University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

1994

Heuristics for query optimization in distributed
database systems.

Hung Kai (George). Mak
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Mak, Hung Kai (George)., "Heuristics for query optimization in distributed database systems." (1994). Electronic Theses and
Dissertations. Paper 2291.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please

contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F2291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F2291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/2291?utm_source=scholar.uwindsor.ca%2Fetd%2F2291&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellngton Street
Ottawa, Ontano
1A ONS K1AONS

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor.
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Qtiawa (Ontano)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’ll manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éteé
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

HEURISTICS FOR QUERY
OPTIMIZATION IN DISTRIBUTED
DATABASE SYSTEMS

by

HUNG KAI (GEORGE) MAK

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through the School of Computer Science in Partial
Fulfillment of the Requirements for the Degree of
Master of Science at the
University of Windsor

Windsor., Ontario, Canada
1993

National Library
I * I of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibtiographic Services Branch des services bibliographiques

395 Wellington Street
Qttawa, Ontario
K1A ON4 K1A ONS

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available te interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Welington
Otawa {Ontano)

Your e LT rdteveny e

Our b wre retterpece

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a Ia Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-93290-2

Canada

GEORGE MAK 1993
© All Rights Reserved

Abstract

The technology of distributed databases (DDB) is based on two other technologics
which have developed a sufficiently solid foundation during the seventies : computer
networks technology and database technology.

One of the main difficulties in distributed databasc systems 1 1o select an execution
strategy that minimizes resource consumption. Some optimization strategies such as AHY
(Apers-Hevner-Yao) Algorithms only focus on reducing the amount of transmissions.
They assume that the cost to transmit the packets from one site to another site is the same.
However, this is not true in the real world. since the cost of transmission is dependent
on the network load situation. Therefore, it is possible to develop some heuristics which
consider the network load as well.

The objective of this thesis is to develop some heuristics which will take the network

load into account and to compare the result with the AHY Algorithms\
< S

(LN

To my Lord Jesus Christ
my father Yiu Sik,
my mother Shiu Ping &
my brother Hung Kam.

T

i_//

Acknowledgments

I would [ike 1o express my sincere thanks and appreciation to Dr. Bandyopadhyay
and Dr. Morrissey for their support and guidance throughout the progress of this thesis.
I would like to thank Dr. Channen who gave me a lot of comments and Suggestions on
my simulation program. I would also like to thank Dr. Soltis my external reader.

[am appreciative my family °s support of my study. I would also like 1o thank atl the

brothers and sisters who pray for me on this thesis. THANK YOU ALL VERY MUCH.

v

vi

P4

TABLE OF CONTENTS

Abstract . . . e e iv
Acknowledgmentst e e e vi
List Of Figures o i i it i e i i e e i e et e e Xii
Listof Tables« v i it e e e e xvi
1 INTRODUCTION . .. it i e it e et i e eeaas 1
1.1 THE MOTIVATION oo i e e e et e e e n s 2
1.2 THETHESIS STATEMENT ittt s 3
1.3 THE OBJECTIVES AND SCOPE OF THE THESIS WORK 3
1.4 THE ORGANIZATIONOF THETHESIS 3
2 BACKGROUND ittt it it it iaeaenn 4
2.1 WHAT IS A DISTRIBUTED DATABASE SYSTEM ?. 4

2.2 THE OBJECTIVES OF DISTRIBUTED DATABASE SYSTEMS ... 6

2.2.1 Location Transparency -- R
2.2.2 Fragmentation Transparency 8
2.2.3 Replication Transparenty eeciietuvennan 8
2.3 TRADE-OFFS IN DISTRIBUTED DATABASE SYSTEMS 48
2.3.1 Advantages of DDBS . . . e e e e 8
2.3.2 DisadvantageofDDBS..-.....................- 9:
2.4 DISTRIBUTED DBMS ARCHITEGTURES . . - .\ oo ovven ... 10
241 Network Topology . . -« v o i i i i it i e e, 10
2.4.2 Architectural Models for Distributed DBMS 11

vii

2.5 OVERVIEW OF QUERY PROCESSING

................. 13

2.5.1 Obje‘ctives of Query Processing 14
2.5.2 Functional Layers of Query Processing. 14

2.6 OPTIMIZATICN OF DISTRIBUTEDQUERIES 17
2.6.1 Inputs to Query Optimization 18
2.6.2 Two Approaches to Order Joins in Query Optimization 21

2.7 AHY (Apers-Hevner-Yao) ALGORITHMS 23

HEURISTIC FOR QUERY OPTIMIZATION (TOTAL COST VERSION) . 37
3.1 THE COST MODEL OF THE TOTAL COST HEURISTIC

...... 37
3.2 THE DESCRIPTION OF THE TOTAL COST HEURISTIC 38
3.3 AN EXAMPLE OF THE TOTAL COSTHEURISTIC 39
HEURISTIC FOR QUERY OPTIMIZATION (RESPONSE TIME
VERSION) e e e e et et aaa e 46

4.1 THE COST MODEL OF THE RESPONSE TIME HEURISTIC .. .46
4.2 THE DESCRIPTION OF THE RESPONSE TIME HEURISTIC . . .46
4.3 AN EXAMPLE OF THE RESPONSE TIME HEURISTIC 48
COMPARISONS AND RESULTS

5.1 RESULTS OF THE SAME QUERY PROCESS AT DIFFERENT
INSTANT (Total Cost Heuristic) e e 62

. 5.2 RESULTS FOR TOTAL COSTVERSION 64
5.2.1 The Results for AHY (Total Cost Version) 64

522 The Results for Total Cost Heuristic 67

5.3 RESULTS FOR RESPONSE TIME VERSION 69

viii

.

5.3.2 The Results for Response Time Heuristic 71

5.4 CONCLUSIONS FOR THE TOTAL COST VERSION 73
5.4.1 The Comparisons at Low Load Situation 73
5.4.2 The Comparisons at Medium Load Situation 76
5.4.3 The Comparisons at High Load Situation 78

5.5 CONCLUSIONS FOR THE RESPONSE TIME VERSION 80
5.5.1 The Comparisons at Low Load Situation. 80
5.5.2 The Comparisons at Medium Load Situation -. ..83
5.5.3 The Comparisons at High Load Situation 85

CONCLUSIONSttt i i e et e ettt et e eaeans 87

6.1 FINDINGS RELATED TO THE TOTAL COST HEURISTIC 87

6.1.1 THE SAME QUERY PROCESS AT DIFFERENT INSTANT .87

6.1.2 EFFECTONTHRESHOLD VALUE 87
6.1.3 FINDINGS IN LOW LOAD SITUATION 95
6.1.4 FINDINGS IN MEDIUM LOAD SITUATION 95

6.1.5 FINDINGS IN HIGH LOAD SITUATION
6.2 FINDINGS RELATED TC THE RESPONSE TIME HEURISTIC . .97

6.2.1 FINDINGS IN LOW LOAD SITUATION 197
6.2.2 FINDINGS IN MEDIUM LOAD SITUATION 97
6.2.3 FIN:DINGS IN HIGH LOAD SITUATION 98
6.3 FUTUREWORK i i it i i 102

6.3.1 RECOMMENDATIONS ON TOTAL COST HEURISTIC. . . 102

6.3.2 RECOMMENDATIONS ON RESPONSE TIME
HEURISTIC

A THEHYPERCUBETESTBEDcoou.u. .. 103
A.1 AN OVERVIEW OF THE HYPERCUBE TOPOLOGY 103
A11 NETWORKTOPOLOGY oot 103

A.1.2 DEFINITION OF A HYPERCUBE TOPOLOGY 104

A.2 AN OVERVIEW OF THE OS] REFERENCE MODEL 105

A.3 THE DESCRIPTION OF THE HYPERCUBE SIMULATION 108

A.3.1 AN OVERVIEW OF THE HYPERCUBE SIMULATOR . .. 109

A.3.2 SIMULATION OF THE PHYSICAL LAYER 100
A.3.3 SIMULATION OF THE NETWORK LAYER 110
A.3.4 SIMULATION OF THE TRANSPORT LAYER 111
A.3.5 SIMULATION OF THE USER/APPLICATION LAYER 112
A.3.6 INPUT PARAMETERS FOR THE HYPERCUBE

SIMULATOR . ..\ otieen e 113
A.3.7 THE OUTPUT OF THE HYPERCUBE SIMULATOR 114

B THE DESCRIPTION OF THE ALGORITHM GENERAL PROGRAMS . 115

B.1 THE DATA STRUCTURE OF THIS PROGRAM 115
B.2 THE DESCRIPTION OF THE PROGRAM iN ALGORITHM
PARALLEL e 116
B.3 THE DESCRIPTION OF THE PROGRAM IN ALGORITHM
SERIAL e 120

B.4 THE INPUT PARAMETERS OF THE PROGRAM 123
B.5 THE OUTPUT OF THE PROGRAM

X

C THE DESCRIPTION OF THE PROGRAM TO COMPUTE THE TOTAL

COST . e e e e e 126

C.1 THE INPUT/OUTPUT OF THE PROGRAM 127

D THE ALGORITHM OF TOTAL COST HEURISTIC 129
E THE ALGORITHM OF RESPONSE TIME HEURISTIC 136
F DEFINITIONOF SEMIJOIN i it 141
G BIBLIOGRAPHY e e 143
.. 143

H VITAAUCTORIS i e i it 145

)
!

J

xi

H

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6

Figure 7

Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14

Figure 15

Figure 18
Figure 17
Figure 18
Figure 19

Figure 20

Central Database on a Network [21]. 4
A Distributed Database System. 6
A Distributed Database System with LAN 7
Components of ADDBMS 10
DBMS Implementation Alternatives 200 12
Reference Architecture for Distributed Databases [21] &

6] .., 13
Generic Layering Scheme for Distributed Query

Processing [21] 15
Example of Data TransfersforaQuery 20
Transfer of Relationina 2-way Join 21
Transfer of Relation in a Binary Operation 22
Example of asimplequery 24
ExampleofaSchedule 25
Example of Algorithm Serial 26
Algorithm Serial [12] 27
Example of Algorithm Parallel 28
Algorithm Parallel [12]. 28
General Algorithm [2] 29
Procedure RESPONSE[2]. 30
Procedure TOTAL [2] 0. .. 31

Example of General Algorithm (Response Time Version) . 32

Xii

Figure 21

Figure 22

Figure 23

Figure 24
Figure 25
Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Example of Algorithm General (Response Time Version)

ContinUoUS... i i e e e e e e e 33

Example of Algorithm General (Response Time Version)

ContiNUOUS... e e e e e e e e e 34

Example of Algorithm General {Response Time Version)

Continuous... i 35
Example of Algorithm General (Total Cost Version)36
Example of Computing Total Cost 37
The Graphically Optimal Schedule 61

The Graph of Total Cost Heuristic at Different instant in

High Load Situation, 63

The Graph of the Results for AHY (Total Cost Version) . . 66

. i. The Graph of the Results for Total Cost Heuristic 68

The Graph of the Results for AHY {Response Time
[T 1T 1) 70

The Graph of the Results for Response Time Heuristic . . 72
The Graph of the Comparisons of Total Cost Version at
Lowload00ttt niinnnnn. 75
The Graph of the Comparisons of Total Cost Version at
Medumload, 77
The Graph of the Comparisons _of Total Cost Version at

Highload00, 79

The Graph of the Comparisons of Response Time Version

atlow Load.o i e e e e 82

Figure 36

Figure 37

Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55

Figure 56

The Graph of the Comparisons of Response Time Version

at Medium Load

The Graph of the Comparisons of Response Time Version

atHighload 86
SEQUENTIALSCHEDULE 99
A8nodesHypercube 105
The Seven OSl LayersModel 106
The Data Field of the Segment 116
The Data Structure to Store the Schedules 116
The Choice for the Attribute d3y 119
TheoptionsforRy 120
The OptionsforRelation1 122
The integrated schedulesforRy 123
The Definitionofthe Symbols 129
The Algorithm of the Total Cost Heuristic. 130

The Algorithm of the Total Cost Heuristic (Continuous...) . 131
The Algorithm of the Total Cost Heuristic {Continuous...) . 132
The Algorithm of the Total Cost Heuristic (Continuous...) . 133
The Algorithm of the Total Cost Heufistic (Continuous...) . 134

The Algorithm of the Total Cost Heuristic {(Continuous...) . 135

The Definition ofthe Symbols 137
The Algorithm of the Response Time Heuristic 137
The Algorithm of the Response Time Heuristic

(Continuous...) .. e e 138

Xiv

Figure 57

Figure 58

The Algorithm of the Response Time Heuristic
(ConNtnUOUS...) ..t ittt e e e e e
The Algorithm of the Response Time Heuristic

(Continuous...)

v

List of Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23

Simple Query and Statistics 24
TheRelationTable. 31
The Optionsfor Ry i it i e e e e 33
TheOptionsforRy L ... 34
TheOptionsforRy 35
ExampleofHopTable 38
Exampleofaschedule, 38
TheHopTable 40
TheRelationTable. 40
The Cost/BenefitTable 40
TheRelationTable. oo, .. 42
The Cost/BenefitTable 42
TheRelationTable. 43
The Cost/BenefitTable 43
The ComparisonTable 43
TheRelationTable. 44
The Cost/BenefitTableo oo oo 44
TheRelationTable. oo, 44
The Cost/BenefitTable 44
TheRelationTable. 45
The Cost/BenefitTable 45
TheRelationTable. 49

xvi

Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Tabie 31
Table 32
Table 33
Table 34
Table 35

Table 36

Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45

Table 46

TheCostTable i 49
The Selection ListforRg . - - - - -« - o o o oo oo 50
Schedule1forRg oot 50
Schedule2forRg .. .- o i i it i e 51
Schedule 3forRg . . . v i o i i i i e e 52
The Selection Listfor Ry vt 52
ScheduletforRyo i 52
Schedule2forRyot 52
Schedule 3for Ry . . . it i i it i it it i e it e 53
The Selection Listfor Ryo oot 53
Schedule1forRo it i, 53
Schedule2forRs 53

The Optimum Schedule at First lteration (Schedule 1 of

T 54
The RelatonTable., 54
TheDelayTable, 55
TheCostTable it 55
The Selection ListforRg o o oo v it oL, 56
ScheduletforRgot 56
Schedule2forRg i . 56
Schedule3forRpo v oo i i i 56
The Selection ListforRo L oL, 57
Schedule 1 forRy E e 57
Schedule2forRy, e e et e 57

Table 47

Table 48
Table 49
Table 50
Table 51
Table 52
Table 53

Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60

Table 61
Table 62

Table 63

Table 64

The Optimum Schedule at Second lteration (Schedule 2

Of Ro) - - oo o 57
TheRelatonTable. 58
TheDelayTable 58
TheCostTable 58
The Selection Listfor Ry 58
Schedule1forRs 59
Schedule2forRo 59
The Optimum Schedule at Third Iteration (Schedule 2 of

Ro) o 59
The Optimum Schedule at First lteration {Schedule 1 of

R i 60
The Optimum Schedule at Second lteration (Schedule 2

Of Rg) . o e e 60
The Optimum Schedule at Third Iteration (Schedule 2 of

o ceee T, 60

The Result of Total Cost Heuristic%t:Biffere‘int Instant . . .62

The Results for AHY (Total Cost Version) 65
The Results for Total Cost Heuristic 67
The Results for AHY (Response Time Version) 69
The Results for Response Time Heuristic 71
The Comparisons between AHY Algorithm & Heuristic at

lowload 74
The Comparisons between AHY Algorithm & Heuristic at

Mediumload 76

Table 65

Table 66

Table 67

Table 68

Table 69

Table 70

Table 71

Table 72

Table 73

Table 74

Table 75

Table 76

Table 77

Table 78

Table 79

The Comparisons between AHY Algorithm & Eeuristic at
Highload 78
The Comparison between ARHY Algorithm & Heuristic at
lowload e e e e 81
The Comparison between AHY Algorithm & Heuristic at
Mediumload, 83

The Comparison between AHY Algorithm & Heuristic at

Hightoad 85
Showing Oniy One Optimum Threshold Value 90
Showing Several Optimum Threshold Values ;. .91
Showing Many Optimum Threshold Value 92
Showing Zero is the Optimum Threshold Value 93
Showing the Special Case on Threshold Value 94

Some Statistics for Total Cost Heuristic in Low Load
Situation i e e i e 95
Some Statistics for Total Cost Heuristic in Medium Load
Situation i i 96
Some Statistics for Total Cost Heuristic in High Load
Situation i e e i e e 96
Some Statistics for Response Time Heuristic in Low Load
Situation i i i i 97
Some Statistics for Response Time Heuristic in Medium
Load Situation 98
Some Statistics for Response Time Heuristic in High Load

Situation v e e e e, 99

= Xix

Table 80
Table 81
Table 82
Table 83
Table 84

Table 85
Table 86
Table 87
Table 88
Table 89
Table 90

Percentage Different on The Number of Transmissions . 101

An example of a DELAY_TABLE 111
An example of a SHORTEST_PATH 111
TheRelationTable. 118
The Relationship between Logical Address & Common

JoinAttribute 118
The Valid Attributes for each of the Relation. 119
Example of HopTable 126
Example of a Schedule 127
RelaionC 141
Relaton ER 141
Relation C xeppepripg BB « oo oo ... 142

XX

CHAPTER 1 INTRODUCTION

In the past, organizing data in a large and expensive centralized computer was
extensively used in data processing. In recent years, with the development of database
technology, computer networks and workstations, distributed database systems have

become predominant.

With today’s VLSI technology, the price/performance ratio has changed to favor
multiple low-performance processors rather than single high-performance processors.
Furthermore communication costs have fallen dramatically in the past few years and
Local Arca Networks (LANs) are now cost effective. Faster, extensible and reliable
systems are needed by users. Distributed databases can achieve this goal, since, as a rule
of thumb, the data is stored close to the point where it is most frequently used and this

will incrcase the ctficiency of processing.

The technology of distributed databases (DDB) is based on two technologies which
have developed sufficiently solid foundations during the seventies : computer networks
technology and database technology. A distributed database system consists of a number
of sites. each of which contains a local database system. Therefore, the local transactions
can be accessed at any of the sites. The global transactions can access data in several

sites by using a computer network.

One of the main difficulties in distributed database systems is to select an execution
strategy that minimizes resource consumption, since each equivalent execution strategy

may consume different computer resources. The procedure used is called a distributed

access planl. An optimizer program generaies the distributed access plan. Tt is

convenient to divide the optimizer into two categorics :

1. Global optimization

2. Local optimization

Global optimization consists of determining which data must be accessed at which
sites and identifing which data files must consequently be transmittcd between sites.
Therefore. communication costs and disk access costs are the main opttmization pariun-
eters. This is the main concern of this thesis.

Local optimization consists of deciding how to perform the local database accesses
at each site. This is the traditional problem in nondistributed databases and will not be

discussed any further.

1.1 THE MOTIVATION

Some Query Optimization Algorithms such as th:c AHY Algorithm, assume that
the cost to send the same amount of attributes or relations from one site to another is
independent of the address of the source and the destination node. Therefore, they arc
only concerned with minimizing the amount of transmission in order to reduce lhé cosl.
The routing used to transmit the relation from the source to the destination is ignored
in such algorithms. In some cases, even though the number of packets communicated
is reduced, the cost to transfer that amount of packets may be higher than the cost to
transfer more packets through another routing in the network. Thercfore, it is possible

to develop some Query Optimization Algorithm in order to take both the nerwork load

and the size of transmission into account.

The term access parh refers 10 the data structures and the algorithms that are esed to access the data,

1.2 THE THESIS STATEMENT

Qucry optimization heuristics that take into account network load are

better than the AHY Algorithm.

1.3 THE OBJECTIVES AND SCOPE OF THE THESIS WORK

The objective of this thesis is to develop some Query Optimization Heuristics which
take both the network load and the size of transmission into account in order to reduce
the Total Cost or Response Time. The definition of Total Cost and Response Time is

given in Section 2.6.1.

The scope of this thesis is to test the heuristics described here and compare them with
the traditional Query Optimization Algorithm such as AHY Algorithm. The tests on those

algorithms will be done using a simulation of a hypercube network with up to 64 sites.

1.4 THE ORGANIZATION OF THE THESIS

Chapter 1 of this thesis discusses the objectives of this thesis and the thesis statement.
Chapter 2 discusses the basic concepts in this area. Chapter 3 describes the total cost
heuristic and illustrates an example. Chapter 4 describes the response time heuristic
and illustrates an example. Chapter 5 shows the results and the comparisons. Chapter
6 contains the conclusions, the findings, the recommendations and the future work of

this thesis.

2

CHAPTER 2 BACKGROUND

2.1 WHAT IS A DISTRIBUTED DATABASE SYSTEM ?

A distributed database (DDB) is a collection of muliiple, logically interrelated
darabases distributed over a compurer nenvork [20]. In other words, a distributed datibase
15 a collection of data which is distributed over ditferent computers of & computer network.
Each site of the network has an autonomous processing capability and can perform local
applications. Each site also participates in the execution of at least one global application,

which requires accessing data at several sites using a communication subsystem [5].

-

Figure 1 shows a traditional central database on a network. The database is centrally
managed by one computer system and all the requests are routed to that site. None of

the sites can execute a local application except the master site.

Diatabase

Communication

e
Site2 Nerwork

Datalvise

ki

Database

Figure 1 Central Database on a Network [21]

Heuristics for Query Optimization in DDS

A Distributed Database Management System (DDBMS) is defined as the sofnvare
system that permits the management of a DDBS and makes the distribution transparent

to the users [20].

A Distributed database system (DDBS) refers to the combination of the DDB and

the DDBMS.

Consider a bank system as an cxample. A local application is a debit or a credit
application performed on an account stored at the same branch at which the application is

requested. A typical global application is a transfer of funds from one branch to another.

A distributed database can be implemented in a large geographically dispersed
network or in a small local network. These two configurations are shown in Figure
2 and Figure 3 . Notice that even though the physical structure of the connections has
| changed. the chamclcris.tic aspects of the architecture have remained the same. Thar is,
cach compurer involves its own database. Borh local and global applications still apply

on those yyxfents.

th

T

Sie 3

Figure 2 A Distributed Database System

2.2 THE CBJECTIVES OF DISTRIBUTED DATABASE SYSTEMS

Distributed database technology extends the concept of data independence to envi-
ronments where data is distributed and replicated over a number of nodes connccted by
a network. Therefore, data independence is a fundamental form of transparency®. The

aim is that database users would see a logically integrated, single image database even

-
-

Transparency in distributed DBMS refers to separation of the higher-level semantics of a system from lower-level implemen-

tation issues. In other words. a trunsparent sysicm “hides™ the implementation details from users,

6

Heuristics fur Query Qptimization in DDS

Lewal Area Site 2
Nenverk

Site 3

Figure 3 A Distributed Database Sysiem with LAN

though it may be physically distributed, enabling them to access the distributed database

as if it was a centralized one.

Therefore, a fundamental principle is that a distributed system should look exactly

like a nondistributed system [10].

2.2.1 Location Transparency

It is desirable that the user be unaware of the physical location of data items. This
is called location transparency. It is achieved by creating a set of alternative names or
aliases for cach user. A user may thus refer to data items by simple names that are
translated by the system to complete names. With aliases, the user can be unaware of

the physical location of a data item.

2.2.2 Fragmentation Transparency

Rather than distributing relations, it is quite common to divide them into sub-relations,
called fragments. which are then distributed. Similar to the location transparency, a
user should not be required to know how a data item is fragmented and this is called

fragmentation transparency.

There are several kinds of fragmentation and they are listed as follows -

1. Horizontal Fragmentation : If the relation r is fragmented, r is divided into a number
of fragments ry. ra. rp. For horizontal fragmentation. fragment may be defined
as a selection (o) on the global relation r [15].

2. Vertical Fragmentation : It splits the relation by decomposing the scheme of a relation
using projection.

3. Mixed Fragmentation : In mixed fragmentation, the relation is divided into & number

of horizontally or vertically fragmented relations.
2.2.3 Replication Transparency

A distributed system may have several identical replicas (copies) of a relation stored
in different sites. A user should not be required to know how many replicas are stored
in the system. This is called replication transparency. Full replication mecans that a

copy of a relation is stored in every site.

2.3 TRADE-OFFS IN DISTRIBUTED DATABASE SYSTEMS

2.3.1 Advantages of DDBS

There are several advantages of DDBS. First of all, each site is able to retain a degree
of control or direct control over data stored locally, that is, site autonomy, resuiting in

increased data integrity and more efficient data processing.

The fatlure of a site does not necessarily imply that the system goes down. The
remaining sites may be able to continue operating. When a failed site is repaired. some
procedures must be available to re-install it back into the system. However, the distributed
processing capability of different sites does not guarantee a higher overall reliability of

the system. but it ensures a graceful degradation property.

It is possible to execute a query in parallel when it involves data at several sites.
There are two types of parallelism : inter-query parallelism which results from the
ability to cxecutc multiple queries at the same time; and intra-query parallelism which
is achieved by breaking up a single query into a number of subqueries each of which

is executed at a different site.

2.3.2 Disadvantage of DDBS

The primary disadvantage of distributed database systems is the added complexity
required to ensure that the system operates properly. This induces some drawbacks to

the system.

To implement a distributed database system requires additional and more complex
software. Thus a higher cost should be expected. With a DDBS, we have not only the
problems of a centralized environment, but also a new set of problems. For example,
the distribution of control can cause problems of synchronization. Security is also
more complicated than in a centralized system because we have to maintain adequate
security over the computer networks. It is more difficult to ensure the correctness
of algorithms when the system operates in parallel. Some additional computation is
required to exchange messages between sites. The cost of personnel required to support

the system will be incrcased.

RSN

George Mak

2.4 DISTRIBUTED DBMS ARCHITECTURES

The main components of the DDBMS at cach site are a data communication
component (JC), a data dictionary (DD), a database management component (DB)
and a distributed database component (DDB). Usually. the term "DBMS™ refers to the
set of components which serve and manage a nondistributed database. That is DB, DC

and DD components. The components of 2 DDBMS are shown in Figure 4.

DDBMS
T |
| DBAMS
| |
= | » |
Dratabune DDB
T DB DC

850

Figure 4 Components of A DDBMS

The DDBMS has several functions. Firstly, it manages the global data dictionary 10
store information about distributed data. Secondly, it defines distributed data definition.
Thirdly, it provides distributed semantic data control. Fourthly, it offers distributed
query processing, including distributed query optimization. Finally, it provides distributed
transaction management such as distributed concurrency control, recovery and commit

protocols.

2.4.1 Network Topology

The sites in the system can be connected in a number of different ways, such as star,

hypercube, ring, mesh, tree and so on. The main differences between them are as follows :

— Installation Cost : The cost to install the physical link between the sites.

10

Heuristics for Query Optimization in DDS

— Communication Cost : The cost in time and money to send a message between

two sites.
— Reliability : The frequency with which a link or a site may fail.

— Availability : The portion of the data that can be accessed even with the failure

of some links or sites.

Various query optimization strategies exist for each network topology. A detailed

description of an algorithm used for a star network can be found in [7] and [14].

2.4.2 Architectural Models for Distributed DBMS"

2.4.2.1 The Implecmentation Alternatives on DBMS

In [21], the possible ways in which multiple databases may be put together for sharing
by muitiple DBMSs is discussed. A classification (Figure 5) is used that organizes the
systems with respect to (1) the autonomy of local systems, (2) their distﬁbutfan and (3)

their heterogeneity.

11

George Mak

Distributed
e heterogencous DBMS
Distribution 4

Single site homogeneous

tederated DBMS
Co Distributed Distributed homogeneous /.
L_oglcall_\ megrted | pomogencous | federated DBMS / Distributed homogeneous
omogeneous K / ltidatabase system
N mu £
multiple 4 DBMS 4 / e
DBMSs , / ’ / :7‘
Distributed /
heterogencous
BM
DBMS Multidatabase
system
/ g =
Z,
\1 ’/ ’/ Auicnomy
=

Heteroge‘xkily

Heterogencous ginale site heterogencous
integrated federated DBMS
DBMS

Distributed heterogeneous

‘1 multidatubuse system

Heterogeneous multidatabase
system

Figurc 5 DBMS Implementation Aliemuatives [20]

Autonomy refers to the distribution of control and indicates the degree to which each
DBMS can operate independently. Distribution refers to the fact that the data may be

physically distributed at many sites or just one. Heterogeneity refers to the fact that the

DBMS may be homogeneous or heterogencous.

% 2.4.2.2 Distributed DBMS Architecture A distributed database can be implemented in

many different ways depending on objectives and design choices. Similar to centralized

databases, the three-level ANSI/SPARC architecture can be extended for distributed

12

A
—

e

databases. Thus, data independence is casily achieved. The reference architecture (Figure

6) is frequently used (See [21] and [26]).

Global Global Globul
Eaterrial Enternial reww External
Schema | Schema 2 Schema n

Globul
Coneeptual
Schema
Magement
Schema
Site | / Site 2 Site n

Laocal Local Lovul
External External Extemal
Schema 1 Schema 2 Scheman

Lovul Locat Loval

Cuonceptuat Coneepluy) een Conceptual
Schema) Sehema 2 Schema n
Loval Locut Local

Intemal Tntemal Enternal

Schema | Schemae 2 Schema n

Figure 6 Reference Architecture for Distributed Databases [21] & [26]

2.5 OVERVIEW OF QUERY PROCESSING

Given a query. there are generally many different kinds of strategies for computing
the answer. The system should mnsforﬁ the query, which is entered by the user, to
an equivaient query which can be computed mére efficiently. Generatfng this improved
strategy for processing a query is called query optimization.

In other words. the objectivc: of query optimization is to decide on a strategy for
executing ecach query over the network in the most cost-effective way, that is, optimal

ordering. During this processing. a high-level query on a distributed database will be

13

George Mak

transformed into an efficient execution strategy expressed in low-level queries on local

(%)
=

darabases.

2.5.1 Objectives of Query Processing

A query processor is a procedure which is part of 1 DBMS. its function is to

construct the answer to the query which is given by the uscr.

Usually, the query will be decomposed into the relational algebra. The output
language is some internal form of the relational algebra with some communication
parameters. The query processing will typically consist of a global optimization. (oflowed

by a local optimization at each affected site (Sec Figure 7).

2.5.2 Functional Layers of Query Processing

The role of a distributed query processor is to translate a “high-level query™ on
a distributed database into a sequence of efficient “low-level database operations™ and

execute them on the local databases. There are two important aspects of this translation

1. The query must be translated correctly in order to obtain the correct result.

2. The strategy must be “optimal”,

Itis very difficult to achieve these two aspects together. It may be casier to decompose
this problem into several components. In Figure 7 a generic layering schema for query

processing is shown where each layer solves a well-defined subproblem.

: For example, a relational caleulus query.

* For example, a relational ulgebra.

Heuristics for Query Optintization in DDS

HIGH LEVEL QUERY
(e CALCULUS QUERY)

|
4

QUERY
DECOMPOSITION

+

4
LOW LEVEL LANGUAGE
(cg: ALGEBRAIC QUERY)
Y

CONTROL DATA
SITE LOCALIZATION -

)
FRAGMENT QUERY

1
¥

GLOBAL
OPTIMIZATION

Y
OPTIMIZED FRAGMENT QUERY
WITH COMMUNICATION OPERATIONS
[

\

LOCAL LOCAL
SITES OPTIMIZATION ~ [#——————
|

¥
OPTIMIZED LOCAL
QUERIES

Figure 7 Generic Layering Scheme for Distributed Query Processing [21]

2.5.2.1 Query Decomposition The traditional way to decompose a query into a “better”
algebraic specification is to start with an initial algebraic query and transform it in order
to find & “good™ one.

Query decomposition can be decomposed into four steps. Firstly, the calculus query
is rewritten in a normalized form which involves th.e manipulation of the query quantifiers
and of the query qualification by applying logical operator priority. Secondly, the
normalized query is analyzed semantically so that incorrect queries are detected and
rejected as soon as possible. Thirdly, the correct query which is expressed in relational

calculus is simplified. for example, eliminating the redundant predicates in a query.

15

George Mak

Finally. the calculus query is restructured as an algebraic query.

2.5.2.2 Data Localization This m)"er determines which fragments are involved in the
query and transforms the distributed query into a fragment grery™. The main function of
data localization is to localize the data involved in the query.

A distributed relation can be reconstrucied by applying the fragmentation rules. and
then deriving a program, called a localization program. of relational algebra operations
which then acts on fragments. This process involves two steps. Firstly. the distributed
query is mapped into a fragment query by substituting cach distributed relation by its
materialization program which is a reconstruction program. Sccondly, the fragment
query is simplified and restructured to produce another “good™ query.

In short, a query expressed on database fragments will be stored at different sites. In

addition, the result generated is far from optimal because information regarding fragments

is not utilized.

2.5.2.3 Global Query Optimization The goal of global query optimization is 1o find
an execution strategy for the query which is closc to optimal. The major decisions that

are made by the global query optimization are as follows :

1. The order of the operations.

2. The site to take place the operations.

The efficiency of query optimization depends on the database statistics. The statistics
can help to decide which operations should be performed first. For example, algorithm
serial, parallel and general which will be discussed in section 7.3.4 are highly dependent

I .
on these statistics. In some cases, the size of the intermediate relations must be estimated

5 Relations are fragmented and stored in disjoint subsets, called frapments, each being stored at a different site,

16

bused on the statistics, and this data will be updated periodically in order to maintain

accuracy.

A typical simplification made by distributed DBMSs is to consider communication
costs as the most significant factor to minimize. This is valid for Wide Area Networks
(WAN) where the limited bandwidth makes communication costs much more expensive

than the local processing costs.

There are many proposals for query optimization. For example, a semijoin operation
is used to reduce the size of fragments in order to reduce the communication cost. How-
ever, more recent techniques, which consider local processing costs and communication
costs. do not usc semijoins because it might increase local processing costs. This is the

most important topic of this survey and will be discussed in more detail later.

2.5.2.4 Local Query Optimization This layer is performed by all sites having frag-
ments invoived in the query. The advantage is that local query optimization can be
carried out independently using the known methods for centralized systems. This survey

is not concerned with this topic.

2.6 OPTIMIZATION OF DISTRIBUTED QUERIES

Finding the optimal solution of the query optimization problem is computationally
intractable. Thereforc, a popular way of reducing the cost of search is to use an heuristic
solution. An important heuristic solution in distributed systems is using a semijoin instead
of a join to minimize the communication cost. In {20], it is claimed that “More important,
a different search strategy should be used depending on the kind of query (simple vs.

complex) and the application requirements (ad hoc vs. repetitive)™.

17

George Mak
For centralized DBMSs. the primary parameters for measuring the cost of a particular
strategy are the I/O cost® and the CPU cost”. In a distributed svstem, there are some

other issues which should be take into account such as the communication costs.
2.6.1 Inputs to Query Optimization

The cost of a distributed execution strategy can be expressed with respect to either the
total cost or the response time. The total cost is the sum of all cost components, while the
response time is the elapsed time from the initiation to the complcetion of the query. The

general formula for determining these costs will be discussed in the lollowing section.

2.6.1.1 Cost Model The cost function is usually defined in terms of time units. They

refer to computing resources such as disk space. disk I/O, buffer space, CPU cost,

communication cost, and so on. Therc arc two very important performance variables

in query optimization, total cost and response time,

Total Cost : The Total Cost is a good measure of resource consumption. It is the

sum of all the time incurred in processing the operations of the query at various sites

and in intersite communication. A gencral formula for determining the tota! cost is as

follows [21] :

Total Cost = Copy * #insts + Crro * #1[0s + Cyrsc » #msgs + Cpp + Fbyles

Cepy : is the cost of a CPU instruction.
Cro : is the cost of a disk I/O.

Cwmsg: is the fixed Cost of initiating & receiving a message.

Disk access

Operations on data in main memory,

18

8

Heuristics for Query Oprmization in DDS

Crg : is the cost of transmitting a data unit® from one site to another. A typical
assumption is that Crr is a constant.

Response Time : This is the clapsed time for query execution. Since the operations can
be executed in parallel at different sites. the response time of a query may be significantly
less than its total cost. A general formula for determining the response time is as follows

[21F :

Response Time = Copprseqdinsts+Cro=scq #1[0s+Cyrsorseq.F#msgs+Crprseq.bytes
Where seq#x, In which X can be

1. instructions (insts)
2. 1O

3. messages (msgs)

4. bylés_

And they thoose the.maximum number of x which must be done sequentially for the

exccution of the query.

- Example : This exaniple illustrates the difference between total cost and response

time (Figure &). 'We want to compute the answer to a query at site 3 with data transfer

from site 1 and site 2.

{7

““ ~ ’ = .‘I\

“Assumptions : - : s
(1% We only consider the communication costs.

v -
o

(2) Cmsg and Crr are expressed in time units.

o The data unit is given here in terms of the number of bytes which is the sum of the sizes of all messages, but can be in

ditferent units {eg: packets).

19) : ; -

George Mak

Solutions :

Total Cost = (Cyisg + Cr * X) + (Cysg + Cmr * ¥)
=2%Cusg +Cmm * (X +)

Response Time = Max{ Cysg + Crr * X. Cysg + Crr * v }

since the transfers can be done in parallel.

X units

¥ units

Figure 8 E."c:.::'.plc of Data Transfers tor 1 Query
2.6.1.2 Database Statistics The main factor affecting the performance of an exccution
strategy is the size of the intermediate relations that are produced during eXecution.

Therefore, it is necessary to eszimate the size of the data transfers. This estimation [21]

is based on statistical information about :

1. The base relations " =

2. Formulas® to predict the cardinalities of the results of the relational operations.
P _ P

kg Formulas to predict the resuitant size of s lection, cartesian product, join, semijoin, difference and 0 on (sce [21] for details).

20

Heuristivs for Query Optimization in DDS

Onc important picce of statistical data is called the join selectivity factor for some
pairs of relations, that is the proportion of tuples participating in the join. SFp(R, S)
denotes the join selectivity factor of relation R and S. It is a real value between O and 1 :

card(R > S)

SFHR,S) =
SE U 5) card(R) x card(S)

The selectivity factor of other operations is discussed in detail in [21].

2.6.2 Two Approaches to Order Joins in Query Optimization

2.6.2.1 Join Ordering This approach tries to optimize the ordering of joins directly.
It is important since joins between fragments may increase the communication cost.
Distributed INGRES and R* algorithms both use join rather than semijoin. An example
with two relations is shown in Figure 9. If the size of X is greater then the size of Y,
then the relation in Site 1 will be transmitted to Site 2, Otherwise, the relation in Site

2 will be transmitted to Site 1.

Some other algorithms have been proposed using join as a reducer in distributed
query processing, including [6], [9], [22]. In [1], [8] and [17] joins and fragmented

relations in distributed database systems are discussed.

Site 1 Site 2

if size(X) < size(Y)
X e 1Y
if size(X) > size(Y)

Figure 9 Transter of Relation in a 2-way Join

B

George Mak

2.6.2.2 Semijoin'® The main disadvantage of the join approach is that entire operand
relations must be transterred between sites. The semijoin acts as a size reducer in the
same way as selection does. The use of semijoins ts beneficial only iff the cost ro produce
the intermediare relation and send it to the other site is less than the cost of sending the
whole relation and doing the actual join. Then it can become a powerful size reducer, An
example with two relations is shown in Figure 10 . In [3]. [13] and [29] some semijoin
algorithms are discussed. In [27] and [28] 2 One-Shot Fixed-Precision Semijoin is used
to minimize the response time. The algorithms in {2] and [12] will be discussed in more
detail in Section 7.3.4.

Given :

Site 2 requests a join with the relation X which is stored in Site 1.

N

Site 1 Site 2

X =\Y

Figure 10 Transfer of Relation in o Binary Operation

Assumption : size(X) < size(Y)

Strategies 1 (Join-Based Algorithm) : X 0as Y

1. X — Site 2

2. Site 2 computes : X xp Y

" Further details of the semijoin operation are given in Appendix F

22

Strategics 2 (Semijoin-Based Algorithm) : (X x ,Y) pa 4V

1. HA(Y) — Site |

[

Site | computes : Tamp. X = X x4 Y
3. Temp.X — Site 2

4. Site 2 computes Temp.X ><s Y

Conclusions :

Consider the communication cost of these two algorithms. The communication cost
of the join-based algorithm only takes place in step 1. that is, in transferring X from site
1 to site 2. The communication cost of the semijoin-based algorithm takes place in steps

I and 3. Therefore. the semijoin approach is better if
size(ITA(Y)) +size(X x4 Y) < size(X)

The semijoin approach is better and it can act as a sufficient reducer if only a few of
X participate in the join operation. The join approach is better if almost all tuples
of X participate in the join, because the semijoin approach requires an additional
communication cost and local processing cost. That is, the transfer of a projection on

the join attribute.

Therefore, using semijoins might not be a good idea if the communication cost is
not the dominant factor, as is the case with local area networks [21]. Since it ma):r.
increase both local processing cost in that one extra project and join are required and

the communication cost in that one extra transmission is required.

2.7 AHY (Apers-Hevner-Yao) ALGORITHMS

A family of algorithms which use semijoins to minimize the response time or total

time was proposed in [2]. These methods, Algorithm Serial and Algorithm Parallel,

23

George Mak

are only applicable to simple queries. A simple query is one where after initial local
processing. each relation in the query contains only one common join attribute. Therefore,
a general query that contains multiple join attributes is decomposed into simple querics
and then the algorithm can be applicd to cach of them. Figure 11 contains an example
of a simple query and table 1 contains its statistics. There are three relations which are

stored in three sites and the common join attribute is called “A™.

Figure 11 Example of a simple query

attribute SFs; size(ILuribue)
Ri.A 03 100
Ra2.A) 1.0 400
R3.A " 0.7 200

Table | Simple Query and Statistics

The steps in the AHY algorithm are as follows :

1. Apply local operations.

2. Decompose the query into simple queries for an optimal strategy using semiioin.

3. Integrate those decomposed queries in step 2 into an unigue cxccution strategy.

24

Heurissics for Query Optimizarion in DDS

In short. all relations are first reduced by semijoins and then sent to a unique result site

to compute the result of the query.

Any query processing strategy can be graphically illustrated by a schedule [12].
A schedule is a tree in which the data transfers are represented by edges of length
proportional to the transfer size [23]. AHY algorithms can be illustrated by using
schedules. Figure 12 is an example of such a schedule. Rl and R3 send their fragments
to R2 to perform the semijoin. After the semijoin operation is performed, the size of their

fragments are reduced and finally those reduced fragments is transmitted to the result site.

Two semijoins are preformed
at this site

120 #03*0.7=25.2

—-l Result Site

Figure 12 Example of a Schedule
The nodes and edges are the two components in this schedule. Their functions are
as follows :

1. Nodes : The attributes or relations to transmit.

2. Edges : The size!! of the data to transmit.

W The result of 2 semijoin = Size(R) * SFy

George Mak

(1} Algorithm Serial

The objective of the Algorithm Serial is to minimize the total amount of data

transmitted in order to minimize the total cost. The algorithm tries to arrange the size

of transmissions in ascending order. An example of the Algorithm Serial is shown in

Figure 13 and the algorithm is given in Figure 14. Morcover. a more detailed algorithm

is given in [21).

0.3 * 400 =120

V
100<200<400 03 *200=60

R1 100 RI3 60 R12 34 Rlcsult Site
| | i

Total Cost = 100 + 60 + 84 =244
Response Time = 244

l]———0.3*0.7*400-84
A\

Figure |3 Example of Algorithm Scrial

Heuristics for Query Optintization in DDS

1. Order rclations R; such that s; € 85 € ... = sp,.

3

If no relations arc at the result node, then select strategy :

a. R; — R2 — .. — Ry — result node.

3. Orelse if R, is a relation at the result node, then there are two strategies :
{Select the one with minimum total time)

a. Ri—=Ry— .. =R — .. =2 Ry—=Reor

b. R[— R?_ —F e Rr.| —* Rr+| — .. 3 Rn — Rr-

Figure 14 Algorithm Serial [12]
(2) Algorithm Paralle!

The objective of the Algorithm Parallel is to minimize the total amount of data serially
transmitted in order to minimize the response time. The algorithm chooses the initiai
feasible solution first, then the optimizer tries to improve on the solution by considering
alternative schedules where some relations are sent to an intermediate site. An outline
of this algorithm is shown in Figure 16 and a more detailed description is given in [21].

Finally, an example of the Algorithm Parallel is given in Figure 15.

We first order the relations according to their size and then choose the one with the
minimum size as our step one. We choose the second smallest relation from the IFS and
usc the previous result to perform the semijoin in order to choose the one with a lower
cdst. This is shown in step two. The following step also uses the same technique to find

the lowest cost. Finally. we will obtain the strategy for the Algorithm Parallel.

George Mak

Rllﬂ—[Initiz! Feasible Schedule
200

R3 l'—l Total Cost = 7

Response Time sHK)

R0 =

Ste 100
Step 1 R1

Step 2 200

R3 |‘_|
100 R360
R1 I_]._l A Choose the minimen

Step 3 o F*OO

1

1
R2

1 100 120

I : i -t Choose the minimium
R3 R2

100 3
R‘I l 60| 84 l

R1

1190 R3ey Schedule for Parallel Algorithm

Total Cost = 380

R2
RII—[&'£0—| Response Tinwe = 220

Figure 15 Example of Algorithm Parallel

1. Order relations R; such that 5| <59 < ... £

Sme

2. Consider each relation R; in ascending order of sizc.

3. For each relation R;(j<i), construct a schedule to R; and all schedules of relations

Ri(k<j). Select the schedule with minimum response time.

Figure 16 Algorithm Parallel [12)

(3) General Algorithm

Several algorithms are proposed in [12] and [2] and reported in [23] which generalize
the optimal algorithms for simple queries. The General algorithm is able to minimize

either the response time or the total cost for the complex queries'2. An outline of this

2 Querics have more than one common jain atiributes.

28

Heuristics fisr Query Optimization in DDS
algorithm is given in Figure 17. A completed example on both Response Time Version
and Totul Cost Version is from Figure 20 to Figure 24. The Relation Table used in
this example is shown on Table 2. Since the scope of this thesis is not to explain this

algorithm, it will not be discussed in more detail. However. a detailed explanation can

be found in [2] and [!2].

1. Do all initial local processing.
2. Generate candidate refation schedules. Isolate each of the o joining attributes, and

consider each to define a simple query with an undefined result node.

a. To minimize response time, apply Algorithm PARALLEL to each simple query.

- Save all candidate schedules for integration in step 3.

b. To minimize fotal time, apply Algorithm SERIAL to each simple query. This
results in one schedule per simple query. From these schedules, the candidate
schedules for cach joining attribute are extracted. Consider joining attribute
dij. Its candidate schedule is identical to the schedule produced by Algorithm
SERIAL, applied to the simple query in which d;; occurs, up to the transmission

of dyj. All transmissions after that are deleted from the schedule.

3. Integrate the candidate schedules. For each relation R;, the candidate schedules
are integrated to form a processing schedule for R;. The integration is done by
procedure RESPONSE for response time minimization and by procedure TOTAL
or procedure COLLECTIVE for total time minimization.

4. Remove schedule redundancies. Eliminate relation schedules for relations which

have been transmitted in the schedule of another relation.

Figure 17 General Algorithm [2]
- 1

29

George Mak

1. Candidate schedule ordering : For ecach relation 1 order the candidate schedules
on joining attribute djj. j = 1. @ in ascending order of arrival time. Let ART,
denoted the arrival time of candidate schedule CSCH,. (For the joining attributes
not in R;. disregard the corresponding candidate schedules.)

2. Schedule integration : For cach candidate schedule CSHI; in ascending order,
construct an integrated schedule for that consists of the parallel transmission of

CSCH; and CSCH; with k < 1. Select the integrated schedule with minimum

response time.

Figurc 18 Procedure RESPONSE (2]

30

i

Heuristics for Query Oprimization in DDS

!..)

Adding candidate schedules @ For each relation R;. each candidate schedule CSCH;.
do the following :

If this schedule contains a transmission of a joining attribute of R;. say dj;. then add
another candidate schedule which is the same as CSCH except that the transmission
d;j is deleted.

Select the best candidate schedule : For each relation R; and for each joining
attribute dj; (= 1, 2.), select the candidate schedule which minimizes total
time for transmitting R; if only the joining attributes are considered which can be
Joined with dj;.

Candidate schedule ordering : For each relation order the candidate schedules
BEST;j; on joining attribute djj. j = 1. 2. o, so that ART}; + C(s; * SLT}))
£ ARTig + C(s; * SLTjz). (For the joining attributes not in disregard BEST;;.)
ARTjy; denotes the arrival time of the BEST;; schedule.

Schedule integration : For each BEST;; in ascending order of j, construct an inte-
grated schedule to R; that consists the parallel transmission of candidate schedule
BEST;; and schedules BESTy;, where k < j. Select the integrated schedules that

results in the minimum total time value.

Figure 19 Procedure TOTAL [2)

RELATION SIZE - dq 2
R; Si b\ux Pil bi2 pi2
_ RI 1000 400 0.4 100 0.2
[R2 2000 200 .. 04 450 0.9
R3 3000. 900 0.9 —_ -

Table 2 The Relation Table

-

31

George Mak

For Jain attribute d

L%
420
Sy RT = 420 —>» Schedule selected
d.
d., o' a0
2 RT =420 —> Schedule selected
0" s “ieo AT - 500
d:n
“20
dy, RT = 920
d tt dar
dy 0 e RT = 800
dyy 20 dy,
d
» % 164 RT = 584 —> Schedule selected
For Join Attribute d;
‘312120
dyp AT =120 —» Schedule sclected
d
2 an
dzp . AT = 470
12,
1]
o AT=230 —> Schedule sclected

Figure 20 Example of General Algorithm (Response “Time Version)

32

Heuristies for Query Optimization in DS

ATTRIBUTE | RESPONSE TIME
daa . 230
day 420
day 584

Table 3 The Options for R.

d12 d22 R 17 . ’ o QS
d,, 2T (0.8 * 1000) + 20°= 920 RT = 1150
F dyp A2p Ry
120] 110 . QS
d ' {C.9 " 0.4 * 1000} + 20 = 380 RT = 800
G 420 -+——— (Selected)
d d A :
2120 P1p {0.970.47 02 1000) + 20 = 33
d] % 420 v -
M B ' o - RT =928
: » . ‘
d 31
" 20

- 420

LY
L

George Max

ATTRIBUTE RESPONSE TIME
d;> 120
dyy 120
ds 584

Table 2 The Options for R;

diz Rp Qs
d 120 (0.2 " 200) » 20 = 420 RT =540
12 ~«—— (Selected)
diz Re
120 Qs
dy,
420 i - RT = 600
dy
{0.2°0.4 " 2000) + 20 = 180
R
dio 2
- 120)
dy,
420
Qs
RT = 748
da] d11 d31 &
420
164 o
d12 . (02°0.4°09*2000) + 20 =164
420

Figure 22 Example of Algorithm General (Response Time Version) Continuous...

)

34

Heuristics for Query Optimizatien in DDS

ATTRIBUTE | RESPONSE TIME
dy 420
da 420

Table 5 The Options for Ra

d R Qs
" 420 3 (0.4 * 3000) + 20 = 1220
dis ' : RT = 1640
diy Rs
420 ol
Q5 RT = 920
d : T <~ (Selected
21 dzg ’ i ' QA_ i ()
a0 ; Rew
" (0.4* 0.4 * 3000) + 20 = 500

Figure 23 Example of Algorithm General (Response Time Version) Continuous...

pe

(7]
L

George Mak

For Join attribute d,, For Join attnbute d .
dy, &>
420 120
11 d‘!‘;‘
5 dati0
dqy Ga d"I:‘O Ty
d., <20 8 s
164
d d‘ll a0 d:‘!modm‘
3
Schedus for B,
o DACAON e 20 g
10471000} » 20 = 420
@ 21 sog O R y QS
2. TC « 1020
‘321 420 R1 a0 ©S
dx TC = 840 —>» Schedule selected
164 (0.4 0.9 1000) + 20 ~ 380
d dy 1m0 d:tpmdm LA
o B TC w1144
.d dy, Rl 0S
d, @ 380
a0 0 TG 1180
g 1e
2 f'22 ¥R {0.9°1000) » 20 = 920 95
dyp .

TC = t150 -—> Schedule selected
. 9z a0 7' @ee 100)+20a920 OF
Az :

TC = 1390
The Integrated Schedules tor R1
92r 4p R 4 O
: L TC =~ 840 ~> [Schedule for R1)
dyy ap A .
: Qs
. TC = 1030
.
“12‘2022
s
19
The Schedules tor each Relation
d.m 20 E‘ 20 08 dgf2 g9 0 I g

21ppR) 4p G5

Figure 24 Example of Algorithm General (Total Cost Version)

36

CHAPTER 3 HEURISTIC FOR QUERY
OPTIMIZATION (TOTAL
COST VERSION)

The total cost heuristic is discussed in this chapter.

3.1 THE COST MODEL OF THE TOTAL COST HEURISTIC

The total cost heuristic measures the total amount of packets transmitted from one

~ site to another. It assumes that the cost to transmit a packet from one site to another site

is the same. but this s not always valid. For example, Site A wants to send 10 packets

to Sitc B and Site C as shown in Figure 25.

SITEA SITET_ SITEB
10 10

SITEA SITEX SITEY SITEZ gITEC
0 10 . 10 ; 10 .

Figurc 25 Example of Computing Total Cost

The total cost to send 10 packets from Site A to Site B is not the same as to send

-

10 packets from Site A to Site C. A better measure is to multiply the total number of
links/hops between the source site and the destination site. Therefore, the total cost to
e

send 10 packets from Site A to Site B is 20 and the total cost to send 10 packets from

Site A to Site C is 40.

The total cost is defined as :

[
~J)

Total Cost = 3 #of Puckets x # of Hops

1
Vsegments

The following is an example to compute the total cost from a hop table and a given
schedule. Table 6 is a 8 x 8 hop tabic which is supplicd by the simulator. Table 7 s an

example of a schedule which is created by a query optimization algorithm,

TO 1 To 2 To 3 To 4 To 5 To 6 To7 | Tos
From 1 0 1 3 2 3 | 2 3
From 2 2 0 3 2 1 2 3 2
From 3 1 2 0 3 3 ! 2 3
From 4 2 2 l 0 1 2 3 1
From 5 1 2 2 3 0 2 I 1
From 6 2 i 1 2 3 0 3 1
From 7 3 i I 2 2 2 -0 1
From 8 2 2 3 3 l 3 2 0
Table 6 Example of Hop Table
SIZE HOPS COST
Send : d; —> Rs 200 3 200 * 3 = 600
Send : ds; —> Ry 250 1 250 * 1 =250
Send : d7) —> R; 150 ! 150 * 1 = 150
Total Cost = 600 + 250 + 150 = 1000

Table 7 Example of a schedule

There are three segments in this schedule. The first segment sends 200 puckets from
the attribute dy; to Rs. The cost is 600. The cost of the second and third segment is

computed at the same manner. Finally, the sum of all three gives a total cost of 1000,

3.2 THE DESCRIPTION OF THE TOTAL COST HEURISTIC

The algorithm of this heurictic is shown on Appendix D. The first input parameter

of this heuristic is a relation table which contains the physical address of cach relation,

38

the size of cach relation, the attribute size and selectivity factor of each relation. The
seccond input paramecter is a hop table.

A Cost and Benefit Tuble is created as shown in Figure 51. The cost to send an
attribute d;j at Site; 1o another attribute dyy at Sitey is defined as the size of attribute d;;
plus the overheud cost and then multiply the number of hops between Site; and Site,.
It 1s denoted by C[b;; —=> byy]. The benefit to send an attribute d;; from Site; to dyy at
Sitc,, is defined as the reduced relation size, that is (l-pij) * Ry plus the overhead cost
and then muliiply the number of hops between Sitex and the query site. It is denoted
by B[bij - bxy].

First, the transmissions where Cib;; — byy] < (B[bjj —=> byy] + Threshold Value)
are considered. If only one such transmission is found, then this transmission is
chosen. If any free transmissions'? are found, then that transmission is removed from
the Cost/Benefit table. If more than one transmission has the same smallest cost, then
we chose the transmission with the best selectivity. If there is still a tie then we choose
that transmission wherc the receiving site has the best selectivity. Finally, if there is still
a tic then we choose the transmission with the best benefit. The process is repeated until

no more transmissions are possible.

3.3 AN EXAMPLE OF THE TOTAL COST HEURISTIC

Three assumptions are made to simplify the example and to show all the cases in

this heuristic.

1. All the values in the hop table are set to one.
2. The value of threshold is equal to zero.

3. The overhead cost is zero.

If dj is semisjoined with dyy. and dyy is semi-joined with dyp. then the semi-join of &y with dgp is for free.

39

George Mak

The following hop table is used in this example.

To R, To R» To R; To QS
From R, 0 1 1]
From R» 1 0 1 1
From Rj 1 1 0 1

Table ¥ The Hop Table

ITERATION ONE

RELATION SIZE di din
R; Si bi) pil bia Piz
R1 1000 400 0.4 100 0.2
R2 2000 400 0.4 450 0.9
R3 3000 9200 0.9 —_—— —_—

Table 9 The Rekution Table

To :dyy To :dy) To :d3, To :d;a To :daa
From : dj, — — — | 400/1200 | 400/1800 | — — — | ———
From : dy) 400/600 ——— | 400/1800 | —— — | ———
From : ds 900/100 900/200 —_—— - —_—
From: d> - | ——— | === | ——— | 100/1600
From : da ——— | ——— | ——— | 450/100 —_——

Table 10 The Cost/Benelit Table

Table 10 shows the first Cost/Benefit Table for the first iteration. For example, the

cost of sending d; to da; is equal to :
Cost = (b1 + Overhead Cost) * Hop Table[l,2)

Since the overhead cost is equal to zero and the value of Hop_Table[1, 2] is equal
to one, the cost of sending dj; to da; is equal to (400 + 0) * 1 = 400. The benefit of

sending d;; to da; is equal to :

Benefit = (((1 = bn1) * Ry) + Overhead Cost) « Hop Table[2,QS)

40

Heuristics for Query Optimization in DDS

The overhead cost is equal to zero and the value of Hop_Table[2, QS] is eqliai 10
one. Thercfore, the benefit of sending d;; to da; is equal to (((1 — 0.4) * 2000) + 0) * |
= [200. The rest of the cost and benefit values are computed at the same manner. Once
this table is completed. it is clear that the transmissions d3; to dyj, d3) to da; and das to
di> arc not considered since the cost is higher than the benefit.

The transmission d2 to daz is selected since it has the lowest cost. Since d;; to das
is selected from the first iteration, the value of Ry and bas in the Relation Table and the
Cost/Benefit Table must be updated before starting the second iteration. The updated R,

and by are cqual to :

Rz = p12 * Ra
= 0.2 * 2000

= 400

b = Pz * b
= 0.2 * 450

= 90

All the cost values which contain the sending attribute d;» must be updated. There
is only one transmission in Table 12 which is sending dz; to dj2. The new cost to send

d22 is equal to 90. All the benefit values which contain R; must be updated. Therefore,

gt

the benefit of sending d‘“ to da; and ds; to da; must be updated. The benefit value for

sending dy; to da; and d3; to da; are equal to :

Bfdy; = d21] = ((1 - pn) * R2 + Overhead Cost) * Hop_Table[2, QS]

= ((1 = 0.4)* 400 + 0) * |

41

Crearge Mak

Blds; —> d21] = ((1 - par) * R2 + Overhead Cost) * Hop_Tablef2. QS|

(1 = 0.9)* 400 + 0) * |

= 40

ITERATION TWO

RELATION SIZE dj di2
R; Si bii Pil bi2 Pi2
RI 1000 400 0.4 100 0.2
R2 400 400 0.4 92 0.9
R3 3000 900 0.9 —_——— —_——
Table 11 The Relation Table -
To :dy, To :dqy To :d3; To :dya To :das
From: d,, —_—— 400/240 400/1800 —_—— —_——
From : dy, 400/600 — —— | 400/1800 —_——— ——
From : dj; 900/100 900/40 —_——— —_——— —_———
From : dj» —_——— ——— e — —_—— ® ok ok ok
From : ds _— —_—— —_—— 920/100 —_——

Table 12 The Cost/Benefit Table

Those updated values are shown on Table 11 and Tabie 12. The transmissions ds,

to djj, dy) to 2y and d3; to ds; cannot be considered because the cost is greater than the

benefit. The transmission das to d5 is selected because it has the lowest cost.

42

ITERATION THREE

Heuristics for Query Opiimization in DDS

RELATION SIZE d d;»

R; S; by Pil bia Di2

Rl 900 400 0.4 90 0.2

R2 400 400 0.4 90 0.9

R3 3000 900 0.9 _ _——

Table 13 The Relation Table
To :dy To :da, To :d3; To :dy» To :dxy
From : d), —_——— 400/240 400/1800 —_ _———
From : dy) 400/540 — —— | 400/1800 —_— —_——
From : d3; 900/90 900/40 —_—— —_— —_———
From : dj; —_——— —_—— —_——— —_— * ok ok
From : da» _——— —_——— —_ * %k ok —_——_—
Table 14 The Cost/Beneint Table
PHASE 1 PHASE 2 !=-PHASE3 PHASE 4
dy) —> day 400/240 —_——— —_——— —_———
dyy —> dy 400/1800 d;; =04 dz =09 —_———
dr) —> dy; 400/540 ds; = 0.4 dj; =0.4 | Ben. =540
d;'}l —> d3y 400/1800 dy, =04 d31 =0.9 _———
dsz; ‘—>.d]1 900/90 —_—— —_—— -
d3| —> day 900/40 —_——— —_——— —_——_——
Table 15 The Compari.s:on Table
Table 13

transmission.

and 14 show the updated values. Table 15 shows how to select the next

All possible transmissions have the same cost, 400. All the sending

attributes have the same selectivity factor which is 0.4. But the receiving attribute d;; -

has the best selectivity factor. 0.4. Therefore, we send da; to dy;.

43

George Mak

ITERATION FOUR : choose to send dy; to d,

RELATION SIZE di dia
R; Si biy Pil bia pi2
R1 360 160 0.4 90 0.2
R2 400 400 0.4 90 0.9
R3 3000 900 09 —_ —_—
Table 16 The Relation Table
To :dy To :dy; To :ds, To :dy2 To :dan
From : dy; —_——— 1660/240 160/1800 —_— ———
From : dy ok % ——— | 400/1800 | ——— | ———
From : ds; 900/36 900/40 —_—— —_— e
From: dy» ——— e —_—— —_—— —— * %ok
From:dgg —_—— —_—— [, ok ok e
Table 17 The Cost/Benelit Table
ITERATION FIVE : choose to send dy; to ds,
RELATION SIZE dip di»
R; S bi it biz Pi2
R1 360 160 0.4 90 0.2
R2 160 160 0.4 90 0.9
R3 3000 900 0.9 —_— —_———
Table 18 The Relation Table
To :dy, To :dy) To :d3, To :dy2 To :dpo
From : dp) ——— ok % 16011800 | ——— | ———
From : d | ——— [aeeiswn] ——— | ———
From : dj 900/36 900/16 —_—— | —_——— | ———=
From : dj2 _——— —— | ——— —_ Xk ok
From : da; ——— —_—— _ Kk ok —

44

Tabic 19 The Cus;."_Bencfil Table

e

W

Heuristies for Quers Optimization in DDS
Now we sec that there is @ free transmission. da; to dz;. There are no more possible
transmissions, as shown.

ITERATION SIX

RELATION SIZE dj di»
R; S bi) Pi bin Pi2
RI 360 100 0.4 90 0.2
R2 160 160 0.4 G0 09
R3 480 144 0.9 —_——— —_——

Table 20 The Relation Table

To :dy, To :dy; To :d3) To :d;» To :dy
From : dy; - * % % % —_ —_—
From : dz * kK —_——— * ¥ ¥ S —_
From : d3, 144/36 I44/16 —_——— _— —_——
rom : d)2 —_—— —_—_— —_— —_ ® % %
From : d» —_——— — e — - ® k% -

Table 21 The Cost/Benefit Table

The transmissions generated in this example are : -

l. dya —> das [SIZE = 100]

I

das —> dj2 [SIZE = 90]

(3]

d2; —> dy; [SIZE = 400]
4. dy —> dy; [SIZE = 160]
5. djp —> d3; [SIZE = 160]
6. Ry —> QS [SIZE = 360]
7. R» —> QS [SIZE = 160}

8. Rz —> QS (SIZE = 480)

The total ¢cost is 1910 units.

CHAPTER 4 HEURISTIC FOR QUERY
OPTIMIZATION (RESPONSE
TIME VERSION)

The cost model. the description and an example of the Response Time Heuristic
are discussed in this chapter. Section 4.1 discusscs how to measure the cost of the
heuristic. Section 4.2 discusses the algorithm of this heuristic and Section 4.3 illustrates

an example of this heuristic.

4.1 THE COST MODEL OF THE RESPONSE TIME HEURISTIC

The cost model used to measure the Response Time Heuristic is the Response Time.
This is the elapsed time for the query exccution. Since the operations can be executed
in parallel at different sites, the response time of query may be significantly less than its
total cost. A discussion and an example on response time is given in Section 2.6.1.

When a query is processed by the simulator (discussed in Appendix A), the simulalor
will record the query’s starting time. When the query is finished, i.c., all the transmissions
corresponding:to a query are completed, the simulator will record this time ol termination.
Therefore, the response time on processing this quf:ry is the time of termination minus

the starting time. The response time is mecasured in the default unit time used in the

4 :
./.'

Simscript IL5, - h =

4.2 THE DESCRIPTION OF THE RESPONSE TIME HEURISTIC

The Response Time Heuristic is discussed in this section.” The algorithm is shown

~

on Appendix E. The symbols used in this heuristic arc_dcﬁne"d in Figure 57.)

46

Hearistivs for Query Optimization in DDS

This heuristic is shown in Figures 38 to Figure 61. The first input parameter of this
heuristic is a Relation Table which contains the physical address of each relation. the
size of cach relation. the attribute size and selectivity factor for each of the relation. The
sccond tnput paramcter is a Delay Table which is gi{'cn by the simulator. This table
stores the delay to send a packet from one site to every other site.

The Cest Table is created in Figure 58. The cost to send an auribute dj; at Site; to
Sitey is defined as the size of attribute dj; plus the overhead cost multiplied by the delay
cost between Site; and Siick. It is denoted by C[b;; —> k]. The general equation of C[b;;

=> K] is shown as follow :
Cihi;— > k] = (bij + Overhead Cost) x Dy,

The synibol b{j indicates the size of attribute dj; and Djy indicates the delay cost between

Site; and Sitey. The costs can be evaluated if

I. 1 1s not equal to k.
2. The size of receiving attribute by; is not equal to zero.

3. The size of sending atribute bjj is not equal to zero.

Otherwise, the cost is “UNDEFINED™.

The variable NUM_SELECTION in Figﬁre 59 is used to count the number of relations
that do not generate the optimum schedule. For each of the relations given in the'Relation
Table the proco:durc is given below. A relaﬁon (eg: Ry) that does not have the optimum
schedule yet isl located. If the cost in the Cost Table is ncgt equal to “UNDEFINED",

then the cost has to be sorted in ascending order. The results are stored in a temporary

storage called SELECTION_LIST.

47

The cost to send R, from its own site to the Query Site is computed and stored under
this schedule in Schedule_Ry(1). This is the IFS which is the first schedule for R,. The

rest of the schedules for R, is generated as follow :

1. Find the minimum cost from SELECTION_LIST (cg: C[by, —> <))
2. If this is the first iteration, then use Py, to carry out a Semi-Join with R, and store the

result in Schedule_Ry(2). Otherwise. use pyy, to do the Semi-Join with the previous

schedule which is stored in the rest of Schedule_R,.

This minimum cost will be deleted from the SELECTION_LIST. The previous 1wo
steps will be repeated until SELECTION_LIST is empty for R,. The schedule with
the minimum response time from Schedule_R, will be selected and stored 1o another
storage MIN_Schedule_Ry. Figure 59 and Figure 60 is the algorithm to find the

MIN_Schedule_Ry for each of all relations which don't have the optimum schedule.

Figure 61 shows the last few steps of this heuristic. The schedule with the minimum
response time will be selected as the Optimum Schedule for Ry. Before finding the next
optimum schedule for other rclations. the Relation Table and the Cost Table must be
updated. The attributes by;, for all j. and relation Ry are modified by doing the Semi-Join
as the Optimum Schedule for R,. All the costs where sending attribute is from Ry and
is not "UNDEFINED" must be re-computed, using the modificd Relation Table. All cost
for Ry will not be considered again. The process from Figure 59 to Figure 61 will be
repeated until all the relations obtain their Optimum Schedule. A step-by-step example

of this heuristic is shown on Section 4.3.

4.3 AN EXAMPLE OF THE RESPONSE TIME HEURISTIC

This section illustrates a complete example of the Response Time Heuristic.

48

fteuristics for Query Optinmization in DDS

THE FIRST ITERATION

RELATION SIZE dio d;y
R; S bio pio bis Pil
Ry 1000 400 0.4 100 0.2
R; 2000 400 0.4 450 0.9
R» 3000 900 0.9 —_—— —_——
Table 22 The Relation Table
To: Rgp To: R, To: Ra To: QS
From: Rg 0 1.59 1.36 2.97
From : R, 1.30 0 2.66 2.75
From : Ra 1.30 2.88 0 3.15
Table 23 The Delay Table
TO : Rg TO: R TO : Ra
SEND : dgo —_——— 667.80 571.20
SEND : do; —_——— 190.80 —_——
SEND : dyg 546.00 —_—— 1117.20
SEND : dy, 611.00 —_—— —_———
SEND : dxg 1196.00 2649.60 —_——_—
SEND : dy —_— _——— ——

Table 24 The Cost Table

Table 22 is the Relation Table used in this example. Table 23 is the Delay Table
used in this example. For in"st:mce. the cost to send a packet from the site of Rg to the
site of Ry is 1.59 Unit Time. This Delay Table is obtained from the Simulator. Table
24 is the Cost Table which is created in the first iteration. The cost to send by; from the

site with R; to the site with Ry is equal to :

Clbij— > k] = (bij + Overhead Cost) * Dy,

49

George Mak
Let the overhead cost is equal to 20. The Cost to send the following wtributes are

"UNDEFINED™ because those attributes are stored in their own site (ic. 1=K

* Send dg to Ry
* Send dg) to Ro
« Send dyg tc R,
« Send d;; to R
+ Send dsp to R»
« Send d> 10 R»

The costs to send do; to Rz and d;; to Ra are “"UNDEFINED™ because the receiving
artribute day is equal to zero. The cost to send da; to Ry and da) to Ry are "UNDEFINED"
because the sending artribute da; is equal to zero. The cost to send dio 1o Ry is equad
to (big + 20) * Dyp = (400 + 20) * 1.30 = 546. The rest of the cost is computed in

-the same manner.

Attribute Cost Sclectivity
djo 546.00 0.4
dy 611.00 0.9
dag 1196.00 0.9

Table 25 The Selection List for Ry

The Cost of IFS to send Ry to QS = 1020 * 2,97 = 3029.40

SELECTIVITY COST

Send : d;o —> Ry 0.4 546.00

_S_gnd :Rp—> QS == 1247.40
[Max. Cost to Send Auribues 546.00
Max. Cost to send Rg to Query Site 1793.40

Table 26 Schedule ! for R,

Table 25 shows the SELECTION_LIST for Rp in the first iteration. The cost for
sendir:;"g:._the atributes to Ry is rearranged in ascending order. There are three attributes

in the SELECTION_LIST. The value of COUNT become three in Figure 59. The cost

50

Heuristics for Query Optimization in DDS

of IFS for Ry which sends the whole Rg directly to the Query Site is (1000 + 20) *
2.97 = 3029.40. This schedule is stored in Schedule_Rg(1) as one of the options for
sending Ry. The second option for sending Ry is to find the minimum cost from the
SELECTION_LIST. This is to send djg to Rg. This attribute is used to do the Semi-
Join with Ry and store the result in Schedule_Rg(2). This schedule is shown in Table
26. The cost to send djo to Rp and Ry to Query Site is equal to 546.00 and 1247.40
correspondingly. The “Maximum Cost to send atiribute™ is equal to 546.00 since there is
only onc attribute. This will be explained more clearly in the following paragraph. The
value of “Ma#fmum Cost to send Ry to Query Site™ is the sum of the cost of seﬁding
the reduced Ry to the Query Site and the “Maximum cost to send attributes™. In Table

26, this is cqual to (1247.40 + 546.00) = 1793.40.

R SELECTIVITY COST

Send : d)) —> Ry 0.90 611.00

Send: dyg ——> Ry 0.40 546.00

Send : Ry —> QS —_ 1128.60

Max. Cost to Seiie! Autributes 1157.00

Max. Cost to send Rg to Query Site 2285.60
; Table 27 Schedule 2 for Ry

The next smallest cost from the SELECTION_LIST (Table 25) is to send d;; to Ry.
Therefore, this transmission will be used to do the Semi-Join with the previous schedule
for Ro which forms Schedule_Rg(3). Table 27 shows this new schedule for Ro. Attributes
djr and dyo arc both sent to Rg to do the Semi-Join at the same instant. Even though
there are two attributes here, they are both in the source site. Therefore, the cost to send
those two attributes is accumulated. In Table 2'.7. this value is equal to (611.00 -:- 546.00)
= 1157.00. The maximum of the accumulated costs will be the value of “Maximum Cost

to send attributes™. If there is a single attribute sent to Ry with a cost that is bigger

31

Greorge Mak

than any of the accumulated costs. then that cost will be the “Maximum Cost to send

attributes™. As shown in Table 27. this value is equal to (1128.60 + 1157.00) = 2285.60.

SELECTIVITY COST
Send : dyg —> Ry 0.9 1196.00
Send: d;; —> Ry 0.9 €11.00
Send : djg —> Ry 0.4 546.00
Send : Ry —> QS —_——— 1021.68
Max. Cost to Send Attributes 1196.00
Max. Cost to send Ry to Query Site 2217.68

Table 28 Schedule 3 for Ry

Attribute Cost Selectivity
dot 0.2 190.80
doo 0.4 667.80
dap 09 2649.60

Table 29 The Sclection List for R,

The Cost of IFS to send R; to QS = 2020 * 2.75 = 5555

SELECTIVITY COST
Send : dg; —> R; 0.20 190.80
Send : R; —> QS ———— - 1155.00
Max. Cost to Send Attributes 190.80
Max. Cost to send Ry to Query Site 1345.80

Table 30 Schedule 1 for R,
e

SELECTIVITY COST
Send : dgg —> Ry N 0.40 667.80
Send : doy —> R, 0.20 190.80
Send : R; —> QS | = 495.00
Max. Cost to Send Attributes |] 858.60
Max. Cost to send R; to Query Site || 1353.60

Table 31 Schedule 2 for R,

52

Heuristics for Query Optimization in DDS

SELECTIVITY COST
Send : dyy —> Ry 0.90 2649.60
Send : dgg —> R, 0.40 667.80
Send : dogy —> R, 0.20 190.80
Send: Ry — QS —_———— . 451.00
Max. Cost to Send Attributes - 2649.60
Max. Cost to send R, to Query Site 3100.60

‘Table 32 Schedule 3 for R

Attribute Cost Selectivity
dgo 0.40 571.20
dio 0.40 1117.20

Table 33 The Sclection List for Ra

The Cost of IFS to send Ra to QS = 3020 * 3.15 = 9513

SELECTIVITY COST

Send : dgo —> R2 0.40 571.20

Send: R, —> QS] ———— 3843.00

[Max. Cost to Send Atributes o 571.20
Max. Cost to send R> to Query Site 441420

Table 34 Schedule 1 for Re

SELECTIVITY COST
Send: dijg —> Ra 0.40 1117.20
Send : dgo —> Ra2 0.40 : 571.20
Send: Ry —> QS —_———— 1575.00
Max. Cost to Send Attributes 1117.20
Max. Cost to send Ra to Query Site 2692.20

Table 35 Schedule 2 for R

53

George Mak

SELECTIVITY COST
Send : dy; —> R; 0.20 190.80
Send : R} —> QS) —_— 1155.00
Max. Cost to §;nd Attributes 190.80

Max. Cost to send R, to Query Site

1345.80

Table 36 The Optimum Schedule ar Fint Treration (Schedule | of Ry

The last schedule for Ry which is Schcdl.llc__R()(-il) is shown in Table 28 and is

formed in the same manner. Once this is finished, the schedule with the minimum cost

in the storage Schedule_Rg will be found and stored in MIN_Schedule_Rg. Table 26 the

Schedule 2 for Ro will be selected for Ry in this example. since its cost is 1793.40 which

is the smallest cost found so far. Table 25 to Table 32 and Table 33 w0

Tuble 36 arc

doing the same process for R; and R, correspondingly. Therefore. MIN_Schedule_R, is

on Table 30 and MIN_Schedule_R» is on Table 35.

The schedule with the minimum cost which is MIN_Schedule_R; will be selected

as the Optimum Schedule for R as shown in Table 36. This schedule sends dy; to R,

and then sends Ry to the Query Site,

THE SECOND ITERATION

RELATION SIZE dio di)
R; S bio Pio bi) Pil
Ro 1000 400 04 100 0.2
R 400 400 0.4 90 0.9
R» 3000 900 0.9 —_——— —_—

Table 37 The Relation Table

54

Hewristios for Query Optimiization in DDS

To: Ry To: Ry To: Ra To: QS
From : Ry 0 1.59 [.36 297
From : R, 1.30 0 2.66 275
From : R» 1.30 2.88 0 3.15

Table 38 The Delay Table

TO : Ry TO : R,y TO : Ry
CEND : dgo —_—— ok 571.20
SEND : dy; —_—— ETE -
SEND : djo 546.00 —— 1117.20
SEND : dj, 333.80 _—— —_
SEND : dayg 1196.00 Aok e
SEND : d3 _——— S — —_———

Tuble 39 The Cost Table

Before creating the schedules for the second iteration, there are some values in the
Relation Table and the Cost Table that must be modified. Since dg; s sent to R, then
the size of R; is reduced, it becomes (pp; * Ry) = (0.2 * 2000) = 400. The attribute
d, is reduced by doing the Semi-Join with dg;. Therefore, d;; becomes (0.2 *'450) =
90. The cost of sending d); to Ry (Cost Table in Table 39) has to be modified. Sllince
the cost to modify dy; is equal to 190.80 which is shown on Table 36, the new cost to
send d;, to Rp is equal to (190.80 + (90 + 20) * 1.3) = 333.80. This cost is updated

and showed 01;‘ Table 39,

All the transmissions which have the destination site equal to R; will not be
considered any more, since the Optimum Schedule for R, is already found. Therefore,

the cost for sending doo to Ry. do; 10 Ry and dag to Ry will be erased from the Cost

Table as shown on Table 39.

George Mak

Attribute Cost Selectivity
dny’ 0.90 333.80
dio 0.40 546.00
dao 0.90 1196.00

Table 40 The Selection List tor Re

The Cost of IFS to send Ky to QS = 1020 * 2.97 = 3029.40

_ SELECTIVITY COS1

Send : dj;” —> Ry 0.90 333.80
Send : Rg —> QS ———— 2732.40
Max. Cost to Send Attributes 333.80
Max. Cost to send Rp to Query Site 3066.20

Table 41 Schedule 1 tor Ry

SELECTIVITY COST

Send : dijg —> Ry 0.49 546.00
Send: d;;” —>Rp 0.90 333.80
Send : Rg —> QS —_——— 1128.60
Max. Cost to Send Attribuies 879.80
Max. Cost to send Ry to Query Site 2008.40

Table 42 Schedule 2 for Ry

SELECTIVITY COST
Send : dyg —> Ry 0.50 1196.00
Send : dyjg —>Rp 0.40 546.00
Send : d;;” —> Ry 0.90 333.80
Send : Rg —> QS —_—— 1021.68
Max. Cost to Send Attributes 1196.00
Max. Cost to send Ry to Query Site 2217.68

Table 43 Schedule 3 for Ry

56

A

Heuristics for Query Optimization in DDS

Attribute Cost Selectivity
dno 571.20 0.40
dyo 1117.20 0.40

Table 44 The Selection List for Rz

The Cost of IFS to send R» to QS = 3020 * 3.15 = 9513

SELECTIVITY COST
Send : dgg —> Ra 0.40 571.20
Send : Ra —> QS - 3843.00
Max. Cost to Send Attributes 4414.20
Max. Cost to send Ra to Query Site 4414.20

Table 45 Schedule 1 for R;

SELECTIVITY COST
Send : djg —> Ra 0.40 1117.20
Send : dyg —> Ra 0.40 571.20
Send: R» —> QS —_—— 1575.00
Max. Cost to Send Attributes o 1117.20
Max. Cost to send Ra to Query Site 2692.20

Table 46 Schedule 2 for Rz

SELECTIVITY COST _
Send : dip —> Ry 0.40 546.00 V=
Send : di;° —> Ry . 0.90 333.80
Send : Rg —> QS —_——— 1128.60
[Max. Costto Send Auributes 879.80
Max. Cost to send Ry to Query Site 2008.40

Table 47 The Optimum Schedule at Sccond Iteration (Schedule 2 of Rg)

57

George Mak

THE THIRD ITERATION

Table 51 The Sclection List for R,

58

s

RELATION SIZE d o diy

R; S bio Pio biy Pil
Ro 360 160 0.4 90 0.2
R, 400 400 0.4 90 RN
Ra 3000 5¢0 09 —_— —_—

Table 4% The Relation Tuble

To: Rg To: R, To: Ra To: QS

From : Ry 0 1.59 1.36 2.97
From : R, 1.30 0 2.66 275
From : R» 1.30 2.88 0 3.15

Table 49 The Delay Table
TO : Rp TO : Ry TO : Ra

SEND : dgg —_—— etk g 571.20

SEND : dy, _—— sk K —_—
SEND : djo Fkpkk _— 1117.20
SEND : d;, Ekkskik —_—— —_—
SEND : dyg kdkokok ek ko — e —
SEND:d?_] _——— _——— ———

Table 50 The Cost Table

Attribute Cost Selectivity
doo 571.20 0.40
dig 1117.20 0.40

Heuristics for Query Oprimization in DDS

The Cost of IFS to send Ra to QS = 3020 * 3.15 = 9513

SELECTIVITY COST

Send : dgy —> Ra 0.40 571.20

Send: Rp —> QS R 3343.00
Max. Cost to Send Attributes 571.00 -

Max. Cost to send Ra to Query Site 4414.20

Table 52 Schedule ! for R:

SELECTIVITY COST

Send : dyp —> R2 0.40 1117.20

Send : doo —> R 0.40 571.20

Send : R —> QS - —_———— 1575.00

| Max. Cost to Send Attributes 1117.20
Max. Cost to send Rz to Query Site 2692.20

Table 53 Schedule 2 for R

SELECTIVITY COST

Send @ djg —> Rs 0.40 ' 1117.20

Send : dgo —> Ra 0.40 571.20

Send : Ry —> QS —_———— 1575.00

[Max. Cost to Send Attributes - 1117.20
Max. Cost to send Ry to Query Site = 2692.20 -

Table 54 The Optimum Schedule at Third Ilcrzitiéi\i.(gchcdulc 2 of Rp)

=

M

George Mak

The Final Optimal Schedules

SELECTIVITY COST
Send : dgy —> Ry 0.20 190,80
Send: R; —> QS —_——— 1155.00
Max. Cost to Send Attributes 190.80

Max. Cost to send Ry to Query Site

1345.80

Table 55 The Optimum Schedule at First Teration (Schedule 1ot Ryy

SELECTIVITY COST
Send: djg —> Ry 0.40 546.00
Send : d;;” —> Ry 0.90 33380
Send: Rg — QS —_——— 1128.60
Max. Cost to Send Attributes 879.80
Max. Cost to send Ry to Query Site 2008.40

Table 56 The Optimum Schedule at Second Tteration (Schedule 2 of Ro)

SELECTIVITY - COST
Send : djg —> R» 0.40 1117.20
Send : dgg —> Ra 0.40 571.20
Send: Ry — QS == 1575.00
Max. Cost to Send Attributes I 1117.20
Max. Cost to send Ry to Query Site 2692.20

Table 57 The Optimum Schedule at Third Iteration (Schedule 2 of Ra)

60

R

Heuristios for Query Optimization in DDS

The Schedule for R1
180.80/1.59 = 120

1155/2.75 = 420

The Schedule for RO

R
duo 0
546/2.66 = 220

d 1 1128.6/2.97 = 380
A

(333.8-190.8)1.3 = 110

The Schedule for R2

dig Ro
1117.2/2.66 = 420

doo

Qs

1575/3.15 = 500

571.2/1.36 = 420

Figure 26 The Graphically Optimal Schedule

The Optimum Schedule for Ry and Rz are generated in the same manner which is
shown from Table 37 to Table 537 The Optimum Schedules for all three relations are
shown from Table 55 to Table 57. The graphical optimal schedules are shown on Figure

26.

61

CHAPTER 5 COMPARISONS AND RESULTS

This chapter shows and compares the results of all simulations.

5.1 RESULTS OF THE SAME QUERY PROCESS AT
DIFFERENT INSTANT (Total Cost Heuristic)

This section shows the total cost of five queries at low load. medium load atd high
load situations using the Total Cost Heuristic. Row 1 shows the total cost of the 5 querics
at times T; to Ts (Low Load). Row 2 shows the total cost of the querics at medium
load. The remaining 5 rows show the cost at 5 different high low times.

The Hop Table at T) is used by the Total Cost Heuristic to gencerate the schedules for
a given query and compute its total cost. The same schedules are li\:cd 10 compute the
total cost at different times as T,. T3. Ty :ind Ts. The Hop Tables which are generated
at those times will be used to compute the total cost. The graph of the total cost at a

high load situation is on next page.

QUERY NUM3ER : 1 1 19 23 25

LOW LOAD (T, 1o Ts) 2050 3764 | 11100 | 3644 | 9308
MED. LOAD (T, to Ts) 2050 3764 | 11100 | 3644 | 9308
HIGH LOAD AT T, 2454 3912 | 11596 | 3435 | 9308
HIGH LOAD AT T, 2518 3924 | 13096 | 4085 | 11264
HIGH LOAD AT T; - 2638 4404 | 12828 | 4881 | 12916
HIGH LOAD AT T, 2518 5164 | 16468 | 5179 | 15764
HIGH LOAD AT Ts 12946 | 4764 | 14492 | 4441 | 11020

Table 58 The Result of Tot.';l‘--Cost chri‘sti-(ﬁ: at Different Instant

.

62 “._' 1:::

61 Aend

LNVLSN ZINLL
Gl L A1 Al L1

(NOILYNLIS aVO1 HOIH)
INVLSNI LN3H3441A 1V OLLSIHNIH ‘0l

Gz bmzo B €° Asnd B L1 A1enD [| A1enpd

0
0002
000"
0009
000'8
000°0}
0002}
000'%}
000'9}
0008}

[FNIL LINN] 1SOD TVLOL

5.2 RESULTS FOR TOTAL COST VERSION

The tables used in Section 5.2.1 to Section 5.2.2 have the following format. The first
column is the Query Number. Each query can be found in Appendix D. The 2™ 3% ynd

4™ columns give the total cost for the query at a low, medium and high load respectively,

5.2.1 The Resuits for AHY (Total Cost Version)

Table 59 gives the total cost for the AHY heuristic (Total cost Version). The araph

of Table 59 is shown on the next page.

64

-\L\,

Y

fleuristics Jor Query Oprimization in DDE

Query LOW LOAD MED. LOAD HIGH LOAD
Num. (509%-55%) 75%-80%) (25%-30%)
1 2506 2506 335120
2 2N 2300 33000
k] 1759 1789 313030
4 17389 1789 309120
h] 1607 1607 249240
6 RESY] 334t 567,60
7 4705 4708 S798.00
= 5368 5368 679230
49 5506 5506 6889 40
10 660 6360 872000
] 4730 4730 5988.00
12 2452 4452 5910.40
L3 1527 1527 2266.60
1 2475 2375 315690
[N 6275 6278 8327.60
16 037 7037 B155.00
17 4722 4722 6279.50
1R 469% 4696 6X70.00
19 10396 10396 12138.40
20 Ti42 T142 $909.20
21 423 23 572120
paud 6013 6013 593,20
2 375 3475 4425,20
24 is03 iso3 471140
25 10870 10870 13612.00
26 10390 10390 14954.00
27 3534 1534 4770.20
28 IR22 822 3960.00
2 14606 13606 1899280
30 14760 t4760 18635.20

Table 59 The Results for AHY (Total Cost Version)

65

¥

aQvOTHOH [l QVOTWNIQIN [

H3agINNN AH3ND

0f 62 82 Z2 92 S2 b2 €2 22 1€ 02 &4 8l Lt 94 SI vi € 2 LI Of

6 8 £ 9 S ¢ € ¢

avo1 Mol i

L0
| 0002

— 000'p
- 0009
L 0008

7}

|- ooo‘ot

| 0002}
- 000V |
- 0000}
- 0008}
00002

avo1H9IH ® a¥O1 WNIGIW ‘AY0T MO
1V VIS WHLIHODTY 40 NOISHYdNOD JHL

1SOD V101

;I')

5.2.2 The Results for Total Cost Heuristic

Heuristics fur Query Optimization in DDS

Table 60 is the total cost for the Total Cost Heuristic. The graph of Table 60 is

shown on the next page.

Query LOW LOAD MED. LOAD HIGH LOAD
Num, (25% - 30%) (50% - 55%) (50% - 55%)
I 2050 2050 2985.60
2 2460 2360 3425.20
1 1690 1690 2602.30
4 1690 1690 85000
s 1867 1367 25820,50
o 7 97 1316.20
7 343 3143 91315
¥ 5195 5195 617430
D) asi2 asie 6102.40
10 4750 4750 6416.50
1" 3764 3764 4582.80
12 722 Ky i) 4745.50
K] 1254 1254 186420
14 2112 ni2 2798.00
15 23 4424 6053,10
16 5830 SR30 781370
V7 ET S ae 5730.60
18 4064 066 5640.30
19 11100 11100 1317590
20 6920 6920 $589.60
21 2420 2420 3002.80
22 5776 = 5776 7415.22
2 3644 3644 3566.40
24 3602 3602 4555.90
25 9304 9308 11557.00
2 10027 10927 12598.90
27 4764 4764 5593.10
2% 4175 4275 6295.56
b 14714 14714 18786.20
0 15859 15839 2025020

Table 60 The Results for Total Cost Heuristic

67

avOTHOIH i avo1WNIA3AN E&

HIgaWNN AH3NO

Qmmmmwhwmmmmvwmmmmwmowm—m_.h_.mwm_.v—mwm_. (] 8 Z

—_ [T

e

avo1mol i

- 000°S

- 000°04

. 000'S}

“1- 000'02

000's2

avo1 HOIH ® QY01 WNIG3Iw .o.«S MO1T LV
(LSOO TVLOL) DILSIHNTH 40 NOISHVINOD TFHL

1500 V101l

5.3 RESULTS FOR RESPONSE TIME VERSION
5.3.1 The Resuits for AHY (Response Time Version)

Table 61 is the response time for the AHY (Response Time Version). The graph of

Table 61 is shown on next page.

Query LOW LOAD MED. LOAD HIGH LOAD
Num. (25% - 30%) (50% - 55%) (75% - 80%)
1 360.38 626,46 2091.13
2 620,76 87747 2000.76
3 562.42 649,87 2056.50
4 SI282 735,64 233814
5 KRYI 656.85 1501.66
A 654,66 28191 312182
7 138228 1944.79 3263.16
) %19.50 904.43 2631.38
9 BI2.89 1107.33 2838.19
10 BV IRTY 1103.24 2230,02
" #18.60 16 209486
12 1313 160731 212586
1} 559,45 57637 1942.45
4 607,43 §53.67 1743.83
15 S98,38 978.63 235773
lo 73199 940,82 2760.47
17 926,70 1314.45 2341.99
8 B335 117151 2389.02
1 137095 1857.36 329084
2 04399 1157.85 2591.63
2 37108 505.95 1524,35
n ' 84338 104943 2488.04
23 720 . 656,12 1845,15
34 ERER]| 626,73 1896.99
25 123839 1551.80 328204
20 127289 186555 3475.90
bl 491,42 ’ 1007.00 231074
28 928,50 . 135428 237044
el 2188.70 3374 SBR6.06
0 1716.70 2568.14 4305.17

Table 61 The Results for AHY (Response Time Version)

69

AvOTHOIH | dvOo1WNId3W [

H3gINNN AH3NO

om 6¢ 8¢ /2 92 G¢ vZ €2 2¢ le Oc 61 81 LI 91 SI ¥1 €1 2l |} Ol

TR

avoimol i

m
(41
y—

— 0

ln
mm

[|- 000't

m

oo M~

.u".\\

- 0002

- 000

- 000"t

L 000°S

- 0009

0002

avo1 HOIH 2 avO1 WNIGIn ‘avo1 MO
1Y 137Tvdvd WHLIHOO TV 40 NOISHYdNOO FHL

[SNLL LINN] JNLL ISNOGSIL-

Hearistics for Query Opiinnization in DDS

5.3.2 The Results for Response Time Heuristic

Table 62 is the response time for the Heuristic (Response Time Version). the graph

of Table 62 is shown on ncxt page.

Query LOW LOAD MED. LOAD HIGH LOAD
Num. (25% - 30%) (50% - 55%) (75% - 80%)
1 618,25 962,35 -
2 45217 658,70 299243
3 490,32 72190 241681
3 403,19 545,10 239272
5 482.29 T71.36 4150.00
6 92672 1070.04 101651
7 737,60 . 940,40 321070
% #2135 1206.59 32107
9 : 77224 136919 4259.03
10 745,00 990.54 1877.138
1 669,59 87727 262,39
12 00K, 17 860,13 2520,24
13 120 523,62 200,72
14 418,76 675.51 299352
15 66096 958.65 - -
16 756,00 938,00 -
17 606.69 830.02 -
I8 55590 789,08 -
19 1154,94 154215 - =
20 790,15 1159.56 - ==
bJ| 7,43 617.36 215478
n TRIST 1065.99 -
2 54596 62992 342603
24 J12,08 61494 328419
2 §31.67 1506.29 . -
20 104213 1434.27 5917.80
¥ 656,42 690,87 438428
» 660,76 . 871,40 2130.72
9 156760 2256.92 -
30 1506.70 2158.86 i 697454

Table 62 The Results for Response Time Heuristic

71

QvOTHOIH i aVOTWNIGIW [

H39INNN AHANO

avo1MOT i

avo1 HOIH 2 QY01 WNIGINW ‘Gv0T MO LY
(IWIL dS3Y) DILSIYNIH 40 NOISHVYIWOD JHL

[3NLL LINN] JWIL 3SNOJSTY

5.4 CONCLUSIONS FOR THE TOTAL COST VERSION

This section compares the total cost between the AHY Algorithm (Total Cost Version)
and the Total Cost Heuristic. The results arc presented in table and graph format. Each
table has six columns. The first column is the query number. The second column is the
number of relations. The third is the number of attributes. The fourth is the total cost
for the total cost AHY Algorithm. The fifth column is the total cost for the Heuristic
Algoarithm. The last column is the percentage different between the AHY Algorithm and

the Heuristic,

Il the value of the percentage difterence is negative, it indicates the Heuristic reduces
the cost by this percentage when compared to the AHY Algorithm. If the value of the
percentage different is positive. it indicates that the Heuristic increases the cost by this

pereentage.

Section 5.4.1 compares the AHY Algorithm (Total Cost Version) and Total Cost
Heuristic at the low load situation. Section 5.4.2 compares at the medium load situation.

Scction 5.4.3 compares at the high load situation.

5.4.1 The Comparisons at Low Load Situation

Table 63 is the comparison betweer: the AHY Algorithm (Total Cost Version) and
the Total Cost Heuristic at the low load situation. The graph of Table 63 is shown on

next page.

George Mak

Query # | # of Rel. | # of Att. ARY HEURISTIC ¢ DIFY.
! 4 1 2306 2050 BEWILY
2 + 1 23 2o o oy
3 5) 1759 [AN
4 5 1 1759 Toa) AN
5 5 1 len7 1567 [IEREUS
6 © 1 234l R R
7 6 1 4708 Al43 WIS
3 6 t hRI] S10s L3225
9 [J 1 S506 =512 IR0
10 3 2 LRI Erail] SladT
11 2 2 4740 iTod SHLM
12 3 2 HS2 1722 BGX
13 4 2 1527 1254 S17.88
14 4 2 W75 212 NEY ot
15 6 2 a275 4424 A N
16 6 2 T037 hERI) 1%
17 3 2 4722 70 L 1LSe
15 % 2 4096 Mty RERALA
19 5 k) 103v6 11100 3T
20 5 3 7142 [O] SL
k] 5 3 3 40 G2
22 5 3 6013 5770 LU S
23 5 4 RETA) Iodd b R0
24 5 4 3803 Isn2 B U
25 5 3 10870 DIOR BRI S
26 5 < 10380 10927 50Tk
2 g 4 3534 47604 PREE.
3 8 3 3822 4275 +11.K5%,
20 8 4 14606 14714 +0,74%,
0 8 4 14760 15859 + 745

is

Table 63 The Comparisons between AHY Alporithm & Heuristic at Low Load

74

TVIH3S 'OV & OILSINHIH M3N

439NN AH3NO

avO1 MO LV JILSIHNTH @ VIH3S "IV
N33MLIE NOISHVINOOD 3HL

000'e
000
0009
000'8
0000}
0002}
000Vt
0009}
000'8}

1S0D W10L

Cororge Mok

5.4.2 The Comparisons at Medium Load Situation

Table 64 is the comparison between AHY Algorithm (Total Cost Version) and the
Total Cost Heuristic at the medium load situation. The graph of Table 64 is shown on

next page.

Query # | # of Rel. | # of Att. ' AHY HEURISTIC % DIFF.
1 3 1 2506 2050 -18.20%
2 4 | 2300 2360 +6.96%
i 5 t 1789 1690 -5.53%
3 3 1 1789 1650 -5.53%
s 3 ! 1607 1567 +16.18%
S o 1 3 3197 431%
7 6 ! 3705 3143 S33.20%
8 6 1 S368 5195 By
9 6 1 5506 4512 -18,05%
10 3 2 6460 &750 26.47%
i 3 2 4790 3764 -20.59%
12 k} 2 4452 am -16.40%
13 4 2 1527 1254 -17.88%
4 4 2 2475 2112 -1467%
15 6 2 6275 4424 20.50%
18 6 2 7037 5830 A1715%
17 ® 2 £722 3176 <1 1.56%
1% 8 2 696 3066 -13.92%
19 $ 3 10396 1100 +5,77%
20 s 3 7192 6920 SA01%
21 s 3 4423 2420 -45.29%
» i s 3 6013 5776 -3.94%
23 s 4 3475 3643 +1.86%
X3 S 4 803 2602 -5.29%
R s K 10870 9308 -14.36%
26 s 4 10350 10927 +5.17%
27] 3 3534 4763 +34.50%
L 3 4 s 4275 +11,85%
% % 3 14606 14714 +0.74%
k') 8 K} 14760 15859 +1.45%

» 'Tuble 64 The Comparisons between AHY Algorithm & Heuristic at Medium Load

Pl
e

hls

76

o

VIHIS 'OV & OILSIHNIH MaN

H3IgWNN AH3NO

L ZLIL O 6 @ L 9 S ¢ € 2 |

T N

Of 62 B¢ /% 92 SZ ve €¢ 2T 1Z 0¢ &) 9}

ZL 91 SI ¢4
TN D

H 4 21! N\v\ %

avo1 WNIQ3an LY JILSIHNIH @ VIH3S "9V
N3IMLIE NOISHYdNOD JHL

1S00 V1Ol

{ienrge Mak

5.4.3 The Comparisons at High Load Situation

Table 65 is the comparison between AHY Algorithm (Total Cost Version) and the

Total Cost Heuristic at the high load situation. The graph of Table 65 is shown on next

page.

Query # | # of Rel. | # of Att. AHY HEURISTIC % DIFF.
' 3 ! 325120 2985.60 $.17%
2 4 t 3130.00 2570 +0.43%
% 5] 313040 260230 -1657%
4 5 ! 3091.20 2850.00 7.80%
s s 1 249240 2520.50 +13,16%
6 6 I 1667.60 331620 153%
7 6 1 5798,00 4913.50 -15.26%
% 6 1 679240 617430 $.10%
) o 1 658940 6102.90 11.42%
10 3 2 #720.00 6416.50 26,42%
t 3 2 598300 458250 23.471%
12 3 2 591040 474550 TS
13 s 2 2266.60 1884.20 16.87%
14 4 2 315690 2798.00 “13T%
15 6 2 8327.60 6053.10 2731%
s 6 2 B455.00 813,70 7.58%
7. 8 2 627950 5730.60 875%
18 % 2 6270.00 } 563030 -10.04%
) s T3 12138.40 1317590 +B8.55%
20 5 a 490920 8589.60 3.59%
21 s 3 572120 ’ 300280 -47.51%
» s 3 859420 741522 -1372%
h2 s 3 442520 256640 +3.19%
2 s 4 371140 4555.90 -3.30%
3 5 a 13612.00 11557.00 -15.10%
26 s 3 14954,00 12568.50) -15.75%
n 8 4 417020 6295.56 +31.98%
prd] 3 4960.00 5593.10 +12.76%
2 s 3 18992.80 18786.20 -1.09%
0 $ 4 18635.20 2025030 +8.67%

Table 65 The Comparisons between AHY Algorithm & Heuristic at High Load

aaiid

WVIHAS 'OV §F OLLSIHNIH MAN [

439NN >mm_30
e LTI RIZEOI T ANl HONEE LIS 2

0

_ 000'S

- 8_0.9

L 000'G1L

. 000'02
000's2

QvO71 HOIH LY JILSIHNIH €@ "VIHES "DV
N33MLIE NOISHVYdINOOD FHL

1S0D V10l

5.5 CONCLUSIONS FOR THE RESPONSE TIME VERSION

Section 5.5.1 compares the AHY Algorithm (Response Time Version) and the Re-
sponse Time Heuristic at a low load. Section 5.5.2 compares at 2 medium load. Section

5.5.3 compares at a high load.

5.5.1 The Comparisons at Low Load Situation

Table 66 is the comparison between AHY Algorithm (Response Time Version) and

the Response Time Heuristic at a low load. The graph of Table 66 is shown on next page.

Hearisties for Query Opamization m DDS

Query # | # of Rel. | # of Att. AHY HEURISTIC G DIFF.
! 4 1 360,98 BIR2S <TI0
2 k] 1 0207 IR PR
3 s] S62aY 32 2015
3 s ! S22 40310 I
s $ 1 23182 452,29 SR AN
6 6 t 65400 92072 FETI,
7 o I 1382,28 73700 0,04
¥ 6 ! $19.50 N2138 0,235
9 6 ! 3250 T 2%
10 3 2 SOL16 THE00 2o
n 3 2 18,60 0,59 18,20,
12 3 2 13413 08,17 wdes, 285,
13 4 2 559,45 47,20 20,08,
14 4 2 607.33 AT -31Lleth
IS 3 2 S00.28 6690 +1L9T%
16 6 2 T 756,00 EY R Y
17 & 2 926.70 00,69 3480
18 8 3 NIR3S $55.90 L3035
19 s 3 1370.95 115404 -15.70%
20 5 3 04359 790,15 16, 30%,
21 5 3 ¥LeS 8743 +31.37%
2 s 3 543,35 TBAKT -6.93%
23 5 4 47.20 S45.96 +DLURE
2 5 4 434471 41208 - ¥
25 s 4 1238.30 H31L67 ~A2K4%
2 5 3 127249 1042.13 AIR13%
27 8 4 a91.42 656,42 +A3.55%
2% 8 4 924,50 660,76 28565
2 ' 8 4 215570 1567.00 2T
30 8 4 1716.70 1506.70 -12.23%

Table 66 The Comparison between AHY Algorithm & Heuristic mt Low Load

81

13TIvHVd 'OV & OILSIHNIH M3N

H3IaWNN AH3INO

gL iLOL 6 @ L 9 § ¥ € T 1

s

OF 62 9% 12 92 92 v€ €2 ¢¢ 1T 0T 61 8 LI 91 St ¥ €}

m

- 00S

- 000°}

005}

- 0002

00s‘e

avo1 MO LY DiLSIHNIH @ 13TIVEVd "OTV
N33IML3G NOISHYIWNOO JHL

[FNIL LINN] IWIL ISNOJS3IH

4

Heuristioy for Query Opginuzation i DDS
5.5.2 The Comparisons at Medium Load Situation
Table 67 is the comparison between AHY Algorithm (Response Time Version) and

the Response Time Heuristic at a medium load. The graph of Table 67 is shown on

next page.

Query # | # of Rel. | # of Att. AHY HEURISTIC % DIFF.
| 3 i 62640 g6 i +331p07
2 3 | STLIT 058,70 4005
3 3 1 &9 57 72380 STEI
3 s 1 735.04 S45.10 28K
s s 1 656,55 T3 174N
6 6 1 §81.91 el +713%
7 6 1 194479 940,40 .51 6%
8) 1 004.43 120650 S3A%
9 6 I 11073 1360, 19 +12.68%
10 3 2 10324 9054 -10.22%
1 3 2 1164 87727 S2108%
2 3 2 160731 560,13 46,49,
13 4 2 576,37 52362 D15%
14 4 2 5367 675,51]
15 6 2 968 958,65 2.05%
16 6 2 940,82 948,00 +0.76%
17 8 2 131445 53004 3RS
18 3 2 H7151 7%9.05 3265
19 5 3 185736 154215 -16.97%:
20] 3 115785 1150.56 +0,15%,
21 5 3 505.95 617,46 +22,04%
2. 5 3 1049.43 1069.99 +196%
n s 4 656.12 62992 399%
24 5 4 626,74 #1494 -1LBA%,
25 s 4 1551.40 1506.29 293%
2 5 4 186855 183422 -23,25%
7) 4 1007.50 690.K7 11.43%
p2] 3 a 1354.28 %73.40 235,505,
2 8 3 324374 225692 0.42%
30 8 4 268,14 215446 -15.94%

Table 67 The Comparison between AHY Algorithm & Heuristic at Medium Load

83

T37vdaYd 'OV @] OILSIHNTIH M3N 7]

HIgWNN AHINO

Op 62 B2 /2 02 9z bT €2 22 12 02 61 ©) LL 9L SE vl €L @2 HL O 6 8 L 9 § vy ¢ 2 |

[IWIL LINN] FNILL ISNOJS3IY

avo1WNIQan LY JILSIHNIH 2 13 TIVHYd "9V
N3IIMLIE NOISHYdWOO 3H1

Heurianes for Query Opomizanion in IS

5.5.3 The Comparisons at High Load Situation

Table 68 is the comparison between AHY Algorithm {Response Time Version) and
the Response Timw Heuristic at the high load situation. The graph of Table 68 is shown
on next page. Some queries were not exceuted since it was clear that the Response Time

Heuristic was performing very badly at a high load.

i of Rel. ARY HEURISTIC o DIFF.
4 00013 - == =
4 2000,70 pal R dt & 5PN
5 2056.50 pe T L% +17.50m%
5 233804 240772 +OHI
5 1501.66 S150.00 +1 7010
6 312182 HH 681 +HIR.O6TT
6 36210 110,70 +Loln
& 263198 Aot H X0
6 23819 428003 +SLI2%
10 3 2 224002 TR “16.20%
1 3 2 200486 262,30 BN
12 3 2 212556 2520.24 +IBA5%
13 3 2 194248 2109.72 +B.h%
14 3 2 1743.83 993,52 +T1.06%
15 6 2 23S7.73 - _-——
16 6 2 276047 -—= -—-
17 3 2 234190 - -— =
18] 2 2380.02 - - =
19 s 3 329084 - = - ——
20 5 3 259163 - o
21 5 3 152445 215478 +1145%
2 s 3 248804 - -—-
23 5 3 1845,15 342603 +RS.THI,
24 s 4 1896.99 328419 STA13%
25 [‘ 32204 - -—
26 5 4 1375.90 501780 +T0.25%,
27 8 4 231074 2I842K +HO.T%
28 -8 4 217044 a130.72 +14.26%
29 8 3 583606 -0 . T
30 8] 4 4305.17 6974.54 T es2.00%

Table 68 The Comparison between AHY Algoerithm & Heuristic at High Load :

85

.

ommwmwmwemquummww—momm—o—h—o.—‘m_.ﬁa—m— ILo01L 6 8 L 8 § ¥ € T |}

OILSIHNIH M3N 1aTIvHVYd 'OV

H3gGWNN AH3NO

QvO17 HOIH 1Y DILSIHN3H 2 "iFTIvdvd "9V

N33ML3g NOISHYdNOO FHL

0004
000°e
ooo'e
000
000°S
0009
000°Z
0008

[3WIL LINN] SNIL-ISNOJS3H

CHAPTER 6 CONCLUSIONS

There are many possible strategics for processing i query, especially complex queries,
and a substantial amount of time and eftort is necded to select an optimal strategy. In
the earlier distributed DBMSs. the objective was 1o minimize the transmission costs in
terms of the message size. However. there are some other fuctors such as the Nerwork

Load which should also be considered.

6.1 FINDINGS RELATED TO THE TOTAL COST HEURISTIC

6.1.1 THE SAME QUERY PROCESS AT DIFFERENT INSTANT

At low and medium load the hop table remains unchanged as the routing remains the
same. However, at high loads the routing and hop table change. If the traffic load does
not change very much, then the total cost does not change very much. For example, the
total cost is not changed very much from T to T4 in Query I in Tublc 58. -Howcvcr, the
total cost is changed to 2946 at Ts which means that the traffic has changed very much.

If the traffic of the network is increased, it may cause the Total Cost Heuristic to

produce a higher total cost for that query.

6.1.2 EFFECT ON THRESHOLD VALUE

The Threshold Value plays a very important role in the Total Cost Heuristic. If the
heuristic uses a bad threshold value, then the total cost of the query will be worse than
'Algorithm AHY. There is no unique way to find the best threshold value for a given

query. The best method to obtain a threshold value which is close to the optimum onc is

87

Ciearge Mak
by & "Trial und Error™ method. The term “optimum threshold value™ is a threshold value

which gives the smallest total cost for the same query.

in general, there are five different cases to consider :

6.1.2.1 ONLY ONE OPTIMUM THRESHOLD VALUE
When there is only onc optimum threshold value. then the total cost will be increased
il the threshold value is bigger or smaller than the optimum threshold value. Some

cxamples are given on Table 69.

6.1.2.2 SEVERAL OPTIMUM THRESHOLD VALUES
The second case is that there are several optimum threshold values in a query.
Therefore. more thian one threshold value can give the optimum total cost for that query.

Some examples are given on Table 70.

6.1.2.3 MANY OPTIMUM THRESHOLD VALUES
The third case is that there are many threshold values that can produce the optimum
total cost in a given query. However, this kind of case does not happen very often. It

only happens in about 5% of the queries. Some examples are given on Table 71.

6.1.2.4 THE OPTIMUM THRESHOLD VALUE IS ZERO
The fourth case is that the optimum threshold value is zero. The total cost will
increase exponentially if the threshold value is increased. Table 72 shows some examples

of this cuse.

6.1.2.5 SOME SPECIAL CASES
The fifth casc is where a threshold value can suddenly increase the total cost of a
query. 1f that threshold value is used. then the total cost will suddenly increase. However,

this kind of case does not happen very often. Some examples are shown on Table 73.

o
o

Hewristios foe Quory Opannzation i PPN

The threshold value plays a very important role in the Total Cost Heuristic. It can
directly affect the result of the tetal cost of a given querv. Therefore. the Total Cost
Heuristic needs to use ~Trial and Error™ method to find the optimum threshold value

for that query.

89

Cirorse Mak

THRESHOLE TOTAL COST TOTAL COST TOTAL COST
VALUE for Query 3 at for Query 9 at for Query 17 at
Table 7 Table 4 Table 3

0 2496 5910 7965

5 2496 5946 8197
10 2496 5946 3197
20 2451 5922 8197
30 2370 5922 8197
40 2370 5922 8251
50 2345 5922 7610
60 2422 5922 7958
70 2422 5922 7958
80 2440 5901 7958
100 2440 6612 7948
110 2440 6612 7948
120 2440 6608 7975
130 2440 6564 7965
140 2440 6564 7965
150 2440 6564 7945
160 2440 6564 7789
170 2440 6614 7876
180 2440 6614 7876
190 2440 6614 7876
200 2440 6614 7876
300 2415 7024 10943

Table 69 Showing Only Onc Optimum Threshold Value

90

27

Heurntios fir Query Optinuzation i DS
R - i

THRESHOLE TOTAL COST TOTAL COST TOTAL COST
VALUE for Query 6 at for Query 8§ at for Query 16
Hop Table 3 Hop Table 5 Hop Table 4

0 4373 6333 7679

5 4373 6333 7679

10 4373 6333 7679

20 4373 6333 7679

30 4373 6333 7420

40 4373 6333 7420

50 4284 6333 7420

60 4284 6333 7420

70 4284 6333 7420

80 4284 6333 7420
100 4284 5974 7420
110 4284 5974 7420
120 - 4284 5974 7473
130 4284 5974 7473

140 4346 5974 7473
150 4346 5974 7728
160 4346 5974 7728
170 4346 5974 7728
180 4346 6046 7728
190 4396 6046 7728
200 4396 6046 7728
300 4414 6464 10549

Table 70 Showing Scveral Optimum Threshold Vilues

91

Cirurge Mak

THRESHOLE TOTAL COST TOTAL COST TOTAL COST
VALUE for Query 2 at for Query 8 at for Query 20 at
Hop Table 5 Hop Table 7 Hop Tabie 10
0 4084 7079 7336
5 4084 7079 7336
10 4084 7079 7336
20 4084 7079 7336
30 4084 7079 7336
40 4084 7079 7336
50 4084 7079 7336
60 4084 7079 7336
70 4084 7079 7336
80 4084 7079 7336
100 4084 7079 7336
110 4084 7079 7336
120 4084 7079 7336
130 4084 7079 7336
140 4084 7079 7336
150 4084 7079 7336 .
160 4084 - 7079 7336
170 4084 7079 o 73360
180 4084 “7079- 0 o) 7336
190 4084 7079 73360 ¢
200 4084 7079 7336

Table 71 Showing Many Optimum Threshold Value

Heuristics for Query Oprimizaion in DDN

THRESHOLE TOTAL COST TOTAL COST TOTAL COST
VALUE tor Query 11 at for Query 10 at for Query 19 at
Hop Tuable 4 Hop Table 7 Hop Table 3

0 4404 7380 12600

5 5344 8630 16420
10 6284 9880 20240
20 7224 11130 24060
30 8164 12380 27880
40 9104 13630 31700
50 10044 14880 35520

60 10984 16130 39340
70 11924 17380 3160
80 12864 18630 46980
100 13804 19880 50800
110 14744 21130 54620
120 15684 22380 58440
130 16624 23630 62260
140 17564 24880 66080
150 18504 26130 69900
160 19444 27380 73720
170 20384 28630 77540
180 21324 29880 81360
190 22264 31130 85180
200 23204 32380 89120
300 24144 33995 93052

Table 72 Showing Zcro is the ‘Optimum ‘Threshold. Value

93

CGrorge Mak

THRESHOLE TOTAL COST TOTAL COST
VALUE for Query 3 at Hop Table 6 for Query 16 at Hop Table 5

0 2578 6741
5 2578 6741
10 2578 6741
20 2573 6741
30 2528 6670
40 2528 6670
50 2532 6670
60 2532 6670
70 12573 6655
80 2457 6708
100 2457 17388
110 2457 . 8788
120 2457 8788
130 2457 8948
140 2457 8948
150 2457 8948
160 2457 8948
170 2457 8948
180 2457 9264
190 2457 6605
200 2457 6762

Table 73 Showing the Special Case on Threshold Value

94

Heurmnes for Query Opgimizanion in DDS

6.1.3 FINDINGS IN LOW LOAD SITUATION

Table 74 shows some statistics for the Total Cost Heuristic in a low load situation,
The first row shows that the total number of querics where the performance is between
0 and 5 percent worse than AHY. A negative percentage indicates that the heuristic

performed better than AHY.

73.33% of queries have some improvement. About 46.67% queries have more than
10% improvement and about 16.67% querics have more than 20% improvement. There

is only one query where the performance is very poor. The heuristic performs well

low load.

" | TOTAL NUMBER OF QUERY

0% < % DIFFERENT < +5%

+ 5% < % DIFFERENT < +10%
+10% < % DIFFERENT < +20%
+20% < % DIFFERENT

0% < % DIFFERENT < -5%
-5% < % DIFFERENT < -10%
-10% < % DIFFERENT < -20%
-20% < % DIFFERENT

i 1

It

——
—

Table 74 Some Statistics for Total Cost Heuristic in Low Load Situation

6.1.4 FINDINGS IN MEDIUM LOAD SITUATION

Table 75 shows some statistics for the Total Cost Heuristic in a medijum load situation.

70% of queries have some improvement. About 46.67% of queries have more than
10% improvement and about 20% of querics have more than 20% improvement. The
result is even better than in the low load situation. There is only one query which does

not perform well. The heuristic performs well at a medium load.

95

~ TOTAL NUMBER OF QUERY
0% < % DIFFERENT < +5% 2
+ 5% < % DIFFERENT < +10% 4
+10% < % DIFFERENT < +20% 2
+20% < % DIFFERENT 1
0% < % DIFFERENT < 5% 4
-5% < % DIFFERENT < -10% 3
-10% < % DIFFERENT < -20% 8
-20% < % DIFFERENT 6

Table 75 Some Statistics for Total Cost Heuristic in Medium Load Situation

6.1.5 FINDINGS IN HIGH LOAD SITUATION

Table 76 shows some statistics for the Total Cost Heuristic in a high load situation.

76.67% of querics have some improvement. The result is even better than at the low

and medium load situation. About 46.67% of queries have more than 10% improvement

and about 13.33% of queries have more than 20% improvement. There is only one query

which performs badly. Therefore, the performance of this heuristic is also quite good

in a high load situation.

| TOTAL NUMBER OF QUERY
0% < % DIFFERENT < +5% 0
+ 5% < % DIFFERENT < +10% 4
+10% < % DIFFERENT < +20% 2
+20% < % DIFFERENT 1
0% < % DIFFERENT < -5% 2
-5% < % DIFFERENT < -10% 7
-10% < % DIFFERENT < -20% 10
-20% < % DIFFERENT 4 _

Table 76 Some Statistics for Total Cost Heuristic in High Load Situation

96

Hewriszes for Quers Opgimizatzeon e DS

6.2 FINDINGS RELATED TO THE RESPONSE TIME HEURISTIC
6.2.1 FINDINGS IN LOW LOAD SITUATION
Table 77 shows some statistics for the Response Time Heuristic in low load situation.
70% of queries have some improvement. About 56.67% of queries have more than
10% improvement. about 40% of querics have more than 20%% improvement and about
26.67% of queries have more than 30% improvement. However. there are five queries
where the response time is higher. Therefore. some of the queries have a significance

improvement in the response time. but a small number of the querics have a higher

response time.

“TOTAL NUMBER OF QUERY
0% < % DIFFERENT < +5% 2

+ 5% < % DIFFERENT < +10% 0
+10% < % DIFFERENT < +20% 1
+20% < % DIFFERENT < +30% 1
+30% < % DIFFERENT 5

0% < % DIFFERENT < -5% 1
-5% < % DIFFERENT < -10% 3
-10% < % DIFFERENT < -20% 5
-20% < % DIFFERENT < -30% 4
-30% < % DIFFERENT g

Table 77 Somc Statistics tor Response Fime Heuristic in Low Load Sitwation
6.2.2 FINDINGS IN MEDIUM LOAD SITUATION

Table 78 shows some statistics for the Response Time Heuristic in medium load

situation.

66.66% of queries have some improvement. About 50% of queries have more than
10% improvement, about 40% of queries have more than 20% improvement and about -

23.33% of queries have more than 30% improvement. However, three queries have

97

Ciearge Mak
increased response time. Therefore. the performance of this heuristic at medium load is

similar to the low load situation.

B TOTAL NUMBER OF QUERY
0% < % DIFFERENT < +5% 3
+ 5% < % DIFFERENT < +10% 0
+10% < % DIFFERENT < +20% 2
+20% < % DIFFERENT < +30% 2
+30% < % DIFFERENT 3 |
0% < % DIFFERENT < -5% 4 |
-5% < % DIFFERENT < -10% 1
-10% < % DIFFERENT < -20% 3
_20% < % DIFFERENT < -30% 5
-30% < % DIFFERENT 7 _

Table 78 Some Statistics for Response Time Heuristic in Medium Load Situation

6.2.3 FINDINGS IN HIGH LOAD SITUATION

Table 79 shows some statistics for the Response Time Heuristic in a high load
situation.

About 95% of the queries have an increased response time, about 80%:of the quertes
have a 20% increase in the response time and about 50% of the queries have a 30%

increase in the response time. Therefore, the performance of this heuristic is much worst

than the AHY Algorithm (Response Time Version).

Heariszios i Quers Opamization in DPS

TOTAL NUMBER OF QUERY
0% < % DIFFERENT < +3% 0

+ 5% < % DIFFERENT < +10%
+10% < % DIFFERENT < +20%
+20% < % DIFFERENT < +30%
+30% < % DIFFERENT 10

(2]

14

()

0% < % DIFFERENT < -5%
-5% < % DIFFERENT < -10%

0

-10% < % DIFFERENT £ -20% I
-20% < % DIFFERENT £ -30% 0
| -30% < % DIFFERENT 0

Table 79 Some Statistics for Response Time Heuristic in High Load Situation

6.2.3.1 PROBLEMS WITH THE RESPONSE TIME HEURISTIC Somctimes the

heuristic generates a sequential schedule. Consider the following diagram s an example :

Qs
R, ‘

Figure 38 SEQUENTIAL SCHEDULE

Sometime ‘the heuristic will use the updated attributes to reduce other relations. In
the above schedule, Ry will not start until R; is finished. Rj will not start until R, is
finished. If this kind of situation is carried on, then the response time of that query will

be very long. That is why the performance is so bad in this heuristic, -

99

Ceorge Muk

Another problem of this heuristic is that the relations are not reduced encugh. When
the heuristic finds that the delay to transmit the packets is very high. then the number of
transmissions is reduced. When the number of transmissions is reduced then the number
of Semi-Joins is also reduced. This results in large relations being sent to the Query Site.
The following table shows the percentage differences on the number of transmissions to |

send the attributes of AHY Algorithm and the Response Time Heuristic :

100

Heuristios for Quers Optingzation i DDS
J N

Query AHY HEURISTIC
Num. RESPONSE # of RESPONSE #of % DIFF,
TIME Transmission TIME Transmission
] 2091.13 15 _——— 8 -46.67%
2 2000.76 15 2592.43 S -36.67%
3 2056.80 18 2416.81 19 +5.56%
4 2338.14 18 2497.72 18 0.00%
5 1501.66 18 _ 5 -72.22%
6 3121.82 38 4016.81 23 -39.47%
7 3263.16 38 —_——— 26 -31.58%
8 2631.98 38 _—— 18 -52.63%
9 2838.19 38 4289.03 13 -65.79%
10 2240.02 11 1877.18 4 -63.64%
11 2094.86 11 2262.39 6 -45.45%
12 2125.86 11 2520.24 6 -45.45%
13 1942.45 18 2109.72 12 -33.33%
14 1743.83 18 2993.52 8 -55.56%
15 2357.73 25 —_——— 19 -24.00%
16 2760.47 25 —_——— 14 -44.00%
17 2341.99 46 _———— 23 -50.00%
18 2389.02 46 —_— 17 -63.04%
19 3290.84 21 —_—— 10 -52.40%
20 2591.63 18 —_——— 10 -44.44%
21 1524.45 18 2154.78 15 -16.67%
22 2488.04 21 —_——— 15 -28.57%
23 1845.15 22 —_—— 10 -54.55%
24 1896.99 22 3284.19 6 -86.36%
25 3282.04 16 —_—— 9 -43.75%
26 3475.90 15 —_——— 16 +6.67%
27 2310.74 39 4384.28 3] -20.51%
28 2370.44 43 4130.72 34 -20.93%
29 5886.06 4] —_——— 28 -31.71%
-30 4305.17 39 —_——— 22 -43.60%

it

Table 80 Percentage Different on The Number of Transmissions

101

6.2 FUTURE WORK
6.3.1 RECOMMENDATIONS ON TOTAL COST HEURISTIC

The Total Cost Heuristic shows some improvement in more than 3/4 of all queries
in all load situations. The results are quite good. However. there are some suggestions

on the Total Cost Heuristic :

. Usc the “Trial and Error™ method to obtain the optimum threshold value.
2. Re-urrange the order of the four phases in order to generate a new sequence of

transmissions. This new schedule may even have a lower total cost.
6.3.2 RECOMMENDATIONS ON RESPONSE TIME HEURISTIC

1. Modify the heuristic to avoid the problem of “sequential schedule™.

2. Reduce the size of the relations by doing more semi-joins.

102

APPENDIX A
THE HYPERCUBE TESTBED

In this thesis. a simulator of a Hypercube network which is written in Simseript 1L
has been developed. In this simulator, it can stmulate a hypercube network with up to
64 nodes. Some packets are generated to form the background tratfic. The total cost and
the response time of the schedules can be measured in this simulator. The description

of this simulator is discussed in this appendix.

A.1 AN OVERVIEW OF THE HYPERCUBE TOPOLOGY

The term topology. in the context of a communications network refers to the way in

which the end points or nodes of the network are interconnected.

The sites in the system can be connected in a number of different ways. such as star,

hypercube, ring. mesh, tree and so on. The main differences between them are as follows:
1. Installation Cost : The cost to install the physical link between the sites.

2. Communication Cost : The Cost in time and monecy to send a message

between two sites.
3. Reliability : The frequency with which a link or a sitc fails.

4. Availability : The portion of the data that can be accessed even when some

links or sites fail.

A.11 NETWORK TOPOLOGY

. It is not feasible to fully connect all sites together in most cases . In order to solve
this problem, some other network topologies are suggested that can share the transmission

links. Therefore, the installation cost can be reduced significantly.

103

One network topology that has been proposed is called the Hypercube Topology. The
advantages of u Hypercube Topology are low communication diameter, high connectivity.
fault tolerance. This architecture is scalable to thousands of nodes. Therefore. it is a good
option for designing a distributed database systems. A disadvantage of this topology is

" the number of computing nodes must be a power of two.

A.1.2 DEFINITION OF A HYPERCUBE TOPOLOGY

An n-dimensional hypercube (n-cube) network consists of N = 2" nodes constructed
as follows : the nodes are addressed distinctly by n-bit binary numbers, by.;by.2...bj...bo,
fron 0 10 2" — | [16]. The Hammipg distance is the number of the corresponding bit
positions in which the two addresses have different bit values. Therefore, a node x is
conncéled to a node y if the hamming distance is equal to 1. For example, the hamming
distance between node [000] and node [111] is three in a 3-dimensional cube. Node
[000] is directly connected to node [001], [010] and [100] since its hamming distance is

onc. A 8 nodes hypercube with its node addresses is shown in Figure 55.

104

100 101

000 001

110 111

010 011

Figure 39 A 8 nodes Hypercube
Each of the query schedule will be executed ten times, and their total cost and
response time will be measured individually. Finally, the average of the towl cost and

the response time will be calculated as the final result.

A.2 AN OVERVIEW OF THE OS| REFERENCE MODEL

The Open System Interconnection (OSI) is a seven-layered 1SO compliant architecture
for network operations that enables two or more OSI devices to communicate with cach
other. The philosophy guiding OSI is that an open system of interconnection is possible
if an encompassing set of standards is created. With the implementation of standardized
protocols, computers and related devices can exchange information dcgpitc a diversity

in makes and models.

105

The seven OSI layers are depicted in Figure 40.

Layer
7 Application Application
A A
\ , \/
6 Ppresentation Presentation
i i
v \
5 Session Session
i A
Y : N 2
4 Transport ~ Transport
‘ i ' A
v Y
3 Network Network
N | R,
v v
2 Dpatalink ~ Datalink
X | o
v v
1 Physical ™ -~ © ™ Physical
HOST A HOST B

Figurc 40 The Seven OS1 Layers Model

Py

The lowest layer is the physical layer. This layer is directly connected to the physical
medium which connected the systems. It sends and receives a stream of bits across the

medium. A common used medium is coaxial cable, but its bandwidth is limited.

~

106

However. optical technology has made it possible to transmit data by pulses of light.
A light pulse can be used to signal a | bit: the absence of a pulse signals a 0 bit. Visible
light has a frequency of about 108 MHZ. so the bandwidth of an optical transmission

system is potentially enormous.

The data link Iayer is the sccond layer in the OSI model. 1t controls the flow of data,
the correction and detection of errors. and sequencing. In other words. it ensures that
the data arrives safely from the sending node to the receiving node. Thercfore, the most
important functions are to provide for the detection of transmission errors and provide

mechanisms to recover from lost, duplicated, or erroncous data.

The network layer is the third layer in the OSI model. It is responsible for the
addressing and routing in the network. If there is no direct connection between the two
nodes which wish to communicate. the network layer finds out what intermediate nodes

can relay the messages to their destination.

The transport layer is the fourth layer in the OSI model. It provides a transparent,
reliable, and end-to-end data transfer mechanism. It ensures that euach MESsage arrives
error free at its destination node. It is the hinge between the upper and lower pitrts of
the model. It can send several messages down the same network connection at the same

time. This is called multiplexing data streams.

The session layer is the fifth layer in the OSI model. It is responsible for establishing,
managing and terminating connections for individual application programs. Therefore, it

sets up a framework for dialogue between systems.

The presentation layer is the sixth layer in the OSI model. It is responsible for
the format and code conversion. This layer concerns with how the data is represented.

Therefore, it is used to code data from an internal format of a sending machine into a

107

common transfer format. and then to decode this format 10 a required representation at

the receiving end.

The application layer is the highest layer in the OSI model. Tt contains all user
or application programs. Therefore, its function is to support the end-user application.
Some services such as job management, file transfers and electronic mail are provided

in this layer.

A.3 THE DESCRIPTION OF THE HYPERCUBE SIMULATION

The hypercube simulation is written in SIMSCRIPT IL5, which is a discrete-event
simulation language. Discrete-event simulation describes a system in terms of logical
relationships that cause changes of state at discrete points in time rather than continuously
over time. For example, objects arrive and change the state of the system instantaneously.
Some of the state variables are the number of objects waiting for service and the number
being served.

Simscript is essentially event-oriented, with event routines containing the instructions
necessary to change the statﬁs of the system. For example, a process is a special kind
of temporary entity, and a resource is a special kind of permanent entity. Processes are
initiated by an ACTIVATE statement, they can WAIT, and they can be interrupted and
resumed. Processes can REQUEST and RELINQUISH resources; they are made to wait

if they request more of a particular resource than is currently available.

A Hypercube network has been simulated in this simulator. Each node in this
simulator represents a site. Each node contains two links to each of its adjacent nodes.
One of the links is used to receive packets and the other link is used to send packets.

In this simulator, the routing of the packets is determined by the adaptive Dijkstra

Algorithm. Some packets are generated exponentially in order to form the background

103

traffic.

The input of this simulator is the schedule from the AHY Algorithm or the heuristics,
The output of this simulator is the average of the total cost and the response time of ten

executions.

In the simulator, "NODE" which represents a node in the hypercube. is a permanent
entity in this program. Each node contains a value of in-degree and a value of counter
to count the -degree. "MESSAGE" and "PACKET" are two important processes in this
program. Once the process "MESSAGE" is activated. it will put a predefined number

of packets to the network. The purpose of the process "PACKET" it to send the packet

until it reaches its destination node.

"LINK" is a resource in the simulator. Each node establishes two links 1o cach of its
adjacent nodes. One link is used to transfer the packets and the other link is to reccive
packets from its adjacent node. If the link is being occupied, then the request will be put

into its corresponding queue to wait until that link is released.

A.3.1 AN OVERVIEW OF THE HYPERCUBE SIMULATOR

The OSI model is the reference model of this simulation model. However, it is not
practical to simulate all seven layers. In order to reduce the complexity of the simulation,

only four layers are modelled. These are the application layer, transport layer, network

layer and physical layer.

A.3.2 SIMULATION OF THE PHYSICAL LAYER

The physical layer is mainly concerned with communication links. When the network
layer of a node wants to send a packet, it ﬁrs’t needs to request the corresponding link. If
the link is occupied, then the packet will be queued until that link is released. In other

words, once a link is used for transmitting a packet, it cannot transmit another packet

109

unti! the current transmission is completed. All links are assumed to be unidirectional.

The speed of all communication links is identical.

Once a packet is transmitted to another node, the physical layer checks whether or
not it arrives at its destination. If the packet does not arrive at its destination, then the

same procedure is repeated until it reaches its destination.

A.3.3 SIMULATION OF THE NETWORK LAYER

There are many algorithms to handle the routing of a packet from one node to another.
In this simulator, the adaptive Dijkstra Algorithm, which can compute the shortest path,
is used to transmit the packets from one node to another. This algorithm combines two
routing techniques. One is adaptive and the other is the shortest path routing. The
term adaptive means that the algorithm attempts to change its routing decisions to reflect
changes in the current traffic. A detailed description on this algorithm can be found

in [25].

In this simulator, the shortest path between two nodes is based on recent changéé in
the network traffic. The program has an array "DELAY_TABLE" which stores the delays
from all source nodes to all destination nodes. This array is updated at regular intervals.
Table 81 is an example of a DELAY_TABLE. The Dijkstra Algorithm uses this array
to determine the routing. The results of these calculations are stored in anotl;er array
called "SHORTEST_PATH". This array allows us to determine the shortest path between
any two nodes is the hypercube. Table 82 is an example of the "SHORTEST_PATH".

If node ! wants to send a packet to node 8, the shortest path is : node 1 -> node 3->

node 7 —> node 8.

110

0.00 1.46 1.43 291 1.51 3.24 2.88 4.40
1.27 0.00 2.71 2.78 2.78 3.16 415 4.26
1.39 2.34 0.00 2.70 4.35 4.63 L4 453
272 272 2.72 0.00 4.23 4.61 4.04 2.81
1.45 2.91 2.76 4.02 0.00 1.45 2.76 4.57
2.64 2.64 4.14 4,14 1.38 0.00 4.14 2.74
4.13 4.15 270 4.01 1.26 4.08 0.00 ENE
395 4.30 3.95 292 4.41 2.96 251 0.00

Table 81 An example of 2 DELAY_TABLE

0 2 3 2 5 2 3 3
1 0] 4 1 6 1 4
1 1 0 4 1 I 7 7
2 2 3 0 2 2 3 3
I 1 7 7 0 6 7 7
2 2 5 2 3 0 5 8
3 3 3 3 3 5 0 8
7 4 7 4 6 6 7 0

Table 82 An example of a SHORTEST_PATH

When the network layer of a particular node receives a packet, the packet’s address

is checked against the current address. If the addresses do not match, the packet has not

-

yet reached its destination. In this case, the packet is retransmitted.
A3.4 SIMULATION OF THE TRANSPORT LAYER

The purpose of the transport layer is to provide a reltable mechanism to transmit the

packets. In other words, it ensures the packets are delivered in sequence, crror-free. To
N

-

simplify the simulation, we assume that packets will always arrive at a destination and
are error free. Therefore, this simulator provides an error free point-to-point connection
to the network. In addition, each node is assumed to have a logical connection to every

other node in the network.

111

A.3.5 SIMULATION OF THE USER/APPLICATION LAYER

This layer is responsible for generating the packets which form the background traf-
fic of the simulator. The packets have an exponentially distributed mean generation
period and are assigned to any node with equal probability. The process "BACK-
GROUND.PROCESS" is responsible for this job. This simulator can also change the

ratc of background traffic to low load, medium load and heavy load.

The schedules produced by Algorithm General and the heuristics are executed in
this layer. The term schedule represents the sequence of the transmission which is
gencrated using the AHY Algorithm or out heuristic. The schedule is formed by a
number of segments. Each segment represents a transmission of 2 number of packets.
The information of the source node, destination node and the total number of packets to

transmit are stored in each segment.

Execution of a s;hedule starts after a warm up period. Each segment with an in-
degree of zero will start to execute. A predefined number of packets are placed in the
sending queue for transmission to the destination node. A counter at the destination node
is used to ensure that all the packets arrive. Once the value of this counter is equal to
the expected number of packets, the in-degree of that particular destination node will be
incremented by one. In other words, the in-degree represents the expected number of
fﬁmsmissions at the destination node. If the counter for a particular node is equal to the

expected number of transmission, then all transmissions have been received.

The transmissions are in the correct sequence and parallel transmissions are possible.
The scheduler continually controls the sequencing of the distribution schedule until all
the packets arrive at the query site. A limitation of this simulator is that it cannot handle

cycles in" a query schedule.

A3.6 INPUT PARAMETERS FOR THE HYPERCUBE SIMULATOR

The hypercube simulator can handle 8. 16. 32 or 64 nodes. The first input parameter
is the total number of relations plus the total number of attributes. The second input
parameter is the total number of relations. The third input parameter is a set of ordered
pairs [X. Y]. The first item X is the physical location of a relation. The second item Y
is the common join attribute of that relation. The fourth input parameter is the physical
location of the query site. The last input parameter contains the information of the
transmission which are produced by the scheduling subsystem. The first element is the
number of in degree. The second element is a sct of triple [X. Y. Z]. The first item X
is the address of the source node. The second item Y is the address of the destination
node. The last item Z is the total number of packets to transmit. Finally. a cnd of line

marker [-1] is put at the end. A sample input file is shown as below :

LINE 1: 9

LINE

b2
W

LINE 3: 12

LINE 4: 72

LINE 5: 42

LINE 6: 8

LINE 7: 21 99 40 -1

LINE 8: 2299 45 -1 -
LINE 9 : 139920 -1

LINE10: 04325 -1

LINE11: 0595 -1

LINE 12: 06 8 10 -1

113

LINE 13: 071 30 -1
LINE 14: 181208220 -1

LINEI5S: 19215 -1

The number 9 in line 1 is the sum of the total number of relations and the total
number of attributes. The number 3 in line 2 is the total number of relations. Line 3 to
line 5 is a sct of ordered pairs. The number 1 in line 3 represents the physical location of
the first relation. The number 2 in line 3 represents the total number of attributes. The
number in line 6 indicates the physical location of the query site. Information about the
number of the packets to transmit is in line 7 to line 15. The number 2 in line 7 is the
in-degree. The following three numbers form a triple [1, 99, 40]. The number | is the
logical address of the source. The number 99 is the logical address of the destination.

The last number 40 represents the total number of packet to send.

A3.7 THE OUTPUT OF THE HYPERCUBE SIMULATOR

The execution time for each segment is stored in the array "TRANSMIT_TABLE".
From this array we can calculate the total cost of any query schedule. The array
"RESPONSE.TIME" stores the response time for each schedule. From this array we

can calculate the response time for a distributed query.

Each of the query schedule will be executed ten times. And their total cost and
response time will be measured individually. Finally, the average of the total cost and

the response time will be calculated as the final result.

114

APPENDIX B

THE DESCRIPTION OF THE ALGORITHM
GENERAL PROGRAMS

Two programs will be discussed in this appendix. The first program uscs the
Algorithm Parallel to generate the transmission segments for the Hypercube simulator
to use. The second program uses the Algorithm Secrial to gencrate the transmission

segments for the Hypercube simulator to use.

The data structure. the input parameters and the output parameters of these programs

will be discussed.

B.1 THE DATA STRUCTURE OF THIS PROGRAM

A pointer array with four elements is used for cach of the schedules. There are four
items in each row of the pointer array. These items are the relation number. attribute

number. response time and a pointer which points to the first segment of that schedule.

Each segment contains eight items. The first item is the logical address of the source
node. The second item is the logical address of the destination node. The third item is
the total number of packets to transmit. The fourth item is the sclectivity factor of that
common join attribute. The fifth jtem is the segment ID which is used to connect the
segment together. The sixth item is a flag which is used to duplicate a same schedule.
The seventh item is a pointer which points to the next level of the segment. The last
itcni is also a pointer which points 1o the next segment. Figure 41 shows the data fields

of each segment and Figure 42 is an example of the structure 1o store the segments.

115

\

'B 2 THE DESCRIPTION OF THE PROGRAM

Logical Address of Total Number of

the Source Site Packet to Transmit Segment 1D
4 s PO
Logical Address of Selectivity Flag Pointer
the Destination Site Factor

Figure 41 The Data Field of the Segment

Relation Number

Attribute Number

Response Time / Total Cost
i

;:W-;,'k Yy v .
171 100 = A ~ B - C
R T
- '
- . G - H

- : Figure 42 The Data Structare to Store the Schedules

The box with the label from A to C indicates the first schedule in this pointer array.

- The i:gox with the label from D to H indicates the second schedule. The relation number,

attribute number and'the response time of that schedule is stored in this pointer array. For

example, the first schedute has relation-number 1. attribute number 1 and the response

~.
—

time is 100. For each schedule. it contains the number of segments.

- IN ALGORITHM PARALLEL .= .

“This program is based on the Algorithm General. The foliowing are the steps of

this program.

116

i

Perform the following on each of the common join auributes in the query in order

to generate the schedule for cach of the auributes.

C.

The first schedule is to send the attribute directly to the query site.
Find the schedule with the smallest response time.

Find the next smallest common join attribute and do the semi-join with the

previous schedule.
Repeat step ic until all of that attributes are considered.

Find the schedule with minimum response time from step I¢ as the result.

Perform the following on each of the relation in order to generate the schedule for

each of the relation.

-

Collect the valid common join attribute schedules from step 1. The term valid

common join attribute means that :

» If relation R; is processed, then all the common join attributes with the

relation number i will not be considered.

Order the schedules which are generated in step 2a in ascending order.

Find the schedule with the smallest response time from step 2b and do the semi-

join with the current relation.

Find the schedule with the next smallest response time_from step 2b and do the

semi-join with the previous schedule.

Repeat step 2d until all the valid attributes of the current relation are considered.

i

-

Find the schedule with the minimum respond time from step 2d as the result for

the current relation.

-

The folloufing relation table is the example for the illustration of Algorithm Parallel.

117

!

RELATION SIZE d dix
R; S; b;) Pil) P2
R1 1000 400 0.4 100 0.2
R2 2000 400 0.4 450 0.9
R3 3000 900 09 —_— —_—

Table 83 The Relation Table

The complete result of the first step can be found in the example of Algorithm

Parallel in section 2.7.

The iteration for common join atribute d3; is shown in Figure 43. In order to
simplify the diagram. only three data fields are shown in each of the transmissions. The
first data field is the relation number. The second data field is the attribute number and
the last data field is the total number of packet to transmit. Each common join attribute
is indicated by its logical address. The following table shows the relationship between

the common join attribute and its logical address. It shows that the logical address of R,

is 1, the logical address of d;; is 4, the query site is 99 and so on. =
- EES
- N |
Logical | 11213 4 5 6 7 8 N 9 99
Address
Join IRI|R2[R3| dj dia ds drn dz; dsa Qs
Auribute '

Table 84 The Relationship between Logical Address & Common Join Attribute

The first row is to send d3| to the query site. The second row indicates that d); is
joined to dst. since dy; is selected as minimum in the first iteration. The last row joins
dy; to the previous schedule. since the schedule for d»; is the minimum in the second
itcmtiq_n. Finally. find the schedule with the smallest response time. The minimum
response time for attribute ds; is the last rdw with RT = 584 and this schedule will be

selected. This schedule will be stored in another pointer array for future use.

=
¥

118

Relation

Number _
Attribute

Number
Response

Time
¥ L |

3 1 920 - 8 99 8920

3 1 800 "= 4 8 420 "= 8 99 380

3 1 584 = 4 84200 = 8 99 164
v
6 8 420

Figure 43 The Choice for the Auribute dy

The following table shows all the valid attributes for ecach relation. The valid

attributes for Ry are daz, dp) and dz;. The valid attributes tor Ra are dja. dy; and

d3;. The valid attributes for Rz are d;; and da.

Relation 1 Relation 2 Relation 3
Autribute Response Attribute Response Auribute Response
Time Time Time
das 230 di2 120 dy 420
da; 420 di 420 da 420
ds; 584 d3; 584 —_——— —_——

Table 85 The Valid Attributes for cach of the Relation

Figure 44 illustrates step 2 for Ry. The valid common join attributes for R; will be

ordered in ascending order as shown in the diagram.

The schedule with the minimum response time will be sclected and joined to the

corresponding relation. The result is shown in row 1.

The previous schedule will be duplicated, then the schedule with the next smallest

common join attribute will be selected and joined to it which is shown in row two.

119

Step 2d will continue until all the valid common join attributes have been considered.
The schedule with the minimum response time will be chosen. The second schedule with
the response time equal to 800 will be selected. Once all the relations have gone through

all the above steps, the program is finished.

Relation Atribute Response
Number Number Time

LA § »

. 2 2 1150 .. 5 7 120 ..7?1 110 = 199 820

=5 7120 =7 1 10 = 199380

2 1 800 v s L aw e w— (Selected)
6 1 420. -
57120 =7 1 110 = 19933

.3 1 928
, v e :
6 1420 /
8]) ,,-"
48 420 w81 164

. ' . - -
68 =4201-/

Figure 44 The options for R;

B.3 THE DESCRIPTION OF THE PROGRAM
IN ALGORITHM SERIAL

This program is based on Algorithm General for the Total Time Version. This
algorithm has the following steps :
1. Create the schedules which transmit the relations from their own sites to the users
site in ascending order.

2. Perform the following steps on each of the common join attributes in the query.

a. The common join attribute with the smallest total time will be selected.

b. Join to the next smallest common join attribute which is in the other relation.
3. Perform the following steps on each of the relations with the schedules from step 2.

a. Use the schedules from step 2 to do the semi-join with a relation. For example,
Ri.

120

b. Two considerations on doing the semi-join :

« If the schedule contains a transmission of d;j at the beginning of the schedule.
then add another candidate schedule which is the same as that schedule except
that the transmission d;j 1s deleted and called this schedule di;".

= If the schedule contains only one transmission of djj. then this schedule will

not be considered.

4. Find the schedule with the smallest total cost from step 3 on cach of the common
join attribute.

5. Create the integrated schedules' from the schedules which are generated from step 4.

6. Find the schedule with the smallest total cost from step 5 as the result for that relation.

7. Repeat step 3, 4, 5 and 6 until we have schedules for all relations.

The same example will be used here for illustration. Since the first two steps are

very straight forward, it will not be discussed here. Figure 45 shows the schedules for

relation 1.

A

B Lat BEST;; be the schedules which are generated from step 3. For cach BEST,; in ascending on of j, construet an integrated

schedule to R; that consists the paralle] transmission of candidate schedule BEST,; and schedules BEST; where k<.

121

The options for attribute one

Relation

Number
Attribute Total
Number Cost

Pointer
¥ T) 4 ¥
2 1 1020 -4 6420 -6 1180 =~ 1 99420
2 1 840 = 6B 1 420 = 1 99420 -+—— {Selected)
3 1 1144 -4 6420 -6 8180 =g 1 164 >~ 1 99380
3 11 1180 =6 8420 ~8 1380 ~1 99380

The options for attribute two

2 2 . 1150 -5 7120 - 77 1:110' ,_f1 99 920~+—— (Selected)
L2 T 1390 = 71470 =1 99920

Figure 45 The Options for Relation 1

The attributes dp; " and d3;" are generated from da; and d3 respectively. Since the
first segment in the first row has a logical address 4 (ie. d;;) as the source site and a
logical address 6 (ie. da;) as the destination site, this segment can be deleted to produce

the dz;”. The common join attributes d3;” and da»" are generated in the same way.

The schedules with the smallest total cost on each common join attributes will be
selected as discussed in step 4. Therefore, da;” with the total cost of 840 and dy» with

the total cost 1150 will be selected in this example.

Finally. those selected schedules will be sorted in ascending order and then integrated.
The integrated schedule to R; constitutes the parallel transmission. The integrated

schedules for R; are shown in Figure 46. The second row is the integrated schedule.

Total Cost

840 > 6 1420 = 1 99420 «— (Selected)
1030 » 6 1 420 = 1 99380
Y \

5 7 1200 » 7 1 110

Figure 46 The integrated schedules for R,

In step 6, the schedule with the minimum total time will be the final schedule for
that relation. That is, the first option with the total cost 840. The same procedure is

repeated for the rest of relations.

B.4 THE INPUT PARAMETERS OF THE PROGRAM

When the program is executed, the user has to provide the names of the input {ile and
the output file. Once these two file names are entered, the program will start to exccute.

The first two input parameters are the total number of relations and the total number
of attributes. The second input parameter is the physical location of the query site. The
last input parameter contains the details information of the relations. The first clement is
the physical location of the relation. The second clement is the total number of packets
of that relation. The third element is an ordered pair [X, Y]. X is the sizc of the common
Join atribute. Y is the selectivity factor of that common join attribute. If a common Jjoin
attribute does not exist in a relation, then the value of X and Y will be zero. A sample

input file is shown as below :

LINE1: 32
LINE 2 : 30

LINE 3 : 20 1000 400 0.4 100 0.2

123

LINE 4 : 25 2000 400 0.4 450 0.9

LINE S : 17300090009 0 O

The first number 3 in line 1 represents the total number of relations in this query.
The second number 2 in line 1 represents the total number of attributes. The number 30
in line 2 represents the physical location of the query site. The information from line 3
to line 6 represcnts the details of each relation. The number 20 in line 3 represents the
physical location of that relation. The number 1000 in the same line represents the total
number of packets in that relation. The following two ordered pairs [400, 0.4] and [100,
0.2] represents the details of two common join attributes. The numbers 400 and 100 are
the size of the first and the second common join attribute. The numbers 0.4 and 0.2 are

their corresponding selectivity factors.

B.5 THE OUTPUT OF THE PROGRAM

The output file will be the input file produced of the Hypercube simulator program

which is written in Simscript ILS.

The first output parameter is the total number of relations plus the total number of
attributes. The second output parameter is the total number of relations. The third output
parameter is a set of ordered pairs [X, Y]. X is the physical location of a relation. Y is
the common join attribute of that relation. The fourth output parameter is the physicgﬂ;—
‘location of the query site. The last output parameter contains details of the transmissic;ns
produced by the scheduling subsystem. The first element is in-degree. The second
' clement is a triple [X, Y. Z]. X is the address of the source node. Y is the address of
the destination node. Z is the total number of packets to transmit. Finally, a end of line

marker [-1] is placed at the end. An example output is shown below :
LINE 1: 9

124

LINE 2: 3

LINE 3: 12

LINE 4: 72

LINE 5: 42

LINE 6: 2

LINE 7: 219940 -1
LINE 8: 2209945 -]

LINE 9: 139920 -1
LINE 10: 04 3 25 -1
LINEII: 0595 -1
LINE12: 06 8 10 -1
LINE 13: 071 30 -1
LINEI14: 181208220-1

LINEIS: 192151

The number 9 in line 1 represents the total number of relations plus the total number
of attributes. The number 3 in line 2 represents the total number of relations. From line
3 1o line 5 represents three sets of ordered pairs. The first number 1 on line 3 represents
the physical location of relation one. The second number 2 on line 3 represents the
total number of attributes. The number 2 on line 6 represents the physicul location of
the query site. Details of the transmission are shown from line 7 to line 15. The first
number 2 in line 7 represents the in-degree. The following numbers [1, 99, 40] represents
a triple. 1 represents the logical address of the source node. 99 represents the logical
address of the destination node. 40 represents the destination node. The —1 is the end

of line indicator in each case.

125

APPENDIX C
THE DESCRIPTION OF THE PROGRAM
TO COMPUTE THE TOTAL COST

This program computes the total cost of the schedules generated by Algorithm Serial

or the heuristic for the response time.

The total cost is the sum of each segment’s size multiplied by the total number of
hops that the packets travel from the source node to the destination node. The following
is an cxample to compute the total cost from a hop table and a given schedule. The

{ollowing table is an 8 x 8 hop table which is supplied by the simulator.

TO 1 To 2 To3 To 4 To 5 To 6 To7 | To8
From | 0 1 3 2 3 1 2 3
From 2 2 0 3 2 1 2 3 2
From 3 | 2 0 3 3 1 -2 3
From 4 2 2 1 0 1 2 3 1
From 5 1 2 2 3 0 2 1 1
From 6 2 1 1 2 3 0 3 1
From 7 3] 1 2 2 2 0 1
From 8 2 2 3 3 1 3 2 0

Table 86 Example of Hop Table

The following table is a schedule which contains 5 segmths.ﬁEach segment contains
e
a logical address of its source site, the destination site and<the number of packets to

=

transmit.

SEGMENT # SOURCE DESTINATION SIZE
ADDRESS ADDRESS
1 1 99 200
2 2 99 {00
3 7 3 50
4 8 3 30
5 5 9 30

Table 87 Example ol a Schedule .

For exarnple, for the first segment the logical address of the source site is 1. the
logical address of the destination site is 99 (ie. Query site) and the size of that segment
is 200. The program will find out the physical address from its logical address. Let the
physical address of the logical address 1. 3. 4, 5 and 6 be one. Let the physical address
of the logical address 2, 7, 8, 9, 10 be two. Let the physical address of the logical address
99 be eight. The number of hops from | to 8 from the Hops Tuable is 3. The number of

hops from 2 to 8 is 2 and the number of hops from 2 to 1 is 2.

Therefore, the cost to transmit this 200 packets is 3 multiplied by 200 and the result
is 600. We repeat the above steps on each segment and add them up. The total cost of

the schedule can be found. It is (3*200) + (2*100) + (2*50) + (2*30) + (1*80) = 1040,

C.1 THE INPUT/OUTPUT OF THE PROGRAM

20

This program can handle 8, 16, 32 or 64 nodes in the nctwork. The program will
ask the user to enter two input file names. The first input file name is for the network

load (ie. Hop Table). The second input file name is for the schedule.

~ The input format for the second input file is the same as the output file which is

produced by the Algorithm Serial or the heuristic for the response time versior. There

is an example in Appendix B.S.

127

e

The output of this program is simply the total cost of the given schedule with the

corresponding hop table.

128

APPENDIX D
THE ALGORITHM OF TOTAL COST HEURISTIC

NUM_REL : Total Number of Relations

NUM_ATT : Total Number of Attributes

NUM_NODE : Total Number of Nodes on the Network

R: : Relation t

Site; : Physical Address of R;

si : Size of R;

by : Size of Attribute j at R;

pij : Selectivity Factor of Auttribute j at R;

di; : Atribute with by and pjj

Hop_Table[i. j] : Stores the number of Hops travels from site i to site j

Cost/Benefit Table : Stores the value of C[bj; —> byy] and Blbjj —> byy]

B[bj; —=> bxy] : The Benefit to send by from the sitc of R; to the site ol R,
(ie. B[bjj —> byy] = Hop_Table{x,QS] * ((1-pi;) * Rx + Overhecad Cost))

C[by; —> bxy] : Hop_Table[i, x] * (bj; + Overhead Cost)

OUTPUT LIST : The storage to store the sclected schedules

OPTION LIST : The storage to store the intermediate schedules

EMP’I‘Y_;OPTION_LIST : Boolean [True/False]

DONE : Boolean [True/False]

Figure 47 The Definition of the Symbols

129

i

I

Given a Relation Table contains [[[Site;]. [S;] and [bj; and p;; where j= 1.

to NUM_ATT)}] where 1 = 1 1o NUM_REL]
Given a Hop_Table! i .NUM_NODE. |.NUM_NODE]

DONE = Fulse
<< Create a Cost/Benefit Table >>>
For j= 1 to NUM_ATT do
Fori= 1 to NUM_REL do
{Compute the Cost & Benefit 1o send a attribute from its
own site to every other site which contains a relation. }
If dj; <> 0 then {Artribute Exist '
Fory =1 to NUM_ATT do
For x = 1 to NUM_REL do
If (i < x)and (j = y) then =>{Not the same
relation & Same attribute }
<<< Comipute the Cost >>>
C[b;j —> bxy] = Hop_Table[i.x]
- * (by; + Overhead Cost)
<<< Compute the Benefit >>>
Bibj; —> byy] = Hop_Table[1.x]
* ((1-p3) * Ry + Overhead Cost)
"End if
End for
- End for
End if
End for

_ End for

<< Find the Transmission from the CostBerefit Table >>>
Loop -
EMPTY_CPTION_LIST = True -

Figire 48 The Algorithm of the Total Cost Heuristic

7

A\

<<<FIRST PHASE>>>
{The First Priority is to find the schedule with the smallest

cost under the condition [Cost < Benefit + Threshold

Value] . If only one schedule is selected. it will be stored

in the OUTPUT LIST. Otherwise, it will sclect those

schedules and store them in OPTION LIST. }

For j=1to NUM_ATT do
Fori= 1 to NUM_REL do
If dij <> 0 then
For y = { to NUM_ATT do
For x = I to NUM_REL do
If(i<x)and (j=y) and
(CIbjj —> byay] < Blbjj = byl
+ Threshold Value Ythen
If only one smallest Clby; —> byy]
is found then ‘
Schedule djj —> dyy is sclected
and added 1o the OUTPUT LIST
If any free transition is found on
OUTPUT LIST. then remove that
transition from the Cost/Benelit
Table
Else if any schedules with the

same smallest

C[bij —> byyl-
Storing those schedules in the
OPTION LIST
EMPTY_OPTION_LIST = Falsc
Else
DONE = True
End if
End if
End for
End for
End if

“
b

Figurc 49 The Algorithm of the Total Cost Heuristic (Continuous...)

End for
End for

<<<SECOND PHASE>>>

{ The Sccona Priority is to find the schedule with the best
sending attribute djj from the OPTION LIST.
If onily one schedule is available, it will be stored in the
OUTPUT LIST and by pass the following two pass.
Otherwise, It will select those best schedules and store
them in OPTION LIST. }

If EMPTY_OPTION_LIST = False then
If only one smal!gt pij is found in the
OPTION LIST tiien
Schedule di‘jt;? dyy is selected and
added to the QUTPUT LIST
If any free transition is found on
OUTPUT LIST, then remove that
transition from the Cost/Benefit Table
EMPTY_OPTION_LIST = True
Else
Find out all the schedules with the same smallest
pij —> bxy and store them in the OPTION LIST
EMPTY_OPTION_LIST = False
End if
End if

/l
Figure 50 The Algorithm of the Total Cost Heuristic (Contifiuous...)

132

<<<THIRD PHASE>>

{ The Third Priority is to find the schedule with the best
receiving attribute dyy from the OPTION
LIST. If only one schedule is available. it will be stored in
the OUTPUT LIST and by pass the following pass.
Otherwise. It will select those best schedules and store
them in OPTION LIST. }

If EMPTY_OPTION_LIST = Falsc then
If only one smallest pyy is found in the
OPTION LIST then
Schedule dj; ~> dyy is selecied and
added to the QUTPUT LIST
If any free transition is found on
OUTPUT LIST, then remove that
transition from the Cost/Benefit Table
EMPTY_OPTION_LIST = True
Else
Find out all the schedules with the same smallest
pij —> bxy and store them in the OPTION LIST
EMPTY_OPTION_LIST = Falsc
End if
End if

Figurc 51 The Algorithm of the Total Cost Heuristic {Continuous...}

133

‘i

<<<FOURTH PHASE>>

{The Fourth Priority is to find the schedule with maximum
bencfit from the OPTION LIST. If more than one
schedules in the OPTION LIST. then it will select the
first available schedule to the CUTPUT LIST.}

If EMPTY_OPTION_LIST = False then
If only one biggest Bfb;; —> byy] is found
in the OPTION LIST then
Schedule dj; —> dyy is selected and
added to the OUTPUT LIST
[f any free transition is found on
OUTPUT LIST, then remove that
transition from the Cost/Benefit Table
EMPTY _OPTION_LIST = True
Else
Find the first available schedule from the
OPTION LIST and added to the OUTPUT LIST
EMPTY_OPTION_LIST = Fulse
End if
End if

Figure 52 The Algorithm of the Total Cost Heuristic (Continuous...)

LS

\,

134

<<< Modify the Relation Table >>>
Ry = Pij * Ry
by = Pij * by

<<< Modify the Cost/Benetit Table >>>
Update all the cost which contains the sending aitribute djj.
==> (Horizontal of the Cost/Benefit Table)
Update all the benefit which contains the R,.
==> (Vertical of the CostBenefit Table)

Delete the schedule d;; -> dyy in
the Cost/Benefit Table

Empty the OPTION LIST

Do the same modification as shown on above for those
free transition(s).

Exit When (DONE = True)
End Loup

Add all schedules which send all Relations from its own site
to the Query Site to the CUTPUT LIST

z<<<<< THE E N D >>oos>

Figure 53 The Algorithm of the Total Cost Heuristic (Continuous...)

135

APPENDIX E
THE ALGORITHM OF RESPONSE TIME
HEURISTIC

NUM_REL : Total Number of Relations

NUM_ATT : Total Number of Attributes

NUM_NODE : Total Number of Nodes on the Network

NUM_SELECTION : Total Number of Relations don’t have a schedule yet.

R; : Relation i

5i ¢ Size of R

bi; : Size of Attribute j at R;

pij - Selectivity Factor of Attribute j at R;

i)clay_TabIc[i.j] : Stores the value of Dy

Djj : The delay from the site of R; to the site of R;.

Clbj = k] : The Cost to send by from the site of R; to the site of Ry.
(ie. Clby; —> k] = (by; + Overhead Cost) * Dy where i < k)

COUNT : Total Number of Cost in SELECT ION_LI-ST for a relation

IFS : [Initial Feasible Schedule] The Schedule sends the whole relation

from its own site to the Query Site

136

INDEX : The index for Schedule R,

Schedule_R; : Storage of the schedules for R;

MIN_Schedule_R; : Storage the schedules of R; with Minimum Response
Time in a iteration

SELECTION_LIST : Temporary Storage

Figure 54 The Definition of the Symbols

Given a Relation Table contains [[[S;] and [b;; and pj; where j= 1 to
NUM_ATT]] where i = 1 to NUM_REL]

Given a Delay_Table[1.NUM_NODE. {.NUM_NODE]

<<<Compute the Cost >>>
For j =1 to NUM_ATT do
Fori=1 to NUM_REL do
For k = 1 to NUM_REL do
If (i < K) or (by; <> 0) or (bj;; < 0) then
C[bi; = k] = (b + Overhcad Cost) * Dy
Else
C[b;; —> kj = "UNDEFINED"
End if
End for
End for
End for

Figurc 55 The Algorithm ol the Response Time Heuristic

137

Fori= 110 NUM_REL do
NUM_SELECTION = (NUM_REL + 1) -
For h = 1 to NUM_SELECTION do

Find a R, that docs not
generate 4 schedule yet.

{<<< Creatc the Selection List >>>}

Fori= 110 NUM_REL do
For j =1 to NUM_ATT do
If bj; <> "UNDEFINED™ then
Sorting the C[bj; —> x] in
ascending order
£nd if
End for
End for
Storing the sorted C[b;; —> x] in
the storage SELECTION_LIST
Let COUNT = Total Number of cost in the
SELECTION_LIST for Ry

Figure 56 The Algorithm of the Response Time Heuristic (Continuous...)

Compute the Cost of IFS and stores in Schedule_Ry[1]
Let INDEX = 1
For k = 1 to COUNT do
INDEX = INDEX + |
Find the Minimum cost from SELECTION_LIST
Let the Minimum cost be C[by, —> ¢
If k =1 then
Use the pyy to do the Semi-Join
with Ry and store the result in
Schedule_R,[INDEX)]
Else
Use the pyy, to do the Semi-Join
with Schedule_R[INDEX-1] and
store the result in Schedule_R({INDEX]
End if

This minimum cost C[by, —> ¢] will
be deleted from the SELECTION_LIST
End for {k = | to COUNT}

Find the schedule with the Minimum Cost in the
storage of Schedule_R, and store
it to MIN_Schedule_R,
End for {h = 1 to NUM_SELECTION}

Figure 57 The Algorithm ol the Response Time Heuristic (Continuous...

VN

139

For i =1 to NUM_SELECTION do
Find the Schedule with the Minimum Response time in
the storage of MIN_Schedule_R;
(Let this schedule optimizes Ry)
End for

Consider the above Schedule be the Optimum Schedule
for R
Y

Do the Semi-Join for attributes (by; where j =1 to
NUM_ATT) on the Relation Table

Do the Semi-Join on the size of Ry on the Relation Table

Modify the cost on the Cost Table which has the sending
attribute (dyj) is stored in Ry and is
modified by the Optimum Schedule as follow :
Cost to modify Ry + Cost of sending dy;

C[b;; => y] where (i = 1 to NUM_REL) and (j = |
to NUM_ATT) will NOT be considered again

End for {i = | to NUM_REL}

<«<<THE E N D >>>

Fignre 58 The Algorithm of the Response Time Heuristic (Continuous...

bR

140

APPENDIX F
DEFINITION OF SEMIJOIN

Definition :

The semijoin of relation R, defined over the set of attributes A. by relation S, defines
over the set of attributes B. is the subset of the tuples of R that participate in the join of
R with S. It is denoted as R x r S (where F is a formula specitying the join predicare)

and can be obtained as follows [21] :
R saptlanp(S)

Readers should note that R X S is Not equal to 5 x - .

Example :
Table 88 Relation C
ID# Name Test_Mark Assignment
92-100 J. Lee 89 82
92-123 M. Chu 33 . 76
90-782 K. Miller 64 87
92-683 I. Chan 78 65
91-343 Y. Smith 55 65
92-334 H. Wong 90 87
91-454 = T, Casey 78 78
Table 89 Relation ER
ID# Name Telephone Address
92-123 M. Chu 256-9833 ER 788
92-765 K. Ho 266-8755 ER 654
92-834 H. Wong 277-7878 ER 321
91-454 T. Casey 233-7877 ER 221
92-142 G. Miller 234-6727 ER 253

T

141

Tuble 90 Relation € X gpg=purng FR

1D# Nume Test_Mark Assignment
92-123 M. Chu 33 76
92-834 H. Wong 90 87
91-454 T. Cascy 78 78

142

AFPENDIX G
BIBLIOGRAPHY

(1] Ahn. J. K., and Moon. S. C. Optimizing joins between two fragmented relations on
a broadcast local network. Informarion Svstems 16 (1991). 185-198,

[2] Apers. P. M.. Hevner. A. R.. and Yao. S. Optimization algorithms for distributed
queries. IEEE Transactions on Software Engineering 9 (1983). 5768,

[3] Bernstein. P. A.. and Chiu, D.-M. W. Using semi-joins to solve relational queries,
Journal of the Association for Compuiing Machinery 28 (1981), 25-40.

(4] Bhuyan. L. N.. and Agrawal. D. P. Generalized hypercube and hyperbus structures
for a computer network. IEEE Transactions on Compuiers 33 (1984), 323-333.

[5] Cert, S.. and Pelagatti. G. Distributed Databases Principles and Svstems. McGraw-
Hill. 1984.

[6] Chen, A. L. A localized approach to distributed query processing. In International
Conference on Extending Database Technology (1990). pp. 188-202.

{7] Chen, A. L., and Li. V. O. An optimal algorithm for processing distributed star
queries. JEEE Transactions on Software Engineering 11 (1985). 1097-1107.

[8] Chen, J. 8.J, and Li. V. O. K. Optimizing joins in Iragmented database systems on
a broadcast local network. IEEE Transactions on Software Engineering 15 (198Y),
26-38.

[9] Chen, M.-S., and Yu, P. S. Using join operations as reducers in distributed query
processing. In 2nd International Symposium on Database in Parallel and distributed
systems (1990), pp. 116-123,

[10]Date, C. An Introduction 1o Database Systems (Volume 1). Addison Wesley, 1990,

[11]Frank, Ariel J., W. L. D., and Bernstein, A. J. Multicast communication on nciwork
computers. [EEE Transactions on Software Engineering 2 (1985), 49-61.

[12]Hevner, A. R., and Yao, S. B. Query processing in distributed database systems.
IEEE Transactions on Software Engineering 5 (1979), 177-187.

[13]Kambayashi, Y., Yoshikawa, M., and- Yajima, S.. Query processing for distributed
databases using generaiized scmugns In Proceeding of ACM Siemeod International
COnference on Management of Data (1982), pp. 151-160.

[14]Kerschberg, L., and Ting, P. D. Query optimization in star computer networks. ACM
Transactions on database Systems 7 (1982), 678-711.

[15]Korth, H. F., and Silberschatz, A. Database S‘ysrcm Concepts. McGraw Hill, 1991,

[16]Lan, Y. Multicast in hypercube multlprocessors Journal of Para!ld and D:.smbmcd
Computing 8 (1990), 30-41.

143

[17]Lee. J. M., Park. J. S.. and Kim. M. A distributed join algorithm between two
fregmented relations in distributed database systems. INFOR 73 (1990). 1225-1232.

[18]McKinley. P. Multicast routing in spanning bus hypercubes.

[19]Navathe, S.. Ceri. S.. Wiederhold. G.. and Dou. J. Vertical partitioning algorithms
for database design. ACM Transactions on Database Systems 9 (1984). 680-710.
[20]Ozsu. M. T.. and Valduriez. P. Distrubuted data management: Unsolved problems

and new issues. Tech. rep.. University of Alberta. 1991.

{21]0zsu, M. T.. and Valduricz. P. Principles of Distributed Daiabase Systems. Prentice
Hall International. 1991.

[22]Pramanik. S.. and Vineyard. D. Optimizing join queries in distributed databases.
IEEE Transactions on Software Engincering 14 (1988). 1319-7326.

[23]Sacco. G. M.. and Yao. S. B. Query optimization in distributed database systems.
Advances in Compurers 21 (1982), 225-273.

[24]Segev. A. Optimization of join operations in horizontally partitioned database
systems. ACM Transactions on Database Systems 11 (1986). 48-80.

[2:?]T;lncnbuum. A. S. Computer Nerworks. Prentice Hall, 1988.

[26]Valduricz. G.. and Valduriez. P. Relational Databases and Knowledges Bases.
Addison-Wesley. 1989.

- [27]Wang. C.. and Chen. A. L. A parallel execution method for minimizing distributed

© query responsce time. In IN Proc. 7th IEEE Dara Engineering Conf. (1991).
p. Unknown.

[28]Wang. C.. Li. V. O. K.. and Chen. A. L. P. Distributed query optimization by
onc-shot fixed-precision semi-join execution. In Proceeding IEEE Data Engineering
Conference (1991), pp. 1-8.

[29]Yoo. H.. and Lafortune. S. An intelligent search method for query optimization

by semijoins. IEEE Transactions on Knowledge and Data Engineering 1 (1989),
226-237.

APPENDIX H
VITA AUCTORIS

George Mak was born in Hong Kong. He graduated from Columbia Secondary
School of Canada — Hamilten, Ontario in 1985. From there he went on to the
University of Windsor where he obtained a B.A.Sc. in Electrical Engineering in 1990,
He also awarded the Windsor Entry Scholarship during his undergraduate studies, With
his careful planning since his first year as an undergraduate. he was able to complete
significant course work in Computer Science. From this achicvement. he was awarded
a tuition scholarship for his Masters studies in Computer Science. He is currently a
candidate for the Master’s degree in Science at the University of Windsor and hopes

to graduate in the Winter of 1993. George intends to work in the arca ol Computer

Network and Database Systems.

145

	University of Windsor
	Scholarship at UWindsor
	1994

	Heuristics for query optimization in distributed database systems.
	Hung Kai (George). Mak
	Recommended Citation

	tmp.1363872243.pdf.CsETa

