was extracted from single zooids using the protocol of 

Elphinstone et al. (2003).  
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Mitochondrial DNA amplification and sequencing 

A fragment of the COI gene was initially amplified using the universal primer pair 

LCO1490 and HCO2198 (Folmer et al. 1994). Because these primers failed to amplify 

consistently, species-specific primers (BvCOIF: 5’-

TTTGTATTTTATTTTTAGGGTTTGG-3’ and BvCOIR: 5’-

TCAAAATAAATGTTGATAAAGTACAGG-3’) which amplify a 659-bp fragment were 

designed and used. The 25 µL PCR volume consisted of 1 µL (~50 - 100 ng) gDNA, 1x 

PCR buffer with 1.5 mM MgCl2 (Genscript), 0.2 mM dNTPs, 0.4 µM of each primer, and 

0.5 U of Taq DNA Polymerase (Genscript). PCR cycling parameters consisted of an 

initial denaturation step at 94º C for 5 min, followed by 35 amplification cycles (94º C for 

30 s, 50º C for 30 s, 72º C for 45 s), and a final elongation step at 72º C for 5 min. 

Sequencing reactions were performed using the reverse primer (BvCOIR), BigDye 

Terminator 3.1 chemistry, and an ABI 3130XL automated sequencer (Applied 

Biosystems, Foster City, CA). The forward primer (BvCOIF) was used to confirm all 

sequences that contained ambiguous sites.  

Microsatellite genotyping 

All 673 B. violaceus samples - representing 25 populations - were genotyped for 13 

polymorphic microsatellite markers (Bvm2, Bvm4 - 9, Bvm12 - 13, Bvm15 - 18; 

Molecular Ecology Resources Primer Development Consortium et al. 2010). PCR 

cocktails (10 μL) contained 50 ng of gDNA, 1x PCR buffer with 1.5 mM MgCl2 

(Genscript), 0.125 mM of each dNTP, 0.5 μM of each primer and 0.2 U of Taq DNA 

Polymerase (Genscript). Forward primers were labelled with one of four fluorophores 

(6FAM, VIC, NED or PET) according to Schuelke (2000). The cycling PCR profile 
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consisted of an initial denaturation at 95 ºC for 3 min, 10 cycles of 35 s at 95 ºC, 35 s at 

an initial annealing temperature of 60 ºC that decreased by 1 ºC in each of 10 cycles, and 

45 s at 72 ºC followed by 35 cycles of 35 s at 95 ºC, 35 s at 52 ºC, 45 s at 72 ºC, and a 

final extension for 10 min at 72 ºC. Amplified fragments were separated on an ABI 

3130XL automated sequencer (Applied Biosystems, Foster City, CA), with GeneScan™-

500 LIZ™ (Applied Biosystems, Foster City, CA) internal size standard. The alleles were 

scored using GENEMAPPER
®
 software v.4.0 (Applied Biosystems, Foster City, CA). To 

confirm genotyping accuracy, 3% of the samples, chosen at random, were rerun.  

Mitochondrial DNA analysis 

Sequence data was aligned and edited using CodonCode Aligner v. 2.0.6 (CodonCode 

Corporation, Dedham, MA). DNASP v.5 (Rozas et al. 2003) was used to identify 

individual B. violaceus haplotypes, calculate the number of haplotypes (Nh), haplotype 

diversity (h) and nucleotide diversity (π) and to test whether the sequences evolved under 

neutrality according to Tajima’s D statistic. Neighbor joining (NJ) and maximum-

likelihood (ML) phylogenetic analyses were conducted in PAUP* v.4b10 (Swofford 

2001) and PHYML v. 2.4.4 (Guidon & Gascuel 2003), respectively. To determine the 

best fit nucleotide substitution model, I used MODELTEST v.3.7 (Posada & Crandall 

1998) under the Akaike Information Criterion (AIC). Phylogenetic reconstructions were 

rooted using the congeneric species B. fuscus (GenBank accession number: GQ365690). 

Relationships among the COI haplotypes were further examined using a statistical 

parsimony haplotype network generated at the 95% connection limit with TCS v.1.21 

(Clement et al. 2000).  
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Population pairwise ФST was calculated with 10,000 permutations in ARLEQUIN v.3.1 

(Excoffier et al. 2005) using the Tamura & Nei (TrN) substitution model. To assess 

genetic differentiation among sampling sites, I conducted a hierarchical analysis of 

molecular variance (AMOVA; Excoffier et al. 1992) in ARLEQUIN. Molecular variance 

was partitioned into three levels: between coasts, among populations within coasts, and 

within populations. Isolation by distance (IBD) within the West and East coasts was 

further examined by testing the correlation between genetic distance [ФST / (1 − ФST)] and 

geographical distances using a Mantel test with 10,000 permutations implemented in 

GENEPOP v. 3.4 (Raymond & Rousset 1995). Geographical distances were calculated as 

the minimum coastline distances between adjacent sampling locations using GOOGLE 

EARTH v.4.3 (beta). 

Microsatellite DNA analysis 

The number of repeated multilocus genotypes was calculated using GENECAP software 

(Wilberg & Dreher 2004). For all putative clones, I estimated the probability of identical 

genotypes arising by chance via sexual reproduction. I computed the lower bound of this 

probability, PHW under Hardy-Weinberg expectations, and the more conservative upper 

bound Psib, under strict sibling reproduction, as recommended by Waits et al. (2001). 

Calculations for PHW and Psib consider the observed allele frequencies in the population 

within which clones were identified (Wilberg & Dreher 2004). 

Microsatellite data was checked for departures from Hardy-Weinberg equilibrium (HWE) 

using 10,000 permutations in GENEPOP, with levels of significance adjusted by 

sequential Bonferroni corrections (Rice 1989). The total number of alleles (NA), allelic 
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richness (A), mean observed and expected heterozygosities (HO and HE), and the 

inbreeding coefficient (FIS) were calculated using FSTAT v.2.9.3.2 (Goudet 2002). 

FSTAT incorporates a rarefaction method (Mousadik & Petit 1996) that compensates for 

unequal sample sizes to calculate A. The degree of genetic differentiation between pairs 

of populations was assessed using pairwise FST values computed with 10,000 

permutations in ARLEQUIN. Additionally, population structure was determined by 

conducting a three dimensional factorial correspondence analysis in GENETIX v. 4.05 

(Belkhir et al. 2004) and by the Bayesian clustering approach implemented in 

STRUCTURE v. 2.3.1 (Pritchard et al. 2000). For the STRUCTURE analysis, for each 

value of K (population clusters), I carried out five independent Markov Chain Monte 

Carlo (MCMC) runs with 10
5
 generations discarded as burn-in followed by an additional 

10
6
 generations. The simulated K values ranged from 1 to 25 (total sites) when pooling 

individuals from all localities and from 1 to 10 and 1 to 15 when using individuals 

previously grouped into a single cluster based on the initial global analysis. The optimal 

number of clusters was estimated by comparing the log-likelihood of the data given the 

number of clusters [ln P(X|K)] (Pritchard et al. 2000) and by examining the standardized 

second order rate change of ln P(X|K), ΔK (Evanno et al. 2005).  

Contemporary gene flow was assessed by individual-based assignment using 

GENECLASS v. 2.0 (Piry et al. 2004). I used the partially Bayesian method of Rannala 

& Mountain (1997); this method is preferred when not all possible source populations 

have been sampled (Berry et al. 2004). Genotype assignments were determined by 

assessing probabilities through 10,000 MCMC simulations (Paetkau et al. 2004). The 

sample with the highest probability of assignment was considered the most likely source 
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for the assigned genotype. Individuals not assigned to any population with a probability 

of P > 0.05 were assumed to be from an unsampled location. To test for a pattern of 

isolation by distance, I used a Mantel procedure with 10,000 permutations implemented 

in GENEPOP to assess the dependence between Rousset's (1997) genetic distance [FST / 

(1 − FST)] and geographic distances. A hierarchical analysis of molecular variance 

(AMOVA) was performed in ARLEQUIN based on microsatellite genetic distances 

between populations, and partitioning variance between the West and East coasts, among 

populations within coasts, and within populations.  

2.3 RESULTS 

Mitochondrial DNA analyses 

The final 558 bp COI alignment contained a total of 27 polymorphic sites (9 parsimony-

informative), with 26 synonymous substitutions and 1 nonsynonymous substitution 

corresponding to a valine - isoleucine change. Within all 604 sequences, I identified only 

seven distinct haplotypes. Among these, 4 are new (Bv8 - Bv11; GenBank accession 

numbers GU946476 - GU946479) and three (Bv1 - Bv3; GenBank accession numbers 

GQ365691 - GQ365693) were previously reported by Lejeusne et al. (in press). Most 

haplotypes were shared between two or more sampling locations. Only haplotypes Bv10 

and Bv11 were restricted to the Deep Bay (DPB) and Lemmens Inlet (LMI) populations, 

respectively (Appendix S2.1). The most abundant haplotype on the West coast was Bv1 

(66.8%) followed by Bv3 (20.2%) and Bv2 (6.2%). On the East coast 98.6% of colonies 

sampled shared haplotype Bv1 and only 1.4% haplotype Bv3 (Table 2.1). Haplotype 

diversities were typically much higher in West coast (range: 0 to 0.610; mean 0.313) than 
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in East coast (range: 0 to 0.166; mean 0.038; Table 2.1) populations. Tajima's D statistic 

was not significant (D = 1.076; P > 0.10) for the entire data set, suggesting that selection 

was not acting on this locus and that a neutral model of evolution cannot be rejected. 

The neighbour-joining and maximum likelihood phylogenetic analyses revealed that all 

North American B. violaceus haplotypes correspond to two phylogroups (Appendix 

S2.2). This finding was confirmed by the 95% parsimony haplotype network, where two 

groups of haplotypes separated by 9 substitution steps were identified (Fig. 2.2). One 

group included the dominant Bv1 haplotype, shared between the two coasts, and Bv8, 

restricted to the West coast. The second group consisted of four haplotypes that occur on 

the West coast (Bv2, Bv9, Bv10 and Bv11), and one (Bv3) detected on both coasts (Fig. 

2.2).  

Pairwise ФST values indicated genetic structure exists within the West coast, with 43.60% 

of comparisons significant after Bonferroni corrections (Appendix S2.3). The Lemmens 

Inlet (LMI) and Bodega Bay (BBY) populations were differentiated from most 

populations sampled on the West coast, with ФST values ranging from 0.12 to 0.84. By 

contrast, all pairwise ФST values between East Coast populations were low and not 

significant. Within the entire data set, the highest pairwise ФST values (0.86) were 

attained between West and East coast populations. Hierarchical AMOVA based on 

mitochondrial data revealed that most of the genetic variance was found within sampling 

sites (48.46 %). Significant partitioning occurred among populations within each coast 

and between the West and East coasts, accounting for 33.30% and 18.24% of the 

variation, respectively (P < 0.05; Table 2.2). Mantel tests failed to reveal relationships 
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between genetic distance and coastline distances between populations on both the West 

(r
2
 = 0.012, P = 0.619) and East (r

2
 = 0.002, P = 0.338) coast. 

Microsatellite DNA analyses 

I identified 27 multilocus repeated genotypes across all populations (C1 - C27; Appendix 

S2.4). Most putative clones were restricted to single populations; only genotype C4 was 

shared between Deep Bay (DPB) and Ladysmith (LSM). The repeated genotypes were 

encountered between one and seven times depending on the location (Appendix S2.4). 

The probability of separate occurrences of the same genotype arising via sexual 

recombination under Hardy-Weinberg assumptions (PHW) was extremely low, ranging 

from 5.34 x 10
-6

 to 1.93 x 10
-12

 (Appendix S2.4). In addition, the more conservative 

estimate (Psib) remained low and nonsignificant (P < 0.05), suggesting that repeated 

genotypes resulted from resampling of fragmented colonies. Data analysis was performed 

with and without clones, producing comparable results. I present results obtained after 

removing clonal genotypes from the data set. 

A total of 620 B. violaceus colonies were analyzed at 13 microsatellite loci. In total I 

identified 169 alleles across North America, of which 155 (91.2%; mean 12 alleles/locus) 

were detected in West coast populations, and 110 (65%; mean 8.5 alleles/locus) in East 

coast samples (Appendix S2.5). The number of private alleles also differed between the 

West coast (22 private alleles) and the East coast (7 private alleles; Table 2.1). The allelic 

richness and expected heterozygosity varied from 3.2 to 4.4 (mean 3.7) and 0.554 to 

0.704 (mean 0.611), respectively, on the West coast, and from 3.0 to 3.9 (mean 3.4) and 

0.559 to 0.662 (mean 0.600), respectively, on the East coast. West coast populations 
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sampled at Lemmens Inlet (LMI), Neah Bay (NHB), and Sequin (SQN) had the highest 

genetic diversity. Conversely, the lowest variation was identified on the East coast at 

Chester (CHT), Methegan (MTG), and Mystic Harbor (MYH; Table 2.1). While most loci 

conformed to HWE, 35 of 325 cases exhibited significant deviations after sequential 

Bonferroni corrections (Appendix S2.6). However, no systematic deviations were 

observed for loci across all populations or at all loci within populations. Microsatellite 

data showed highly significant genetic differentiation after Bonferroni correction between 

most pairs of samples (Appendix S2.7), with the exception of one pair of sites on the 

West coast (DPB - LSM) and five more on the East coast (APY - SPB; CRV - SHB; BKH 

- MCV; BKH - LNB; LNB - MCV). 

The two different approaches used to identify population structure, factorial 

correspondence analysis and Bayesian clustering, provided a largely concordant picture. 

Three-dimensional factorial correspondence analysis (3D-FCA) illustrated high genetic 

distances between geographically proximate West coast populations (Fig. 2.3). For the 

East coast, however, neighbouring samples generally grouped together. Component 1 

explained 27.25% of genetic variance and nearly perfectly separated West from East 

coast populations (Fig. 2.3). The only exception was Bodega Bay (BBY), which clustered 

with East coast populations. The Bayesian algorithm implemented in STRUCTURE 

indicated that all B. violaceus individuals could be assigned to two main genetic clusters 

(K = 2). This partitioning was supported by the evaluation of both ln P (X|K) and ΔK. The 

likelihood of the data was lowest for K = 1 and the largest difference of successive 

likelihoods was between K = 1 and K = 2. After K = 2, the likelihood of the data 

plateaued and standard deviations increased (Appendix S2.8). When ln P (X|K) only 
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marginally increases above a certain value of K, the smallest value of K before the plateau 

(here K = 2) is considered the best model (Pritchard et al. 2007). The estimation of ΔK as 

per Evanno et al. (2005) also showed a clear pattern for K = 2 (Appendix S2.8), 

confirming that this is the most parsimonious model for the global data set. Two genetic 

clusters, hereafter S1 and S2, corresponded remarkably well with the West versus East 

coast geographic partitioning of the data (Fig. 2.4A). For West coast populations, 

membership coefficients (Q) to cluster S1 averaged 92% with the exception of Bodega 

Bay (BBY) which averaged only 18%. For East coast populations, Q to S2 averaged 93% 

(Fig. 2.4A). When clustering analysis was performed separately for S1 and S2, two 

genetic clusters were identified for each data subset. The substructure within S1 revealed 

the distinctiveness of proximate populations such as Victoria (VIC) – Sydney (SYD) or 

Sequin (SQN) – Brinnon (BRN; Fig. 2.4B). Within S2, the partition in two clusters 

revealed that individual genotypes assign to different clusters in the northern and the 

southern parts of the East coast, with assignment ratios following a gradual transition 

along the north-south axis (Fig. 2.4C). Additionally, southern locations (MYH – CHT) 

appeared to be most similar to Bodega Bay (BBY). 

The analysis for detection of migrants showed high overall assignment success, 

approximately 99.7 % (603 of 605 individuals were definitively classified at P > 0.05). 

On the West coast, the inferred migration events appeared to be distributed throughout the 

sampling region, and only one population (BRN) displayed 100% self-assignment (Table 

2.3). On the East coast, the majority of putative migrant genotypes (32/38) were restricted 

to the northern part of the sampling region (SPB; SHB; CRV and APY). Outside this 

area, there was limited indication of migration (Table 2.3). Ten individuals were 
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identified as potential inter-coastal dispersers. The inferred migration events were highly 

directional, from the West to the East coast (Table 2.3). The pattern of dispersal on the 

West coast did not reflect a correlation between genetic differentiation and geographical 

distances (Fig. 2.5A). The Mantel test remained nonsignificant after excluding the 

genetically distinct Bodega Bay (BBY) population from analysis (Fig. 2.5B). Conversely, 

for East coast populations, the Mantel test suggested highly significant genetic isolation-

by-distance (Fig. 2.5C). A strong correlation between genetic and geographic distance 

was supported at the large (1,706 km) and smaller (504 km) scales for East coast 

populations. Hierarchical AMOVA of microsatellite data revealed that most variation was 

attributed within sampling sites (82.65%). Variation within coasts (10.93%) and between 

coasts (6.42%) was also statistically significant (Table 2.2). 

2.4 DISCUSSION 

Contrasting patterns of genetic structure and regional spread on the West and East 

coasts  

Overall, the genetic diversity estimates for B. violaceus in North America are lower than 

those reported for other invasive ascidians. For example, mitochondrial genetic diversity 

estimates computed for 25 invasive populations (seven haplotypes, mean h of 0.176) were 

much lower than those reported for the solitary ascidian Microcosmus squamiger (30 

haplotypes, mean h of 0.712 estimated in 9 invasive populations sampled worldwide; 

Rius et al. 2008). Also, microsatellite gene diversity estimates (mean HE of 0.606, 

computed using 13 microsatellites) were lower than those identified for the closely related 

colonial species Botryllus schlosseri in North America (mean HE of 0.845, computed over 
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seven invasive populations using four microsatellites, Stoner et al. 2002), and comparable 

to those reported for the solitary ascidian Styela clava in North America (mean HE of 

0.536, computed over four invasive localities using six microsatellites, Dupont et al. 

2010).  

Despite the overall low level of genetic diversity, I observed strong geographic 

partitioning of genetic variance between North American B. violaceus samples, with West 

coast populations exhibiting higher levels of genetic diversity than those on the East coast 

(Table 2.1). This pattern was supported by the mitochondrial number of haplotypes (7 vs. 

2), mean haplotype diversity (0.313 vs. 0.038), and nucleotide diversity (0.005 vs. 0.001). 

This difference in genetic diversity was consistent with that observed for microsatellite 

markers, mostly in the total number of alleles (155 vs. 110) and private alleles (22 vs. 7) 

sampled. The genetic partitioning between the two coasts might reflect bottleneck events 

associated with the introduction of this species to North America. Historical records 

indicate that the invasion proceeded in a ‘stepping stone’ fashion, and that East coast B. 

violaceus populations were likely seeded from West coast stocks (Yund & Feldgarden 

1992; Grosholz 2001). As expected, the bottleneck signature on the East Coast is more 

apparent in the mitochondrial genome, which is more sensitive to demographic 

population fluctuations than the nuclear genome, due to its smaller effective population 

size, more rapid extinction of lineages, and lack of recombination (Avise 2000). 

Overall, the pattern of regional spread and resultant population genetic structure differed 

sharply in the two main sampling regions analysed, as revealed by microsatellite genetic 

variation. On the West coast, almost all pairwise FST values were high and significant 
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(Appendix S2.7). Also, factorial correspondence analysis (Fig. 2.3) revealed high genetic 

divergence between most sampling locales. On the other hand, increased levels of genetic 

connectivity were detected between few distant sites such as DPB - LSM, situated 90 km 

apart (FST = 0.03; Appendix S2.7; see also Table 2.3), suggestive of long distance (likely 

human-mediated) dispersal. Consistent with this observation, there was no indication of 

isolation-by-distance for West coast populations (r
2
 = 0.2686, P = 0.2420; Fig. 2.5A). The 

pattern of genetic structure observed on the West coast may reflect the combined effects 

of low levels of natural dispersal coupled with long distance spread (most likely human-

mediated) between key locations. Similarly complex patterns of connectivity have been 

reported in other invasive taxa, such as the solitary ascidian Styela clava, the anemone 

Nematostella vectensis, and the hydrozoan Cordylophora caspia, that possess limited 

natural dispersal capability and spread mainly via anthropogenic vectors (Dupont et al. 

2009; Darling et al. 2009; Darling & Folino-Rorem 2009). 

On the East coast, genetic differentiation increases with increasing spatial separation 

between sites (Figs. 2.3, 2.4C, Appendix S2.7). High genetic similarity was detected 

between adjacent sites (i.e. 1.5 km apart) such as MCV - BKH (FST = 0.01) or LNB - 

BKH (FST = 0.02; Appendix S2.7), while high genetic divergence was observed between 

more spatially separated sites (i.e. 150 - 250 km apart) such as CRV - SBR (FST = 0.12) 

or PDG - SBR (FST = 0.16; Appendix S2.7). Also, STRUCTURE analysis revealed that 

East coast genotypes were assigned to different clusters in the northern and the southern 

parts of the sampling region, with assignment ratios following a gradual transition along 

the north-south axis (Fig. 2.4C). Consequently, a highly significant pattern of isolation-

by-distance was detected for East coast populations (r
2
 = 0.4667; P < 0.001; Fig. 2.5C). 
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This finding was surprising considering that strong associations between the two metrics 

are typically considered indicative of systems under migration-drift equilibrium 

(Hutchinson & Templeton 1999). However, historical evidence suggests that East coast B. 

violaceus is unlikely to have achieved such equilibrium. The species is thought to have 

been introduced in 1972 at Woods Hole, Massachusetts (Carlton 1989), and was not 

reported in Nova Scotia until approximately 30 years later, in 2001 (Carver et al. 2006). 

Therefore, most populations analysed here likely represent relatively recent introductions, 

and the assumption of equilibrium is unreasonable. The strong isolation-by-distance 

pattern is most likely a result of stepping-stone spread. Historical records also indicate 

that B. violaceus spread gradually along the East coast, facilitated by human-mediated 

vectors (Carver et al. 2006; Dijkstra et al. 2007; Locke et al. 2009). Still, I did not 

observe a cline in microsatellite genetic variation along the coast. The bottleneck 

signature expected at the periphery of the invasion front was most likely obscured as a 

result of gene flow between sites in the northern part of the East coast (discussed below). 

Evidence presented here indicates that natural dispersal is not a major contributor to 

ascidian spread on either coast. Most populations show high levels of genetic 

differentiation, reflecting a general restriction to natural spread (Table 2.3; Appendix 

S2.7). Also, the observed regional invasion patterns do not appear to be associated with 

the dynamics of marine currents. Most sites on the West coast were located in the Strait 

of Georgia, which is characterized by currents of low intensity (LeBlond 1983) and thus 

not likely to drive long distance dispersal. Likewise, on the East coast, the southern 

flowing Nova Scotia current (Hannah et al. 2001) appears to be at odds with 
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observational records indicating the invasion spread northward on the coast (Dijkstra et 

al. 2007; Locke et al. 2009).  

Therefore, the divergent patterns of spread observed between the two coasts appear to be 

influenced at least partially by differences in anthropogenic vector dynamics. More 

specifically, evidence for long distance dispersal was more frequently observed 

throughout the sampling region on the West coast (Table 2.3; Fig. 2.5). Although 

evidence for human-mediated 'jump' dispersal was also detected on the East coast, these 

events appear to be more spatially restricted. Low FST values (0.01 - 0.02; Appendix S2.7) 

were detected between four northern sites separated by 15 - 200 km (SPB, SHB, CRV 

and APY; Fig. 2.1), which also share the majority of identified East coast migrant 

genotypes (32/38; Table 2.3). Previous studies of other prominent aquatic invaders, such 

as the zebra mussel (Dreissena polymorpha) have shown that patterns of long distance 

dispersal can be correlated to the spatial and temporal variation of human-mediated 

vectors like recreational vessels (Bossebroek et al. 2007). Indeed, a possible explanation 

for my findings might be that the number of recreational vessels currently registered in 

British Columbia is significantly higher than in Nova Scotia (Dr. T. Therriault, personal 

communication) providing more opportunities for long distance spread. Also, ice 

formations during winter in Nova Scotia significantly limit vessel traffic between sites, 

whereas in British Columbia shipping occurs year round, providing more opportunities 

for dispersal of B. violaceus propagules via hull fouling or ballast water transfer. Apart 

from vessel-mediated vectors, aquaculture is also considered a primary means of 

introduction and spread of B. violaceus (Dijkstra et al. 2007). This vector most likely is 

responsible for long distance dispersal events observed in northern range areas on the 
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East coast. Previous studies have suggested that transfer of living material and equipment 

between mussel growers in the region is the main contributor to the spread of invasive 

tunicates, including B. violaceus (Locke et al. 2009). 

Contribution of vegetative proliferation to the spread of B. violaceus 

Theory predicts that asexual reproduction can substantially facilitate invasion success, 

especially during the introduction stage, when population size is small (Sakai et al. 2001). 

Although successful colonization by clonal lineages has been demonstrated in a number 

of widespread invaders (e.g. Daphnia pulex in Africa, Mergeay et al. 2006), in other 

cases asexual reproduction has a more limited role in post-establishment spread (e.g. 

Cordylophora caspia in North America, Darling & Folino-Rorem 2009). Dispersal of 

colonial ascidians can occur either through sexual propagules (larvae and adult colonies) 

or asexually-derived fragments. Since the larval stage is very short, often lasting only 

minutes to a few hours (Lambert & Lambert 2003), and settled adults have limited 

mobility (Lambert 2005), the generation and spread of colony fragments has often been 

cited as a potentially important mechanism of secondary spread (Lambert 2005; Carver et 

al. 2006). Additionally, a recent study demonstrated that three of the most notorious 

invasive colonial ascidians (Botrylloides violaceus, Botryllus schlosseri and Didemnum 

vexillum) can easily reattach to substrata following fragmentation under laboratory 

conditions (Bullard et al. 2007).  

My genetic analyses of 25 established populations suggest that although dispersal of B. 

violaceus fragments is limited, it can be prevalent near infested aquaculture facilities. The 

sampling design allowed me to investigate the extent of fragment dispersal mostly at 
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regional (i.e. along approximately 500 km of coastline on the West and East coasts; Fig. 

2.1) and finer scales (i.e. within sampling locations). At the regional scale, the importance 

of fragment dispersal was limited. Only genotype C4 was sampled independently at Deep 

Bay and Ladysmith, locations situated approximately 90 km apart (Appendix S2.4). Since 

these two populations were collected from local marinas, hull fouling is the most likely 

vector that could have facilitated exchange of colonies between sites. Ships heavily 

fouled with B. violaceus have been observed in other locations, such as Prince Edward 

Island (Locke et al. 2009) and Newfoundland (Callahan et al. 2010), and are a primary 

vector responsible for the spread of colonial ascidians (Dijkstra et al. 2007). 

The majority of multilocus genotypes (26/27) were restricted at smaller spatial scales, 

within populations, where each clone was encountered between one and seven times 

(Appendix S2.4). The highest number of clones (7) was identified for the Lemmens Inlet 

(LMI) population on the West coast, which was sampled in an infested aquaculture 

facility. The same pattern was observed on the East coast, where most clones were 

detected in aquaculture sites such as Cardigan River (CRV; 4 clones) and Saint Peter’s 

Bay (SPB; 3 clones). This pattern may be a consequence of the removal of B. violaceus 

colonies (and other fouling organisms) from contaminated aquaculture gear using high-

pressure seawater, a common practice that may in fact facilitate fragmentation (Paetzold 

& Davidson 2010). An increase in local infestations and spread through surviving asexual 

propagules may, therefore, be expected if this management strategy is used to counteract 

problems associated with ascidian invaders in aquaculture facilities. 
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On the invasion history of B. violaceus in North America 

The observed distribution of genetic variation between the West and East coasts allows 

me to formulate several conclusions regarding the invasion history of B. violaceus in 

North America. On the West coast, California and Northwest populations are highly 

genetically diferentiated (Fig. 2.4A, Appendices S2.3, S2.7). Two competing scenarios 

are compatible with this strong genetic structure: multiple, independent introductions 

from genetically diferentiated populations from the native range, or in situ, gradual 

divergence following a single colonization. Overall, historical records appear to support 

the scenario of multiple West coast introductions. Although the first confirmed North 

American occurrence of the species is attributed to southern California in the early 1970s 

(Fay & Vallee 1979), B. violaceus was recorded at about the same time in surveys 

conducted approximately 1,500 km north at Puget Sound (Dr. G. Lambert, personal 

communication). Alternatively, the limited natural dispersal capacity of B. violaceus 

could provide ample opportunities for in situ differentiation following a single 

introduction, driven by genetic drift. This scenario is less likely, given that similar genetic 

differentiation did not evolve between the California and East coast samples (also 

founded in the 1970s, Carlton 1989), which, on the contrary, show a high degree of 

genetic resemblance (see below). 

On the East coast, all sampled populations were genetically similar to Bodega Bay (Figs. 

2.3, 2.4A). This finding suggests that the East coast invasion was founded either from 

California or from a native population that is genetically similar to Bodega Bay. 

Historical records support a West coast origin of the East coast invasion, and indicate the 

initial introduction occurred in 1972, when approximately 20 microscope slides with B. 
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violaceus from southern California were suspended from the Marine Biological 

Laboratory Dock in Woods Hole, Massachusetts, for studies of historecognition (Carlton 

1989; Yund & Feldgarden 1992; Grosholz 2001). Considering that prior to this date the 

conspicuous bright orange colonies of the species were not recorded in the region (Van 

Name 1945), it is likely that this experiment coincided with the actual introduction event. 

Although the assignment test indicated that contemporary transport of B. violaceus 

propagules from the West to the East coast might still occur (Table 2.3), this possibility 

needs to be investigated further by studies undertaking a broader geographic coverage of 

samples, including a detailed, comprehensive coverage of the native range. Results 

presented here should serve as stimulus for future research aiming to resolve this issue 

and clarify the colonization history of this globally invasive species. 

2.5 CONCLUSIONS 

My results provide strong evidence that the invasion of B. violaceus in North America 

was linked to highly contrasting patterns of post-establishment spread within the two 

sampling regions analysed. Since similar patterns may very well have been shaped in 

other invasive species, I highlight the necessity of considering multiple invaded spatial 

ranges in genetic surveys of NIS. Evidence presented here indicates that colony 

fragmentation and regeneration may have a limited contribution to the regional dispersal 

of colonial ascidians. However, in aquaculture facilities, the treatment of fouled 

equipment with high pressure seawater, unless performed on land, may inadvertently lead 

to an increase in local infestations and should be avoided. 
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Table 2.1: Locations of Botrylloides violaceus sampling and genetic diversity indices for mitochondrial and microsatellite markers 

with NC, sample size including clonal genotypes; N, sample size after removal of clones; Nh, number of haplotypes; h, haplotype 

diversity; π, nucleotide diversity; NA, number of alleles; NAP, the number of private alleles for each sampling site; A, allelic richness; 

HO, mean observed heterozygosity; HE, mean expected heterozygosity. 

Location  ID mtDNA  Microsatellite 

NC N Nh Haplotype codes h π NC N NA NAP A HO HE 

West Coast                

Deep Bay, BC DPB 22 18 3 Bv1; Bv2; Bv10 0.386 0.007  19 15 53 2 3.3 0.568 0.576 

French Creek, BC FRC 24 21 2 Bv1; Bv2 0.095 0.001  17 14 51 1 3.3 0.571 0.569 

Lemmens Inlet, BC LMI 48 37 4 Bv1; Bv2; Bv3; Bv11 0.417 0.004  53 42 90 3 4.0 0.511 0.612 

Ladysmith, BC LSM 26 21 4 Bv1; Bv2; Bv8; Bv9 0.610 0.010  20 15 49 0 3.2 0.429 0.601 

Sydney, BC SYD 32 31 1 Bv1 0.000 0.000  32 31 61 1 3.4 0.434 0.554 

  
Victoria, BC VIC 31 30 1 Bv1 0.000 0.000  32 31 68 2 3.7 0.562 0.643 

Lopez Island, WA LPI 30 30 3 Bv1; Bv2; Bv3 0.522 0.008  30 30 77 2 3.8 0.472 0.596 

  
Neah Bay, WA NHB 30 30 3 Bv1; Bv2; Bv3 0.503 0.008  30 30 89 1 4.4 0.545 0.704 

  
Sequin, WA SQN 30 30 1 Bv1 0.000 0.000  30 30 83 1 4.0 0.553 0.641 

  
Brinnon, WA BRN 30 30 3 Bv1; Bv3; Bv9 0.549 0.009  28 28 75 5 4.0 0.517 0.621 

  
Bodega Bay, CA BBY 35 35 2 Bv1; Bv8 0.363 0.001  34 34 86 4 3.9 0.487 0.604 

  
Total  338 313 7  0.313 0.005  325 300 155 22 3.7 0.514 0.611 

East Coast                

St. Peter’s Bay, PEI SPB 38 33 1 Bv1 0.000 0.000  44 39 57 0 3.3 0.468 0.561 

  
Savage Harbour, PEI SHB 45 43 1 Bv1 0.000 0.000  50 50 62 0 3.5 0.613 0.610 
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Cardigan River, PEI CRV 42 38 1 Bv1 0.000 0.000  45 41 64 1 3.5 0.531 0.600 

Aspy Bay, NS APY 29 29 2 Bv1; Bv3 0.133 0.002  29 29 57 0 3.4 0.545 0.601 

South Bar, NS SBR 30 29 2 Bv1; Bv3 0.133 0.002  28 27 59 1 3.5 0.484 0.599 

Petit de Grat, NS PDG 23 23 2 Bv1; Bv3 0.166 0.002  24 24 60 0 3.5 0.567 0.604 

  
Chester, NS CHT 12 12 1 Bv1 0.000 0.000  13 13 49 0 3.2 0.518 0.561 

  
Martin’s Cove, NS MCV 15 15 1 Bv1 0.000 0.000  17 17 51 0 3.4 0.526 0.621 

Black Harbour, NS BKH 13 12 1 Bv1 0.000 0.000  16 15 55 3 3.6 0.554 0.652 

  
Lunenburg, NS LNB 20 20 2 Bv1; Bv3 0.100 0.002  22 22 67 1 3.9 0.515 0.662 

  
Methegan, NS MTG 7 7 1 Bv1 0.000 0.000  7 7 39 0 3.0 0.478 0.576 

Lockeport, NS LKP 8 8 1 Bv1 0.000 0.000  8 8 54 1 3.8 0.461 0.612 

  
Ingomar, NS IGM 7 7 1 Bv1 0.000 0.000  10 10 51 0 3.5 0.472 0.579 

Mystic Harbor, CT MYH 17 15 1 Bv1 0.000 0.000  20 18 52 0 3.2 0.532 0.559 

Total  306 291 2  0.038 0.001  335 320 110 7 3.4 0.518 0.600 
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Table 2.2: Analysis of molecular variance (AMOVA) results on Botrylloides 

violaceus mtDNA and microsatellite data for East vs. West coast population 

grouping. All fixation indices are statistically significant.  

Source of variation d.f. 
Variance 

components 

% 

variation 

Fixation 

indices  
P value 

mtDNA 
     

Between coasts 
1 0.295 Va 18.25 FCT: 0.182  0.0332 

Among populations 

within coasts 
23 0.538 Vb 

33.30 
FSC: 0.407 0.0000 

Within populations 
579 0.782 Vc 48.46 FST: 0.515 0.0000 

Microsatellite   
    

Between coasts 1 
0.122 Va 6.42 FCT: 0.064 0.0000 

Among populations 

within coasts 
23 

0.208 Vb 10.93 FSC: 0.117 0.0000 

Within populations 1215 
1.570 Vc 82.65 FST: 0.173 0.0000 
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Table 2.3: Results of assignment test, with source populations listed by column and recipient populations by row. Populations on 

the West coast are separated by a box in the upper left corner. Individuals assigned to the sampling site where they were collected 

are indicated in bold along the diagonal. Populations with sample size of less than 10 individuals (N < 10) were not included.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

                        

1. DPB 14 1                      

2. FRC  13  1                    

3. LMI   38    1 1  2              

4. LSM 6   9                    

5. SYD 2   2 24     2              

6. VIC 1     29  1                

7. LPI 2      26   2              

8. NHB        29 1               

9. SQN        2 28               

10. BRN          28              

11. BBY        1   32     1        

12. SPB            33 3 3          

13. SHB        1    1 43 3 2         

14. CRV            4 1 36          

15. APY            9 6  14         

16. SBR            1    26        

17. PDG                 22  1     

18. CHT                  13      

19. MCV                   17     

20. BKH                    14 1   

21. LNB        2   2        2  16   

22. IGM           1           9  

23. MYH           3            15 
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Figure 2.1 - Sampling locations for the violet tunicate Botrylloides violaceus on the West and East coasts of North America, with 

locality names defined in Table 2.1. Inset maps show the focal sampling regions on each coast. 
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Figure 2.2 - Statistical parsimony network of Botrylloides violaceus cytochrome c 

oxidase subunit I (COI) haplotypes. Circle size is proportional to haplotype frequency, 

and small black dots indicate unsampled haplotypes inferred from the data. The 

nonsynonymous substitution is indicated by an asterisk. Groups 1 and 2 correspond to 

clades well supported by the neighbour-joining and maximum likelihood phylogenetic 

analyses (Appendix S2.2).
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Figure 2.3 - Three dimensional factorial correspondence analysis (3D-FCA) of 

Botrylloides violaceus microsatellite data showing clustering between North American 

West coast (dark grey) and East coast (light grey) sites. Bodega Bay population (BBY) 

clusters tightly in the analysis with East coast populations. Sampling sites with less 

than 15 individuals (N < 15) were not considered for this analysis.
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Figure 2.4 - Bayesian clustering of Botrylloides violaceus genotypes performed in STRUCTURE for all samples (A) and each 

of the two main genetic clusters (B; C). Each individual is represented by a thin vertical line, which is partitioned into K = 2 

segments representing the individual’s estimated proportional membership (Q). Sampling sites are separated by black lines. For 

(A) dark grey corresponds to cluster S1 and light grey to cluster S2. Different shades of grey are used to represent two genetic 

clusters in each data subset. 
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Figure 2.5 - Results of isolation by distance (IBD) analysis performed using 

microsatellite  data for West coast (A), Northwest coast (B), and East coast (C) 

Botrylloides violaceus populations. 
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Appendix S2.1: Occurrence and frequency of Botrylloides violaceus mtDNA COI haplotypes for 25 North American locations. 

Location 
Haplotype 

Bv1 

 

Bv2 

 

Bv3 

 

Bv8 

 

Bv9 

 

Bv10 

 

Bv11 

 West Coast        

Deep Bay, BC 0.78 0.17 - - - 0.05 - 

French Creek, BC 0.95 0.05 - - - - - 

Lemmens Inlet, BC 0.11 0.05 0.76 - - - 0.08 

Ladysmith, BC 0.57 0.28  0.10 0.05 - - 

Sydney, BC 1.00 - - - - - - 

Victoria, BC 1.00 - - - - - - 

Lopez Island, WA 0.37 0.03 0.60 - - - - 

Neah Bay, WA 0.63 0.03 0.33 - - - - 

Sequin, WA 1.00 - - - - - - 

Brinnon, WA 0.50 - 0.47 - 0.03 - - 

Bodega Bay, CA 0.77 - - 0.23 - - - 

East Coast        

St. Peter’s Bay, PEI 1.00 - - - - - - 

Savage Harbour, PEI 1.00 - - - - - - 

Cardigan River, PEI 1.00 - - - - - - 

Aspy Bay, NS 0.93 - 0.07 - - - - 

South Bar, NS 0.93 - 0.07 - - - - 

Petit de Grat, NS 0.91 - 0.09 - - - - 

Chester, NS 1.00 - - - - - - 

Martin’s Cove, NS 1.00 - - - - - - 

Black Harbour, NS 1.00 - - - - - - 

Lunenburg, NS 0.95 - 0.05 - - - - 

Methegan, NS 1.00 - - - - - - 

Lockeport, NS 1.00 - - - - - - 

Ingomar, NS 1.00 - - - - - - 

Mystic Harbor, CT 1.00 - - - - - - 
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Appendix S2.2: Neighbor-joining phylogenetic reconstruction of Botrylloides violaceus 

cytochrome c oxidase subunit I (COI) haplotypes. Numbers at phylogenetic nodes 

indicate the neighbor-joining and maximum-likelihood bootstrap support with 1,000 

replicates. The number of samples possessing each haplotype is presented in brackets. 
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Appendix S2.3: Pairwise ФST comparisons for Botrylloides violaceus populations using the COI marker. *Significant (P < 0.05); ** 

remains significant after sequential Bonferroni correction (Rice 1989). Populations on the East coast are separated by a box in the 

upper left corner. 

 SPB SHB CRV APY SBR PDG CHT MCV BKH LNB MTG LKP IGM MYH DPB FRC LMI LSM SYD VIC LPI NHB SQN BRN 

SPB                         

SHB 0.00                        

CRV 0.00 0.00                       

APY 0.04 0.06 0.05                      

SBR 0.04 0.06 0.05 -0.04                     

PDG 0.07 0.09 0.08 -0.04 -0.04                    

CHT 0.00 0.00 0.00 -0.01 -0.01 0.00                   

MCV 0.00 0.00 0.00 0.00 0.00 0.02 0.00                  

BKH 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 0.00                 

LNB 0.03 0.04 0.03 -0.04 -0.04 -0.04 -0.03 -0.02 -0.03                

MTG 0.00 0.00 0.00 -0.05 -0.05 -0.04 0.00 0.00 0.00 -0.07               

LKP 0.00 0.00 0.00 -0.04 -0.04 -0.02 0.00 0.00 0.00 -0.06 0.00              

IGM 0.00 0.00 0.00 -0.05 -0.05 -0.04 0.00 0.00 0.00 -0.07 0.00 0.00             

MYH 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 -0.02 0.00 0.00 0.00            

DPB 0.25* 0.29* 0.27* 0.07 0.07 0.03 0.13 0.15 0.13 0.08 0.07 0.09 0.07 0.15           

FRC 0.02 0.04 0.03 -0.04 -0.04 -0.03 -0.03 -0.02 -0.03 -0.05 -0.07 -0.06 -0.07 -0.02 0.08          

LMI 0.85** 0.86** 0.86** 0.76** 0.76** 0.74** 0.79** 0.80** 0.79** 0.77** 0.77** 0.78** 0.77** 0.80** 0.59** 0.77**         

LSM 0.34** 0.39** 0.36** 0.18* 0.18* 0.14* 0.21* 0.23* 0.21* 0.18* 0.15 0.17 0.15 0.23 -0.01 0.18* 0.44**        

SYD 0.00 0.00 0.00 0.04 0.04 0.07 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.24* 0.02 0.84** 0.33**       

VIC 0.00 0.00 0.00 0.04 0.04 0.06 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.24* 0.02 0.84** 0.33** 0.00      

LPI 0.63** 0.67** 0.65** 0.50** 0.50** 0.45** 0.52** 0.54** 0.52** 0.49** 0.48* 0.49* 0.48* 0.54** 0.26* 0.50** 0.13* 0.13* 0.62** 0.62**     

NHB 0.35** 0.39** 0.37** 0.20* 0.20* 0.16* 0.24* 0.26* 0.24* 0.21* 0.20* 0.21* 0.20* 0.26* 0.01 0.21* 0.42** -0.01 0.35** 0.34* 0.10    

SQN 0.00 0.00 0.00 0.04 0.04 0.06 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.24* 0.02 0.84** 0.33** 0.00 0.00 0.62** 0.34**   

BRN 0.49** 0.53** 0.51** 0.34* 0.34* 0.29* 0.37* 0.39* 0.37* 0.34* 0.32* 0.33* 0.32* 0.39* 0.12* 0.35* 0.27* 0.03 0.48** 0.47** 0.00 0.00 0.47**  

BBY 0.20* 0.23* 0.21* 0.12* 0.12* 0.12* 0.12 0.13 0.12 0.12* 0.08 0.09 0.08 0.13 0.22* 0.12* 0.81** 0.28** 0.19* 0.19* 0.59** 0.33** 0.19* 0.45** 
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Appendix S2.4: Clonal genotypes observed in the dataset with N, 

number of times the genotype appears in the dataset; Ngen, number of 

genotypes in the population of origin; Psib, probability of identity 

considering strict sibs reproduction; PHW, probability of identity under 

Hardy-Weinberg equilibrium. Clonal genotypes shared between locations 

are indicated with an asterisk. 

 
Genotype Location N Ngen Psib PHW 
West Coast      

C1 - DPB Deep Bay 3 19 0.007 6.88 x 10
-8

 

C2 - DPB Deep Bay 2 19 0.005 9.27 x 10
-9

 

C3 - DPB Deep Bay 2 19 0.010 1.63 x 10
-6

 

C4 - DPB* 
Deep Bay 1 19 0.006 3.75  x 10

-8
 

Ladysmith 1 21 

C5 - FRC French Creek 2 17 0.004 1.29 x 10
-8

 

C6 - FRC French Creek 2 17 0.009 7.06 x 10
-7

 

C7 - FRC French Creek 2 17 0.003 4.66 x 10
-11

 

C8 - LMI Lemmens Inlet 2 53 0.009 9.31 x 10
-7

 

C9 - LMI Lemmens Inlet 2 53 0.011 3.41 x 10
-7

 

C10 - LMI Lemmens Inlet 2 53 0.010 5.97 x 10
-7

 

C11 - LMI Lemmens Inlet 8 53 0.012 2.60 x 10
-6

 

C12 - LMI Lemmens Inlet 2 53 0.007 1.89 x 10
-8

 

C13 - LSM Ladysmith 2 21 0.002 3.70 x 10
-11

 

C14 - LSM Ladysmith 2 21 0.004 1.06 x 10
-9

 

C15 - LSM Ladysmith 2 21 0.007 2.36 x 10
-7

 

C16 - LSM Ladysmith 2 21 0.012 4.73 x 10
-7

 

C17 - LSM Ladysmith 2 21 0.005 3.48 x 10
-9

 

C18 - SYD Sydney 2 32 0.006 1.38 x 10
-8

 

C19 - VIC Victoria 2 32 0.009 1.00 x 10
-6

 

East Coast      

C20 - SPB Saint Peter’s Bay 2 44 0.012 5.22 x 10
-6

 

C21 - SPB Saint Peter’s Bay 3 44 0.008 2.69 x 10
-6

 

C22 - SPB Saint Peter’s Bay 3 44 0.009 1.19 x 10
-6

 

C23 - CRV Cardigan River 4 45 0.006 3.04 x 10
-7

 

C24 - CRV Cardigan River 2 45 0.005 2.90 x 10
-8

 

C25 - SBR South Bar 2 28 0.010 4.47 x 10
-6

 

C26 - BKH Black Harbour 2 16 0.002 1.93 x 10
-12

 

C27 - MYH Mystic Harbour 3 20 0.011 5.34 x 10
-6
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Locus 
Allele West Coast East Coast 

DPB FRC LMI LSM SYD VIC LPI NHB SQN BRN BBY SPB SHB CRV APY SBR PDG CHT MCV BKH LNB MTG LKP IGM MYH 

Bv2 188 0.07 - - - 0.02 - 0.03 - - - - - 0.03 0.03 - - - - - - - - - - - 

 191 - - - - - - - - - - 0.02 - - - - - - - - - - - - - - 

 197 0.04 - 0.01 - - - 0.03 0.02 0.06 0.04 0.03 - - 0.01 - 0.02 - - 0.07 0.11 0.05 0.29 - 0.10 - 

 200 0.04 - - - - - - - 0.02 - - 0.04 - - - - - - - 0.07 - - - 0.05 - 

 203 0.04 - 0.01 - 0.02 0.48 - 0.08 0.17 - 0.52 0.64 0.50 0.53 0.64 0.69 0.94 0.65 0.70 0.39 0.41 0.36 0.56 0.45 0.75 

 207 - - - - - - - - - 0.06 - - - - - - - - - - - - - - - 

 210 - - - - - - 0.02 0.02 - - - - - - - - - - - - - - - - - 

 212 0.32 0.27 0.64 0.27 0.42 0.18 0.47 0.38 0.11 0.30 0.40 0.32 0.29 0.21 0.26 0.29 0.04 0.35 0.23 0.43 0.55 0.36 0.44 0.40 0.25 

 215 - - 0.07 - 0.31 - - - 0.15 0.19 - - - - - - - - - - - - - - - 

 218 0.11 0.27 0.04 0.27 0.23 0.24 0.05 0.26 0.46 0.07 0.02 - - - - - - - - - - - - - - 

 221 0.39 0.46 0.23 0.47 0.02 0.10 0.40 0.24 0.04 0.35 0.03 - 0.18 0.22 0.10 - 0.02 - - - - - - - - 

Bv4 172 - - - - - - - 0.02 - - - - - - - - - - - - - - - - - 

 178 0.11 - 0.21 0.03 0.11 0.18 0.45 0.35 0.13 0.61 0.14 0.12 0.15 0.28 0.03 0.11 0.06 - - - 0.05 0.29 0.25 0.20 0.25 

 180 0.07 0.27 0.07 0.20 0.29 0.03 0.15 0.06 0.04 0.13 - - - - - 0.02 - - - - - - - - - 

 182 - - 0.04 - - 0.05 - 0.07 0.04 - 0.03 - - - - 0.09 0.25 0.62 0.24 0.10 0.23 0.07 0.38 0.05 0.25 

 184 0.21 0.08 0.17 0.23 0.05 0.07 0.23 0.11 0.43 0.09 0.11 0.42 0.48 0.43 0.62 0.02 0.40 0.19 0.24 0.23 0.16 - 0.25 0.15 0.06 

 186 0.50 0.62 0.51 0.53 0.55 0.68 0.17 0.39 0.38 0.18 0.70 0.46 0.35 0.24 0.35 0.69 0.29 0.19 0.53 0.67 0.57 0.64 0.13 0.60 0.33 

 188 0.04 - - - - - - - - - - - - - - - - - - - - - - - - 

 194 - - - - - - - - - - 0.03 - - - - 0.07 - - - - - - - - - 

 196 0.04 0.04 - - - - - - - - - - - - - - - - - - - - - - - 

 198 0.04 - - - - - - - - - - - - - - - - - - - - - - - - 

 200 - - - - - - - - - - - - 0.02 0.01 - - - - - - - - - - 0.06 

 212 - - - - - - - - - - - - - 0.04 - - - - - - - - - - 0.06 

Bv5 187 - 0.15 0.10 - 0.02 0.11 0.20 0.22 0.10 0.19 0.27 0.15 0.11 0.04 0.09 0.18 0.04 0.08 - 0.04 0.10 - 0.07 - 0.09 

 189 - - - - - 0.13 - 0.05 0.38 - 0.13 - 0.01 - - - - - - - - - - - - 

 191 - - - - - 0.05 - - 0.02 - 0.08 0.28 0.44 0.34 0.41 0.05 0.13 0.33 0.41 0.29 0.28 - - 0.11 0.12 

 193 - - 0.04 - - - 0.04 - 0.02 0.04 - - - - - - - - - - - - - - - 

 195 0.50 - 0.02 0.50 0.10 0.03 0.04 0.08 0.12 0.19 0.03 0.05 0.11 0.22 - - - 0.21 - - 0.05 - - 0.06 0.06 

Appendix S2.5: Microsatellite allele frequency for Botrylloides violaceus from 25 locations in the North American invaded range 
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 197 0.50 0.55 0.72 0.42 0.65 0.45 0.68 0.43 0.24 0.35 0.12 0.01 0.03 - 0.07 0.33 0.44 0.04 0.09 0.18 0.33 0.50 0.29 0.17 0.21 

 199 - - 0.04 0.08 0.24 - - - - - 0.10 - - - - 0.08 0.07 0.17 0.03 0.14 0.10 - - 0.39 - 

 201 - 0.30 0.09 - - 0.23 0.05 0.22 0.12 0.23 0.27 0.50 0.29 0.41 0.43 0.38 0.33 0.17 0.47 0.36 0.15 0.50 0.64 0.28 0.53 

Bv6 173 - - - - - - - - - - 0.02 - - - - - - - - - - - - - - 

 203 - - 0.07 - - 0.03 - - - - 0.03 - - - - - - - - - - - - - - 

 215 0.46 0.15 0.46 0.21 0.13 0.44 0.73 0.28 0.10 0.45 0.02 0.18 0.18 0.24 0.17 0.08 0.17 0.04 0.38 0.37 0.16 - 0.14 - - 

 217 0.21 0.23 0.40 0.50 0.76 0.42 0.10 0.52 0.87 0.55 0.72 0.44 0.25 0.34 0.31 0.60 0.59 0.77 0.44 0.47 0.46 0.67 0.71 0.85 0.59 

 219 0.14 0.04 0.01 0.11 0.11 - - 0.10 - - 0.09 - - - - - 0.15 0.04 0.09 0.17 0.02 0.17 - 0.05 - 

 221 0.18 0.27 0.01 0.18 - 0.11 0.05 - - - 0.03 0.10 0.15 0.08 0.22 0.25 0.04 - - - 0.16 0.08 0.07 - 0.15 

 223 - 0.08 - - - - - - 0.03 - - - - - - - - - - - - - - - - 

 229 - 0.23 0.04 - - - 0.12 0.10 - - 0.10 0.28 0.43 0.34 0.29 0.08 0.04 0.15 0.09 - 0.21 0.08 0.07 0.10 0.27 

Bv7 112 0.10 0.38 0.10 0.07 0.08 0.19 0.29 0.08 0.17 0.29 0.14 0.10 0.03 0.05 - - - - - - - - - - 0.08 

 114 - - - - - - 0.04 0.02 0.02 - - - - - - - - - - - - - - - - 

 118 0.05 - 0.05 - - 0.13 - 0.20 0.07 - 0.05 0.19 0.38 0.30 0.39 0.06 0.31 0.08 0.06 0.17 0.05 0.29 0.19 0.17 0.08 

 120 0.15 - 0.06 0.03 - - 0.21 0.08 - 0.06 - - - - - - - - - - - - - - - 

 124 - - 0.05 - - - - 0.02 - 0.04 - - - - - - - - - - - - - - - 

 128 0.15 - 0.05 0.03 - 0.29 0.02 0.07 0.02 - 0.61 0.16 0.19 0.09 0.22 0.39 0.19 0.19 0.18 0.10 0.27 0.29 0.50 0.06 0.36 

 136 0.35 0.46 0.31 0.37 0.68 - 0.19 0.10 0.02 0.33 0.03 - - - - - - - - - - - - - - 

 140 - - - - - - - - - 0.02 - - - - - - - - - - - - - - - 

 142 - - - 0.20 0.13 0.02 0.02 - 0.03 - - - - - - - - - - - - - - - - 

 144 - - - - - - 0.13 0.10 0.02 0.02 0.06 - - - - - 0.23 0.04 0.09 0.17 0.18 0.14 0.19 0.61 - 

 146 

- - 0.20 0.20 0.08 0.29 0.02 0.10 0.21 - 0.05 0.15 0.19 0.23 0.09 0.26 0.04 0.12 0.15 0.17 0.32 0.29 - 0.17 0.11 
 

 148 - - 0.04 - - 0.08 - - 0.05 - 0.03 0.25 0.18 0.20 0.17 0.24 0.23 0.58 0.53 0.40 0.16 - 0.13 - 0.33 

 150 - - 0.09 - - - 0.02 - - 0.02 - - - - - - - - - - - - - - - 

 152 - - 0.05 - - - 0.02 0.12 0.05 0.08 0.03 - - - - - - - - - - - - - 0.03 

 154 - - - - - - 0.02 0.02 0.17 0.06 - 0.04 0.03 0.01 0.07 0.02 - - - - - - - - - 

 156 - - 0.01 - 0.02 - - 0.10 0.17 0.02 - 0.09 - 0.04 0.06 0.04 - - - - 0.02 - - - - 

 158 - - - - - - - - - 0.04 - - - - - - - - - - - - - - - 

 160 - - - - - - 0.02 - - - - - - - - - - - - - - - - - - 
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 162 - 0.04 - 0.03 - - - - - - - - - - - - - - - - - - - - - 

 172 - - 0.01 - - - - - - - - - - - - - - - - - - - - - - 

 176 0.15 0.08 - 0.07 - - - - - - - 0.02 - 0.07 - - - - - - - - - - - 

 186 0.05 0.04 - - - - - - - - - - - - - - - - - - - - - - - 

Bv8 95 - - - - - - 0.04 - - - - - - - - - - - - - - - - - - 

 97 - - 0.01 - - - - - - - - - - - - - - - - - - - - - - 

 99 - - 0.07 - 0.15 0.15 0.08 0.26 0.28 0.04 0.27 0.26 0.35 0.45 0.28 0.28 0.13 0.08 - - 0.09 - 0.56 0.30 0.27 

 101 1.00 1.00 0.77 0.83 0.77 0.60 0.60 0.35 0.62 0.92 0.46 0.74 0.57 0.49 0.66 0.44 0.58 0.46 0.81 0.70 0.75 0.64 0.38 0.50 0.53 

 103 - - - - - - - - - 0.04 - - - - - - - - - - - - - - - 

 105 - - 0.02 - 0.03 0.05 0.04 - - - 0.05 - - - 0.05 0.04 - - - - - 0.36 - 0.15 - 

 106 - - 0.01 - 0.05 0.05 0.04 0.14 0.02 - 0.11 - 0.08 0.07 0.02 0.13 0.29 0.08 0.16 0.13 0.07 - 0.06 0.05 - 

 107 - - 0.04 0.17 - - 0.15 0.10 0.08 - 0.08 - - - - 0.11 - 0.39 0.03 0.17 0.09 - - - 0.21 

 109 - - - - - 0.07 - - - - - - - - - - - - - - - - - - - 

 110 - - 0.02 - - - - 0.05 - - - - - - - - - - - - - - - - - 

 111 - - 0.05 - - 0.02 - 0.05 - - 0.05 - - - - - - - - - - - - - - 

 113 - - - - - 0.08 0.04 0.05 - - - - - - - - - - - - - - - - - 

Bv9 88 - - - - - - - - - - 0.02 0.19 0.13 0.13 0.10 - 0.10 - - - - - - - - 

 100 0.04 0.06 0.14 - 0.08 0.02 - 0.03 - 0.03 0.16 0.03 0.09 0.03 - - - - - - 0.05 - 0.36 0.13 0.03 

 102 0.31 - - 0.04 0.19 0.31 0.05 - 0.02 0.03 - - - - - - - - - - - - - - - 

 104 - - 0.05 - - 0.02 0.10 0.18 0.30 0.05 0.25 0.47 0.46 0.54 0.47 0.29 0.38 0.69 0.09 0.30 0.26 0.17 0.14 0.06 0.86 

 106 - - 0.10 - 0.15 - - 0.03 - 0.05 - - 0.01 - - - - - - - 0.02 - - - - 

 110 - - 0.01 - 0.05 0.10 - 0.20 0.02 0.05 0.03 - - - - - 0.21 0.04 - - - 0.17 - 0.06 - 

 112 - - 0.04 - 0.03 0.07 0.03 0.02 0.05 0.05 - - - - - - - - 0.13 - 0.02 - - - - 

 114 - 0.06 0.23 0.08 - 0.10 0.25 0.13 0.17 0.11 0.18 0.22 0.12 0.14 0.24 0.25 0.27 - 0.50 0.20 0.21 0.67 0.29 0.75 - 

 116 - - 0.11 - - 0.13 - 0.03 - - - - - - - - - - - - - - - - - 

 120 - - - - - - - - - - 0.02 - - - - - - - - - - - - - - 

 126 0.58 0.06 0.11 0.39 0.36 0.02 0.43 0.10 0.03 0.32 - - - - - - - - - - - - - - - 

 128 - - - - - - - - - - - - - - - - - - 0.06 0.07 - - - - - 

 130 - - - - - - - 0.02 0.02 0.13 - - - - - - - - - - - - - - - 

 134 - 0.11 - - - - - - - - - - - - - - - - - - - - - - - 
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 138 - 0.22 0.06 - - - - - 0.02 - - - - - - - - - - - - - - - - 

 140 - - - - - - - - - - - - - - - - - - - - 0.02 - - - - 

 142 - - - 0.04 - - - 0.02 - - 0.06 - 0.02 - 0.02 0.06 - 0.12 0.03 0.07 0.07 - - - 0.06 

 144 0.08 0.33 0.08 - 0.05 0.24 0.08 0.20 0.18 0.05 0.24 0.07 0.07 0.08 0.12 0.15 - 0.12 0.19 0.37 0.21 - 0.07 - - 

 146 - - - - - - 0.05 0.02 0.05 0.13 - - 0.01 0.03 - - 0.02 0.04 - - - - - - - 

 148 - - - - - - 0.03 - - - - 0.03 0.09 0.06 0.05 0.04 0.02 - - - - - 0.07 - 0.06 

 152 - - 0.06 0.46 0.03 0.02 - 0.02 - - 0.03 - - - - - - - - - 0.02 - - - - 

 154 - 0.17 0.02 - 0.07 - - - 0.02 - - - - - - - - - - - - - - - - 

 162 - - - - - - - - 0.13 - 0.03 - - - - 0.21 - - - - 0.10 - 0.07 - - 

Bv12 177 - - - - - 0.05 0.03 - 0.06 - 0.02 - - - - - - - - - - - - - - 

 179 - - - - - - - - - - - - - - - - - - - 0.04 - - - - - 

 181 - - - - - - - - - - - - - - - - - - - 0.04 - - - - - 

 183 - 0.45 0.06 0.50 0.18 - 0.17 0.21 0.52 0.02 0.30 0.17 0.11 0.04 0.31 0.02 0.11 0.21 0.27 0.27 0.11 0.29 0.06 0.50 0.31 

 187 0.75 0.50 0.78 0.50 0.73 0.65 0.65 0.35 0.33 0.71 0.32 - 0.06 0.04 0.07 0.14 0.30 0.17 0.60 0.65 0.46 0.64 0.63 0.35 0.09 

 189 0.25 - 0.16 - 0.08 0.27 0.15 0.40 0.06 0.14 0.05 - 0.01 0.05 0.07 - 0.02 - 0.13 - 0.30 0.07 - - 0.47 

 193 - 0.05 - - 0.02 0.03 - 0.04 0.02 0.14 0.32 0.83 0.82 0.88 0.55 0.84 0.57 0.63 - - 0.14 - 0.31 0.15 0.13 

Bv13 116 - - - - - - - - - - - 0.05 0.14 0.22 0.03 0.06 0.02 - - - - - - 0.06 0.06 

 120 - - - - - - - - - - - - - - - - - - - 0.03 - - - - - 

 122 0.17 0.18 0.30 0.20 0.34 0.47 0.27 0.55 0.38 0.11 0.73 0.69 0.54 0.60 0.48 0.44 0.48 0.50 0.18 0.27 0.36 0.57 0.44 0.61 0.25 

 124 - - 0.01 - - 0.18 0.02 0.02 0.37 - 0.18 0.06 0.21 0.01 0.07 0.13 0.04 0.27 0.50 0.50 0.41 0.07 0.38 0.17 0.33 

 126 0.83 0.82 0.33 0.80 0.61 0.36 0.67 0.30 0.12 0.32 0.08 0.09 0.05 0.15 0.33 - 0.46 0.23 0.27 0.10 0.14 0.14 0.06 0.11 0.19 

 128 - - 0.36 - 0.05 - 0.05 0.13 0.13 0.20 - - - - - 0.02 - - - - - - - - - 

 130 - - - - - - - - - 0.02 - - - - - - - - - - - - - - - 

 132 - - - - - - - - - 0.36 0.02 0.10 0.06 0.02 0.09 0.35 - - 0.06 0.10 0.09 0.21 0.13 0.06 0.17 

Bv15 173 - - 0.01 - - - - - - - - - - - - - - - - - - - - - - 

 175 - 0.04 - - - - - - 0.02 - - 0.03 - 0.01 - - - - - - - - - - - 

 177 0.68 0.89 0.42 0.27 0.48 0.69 0.45 0.59 0.83 0.43 0.99 0.90 0.80 0.86 0.83 0.85 0.63 0.73 0.59 0.63 0.77 0.50 0.88 0.85 0.94 

 179 - - 0.13 - 0.07 - - - - - - - - - 0.02 - - - - - - - - - - 

 181 0.32 0.07 0.43 0.53 0.39 0.31 0.53 0.41 0.08 0.57 0.02 0.08 0.10 0.07 0.05 - 0.33 0.27 0.41 0.37 0.21 0.50 0.06 0.15 - 

 183 - - - - - - - - - - - - - 0.01 - - - - - - - - - - - 
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 185 - - - - - - - - 0.07 - - - 0.10 0.05 0.10 0.15 0.04 - - - 0.02 - 0.06 - 0.06 

 187 - - 0.01 0.20 0.07 - 0.02 - - - - - - - - - - - - - - - - - - 

Bv16 99 - - - - - - - - - - - 0.01 - - - 0.02 - 0.04 - - 0.02 - - - - 

 105 - - - - - - - 0.02 - - - - - - - - - 0.04 - - - - - - - 

 108 - - 0.03 - - 0.10 - 0.07 0.05 - 0.02 - - - - - 0.02 - - - 0.02 - 0.06 - - 

 114 - 0.04 - 0.11 - - 0.02 0.02 - - 0.03 - - - - - - - - - - - - - - 

 117 - - - - - - - 0.02 - - - - 0.02 - - - - - - - - - - 0.06 - 

 120 - - - - - - - - - - - - - - - - 0.15 - - 0.10 - - - 0.06 - 

 123 - - 0.08 - - 0.02 0.04 - 0.07 0.17 - 0.59 0.57 0.50 0.66 0.28 0.27 - 0.03 0.07 - 0.14 0.06 0.11 0.03 

 126 - - - - - - 0.06 - - 0.07 0.03 - - - - - - - - - - - - - - 

 129 0.04 - 0.01 - - 0.12 0.19 0.02 0.14 0.04 - - - - - - - - - - - - 0.06 - - 

 134 0.14 0.11 - - - - 0.04 0.07 - - 0.05 0.13 0.06 0.21 0.05 0.15 0.13 0.04 0.35 0.03 0.11 0.21 0.06 0.11 0.03 

 137 0.04 0.14 - 0.07 0.13 0.30 0.04 - - - - - - - - - - - - - - - - - - 

 140 - - 0.03 - - - 0.17 0.10 - - 0.02 - - - - - - 0.08 - - 0.07 - - - - 

 143 - - 0.11 - - - 0.19 0.20 - 0.04 - - - - - - 0.04 - - - - - 0.13 - - 

 146 0.04 0.04 0.06 0.07 0.04 - 0.02 0.03 0.02 0.04 0.02 - - - - - - - - - - - - - - 

 148 - - 0.01 - - - - - - - - - - - - - 0.10 - - - - - - - - 

 150 0.25 - - 0.07 - - 0.02 0.02 - - 0.03 0.12 0.21 0.12 0.12 - 0.02 - - - 0.02 - - - - 

 152 - - 0.13 - - 0.02 - 0.02 - 0.17 0.09 - - - - - 0.10 - 0.18 0.07 0.05 0.29 0.06 0.11 - 

 155 - - - - - - - 0.02 - 0.07 - - 0.04 0.09 0.02 - - - - - - - - - - 

 158 - - 0.15 - 0.21 - - 0.10 - - 0.02 - - - - - - - - - - - - - - 

 161 - 0.21 - 0.21 - 0.04 0.04 - 0.04 0.20 0.09 0.10 - 0.08 - - - 0.12 0.06 0.07 0.07 - - - 0.56 

 167 0.04 - - - - - - - - 0.07 - - - - - - - - - - - - - - - 

 170 - - - - - - - - 0.02 - - - - - - - - - - - - - - - - 

 173 - - 0.13 - - - - 0.07 0.02 0.02 0.02 - - - - - - - - - - - - - - 

 176 0.04 0.18 0.11 - 0.16 0.14 - 0.03 0.38 0.04 - - 0.02 - - - - - - - - - - - - 

 179 - - - - - - 0.04 - 0.02 0.06 - - - - - - - - - - - - - - - 

 182 - - 0.01 0.18 0.07 0.02 - - - - - - - - - - - - - - - - - - - 

 185 - - 0.05 - 0.11 0.04 - 0.08 0.07 0.02 0.33 - - - - 0.17 0.02 0.65 0.21 0.23 0.21 0.29 0.25 0.28 0.25 

 188 - - 0.06 - - 0.02 0.10 0.13 0.14 - 0.12 0.04 0.06 - 0.14 0.17 0.15 - 0.18 0.40 0.43 0.07 0.19 0.28 0.03 
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 191 - - - - - - - - - - - - - - - 0.04 - - - - - - - - - 

 193 0.07 - 0.03 0.04 - 0.10 - - - - 0.05 - - - - - - - - - - - - - 0.06 

 195 0.11 0.04 - 0.11 0.05 - - - - - - - - - - - - - - - - - - - - 

 197 0.25 0.25 0.01 0.14 0.21 - - - 0.02 - - - - - - - - - - - - - 0.06 - - 

 200 - - - - 0.02 - - - - - - - - - - - - - - - - - - - - 

 202 - - - - - - 0.02 - - - - - - - - - - - - 0.03 - - - - - 

 204 - - - - - - - - 0.02 - 0.08 0.01 - - 0.02 0.15 - - - - - - 0.06 - 0.03 

 207 - - - - - - - - - - 0.03 - - - - - - - - - - - - - - 

 210 - - - - - - - - - - - - - - - - - 0.04 - - - - - - 0.03 

 246 - - - - - 0.08 - - - - - - - - - - - - - - - - - - - 

Bv17 223 0.87 0.79 0.76 1.00 0.82 0.50 0.80 0.63 0.50 0.71 0.57 0.55 0.56 0.60 0.57 0.41 0.65 0.50 0.34 0.43 0.57 0.86 0.75 0.70 0.41 

 225 - - - - - - - - - 0.05 0.05 0.08 0.05 0.02 0.07 - 0.15 - 0.25 0.32 0.07 0.14 0.13 0.05 - 

 227 - - - - 0.02 - 0.05 0.12 0.03 0.07 0.02 0.03 - 0.05 - - - - - - 0.02 - - - - 

 229 - 0.21 0.08 - 0.16 0.50 0.15 0.13 0.43 0.13 0.30 0.22 0.29 0.24 0.24 0.50 0.10 0.27 0.31 0.07 0.11 - - 0.25 0.59 

 231 - - - - - - - 0.03 0.03 - - - - - - - 0.10 0.23 0.09 0.18 0.23 - 0.06 - - 

 233 0.13 - 0.08 - - - - 0.08 - 0.04 0.05 - - - - - - - - - - - - - - 

 239 - - 0.09 - - - - - - - 0.02 0.12 0.10 0.09 0.12 0.09 - - - - - - - - - 

 241 - - - - - - - - - - - - - - - - - - - - - - 0.06 - - 

Bv18 149 - 0.04 - - - - - - - 0.06 0.10 0.26 0.31 0.34 0.15 0.02 0.08 0.27 0.25 0.35 0.22 - 0.07 0.19 - 

 155 0.35 0.11 0.50 0.23 0.26 0.35 0.32 0.67 0.28 0.29 0.37 0.03 - 0.04 0.10 0.17 0.29 - 0.15 0.30 0.28 0.67 0.43 0.44 0.50 

 157 0.60 0.07 0.46 0.69 0.62 0.45 0.64 0.16 0.35 0.59 0.23 0.35 0.28 0.34 0.39 0.37 0.61 - 0.15 0.05 0.19 0.33 0.14 0.38 - 

 159 0.05 0.79 0.04 0.08 0.12 0.21 0.04 0.17 0.37 0.06 0.31 0.36 0.42 0.28 0.37 0.44 0.03 0.73 0.45 0.30 0.31 - 0.36 - 0.50 
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Appendix S2.6: Genetic diversity at 13 microsatellite loci for 23 sites of the violet tunicate, Botrylloides violaceus. N, sample size; NA, 

number of alleles; A, allele richness; HO, observed heterozygosity; HE, expected heterozygosity; FIS value; PHW, exact P-value for 

Hardy-Weinberg equilibrium. Significant departures from equilibrium after sequential Bonferroni correction are indicated in bold. 

Sites  Bv 2 Bv 4 Bv 5 Bv 6 Bv 7 Bv 8 Bv 9 Bv 12 Bv 13 Bv 15 Bv 16 Bv 17 Bv 18 

DPB NA /A 7/4.8 7/4.8 2/2.0 4/3.8 7/5.9 1/1.0 4/3.2 2/1.0 2/1.9 2/2.0 10/6.5 2/1.9 3/2.6 

N = 15 HO 0.286 0.857 0.000 0.714 0.900 NA 0.692 0.500 0.333 0.643 0.929 0.267 0.700 

 HE 0.749 0.709 0.545 0.712 0.837 NA 0.588 0.400 0.287 0.452 0.862 0.239 0.542 

 FIS 0.627 -0.219 1.000 -0.004 -0.080 NA -0.187 -0.273 -0.167 -0.444 -0.080 -0.120 -0.313 

 PHW 0.000 0.885 0.021 0.002 0.076 - 0.019 1.000 1.000 0.220 0.011 1.000 0.276 

FRC NA /A 3/3.0 4/3.2 3/3.0 6/5.1 5/3.8 1/1.0 7/5.9 3/2.6 2/2.0 3/2.1 8/6.0 2/2.0 4/2.9 

N = 14 HO 0.545 0.615 0.600 1.000 0.833 NA 1.000 0.200 0.357 0.071 0.928 0.416 0.285 

 HE 0.675 0.563 0.616 0.822 0.667 NA 0.837 0.574 0.304 0.204 0.855 0.344 0.378 

 FIS 0.200 -0.097 0.027 -0.228 -0.264 NA -0.210 0.664 -0.182 0.658 -0.090 -0.222 0.252 

 PHW 0.015 1.000 0.038 0.000 0.107 - 0.118 0.019 1.000 0.034 0.001 1.000 0.090 

LMI NA /A 6/3.2 5/3.9 6/3.5 6/3.3 12/6.5 8/3.3 12/7.1 3/2.5 4/3.1 5/3.1 16/7.8 4/3.0 3/2.4 

N = 42 HO 0.310 0.512 0.537 0.634 0.683 0.310 0.738 0.317 0.476 0.643 0.600 0.450 0.436 

 HE 0.535 0.667 0.468 0.624 0.848 0.396 0.889 0.366 0.681 0.633 0.914 0.405 0.542 

 FIS 0.425 0.234 -0.149 -0.017 0.196 0.220 0.171 0.136 0.303 -0.016 0.346 -0.113 0.199 

 PHW 0.004 0.046 0.639 0.688 0.004 0.037 0.003 0.137 0.033 0.981 0.000 0.941 0.032 

LSM NA /A 3/3.0 4/3.4 3/2.8 4/3.8 8/5.4 2/2.0 5/3.6 2/2.0 2/2.0 3/3.0 9/7.0 1/1.0 3/2.7 

N = 16 HO 0.133 0.533 0.167 0.500 0.800 0.333 0.308 0.000 0.400 0.667 0.857 NA 0.462 

 HE 0.662 0.641 0.594 0.685 0.800 0.303 0.655 0.545 0.331 0.625 0.894 NA 0.480 

 FIS 0.804 0.173 0.728 0.278 0.000 -0.111 0.541 1.000 -0.217 -0.069 0.043 NA 0.040 

 PHW 0.000 0.001 0.006 0.002 0.000 1.000 0.000 0.022 1.000 0.151 0.058 - 0.051 

SYD NA /A 6/3.5 4/3.3 4/2.9 3/2.6 5/3.4 4/2.7 9/5.7 4/2.8 3/2.5 4/3.2 9/6.2 3/2.1 3/2.8 

N = 31 HO 0.419 0.613 0.226 0.387 0.233 0.419 0.483 0.452 0.645 0.645 0.571 0.355 0.200 

 HE 0.690 0.610 0.524 0.402 0.510 0.382 0.811 0.442 0.516 0.618 0.861 0.302 0.544 

 FIS 0.396 -0.005 0.573 0.039 0.546 -0.099 0.408 -0.022 -0.257 -0.045 0.340 -0.179 0.637 

 PHW 0.000 0.829 0.000 0.430 0.000 0.703 0.000 0.372 0.141 0.553 0.001 0.633 0.000 
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VIC NA /A 4/3.6 5/3.3 6/4.4 4/3.1 6/4.6 7/4.3 10/5.7 4/2.8 3/2.9 2/2.0 12/6.7 2/2.0 3/3.0 

N = 31 HO 0.645 0.548 0.581 0.645 0.645 0.613 0.839 0.467 0.516 0.290 0.600 0.677 0.241 

 HE 0.677 0.510 0.724 0.631 0.783 0.617 0.820 0.511 0.634 0.432 0.862 0.508 0.649 

 FIS 0.048 -0.076 0.201 -0.023 0.179 0.007 -0.023 0.089 0.189 0.332 0.308 -0.340 0.632 

 PHW 0.159 0.456 0.013 0.869 0.000 0.288 0.955 0.085 0.083 0.091 0.000 0.079 0.000 

LPI NA /A 6/3.5 4/3.8 5/3.2 4/3.1 12/5.9 7/4.4 8/5.1 4/3.2 4/2.7 3/2.2 14/7.4 3/2.4 3/2.4 

N = 30 HO 0.345 0.800 0.500 0.400 0.458 0.500 0.450 0.433 0.300 0.567 0.833 0.300 0.250 

 HE 0.632 0.705 0.505 0.444 0.833 0.613 0.754 0.535 0.490 0.521 0.895 0.341 0.491 

 FIS 0.458 -0.138 0.009 0.100 0.455 0.187 0.409 0.193 0.392 -0.088 0.071 0.121 0.495 

 PHW 0.000 0.957 0.153 0.095 0.000 0.023 0.001 0.002 0.009 0.583 0.176 0.005 0.009 

NHB NA /A 6/4.1 6/4.2 5/4.1 4/3.5 12/7.4 7/5.1 13/6.5 4/3.4 4/3.0 2/2.0 17/7.9 5/3.7 3/2.8 

N = 30 HO 0.600 0.741 0.633 0.533 0.700 0.483 0.867 0.115 0.500 0.483 0.800 0.567 0.069 

 HE 0.738 0.717 0.721 0.644 0.902 0.790 0.868 0.684 0.596 0.494 0.913 0.569 0.503 

 FIS 0.190 -0.034 0.123 0.174 0.227 0.393 0.002 0.834 0.164 0.022 0.126 0.004 0.865 

 PHW 0.071 0.877 0.136 0.407 0.000 0.001 0.730 0.000 0.050 1.000 0.002 0.848 0.000 

SQN NA /A 7/4.8 5/3.6 7/4.8 3/2.1 12/6.6 4/2.9 12/6.0 5/3.4 4/3.7 4/2.5 13/6.2 4/2.7 3/3.0 

N = 30 HO 0.370 0.893 0.793 0.267 0.931 0.367 0.800 0.167 0.733 0.333 0.679 0.667 0.200 

 HE 0.732 0.669 0.771 0.242 0.871 0.541 0.837 0.622 0.699 0.299 0.817 0.569 0.674 

 FIS 0.499 -0.342 -0.030 -0.105 -0.071 0.326 0.045 0.736 -0.050 -0.118 0.172 -0.174 0.707 

 PHW 0.000 0.018 0.530 1.000 0.010 0.075 0.760 0.000 0.611 1.000 0.048 0.869 0.000 

BRN NA /A 6/4.5 4/3.5 5/4.4 2/2.0 11/5.7 3/1.8 11/6.9 4/3.0 5/3.9 2/2.0 13/7.3 5/3.4 4/3.2 

N = 28 HO 0.444 0.679 0.692 0.393 0.667 0.154 0.526 0.231 0.821 0.571 0.852 0.464 0.235 

 HE 0.758 0.586 0.782 0.503 0.801 0.148 0.862 0.466 0.732 0.499 0.894 0.473 0.578 

 FIS 0.418 -0.161 0.118 0.223 0.170 -0.042 0.396 0.510 -0.125 -0.149 0.048 0.020 0.600 

 PHW 0.000 0.792 0.647 0.274 0.001 1.000 0.011 0.002 0.136 0.470 0.045 0.376 0.001 

BBY NA /A 6/3.0 5/3.3 7/5.4 7/3.5 8/4.4 6/4.3 10/5.7 5/3.6 4/2.8 2/1.2 16/7.0 6/3.4 4/3.7 

N = 34 HO 0.441 0.576 0.667 0.471 0.469 0.667 0.588 0.364 0.455 0.030 0.455 0.700 0.462 

 HE 0.584 0.490 0.822 0.467 0.607 0.709 0.831 0.714 0.439 0.030 0.856 0.593 0.723 

 FIS 0.247 -0.178 0.192 -0.008 0.231 0.060 0.295 0.495 -0.037 0.000 0.473 -0.184 0.366 

 PHW 0.004 1.000 0.317 0.426 0.014 0.803 0.038 0.000 0.239 1.000 0.000 0.517 0.024 
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SPB NA /A 3/2.4 3/2.8 5/3.5 4/3.7 8/5.8 2/2.0 6/4.1 2/1.9 5/3.5 3/1.9 7/4.1 5/3.7 4/3.4 

N = 39 HO 0.305 0.538 0.378 0.641 0.853 0.323 0.459 0.133 0.513 0.205 0.692 0.568 0.483 

 HE 0.495 0.602 0.653 0.697 0.845 0.389 0.697 0.282 0.502 0.190 0.618 0.633 0.694 

 FIS 0.386 0.107 0.424 0.081 -0.009 0.174 0.344 0.532 -0.022 -0.078 -0.122 0.104 0.308 

 PHW 0.004 0.593 0.000 0.736 0.004 0.370 0.002 0.015 0.058 1.000 0.246 0.000 0.005 

SHB NA /A 4/3.2 4/3.1 6/4.0 4/3.8 6/4.5 3/2.7 9/5.1 4/2.5 5/3.8 3/2.5 7/4.0 4/3.2 3/3.0 

N = 50 HO 0.600 0.620 0.668 0.894 0.800 0.540 0.600 0.244 0.760 0.367 0.638 0.714 0.532 

 HE 0.639 0.631 0.701 0.712 0.761 0.552 0.743 0.320 0.645 0.349 0.620 0.596 0.663 

 FIS 0.062 0.017 0.049 -0.259 -0.052 0.021 0.194 0.241 -0.180 -0.052 -0.029 -0.200 0.200 

 PHW 0.112 0.070 0.187 0.144 0.676 0.811 0.000 0.037 0.059 0.502 0.341 0.327 0.024 

CRV NA /A 5/3.4 5/3.5 4/3.4 4/3.6 8/5.4 3/2.6 7/4.5 4/2.2 5/3.3 5/2.4 5/4.1 5/3.4 4/3.4 

N = 41 HO 0.526 0.439 0.568 0.541 0.763 0.500 0.641 0.146 0.610 0.211 0.816 0.634 0.514 

 HE 0.636 0.687 0.682 0.716 0.813 0.566 0.671 0.227 0.580 0.265 0.686 0.580 0.699 

 FIS 0.175 0.363 0.170 0.247 0.062 0.118 0.045 0.357 -0.053 0.206 -0.192 -0.094 0.268 

 PHW 0.435 0.000 0.000 0.039 0.005 0.325 0.308 0.001 0.180 0.026 0.319 0.051 0.001 

APY NA /A 3/2.8 3/2.4 4/3.4 4/3.9 6/4.8 4/2.7 6/4.3 4/3.2 5/3.7 4/2.5 6/3.6 4/3.4 4/3.6 

N = 29 HO 0.586 0.379 0.636 0.724 0.852 0.241 0.621 0.379 0.862 0.276 0.379 0.655 0.500 

 HE 0.525 0.503 0.648 0.751 0.769 0.500 0.709 0.600 0.658 0.307 0.543 0.609 0.699 

 FIS -0.120 0.250 0.018 0.036 -0.110 0.522 0.127 0.372 -0.318 0.102 0.306 -0.077 0.289 

 PHW 0.434 0.272 0.882 0.727 0.043 0.001 0.454 0.001 0.264 0.431 0.033 0.057 0.132 

SBR NA /A 3/2.2 6/3.6 5/4.1 4/3.3 6/4.1 5/4.0 6/4.9 3/2.1 5/3.6 2/1.9 7/5.4 3/2.7 4/3.2 

N = 27 HO 0.385 0.259 0.700 0.615 0.667 0.852 0.542 0.080 0.741 0.222 0.522 0.455 0.261 

 HE 0.446 0.513 0.733 0.581 0.732 0.708 0.799 0.280 0.671 0.257 0.829 0.588 0.658 

 FIS 0.139 0.499 0.047 -0.060 0.091 -0.208 0.327 0.718 -0.106 0.138 0.376 0.231 0.609 

 PHW 0.741 0.001 0.380 0.868 0.260 0.277 0.067 0.001 0.945 0.455 0.010 0.055 0.000 

PDG NA /A 3/1.7 4/3.6 5/3.9 5/3.7 5/4.3 3/2.8 6/4.2 4/3.1 4/2.7 3/2.5 10/6.4 4/3.4 4/3.0 

N = 24 HO 0.125 0.417 0.739 0.522 0.792 0.542 0.959 0.435 0.750 0.522 0.750 0.458 0.368 

 HE 0.121 0.707 0.697 0.612 0.777 0.571 0.746 0.588 0.570 0.505 0.862 0.551 0.558 

 FIS -0.030 0.416 -0.063 0.150 -0.020 0.052 -0.292 0.265 -0.325 -0.033 0.132 0.172 0.345 

 PHW 1.000 0.002 0.063 0.041 0.238 0.757 0.045 0.198 0.198 1.000 0.125 0.078 0.068 
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CHT NA /A 2/2.0 3/2.9 6/5.1 4/2.9 5/4.0 4/3.4 5/3.6 3/2.9 3/3.0 2/2.0 7/4.4 3/3.0 2/2.0 

N = 13 HO 0.538 0.769 0.500 0.462 0.769 0.308 0.615 0.417 0.615 0.231 0.615 0.538 0.364 

 HE 0.471 0.569 0.815 0.397 0.634 0.652 0.511 0.562 0.649 0.409 0.569 0.649 0.416 

 FIS -0.151 -0.371 0.397 -0.171 -0.224 0.538 -0.215 0.267 0.054 0.446 -0.085 0.176 0.130 

 PHW 1.000 0.278 0.000 1.000 1.000 0.003 1.000 0.001 0.018 0.166 0.544 0.053 1.000 

MCV NA /A 3/2.6 3/3.0 4/3.1 4/3.5 5/4.2 3/2.3 6/4.6 3/2.9 4/3.5 2/2.0 6/4.8 4/3.8 4/3.9 

N = 17 HO 0.333 0.529 0.411 0.563 0.647 0.375 0.750 0.733 0.529 0.235 0.706 0.625 0.400 

 HE 0.467 0.627 0.619 0.671 0.676 0.325 0.708 0.570 0.665 0.499 0.790 0.736 0.726 

 FIS 0.293 0.160 0.341 0.167 0.043 -0.161 -0.062 -0.300 0.209 0.536 0.109 0.155 0.463 

 PHW 0.207 0.076 0.156 0.407 0.223 1.000 0.185 0.614 0.135 0.045 0.305 0.642 0.014 

BKH NA /A 4/3.5 3/2.8 5/4.3 3/2.9 5/4.6 3/2.8 5/4.3 4/2.9 5/4.0 2/2.0 8/5.5 4/3.6 4/3.6 

N = 15 HO 0.357 0.333 0.429 0.467 0.667 0.333 0.933 0.462 0.800 0.467 0.867 0.500 0.600 

 HE 0.669 0.508 0.765 0.641 0.772 0.480 0.752 0.517 0.680 0.480 0.786 0.701 0.732 

 FIS 0.476 0.352 0.449 0.279 0.141 0.314 -0.252 0.111 -0.183 0.030 -0.106 0.295 0.188 

 PHW 0.003 0.046 0.000 0.380 0.661 0.173 0.406 0.050 0.079 1.000 0.853 0.073 0.257 

LNB NA /A 3/2.5 4/3.4 6/5.0 5/4.1 6/4.6 4/3.1 10/6.0 4/3.7 4/3.6 3/2.2 9/5.3 5/3.7 4/3.9 

N = 22 HO 0.381 0.500 0.450 0.409 0.682 0.318 0.810 0.227 0.636 0.455 0.545 0.727 0.556 

 HE 0.547 0.612 0.794 0.717 0.781 0.426 0.841 0.690 0.689 0.369 0.763 0.622 0.763 

 FIS 0.309 0.187 0.439 0.435 0.130 0.258 0.038 0.676 0.078 -0.239 0.290 -0.175 0.278 

 PHW 0.264 0.011 0.005 0.003 0.038 0.009 0.045 0.000 0.064 0.627 0.007 0.334 0.000 

MTG NA /A 3/3.0 3/2.9 2/2.0 4/4.0 4/4.0 2/2.0 3/3.0 3/2.9 4/3.8 2/2.0 5/4.8 2/2.0 2/2.0 

N = 7 HO 0.429 0.429 0.333 0.500 0.714 0.429 0.333 0.429 0.857 0.429 0.714 0.286 0.333 

 HE 0.714 0.538 0.545 0.561 0.791 0.495 0.545 0.538 0.648 0.538 0.824 0.264 0.485 

 FIS 0.419 0.217 0.412 0.118 0.104 0.143 0.412 0.217 -0.358 0.217 0.143 -0.091 0.333 

 PHW 0.202 1.000 0.480 0.521 0.689 1.000 0.192 1.000 0.778 1.000 0.822 1.000 1.000 

LKP NA /A 2/2.0 4/3.9 3/2.9 4/3.7 4/3.9 3/2.8 6/5.6 3/2.8 4/3.7 3/2.5 10/8.2 4/3.5 4/3.8 

N = 8 HO 0.375 0.625 0.571 0.571 0,500 0.125 0.571 0.250 0.500 0.250 0.875 0.500 0.286 

 HE 0.525 0.767 0.538 0.495 0.708 0.575 0.813 0.542 0.692 0.242 0.917 0.442 0.714 

 FIS 0.300 0.195 -0.067 -0.171 0.309 0.794 0.314 0.556 0.291 -0.037 0.049 -0.143 0.619 

 PHW 0.529 0.366 0.330 1.000 0.345 0.007 0.130 0.079 0.151 1.000 0.725 1.000 0.038 
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IGM NA /A 4/3.5 4/3.5 5/4.5 3/2.5 4/3.6 4/3.6 4/3.5 3/3.0 5/4.2 2/2.0 7/6.0 3/2.6 3/3.0 

N = 10 HO 0.200 0.700 0.667 0.300 0.444 0.500 0.250 0.500 0.667 0.100 0.889 0.300 0.625 

 HE 0.658 0.605 0.771 0.279 0.601 0.668 0.442 0.637 0.614 0.268 0.850 0.468 0.675 

 FIS 0.707 -0.167 0.143 -0.080 0.273 0.262 0.451 0.224 -0.091 0.640 -0.049 0.372 0.079 

 PHW 0.006 1.000 0.493 1.000 0.051 0.200 0.135 0.207 1.000 0.158 0.866 0.137 0.777 

MYH NA /A 2/2.0 6/4.7 5/4.1 3/2.9 6/4.6 3/3.0 4/2.5 4/3.6 5/4.4 2/1.6 8/4.2 2/2.0 2/2.0 

N = 18 HO 0.500 0.833 0.471 0.647 0.722 0.529 0.278 0.500 0.778 0.111 0.556 0.588 0.412 

 HE 0.386 0.776 0.672 0.579 0.752 0.626 0.259 0.679 0.779 0.108 0.640 0.499 0.515 

 FIS -0.308 -0.076 0.306 -0.121 0.041 0.158 -0.076 0.271 0.002 -0.030 0.135 -0.185 0.206 

 PHW 0.523 0.020 0.072 0.181 0.075 0.200 1.000 0.184 0.476 1.000 0.641 0.623 0.627 
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Appendix S2.7: Pairwise FST comparisons for Botrylloides violaceus populations using 13 microsatellite markers. *Significant (P < 

0.05); ** remains significant after sequential Bonferroni correction (Rice 1989). Populations on the East coast are separated by a 

box in the upper left corner. Populations with sample size of less than 15 individuals (N < 15) were not included in this analysis. 

 SPB SHB CRV APY SBR PDG MCV BKH LNB MYR DPB LMI LSM SYD VIC LPI NHB SQN BRN 

SPB                    

SHB 0.02**                   

CRV 0.02** 0.01                  

APY  0.02* 0.02** 0.02**                 

SBR 0.07** 0.10** 0.12** 0.11**                

PDG 0.10** 0.12** 0.11** 0.08** 0.16**               

MCV 0.12** 0.10** 0.14** 0.11** 0.12** 0.09**              

BKH 0.12** 0.11** 0.15** 0.13** 0.13** 0.14** 0.01             

LNB 0.07** 0.07** 0.10** 0.09** 0.08** 0.12** 0.05* 0.02            

MYH 0.10** 0.09** 0.11** 0.10** 0.05** 0.14** 0.09** 0.15** 0.08**           

DPB 0.23** 0.19** 0.18** 0.17** 0.29** 0.21** 0.19** 0.18** 0.17** 0.28**          

LMI 0.18** 0.17** 0.16** 0.18** 0.23** 0.21** 0.16** 0.12** 0.12** 0.24** 0.08**         

LSM 0.27** 0.23** 0.22** 0.21** 0.32** 0.22** 0.20** 0.19** 0.19** 0.31** 0.03 0.09**        

SYD 0.21** 0.22** 0.20** 0.21** 0.23** 0.20** 0.19** 0.16** 0.15** 0.24** 0.11** 0.09** 0.07**       

VIC 0.10** 0.10** 0.10** 0.11** 0.09** 0.12** 0.06** 0.08** 0.08** 0.10** 0.14** 0.13** 0.16** 0.13**      

LPI 0.26** 0.21** 0.19** 0.22** 0.34** 0.26** 0.22** 0.22** 0.22** 0.31** 0.06** 0.08** 0.11** 0.18** 0.18**     

NHB 0.12** 0.11** 0.09** 0.13** 0.17** 0.15** 0.13** 0.11** 0.09** 0.17** 0.09** 0.04** 0.09** 0.07** 0.07** 0.10**    

SQN 0.13** 0.13** 0.14** 0.15** 0.15** 0.19** 0.14** 0.14** 0.12** 0.13** 0.25** 0.20** 0.24** 0.16** 0.11** 0.29** 0.11**   

BRN 0.24** 0.21** 0.19** 0.23** 0.26** 0.23** 0.19** 0.18** 0.19** 0.25** 0.13** 0.08** 0.12** 0.13** 0.17** 0.09** 0.07** 0.21**  

BBY 0.05** 0.10** 0.11** 0.12** 0.06** 0.16** 0.16** 0.13** 0.07** 0.10** 0.29** 0.21** 0.31** 0.20** 0.10** 0.34** 0.13** 0.12** 0.28** 
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Appendix S2.8: The log probability of the data, LnP (X| K) ± SD, and the rate 

of change in the probability between successive runs (ΔK), as a function of K 

for the 25 Botrylloides violaceus populations. 
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3.0 - GENETIC ANALYSIS OF THE INVASIVE COLONIAL TUNICATE  

BOTRYLLUS SCHLOSSERI IN NORTH AMERICA: EVIDENCE FOR  

HIGH POPULATION GENETIC DIFFERENTIATION 

3.1 INTRODUCTION 

The colonial ascidian Botryllus schlosseri, also known as the golden star tunicate, is 

currently one of the most widely introduced species, having established populations 

globally, mainly through the transportation of colonies attached on the hulls of ships (Van 

Name 1945). Considered native to the Mediterranean Sea (Berril 1950; Brunetti et al. 

1980; Carver et al. 2006), this species was first introduced on the East coast of North 

America in the 1830s (Van Name 1945; Stoner et al. 2002). It was reported in New 

Zealand and Australia in 1928 (Van Name 1945) and in Japan in 1929 (Tokioka 1953). 

On the West coast of North America, B. schlosseri was first observed in California in the 

San Francisco Bay area in the mid-1940s (Van Name 1945). Since then, it has established 

throughout the coast, where it can often be found on artificial structures in harbours, 

marinas, and aquaculture sites (Lambert & Lambert, 1998). The impact of B. schlosseri in 

areas of introduction has been touted mostly in marine aquaculture facilities. Here, this 

species is considered a serious biofouling concern, competing for food and space with 

target species, arguably causing crop losses and increasing the costs of operations (Carver 

et al. 2006; McNair et al. 2006). 

The global invasion success of B. schlosseri has commonly been linked to several of its 

biological characteristics. First, high growth rates and tolerance to a wide range of 
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environmental conditions are thought to facilitate establishment of pioneering populations 

(Lambert & Lambert, 1998; Carver et al. 2006). Second, the capacity to regenerate a 

fully-functional organism from minute tissue fragments suggests that dispersal of this 

species within regions of introduction might be achieved not only through sexually-

derived adults and larvae, but also through vegetative (asexual) propagules (Carver et al. 

2006). Third, frequent association of B. schlosseri with anthropogenic dispersal vectors 

like recreational vessels and aquaculture trade, favours rapid secondary spread (Carver et 

al. 2006). However, other life history traits of B. schlosseri are not typically associated 

with colonizing species. For example, the free-swimming larval stage is short, often 

lasting for less than one hour (Rinkevich et al. 1998). Also, gregarious settlement of kin 

B. schlosseri larvae, a phenomenon that may promote inbreeding and loss of genetic 

variation, has been demonstrated in the field (Grosberg & Quinn, 1986). These 

contrasting traits make B. schlosseri an excellent system for investigating the interplay 

between microgeographical population structure, genetic diversity, and human-mediated 

dispersal in a widely distributed NIS. 

In the current study I use a multiple-marker approach to characterize the genetic structure 

of native Mediterranean and introduced North American populations of B. schlosseri. The 

main objectives of this chapter are to i) explore the phylogeographic history of native and 

invasive B. schlosseri populations, ii) determine the level of genetic variation maintained 

in introduced populations in North America, and iii) identify patterns of gene flow and 

fine-scale genetic subdivision within the native, East and West coast ranges. To meet 

these goals, I use the mitochondrial (mt) cytochrome c oxidase I gene (COI) as well as 12 

polymorphic microsatellite loci, while drawing on recent advances in the analysis of 
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hypervariable genetic data based on Bayesian clustering and assignment methods. I relate 

the results of these analyses to historical records of B. schlosseri invasions as well as to 

previous studies exploring the genetic aspects of this species' extensive range expansions.  

3.2 MATERIALS AND METHODS 

Sampling, DNA extraction and amplification 

I analysed 5 native European (N = 79) and 18 introduced North American (N = 510) B. 

schlosseri populations (Table 3.1; Fig. 3.1). Sampling was undertaken either by SCUBA 

diving or by excising colonies from submerged ropes, buoys, and PVC settling plates in 

harbours and marinas. To prevent re-sampling of the same colonies, all specimens were 

taken at least 1 m apart from one another. Samples were preserved in 95% ethanol at -

20ºC prior to genetic analyses. 

Genomic DNA (gDNA) was extracted from single zooids using the protocol of 

Elphinstone et al. (2003). Amplification for the mitochondrial COI gene was initially 

performed using the universal primer pair LCO1490/HCO2198 (Folmer et al. 1994). 

Because these primers failed to amplify consistently, a species specific primer (BsCOIR: 

5’-GTATTTTATTTTTAGAATTTGG TCAAG-3’) was designed and used with the 

universal HCO2198 primer. The 25 µL PCR reactions consisted of 1 µL (~50 - 100 ng) 

gDNA, 1x PCR buffer with 1.5 mM MgCl2 (Genscript), 0.2 mM dNTPs, 0.4 µM of each 

primer, and 0.5 U of Taq DNA Polymerase (Genscript). PCR cycling parameters 

consisted of an initial denaturation step at 94º C for 5 min, followed by 35 amplification 

cycles (94º C for 30 s, 50º C for 30 s, 72º C for 45 s), and a final elongation step at 72º C 

for 5 min. Sequencing reactions were performed using the HCO2198 primer, BigDye 
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Terminator 3.1 chemistry, and an ABI 3130XL automated sequencer (Applied 

Biosystems, Foster City, CA). The BsCOIR primer was used to confirm all sequences that 

contained ambiguous sites. Sequence data was edited and aligned using CodonCode 

Aligner 2.0.6 (CodonCode Corporation, Dedham, MA). 

For all sampled individuals, genetic variation was further assessed using 12 microsatellite 

loci previously developed for this species including BS321, BS531, BS811 (Pancer et al. 

1994), PB29, PB 49, PB41, PBC1 (Stoner et al. 1997), Bsm1, Bsm2, Bsm4, Bsm6, Bsm9 

(Molecular Ecology Resources Primer Development Consortium et al. 2010). PCR 

cocktails (10 µL) contained 50 ng of gDNA, 1x PCR buffer with 1.5 mM MgCl2 

(Genscript), 0.125 mM of each dNTP, 0.5 µM of each primer, and 0.2 U of Taq DNA 

Polymerase (Genscript). Forward primers were labelled with one of four fluorophores 

(6FAM, VIC, NED or PET) according to Schuelke (2000). The PCR cycling profile 

consisted of initial denaturation at 95 ºC for 3 min, 10 cycles of 35 s at 95 ºC, 35 s at an 

initial annealing temperature of 60 ºC that decreased by 1 ºC in each of 10 cycles, and 45 

s at 72 ºC followed by 35 cycles of 35 s at 95 ºC, 35 s at 52 ºC, 45 s at 72 ºC, and a final 

extension for 10 min at 72 ºC. Amplified fragments were separated on an ABI 3130XL 

automated sequencer (Applied Biosystems, Foster City, CA), with GeneScan - 500 LIZ 

(Applied Biosystems, Foster City, CA) internal size standard. The alleles were scored 

manually using GENEMAPPER
®
 software v.4.0 (Applied Biosystems, Foster City, CA). 

Data analysis 

DNASP v.5 (Rozas et al. 2003) was used to identify individual B. schlosseri mtDNA 

haplotypes, calculate the number of haplotypes (Nh), haplotype diversity (h) and 



 66 

nucleotide diversity (π) and to test whether the sequences evolved under neutrality 

according to Tajima’s D statistic. For the microsatellite data, the number of repeated 

multilocus genotypes was calculated using GENECAP software (Wilberg & Dreher 

2004). For all putative clones, I estimated the probability of identical genotypes arising by 

chance via sexual reproduction. I computed the lower bound of this probability, PHW 

under Hardy-Weinberg expectations, and the more conservative upper bound Psib, under 

strict sibling reproduction, as recommended by Waits et al. (2001). The total number of 

alleles (NA), allelic richness (A), observed and expected heterozygosities (HO and HE), and 

the inbreeding coefficient (FIS) were calculated using FSTAT v.2.9.3.2 (Goudet 2002). 

Conformance to Hardy-Weinberg equilibrium (HWE) expectations was tested using 

10,000 permutations in GENEPOP v. 3.4 (Raymond & Rousset 1995), with levels of 

significance adjusted for sequential Bonferroni corrections (Rice 1989). To test for the 

presence of null alleles in the data set, the relationship between the number of 

nonamplifying samples for each locus and FIS was examined, as recommended by 

Beaumont et al. (2001). A positive correlation would indicate that FIS is affected by 

amplifying failure, due to null homozygotes.  

Phylogenetic analyses were performed on COI sequence data using neighbor joining (NJ) 

and maximum-likelihood (ML) algorithms implemented in PAUP* v.4b10 (Swofford 

2001) and PHYML 2.4.4 (Guidon & Gascuel 2003), respectively. Botryllus tyreus 

(GenBank accession number: DQ365851) was used as outgroup for the reconstructions. 

MODELTEST v.3.7 (Posada & Crandall 1998) was used to select the best-fit model of 

sequence substitution under the Akaike Information Criterion (AIC). Phylogeographic 

relationships among the COI haplotypes were further examined with a statistical 
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parsimony haplotype network generated at a 95% confidence level with TCS v.1.21 

(Clement et al. 2000). 

Population pairwise genetic differentiation was estimated based on ФST (COI) and FST 

(microsatellites), using the Tamura & Nei (TrN) substitution model and 10,000 

permutations in ARLEQUIN v.3.1 (Excoffier et al. 2005). ARLEQUIN was also used to 

conduct a hierarchical analysis of molecular variance (AMOVA; Excoffier et al. 1992) 

for all B. schlosseri populations. Molecular variance was partitioned among populations 

and among the three biogeographic regions represented in the dataset: Europe (native 

range), East coast of North America, and West coast of North America (introduced 

ranges). A similar AMOVA was conducted with the microsatellite data, based on the 

same hierarchical geographic structure. Isolation by distance (IBD) was examined using 

COI and microsatellite data by testing the correlation between Rousset's (1997) genetic 

distance and geographical distances using a Mantel test with 10,000 permutations 

implemented in GENEPOP v. 3.4 (Raymond & Rousset 1995). Geographical distances 

were calculated as the minimum coastline distances between adjacent sampling locations 

using GOOGLE EARTH v.4.3 (beta). 

Three dimensional factorial correspondence analysis (3D-FCA) performed in GENETIX 

v.4.05 (Belkhir et al. 2004) was used to further explore population relationships using the 

microsatellite data. Additionally, population structure was determined by using the 

Bayesian clustering approach implemented in STRUCTURE v.2.3.2 (Pritchard et al. 

2000). For the STRUCTURE analysis, I carried out five independent Markov Chain 

Monte Carlo (MCMC) runs with 10
5
 generations discarded as burn-in followed by an 
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additional 10
6
 generations for each value of K (population clusters). I conditioned the data 

on values of K ranging from 1 to 23 (total sites). The optimal number of clusters was 

estimated by comparing the log-likelihood of the data given the number of clusters [ln 

P(X|K)] (Pritchard et al. 2000) and by examining the standardized second order rate 

change of ln P(X|K), ΔK (Evanno et al. 2005). Because simulations indicate that 

STRUCTURE detects only the uppermost level of genetic structure in a dataset (Evanno 

et al. 2005), I used a hierarchical approach, and performed separate analyses using 

individuals grouped into single clusters based on the global analysis. 

Contemporary gene flow was assessed by individual-based assignment using 

BAYESASS v.1.3 (Wilson & Rannala 2003). This method was preferred over other 

individual-based assignment tests available as it does not require populations to be in 

HWE. Mean migration rates among populations were estimated by 3 x 10
6
 MCMC 

iterations, with the first 10
6
 discarded as burn-in. Samples were collected every 2000 

generations to infer posterior probability distributions of parameters of interest. 

3.3 RESULTS 

Identification of clonal genotypes 

Only five genotypes were repeated in the dataset, occurring between one and two times in 

their population of origin (Appendix S3.1). There was no repeated genotype shared 

between collection sites. For each replicate, the probability of two occurrences arising via 

random sexual recombination under HWE (PHW), considering the microsatellite allele 

frequencies in the populations of origin was extremely low and ranged from 6.15 x 10
-10

 

to 1.02 x 10
-6

. Also, the more conservative estimate (Psib) remained low and 
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nonsignificant (P < 0.05), suggesting that repeated genotypes resulted from resampling of 

fragmented colonies. Data analysis was performed with and without clones, producing 

similar results. I present results obtained after removing clonal genotypes from the data 

set. 

Geographic patterns of genetic diversity 

The 524 bp final COI alignment contained a total of 97 polymorphic sites, among which 

96 were parsimony-informative. Most positions had synonymous substitutions, and only 

one exhibited a non-synonymous change. Within the total of 524 B. schlosseri individuals 

analysed, 17 distinct haplotypes were identified: 13 (HA, HC, BR, Bs1-Bs5; Bs8-Bs12) 

that were previously reported by Lejeusne et al. (in press), and 4 (Bs13-Bs16) that are 

new (Table 3.1; Appendix S3.2). Among the 17 haplotypes, 14 (82.4%) are found in 

multiple individuals and 3 (17.6%) are singletons. Native range samples contained seven 

haplotypes (Bs3, Bs5, Bs9, Bs11, Bs12, HA, HC), including two common ones (HA and 

HC; 88.6 % of native samples) that were shared with invasive populations (Table 3.1; 

Appendix S3.2). In the introduced range, 10 haplotypes were recovered, with Bs2, BR 

and Bs1 collectively accounting for 92.5% of all individuals analysed. Native populations 

averaged 3.2 COI haplotypes (range 2 - 5), while in the invaded range, East coast 

populations averaged 2.6 (range 1 - 4) and West coast populations 2.0 (range 1 - 4). Also, 

mean haplotype diversity in the native range was 0.541, compared to 0.398 on the East 

coast (mean loss of 26.4 %) and 0.323 on the West coast (mean loss of 40.3 %; Table 

3.1). 
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Overall, 190 alleles were discerned among the 12 microsatellite loci analysed for B. 

schlosseri populations in Europe and North America (Appendix S3.3). Of those, 132 

(69.5%, mean: 11 alleles / locus) characterize native populations, 106 (55.8%, mean: 8.8 

alleles per locus) East coast populations and 108 (56.8%, mean: 9 alleles per locus) West 

coast populations. The number of private alleles was higher for native populations (23 

alleles) than either East coast (13 alleles) or West coast (11 alleles) locales. Also, mean 

gene diversity (HE) for native populations (0.690) was higher than East coast (0.559; 

mean loss of 18.9 %) or West coast (0.577; mean loss of 16.4 %; Table 3.1) sites. Mean 

allelic richness (A), corrected for differences in sample size by rarefaction to 11 

individuals, was higher for native populations (5.7) than either East coast (3.8; mean loss 

of 33.3 %) or West coast (3.7; mean loss of 35.08 %) samples (Table 3.1; Appendix 

S3.4).  

Significant deviations from HWE were observed in 54 out of the 204 analysed cases 

(Appendix S3.4). Heterozygote deficiencies were observed at most loci in all of the 

populations sampled, resulting in positive FIS values in 157 out of 194 cases (80.9%, 

Appendix S3.4). Null alleles did not appear to have a major contribution, due to the lack 

of relationship between FIS and nonamplification (P > 0.05) for all of the 12 loci used.  

Phylogeographic structure 

The parsimony haplotype network generated in TCS identified three distinct groups of 

haplotypes at the 95% confidence level, separated by a maximum of 10 connecting 

mutational steps (Fig. 3.2). Additionally, in the native range, two highly divergent 

haplotypes were identified (Bs11 and Bs12), separated, respectively, by a minimum of 67 
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and 64 mutational steps from all other haplotypes sampled in this study. In the introduced 

range, samples were characterised by different dominant haplotypes on each coast: Bs2 

and BR on the East coast, and Bs1 on the West coast. Haplotype sharing between coasts 

was extremely reduced and consisted of a single occurrence of the dominant East coast 

haplotype Bs2 in a colony sampled at Ladysmith (LSM) on the West coast (Table 3.1; 

Fig. 3.2). The phylogenetic analyses confirmed these findings. The four clades identified 

(Fig. 3.3) corresponded to the grouping suggested by the parsimony network. Within the 

native range, clade 1, comprising haplotypes Bs11 and Bs12, was highly divergent from 

all other clades inferred from the data (mean 10% sequence divergence, Tamura-Nei 

model; Fig. 3.3). Clades 2 - 4 contained all remaining haplotypes found in the locations 

sampled. All major clades had high overall bootstrap support (Fig. 3.3). 

Population genetic structure 

Hierarchical AMOVA based on the COI data revealed that most of the genetic variation is 

attributable to differences between groups when populations were grouped as native and 

introduced (46.73%, P < 0.0001) or native, East coast, and West coast (43.72%; P < 

0.0001). However, for both types of population groupings, a significant fraction of 

genetic variation was distributed within groups and within sampling sites (Table 3.2). A 

strong geographic partitioning of COI haplotypes was also supported by ФST estimates, 

indicating high and significant genetic differentiation for population pairwise 

comparisons between the native, East coast and West coast sampling areas (Appendix 

S3.5). The only exceptions were comparisons between two native populations (ETQ and 

BLN) and two West coast populations (SQN and BBY), which were low and not 

significant (Appendix S3.5). Within each region, ФST estimates were generally low and 
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not significant. For the microsatellite data, AMOVA tests indicated that most of the 

genetic variance was partitioned within sampling sites, although significant structure was 

also inferred between and within the population groups considered (Table 3.2). With the 

exception of native range samples, almost all pairwise FST estimates were high and 

significant, demonstrating pronounced genetic structure exists between most of the sites 

analysed (Appendix S3.6).  

The 3D-FCA highlighted the distinctiveness of native, East coast and West coast 

populations, which formed three distinct clusters (Fig. 3.3). Within this general structure, 

component 1 of the analysis, accounting for most of the genetic variation (23.32%), 

indicated West coast populations are more similar to native range populations than East 

coast ones. This finding was confirmed by the Bayesian algorithm implemented in 

STRUCTURE. Both methods of determining the most likely value of K indicated the 

presence of two main distinct clusters for the global dataset (Fig. 3.4, Level 1). The 

likelihood of the data was lowest for K = 1 and the largest difference of successive 

likelihoods was between K = 1 and K = 2. After K = 2, the likelihood of the data 

plateaued and standard deviations increased. When ln P (X|K) only marginally increases 

above a certain value of K, the smallest value of K before the plateau (here K = 2) is 

considered the best model (Pritchard et al. 2007). The estimation of ΔK as per Evanno et 

al. (2005) also showed a clear pattern for K = 2, confirming that this is the most 

parsimonious model for the data. The two hypothetical clusters correspond to: i) native 

and West coast samples, and ii) East coast populations. In subsequent hierarchical 

analyses, substantial subdivision was revealed for each of the two main genotype clusters 

(Fig. 3.4, Levels 2 & 3).  
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The BAYESASS analysis supports the conclusion that B. schlosseri populations are 

exchanging migrants only within each of the three main sampling regions analysed 

(native, East coast and West coast; Table 3.3). Within the native range, migration events 

were inferred to occur from Alicante (ALC), or a genetically similar population, to 

Arenys de Mar (ADM) and Blanes (BLN). Within the East coast, migration seems to 

occur to Point Tupper (PTR), Ballentyne's Cove (BTC), Guysborough (GBR) and Digby 

(DGB) from a population genetically similar to Petit de Grat (PDG). Within the West 

coast, migration was inferred from French Creek (FRC) to Ladysmith (LSM) and Brinnon 

(BRN). There was no significant relationship between geographical and genetic distances 

for either COI or microsatellite data in native, East coast, or West coast ranges. 

3.4 DISCUSSION 

Genetic structure within the native Mediterranean range 

In the current study, reduced genetic differentiation was indicated between the native B. 

schlosseri populations sampled. This finding was supported by the observation of 

extensive haplotype sharing between collection sites (Table 3.1), and the generally low 

and not significant pairwise ФST and FST estimates (Appendices S3.3 and S3.7). 

Additionally, high migration rates were inferred between several native locales by the 

Bayesian assignment test (Table 3.3). Collectively, these observations suggest the 

possibility of long-distance dispersal events (most likely human-mediated) occurring in 

the region. Given the intensity of recreational sailing in the Mediterranean and the 

propensity of B. schlosseri to associate with vessel-related vectors of dispersal (Dijkstra 

et al. 2007), this is a highly probable scenario.  
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The only exceptions to the high genetic resemblance observed between native populations 

were given by comparisons between Sete (SET) and Arenys de Mar (ADM), and SET and 

Alicante (ALC). The genetic distinctiveness of the SET population, as revealed by the 

significant pairwise ФST comparisons (Appendix S3.5), is most likely caused by the 

presence in that population of two haplotypes (Bs11 and Bs12) that show substantial 

sequence divergence from all other haplotypes sampled (Figs. 3.2 and 3.3). Previous 

studies of B. schlosseri populations from the Atlanto-Mediterranean coast have also 

indicated the presence of few highly divergent haplotypes in harbours and marinas 

(Lopez-Legentil et al. 2006; Lejeusne et al. in press). The most likely explanation for this 

pattern is the occurrence of multiple introduction events from genetically differentiated 

areas (native or introduced), a phenomenon previously described in the Mediterranean for 

other systems such as the green crab Carcinus maenas (Darling et al. 2008). Again, given 

the high intensity of sea trade connections between the Mediterranean Sea and most 

global regions, this is a highly plausible scenario.  

Genetic structure within the invaded North American range 

Analysis of mtDNA and microsatellite data demonstrated that the East and West coast B. 

schlosseri populations are highly genetically differentiated. Pairwise ФST and FST 

estimates (Appendices S3.3 and S3.7), 3D-FCA (Fig. 3.3) and STRUCTURE analysis 

(Fig. 3.4) all strongly supported this conclusion. Additionally, the assignment test 

suggested that migration events between the two biogeographical regions are limited 

(Table 3.3). These findings are in concordance with those reported in a preliminary 

microsatellite survey of eight North American B. schlosseri populations (Stoner et al. 

2002), and a recent mitochondrial COI survey (Lejeusne et al. in press), indicating strong 
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genetic partitioning between the two coasts. Collectively, these observations exclude the 

possibility of an East coast origin for the more recent West coast introduction, and 

suggest different source regions might have seeded the two invasions.  

The strong partitioning of genetic variance observed between the East and West coasts is 

accompanied by substantial population genetic structure at the intracoastal level as well. 

Two major genotype clusters were detected in each region, with further genetic 

subdivision indicated by subsequent hierarchical analyses in STRUCTURE (Fig. 3.4). 

Overall, population genetic differentiation was more pronounced on the East coast (95 % 

of pairwise FST estimates significant) than on the West coast (50 % of pairwise FST 

estimates significant; Appendix S3.6). Most likely, this distinction is a consequence of the 

different chronologies of the East and West coast invasions, since the former occurred at 

least 110 years prior to the latter (Van Name 1945). During this period, limited natural 

dispersal capacity of B. schlosseri and/or additional introductions, could have determined 

the higher genetic differentiation between East coast sites.  

The patterns of spread across the two regions appear to be dominated by long distance 

dispersal. The assignment test indicated migration occurs only between key locations on 

each coast (Table 3.3). Also, the lack of isolation-by-distance patterns suggests that B. 

schlosseri is spreading mainly via human-mediated ‘jump’ dispersal events, in 

accordance with its limited ability to disperse independently (Carver et al. 2006). 

Furthermore, the low numbers of clonal genotypes identified, and their apparent 

confinement to the populations they were sampled in (Appendix S3.1), indicate spread is 
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achieved mostly through sexually-derived propagules, and less through the fragmentation 

and subsequent regeneration of colonies. 

Genetic diversity of introduced B. schlosseri populations 

A widespread belief in invasive species research has been that introduced populations 

commonly experience loss of genetic variation due to founder effects and bottlenecks 

(Holland 2000). In accordance with this expectation, a number of experimental studies 

have featured low levels of genetic variation in introduced populations of NIS (see for 

example Chandler et al. 2008, Peacock et al. 2009). However, recent empirical evidence 

suggests invasive species may circumvent such reductions, mainly as a result of multiple 

introductions from genetically differentiated sources (e.g. Kolbe et al. 2004; reviewed by 

Roman & Darling 2007). 

Overall, the current study has confirmed the theoretical prediction that introduced 

populations of B. schlosseri show less genetic variation than native sites (Table 3.1). In 

the native range, mitochondrial genetic diversity estimates of haplotype (0.541) and 

nucleotide (0.023) diversity were comparable to those previously reported by Lopez-

Legentil et al. (2006) and Lejeusne et al. (in press) for populations on the Atlanto-

Mediterranean coast. On average, these estimates were higher than those observed for 

introduced populations on the East (0.398 and 0.013) or West coasts (0.323 and 0.008). 

Microsatellite genetic diversity parameters of gene diversity (HE) and allelic richness (A) 

were also noticeably higher for native sites (0.690 and 5.7) than either East (0.559 and 

3.8) or West (0.577 and 3.7) coast ones (Table 3.1). However, this general trend conceals 

substantial heterogeneity in the level of genetic diversity retained in populations within 
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the two North American invaded ranges. On the East coast, Port La Tour (PLT), Sydney 

(SYD), Point Tupper (PTR), and Yarmouth (YMT) exhibited levels of genetic variation 

comparable to native sites. By contrast, the most depressed levels of genetic diversity 

were identified for the Little Narrows (LTN) population, which was also markedly 

different from nearby sites according to the STRUCTURE analysis (Fig. 3.4). Jointly, 

these results suggest LTN most likely resulted from a recent colonization event, by a 

limited number of propagules. On the West coast, the pattern observed provides an 

unexpectedly clear illustration of successive bottleneck events, with genetic variation 

decreasing precipitously in a South-North direction along the coast. The highest genetic 

diversity was detected in the south, at Bodega Bay (BBY). Other West coast sites, such as 

Sequin (SQN), Brinnon (BRN), and Ladysmith (LSM) were of intermediate diversity, 

while the northernmost samples, French Creek (FRC) and Deep Bay (DPB), displayed 

significant reductions in variation. Therefore, the pattern observed on the West coast is 

consistent with the generally accepted idea that the B. schlosseri invasion began in San 

Francisco Bay, California (Van Name 1945). From there, the invasion spread northward 

along the coast, most likely facilitated by anthropogenic vectors of dispersal. 

Heterozygote deficiencies in B. schlosseri  

In the current study, significant heterozygote deficits were detected in all populations 

surveyed, across multiple microsatellite loci (Appendix S3.4). These results are in 

accordance with previous studies that have used microsatellite markers to analyse the 

genetic structure of B. schlosseri populations (e.g. Ben-Shlomo et al. 2001; Stoner et al. 

2002; Ben-Shlomo et al. 2006). Three factors can be considered to explain this pattern: 

microsatellite null alleles, inbreeding, and subpopulation structure (i.e. Wahlund effect). 
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Among these, microsatellite null alleles appear to be the least likely factor, as indicated 

by two independent lines of evidence: excess homozygosity was not observed 

consistently at any one locus in the present study, and no positive relationship between 

FIS and nonamplification was detected at any of the loci used.  

Therefore, inbreeding and subpopulation structure appear to be more likely candidates. 

Although inbreeding has been previously reported in other ascidian species such as the 

solitary Corella eumyota (Dupont et al. 2007), in B. schlosseri, a protogynous 

hermaphrodite, self-fertilization is effectively prevented by the different maturation times 

of sperm and ovules of the same colony (Yund et al. 1997). However, because larvae 

usually settle close to the parental colony and other sibling larvae (Grosberg & Quinn 

1986), mating between kin B. schlosseri colonies could occur (Grosberg 1988; Rinkevich 

et al. 1998). Such aggregations have also been shown to lead to subpopulation structure 

and differentiation over very small spatial scales (< 5 m; Yund & O'Neil 2000). The 

results presented here, indicating substantial intraspecific admixture even within 

populations (see Fig. 3.4), support this conclusion. I should note that similarly high levels 

of heterozygote deficiency have not been observed in the colonial ascidian Botrylloides 

violaceus (Chapter 2.0). These patterns suggest there may be substantial variation in 

dispersal-related life history traits between closely related invasive colonial ascidians. 

3.5 CONCLUSIONS 

Evidence presented in the current study corroborate with previous genetic surveys of 

invasive B. schlosseri populations, and indicate the likelihood that different introduction 

events occurred on the East and West coasts of North America. However, due to the long 
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history of anthropogenic range expansions of this species and its current cosmopolitan 

distribution, inferences on the origins of the introduction events could not be made. Still, 

the study dataset helped to substantiate a high degree of genetic structure for populations 

on each coast while revealing great heterogeneity in levels of genetic variation retained 

among populations, even at small spatial scales. Our data and analyses additionally 

provided clear evidence of long distance dispersal occurring between sites, most likely 

assisted by anthropogenic vectors of dispersal. As B. schlosseri continues to spread and 

colonize new environments, these are important information to consider in the 

management actions that are to be taken.  

3.6 REFERENCES 

Beaumont M, Barratt EM, Gottelli D et al. (2001) Genetic diversity and introgression in 

the Scottish wildcat. Molecular Ecology, 10, 319 - 336. 

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel 

sous Windows TM pour la génétique des populations. Laboratoire Génome, 

Populations, Interactions, Université de Montpellier, Montpellier (France). 

Ben-Shlomo R, Douek J, Rinkevich B (2001) Heterozygote deficiency and chimerism in 

remote populations of a colonial ascidian from New Zealand. Marine Ecology 

Progress Series, 209, 109–117. 

Ben-Shlomo R, Paz G, and Rinkevich B (2006) Postglacial-period and recent invasions 

shape the population genetics of botryllid ascidians along European Atlantic coasts. 

Ecosystems, 9, 1118-1127. 



 80 

Berril NJ (1950). The Tunicata, with an account of British species. Ray Society, London, 

iii + 354 pp. 

Brunetti R, Beghi L, Bressan M, and Marin MG (1980) Combined effects of temperature 

and salinity on colonies of Botryllus schlosseri and Botrylloides leachi (Ascidiacea) 

from the Venetian Lagoon. Marine Ecology Progress Series, 2, 303-314. 

Carver CE, Mallet AL and Vercaemer B (2006) Biological Synopsis of the colonial 

tunicates, Botryllus schlosseri and Botrylloides violaceus. Canadian Manuscript 

Report of Fisheries and Aquatic Sciences 2747: v + 42p. 

Chandler EA, McDowell JR, Graves JE (2008) Genetically monomorphic invasive 

populations of the rapa whelk, Rapana venosa. Molecular Ecology, 17, 4079–4091. 

Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene 

genealogies. Molecular Ecology, 9, 1657-1659. 

Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB (2008) Genetic patterns across 

multiple introductions of the globally invasive crab genus Carcinus. Molecular 

Ecology, 17, 4992-5007. 

Dijkstra J, Harris LG, Westerman E (2007) Distribution and long-term temporal patterns 

of four invasive colonial ascidians in the Gulf of Maine. Journal of Experimental 

Marine Biology and Ecology, 342, 61-68. 

Dupont L, Viard F, David P, Bishop JDD (2007) Combined effects of bottlenecks and 

selfing in populations of Corella eumyota, a recently introduced sea squirt in the 

English Channel. Diversity and Distributions, 13, 808–817. 

Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high 

throughput procedure to extract and purify total genomic DNA for population studies. 

Molecular Ecology Notes, 3, 317-320. 



 81 

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals 

using the software Structure: a simulation study. Molecular Ecology, 14, 2611-2620. 

Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from 

metric distances among DNA haplotypes: application to human mitochondrial DNA 

restriction data. Genetics, 131, 479-491. 

Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software 

package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 

47-50. 

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for 

amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan 

invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299. 

Goudet J (2002) FSTAT, a Program to Estimate and Test Gene Diversities and Fixation 

Indices Version 2.9.3.2. 

Grosberg RK (1988) Life-history variation within a population of the colonial ascidian 

Botryllus schlosseri. I. The genetic and environmental control of seasonal variation. 

Evolution, 42, 900-920. 

Grosberg RK, Quinn JF (1986) The genetic control and consequences of kin recognition 

by the larvae of a colonial marine invertebrate. Nature, 322,456 - 459. 

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large 

phylogenies by maximum likelihood. Systematic Biology, 52, 696-704. 

Holland BS (2000) Genetics of marine bioinvasions. Hydrobiologia, 420, 63-71. 

Kolbe JJ, Glor RE, Rodriguez Schettino L et al. (2004) Genetic variation increases during 

biological invasion by a Cuban lizard. Nature, 431, 177-181. 



 82 

Lambert CC, Lambert G (1998) Non-indigenous ascidians in southern California harbors 

and marinas. Marine Biology, 130, 675-688. 

Lejeusne C, Bock DG, MacIsaac HJ, Therriault TW, Cristescu ME (in press) 

Comparative phylogeography of two colonial ascidians reveals contrasting invasion 

histories in North America. Biological Invasions. 

Lopez-Legentil S, Turon X, Planes S (2006) Genetic structure of the star sea squirt, 

Botryllus schlosseri, introduced in southern European harbours. Molecular Ecology, 

15, 3957 - 3967. 

MacNair N, Morrison A, Mills C, Campbell E (2006). Investigation into the life cycle 

impact on mussel culture and mitigation strategies for two new invasive colonial 

tunicates, the golden star tunicate and the violet tunicate. Savage Harbour PEI: AFRI 

Report, PEI Department of Agriculture, Fisheries and Aquaculture, Fisheries & 

Aquaculture Division, Charlottetown, PEI, Canada. 

Molecular Ecology Resources Primer Development Consortium, Abdoullaye D, Acevedo 

I et al. (2010) Permanent Genetic Resources added to Molecular Ecology Resources 

Database 1 August 2009-30 September 2009. Molecular Ecology Resources, 10, 232-

236. 

Pancer Z, Gershon Z, Rinkevich B (1994) Direct typing of polymorphic microsatellites in 

the colonial ascidian Botryllus schlosseri. Biochemical and Biophysical Research 

Communications, 203, 646–651. 

Peacock MM, Beard KH, O’Neill MO, Kirchoff VS, Peters MB (2009) Strong founder 

effects and low genetic diversity in introduced populations of Coqui frogs. Molecular 

Ecology, 18, 3603-3615. 



 83 

Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. 

Bioinformatics, 14, 817-818. 

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using 

multilocus genotype data. Genetics, 155, 945-959. 

Pritchard JK, Wen X, Falush D (2007) Documentation for Structure Software. Version 

2.2. Department of Human Genetics, University of Chicago, Chicago, Illinois. 

Raymond ML, Rousset F (1995) GenePop (version 3.4): population genetics software for 

exact test and ecumenicism. Journal of Heredity, 86, 248-249. 

Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225. 

Rinkevich B, Porat R, Goren M (1998) Ecological and life history characteristics of 

Botryllus schlosseri (Tunicata) populations inhabiting undersurface shallow water 

stones. Marine Ecology, 19, 129–145. 

Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic 

invasions. Trends in Ecology & Evolution, 22, 454 - 464. 

Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA 

polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 

2496-2497. 

Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics 

under isolation by distance. Genetics, 145, 1219-1228. 

Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. 

Nature Biotechnology, 18, 233-234. 

Stoner DS, Quattro JM, Weissman IL (1997) Highly polymorphic microsatellite loci in 

the colonial ascidian Botryllus schlosseri. Molecular Marine Biology and 

Biotechnology, 6, 163–171. 



 84 

Stoner DS, Ben-Shlomo R, Rinkevich B, and Weissman IL (2002) Genetic variability of 

Botryllus schlosseri invasions to the east and west coasts of the USA. Marine Ecology 

Progress Series, 243, 93-100. 

Swofford DL (2001) PAUP*: Phylogenetic Analysis Using Parsimony (*and others 

methods). Sinauer, Sunderland, MA, USA. 

Tokioka T (1953) Ascidians of Sagami Bay. Iwanami Shoten, Tokio. 

Van Name WG (1945) The North and South American Ascidians. Bulletin of American 

Natural History, 84, 1-463. 

Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among 

genotypes in natural populations: cautions and guidelines. Molecular Ecology, 10, 

249-256. 

Wilberg MJ, Dreher BP (2004) GENECAP: a program for analysis of multilocus 

genotype data for non-invasive sampling and capture-recapture population estimation. 

Molecular Ecology Notes, 4, 783. 

Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using 

multilocus genotypes. Genetics, 163, 1177–1191. 

Yund PO, Marcum Y, Stewart-Savage J (1997) Life history variation in a colonial 

ascidian: broad-sense heritabilities and tradeoffs in allocation to asexual growth and 

male and female reproduction. Biological Bulletin, 192, 290–299. 

Yund PO, O’Neil PG (2000) Microgeographic genetic differentiation in a colonial 

ascidian (Botryllus schlosseri) population. Marine Biology, 137, 583–588. 



 85 

Table 3.1: Locations of Botryllus schlosseri sampling and genetic diversity indices for mitochondrial and microsatellite markers with 

NC, sample size including clonal genotypes; N, sample size after removal of clones; Nh, number of haplotypes; h, haplotype diversity; 

π, nucleotide diversity; NA, number of alleles; NAP, the number of private alleles for each sampling site; A, allelic richness; HO, mean 

observed heterozygosity; HE, mean expected heterozygosity. 

Location  ID mtDNA  Microsatellite 

NC N Nh Haplotype codes h π NC N NA NAP A HO HE 

Native range                

Estaque, France ETQ 5 5 2 HA, HC 0.600 0.014  7 7 53 4 - - - 

Sete, France SET 6 6 4 HA, HC, Bs11, Bs12 0.867 0.079  6 6 37 0 - - - 

Blanes, Spain BLN 13 13 3 HA, HC, Bs3 0.603 0.012  14 14 69 2 5.4 0.427 0.684 

Arenys de Mar, Spain ADM 19 19 2 HA, HC 0.199 0.005  19 19 72 3 5.3 0.419 0.692 

Alicante, Spain ALC 28 28 5 HA, HC, Bs3, Bs5, Bs9 0.434 0.007  33 33 102 14 6.3 0.454 0.695 

Total  71 71 7  0.541 0.023  79 79 132 23 5.7 0.433 0.690 

Introduced range                 

East Coast                

Sydney, NS SYD 30 30 3 BR, Bs2, Bs16 0.522 0.016  30 30 58 2 3.9 0.404 0.548 

Little Narrows, NS LTN 64 63 1 Bs2 0.000 0.000  61 60 50 0 3.1 0.294 0.447 

Petit de Grat, NS PDG 40 40 2 Bs2, BR 0.385 0.013  29 29 57 0 4.1 0.235 0.539 

Point Tupper, NS PTR 17 17 3 Bs2, Bs13, BR 0.559 0.018  17 17 54 1 4.2 0.392 0.628 

Ballantyne’s Cove, NS BTC 36 36 2 Bs2, BR 0.386 0.013  24 24 48 1 3.7 0.337 0.605 

Guysborough, NS GBR 28 28 2 Bs2, BR 0.254 0.009  27 27 50 0 3.6 0.216 0.539 

Shining Waters, NS SWM 29 29 3 HA, Bs2, BR 0.394 0.014  20 20 39 1 3.0 0.259 0.526 

Lunenburg, NS LNB 40 40 3 Bs2, Bs14, BR 0.381 0.009  29 29 48 5 3.5 0.310 0.551 

Digby, NS DGB 22 22 3 HA, Bs2, BR 0.177 0.006  21 21 52 0 4.0 0.331 0.568 

Ingomar, NS IGM 8 8 2 Bs2, BR 0.429 0.015  8 8 44 0 - - - 
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Port La Tour, NS PLT 8 8 4 Bs2, Bs4, BR, HA 0.750 0.024  8 8 38 1 - - - 

Yarmouth, NS YMT 26 26 3 HC, Bs2, BR 0.542 0.016  31 31 66 2 4.6 0.406 0.640 

Total  348 347 8  0.398 0.013  305 304 106 13 3.8 0.318 0.559 

West Coast                

Deep Bay, BS DPB 9 9 1 Bs1 0.000 0.000  8 8 31 0 - - - 

French Creek, BC FRC 28 24 1 Bs1 0.000 0.000  27 23 48 1 3.5 0.397 0.577 

Ladysmith, BC LSM 17 15 2 Bs1, Bs2 0.133 0.002  15 13 41 1 3.3 0.485 0.567 

Brinnon, WA BRN 11 11 2 Bs1, Bs8 0.436 0.007  11 11 42 0 3.5 0.374 0.539 

Sequin, WA SQN 6 6 2 Bs1, Bs10 0.600 0.017  5 5 39 1 - - - 

Bodega Bay, CA BBY 36 36 4 Bs1, Bs8, Bs10, Bs15 0.767 0.019  36 36 71 8 4.6 0.469 0.623 

Total  107 101 4  0.323 0.008  102 96 105 11 3.7 0.431 0.577 
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Table 3.2: Analysis of molecular variance (AMOVA) results on Botryllus schlosseri 

mtDNA and microsatellite data for native vs. invasive and native vs. East coast vs. West 

coast population groupings. All fixation indices are statistically significant.  

Source of variation d.f. 
Variance 

components 

% 

variation 

Fixation 

indices  
P value 

mtDNA  
    

 Among groups (native vs. invasive) 1 
4.322 Va 46.73 FCT: 0.467 0.000 

 Among populations within groups 22 
2.038 Vb 

22.04 
FSC: 0.414 0.000 

 Within populations 514 
2.888 Vc 31.23 FST: 0.688 0.000 

 
Among groups (native vs. East coast 

vs. West coast) 
2 3.317 Va 

43.72 FCT: 0.437 0.000 

 Among populations within groups 21 1.382 Vb 
18.21 FSC: 0.324 0.000 

 Within populations 524 2.888 Vc 
38.06 FST: 0.619 0.000 

Microsatellite   
    

 Among groups (native vs. invasive) 1 
0.302 Va 9.71 FCT: 0.097 0.001 

 Among populations within groups 15 
0.458 Vb 14.70 FSC: 0.163 0.000 

 Within populations 857 
2.355 Vc 75.59 FST: 0.244 0.000 

 
Among groups (native vs. East coast 

vs. West coast) 
2 

0.380 Va 12.38 FCT: 0.124 0.000 

 Among populations within groups 14 
0.334 Vb 10.89 FSC: 0.124 0.000 

 Within populations 857 
2.355 Vc 76.73 FST: 0.234 0.000 
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Table 3.3: Mean immigration rates among 17 Botryllus schlosseri localities, with source populations listed by column and recipient 

populations by row. Values along the diagonal are self-recruitment rates for each locality (bold). Only the most likely immigrant 

sources, with means > 0.1, are presented. Populations with less than 10 individuals (N < 10) were not included. 

 Native East coast West coast 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. BLN 0.689  0.214               

2. ADM  0.682 0.248               

3. ALC   0.982               

4. SYD    0.988              

5. LTN     0.994             

6. PDG      0.989            

7. PTR      0.181 0.684           

8. BTC      0.249  0.680          

9. GBR      0.211   0.678         

10. SWM          0.981        

11. LNB           0.988       

12. DGB      0.168      0.681      

13. YMT    0.185         0.676     

14. FRC              0.986    

15. LSM              0.173 0.689   

16. BRN              0.168  0.692  

17. BBY                 0.991 
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Figure 3.1: Map of the sampling locations for the golden star tunicate 

Botryllus schlosseri with locality names defined in Table 3.1.
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Figure 3.2: Statistical parsimony network of Botryllus schlosseri cytochrome c oxidase 

subunit I (COI) haplotypes. Circle size is proportional to haplotype frequency. 

Unsampled haplotypes inferred from the data are indicated by hashes, or by numbers in 

the case of widely divergent haplotypes. Dashed lines indicate clades well-supported in 

maximum parsimony analysis (> 95% majority rule consensus support).
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Figure 3.3: Neighbor-joining phylogenetic reconstruction of Botryllus 

schlosseri cytochrome c oxidase subunit I (COI) haplotypes. Numbers at 

phylogenetic nodes indicate the neighbor-joining and maximum-likelihood 

bootstrap support with 1,000 replicates. The number of samples possessing 

each haplotype is presented in brackets.
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Figure 3.4: Three dimensional factorial correspondence analysis (3D-FCA) of 

Botryllus schlosseri microsatellite data showing clustering between native, 

West coast and East coast sites.
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Figure 3.5: Bayesian clustering of Botryllus schlosseri genotypes performed in 

STRUCTURE for all samples (Level 1) and each of the main genetic clusters (Levels 2 

and 3). Each individual is represented by a thin vertical line, which is partitioned into K = 

2 segments representing the individual’s estimated proportional membership (Q). 

Sampling sites are separated by black lines. Different shades of grey are used to represent 

the genetic clusters in each data subset. 
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Appendix S3.1: Clonal genotypes observed in the dataset with N, 

number of times the genotype appears in the dataset; Ngen, number of 

genotypes in the population of origin; Psib, probability of identity 

considering strict sibs reproduction; PHW, probability of identity under 

Hardy-Weinberg equilibrium

Genotype Location N Ngen Psib PHW 

East Coast      

C1 - LTN Little Narrows 2 60 0.003 1.02 x 10
-6

 

West Coast      

C2 - FRC French Creek 3 23 0.004 1.29 x 10
-7

 

C3 - FRC French Creek 3 23 0.004 1.50 x 10
-7

 

C4 - LSM Ladysmith 2 13 0.001 6.15 x 10
-10

 

C5 - LSM Ladysmith 2 13 0.001 1.04 x 10
-8
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Appendix S3.2: Occurrence and frequency of Botryllus schlosseri COI haplotypes in 24 native and introduced locations. 

Location ID 
Haplotypes 

HA HC 

 

BR Bs1 

 

Bs2 

 

Bs3 

 

Bs4 

 

Bs5 Bs8 Bs9 Bs10 Bs11 Bs12 Bs13 Bs14 Bs15 Bs16 

Native                  

ETQ 0.60 0.40 - - - - - - - - - - - - - - - 

SET 0.17 0.17 - - - - - - - - - 0.33 0.33 - - - - 

BLN 0.54 0.38 - - - 0.08 - - - - - - - - - - - 

ADM 0.89 0.11 - - - - - - - - - - - - - - - 

ALC 0.71 0.14 - - - 0.04 - 0.04 - 0.07 - - - - - - - 

Introduced                  

East Coast                  

SYD - - 0.63 - 0.30 - - - - - - - - - - - 0.07 

LTN - - - - 1.00 - - - - - - - - - - - - 

PDG - - 0.25 - 0.75 - - - - - - - - - - - - 

PTR - - 0.35 - 0.59 - - - - - - - - 0.06 - - - 

BTC - - 0.25 - 0.75 - - - - - - - - - - - - 

GBR - - 0.14 - 0.86 - - - - - - - - - - - - 

SWM 0.03 - 0.76 - 0.21 - - - - - - - - - - - - 

LNB - - 0.15 - 0.78 - - - - - - - - - 0.07 - - 

DGB 0.03 - 0.03 - 0.94 - - - - - - - - - - - - 

IGM - - 0.25 - 0.75 - - - - - - - - - - - - 

PLT - - 0.57 - 0.29 - 0.14 - - - - - - - - - - 

YMT - 0.07 0.31 - 0.62 - - - - - - - - - - - - 

West Coast                  

DPB - - - 1.00 - - - - - - - - - - - - - 

FRC - - - 1.00 - - - - - - - - - - - - - 

LSM - - - 0.93 0.07 - - - - - - - - - - - - 

BRN - - - 0.73 - - - - 0.27 - - - - - - - - 

SQN - - - 0.50 - - - - - - 0.50 - - - - - - 

BBY - - - 0.28 - - - - 0.19 - 0.25 - - - - 0.28 - 
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Locus Allele 

Native range Introduced (East Coast) Introduced (West Coast) 

ETQ SET BLN ADM ALC SYD LTN PDG PTR BTC GBR SWM LNB DGB IGM PLT YMT DPB FRC LSM BRN SQN BBY 

BS321 115 - - - - - - - - - - - - - - - - 0.02 - - - - - - 

 119 - - 0.07 - - - - - - - - - - - - - - - - - - - - 

 121 - - 0.07 0.13 0.34 0.14 0.31 0.05 0.55 - - - - - - - 0.18 - - - - 0.10 - 

 127 0.58 1.00 0.64 0.46 0.38 0.81 0.14 0.93 0.32 0.33 0.67 1.00 0.53 0.97 1.00 0.81 0.68 1.00 0.50 0.70 0.85 0.70 0.37 

 143 - - - - - - - - 0.05 - - - - - - - 0.02 - - - - - - 

 145 - - - - - - - - - - - - - - - 0.06 - - - - - 0.10 - 

 147 - - - - - - - - - - - - - - - - - - - - - - 0.01 

 159 - - 0.07 0.33 0.13 - 0.42 - 0.09 0.33 - - - 0.03 - - 0.05 - 0.48 0.30 0.05 0.10 0.51 

 161 - - 0.07 0.08 0.06 0.03 0.14 0.02 - - - - - - - 0.06 0.02 - 0.03 - 0.10 - 0.10 

 163 - - - - - - - - - - 0.33 - 0.29 - - - - - - - - - - 

 165 0.33 - - - - - - - - - - - - - - - - - - - - - - 

 183 0.08 - - - - - - - - - - - - - - - - - - - - - - 

 185 - - - - - 0.02 - - - - - - - - - 0.06 - - - - - - - 

 209 - - - - - - - - - - - - 0.03 - - - - - - - - - - 

 223 - - - - - - - - - 0.33 - - - - - - - - - - - - - 

 255 - - - - 0.03 - - - - - - - - - - - - - - - - - - 

 267 - - 0.07 - 0.06 - - - - - - - - - - - 0.02 - - - - - - 

 301 - - - - - - - - - - - - 0.03 - - - - - - - - - - 

 307 - - - - - - - - - - - - 0.12 - - - - - - - - - - 

BS531 125 - - - - - 0.02 0.03 - 0.19 - 0.03 0.07 - - - - 0.05 - 0.03 - - - - 

 129 - - - - - - - 0.04 - - - - 0.02 - - - - - - - - - - 

 135 - - - - - - - - - - - - - - - - - - - 0.04 - - - 

 143 - - - 0.07 0.02 - - - - - - - 0.14 - - 0.36 0.16 0.06 0.07 0.13 - - - 

 151 - - - - - - - 0.04 - - 0.03 - - - - - - - - - - - - 

 153 0.14 0.10 - - 0.02 - - - - - - - - - - - - - - - - - - 

 159 - - 0.08 0.10 0.02 - - - - - - - - - - - - - - - - - - 

 161 0.29 0.30 0.17 0.23 0.02 - - - - - - - - - - - - - - - - - - 

 163 0.14 - - - - - - - - - - - - - - - - - - - - - - 

 167 0.14 0.50 0.42 0.37 - 0.33 - 0.11 0.08 0.47 - - - - 0.20 0.07 0.18 0.88 0.70 0.71 0.94 0.40 0.33 

Appendix S3.3: Microsatellite allele frequencies for Botryllus schlosseri from 24 global locations 
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 169 - - - - 0.02 - - - - - - - - - - - - - - - - - - 

 173 - - - - 0.02 - - 0.04 - 0.03 - 0.21 0.05 0.07 - - - - - - - - - 

 179 0.14 - 0.08 0.07 0.15 - - - - - - - - - - - - - 0.10 0.08 - - 0.14 

 193 - - - 0.03 0.04 - - - 0.04 - - - - - - - - - 0.10 - - - 0.02 

 197 - - - - - - - - - - - - - - - - - - - - - - 0.03 

 203 - - - - 0.08 - - - - - - - - - - - - - - - - - - 

 209 - - - - - - - - 0.04 - - - - - - - - - - - - - - 

 211 - - - - 0.02 - - - - - - - - - - - - - - - - - - 

 213 - - - - 0.02 - - - - - - - - - - - - - - - - - - 

 217 - - - - 0.02 - - - - - - - - - - - - - - - - - 0.11 

 219 - - - 0.07 - - - - - - - - - - - - - - - - - - - 

 221 - - 0.04 - 0.08 - - - - - - - - - - - - - - - - - - 

 223 - - 0.04 - - - - - - - - - - - - - - - - - - 0.30 0.03 

 225 - 0.10 - - 0.04 0.19 0.06 0.28 0.35 0.05 0.30 0.07 0.20 0.43 0.40 0.07 0.34 - - - 0.06 - 0.03 

 229 - - - - 0.04 - - - - - - - - - - - - - - - - - - 

 231 - - - - - - - 0.09 - - 0.03 0.07 0.13 0.11 0.20 - - - - - - - - 

 233 - - - - 0.02 - - - - - - - - - - - - - - - - - - 

 239 0.14 - - - 0.04 - - - - - - - - - - - - - - - - - - 

 243 - - - - 0.02 - - 0.09 - - 0.08 0.36 0.07 0.07 - 0.43 - - - - - - - 

 245 - - - - 0.02 - - - - - - - - - - - - - - - - - - 

 255 - - 0.08 0.03 0.02 0.24 0.89 0.13 0.04 0.05 0.43 0.14 - 0.14 - - 0.21 0.06 - 0.04 - - 0.28 

 259 - - - - 0.10 - 0.03 - - - - - - - - - - - - - - - - 

 263 - - 0.04 - - 0.13 - 0.07 0.27 0.40 0.08 0.07 0.38 0.11 0.20 - 0.05 - - - - 0.30 0.03 

 269 - - 0.04 - - - - - - - - - - - - - - - - - - - - 

 271 - - - - - - - - - - 0.03 - - 0.07 - 0.07 - - - - - - - 

 279 - - - - 0.04 - - - - - - - - - - - - - - - - - - 

 281 - - - - - - - - - - - - 0.02 - - - - - - - - - - 

 287 - - - - - 0.09 - 0.09 - - - - - - - - - - - - - - - 

 291 - - - 0.03 0.04 - - - - - - - - - - - - - - - - - - 

 295 - - - - 0.04 - - - - - - - - - - - - - - - - - - 

 297 - - - - 0.02 - - - - - - - - - - - - - - - - - - 
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 300 - - - - - - - 0.02 - - 0.03 - - - - - - - - - - - - 

BS811 136 - - - - - - 0.12 - 0.05 - - - - - - - - - - - - - - 

 150 - - - - 0.02 - - - - - - - - - - - - 0.10 - - - - - 

 154 - - - - - - - - - - - - - - - - - - 0.06 0.04 - - - 

 160 - - - - - - - - - - - - - - 0.10 - - 0.20 0.03 - - - - 

 162 0.07 0.20 0.04 0.06 - - - - - - - - - - 0.10 0.07 - - - - 0.08 - - 

 164 - - 0.15 - 0.05 - 0.03 0.11 0.18 0.33 0.20 - - - 0.10 0.07 0.15 - - - 0.17 - 0.09 

 166 - 0.20 0.27 0.03 0.05 0.25 - - - 0.33 - - - - - - 0.04 0.20 0.03 0.29 - - 0.09 

 170 - - - - 0.07 - 0.03 - - - - - - - - - 0.04 - - - - - 0.03 

 172 - - - - 0.17 0.05 - - - - - - - - 0.10 - 0.08 0.10 - - - - 0.03 

 174 - - - 0.09 0.10 0.03 - - 0.05 - - - 0.33 - - - 0.12 - 0.56 - - 0.25 - 

 176 - - - 0.03 - - - 0.11 0.05 - - - - - 0.10 - 0.04 - - 0.46 - - 0.25 

 180 - - - - 0.02 0.03 0.06 - 0.09 - - - - 0.06 0.20 - 0.04 - - - - - - 

 182 - - - - - - - - - - - - - 0.11 - - - - 0.06 0.04 0.08 - - 

 184 - - - - - 0.65 0.77 0.78 0.59 0.17 0.80 1.00 - 0.78 0.20 0.71 0.46 - - 0.17 0.58 - 0.25 

 190 - - - - - - - - - 0.17 - - - - 0.10 - - - - - - - 0.03 

 192 - - - - - - - - - - - - - 0.06 - 0.07 - - - - - - - 

 202 - - - - - - - - - - - - - - - 0.07 - - - - - - - 

 204 - - - - 0.07 - - - - - - - - - - - - - - - - - - 

 206 0.07 - 0.12 0.19 0.07 - - - - - - - - - - - - 0.20 - - - - - 

 208 0.14 - 0.08 0.22 0.05 - - - - - - - - - - - - - 0.09 - - - - 

 210 0.14 0.20 0.12 0.06 0.17 - - - - - - - - - - - - 0.10 0.09 - - - - 

 212 0.50 0.20 0.12 0.06 0.02 - - - - - - - - - - - - - 0.03 - - 0.13 0.09 

 214 - - - 0.06 0.02 - - - - - - - - - - - - - 0.03 - - 0.13 - 

 216 - - 0.04 0.03 - - - - - - - - - - - - - - - - - - - 

 224 - - - 0.09 0.05 - - - - - - - - - - - - - - - - - - 

 226 0.07 0.20 0.04 - 0.07 - - - - - - - - - - - - - - - 0.08 0.13 0.03 

 228 - - 0.04 0.03 - - - - - - - - - - - - - - - - - - - 

 230 - - - 0.03 - - - - - - - - - - - - 0.04 0.10 - - - 0.25 0.09 

 232 - - - - - - - - - - - - - - - - - - - - - 0.13 - 

 234 - - - - - - - - - - - - 0.67 - - - - - - - - - - 
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PB29 153 0.07 0.08 0.04 0.17 0.06 - - - - - - - - - - - - - - - 0.13 - 0.21 

 154 0.29 - 0.04 - - - - - 0.07 - - - - - - - - - 0.10 - - - 0.03 

 155 0.36 0.50 0.32 0.44 0.59 - - - - - 0.11 - 0.02 0.06 - - 0.03 - 0.25 0.38 0.06 0.30 0.22 

 157 0.14 - 0.11 - - 0.74 0.85 0.55 0.23 0.50 0.73 0.11 0.66 0.47 0.81 0.43 0.63 0.43 0.40 0.25 0.56 - 0.25 

 158 0.14 0.42 0.46 0.39 0.33 0.03 0.12 0.03 0.10 - - 0.11 - 0.12 - 0.29 0.10 0.57 0.23 0.38 0.13 0.70 0.29 

 160 - - - - 0.02 0.02 0.01 - 0.03 - 0.02 - - - 0.06 - 0.18 - - - - - - 

 164 - - 0.04 - - 0.21 0.03 0.41 0.57 0.50 0.14 0.79 0.33 0.35 0.13 0.29 0.07 - - - 0.13 - - 

 167 - - - - - - - - - - - - - - - - - - 0.03 - - - - 

PB49 194 - - - - - - - 0.07 - - - - - - - - 0.13 - - - - - - 

 200 - - 0.18 0.15 0.04 0.02 0.05 0.17 0.23 0.07 0.06 0.71 0.14 0.08 0.13 0.06 0.16 - - - 0.05 - 0.03 

 202 - - - - - 0.02 - 0.06 - 0.05 0.02 - - - - - - - - - - - - 

 204 - - - - - 0.12 0.59 0.13 0.42 0.07 0.38 - 0.02 - - - 0.14 - - - - - - 

 206 - - - - - 0.42 - 0.04 0.04 - 0.02 - 0.02 0.28 0.19 - 0.05 - - 0.04 - - - 

 208 - - - - 0.02 0.18 0.03 0.32 0.15 0.48 0.20 0.11 0.55 0.14 0.44 0.06 0.23 - 0.72 0.79 0.75 0.30 0.22 

 210 0.08 - 0.29 0.09 0.22 0.18 0.34 0.15 0.08 0.09 0.24 0.11 0.11 0.19 0.25 0.88 0.27 0.17 - - 0.05 - 0.07 

 212 - - - - - - - - - 0.07 - 0.03 - - - - - - 0.03 0.17 - - 0.07 

 216 0.42 - 0.07 - - - - - - - - - - - - - - - - - - - - 

 220 - - 0.04 - - - - - - - - - - - - - - - - - - - - 

 222 - - 0.04 - 0.04 - - - - - - - - - - - - 0.17 - - - - - 

 224 - - 0.04 - 0.06 - - - - - - - - - - - - 0.67 0.06 - - - 0.10 

 226 0.08 0.50 - 0.06 0.13 - - - - - - - - - - - - - - - 0.05 0.10 - 

 228 0.08 - 0.07 0.12 0.04 - - - - - - - - - - - - - 0.06 - - 0.10 - 

 230 0.17 - 0.14 0.03 0.19 0.07 - 0.07 0.08 0.18 0.08 0.05 0.16 0.31 - - 0.02 - 0.08 - 0.10 0.50 0.26 

 232 0.08 0.30 - 0.06 0.20 - - - - - - - - - - - - - 0.06 - - - 0.04 

 234 0.08 - - 0.18 0.04 - - - - - - - - - - - - - - - - - 0.01 

 236 - - - 0.12 0.04 - - - - - - - - - - - - - - - - - 0.19 

 238 - - 0.07 0.09 - - - - - - - - - - - - - - - - - - - 

 240 - - 0.07 0.09 - - - - - - - - - - - - - - - - - - - 

 244 - 0.20 - 0.03 - - - - - - - - - - - - - - - - - - - 

PB41 169 - - - 0.03 - 0.23 0.13 0.45 0.47 0.17 0.64 0.35 0.38 0.44 - - 0.12 - - - - - - 

 171 - - - - - 0.43 0.30 0.29 0.19 0.06 - 0.65 0.50 0.32 0.43 1.00 0.22 - 0.05 0.17 0.40 - - 
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 173 0.29 0.17 0.21 0.34 0.36 0.30 0.56 0.26 0.31 0.78 0.36 - 0.13 0.18 0.43 - 0.62 0.20 0.18 0.33 0.40 0.30 0.38 

 175 0.36 0.33 0.14 0.11 0.13 - 0.01 - 0.03 - - - - - - - 0.02 0.20 0.64 0.33 0.20 0.50 0.59 

 177 0.07 0.17 0.11 0.16 0.06 - 0.01 - - - - - - - - - - - - - - 0.20 - 

 179 0.29 0.33 0.50 0.34 0.39 0.04 - - - - - - - 0.06 0.14 - 0.02 0.60 0.14 0.17 - - 0.03 

 181 - - 0.04 0.03 0.06 - - - - - - - - - - - - - - - - - - 

PBC1 176 0.08 - 0.25 0.12 - - - - - - - - - - - - - 0.06 - - - - - 

 182 0.17 0.20 0.13 0.19 0.30 - - - - - - - - - - - - - - - - - - 

 184 - - - - 0.05 - - - - - - - - - - - - - - - - - - 

 186 0.17 0.20 0.25 0.04 0.14 0.12 0.01 0.08 0.20 0.11 0.10 - 0.05 0.21 0.06 - 0.11 - - - - - 0.13 

 188 0.08 - - - 0.09 - - - - - - - - - - - - - - - 0.05 - 0.02 

 192 - 0.10 - 0.08 0.14 0.04 0.32 0.08 0.17 0.33 0.43 0.08 0.08 0.05 0.13 - 0.18 - - 0.06 - - - 

 194 0.25 - - - 0.09 - 0.02 0.02 - 0.06 - - - 0.05 - 0.50 0.04 - - - - - - 

 198 - 0.10 - - 0.14 0.31 0.10 0.04 - 0.06 0.07 0.81 0.30 - - - - 0.50 0.29 - 0.05 - - 

 200 - - - - - 0.12 0.16 0.14 0.30 0.03 0.21 0.04 0.35 0.26 0.31 - 0.11 - 0.10 0.28 0.10 0.25 0.02 

 202 - - - - - - - - - - - - - - - - - - - - - - 0.07 

 203 0.25 0.40 0.38 0.39 0.05 - 0.02 - - - - - - - - - - - - - 0.10 - 0.48 

 206 - - - 0.08 0.02 0.06 0.05 0.08 0.10 0.19 0.05 0.04 - 0.16 - 0.25 0.13 - 0.38 0.44 0.45 0.75 0.04 

 208 - - - 0.12 - - - - - - - - - - - - - - - - - - 0.05 

 212 - - - - - 0.21 0.30 0.50 0.20 0.22 0.07 0.04 0.23 0.11 0.44 0.25 0.32 0.44 0.24 0.22 0.25 - 0.20 

 214 - - - - - 0.02 - 0.06 0.03 - 0.07 - - 0.13 0.06 - 0.13 - - - - - - 

 218 - - - - - 0.02 0.03 - - - - - - 0.03 - - - - - - - - - 

 221 - - - - - 0.04 - - - - - - - - - - - - - - - - - 

 223 - - - - - 0.08 - - - - - - - - - - - - - - - - - 

Bsm1 211 0.08 0.08 0.32 0.18 0.40 - - - - - - - - - - - - - 0.02 - - 0.20 0.07 

 215 - - 0.07 - - - - - - - - - - - - - - - - - - - - 

 225 0.75 0.92 0.43 0.71 0.45 0.47 0.92 0.52 0.50 0.43 0.67 0.53 0.29 0.63 0.44 0.38 0.45 1.00 0.61 0.67 0.30 0.70 0.50 

 231 0.08 - - - 0.02 0.22 0.05 0.35 0.35 0.27 0.19 0.18 0.59 0.29 0.25 - 0.33 - 0.37 0.29 0.55 0.10 0.14 

 287 - - - - - - - - - - - - - - - - - - - - - - 0.01 

 291 0.08 - 0.11 0.03 0.10 0.31 0.03 0.13 0.15 0.30 0.15 0.29 0.12 0.08 0.31 0.63 0.22 - - 0.04 0.05 - 0.11 

 293 - - 0.07 0.08 0.03 - - - - - - - - - - - - - - - 0.10 - 0.17 

Bsm2 162 - - 0.07 - 0.05 - - - - - - - - - - - - - - - - - - 
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 165 0.21 0.25 0.18 0.29 0.23 0.09 - 0.02 - - - - - - - - - - - - 0.05 0.10 0.16 

 171 0.21 0.25 0.36 0.29 0.26 0.45 0.28 0.26 0.29 0.46 0.39 0.39 0.14 0.24 0.58 0.14 0.19 0.06 - 0.08 - - 0.06 

 174 - - - 0.08 0.10 0.02 0.01 0.30 - 0.10 0.13 0.17 0.04 0.17 0.08 0.29 0.36 - - 0.04 - - - 

 180 - - - - 0.07 - - - 0.06 0.06 - 0.08 - - - 0.07 0.02 - - - - - - 

 183 0.50 0.50 0.11 0.26 0.26 0.41 0.70 0.17 0.44 0.23 0.24 0.08 0.54 0.50 0.25 0.07 0.23 0.50 0.77 0.62 0.64 0.50 0.56 

 186 0.07 - 0.07 0.08 0.05 - 0.01 0.09 0.06 - 0.06 - 0.27 0.07 - 0.36 0.05 0.44 0.18 0.27 0.32 0.40 0.21 

 192 - - - - - - - - - - - - - - - - - - 0.05 - - - 0.02 

 201 - - 0.21 - - 0.03 0.01 0.17 0.15 0.15 0.19 0.28 0.02 0.02 0.08 0.07 0.13 - - - - - - 

 204 - - - - - - - - - - - - - - - - 0.03 - - - - - - 

Bsm4 95 - - - 0.03 0.02 - - - - - - - - - - - - - 0.07 0.13 - - 0.03 

 99 0.07 0.17 - 0.05 0.13 0.40 0.40 0.41 0.44 0.48 0.30 0.80 0.38 0.41 0.25 0.50 0.27 0.44 - 0.29 - 0.40 0.18 

 101 0.36 0.25 0.57 0.55 0.34 0.30 0.19 0.20 0.18 0.17 0.19 0.05 0.18 0.33 0.19 0.19 0.37 0.13 0.41 0.25 0.55 0.20 0.61 

 103 0.36 0.08 0.18 0.18 0.27 0.18 0.42 0.23 0.27 0.08 0.50 0.03 0.16 0.14 0.25 0.31 0.27 0.44 0.37 0.04 0.32 0.20 0.18 

 105 - - - - - 0.03 - 0.04 - - - - - 0.07 0.19 - 0.05 - - - - - - 

 107 0.07 0.25 0.14 0.13 0.20 - - - - - - - - - - - - - - - 0.09 - - 

 109 - - - - - - - - - - - 0.03 - - - - - - - - - - - 

 135 - - - - - 0.08 - 0.13 0.12 0.27 0.02 0.10 0.29 0.05 0.13 - 0.03 - 0.15 0.29 0.05 0.20 - 

 139 0.07 0.25 0.11 0.05 0.05 - - - - - - - - - - - - - - - - - - 

 141 0.07 - - - - - - - - - - - - - - - - - - - - - - 

Bsm6 208 - - - - 0.08 - - - - - 0.04 - - - - - - - - - - - 0.02 

 210 1.00 1.00 0.40 1.00 0.88 0.90 0.93 0.92 0.97 0.79 0.93 1.00 0.90 0.88 0.88 0.94 0.79 1.00 1.00 0.96 1.00 1.00 0.99 

 214 - - 0.60 - 0.04 0.08 0.07 0.08 0.03 0.21 0.04 - 0.10 0.10 0.06 - 0.18 - - - - - - 

 216 - - - - - 0.02 - - - - - - - 0.02 0.06 0.06 0.03 - - 0.04 - - - 

Bsm9 171 - - - - - - - - - - - - - - - - - - - - - - 0.03 

 189 - - - - - - - - - - - - - - - - - - - - - - 0.01 

 192 - - - - - 0.03 0.42 0.98 0.57 0.88 0.78 1.00 0.97 0.67 - - 0.21 - - - - - - 

 195 1.00 1.00 0.88 0.89 0.83 0.97 0.58 - 0.43 0.10 0.22 - 0.03 0.33 1.00 1.00 0.79 1.00 1.00 1.00 1.00 0.33 0.69 

 198 - - - 0.06 - - - - - - - - - - - - - - - - - - - 

 204 - - - - 0.02 - - - - - - - - - - - - - - - - - - 

 228 - - 0.13 - 0.07 - - - - - - - - - - - - - - - - - 0.22 

 237 - - - - - - - - - - - - - - - - - - - - - - 0.01 
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 240 - - - - 0.03 - - - - - - - - - - - - - - - - - 0.03 

 243 - - - - 0.02 - - - - - - - - - - - - - - - - - - 

 261 - - - 0.06 - - - - - - - - - - - - - - - - - - - 

 264 - - - - 0.03 - - 0.02 - 0.02 - - - - - - - - - - - 0.33 - 

 276 - - - - - - - - - - - - - - - - - - - - - 0.17 - 

 285 - - - - - - - - - - - - - - - - - - - - - 0.17 - 
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Appendix S3.4: Genetic diversity at 12 microsatellite loci for 24 sites of Botryllus schlosseri. N, sample size; NA, 

number of alleles; A, allele richness; HO, observed heterozygosity; HE, expected heterozygosity; FIS value; PHW, exact P-

value for Hardy-Weinberg equilibrium. Significant departures from equilibrium after sequential Bonferroni correction 

are indicated in bold. 

Sites  BS321 BS531 BS811 PB29 PB49  PB41   PBC1  Bsm1  Bsm2 Bsm4 Bsm6 Bsm9 

BLN NA /A 6/6.0 9/8.3 10/9.0 6/5.1 10/8.8 5/4.7 4/4.0 5/4.8 6/5.8 4/4.0 2/2.0 2/2.0 

N = 14 HO 0.571 0.500 0.462 0.571 0.571 0.571 0.000 0.429 0.429 0.571 0.200 0.250 

 HE 0.604 0.804 0.886 0.690 0.873 0.696 0.767 0.717 0.802 0.632 0.505 0.228 

 FIS 0.059 0.389 0.489 0.178 0.354 0.184 1.000 0.411 0.475 0.100 0.617 -0.100 

 PHW 0.676 

 

0.006 

 

0.000 

 

0.032 

 

0.001 

 

0.327 

 

0.000 

 

0.006 

 

0.005 

 

0.510 

 

0.081 

 

1.000 

 
ADM NA /A 4/4.0 9/7.7 13/10.5 3/3.0 11/9.6 6/5.0 7/6.7 4/3.4 5/4.8 6/5.1 1/1.0 3/2.6 

N = 19 HO 0.333 0.400 0.500 0.667 0.353 0.474 0.462 0.474 0.368 0.579 NA 0.000 

 HE 0.685 0.811 0.907 0.641 0.914 0.748 0.806 0.467 0.771 0.654 NA 0.210 

 FIS 0.524 0.516 0.457 -0.041 0.621 0.373 0.438 -0.016 0.529 0.118 NA 1.000 

 PHW 0.037 

 

0.000 

 

0.001 

 

0.655 

 

0.000 

 

0.011 

 

0.017 

 

0.198 

 

0.002 

 

0.102 

 

- 

 

0.001 

 
ALC NA /A 6/5.3 25/14.2 15/11.2 4/3.1 11/8.1 5/4.5 9/7.7 5/3.8 7/6.1 6/5.0 3/2.6 6/3.6 

N = 33 HO 0.375 0.708 0.476 0.531 0.407 0.594 0.318 0.233 0.742 0.813 0.083 0.167 

 HE 0.740 0.956 0.926 0.544 0.864 0.706 0.855 0.637 0.811 0.764 0.231 0.303 

 FIS 0.501 0.263 0.492 0.024 0.533 0.161 0.633 0.638 0.086 -0.065 0.643 0.455 

 PHW 0.004 

 

0.000 

 

0.000 

 

1.000 

 

0.000 

 

0.066 

 

0.000 

 

0.000 

 

0.044 

 

0.079 

 

0.001 

 

0.003 

 
SYD NA /A 4/2.9 6/5.2 5/3.8 4/2.9 7/5.4 4/3.6 10/7.6 3/3.0 5/3.8 5/4.4 3/2.2 2/1.6 

N = 30 HO 0.172 0.630 0.300 0.276 0.567 0.036 0.654 0.483 0.828 0.700 0.200 0.000 

 HE 0.328 0.785 0.524 0.413 0.753 0.681 0.837 0.648 0.630 0.720 0.186 0.066 

 FIS 0.480 0.201 0.434 0.336 0.251 0.948 0.222 0.258 -0.322 0.029 -0.077 1.000 

 PHW 0.012 

 

0.000 

 

0.001 

 

0.003 

 

0.013 

 

0.000 

 

0.005 

 

0.040 

 

0.158 

 

0.282 

 

1.000 

 

0.017 

 
LTN NA /A 4/4.0 4/2.7 5/4.0 4/2.6 4/3.1 5/3.3 9/5.8 3/2.2 5/2.5 3/3.0 2/1.8 2/2.0 

N = 60 HO 0.269 0.077 0.235 0.125 0.500 0.173 0.627 0.167 0.500 0.712 0.138 0.000 

 HE 0.704 0.215 0.408 0.269 0.545 0.590 0.775 0.158 0.438 0.640 0.130 0.491 

 FIS 0.622 0.645 0.431 0.537 0.083 0.709 0.192 -0.058 -0.143 -0.114 -0.065 1.000 

 PHW 0.000 

 

0.000 

 

0.036 

 

0.000 

 

0.880 

 

0.000 

 

0.006 

 

1.000 

 

0.772 

 

0.057 

 

1.000 

 

0.000 
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PDG NA /A 3/2.2 11/9.0 3/3.0 3/2.6 8/7.0 3/3.0 8/6.5 3/3.0 6/5.3 5/4.6 2/1.9 2/1.4 

N = 29 HO 0.048 0.304 0.000 0.345 0.074 0.048 0.160 0.296 0.852 0.500 0.154 0.038 

 HE 0.138 0.877 0.392 0.532 0.834 0.661 0.720 0.602 0.795 0.735 0.145 0.038 

 FIS 0.661 0.658 1.000 0.356 0.913 0.930 0.781 0.512 -0.073 0.324 -0.064 0.000 

 PHW 0.024 

 

0.000 

 

0.004 

 

0.010 

 

0.000 

 

0.000 

 

0.000 

 

0.002 

 

0.417 

 

0.022 

 

1.000 

 

- 

 
PTR NA /A 4/3.9 7/6.3 6/5.7 5/4.5 6/5.7 4/3.6 6/5.6 3/3.0 5/4.7 4/4.0 2/1.7 2/2.0 

N = 17 HO 0.091 0.692 0.364 0.333 0.385 0.375 0.400 0.471 0.882 0.647 0.067 0.000 

 HE 0.619 0.791 0.632 0.630 0.760 0.667 0.818 0.622 0.711 0.711 0.067 0.508 

 FIS 0.859 0.129 0.437 0.480 0.504 0.446 0.520 0.249 -0.250 0.093 0.000 1.000 

 PHW 0.000 

 

0.000 

 

0.023 

 

0.024 

 

0.000 

 

0.001 

 

0.005 

 

0.422 

 

0.035 

 

0.789 

 

- 

 

0.000 

 
BTC NA /A 3/3.0 5/4.1 4/4.0 2/2.0 7/6.2 3/2.8 7/6.1 3/3.0 5/4.7 4/3.9 2/2.0 3/2.4 

N = 24 HO 0.000 0.474 0.000 0.364 0.318 0.000 0.389 0.500 0.750 0.583 0.417 0.250 

 HE 0.800 0.630 0.788 0.512 0.732 0.375 0.805 0.667 0.716 0.676 0.337 0.228 

 FIS 1.000 0.253 1.000 0.294 0.571 1.000 0.524 0.255 -0.048 0.140 -0.243 -0.100 

 PHW 0.067 

 

0.305 

 

0.001 

 

0.217 

 

0.000 

 

0.000 

 

0.000 

 

0.305 

 

0.454 

 

0.612 

 

0.540 

 

1.000 

 
GBR NA /A 2/2.0 9/6.3 2/2.0 4/3.4 7/5.5 2/2.0 7/6.3 3/3.0 5/4.7 4/3.4 3/2.2 2/2.0 

N = 27 HO 0.000 0.250 0.000 0.136 0.280 0.000 0.190 0.222 0.667 0.556 0.074 0.222 

 HE 0.533 0.733 0.356 0.449 0.762 0.476 0.762 0.509 0.751 0.639 0.143 0.352 

 FIS 1.000 0.665 1.000 0.701 0.638 1.000 0.755 0.568 0.114 0.133 0.485 0.373 

 PHW 0.202 

 

0.000 

 

0.112 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.001 

 

0.228 

 

0.301 

 

0.038 

 

0.081 

 
SWM NA /A 1/1.0 7/6.7 1/1.0 3/2.9 5/4.2 2/2.0 5/4.3 3/3.0 5/4.8 5/3.7 1/1.0 1/1.0 

N = 20 HO NA 0.000 NA 0.211 0.316 0.000 0.154 0.211 0.778 0.400 NA NA 

 HE NA 0.815 NA 0.364 0.482 0.471 0.351 0.622 0.751 0.355 NA NA 

 FIS NA 1.000 NA 0.429 0.351 1.000 0.571 0.667 -0.037 -0.130 NA NA 

 PHW - 

 

0.000 

 

- 

 

0.035 

 

0.097 

 

0.000 

 

0.005 

 

0.000 

 

0.095 

 

1.000 

 

- 

 

- 

 
LNB NA /A 5/4.2 8/6.2 2/2.0 3/2.3 6/4.6 3/3.0 5/4.6 3/3.0 5/4.0 4/4.0 2/2.0 2/1.6 

N = 29 HO 0.176 0.643 0.000 0.379 0.321 0.000 0.050 0.552 0.577 0.821 0.200 0.000 

 HE 0.636 0.790 0.533 0.471 0.647 0.606 0.747 0.566 0.630 0.733 0.186 0.068 

 FIS 0.729 0.189 1.000 0.198 0.508 1.000 0.935 0.025 0.085 -0.123 -0.077 1.000 

 PHW 0.000 

 

0.003 

 

0.200 

 

0.261 

 

0.000 

 

0.000 

 

0.000 

 

0.651 

 

0.398 

 

0.466 

 

1.000 

 

0.018 

 
DGB NA /A 2/1.6 7/6.7 4/4.0 4/3.8 5/4.9 4/3.8 8/7.0 3/2.9 5/4.3 5/4.6 3/2.4 2/2.0 
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N = 21 HO 0.063 0.429 0.333 0.235 0.500 0.059 0.316 0.474 0.667 0.667 0.238 0.000 

 HE 0.063 0.786 0.399 0.656 0.787 0.686 0.849 0.525 0.676 0.714 0.220 0.457 

 FIS 0.000 0.464 0.172 0.648 0.372 0.917 0.635 0.100 0.014 0.068 -0.087 1.000 

 PHW - 

 

0.001 

 

0.335 

 

0.000 

 

0.031 

 

0.000 

 

0.000 

 

0.826 

 

0.388 

 

0.614 

 

1.000 

 

0.000 

 
YMT NA /A 7/4.5 6/5.6 9/7.8 5/4.3 7/6.0 5/3.8 7/6.4 3/3.0 7/5.5 5/4.2 3/2.5 2/2.0 

N = 31 HO 0.182 0.263 0.462 0.290 0.429 0.200 0.679 0.500 0.806 0.677 0.355 0.032 

 HE 0.510 0.795 0.766 0.567 0.824 0.563 0.824 0.650 0.778 0.720 0.348 0.337 

 FIS 0.649 0.675 0.407 0.492 0.484 0.650 0.179 0.234 -0.037 0.060 -0.019 0.906 

 PHW 0.000 

 

0.000 

 

0.001 

 

0.000 

 

0.000 

 

0.000 

 

0.066 

 

0.308 

 

0.001 

 

0.175 

 

1.000 

 

0.000 

 
FRC NA /A 3/2.5 5/4.5 9/7.1 5/4.4 6/4.9 4/3.9 4/3.9 3/2.4 3/2.7 4/3.8 1/1.0 1/1.0 

N = 15 HO 0.200 0.400 0.375 0.300 0.167 0.182 0.762 0.783 0.364 0.435 NA NA 

 HE 0.537 0.501 0.675 0.735 0.475 0.567 0.725 0.503 0.376 0.680 NA NA 

 FIS 0.634 0.208 0.453 0.598 0.655 0.690 -0.053 -0.575 0.034 0.366 NA NA 

 PHW 0.003 

 

0.005 

 

0.000 

 

0.000 

 

0.000 

 

0.001 

 

0.000 

 

0.006 

 

0.041 

 

0.000 

 

- 

 

- 

 
LSM NA /A 2/2.0 5/4.6 5/4.7 3/3.0 3/2.8 4/4.0 4/4.0 3/2.8 4/3.7 5/4.8 2/1.8 1/1.0 

N = 13 HO 0.400 0.500 0.500 0.250 0.417 0.667 1.000 0.167 0.692 0.667 0.077 NA 

 HE 0.442 0.493 0.703 0.750 0.359 0.867 0.712 0.489 0.563 0.783 0.077 NA 

 FIS 0.100 -0.015 0.298 0.700 -0.170 0.273 -0.440 0.669 -0.241 0.154 0.000 NA 

 PHW 1.000 

 

0.561 

 

0.001 

 

0.142 

 

1.000 

 

0.467 

 

0.038 

 

0.010 

 

0.109 

 

0.000 

 

- 

 

- 

 
BRN NA /A 3/3.0 2/2.0 5/5.0 5/5.0 5/5.0 3/3.0 6/6.0 4/4.0 3/2.9 4/3.9 1/1.0 1/1.0 

N = 11 HO 0.100 0.111 0.500 0.250 0.200 0.000 0.800 0.600 0.545 0.636 NA NA 

 HE 0.279 0.111 0.667 0.675 0.442 0.711 0.747 0.626 0.515 0.619 NA NA 

 FIS 0.654 0.000 0.268 0.646 0.561 1.000 -0.075 0.044 -0.062 -0.029 NA NA 

 PHW 0.052 

 

- 

 

0.148 

 

0.005 

 

0.009 

 

0.010 

 

0.839 

 

0.326 

 

1.000 

 

0.756 

 

- 

 

- 

 
BBY NA /A 4/3.2 9/6.3 10/8.3 5/4.5 9/6.9 3/2.5 8/5.8 6/5.0 5/4.0 4/3.5 2/1.3 6/3.5 

N = 36 HO 0.486 0.594 0.438 0.333 0.861 0.353 0.500 0.556 0.618 0.472 0.030 0.389 

 HE 0.596 0.790 0.863 0.770 0.833 0.514 0.716 0.695 0.625 0.568 0.030 0.473 

 FIS 0.187 0.251 0.501 0.570 -0.034 0.317 0.306 0.203 0.011 0.171 0.000 0.180 

 PHW 0.108 

 

0.000 

 

0.000 

 

0.000 

 

0.159 

 

0.007 

 

0.001 

 

0.011 

 

0.026 

 

0.015 

 

- 

 

0.016 
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Appendix S3.5: Pairwise ФST comparisons for Botryllus schlosseri populations using the mitochondrial COI marker. *Significant (P 

< 0.05); ** remains significant after sequential Bonferroni correction (Rice 1989). 

 Native Introduced (East Coast) Introduced (West Coast) 

 ETQ SET BLN ADM ALC SYD LTN PDG PTR BTC GBR SWM LNB DGB IGM PLT YMT DPB FRC LSM BRN SQN 

ETQ                       

SET 0.47                      

BLN -0.16 0.61*                     

ADM 0.16 0.72** 0.16                    

ALC 0.01 0.74** 0.05 -0.02                   

SYD 0.50** 0.72** 0.53** 0.69** 0.65**                  

LTN 0.96** 0.92** 0.92** 0.97** 0.92** 0.73**                 

PDG 0.53* 0.76** 0.56** 0.71** 0.67** 0.25* 0.29**                

PTR 0.44* 0.66** 0.50** 0.69** 0.64** 0.05 0.61** 0.02               

BTC 0.53* 0.76** 0.56** 0.72** 0.67** 0.24* 0.30** -0.03 0.02              

GBR 0.65** 0.77** 0.65** 0.80** 0.74** 0.39** 0.19* 0.00 0.14 0.00             

SWM 0.56** 0.74** 0.59** 0.72** 0.69** 0.01 0.83** 0.40** 0.20* 0.40** 0.54**            

LNB 0.64** 0.80** 0.65** 0.78** 0.73** 0.39** 0.17** 0.01 0.14* 0.01 -0.03 0.54**           

DGB 0.80** 0.84** 0.77** 0.88** 0.82** 0.56** 0.03 0.13* 0.35** 0.14* 0.03 0.69** 0.04          

IGM 0.50* 0.59** 0.55** 0.78** 0.70** 0.19 0.58* -0.08 -0.04 -0.08 -0.04 0.37* -0.04 0.17         

PLT 0.46* 0.56* 0.53** 0.76** 0.69** -0.09 0.87** 0.17 -0.04 0.16 0.36* 0.00 0.35* 0.62** 0.09        

YMT 0.45* 0.71** 0.49** 0.68** 0.63** 0.14* 0.45** -0.01 -0.03 -0.01 0.06 0.29* 0.07 0.24* -0.07 0.05       

DPB 0.67* 0.64** 0.58* 0.86** 0.72** 0.45** 1.00** 0.46** 0.41* 0.47** 0.62** 0.55** 0.59** 0.81** 0.58** 0.54** 0.38*      

FRC 0.83** 0.80** 0.72** 0.91** 0.79** 0.55** 1.00** 0.54** 0.55** 0.55** 0.71** 0.65** 0.66** 0.85** 0.74** 0.73** 0.49** 0.00     

LSM 0.67** 0.71** 0.60** 0.85** 0.73** 0.47** 0.97** 0.45** 0.42** 0.45** 0.60** 0.57** 0.56** 0.78** 0.57** 0.57** 0.38** -0.04 0.03    

BRN 0.50** 0.64** 0.50** 0.78** 0.68** 0.36* 0.89** 0.26* 0.23* 0.26* 0.38* 0.49** 0.37* 0.59** 0.27* 0.35* 0.19* 0.17 0.33* 0.09   

SQN -0.09 0.48* 0.00 0.36* 0.22* 0.47** 0.94** 0.51** 0.41* 0.51** 0.62** 0.53** 0.61** 0.77** 0.46* 0.41* 0.42* 0.49* 0.69* 0.52* 0.39*  

BBY -0.04 0.67** 0.03 0.21* 0.15* 0.43** 0.70** 0.42** 0.37** 0.42** 0.47** 0.49** 0.48** 0.55** 0.37** 0.39** 0.36** 0.32* 0.41** 0.34** 0.28* -0.06 
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Appendix S3.6: Pairwise FST comparisons for Botryllus schlosseri populations using 12 microsatellite markers. *Significant (P < 

0.05); ** remains significant after sequential Bonferroni correction (Rice 1989). Populations with sample size of less than 10 

individuals (N < 10) were not included in this analysis. 

 Native Introduced (East Coast) Introduced (West Coast) 

 BLA ADM ALI SYD LTN PDG PTR BTC GBR SWM  LNB DGB YMT FRC LSM BRN 

BLA                 

ADM 0.01 

 

               

ALI 0.03* 0.01               

SYD 0.12** 0.08** 0.07**              

LTN 0.24** 0.21** 0.16** 0.14**             

PDG 0.37** 0.38** 0.34** 0.39** 0.24**            

PTR 0.20** 0.20** 0.15** 0.15** 0.03* 0.11**           

BTC 0.34** 0.36** 0.32** 0.34** 0.22** 0.03* 0.07**          

GBR 0.27** 0.29** 0.24** 0.29** 0.14** 0.04** 0.04* 0.07**         

SWM 0.51** 0.51** 0.45** 0.48** 0.35** 0.09** 0.20** 0.06** 0.17**        

LNB 0.43** 0.42** 0.37** 0.42** 0.22** 0.07** 0.11** 0.07** 0.12** 0.20**       

DGB 0.23** 0.21** 0.18** 0.20** 0.07** 0.09** 0.01 0.08** 0.06** 0.20** 0.09**      

YMT 0.08** 0.07** 0.05** 0.08** 0.13** 0.25** 0.10** 0.25** 0.18** 0.37** 0.31** 0.11**     

FRC 0.23** 0.16** 0.15** 0.17** 0.20** 0.50** 0.28** 0.48** 0.39** 0.64** 0.48** 0.30** 0.17**    

LSM 0.20** 0.14** 0.12** 0.09** 0.18** 0.44** 0.20** 0.39** 0.35** 0.57** 0.42** 0.23** 0.12** 0.08**   

BRN 0.16** 0.09** 0.11** 0.16** 0.21** 0.48** 0.26** 0.46** 0.36** 0.63** 0.47** 0.27** 0.14** 0.00 0.09*  

BBY 0.09** 0.06** 0.07** 0.13** 0.16** 0.37** 0.17** 0.36** 0.30** 0.49** 0.37** 0.17** 0.11** 0.10** 0.10** 0.05* 



 108 

4.0 - GENERAL DISCUSSION 

A decade after Holland’s (2000) timely review on the application of genetics to the study 

of marine biological invasions, the field has advanced tremendously, and genetics is now 

regarded as a key addition not only to the study of NIS in the marine realm (reviewed by 

Geller et al. 2010) but also to invasion biology research in general (Lockwood et al. 

2007). The two empirical studies presented here offer yet another illustration of the value 

of using genetic approaches for addressing issues of species invasions. For both B. 

violaceus and B. schlosseri, I was able to identify genetically distinct groups of 

populations at the continental and intra-coastal scales, using both equilibrium-based (i.e. 

pairwise FST and ФST estimates) and non-equilibrium-based methods (i.e. multilocus 

genotype clustering), which were largely congruent. I inferred the post-introduction level 

of neutral genetic variation maintained in West vs. East coast populations (for B. 

violaceus) and in invasive vs. native populations (for B. schlosseri). Moreover, by relying 

on multilocus genotyping data, correlations of IBD, and assignment tests, I was able to 

identify the regional patterns of spread for these species in the East and West coast 

invaded ranges. This information has important implications, and should be considered in 

future management actions taken to alleviate the impacts of B. violaceus and B. schlosseri 

in regions of introduction.  

Several of the genetic patterns emerging from this study highlight the importance of using 

multiple marker systems in genetic surveys of introduced populations. Uniparentally-

inherited markers such as the mitochondrial COI gene have great potential in revealing 

bottleneck events associated with biological invasions while also being readily available 
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through the use of versatile universal primers (Simon et al. 1994). However, the genetic 

variability retained in such markers for recently founded populations may be severely 

reduced as a result of the introduction event itself and subsequent drift effects (Freeland 

2005). Although not always the case, it is possible that all introduced populations share a 

single haplotype (e.g. Chandler et al. 2008) or very few haplotypes (as illustrated here in 

the case of East coast B. violaceus populations), therefore preventing interpretations on 

patterns of genetic structure and population connectivity. In this situation, microsatellite 

markers may provide an advantage over mitochondrial markers due to the greater genetic 

variation retained. However, microsatellites are significantly less practical when 

inferences on the evolutionary history and origin of introduced populations are to be 

made. Therefore, as it has been shown in this thesis, both marker systems should be used 

in combination. Although still relatively uncommon in the field of invasion genetics, this 

ideal approach will provide a more comprehensive representation of patterns of genetic 

structure, population connectivity, and invasion history for NIS.  

On a more restricted note, discrepancies were also observed between the two study 

species analysed here. For example, clonal genotypes were identified more frequently for 

B. violaceus (27 clones; Appendix S2.4) than for B. schlosseri (5 clones; Appendix S3.1). 

Three possible explanations can be provided for this pattern. First, laboratory experiments 

have previously indicated that reattachment capabilities (and hence survivability) of 

fragments differ between the two ascidian species, with the highest success (100 %) 

recorded in B. violaceus (Bullard et al. 2007). Second, the colony structure for the two 

species is markedly different, with B. violaceus possessing a brittle morphology and thin 

tunic that could potentially facilitate fragmentation. By contrast, B. schlosseri colonies 
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are fleshy and enveloped in a thicker tunic that could effectively prohibit frequent 

fragmentation in this species. Third, the differences observed may be influenced by 

certain aspects of this study's design. More specifically, the availability of colonies from 

aquaculture facilities for B. violaceus but not for B. schlosseri could represent a source of 

bias in my results, since aquaculture management techniques such as equipment handling, 

maintenance, and cleaning, most likely contribute regularly to the fragmentation of 

fouling colonial ascidians.  

The patterns of spread and resultant population genetic structure inferred for the two 

species in North America were generally congruent, indicative of long-distance dispersal. 

The only exception was detected along the Nova Scotia coastline, on the East coast. Here, 

while B. violaceus populations displayed evidence for stepping-stone dispersal, B. 

schlosseri populations appeared to be spreading mostly via 'jump' dispersal events. 

Considering that both species have limited abilities to spread independently (Carver et al. 

2006), it is likely that both of these patterns, although highly divergent, are a result of 

transport by human-mediated vectors. Given the 100-years difference in the chronologies 

of these species' introductions in Nova Scotia (Carver et al. 2006), the disagreement is 

difficult to interpret. It is possible that human-mediated vectors have had more time to 

disperse propagules of B. schlosseri over long distances compared to B. violaceus. Also, 

the dynamics of vector traffic along the Nova Scotia coast may have suffered temporal 

changes between these introductions. Finally, the sampling strategy for the study, which 

occasionally included different harbours and marinas for each of the two study species, 

could have influenced the patterns observed.  
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4.1 FUTURE DIRECTIONS 

To expand on results presented here, future studies should aim to increase sampling 

coverage in the native range for both species. In the case of B. violaceus, this approach 

might lead to the identification of specific regions in the Western Pacific that seeded the 

introduction(s) of this ascidian to North America. However, this outcome can be expected 

only if contemporary anthropogenic mixing of populations is not extensive enough to 

homogenize the genetic structure of B. violaceus populations in the native range. In the 

case of B. schlosseri, a better coverage of the ancestral distributional region would allow 

a re-evaluation of the taxonomic status of this species. Subsequent investigations could 

then explore if particular haplotypes/species differ in their invasive potential. In this 

context, future research could use the B. schlosseri species/species complex as a model 

system for the study of the genetic basis of invasiveness. Other similar model systems, 

also among widely distributed ascidians, have now been proposed (e.g. Ciona intestinalis 

species complex; Zhan et al. in press). Recent advances in DNA sequencing technology 

will provide the means to explore these exciting avenues of research at a genomic scale.  
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APPENDIX S1- POLYMORPHIC MICROSATELLITE MARKERS FOR TWO  

HIGHLY INVASIVE COLONIAL ASCIDIANS, BOTRYLLUS SCHLOSSERI AND 

BOTRYLLOIDES VIOLACEUS * 

The colonial ascidians Botryllus schlosseri and Botrylloides violaceus are highly invasive 

species that have been introduced into coastal marine ecosystems throughout the world as 

a result of human activities (Lambert 2005). In spite of their rapid spread, population 

genetics studies have been hampered by the limited number of polymorphic markers 

available (Pancer et al. 1994; Stoner et al. 1996). In this study, we developed 28 novel 

microsatellite markers (9 for B. schlosseri and 19 for B. violaceus) that are useful for 

conducting detailed population genetics studies. 

Two microsatellite libraries were developed for each species using the magnetic bead-

based enrichment method described by Glenn & Schable (2005) with modifications. 

Initially, individual zooids were isolated from the colony tunic and stored in 95% ethanol 

until further use. Following DNA extraction, genomic DNA (gDNA) was fragmented 

using RsaI (New England Biolabs) and DNA fragments of 300 to 1000 bp ligated to 

double-stranded SNX-24 linkers were hybridized to a mixture of (AG)12 (TG)12 (AAC)6 

(AAG)8 (AAT)12 (ACT)12 (ATC)8 biotinylated oligonucleotide probes. Probe-annealed 

DNA fragments were captured with streptavidin-coated magnetic beads (Dynabeads
®
 M-

280, Invitrogen). The enriched library was cloned into E. cloni
®

 10G cells using a  

* Molecular Ecology Resources Primer Development Consortium, Abdoullaye D, Acevedo I et al. (2010) 

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2009-30 September 

2009. Molecular Ecology Resources, 10, 232-236. DOI: 10.1111/j.1755-0998.2009.02796.x 
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pSMART
®
 GC HK vector (Lucigen, Middleton, WI. USA). Bacterial clones were 

sequenced using the SR2 primer (5’ GGTCAGGTATGATTTAAATGGT CAGT-3’) and 

BigDye Terminator 3.1 chemistry on an ABI 3130XL automated sequencer (Applied 

Biosystems, Foster City, CA). Because many of the microsatellites were located at the 

end of the insert sequence, greatly impeding primer design, a second microsatellite library 

was developed for each species by mechanically shearing the gDNA with a Sonic 

Dismembrator 60 (Fisher Scientific, Pittsburg, PA). Out of a total of 480 clones 

sequenced, 133 contained microsatellite repeats, 77 of which (30 for B. schlosseri and 47 

for B. violaceus) had sufficient flanking regions that allowed primer design. Primer pairs 

were designed using Primer 3 software (Rozen & Skaletsky 2000). A universal M13 tail 

was added to the 5’ end of each forward primer to allow fluorescent labeling, according 

to Schuelke (2000). PCRs were performed with tailed forward primer, reverse primer and 

one of four fluorophore 6FAM, VIC, NED or PET (Applied Biosystems, Foster City, 

CA). PCR cocktails (10 μL) contained 10 ng of gDNA, 1 x PCR buffer (1 mM Tris HCl 

pH 8.3, 5 mM KCl, 1.5 mM MgCl2), 0.125 mM of each dNTP, 0.5 μM of each primer 

and 0.2 U of TopTaq DNA Polymerase (QIAGEN). The cycling PCR profile was 

performed on an Eppendorf Mastercycler epGradient S thermocycler (Eppendorf, 

Hamburg, Germany) and consisted of a touchdown method with initial denaturation at 95 

ºC for 3 minutes, 10 cycles of 35 s at 95 ºC, 35 s at an initial annealing temperature of 60 

ºC that decreased by 1 ºC in each of the 10 cycles, and 45 s at 72 ºC. The first 10 cycles 

were followed by 35 cycles of 35 s at 95 ºC, 35 s at 50-54 ºC, 45 s at 72 ºC, and a final 

extension for 10 min at 72 ºC. For B. schlosseri, 22 out of 30 primer pairs gave consistent 

amplifications while for B. violaceus 39 out of 47 primer pairs could be used for 

polymorphism screening.  
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We tested the degree of polymorphism of the selected microsatellite loci by genotyping 

12 individuals from 10 distantly isolated populations from Canada, Japan and Europe. To 

assess the Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) for each 

polymorphic locus, 24 individual colonies from one population were genotyped (Arenys 

de Mar, Spain for B. schlosseri and Cardigan River, Prince Edward Island, Canada for B. 

violaceus). Amplified fragments were separated on an ABI 3130XL automated sequencer 

(Applied Biosystems, Foster City, CA), with GeneScan™-500 LIZ™ (Applied 

Biosystems, Foster City, CA) internal size standard. The alleles were scored using 

Genemapper® software version 4.0 (Applied Biosystems, Foster City, CA), and data was 

analyzed using GenePop software (Raymond & Rousset, 1995). 

For B. schlosseri, 9 out of 22 loci were polymorphic with 2 to 9 alleles per locus. For B. 

violaceus, 19 out of 39 loci were polymorphic with 3 to 11 alleles per locus (Table 1). 

Twenty one of the 28 polymorphic markers were in HWE. Most loci that departed from 

HWE revealed significant heterozygote deficiency (Table 1). Such deviations are 

characteristic of B. schlosseri (Stoner et al. 2002), and can be attributed to life-history 

traits of colonial tunicates such as non random mating, limited gene flow and population 

substructure. Significant LD was found between two pairs of loci (Bs3-Bs7, Bv6-Bv17) 

after standard Bonferroni correction. Cross amplification of the markers was tested 

between the two species and two other related colonial tunicates: Botrylloides fuscus and 

Botrylloides simodensis. Twenty-one of the 28 developed markers produced fragments of 

the expected size in more than one botryllid species (Table 1).  



 116 

These new microsatellite markers are useful tools for population genetics studies of B. 

schlosseri and B. violaceus. Understanding the invasion history of these ascidians 

requires accurate insight into the spatial and temporal genetic architecture of invasive and 

native populations and identifying potential sources and vectors of invasion. 
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Table A1 Characterization of polymorphic microsatellite loci for Botryllus schlosseri and Botrylloides violaceus: Ta, annealing 

temperature used in the touchdown protocol (see text); NA, number of alleles; S, allele size range (bp); HO, observed heterozygosity; 

HE, expected heterozygosity; P value from exact tests for Hardy-Weinberg equilibrium. Additional information is presented for the loci 

that were successfully cross-amplified in B. schlosseri (a), B. violaceus (b), B. fuscus (c) and B. simodensis (d). 

Locus 

GenBank  

Accession no. 

Primer sequences (5’-3’) Motif Ta NA S HO HE P value 

Cross-species  

amplification 

Botryllus schlosseri 

Bs 1 GQ272527 
F: ACTGCGCTAATCAGTAGAC 

R: CACTTCGCAATTTAAACTTCGG 
(AC)8 imperfect 54 2 211-224 0.33 0.48 0.1951 - 

Bs 2 GQ272528 
F: GAGCGAGAAGAGTGATG 

R: ATTTCCTGATTTGGTCTAAC 
(AAC)8 54 7 165-201 0.54 0.82 0.0097 c  

Bs 3** GQ272529 
F: GCGATCAAAAACGAACTGCT 

R: ACCTGTTTGATGCTGGTGTG 
(AG)9 54 3 217-237 0.50 0.39 0.4442 b, c 

Bs 4 GQ272530 
F: CCAGATTTGATGCTTGAGTGG 

R: TGTCGTCGTCACTCGTCAGT 
(GA)11 imperfect 54 5 99-141 0.58 0.66 0.0893 b 

Bs 5 GQ272531 
F: CGGCGGTTAGCCACAC 

R: GAATCGTTAGCACGATGGGTA 
(CA)9 54 2 194-200 0.88 0.50 0.0002* b, c, d 

Bs 6 GQ272532 
F: TGTTCAAGTGACCCCATCAA 

R: ACAATGCGTGCAGGGTATTC 
(TG)5...(ATTG)5 54 4 208-264 0.33 0.61 0.0008* b 

Bs 7** GQ272533 F: TGGTCTTAGGCCCAATGAAG (CAGA)2(CA)4 54 3 180-196 0.13 0.26 0.0126 b, c 
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R: AATAAACGGATTTGCGTTCG 

Bs 8 GQ272534 
F: GCGCCAATTCCTACTAGGTG 

R: CGTAGATCCGAGGCTGGTAA 
(TA)2(TG)4 54 9 181-277 0.17 0.74 0.0000* - 

Bs 9 GQ272535 
F: CGCATGCCTCCTCTTTACAT 

R: TCACAGGATAAACTGGATTTCG 
(TGA)6 54 6 192-261 0.50 0.70 0.0663 b 

Botrylloides violaceus 

Bv 1 GQ272536 
F: CACTGTTTGACATTTCGGGATA 

R: ACACAGGCCCACAGTGGTA 
(CT)9 50 3 115-119 0.63 0.53 0.4119 a, d 

Bv 2 GQ272537 
F: TTACGCGACCCATAACTTCC 

R: CCGGTATAGTCAGTCAACACCA 
(TGA)9 50 4 200-221 0.58 0.63 0.4317 c 

Bv 3 GQ272538 
F: ATTGCCCACTGAAAGGTGAG 

R: AGCAAGCTCGATAACCTCCA 
(GA)20 imperfect 50 4 177-251 0.58 0.61 0.8653 a, c 

Bv 4 GQ272539 
F: TGCGATACTGTATGTTGTTTGG 

R: CTAATGTCACTAACTTTCCCTTCTG 
(TC)19 interrupted 50 4 176-186 0.33 0.73 0.0000* - 

Bv 5 GQ272540 
F: TTTTTATGCTGCACCAAGCA 

R: CCTTCGCTGTTTGTGACGTA 
(TC)13 50 5 191-219 0.54 0.71 0.0026 a, c 

Bv 6** GQ272541 
F: TCGCCGTCTCCATTTTCT 

R: GTGGAAGTAGCGGGTTCTGT 
(TC)11 50 5 207-229 0.58 0.74 0.0801 a 

Bv 7 GQ272542 
F: CGGTCTGTAGTGCTCTCTCTCTC 

R: GTGTCATTAGCGTCGGGAGT 
(CT)27 50 8 118-176 0.54 0.81 0.0000* - 

Bv 8 GQ272543 
F: AAATGGAGTCGATGGAGTTTG 

R: TTTTGCTGCAGTCACACAGA 
(GT)11 50 6 97-119 0.17 0.16 1.0000  d 

Bv 9 GQ272544 F: GCGCACCTATACCAAGCAAT (CA)30 imperfect 50 6 88-152 0.29 0.33 0.0844 - 
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R: CCCGAGTAATGTGTGCTGTG 

Bv 10 GQ272545 
F: CAACAGTATAATGGAGTCAAAGTGC 

R: GTGGGAGAGTGAGGGAGACA 
(TC)17 interrupted 50 3 177-199 0.46 0.49 1.0000  c, d 

Bv 11 GQ272546 
F: TTGGCACTGGTCGATAATCA 

R: TGCTAACGTAAATCAATACACACA 
(TG)11 50 4 154-164 0.42 0.41 0.4566 c 

Bv 12 GQ272547 
F: CCGTCAATAACGGAAACGAT 

R: CCAACCCACCTCTCATGATT 
(CT)15 imperfect 50 5 179-189 0.38 0.49 0.1115 - 

Bv 13 GQ272548 
F: GCACAGTGGTGAGTTGTCAAA 

R: AACACTCCTTCCCAGAGACATC 
(GA)11 50 5 116-126 0.75 0.58 0.1569 a 

Bv 14 GQ272549 
F: TCTCTCGCACGGTACATCAG 

R: CCCTCATTCTGCATACCTTTG 
(GA)12 imperfect 50 3 171-189 0.42 0.63 0.0000* a, c, d 

Bv 15 GQ272550 
F: AAAAACAGGGAGAGGGTGGT 

R: TGCCGAATGTTTCTTTTCTAA 
(GA)8 50 5 175-183 0.21 0.23 0.2249 d 

Bv 16 GQ272551 
F: TAAGCCTTCTCTTGGGCAGA 

R: TGCTACAGCCATGGCCTACT 
(TAG)13 50 11 123-204 0.79 0.67 0.8731 a, c 

Bv 17** GQ272552 
F: CACCCTGTCAATACCGGAAA 

R: CGGGAGTGACCTTACGAGAC 
(CT)8 50 6 221-237 0.54 0.58 0.6718 a 

Bv 18 GQ272553 
F: ATTATTACGCACCCCCAGTG 

R: TAATACAAAAAGAAATTTGACCAAAAG 
(GT)9 50 4 149-159 0.58 0.72 0.0006* a, c 

Bv 19 GQ272554 
F: ACAAAAGCAACAGGAACAAACA 

R: GGTCAGCATGTCATTTATGAGAGA 
(TC)9 50 3 202-206 0.42 0.38 1.0000  - 

*Did not conform to Hardy-Weinberg equilibrium after standard Bonferroni correction (P < 0.004 for B. schlosseri and P < 0.002 for B. violaceus)  

**Linkage disequilibrium 
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