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A Finite - Volume Navier - Stokes Solver

for Multiblock Structured Meshes

by
A.Yu. Boglaev

Abstract

In this thesis numerical solution of 2D steady laminar incompressible viscous
Navier-Stokes equations has been considered. For such flows a problem occurs with
preserving mass flow through the system. Primitive variables were chosen to per-
form computations. The solver is based on the finite-volume approach with artificial
compressibility. The code was written to accomplish numerical computations based
on the suggested approach. This code is capable of handling multiblock meshes and
does not require coordinate transformations, due to the finite-volume approach. The
artificial compressibility approach allows the calculation of pressure and at the same
time preserves mass flow through the system at the steady-state. This code was val-
idated against known results for the driven cavity problem and rapidly expanding
channel problem. The problem of a moving road vehicle was studied for different
mesh arrangements to investigate the influence of boundary conditions together with
mesh quality on the computational results. The results of these calculations were
also compared to those obtained by STARCD and found to be in reasonably good

agreement.
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Nomenclature

».y: Cartesian coordinates

t: time

U, V: velocity components

P: pressure

p: density

v: molecular viscosity

Re: Reynolds number

B: artificial compressibility parameter/artificial speed of sound
A: ccll area

€: pressure switch parameter

§: convergence parameter

R: function to determine convergence

N;, Nj;: number of nodes in i-direction, j-direction

N,: number of blocks

Imaz, Jmezr: maximum number of nodes in i, j directions

i,7: index of cell in i, j directions



Chapter 1

Introduction

In practice, engineers must deal with “complex gecometry” problems in fluid mechan-
ics. These geometrical complexities have encouraged the use of finite clement methods
[1] since they can more easily handle problems with complicated irregular gcometry.
On the other hand, finite difference methods work more cfficiently on rectangular
computational domains. However, these methods lose their attractiveness because
of the necessity to make coordinate transformations, which sometimes can be com-
putationally expensive. The finite-volume approach [2-6] combines the best features
of these two different approaches. It has the geometrical flexibility of finite element
methods and the efficiency of finite difference methods. It also inherits such charac-
teristic features of finite element methods as the very important preprocessing part,
namely mesh generation. A realistic and accurate numerical solution of a problem
depends upon choice and correct implementation of boundary conditions as well s a
right design of the mesh. The choice of 2 mesh plays a main role in getting a detailed
pnumerical solution. A uniformly fine mesh represents an easy solution but cannot be

employed because of its high computational cost. A solution to the problem is to use



a clustered multiblock grid which leaves the option open as to where to make the
mesh finer or coarser [7].

The primary objectives of this study are:
1. to develop a multiblock finite-volume Navier-Stokes solver, and

2. to investigate the dependence of the numerical solution of the Navier-Stokes

equations on different computational meshes.

In this thesis, the 2D Navier-Stokes equations are solved using the finite-volume
method with artificial compressibility. The code is written which is capable of han-
dling multiblock meshes. The different meshes are generated using an elliptic mesh
builder. The physical problem of interest is chosen to be an airflow around a car.
The airflow is laminar, viscous and incompressible. Solutions of the Navier-Stokes
equations on H - type and H - O - type meshes are investigated.

A finite-volume 2D incompressible viscous non - turbulent flow code has been
written based on the artificial compressibility approach. This approach was first
suggested by Chorin [8], and validated against known numerical results for a set of
problems. The discussion of the choice of “pseudo - Mach number” for the artificial
compressibility approach can be found in [9]. The code in this thesis was validated
against results obtained with finite - volumes codes [10, 11], finite - elements codes [10,
12] and finite difference codes [10, 13}, using streamfunction - vorticity formulations
or primitive variables formulations.

Research works and technical reports related to flow calculation of airflow around
a road vehicle have lead to a better understanding of the most common problems

encountered while obtaining solution for the airflow [7, 14-19].



Computing time restriction. absence of a turbulence model and the ditferencing
schemes implemented in the code made it practically impossible 1o complete com-
putations for high Reynolds numbers with the present code. However. computations
with high Reynolds numbers were carried out with the commercial code STARCD.
Nevertheless, computations with Reynolds numbers near the critical level are quite
interesting due to the more complex flow behavior with numerous recirculation re-

gions.



Chapter 2

Formulation of Equations

2.1 Theoretical Background

This thesis deals with the numerical solution of the 2D Navier-Stokes equations.
The system of partial differential equations governing laminar unsteady flow of an

incompressible viscous fluid, in primitive variables and conservative form, is [6}

aU  av .
oU _8UY) LV) _ _19P (U &V

5t T Tz oy poz (3:::2 + dy? (2:2)
9V _UV) 8V _ 18P (&V &V

T ey poy U \a7 T (23)

In order to solve this system of partial differential equations, an appropriate set
of boundary conditions (B.C.) for velocity and pressure must be prescribed for the
domain of the system. However, as often happens, boundary conditions may be
unavailable for some part of the boundary. In this case some approximations should
be made, or the physical domain may be changed in such a way as to allow the use of

some known boundary conditions. This is possible only if we can get correct results

4



for the original problem after such modifications. Typical boundary conditions which

can be applied are:

1. Inlet.

AV

. Outlet,

S

. No-slip.

N

. Constant pressure.

5. Periodic.

(=21

. Symmetry.

The meanings and some explanation of these boundary conditions are as follows:

Inlet: the inflow conditions are imposed directly, including velocity components
and density (for compressible flows), but not the pressure.

Outlet: this type of boundary treatment is applied at locations where the flow
is everywhere directed outwards, but the conditions are otherwise unknown (they
are mainly determined by what is happening upstream). The outlet conditions are
estimated in two stages. First, the distributions of the variables on the outlet plane
are evaluated by extrapolation from upstream, on the assumption of zero gradient
along the mesh lines intersecting the outlet plane. Then, the velocities are adjusted
to conserve the mass flow.

No-slip: the velocity components are set to zero on the boundary. If the mesh
system is fine enough to resolve any boundary layer, pressure can be determined on

the boundary from the expression for pressure using the boundary - layer equation

2
Ua—Z+V?2=-1dP U

3 5y pE + V-a?- (2.4)



On the wall U = 0. V =0 Hence, the following expression for the pressure gradient

(for flow over a flat plate with nonzero pressure gradient) is obtained

dP o*U

iz " Jy*

—
o
[}

=

Generalizing the above formula (2.5), one may write

dP o*U

s Fonz (2.6)
where s is a boundary-fitting coordinate and -53; means a derivative in the outward
normal direction to the boundary curve. This relation is valid provided that the
thickness of the boundary layer in the region where equation (2.6) is applied is greater
than the curvature of the surface in the region.

Constant pressure: or prescribed pressure assumes prescribed pressure distri-
bution on the boundary. The corresponding flow magnitude and direction are then
determined as part of the analysis.

Periodic: or cyclic boundaries consist of pairs of geometrically identical bound-
aries at which the flow repeats itself. This can be exploited to reduce the size of the
computational domain.

Symmetry: boundary condition implies normal gradients of all variables to the

boundaries are zero.

2.2 Artificial Compressibility Approach

The steady Navier-Stokes equations are deduced from (2.1), (2.2) and (2.3) and are

written as
ouU ov
Frl i 27)



[
s
—

AL?y ol 13P Fr U

e b =~ — v [ o +
or dy pdr ar? ' gy?

V)  d(vh _ 19P FV vV
5z "oy pdy +"(a?+'-5;?)

(2.9)
The main numerical difficulty in obtaining a solution to these equations lies in satis-

fving the mass conservation equation. which serves as a constraint, i.c.

oUu | oV

3z T oy =0 (2.10)
This difficulty can be overcome by using the “artificial compressibility method™ sug-
gested by Chorin [§].

The main idea of Chorin’s method is to consider the solution of the steady-state
equations (2.7)-(2.9) of fluid motion as the limit ¢ — oo for unsteady equations (2.1)-
(2.3), modified by adding an additional time dependent term to the mass conservation

equation (2.1):

_L@_P+_3£+3_V_0 C(2.11
Fot T oty (1)

where 3% is an arbitrary parameter. The term “artificial compressibility” was adopted

because equations (2.11), (2.2) and (2.3) can be obtained from the compressible

Navier-Stokes equations with state law

P=p%

with 82 = constant. This perturbed set of equations can be solved by standard
numerical methods. Equation (2.11) has physical meaning only when a steady state
is reached, z.e. %% = 0, which implies %% + % = 0. The constant A is called artificial
speed of sound and chosen in such a way to obtain fast convergence. The artificial
speed of sound should be restricted to assure that artificial Mach number M < 1
[8]. There are upper and lower bounds for 8 which can be derived from stability

7



conditions. Since the magnitude of 3 controls the speed of the pressure wave. it plays
a very important role in determining convergence speed. accuracy and stability. Most
of the problems numerically solved here are similar to duct flow. The lower bound

on S for these kinds of flows can be written as [3]

NN EANS ,
B>>(1+?i?(xs) (x—?)) -1 (2.12)

M = 5 maxlul <1 (2.13)

B

where z; is half the distance between the two walls of the duct, z, is equal to the

total length of the duct, M is Mach number and ju| is velocity magnitude taken at
some point of the flow domain. The artificial speed of sound affects the stability
condition which, for the case of duct flow and velocities prescribed on boundaries,

can be written as [§]
9

At < ml min Az (2.14)
where n is the number of space dimensions and Az; is the space step in i-direction
(if the derivatives of the velocities are prescribed at the boundary, one has to ensure
no instabilities arise due to boundary effects). During numerical experiments it has
become clear that the artificial Mach number should not be too small, otherwise it
causes instability or very slow convergence of the numerical scheme. This can be

explained as trying to solve an incompressible flow problem, as 2 low Mach number

compressible flow.

2.3 Finite - Volume Approximation

The conservation laws of fluid mechanics may be expressed in either differential or
integral form. When a numerical scheme is applied to the differential ferm, the com-

8



putational domain is represented by a set of discrete points. upon which the finite
difference equations are solved. In the case of integral equations. the computational
domain is divided into volumes (or areas in the case of two dimensions) and the
conservation laws are applied to these volumes. Finite difference equations which
approximate partial differential equations are solved within a rectangular domain at
equally spaced discrete points. Almost all practical problems have a quite complicated
physical domain which is highly irregular in shape, requiring the implementation of
a coordinate transformation. At the same time, the finite-volume method does not
require such transformation. The governing equations can be solved if the physi-
cal domain can be successfully discretized into elements. This discretization can be
unstructured or structured.

Finite-volume schemes can be divided into two groups: “cell-cent;:red' schemes
and “nodal point” schemes. The scheme used in this thesis is “cell-centered™. To il-
lustrate the “cell-centered” finite-volume approach consider the following model equa-
tion:

Q@ OE OoF

§+E+a_y-=0 (2.15)

First equation (2.15) is integrated over a quadrilateral element abed as shown in

Figure 2.1, giving

0Q _ 9E OF
f, g (3?) dedy = — j g (53- + -5;) dedy (2.16)

Then, Green’s Theorem is applied to the right-hand side of equation (2.16), which

leads to



/ (%?) dzdy = f;bcd(Edy - Fdz) (2.17)

Equation {2.17) is used to develop a cell-centered scheme. The integrals of equa-
tion (2.17) are to be approximated over the element abed, i.e. cell 5, shown in Figure
2.1. The dependent variable @ is to be solved at cell 3. Equation (2.17) is approxi-

mated as

n+1 -

+ [FiATap + FiATpe + FnAzeg + FrlAza, (2.18)

where Agped 15 the area of the cell abed and points ¢, j,m, n are midpoints of edges
ab, be, cd, da respectively. Points 1,2,3,4 are cell centers of four adjacent cells. The
increments of = and y (e.g. Az,,) are determined by following the cell border in a
counter-clockwise direction. The values of functions E and F at the midpoints of the

edges are determined by the following formulas:

. =%(ES+E1) E; = L (Es+Es),
E. %(E5+E3), En=1(Bs +Ed) (2.19)
F=%(FS+F1), F=1(F+F),
Fm=';‘( Fs+F), F.=3;(Fs+F)

The values of functions £ and F in the centers of cells can be evaluated at n + 1
or n time level, which determines whether an implicit or explicit scheme is used. It
should be noted that the values of the functions at the midpoints of the edges can be

determined in a variety of different ways other than by formulas (2.19).

10



Chapter 3

Mesh Generator

3.1 Basic Concepts

In order to numerically solve the governing partial differential equations (2.11), (2.2

and (2.3), approximations of the partial derivatives are required. Using these approx-
imations, the differential equations are converted to a system of algebraic equations.
These equations are subsequently solved at desired points within the domain. In
practice, physical domains usually have nonrectangular, complex shape. A transfor-
mation from physical space to computational space can be introduced to generate 2
structured mesh covering the flow region. On the other hand, the irregular physical
domain can also be covered by an unstructured mesh, usually generated by Delau-
nay’s triangulation method or the advancing front scheme [20]. The finite-volume
method does not require a rectangular computational domain and computation can
be performed on any grid (structured or unstructured) in the physical domain. This

grid system should satisfy certain requirements, such as:

11



1. It should not have adjacent cells with a large difference in aspect ratio - this

can cause difficulties in solving the system of algebraic equations.

[

Orthogonality or near-orthogonality of the grid lines. especially near boundaries.
3. Grid lines of the same family should not cross each other.
4. The grid should be clustered in regions of high fiow gradients.

Figure 3.1 shows 2 mapping of the physical domain into the computational one,
where z and y are Cartesian coordinates in the physical domain, while ¢ and 3 are
coordinates in the computational domain. Solving a system of differential equations
is the most popular approach to generate structured grid systems. A system of
elliptic partial differential equations is usually solved, because of the nature of elliptic
equations to smooth boundary data [21].

An analogy can be drawn from two dimensional, steady, inviscid, incompressible
flow which is governed by Laplace equations for the velocity potential ¢ and the

stream function #:

bz + by =0 (3.1)

¢u+¢w=0

If ¢ and 1 are considered as coordinates in a computational plane, then solution of
these equations produces smooth and orthogonal mesh lines.

Another advantage of using elliptic grid generation is that, when applied with care,
it almost always produces a one-to-one transformation between the computational
and physical domain, i.e. grid lines of the same family do not cross each other.
Local extreme values may occur inside the domain if “very bad” boundary conditions

12



are possible which may lead to intersection of grid lines of the same family. This
problem can be resolved by dividing the domain into several blocks and solving elliptic

equations for each individual block.

3.2 Outline of Elliptic Grid Generation

A 2D physical domain must be mapped to a rectangular computational domain. This

can be expressed mathematically as the following transformation
I = I;(fl,fz), = 1,2. (33)

Suppose that the coordinate points are specified on the entire boundary curves of
the physical domain. Then elliptic grid generation may be performed. Under the

assumption of finite and nonzero Jacobian, the inverse transformation exists, i.e.,

& =E(zy,22), i=1,2 (3.3)

In order to transform Cartesian coordinates to curvilinear, Thompson et al [22] used
Poisson equations

V& =¢"FR, i=1,2 (3.4)
where 7 = -5% + -3‘:’% is the Laplacian, ¢g" is the contravariant metric tensor of the
transformation and P. are control functions. Inversely transforming equation (3.4),
one can get a system of differential equations for the Cartesian coordinates as unknown
functions of the curvilinear coordinates (using notations: £ =&, £ =4, z; = z and

Iy = y):

azge — 2bzen + Cxogn = Py (3.5)

ayee — 2byen + cym = P2 (3.6)

13



where the metrics are given by

a=1z;+ye
b=xeTy + Ye¥n

_ a2 2
c—.rﬂ+yn

The system of nonlinear elliptic equations (3.5) and (3.6} is solved in the rectangular
domain in (€, ) space in order to provide the grid point locations (z, ¥) in the physical
space. This task can be accomplished effectively using auy iteration process such as
point successive-over-relaxation (PSOR) or line successive-over-relaxation (LSOR).
These equations are nonlinear and therefore a linearization procedure must be per-
formed. For example coefficients 2, b, and ¢ can be evaluated at the previous iteration
level, so that they just become constants on the current iteration level.

Control functions play a very important role in the system of elliptic equations.
These control functions are used to attract grid points and/or lines to required bound-
aries, to cluster grid points and to exert some effect on angle of intersection of grid
lines. Appendix A.l contains a detailed explanation on evaluating the control func-

tions, as suggested by Barron {23].

3.3 GUI and Mesh Generation Code

In this work, 2 2D multiblock elliptic grid generator developed by Barron [23, 24] has
been used to create the necessary meshing of the physical domain for all problems
considered. The 2D profile of a real car has been digitized, in order to get geometry

data necessary for defining the physical domain and generating the mesh.

14



After the car geometry has been established. the physical domain must be sub-
divided into blocks. Points on the boundaries of the blocks should be distributed in
such a way to provide necessary clustering of grid points. This task can be accom-
plished by using a curve-fitting program which was available. The user is required
to supply some points along a curve in order to generate new points according to
specification of the type of curve fit (eg. spline) and the required clustering. Several
options are available for clustering including packing at one or both endpoints of the
curve, at the centre, or at some internal point. Spacing between points can be de-
creased by a prescribed factor if clustering is required near the first or the last point.
If clustering has to be done near both end points then either arcsink or In functions
are used.

Generating the mesh inside the domain was accomplished by a 2D multiblock
version of the program EGG3D referred to as “MBEGG2D” [24]. The user must
specify necessary parameters to select the method to use for mesh generation (alge-
braic/elliptic), number of blocks used to cover the whole domain, choice of the control
functions, format of the output file and some constants required for mesh clustering
if this option is used.

For convenience, a user-friendly graphical user interface (GUI) was developed to
run with MBEGG2D. Figures 3.2 and 3.3 show some snapshots of some of the pop-up

menus from the GUL.
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Chapter 4

Finite - Volume Code Description

4.1 Introduction

The code presented in this work is an explicit Navier-Stokes equations solver for
multiblock meshes. The grid system in each of the blocks has a rectangular topology,
i.c. each block can be transformed to a rectangular computational domain consisting
of Ni x Nj cells, where N; and N; are the number of cells in the { and 7 directions,
respectively. Two adjacent blocks must have the same number of cells along 2 common
boundary and the cells must be joined face to face with coincident vertices. For future

reference, Nb denotes the total number of blocks covering 2 physical domain.

4.2 Discretization of the Navier-Stokes Equations

First, discretization of the Navier-Stokes equations (with artificial compressibility)

must be done. Integrating equation (2.11) over the cell abed (Figure 2.1) yields
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1 gpP ar A
_ggv/;bcd (3 ) drdy + abed (:3— + -5_) drdy =0 (+.1)

Applyving Green's Theorem, the following equation is obtained

1
5_2/“« (%}:) dzdy +}( (Udy — Vdr) =0 (4.2)

and, after discretization, the resulting equation can be rewritten as

1 Pt — P

7 At Agbed + (4.3)

(Uas (¥ — ¥a) + Use(ye — ¥8) + Ucalya — ¥e) + Uda(ye — ya) —

Vis (T — o) = Vic(@e — 23) — Ved(zd — 2c) = Via(2a — 24)) = 0

where Usp, Use, Uedy Udes Vabs Vaes Veg 2nd Vg, are average values along edges ab, be, cd
and da, respectively. Furthermore, any variable with subscript denoting an edge will
refer to an average value of the variable along the edge. Now, for the momentum

equations (2.8) and (2.9), taking the integral over the same cell abed one can write

f., ( )d &y + j (a(m) a(g;f)) dzdy =

10P (U | &U
-/cbcd (_p 3z T’ (3::’- + ayz)) dedy (44)
j,, ( ) dndy + [ (a(Uv) a(at;’)) dzdy =
1P (V8
[ (55 (5 57) oo ()

Applying Green’s Theorem, the above equations become

[ ("g{) dedy+ §  (UPdy—UViz) =

Lg paef v (—-dy-— Qﬁdz) (4.6)
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-[nbcd (%{/—) dzdy + ibcd (U Vidy - nga:) =

1 v, v i
;){w Pdz + ){w v (-554 - a—ydr) (4.7)

Discretization of the two momentum equations over the cell abed leads to the

following system of equations

Un-{-l - Un
At _Aabcd +

(U:b(yb - ¥a) + Ugc(yc - )+ Uczd(yd - yc) 4 Ufn(ya - yd) -

(UV a2 = Za) = (UV)se(ze = @) = (UV)et(7a — Ze) = (UV )ta(Za — 72)) =

1
_;(Pnb(yb - ya) + Pbc(yc - yb) + Pcd(yd - yc) + Pda(ya - yd)) +

au* au* ou* U
v (E Lb(yb "ya) + a_I bc(yc"'yb) + EI‘- ‘d(yd_yc) + "a? a(yn _yd)—
ou- ou* ou- ou*
F “b(za—zc) ~ 5 bc(zc—zb) ~ 3 eﬁ{(.‘cd—:r:c) ~ % da(:l:,,—:..",g))
(4.8)
prt _ym
Tar A=t
(V) Vas(ys = ¥a) + (UV)be(¥e = ) + (UV)ea(ya — e} + (UV )aa(a — ¥2) —
V2(zs — Za) = Vi(ze — 78) — Va(zd — zc) — Vie(za — 2d)) =
1
;(Pab(zb — 2g) + Poc(zc — z8) + Pet(2a — zc) + Paa{za — 72)) +
av- av* av* av*"
v (E nb(yb —Y.) + Bz k(yc —y)+ Bz L(yd-' Ye) + . L(ya - y4)—
av* av* aov" av*
O e AR R A R J’"““’)
49)
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The iterative scheme used in the present code is explicit. The nonlinear terms are

evaluated using the most currently available values of U, V, P as indicated in sec-

tion#4.3. Average values in the above equations are evaluated by computing a value

at the midpoint of an edge using formulas (2.19). Partial derivatives in equations

(4.8) and {4.9) are taken to be average values of the derivatives over corresponding

edges. These average values are approximated as the average value of the derivative

in the cell 135a (Figure 2.1). For example, the equations for computing the average

values of the derivatives along edge ab are

ol (22
Oz |, Aasa Juse \ Oz
il - (?E
Oy |,  Aabed J165a \ Iy
AA . (6_V
Or |, Aabed J1b5a \ 01
v __1 [ (v
ay a.b_A“b‘d 1653 (a_y

Applying Green’s Theorem, the above equations can be replaced by

au 1

3z, ~ Aabed J1tss Udy
%‘:— ab - —A:bcd flthdz
%‘z{ b - A:;d ib&z vy
aa_z ab - _Z}; 1550 Ve

(4.10)

(4.11)

Evaluation of the partial derivatives can be completed using the above equations

(4.11) as follows

au
8z
a_U_ _ 1
aycb— Acbed
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av 1 . , .
-é-.‘; = A bcd(“lb(ﬂ'!’‘yl)"*‘Vt':.‘.’)(!:"s_.9'6)'*'1".'»-.;(3:'1:-:9'5)'*' 1/c:'l(yl _ya)
ab a
av \ .
-a—y- = —m(hb(rb - T)+ Vis(zs — £3) + Vsa(2a ~ 75) + Val(-r: - Ia)
ab ot

The rest of the partial derivatives in equations (4.8) and {4.9) can be discretized in
the same way using control cells 52¢5, 5¢3d and a5d4. It is easy to show that the
finite-volume method for this specific discretization leads to a central finite-difference
scheme if applied to a uniform rectangular mesh. The term “average” is used several
times above, the detailed procedure of finding the “average” value is given in Appendix

A2

4.3 Iterative Procedure

The core of the code consists of an explicit finite-v~lume Navier-Stokes equations
solver. An initial guess is set for pressure and velocity field (zero) at all nodes and
cell centers. Pressure and velocity on boundaries are set according to boundary
specifications. On each iteration, the code determines a new pressure distribution
based on the velocity field from the previous iteration and then uses these values to
find a new velocity field. In general, the procedure for one iteration can be described

by the relations

Pl = PP, U,V
Un+1 = G(Pn+1’ Un, Vn)
Vn-!-l = H(Pn-}-l, U“'I'l, Vn)
where superscript n denotes values of variables on a previous iteration while n 4+ 1

denotes values to be computed on the current iteration and F, G and H are functions
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obtained from (4.3). (4.3) and (4.9). determining dependence of new values on the
values from the previous iteration. Each iteration is completed for each of the Nb
blocks. On an interface between two blocks an additional cell layer from the adjacent
neighbouring block is assigned to carry the computations in the boundary cells. In
this case smooth data transfer between the two blocks occurs. The code does not solve
for pressure and velocity field simultaneously but rather for pressure in all blocks and
then for velocity field. This procedure is illustrated with Figure 4.1, where boundary
cells marked with e are interface cells between two adjacent blocks, used to transfer
data between the blocks.

The numerical solution of the mass conservation equation could become unstable
and can significantly slow down the convergence process or even cause divergence. In

order to prevent divergence and accelerate convergence, an extra dissipative term is

needed. Thus equation (4.2) is replaced by [5)

P
b%v[cbcd (%T) dady + f;w (Udy — Vdz) — D(Popea) = 0 (4.12)

where the artificial dissipation term D{ P,uq) is given by

D(Puses) = id:*“‘, (4.13)

k=1
efA A
=5 (ar + 5) (VPPas = 9R)

In the equation (4.13) Agpeq is area of the cell abed (Figure 2.1), Ar, k= 1,2,3,4 are
the areas of the adjacent cells and 72 is the Laplacian operator on a two dimensional

quadrilateral mesh.

The calculation of the pressure switch ¢ is described in details in [5).
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4.4 Convergence Criteria
The convergence criteria to be satisfied can be written as

|REY - Riw| < buv (4.14)

Rp' - Rp| < 6p (4.15)

where éyv and §p are some small positive constants. n is the iteration number and

the functions R}y and Ry are

Ni N;
v = 37 Z}Z (% +v3) (4.16)
” Ni Nj
R} = mmzz( 2" (4.17)

i=1 j=1

where n as a superscript in the right-hand side of equations (4.16) and (4.17) denotes
that all values under the summation signs are to be taken at n-th iteration level. It
should be noticed that the above convergence criteria is written for one block. In the
case of a multiblock mesh, a summation over all blocks has to be done using (4.14)

and (4.15) for each of the blocks:

S |Rot - B < v (4.18)

=1

2 \Rp — Rp| < &p (4.19)

i=1
where subscript ¢ denotes number of 2 block. Special attention should be paid to
the pressure change divided by 8%. This difference must be small enough to deliver
conservation of mass throughout the whole physical domain. The method error and
approximation error are also important factors. Estimation of these two errors are

given in the Appendix A.3.



Chapter 5

Validation of the Code

5.1 Driven Cavity Problem

The first test problem chosen to validate the code described in Chapter 4 is the
laminar incompressible flow in a square cavity with moving top wall. The main
reason for choosing this problem as a test problem is that there is a large volume
of work available describing results of testing different numerical techniques on this
problem. The problem configuration is represented by Figure 5.1.

Boundary conditions for velocity are taken to be no-slip on the vertical walls and
on the bottom and

Uz) = -1622(1 - 2)*, V=0 (5.1)

on the top of the cavity.
Boundary condition (5.1) is selected so that U/(0) = U(1) = U'(0) = U'(1) = 0,

which eliminates singularities in the two upper corners.



Boundary conditions for pressure derived from the momentum equations are

Along AB and CD lines:

M
I

1 3V
Re 9y?
3U

Along AD and BC lines: %’?’ %;3?

where Re = ¥ is Reynolds number. Calculation for Reynolds number 400 shows

good agreement with results achieved by [28].

Figure 5.2 shows the velocity field for Re=400 on a uniform 40x40 grid system.

Figure 5.3 presents the pressure distribution in the cavity. It is easy to see non-
smooth pressure contours in this picture, which is due to the fact that no smoothing
operators are involved in the solution procedure and by the low order of approximation
for the mass conservation equation (see Appendix A.3). Despite the fact that the code
features a smoothing procedure for pressure, in this calculation it has been switched
off due to the high computational cost ivolved.

Although the calculation on a 40x40 mesh for Reynolds number 400 is not accurate
enough (due to the coarse grid) to pick up boundary layer effects, the calculation still
predicts a secondary recirculation in the left lower corner of the cavity, which can be
seen by zooming into the corner, Figure 5.4.

Velocity profiles along the centerlines of the cavity are illustrated in Figures 5.5
and 5.6, showing good agreement with the reference literature [25]. Data for the
y-direction velocity profile 2long the horizontal centerline was unavailable so com-
parison is made only for the x-component of velocity. It is worth mentioning that
results obtained by the code presented here match the best results obtained from a
fourth-order Hermitian scheme. These graphs validate the code presented in the the-
sis against results obtained by different codes written for streamfunction - vorticity
formulation of the problem, presented in [25].
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5.2 Rapidly Expanding Channel

The second test problem is chosen to be a rapidly expanding channel problem. This
problem has been used as a test problem for numerous numerical techniques and a
large data archive is available for different configurations of the problem [10, 12, 13].

The problem configuration is represented by Figure 3.7. with the following boundary

conditions

Along ABline: U =0, V=0, & = L2U

Along BC line: a—i‘,‘-"-=0, L=,

Along CD line: £ =0, ¥ =0, V=0

Along DA line: 1’% =0, U=U(y), V=
where U(y) is chosen to be

U(y) = 1.5(2y - y°) (5.2)

to avoid singularity in velocity at the point A. The coefficient in the above equation
is chosen to be 1.5 to get a bulk velocity through the inlet to be equal 1. The curved
boundary AB is described by the following equation [12]

y(e) = tank (2 30‘) L

E - ;tanh(?)

and 05:5-—};—6.

The nomenclature A;; below refers to a value of some variable A at the grid point
with coordinates (i,7), where number i corresponds to z coordinate and number j
corresponds to y coordinate, 0 € ¢ < Imez, 0 € 7 € Jmaz. Finite-difference
discretization of the Neumann boundary condition for pressure along boundary AR
is done according to the following formula

FPio— Fix 1 2Uip —5Uin +4Ui2 - Ui

. . e — 5.3
TR Ko) # Yoo Yol ReKip =KoVt Wep - TP )
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for all 7, where j = 0 corresponds to the line AB. The left-hand side of equation

ap

(5.3) corresponds to % and is true if outgoing mesh lines are perpendicular to the

boundary. The right-hand side of the equation is the second order discretization of

3y

Sa7- In the case when one does not have a mesh which is orthogonal to a boundary,

the same approach used for discretization of %% = 0 can be used, as described in
Appendix A .4, letting the right-hand side be equal to 'Rl?%l{' rather than zero. Finite-
difference discretization of the Neumann boundary conditions for velocity components

and the boundary condition for pressure (%2;? = 0} along boundary BC are

2Pimaz = SPrmaz-1 + 4Prmaz-2; — Prmaz-3; =0
Urmazj — Ulmez-15 =0
Vimazj — Vimaz-1,; =0
for all j, where Imaz corresponds to the i value on the outlet boundary BC. These

approximations are second order accurate for pressure and first order accurate for

velocity. For the symmetry boundary condition, which holds on the lire C D, we have
B rmaz — }):',Jmc:—l =0

for all ¢, where Jmaz corresponds to the line CD. For U; ymqr a parabolic extrapo-
lation is used (Appendix A.5). For the inlet boundary conditior, which is applied on

the line DA, we have
2Pod - 5P1‘J' + 4Pz'j - Pg.j =0

for all 7 in the range 0 £ 7 £ Jmaz.
The program was run for different Reynolds numbers in single and multiblock
modes. In both cases the computational mesh is chosen to be packed near the wall
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and clustered near the point r = 1. to pick up the separation effects which occur near
this point. The 80x50 mesh system for the single block run is shown in Figure 5.8. The
velocity field and pressure distribution for Reynolds number 10 are given by Figures
5.9 and 5.10 The most important parameter which is used for validating numerical
codes on this particular test problem is the flow reattachment position. Comparison
of the reattachment coordinate computed by the finite-volume method described in
this thesis with that obtained by [12] can be accomplished by comparing values of
vorticity along the wall. The comparison is illustrated by Figure 5.11. The present
results are in good agreement with those obtained by Cliffe et al, (see [12]), except at
the beginning of the channel. The finer 100x50 mesh allows better resolution of the
recirculation region, Figure 5.12. Pressure distribution along the wall is represented
by Figure 5.13 for the case of 100x50 mesh and results are compared to those obtained
by other methods [10]. Two results from [10] were chosen for comparison, one was
considered a benchmark result (finite-element approach by Cliffe et al) and the other
result belongs to Gosman (finite-volume approach) [12]. Oscillations in pressure are
caused by the singularity in the left lower corner of the domain. This singularity
also affects vorticity. Nevertheless these mismatches are situated and confined in the
region of no interest and they do not propagate along the channel.

The two test problems numerically solved validate the code suggested in this thesis.
It is worth mentioning that results for multiblock runs are identically to those for one
block when that one block is just split into several. These runs were completed to

verify correct implementation of the multiblock code.
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Chapter 6

Airflow Around a Road Vehicle

6.1 Introduction

The primary aerodynamics consideration in the modern design of road vehicles is
drag reduction. A history of research on car aerodynamics and drag reduction has
been presented in [26-28]. In the early stages, it was believed that good aerodynamic
shapes for an automobile would be similar to shapes used in airplane design. Only
after models were tested in winds tunnels did it become clear that ground effects
were very important, and that the aerodynamic behaviour of road vehicles is quite
different from that of space vehicles.

Early studies on the aecrodynamic shape of road vehicles in the 1930’s were driven
by the desire to maximize speed and ensure stability in crosswinds. However, after
the worldwide energy crisis in the 1970’s, automobile companies began to seriously
look at the issue of drag reduction as a means of improving fuel economy.

The aerodynamic performance of the automobile is largely determiced by the flow

over the rear portion of the vehicle. Hence, the vortex generated behind the vehicle
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must be accurately resolved. Other regions which strongly influence the vehicle's drag
are the engine compartment, mirrors and the wheel wells. The airfiow from the front
grill. through the radiator, around the engine and its interaction with the external

flow must also be examined carefuily.

6.2 Problem Description and Boundary Condi-
tions

The problem to be solved using the Navier-Stokes equations solver described in Chap-
ter 4 is the airflow around a car moving with constant speed.

The problem configuration is represented by Figure 6.1. An extremely important
role in correct modeling of the problem is played by the boundary conditions on the
physical domain. Among possible boundary conditions described in Chapter 2 only
those that represent realistic physical phenomenon for the given configuration should
be chosen. The boundary conditions are set relative to a coordinate system fixed in
the vehicle. On the left side of the physical domain the inlet boundary condition is
imposed, which implies constant velocity. No-slip condition is imposed on the car's
surface and on the ground. It should be noticed that the lower horizontal side of the
domain {“Ground”, see Figure 6.1) is assigned to move with the same velocity as the
inlet relative to the car. Because the upper horizontal side of the domain is taken
far enough from the car, we may apply free stream boundary condition on the upper
boundary. This means that any disturbance caused by the moving car does not affect
the air far enough from the car in the vertical direction. This statement does not

hold for the right boundary of the domain and thus, the outlet boundary condition is
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applied there. In this particular case this is implemented as zero gradients of variables
along horizontal grid lines far downstream of the vehicle. Now, for pressure boundary
conditions. constant pressure is imposed on the upper horizontal boundary of the
domain. This is taken as reference pressure { P,, = 0) because pressure is determined
only to within an additive quantity. On the solid walls (i.e vehicle surface and ground)
pressure can be calculated from the Neumann-type boundary condition for pressure
in the boundary layer (see section 2.1) [20]. On the inlet the same constant pressure
as on the upper boundary is taken. In the code itself, inlet velocity and velocity of
the ground is taken to be equal 1, and Reynolds number is adjusted in such a way to
deliver similarity with the physical conditions described above.

In general, outlet boundary condition for pressure is more difficult to realistically
model, because the outlet must be far enough to impose constant pressure or zero
gradients along the horizontal grid lines. For the present configuration, the right
vertical boundary is chosen sufficiently far away that, the conditions of constant
pressure gradient and zero gradient for velocity components were applied.

To summarize, boundary conditions are imposed as follows: for all block sides
which correspond to a segment of the left vertical boundary of the physical domain,
the inlet boundary condition is applied with constant velocity and zero second deriva-
tive of pressure in the horizontal direction. On all block sides which correspond to the
car’s body, no-slip boundary condition is applied. On all block sides which represent
the ground, constant velocity in the horizontal direction is applied (equal to the inlet
velocity) and zero normal gradient for pressure is imposed. For all block sides which
represent the right vertical boundary of the physical domair the outlet boundary con-

dition is applied. In two cases the upper boundary of the physical domain is taken
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far enough away to impose the free stream boundary condition, and in the other case

it is taken to be at the distance of one car length from the ground.

6.3 Mesh Arrangements

6.3.1 Mesh #1

The first mesh arrangement for the physical domain described in the previous section
consists of § blocks. The complete mesh system is represented by Figure 6.2, and a
zoomed view of the mesh near the car is shown by Figure 6.3.

The first block is 40x40 cells packed near the bottom and right boundary to
match the mesh arrangement of other adjacent blocks. The second block is 40x20
cells packed near the right boundary to deliver a fine mesh near the car. The third
block has 40x20 cells packed near the right boundary for a smooth transition to the
fourth block. The fourth block consists of 40x20 uniform cells. The fifth block is
40x20 cells packed near the left boundary. The sixth block is 40x30 cells packed near
the tail of the car. The seventh block has 40x40 cells packed near the bottom and left
boundary for a smooth transition to the sixth and eighth blocks respectively. The
eighth block is 40x40 cells packed near the bottom to get 2 fine mesh near the car
and on the left and right boundary for a smooth transition into the first and seventh

blocks.

6.3.2 Mesh #2

The second mesh arrangement has the same topology as mesh # 1, but this mesh is

tight and uniform in each block (see Figure 6.4 and Figure 6.5). The sixth block is

31



split into two blocks horizontally. The first block has 90x40 cells. The second block
has 90x10 cells. The third block has 90x10 cells. The fourth block has 40x10 cells.
The fifth block has 80x10 cells. The sixth block has 80x10 cells. The seventh block

has 80x10 cells. The eighth block has 80x40 cells. The ninth block has 40x40 cells.

6.3.3 Mesh #3

The third mesh arrangement consists of 4 blocks as shown by Figure 6.6 and in zoomed
view near the car by Figure 6.7. The first block is 60x5 cells packed near the right
boundary to deliver smooth transition into adjacent block number 2. The second
block is uniformly meshed with 40x5 cells. The third block has 60x5 cells packed
near the left boundary for a smooth transition to the second block. The fourth block
consists of 80x60 cells packed in such a way to match boundaries of the other blocks

and to deliver a fine mesh clustering near the car.

6.4 Results

6.4.1 Results for mesh #1

The first set of results for this mesh arrangement were obtained for Reynolds number
450, based on car length. The most interesting computational result for the problem
of a moving road vehicle is the prediction of the separation region behind the car.
The velocity vector field behind the car is represented by Figure 6.8. A zoomed view
of the same region and —ith enlarged vector length is shown in Figure 6.9. Velocity
magnitude plot for the whole computational domain is shown in Figure 6.10, the

zoomed view near the car is illustrated in Figure 6.11. Pressure distribution along the
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top and the bottom of the car for this and the other mesh arrangements can be found
in Figures 6.12 to 6.15, where they are compared to results obtained by STARCD [29].
The nou-smoothness of these plots can be explained by the facts that only first order
accuracy approximation was used to define pressure and that adjacent cells on either
side of the boundaries have different aspect ratios. Computational errors for pressure
propagate along walls. This was also observed in both benchmark problems for driven
cavity and rapidly expanding channel. In these cases, the error tends to disappear
and does not propagate far downstream. However, for the problem of a moving road
vehicle, these errors appear on the surface of the car and cause inaccuracies in the
surface pressure profiles.

The second set of results was obtained for the case of Revnolds number 45. Ve-
locity magnitude plot in the zoomed region near the car is shown by Figure 6.16. By
comparing to Figures 6.11 and 6.18 it is easy to see the difference between these cases.
For example the region of highest velocity magnitude appears much higher above the
car than in the case with higher Reynolds number.

For this mesh arrangement, computations for Reynolds number 1800 were also
performed. The velocity field behind the car and velocity magnitude contours are

presented in Figures 6.17 and 6.18. A longer recirculation region is observed behind

the car for Re of 1800.

6.4.2 Results for mesh #2

For the second mesh configuration, computations were accomplished for Reynolds
number 45 and 450. The mesh system is represented by Figure 6.4 and a close

look at the region near the car by Figure 6.5. The main difference between this
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mesh configuration, and mesh #1 is that in this case the upper boundary is much
closer to the car. The calculations on this mesh illustrate the importance of the far
field location for implementation of boundary conditions, since significant changes
are observed in the computed flow. Figure 6.19 shows velocity field behind the car
for Re=450, and in zoomed view by Figure 6.20. Velocity field behind the car for
Reynolds number 45 matches the one from mesh #3 arrangement. Velocity magnitude

contours are presented in Figures 6.21 and 6.22 for Re=450 and 45 respectively.

6.4.3 Results for mesh #3

For the third mesh configuration, computations were accomplished for Reynolds num-
ber 45 and 450. The mesh system is illustrated by Figure 6.6 and zoomed view by 6.7.
It is important to note that the rear window has been modified and is much steeper
than for meshes 1 and 2. The velocity field behind the car is shown in Figure 6.23 for
Reynolds number 45. It is easy to observe that no separation was resolved behind the
rear end of the car. There is a small separation behind the rear window (see Figure
6.23). Velccity magnitude is shown at Figure 6.24. Maximum velocity in this case is
higher than for the first mesh arrangement and the region of high velocity magnitude
has a different shape. This difference can be explained by the different shape of the
outer boundary, which confirms that the upper boundary should be moved far enough
away from the car to avoid influence of the upper boundary shape on the flow field
near the car.

Velocity field for Re=450 is shown in Figure 6.25 and velocity magnitude contours

in Figure 6.26.



6.5 Comparison with STARCD Results

STARCD calculations were performed on mesh #1 {or Reynolds numbers 45 and 130.

Velocity field behind the car for Re=45 is illustrated by Figure 6.27. There is not
much difference in the velocity fields between STARCD’s calculations and caleulations
from the code developed in this thesis (see Figure 6.23) for this low Reynolds number.,
The results indicate that it is very unlikely that a recirculation region develops behind
the car and the back window. Figure 6.28 presents the velocity magnitude contours.
The maximum velocity from STARCD’s calculation is slightly higher than those de-
scribed above. Results from the first mesh (Figure 6.16) seem close to STARCD's
results near the car, but the region of maximum velocity magnitude above the car
is smaller. The second mesh {Figure 6.22) also gives good agreement with STARCD
near the car, but above the car the profiles are longer than for the first mesh. One
can observe that the region with high velocity magnitude is closer to the car than in
all other cases. This can be explained by the closeness of the upper boundary. The
results from the third mesh (Figure 6.22) are closest to STARCD.

Velocity field behind the car for Re=450 is illustrated by Figure 6.29. Two long
recirculation regions are noticeable and a separation zone appears behind the rear
window. The recirculation region for mesh #1 is shorter than that obtained by
STARCD (Figures 6.8 and 6.9). The second mesh gives longer recirculation region.
but not as long as STARCD (Figures 6.19 and 6.20). A longer recirculation region was
obtained for the third mesh. The upper vortex besind the vehicle for this calculation
is much higher than in other cases, and has upper boundary as high as the height

of the car (Figure 6.25). Also, separation behind the rear window was detected.



Velocity magnitude profiles obtained by STARCD are illustrated by Figure 6.30. The
first mesh arrangement gives higher velocity profiles which are situated closer to the
car and thinner than those obtained by STARCD. The second mesh arrangement is
different, and one can observe that contours in the top portion of the channel go down
after they pass the car (Figure 6.21), which does not occur in all other cases. In the
third case, maximum velocity occurs near the tip of the car.

It should be noticed that, for all Reynolds numbers, maximum velocity obtained
by STARCD remains almost the same, while in the other calculations it increases
with Reynolds number.

Pressure distribution along the top and bottom of the car for Reynolds number 45
is shown in Figures 6.12 and 6.13. One can observe qualitatively the same behaviour
for the pressure on the top of the car for meshes #1 and #3 and STARCD. The
second mesh gives a much different picture due to the location of the upper boundary
in the mesh setup. Oscillations occur near the front and rear end of the car and,
for the third mesh, on the edge of the rear window and roof of the car. Overall, the
third mesh gives the best matching with STARCD results. For the pressure on the
bottom of the car the total picture remains the same: the first mesh gives reasonably
good agreement, while the second one falls farthest from STARCD. The third mesh
delivers the best agreement with STARCD again.

The pressure distribution along the top and bottom of the car for Reynolds number
450 is shown in Figures 6.14 and 6.15. Pressure in all cases for the top of the car
qualitatively behaves similar except for the first portion of the plot (hood region)
for the third mesh. For the pressure on the bottom of the car, the third mesh gives

results closest to those obiained by STARCD, except right at the front end and tail
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of the car.
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Chapter 7

Concluding Remarks

7.1 Conclusions and Recommendations

It has been shown that the code based on the suggested approach is capable of solving
incompressible, viscous, steady, laminar flows for low Reynolds numbers. Results ob-
tained for the model problems with the code are in a good agreement with the results
obtained by other researchers. Results for an airflow around a moving road vehicle
were obtained and compared to the results obtained by STARCD. These results seem
to be in reasonably good agreement. Some limitations of the present code were found.
Several multiblock mesh arrangements were investigated in order to build a better
mesh. Below are some remarks on limitations of the code, suggested treatments to
overcome these limitations and advice on mesh generation for the moving road vehicle
problem.

In these calculations, first order approximation was used to determine pressure.
It fs more desirable to enhance the approximation to second order to increase the

accuracy in determining the pressure.



This code is similar to central difference approximation schemes, and therefore is
not very stable for high Reynolds numbers. It is possible to develop a finite-volume
code with upwinding, which should help to reduce instabilities, but at the cost of
increased numerical diffusion. It should be noticed that the present code is explicit
and should be modified to become an implicit one in order to reduce run time.

In addition, to more accurately model the airflow over a vehicle, a turbulence
model should be added for computations with large Reynolds numbers.

It is obvious that mesh generation plays an important role in successful numerical
calculations. It affects the accuracy of results dramatically and can even cause di-
vergence. It is also important to refine the mesh in the regions where such effects as
recirculations and/or separations are expected, to successfully resolve them. The last
mesh arrangements in the above calculations seems to give reasonably good results
though a problem occurs with assigning boundary conditions on the outer boundary.
The first mesh arrangement is the easiest to assign boundary conditions to, but this
mesh is not of good quality near the front end of the car. Of course it is possible
to create a very fine mesh, however in this thesis it was not possible due to lack of
computing power for such a fine mesh. Also, it was noticed that cells with not too
large aspect ratio give much better results. It is recommended to refine the mesh
along the car surface to improve aspect ratio of boundary cells. Also, 2 better mesh
could be a combination of the first mesh and third one, with the new mesh looking
like the third from the left end of the domain up to the end of the car and after that it
should look like the first mesh. In this case, implementation of boundary conditions

will be easy and at the same time the mesh will be of better quality in front of the

car.
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7.2 Car Model with Engine Compartment

In order to build a more accurate model of a travelling road vehicle it is very im-
portant to take into consideration the engine compartment and the airflow under the
hood. The difference in results of calculations with and without engine compartment
is large enough that it becomes obvious that modeling airflow around a moving road
vehicle should not be done without taking into account the engine compartment. To
illustrate the importance of the engine compartment in the calculations [17, 30]. the
flow around an automobile (Figure 7.1) has been simulated using the commercial CFD
package STARCD[29]. The airflow over a vehicle travelling at 20 m/sec (72km/hr)
corresponding to a Reynolds number of 5.2x10° based on car length has been simu-
lated. Far ahead and above the vehicle the flow is assumed to be undisturbed. Figures
7.2 and 7.3 show the velocity magnitude for both cases. Figure 7.4 shows pressure
distribution. It is easy to observe the effects of the underhood flow. More detailed

discussion of these results can be found in [30].

7.3 Further Notes on Modeling of Road Vehicle

The engine cooling airflow is also important as a means to diffuse the heat generated
under the hood. The wheel wells, and the wheels themselves, contribute significantly
to the remaining drag (50% for low-drag cars). There is a variety of literature available
on design of lateral tapering near the rear end and the spats around the wheels [17. 18]
and rear and front spoilers [19] to bring better properties for drag reduction. It
appears that small regions in cars can be very important to the whole aerodynamic

performance of cars. In recent years engineers have also directed lots of efforts trying
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to enhance acoustic properties of cars. i.e. to reduce noise caused by airflow around

side mirrors and the antenna {19].
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Chapter 8

Appendices

A.1 Control functions for mesh generator

A very important requirement for a multiblock mesh generator is to be able to control
the angle of intersection of grid lines emanating from the two sides of the interface
between blocks. For all problems solved in this thesis an elliptic mesh generator
was used with choice of control functions suggested by Barron [23]. This method
is described here since it does not yet appear in the literature. As was mentioned
before, the 2-D elliptic grid generation system can be expressed in transformed (&, 7)
space as
gnTee — 2q127en + guTon = —J? (PFe + Q) (8.1)
where 7 = (z,¥), J = ¢y — Z,¥¢ is the transformation Jacobiarn and the metrics are
given by
M =Fe T gu="7Fy gu=ry (8.2)
The control functions P and { can be chosen to enforce orthogonality at the bound-
aries of the solution domain. In a multiblock grid generator, these “bqunda.ries“ could
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be interfaces between adjacent blocks. For example, to find P we may impose the
orthogonality condition 7 -7, = 0 along a boundary curve 5 = constant = 5. Taking

the dot product of equation (3.1) with 7 we get

FioFee TeoF
P('s‘ 7)) l")=’?l= = S - t: - E — "v:
£ N B L

(8.3)

1
Equation (8.3) is true for = g. Suppose also that along the boundary 5 = 1 we

have
| 75 = f(§) (3.4)

That is, we specify the spacing to the grid line n = 5, + An. We then have the

following system of two equations

TeYn + Toye =0 (8.5)

zh+y; = f(€)

The above system of two equations can be solved to find r,; and y, as functions of

T¢yye and f(£). Furthermore, differentiating the first equation in (8.5) with respect

to n, one gets
o ot a7 = 0 (8)

which can be easily rearranged using equation (8.4) in the following way
- - S S -1,
Te T = —(ren - 7o) = Y (r7- Tn)e = _?"f () (8.7)

which can now be substituted into equation (8.3). The first term in (8.3) can be
evaluated from the given boundary data on 5 = 5;. In the mesh generator, function
f(€) is chosen to be a linear interpolation between it value at the two end points of

7="-
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A.2 Determining an average value

Suppose that we have a nodal mesh system in a2 domain. In this thesis, location of
the cell center is determined by the intersection of two lines connecting opposite sides
of the cell (Figure 8.1). Then, a value of a variable in the cell center is determined as
one quarter of the sum of values of the variable at all four corners. In the case when
one must get an average value at 2 node using cell values of surrounding cells, such a
simple averaging as described above does not work in the general case. For example,
it cannot be used when dealing with a highly irregular mesh system (Figure 8.2). In
this case, averaging with weights is introduced. Figure 8.2 illustrates notations for
the case, where a, b, ¢, d correspond to the distances between different cell corners and

the cell center. If L is introduced as

1 1 1. 1 1 .
I—z+3+z+z (8.8)
then an average value of a variable at a node (2, j) can be written as
—_ L _. L_. L_. L_.
Fg= ;Fi-uq + -EF"*"" + -C-F.-,,- + E-F:'_ld' (8.9)

where F denotes a variable of interest and the asterik corresponds to the values in

the cells.

A.3 Mocodel and approximation errors

The mass conservation equation for compressible flow is given by

Bpu) , 8w _

5 T oy (8.10)



which can be rewritten as

Gu  Gv dp  3p _ .
pax+pay+uax+t.ay—0 (8.11)

It is clear that by assuming incompressibility we introduce the following “error™

For the purpose of estimating this error, we consider it to be of the order of

9 .
E€m = Max [ulma,x— (3.13)

dz

Now we have to evaluate g—s. This can be accomplished by introducing a state equa-

tion, say
P = p(e,p) (8.14)

In particular, consider an ideal gas with state equation

P =pRT (8.15)

where R is the universal gas constant divided by molar mass of the media and T is
temperature. After differentiation with respect to z, neglecting variations in temper-

ature and rearranging, the above equation gives

dp 0P 1
8z 8z RT (8.16)

Now one needs to extract %’;’ from the numerical calculations to evaluate the error of
the model (R = 2873%(&&), T = 300K).

Approximation errors can be estimated by exploiting the fact that the finite-
volume method implemented here is equivalent to a central-difference scheme on a
rectangular mesh where partial derivatives of secord order are approximated with
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second order accuracy. It is important to mention that the momentum equations
are approximated with second order accuracy in space, while the mass conservation

equation is approximated with first order accuracy.

A.4 Discretization of %i—’ =0

For large Reynolds numbers, the boundary condition for pressure on a wall becomes

apP

Fee 0 (8.17)

which can be rewritten as a scalar product of two vectors, the pressure gradient and

normal vector to the wall:

TP T =0 (8.18)
Performing multiplication of these two vectors yields

36_1: —afn,, =0 (8.19)

Let us consider one boundary cell and refer to Figure 8.3 for the nomenclature used
for the following derivations. We need to use the following formula for directional

derivative

9P _dPdz  OPdy

9s _ 0z Os + By Bs (8-20)

Thep, for directions 5y ans 57, we have the following two discretized forms of equation
(8.20):

Po—Pa _0PAz,  OPAys

AS}, - oz A81 ay AS1

Po—Pa _0PAz;  OPAy
As;, ~ 8z As; Oy As,

(8.21)

(8.22)
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where Ary = zp—r4. Ay = yp—y4. Aza = 20— T4, Ay2 = yo—ya. A8y = |§7] and
Asz = |s2]. Solving the above tiwo equations together with equation {3.19), where %—E.
%f and P, are treated as independent variables, the following expression for pressure

on the wall (P,4) is obtained:

P, = Pe(nyAry — n:Ay) — Pp(n,Ars — n Ays)
4 (nyAzy = nAy) = (n,Az2 — n Ays)

(8.23)
The following procedure is used to determine components of the normal vector 7.
Normal vector at the point A (see Figure 8.3) is taken to be the normal vector to

BE, where BE = BO — EO. In other words, components of 7 are

____BE,

Ny = ————————
/BEZ + BE:

BE;

Ny =& —/— ==
" J/BE+BE?

or, in terms of coordinates,

n. = ¥ - ¥E
r — f——— ]
(zB — zE)? + (yB — ¥E)?
B — g
ny =

V(za =z + (v8 — y£)?

A.5 Parabolic extrapolation for x-component of

velocity on symmetry boundary
Figure 8.4 represents one mesh line intersecting the symmetry boundary. Moving the
origin to the point (0), it is easy to see that U(y) should be in the form
Uly) =ay’ +b (8.24)
which yields %'—"; = 0 at y = 0. By solving the following system of equations

Ur =a(s; +32)* +b
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we get

Uy =asi+b

Uy - U,
- —_— .95
@ 28182 + &3 (8.25)
b= Ua(sy + -52)2 - U:S§ (8.26)

25182 + 8t
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Figure 6.8: Velocity vector field behind the vehicle, mesh #1, Re=450
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Figure 6.9: Close-up of velocity at rear of vehicle, mesh #1, Re=450
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Figure 6.17: Velocity vector field behind the vehicle, mesh #1, Re=1800
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Figure 6.23: Velocity vector field near the vehicle, mesh #3, Re=45
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Figure 6.27: Velocity vector field behind the vehicle, STARCD, Re=45
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Figure 6.29: Velocity vector field behind the vehicle, STARCD, Re
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Figure 8.3: Nomenclature for determining normal pressure gradient
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