
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2005

Time adaptation for parallel applications in unbalanced time Time adaptation for parallel applications in unbalanced time

sharing environment sharing environment

Ahsanul Arefeen
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Arefeen, Ahsanul, "Time adaptation for parallel applications in unbalanced time sharing environment"
(2005). Electronic Theses and Dissertations. 4388.
https://scholar.uwindsor.ca/etd/4388

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4388?utm_source=scholar.uwindsor.ca%2Fetd%2F4388&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Time Adaptation for Parallel Applications in Unbalanced Time
Sharing Environment

By

Ahsanul Arefeen

A Thesis

Submitted to the Faculty of Graduate Studies and Research

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2005

© 2005 Ahsanul Arefeen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09854-6
Our file Notre reference
ISBN: 0-494-09854-6

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Time adaptation is very significant for parallel jobs running on a parallel centralized

or distributed multiprocessor machine. The turnaround time of an individual job depends

on the turnaround time of each of its processes. Dynamic load balancing for unbalanced

time sharing environment helps to equally distribute the work load among the available

resources, so that all processes of a single job end almost at the same time, thus

minimizing the turnaround time and maximizing the resource utilization.

In this thesis we propose and implement an approach that helps parallel applications

to use our library so that it can adapt in time dimension (if running in a time sharing

environment) without changing the space allocation. This approach provides an interface

between application, monitoring information, the job scheduler and a cost model that

considers application, system and load-balancing information. This interface allows

binding of different adaptation approaches for synchronous adaptation and semi-static

remapping. We also determined job types for what this approach is suitable and at the end

we present results from our test run on a 16-node cluster with synthetic MPI programs

and a time adaptation approach, demonstrating the gain from our approach. In this work,

we make extension of existing ATOP [11] work. We directly use their over partitioning

strategy. But unlike ATOP, applications can use our adaptation library and adapt

dynamically. We also adopted the dynamic directory concept used in SCOJO [8].

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To my parents who raised me and guided me through the right path.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement

There are a number of people without whom this thesis would not have been

completed. I acknowledge my gratefulness to my thesis supervisor Dr. Angela C. Sodan,

who always helped me with her guidance, support, motivation and enthusiasm. I am also

grateful to my supervisor for providing me the test environment and technical support

from the formative stage to the final draft. I thank Han Lin for his work related to Zoltan

and over-partition, providing the base of my work.

I thank my thesis committee members: Dr. Karen Y. Fung, Dr. Ziad Kobti and Dr.

Yung H. Tsin for their precious time and comments.

I extend my deepest appreciation to my mother and my brother for their constant

financial and moral support.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Content
Abstract...Ill

Dedication.. IV

Acknowledgement...V

List Of Tables.. VIII

List Of Figures...IX

1. Introduction.. 1

2. Review Of The State Of The A rt..3

2.1 Centralized Load Balancing Model.. 4

2.2 Distributed Load Balancing Model.. 4

2.3 Comparison Between Centralized And Distributed Model...5

2.4 Work Sharing Vs True Load Balancing... 5

2.5 Comparison Between Synchronous And Asynchronous Load Balancing.....................6

2.6 Related Work.. 7

2.7 Malleable Jobs.. 9

3. Zoltan.. 11

3.1 Zoltan Overview..12

3.2 Over-Partitioning For Time Adaptation..14

3.3 Partitioning From Scratch..14

4. Our Approach..15

4.1 The Dynamic Directory..16

4.2 General Overview Of Our Approach..18

4.3 Implementation... 23

4.3.1 Job Scheduler.. 23

4.3.2 Dynamic Directory.. 24

4.3.3 Controller...24

4.3.4 Adaptation Library.. 25

4.4 Adaptation Cost M odel..26

4.5 Test Plan.. 28

4.5.1 Test Environment.. 28

4.5.2 Test Application...29

4.5.3 Test Cases... 32

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Test Results... 33

5. Conclusion And Future Work.. 48

References.. 49

Vita Auctoris.. 53

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 1. Important query functions of Zoltan...13

Table 2. Basic Zoltan operations...13

Table 3. Methods of our Adaptation library...25

Table 4. Different Graph for our test applications...30

Table 5. Adapted runtime Vs non-Adapted runtime, for wing and t60k, both with 8

processes and 4 processes overlapped.. 34

Table 6. Adapted runtime Vs non-Adapted runtime, for brack2 and t60k, both with 8

processes and 4 processes overlapped.. 35

Table 7. Adapted runtime Vs non-Adapted runtime, for brack2 and wing, both with 8

processes and 4 processes overlapped.. 36

Table 8. Adapted runtime with varying overlapped processes (wing 65% comp and t60k

85% computation)..38

Table 9. Adapted runtime with varying overlapped processes (brack2 91% comp and t60k

85% computation)..40

Table 10. Adapted runtime with varying overlapped processes (brack2 91% computation

and wing 65% comp)..41

Table 11. Adapted runtime of t60k (70% computation) with Varying overlapped

processes with wing (65% computation)... 43

Table 12. Adapted runtime of wing (50% computation) with Varying overlapped

processes with t60k (85% computation).. 44

Table 13. Adapted runtime of brack2 (40% computation) with Varying overlapped

processes with t60k (85% computation).. 45

Table 14. Expansion and contraction of t60k with wing and brack2.................................. 47

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures
Figure 1. Two application A & B on nodes PI & P2. A is a parallel application with

mutual communication dependencies... 10

Figure 2. Phases of multilevel k-way partitioning algorithm. Source.................................15

Figure 3. Different multiprogramming levels and different co-scheduled application for

the application A and E on different subsets of nodes on a cluster.............................16

Figure 4. Dynamic directory... 17

Figure 5. Architecture of Our Approach.. 20

Figure 6. Example of a simulated job scheduler script..23

Figure 7. Adaptation controller communication with dynamic directory and listener

thread of an application..24

Figure 8. Example of application using our adaptation library... 26

Figure 9. Chaco graph input file format..29

Figure 10. Example of application structure... 31

Figure 11. Test case 2, adaptation in different number of processor................................33

Figure 12. Comparison of adaptation gain using Over-partition and partition from scratch

(wing 65% comp and t60k 85% comp)...34

Figure 13. Comparison of adaptation gain using Over-partition and partition from scratch

(brack2 91% comp and t60k 85% comp).. 36

Figure 14. Comparison of adaptation gain using Over-partition and partition from scratch

(brack2 91% comp and wing 65% comp)... 37

Figure 15. Adapted (OP) runtime Vs non-adapted runtime for wing (65% computation)

while varying number of overlapped processes with t60k (85% computation)........ 39

Figure 16. Adapted (OP) runtime Vs non-adapted runtime for t60k (85% computation)

while varying number of overlapped processes with wing(65% computation)........ 39

Figure 17. Adapted (OP) runtime Vs non-adapted runtime for brack2 (91% computation)

while varying number of overlapped processes with t60k (85% computation)........ 40

Figure 18. Adapted (OP) runtime Vs non-adapted runtime for t60k (85% computation)

while varying number of overlapped processes with brack2 (91% computation).... 41

Figure 19. Adapted (OP) runtime Vs non-adapted runtime for brack2 (91% computation)

while varying number of overlapped processes with wing (65% computation)....... 42

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 20. Adapted (OP) runtime Vs non-adapted runtime for wing (65% computation)

while varying number of overlapped processes with brack2 (91% computation).... 42

Figure 21. Execution time Vs number of overlapped processes...45

Figure 22. Adaptation cost for varying number of application process with 50% overlap

...46

Figure 23. Adaptation cost for varying number of application process with same overlap

...46

Figure 24. Expanding and shrinking of overlapped process for t60k (85% comp).......... 47

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

In parallel applications, usually there are multiple interacting processes running on

different Central Processing Units (CPUs). This helps to overcome the physical

limitations of processing capability of a non-parallel computer system. Depending on the

interaction between these parallel processes, parallel jobs can be classified into three

different types. They are

• Jobs with tight coupling,

• Jobs with balanced processes and loose interaction,

• Jobs structured as work-pile of independent tasks.

The first type of jobs usually consists of a certain number of processes and they are

communication intensive. The processes of the second type do not interact with other

processes very frequently, but the turnaround time depends on the finishing time of the

slowest process. The third type of jobs is basically worker processes and they are very

flexible. They can change the number of processes during runtime (malleable) and are

very suitable for Network of Workstations (NOW) environment.

Load balancing is a critical issue for achieving good performance in any parallel

system [1], A great deal of research has been done on improving load balance of

particular algorithm or application, but the general purpose load balancing research deals

with process migration in operating system and more recently in application framework

[6]. Applications in the areas like very large-scale integration (VLSI), computational

fluid dynamics (CFD), meteorological simulations, structural dynamics, magnetic and

thermal dynamics use a load balancer to perform the initial load balancing, eventually

several application show dynamic behavior (in communication structure) during runtime.

That’s why it requires employing a dynamic load balancing strategy. For achieving

scalable performance, it is important to evenly distribute the workload among the

processing nodes [3]. The variation in system load and application requirements during

execution is imminent in a real environment. The distributed and global availability of

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

runtime load information and its maintenance require dynamic exchanges of information

between the workstations [5]. This dynamicity of system and application load and the

limitation of a priori knowledge of parallel application behavior imply the requirement of

dynamic load balancing.

Our approach is to make sure that all parallel processes of a parallel application

proceed in the computation approximately to the same extent and finish at about the same

time which is similar to the load balancing. In an ideal homogeneous environment, all the

similar processors are allocated with equal amount of workload, so that all the processes

can run to completion at the same time. But this is not feasible under different

environments like 1) heterogeneous environments with heterogeneous CPUs and/or

different size of memory running at different speed, 2) NOW environment with different

background load at different processors, 3) time/space sharing environment where

loosely coordinated processes are coscheduled on different processors/nodes and again

different processors has different number of processes scheduled/coscheduled on them

from different set of parallel applications. In such time/space sharing environment,

multiple applications can run per processor determined by a certain multiprogramming

level [9, 8]. Similar situation can occur for cross-site jobs in computational grids if

different time share is allocated on different sites. In such cases of imbalances, if not

adapting the workload, the slowest processor or highest multiprogramming level would

determine the performance of the whole application. We present a framework to address

load balancing in such situations of imbalance along the time axis with the following

main goals of supporting balancing with imbalanced workload assignment, including

certain coscheduling effects especially dynamic resource availability changes along the

time direction and cases where the above multiprogramming occurs on subsets of

processors. We confine our approach to rigid jobs that do not change the number of

parallel processes of an application during execution period and these jobs are non-

preemptive. But we allowed jobs to be time malleable so that a job can dynamically adapt

in dynamic time sharing environment. Our approach provides the following solutions for

parallel applications to adapt dynamically:

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• An interface between application and system providing an integration of

application level and system level.

• A software framework in the form of adaptation library, enabling to bind different

load balancing strategies.

• Support of job scheduler initiated adaptation.

We present results from our experiment of our 16 dual Xeon node cluster. In order to

run our adaptation performance test, we developed a simulated scheduler and synthetic

applications. We also explain what type of job is suitable for our time adaptation

approach.

2. Review of the State of the Art

There are four different basic load balancing strategies along two axes [2], either local

or global in one axis or centralized or distributed in another axis. In this chapter we will

review these strategies and run-time systems and then we will introduce the time

malleability and space malleability problems. Finally, we will explain how graph

partitioning helps to deal with these problems.

In dynamic load balancing, a monitoring system keeps information about the

workload of each processor during execution time and invokes the balancing operation

between the heavily loaded processors to the lightly loaded processor when imbalance is

found by the monitoring system beyond a certain level of imbalance. Balancing operation

can also be invoked when the monitoring system finds a significant amount of change in

resource availability. This invocation can be performed in centralized or distributed

manner.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Centralized load balancing model

Depending on the location of the load balancer, the load balancing strategy can be

categorized as centralized or distributed. When the load balancer is located at a master

node (processor) that has the global knowledge of other processor’s load information and

the master node initiates the workload balancing, the model can be characterized as

centralized load balancing model. Here all the processors take part in the synchronization

and send their load information to the central load balancer. The central load balancer,

after receiving load information, calculates the new load distribution and related work

movement and redistribution profit. If migrating workload is profitable, the balancer

sends instruction to the worker processor to do so mentioning the recipient information.

The receiving processor waits until it receives the instructed amount of work.

2.2 Distributed load balancing model

In distributed load balancing, the load balancer is placed on every processor and

instead of sending a load profile to the master node, it can be broadcasted to all other

nodes or only to the neighbors depending on different model. This helps to circumvent

the communication bottleneck problem in the centralized model and eliminates the need

to instruct other nodes as well.

The two popular ways of distributed load balancing are work sharing and work

stealing, even though they are not exclusively for distributed load balancing. In work

sharing when some new work load is generated, the generating processor attempts to

migrate some of its load to the other processor expecting them to be underutilized [7].

This is also called sender initiated load balancing. On the other hand, in work stealing,

underutilized processors request work load from overloaded processors. In either cases

the request may be denied when the destination processor is overloaded (load sharing) or

the sender processor does not have enough workload (work stealing). Both of these

strategies are suitable for fine grain parallel applications. Global system knowledge can

be acquired by agents running on each node and they exchange the load profile in a

collaborative manner [4].

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Comparison between centralized and distributed model

The centralized load balancing model can not perform well enough when the number

of working machines increases. This has the limitation of scalability and the performance

degrades with the increased number of communication overhead. But this can help to

have simple global load knowledge and is suitable with a small number of nodes.

Distributed load balancing model can offer better scalability as this does not require

communicating with a single master node containing the load balancer [2], But again the

distributed load balancing model suffers from having a better load profile of the entire

system. One of the attractive aspects of distributed model is that it increases locality. In

the centralized load balancing model, it requires sending all-to-one profile send and

followed by a one-to-all instruction. But in distributed load balancing model, it requires

all-to-all or one-to-neighbor broadcasting. Considering the scalability problem, the

distributed model outperforms the centralized model but for a small number of nodes,

hence a centralized model can be more suitable.

2.4 Work sharing Vs true load balancing

In work sharing, when a processor creates new work, it makes an endeavor to migrate

some of its work to other processors hoping that they are not heavily loaded as this

processor. This is particularly suitable for fine grained (multithreaded) application. When

they create new threads, they try to migrate some of newly created threads to other

processors. In load sharing, two important components are: allocator and scheduler. The

allocator is responsible for deciding where the job will be executing and the scheduler is

responsible for deciding when a job will be getting its share of the CPU. There is more

migration of processes or threads in work sharing compared to work stealing [7]. If all the

processors are heavily loaded, there is always some migration by the work sharing

scheduler.

In order to compare the two forms of load distribution, load balancing makes sure that

each processor has almost the same amount of work load in order to increase the system

utilization. Most of the time, load balancing is dependent on the accuracy of load

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

profiling. Inaccuracy of load information may lead to worse performance. In preemptive

migration schemes [56] of load balancing, the overhead related to the preemptive

migration is considered for the profitability of performance gain as it reduce the mean

delay (queuing and migration) by 35-50%, compared to non-preemptive migration. Load

sharing on the other hand is weaker than load balancing and implemented with non

preemptive migration of processes. As in load sharing policy, there is lag of global load

knowledge. Load sharing does not ensure equal distribution of load but it is easier to

implement and approaches the heterogeneity in a more convenient way.

2.5 Comparison between Synchronous and Asynchronous load

balancing

Depending on the load-redistribution, dynamic load balancing can again be classified

into synchronous and asynchronous model. In synchronous dynamic load balancing, the

application needs to stop so that it can redistribute the workload among its processes and

thereby reducing the imbalances; then the application can continue to execute at the end

of synchronization. The total process of synchronization is performed in two steps. First,

repartition of required data for each process and then migrate the newly repartitioned data

to the destination processes. This approach is used by our strategy of load balancing

adaptation.

In asynchronous load balancing, instead of stopping and synchronizing, processes

continue to execute, and depending on work-sharing or work-stealing method, the lightly

loaded processes communicate with heavily loaded processes for additional work. If both

parties agree, they migrate the workload in an asynchronous manner. Asynchronous load

balancing provides the opportunity of latency hiding by overlapping communication and

computation.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Related Work

There exist a few load balancing libraries that provide multiple approaches. Zoltan

[12] library includes recursive coordinate bisection, recursive inertial bisection,

refinement tree based partitioning, ParMETIS [18], Jostle and octree partitioning. It

provides a generalized interface and data structure that the applications do not have to

depend on but use them in the call back functions. ParMETIS [18], which is basically an

extended version of METIS [19], provides an MPI (Message Passing Interface) based

parallel library that implements a variety of algorithms for partitioning and repartitioning

of unstructured graphs and meshes. A measurement based automatic load balancing

framework is presented in [20]. Parallel applications are projected to this framework as

collection of computing objects which communicate with each other. There is a load

balancer database, which is responsible for coordinating load balancing activity and helps

to form an object communication graph. Each processor collects a partial object-

communication graph consisting of local objects. The load balancer strategy decides

which object is to migrate for better performance and pass this information to the

framework. In [21] introduces an approach of load balancing in distributed environment

by means of thread migration. They worked on top of Chant, which is a distributed

lightweight thread package for point-to-point communication between threads. They also

proposed a layered load balancing approach where the bottom layer contains the load

balancing routines. The middle layer contains the load balancing commands and the

topmost layer does the actual load balancing function.

Flexible co-scheduling (FCS) [9] address the existing problems of gang scheduling

and implicit co-scheduling. They address the fragmentation, load imbalance and the

heterogeneity problem in particular. They come up with another parallel scheduling

algorithm similar to the gang scheduling algorithm. In FCS, they classify the processes

depending on their demand and behavior. Processes requiring gang scheduling are gang

scheduled and the rest are used to fill out the fragmentation. The load imbalance and

heterogeneity problem is solved with classification on per-process basis. The

classification process is done after monitoring communication behavior and detection of

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possible load imbalance. [22] describes an approaches which is close to our approach.

Their proposed and implemented system that uses a compile time analysis in order to

capture the access pattern and make instrumentation to the code with calls to the runtime

library. The runtime system uses these compile time information to facilitate partitioning

of work depending on locality of data access and resource availability. The locality

problem is equally important as load imbalance problem. Here the runtime library works

as a bridge between the operating system and application, and monitor process activity in

order to facilitate cooperative scheduling flexibility. They also perform runtime

measurement and are able to correct workload allocation dynamically if required. But

their approach is not very specific about the application characteristics and co-scheduling

affects.

EARTH [3] describes the design of nine dynamic load balancing algorithms focusing

on the complexity that arises due to the fine granularity of multi-threaded execution

environment. They also implement these algorithms on multithreaded multiprocessor

test-bed and evaluate the performance. They cover a wide range of load balancing

strategies. They also design a suite of stress tests for the analysis of the strengths and

weakness of load balancers and they find that dynamic load balancer utilizing history

information and employing both the work stealing and work sharing performs well in

various kinds of applications. Performance varies significantly with the change of grain

size. They also find other effects like polling interval, number of nodes, and

communication topology on the performance of load balancer. Recent load balancing

encompasses the resources beyond the typical computational resources. They include

memory, network and I/O. The opportunity cost framework [23] optimizes CPU load and

reduces the maximal utilization of CPU for those jobs that perform I/O and inter process

communication. A job is assigned to a machine minimizing the sum of cost of resources,

where each resource has a cost considering CPU load, memory available etc. In [24],

memory-I/O-based policy is recommended which minimizes the page fault within the co­

scheduled jobs. In [25], they profiled an application (both communication and

computational memory access) and machine, and predicted the performance after

convolution of their profile. This application profile can be incorporated with adaptation

approach to get the better performance.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Malleable Jobs

Definition Space-Malleable: An application is space malleable if it is able to change

the number of processes dynamically during its execution [11],

Definition Time-Malleable: An application is time malleable if it is able to adapt

dynamically with varying time shares on different processors.

Definition Time-Moldable: An application is time moldable if it is able to run with

different work load on different processors. The work load on each node is determined at

the time of startup and remains constant during execution.

In our study we considered time malleable jobs while keeping the total number of

processes of an application static. Putting more work load on a node than on others works

when processor speed is different and workload is adjusted to keep the computation in

synchrony. Due to different processor share, some processes can take more workload

than other processes of the same application and computations that have loose or little

dependencies. Besides, putting more computation on a node does not overly increase the

communication with other nodes, but increase only marginally. For latency hiding, the

application model needed is a coarse grain work pile that does not communicate

frequently and does large communication at a time and can have relaxed dependencies.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PI P2

Figure 1. Two application A & B on nodes PI & P2. A is a parallel application with
mutual communication dependencies [14]

In figure 1, it is depicted that different time share can cause delay in computation due

to the process dependencies as they don’t run in synchrony. Assuming that we have loose

coordination with spin-blocking support, parallel application A on PI releases CPU when

waiting for a message from A on P2 and spin-block time outs. This means switching cost

includes the cache locality, which is infeasible for frequent short communication.

Approaches like AMPI [15] or fine-grain multithreading, can solve this problem. In our

case, we assume that the application supports load balancing at the application level,

which is suitable for dynamic applications that needs load balancing anyway.

Definition Work Unit'. A work unit is a migratable description of a piece of work that

is not yet in execution. Such work requires a functional code and data description. The

functional description is a function or procedure, or a loop-slice. The data may be simple

parameters or complex data structures. In the latter case, the description needs to include

inter-node descriptions of the mapping. The definition of the work units permits a pre­

partitioning into work chunks as well as basic data structures.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We support the following application types:

• Independent work units which do not communicate with each other and can easily

be moved [10]. Load sharing is sufficient for such applications.

• Work units with restricted dependencies with direction from potentially moved

unit (like tree structures). Load sharing is sufficient for such application as well.

• Computations with work and communication being separated and the

dependencies being described in graph structures. Load balancing is required for

such applications.

In the later case, computations can still be kept in synchrony for potential frequent

communication. Though the mapping of the graph structures need to be updated if

moving work units are done in all graph-based load balancing.

3. Zoltan

Real world applications can be represented as a graph, where the vertices of a graph

represent the computation of application and the edge between two vertices represents the

communication between them. In parallel applications, we distribute their processes

among different processor so that they can compute in parallel. This kind of parallel

application is also represented by partitioned graph, where each partition vertices

represent the total computation of a process and the edge cuts or edges between two

neighbor partitions represent the communication between two processes. While

representing the application with graph partitions, we always like to keep the edge cuts

minimized so that the communication between two processes remains minimized. During

repartitioning we want to minimize the edge cuts for the same reason, and we also like to

keep the new partition more likely to the old ones, so that less number of vertices would

require migrating minimizing the migration cost. ATOP [11] used Zoltan for their

partition and migration work. Our work is implemented as an extension of ATOP and we

used Zoltan for the similar reason.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Zoltan Overview

Zoltan is a dynamic load balancing library with object oriented interface that allows

user to use it with parallel application and call the various load balancing algorithm that

comes with it [12]. It provides flexible data management services to parallel applications.

Unstructured and adaptive parallel applications can use the following utilities:

• Dynamic load balancing and parallel partitioning tool that helps to distribute data

over processors.

• Data migration tools.

• Distributed data directories.

• Unstructured communication package.

• Dynamic memory management package.

Zoltan has object based callback function design. Application can provide the

required callback function that access the application data structure. Callback functions

are registered in zoltan by passing a pointer to the function. The most interesting feature

that comes with zoltan is that application don’t have to be zoltan data structure dependent

and it can be used almost every kind of operating system. Following are important zoltan

query functions:

QUERY FUNCTIONS

ZOLTAN_NUM_OBJ_FN

ZOLT AN_OB J_LIST_FN

ZOLTAN_FIRST_OBJ_FN &
ZOLTAN NEXT OBJ FN

ZOLTAN_PARTITION_MULTI_FN
or ZOLTAN_PARTITION_FN

z o l t a n _n u m _ e d g e s _ m u l t i_ f n
or ZOLTAN_NUM_EDGES_FN

ZOLTAN_EDGE_LIST_MULTI_FN
or ZOLTAN_EDGE_LIST FN

RETURNED INFORMATION

Query function returns the number o f objects that are
currently assigned to the processor.

Objects list currently assigned to the processor

First object returns the global and local IDs o f the first object
on the processor and next returns the next object assigned to
the processor.

Returns a list o f partitions to which given objects are
currently assigned.

Returns the number o f edges in the communication graph of
the application for each object in a list o f objects.

Returns lists o f global IDs, processor IDs, and optionally
edge weights for objects sharing edges with objects specified
in the global_ids input array.

ZOLTAN OBJ SIZE FN Returns the size o f the buffer needed to pack a single object.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ZOLT AN_P ACK_OB J_FN

ZOLT AN_UNP ACK_OB J_FN

To tell Zoltan how to copy all needed data for a given object
into a communication buffer.

To tell Zoltan how to copy all needed data for a given object
from a communication buffer into the application's data
structure.

ZOLTAN_PRE_MIGRATE_PP_FN To perform any pre-processing desired by application.

ZOLTAN_POST_MIGRATE_PP_FN To perform any post-processing desired by application.

Table 1. Important query functions o f Zoltan (Source:
http://www.cs.sandia.gov/Zoltan/Zoltan.html)

ZOLTAN’S OPERATIONS

Zoltan Initialize

Zoltan Create

Zoltan_Set_Param
Zoltan_Set_Param_Vec

Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn

Zoltan LB Free Part

SEMANTICS OF OPERATION
This function initializes MPI for Zoltan.

This function allocates memory for storage of
information to be used by Zoltan and sets the
default values for the information.

Modifies the values o f any parameter used in
Zoltan. Only one parameter can be changed in
each time.

It registers an application-supplied query
function in the Zoltan structure.

Frees the memory allocated by the Zoltan to
return the results o f Zoltan_LB_Partition or
Zoltan_Invert Lists.

Zoltan_Destroy

Zoltan_LB _Set_Part_Sizes

Zoltan LB Partition

Zoltan_Migrate

Frees the memory associated with a Zoltan
structure and sets the structure to NULL in C.

specifies the desired relative partition sizes;
equal by default; for some ParMetis
algorithms, the partition size cannot be set as
empty.

Invokes the real load-balancing routine that
was specified using Zoltan_Set_Param
function with the LB_METHOD parameter.

Performs the real migration for Zoltan; selects
object lists to be sent to other processors, along
with the destinations o f these objects, and
performs the operations necessary to send the
data associated with those objects to their
destinations.

Table 2. Basic Zoltan operations (Source: http://www.cs.sandia.gov/Zoltan/Zoltan.html)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.sandia.gov/Zoltan/Zoltan.html
http://www.cs.sandia.gov/Zoltan/Zoltan.html

3.2 Over-partitioning for Time Adaptation

In our approach we used over-partitioning which is described in [11]. In traditional

partitioning strategy we create data partition equal to the number of processor allocated

for an application or equal to the total process number of a job. But in over-partitioning

we create more data partition than the number of processes so that processes are allowed

to have more than one partition, so that during resource adaptation we can migrate

required partition to other processes instead of migrating individual vertices reducing the

repartition cost. For example, we can create 128 partitions for 8 processes. We directly

used the existing over partitioning strategy [11] in our load balancing adaptation

framework library. Partitions are delivered from Zoltan sequentially maintaining the

neighbor relation of partitions so that edge cuts can be reduced after adaptation thereby

minimizing the after adaptation inter-process communication. In our test cases, we

always created 128 number of partitions for over-partition.

3.3 Partitioning from Scratch

Zoltan provides a variety of graph partitioning algorithm. We used one of the popular

graph partitioning algorithm K-way graph partitioning algorithm [17] from Zoltan. In this

algorithm, a graph is partitioned in three consecutive steps. (1) Graph coarsening phase

(2) Initial partitioning and (3) Graph un-coarsening phase. In the graph coarsening phase,

they coarsen the initial graph multiple times in order to get the possible coarsest graph, so

that it is much easier and less expensive to partition the coarsest graph instead of

partitioning the original graph. In the initial partitioning phase, the coarsest graph is fed

into the Kemighan-Lin partitioning algorithm to get the initial partition. Once the

partition is done, they un-coarsen the graph, which is the reverse process of the first

phase. This is how they get back the original graph, but partitioned at the end. The

following figure depict the three phases of k-way partition algorithm. During the

coarsening phase, the initial graph is successively decreased and in the initial partitioning

phase a 6-way partition is done here. At the end the graph is successively refined and

projected back to the larger graph.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multilevel k-way parti tion ing

Initial Partitioning Phase

Figure 2. Phases o f multilevel k-way partitioning algorithm. Source [16]

4. Our Approach

Load balancing adaptation can be initiated by following conditions:

• Job scheduler notices job completion or departure among co-scheduled jobs.

• Job scheduler notices new job start or initiation among co-scheduled jobs.

• Unknown resource usage due to the dynamism in program behavior.

• Inaccurate prediction noticed due to heterogeneous resources or slowdown affect.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U
ncoarsening

P
hase

Note that this load balancing initiation can be triggered by job scheduler (first two

conditions) and workload monitoring information system (last two conditions). The

adaptation always applies to groups of processes running on groups of processors which

are groups of hardware nodes.

A A

R C

n E

F.

A

Figure 3. Different multiprogramming levels and different co-scheduled application for
the application A and E on different subsets o f nodes on a cluster [14].

4.1 The Dynamic Directory

The dynamic directory keeps information about all the scheduled and running jobs in

the system. This version of dynamic directory is described in [8]. It stores the following

updated informations:

• Owner or user

• Remote request yes/no, single site/ cross-site request

• Requested share and runtime estimate

• Communication pattern

• Communication frequency

• Memory, I/O and other requirements

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N

dynamic directory
standard
directory
service

gen era) infos - accessible to every legai user

app lies tic
s e n i-!

n infos
la tic pa - from re yii

• Kces&bk ■ 1> owner
tmtion

rd system

dynfc r t c pa rt -1 ib format icfo ike workftxki
i i i i i 1 11 1

----- J 1 ----------J u --------- J I -----------I * -----------

t - - ^.databasis

Figure 4. Dynamic directory (Source: [8])

©e
e*
m

to
E

%

This dynamic directory can keep information about running application and their

workload on each process. We also assume that this dynamic directory maintains

information per user (permitted resource usage, left over usage, maximum runtime, and

performance information from previous runs). In our implementation concept, this

dynamic directory links between the operating system scheduler and adaptation controller

so that it is possible to combine the system and application information is the adaptation

method. However for simplicity, instead of linking with operating system scheduler, we

implemented our own simulated scheduler with a script provided that we know the

sequences of job and their arrival interval. And our dynamic directory gets the

information about scheduling of jobs through the adaptation library, not from the

operating system library (though that is the original concept).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 General overview of our approach

We assume that we have N nodes, that each node is uni-processor, and that the set of

nodes that were assigned for a certain job is Snew- Work type can be ARRIVAL or

COMPLETION. Assuming that we have M applications running on the system, we have

M node sets Sj for application j e M .

Algorithm to find out the affected jobs due to ARRIVAL or COMPLETION:

fo r (j = l ; j< M - , j + +)
BEGIN
i f (“ 1 ((Sj n Snew = 0) v (Sj c Snew)or(Adapt _ time > exec _ time _ left + S)))

Send_to_j(work_type,S j n S new)

END

We assume that the required information for the possible adaptation is sent to all

processes of an application. This information is sent through the socket communication to

the master process and then the master process broadcast this information to the rest of

processes of that application through MPI communicator, so that it is possible to make

the adaptation cheaper. Usually job scheduler are independent of any communication

system used and do not require a job to be malleable. In our case we have a load-

adaptation controller per job that communicates and initiates any possible load-

adaptation. But this load-adaptation controller is not directly any part of the job scheduler

so that job scheduler remains independent of the adaptation work. But the job scheduler

puts all the scheduling decision and terminating information to the dynamic directory.

The load-adaptation controller can access updated information from the dynamic

directory for possible adaptation. In our approach, we decoupled the job scheduler and

dynamic directory, so that the job scheduler remains independent of application

adaptation. Dynamic directory ensures the consistency of the system information by

storing job information, machine information and updated resource allocation among

scheduled jobs.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For resource based reasons for adaptation, we assume that we can measure progress

of an application with a monitor. It is important to measure the progress of an application

relating the processing of workload. We can do this either by relating to absolute time

estimates and determining how much percentage the time estimation was wrong. Another

way is to measure the relative progress, which is more feasible as this does not require

exact estimate. Another important thing is to find out about how much percentage longer

an application runs on one computer than another. The two possible ways are:

• Use a fixed time interval and determine the progress in workload processing

• Use a fixed amount of work and determine after which time this amount of

workload is processed.

The latter can be done with simple time stamps and is easier to implement where as

the former would require expensive timer interrupt. We assume that information is

collected at the load-adaptation controller and scalability can be ensured by either

collective communication or by using representative process from each co-scheduled

group reporting to the load-adaptation controller.

This approach applies to all possible types of applications. We can set a certain

number of work units as the fixed amount of work and then determine the time after

which they are processed. In iterative processing, this could be one or multiple passes

over all the local units.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Submitj ob(&j characteristics j
Allocate_job(j,Sj)
Deallocatejob(j)

Delete_job(j ■

Info_about_allocation_change(ch
ange_type, new, Snew)

Get_j ob_characteristics(j ,&charac
teristics_j

Get_machine_info(&info

Monitor

Job Scheduler

Dynamic Directory

Get_machine_info(&info)
Get_job_characteristics(j,&chara_jj)
Info_about_load/estimate_change(&info)
Put load/estimate(mfo) ,

Estimator

Put_load/estimate_change(info)

Job-adaptation
controller

Adaptation_info(new_weight_
vector) Relative_progress(progress_info)

Application

Figure 5. Architecture o f Our Approach

After each allocation of a new job or de-allocation of a completed job, changes are

made to the dynamic directory and inform the job-adaptation controller. Then the job

adaptation controller sends information to the representative processes of each affected

job about the possible load adaptation through the communication socket. The

representative process of a job broadcasts this information to the rest of the processes of

that job, so that they can initiate load balancing after evaluating the feasibility and

necessary migration calculation. Load information is updated to the job scheduler and

dynamic directory by job adaptation controller after each adaptation.

Job runtime is estimated based on machine information and job characteristics at the

beginning of job execution and this estimation is corrected by putting progress

checkpoint on application process (after a fixed amount of work) and required time to

execute that far. This progress is reported back to the each adaptation controller by its

respective job. Depending on this progress report, adaptation controller may change the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

estimation (by estimator) and suggest for possible load balancing to the representative

process of that job if (a) unequal relative progress (b) error in estimation is found.

Definition Balance'. Nodes are balanced if they are allocated a relative workload that

will be processed within the same amount of time. The relative workload is determined

by the application’s computational tasks, the machine’s share and the machine’s

processing power.

Definition Share: Machine share st is the resources of a machine that are being used

by an application. If an application takes 50% of resources of a machine, then the

machine share of that application is 0.5.

Definition Partition weight: Partition weight (w;) is the amount of task of an

application that has been assigned to a processor. If we represent the application in a

graph, then partition weight is the total weight of vertices of one partition.

Definition Relative Progress: Relative progress (wprocesed/wi) can be defined as the

proportion of total number of vertices that has been computed or processed (wprocessed) in

one partition of an application with the total partition weight (w,j.

Definition Machine Weight Factor: Machine weight factor (f) expresses the relative

speed of one machine compared to the base machine (probably the slowest machine of

the system).

In the case of adaptation, we calculate the new weight in the following way:

Calculation o f new Partition weight: Let us assume that we have a weight vector <wj,

W2, W3...wm> and a share vector <sj, S2, S3...sm> for an application running on m

processors where wt is the partition weight of zth partition and Si is the machine share of

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same application for that partition. If the total application weight is W and the total

machine share is S, then we have

W /+ W 2 + W 3 + . . . + W m= W

and

S , * f] + S 2 * f2 + S 3 */} + •.. + S m % = S

W h e r e f t is the machine weight factor of machine i.

After adaptation the new share vector become < s\,s'2,sr ..s'm > and the new total share

becomes

s[*fi + s'2* f 2 +s'i *f^ + ...+sm* f m = S'

Then, the new partition weight becomes

wi = w i * (s / s ') * (s] / 5, .) * (/ ' /

and

wj + w2 + wj +... + wm = W

The new weight that we found is good for non Hyperthreaded (HT) processor. But in

HT processor, two threads can logically execute concurrently, virtually doubling the

processing power. Since we did our test in HT Xeon processors, we need to find the new

HT weight of a processors. We used a factor {1/fm) to convert the new weight vector to

the new HT weight vector.

tA=dedicated execution time of an application A

n=number of processes running on a processor

t’A=execution time o f application A on a processor in time shared manner

tA,=n*tA (in a not HT processor)

tA,=n*tA*/kT(A,B) (fm is the HT factor)

Then we have:

HT factored new weight

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Implementation

In this section we are going to explain how we implemented different components

like simulated job scheduler, controller and adaptation library in our load balancing

adaptation framework.

4.3.1 Job Scheduler

For our experiment we needed to establish the coordination between the job scheduler

and the dynamic directory. Instead of playing around with the job scheduler of our

cluster, we created our simulated job scheduler with a shell script file where we put our

preplanned sequence of jobs and their arrival delays. Following is an example of such

simulated job scheduler.

/home/arefeen/testl 2/DD&
/home/arefeen/testl2/controller0&
mpirun -np 4 -machinefile machineO /home/arefeen/testl2/application0&
sleep 150
/home/arefeen/testl 2/controller 1&
mpirun -np 4 -machinefile machine 1 /home/arefeen/testl2/applicationl &

Figure 6. Example o f a simulated job scheduler script

In this example, the first line schedules the dynamic directory and at the same time

schedules controller!) and applicationO. Controller!) had direct socket communication

channel with the dynamic directory and applicationO has indirect communication with the

scheduler through its controller (controllerO). Then we wait 150 seconds and schedule

application 1 and controller for that. But while we execute our test with such simulated

job scheduler script, we need to make sure that no other user is logged in and running

their application on the cluster. Otherwise our test results might be incorrect.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Dynamic Directory

The basic Dynamic Directory idea is adopted from [8] and it is explained earlier in

section 4.1. In our implementation we created our dynamic directory with a multi­

threaded socket server. Each thread from different application through controller can

operate on the dynamic directory data. Threads are synchronized with pthread_mutex.

Pthread condition variable was used to signal the waiting thread after arrival or departure

of an application (after creation or termination of a thread). Dynamic directory is

connected to every adaptation controller through socket from different threads as long as

the application continues to execute.

4.3.3 Controller

In our implementation of adaptation controller, we created adaptation controller per

application instead of creating single adaptation controller for all applications. So that it

is possible to keep our controller simpler. Each adaptation controller has two socket

communications. One with the dynamic directory and other with the application. The

controller is connected to the application with a listener thread from the representative

process (usually process 0).

Process n
Process 1

Process 0 of an
Application

Representive
process

Dynamic
Direcotry

Listener
Thread of
An
Application
In process 0

Adaptation
Controller

Figure 7. Adaptation controller communication with dynamic directory and listener
thread o f an application.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.4 Adaptation Library

In our adaptation library we used the over-partitioning algorithm and migration from

ATOP [11]. We did not use the space adaptation though it is equally important, we only

focused on time adaptation. Unlike [11], we used dynamic weight vector for our

application processes. We provided the following methods in our adaptation library to be

used by MPI application.

Method Description

set_policy() This method defines whether to use over partition or

partition from scratch.

OP_init() This is to initialize the over partition at the

beginning.

OP_adapt() Adaptation using overpartitioning and then migrate,

depending on the new weight vector.

M y_weight() This method returns the related updated weight for

each process.

m y_flag() Thie method returns the Boolean value whether to

adapt or not, depending on whether or not the

listener thread received any new weight vector for

the application processes.

ZP_adapt() This method does the adaptation using the zoltan

partition (partitioning from scratch) and then

migrate.

set_communicator() This method copy the application communicator to

the library and also creates the listener thread at the

beginning o f application.

Register_Environment() This method register the query functions (both

partition and migration) for Zoltan and sets the

parameters

sys_finalize() This method finalize the zoltan and terminates the

communication with controller and thereby dynamic

directory.

Table 3. Methods o f our Adaptation library

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Following is a general example of a parallel application using our adaptation library

Set_communicator()
Register_Environment()
W h ile (iteration<limit)//iteration for the application

{
//Computation for parallel application
compute()

//Communication for parallel application

send()
receive()

if ((iteration % syn_num)==0) //syn_number if the frequency to check for adaptation

{
try_adapt()

}
}
sys_finalize()

Figure 8. Example o f application using our adaptation library

4.4 Adaptation Cost Model

The cost of adaptation can be split into two parts. One is adaptation cost of

application Capp which includes the partition and migration cost and the other one is

system overhead Csys that includes the monitoring cost and load information acquiring

cost.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our framework support both zoltan partition and over partition. Application programmer

can decide which method to use. For zoltan partition:

C,„,7=Initiate the adaptation by the representative process including the broadcast to all

processes, communication with the adaptation-controller

CZoitan_mig= Migration cost for zoltan

Czoitan_par= Partition/Repartition cost for zoltan

C 0ver_mig= Migration cost with overpartition

Cover_par~ Partition/Repartition cost with overpartition

Cadapt_app_zoitan=Adaptation cost for the application using zoltan partition and migration

Cadapt_ppp_over=-Adaptation cost for the application using over partition and migration

Cadapt_app_zoltan~ C init+ Czofran_par+ C zoltan_mig

Cadapt_app_over~ C 0Ver_j>ar+ C 0ver_mig

The cost model in [11] explains that it is suitable to use over partitioning when time

saved due to the overpatition is greater than the application communication cost caused

by more edge cuts after adaptation. In our framework the application programmer has the

freedom to choose from Cadapt_app_zoitan and Cadapt_app_ove/. from the library, so that the

application can be adapted more efficiently.

Capp M I N (C adapt_app_zoltan •> C adapt_app_over)

The system cost Csys will include the communication between the scheduler and dynamic

directory and the communication between dynamic directory and adaptation controller

per job. So the total adaptation cost will be:

Clolai =Csys+Capp, which will be dominated by the application Capp part.

X= Speed up due to adaptation

r=time to complete execution without adaptation

Tcomp=MAX(TCOmp,i- i<=m) , remaining computation time without adaptation that takes to

process all the vertices of a partition. Note that this Tcomp will be determined by the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

longest computation time (of ith partition) of m processes where m is the total number of

processes of a job.

TComm= ^ Emts , communication time without adaptation, which is the total edge cuts

with neighboring partitions.

Thus we have,

T=Tcomp+Tcomm

7”=time to complete execution with adaptation

T ’comp=M A X (T ’comp,i' i<-m) , remaining computation time after adaptation that takes to

process all the vertices of a partition. T ’comp will also be determined by the longest

computation time (of ith partition) of m processes where m is the total number of

processes of a job.

T ’comm- ^ E 'ails ,communication time after adaptation, which is the total edge cuts with

neighboring partitions. E ’cuts is the new edge cuts after adaptation (partition and

migration)

Then, T ’= T comp T command the speed up due to the adaptation will beX=T-T’.

The adaptation will be meaningful if the X ,speed up due to adaptation becomes greater

than C totai, the total adaptation cost. We found the speed up time in second for X, and we

can also present this speed up in percentage like below:

Percentage of speed up= (T -T)/T *100%

4.5 Test Plan

4.5.1 Test Environment

We are going to execute our tests on our AlphaMeta lab’s Hourus IBM cluster. This

cluster has 16 nodes (enodel-enodel6), each containing dual Intel Xeon processor with

512 Mbytes of memory. The first 14 nodes (enodel-enodel4) have CPU speed of 2.0

GHz and the last two nodes have CPU with 2.4 GHz. This provides us somewhat

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heterogeneous test platform. The frontend node (emaster) has 4 Intel Pentium III Xeon

processor with 700 MHz speed with 1Mbyte L2 cache. All these nodes are connected

through Myrinet interconnect. Operating system running on all nodes is Debian Linux

with kernel version 2.6.6 and we used MPICH-GM 1.2.5.12 (an implementation of MPI

over GM) over GM (low level message passing system for Myrinet network). Our

framework used MPICH-GM 1.2.5.12, Zoltan 1.52 and ParMETIS 3.1.

4.5.2 Test Application

Real word applications are represented with graph while the vertices represent the

computation of an application and the edges represents the communication between two

vertices. In our case, we represented an application with benchmark graphs from the

University of Greenwich Graph Partitioning Archive [13]. This graph archive was used in

[11]. We used the Chaco file input format, where the first line contains the integer value

of total vertices or nodes N and total number of edges E. Then the following N lines

represent the neighborhood relation of corresponding vertex. An example is given below:

6 9

2 6

1 3 4

2 4 6

1 2 3 5

4 6

1 5

Figure 9. Chaco graph input file format

In this file there are 6 vertices and 9 edges, where vertex 1 is adjacent to 2 and 6, vertex 2

is adjacent to 1, 3 and 4 and so on. We represented an application in a reverse direction.

We first selected the graph and created our application based on the graph pattern. We

used the following graph for our applications.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Graph Total number of

Vertices in graph

Total number of Edges

in graph

Description

t60k 60005 89440 Not available

wing 62032 121544 3D finite element mesh

brack2 62631 366559 3D finite element mesh

Table 4. Different Graph for our test applications

We selected these 3 graphs due to their differences in their edge number. All of the

graphs have almost same number of vertices but they have different number of edges.

This graph constitutes the application skeleton. This represents the applications with

different computation and communication pattern.

For our test purpose we used these graphs as the basic skeleton of our application that

defines the computation and communication pattern. Each process of our parallel

application has a boundary array (updated_value[]) that contains the data of the adjacent

nodes that are located in the neighbor processes. For example in the following figure,

process 1 (partition 1) has a boundary array that keeps the data of the adjacent nodes that

are in partition 2, 3, 4 and 5. In every iteration it does the computation, then sends the

computed updated value of that boundary array to the adjacent processes and then receive

the updated values from the adjacent processes (partitions). This sequence of computation

and communication iterates until the maximum iteration limit is reached. At the end of

certain number of iterations, the application synchronizes and checks if the controller

advised for adaptation. The computation in our application is pretty simple; each node

calculates the average value of all the adjacent nodes including its own value. At the end

of this computation, processes exchange the values in the boundary array with the

neighbor partitions that are other processes. Here we used the word process and partition

in the sense that a process represents one or more partitions. We also presented our jobs

with certain percentage of computation and the remaining percentage of communication.

Application iteration number is 90000 except the test case where we expand and shrink

the overlapped processes. So we can get the computation time of each iteration.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Partition 2
Partition 5

Partition 1

Partition 3
Partition 4

Figure 10. Example o f application structure.

Our test application does not represent all kinds of parallel application. We wanted to

test our time adaptation framework with a test application, which is built on graphs taken

from real applications. In our test application, we assumed that application can or able to

adapt after completion of an iteration. But in reality, this might not be possible for

complex structured application, where iteration is not just a sequence of computation and

communication. One important limitation of our test application is that it takes certain

amount of time for start-up. Since our application is built on graphs, we need to partition

the graph and distribute over the processes of an application. Once the graph or partition

of graph is distributed over processes, application can start working. In our cases, this

start-up time takes 200 (on dedicated processors) to 400 (on time shared processor)

seconds. In our application we also used some dummy block of computation that

computes on double data type so that we can change the granularity of our application.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.3 Test Cases

• For all sets of application we will take the application runtime in the dedicated

set of processors (while no other application is running on these processors),

application runtime in timeshared environment without adaptation while the

processes of an application is overlapped with another applications processes,

and application runtime in timeshared environment with adaptation using our

load balancing adaptation framework (using both over-partition and partition

from scratch) providing the similar kind of timesharing overlap. Finally we

compare all these three different kind of runtimes. This test is to evaluate the

performance of our adaptation framework, and to get the slowdown factor for

this particular pair of application.

Compare the speed up of our adaptation framework while imposing different

overlap of application. The following figure explains this test. We have

application 1 scheduled at time t2 on set of processors 1 to 8. Application2 gets

scheduled at time t3 on set of processors 4 to 11. In this test, we will compare the

different speed up of an application using our adaptation framework, changing the

overlapped set of processors (in this example processor 5-8) while the application

space does not change over time.

Space
tl

t2

t3

t4

t5

1 2 3 4 5 6 7 8
^ Application 1

4 5 6 7 8 9 10 11

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
im

e

Figure 11. Test case 2, adaptation in different number o f processor

In this test, we will change the number of processes overlapped with another

application while keeping the application processes constant. By changing the

overlapped set of processor we can evaluate the performance of our adaptation

framework in different sets of under-loaded and over-loaded of processes.

• Unlike the previous test, in this test, we will change the number of processes (0, 4,

8, 16) of one application in different test run (not during the application run). This

test is to evaluate the scalability of our adaptation framework. Here we will

change the application process numbers and their overlapped processes number as

well. Finally we will compare the different speed up with different process

number of an application.

4.6 Test Results

In order to examine the performance of our adaptation frame work, we present the

dedicated execution time of application of different granularity and we present the

adapted execution time (both using over-partition and partition from scratch). While

calculating the HT factor for weight vector as mentioned at the end of section 4.2, we

collected the dedicated execution time of certain number of iteration and then shared

execution time of same number of iteration. But in some cases we found that HT factor is

little different for each of the application of application pair. In those cases we simply

used the average of the two HT factor value for that application pair. The following table

presents this execution time for application wing with 65 % computation and t60k with

85% computation. All these times are taken by using MPI_Wtime(), which return time in

seconds. Both applications are run on 8 processors and adaptations are done while

imposing 4 processes overlapped. Here wing adapts at the arrival of t60k and again at the

termination of t60k. t60k starts execution with adapted weight vector, but does not adapt

during runtime. All execution or run times are calculated after the startup time of

application, i.e. excluding the start-up time.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application Dedicated

Runtime

(sec)

Runtime

Without

Adaptation
(sec)

Adapted
Runtime with
Over­
partition
(sec)

Speed up

(OP)

Adapted
Runtime with
partition
from scratch
(sec)

Speed up

(ZP)

Wing, 8P,

65%
computation

822.6 1067.0 982.8 7.89%
84.2
sec

1005.9 5.73%
61.1
sec

T60k, 8P,

85%
computation

385.4 635.0 593.0 6.61%
42.0
sec

598.4 5.76%
36.5
sec

fHT=1.17 OP_Adapt costl=1.004 ZP_Adapt costl=13.194

Table 5. Adapted runtime Vs non-Adapted runtime, for wing and t60k, both with 8
processes and 4 processes overlapped

When we plot the gain achieved by adaptation using both over-partition (OP) and

partition from scratch (ZP), we find the following figure. It is clear here that the

adaptation is more expensive using partition from scratch than using over-partition.

However, in this particular case, we used our HT factor fm=1.17. Here the second

application (t60k) started 240 seconds after the start of wing. We could not have started

t60k first, because in that case, by the time wing started after completion of its start up

84.226

61.149

42.014 36.592

l Over partition

j a K-way partition

wing t60k

Graph

Figure 12. Comparison o f adaptation gain using Over-partition and partition from
scratch (wing 65% comp and t60k 85% comp).

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time, t60k would have terminated. The adaptation cost using over partition is more than a

second, while the speed up gained is 84.2 seconds more for wing and 42 seconds more

for t60k. We noticed here that the speed up gained using both methods for t60k is almost

same, because the second application did not adapt during its execution. It started with its

adapted weight vector and completed before the completion of wing.

The following table presents the adapted execution time for application brack2 with

91% computation and application t60k with 85% computation. Both applications are run

on 8 processors with 4 processor overlapped. The arrival delay between these two

applications is 252 seconds, when brack2 starts first. Brack2 adapts at the arrival of t60k

and again at the termination of t60k.

Application Dedicated

Runtime

Runtime

Without

adaptation

Adapted
Runtime
with Over­
partition

Speed up

(OP)

Adapted
Runtime
with
partition
from scratch

Speed up

(ZP)

Brack2, 8P,

91%
computation

608.4 987.4 822.7 16.7%
164.6
sec

851.7 13.7%
135.7
sec

T60k, 8P,

85%
computation

384.6 612.9 503.0 17.9%
109.8
sec

522.5 14.7%
90.3
sec

l/ftn—1-15 OP_Adapt cost= 1.178 ZP_Adapt cost=14.558

Table 6. Adapted runtime Vs non-Adapted runtime, fo r brack2 and t60k, both with 8
processes and 4 processes overlapped

When we plot this execution time, we get the following speed up gain for the two

applications using over partition (OP) and partition from scratch (ZP). For this particular

case, over partition cost is about 12 times less expensive than partition from scratch. For

the very same reason like previous case, we scheduled t60k after 252 seconds of brack2

schedule time. The HT factor that we used here for overlapped processes is l / f H T = 1 . 1 5 .

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ Over partition

□ K-way partition

brack2 t60k

Graph

Figure 13. Comparison o f adaptation gain using Over-partition and partition from
scratch (brack2 91% comp and t60k 85% comp).

The following table presents the adapted execution time for application brack2 with

91% computation and application wing with 65% computation. Both applications are run

on 8 processors with 4 processor overlapped. The arrival delay between these two

applications is 252 seconds, when brack2 starts first. brack2 adapts at the arrival of wing

and again at the termination of wing.

Application Dedicated

Runtime

Runtime

Without

adaptation

Adapted
Runtime
with Over­
partition

Speed up

(OP)

Adapted
Runtime
with
partition
from scratch

Speed up

(ZP)

brack2, 8P,

91%
computation

609.7 971.7 898.3 7.5%
73.3 sec

926.019 4.6%
45.6 sec

wing, 8P,

65%
computation

831.8 1052.3 949.0 9.8%
103.2 sec

981.163 6.7%
71.1 sec

1 / f*HT— 1 -1 OP_Adapt costl=1.0823 ZP_Adapt costl= 16.762

Table 7. Adapted runtime Vs non-Adapted runtime, for brack2 and wing, both with 8
processes and 4 processes overlapped

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We get the following figure after plotting these execution times and we found the

adaptation using partition from scratch is more expensive than the adaptation using over

partition.

180

103.267

73.327 7-1.182

457693

■ Over partition

■ K-way partition

brack2 wing

Graph

Figure 14. Comparison o f adaptation gain using Over-partition and partition from
scratch (brack.2 91% comp and wing 65% comp).

It is noticed that for all three tests, we found partition from scratch is more expensive

than over partition. This may not be true for every kind of application. The three test

graphs that we considered indicate that adaptation using partition from scratch is more

expensive than the adaptation using over-partition. However, these test results indicate

that adaptation is meaningful, as the adaptation gain is greater than the adaptation cost.

But if the application runs for a very short period of time, then adaptation might not be

meaningful. We found that computation intensive applications can be benefited more

than communication intensive applications.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the following test we vary the overlapped processes (0,2,4,8). Both of the

applications we used have 8 processes each. Note that there is no adaptation when the

overlapped process is either 0 or 8, because in those situations there is no relative change

of share among the processes of an application. In other situations (overlap 2 & 4) wing

adapts at the arrival of t60k and t60k adapts at the termination of wing. The following

results are found when we perform this test between the application with wing (with 65%

computation) and t60k (with 85% computation). The HT factor we found is l / f H T = 1 . 1 7 .

Application
1

Application
2

Overlapped
process
number

‘t i
NA

*T2
NA

jT i
Adapted

4T2
Adapted

Npeed
up 1

8Speed
up 2

4C1 6C2

Wing
8 processes
(65%)

T60k
8 processes
(85%)
arrival
delay 240
sec

8 1283.7 715.7 1283.7 715.7 0.0% 0.0% 0.0 0.0

4 1067.0 635.0 982.8 593.0 7.9% 6.6% 1.056 0.538

2 955.1 582.4 876.8 513.5 8.2% 11.8% 0.449 0.469

0 822.6 385.4 822.6 385.4 0.0% 0.0% 0.0 0.0

Table 8. Adapted runtime with varying overlapped processes (wing 65% comp and t60k
85% computation)

1. execution time (seconds) of application 1 without adaptation.
2. execution time (seconds) of application 2 without adaptation.
3. adapted execution time (seconds) of application 1 using over partition.
4. adapted execution time (seconds) of application 2 using over partition.
5. adaptation cost (seconds) incurred in application 1.
6. adaptation cost (seconds) incurred in application 2.
7. speed up achieved by application 1 after adaptation using over-partition.
8. speed up achieved by application 2 after adaptation using over-partition.

We found the figure 15 and 16, when we plot the adapted execution time with varying

overlapped processes and non-adapted execution time with the varying overlapped

processes. It is found that adaptation cost of wing for 4 processes overlapped is about

2.35 times than that of 2 processes, i.e. adaptation cost is less for less number of

overlapped processes. However, for both of the application in this test achieved

significant speed up by adaptation. Though it is not quite clear why the following two

graphs have different shape. This could be due to the difference in their granularity.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1200

1000CO■ccood)
CO

800

d>
600

3U
$

U J

.2 400

200

■ non adapted runtime

• adapted (OP)
runtimel

1 2 3 4

Overlapped processes

Figure 15. Adapted (OP) runtime Vs non-adapted runtime for wing (65% computation)
while varying number o f overlapped processes with t60k (85% computation)

1200

42 1000

800

600

400

200

0 1 2 3 4 5

non adapted runtime

-■— adapted (OP) runtime

Overlapped processes

Figure 16. Adapted (OP) runtime Vs non-adapted runtime fo r t60k (85% computation)
while varying number o f overlapped processes with wing(65% computation)

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following results are found when we perform this test between the application

with brack2 (with 91% computation) and t60k (with 85% computation) while varying the

overlapped number of processes. The HT factor we found is l/fHT= l-15 and total process

of both of the application are 8. In 4 overlapped processes case, brack2 adapts at the

arrival and completion of t60k. But in 2 overlapped processes case, brack2 adapts at the

arrival of t60k and t60k adapts at the completion of brack2.

Application
1

Application
2

Overlapped
process
number

*T1
NA

2T2
NA

sT1

Adapted
4T2
Adapted

;Speed
up 1

8Speed
up 2

5C1 6C2

Brack2
8 processes
(91%)

T60k
8 processes
(85%)
arrival
delay
252 sec

8 1048.6 691.6 1048.6 691.6 0.0% 0.0% 0.0 0.0

4 987.4 612.9 822.7 503.0 16.7% 17.8% 1.821
0.627

2 879.5 569.9 738.6 457.2 16.0% 19.6% 0.434 0.449

0 608.4 384.6 608.4 384.6 0.0% 0.0% 0.0 0.0

Table 9. Adapted runtime with varying overlapped processes (brack2 91% comp and t60k
85% computation)

We found the following two graphs for the two applications. It is noticeable that the

adaptation cost for 4 overlapped processes is about 4.19 times expensive that that of 2

overlapped processes.

1200 n

w" 1000
co
8 800«.
o>
| 600

c
■2 400
3

Js 200

0

Figure 17. Adapted (OP) runtime Vs non-adapted runtime for brack2 (91%> computation)
while varying number o f overlapped processes with t60k (85% computation)

40

non adapted runtime

* — adapted (OP) runtime

Overlapped processes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0>
E
co

'jS

3
X

Ul

600

400

200

0
0 1 2 3 4 5

- non adapted runtime

- adapted (OP) runtime

Overlapped processes

Figure 18

Figure 19. Adapted (OP) runtime Vs non-adapted runtime for t60k (85% computation)
while varying number o f overlapped processes with brack2 (91% computation)

In the following table we present the test result from brack2 (91% computation) and

wing (65% computation) while varying the number of processes overlapped (0,2,4,8).

Each application has 8 processes. The HT factor that we found for these two applications

is l/fHT=l.l. In 4 processes overlap case, brack2 adapts during arrival and departure of

wing, but in 2 processes overlap case, brack2 adapts during the arrival of wing and wing

adapts during the termination of brack2.

Application
1

Application
2

Overlapped
process
number

T l
NA

"T2
NA

3T1
Adapted

4T2
Adapted

7Speed
up 1

8Speed
up 2

5C1 bC2

Brack2
8 processes
(91%)

wing
8 processes
(65%)
arrival
delay 252
sec

8 1141.8 1190.5 1141.8 1190.5 0.0% 0.0% 0.0 0.0

4 971.7 1052.3 898.3 949.0 7.5% 9.8% 1.561
0.622

2 862.3 985.7 802.1 898.7 7.0% 8.8% 0.947 0.482

0
609.7

831.8 609.7 831.8 0.0% 0.0% 0.0 0.0

Table 10. Adapted runtime with varying overlapped processes (brack2 91% computation
and wing 65% comp)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We found the following two graphs for our applications. Both of them show

significant speed up due to time adaptation.

1200

42 1000

800

600

400

200 -

0 1 2 3 4 5

non adapted runtime

adapted (OP) runtime

Overlapped processes

Figure 19. Adapted (OP) runtime Vs non-adapted runtime for brack2 (91% computation)
while varying number o f overlapped processes with wing (65% computation)

1200

S 1000

800

a>
E 600

400 J

200

- non adapted runtime

- adapted (OP) runtime

1 2 3 4

Overlapped processes

Figure 20. Adapted (OP) runtime Vs non-adapted runtime fo r wing (65% computation)
while varying number o f overlapped processes with brack2 (91%> computation)

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In these entire previous tests we used application with 8 processes. So that we can

observe the adaptation affect on both of the application. We could have done similar kind

of test for 16 processes, if we had a test environment with 32 processors. But we perform

similar kind of test on 16 process application imposing 0, 2, 4,8 and 16 overlap with 0, 2,

4, 8 and 16 process application. But in this case, the second application is not going to

adapt, only the first application with 16 processes can adapt while the overlapped

processes are 2, 4 and 8. The first application does not adapt with 0 or 16 processes

overlapped, as the relative resource share remain unchanged among the processes of an

application. We get the following test results, which are the adapted execution time of our

16 process test applications, while having different overlap with different number of

application processes. Wing arrives after 240 seconds of the arrival of t60k. T60k adapts

at the arrival of wing and wing adapts at the termination of t60k.

Application 1 Application 2
(14init=451)
shared

overlap yTl
NA

IUj i

Adapt
“ T2
Adapt

iaCl l3Speed
up 1

t60k
16 processes

Wing 16p 16 533.0 533.0 794.5 0.0 0.0%

(70%) Wing 8p 8 479.9 468.3 826.1 5.4 2.2%

Wing 4p 4 470.6 451.0 1353.0 4.7 4.0%

Wing 2p 2 418.6 397.3 2257.5 6.1 5.0%

Op 0 370.1 370.1 0.0 0.0 0.0%

Table 11. Adapted runtime o f t60k (70% computation) with Varying overlapped
processes with wing (65% computation)

9. execution time (seconds) of application 1 without adaptation.
10. execution time (seconds) of application 1 with adaptation.
11. execution time of (seconds) application 2 with adaptation.
12. adaptation cost (seconds) of applicationl.
13. speed up achieved by application 1 due to adaptation.
14. initial start up time (seconds) of application 2 using over-partition with 8

processes.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the following test, t60k arrives after 252 seconds of the arrival of wing. Wing

adapts during the arrival of t60k and t60k adapts at the termination of wing. However it is

found that the speed up increases with the less number of overlapped processes. The

second application (t60k) does not adapt, because it is entirely contained within the

processor set of first application (wing). That is why we only focused on the speed up of

the first application that adapts.

Applicaitonl Application2
(14init=409)
shared

Overlap yTl
NA

10T1
TA

UT2
TA

,2C1 13Spee
dup 1

wing
16 processes

t60k 16p 16 1080.8 1080.8 659.2 0.0 0.0

(50%) t60k 8p 8 931.2 897.7 536.5 3.229 3.6%

t60k 4p 4 877.4 836.6 750.9 2.746 4.7%

t60k 2p 2 803.5 761.3 1373.8 3.889 5.2%

Op 0 695.4 695.4 0.0 0.0 0.0

Table 12. Adapted runtime o f wing (50% computation) with Varying overlapped
processes with t60k (85% computation)

In the following test, t60k arrives after 252 seconds of the arrival of brack2. brack2

adapts during both arrival and termination of t60k. It is important that the speed up

brack2 is relatively less than that of wing, while both wing and brack2 had similar kind of

overlapped processes with t60k. This is due the fact that brack2 is less computational

intensive than wing.

Applicaitonl Application2
(14init=409)
shared

Overlap Vj i

NA

iuT l

TA
“ T2
TA

‘"Cl uSpe
ed up
1

brack2
16 processes

t60k 16p 16 2995.2 2995.2 566.8 0.0 0.0%

(40%) t60k 8p(82%) 8 2296.2 2248.8 621.7 4.1611 2.1%

t60k 4p(86%) 4 2185.8 2105.1 1151.6 3.8716 3.7%

t60k 2p 2 1783.6 1698.0 2194.0 4.5273 4.8%

Op 0 1469. 9 1469. 9 0.0 0.0 0.0%

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 13. Adapted runtime ofbrack2 (40% computation) with Varying overlapped
processes with t60k (85% computation)

2500

_ 2000
o'0)w,
I 1500

co
« 1000
3
8m

500

0 2 64 8 10

Number of overlapped processes

•t60k (70% comp)
without adaptation with
wing (65% comp)

■ t60k (70% comp) with
adaptation with wing
(65% comp)

wing (50% comp)
without adaptation with
t60k (85% comp)

wing (50% comp) with
adaptation with t60k
(85% comp)

• brack2 (40% comp)
without adaptation with
t60k(85% comp)

■ brack2 (40% comp)
with adaptation with
t60k(85% comp)_____

Figure 21. Execution time Vs number o f overlapped processes

We found less speed up with more overlapped number of processes. This is due to the

ratio of total weight in overlapped and non-overlapped processes. For an application with

8 processes and l/fHT=l-2, with 4 processes overlapped and weight vector

1:1:1:1:0.6:0.6:0.6:0.6, this ratio is 0.6. But with 2 processes overlapped this ratio

becomes 0.2.

This implies that time adaptation is more suitable for computation intensive parallel

application than computation intensive applications. The following two charts depicts the

cost for adaptation (using over-partition) for same pair of application but with different

number of total application process. First chart depicts when 50% process is overlapped

(4p from 8p application & 8p from 16p application) and the second chart depicts when

same number of process is overlapped (both has 4p overlapped).

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adaptation cost

4.161

1.821

8P brack2,with 4P
overlapped with t60k

I adaptation cost

16P brack2 with 8P
overlapped with t60k

application with 50 % overlap

Figure 22. Adaptation cost fo r varying number o f application process with 50% overlap

adaptation cost

3.782

1.821

I

:
I

I adaptation costj

8P brack2,with 4P 16P brack2 with 4P
overlapped with t60k overlapped with t60k

application with same amount of overlap

Figure 23. Adaptation cost fo r varying number o f application process with same overlap

In the following test, t60k expands and shrinks the overlapped processes (0 —> 4 —> 8

—► 4 —»■ 0) while overlap with wing and brack2. This is depicted in the following figure.

At T l, the overlapped process of t60k is 0. At T2, wing arrives, and overlapped process

of t60k becomes 4. Again, at T3 brack2 arrives and the overlapped process becomes 8.

The overlapped process of t60k becomes again 4 and 0 sequentially at T4 and T5 at the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

termination of brack2 and wing. So, here t60k adapts 4 times at T2 (0 —► 4), T3 (4 —*■ 8),

T4(8 —► 4) and T5(4 —> 0). The test results are presented for this test in the following

table.

T60k 8P (5-12)
T1

Wing 8p (9-16)
Brack2 8P (1-8)

■4-

T6

Figure 244. Expanding and shrinking o f overlapped process for t60k (85% comp)

Application Overlap T1 (NA)
second

T1 (OP)
second

Speed up (OP) Cost o f adaptation
(OP) second

T60k
8P
85% computation
start time=Tl

0 1098.1 1030.7 6.19% 0.0

4 1.136
(wing arrival)

8 1.548
(brack2 arrival)

4 1.214
(brack2 termination)

0 0.560
(wing termination)

Wing 8P
61% computation
start time=T 1+252 sec

4
l/fHT=1.17

583.1 467.2 19.8% 0.0

Brack2 8P
85% computation
start time=Tl+384 sec

4
l/fHT=1.15

316.7 265.1 16.1% 0.0

Table 14. Expansion and contraction o f t60k with wing and brack2.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Conclusion and Future Work

In our approach, we have presented time adaptation for parallel application in time

sharing environment exploiting the unbalanced resource allocation. We focused on

adapting in time dimension, while adaptation in space dimension for space malleable

application is equally important. Our adaptation framework uses over-partition and

migration strategy from ATOP [11]. Our adaptation library provides option to bind either

over-partition or partition from scratch. We let the application programmer decide which

policy to select. But automatic and transparent binding of would be more promising if it

can select the suitable method based on application and machine profiling, accessing

from dynamic directory. A more appropriate weight vector can be formulated considering

co-scheduling slowdown and granularity of applications that share the resources. Time

adaptation in asynchronous manner as well as latency hiding is more promising.

In our design the dynamic directory is connected to the system scheduler, which can

provide more accurate information about the resource share. But our implementation did

not include the system scheduler. Even though, our result explains that adaptation in time

dimension is meaningful, even multiple time adaptation would be meaningful with over

partitioning if the application run for long enough.

Our approach is a sequence of integration of ATOP [11] approach and put that in a

library so that parallel MPI application can use it for adaptation. The next phase would be

to integrate the resource monitoring system and space adaptation as well. At the end this

framework would be able to provide runtime adaptation for parallel application both in

space and time dimension using the resource monitoring system and using the

information from the dynamic directory.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] S. Ioannidis and S. Dwarkadas, Compiler and Run-Time Support for Adaptive Load

Balancing in Software Distributed Shared Memory Systems, Proc. of the Fourth

Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers,

1998.

[2] M. Zaki and W. Li and S. Parthasarathy, Customized Dynamic Load Balancing for a

Network of Workstations, Journal of Parallel and Distributed Computing, volume 43,

number 2, pages 156-162,1997.

[3] H. Cai, O. Maquelin, P. Kakulavarapu, and G. R. Gao. Design and Evaluation of

Dynamic Load Balancing Schemes under a Fine-grain Multithreaded Execution Model,

Multithreaded Execution Architecture and Compilation Workshop, Orlando, Florida, Jan

9th, 1999.

[4] A. Rajagopalan, S. Hariri, An agent based dynamic load balancing system,

Autonomous Decentralized Systems, 2000. Proceedings. 2000 International Workshop on

09/21/2000-09/23/2000, 2000, page(s): 164-171.

[5] M. Bozyigit, History-driven dynamic load balancing for recurring applications on

networks of workstations, Journal of Systems and Software Volume: 51, Issue: 1, April

1,2000, pp. 61-72.

[6] L. V. Kale, M. Bhandarkar, and R. Brunner, Run-time Support for Adaptive Load

Balancing, Parallel and Distributed Processing. Springer Verlag, 2000, ISBN 3-540-

67442-X, Lecture Notes in Computer Science, Vol. 1800, (Proceedings of 4th Workshop

on Runtime Systems for Parallel Programming (RTSPP) Cancun - Mexico, March 2000).

[7] R. Blumofe and C. Leiserson, Scheduling multithreaded computations by work

stealing, Proceedings of the 35th Annual Symposium on Foundations of Computer

Science, Santa Fe, New Mexico., pages 356—368, year 1994.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[8] A. Sodan and X. Huang, SCOJO-Share Based Job Coscheduling with Integrated

Dynamic Directory in Support of Grid Scheduling, Proc. Ann. Int. Symposium on High

Performance Computing Systems (HPCS), Sherbrooke, Canada, May 2003, pp. 213-221.

[9] E. Frachtenberg, D. G. Feitelson, F. Petrini, Flexible Coscheduling: Mitigating

Imbalance and Improving Utilization of Heterogeneous Resources, Proc. Int. Parallel and

Distributed Processing Symposium (IPDPS’2003), April 2003.

[10] D. G. Feitelson, Job Scheduling in Multiprogrammed Parallel Systems, Extended

version. IBM, RC 19790 (87657), August 1997.

[11] A. Sodan and H. Lin, ATOP-space and time adaptation for parallel and grid

applications via flexible data partitioning, Proceedings of the 3rd workshop on Adaptive

and reflective middleware, Toronto, Ontario, Canada, Pages: 268 - 276 , 2004

[12] K. Devine, B. Hendrickson, E. Boman, M. St.John, and C. Vaughan. Design of

Dynamic Load-Balancing Tools for Parallel Applications. Proceedings of the

International Conference on Supercomputing, Santa Fe, May, 2000.

[13] The Graph Partitioning Archive (source: http://staffweb.cms.gre.ac.uk/~c.walshaw/

partition/)

[14] Technical memo Dr. A. C. Sodan (supervisor), School of Computer Science,

University of Windsor.

[15] M. Bhandarkar, L. V. Kale, E. Sturler, and J. Hoeflinger, Object-Based Adaptive

Load Balancing for MPI Programs, Lecture Notes in Computer Science, Vol. 2074,

Springer Ver;ag, pp 108-117, May 2001.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://staffweb.cms.gre.ac.uk/~c.walshaw/

[16] G. Karypis and V. Kumar, Mulilevel k-way Hypergraph Partitioning, Proceedings of

the 36th ACM/IEEE conference on Design automation, New Orleans, Louisiana, United

States, Pages: 343-348, 1999, ISBN:l-58133-109-7

[17] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Journal of Parallel and Distributed Computing, 1998

[18] ParMETIS: Parallel Graph Partitioning, http: //www-users.cs.umn.edu/ -karypis/

metis/parmetis/index.html

[19] G. Karypis and V. Kumar, Analysis of Multi-level graph partitioning. In proceeding

of Supercomputing 1995.

[20] L. V. Kale, M. Bhandarkar, and R. Brunner, Run-time Support for Adaptive Load

Balancing, Parallel and Distributed Processing. Springer Verlag, 2000, ISBN 3-540-

67442-X, Lecture Notes in Computer Science, Vol. 1800, (Proceedings of 4th Workshop

on Runtime Systems for Parallel Programming (RTSPP) Cancun - Mexico, March 2000.)

[21] D. Cronk , P. Mehrotra, Load Balancing with Migrant Lightweight Threads,

Publisher: Springer-Verlag Heidelberg ISSN: 0302-9743 Volume: Volume 1511/1998

Page: 153

[22] U. Rencuzogullari and S. Dwardadas, Dynamic adaptation to available resources for

parallel computing in an autonomous network of workstations, ACM SIGPLAN Notices ,

volume 36, number 7, pages 72-81, year 2001

[23] A. Keren, A. Barak, Opportunity cost algorithms for reduction of I/O and

interprocess communication overhead in a computing cluster, Parallel and Distributed

Systems, IEEE Transactions on , Volume: 14 Issue: 1 , Jan. 2003 Page(s): 39 -50

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[24] L. Xiao; S. Chen; X. Zhang, Dynamic cluster resource allocations for jobs with

known and unknown memory demands, Parallel and Distributed Systems, IEEE

Transactions on , Volume: 13 Issue: 3 , March 2002 , Page(s): 223 -240

[25] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, A framework for

performance modeling and prediction, Proceedings of the 2002 ACM/IEEE conference

on Supercomputing.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita Auctoris

NAME:

PLACE OF BIRTH:

EDUCATION:

EXPERIENCE:

Ahsanul Arefeen

Mirzapur, Bangladesh

1996-2001 B. Sc. Engg., Computer Science & Engineering

Bangladesh University of Engineering & Technology

Dhaka, Bangladesh.

2002-2005 M. Sc., Computer Science

University of Windsor

Ontario, Canada

2000-2001

Software Developer

DevNet Inc.

Dhaka, Bangladesh

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Time adaptation for parallel applications in unbalanced time sharing environment
	Recommended Citation

	tmp.1619556021.pdf.rG29w

