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ABSTRACT
FINITE-DIPFERENCE ALGORITHMS
POR INVISCID, INCOMPRESSIBLE PLOW

OVER AN ARBITRARY SYMMETRIC PROFILE

by

]

George William Grossman

-

This thesis studies steady, two dimensional flow cf an
inviscia, incdﬁpressibleif}qig over an arbitrary symmetric
profile, flows with zeré and. variable vorticity are consi-
dered. In the present work a n;merical algorithm is given
for a class of flows that can alsoc be solved by perturﬁation
techniques. However, reliable solutions by the perturbation
technique, especially in the case of rotaticnal flows.
requgre complicated analytical ﬁ;thods even in the case of
. the circle. Thus, one of the goals of this thesis is to
provide a fast and efficient algorithm from which a solution
to several standard problems can be obtained with less
effaort.

The egquations of motion based on a2 transformation of
coordinate svstems are derived. The approach is new in that
the computational domain consists of the streamlines v(r,Y)
= constant and an arbitrary family of curves &(x,¥y) =
constant such that the (4é,v) coordinate system forms a
curvilinear net. To solve the flow the transformed equations

are simplified based on the flow assumptions. Boundary

conditions of the mnmixed type are then applied to the

iv



—/bomputational domain, Results are presenteé for several
aerodénamic profiles and compared with thqge_ obtained by
othgr methods. The proposed method is found to be fast,
efficient and reliable. Accurate results can be obtained
with a minimum of numerical calculation.

A stability analysis of the ADI (Alternating-Direction-
Implicit) iteration method is carried out, based on a
Fourier series method. A new equation for the error is
obtained. It is found possible to obtain a precise interval
where convergence is optimized for a certain class of

elliptic partial differential equations.
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CHAPTER 1 INTRODUCTION

1.1 SUMMARY OF OTHER APPROACHES

Several numerical and analytic techniéues ére available
to solve the problem.under consideration. Numerical grid
generation (N.G.G.) and conformal mapping involve mapplngs
between coordinate systems. Finite element methods require
the construction of a polygonél mesh and the minimization of
certain integrals. The motivation of these. techniques is the
construction of a grid to remove difficulties involving
derivative boundary coﬁditions and curved boundaries. 1If a
grid can be made orthogonal on the boundary then the incor-
poration of ncrmai conditions is facilitated.

The algorithm of this thesis closely follows some af
the principles of numerical grid generation, i.e., the use
of boundary conforming coofdinates, the solution of elliptic
partial differential eguations. and the generation of a
curvilinear grid system. However, in the present work phys-
ical signifigance has been attached to the coord;nate curves
¢(x,¥) = constant, and ¢(X,¥} = constant as opposed to the
£, n system used in N.G.G., which is usually independent of
any flow considerations. This comprises the main difference
in the two methods.

A comprehensive text by J. ¥. Thompson and others [1]
describes in detail the basic methods of generating an

arbitrary curvilinear grid. The technigques include elliptic,
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hyperbolic, parabolic, algebraic and -adaptive grid genera-
tion. This text also contains.a discussion of conformal
mapping and a means of constructing orthogonal grids.
Through numerical experimentation it can easily be seen that
the physical solution depends with varying degree on qfid
sizes, spacing, and the type of grid coordinate system
chosen to represent the particular problem at hand. Clearly
the first two properties will always cause some degree of
uncertainty in any numerical solutibn of finite difference
equations. The last property may be used to advantage to
eliminate inherent difficulties in choosing a grid if one of
the coordinate curves is a curve with physical signifigance
for the flow under consideration, for example a streamline
or pressure curve. This choice may cause initial difficul-
ties in the sense that certain boundary conditions are
difficult to implement, but the advantages, it is found, far
outweigh the disadvantagés once thg/g;oblem is understood. A
degree of arbitrariness is still left in the choice of the
other coordinate but this can usually bsxff}ermined so as to
be consistent with flow characteristics.

There are many different techniques in N.G.G.. Elliptic
grid generation is one of the more popular ones partially
owlng to its ease and reliability in use [2]. Elliptic grid
generation has been established in order that arbitrary
coordinate systems can be.'transformed in an orderly and

efficient manner. Usually the physical region is described



in cartesian coordinates and the transformed region in an
arbitrary (£.7) coordinate system. A desirable feature of
this approach is that ééch boundary of the physical region
can be made to conform with a coordinate line of the trans-
formed region. Polsson type egquations of the form

Err + eyy = P(E,n) , Ter * Tyy = Q(€,n)

are considered. These equations may be inverted so as to
solve for x.,¥ as functions of €,n; r and VYV satisfy elliptic
P:D.E.'s of the form (1]

G(

H
o

+ PX.) - 2FX. 4+ E(X__ + QX ) (1.1.1a)

Lee €n

G({Y + Pye) - 2F¥% + E(yqﬂ + Qyn) = 0 (lfl.lb)

§€ €n
Equations (1.1.1) can also be written in tensor notation
where the Laplacian represents the divergence of the

gradient of a vector. In {(1.1.1) E, F, G are coefficients of

the first fundamental form, i.e.,

ar? + ay® = Ede? + 2Pd€dn + Gdn?

where
2 2 _
E = re + yf . F = rfrﬂ + yeyn :
L2 T2
G = rﬂ + yn
o

P and Q ar; functions that control the grid spacing in
different regions. A commonly used form is given by [1]
Te Tee

Te|?




r -r
-~ 0%

2
~7

where » = (Ir,V¥). ¥ and ¥ are specified monotonically as

functions of £,n7 on the boundaries of the transformed region
which is a rectangular grid with numbering

EI =1,...,IMAX ;< l,...,JMaX.

P and Q are determined on the boundaries by the wvalues of r
and ¥. They are then linearly interpolated in the n and ¢
directions respectively. Numerical difﬁerencing of (1.1.1)
is facilitated by the fact that one can choose the grid
spgcing DE=pn=1,

. In cartesian foordinates either the grid sizes would
change monotonically in either the r or V¥V direction for Y
and _y to match on the profile or, 1f both r and ¥ were
spggified at infinity arbitrarily they would not necessarily
intersect on the profile and the grid sizes in both direc-
tions would Jump 1immediately adjacent to3 the profile.
Neither of these possibilities is desirable since staggered
grid spacing may result in‘a loess of accuracy and differ-
encing becomes extremely cumberscome. With a staggered grid

the following expression is derived for the second order

derivative wrr [31: at the (I,J) grid point using (I,j)

ordering: -



¢II| = ‘ {1.1.2)
I .

2 [lxy = Xy 0¥py = gy = Xpg)¥p + gy = Ipi¥g ]
x [(II+1 iR SONP SIS SIPDCS Py 11_1}]-4
2 2

I+1 ~ Xgt - Xy - Xpy) )
(x -

3¢III((I
+ Q

i+l I—l)
By observation it can be seen that (1.1.2) involves at least
five multiplications and one division. Hence, solving the

Poisson equation for the streamfunction, i.e., v2w = f{x.¥),

usin§ the\above differencing, involves a dozen such opera-
tions per grid point not counting evaluations in f{(X,¥). It
is also seen that (1.1.1) requires eighteen operations not
counting the evaluation of the control functions. Six multi-
plications are required for the streamfunction ¥({,n) which

in transformed coordinates satisfies

_ 42
G(Wge + PW) = 2R+ E{¥  + Q) = -3 f(X.Y) (1.1.3)

I1f point SOR is applied to (1.1.1), (1.1.2) and (1.1.3)
the number of operations beéomes thirty-six and ten respec-
tively. %The convergence of (1.1.1), (1.1.3) is in general
much faster than using (1.1.2) because of the uniform grid.
"In this case the truncation error is independent of the grid
spacing leading to smooth convergence properties. A stag-
gered grid may have the opposlite effect as the truncation

error depends strongly on the grid spacing. ;
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The speed on the airfoil surface can be determined from

[2]

= [*; EE 1 < I < IMAX J =1 (1.1.4)
9 Twlr 2+ = ’ = e
following the sclution of (1.1.1), (1.1.3). A one sided

second order differencing is  used for v, [11,

[?n:]l = %.

Similar differencing notation is used in the calculation of

(1.1.5)

In and yﬂ in W. Central differencing is used for E. The

velocity can be determined from the solution of (1.1.2) by

the relation [3]

Tre1 ~ %1

and the flow tangency condition v/u=s'{(2X) where ¢ is the
fluid density, u, v, are-the velocity components and Y=f(x)
defines the airfoil surface. The ébeed is given by

2 }x

g = [ wl + v . (1.1.6)

Equétioﬁs {(1.1.1) through (1.1.86) represent two
possible methods for the solution of incompressible,
inviscid flow past a symmetric profile. Although the grid
generation approach has a relatively high operatiocnal count
for such a problem it is clearly preferred to manually
constructing a grid and applving (1.1.2). It is shown in

later sections how the new approach being proposed greatly



-

reduces the number of operations, at least in the irrota-
tional problem.

In conformal mapping‘an arbitrary two dimensional pro-
file is mapped to a near Eifculardshape. The near clircle is
mapped to a true circle by ;omplex, analytic and Fourier
series techniques, Through . these wvariocus transformations
velocity profiles can be determined [4]. Results obtained by
this approcach, referred to as Theodorson's method, are used
for ;{comparison with the new technigque and that of grid
generation.

The source-sink method for irrotaticnal flows can be
applied in terms of perturbation techn}éues (thin airfeil
theory) [5] or matrix egquatlons with known constant coeffi-
cients and unknown doublet densitigi,K(E). This approach
uses the superposition of a uniform flow and a distribution
of sources and sinks having zerc total strength to obtain an

expression for the streamfunction [6],

b

v =u Y - : K{£)Y de . (1.1.7)

(x-6)2 + ¥?
a

The evaluation of K(¢) 1is used to determine the source
densities, This is accomplished by specifying n points on a

prescribed shape and approximating (1.1.7) as

A



. (1.1.8)

=1

The subscript P denotes a point P on the surface, KJ-AS is

the total doublet strength at the Jth segment of the

airfoil, 5] s the distance from the origin (r=0) to the

centre of the doublet and yP is the desired value of ¥. The

doublet strength on the body may be caleculated from the
solution of the matrix equation determined by (1.1.8). The

distribution of the doublet K(EJ) vields wr at every point

Pl .
N——e

£, along the profile surface. The \felocity compconent v can

then be calculated and using the flow tangency condition u

can be found.

1.2 QUTLINE QOF THE PRESENT WORK

In the present thesis several standard numerical tech-
nigques are utllized, such as ADI (Alfernating—nirection—
Implicit) and SLOR (Successive-Line Over Relaxation) to
yield solutions, by new methods, to several £luid dynamic
flows. The results obtained compare favourably with those
obtained by existing methods such as the grid generation
approach. The goal of the present research is to open up the

possibility of solving a series of two dimensional fluid



dynamics problems sucﬁ as transonic flow, circulateory flow
and compressible flow. The partial achievement ?f this geoal
therefore depends on showing that the present method Iis
succ;ssful for several fundamental problems in fluid
dynamics, outlined in the abstract.

The precise formulation of the problem is based on the
equations derived by Martin ([7] in a study of viscous,
incempressible fluids. This study is based on ; transforma-
tion of the governing flow equations such that the physical
variables, i.e., energy, pressure, speed and vorticlty, and
the metrics of a natural coordinate system are dependent
vafiables. In fact, for irrotational flow a single elliptic
partial differential egquation in two metr%c quantities is
obtalned from Gauss' eguation of diffe:eﬁ;ial geometry [8]
for two dimensions based on the orthogonality of the coor-
dinate system. . If the proflle is taken to be symmetric with
respect to the incoming flow then zero circulation vields a
specific ratio between these two metrics. The number of
unknowns 1is subsequently reduced by one. Line SOR can be
used *to solve the resulting partial differential equafions
with central Qgdifferencing applied in the interior of the
computational domailn. Von Neumann boundary conditions are
applied on the vanishing streamline which is colincident with
the profile for such flows, (cf. Figure 1). ©On this coor-

dinate line integrability conditions are incorporated into a

one sided second order differencing [3]. Use of integra-
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bility conditions is found to be essential for stability and,
convergence;

Given an arbitrary symmetric profile it is shown that a
solution can be achieved by solving only two linear elliptic
partial differential equations. The solution is wvalid over
the entire portion of the profile although for certain types
of airfoils a boundary condition correction is required.
This can be obtained in a simplé way. Veloclity profiles are
presented- for several airfeoils and compared wherever
possible with exact analytic solutions, and the grid genera-
tion solution which is described in detail in [1].

In a similar manner flow egquations are derived for the
rotational problem. However, in this case the metrics E and
G, with F zero, are related in a non-linear fashion. Hence
there is an extra unknown. The numerical sclution involves a
seolution of a first order and second order PDE but a similar
algorithm as applied in.the first prbblem can be applied
here. The CPU time is considerably greater. The algorithm
employs non-linear boundary conditions.

The ADI technigque was used to solve the rotattiil
problem but was found to fall shoré of CPU time reguirements
and numerical instabilities occurred. This led to a
stability analysis of this method as mentioned in .the
abstract. Through a rigorous,analysis seyeral interesting
relationships can be established to relate the convergence

properties of a PDE of the form



Xl

i1

AT¢¢ + BT¢¢ - 2CT¢¢ =0

with variable coefficients A, B and C. That is, an interval
I is sought for which the choice of one of A, B or C lying

~»
in this interval will optimize convergence. Thus, it will be

better und;rstood why instabilities occur for values chosen
.outside of this interval.

To conclude the thesis an inverse problem is
considered, i.e., _Suppose the velocity profile on the
airfoil surface is specified. Then the inverse preoblem. is. to

determine the resultant, corresponding airfoil profile. This

problem is only considered for irrotational flows.

P

v
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2 CHAPTER 2 PLOW EQUATIONS AND AN EXACT SOLUTION

2.1 MARTIN'S FLOW EQUATIONS

The system of equations governing the steady two dimen-

sional flow of a viscous, incompressible fluid is given by

v-{pu) =0 " {continuity),

p{u-viu + op = uvzu . (Navier-Stokes) {(2.1.1)

-

In {2.1.1) u.is the velocity vector with compenents u, v in

the r, ¥ directions respectively, p is the pressure func-
tion, » is the constant density and p the constant coeffi-
cient of kinematic viscosity. u, v, and p are functions of

X, ¥. Expanding (2.1.1) by use of the del-operator,

%)
vields
(ﬂu)r + (pu)y.= 0 - (2.1.2a)
‘:(uurl+ Vuy) + pr = p.(urr + uyy) .
(uvrl+ vvy) + py = u(vrr + vyy) (2.1.2b)

where subscripts denote partial derivatives. Equations
(2.1.2) form a system of three equations {2nd order) in
three unknowns u, 6% and p. The order of the sysfem can be

reduced to one by introducing an energy function h, and a

-
[N

12
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vorticity function w, defined by

h 2

%(u + v2) + p “{2.1.3a)

w =V - uy . ' (2.1.3Db)
Taking the derivatives of h with respect to r and ¥, using
the vorticity equation and (2.1.2b) yield a new form for the
Navier-Stokes equations. The resulting new system is given

by, (cf. [71), . -

(Pu)x + (pv)y =0 (continuity) (2.1.4a)

hI"Pwv=-uuy

hy + Pl = Pw (Navier-Stokes) {(2.1.4b)

X

w = vr - uy . . (vorticity) (271.4c)

Equations (2.1.4) represent a system of four eguations (ist
order) in four unknown functions u, v, w, h of x,¥. The
equation of continuity implies the existence of a stream-
function ¢(r,¥) such that

P = ¢y . PV = = . (2.1.5)

-

Thus- the veorticity functicn can be rewrltten as
- Pw = ¢rr + ¢yy . (2.1.86)

Consider a curvilinear coordinate system (¢,¢) such that ¢
and ¢ are functions of ¥ and ¥. To £ind ¥ and ¥ as functions
of ¢ and ¥ one takes the derivatives of ¥ and ¥ to yield the
following relations ‘

1 =10 + X, ¢ . O0=X ¢, +X

¢ °x T Xy ¥y
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1= yé ¢y + y¢ éy , 0= y¢ ¢r + y¢ ¢r . (2.1.7a)

éolving the system of eguations (2.1.7a) for the first

partials of r and ¥ gives

° I=fyﬁ r—_,.é_y
¢ 3 ’ v 5 ’
v é
= X = - X '
y¢ = j ' y¢ P - {2.1.7b)

where ¥ = X(¢é,%¥) , ¥ = Y(é,%¥) and,

—1 a(r.y)

j = J = = r Yy

8(é,9) sl = Ty¥Ys * O . (2.1.8)

Consider a transformation of variables defined by
r = x(é,%) , ¥ = Y(é,%)
such>that (2.1.8) is satisfied. Using the relations

dr = x dé + r d¢ . dy = ¥

é @ dé + y¢ dy

é
we find the first fundamental form of differential gecmetry

is given by
ar”™ + 4dy” = as _ {(2.1.9)

= E(6,¥)d6% + 2P(4,¢)dedy + G(é,v)dp>
in which the three coefficients E, F, G satisfy

2 2 . 2 2

" + y¢ , B = xér¢ + y¢y¢ {2.1.10)

The Jacobian J satisfies

-

X
J =+ [EG - Fz]
and it is coﬁvenient to define

%
W = [EG - Fz] .
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>

Let (r¢,y¢) denote the tangent vectoS to the coordinate

line ¢¥=constant. The magnitude of (r¢.y¢) is

- = g
. therefore, see Figure 2,

r, = Ex COSo ; Y, = E

s R sine (2.1.11a)

where o 1s the angle of inclination of the coordinate curve

Yv=constant to the r axis. Solving for r¢ , y¢ from (2.1.11a)
and (2.1.10) we have, {(cf. [7]).
r¢ = l% cosa - i% singa ,
E B
>
F J
Y = = sina + == cosa . (2.1.11h)
v EX EX

The integrability conditions

Taw T Tes 0 Yy T Yy
vields a pair of equations,
E \V
Y 1
—/= COoSa = ET sina ey
2Ex
F FE
= 2 cCOoSa - COoSa - £ sinae o
Ex ZEEali E’!.s ~®
J JE
——:;Sina-i- d’x sina—-'%cos‘: oy
E 2EE E
g 3

——; sina + E” cose o
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F FE -

= —% sina - ——J% sina + l%
E 2EE E
J JE

+ —ﬁ cosa - ——J§ cosa - i%
E 2EE E

COSo O’é

sina oy

Ly}

\\\Eultiplying the first equation by cosa and the second equa-

tion by sina and adding, then respectively by sina and -cos«

and adding, Martin [7] cobtained

SRS S _J 2
oy g T1y 2y TETy2
where

2 -FE, + 2EF, - EE_

2=

3 ow2
e EG, - FE,

12

oW

2 EG, -2FF, + FG,

22 .

- oW?

X

W= [EG - Fz]

The Gaussian curvature ¥ is cbtalned

coendition for a.

K =

%[[g SARL rf2]¢:|

=0

(2.1.12a)

(2.1.

(2.1.12¢c)

(2.1.

12d)

(2.1.12e)

from the integrability

{(2.1.13a)

Equation (2.1.13a) therefore represents a necessary and

sufficient condition that E, F and G are coefficients of the

12b)

Lt
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first fundamental form since if B, F and G satisfy (2.1.13a)

then the following relations,

N L]
f

&

]

“s

|
ey

Y + .Yy =

e o

dé +

r2. das'+ r2

11

(cf.

.Ié dé + Xy av

N dy

2 & |

[7])

[ Edé + (FﬁJ)d% ] , J =

*

W

»

.

(2.1.13b).

{2.1.13c)

determine X(é,¥), ¥Y(é,¢) and o(é,¥). The geometrical results

i

Just formulated will be used to transform the governing flow .

equations (2.1.2). For that purpose several more resa};s are

quoted [7],
_E ! _ E 2 _E
-2 T2 2
l2w?ly W W
[ E F 2 E
I P I S )
L2W<) ¢ W- W
(] _[E] _¢& 2
| W ]e wile W' 1
E 2
t*wTan

2
Py
2
Tya

2F 2

1~ w Ti2

(2.1.134d)

(2.1.13e)

N2.1:13f)

The follbwing equations (2.1.14)-(2.1.17) are derived

in [7].

Their derivations as given in [7] are sumnarized to-

suit our purposes. Equations (2.1.5), {2.1.7b) and the equa-

L 3
©
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tion of continuity imply the following two equations

Xy = pJu y¢ = pJv - ) (2.1.14)
for the functions x, ¥, u and v. Conversely if the four
functions satisfy (2.1.14) then u(é,%), v(é,¥) satisfy the
‘equation of continuity (2.1.2a) by (2.1.7b) so that (B.1.14)
is egquivalent to (2.1.2a). From (2.1.14) it can be seen that
if J is pos%tivé then the fluid flows towards higﬁéf values
of ¢, taking u to be always positive. Similarly if J is
negative the oppPSIt;qz?§éct occurs. By introducing polar
coordinates in the hodograph plane u and v can be written as
[7]
u=gecosd , vw=gsine . ) (2.1.15a}
4 is the direction of flow in the phvysical plane and
$=a,J3J>0 ; 6d=a+x,JTJ <0 |
By definition of ¢ and W, (2;1.14) can be written as
5

6 = PgW cosa |, y¢ = pgW sina (2.1.15b)

X
which is equivélent to the equaticn of continuity such that
the curves +¢=constant of the curvilinear coordinate system
are the streamlines. Upon squaring and adding (2.1.15b) we
get

%
= E_
= (2.1.15¢)
where g is the speed. Let ¢ denote the angle of intersection

of the coordinate curves in the (¢,¢) net. Then

%

F = (EG)¥ cos6 , W= (EG)f sin g , q = 1

pstins

- (2.1.15d)

i
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The last equation in (2.1.15d) is equivalent to (2.1.15c[

which 1is equivélent to the equ;tion‘of continuity. o
The vorticity eguation can also be expressed in the ¢,9¢

system. Expanding (2.1.3b) by the chain rule for derivatives

3
and using (2.1.7b) yields

Juw = r¢ ué - r¢‘9¢ + y¢ v¢ - y¢ v¢ . (2.1.16a)
Equation (2.1.163) can be written as
E¥ Wy = Pq, - Bq, + Jqa, (2.1.16b)
¢ ~ =y ¢
using (2.1.11), ({(2.1.15a). Assuming the result (2.1.15d),

conservation of mass, (2.1.16b) can be written as

2 2F 2 E _2
Ty Lo =
11 w Ti2 *glas

where, by (2.1.13d-e),

2 T2
o . Frll ) Er12
s =
WPEH WDEX
2 2
o« - Fri, Erp, -
v = -
WpEx WpEx

or, by (2.1.13f) and (2.1.8),

2,1 z]_[z] ‘
P Lv Ay, W [W é W ¢] . (2.1.16C)

In a simila; manner the Navlier-Stokes eguations (2.1.4b) can
be transformed sco that ¢,v form tpe independent variables,.
This is accomplished by using the chain rule for deriva-
tives, (2.1.7b), and (2.1.14}.

Using the previous results we have the following theo-
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rem [7]. Let ¢=constant denote the .streamlines of the flow
in question. The flow equations (2.1.4) of a viscous incom-
pressible fluid, with curvilinear coordinates (¢,¥) as iﬁde—
bendent variables and functiong_E, F, G, h, w, p as depen-

—

dent variables, transforms fo the system of equations,

Ghé - F(h¢ + w) = - -'-l']-J-w‘(5 4

- Fh, + E(h, + w) = i, (Navier-Stokes) (2.1.17a)
L iEL B

w = o [w]a [W)¢] {vorticity) (2.1.17b)

E -

h = — > + p ] {(energy) (2.1.17c)

2,W
o i[fw .2 |
K = W[[E r11)¢ (Gauss) (2.1.174)

<>

W 2 -
. [E r12]¢:| =0

with E, F, G satisfying (2.1.10), and where

W

[EG—Fz]",J=¢w,

and é¢=constant are an arbitrary family of curves. The
continuity equation is eqliivalent to
—

X -
q = — . . (2.1.18)

X, ¥ and o can be determined from (2.1.19:1:;) and (2.1.13c)
" given a solution to system (2.1.17). This theorem, stated by
Martin [7], gives the form of the governing flow equétions
and serves as the starting point for the present work.

Equations ({(2.1.17a-¢)} and (2.1.18) can bé written in
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non-dimensional fofm as

-1

Gh, - F(h, + w).= - WRe "w,

-Fh, + E(h, + w) = WRe—lu¢ (Navier-Stokes) (2.1.19a)
1 F] /,_[E]

= = = == 2.1.19b

w 9 [[W é wlv (vorticity) ¢ 19b)
E

h = - 2 + p {energy) (2.1.19c)
2W v
g%

q = ;; - (speed) (2.1.19d)

where the Jacobian is taken to be positive

W = [ EG - F? ]x > 0 o
so that the parameter ¢ increases in the flow direction.
Non-dimensional (unbarred) variables are related to physical

varilables Ey:

U
- 2 - o -
h = p,u" h . w = T W . u =y u ,
- -] L (-~}
v=yuy v , I=Lr , ¥=1LY
oy
u L
o

Re = » is the flow Reynold's number, u is the speed at

infinity and L 1s a characteristic length.

éy inspectio;, (2.1.19a-b) constitutes three equations
in five unknowns E, F, G, h, ». Having determined these
unknowns, pressure p and speed g are found from (2.1.18c,d).

Thus at least one more equation is recquired, and this is the

Gauss' equation. One extra unknown is still left which may

', 8
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-t

be determined by the physical nature of the problem or the
curvilinear coordinates (¢,v) may be chosen to be orthogonal
{F=0). éiven the characteristics of a pérticular flow with
governing equations given by (2.1.19) it is necessary to put
these in a fofm.suitable for numerical computation, as well
as to derive tﬁe essantial Von Neumann or Dirichlet_boundary
éonditions. The approach being considered is such that the
boundary conditions are not everywhere specified at the
outset. .

% '.1‘§ obtain a‘correct solution it is esfsent‘ial to use
Gauss' egquation. Now the integrability conditions fdr X

depend on oy The surface Y=f{r)}) 1s coincident with a

section of the boundary +v=constant (taken to be zero) for
thé flows being consiéered. The integrability condition
therefore depends on the airfoil profile, inhparticular tpe
angle of inclination of the.¢=0 ékreamline at a particuﬂa
peint on the profile. Hence it is required to specify the
values of o here or find them by scme other means. Knowing
X(¢,0) then we can find f(r) and hence tana from Jf'(X):
Gau;s‘ equation can then be solved, using the first eqﬁality
of (2.1.12a) derived from fie integrability condition for I
‘along the portlon of the boundary where the profile is coin-
cident with the streamline ¥=0.

in many cases the profile under consideration can be

considered as a parameterized curve in cartesian coordinates

which coincides with partiéular coordinate curves ¥=constant
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or ¢=constanf in the (é)&) Plane. As an example, consider a
parameterized curve in the notation of [8],
B(t) =T [é(t) , ¢(t)] ’ ’ (2.1.20)

in the r-Y¥ plane. The arc length s(t) satisfies, by (2.1.9),

ds]z [d¢}2 dé de¢ [d¢]2 -

— = B |- + 2P — — + Gi|—= . 2.1.2
[dt dt dt dt dt ( 1a)
Suppose : -

Xxr=%t, ¥ = [x(t)] = £(t) ,

"and {t,f(t)] coincides with a pafticular curve, say,
¢ = constant = 0.

Then,

dv _ gv ar _ 8¥ 4y
at  or dt = 8y dt

8¢ a¢ d¥
= ¥ D 2.1.
8xr - 8Y¥ dr . ( 21b)
av 8¢
=z — 4 = fT
8x Yy (x)
av av .
= ox + 2y tana(x) , S'(r)=tana(X)
= 0

Equation (2.1.21b) corresponds to the flow tangency condi-

-

tion for inviscid flows. Note that the vectors [1,/'(t)}] and

=9

r

ar ay

are orthogonal since v& is orthogonal to the coordinate

curves +#=constant. Therefore,
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2 2i%
N i
dr dr
=[ 1+ £(0)? ]_"
= secalr) . ~Ji2.1.22a)

Using (2.1.22a) in (2.1.21a) yields

dax ExCOSa -

n I

(2.1.22b)

which can be integrated when E and f'(x} are known, to yield

é-as a function eof r, -

& = LYy, = $LXVD)]

or equivalently, ¥ as a function of ¢,

X = x(é.,9), o = X(4,0)

Then, since ¥=f(r), we have ¥ as a function of ¢ also,

¥

il

( £1x(8.9)1) yuo

S{x(¢,0})]

Conversely given f(X), if é{(x) or x(¢é) and hence f[x{¢}] are
known, E can be determined along the coordinate line ¥=0.
Consider the boundary condition (211.21b) in light of
inviscid flow with the flow tangency condition holding.
Using (2.1.7b}) the inverse relations for r, V¥, in (2.1.21b)

we have

Hl*l:‘
° o

= tana . {2.1.23)

Differentiating (2.1.23) with respect to ¢ and ¢ one can

A7
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p——

show the resultant equations are equivalent to (2.1.12a)

such that
Yy
%% = tana = —i . ¥ =0 .
Le

Thus the flow tangency condition is consistent with
(2.1.12a). Now we consider several profiles which will be

used in later sections.

2.2 PROFILES

ponsider the governing eguations (2.1.19) for the flow
of a viscous, incompressible fluid in an’ infinite domain. It
is the purpose of the present work to solve these eguations
in a finite domain in which an arbitiary symmetric profile
has been inserted. &he eritire focus of previous work ﬁsing
Martin's approach has been to find exact or énalytical solu-
tions without applying boundary conditions, see for example:
[2] and [10]. Owing to the non-linearity of the equations,
exact solutions are difficult te find in most cases except
when some simplyfving aséumptions are made, i.e:, fhe.fgrm

-

of the ‘streamfunction is assumed, or the gecmetry is

specified, such as spiral, vortex, or parallel flow. In the
present work no such assumptions are made on the streamlines
e#cept at the regions of the computational domain far from
the profile where the ‘flow is assumed known, taken to

correspond to the flow at infinity in the physical plane.
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‘The problem Shen is to accurately predict the flow in a

neighbourhood of the pr&file under ‘consideration by the

~

numerical solution of the fiﬁite differenced form of the

~
e

governing fluld flow egquations.
For particular flow problems we consider profiles of

the form, ' e

¥y=r(x) = % e[ a? - 1?2 ]b a, b, ¢« € R . . (2.2.1)

The constant ¢ usually represents the thickness parameter in

a singular perturbation problem, a is a positive constant

such that
x3 =12 =a%, . 12.2.2)

b is also a positive constant and can be chosen so that f
ranges from parabolic to circular shapes. Two other forms
that are éoﬁsidered are the second order approximation to a

symmetrical Joukowski airfeil [5],

T Y¥(x) = ic(l-r)[ 1 - x? ]X (2.2.3)

and the NACA 0012-64 symmetrical airfoil gilven by [4],

:yt = 5t(.296913—.1261—.351612+.2843I3—.101514), (212.4)

where t is the maximum thickness expressed as a fraction of
the chord, given by

2
r, = 1.1019¢

where re is the leadling edge radius having wvalue

r, = .01582. o (2.2.5)
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Now (2.1.12a) can be written in terms of the curvature
K(x) of the surface of the airfoil. This can be seen by

expénding ay by the chain rule for partial derivatives to

get
oy = oy Ié + ey y¢ . _ {2.2.6)
The angle o depends on I and Y. On the streamline =0
Y¥=f(r). Therefore,
Ao _ A
ar - °x T oy a

N

J'"(I)
1 + .f'2(r)

Lltan™ sy ] - 12.2.7a)

Using (2.1.1la) and (2.2.72) in (2.2.6) vields

!“(r! _
1412 (x)

ay tana]ExCOSa + oy Exsina

f"(I)ExCOSa
1+ %)

s (x)E®

1+ f'2(r)]

3/2 (2.2.7b)

Appiving the chain rule for partlal derlvatives to oy gives

oy = oy I¢ + ay y¢ . (2.2.?3)

Using (2.2.7a), (2.1.11b) in (2.2.8a) gives

= i Qo _
ay = [dr “ytan°] Ty + ay¥y

¢!
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IHx) I¢
[1 . (r)] y[y - tanaréj

IAN04) [Fc05a _ Jsina] ' "
[1 . f,z(r)]1.5 V?f
+ oy E%?%?.. (2.2.8b)

Let s(Xr}) be a continuously differentiable function in the

neighbourhood of a point x,. By definition the signed curva-

-

ture of f at the point n\\\\\\\\
(rof'r(rc))

is qiven by [8],

)
x .= . (2.2.9)

VIO

From (2.2.1}),

AT sy =% 2¢b[ a? - x* ]b_l x (2.2.10)
dx
2 .

d fgf) = f(x) (2.2.11)
dx '

=¥ 2¢b[ a? - r? ]b'l + 4eb(b - 1)[ ]b— 2

Using (2.2.10}, (2.1.11) in (2.2.9) we obtain
4 = ‘ (2.2.12)

-2cb(a2-rz)b—1(1—2(b*1)(32 x2y~1,2)

(1+(2ebr(a%-x2)b- 1)2)3/2

From (2.2.3}, -

4
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YX(l-xrj
!’(I)=+€[1 I2]x+ 2 x
! [ 1-x ]
- 1l - Iz + X - 12
= 4+ . 2 %
L (1-x7)
(.2
-7 | 2 - 1 (2.2.13)
\ (l_r) -
- 4x-1 1(212-1-1)
JU(r) = + ¢ +
[ 1-r2 ]x _[ 1-r2 ]3/2
after some simplification we get
- (x-1)(1-2r-2r%)
I"(X) = + ¢ . (2.2.14)

[ 1-x2 ]3/2
Using (2.2.13) and (2.2.14) in (2.2.9) we find the curvature

x 1s given by

2
tx = e(2X° + 2x-1)(1 -.x) _ (2.2.15)

[1 -x% 4 52[212—1—1]{]3/2 \

Likewise from (2.2.4),

yt' = St(.14845I-x—.126—.70321+.852912-.406013} (2.2.16)
Y= st(-.074225r /% - _7032 + 1.7058r - 1.2181°% )
L
St[—.074225r_3/2—.?032+1.7058I-1.21812)
x = -
S 3/2
[ l+[ 5t (.14845) x“.126—.70121+.8529r2—.406I3)]2] /
The NACAR-0012 can be translated tc¢ the origin by the
- translatien ¥ - X+.5. O0f the profiles considered the
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NACA-0012 is the most relevant from a research and
experimental standpoint and the class of profileé given by
(2.2.1) 1s studied extensively in [5). The profiles so far

considered are also chosen to be symmetrical with respect to

-the ¥ axis. Moreover, in the problems considered the angle

of attack is taken to zero. Further research problenms
include asymmetric profiles, Qarious angles of attack and
the effects of circulation which are not attempted in the
thesis,

As a start}ng point we consider irrotational, inviscid,
incompressible flow over a circle of unit radius. The exact
solution in polar coordinates r,9 with ¢,¢ as depéndent
variables can be inverteéiso that ¢,¥ serve as the indepen-
dent variables. The coefficilents E, F, G are then determimed
in terms of ¢é and ¢ on the profile surfa?q’(¢=0); sﬁbse—

quently velocity and pressure can be calculated and used as

a check for the accuracy of the numerical solution.

2.3 FLOW OVER A CIRCLE

Consider the inviscid, irrotational, incompressible
flow around a circle of unit radius. The streamfunction,
veloclty potential function and non-dimensional variables

are given by [4],

E ] * 1 | :
¢ = |r - -;}sine o, \\
r - . )
/
]

-
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= ] . 1 E ] :
¢ = ]r + —;|coss (2.3.1)
r
x | x® =
¢ = ’ y Y = A4 , & = § , p = I
PU A PU A a
Q0 L- -]

In (2.3.1) u_ and a are positive constants denoting the

upstream velocity and radius of an arbitrary circle centred
at the crigin. (r,8) denotes ﬁolar coordinates. Deleting *,
the veloclty combonéhts in the r and 9 directicons respec-

tively are given by

- = A
¢r = -v{(r,8) = [1+ 2 sinsg .
r —
® T
_r._s_ = u(r,§) = l:l -1 cosé . (2.3.2)
r —

The velocity gq(r,s) at any point on the surface of the

circle is given by

3

q(r,d) ¢r2 + ;% ¢92 % (2.3.3)
r=1 r ) r=1
= [(1+l)zsin26+[1-;L]zcosze %
r 2
r g |r=1
= 2 sins
alé,¥) by definition satisfies
a(¢r¢) — _ x R
gm0 = ¢ — 5 - (2.3.4a)

Thus, on the airfoil surface, ¥=0, and considering g as a
function of ¢, ¥, we get using (2.3.4a) in (2.3.3)

q({¢.0) = 2cos(a(é,0)) . (2.3.4b)
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Consider r and §# as functions of ¢ and ¢¥. The following

inverse relations pold.

r, = fg 8, = - fz .

é J ' e s
¢ é ’
;) = =L

T, P 3 . (2.3.5a)

where the Jacobian j satisfies
j = ¢r¢o - ¢8¢r #0 . g _ (2.3.5b).
For polar coordinates one has the standard relations
Y =rcossd , ¥ = rsing , r = [ 2 & y? ]X , 8 = tan * % ,
rr = CcOos8 ., yr = ging .
X, =-rcrsing . ¥y, =T coss . \ (2.3.6)

The coefficients E, ¥, G can be determined in terms of

'r,a by considering ¢,v as functions of r,§. One obtains by

use of-the chain rule for derivatives and (2.3.6),

E(é,¥) = ECé,(r.8), ¥(r,a)] = r¢2 + y¢2
= {y_ r, K + X § )2 + (Y.  r, + Y & )2

r ¢ 8 ¢ r "¢ 8 "¢ .

2 2 2 ' 2 2 2
= (rr + yr )r¢ + 2a¢ ré(rr re + yr yg) + (re + ya )8¢

2 2 2 ,
= ré + r 8¢ . . (2.3.7)
Similarly,

2 . 2 2 )
Gl{o,¥) = r¢ + r B¢ . {2.3.8)

By (2.3.1) we also have
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1 - 1
¢r = [1 +- 2]51:1_8 . ‘r = [1 - 2] cosé
r - r
o

. i “‘-‘1 _ l
‘ba [r r:lcoss . ‘s - l:r + r]sine
Thus from (2.3.5b) and (2.3.9),

= r[l —‘—lé-]zcosza + r[l + %]%inza
. r

E(r.,8) J; [}82 + r2¢r2]
h |

- L [r-l}2c0328+r2 1+J= 251n28
j2 b o rz

G(r,s) -!'5 [&82 + rzérz:]
J

1 N2 . 2 . 2{ 1)z _2
2[[r+;].sin afr [1 r2] cos a]

3

It is observed from (2.3.10) that

E(r,8) = G(r,o) Yy r,8 €0

(2.3.9)

(2.3.10a)

(2.3.10b)

where p is the flow region exterior to the circle r=1. For

the metric F, usipg (2.3.6) again
F(é,9) = F(é(r,8), ¥(r,8)]

= r¢r¢ + y¢y¢

\

2 2 : 2 2
= (xS Y Ty ¢yt S (e 0)

+ (xsrr + yeyr)(6¢r¢ + ¢8¢)

r

(xrr¢+ros¢)(rrr¢+raa¢)+(yrr¢+y38¢)(yrr

W

+y89¢)
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1 2
- —-—-j2 [¢a ¢o +r ¢r ¢r] {2.3.11)
= 0

From the equation of continuity (2.1.18), by use of

(2.3.10) and (2.3.11) we £ind

B 1

q = — =

- S (2.3.12)
W pEx E'X

From (2.3.1), {(2.3.4) and (2.3.12) we find
1_ 1

2 /
4cos o 4 [1-sin2a]

- 1 = 2 161 < 2 . : (2.3.13)

2 a-42
” |

Thg'result (2.3.13) gives the coefficlent E(¢,0) of (2.1.10)

E(é,0) =

.¢g£ong the coordinate 1line ¢=0 and coiﬁcident with the
profile under consideration.
The individual_partial derivatives for ¥ and ¥ can be
determined in terms of r, §. Assuming,
r = x(é(r,8),¥(r.0)) ., ¥ = Y(é(r,8),%(r,8))

we have, by use of the chain rule for partial deriﬁétives,

]

yg = y¢¢e + y¢¢9 r .,

r =rxré +x.¥ ==Y

8 ¢ 8 Y8 .
= =E
yr yé ér + y¢ ¢r r
X_=x, é6_+x, v =< (2.3.14)
r ¢ 'r v r r e
Solving for I¢' I¢. yé, y¢ from (2.3.14) (2.3.9) gives

b,
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= [rsina[l + JL]sina + cosa[r - l]cosa] x
r2 r :

1 1 1 1 -1
~ r + Zising|l + —;|sins + |1 -~ —|coss|r - = cosé
~ r 2 2 . r -
\\ r r

-

1

4 2
r - r Ccos2§
= . {(2.3.15)

r‘ + 1 -2r2c0326

¢ as given in (2.3.1) denotes the velocity potential.

-

Inspection of (2.1.7b) and {(2.3.10-11) we find ,.

X, =Y

] ¢
and thus y¢ is given by (2.3.15). This can also be  verified
by a similar procedure as above. Solving (2.3.14) for y¢
$ X - ¢é_r '
I r g
yé = r¢ = éa e — o v ) - (2.3.16)
S r 8
After some simplification we get
rzsinza
y¢ = r¢ = "2 > > - (2.3.17)
r - 2rcos“s + 3
From (2.3.15) and (2.3.17) we find
2 2
E{r.,8) ré + y¢
[r4—r2c0328]2+r4sin229
[r4-2r2c0529+1]2
r4
= (2.3.18)

r4-ér2c0526+1
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which is identical to (2.3.10a). Along the coordinate curve,
. ) ,

v=0,
0 , > 1
’ <
8 = I , =P < =1 (2.3.19)
tan_l[g] , =1 | ¢
r -

Therefore from (2.3.18) and (2.3.19) the expression for E .

along ¥=0 is given by . -
E(r,0) = E(r,m)
r4
= — L. b # 1 (2.3.20}
[ =2-1 ]2 | R
1 AN
E(llal = . e

2[1-cos267]

=—3— ., rg1. (2.3.21)
4sin” s

Equation (2.3.21) agrees with (2.3.4b).
Next, it is necessary to find r and ¢ in terms of é,v
in order to completely determine E as a function of ¢ and ¢.

Squaring and adding ¢.+ as given in (2.3.1) yvields

2 2 . [r—%]z sinza + [r+%]2 c0329

r2+JL) [c0325+sin28] + 2[c0328-sin20]

hig)
+

A=
I

r2

r2 + = + 2cos2q . (2.3.22)

2
T r

-

Similarily squaring and subtracting:yields

é2 - ¢2 = [r+%]200325-[r—%]25in28
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= {r2+J;][coszo-sinza]+2[cosza+sin28]
r .

= [rz + J;] cos28 + 2, (2.3.23)
: r

A

Eliminating cos2¢ from {2.3.22) and (2.3.23)

¢2 - 92 = 1%L ¢2+¢2-r2—-L-+2 .
2 2 2

+ r

That is

RZ-R{62+$2) —4+2 (6 2-42)=0 (2.3.24)
where

R = % & i2 . (2.3.25)
- .

801vihg (2.3.24) for R by quadratic formula yields_

R = ;l}z +v2 4 [(¢2~+ v2)1% - a(2(6? - $%) - 4)]"]

2

= %[cﬂ + v? 4 [¢4 + 26262 + v¥ + g2 - 8s? & 16]5‘].(2.3.25)
.
By (2.3.25) and (2.3.26) if

v =0 . r =1

R=2= %Da + (62-4) ] (2.3.27)

s0 that minus sign is taken in (2.3.26). For
v >0 , r>1
take the plus sign in (2.3.27) since taking the minus sign

requires that,

[¢2 + ¢»2]2 > [¢2 - 4]2 + [11:2 + 4]2 + 26292 - 16

since R > 0. Simplifying the above inequality,

'
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2

6% - 92 > 2

which cannot be satisfied for

161 < 2% , >0 .

The change in sign in the gquadratic corresponds to singu-
larity at the leading and trailing edge evident from
(2.3.21) when ¢ vanishes or equals =x.

For ¥=0, r>1 (2.3.26) yields

2 .1 _1[,2 2_
R r- + rz =3 [é + [¢ 4]]

= 42 - 2 . (2.3.28)
Solving the quadratic (2.3.28) for r and substituting into

j2.3.20) we find

E(r,0) = E{(r.,O) (2.3.29)

[PPSR Py

E(¢,0) . %[¢2—2+[[¢2-2]2—4]x] > 1 .

'Equations (2.3.13) and (2.3.29) give the exact value for

E(¢,0) and hence the speed at every polnt (¢,0). The pres-

sure distribution p as a function of ¢ ié given by

P - P, 5 . :
C = = 1 - . .3.30
P 1 2 E (2.3.30)
— p u P—
2 o

Equation (2.3.30) 1s eguivalent to the energy equation

{2.1.17¢) and is also known as Bernoulli's equation. To find

3
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the solution at any point ¢,¥ it is required to solve
(2.3.26) for r and theﬁ. substitute . this expresgion into
(2.3.18). cos28 can be found from (2.3.22) or (2.3.23). A
comélicated expression would arise. Thus it suffices t;

check the numer;cal solution with the exact solution along

the qooréinafe line +¥=0 provided the continuity of the

former' is maintained. The leading and +railing edges
‘conétitute the only singular points of the exact solution,
i.e., the polar form of the Jaéobian vanishes. This will
‘constitute a singular point of the transfofmation to ¢,¢
coordinates except thaf the Jacobian will be lnfinipe here;
This can be seen from (2.3.10a) and (2.3.13). At these ;wb
pointé the velocity wvanishes. ?his singular point. thus

3
corresponds to the physical requirement of zero velocity.

L=

0



CHAPTER 3 - IRROTATIONAL, INVISCID FLOW

3.1 SIMPLIFICATION OF GOVERNING EQUATIOQONS

In this chapter the governing equations with boundary
conditions are formulated aﬁq\::;jgd\{gij%teady, inviscid,
irrotational, incompressible £l over an arbitrary symme-
tric profile. A numerical algorithm is subsequently devel-
oped which 1s suitable }or any h&gh speed computer such as
an IBM 3081. This algorithm; as will be seen, involves the
inversion of large tridi§gonai matrices.

One of the concerns mentioned in the introduction was
the reduction of operational count as compared with the
elliptic grid generation approach.' The high count was due
primarily to the calculation of the metrics E, F, and G,
which involved two multiplications'apieqe per grid point.
One of the advantages of the présent approach, as will be
shown, is that the metrics need not be calculated from grid
generation equations. The goverming equation is shown to be
a linear elliptic partial differential ;quation with cons-
tant coefficients: Equations (2.1.19) are, therefore,
considered as‘q starting point. We show, based on the flow
assﬁmptions, that E=G énd F=0 throughout the flow region.

Existence and queness of a solution can be estab-
lished depending on the Eype of boundary conditions applied
and the type of parfial aifferentigl equation emploved.

Existence and uniqueness ;heorems [12] exist for the linear

40 i )
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elliptic equations developed in éhe present chapter for
elther type of boundary conditicn.

As stated previously the addition of Gauss' equation
{(2.1.194)  is necessary and leaves one unknown more than
number of equations. Fof flows of zero vorticity h is easily

determined from (2.1.19a) to be constant, say hm. It is left

for (2.1.17d) and (2.1.19b) to determine E, F, and G. The
pressure coefficient is determined from (2.3.30) with g
replaced by (2.1.19d). Other restrictions on the metrics are
determined by the physical nature of the problem which
implies the existence df a velocity potential 4(r.¥) provi-
ded ¥(r,¥) is harmonic with continuous first order #arfial
derivatives. By the Ilnverse relations (2.1.7b) and the fact
that ¢(x,¥) and «(r,¥) are harmonic conjugates, i.e.,
Cauchy-Riemann's conditions hold, it follows that

F=20 . (3.1.1}
Equation (3.1.1) simplifies the problem but also narrows the
freedom of specification of other wvariables; for example the
value of r{¢,0) over the profile cannot arbitrarlily be

assigned. However, this course of actlion seems intuitively

sensible and is followed. Another physical requirement be-

o
cause of the flow assumptions is that of zero circulation

over any closed loop ¢ containing the profile

C=0= q e dr . ) (3.1.2)

Y PR I PR
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-

From (3.1.1) and relations (2:1.11) one obtains

q e dr = J§.]C08a,sina) s (dr,dy) .
- B

-

= J;(cos.«x,sirm)( NEcosadé - VGsinadv, VEsinadé + VGeosade)
G

g% ]

=2 g . : , (3.1.3)
6% ' -

If (3.1.2) is integrated around theé boundary of ‘the finite

comﬁutational domain (see Figure 3) then using (3.1.3),

\v )
L2
E_ Ex o
0 =—|L_-L - — dé 3.1.4
G [ 2 1] 3 ( )
o0 G : :
I'1
- . E_
Lz = émax Ly = émin . a— = constant = C,

Now (3.1.4) is independent of ¢ since part of the loop may

[

enclose any streamline and therefore

X

E

—_—= t = =

% gt (s} + glL,) Co Ly, » giLy) Co Ly (3.1.5)
for some differentiable function g(¢). The same result can

be cobtailned from the vorticity (2.1.19b) assuming F=w=0. The
function g, because of zero circulation, is taken to satisfy
the condition T~

Lim

Using (3.1.1) in (2.1.17d) vields



B G
¢3‘ + L = 0 . (3.1.6)
(EG)*_| v (2G)% | o
By (3.1.4), (3.1.6}) becones

G G
' ¥ — ¢ | -
g‘“[G]¢+[;W¢m]¢ o . (3.1.7)

Two possible approaches considered to find the function g

are given below:

(I) The first method is to follow the physics of the

problem: It 1mmediatély follows that E=G throughout the flow

since ¢ and ¢ are harmonic conjugates:

Xy =¥y + Iy = - U (3.1.8)
Thus g'(¢} = 1. Inspection of (2.1.18d), hoéever, reveals
that

q=-0®G+> or § -0, I

where ¢ denotes the angle of intersection of the curves
é=const and ¥=constant. The latter case is not in general
true at stagnation points. Thus it follows E — % a-t these
points in order thét E=G. Therefore W = « also at the
leading and tralling edge. The inverse relations given by
{(2.1.7b) when using differenced forms for the first parfial
derivatives og r and ¥ are therefore, not necessarily valid
in a neighboWrhood of these two points sinte ¥ and Y are
necessarily bounded monotonic functions of ¢ and ¢. This
follows since r and ¥ are harmonic conjugates as functions
of ¢ and ¥. Thus the Min-Max Modulus thecrem applies [13].

In the neighbourhood of a stagnation point, therefore,

RISVt Tttt
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knowing values of ¥ and ¥ is not necessarily sufficient to

achieving an accurate -solution. This further points to using

-~

(3.1.8) to find E.

(II) The second approach is to calculate g'(¢) by iteration.

Bowever, thils ;ould involve knowing one of r or ¥ along the

profile itself, and for the reasons stated above instabi-

jities result: a fact borne out by numerical experimenta-

tion. Iteration was tried unsuccessfully and was deemed to

be unnecessary for this particular type of problem. For this
. N “
reason only approach {(I) was considered.

Using g'(é)=1 (3.1.7) reduces to

2 2
v2lnE = 0 vz-—a—2+-9—5 ) (3.1.9)

a¢ o ) /
. ‘ V‘
It can easily be shown that &, X, ¥ also satisfy Laplace's

egquation.

3.2 NUMERICAL ALGORITHM, BOUNDARY CONDITIONS

To solve the problem numerically, i.e., by finite
differénc? methods, a grid needs to be constructed such that
the solution of the flow equations on finitely many grid
points will give a reasonable flow representation. In the
present study the grid coordinate system has the streamlines
as one set of curves and for the other,- the orthogonal
trajectories (see Figure 3). The grid points may be
considered as ordered pairs {(J,X) where J denctes ¢ direc-

tion and X denotes the ¢ direction.

e
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The computational domain is defined for our purpose as

(¢¢)c[—44]x[0 41 . ..(321)_

The grkgxiize is taken to be 85 x 43 or 64 x 43. The step

size for the ¢ and ¢ directions, respectively, is
max ~ ®min Ymax ~ ¥min

Imax " min Kmax = Kpin

Line SOR is used to solve (3.1.9) and other equations, which
have a simple tridiagonal form when central differenced.

Integration of (2.1.11), to within arbitrary constants,

subject to E“=Gm=const vields

X, (6.9) [E, |¥ cosa ¢ - [Ew |* sina ¥ (3.2.2a)

Y (¢.¥) I:E“]x sina_¢ + [Ew:lii cosa_¥ {(3.2.2b)

where a_ denotes-the angle of the incoming flow. To express

(3.2.2) in terms of speed we observe from (2.1.194) that
qg = L
g%

To describe the incoming flow it is only necessary to

specify q_and o« . Uniform parallel flow gives
(-] bl

9, =1 + a =0 , X, =¢ yw =9 (3.2.3)
Along the streamline v = 0 it is necessary to use
derivative or Von Neumann boundary conditions. Numerical

experimentation 1indicates that the first of equations
(2.1.12a) is appropriate for (3.1.9) when the profile 1is

Siven. This is necessary as (3.1.9) was derived from a
[ ]

[ETTTIS PEPES b
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1

integrabllity condition involving o« By the results E=G,

6"

F=0, (2.1.12a) becomes

oy = = 35 . (3.2.4a)

«y = 38 - | - (3.2.4b)

To apply boundary condition {3.2.4a) on the coordinate line

‘$=0 there is the option of specifying «(¢;,0) for J =

1,...,JMAX and determining the resultant profile by integra-

tion of (3.2.4a) using either (2.2.7b) or by using a

differenced form for P We also havé

dy . - = =
. [dr 3= tanaJ . YWlrx Y 0 (3.2.5)

LE’ Log!

in which

(dx) ; = x(+¢ 0) - X(é5_4.0)

J+1’
This approach may be advantageous in that a certain velocity
proflile may be obtained by merely altering the angle at

<

various grid points (¢J,O). The above two equations form a

system of two ordinary differential equations for which a
unigque solution exists provided certain conditions are met.
The method of solving them utilizes Newton's method for
determining the zeros of vector systems as well as solving
tridiagonal matrices (cf. [14)] and Chapter 6. Alterna-

-

tively, given a profile, a(és,O) can be determined during

iteration. Values of I(¢J,O) are also required since

0
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alé; ,0) = tan-l[!'(r(éJ ,0))] . (3.2.6)

A simple algorithm solves~(3.1.9), (3.2.4a), and (3.2.8)
(1) Constuct a computational domain with grid size and grid

spacing, i.e., D¢, p¢¥, IMAX, IMIN, KMAX, KMIN.

(11) Initialize a(é;,0) to O for J = 1,..., JMAX. Set T =
IDE T_ =0 and set r. .=0 for all grid bpoints (3.K)
2 ' J,K J,K g P ’ .

(1ii) Central difference all derivatives and solve the

Laplace equation V°T = 0 by line-SOR with T_=0

y T m—p

¢ ¢ OO

¥=0, in both the ¢ and ¢ directions; once each per itera-

tion. 1In the interior of the computational domain v2T=0 by

application of central differencing becomes

1
Ty = ol Torrx Y Tooik * Trker * Tyoxes ]
such that pé = py. In the case of SLOR the tridiagonal

matrix equation B(-1,4,-1)T = b is directly inverted in

J J
fhe K (respectively J) direction for K=2,...,KMAX-1 where
b =T + T for K > 1

-J J+1rK J_l.rK

When using the index K,

EK = TJ,K+1 + TJ,K—l for 2 < J < JgAx-l
For K=1 or =0, T¢¢ is replaced by the second order

differencing [3]

.I:'rij’1 = ;%[ ‘I‘J'z - 'I‘J'l - wr‘b] + o[wz].
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(iv) Specify x(0,0) = x, . After each iteration, using a cne

sided differencing in (2.1.11a) find (dr)J for

JMAX+1

2 »+ -+ JMAX and l,...

J = JMA%+1- . v

' 2
From sums of these (dr)J determine I(éJ,O) for J=1,...,JMAX.

A simple one-sided difference given by

- ]
IJ+1 rJ + pé (E COSa)J

for forward differencing, and

L34 Ly pé (E COSa)J

for backward differencing is found sufficient.. The trunca-
tion error can be signifigantly reduced by using central

-—

differencing alternately with foward and backward

-y

differencing, respectively.

(v) Calculate a(¢J,0) from (3.2.6), J =1,...,JMAX, such

that o=0 if

r < ILE oxr X >

T
Continue iterating until convergence.
This algeorithm is found to be convergent, but values

for ¥ and hence o do not have sufficlient accuracy. In order

to more accurately determine I on the airfoil surface it is

necessary to solve for r using vzr = 0 throughout the entire
flow field with boundary conditions at « given by (3:1.23}.

Along the streamline =0, -

= — x | A -'
I¢ E"” sina
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rd

is used. Thus step.(iv) in the above algorithm becomes iden-
tical to (4ii) wigé T replaced by X and the above boundary
conditions. T and are then solved simultaneocusly. Although
more calculations are required, better accuracy is obtained,

A computer listing is available (cf.‘ Appendix A}.

3.3 RESULTS

The NACA 0012-64 profile was tested with the algorithm
of the previous section. The leading and trailing edge was

shifted to YXY=-.5, r=.5 respectively so that (2.2.4) becomes,

) = = [.2969(x+.5)x - .126(x+.5)

- .3516(x+.5)% + .2843(r+.5)3 - .1015(z+.5)4]

The constant t denoting the maximum thickness expressed as a

£
fraction of the chord for this profile is éﬁven by [4]

t 1.1019

[ 01532]x

The results are given in Table I.and comparea WiEP Theo-
dorsen's method (Table II) and the grid generation method
(Table III), as well as graphicallé 1# Figure s.

Comparison of Table I and Table II reveals accuracé is
of first order. By first order, it is meant that the solu-
tion 1s within pé of the standard solﬁtion {Theodorsen}. Qur
solution was obtained using SLOR wifh an qu&ﬁal accelera-

tion parameter itefatively adjusted [19] The technique of

obtaining the optimal iteration‘ parameter- for- SLOR is
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explained in Chapter 4. .
The grid size was 85 x 43 , (¢,¥) € [(~1.5,1.5] x
[0,1.5] with a tolerance level of 1 x 10 °. 115 iterations

were reguired for convergence under the maximum norm, which

means tﬁat the maximum modulus between T? K and T§+; is less

than a prescribed numbe for J=2,,...,JMAX-1 and
K=1,...,KMAX-1. | |

This problem can also be solved by SOR with a fixed
iteration parameter and réquiges only 87 iterations. Also
using-SOR on a 50 x 50 O-type grid [1] with a circular outer
boundary of radius 2 using elliptic grid generation, 152
iterations were required for.X and ¥ and 162 iterations for’
¥, solved separately. The accuracy is of the same order as
the method proposed in this inveétigation, but clearly the
operational count (multiplication and divisions) indicates
this new aéproach is much more- efficient. Our approach
required roughly one-slxth as many'operations (from appro-
ximately 12M to 2M for SOR). It should be noted that the
results obtained by the grid generation app:oach were o©ob-
tained by the author using the method described in detail in
f1]. The solution for the ellipse

S W
y = 2(1 )

9

as shown in Figure 7, compares favourably with the exact .

solution.

Through experimentation it was also found that an exact
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form of (3.2.4a) vyielded a solution which apparently is
valid only over the centre portion of the airfoil. This form
is obtained from using - (2.2.7b) in (3.2.4a), to get

mn T
T, = 7°(x) e = -x &% (3.3.1)

[1 + f'z(r)]a’z

where x denotes the signed curvature of the airfoil. Figures
4 and 5 give the. velocity profiles for the circle and

Joukowski airfoil using (3.3.1). The grid sizes were respec-

tively
43 x 43 , [ -1, 11xT[0, 271 .
and '
85 x 43 , [ -2, 21x [0, 271 ,
for
f(x) = [.25 - rz]” .S =2 [ 1 - r? ]" (1-x)

The former equétion in the above is obtained simply by
setting ¢=1, a=.5 and b=.5 in (2.2.1). The curvature of the

circle is found to be 2_ from (2.2.12). 1In using the exact

form (3.3.1) the jump in T¢ is not accurately predicted in a
neighbourhcod of e LE or TE. This is because T¢=O at the
grid points ¢(JLE-1,1) and é(JTE+1,1) which is not the case

when the differenced form of oy in (3.2.4a) is used. This

accounts for the much higher values for velocity in these

regions since T is continuous across the LE and TE.. However,
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accurate values were obtained over the main bod; of the
Airfoil which is not surprisigng since thé relation is; exact:
however this may not always hol;l. In the case of the
NACA-0012-64 less accurate results were produced by using
(3.3.1). The inaccuracy in this case is believed due to the
small extent of the profile in the ¥ direction as compared
with the circle a}xd Joukowski ~airfoil. Hence the rate of
chailge of curvature is high resulting in greater possibility

of error in the determination of T¢. Thus, we see that in

general, using the exa-c_;;‘.form (3.3.1} for the boundary
conditions, results in less oireréll accuracy, but may be
necessary in certain cases; whille usir;.g the differenced form
wil; generally produce good results except in extreme cases,
i.e., singular peoints a‘t the leading or trailing edge. By

differencing oy across the LE and TE we assume that

= 2
T¢ = arp OI:D¢ R _ (3.3.3)
This is a reasonable approximation in a small neighbourhood

of the LE(TE) provided oy p is not 0. It is clear that using

(3.3.1) as the bhoundary condition may be appropriate'when
the curvature of the profile varies greatly. In this case

the differenced form of o, may introduce a large error

because of the high curvature. For example the Joukowski

airfoil with ¢ = = in (2.2.3) is given by

[N
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.

S f(x) = % [1 - 152]" (1 -x) .- NN (3.3.4af

It can easily be shown By L'‘Hopital's rule that

-

Lim
I*ITE

=+ , e =0 | (3.3.4b)

|x(I)

.

where the signed curvature from (2.2.15) is given by

% (2r®+2r-1) (1-1) ; -
e(X) =" 1.5 " |
: [ 1-::2«%[&2—:—1]? } -

and the tangent bf the angle, by (2.2.13).\\

’

212 - X -1

1
fana =_+ = .
-t.2 —
‘ ( 1-x2 )% | -
: . .

We alsoc have . .
£(0) = —.326  , © x(.99) eT m 5.15 x 1.7 .
a(.99) - o

TE .

T S

We see that differencing ay in boundary condition:

(3.2.4a) 1is not as accurate in the case of the Joukowski
- . -~

"airfoil because of the rapid change of curvature and because

emp = 0: however, the same problem does not occur for the

NACA-0012-64 airfoil since «{r) is bounded. Thus, as a rule
of thumb,‘if singularities occur at the leading %pd tralling

edge, i.e., infindte curvature, of.'an arbitrary profiie then
4

the exact form, (3.3.1) can be used.

In summary, the proposed method enhances our ability to

compute this particular class of fl&ws. The sclution given

1) b -
fore e i bam g
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is direct, efficient, qconoﬁical and relatively easy to -
code. The results compare favourably with exisfi;g methods.
It has been indicated where a possible loss of accuracy may
_occur,‘fo; exanple infinite curvature and zero trailing edge
angle.— A:pos;ible correction has been given. The proposed
method is general enéugh to solve for the flow over an
arbitrary sfmmetfic profile. Having understood the essential

features and difficulties of this new method it 4s possible

J/to venture into more complicated areas of Computafion&l

IS

Fluid Dynamics to include flow problems with vorticity and

;coméressibility effects.
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CHAPTER 4 FLOW WITH VARIABLE VORTICITY

4.1 INTRODUCTION

The formulation numerical algorithm that is developed
in Chapters 2 and 3 for steady, incompressible, dnviscidt
irrotational flows is extended fo include flow; with
vorticity over arbitrary symmetric préfiles. The vorticity w

is constant on individual streamlines, so that w¢=0 because

of the inviscid property of the flow. The cholce of
vorticity in the far fileld approximation 1is arbitrary
provided symmetry is preserved about the I-axis. In
particular parab?lic shear flow 1is considered over an
arbitrary symmetrical shape for which a numericai algorithm
is given. It is found that a similar épproach as taken in
chapter 2 can alsc be fqllowed for problems of this type.
However, as will be seen, its application requires several
more considerations, due to the increased number of unknowns
and the non-linearity of the problem. Other considerations
include stability aspects of the algorithm and the handling
of the boundary conditions.

In thé present chapter parabolic shear flow over an
arbitrary, symmetric two dimensional profile is considered.
The flow problem is posed by Van Dyke in [5]'and sclved by
perturbation methods for the case of a circle. Van Dyke's

solution was facilitated by a transformation of the govern-

55
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ing equations to polar coordinatgq\ﬁjr which the circle
becones a coo;dinate line of the transformation The stream-

~
function obtained by“Van Dyke is given by

2 3
¥ = u (r-32-)sins+cu (—r—sinas--‘ilogrsina+x)+0(cz) (4.1.1)
o' T p ' 6a2 2 ¢
in which
a2 | R 22
X = —g—sina + ——=s5in3s + cfr - ——)sina
r 24r3

is used to minimize the disturbance of the flow upstream and

where
1 4 .
c = I(log: - 27 + 1) . T = 577 -

Equation (4.1.1) is the solution of the boundary wvalue

problem,

¥ ¥

X 88 _ ¥ =
¢rr + o+ > 2 , Yv(a,s) o

a
U cra 3 2
Y{r,8) = u_r sing + > sin 8 + 0(e”) as r - =
ca

The velocity components are determined from the derivative
relations for u(r,#) and v(r,s) given in (2.3.2). Pressure
can be found from Bernoulli's equation {157,

~ 2 '
5’4'0 + %; + w¥ = constant. (4.1.2)

In {(4.1.1) and (4.1.2) u_ is the upstream velocity along the
L- -}

I axis, p is the pressure, ¢ is the density and £ is the

bedy force potential. The body .force is generally taken to
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be zero for this type of flow.

- The transformation to cylindrical ‘coordinates simpli-
fies -the boundary conditions since one coordinate r, is
constant on‘the surface of the circle. Vectors normal and
tangent to  the surface of the cylinder are normal and
tangent to the zero streamline pecause of the flow tangency
condition. Thus, the velocity veétor is tangential to the
coordinate curve r = cbnstant. Generating an orthegonal
curvilinear coordinate system ahout an arbi;rary airfoil .
profile wis difficult. Several orthogonal systems are
discussed in [16]. The approach taken for the‘flow_problem
_at hand is along simiiar conceptual lines as grid generation
and the"approach taken for the problem in the_ previous
chapter, the essential difference being the addition of the
vorticity term. The similarities are that the streamlines

are again utilized as one of a pair of coordinate curves

. while the other coordinate curve is taken to intersect the

streamlines at constant angle usually, «=%0 . In the present
problem, however, -there is no velocity potential to work
with. In the followiﬁg section we begin with the system-of

equations (2.1.19)'and Gauss®' eguation.

N4
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4.2 EQUATIONS OF MOTION

‘ In non-dimensional form, the system of 'equations
governing the steady, plane flow of a viscous, incompres-—
sible fluid wﬁth the curvilinear coordinate system (¢.,¥)
taken as thé independent variables and (x,Y) as the depen-
dent variables, where v¥=const denote the'_Streaﬁlineg, is

given by [7].

h =+ E _1E
¢ Re W¥s ReW e
16 _ 1 E
h‘bﬂ u+Reww¢ Re W Y¢ (4.2_.13)

[%]ﬁ] ' {(4.2.1b)

K = %[[§r§1]¢—[§rf2]¢] =0 _ z10)

E .
h = ——; + p : (4.2.148)
2W
B .
u2 + v2 = —; (4.2.1e}
W
- |
where W = EG - F > 0

Bquations (4.2.1a) are determined by solving {2.1.19a)

for hy and h¢.' The above denote respectively the Navier-

Stokes, vorticity, Gauss, and energy equations. h, w and p
are respecgively the energy, vorticity and pressure func-
tions. Martin [7] has shown the continuity equation

v -u=240
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s equivalent to (4.2.1e), where u is the two dimensional

veloclty vector. Taking the Jacobian J positive in the
reglon of interest means we consider the streamlines to be
directed in the sense of increasing ¢. E, F and G are taken

to be the cﬂefficients of the first fundamental form
as® = ar? + ay? = dr-ar - (4.2.2a)

= E(¢,9)1d6% + 2P(¢,9)d0ay + G(4,v)dv?

~

such that

T = r(é,¢¥) (4.2.2b)
1s the position vector of a point r=(r,¥) in Cartesian coor-

dinates. Summarizing other geometrical results as outlined

in section 2.1,

2 .
W =<EG@ - F° = ’ Ty x Ty [ {4.2.2¢c)
BS Iy Ty Fmryr, , G=r oor, (4.2.2d)
r.= Wy, , ¢ ) = EX(COSa,Sina) (4.2.2e)
~é Y X
F ' ’ W

r, = W(-¢. . , ér.) = —(cosa,sina) - —{sina,-cosa) {4.2.28)
- Y i X

: E E

W 2 W 2
ay = EF11 roay = Erlz (4.2.2q)

2 1 )
ri, = i [ - FEé + 225'é EE¢:| (4.2.2h)
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2 1 .
ri, ;;5 [ Eﬁé rz¢] . (4.2.23)

a{¢,¥) represents the local angle of inclination of the
tangent to the coordinate line ¥wconstant directed in the
sense of increasing ¢. Non-dimensional funbarred) variables
are related to the physical (barred) wvariables bthhe rela-
tions, |

u
- - o -
h=pu h » LW =W ' u=U u .

<l
]
e
<
~
n
K
w
]
&

u_ L

for characteristic length L and speed u_. Re = 7 is the

Reynold's number.

In the previous problem it was seen that the coeffi-
cient F vanished necessarily because of the existence of a
velocity potential ¢. In the present pfoblem a poténtial ¢
does not exist.

Once again, the systen {4.2.1) contains one more
unknown than the number of equations because of th;
arbitrariness of the curves ¢=constant. Taking F=0, the

system of eguations (4.2.1) is determinant and becomes

1 E
hy =~ Re W “o
1 G
hy = - @ * Ba i “s (4.2.3a)

w = - ﬁ[ﬁ]\b {4.2.3b}
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E G
» é] :
=l + || =0 4.2.3¢c
Wle Wi ( )
N SN ' (4.2.34)
2G B el
w? + ¥ =2 : ' . | (4.2.3e)

4.3 INVISCID ROTATIONAL PLOWS

.7
In this section we look at one of two shear flows,

derive the boundary conditions, transform the governing
equations into a more suitable form and investigate the
stabﬁlity of the equations with respect to the numerical
metheod that wilill be used. We consider flows with upstreanm

veloclity prefile given by

[¢y)w = u{x_ .¥) = u_cosh(C¥) {4.3.1a)
or
2,,2
_ c?y :
[¢y]a = u(x_ .Y) = uw[1.+ > ] . (4.3.1Db)

Equation (4.3.1b) is truly parabolic in nature. For the case
of a circle Van Dyke [5] has furnished a pair of solutions
for upstream profiles (4.3.1a), (;.3.1b), i.e., (4.1.1) with
the x term and without .the x term respectively. In Van

Dvke's solution
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%

C = — = constant
a

where a is the circle radius, ¢ is a perturbation parameter.

The vorticity profiles of (4.3.1a), (4.3.1b) are found by
taking the Laplacian,

vP% = - w = u_C sinh(CY) . (4.3.2a)
v = - w o= u_ c? . (4.3.2b)
‘We consider only (4.3.1a}) which leads to simpler expressions

for w(¢). Integrating (4.3.1a) with respect to ¥ and using

{4.3.2a) we obtain

¥ = - C “w . {(4.3.3)
The constant of integration vanishes due to symmetry. From

{4.3.2af and (4.3.3) we also get

Eﬁ
y =clsinn™t |y | . m (4.3.4a)
L] oD
By the assumption of parallel flow upstream we can take
| =6 . | (4.3.4Db)

From (4.3.4) and the relations (4.2.2d-g) we get

B, =X * ymé = 1 (4.3.4c)
2 2
G, = X * y¢¢ . (4.3.44)
1 cZe? [T
= 2 1+ -
U u
o L

Equation (4.3.4) are the essential far field approximations .
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to X, ¥, E.and G. As in Chapter 2, matters can be simplyfied

by the introduction of a transformation,

T =

N[

InE , U=2ime . . (4.3.5)

Equations (4.3.4) is replaced by

-

T =0 ' t (4.3.6a)
L -]

v 2.2
1 + C ¥

1
U°° = - lnz_iuID -2 iln u: . {4.3.6b)

-~

We now transform the governing equations (4.2.3) according
- ) . -1

to (4.3.5) and the inviscid assumption (Re =0), derive the

equation for the pressure coefficlent and establish the Von

Neumann boundary conditions on the airfoil surface to be

" used in the numerical calculations. Equations (4.2.3) are

replaced by

B, =0 . . (4.3.7a)

h¢ w o= (4.3.7b)

v, - T, = e2Y, (4.3.7c)

eT-UT¢¢ + eU‘Tcé‘ + eT_UT¢ (T,~U,) (4.3.74)
+ eU'TU¢ (U,-T,) =0

h = % e 4 p (4.3.7e)

w’ o+ v o= e 20 (4.3.7F)

Integrating (4.3.7a-b) and using (4.3.3) yields
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3

h{é,¥) = 2(C¥)%+ q, . (4.3.82)

(S

It follows that h,=0 by symmetry. Using (4.3.8a) in the
energy (4.3.7e) we obtain
1
Z(C¥)° = — +p . (4.3.8b)
Letting ¢ tend to = yields

1 2 1
2(C ==+ . (4.3.8¢)

Subtracting (4.3.8b) and (4.3.8c) we obtaln

]
@
|
G

2(p-p,)
= 2 2,2 1 :
= u_  + C7¢ ] -5 - (413.8d)
From (4.2.2g-1) we find

_ T-U
o, = e T¢ (4.3.9a)

U-T
a, = € U¢ . ({4.3.9b)

Taking the total derivative of «(X,V¥) with respect to X and

expanding «, in (4.3.9%9a) by the chain rule, one can obtain,
é .

using the flow tangency condition and (4.2.2f-g},

- = eUf“(I)
& [ - !'2(X) ]3/2

Equation (4.3.9a) or (4.3.9c) is incorporated into the solu-

T

(4.3.9¢)

tion procedure along the coordinate curve +=0. In the ltera-

tive process Sf'(r), f"(r) are determined from the respective

profile.
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Eqﬁations {4.3.7c}), (4.3.74) represent two non-linear
equations in two unknowns and the question arises as to
.existence and unigqueness of a solution. Prom (4.2.2e),
(4.2.2f), (4.3.9a), (4.3.9b) (F=0), by taking cross deriva-
;ives, to eliﬁinate the other variable one can arrive at
self-adjoint second order non-linear partial differential

equations of the form

[eU—Tcr‘]é + EET-UG¢]¢ = 3we2UU¢ : (4.3.10a)

U-T T-U
[e x‘]? + [e r¢]¢ = 0 _(4.3.10b)-

for which existence and uniqueness theorems exist [12] in

the case of linearized coefficients e- U, e’ T, and either
Dirichlet or Von Neumann boundary conditions. Thus any solu-
tiop to (4.3.7c), (4.3.7d) leads to a unigue solution of
(4.3.10a) or (4.3.10b). Fu:ther;ore T 1s determined uniquely
by U in (4.3.7¢c) as a boundary value problem provided
certain conditions are met in a closed domain, i.e., boun-

dedness of U and Lipschitz condition on a closed region,

[14]. Using (4.3.7¢) in (4.3.74) we obtain

T-0O U-T T+U T+U
] UE! + e U¢¢ - 3uU¢e o= w¢e (4.3.11a)
2 _T+30 U-T _
+ w e .+ e U¢(U¢‘T¢) = 0
T-U u-T T+0 U-7
e X + & r¢¢ - e I¢w + e ré(U¢—T¢) = 0 . (4.3.11b)

The intention is to follow as closely as possible the

algorithm of Chapter 2. Equations (4.3.11) thus represent
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respective PDEs in U and ¥. However, as will be seen, tﬁéib
non-linear nagpie increases " the diffiéulty of finding an
accurate, stable solution and also increases the number of

unknowns by one since T afid U, and hence E and G are related
‘in a non—;ineé: fashion. ©Nevertheless, it is worthwhile to
utilize fﬁlly our previous knowledge and a solution to the
problem is thus attempted in a similar manner as the
prévious problem. The inherent difficulties iﬁ convergence
-and stablility can ?herefore be analyged bearing in mind the
limitations of the technigque used. It would thus seem :
prudent to invesiéate stability aspects-of.thq particular

numerical techniqué chosen. )

4.4 SUMMARY QF ADI TECHNIQUE

~

Two numerical technigques were used in the solution of
the problem: ShOR with fixed ox optimal acceleration para-
meter # and ADI (Alternating Difection Implicit) with para-
. meter p; It was found that SLOR was more stable and reliable
for sﬁch a problem even with only a fixed parameter 5. The
ADI was erratic in converging and highly sensitive to
changes in ». Moreover where SLOR converged:ADI in many
éases diverged especially when using boundary conditions
with a high gradient at one or more locations. ADI was found
to be less successful in solving equations with non-linear,
Von Neumann- boundary conditions and more successful when

solving only equations with exact boundary conditions. For
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-these reasons a stabllity analysis based on a trigonometric
approximation to the error is presented in Chapter 5.

The ADI technique is discussed in [17] with an attempt
to éind optinal paramet?rs. Howevgr, the @étter Sf couplgd
equations is not discussed nor do the examples include
.derivative bou#dary';cn;itions. In simplest terms the ADI

p - .
technique utilizes a posi e parameter P to increase. the
diagonal dominance of tﬁe,sysfem‘of matrix*eqﬁations deter-
mined by finite difference apprcxim;tion to the raﬁpective
system of PDE. The model equation that is used in the study

in [17] is a linea;’self—adjoint PDE;
stz.yu = ZlaxnB]| - Zlewx.n
= S(X,¥). - N\ . (¢.4.1a)

Eduation (4.4.1a) is subsequently transformed to an
algebraic system of equations,

(E +V + Zlu=( ) (4.4.1b).

where
Hu(r,¥) = -a(x,¥)u(r+h,¥) + 2b(r,¥)u(r.¥) - c(r,¥)u(r-h.¥)

Va(r,¥) = -alX,¥)ulx,¥+k) + 28(x.¥)u{x.¥) - 7{r.¥)u(x.y-k).

a = KA(x+3 ¥)/h , ¢ =KA(X-2 V)/h, 2b=a+c

W

F ‘k . ’ t k‘ .
o = hc(r,y+§}/k » 7 = hC(X,Y-3}/k , 28 = a + 7

Z = hKG(X,¥) , K = hkS(X,¥) . , (4.4.1c)

Equation (4.4.ibf is_thén rewritten as two vector equations

!

*

oo . o
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(H +X + Dju=gx - (V-D)u

(V+ X +# E)}u = X - (H-E)u

' taking H+I+D and V+I+E to be non-singular. The stationary
ADI process is then defined tc be [17],

(E + I + D)un+ = K - (V—D)un

3

+3¢ {4.4.14)

(V+2 + E)un+1

= K - (H-E)un

and is ¢onvergent.provided‘2+D+E is symmetric and positive
Qefinite and 2H+I+D-E, 2V+I+E-D are positive definite. With
the same hypotheses and,

P ! .
P , P> 0 ; 01 p 82 € [0,2] H

83 = 2 - 81 ; 04 = 2 - 82

the following iterative system is convergent,

8,% 8
(H+ — + o 10 0 =K = (V+ —— - pyldu,
8,% 642 * -
OV + —— + ppluy,, =K - (B s pTiu {4-4-13)

-

Equation (4.4.1e):is the model use& in the solution of
(4.3.11;). Differences are in the non-linearity of
(4.3.11a). PFor this reason no approximations are made for
thé coefficients exp{U+T), exp(U-T), etc. at half grid loca-
tions as in (4.4.ic). Instead, the equation is sclved as is.

Some terms, it will be seen, can be dropped for econdmy of

.computational count.
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The precise matrix forms are given in a later section of
this chapter. Some of the information from that section is
now used to examine stability aspects of (4.3.11a) with
respect to the ADI method.

It is first necessary to view (4.%.11a) in terms of a
linear system of algebra?.'c equations. Hence a coefficient
matrix A is sought. This is found by Taylor series approxi-
mations of the various derivatives in (4.3.11a) in the ¥ and
¢ directions with respective grid sizes p¢ and pé. Generally
the grid spacing is the same in‘bc':th directions.r Franklin
{18] has shown that a matrix A is stable if and only if

every 'solution to the differential equation

SX(E) o pp(e | © (4.4.2a)

approaches zero as t - =, If A has n distinct eigenvalues Ay

with associated eigenvectors then the solution ~to

“y
(4.4.2a) is given by [18],"

xit '
X{t} = e wy - a (4.4.2b)

~

The soluticon is easily seen to be stable if and only if Xy

is negative for each 1. Applying the ADI technique in the ¢
direction to (4.3.11a) leads to a tridiagonal matrix,

TRID[A,B,C] = : ) . (4.4.2¢)

TRID [“ET-U'l - 5w=T+UD‘, :=+2eT'-U ,'—eT_U+1 . SueT+UD¢:|

for which the eigenvalues are known to be of the form [3]



70

Xy =~ b +,2(ac)x cos[?zj , J=1,..., p-1
. P

I

. - - J
- P - 201‘ u + 2eT u COS[H?]

- p - 20704 2oTU | . (4.4.2d)

IA

From (4.4.2d) it can be concluded that if

p >0 (4.4.2e)
the coefficient matrix (4.4.2c) is stable and this agrees
with the result obtained in [17]. In practice however the
use of (4.3.%a) as a boundary condition led to divergence in
most cases for a given choice of » when the sirultaneous
solution of (4.3.7c) and (4.3.11a) together with (4.3.10b)
was attempted. If (4.3.9a) was replaced by (4.3.9¢) tﬁen
convergence occurred if » was chosen carefully. However
convergence was slow and instabilities often entered when
the convergence criteria was made more demanding. Moreover .

relaxation parameters were required for the ADI. Neverthe-

less promising results were obtained for some profiles.

4.5 NUMERICAL ALGORITHM

After some numerical experimentation the following

algorithm was found to be convergent when using SLOR, for

the profiles discussed in section 2.2,
(1) Set the grid sizes, JMIN, JMAX, KMIN, KMAX,

‘ ' ¢

max min

similarily for ¢. Determine grid spacing
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Ypax = *min Ypax ~ ¥Ymin

D4+® JMAX - JMIN * 7% T KMAx - KMIN °
KMIN and JMIN were taken to be unity. Determine the grid
points on the rectangular computational- domain in terms of

-¢.¢. usually by some linear interpolating formula for

J=1,...,JMAX, K=1,...,KMAX.

»

{2) Initialize X, Tn, U according to (4.3.4b), (4.3.6).

Set r = T = U m 0 in the interior of the computational
domain.

{(3) Using ADI or SLOR solve for U everywhere in the flow
field using (4.3.11a) and employing (4.3.7¢) as the boundary
condition along the coordinate 1line ¢=0 or K=1, tfor
J=2,...,JMAX-1.

(4) Using SLOR, solve for T everywhere using (4.3.7c) with
(4.3.9c) or (4.3.9a) as the boundary condition for K=1;
J=2,...,JMAX-1, such that for the former boundary condition

T¢-0, K=1, X < X » X > Xpp- , This step could also be

jterated untll convergence of T between every iteration of U
and r. Convergence of T was found to be extremély fast by

SLOR.

(5) Using ADI or SLOR, solve for x from (4.3.11b} using
(4.2.2f) for the boundary condition: Iﬁ--(G)xsina(é,O).

{(6) Determine o(é,0) by
-1
_tan [f'[{(¢):0]] . rLE LrX ITE
a(x(é).0)=
0 , otherwise



72

{7) Choose a particular error norm K-l and set a tolerance

level ¢; for each unknown, determine whether

Belly g€ ¢ JT=2,..., JMAX-1 ; K =1,..., KMAX-1.

where the dot - denotes unknown.
(8) Iterate steps {(3) to (7) until convérgence_;ueeping‘in
both directions ¢ and ¢. The roles of ¥ and ¢ are reversed
wi%n sweeping in the ¢ direction,
K=1,...,kMAX-1 , J = é....,JHAX—l. .

Let algorithm A denote the use of ADI for the solution

cf U, r and, SLOR for T with an optimal acceleration

n

parameter ﬁopt

. Let algorithm B denote the use of SLOR

throughout in the above algorithm with fixed S and boundary
condition (4.3.9a). Let algorithm C be the same as algorithm
B except that boundary condition (;.s.gc) is used. A
computer listing is available (cf. Appendix B).

| It was found that the use of over-relaxation parameters
complemented the use of the ADI. Cate had to be taken in
their choice as the algorithm was sensitive to variations in
their size. In certain cases, when using ADI the résults
were misleading as the maximum error decreased to what
looked like an acceptable tolerance level, a minimum, and
then began teo slowly increase again due to some instablility
inherent in the use of ADI in the algbrithm. SLOR produced

results using beth boundary conditions with an error bound,

the maximumr norm, having a value of .0001 in the case of the
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x
g

circle while the same error bound could not be achingd for
boundary condition (4.3.9a) using ADI. Optimal relaxation
parameters could be used when solving by SLOR. This was
found to be indispensible for convergence, otherwise the
algorithm converged much too slowly when using ADI for r and

U and SLOR for T. For example, after the nth iteration T, r

and U were updated by"

n+l n. * +1 n
T T + & [Tg’x - TJ'K]

J.K J.K

r?"'é = X3 g * ry [r?'f:: - r?K] _ , (4.5.1)
' U?Té = U?,K ) opt[un*-1 .J?KJ

for J = 2, ..., JMAX-1; K = 1, ..., KMAX-1. Using a fixed

. ,
acceleration parameter 7 € [1.5,2] was found to accelerate

- convergence, ﬂﬁpt was determined after each successive

double sweep according to '‘the technique described by Carre
{19]. This is outlined in the following variation of Carre's
algorithm which may be added to step (6) of the previous

algorithm

-
(6a) For n < 10 set #'=1 'and for any ny if

MOD{n,10]#0 set g™l = gB.

(6b} After each iteration calculate,

sn-&ll =zz] n+1 _ .,.K )
' J K
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n+l
O+l S _
s™ )
8n+1_3n
(6c) If n > 10 calculate ERR" '’ = .
2-82

A

(6d) If ERR™'! < .05 then set g°*1 = 57,

(6e) If n > 10 , MOD(n,10)=0, set

n+l
Bn+1 - EEn+1 _ 2-EE
4
where
’ 2
EEn+1 -
n+l .n 2
1o (AR earo1)
n2_n+l

FTTRT T
Steps (6a) ~ (Sé)rare the technical detalls of the
approach. The theoretical motivations are explained in [19].
It is also interesting to note that the rate of convergence
depends on the error norm used in step (7). The relative

error norm,

n+l n
Ts,x ~ TJ,KI
MAX
n+1
|TJ,K
used in conjunction with steps (6a) - (6e) was found to give

a slower rate of convergence than the maximum norm.
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4.6 DIFFERENCE NOTATION

In the nnnerical differencing of (4.3.7c), (4.3.11a),
(4.3.11b) central differencing was used wherever possible.
No stretching functions were introduced into ' the equations
to pack lines in any one region although this is one area
that could be inﬁestigated.' To 1llustrate the method of
differencing used in the ADI and SLOR methods we consider
{(4.3.7c) and (4.3.11a). Applying ' central difference
approximation to (4.3.1la) with equal grid spacing vields

(T-U); k

e {0 - 20 1)

I, K+1 3.k ¥ Y95 k1)

(U-~T)
+ e J.K (U

2

J+1,K U

Ur,k * Y5-1.x!

(T+0)
J.K
J.x-1! © Dy

3
2 “k (U5 ge1 0

(‘I‘+U)J X o 2 ({T+3U)

J,.K 2
- (w¢)K (] DY + (w )K e

Dy

(U-T)
+ .25e J.K (0

Wie,x7Y

J-I,K)

x ( T T = 0 (4.6.1)

U341,k %51,k T341,x T -1, %)
where J=2,...,JMAX-1 , K=2,...,KMAX-1. Bquation (4.6.1) is
used to form a tridiagonal matrix,

TRID(AA,BB,CC) U = RHS (4.6.2)

to be inverted in either the J(¢) or K(+) directions. When

Km=1, U¢¢ is replaced by [3].

@:
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2(U, -0, .} 20U
Ugy . 3,273,127 e | (4.5.3)

K1 g2 DY

in which U¢ is determined by (4.3.7c) and T, is determined

¢ V\J
by (4.3.9a) or (4.379c). For example 1f (4.6.2) is solved in -

the X direction we héve, by inspection from (4.6.1) for K=1,
AA(K) = 0O (4.6.4a)

{(T-0)

‘ (T+0)
BB(K) = » + 2e J.X

J.K + 3wK oY e R

(T-U)J,K (T+U)J,x

CC(K) = - & = Suwy oY e ,

RHS(K) =

(U-T) . :
- J.X 2U + U

[UJ+1,K =205 J—1,x]

+ pUJ,K

(0-T)

+ .25e J.K

[UJ+1,K - UJ—l,K]

J+1,k " Ys-1,8 " Tye1,xk * T

x [U J-1,x]

.
2 (T+3[’.)J'K 2 209 " e J.K
+ uK - - D -+

' (1+7:%)%/2

- 2wK eT+U D¢2

For X > 1,

(T-U)

(T+0)
AA(K) = - e J K

J.K 4 1.5u, D% e , (4.6.4b)

(T-U)
. BB(K) = ¢ + 2e J.K ,

J

Py P

[ (RS,

ROy



77

{(T-0U) (T+U) -
CC(K) = - e K isu ove K o

RHS(K) =

(U~T) .
a J.K 20 + U

[UJ+1,K - 205 + 20

J—l,K] J.K

(0-T)

+ .25e J.K

[UJ+1,K - UJ—I.K)

2 - T + T

x [UJ+1,k T Y51, J+1,K J—l,K]

g ATHIV) 3 o (T+U)

J.K 2
+uxe Dy —(w‘s)xe D

¥

where pef{2,4] is the ADI parameter. Equaticons (4.6.4) are
solved for J=2,...,,JMAX-1. In the subsequent sweep the
directions are changed and similar egquations as {4.6.4) are
solved, only in the J direction for Kel,..., KMAX-1. Similar
equations épply as well for r.

. In thé sequence of operations, step {(4) of the algori-

thm, SLOR is used to calculate T. The numerical differencing

of (4.3.7c) results in a matrix egquation of the form,

Tr.1 \
-1 1 o0 0]
Iy 2
-1 0 1 .
B ) -1 o]
| T3,k1 |
= RES

~I,K

2 cmbann
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where K1=KMAX-1 and,

o
e T gz )ow
RES;,1 7~ 2 “3/2
’ ]
(1+f (13,1)) ,
Qr
Uy 17T3,1

- ‘;'I:orJ+1 1" %31 1] e for J = 2,...,JMAX-1

such that the former egquality holds for

Ipp € X < Ipg
or
Iw‘.l’:ISJ'1 =0 for x > Lpp b X L Xpp -
Otherwise "
RES =0 - U - 20% equ’K
J,K J,K+1 J, k-1 “x :

for 1 < K < KMAX , J=2,...,JMAX-1. T was solved only in the

K direction. T, U and r were updated after every iteration

e o
according to (4.5.1).

4.7 DISCUSSION OF RESULTS

Different combinations of boundary conditions and use
of SLOR and ADI in the algorithm given in the previous

section were applied to compute the flow cover a circle of
radius % as well to the Joukowski and NACA-0012-64 ajirfcils.

The parameter ¢ was given the value .1 while for all cases
] .

'a' had the value .57 The results for the circle are

Dot e ki M T 1
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presented in Table IV through VI and compared with the
second order solution determined by Van Dyke [5). The grid
size in the J and K directions was respectively 64x43 with
computational doﬁain:

{(¢.¥): # € [-1.5,1.5], # € [0,1.5]}.

. Equal sized grid spacing was used in the ¢ and ¥ directions.

Table IV gives the results obtained by using algorithm
A. T was not required to converge after every iteration of U
and r. The angle of inclination of»thé\velocity vector along

the profile surface is also given. In this case » was taken

‘to be 3.25. The convergence criteria was fﬁe maximum norm

with tolerance level .0005. The number of iterations requ-

ired for convergence was 191 and the optimal acceleration

‘parameter Was determined to be 1.5384. jCPU time was

approximately 12 minntes on an IBM 3081 computer. Agreement
is best cover the main body of the airfoil with accuracy
sharply decreasing towards the leading and 'tralling edge.
The accuracy problem at the LE(fE) could be overcome by an
extraéolation of the accurate values over the centre of the
p;ofile to the §£ignation points at the LE(TE). In fact,
this ﬁas done for a parabolic profile Jin the irrotational
problem using boundary cpﬁdition (3.3.1) by constructing a
lFast squares‘polynomial to ¢(x) and emploving fhe khown

values of & in (2.1.22b) such that ¢'(x) vanished at the

‘-LE({TE). This accounted for the stagnation points. For exam-

ple ¢(x) was taken to be of the form
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ar + b11 + c12"+ dxs + er‘ + fr5 +'grs—+ hr’

for some constants a, b, ¢, d, e, £, h. The first five
ponstants were determined by the'lFagt squares polynomial
while g aqd h were calculated.according to

61 (xpg) = ¢ (Igg) = O - -
The result was to give more accurate results near the
leading and trailing edge while.maintaining accuracy over

the centre of the profile.

Table V and Figure 8 gives the results cbtained by

using algorithm B. T was requirted fo converge after every .

iteration of U and X. The angle of inclination of the
velocity vector along the profile surface is also given. In
this case S was taken to be 1.68. The convergence criteria
was the maximum norm with tolerance level .0001. ?he.number
of iterations required for convergence was 108. CPU time was
approximately 16 minutes, The CPU time can be greatly
reduced by not regquiring T to converge. By discarding ternms

-

such as

e U¢(U¢—T¢). e Ié(U¢-T¢)

U-T U-T
in (4.3.11) the computational time could also be substan-
tially reduced since the effect of these terms is small.
However, one of the primary objectives was to retain as many
terns as posqible so Bs not to sacrifice accuracy. Agreement

is not as good as the previocus example over the main body of

the airfoil with accuracy much improved towards the leading

e’



81

an& tralling edge. 'The‘computer used was the IBM-3081. The
results by fhe new approach are found to be roughly D¢ less
than the results of Van Dyke. This suggests making thé grid
finer or packing lines or increasing the grid size could
improve the solution in the sense of making it closer to
perturbation results, which however are themselves only
approximate solutions.

Table VI gives the results obtained by using algorithm
C. T was required to converge attér every iteration of U and
r. The angle of inclination of the veloclty vector along the
profiie surface is also given. In this case £ was taken to
"be 1.68. The convergence criteria was the maximum norm with
tolerance level .0001. Only 95 iterations were required for
convergence. CPU %ime was 10 minutes. This is substantially
less than for algorithm B. One of the reascns is that T

converged 2 to 3 times faster between each iteration of

*y

and U. The results follow the same pattern as.algorithm A
and are roughly D¢ greater than Van Dvke's results, over the
top of the airfoil.

In summary, the algorithm of Chapter 3 can be success-
fully extended to flows with variable vorticity. Two boun—.
dary conditions, one exact and the other differenced form of
the same eguation, cén be emploéed té generate solutions.
The validity of the former solution can be questioned near
the leading and trailing edge. The latter represents the

flow accurately in these regions as well as over the top of
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the profile. However, the exact form can be used to

advantage when singularities arise as in Chapter 3.

At TR

~



CHAPTER 5 ERROR EQUATION FOR ADI METHOD

5.1 STABILITY ANALYSIS

ks

In the numerical solution of partial differential equa-
tions various iterative schemes are derived, lfor example
SOR, usually based on the finite difference approximations
tc these equations. In order to'give them a mathematically
symbolic form it is necessary to take into account the
msett'ing i‘n which they were derived which is generally a
rectangular grid. From the Taylor series approximations to
the PDE we assume the dependence of the value of the unknown
T say, on its neighbours, usually represented as subscripts.

Morecver, an iterative process involves an iteration level n

which 1s denoted by a superscript. Simply then, T? g <an be

expressed as a linear combination of its neighbours all

evaluated at some iteration level n, < n. Therefore we write

the general form,

n+m+i n+g+i n+g+1
Tsx = Cr+i. kM Tsen,xem t Sy x (5.1.1)
g.L.M
for i=1,...,¢

wPere g, L, M are finite integers rangiug through both pesi-
3

n+m+i

tive and negative values and T is the most ré&ent

approximate solution. SJ K is a function independent of the
iteration level. i denotes the fact that there may be more

83
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than one equation fqr only one-unknown. This alsoc indicates
one complete lteration is comprised of several steps., PFor
example, in SLOR there are two distinct equations it.the
iterative process is done in ‘bo;h. coordinate directions.
These twe equations may differ "according to the boundary
conditions being used. As will be seen, it is essential te
look at one single equation comprised of the 1hé:1vidual

steps in order to get an overall picture of stability. Let

n o+ Gy =R -3 . {5.1.2)

By (5.1.1) and (5.1.2) we observe {5.1.1) 1s similar to a
polvnomial of order 2m, in thiﬂgense that the superscripts
denote powers. Thié suggests/finding an approéimation to the
error that utilizes the iteration level n as an index, hence
a polvnomial can be found w§335 roots determine limitations
on one or more constants in the PDE, such a§ grid size, or
ADI parameter. To analyse stabilitvy certain criteria are
required, for example boundedness. Let «>0 be arbitrarily

chosen and

n+1 n
T ST l; <, <6 . n=0,1,2,... {5.1.3)

where Sn is a sufficientlv small positive number and I-il is

a suitable norm such as Euclidean norm. Equation (5.1.3)

means that the error in the solution between the nth and

n+1St iteration level is bounded by a reascnably small
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number. Theoretically it may approach zerc but never in fact
become zero, dué to rounding and truncation error which are
related go_the limitatipns or;the machiné being used. In
additioé?;£ is required for stability purposes that (5.1.3)
hold for arbitrary grid size, aé¢ , av where A denotes incre-
ment in -this chapter. We note that (5.1.3) holding for large
n and arbitrary ¢ does not always mean that the solutioé
converges to the true sclution of the PDE under considera-
tion unless the total truncation error of the repres&ntation
(5.1.1} can be made arbitrarily small dgpending don the
initial guess and step size.--

By definition of convergence of an iterativ process,

convergence of (5.1.1) implies (5.1.3) is satigsfied [14].

Moreover the limit is unique. One can also note that the

space ak k=0,1,... is complete and for each J.X varving TJ K

is 2 vector in ak.'Therefore, that [T represent a Cauchy

n+1]

sequence 1is necessary; that it is sufficient can be seen in
light of (5.1.1). Therefore convergence of (5.1.1} is
guaranteed if and only if the left hand side is a Cauéhy
sequence in the sense that a unigue limit exists as n
increases. In the notation of [20] let ¢ denote the error, w
the true solution and T the approximate soclution to the

difference relation (5.1.1[

By linearity of (5.1.1) the function T is improved as the



sum of improved functions . and .. The improvement w-wn.

i.e., the improvement method does not change the true soclu-

tion. Thqg,

0 .
T?,K ey gtk - (5.1.4)

We have from (5.1.4),

IT -7

n
J.K J,K

Since Tn] is a Cauchy segquence [‘n] is also. Using (5.1.4)

-

in (5.1.1) we get

n+m+1 n+g+i n+g+i

‘3K - CI+L,K+M I+L,K+M (5.1.3)
qlLrM

for i = 1,..., ¢ . For our purposes it is simpler anéd more

convenient to write (5.1.5) as a pair of linear operators;
= ¢ . i=1,2 . (5.1.6)
We can think of Ci in (5.1.6) not only as a linea¥ operator

summing previous values at lower iteration levels {SOR}, or
a linear matrix operator (SLOR or'ADI), but also as having
eigenvalues . with eigenvectors x?'; ]

R r,s n -
Ci CJ,szJ,K €3.K (5.1.7)~
where J and K generally vary from O or 1 to JMAX,KMAX
respectively. r,s are jintegers which wvary from 0 or 1 to

JMAX-1,KMAX-1 respectively. As n increases a sequence of
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operaticns is obtained,

4
n L r,.s ¢ n
[C...c]l ey ¢ ["J,x] ‘7.X
- ¢§+;{ ) (5.1.8)

From (5.1.7) we note it is necessary that each of the two

_—

operators Ci have similarities in form in order to have the

same elgenvalue structure. Also in order that ¢ - 0 as ¢
approaches infinity the matrix ¢ must be convergent so that

necessarily the eigenvalues of ¢ are less than one in magni-

tude. Also, since [c?_K] is a Cauchy sequence, the ratio,

n+¢£ .
J,.K

n
°J,X
converges, as does,

Lim W *fn o .n ]

(5.1.9)

{ —+co
For ourfpurposes there are two linear operators. L""JL‘he ques-
tion is whether to examine them separétcly or combine them
into one operator. By combining them together, a quadratic
in n is obtained, since there are three lteration levels in
total. Byggxamining eﬁch separately as in Peaceman and Rach-

ford's analysis [21] of a linear ADI l1terative sequence, two

symmetrically opposite expressions were obtained for the

error, namely,
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. 2
Ar,s,2n+1 ) P =4 sin"(8 AY/2)
Ar,s,zn' P+ 4 siﬁ%(ﬁr ar/2) ’

o - 4 sin®(8_ ax/2)
= = > _ (5.1.10)
r,s,.2n+1 P + 4 -sin (554y/2) '

Ar,s.2n+2

witere s 1s the ADI parameter

Br = (2r + 1)x/2 , and_-Bs = (28 + 1)x/2 ,

r=0,..., JMAX-1; g = 0,..., KMAX-1.
Individually each ratio 'of (5.2.10) _may exceed unity

“ depending on the choice of r,s or p but their preduct is

N
~—t

B ¥s .less than one in magnitude. Nevertheless it does not
*3\~///T\__’/:jj§-::;vergence will occur for drbitrary choice of p since
for some choice of the eDI parameter, based on experienge,

’divergence will occur. This suggests that locking at each

equation separately is not sufficient or thorough enough,

rather it is necessary to examine them as a quadratic in the

iteration parameter n.: As a simple example consider the two

ecuations,
ETO0 =T e\ (6.1.11a)
EZ(n) =aR - Pt (5.1.11b)
From the first egquation we have , T
oin E?(x)l = iiﬁ]xn(x+1)l ~0® -1 <\ <1 (5.1.12a)
gizlzg(x) = MEl el ~0e -1 < <1 (5.1.12b)




But,

at

A
Lim - Lim n-1j 2
" ’[El + Ez:l(”' o ‘x ‘[x +2) 1)| -0,

only if X is strictly 1less than one in magnitude or

%

A=S=(1+27}). Thus the sum of the two operators is more

restrictive than the preduct” in certain intervals, i.e.,
[-1.,1].. However, because 3 can take on negative values the
sum could\ggve values cutside of the'union of the two inter-
vals in (5.1.12). The two operators will therefore be
analysed f;;;’the viewpoint of a sum to give slightly more
accurate information about the stability. To only view them
aé a product may be inaccurate and misleading.

Next we consider various forms for the ejgenfunctions .

i which as yet is undefined. The

for the linear operator ¢
type of linear operator we consider is related to a tridia-
gonal. matrix in the case of SLOR or ADI and denoted by
TRID[a.b,c] where a,b,c are real numbers. There are several
forms for the error ¢ as presented in the literature. One

such form is given in {23],

n n i(raéenJ+saviik)
CJ,K = ¢ Ar'S e - (5.1.13)

r and s are integers . ranging over the number of interior

point§ in the ¢ and ¥ directions respectively and i={-1)x.

An alternate form is given in [22],

— AJBK[sing-;',—J—singg—K , P = JMAX-1, Q = KMAX-1 (5.1.14)
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where . : d

r=0,..., P: s=0,...,Q: JMIN-O.‘; EMIN = 0 |
As an example consider Richardscn's method [22]), similar to
point-Jaceobi, |

n+1': n + n-.
€J.K ‘J.K “€7.K

where { is an operator corresponding to the central diffe-
rence approximation to Lablaceks equation with equal grid

spacing. For Richardson's method, the eigenvalues derived

from (5.1.14), with_the term a’gk equal to one, are given by

(ef. [22]),

Xr,s = -4 [sinz{g£]+sin2[g§} .
2P 2Q

Another variation is given in, [21],

N-1

= 1
“I.K.n Ar,s.n cos(ﬁrr) cos(Bsy) {56.1.15)

L r,s=0
) Q.
where »r and s are as defined in {5.1.10). Inspection of

(5.1.14)—(5.1.15) shows that the two forms are similar in

that one can be transformed into the other by trigonometric
identities.” .. The K coefficient functions have different
signi{{cance depending on the problem being solved.

N
The eigenvalues of TRID(a,b,c) are given by

&
b + 2(ac)xcos[:g£] J=1,...,p . (5.1.16)
P :
The determinant of (TRID(a.,b.c) - 3I) is given by a recur-

sive relation,
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a  bx L. = (BmC()

-acC(x)p_2 (5.1.17)
- P
where p is the order of the matrix and

Co(x) =2 , Co(x) =b - ,

. .-

Cz(x) = (b-xrﬂ'— ac

The result (5.1.17) is easily verified by induction. By a

change of variable t=b-)\ it can be seen that 02p+1(t) is odd

and C2p is even, p=0,1,..., with respect to x=b since >0

for b>)\ and Ego for b<g. Thus the roots come in pairs. In
the case cf ADI ¢ is simplvy 3
TRID(-1,2+p,-1) *
for Laplace's eguation. From (5.1.16) we see the eigenval;es
X are in the interval (0,4). The addition of a positive

constant ¢>1 is observed to ensures that the eigenvalues of

. x_l, are less than one in magnitude. Trigoncometric

approximations to the eigenvalue behaviocur of ¢ are essen-
tial because of.the oddness and evenness of the charac-
teristic polvnomlals ({(5.1.17). This then is a necessary
cendition.

Consicder the pailr of iterative equations [23].

n+x n 1
T = T -
J. K J.K PAHJ'K
2 DX 2 n _
* 8 Tk Y4 Trx T Yk (5.1.18a)

N
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n+l n+x 1
T =T -
, Ik T eE L ]
"
2 D+ 2 _a+l ] '
l‘r Tyx ¥ 48 Tk ~95.x (5.1.18b)

whichgiﬁfresents the ADI method and where »

A is a positive

constant taken in the intqrv&l (0,1},

2 . | |
Tk T P kTaerx Y By xTrx * Py xTio1x

such that EX is a portion of E

T K corresponding to the r-

.

J.K

direction. Simllarily for the ¥ direction,

2
= BV
4T3k " Br Ty k-1 B Tk * Hy kTroker -
Peaceman and Rachford [21] have examined the stability of a

4

pair of similar equations, //}/ - .

J.X J.X_ 13-1.% I YTk

: at \jJL—f’/

2n 2n \\ 2n

. J K-1 2314& \J K+1

s20+1 _ .2n 2n+1 {/2T2n+1 2n41

(a2 '- . B <(J/

2n+2 2n+1 2n+1 2n+1l 2n+1
Trx T Tk Tioixm ?Trx *Trax - <
- \
at 2 )
{ar)
2n+2 2n+2 = .
+ T
J K J,.K+1 . :
- ; (5.21.19)
(Ay) .
nd shown that the ratios (5. 1 10), for an arbitrarvy choice

of parameters s do not exceed unitvy when. considering their

product where
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Equation (5.1.18) is in a more general form than that of

(5.1.19). Comparing the respective notations of {21], (23]

we find

L]

v P =y Epg - ‘ (5.1.20)

Let r, ¥ correspond to ¢ and ¢ respectively. Consider a
second order PDE of the form (this egquation arises in the

" next chapter), —

K T¢¢ + KT¢¢ - 2cosé T¢¢ = (5.1.21a)

where ¢ is a measure of the angle of intersection of the

coordinate curves ¥=constant and é¢=constant takeh as func-
tions of xr_.and ¥ and where x is independeﬁt.of + and ¢ but
Xaries continuously with 4. Assume that K=1 corresponds %o
§=90 degrees and that as § decreases to 0 degree X

increases. In the subsequent stability analysis of (5.1.18),

. the continuous dependence of convergence rate on ¢ is shown.

A critical angle ec exists, lving in the degree:- interval

(0,90) for which the convergence rate is maximized where

R = - log [#(cC)]
is the rate of convergence and p(¢) is the spectral radlus.

it is also interesting to observe that as § was decreased

’
.

onlv slightly below 8C, divergencé occurred. According to
™~
our previocus reasoning it is necessary to substitute

(5.1.18a) into (5.1.18b) to vield, with ¥ -+ ¢ and ¥ -~ ¥ ,
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n+l n 2 !
T = T - —_—— (5.1.21b)
J.K J, K pAEJ,K ;

2

4
2, .n+3x _v.n+l
ATy x ¥ 3Ty *t

2
¥
2

A

n
TJ

kT 91k

r

Using the relation (5.1.4) in (5.1.21b) vields °

n+1l n 2
e = ¢ - —= (5.1.21c)
J.KT 3k T 5E; ¢
2 2
A2.0+% % ne1 L n
* Btk T 2rx Y 245,k

By inspection, {(5.1.21c) has three iteration levels  and -will
involve a gquadratic in .. Applying central difference
approximations to (5.1.21a)} vields

-1

K [‘J,K-l "2 ey gt ‘J,K+1] + K [‘J—l,x "2 ey gt ‘J+1,K]
= .9 cos§ [‘J+1,K+1 T ofT+1,K-1 T ‘J+1,x-1 t ‘J—1,K-1]

=0 (5.1.21d)

where py¥ = pé . In the notation of (5.1.18), comparing with

the coefficients of (5.1.214),

= = 2 = . = -
B =E = 2[x%+1] B By o = -1
F._ =F = —° H=H._ = -1
J.K 7. g
D =D = ¢? (5.1.22)
5% ) 1.

The cross derivative term has been taken to the RHS in
{5.1.21d) since the terms correspond to elements far from

the main diagonal of the tridiagonal, and is not included in
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the stability analysis. Using (5.1.22), {5.1.13) in
{5.1.21c), vields

n+l ei (raénJ+savnk)

»,s (5.1.23a)

n i(rAaénI+savnK) 2 2 n+¥%
¢ e - K ¢ x

r,s p . E Ar s
’ A°JT,.K ’

[_ei(raén(J—l)+sa¢nK)+2ei(rAéHJ+sA¢HK)_ei(rAéu(J+1)+sA¢nK)]
+ % [:n + €n+1).Ar,S x

[_ei(rA¢HJ+QA¢H(K—1)) i(raénJ+SA¢HK)_ei(rAéHJ+5A¢H(K+1))}]

+2e

Multiplyving (5.1.23a) by

-n ,—-1 e—i(raéHJ+sn¢HK)

€ Ar's
vields
. 2 -1
e -1 = - [PA(K fl)] x (5.1.23b)
[chx(_e—iraén tp_eirasd %(¢+1)(_e-isa¢ﬂ +2_eisA¢H)]
= - ————%?——-[Kzgx(2-2cosra¢n)+%(¢+1)(2—2cossA¢H)]
p K +1) -
A
Replacing
; by - , raem by s, , saen by s ,
pA(K +1)

2 %y
2 - 2 cos{sa¥ll) by 4sin Y

and

8

2- 2 cos(raénm) by 4sin2 ?f
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in (5.1.23b) vyields

s

2

2%

e = 1 = — 4f[}2 ¥ sin?=2 4 %(¢+1) sin®-2

Replacing ¢ by ¢2 gives

8 8 8 .
52[1+2751n27§ +4x2resin27f-(1-2rsin27§)-o. (5.1.24)

Solving the quadratic (5.1.24) for « Eields

—2rK2Sin2ﬁi[472K4Sin4ﬂ+1-4r251n45}x

¢ = 2
1+2-sin™¢

where £ = . n =

g 8
?f E? (5.1.25a)

We consider only the case ¢« is real. For stability purposes

we are interested when |c¢| < 1 in (5.1.25a). Taking the

positive sign and squaring vields

g . ]
4f2x4sin‘?§ +1 - 4f231n47§ <

-

8 8 2
[1+2rsin27§+2rx251n2?? )

Simplifying further gives

8 a
(1+2rsin2?;)(1—2rsin2?¥) <

8 8 g
(1+2rsin2?§)2 + 4fxzsin275(1+2fsin2?§) i

8.'
bividing through by 1 + 2rSin2?f ( > 0 ) gives

8 ] 8
1-2rsin27§ <1+ 2fsin27§ + 4fxzsin2?§
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which holds necessarily unless §,,8, vanish in which case

C S

equality holds. On the other side, -1 < «,

g 8 2
[:(1+2rsin27¥) + 2ersin2?§ <
8 6, -
arictsin® 2 4 1 - ar?sint 2 (5.1.25b)

Simplifying brings

8
—4rxzsin2??

6, 6.2
1+2rsin2?¥] + [1+2rsin27§] <

6, 8
[1+2fsin27f][1-2fsin2—2]

2
That is
8 8, 8, :
—4rK23in2?§ + 1 + 2rsin2?¥ - 1 + 2rsin2?¥ £ 0 -
or
8 6
4r(Kzsin2—ﬁ - sinz—z) > 0
2 2 =
Thus, ’
6, ’
N w
sin—-
K 2 (6.1.28a)
&
sin—g
2

On the other hand, if the negative sign is taken in

(5.1.25a), then by a similar analvsis,

6 J)
. W
31n7;
K < P . (5.1.260)
sin—g
2

Equation (5.1.26b) alsoc holds if the guantity on the LHS of
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inequality (5.1.25) is so large in magnitude as to exceed
the RES. An interval for x is sought “which accelerates
convergence of the iterative solution of (5.1?5?@) by the

8
ADI method. Thus, specific bounds are determined for sin?$

’

. 8
sinq? . We Tnext determine several cases under which the

discriminant of (5.1.25a) is positive, that is,_

8 @
4r2[1<4sin4-2—¢ - sin4—2l-b:]+1 20 .

If (5.1.26a) holds then necessarily,

2
g 8 P
K4sin4Té - sin‘?‘*’ + 2t o . (5.1.27)

Equation (5.1.27) also holds, independently of x if,

Let us suppose

2 [%J -
Pp £ 2sin EYEE (5.1.28)

Equation (5.1.27) can also be written as
4 s 2 2 2, 2 4%
K" 4sin 7f+pA +2K ’a +pA —4sin > >0

the roots being

2 ‘Pﬂzi(4ﬁA2(Sin4€—sin4n)+16$in4€sin4ﬂ)x
K =

9A2+4sin4n
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-1:2(sin4e—sin4n+4(paz)_lsin4ésin4n)x

= = " (5.1.29a)
1+(pA )—

1sin 1

& 8
. - 2
where £ = 2 , W = > .

By inspection (5.1.27) is of the form, ‘

aK4 + bxz + ¢ >0 a,b >0

and only has one critical point at x=0 which is easily

8
verified. By taking Py < 2sin2?$ we have added a restriction

to Pp- In the same manner a restriction can be épplied to Pa

in (5.1.29a) to vield

8 8
43¢ o 4sin4?¥sin4?$
4sin — > » > . (5.1.29b)
2 = 'A = o 8
sin4—2 - sin4—é
2 2

The discriminant of (5.1.29a) is positive if

6 8 -
. 4 % 4 ¢
sin —- - sin > >0 . -~
Assuming the above relation holds implies x > 1. Also

solving the discriminant in (5.1.29a%—for Pa vields an

expression which is trivially satisfied with respect +to
(5.1.28). Taking the modulus vields one of two possibilities

for an expression of the form

p2(a+bB)(a-b) < (>) 4ad? , ab>o0 .

Equation (5.1.28) suggests .the above inequalities (5.1.29b).

In [23] p, is taken to lie in {0,17. However this same
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.

restriction is not 'applied here. Simplifying (5.1.29b)

vields
8 8, 6
4’y 4 ¢ 4”4
sin > sin 2 2 sin > .
4%
Thus, dividing by sin Ty and taking the fourth root yields
8 -
sin—é‘g
> 2% | (5.1.30)
8
474
sin 2

The above result is true if (5.1.29b) holds,

8
< 2sin? ¥ <2 . (5.1.31)

-~

F

and (5.1.25a) has real rodts%' Thus if equality holds in

(5.1.26a), (5.1.30) gives a lower bound for an optimal x. In

the case of (5.1.25a} we find

r 2
1_
. sin&] - 2rsine ! (5.1.32)
sin 1+2rsin’¢ -
2 in? -1
= 1-| 2sin"¢€|»p 2 n2€ + 1
sin“n
2 in? -]
x |1+] 2sin“¢Elp §_§_§+1
A 2
sin™n
8 &
- ¥ = 2
where £ = 2 , W = >

Equation (5.1.32) is less than one in magnitude for every

choice of non-zero 8¢, 9¢' We can check for critical points.
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8

Differentiating with respect to sin?f we get

@
[
,—-"p"

-4sin2€sinn + 4sin2651n3ﬂ

} -
pA(sin2n+sin2€)/5k(sin2w+sin26)2
s

. - -
14 ZsinZEsinzn 1
4 -
pA(sin2n+sin25)
2sin®€sin’ny -2
+ 1+ - >
Pa(sin n+sin”¢)
1 2$in263in2n
x —
pA(sin2n+sin2€)
th 345
where £ = 2 "= > - The latter terms in the bracket are

nofi-zero. The former terms become after cross-nultiplving by

) 8.2
2 ¢ 2 "¢ <
[sin 2 + sin ??J

and equating the numerator to zero,

& 8 g 8 4
27 ¢ 2 ¢] 2 é} é 2%y
{[sin ?;+sin > sin Y sin?;sin 2 = 0
8 g
v _ ¥
»sinz—Onz ., 0.

Similarly for 7; . By symﬁetry the same result holds when
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] .
a\\\iiffe;entia%}ng with respect to sinjf and we see (0,0)

.

o
corresponds to a maximum. Subsequently in the next section

it is checked if ({(X) has any critical points. The function

Lot

8
sin?;

x

g
behaves therefore as an decreasing function of sin2?$ and
294
sin 2 - We also observe from (5.1.32), ¢ - 0O as
8 8
-1 sin21§ + sin2?;
Pa . p . = pg. (5.1.33)

?.sinz—isin2 ¢

2 2 TN
It also follows that pB—l < sy since for; any two positive

numbers a,b in the interval (0,1}, e

e
2ab ¢ a + .
~

-1

It is thus accurate to consider pA bounded below by pB and
above by (5.1.31). pB is taken as an intermediate value.
Assuming {5.1.31), (5.1.33) heold we have
8, 8 6 - 8
2_ ¢ 2°¢ 4 9 2°¢
sin 2 :l-sin > < 4sin 2/9’1\Q 2
~
or .
8 8 g
4 2_¢ 2_¢ _ 26
0 £ 4sin 9¢sin > sin > sin > - (5.1.34)‘
The roots of (5.1.34) in terms of ¢ 6 are 5

. -4

—
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8, 1%
1+ [1+1631n‘7$

8
sin2?? =
294

8sin ?;

.8
From (5.1.35) we see sin—Y £ 1 requires that

[

8. 1% |2 .8 2
1+1ssin4?§] ]- < [Bsin2-2—1]
so that

2

Hence,

8
sin27§ €

1+17% 1}
8 - r

by (5.1.35) and (5.1.36a). Now assuming

Ew 2
o sin??
g

Sin??

2

by (5.1.35) and {5.1.36),

Since p = ZpAtK2+1) we have

(5.1.35)

(5.1.36a)

(5.1.36Db)

(5.1.37)
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2(2% + 1) < £ <8 . (5.1.38)
A
. #
From (5.1.33) it can be shown, using {(5.1.36), that
5 < py 2 . (5.1.39)
By taking pA=.5 we have
%

(2% + 1) < p < 4 . : | (5.1.40)
Thus we conclude that good values of »,x can be ‘found by
(5.1.87) and (5.1.40). Table VII gives the results of
solving (5.1.21d). For +=0 the boundary condition was

{(3.2.4a) with o calculated by -determining f'(X) for the

circle of radius 1 . X was found from differencing r

> along

¢

v=0 as described in the algorithm of Chapter 2. The computa-

tional domain was as previously descri%ed in section 3.3. »

was taken to be 3.25, well within the interval given in
(5.1.40). The results show agreement with (5.1.37) and
convergence is fastest near «= \{3 . When eguality held in
{(5.1.26a) we saw the monotonic variation of (. This suggests

finding ¢*'(x) which is done in the next section.

5.2 CRITICAL POINTS QF ERROR FUNCTION

In this section we check the derivative ('(x) for
critical points. To simplify notation we set

8 8

a = SIn—i ., B = sin?§

2 y, & = K 7

where

¥



Thus we have

& —2532+(45234+1—4f o

1085
>

1
= r .

2 2 .
Pk +1)

2 4. %

¢! (k) %:EE

1+2ra2

t 0l 48{'34—4rr'a4 1
= | T2eTE o 2 4. %
_ (4878 +1-4r"a ) 142702
. —2£ﬁ2+(4€234+1—4r204)x (2r 2)
- _ T & »
(1+2r02)2

Multiplying the above expression by

(1+2r02

and equating to

[1 + 2r02] [4{23

12 (4:28% 1-4a%,2)% \

0 gives
4 + 1 - 4a4rz)x

~

4
[}
l Cpp1g2, dEC'B

-4rr'o ] .
(48254+l‘4r2a4 * .

- (2r'02) (4625

(45234+1—4a4r2
) 2

+ (1+2ra )(4&EctS

= 0

Now we note

A

4+1—4a4f2)x[}2€52+(45234+1—4a4f2)x]

1% c26182 (142r02) +ar s ca?s2 ]

2

4—4rr'a4)-2r'02(4€234—4r a4+1)

2K 2k

2 2 2
PA(K +1) pApK +1)

(e

| S—
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- 2K "

2 2
pA(K +1)

b= — 2K -

2 2 ' . ’
pA(K +1) .

~

Thus the above expression can be written upon sguaring both

sides

f.
axst 1 ot
+1il- x
2, .2 2 2, 2 2
pA (K +1) pA (K™+1)
-axazﬁz(rz+1}_ 4(32 2

=

2, .2 3 2 2
FA (k7+1) pA(K +1}

202 ax3gt 8xat
1+ -

2 2 2 3 .2 2 .3
PalKk T+ o " (kT+1)T £, " (K +1)

3
4Ka2 4(454 404 2
+ +1-

2 2 2 2 2 2 2 2
pA(K +1) pA (x"+1) pA (K +1)'

That is
4
———-~———;(B4x4—a4)+1 x
pAz(x2+1)
—8Ka232(x2+1)_ 4(52 2
2, 2 3 2 2
i Pa (K +1) PalK +1})

2a2 8K(K234+a4}
= {1+

2 2, 2 3
pA(K +1) pA (K™+1)
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A~

2 L
. 4o [ 4 (54K4—a4)+1]}2

2 2 -2, .2 2
PalkT+1) UL +1)‘

or multiplying by (K2+1)4(16K2)_1‘yie143

“

2

2
4
(54K4—a4)+1 20 1 |74
2, 2 1) 2 p 2 °a
Pa (K7+1) A
= le—2e® 1208%24a)
= + >
PplK7+1}) pAz(K2+1)
2 e
4 v
o — » 2(54K4—a4)+1J}2
A
pA (K™+1)
U | 42?8t (k241
3,2 2
Pa (k"+1)
2.4 4
. 2(x%8%a )+g$]2
2,2 p
A
pA (K™+1)
' 1 -2
or multiplying by - gives
P 2(K2+1)2
A _
2]2 4
[4(34x4_a4)+p 2(x2+1)2] 1420 8
A
[, 2.4 2 2
= | 2o 52x +§L(K264+a4)+02(K2+1)
pA A

[, 40284 25% 5 [ 2 2.4
+|a —_—

A

P
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2.4 4 2
- K4 4 g +€f +02
pA. A
2 2,2&4 4a234,234 2
A Pa A
412
+ [02+i? .
A

*

Collecting coefficients of like powers of gives

202

°a

4 2
K4 {4B4+p 2]i15 1+

P

A
A

) (5.2.1)

Equation (5.2.1) is of the form

ax4 + sz + ¢c =0 .

The coefficients can be simplified. Expanding a in (5.2.1}:
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[484+p 2] g 1+de  do
Al 3 R
A Pa
16048  16428%  satst
o 4 o 3 2
A A °a
a8° a8t 4] |
+ < ]
s 2 °a
. A
_ st 454,160254,150434,9 2,2, .4
= , 2 N Py h 5. 2 TR TR FpTRe
A A
16a%8% 164288  sutst
o 4 o 3 2
A A A
2.4
+ 48 + 4a” 8 04]
P 2 pA
A
4 4 40454 N
C. - o -
P 2 B
A
2 2
_Next we consider b: factoring out 2{1 + =2-| gives
< a
2 2.4
ol1 + %? 34 + 2a" 8
A °a
40434 202B4 4
- + + o
o 2 I
A
b 2 4.4
- ofe2al| [ e e satst)
°a P)

ll
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Equation (5.2.1) can be rewritten as

2
1+2a
)

A

2a2

A

4 2

K +2 2

K +|1+

or

Since

N\
2 T 2,2
K + 1%77—
A

K 1is

2

positive there are no critical points.

possible factor in the preceding analysis that

is,
4 4 4&434
0 =8 - a 2
P
A
or
g 8
4+ 4 ¢
] 2 4sin 251n >
A - pr -
sindle _ _ 4%
2 2

Using this result in (5.1.29) gives

K2 < 0

(5.2.2)

The only

can vanish
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which 1s not possible. Thus we have that the error formula

(5.1.25a) is a decreasing or increasing function of x. PFronm

(5.1.252a)
. a ] X -
_ 1 476 1 . 4'w
e(1) = l+p 2=.in 2 R zain 2
M A P A
8
- & e
A
8., 1-1
x |1 + p—l" Sinz?‘b
A
: 6, 1% 8
e(w) = [1+—S4_sip®2 |  _ 2442 ¢ (5.2.3)
2 2 N 2

°a
It is clear by inspection of the above equations that (k)
is an increasing or decreasing function of x depending on

the choice of 5¢' aw. This alsoc implies that convergence is

fastest at one end of,the interval for kx determined in the

previous section because of the monotonic variation of €.
<



CHAPTER 6 INVERSE PROBLEM WITH METRIC F NON-ZERO

6.1 FORMULATION OF GAUSS EQUATION

In previously considered flow problems the curvilinear
coordinate system was chosen with the coefficient F of
(2.1.10) =zero. In the present chapter Gauss' eguation is
" formulated under similar flow assumptions as tHe problem
considered in Chaptér 2 except with non-zero F. An equation
similar to that examined in Chapter 5 is derived for which
the previous stability analysis applies. The algorithm of
Chapter 2 is utilized, in this case using the ADI (Alter-
nating Direction Implicit) method as well_as SLOR. ADI is
well known to have a faster rate of convergence than SLOR
for certain classes of PDEs. The goal in using ADI is to
achieve a reduction in computational count and maintain the
accuracy of SLOR.

Several airfoill profiles were considered and their
accuracy compared with previous results. The variation in
choice of F and convergence'rate was also examined for a
particular problem. To begin with, we reformulate the
problem by replacing F in Gauss‘equgtion in terms of E, G
and 8, the angle of intersection of the coordinate curves
y=constant and é=constant. Using {2.1.10) and using vector
notation vields

P o= r,x, + y¢y¢

112
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= [r¢[ . |f¢| coss

T~
where ¢ is a function of position,

(EG)xcosa - (6.1.1)

6 = 8(o(X.Y),v(x,¥)) . . ~ (6.1.2)

Use of (6.1.1}) and (6.1.2) in (2.1.12b) vields

- FE, + 2BF, - EE

2 ¢ & &
r11 = 2
2W
_ b X
(EG)"cosdE, + 2E((EG) cosg), - EE
@ @ ¥
= > (6.1.3)
2EGsin” s
such that
W = [ EG - F° ]x
= (EG)XEI - cosza:lx
= (EG)xsina
Also,
]
EG, - (EG)“cossE .
2 g ¢
ré = . (6.1.4)
12 2 .
2EGsin™e

Using (6.1.3) and (6.1.4), Gauss' equation becomes

% %
(EG)xsins -(EG) Cos#E,+2E( (EG) cosé) ,-EE
E

W

2EGsinZs &

_ X
(EG)xsina EGé (EG) cosaE¢

2EGsin28 ¢

E
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or, on simplificaticn,

{__;_[_ [g] "cosez_¢+2( (EG) *coss) ¢'E¢]}

2(EG}xsin8 ¥

o, (gt
- \——/—]G - |=]"cossE = 0. . (6.1.5)
{Z(EG)xsina ¢ [E] v

Considering the irrotational case the. vorticity equa-

tion becomes

[oEG)xcosa] _ E
¢

(EG)%sins

—_—_— = Q , ‘

(EG)“sina]¢ _

which reduces +to

(cota)é - [[g]xcsco]¢ = 0Q . : {6.1.6)

For simplicity, the incoming flow is considered to be
described by linear functions of ¢, + with constants'A, B, C .

and D, ‘\\

X (é¢.¥) =Aé + B¢ ; A, BE®R ;
Y (é.,¢) =Cé + D¢ ; C,DER . (6.1.7)

It follows using (2.1.10), that at infinity

F

-GW = r¢ + y¢ =B~ + D : {(6.1.8)
Y
2 - tana =S | (6.1.9)

From the vorticity equation (6.1.6), assuming constant ¢,

L 3
©



E = g?(4)6
so that from the above relations,

-

2 . 2% .
A"+ C - . .
gl{¢}) = ——————;] = ¢1 . K = constant. (6.1.10)
B + D :
From (6.1.7) - (6.1.10) we observe that it is suffi-

cient té specify A, B, C. D to find coss, g(é). o - For

example, if

L
Y =4
o0
then )

1 - o

COoS8 = — Qr 8 = 45
; 23

1 _ aQ

g(é) = 2_‘x [ Cl’w —‘0

The physics of the irrotational problem dictated the
existence of a velocity potential implying E=G when F was
chosen to be zero. For F¥0, a uniform flow with angle of

attack o at infinity, and a constant angle between the
coordinate curves in the (é.%) ne{, we have seen that

E=x"26 , x %= constant. (6.1.11)

Using '(6.1.11) in the Gauss equation {6.1.5) gives
——J;——[— CosgE, + 2(Ecosg), - K-lE ]
2Egpineg & ] v) |

1 .
- [2Esin8{KE¢_COSBE¢)]é = 0. (6.1.12)
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Using the relation T=i§§ in (6.1.12) gives

: 1 -1
[sino(T cosg - K Tﬁ)]d’

—‘[Sina(KT - cossT¢)]¢ = 0

or

1 . ~
[T cots - K Tﬁcscé]¢ - [;Técscs - cot8T¢]¢ =0

T cotsd - K 1T .esesd - KT

o o éécscs + cot9T¢¢ = 0Q .
Let
2" 2 ;
v omox 515 + r_ﬁiilg : (6.1.13)
aé av

then by (6.1.13)}, (6.1.12}) becocomes

csceva - 2cot5T¢¢ =0 .0 (6.1.14)

A solution is required for (6.1.14) subject .te far fleld
boundary conditions

6 =6, , T =0 at ¢ =¢_ , ¥ = v .

-] -] oo o

For boundary conditions along the coordinate curve ¢=0 we

use (2.1.12a), (6.1.3) and {6.1.11) to get

- T .cots — k" T cscs (6.1.15a)
%% é ¥ i
a, = KT cscd - cotsT (6.1.15b)

¥ @ ¥ .

in which o is determined from

o = tan_l[f'(r)] ) (6.1.16a)
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As in the algorithm in Chapter 2, X may be determined by

differencing

,t"s ='Exc08a (6.1.16h)

along =0 subject to x(0})=xy. Alternatively, r can be

calculated throughout the entire flow field. To accomplish
this, second order PDEs in ¥ and ¥ are required. Referring

to equatlons (2.1.11b) and (6.1.1) we find, using elementary

trigonometric identities,

X X .
X, = (EG) COS§cosSa — (EG) sindsina - (6.1.17a)
M Ex Ex -
= GxCOS(8+a) = Gx(cosac05a - sindsina)
: X X
y¢ = YEG) cosdsina + (EG) singcosaqa ) {6.1.17b)
’ Ex E

= G¥sin(8+a) = G¥

(sinfcosa + cosssina) .
We see (6.1.17a-b), by use of (6.1.11) together with

(2.1.11a) can be written as two pairs of equations,

cossy¢ - sin81¢ = stina = KEksina .
. S -
y¢ = E'sina {6.1.18)
' _ 3 - %
sin8y¢ + coser¢ = G'cosa = KE'cosoa ,
0%
I¢ = Gcosa . {6.1.19)

By inspection of (6.1.18), (6.1.19) we have

Ky¢ = y¢cosa - siner¢ - ({6.1.20a)

N
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Kr¢ = y¢sina,+ cosar¢

Solving (6.1.20a-b) for r¢ and y¢ vields

. R )
cosg Ky¢
) sing Kr¢
I =
¥ co7¢9 ~= sing
sing cosg
= K(coser¢.- sineyé)
Kyé - sing
Kfé cossé
y o=
¥ cos8 - sing

sins cosé

K(yécosa + X sing)

-]

Rewriting (6.1.21a-b) gives

1 =
X y¢ yécosa + X

és.f.na

rw = récosa + yésina

el Lo

Taking the derivative of {6.1.20a), {6.1.22a)

to ¢, ¥ respectively and adding vields

KX +

6 I¢¢ = 2cosgr

e

@y

For y: one also oﬁtains in an identical way,

ryéé +

Al

y¢¢ = 2coss yé¢

Let

b = -2 cosg . a =K R c =K

(6.1.20b)

(6.1.21a)

(6.1.21b)

(6.1.22a)

(6.1.22h)

with respect

(6.1.23a)

(6.1.23b)
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then

b2 - 4ac = - 4sin29 <0, 8 ¥#0 .

Thus, (6.1.23) are by definition elliptic PDE as is
{6.1.14). Similarilyf it can be shown from {(6.1.15) solving

for T, and T

é ¢

T = x 1o, csce -a, cots (6.1.24a)
é s ') i

T¢ = cots %y a¢K cscéd . _ {6.1.24b)

Taking the cross sgerivative of (6.1.24) and subtracting

vields

L
Ka¢¢ + X Sy 2COSGQ¢¢ . {6.1.25)

An inverse problem coculd be attempted using'(6.1.25) ang
boundary condition (6.1.24a), whereby the speed is specified
apriori, the angle o determined, subsequently I can be
détermined from (6.1.23a) with boundary condition {(6.1.17a).
The integration of a pair of‘ODE deécribed in section 6.3 is

then made to determine the profile.

6.2 VARYING THETA

In this section the convergence characteristics of the
numerical scheme of Chapter 2 is investigated with respect
to varving . ¢ iirsigﬁn constant. Gauss' equation (6.1.14)
with boundary conflitions (6.1.15a) is also used As well, X
is determined from (6.1.23a). To vary K one or more of the

constants A, B, C and D of the previous section are slightly
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altered. By-inspection, there is more computational work to
-be done . simply because of the extra terms involving the

cross-derivative terms T P ¢ If can be seen that

-3 y

¢v * Tout
elliptic PDE of the form (6.1.23) can be transformed by
linear transformations to Laplace's equation (by taking ¢
and ¥ as linear functions of variables € and n). The exis- _
tence and unigueness of a solution for Laplace's equation
with Dirichleé or Von Neumann bdundary conditions is

verified in [12].

Central differencing (6.1.14) vields.

-— 1 .

K [;J,K+1 - 2Ty o o+ TJ’K;IJ + K [TJ+1’K - 2T; Lo+ TJ_l'K]

- 'scosa[TJ+1,K+1_TJ+1,K—1_TJ-1,K+1+TJ-1,K—l] - 9»\\ (6-2.2)
, -

such that for K=1 or ¥=0,
T3,2 - T30 T,

Tow = 2 . ol (6.2.2a)

DY

T¢ = - K51neaé + KcosaT¢ (6.2.2b)
1

Tou = 2D¢D¢J:TJ+1,K+1'TJ+1,K"TJ—1,x+1+TJ-1.K] : (6.2.2¢)

To verify (6.2.2c), expand the RHS terms in a Tavlor Series,

T34, 841
g
2
pve 11
Toen,x 229 Typy x v 57 Toarx *
7
0 262 00
STy k2P Ty ST Tt ]



1 0l
3 D"’[TJ.K *0eTyx * ]
, _
2¥ (11 ] .
+ Py [TJ,K + ... _ (6.2.3)
o . 0s% 00
Tren,x = Tyx 2 29T o+ 130w

Usfﬁ% (6.2.3) in (6.2.2c) we find, (note that all terms on
right hand side have subscript- J,K which has been .dropped

for convenience)

Tyer,ke1 ~ Toer,x = Tyo1,ke1.* Tyo1 k
o  pé> o0 1 01
=T + péT + —T + DY (T + DéT + ...)
2 e
+ 2%—(T + ...) =T - ps7? - EE—T
- [r - peT? + %g_Too + oo (T -peT4.. ) + %;rcr ...)]
2

+ T - pot° + %frroo + ...

= 2T - 2T +206(T° - T°) + pw(T - 1) + pe?(2%° - 1°°)
pe? 11 11 01 ' 2
+ —5"!'-'('1‘ - T77) + 2pép¥T + O(DéD¥™)

2060¢T°% + H.O.T.

where 0, 1 denote the derivate in the é,v¢ direction respec-—

tively. Thus use of (6.2.2c) is validated From (6.1.7) -

(6.1.99
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2 2%
+ D -
K = %————J L 7Y (6.2.4a)
A% + ¢? )
AB + CD ) 3
cogd = [}
[(A2 + c?y(B? + Dz)]" .
AD + BC
sing = :
[(Az + c2y(82 + Dz)]"
AD - BC
tang = AB + CD ° : (6.2.4b)

.To investigate- the effect on convergence of-taking a non-
orthogonal grid in the é,¢-system it is necessary to take F
non-zero. This investigat;on can be carried out in one of
two ways : by an Fourier series appréach, as in Chabter 5
whereby it was shown precisely for which angles the numeri-
cal procedure converges fastest, or simply by numerical
eiperiﬁentation or trial and error, to establish an inéeréal
of convergence for a solution to exist for a given angle ¢
and a non-orthogonal grid. The results should agree with the

stability analysis of the previous chapter. For example, at

outer regions of the computﬁss?nal domain, we let the linear

functions of ¢ and ¢ be

@ +-An L ’ n=20,12, 2,..., N (6.2.5)

X

¥ =9

for some positive integer N, where An is a positive cons-

tant.. To solve the problem numerically the. case §=0 is
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excluded since then there is no curvilinear net. Various

values of § based on (6.5.5) and (6.2.4b) &gre used. The
v . .~

profile taken was the circle of radius .5. ADIp;aescribed in

.Chapter 4, was used. Equations (6.2.1) and (6.1.23a) are’

solvgg with respective boundary conditions (6.2.2) and

(6.1.173) for'K=1 or ¥=0.

Inspection of Table VIII reveals fast convergence for
some values of n and slow convergence for others as
predicted by the analysis of Chapter 5. The behaviour also
suggests, as predicted in Chapter 5, the existence of a
angle ¢ which optimizes convergence. A possible explanation
for the fast convergence at a value of X close to but not
equal to three is that the error function, as shown in
CPapter S5, is a decreasing function for certain values of X,
'i.e., equality in (5.1.26a). Thus the eigenvalues of the
error reduction matrix of the ADI process are minimized for
values K close to the upper bounds of the interval deter-
mined in Chapter 5.

Varjous examples of non-orthogonal grids for grid size
[-1.5,1.5] x [0,2], (64 x 43) grid points and tolerance

level 4

MAX {TNTL _ N < .0001
A Tax T Tax

were considered.

For the circle of radius one-half the maximum velocity

is 2 and occurs at the top of the circle. The variation of

¢
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accuracy with respect to the exact solution that was evident
in Table VIII (column 5) suggests that as ¢ varies the
problem changes in some sense. In the next section the ADI
method 1is utilized for solving p:oblems when the angle o« or
metric E is specified on the airfoil surface apriori and the
resultant profile determined through the integration of a

second order QDE.

6.3 SPEED SPECIFIED: THE INVERSE PROBLEM

-

We have seen that by specifving a profile ¥ as a func-
tion of ¥ and knowing the value of the leading and trailing
- » .

edge in terms of I, say X X ., that a solution to the

LE ' *TE

irrotational, inviscid, incompressible problem can be 6btai—
ned using the algorithm of Chapter 3. It is clear that
knowing the stagnation points in terms of r simplifies the
problem. -

In this section1g method of solution for the inverse

problen is considered in that the speed q 1s specified at

grid points ¢J, ¢=0. It is required to find the resulting

.

shape having this velocity profile. An algorithm is devel-
oped and the computer listing is given (cf. Appendix C). Not
a great amount of published work 1is readily available bn
this particular problem. In a recent article, Jones and
Eggleston [25] used an optimization method in the design of

supercritical airfoils.
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One of the problems that arises is that there could be
infinitely ﬁany airfoil éurfaces Y=r(x) corresponding to the
particular velocity profile which is specified. Thus it is
necessary to find the angle distribution which unf&uely
corresponds with the choice of grid points chosen to
represent the function ¥ in the transformed plane. To find
the angle o one of two approaches can be taken. In the first

it is necessary to prescribe values for T (T=1nE/2) for

J,1
J=1,...,JMAX, then to solve for o from (6.1.25) throughout
the computational domain with boundary condition (6.1.24a}

used on ¥=0 or K=1 and « _ determined from (6.1.9).
The other approach is to specify grid points él’ ¢, for

which o vanishes and which satisfy

$y < brp <8< $op < 4, -

a can be determined simply by forward and backward
differencing (6.1.15a) from the leading edge and trailing

edge respectiﬁely towards the center of the computaticnal

domain after finding values for Tw and T¢ on ¥=0 or K=1.

Finding these values can be accomplished by sclving the
Dirichlet problem (6.2.1} having specified values for T on
the boundaries. Once o 1s determined accurately Y is deter-

mined as in the algorithm in Chapter 3. Subsequently the

increments D& along the profile can be found. These values

are required fcr the determination of the function Y=f(r) as
RN

seen below.
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Consider the system of ordinary differential equations,

au

1 2
ax u fl(r ' ul ’ uz) (\ ({6.3.1a)
du “x |
2 _ 2]1.5 -T°_
ar = [1 + u2 aé‘e = !2(I P u; ’ u2) (6.3.1b)
Up(Xpp) =9y uz(rrg) =1,
‘Consider a curvilinear net defined by
X = Xx(¢,%) r Yo=Y, ¥)
Let
¥ = f(x) = ul
Consider the bounded intervals [a,b] , {[e,d41 for real

numbers a, b, ¢, &. Suppose we are given an arbitrary set of

values {a ée 1} defined on [a,b] x [c,d]. Then provided this
set 1s bounded and continuous a unigque solution to (6.3.1)
exists [14]. Thus the product a¢e_T uniquely deeermines Y as

a function of r. It is alsoc known that given a function
Y=f(x), T and o are uniguely determined accoréing to the
algorithm of Chapter 3. From (2.1.22a) wvalues of T and o
determine r. Therefore we can qonclude, that if from the
values of T, specified apriori, %nique values of & can be
obtained then Y=f(r) is determined unigquely subject to two
ihitial conditions | \

Y(x, o) = yLE . ¥{( =Y

Tpg) TE

and the 0.D.E. (6.3.1). Suppose then we are given a set of
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-

values for TJ l‘either randomly distributed or determined by

.a set of rules. For example a linear interpolating formula

. — @&
J JTE

T(é¢;) = —————— T
J -
¢LE ¢TE LE

+ ;——‘———-— TTE o (6.3.2)

where jLE 2 J 2 Jpp- Assume that a similar linear inter-

polating formula describes T for J < JLE and J > JTE' We

wish to determine the resulting airfoil profile by one of
the two approaches mentioned above. A method that is well--
suited to the problem éhd is used is the Non-Linear Finite

Difference Algorithm which also uses Newton's method to find

zero's of vector systems [11]

G(T) = F - 3" NF) F(T) : (6.3.3)
where
J(T) = : i (6.3.4)
afl afl
8x ax_
8fn afn
_arl ;arn_

is the Jacogﬁan matrix. Equation (6.3.3) is based on the one
!
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dimensional relation

{x) = x - $(x)s{x)

{6.3.5)

in which ¢ 1s determined so that the fixed point ¥ of §(IX)

is found.

The differencing method that is used for

is, from [3],

’dy] Yye1 ~ Y521
J

ldx}J

T3e1 = T3a1

:2[(IJ-£3—1)yj+1_(rJ+1-rJ—1)yJ+(rJ+1_rJ)y;—1]]
x [(IJ+1_IJ)(rJ+1_rJ-1)(rJ_rJ-1}]_l

Emploving (6.3.6) and (6.3.7) in (6.3.1b) vields

[2[(IJ-IJ—I)yJ+1-(IJ+1-IJ—1)yJ+(rJ+1-rJ}yJ—l]]

x [(IJ+1-rJ)(r3+1—r3_1}(rJ—rJ_1)]—1

Y341 = Y31

}2 3/2

Lr41 =~ %321

In our case, according to the notation of

{6.3.6)

(6.3.7)

(6.3.8)

{6.3.4), Ii
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corresponds to yi. For computer ordering purposes let

J =1 v J =M

correspond to the wvalues

3 =3 f,l R .
respectively. Also let *
Ces = X341 ~ X3
C23 = L3417 X3 !
Cez = X5 7 Xyog
Cag = -8 Wgyy — X Xgyy = Xy 0 (X5 - X5 ) :
( e 3
c - “F+1 T %J-1
53 20é
c - €33
93
Cz3
Y1 ~ Y31
Coz = c
73

and for compactness rewrite (6.3.8) as

Cag¥se1 = C75Y5 * Cgi¥5, )

_ 3/2 =
Cssch[l + [043]2] /2 =0 . (6.3.9)

From (6.3.9) we can readily calculate J(¥) to be

J(G) = TRID(AA,BB,CC) ;

where
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BB; = C,. ' , (6.3.10)

For J =1 .

and for J = M

CCM =0 .

In emploving Newton's method to solve the system
(6.3.1) at each iteration the MxM linear system,

T(AA,BB,CC) (W, ,..., Wyy) - (6.3.11)

273/2
= [Ca;yz = CqqY) * Coy¥pp - (0305)1[1 * (Cyy) :l

273/2
o Com¥re T Con¥y t CopVmeq - (Cacs)M[l F (Cay) ] ]

is soclved for Wl;...,WM such that
(K} _ . (K) (K)
Yy =¥ +wy Jee+1 29 S Jpp,

K denotes the iteration level ang -
{0) (0)| _
[Wl ree o, WM = (0,...,0)

is the initial guess,

The values of rJ 1 and thence increments DrJ 1 can be

determined by solving the full equation for r, {6.1.23a) -

with far-fielg boundary conditions determined from (6.1.7)
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and derivative boundary condition from (6.1.17a). The
following algorithm solves the iﬂverse problem using the
first approach as described in. the beginning of this
section. -

(1) Construct a grid as in the previous algorithms of

Chapter 3 and 4. Specify X, and y°° as in (6.1.7). Initialize
unknowns ‘I‘°° and o according to (6.1.8) and (6.1.9).

(2) Specify TJ 1 according to predetermined criteria along
the coordinate line +¥=0 such as a linear interpo;éting
formula. Solve throughout the flow field by (6.1.25)
using SLOR or ADI with\knq?dary condition (6.1.24a) on K=1.
For-a_ use the value determ}qed in step (1).

~ -
/
(3) Knowing T and o along =0, solve for r throughout by

~J

using (6.1.23a) and SLOR or ADI with boundary condition
(6.1.17a), X=1. The increments 125 ¢ cén then be determined for
the solution of (6.3.1).,
(4) Having wvalues for br, T, « integrate (6.3.1) by Newton's
method described above.

Using a linear interpolating form for T the algorithm

was tested to vield various profiles with varying g¢. r., and
Y, were taken to satisfy (6.2.5). The ADI method was used.

The convergence characteristics followed those of section 2.
Figure 9(e-f) gives the various profiles generated by

choosing particular values for .

>
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The grid size was 65 x 43 with ¢ = 2 = -¢ Equal sized

MAX MIN®

L]
grid spacing was used. The tolerance level was .0001 with
maximum norm. The profile was taken to lie on the grid

points ¢23 to ¢43 . ¥=0. T was a linear funcﬂ‘on of ¢

linearly connecting the following points

T23=.55,T24=.50,T = -.2 ,

T42 = .5 , T43 = .55 , Tl =0, T =0 .

As § decreases from 90 degrees and the algorﬂittfm becomes
more stable and the profile increases in size. To check the
validity of the resultant pProfile it would be necessary to
_represent the profile és polynomial in ¥ and then to solve

the problem according to the algorithm of Chapter 3.



CONCLUSTON

The algorithms presented in the thesis deal with a
curvilinear coordinate system and thg solution of elliptic
partial differential equations to generate this QYStem.'
Unlike previous grid genération systens the flow eqﬁations
were interlocked with the fiiid flow equations, i.e., one of
a pair of coordinate lines of the computational domain was
taken to Se the streamlines. This then, represents an
original épproach to solving fluid dynamic flows by finite
difference technigques using high speed computers. Among the
features of this new approach were 1its directness and

ability to solve the flows considered in a fast and’éffi—
cient manner. However, it ha;;§ét to be tested for the more
complicated, relevant flows of modern Computational Fluid
Dynamiecs. However, one.of the goals of the thesis was to
éolve several standard problems in a new manner, thereby
opening up the possibility of solving more complicated
flows, such as Ehose with compressibkility and circulatory
effects.

To investigate flows with circulation and 1ift would
require use of the entire computational domain. Questions
that might be considered are :{ what stagnation point cor-
responés to a particular angle of attack and circulation, or

given a stagnation point and angle of attack what is the

céfrespcnding lift. To solve compressible problems requires

133
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the governing equations to be reformulated with variable
density.‘ Other types of problems at a mofe advanced level
are viscous_flows with various Reynold's numbers, flows
with separated vortices. For the latter flow it might be
feasible to construct a Separate conmputational domain for
the éeversing flow and match with the regular computational
domain at a particular ;treamline. In conclusion, it is

promising that a series of CFD flows can be solved.

/)
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TABLE I

New Algorithm

¢ x q/ua(speed)
-.5 -.4673 .8869
-.4286 -.4019 1.1192
-.3517 -.3395 1.1462
-.2857 -.2772 1.1468
-.2143 ~.2144 1.1390
-.1428 -.1511 1.1275
-.0714 -.0816 .1.1142
0. -.0224° 1.0998
.0714 ..0432 1.0849
.1428 .1096 1.0695
.2143 .1770 1.0534
-.2357 2454 1.0360
.3571 .3150 1.0156
" .4286 .3861 .9887
.5 r .4596 .9411
.5357 .4982 .8887
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TABLE IX Theodorsen's Results

X (percent) q/u,
0 o

- 1.25 1.035

2.5 1.127

5.0 | 1.153

7.5 1.151

10 1.150

15 1.146

20 1,141

30 1.139

40 1.140

50 1.131

60 1.115

70 1.090

80 1.050

20 .996

95 .943
100 O
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TABLE

IIIx Grid Generation Results

w

X q/u
-.5 - .0213
-.4583 1.205
-.4167 1.191
-.37% 1.182
~-.2916 1.166
-.2083 1.145
-.125 1.112
-.0416 1.110
0.0 1.090

.0833 1.069

.1667 1.047

-2083 1.036

. 250 1.024

.3333 -996

-4167 .959

.4583 -8510

500

.7667
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Comparison of Van Dyke's Perturbation Solution,

TABLE IV

Parabolic Shear for Circlé of Radius .5

with Numerical Solution Using Algorithm A

e=.1,

EXACT SPEED

J | |1 ANGLE OF INCL. | NUMER. SPEED
20 | 0.44261836D 00 | 0.13619851D 01 | 1.78837129
21 | 0.10706203D 01 | 0.10505036D 01 | 1.88482938
22 | 0.13771839D 01 | 0.88371697D 00 | 1.95816958
23 | 0.15878872D 01 | 0.75760763D 00 | 2.0177196
24 | 0.17469128D 01 | 0.65202466D 00 | 2.0673800
25 | 0.18718802D 01 | 0.55893096D 00 | 2.10915288
26 | 0.19717819D 01 | 0.47418155D 00 | '2.1442386
27 | 0.20518551D 01 | 0.39529977D 00 | 2.1734122
28 | 0.21153969D 01 | 0.32065023D ‘00 | 2.1972034
29 | 0.21645772D 01 | 0.24906688D 00 | 2.21599282
30 | 0.22008472D 01 | 0.17966225D 00 | 2.230042237
31 | 0.22251624D 01 | 0.11171907D 01 | 2.2395263
32 | 0.22381063D 01 | 0.44622538D-01 | 2.244553031
33 | 0.22399593D 01 |-0.22186436D-01 | 2.24516783
34 | 0.22307297D 01 |-0.89247870D-01 | 2.24135844
35 | 0.22101556D 01 |-0.15711602D 00 | 2.233064993
36 | 0.21776786D 01 |-0.22639517D 00 | 2.22015994
37 | 0.21323810D 01 |-0.29778458D 00 | 2.20244427
38 | 0.20728713D 01 |-0.37214250D 00 | 2.17964646
39 | 0.19970791D 01 |-0.45058743D 00 | 2.15137505
40 [ 0.19018794D 01 |-0.53467429D 00 | 21170786
41 | 0.17823546D 01 |-0.62673324D 00 | 2.0759679
42 | 0.16301728D 01 |-0.73060979D 00 | 2.026843

43 | 0.14293494D 01 |-0.85360317D 00 | 1.96768665
44 | 0.11414282D 01 ]-0.10132502D 01 | 1.8945960
45 | 0.60356148D 00 [=-0.12843509D 01 | 1.79822155
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Comparison of Van Dvke's Perturbation Solution, e=.1,

TABLE V

Parabolic Shear for Circle of Radius .5

with Numerical Solution Using Algorithm B

EXACT SPEED

ANGLE QOF INCIL.

NUMER. SPEED

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

0.64006280D 00
0.10738308N0 01
0.13215281D 01
0.15040109D 01
0.16503059D 01
0.17715991D 01
0.18735535D 01
0.19595365D 01
0.20317396D 01
0.20916649D 01
0.21403725D 01
0.21786191D 01
0.22069410D 01
0.22257052D 01
0.22351408D 01
0.22353568D 01
0.22263514D 01
0.22080109D 01
0.21801026D 01
0.21422558D 01
0.20939313D 01
0.20343701D 01
0.19625114D 01
0.18768540D 01
0.17752103D 01
0.16542221D 01
0.15082466D 01
0.13261510D 01
0.10791247D 01
0.64800457D 00

!

| 0.12697396D 01
| 0.10542176D 01
| 0.92139656D 01
| 0.81563060D 01
] 0.72363828D 00
| 0.64006502D 00
] 0.56235334D 00
| 0.48892730D 00
| 0.41873059D 00
| 0.35100252D 00
[ 0.28516450D 00
| 0.22075555D 00
| 0.15739247D 00
| 0.94743412D-01
| 0.82509109D-01
|-0.29591617D-01
{~0.91834081D-01
|-0.15449930D 00
|-0.21788620D 00
|-0.28232610D Q0
[-0.34820142D 00
|-0.41597202D 00
|-0.486214940 00
|-0.55968863D 00
|-0.63744599D ©O
|-0.72105739D 00
[-0.81313054D 00
|~0.91881544D 00
|-0.10514744D 01
[~0.12659160D 01

0.56674550
1.00312270
1.27874250
1.46928750
1.61499750
1.7326068
1.8298563
1.91096808
1.9785290
2.0342652
2.0793609
2.11465222
2.1407271
2.1579769
2.1666501
2.1668660
2.1586187
2.1417817
2.1160978
2.0811698
2.0363944
1.9809355
1.9135899
1.8326363
1.7354694
1.6178612
1.4720581
1.2813137
1.00583778
0.5688508
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Comparison of Van Dyke's Perturbation Solution,

T STABLE VI

Parabolic Shear for Circle of Radius .5

e=.1,

with Numerical Solution Using Algorithm C

J__| EXACT SPEED | ANGLE OF INCL. |  NUMER. SPEED |
21 | 0.73299866D 00 | 0.12247777D 01 |  1.87745130 |
22 | 0.12139827D' 01 | 0.98028912D 00 | 1.97829420 [
23 | 0.14863582D 01 | 0.82630122D 00 | 2.0553168 |
24 | 0.16781709D 01 | 0.70511991D 00 | 2.1179665 |
25 | 0.18236590D 01 | 0.60142053D 00 | 2.17015778 [
26 | 0.19375326D 01 | 0.50859229D 00 | 2.2138735 |
27 | 0.20275588D 01 | 0.42308099D 00 | 2.2502858 [
28 | 0.20983311D 01 | 0.34270216D 00 | 2.2801533 |
29 | 0.21527489D 01 | 0.26597986D 00 | 2.3039829 |
30 | 0.21927007D 01 | 0.19183832D 00 | 2.3221306 |
31 | 0.22194138D 01 | 0.11943878D 01 | 2.33483339 |
32 | 0.22336440D 01 | 0:48083492D-01 |  2.3422495 |
33 | 0.22357787D 01 ]-0.22847173D-01 | 2.3444680 |
34 | 0.22258853D 01 |[-0.93941516D-01 | 2.3415146 |
35 | 0.22037217D 01 [-0.16579722D 00 | 2.3333629 |
36 | 0.21687085D 01 |-0.23906366D 00 | 2.3199273 |
37 | 0.21198578D 01 |[-0.31449418D 00 | 2.3010405 |
38 | 0.20556371D 01 [-0.39302038D 00 | 2.2764679 |
39 | 0.19737224D 01 [-0.47587074D 00 | 2.2458586 |
40 | 0.18705361D 01 |-0.56478018D 00 | 2.2087050 |
41 | 0.17403196D 01 [-0.66240311D 00 | 2.1642492 |
42 | 0.15730254D 01 |-0.77324855D 00 | 2.1113260 |
43 | 0.13485058D 01 |-0.90627062D 00 | 2.0479507 |
44 | 0.10138233D 01 |-0.10850729D 01 | 1.9702337 |
45_| 0.16489334D 01 [-0.14953991D 01 |  1.8687467 ]
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TABLE VIX

Varying Theta

angle ¢ total max.err No of |Loc.of max K
error & | %10 ° & | iter. err(J,K)

89.2'° .4?' .457 136 {29.,1) 1
89.1 ° .47 .497 136 (29,1) 1
88.2 ) .4} .497 136 (29,2) 1
86.4 ) ‘.47 .497 136 (29,2) 1.001
75.96" .46 .495 134 (29,2) 1.03
64.43° 44 .496 128 (28,2) 1.12
58.2 ’ 425 .497 124 . {28,2) 1.176
53.1 ° .408 .497 119 (?8,2) 1.25
ss.8 .393 .4998 112 (28,2) 1.33
45 : .34 -499 128 (26,2} 1.414
41.6 .314 .494 113 (26,2) 1.505
38.66° .267 .488 103 (25,2) 1.6
38.3.0 .261 . 492 100 (28,1) l.61
36.03° .092 .47 84 (28,1) 1.70
.34.870 o0 oo oo ( —= ) 1.75
33.7 - o0 © { == ) 1.803
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TABLE VIII

Varving Theta

angle tot(r+$) max.err No of 2-max(T) K
error = :.c.‘LO_3 ] iter. err(J,K)
90.0 .71’ 1.0 >250 .37 1.
?é.Q .15 2.3 >250 .318 1.03
63.5 . 795 .930 >250 .227 1.12
' s
£3.1 .923 1.1 ->250 -134 1.25
45 .682' .776 >250 .083 1.41
42.2 .719 8.68 »>250 077 1.49
39.8 .308 .374 >250 -10 1.56
37.6 -135 .099 234 .116 1.56
36.5 .052 0%89 230 .168 l.68
35.5 .05 . 099 171 .222 1.72
35.3 047 .099 154 -217 1.73
34.6 -026 .091 116 .239 1.76
53.6 1.6 9.8 >250 .412 1.8
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APPENDIX A

1. C|=—- - -
2. . <l |

3. c1 IEROTATIONAL,INVISCID,INCONPRESSIBLE PLOW PRO3LEXN

4. e —————————- -

5. C| SLO2 ALTEBNATING-DIRECTION IMPLICIT PHEOGRAN FOHE IREOTATIONAL,
6. €] INVISCID,INCOMPRZSSISLE FLOW OVEIR NACA-0J12-64 AIAFOIL

Ta of |

g. Cl 3Y GEORGE GICSSHAN

9. oy} UMIVEZSITY OF WINDSOR

10. o .

1. Ci - - —— -_— - e
12a Cc

13. C AEDRESENTATION CP VARIABLES: £7,T-523D ELT OF ARC LENGTI.

15. C I,Y-CAnT2SIAN COORDIYATZIS.AA,23,CC-SLTS OF TRIDIAGONAL MATRIX.
15. C IBY{3),sX X)) -5ATD COOQRDIUATES IN TnANSFOEINED PLANE.

TE. C WE(J)+AN3SL2 OF INCLIMATICN OF ATBO-FOIL SU27ACZ.

17. C w¥ ACCEZLEZATION PAE.'\SET.?.B&E-,R-,A.,SR PARAISTERS ASSO0CIATED

18. - C WITH wn.

19. c

<0- 2LCCX DATA

21. . CONMCH /STAZ/ JN,KM,J71,X1,PN4,25,8%,45
22. DATA JW/8S/,Rn/43/, J1/33/,\T/3°/ 2E/1.5/,25/=1.3/,Wa 1.5/,
23. 5 WS/0./

24,4 COMMON /TITANAY , XZX,Y, 27/GCRGA/EI, 2X

25. 5 /SPAR/T,0T BT, ETT/TEOY/AL,AN,S3,1XL

26.a G /SANDAL/AANL,E3,CC, DD, 3HS/ARAOW/XEX, 82,223,944

27. _ . DINESSIOY X!35,43),XX.385,43),Y185),TT85,42),

28. S ¥X(35) ,B%(35),T (35,43),0T(35,43),27 35,43} ,2TT:35,383),
29. b al {200),42 (200} ,S& {200} ,IXX(35,33),41(35),

30. §  £3:3%),CC!S55),DD735),83S5:85) ,X5X685,43),W095),
31. & 22 (200} ,%1(200)

32- ZND

i3. c . .

34. C MAIN PRO3EAN

3E. <

36. CallL soLv -

37. CALL P2Id

is. 5To?

35. AT o) r

+0. c

41, C CALCULATIONS:30QTJNYIAEY AND INTZEIOR CONOITIONS,MATRIX ITSEATIONS
42, C ,JPTI®1L ACCELERATION PARAYETER SEARCH.

3. c

S, SUZROUTING SOL :

45, COX%ON /STATS JK,3%,J1,51,28, PS5 ,%%,43

46. CoNN0Y /TITAN/X,XX,Y,TT/GCSGO/TX, 3%

57. %  /5PAE/T,OT,ET,ITT/TEOT/AL, AN, SR, IXIX

43, 5 /sxs:ALzax 53, cc,no,zﬁS/aaao./x 1,iP,5E, 4%

49. DIXZ¥SICY X (89%5,43) ,XX(85,33),I(85),TT{35,43),

50. & 4X 785} ,3179%) ,T:85,43) ,0T135,43) ,ET(35,83) ,ETT(35,33),
1. Z AL 200} , AN 200) ,SR200),XIX85,43),408%),

52. g ?B{SSJ,CH(BS), D{3%) ,34S (B5),ISX (85,4 ,=2(28%),

S3. 5 EE 1200} ,44 200

Sy, ¢

55. C SEID S2ACING

S56. c

57. dp=pa—ps) /30

£8. D4z lWH=-NS) /R

59. c

€63. C 3OUUNDAXT CONOITIONS,SRID SPECIFICATION,INITIRL VALIES IN INTIRIOS.
16l '



€2.
63.
64.
65.
€6.
67.
68.
69.
70.
Fl.
72.
71,
T4,
7s.
756.
7.
8.
79.
30.
31.
. 82a
33.
k.
3¢.
36.
37.
38.
9.
90.
S51.
32.
3.
4.
954
96.
57.
94d.
59.
100.
101.
1d2.
103
104.
1ds.
106.

7.

108.
109.
130,
111,
112.
113.
113,
115,
116.
117.
118,
118.
120.
121,

€}

nonn

20
10

32

83

162

po 10 I=1,J2
DO 20 ~K=1,K=x
X:J3,K)=0. " !
IEX (s, X) =0.
T:3,%) =0.
T (J,K) =0.
T :J,K)=0.
CONTINGE
CONTINUE .
C1=5.%538T{.01582/1.1019)
D¢ 30 J=1,05%
Y (J)=0.
3 7J) =7J=-1)*DP-1.5
w2 (J) =d.
X:'J,XM) =31.0)
CONTINUE
N1 =109
WA(2)=1.00
sUM=0.
20 40 K=1,1%

. RLTK) = K-"1) *DE
11,8)==1.5
X({31,K)=1.5

CONTINUE

JATITY ¥O245;S02TJTICN 3T MATIRIX ITERATIONCALTEZNATING SLUR

&
79

53

S0

100
33

[ IS T R St I 4]

2y=0

AELEES!
IP "xu=200) 53,503,569 ~
YRITE(5,70) .
PORMATIY V' ,24,'00 OF IT TX 10Q')y ™
G0 TO 75 :
20 30 §=2,J7
30 90 R=2,%1

a3 0%) =1,

33 (X)) ==v.

oK)=t .

BHS [K) =~ (T{J=1,8) «T (3+1,5))

COUTINUE
K=1
Ad Xy =0. .
33 (X) ==4. '

ccixy=2.
RHS (K) == (T (S=1,&) +T (J+1,%))
I? 'A35:X1J,8)) .L7. .5) .

285 (R)==2. 0068 ETP (T (J,K) ) SC1#(~. 378235,/ °X 3, 1) +.5) #% 1 5=
Z7032+3.7053% (L3, T} +.5)=1.213% (]I, 1) +.5) *=2} :
71 +Clew Y 13845, _

{T(S, 1) *#.5)®® 5=, 126-.7032% (X {J, 1) +.5) +. 85299 (X (J, 1) +. 5) *=2

-, 406%1223,1) +.5)*»3} =e2) ex1 54355 IK) .

CALL TEIDI,s2)

¢ 100 R=1,%1
0% 13,8 =723,%)
T(S,R)=T {J, X} +% (N2) = (B35 (R} =T (<. X))

SINTINUE

39 110 &=1,%3

30 120 J=2,J1
AA (JY=1T.



163 -
-

53 (J) ==4-

co i) =1. -
IP(K -GT. 1) RES(J) == (T (J,K+3} +T(J,R=1))
IPK .E2. 1) RE3LI) =-2.%7.3,2)
IP( & <EQe 1 «AND. ABS X3, 1)) .LT. .5)

-7032¢1.7053% (X 1J,1) +.5)=1.2184 1], 1) +.5) **2)"
S(1.+C1em2% (_ 14845/ (5)
$2 03,1} +.5) . 5. 126m, TO32% (X 13, 1) +.5) +. 9525% (I (J, 1) +.'5) %2
- 406%7X T, 1) +.S)sn) se2) au] _5-2_4T2],2)
120 CINTINTE
CALL TEIDI!2,34)
00 130 J=2,J1
0T *3,%) =T :J,X)
130 T3, K) 3T (3, K) +51 (AM) * (RES (J) =T (J,5) )
110 CONTIVUE

[P s T~ I o A

AV
¢

€ CALCULATION OF Z THROUSHOUT FLOW FIZLD Y

23 W J=2,J1
20 150 £=2,%1
RA'K) =1
55 (K) =-4.
CC Xy =1L -
BES (X) == (I (J+1,K) +L {J~1,K))
150 CONTINTOE )
Y K=l
AR R) =0, .
~BB (K) ==4- : -
“CC IR} =2.
RHS (X) == (L (I=1, X} +X {3+1,K))
§ —2.eDIaSIY (W2 :J)) %2XP T I, 1)) . : t
23S TR1)=RHES 751) ~CC 'K 1) *X 13, X¥)
CALL TRID(1,42)
DO 160 K=1,K1
XXL{(S,X)=X{J,K) .
160 L{3,5) 3L 7J,K) +wd MuY® TRHS 1K) =X 1J,X))
TN =
ITA35LWJ, ) -LT. .9 TIJ)=CIR [ 2969

& [R(J,1)+.5) ®*, 5= 125% (X [J, T} +.5) =.3516* (X (3, 1) +.5)**2
& €. 23937 (N(J, 1) e S)ee3= 10188 (X (J, We. 5 *2y)
w2 J) =0, :
FLY(J) -GT. 0Q.) WD ([3)= ATAN (CT1e(-16845/SQRT(Z(J, 1) +.5)
S =.125=.7032%L°J,7) +.5) +.8523% X :3,1)+.5) #*2- u06* X (J, 1) +. 5) |
L& **3)) ;
140 CONTINJE b -
DG 170 K=1,K1
D0 190 J=2,J1 ~
A LJ)y=1.
338 [J) =-4.
cciJy=1. )
IZ (X .6T. 1) HES(J) == (X [J,E+ 1) +X (J,3=1})
ISR .EJ. 1)
5 RHS (I} =—2- %1 (3,2)~SIN(WND(J)) *EXP (T I, 1)) *2.%D7
130 COATINJE .
EES {(J1)=EES({J1) =CC[ST) *X (T2, K)
RHS (2) =BES (2)=-AA{2) =X (1,K)
CALL TRIDI2,34)
00 200 J=2,J1
L3X J,n) Xi3,5) . .
209 "X (LK) =L (I, R)+RN (™) * (RES () -X (J,4))

179 VNTIN0E

RHS(J]=-2.'Da'aXP(TfJ K)J‘Cl‘[—.07u225/[I(J 1) +.5}) ==, 5-
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. 134, C DETERMINATION OF Y AND ALPEZA ALONG suavncz QF AIRFOIL
. 185, Do 210 J=2,01
186. Y:J) =0. )
137. IP (ABS{X(J,1)) -LT. .5) T (J)=C1*(.2969=
198. S B 'YtI 1) e 5) R 5= 126% X3, 1) +.5) 3516 {X(J, 1) ¢.5) *e2
189. . & +.2383%:°3,1)+.5) %83, 1015"x'J 1) +.5) ==y
190, - WP (J)=3.
191; IFP!Y ) .GT. 0.) WP iJ)= ATANICT1® [ 14845/5QRITI I, 1) +.5) |
192, 5 =.126-. 7032-(x(a 1) #.5) +.8529%(L{J, 1) +.5)%%2=_ 8364 1T 13,1)+.5)*
193. g '3)}
196, 210 cowr:xaﬂ s
195, . c ’ ’ ’
196. C PINDING OF. OPTIMAL ITERATION PABAMETES
197, o . ‘ ' : ’
198. - SO%=0. -
159. . D0 220 X=1,K1
200. 20 229 J=2,J1 -
201. IEZ(J,K} =ABS (T (J,R) -OT (J.K}) -
202. ’ $U3I=50¥+X2X (I, K) .
. 203. 223 CONTINDEZ
. 204, . Sg InY) =504
205. IP {4 .GT. 1) AL{!!)~Su{51)/SB(F‘-U
206. P’y .GT. 10) TI=A3STWIEM) -
"207. & YA (M=-10}3/ (2. -"2 (")
208. IFP’%Y .GT. 10 .aNDZ. T1 .LT. .09)
209. &° TA(NN+T1)=R(u) .
glg/r ~ IP!MY .GT. 10 .A¥D. T1 .LT. .05)
2. & GO TO 250,
212 . IF'4OD M, 19) .SE. 0) GO0 TO 250 2
213. T2 (MA) =2/ (1 +SIBRT[ABS ([V.= (AL (2¥) ¢d2 (X} ~1.) «x2 s 5y (nu) #*2
214, 5 =L (84))))))
218, ) WY MM+ 1) =EE2IMN) - (2.~EEMM)) S,
216. ¥RITE (6,7000) sx(MX+1),T1,T2,aL (MM ,S2(2H)
217, 7000 FOENAT !t ',6.P3.9))
218. 259 CONTINCE
219. - IP/MJD‘MN,10) .HE. 0 LAND. MM .GE. 10} WA (MA+T) =TS (2N)
220. IP ey L3 9)ydnimte1)=1.00 -
221. IP (M9 -.GE. 10 .AMD. =M .LE. 19) dx(am)=1.35 -
222, C TOLETRANCZ L2ZVEL CEECK
223. Do 270 J=2,J1%
. 224, D0 "270 £=1,K1
2:ZC. T2=aABS [T (S, K)-CT (J,K))
226. ’ IF’T2 .GT. .000S) GO TO 45
227. 270 CINTINUE .
223. “RITE’6,77100) 92
229. 7100 PORMAT (! ','N0 OF IT=',13)
230. . 4BITE (6, 7200).n(zn)
231. 7200 PORMAT ¢' ', 'OPTINAL zraqx*:ov 9a331-;sa $1.=1,79,5)
232, . D0 280 Js1,J8
233. DO 280 E=1,K1s
234, - T{JI,R)=ZX8(T(J,E))
23s. : IXXtJ,3)=0.
236. 230 CONTINUZ
237. - ARy =
238. L Wm(2)=1.
239. T2=20.
2450. Tia0. N ’
241. C DSTERMININS SECOND SET OF YALUES P02 B (=EA2!T))
282, aL=0 -
Zui. 310 _ aL=4L+1 v
o

[

3 . L. . .
FEATCSNNPIE JPISER B S



245,
2486.
2w,
268.
249,
250.
251.
252.
251.
254,
25,
256.
257.
258.
259.
260.
261,
262.
263,
2EQ.
265,
26€.
267.
2&E.
269,
270.
271.
272
273.
275.
27%.
276.
277.
278.
279.
230.
231,
232Z.
283.
284,
255.
286.
297.
238.
289.
2%90.
291.
292,
233.
294,
29¢&.
29€.
297.
298,
299.
300.
301.
302.
303.
304.

339
339

320

370

33¢
360

200

410
392

&
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IP(31-100) 323,320,330
YRITE (6,340}
POENAT Y *,2L,'H0 QP IT EX 100')
30 TO 359
DO 360 J=2,J1
po 370 %=2,X1
A 1X) =1,
B2 (X} =—4.
CCix) =1,
. BES(R)=-{EZT{J-1,K) +EX (J+1,R)}
CCHTINUR . i .
x=1
Ak %) =0,
83 (%) =-4.
CC X} =2.
BES (R)== (ZT (J=1,R) 22 {J+1,%) ) .
- B3S!K) == (AP I3+ 1)—F2 J-1)}¥53S57:%} -
CALL TRID(1,3Q)
Lo 330 R=1,K1
TTT (J,K) = 2T (3, &)
ET:J,K) =2T:J,K) +uX ML) # 2SS ‘X) =223, K))
CONTINDZ .
DO 290 x=1,K1
20 430 J=2,J1
a1 2J) =1,
BB (J)=-4.
Sy =, . -
_I7(K .GT. 1) EES(J) == (BET(J,K+1)+3T(J,K-1))
IP!X .EJ. 1) 345°77) ==2.%ET‘J,2)
= (WP (JeN) ~RP3-1))
CINTINUE
cALL TRID{2,33) ®
20 %10 J=2,J1
TTIT(J,K) =2T (J, K) _
ET:J,R) =BT J,K)»a4 ML) ® ‘RIS 'J) =ET I, K)) .
CONTINDZ )

C OPTIZAL ITERATION PARAMETEER

459

7300
450

S5Ua=J.
DO 450 K=1,K1
20 459 J=2.,J1 4
IR !J,K)2ABSET J,K)-ETT'J,K)}
SUM=5TA+ 22X (J, R)
CONTISUE
S {ML)=5UY .
IP ;4L .5T. 1) AL!¥L)=S3!%L)/S2:4L-1)
IP (YL .GT. T9) TI=ABS (4N (ML)~
dANL=-10)) /2.-%24L) ) .
IP (ML .5T. 10 .A¥D. T1 .L7. .05]
W4 AL+ 3N NL)

CIP (AL GT. 0 .A¥D. TI .1T. .05)

GO TO u6d
IP? (10D (4L, 1d) .HE. 0) GO TO 460 .

BEINL) 32,/ 01 +SQETIASS { T~ fALTNL) #E (A1) ~1.) ®%2/ (W2 (4L) **2

=LAl N
WH (4L+1}=EE (ML) - [2.-EE (4L} ) /Y.
4BITZ[6,73C0) w4 ‘32+1),T1,AL{8L),T2,5R70L)
POIMAT (' ',6({F3.5)) .
CONTIUGE
IP{MOD (ML, 10) .NZ. 0 .AND. ML .52. 10} W® *XL+1) =54 ’1l)
IT (ML JLE. 9} &2 (ML+1)=1,00

LR T T i

© oma
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306. IP (Y4 ([%1) .GT. 1.35) Ta(NL+1)=32(Y
307. DO 423 J=2,J1

308. DO 420 £=1,R1

309. T2=ABS ET IR -ETT!I, X))

310. IP (T2 .G6T- .000%) 30 TO 310

311, 420 CONTINUE

312. WEITE (6,330) XL

313. 430 POEMAT® ','N) OP IT=',Id)

314. FRITE’S 7700).5 ML)

31s. 7700 PO23A7 (" 1,' OPTIMAL ITERATION PARANETER 32= ',PB.5)
316. 20 300 JKa2,J1

317, JRZ=J9-JK+1

315, :?: *JK,1) .LE. .5} <SJ=JK

316, 530 P(I(JKX,} -GT. -.5) KE=JXK

320. iiITE:B,BQS)KK,JJ

321 805 P0R%AT(" ',"'KR=",1I,12,10%,'J5=",1X,12)
322. DO 440 J=1,JX .

323, 20 4480 R=1,31

324, ET {J,X} =212 ET 'JL.K))

32t 340. CONTINGZ,

326. 350 COYTISTE _

327. 75 CONTINGZ

328, 52703y

3z9. ) 230

330. C T3IDIAGCNAL SOLVER

331. SUBROUTIN® TRID (KL, T)

332 oA30§/SANDAL/A,2,C,D,6

333, DINZNSIGYH A(85),B3(85),C({BS),.0{85) ,5{35)
33a. * DINL) =CINL) /3INL)

335. G (NL) =G {NL1) /2 [NL) -
336. SL21=2XL+1 : -
337. . 50 290 ¥=¥LP1,N0

333. L=, /37 9) =1 (H) =D 1N=-1))

33s. DIK)PCIN) *2

340. 299 S [N)=A[N) ®G (N=1}) *Z

341. {) =WJ+‘!"'

352, D0 300 ¥3x=NLP1,

3u3. sasuywn-ns

“3gs. 304 S (N)=G {N)=D[N) *G(5+1)

348, ITTUEN

346. =§p

347. C 2BINTING OF RESULTS:X,E,8T,TT,4Neue

348. - SUSROQTINZ PRIN

349, , Co330N /STAT/ JI¥,K%,J1,K1,PA, RS, ak,ES
3s0. ' coxg0N /TITAN/X ,XI,7,TT/GORGO/YY, BX
3Sh §  /SPAR/T,OT,BT,BTT/TPOY/AL,AX,SR,XXI’
382, &  /SANDAL/AA,DP3,CC,DD, RES/AGROW/IRX,3P,2Z,7%

353. DINENSION (?35,43),2X{985,43),Y85),77:95,43),

3sa. & X (85) ,BX(85),T(85,43),07(35,43) , 57 :85,453) , ETT 185,43) ,
388, 5 AL {200),1X(200),S2(200),XX2(S5,383),a1(85),

356. £  83°95) ,CC'85), DD 35) , IHS 785) , X5 X 185 ,43) , K2 135) ,
357. & B2 (200),31(200)

353. PRINT 1500, '%,K=1,3)

3¢9, 1500 POENAT (#/8X, 'K ,3X,8 (52,I2,2X))

36C. RITE (6, 1600) (WX(X) ,K=1,89)

361. 1600 FTORMAT Y *,6%,'WX'X) ', 871%,013.6))

3€2. SRITE(S,1700) _

363. 1700 FORMAT !//,'J',2X,'3X13) ' ,4X, 2T {J,K) ")

368, DO 1802 3=1,J%

365. ¥RITE (6,135} J,31(3}, (BT :J,K),%=1,3)
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367. 1809 CONTINTE -

368. 1850 FORMAT{' ',I2,7I1,D13.6,3(1X,D13.6))
369. PEINT 2002, (X,X=1,3)

370. 2002 ~ PORMAT://9X%,'X',3X,8!5X,I2,21))
37 dRITE (6,2102) (WI(R) ,K=1,3)

372. 2102 FOISATY V,5X,'5I!K) ',821I,D013.6))
373. : d2ITS(6,2202)

374, 2202 FORMAT (//, ", 21,33 {3) ", 4%, "T(J. K} "}
375. D0 2302 J=1,Jx

3762 ¥BITS(6,2302) J,BI(J)},(T{I.X),X=1,3)
377. 0 2302 CONTINGE

378. 2302 POENED (' 1,I2,1I,D13.6,8(1X,D13.6))
379. PR INT 2034, {X,E=1,3)

380. 2004 FORMAT *//%L,'K',3L,3°5%,22,2X))
341, s2ITE(6,2104) (NX(X),R=1,3) .

392. 2104 FOSMATY 1,61, *5L!K)*,8:1L,D13.6))
383. 4BIT21{6,2204)

384, 2204 PORMAT(//,"3%,2X,"3X(J) *, 3L, L{J, X} ")
335, 20 2304 J=1,J7%8

386. FRITET(6,2838) J,5I{J),(X{J,K),X=1,8)
397. 2304 CONTINDE

388. 2404 ro2®AT("' ',I2,1X,013.6,3(1X,313.6))
335. T2eTIRN

390. 2%D

391. /*

392. //GC.SYSIY DD =

383. res
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15.
16.
17.
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20.
2.
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23.
24.
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26.
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APPENDIX B

PAEABOLIC SHEAE FLOW-PROBLEX

ALTERNATING-DIERECTION IAPLICIT (ADI) PROGRiY FOEB PAZABOLIC
SEBAR FLOJ OVER CIBCLE OF RBADIUS .S

BY GEOEGE GROSSHAY
UMIVERSITY OF WINMDSOZ

IEPRESBYTATION OF VAEIABLES: TT,XI COESESPOND wITH COEFPPICIENIS
OF SQUAR2ZD ZLEHMENT OF ARC LZYGTE Z A¥D G IN¥ NOaNAL YOTATIOX
£,T-CARTESILY COQRDINATES.4k,233,CC-BLTS OF T2IDIAGONAL 4AT3I.
{8X,5I)~GIID COGRDINATZES IN TRANSFORN2D PLANE.
EP=-1¥GLZ JP INCLIJATION OP AEBO-POIL SUIPACE. .
W3- ACT2LE2ATION PARAXETEEL.EEZ, AL, AN,SE-PiRANITERS ASSOCIATED
dITH WN.d2 IS 4AG¥ITODEZ OF TEHE VORTICITI.

QTHEER VARTIAEL AR2 0USZD CRB UNUSED D02MY VABIA3ZLES

o

BLOCK DAT2

IITEGER J4,K%,J1,%7

321l*8 Ppu/1.5000/,85/-1.5D00/, is/2.0603/,55,0.000/

DATA oN/64/,EN/43/,J1/63/,81/732/

commaN ,STAT/ J4,5W,J1,K1,94,25,¥4,dS

DO08LE pRECISIOGY I,XX,Y,TT,8I,3X,%7,07,BT,8TT,AL,3%,52,1XX
,41,38,CC,DD,545,%P, T8, 49,5041, SUN2, S0N5, #2

Cconn0s sTITaN/Y,IX,%,TT/GORGO/X,3X
/SP\E/T,0T,2T, ETT/TROY /AL, N, S3,XXI

/SANCAL/ad ,B38,CC,DD, RES/A22CK/AP,EE, 7
/TA0E/SURT,5382,50%5,492 .

DIMENSICN I'64,43),XX°64,43),Y 64),77°64,43),

3T (64) ,3X(63),T (64,43) ,0T (64,53} ,BT754,43) ,BTT 154,33},
AL (200} ,4% {200) ,S2 (200) ,IXI(64,483) ,Ra(64),

B3 '64) ,CCI64) , 0D '54) ,BES 164) , 3P 64) ,

IE (200) , ¥4 (200) ,S3IN1 (64) /ST (64) , 5015 (64) ,T2(33)

EHD . .

[y

L )

LA B B A 4]

MAIN PROGZEAN

CALL SOLV
CALL ?5IN
STQp
o )

CALCULATIORS:3QUNTARY AYD INTERIOR COHDITIOSS,E&TRIZIITEEATIOHS
(OPTIZAL ACCELEBRATION PAIANETER SEARCH.

SUBROOTINE SOLYV

_BB2aAL*8 DP,DW,25,C?,T1,T2,73,T74,T5,76,77,50X,S564130,502200
& »SU"300,P%,PS, W4, WS
coMMOY /STAT/ JN,8N,J%,81,08,P5,8F, W5
CO0BLE 28ECISION I,XX,I1,77,%1,8X,T7,07,ET,ETT,4aL,a4,52,31X
s4d,3B,CcC,DD,EHS,4dP, EE,WN,S5081, SUN2,5085,W2
COXMON /TITAN/I,XX,T7,TI/GORGO/WY,BI

14

&  /Seiz/sT,o0T,2T,2TT/TROT/AL,AN,5B,IIX
&  /SaNDals/AA,E3,CC,DD,R2ES/AE30&/4P,E2,4N
&  /TRIZ/SUAT,SUX2,STNS,52 -
DIMENSION X164,43) ,XX‘64,43),Y 64),7T°64,483),
§  3II(64) ,3X(64),T(64,83),0T (64,33) ,ET 64,43} ,ETT '63,83),

168



) 169

£2. & AL (200),1%[200),53({200),XXX*64,43),31 64},

63. 5 B3 {o4) ,CC (b4} ,DD(68) ,BHS [64) ,EP (64),

b4, & 22 1200) , 9% [20Q) ,SONY 164) ,5TUR2 (54) ,STNS 64) ,52'43)

Ec. C . -

gé. C GEID SPACING DP,DW

&7. C ’

68. - DP=PA-p35) /DPLOAT I3V

N1R D= (WN=WS) /DPLOAT (K1)

70. c

71, C BOUNDARY COMDITIONS,GEID SPECIFICATION,INITIAL VALOES I§ INTEBRIOE.
124 C

73. . ‘DO 20 J=1,3%

74, 50 20 K=13,K%

7E. X(J,K)=0.DC2

76. TJ,K)=0.D00

77. ®r (J,X)=0.009

78. 1X:J3,K)=20.000

79. TT{J,5)=0.200

30. IXX:J,X) =0

51, 20 CONTINDE :

¥z. ES=_1DQ0

43. DO 30 3=1,J%

34, IX {J,K3) =-.5D00*DLOG [1.000+16.000%ES)

BE. . T =0.200

56. BX (J)=DFLOAT (J-1) *DP=T.5DCD

37. FP {J)=3.D00

38. I{J,Kq)=3X (0

89. 30 ONTINUE

90. : ¥A(1)=1.200

91, © WE’2)=1.D00

§2. SUM=0.D000Q

93. DO 40 K=1,KX

94, WY (K)=DPLCAT(K-1) *D¥

9s. W2 (K)=3.DO0SES*WX (X}

"9E. IX 1,K) ==.S200%DL0G [1.000+4,. DOJ*ES* WL [K) &= 2)

97. IX (J3,8)=-,50004DL0G(1.D00+4.DO0*S58IX (K] »»2)

35, I, ==1.5000 :

39, X(JI%,X)=1.5D00

190. 40 CONTINOR

101. o4

102. C JATEIZ PO345;SOLOTION BY MATEIX ITERATION:ADI

103. c .

1J4, C1=2.D00

105. an=0

106. 45 . LA EY L

137. IP(4M-200)50,50,64

108. 60 JBITE?6,70)

105. 70 POBMAT (* *,2X,'NO OFP IT EX 300!')

110. GO TO 75

111. 50 00 80 J=2,J1

112. DO 90 K=2,X1

113. A4 (RX)=-DBIP (TT (J,X) ~XX (J, X)) +1.5000%D¥*¥ 2 (K) *DBXD I TT {J,K) +
114, 3 XX (3,%)} .

118, BB [K) = 2. DO0*DEXP [TT [J,K) -XX {3,K} ) +CI#DEXP (XX J, &) -T2 17, K) )
116. CC(R) =-DEIP(TT(J.K)—II[J,K))-LSDOO'DE'&Q[K)'DEIP[T‘!(J,K)+
117. & IX 13, R :

118. 245 (2) =DEX? (XX {J, K)=T2 [J,K)) *(IX (J=1,K) ~22D00% XX (J,K) +XX (3+1,R)}
11S. E+DU* 2052 (K) **28DEXP (3. D00 XX {J,K) *+TT(J,K)} +4. DOOXES*Dyse 28D EY D
120. 5 TTJ,R) #IX [J,K) ) +DBIP (XX {J,R) =TT WJ,R)} KT ‘I+1,R) -2 '3-1, K)
121, & =IT[3¢1,8) +TT (J=1,K) ) * (XX (5+1,RK) -XX(J=1,3)) *_25D00+C1*IX (I, X)



123.
124,
12¢.
126.
127.
128.
129.
130.
131.
132.
133,
134,
135,
136,
127.
138.
139.
140.
181
142,
143,
Tag,
13584
146,
147,
148,
149.
150.
151,
182,
153.
154,
185.
150,
187.
1518,
159.
160.
161.
162,
163.
164,
165.
166.
167.
168,
169.
170
171,
1724
173.
174,
175.
176.
177.
178.
175.
180.
15 1.
182.

c

e

30

1006
83

170 ' ‘ y

-

& *DRXP(XI (,X) =TT (J,.K))
COSTINUE
Ka1
AA (K} =0.D00
53 (X) =2. DOO®DEXP (TT (J,K) -XX (J,) ) + 3.D00sDTe¥2 k) =
S DEIP !TT(J,K} +IX(J, x))+c1-nzxp{zx(3 K) -TT (§,K))
CC:K) =—2.C00®DBXP {TT 2J, K) =X¥ J, %)}
28S {X) =DEXP (IX {J, X) -TT (J, K)) *{IX (3-1,K) -2.D00*XX (J, x:»xz(Jol K}]
E+Du®e 2642 (X} #¥2eDE2P 13.D00#XX [J, K} +TT {J,K)) +4. DOOSES ¥DR ##20D Y P
(?T(J,K)vxsz,K))¢DEXP:XI:J,K)-TT:J,KJ)‘:II:J+1,K)-IX:J-1.K)
~TT(J+1,K) +TT(IF~1,K)) % (XX (3+71,K) -XX(J-1,K)) *. 25000
+XXJ,K) SC1#DEXP (XX [J, K) -TT 1J,K) ) +Dasu2 'K} *2. DOO®S2X2 XX I, X} +
72 (J,%))
IPIDABS (X 1J,1}) -LB. .5) 53S(K)3RISIK)-DWed.C00®DEYLP 7T
(3.8))
RHS ‘K1) =5BS 1X1) =X *3,X1) *CT *X1)
CC (K1) =0.D00
CALL TRID?1,82)
20 100 X=1,X1
0T *J,K)=XI'J,K)
IX {J,X)=1.63% (RES (X} ~XX [J,R)} *IX (3, X)
CONTINUE

&
&
&
&

<«

'SOLVE INPLICITLY IN THE PHI DIRZCTION.'

120

130
114
47

67
77

4

DO 110 X=1,K1
Do 120 J=2,01
AAN} =DEXP (XX (S,K}~TT Jd,K} )} * XX 3+1, K} -XX(J=-1,K)=TT {J+
& 1,K)+TT 131 K))‘.ZSDOO 1.000)
BB(J]aZ.DOO'DEIP(IZ{J K}=T7(J,%)) +CI*DEXP [TT (J,K) -XX(J,X))
CCr3) ==DRXP II'J,K}-**'J B))®iiXX:3e1, K)-II'J-1 K) =TT 1J+
& T,8)+TT (J=-1,R)) *.25000+1.000)
IPIX .GT. 1) RES([J)=S2 (K)**24Dy®*2e0PIP (3. D00IY (J,X) +T7 (3, X))
& +4,.DO0SES#DY e 2#N2TP !X 'J,K) +TT 'J,5) ) +DBXP! .:J,A}'II’J,K))‘
E(XX(J,5-1)~-2.000#XX{J,K)+IX(J, K+ 1)) +1.5D00%DT*R2(K) *D2XP (XX {JI, K
& R4
EXT{I, X)) * (LI (J,K¢1)=XX(J,RK-1)) +CI*IX (I, X)*DEIP {TT 3, K}=-I1:J, %))
IP[X .EQ. 1) RIS (J)=%W2 (K) **2¢DT**x2#DEXP(3.DOO*IX (I, K} +TT(J, X))
5 +8.DOQ®ES52DE*® 20DEIR (XX (3,R) +TT [J,K) ) #DEXR2 ITT I, ) ~IX (I, K) ) *
&§{2.D003% (XX ({J,2)-IX (J, T} ) +2.000=DU=W2(X) «DEXP (2.000¢XX[J,X))) +3.
DOO'DE‘E2:K) )
*DZIP (XX (TR +TTS,R) ) * XL T, K+1) - Ix‘J K)) +C1*XI !3,R)
‘DBIbﬁ*T(J R)=XI(J,%))
IZ{DABS (X d,1)) .LEB. .5 .XND. K .EQ. 1) 2HSIJ)=B3IS [J) ~Diue
u.DOO'DBI?(TT(J,K])
CONTINOE
EHS (J1)=RHS (J1)}) =CC (J1) *XL (IX,K}
E3S({2)=BE5(2)-aa [2)*XXI (1, L)
CC31)y=0.D000
AL (2)=0.D00 B
CALL TBID!2,63)
20 130 J=2,J1
0T (J,K}=%XJ,X)
IX {(J,K)=1.088% [RES (J) -XX (J,R) ) +IX(J,5)
CONTINOE
4. B0
M=+l
IPF(a%-200Q)57,57,57
WRITEL6,7T)
PORNAT (* ',2X,'50 OF IT 2T 40Q')
G 70 75
SCLVYEZ POQR ®Em 1t

Lo o T o]

L)



194,
138.
156€.
187.
188,
135,
190.
191,
192,
193.
T 194,
195,
196.
197,
194.
199.
200.
201,
202.
203,
204.
208,
206.
207.
208.
205.
210.
211,
212,
213.
214,
218.
215,
217,
214,
219.
220.
221,
222.
223.
224,
225.
226.
227.
228,
229,
230.
231.
232,
233.
234,
23k,
236,
237.
238.
239.
240.
241,
242.
243.

171

0 142 J=2,31
DO 152 £=2,K1
AL {X) ==1.DCO
B3 !X)=0-D00
CC (K)=1.D00
23ISIE) = (XX !J,K+1)-XX {J,K~1}) +2.D00*D4*W2 'K) *DEXP ‘2. %IX (3, X))
CONTINGE . .
K=1
AA (X} =0.D00
B5 !X) ==1.D00
CC (X}=1. D20
RHS (K} =0.D03
IF(DA3S (X (J,K)) -LE. .5) BRHS (X)=2.0C0*D4®D2IP 1IX 'J,K)})
CALL TEID{1,42)
20 162 X=1,X1
IIX(J,X) =77 (J, &)
- TTJ,K) =TT !J,K)+1.638 *3HS 'K) =TT °J, &)
CONTINUT o
DO 167 J=2,J31
DO 167 K=1,K1 .
T3=DABS (XXX :J,K)-TT°J,K})
I?(T3 .GT. .GO01) 30 TO 37
CCSTINUE
IP {M0D (%%, 10) .Z2Q. 0} PRINT 6060,38
POZAAT o/ /8X,I8,//)

SQLVE PQg ®In

DO 140 g=2,J1
D0 150 X=2,K1
4A (X)=-CEX2!TT (J,K)~XX [J,K}) +D4*¥2 1K) *DEXP (T7 (J, K} +
XX :J,K}) *.5D000
38 (X) =2.D00*DEIP (TT (J,K)-XX (J, K} ) +C1#DEXR (XX (J,K) =TT (J K} )
CC{K) ==DEIR (TT {J,K) XX 1J,K)) -Dw*&2 !K) #DEXIP 'TT '3, K) +
A 1X (J, %)) *.5D00 .

335 (K} =DEXP 1XX [J,K) =TT (J,K) ) * X (3-1,K)=2.D00%X (J,K) +X:J+1,K)}}
&+ (X (J*+1,X)=X(J-1,K}) *DEXP (XX 'J, K} =TT (J,X) ) % XX ‘J+1, &) =<XI-1,K)
5 =TT{J+1,K) +TT(J-1,K))*.25000+C1*X (J,X) *DEIP (XX (J,X)-TT (J,%))

CONTINUZ

£=1
A1 (K)=3.D00
8B (K)=2. 200*DEXP [T? (J,R) -XX (J,K} ) + 1-DO0sDu* 72 (K) *
DEXP {TT {3, K) +XX:J,5) ) +C1%DEXP (XX (J, K) =TT (J, K) )
CC {X}==2.D00®DEXP 'TT !J, K} =XX [3,K) )~ 1.D00®E2 ') «Due
DEXP (TT (J,8) +XX {J,R)) _
RESIX) =DEYR [IX (I, K)~TT [J,K) ) * (X (J-1,K)} ~2.D00e X I, X} +X 'J+1,Z})
S+ {I(J+1,£)=X(J=1,K)) *DBXP (IX (J,X) =TT (J,K}}* XX 'J+1,K)-CX (I-1,%)
& =TT(J*+1,K) *TT(J1,K))*.25D00«C12X (J,K) *DEXP [XX (J,K) =TT (J,K) )
IF!DASS(XJ,R}).1T..5D00) RHS (X} =8HS ?K) +2.D00*D%*DSIY "W 'J}) *DEX
& P(TT(J.K))
2HS (K1) =RES (K1) -CC K1) *X 73,KN)
€C£1)=0.D00
CalL TRID(1,32)
DO 160 K=1,R1
T (J,X) =X {J, &)
X{J,K) =21.69% (BIS(K)-X1J,K)) +X 17, K)
Y({J)=0.D003
IPIDABSIX!J, 1)) LLT. .5} Y 23)=[.25D00-X‘J,1)%%2) s« 5
V2 (J)=0. D00
IFDa3S5{I{J, 1)) .LT. .5) 4P {J)=DATAN'=X'3,1)/?'J))
LP(X(3,1) -BJ. -5.D00} &P {J)=3.1815927,2.000
IF:X:J,1) -£Q. .5D00) P :J)=-3.1415327/2.000

(]

(%]

Q

¥



140

172
CONTINGTE

C 'SOLVEZ ISPLICITLIY IN THE PET DIRSCTION ¢

180

200
170

210

&

DO 170 K=1,K1?
DO 180 J=2,J1
11(J3) =DEXP [IX(J,K)~TT {J,K)) * 12X J+1,K) -XX (J=1, K} =TT (J+
1,K) +TT13-1,K)) *.25D00~ 1.D00} :
53(J) =2.DOO*DEIR (IX {3,X)~TT(J,K)) +CI*DEXD (TT (J,K) -XX (J.K))
CC{J) =—DEI2 (XX !J,K)=TT(J,K})* {IXX (J+1,K) =X J=1,K) =TT ‘e
1,X) #TT(J=1,K)) *. 25000+ 1.D00)

IP:R.GT.1)ESS(J)’DEIP(TT(J,K)-II{J.K})'(I(J,K*‘)-I(J,K)‘Z.DOD*

5 X1J,K=1}) +DA%E2 (X) ¢ (X1J,K+1) =X :J,K-1)) *.5D00

&

[ )

*DEXP (T2 (J,X) +IZ (J,R)) +C1*X (3, &) «DEXP (TT {J, K) ~XX (3, K) )
IP{K .2¢. 1)23S{J) =DBI2 [TT(J,K)}-IX{J,K))*I2.D00%:X1J,2) ~X(J, 1)
)+2.DO0*DE*DSIN ;TP 1J)) *DEIP XX :J,K)))
+DE*N2 (K)® (X {J,K+1)=X{J,X)) DEXR (TT (J,X) XX (J,K}) +C1%X {3y X)
*D2XP (TT [J,KX) ~XL(3,XK)) :

CONTINDE
BHS {J1) =335{31) -CC2J1) =1 [JY,K)
BYS 12)=25S[2)-14:2) *1 1, %)
A (2)=03.D00
CCI31)=0.D000
CALL TRID(2,63)
oo 200 J=2,J1
T(JI,K) =X (J,X)
XJ,K) =1.68% RYS 13) =X {J,K)) +I 3, K)
CONTINDE
DO 210 J=2,31
Y (J)=0.D00 .
IFDASS{XI3, 1)) LT. .5) T J)=..25000-X[J, 1) *#2) .5
%P (J)=0.000
LP DABS{I{3, 1) .LT. .5) §P1J)=DATAYI=X{J, M) /T 13))
IP(X({J,1) .2Q. -5.D00) 42(J)=3.1815327,2.D00
IFXJ,M .Z20. .5000) P ) =-3.1415927,2.000
COXTINOE

C CALCULATION OP OPTINAL ACCZLLERATION PARAMETER

220

7600

250

(1]

«

&

SUM=Q.D6J

Do 220 R=1,K1

DO 220 J=2,J1
ETT {J,&) =CABS [TT {J,K) -XXX !J,5} )
SUN=STA+ BT (J, &)

CINTINUE -
S3 (23) =504 .
IP (34 .GT. 1) ALI3M) =Sa!%M) /SR ‘84%-1) -

IP (3% .GT. 10) T1=DA3S (Rd (M%) -

W4 [uM=10}) /12.D00-52 ‘Kx))

I? (M2 .5T. 10 .aND. T1 .LT. .05D00)
AU NN} 2T ImN)

IP (MM .GT. 10 .aAND. 77 .LT. .05D0Q)
50 TO 250
IP (30D (83,10) .¥2. 0) GO TO 250

E£{3%)=2.500/ [ 1.D00+DSQRT ;DABS | {1.000- (AL (X5) +ud (X%) - 1. DAQ) # 22/

JHEIHN) ea2waL iKY ) ) })
5% (ME+ 1) =EB (82) - {2.D00-EE (%%) ) /8.D00
“3ITE(6,7000) S2AN+1),T1,AL[NK) ,SRNY)
POEGEAT (* 1,4 {D15.6)//)
CONTINGE
iZ (Y00 (A=, 10) .MZ. ¢ .AND. MY .GZ. 10) W [EM 1Y =01y
IP(MX (LE. 9)ad(Mde1}=71.000
DO 270 J=2,J1
DO 270 x=1,1

-



3C6.
307.
308.
309.
310.
311.
312.
313,
3It14.
315,
316
3170
118,
319.
320
321.
32z,
323.
3z4.
32¢.
3ZE€.
327.
328.
329.
330.
33,
332.
333.
334,
33¢.
33€e.
337
338.
338.
3450.
347,
342.
343.
344.
3ut.,
346,
Ju7.
349,
349.
3so.
351.
3EZ.
353,
3sa.
35%.
396.
3c7.
3%8.
359.
360.
361.
3s2.
Je3.
364,
3EE.

1732
T2=DAHS (0T (J,K) -XX {J,K})
T4=DABSIT J,K) ~X J,K))
IP (T2 .GT. .0001D00} GO TO 35
IPT4 .GT. .0001DO0} GO TO 45
270 COSTINDE :
YRITE!6,7200) WM (NN

7200 PORMAT [* ', 'OPTINAL ITEZBATICY PARMASTIE #1 L T13.6)
75 CONTINODE )
SIM100=0.000
C CALJLATIOX OP ERROR, TOTAL EEROR
SUX200=0.Du0 ‘
57%300=0.D00

mSaDABS {OT (2, 1) -XX (2, 1))
T62DABS(T2,1)-222,1))
T7=DABS (XXX {2, N -TT (2, 1)
DO 278 J=2,J1
D0 278 x=1,X1
T22DABS'OT (J,X) XX 13,K))
T3=DABS (T (J,K) -X {J,K)]
T4=DABS YIYJ,K) -TT J.K))
IF (TS .L®, T2} T52T2
I?P T .LE. T3) T6x#T3
IP (T7 .LB. T&) T7=T&
SUM109=T2+S08100
30M200=T3+30%200
SO%300=Tu+S5T3300
278 CONTINDE

PRINT 6000,%¥,SUN100,50%200,504300,75,%6,T7
6000 PORMAT (//SY, 13,6 (5L, D13.6),/

D0 274 J=2,J1

90 274 K=1,X3 _

X% [J,K) =DEIP IXX 73, %))
TT (J,K)=DEXP(TT (J,K))

274 0T 1J,&) =0.D00
T1=2.
C CALCULATION OF Vay DYRE'S VALUES P0i SPEED v

D0 284 J=2,31 ‘ .

IPDABS I‘J, 1)) .LE. .S) STI1'J)=2.€DCOS WP {J)) +E5%(
~5%DCOS (WP {J) ) *#2+DCOS (3. *RP1J) ) /8. +.5¢DLOG [T 1) *5COS (4P 1J))
-.375%DC0S (82 (J) ) +«5% (DLOG {4./Z5) - 154} *

DCOS ‘WP 'J)}) .

IF (DABS (L(J, 1)) «LE. .5) SUN2(J)=25%2.%'-.25%DCOS 142 1J))
xe2#DSIN (WP {J))-.25°DLOG (T1) *DSIY (WP (J}) +DSIN (4P (J)) /16
+DSIN 'SP 1J) *3.) /16.)

SUN5 (J} =DSQRT(SUNT{J) s 2+50%2 (J} *=2)
254 CONTINUE
D0 262 J=2,31
IF'DABS'X’J,1}) .LT. .SDO0) PRINT 3339,SU3S (J),H2(J) .3
8989 PORMAT /81,2 °10%,D016.8) ;10%,1I3)
292 CONTINOE
ETTORN
BND
¢ TEIDIAGCNAL SOLVER
SUBECUTINES TIID (NL, HD)
DOUBLE PRECISION A,3,C,D,6
BEAL®*d I
COMMON/SANDAL/A,3.C,D,6
DIMESSICHN A(64},3(64),C{64),D{64) ,6(63)
DINL) =C 'NL) /B °NL)
G (L) =G (K1) /3(NL)

L el )

[ 2]



367,
368.
365,
370.
371
372,
373.
378,
375,
376.
377,
378.
379.
380.
381.
382.
3sa.
38a.
38¢&.
38¢€.
337.
338.
389,
394Q.
391.
392.
393,
394,
395.
39¢€.
397.
358.
399.
400.
401,
802.
403.
Q4.
ggc.
406,
407,
408.
4Q9.
G10.
811,
412,
413,
414,
415,
416,
417,
418,
419,
320.
521,
322,
423,
424,
425.
L26.

230

300

174

HLP1=NL+1
DO 290 N=aNLP1,NT
Z21.D00/ (B(¥)—A(N)*D(¥-1))
D [H) =C (N) *Z
GIN)=IGIN)=LIN)*GIA=1}) 2
RO PNL=NO+NL .
DO 300 N¥=XLPI1,NO
H=EOPNL-N¥Y
GIN)=3{N) =D (%) *G N+1)
R2TUEE
EYD

C PEINTING QP BESOLIS:X,IXI,TT

1500
1500
1700
130640
1850C
2002
2102
2292

2304
26804

Vi

[ 2]

g

Cr Qo O

3U3RO0TINE PRI

DOUBLE PR®CISTOE X,IX,Y,7T,7X,BX,T,0T,3T,32TT,AL,Ad,SB,IXX
.AA,BB,CC,DD,24S,4P, BE,¥9,5021,5082,50U85 , 22

CONMON ,TITAM/X,XX,Y,TT/GORGO/VI, BX

/SPAR/T,02,ET, 2TT/TBOY/AL,AN,5R,IXT

/SANDAL/ M, BB, CC,DD, RES/ARROVN/§E, 2E, ¥X
/TRUE/S041,S042,50%5,72

DINMSHSICK I'([64,83),XX(64,43),7(64),T7(68,43),

s dX764) ,BX{64),T64,43) ,0764,43) ,8T(66,83) ,ETT (64,83),

AL ;200) ,A%:200) ,52 7200} ,XXX (64,43}, 168},
B3 (64} ,CC (64) ,DD (64) ,RES {63) , WP (54),
EE {200) , 93 [200) ,S0%1 [64) ,SUA2 164) ,STAS 264} ,52743)
2yD

PRINT 1500, {X,%=1,5)

POEMAT (//8X,'R',3X,3(5X,I2,2X};
JRITE(6, 1600} {¥X{K) ,K=1,5)

PORENAT {' *,6I,'VX’K)*,8:1X,D13.6))
WRITE (6, 1700}
POBMAT!//, *31,2X, '8 [J) *,4%, VXX 2I,K) ")
DO 1800 J=1,Ja

WBITE!6, 18350) J,3X3), :XX:J,K),K=1,3)
CONTINOZ

FORNAT{' *,I2,1X,013.6,5°1%,013.6))
PRINT 2002, !%,XK=1,8)

FOENAT [//3X,'K',3X,3(51,I2,21})
WBITE6,2102) (VX !X),X=1,9)

PORMAT (* ',6X,'6X(K)*,8(1X,D13.6))
RRITE!6,2202) .
PORMAT (//,'J,2X,'82 :3) ", 4%, 'TT 3,8} 1)
D8 2302 g=1,38 .
SRITE6,2002).J,32.J), :TTJ,5),K21,9)
CONTINOZ

PORNAT* *,I2,1X,D13.6,9:1X,D%3.5))
PRINT 2004, !X,K=1,8)

POEAAT {//8X,'K',3L,8 (5Z,I2,2%))
TRITZ(6,2104) ‘¥4I ({K),&=1,3)

PORAAT{* ',6I,'WI(X)',8({1X,D13.6))

W2 ITE (6, 2204)

FOBRIAT [//, '3, 21, BT J) ', 4X,'2J,K)")
DO 2308 J=1,Jx

4RITE 6, 2408) J,BYX[3),:X:J,K),E=1,3)
CONTINGE

FORNAT(' ',I2,12,013.6,8:1X,D13.5))
BRETORN

END

//GO.STSIN DD *

Vo4



2-

3.

5.

5.

6.

7.

a.

9.
10.
11.
1.
13.
14.
1S.
16.
17.
18.
19.
20.
21.
22.
23.
23.
25.
26.
27.
28.
29.
30.
31.
32.
33.
3a.

<

-

36.
37.
38.
3s.
40.
41,
42.
43.
La.
45.
6.
57
48,
49.
S0.
€1l
S2.
53.
S4.
55.
56.
S7.
<8.
59.
60.

Cl
cl
cl
Cl
o
cl
ct
Ci
Cl
cl
cl
Cl
Cl
Ci
o
Cl
c

c

c

[ ¢]

aonn

(X2 Na Nzl

APPENDIX C

‘i

INTERSE PLO PEOBLEX

PSOGRA® FOR SOLYING INVERSE PRO3SLEN ¢ THE SPEED Q-IS
SPPCIPIRD G THE VANISHING STREAULINE . SJSSEQUENTLY THE
ANGLE AL?81 CAN 32 DETERSINED 31 SOLOTIOY OF L SECOND
QRDE2R PDE. THEN % IS DETERAINED IN A SIMILAE MANNER.
LASTLY HAVING 7ViLUz2s POR I,DI,ALPHA,2XPQ THZ PROFILE CAY B
3Y ISTEGRATION OF A PAIR OF SECOSD ORDER ORDISARY DIFFER-
ZNTIAL EQUATIODYS. .

BY G202G2.GROSSAAN
UNIVE2SITY OF WINDSO3

CALCULATIONS:BO0NDAZY AND INTERIOR CONDITIONS,MATRIX I
,OPTIMAL ACCELEEATION PARAMETER SEA3CH.

(1Y)
—— v o - e —

—p e -

YA3IA3L2 R2PRESZNTATION.:AM IS -L¥Q/2 “8EZR2 ) IS SPEED

_ ™ Is ANGLE OF INCLINATION OF TANGENT. TO STREANLINE PSI
I IS CARTESILY CCORDINATZ .
g2 IS PSOPILS PONCTION AS A PONCTION OF X

3LOCK DATA .

COMMOY /STAT/ JN%,X4,31,%1,23%,25,8%,33

DATA J!/bS/,Kﬂ/“3/,J1/6“/:51/u2/,P!/2.0/,PS/-Z.O/,H?/I.SZS/.
& ¥s/0./ .

oM%0y ,TITiIY/L,XX,T,TT/GORGO/EX,BX

£  ,SPAR/T,OT,2T,ESTT/TROY/AL,AY,SRE, 4

S sSANDAL/AA,B3,CC,DD,RES/AR204/U2,001,32,EE, ¥
DINZNSION X (65,43),KX(65,83),1(65),TT(65,43),

3 d4X'65) ,BY!65).T65,83) ,0T 165,43) ,ET(65,43) ,ETT(65,43),

§ AL 200) ,AY:200) ,5B ;200),13(65,43),22165),

& 3B (65),CC{65),DD(63) ,8HS (65) ,4P (63),

&  PBE’200),3Y:200},32165),03165)
ZND

MAIN P3OGEAN

CALL SOLY
CALL P2IN
5TOP

END

]
g

B

X ]

104s

Y

SUBROUTINE SOLY

COMXON /STAT/ Ji4,54,J31,K1,2%,PS,d¥, ¥

COMMON /TITAH/X,XX,Y,TT/G08GO/9T, 3L .
/SPAE/T,0T,2T, 8TT/TROTI /AL, AN, 58, AN i

5

&  sSANDAL/AA,BS,CC,DD, BHS/X3B0%/U2,001,32,EE, i
SINENSION X 165,43} ,XI!65,43),Y:65),TT 65,43},

£  4X (65) ,BX(63),T(65,43) ,OT (55,83) ,BT 65,43),2TT (65,83},

& aL (200),a¥ (200) ,SR(200) ,AN(65,83) ,Ad(65),

£  B3!65) ,CT165),DD65) ,RES (65),¥R 165),

§ ©=T(200),44(200),92(65),JT1(63)

C LEADING 'EDGE AND TRAILING EZDGE

17023K=323
.T.'!’Q] Y
TP= {L7-IE0RK) /2

o 175

{i
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62.
63.

64.
65.
€6.
&7,
68.
69.
70.
71.
72.
73.
T4,
75.
76.
77.
73.
7S.
30.
81.
82.

83.-n

4.

85. ..
36.

57.
g3.
g89.
90.
S1.
$2.
93.
94,
gs.
96.
97.
98.
39.
100.

191,

102.
133
104,
108,
106.
107.
108.
109.
T10.
111,
112.
113,
114,
115,
116,
117.
118.
11%9.
120.

121

176

C GEID S?ACING

[#]

DP= [PN-25}-AF
D= (WE-#5) /X1

SPECIPYING CONS TS FOg IYCOXING PLOW

Cs=1.
CT=1.45
C3=0.
co=1.

C VALJE P08 "K' AND COS THETA , SIN THEIA

0nNn

103

T5uSQRT!CT7842+CI*82) /SQRTICH**2+L3%82)
TE='C62CT+CS®CT) /SQRT | [COFS2+CEes2) & (CTH824CInx2) )
772 [CEECI-CI*CT) /SQBT [ (CEH%2+C2n82) = (CT*224+CInE2))
C13=3.14159625/2.

IT{T6 .¥2. J.)C13=ATaN(T?/TE}

3O00UNDABTY CONDITIONS,GEID SPECIFICATION,INITIAL VALUZS IN INTERIOR.

DO 103 J=1,J% .
3X 1J) = :J-1)#D2-2.0

+ D0 10 J=3,J4 . -

DO 20 R=1,%A4
SUN3(J,X) =0.
AN (J,K) =J.
T(J,R)=0.
ET J,K) =0.
T (3,8) =0
COXTINOE )
CONTINUE
WXIEN)=2.56235 *
IX (1) =0.
AN 123, 1y=.55
AN (28,1)=.3
AN (33,1 =-.20
AN (B3, 1} =.55
Ad (42,1 =2,50
00 30 J=1,3n
YIJ) =0. :
X {(3)=(J~-1)=DP~-2.0
€13y =0,
X(J,EN)=CO*BL (J) +C7*N L (KY)

C SPECIFYING T (LN2/2) ON VAULSHING STREAMLINZ AS A LINEAR PV

30

&

e

[T 4]

Lo N ]

IP(J .GT. 23 -AND. J .LZ. 33) AN(J, 1) =AN:24,1)¢
(3L (J)=3X ({33))/ [BL{24)=3L(33)) +AN(33,7) ¢(BX{J)-3X (24} )/
18X 733)-3L°24))
IP(JS .8B. 33 .AND. J .LT. 43} AY(J,1)=AN(82,T)*
13X :J)-3X(33))/(3TI82) -BX:33)) +AN(33,1) *[3X (I -BX{42))/
'3X733) -3X732)) _ -
IP{J .6T. O .a%D. J .LT. 28) AN(J, %)=
U.%BL'3)-3X  23)}) /13X 1)—-5X123})) +AN {23, 1) * 183X [ 3)=-3X (1} }/
{32 (23} -5% (1))
IP'J .5T. 42 .A¥D. J .LT. 66) A¥'J,V)=
J.% {3 (J) =3X {83)) /(BX (65)—-3X (33) ) +AN 743, 1) * [BX WJ}-5X:65)) /
(BX (43) -=BX {65))
CONTINUZ
A (1) =1.00
¥x12)21.00
SO%=0.
D¢ 43 K=1,KY
FY () = (R-1) *IR
L{1,8)=C6#3X (1) +CT*aX (X)



123.
124.
125,
126.
127.
128.
129.
130.
131
132,
133.
134,
135,
136.
137.
138.
139.
14Q.
141,
Tu2.
143,
184,
14S.
146€.
147,
168,
149.
150.
191.
152.
153.
154,
158.
156.
157.
158.

159.
160.
161.
162.
163,
164,
165.
166.
167.
165,
169.
170.
171.
172
173.
174,
175.
176.
177.
178.
17S.
1340.
181,

182.

C SQOLVING FOR AY (LY¥Z/2)
C SPECIFIED IT AS LIYEAZ PUCHCTION OF 2HI

F\

-—

30

160

120

130
110

C SOLVING FOR ALPH2A “7”37?H°S" I¥ IBT PLOW FLZLD JSING VOU NZOdaNy

0 30 J=2,31
70 90 X=2,K1
A1 (K) ==1.

ITSRATION; ALTER¥ATIVNG SLOE

177 N
. I{JIY,&)=C6*3L (JN) +CT*RX (K)
- 40 COSTINDE
c
C MATRIX PORYS;SOLITION BY MATEIX
c
¢2=8.25
45 M=+
I (23-200) 50,50,69
60 42ITE6,70)
70 PORMAT (' ',2X,'NO OF IT EX MaI')
GO0 T0 75
50 COYTINUE

EVERY4HERZ IN THZ FLOY PIELD HAVING

BB (K) =2. +C2

cCiX)y=-1.

s

EHS{<)=C2'AH(J,\)+TS“2‘[AH(J- L) =2 %A (T K) +AN [J+1,4))

5 =.58TSET6s (AN [Je1, K41} =AN {J+1,K=1)=AN[J=1,K+ 1) +2¥ (3-1,%-1})

CONTINUE

BHS K1) sBES (K1) -CC 'X1) ®4¥ !J, X¥)

cC (K1) =0

BES (2) =235 (2) -4 (2) AN (3, 1)

A4 '2)=0.
CaLL T3ID(2,42)
D0 100 X=2,%1

-

OT (J, ) =AN (J,X)

AN 1J,X) =AM {J,R)+ 1.30=% BHS(X)

CONTINDZ
00 110 R=2,K1
90 120 J=2,21

14 1J)==TS5%x]

3B (J)=2. *TS&s2 +C2

CC{J)a=-TS5eu2 '
IFX .GT.1) RBAS(J)=C2*AN[J,K) + [AY (J,K+1) =2, %38 °J,5) +a5 1J,8=-1))

1

g
CONTISOE

RFS{J1)=BdS(JT]-AH[J( E) *CC{3T)

CC{J1}=0."

BHS [2)=BHS2) =aAv | 1 R) *242)

AA(2)=0a.
CALL TBID: 2 53)
00 130 J= 2 g1

OT {3,%) =aN1J,R)
AN (J,K) =AN (J,K) + 1.30# (RES (J) -AN (J, )

CONTINUE

C BOUNDARY CONDITIONS

91

Do 31 J=2,31
DO 91 R=2,K1
A (X)=-1.

BB (K) =2. +32

CC(Ry=-1.

~AN[J,K))

BHS (K) =C2*T [J,K) +TS#w 2% T 'J-1, n) =2.%T 1J,R) +T [J+1,
£+1)=T 1J+1,K-1) -7 23-

& —.S*”S‘Tﬁ"*'J*T
CCYT;HJE

FHG R =a2S(R1) -CC

| CC(R1)=0.

'R1)*T (3, KN

,h¢1)¢T'J-T w—1))

.S'TS‘*G'(AY{J*I,K#T)-lﬁ(J+1 E=1)=AN(J~1,XK+1) +AN (J-1,K=1))

K}



-4
*-l
e

£=1
55 %) =2, +C2
CC (X) ==2.
IHS1E) =T20T 1J,K) eTSem2e (T (-1, K) =2 *T 13,K) T I3+1,K))
& ~TSeTEEIT I I4Y,Ke 1) =TI+ 1,K) =T (3=1,3+7) *T WI-1,K))
S - [TSETTH (AN [JeY, N -AN(I=1, 1)} ¢ {T{I+1, 1} -T(I=1,1)} *+T52T5)

ALKy =0,
CLLL TRID (1,32}
oC 331 K=1,K1 -
TT[J.K)=-£J-Q
121 T, 4) =T 3,0 1.90% 23S (K) =T 13, X))
g1 CONTINGZ

X 111 %=1,4%
3¢ 121 5=2,0%
Ax1J) a=T5en2
3E7J) =2. *TS=R2 +C2
CC(3) =-T5%a)
IP X .3T.Y) 2HS7J)=C2eT I, R)e 0TI, K1) =2,97 1 3,K) T 0J,K=1))
s -.5‘:5“6'"{301,301)-T{J¢1,K—1]-;t--l £el) +T(I=1,3=1))
IPK .EQ.1) 23S 3y 32T (3, K) +2.% 73,2 ~T 13, 1))
B ~TSETES T Se1,Ke1) =T 041, 8) =T 1J=1,X+1) +T [J=1,3))
S — (TSeTT* (AN {J+1, 1) =A% (3-1,1)) ¢ [T (J+1, 1} ~T{J~1,1)) *+T5%2§)
121 CONTINGE
2ES (1 =835 (J1) ~T (I, R} *C2 N
Sez g1y =0,
545 72y =RAS 12) -1
1a(2)=0.
Call TEID:Z,64)-
20 131 522,37 .
T8 =T 8,0
131 TS LR) =T (S.R) e 1.S0%BHS () ~T (I, D))
111 CONTINDZ
S TCLIRANCE CHZCX POR UNANCTNS AN AND 7T
20 2139 J=2,31
¢ 219 K=1,%1

1,R) *AR ‘2]

-
-

£19=9.
(R .37 1)C10 =A3S(0T [S,T) -AN([J, X))
IPCI0 L3 .0001 30 70 45

(TH{I,3)=TT{J,K)) -
T. 000N 50 TGO k8

e CONTINDE

CONTINTE

NOING OX APPZ0ACH TAXEN ¥§2 CAN PIND ALPHA ON VaANISEING
MLINE 3Y USIAHG TOIWABD AND JACK<ARD DIFPZ32aCING

23 G0 T2 583
(s- 1)—.5-[—Ax(q-1,3)ou--sx:J-T,z)-3--as:;-:,n)
(3,1)=-RAH(J=1,1)}#T6/7T7

[T
~
—
.
v

& % »y

WP (e 1) =SNP (L42) + 0 [=AN{L+T, 3) +S o AA (LT, D) =3 AN (LT, 1))
& /ITSeTTY - AN L2, T)-AN L, 1)) #7627
20 777 J=25,33,:2
WP ISy =4P (3~2} - —A\'u-1 3+ AN IS=T,2) =30 AN (ST, 1))
& /IT0eTTY +TAN IS, Ty AN S 1Y) *TR/TT
i?{J-T]=JP(J-2)-.5‘(-Aﬁ{J—Z,J)*3-'AH(J-E.Z)-B-'AH(J-Z.T])
ZITSeTTY AN 1T, 1 AN 1I-2, 1)) 0T /T
CONTINGE
20 79 S5=33,47,2
L=u3¢( 3-3) =2
WD IL) TR ILe2) ¢ AN LT, D) e MAN LT, 2 =3 AN (LY, 1))

-3
LY |
~J

[



2us.
2u6.
237.
248,
249,

250.
251
252.
253.

254,

cx

256.

257

P

258,
259,
269.
267.
iol.
263,
264,
26¢.
266.
267.
253,
265,
270.
271
27 2.
273.
2744
27S.
276.

277.

274,
379,
230.
281,
232.
233,
2835,
235,
~BE.
237.
2s8.
23%9.
290.
291.
232.
293,
293,
295,
296.
257.
298.
269.
300.
301,
302.
303.
304,

(8]

95

&

”

[ )

o

179

/::5*'7)-’&?"*2 T -AN L, )eTs /0T

WP ILe1) BEPILe2) .58 m AN T, 3) *uLSAN LT, 2] =3 AN LT, 1))
TSy~ (AN (Le2, 11 =AN (Le1, 1)) 26,77 .

CONTINTE

CoATINTE

23INT 2221.,3x

POREAT (//3L,'82 OF IT E3',I13,/7)
20 066 J=23,43

2 ) =77, 1)

2aINT 2222, 7 [0)
POREXAT'/,7X,015.8,/)

CONTINUE

qM=3ge]
IT{%m=207y57,57,57 .
W3ITz 6, 71) -~
?OBH*:(' £2L,"N0O QF IT BI :AXt)

CONTINTE

CALCIULATE I EVEZYNHEESE IN T8I FLOs FIZLD

«
~

&

&

20 35 J=2,31

J0 95 K=2,%1
AL (X) =-1.
88 'K} =2. +C2

cC (X} =~T.

HHS XY =C2%L 5, X) +TO#2% 11" J=1,K) 2. %X ‘3,8 +X(J+1,K))
~.SETEETGe tT (30T, e 1) X 3¢1,5-1) =1 (3=1,8e1) +X 23=1,8-1))
IOYTINTE

X=1

1i0%) =2,

=3(<)- - +C2
ST (Ry=-2.
c1a=i?(4)*c.
THS§IX) =C2eX S, \)o~<--1-'x" 1,8) =2.%X73,5) X !3+1,%))
-TSeTSe L g1, w+1)—x';¢1 R)=XJ-1,K¢T) «X J-1,3%1) ’
-2 ‘“”*’:?[ai[J 1})-coscc1b)-:5 :
RS (XT) =R4S5 K1) =X 10,89} *CZ 'K 1)

CC(X1) =d.
TALL T2IDI1,42)
0Q 1¢S5 331,\1
ISR =4L73,1)
T (J,X) =L (J,K) +1.30% (RHS (K] -X (3, 5))
CouTINDE

30 115 £a3,31
20 125 J=2,31
AA (J) =-15%e2
BB [J)=2.%TSea2eC2
CCIJ) ==D5we2
IP (K .GT. 1) BHS(S) =2C2eL(J,3)+(X(J,X+1) =2.8X{J,8)+L[J,5=1])
-.5‘?5'?6‘:1:301,K01)—I S+1,K=1) =X13=1,K¢1) ¢X13~1,%=1))
IFIE .22.1) C16aWp 1) +C13
P(X -EQ.1)235(J)=CIeX({J,X) +2.¢{X{J, ) ~X (I, 1))
—T5%TEE (T, Ke 1) - 341, K) =X (J=T,8e1) +X 2J-1,K))
~2.®Dus2IP (AN (3, 1)) *COS (C15) 75
COSTINUE
245 {J1) =uHS [37) =X (<M, &) *CC [T T
3us "3}-"1..5()) L1, R) =AM ()
celoty =0,



336..

33
308.
306.
310.
311,
312,
313,
314,
318,
316.
317
318,
339,
320.
32
3z2.
323,
324,
328,
328.
327.
328.
328.
33o.
33
332.
333,
334,
335,
336.
337
338.
33%.
3488,
Jan.
342,
3J43.
EET
. 3as.
346,
347,
349,
Jus.
350.
g,

353.
3540
3SE.
35e6.
357.
is3.
3s9.
J60.
361,
362.
363.
364,
16‘:

- Cwa

13¢%
115

AA T2y =0.
Call T2ID{2,63)
20 135 S=2,01
IX (J,3) =X (J,5)
$:J,K)=2°3,%) +1.30% *535 13} -3 23,%))
CONTINUZ

C OPTIMAL ACCEBLLEZATION PABANETER POE SLOR

[N
[ V]

7000
250

503=0.230
DO 222 K=1,K1
20 222 J=2,31
PTTId, ) =A3S XX G, 80-102,K8)
STIN=ST1+E2TT [J, A)
CONTINGE
Sz [®x)=5Tn
IZm2 _57T. 1) aLav) =Sz uM)/S5a ma-1)
IZ (4% .5T. 10) TI1=3A3ZS(We(19) -
¥ X3-10) ) /72.000—-wR I02))
IF(®2 .37, 13 .AND. T717.L7. 052009
IiNRMel)aEN NN
IP(Ex .GT. 10 CJAND. T1 LLIL L25290)
30 Tc 2%9
IP (nOD (22,30) .N2. QJ) GO TC 25¢
CI9a 7 1.000= A M) +wa 2n)=1.20Q0) =2/

(Fa(nM)*=2+32 M)} )} )
Tla=335 (C15) .

My =2.000/;1.000+5.147C14))

WY [MM+ 1) =TT (M) ~({I-D00-28 (2M)) ,5.200
d3ITE6,7000) WY (X8e1) ,TT,AL NN} ,SENY)
FOEMAT (* ' ,3(D15.5)r)

CONTINGE

IZ (MCD (2M,7d) .¥E. 2 .ANT. 3% .52
TPy JLZ. 19 LAND, 2N .52, Q) WX
IP!mx L. J)dmimE+1)=1_200

IT (%% ..7. 10) GT TO 47

C TCLE2ANCZ LZIVEL CHECK

20 217 gaz,J1

5¢ 217 K=1,R1

C10 =aB3S (X (J,X)-XX{JI,5})
IPICTO .53T. L0007 30 T2 87
CONTINTZ

OYTINUE

RTTE(6,7200) 7201

POENATIY f,TAPTIMAL TTERATION 2A3aMEITER
SI%100=0,7200

3UE20020.300
TS5=135 10T *2,1) =35:2,1})
TE=ABS (XX (2,1 =K (2,1))

30 273 3=2,J1

00 278 K=1,K3

T2=A35 0T 5, E) -AN', X))

IF (% .2Q. 1) T2=0.
T3=A5S'IX'JLK) -L13,5))

I7 (X .GT. 1 -AMD. 755 .LT. T2} ™5G=T>
IP'T6 .LE. T3} T6aT2
SUN100=T2+5U%1G]
ST4200=T3+ST92C0 g
COBTINTT (
d2ITE’6,7100) %=

TORXAT (' !,'NJ OF IT=',I3)

(%x}=1.35 -



f// 181

3e?. Darx‘ uooa/aa.saa1oo 578200,755,T6,77 :
368. 5000 POE2aT [//8X,1I3,6:5%, 313 8),/") »
366, C INTZG: A"Ios QP D2Y¥/02X = CJRV *X' EXP(T)

370. L3=IY~I&058+1

i7t. I2B=LE-3

372, SGHAI=LY~1 )

373. YGEID=L4~2 L

374, J0 S5 I=1,LH

37s. L=I+IW0RK-" -

376, ‘ gI1:y=I°L,n

377. 5 T2({I)=0.

378, Ny=Q

376. 215 Ni=K ¥

390. 1T [¥N-200) 229,220,225

381. 225 43IT2(8,3230)

gz, 230 FCRMATIY ',2%,'W2 0P IT EX 2007

333. : GC T0 77

334, 220 S0 235 Ia2,IE2

33s. CE=0UT [I+2)~T0 71 (I+1)

3136. C7a0TT1.1+2) =071

387. C8=0J1 (I+1)-UTT(D)

33s. CIx 5% (TT1 2e2)-0UT [Te1}}* 1501 I41)~001:T)) *

339. [ (0T 22)-0T1°1))

390. C9=C3,/C7

371, Cu=[J2T+¢1)=U2:1=-1}) /C7

392. AA {1)=~-Cs~- C9‘3-'C4¢S}R"‘{T +cn-t?)-(r;2{1.303~"}--?(..+ IeT)) *
331, A EXP[=~ANIIeLHe2,1))/(2.%02)

3%4., 33 13y =7

395. CC(I)=-C3+CI* 3, *CuasQRT (1. +c*--7)-(.1(14¢3*‘)—u9(* sL3+1}) ®
396. 3 IXD I-AN [ I+LH*2,1))/ 2.%D2)

397. 355(¢)-c&-33(‘-1]'c54u*(1o11—u2 I)#CT+C3

398, & -®(UYP(I+LT+3)- -p(*+L~+1))-sV="((1 +Ciee)) wxw])

359, & *TXP AN II+LE+2,%) )/ -2.902)

400. - 238 CONTINUE

531, - I=1

402 Ce= 3u1(*o’)-cu1(:¢n

403. CT=CU1 I+2)=-UT1:T) .
304, Cy= 031(1o1)-au1(n

425, C3=.5¢ (37112} -0U1 [Te1})* 371 T+1)-001:7))*

436. & (UU1’*¢.)-UGT:I)) ’

437. C9=C3/C7

498, Ce=g2:2y /C7

409, 1A (T) =0.

410. 353 =C7

311, CC{I)=-C3+C9'3.‘C4'SQET[T.*Cu"Z)'{U?{LS*J¢I)-3P:I+LH+1))'
412, A EX2 (AN {I*LH+2,1)) /7 (2.9D7)

413, aas::)=-t?-0"')+c5¢uz'*o1)-c3

44, 5 *{E2{I+LH¢3)~d2 (I+LH+1) ] 8SQRT ( (1. +CuewD) »%3)

415, 3 *EX2 -AN IeLE+2,11)/:2.°0D)

416. I=NGZID

$17. Cb=U01::*’)-UJ1" 1)

318, C;:LU!('*’}-JUT(A

419, : C3=J01 Z+N-031°'7)

420, > c3—-5t(au1(1~2)-uu1(:+1))-(au1(;+1)-au1(‘)}-

421, 3 TOY(T42)-0T1(D)}

422, C=C3/C7 &

523, C3=-C2Z (¥32ID-1)/C7

424, i3I =

625, AA (1) =-Co=CI®3 ®CL%S JRT [1.+C3®®2) (T {lHeIsT J=wD I+l8+1})
426, s XD (=3 [IeLlde2,1) )/ (2.*00)

P .
\ '
l/l
\



424,
329,
330.
431,
432.
433.
434,
335,
436.
437.
433,
43S,
+40.
Ja1.
“d2.
453,
4na.,
345,
dd4b.
347
348,
349,
450,
451,
452,

454,

182

<. Cc(I)=0. )
RES (I) =a=C7eJ2 1) +C6212 I-1)=C3
& -nw9(zo:.a+3)--?EI’I-H'%H-SQR- ((1.+Caww2) »23) .
E  SEIPI-AN:I+LE+2,1))/'2.%07 '

CALL TRID®1,NC3ID)
DO 284 I=1,3i3RID
2:I)=02°I) +8ES1I)
2814 CONTINUE }
D0 289 I=1,4GRID . .
TE= ABS (RES {I)} ) )
IP'To .3T. .30001) GG TO 215
2395 CONTINUT )
DG 250 J=1,J%
D0 280 §=1,Xx

AY (J,K)} =BXP AN, %) )/ T5eTT) ’
.280 CORTINDZ

PEINT 353,8N
3538 PORMAT (//8X,12,//)

j+ o] 237 031,_03

T1[3) =02 ¢

G20y =0.

I?(J .57. IWORK .AND. 5 .L2. IT) 02{s)=01[3-IFCiK)
42ITE6,7390) 42735 ,I3,.M)

237 CONTINGZ
7330 FORNA% ‘' '13X,2°SX,D15.8))
77 CONTINUZ

2ETURN

23D

C TEIDIAGONAL sS0LVEZ
SJBRCUTINE TAID (KL, NT)}

co:sos/saui:é;xza,c,a,s
DI YZNSION 5) ,3(65),C(65).,23(53),3(65)

DI¥L)=C INL} /3°NL}) : .
G(ML)=G{¥1)/3 (L) (:
NL21=NL+1

5¢ 293 §=¥LP1, N
=1L/ 3 IN -AN) w3 =)

) D'¥)=C %) 2 . (
292 GE)=(G{A)~A (L) *G(N=-T) ) *2-
SUPNL=NT+NL
v 20 330 NN=NLPY, U
§aNTIPYL-NS _
G309 SN} =G (N) =D2(¥) *C [N+ 1)
ASTUEN
3. gol

C PEINTING OF RESULTS:I,aN,T

SUBZQUTINZ PRIN
Q0N /STAT/ JN,X%,31,K1,P4,25, ii,iS
CONAMON /TITAN/X Ia,f,T“/FORGO/?

3 /SPAB/T,O07,32T,ZTT/TR0Y /AL, AN, SR, aa

& /SANDAL/AN,B3,CC,D0D, EES/AE~O!/32,UU1,49,_-,7'
"DIMENSICN L J65a43),XX[65,43),%265),77:65,43),

& JI(SS),31{b5).T(65,33),CT:55 JB],ST:bS 33) ,ETT85,483),

5 nL[ZOO),n!(200},53(200),AH{GS,QB),A&[SS),

S 8B 165} ,CCI65) ,0D:65) ,235:65), %2 65),

§  ET(200),¥8(200),32(65),T071(65)
PEINT 2004, (£,%X21,3)

2000 TOR4ADA/ /8%, K" ,3X,5 (5%, 22,21))
.::TE(a,21ODr{ax(K}.5=1,4
2100 PORMATIY 'L6T,PEX N} Y, 3°1%,333.9))



ag89.
as0.

a9 1.
552.
493.
493,
435,
396.
497,
498,
399.
S00.
. 531.
* S02.
Q3.
SJa.
S35.
506.
507.
Sa8.
508.
510.
S1T.
$12.
$13.
Si4.
S 1S.
S Wo.
517.
518.

519..

2209
2300
2300
2500
2609
2700
2300
2900
2505
2635
2705

2305
23905

.

183

¥RITZ16,2200)

POSMAT [// st 3% 024, VBT () "L 42, PAN (J,&) ")
Do 2300 J=1,J%

dBITZ (6,250 J,3X(J), (AN (J,K) ,K=1,5)
CONTISUE

rogxaAT (' *,I2,1X,013.6,58(1%,313.86))
PRINT 2500, (K,X=1,3)

POS¥AT 1//9%,'K' ,3X,3°5X,12,2X))
§RITE(6,2500) (WI(X),K=1,8)

POSMAT!' ',6X,'aX’X)',3°11,013.6))
4RITE (6,2709)

PORTAT (/7,13 ,2X, 32 {J) ', 48X, X (I, K1 )
20 2800 J=1,3

4RIT2(5,2900) J,9%{3), (X(3,K),%=1,3]
CONTINGE

POEMAT (* ' ,I2,1%,033.6,8(TX,D13.8))
PRINT 2505, (X,X=1,3)

?oaqugééax,'x',az,a:sx,xz,zx))
WRITE(62503) [FL (R}, R=1,8)

POANATIY Y,6X,'EX!K)',3:1Z,013.6))
4RITE (£,27035)

FORMAT (/. T .20, "33 () L8T, T (I, R ")
DO 2805 J=1,J% N

SRITE (6,2900) J,5X(3),(T(J,K) .K=1,38)
CONTINDE

POEXAT(' ',I2,1X,D313.6,8(1X,D13.6)})
2ETIERN

END

//G0.STSTN DD »
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