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Abstract

Time adaptation is very significant for parallel jobs running on a parallel centralized 

or distributed multiprocessor machine. The turnaround time of an individual job depends 

on the turnaround time of each of its processes. Dynamic load balancing for unbalanced 

time sharing environment helps to equally distribute the work load among the available 

resources, so that all processes of a single job end almost at the same time, thus 

minimizing the turnaround time and maximizing the resource utilization.

In this thesis we propose and implement an approach that helps parallel applications 

to use our library so that it can adapt in time dimension (if running in a time sharing 

environment) without changing the space allocation. This approach provides an interface 

between application, monitoring information, the job scheduler and a cost model that 

considers application, system and load-balancing information. This interface allows 

binding of different adaptation approaches for synchronous adaptation and semi-static 

remapping. We also determined job types for what this approach is suitable and at the end 

we present results from our test run on a 16-node cluster with synthetic MPI programs 

and a time adaptation approach, demonstrating the gain from our approach. In this work, 

we make extension of existing ATOP [11] work. We directly use their over partitioning 

strategy. But unlike ATOP, applications can use our adaptation library and adapt 

dynamically. We also adopted the dynamic directory concept used in SCOJO [8].

iii
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1. Introduction

In parallel applications, usually there are multiple interacting processes running on 

different Central Processing Units (CPUs). This helps to overcome the physical 

limitations of processing capability of a non-parallel computer system. Depending on the 

interaction between these parallel processes, parallel jobs can be classified into three 

different types. They are

• Jobs with tight coupling,

• Jobs with balanced processes and loose interaction,

• Jobs structured as work-pile of independent tasks.

The first type of jobs usually consists of a certain number of processes and they are 

communication intensive. The processes of the second type do not interact with other 

processes very frequently, but the turnaround time depends on the finishing time of the 

slowest process. The third type of jobs is basically worker processes and they are very 

flexible. They can change the number of processes during runtime (malleable) and are 

very suitable for Network of Workstations (NOW) environment.

Load balancing is a critical issue for achieving good performance in any parallel 

system [1], A great deal of research has been done on improving load balance of 

particular algorithm or application, but the general purpose load balancing research deals 

with process migration in operating system and more recently in application framework 

[6]. Applications in the areas like very large-scale integration (VLSI), computational 

fluid dynamics (CFD), meteorological simulations, structural dynamics, magnetic and 

thermal dynamics use a load balancer to perform the initial load balancing, eventually 

several application show dynamic behavior (in communication structure) during runtime. 

That’s why it requires employing a dynamic load balancing strategy. For achieving 

scalable performance, it is important to evenly distribute the workload among the 

processing nodes [3]. The variation in system load and application requirements during 

execution is imminent in a real environment. The distributed and global availability of

1
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runtime load information and its maintenance require dynamic exchanges of information 

between the workstations [5]. This dynamicity of system and application load and the 

limitation of a priori knowledge of parallel application behavior imply the requirement of 

dynamic load balancing.

Our approach is to make sure that all parallel processes of a parallel application 

proceed in the computation approximately to the same extent and finish at about the same 

time which is similar to the load balancing. In an ideal homogeneous environment, all the 

similar processors are allocated with equal amount of workload, so that all the processes 

can run to completion at the same time. But this is not feasible under different 

environments like 1) heterogeneous environments with heterogeneous CPUs and/or 

different size of memory running at different speed, 2) NOW environment with different 

background load at different processors, 3) time/space sharing environment where 

loosely coordinated processes are coscheduled on different processors/nodes and again 

different processors has different number of processes scheduled/coscheduled on them 

from different set of parallel applications. In such time/space sharing environment, 

multiple applications can run per processor determined by a certain multiprogramming 

level [9, 8]. Similar situation can occur for cross-site jobs in computational grids if 

different time share is allocated on different sites. In such cases of imbalances, if not 

adapting the workload, the slowest processor or highest multiprogramming level would 

determine the performance of the whole application. We present a framework to address 

load balancing in such situations of imbalance along the time axis with the following 

main goals of supporting balancing with imbalanced workload assignment, including 

certain coscheduling effects especially dynamic resource availability changes along the 

time direction and cases where the above multiprogramming occurs on subsets of 

processors. We confine our approach to rigid jobs that do not change the number of 

parallel processes of an application during execution period and these jobs are non- 

preemptive. But we allowed jobs to be time malleable so that a job can dynamically adapt 

in dynamic time sharing environment. Our approach provides the following solutions for 

parallel applications to adapt dynamically:

2
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• An interface between application and system providing an integration of 

application level and system level.

• A software framework in the form of adaptation library, enabling to bind different 

load balancing strategies.

• Support of job scheduler initiated adaptation.

We present results from our experiment of our 16 dual Xeon node cluster. In order to 

run our adaptation performance test, we developed a simulated scheduler and synthetic 

applications. We also explain what type of job is suitable for our time adaptation 

approach.

2. Review of the State of the Art

There are four different basic load balancing strategies along two axes [2], either local 

or global in one axis or centralized or distributed in another axis. In this chapter we will 

review these strategies and run-time systems and then we will introduce the time 

malleability and space malleability problems. Finally, we will explain how graph 

partitioning helps to deal with these problems.

In dynamic load balancing, a monitoring system keeps information about the 

workload of each processor during execution time and invokes the balancing operation 

between the heavily loaded processors to the lightly loaded processor when imbalance is 

found by the monitoring system beyond a certain level of imbalance. Balancing operation 

can also be invoked when the monitoring system finds a significant amount of change in 

resource availability. This invocation can be performed in centralized or distributed 

manner.

3
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2.1 Centralized load balancing model

Depending on the location of the load balancer, the load balancing strategy can be 

categorized as centralized or distributed. When the load balancer is located at a master 

node (processor) that has the global knowledge of other processor’s load information and 

the master node initiates the workload balancing, the model can be characterized as 

centralized load balancing model. Here all the processors take part in the synchronization 

and send their load information to the central load balancer. The central load balancer, 

after receiving load information, calculates the new load distribution and related work 

movement and redistribution profit. If migrating workload is profitable, the balancer 

sends instruction to the worker processor to do so mentioning the recipient information. 

The receiving processor waits until it receives the instructed amount of work.

2.2 Distributed load balancing model

In distributed load balancing, the load balancer is placed on every processor and 

instead of sending a load profile to the master node, it can be broadcasted to all other 

nodes or only to the neighbors depending on different model. This helps to circumvent 

the communication bottleneck problem in the centralized model and eliminates the need 

to instruct other nodes as well.

The two popular ways of distributed load balancing are work sharing and work 

stealing, even though they are not exclusively for distributed load balancing. In work 

sharing when some new work load is generated, the generating processor attempts to 

migrate some of its load to the other processor expecting them to be underutilized [7]. 

This is also called sender initiated load balancing. On the other hand, in work stealing, 

underutilized processors request work load from overloaded processors. In either cases 

the request may be denied when the destination processor is overloaded (load sharing) or 

the sender processor does not have enough workload (work stealing). Both of these 

strategies are suitable for fine grain parallel applications. Global system knowledge can 

be acquired by agents running on each node and they exchange the load profile in a 

collaborative manner [4].

4
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2.3 Comparison between centralized and distributed model

The centralized load balancing model can not perform well enough when the number 

of working machines increases. This has the limitation of scalability and the performance 

degrades with the increased number of communication overhead. But this can help to 

have simple global load knowledge and is suitable with a small number of nodes. 

Distributed load balancing model can offer better scalability as this does not require 

communicating with a single master node containing the load balancer [2], But again the 

distributed load balancing model suffers from having a better load profile of the entire 

system. One of the attractive aspects of distributed model is that it increases locality. In 

the centralized load balancing model, it requires sending all-to-one profile send and 

followed by a one-to-all instruction. But in distributed load balancing model, it requires 

all-to-all or one-to-neighbor broadcasting. Considering the scalability problem, the 

distributed model outperforms the centralized model but for a small number of nodes, 

hence a centralized model can be more suitable.

2.4 Work sharing Vs true load balancing

In work sharing, when a processor creates new work, it makes an endeavor to migrate 

some of its work to other processors hoping that they are not heavily loaded as this 

processor. This is particularly suitable for fine grained (multithreaded) application. When 

they create new threads, they try to migrate some of newly created threads to other 

processors. In load sharing, two important components are: allocator and scheduler. The 

allocator is responsible for deciding where the job will be executing and the scheduler is 

responsible for deciding when a job will be getting its share of the CPU. There is more 

migration of processes or threads in work sharing compared to work stealing [7]. If all the 

processors are heavily loaded, there is always some migration by the work sharing 

scheduler.

In order to compare the two forms of load distribution, load balancing makes sure that 

each processor has almost the same amount of work load in order to increase the system 

utilization. Most of the time, load balancing is dependent on the accuracy of load

5
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profiling. Inaccuracy of load information may lead to worse performance. In preemptive 

migration schemes [56] of load balancing, the overhead related to the preemptive 

migration is considered for the profitability of performance gain as it reduce the mean 

delay (queuing and migration) by 35-50%, compared to non-preemptive migration. Load 

sharing on the other hand is weaker than load balancing and implemented with non 

preemptive migration of processes. As in load sharing policy, there is lag of global load 

knowledge. Load sharing does not ensure equal distribution of load but it is easier to 

implement and approaches the heterogeneity in a more convenient way.

2.5 Comparison between Synchronous and Asynchronous load 

balancing

Depending on the load-redistribution, dynamic load balancing can again be classified 

into synchronous and asynchronous model. In synchronous dynamic load balancing, the 

application needs to stop so that it can redistribute the workload among its processes and 

thereby reducing the imbalances; then the application can continue to execute at the end 

of synchronization. The total process of synchronization is performed in two steps. First, 

repartition of required data for each process and then migrate the newly repartitioned data 

to the destination processes. This approach is used by our strategy of load balancing 

adaptation.

In asynchronous load balancing, instead of stopping and synchronizing, processes 

continue to execute, and depending on work-sharing or work-stealing method, the lightly 

loaded processes communicate with heavily loaded processes for additional work. If both 

parties agree, they migrate the workload in an asynchronous manner. Asynchronous load 

balancing provides the opportunity of latency hiding by overlapping communication and 

computation.

6
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2.6 Related Work

There exist a few load balancing libraries that provide multiple approaches. Zoltan 

[12] library includes recursive coordinate bisection, recursive inertial bisection, 

refinement tree based partitioning, ParMETIS [18], Jostle and octree partitioning. It 

provides a generalized interface and data structure that the applications do not have to 

depend on but use them in the call back functions. ParMETIS [18], which is basically an 

extended version of METIS [19], provides an MPI (Message Passing Interface) based 

parallel library that implements a variety of algorithms for partitioning and repartitioning 

of unstructured graphs and meshes. A measurement based automatic load balancing 

framework is presented in [20]. Parallel applications are projected to this framework as 

collection of computing objects which communicate with each other. There is a load 

balancer database, which is responsible for coordinating load balancing activity and helps 

to form an object communication graph. Each processor collects a partial object- 

communication graph consisting of local objects. The load balancer strategy decides 

which object is to migrate for better performance and pass this information to the 

framework. In [21] introduces an approach of load balancing in distributed environment 

by means of thread migration. They worked on top of Chant, which is a distributed 

lightweight thread package for point-to-point communication between threads. They also 

proposed a layered load balancing approach where the bottom layer contains the load 

balancing routines. The middle layer contains the load balancing commands and the 

topmost layer does the actual load balancing function.

Flexible co-scheduling (FCS) [9] address the existing problems of gang scheduling 

and implicit co-scheduling. They address the fragmentation, load imbalance and the 

heterogeneity problem in particular. They come up with another parallel scheduling 

algorithm similar to the gang scheduling algorithm. In FCS, they classify the processes 

depending on their demand and behavior. Processes requiring gang scheduling are gang 

scheduled and the rest are used to fill out the fragmentation. The load imbalance and 

heterogeneity problem is solved with classification on per-process basis. The 

classification process is done after monitoring communication behavior and detection of

7
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possible load imbalance. [22] describes an approaches which is close to our approach. 

Their proposed and implemented system that uses a compile time analysis in order to 

capture the access pattern and make instrumentation to the code with calls to the runtime 

library. The runtime system uses these compile time information to facilitate partitioning 

of work depending on locality of data access and resource availability. The locality 

problem is equally important as load imbalance problem. Here the runtime library works 

as a bridge between the operating system and application, and monitor process activity in 

order to facilitate cooperative scheduling flexibility. They also perform runtime 

measurement and are able to correct workload allocation dynamically if  required. But 

their approach is not very specific about the application characteristics and co-scheduling 

affects.

EARTH [3] describes the design of nine dynamic load balancing algorithms focusing 

on the complexity that arises due to the fine granularity of multi-threaded execution 

environment. They also implement these algorithms on multithreaded multiprocessor 

test-bed and evaluate the performance. They cover a wide range of load balancing 

strategies. They also design a suite of stress tests for the analysis of the strengths and 

weakness of load balancers and they find that dynamic load balancer utilizing history 

information and employing both the work stealing and work sharing performs well in 

various kinds of applications. Performance varies significantly with the change of grain 

size. They also find other effects like polling interval, number of nodes, and 

communication topology on the performance of load balancer. Recent load balancing 

encompasses the resources beyond the typical computational resources. They include 

memory, network and I/O. The opportunity cost framework [23] optimizes CPU load and 

reduces the maximal utilization of CPU for those jobs that perform I/O and inter process 

communication. A job is assigned to a machine minimizing the sum of cost of resources, 

where each resource has a cost considering CPU load, memory available etc. In [24], 

memory-I/O-based policy is recommended which minimizes the page fault within the co­

scheduled jobs. In [25], they profiled an application (both communication and 

computational memory access) and machine, and predicted the performance after 

convolution of their profile. This application profile can be incorporated with adaptation 

approach to get the better performance.

8
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2.7 Malleable Jobs

Definition Space-Malleable: An application is space malleable if it is able to change 

the number of processes dynamically during its execution [11],

Definition Time-Malleable: An application is time malleable if it is able to adapt 

dynamically with varying time shares on different processors.

Definition Time-Moldable: An application is time moldable if it is able to run with 

different work load on different processors. The work load on each node is determined at 

the time of startup and remains constant during execution.

In our study we considered time malleable jobs while keeping the total number of 

processes of an application static. Putting more work load on a node than on others works 

when processor speed is different and workload is adjusted to keep the computation in 

synchrony. Due to different processor share, some processes can take more workload 

than other processes of the same application and computations that have loose or little 

dependencies. Besides, putting more computation on a node does not overly increase the 

communication with other nodes, but increase only marginally. For latency hiding, the 

application model needed is a coarse grain work pile that does not communicate 

frequently and does large communication at a time and can have relaxed dependencies.

9
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PI P2

Figure 1. Two application A & B on nodes PI & P2. A is a parallel application with 
mutual communication dependencies [14]

In figure 1, it is depicted that different time share can cause delay in computation due 

to the process dependencies as they don’t run in synchrony. Assuming that we have loose 

coordination with spin-blocking support, parallel application A on PI releases CPU when 

waiting for a message from A on P2 and spin-block time outs. This means switching cost 

includes the cache locality, which is infeasible for frequent short communication. 

Approaches like AMPI [15] or fine-grain multithreading, can solve this problem. In our 

case, we assume that the application supports load balancing at the application level, 

which is suitable for dynamic applications that needs load balancing anyway.

Definition Work Unit'. A work unit is a migratable description of a piece of work that 

is not yet in execution. Such work requires a functional code and data description. The 

functional description is a function or procedure, or a loop-slice. The data may be simple 

parameters or complex data structures. In the latter case, the description needs to include 

inter-node descriptions of the mapping. The definition of the work units permits a pre­

partitioning into work chunks as well as basic data structures.

10
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We support the following application types:

• Independent work units which do not communicate with each other and can easily 

be moved [10]. Load sharing is sufficient for such applications.

• Work units with restricted dependencies with direction from potentially moved 

unit (like tree structures). Load sharing is sufficient for such application as well.

• Computations with work and communication being separated and the 

dependencies being described in graph structures. Load balancing is required for 

such applications.

In the later case, computations can still be kept in synchrony for potential frequent 

communication. Though the mapping of the graph structures need to be updated if 

moving work units are done in all graph-based load balancing.

3. Zoltan

Real world applications can be represented as a graph, where the vertices of a graph 

represent the computation of application and the edge between two vertices represents the 

communication between them. In parallel applications, we distribute their processes 

among different processor so that they can compute in parallel. This kind of parallel 

application is also represented by partitioned graph, where each partition vertices 

represent the total computation of a process and the edge cuts or edges between two 

neighbor partitions represent the communication between two processes. While 

representing the application with graph partitions, we always like to keep the edge cuts 

minimized so that the communication between two processes remains minimized. During 

repartitioning we want to minimize the edge cuts for the same reason, and we also like to 

keep the new partition more likely to the old ones, so that less number of vertices would 

require migrating minimizing the migration cost. ATOP [11] used Zoltan for their 

partition and migration work. Our work is implemented as an extension of ATOP and we 

used Zoltan for the similar reason.

11
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3.1 Zoltan Overview

Zoltan is a dynamic load balancing library with object oriented interface that allows 

user to use it with parallel application and call the various load balancing algorithm that 

comes with it [12]. It provides flexible data management services to parallel applications. 

Unstructured and adaptive parallel applications can use the following utilities:

• Dynamic load balancing and parallel partitioning tool that helps to distribute data 

over processors.

• Data migration tools.

• Distributed data directories.

• Unstructured communication package.

• Dynamic memory management package.

Zoltan has object based callback function design. Application can provide the 

required callback function that access the application data structure. Callback functions 

are registered in zoltan by passing a pointer to the function. The most interesting feature 

that comes with zoltan is that application don’t have to be zoltan data structure dependent 

and it can be used almost every kind of operating system. Following are important zoltan 

query functions:

QUERY FUNCTIONS 

ZOLTAN_NUM_OBJ_FN

ZOLT AN_OB J_LIST_FN

ZOLTAN_FIRST_OBJ_FN & 
ZOLTAN NEXT OBJ FN

ZOLTAN_PARTITION_MULTI_FN 
or ZOLTAN_PARTITION_FN

z o l t a n _n u m _ e d g e s _ m u l t i_ f n
or ZOLTAN_NUM_EDGES_FN

ZOLTAN_EDGE_LIST_MULTI_FN 
or ZOLTAN_EDGE_LIST FN

RETURNED INFORMATION

Query function returns the number o f objects that are 
currently assigned to the processor.

Objects list currently assigned to the processor

First object returns the global and local IDs o f the first object 
on the processor and next returns the next object assigned to 
the processor.

Returns a list o f partitions to which given objects are 
currently assigned.

Returns the number o f edges in the communication graph of 
the application for each object in a list o f objects.

Returns lists o f  global IDs, processor IDs, and optionally 
edge weights for objects sharing edges with objects specified 
in the global_ids input array.

ZOLTAN OBJ SIZE FN Returns the size o f the buffer needed to pack a single object.

12
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ZOLT AN_P ACK_OB J_FN

ZOLT AN_UNP ACK_OB J_FN

To tell Zoltan how to copy all needed data for a given object 
into a communication buffer.

To tell Zoltan how to copy all needed data for a given object 
from a communication buffer into the application's data 
structure.

ZOLTAN_PRE_MIGRATE_PP_FN To perform any pre-processing desired by application.

ZOLTAN_POST_MIGRATE_PP_FN To perform any post-processing desired by application.

Table 1. Important query functions o f Zoltan (Source: 
http://www.cs.sandia.gov/Zoltan/Zoltan.html)

ZOLTAN’S OPERATIONS

Zoltan Initialize

Zoltan Create

Zoltan_Set_Param
Zoltan_Set_Param_Vec

Zoltan_Set_Fn
Zoltan_Set_<zoltan_fn_type>_Fn

Zoltan LB Free Part

SEMANTICS OF OPERATION 
This function initializes MPI for Zoltan.

This function allocates memory for storage of 
information to be used by Zoltan and sets the 
default values for the information.

Modifies the values o f  any parameter used in 
Zoltan. Only one parameter can be changed in 
each time.

It registers an application-supplied query 
function in the Zoltan structure.

Frees the memory allocated by the Zoltan to 
return the results o f Zoltan_LB_Partition or 
Zoltan_Invert Lists.

Zoltan_Destroy

Zoltan_LB _Set_Part_Sizes

Zoltan LB Partition

Zoltan_Migrate

Frees the memory associated with a Zoltan 
structure and sets the structure to NULL in C.

specifies the desired relative partition sizes; 
equal by default; for some ParMetis 
algorithms, the partition size cannot be set as 
empty.

Invokes the real load-balancing routine that 
was specified using Zoltan_Set_Param 
function with the LB_METHOD parameter.

Performs the real migration for Zoltan; selects 
object lists to be sent to other processors, along 
with the destinations o f these objects, and 
performs the operations necessary to send the 
data associated with those objects to their 
destinations.

Table 2. Basic Zoltan operations (Source: http://www.cs.sandia.gov/Zoltan/Zoltan.html)
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3.2 Over-partitioning for Time Adaptation

In our approach we used over-partitioning which is described in [11]. In traditional 

partitioning strategy we create data partition equal to the number of processor allocated 

for an application or equal to the total process number of a job. But in over-partitioning 

we create more data partition than the number of processes so that processes are allowed 

to have more than one partition, so that during resource adaptation we can migrate 

required partition to other processes instead of migrating individual vertices reducing the 

repartition cost. For example, we can create 128 partitions for 8 processes. We directly 

used the existing over partitioning strategy [11] in our load balancing adaptation 

framework library. Partitions are delivered from Zoltan sequentially maintaining the 

neighbor relation of partitions so that edge cuts can be reduced after adaptation thereby 

minimizing the after adaptation inter-process communication. In our test cases, we 

always created 128 number of partitions for over-partition.

3.3 Partitioning from Scratch

Zoltan provides a variety of graph partitioning algorithm. We used one of the popular 

graph partitioning algorithm K-way graph partitioning algorithm [17] from Zoltan. In this 

algorithm, a graph is partitioned in three consecutive steps. (1) Graph coarsening phase 

(2) Initial partitioning and (3) Graph un-coarsening phase. In the graph coarsening phase, 

they coarsen the initial graph multiple times in order to get the possible coarsest graph, so 

that it is much easier and less expensive to partition the coarsest graph instead of 

partitioning the original graph. In the initial partitioning phase, the coarsest graph is fed 

into the Kemighan-Lin partitioning algorithm to get the initial partition. Once the 

partition is done, they un-coarsen the graph, which is the reverse process of the first 

phase. This is how they get back the original graph, but partitioned at the end. The 

following figure depict the three phases of k-way partition algorithm. During the 

coarsening phase, the initial graph is successively decreased and in the initial partitioning 

phase a 6-way partition is done here. At the end the graph is successively refined and 

projected back to the larger graph.

14
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Multilevel k-way parti tion ing

Initial Partitioning Phase 

Figure 2. Phases o f  multilevel k-way partitioning algorithm. Source [16]

4. Our Approach

Load balancing adaptation can be initiated by following conditions:

• Job scheduler notices job completion or departure among co-scheduled jobs.

• Job scheduler notices new job start or initiation among co-scheduled jobs.

• Unknown resource usage due to the dynamism in program behavior.

• Inaccurate prediction noticed due to heterogeneous resources or slowdown affect.
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Note that this load balancing initiation can be triggered by job scheduler (first two 

conditions) and workload monitoring information system (last two conditions). The 

adaptation always applies to groups of processes running on groups of processors which 

are groups of hardware nodes.

A A

R C

n E

F.

A

Figure 3. Different multiprogramming levels and different co-scheduled application for  
the application A and E on different subsets o f nodes on a cluster [14].

4.1 The Dynamic Directory

The dynamic directory keeps information about all the scheduled and running jobs in 

the system. This version of dynamic directory is described in [8]. It stores the following 

updated informations:

• Owner or user

• Remote request yes/no, single site/ cross-site request

• Requested share and runtime estimate

• Communication pattern

• Communication frequency

• Memory, I/O and other requirements

16
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This dynamic directory can keep information about running application and their 

workload on each process. We also assume that this dynamic directory maintains 

information per user (permitted resource usage, left over usage, maximum runtime, and 

performance information from previous runs). In our implementation concept, this 

dynamic directory links between the operating system scheduler and adaptation controller 

so that it is possible to combine the system and application information is the adaptation 

method. However for simplicity, instead of linking with operating system scheduler, we 

implemented our own simulated scheduler with a script provided that we know the 

sequences of job and their arrival interval. And our dynamic directory gets the 

information about scheduling of jobs through the adaptation library, not from the 

operating system library (though that is the original concept).
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4.2 General overview of our approach

We assume that we have N nodes, that each node is uni-processor, and that the set of 

nodes that were assigned for a certain job is Snew- Work type can be ARRIVAL or 

COMPLETION. Assuming that we have M applications running on the system, we have 

M node sets Sj for application j  e M  .

Algorithm to find out the affected jobs due to ARRIVAL or COMPLETION: 

fo r ( j  = l ; j< M - , j  + +)
BEGIN
i f  (“ 1 ((Sj n  Snew = 0 ) v  (Sj c  Snew )or(Adapt _  time > exec _  time _  left + S)))

Send_to_j(work_type,S j n S new)

END

We assume that the required information for the possible adaptation is sent to all 

processes of an application. This information is sent through the socket communication to 

the master process and then the master process broadcast this information to the rest of 

processes of that application through MPI communicator, so that it is possible to make 

the adaptation cheaper. Usually job scheduler are independent of any communication 

system used and do not require a job to be malleable. In our case we have a load- 

adaptation controller per job that communicates and initiates any possible load- 

adaptation. But this load-adaptation controller is not directly any part of the job scheduler 

so that job scheduler remains independent of the adaptation work. But the job scheduler 

puts all the scheduling decision and terminating information to the dynamic directory. 

The load-adaptation controller can access updated information from the dynamic 

directory for possible adaptation. In our approach, we decoupled the job scheduler and 

dynamic directory, so that the job scheduler remains independent of application 

adaptation. Dynamic directory ensures the consistency of the system information by 

storing job information, machine information and updated resource allocation among 

scheduled jobs.

18
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For resource based reasons for adaptation, we assume that we can measure progress 

of an application with a monitor. It is important to measure the progress of an application 

relating the processing of workload. We can do this either by relating to absolute time 

estimates and determining how much percentage the time estimation was wrong. Another 

way is to measure the relative progress, which is more feasible as this does not require 

exact estimate. Another important thing is to find out about how much percentage longer 

an application runs on one computer than another. The two possible ways are:

• Use a fixed time interval and determine the progress in workload processing

• Use a fixed amount of work and determine after which time this amount of 

workload is processed.

The latter can be done with simple time stamps and is easier to implement where as 

the former would require expensive timer interrupt. We assume that information is 

collected at the load-adaptation controller and scalability can be ensured by either 

collective communication or by using representative process from each co-scheduled 

group reporting to the load-adaptation controller.

This approach applies to all possible types of applications. We can set a certain 

number of work units as the fixed amount of work and then determine the time after 

which they are processed. In iterative processing, this could be one or multiple passes 

over all the local units.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Submitj ob( &j characteristics j  
Allocate_job(j,Sj) 
Deallocatejob(j) 

Delete_job(j ■

Info_about_allocation_change(ch 
ange_type, new, Snew) 

Get_j ob_characteristics(j ,&charac 
teristics_j 

Get_machine_info(&info

Monitor

Job Scheduler

Dynamic Directory

Get_machine_info(&info) 
Get_job_characteristics(j,&chara_jj) 
Info_about_load/estimate_change(&info) 
Put load/estimate(mfo) ,

Estimator

Put_load/estimate_change(info)

Job-adaptation
controller

Adaptation_info(new_weight_
vector) Relative_progress(progress_info)

Application

Figure 5. Architecture o f Our Approach

After each allocation of a new job or de-allocation of a completed job, changes are 

made to the dynamic directory and inform the job-adaptation controller. Then the job 

adaptation controller sends information to the representative processes of each affected 

job about the possible load adaptation through the communication socket. The 

representative process of a job broadcasts this information to the rest of the processes of 

that job, so that they can initiate load balancing after evaluating the feasibility and 

necessary migration calculation. Load information is updated to the job scheduler and 

dynamic directory by job adaptation controller after each adaptation.

Job runtime is estimated based on machine information and job characteristics at the 

beginning of job execution and this estimation is corrected by putting progress 

checkpoint on application process (after a fixed amount of work) and required time to 

execute that far. This progress is reported back to the each adaptation controller by its 

respective job. Depending on this progress report, adaptation controller may change the
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estimation (by estimator) and suggest for possible load balancing to the representative 

process of that job if (a) unequal relative progress (b) error in estimation is found.

Definition Balance'. Nodes are balanced if they are allocated a relative workload that 

will be processed within the same amount of time. The relative workload is determined 

by the application’s computational tasks, the machine’s share and the machine’s 

processing power.

Definition Share: Machine share st is the resources of a machine that are being used 

by an application. If an application takes 50% of resources of a machine, then the 

machine share of that application is 0.5.

Definition Partition weight: Partition weight (w;) is the amount of task of an 

application that has been assigned to a processor. If we represent the application in a 

graph, then partition weight is the total weight of vertices of one partition.

Definition Relative Progress: Relative progress (wprocesed/wi) can be defined as the 

proportion of total number of vertices that has been computed or processed (wprocessed) in 

one partition of an application with the total partition weight (w,j.

Definition Machine Weight Factor: Machine weight factor (f) expresses the relative 

speed of one machine compared to the base machine (probably the slowest machine of 

the system).

In the case of adaptation, we calculate the new weight in the following way:

Calculation o f new Partition weight: Let us assume that we have a weight vector <wj, 

W2, W3...wm> and a share vector <sj, S2, S3...sm> for an application running on m 

processors where wt is the partition weight of zth partition and Si is the machine share of
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the same application for that partition. If the total application weight is W and the total 

machine share is S, then we have

W /+ W 2 +  W 3  +  . . . + W m= W

and

S ,  * f]  + S 2  * f2 + S 3  */} +  •.. + S m % = S

W h e r e  f t  is the machine weight factor of machine i.

After adaptation the new share vector become < s\,s'2,sr ..s'm > and the new total share 

becomes

s[*fi  + s'2* f 2 +s'i *f^ + ...+sm* f m = S'

Then, the new partition weight becomes

wi = w i * ( s / s ' ) *  (s] /  5, . ) * ( / ' /

and

wj + w2 + wj +... + wm = W

The new weight that we found is good for non Hyperthreaded (HT) processor. But in 

HT processor, two threads can logically execute concurrently, virtually doubling the 

processing power. Since we did our test in HT Xeon processors, we need to find the new 

HT weight of a processors. We used a factor {1/fm) to convert the new weight vector to 

the new HT weight vector.

tA=dedicated execution time of an application A 

n=number of processes running on a processor

t’A=execution time o f application A on a processor in time shared manner 

tA,=n*tA (in a not HT processor) 

tA,=n*tA*/kT(A,B) (fm  is the HT factor)

Then we have:

HT factored new weight
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4.3 Implementation

In this section we are going to explain how we implemented different components 

like simulated job scheduler, controller and adaptation library in our load balancing 

adaptation framework.

4.3.1 Job Scheduler

For our experiment we needed to establish the coordination between the job scheduler 

and the dynamic directory. Instead of playing around with the job scheduler of our 

cluster, we created our simulated job scheduler with a shell script file where we put our 

preplanned sequence of jobs and their arrival delays. Following is an example of such 

simulated job scheduler.

/home/arefeen/testl 2/DD&
/home/arefeen/testl2/controller0&
mpirun -np 4 -machinefile machineO /home/arefeen/testl2/application0& 
sleep 150
/home/arefeen/testl 2/controller 1&
mpirun -np 4 -machinefile machine 1 /home/arefeen/testl2/applicationl &

Figure 6. Example o f a simulated job scheduler script

In this example, the first line schedules the dynamic directory and at the same time 

schedules controller!) and applicationO. Controller!) had direct socket communication 

channel with the dynamic directory and applicationO has indirect communication with the 

scheduler through its controller (controllerO). Then we wait 150 seconds and schedule 

application 1 and controller for that. But while we execute our test with such simulated 

job scheduler script, we need to make sure that no other user is logged in and running 

their application on the cluster. Otherwise our test results might be incorrect.
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4.3.2 Dynamic Directory

The basic Dynamic Directory idea is adopted from [8] and it is explained earlier in 

section 4.1. In our implementation we created our dynamic directory with a multi­

threaded socket server. Each thread from different application through controller can 

operate on the dynamic directory data. Threads are synchronized with pthread_mutex. 

Pthread condition variable was used to signal the waiting thread after arrival or departure 

of an application (after creation or termination of a thread). Dynamic directory is 

connected to every adaptation controller through socket from different threads as long as 

the application continues to execute.

4.3.3 Controller

In our implementation of adaptation controller, we created adaptation controller per 

application instead of creating single adaptation controller for all applications. So that it 

is possible to keep our controller simpler. Each adaptation controller has two socket 

communications. One with the dynamic directory and other with the application. The 

controller is connected to the application with a listener thread from the representative 

process (usually process 0).

Process n
Process 1

Process 0 of an 
Application

Representive
process

Dynamic
Direcotry

Listener 
Thread of 
An
Application 
In process 0

Adaptation
Controller

Figure 7. Adaptation controller communication with dynamic directory and listener
thread o f an application.
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4.3.4 Adaptation Library

In our adaptation library we used the over-partitioning algorithm and migration from 

ATOP [11]. We did not use the space adaptation though it is equally important, we only 

focused on time adaptation. Unlike [11], we used dynamic weight vector for our 

application processes. We provided the following methods in our adaptation library to be 

used by MPI application.

Method Description

set_policy() This method defines whether to use over partition or 

partition from scratch.

OP_init() This is to initialize the over partition at the 

beginning.

OP_adapt() Adaptation using overpartitioning and then migrate, 

depending on the new weight vector.

M y_weight() This method returns the related updated weight for 

each process.

m y_flag() Thie method returns the Boolean value whether to 

adapt or not, depending on whether or not the 

listener thread received any new weight vector for 

the application processes.

ZP_adapt() This method does the adaptation using the zoltan 

partition (partitioning from scratch) and then 

migrate.

set_communicator() This method copy the application communicator to 

the library and also creates the listener thread at the 

beginning o f application.

Register_Environment() This method register the query functions (both 

partition and migration) for Zoltan and sets the 

parameters

sys_finalize() This method finalize the zoltan and terminates the 

communication with controller and thereby dynamic 

directory.

Table 3. Methods o f our Adaptation library
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Following is a general example of a parallel application using our adaptation library

Set_communicator()
Register_Environment()
W h ile  (iteration<limit)//iteration for the application 

{
//Computation for parallel application 
compute()

//Communication for parallel application

send()
receive()

if  ((iteration % syn_num)==0) //syn_number if the frequency to check for adaptation 

{
try_adapt()

}
}
sys_finalize()

Figure 8. Example o f application using our adaptation library

4.4 Adaptation Cost Model

The cost of adaptation can be split into two parts. One is adaptation cost of 

application Capp which includes the partition and migration cost and the other one is 

system overhead Csys that includes the monitoring cost and load information acquiring 

cost.
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Our framework support both zoltan partition and over partition. Application programmer 

can decide which method to use. For zoltan partition:

C,„,7=Initiate the adaptation by the representative process including the broadcast to all

processes, communication with the adaptation-controller

CZoitan_mig= Migration cost for zoltan

Czoitan_par= Partition/Repartition cost for zoltan

C 0ver_mig= Migration cost with overpartition

Cover_par~ Partition/Repartition cost with overpartition

Cadapt_app_zoitan=Adaptation cost for the application using zoltan partition and migration 

Cadapt_ppp_over=-Adaptation cost for the application using over partition and migration

Cadapt_app_zoltan~ C init+  Czofran_par+ C zoltan_mig 

Cadapt_app_over~ C 0Ver_j>ar+ C 0ver_mig

The cost model in [11] explains that it is suitable to use over partitioning when time 

saved due to the overpatition is greater than the application communication cost caused 

by more edge cuts after adaptation. In our framework the application programmer has the 

freedom to choose from Cadapt_app_zoitan and Cadapt_app_ove/. from the library, so that the 

application can be adapted more efficiently.

Capp M I N ( C adapt_app_zoltan •> C adapt_app_over)

The system cost Csys will include the communication between the scheduler and dynamic 

directory and the communication between dynamic directory and adaptation controller 

per job. So the total adaptation cost will be:

Clolai =Csys+Capp, which will be dominated by the application Capp part.

X= Speed up due to adaptation

r=time to complete execution without adaptation

Tcomp=MAX(TCOmp,i- i<=m) , remaining computation time without adaptation that takes to 

process all the vertices of a partition. Note that this Tcomp will be determined by the
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longest computation time (of ith partition) of m processes where m is the total number of 

processes of a job.

TComm= ^  Emts , communication time without adaptation, which is the total edge cuts

with neighboring partitions.

Thus we have,

T=Tcomp+Tcomm

7”=time to complete execution with adaptation

T ’comp=M A X (T ’comp,i' i<-m) , remaining computation time after adaptation that takes to 

process all the vertices of a partition. T ’comp will also be determined by the longest 

computation time (of ith partition) of m processes where m is the total number of 

processes of a job.

T ’comm- ^  E  'ails ,communication time after adaptation, which is the total edge cuts with

neighboring partitions. E ’cuts is the new edge cuts after adaptation (partition and 

migration)

Then, T ’= T  comp T command the speed up due to the adaptation will beX=T-T’.

The adaptation will be meaningful if the X ,speed up due to adaptation becomes greater 

than C totai, the total adaptation cost. We found the speed up time in second for X, and we 

can also present this speed up in percentage like below:

Percentage of speed up= (T -T )/T *100%

4.5 Test Plan

4.5.1 Test Environment

We are going to execute our tests on our AlphaMeta lab’s Hourus IBM cluster. This 

cluster has 16 nodes (enodel-enodel6), each containing dual Intel Xeon processor with 

512 Mbytes of memory. The first 14 nodes (enodel-enodel4) have CPU speed of 2.0 

GHz and the last two nodes have CPU with 2.4 GHz. This provides us somewhat
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heterogeneous test platform. The frontend node (emaster) has 4 Intel Pentium III Xeon 

processor with 700 MHz speed with 1Mbyte L2 cache. All these nodes are connected 

through Myrinet interconnect. Operating system running on all nodes is Debian Linux 

with kernel version 2.6.6 and we used MPICH-GM 1.2.5.12 (an implementation of MPI 

over GM) over GM (low level message passing system for Myrinet network). Our 

framework used MPICH-GM 1.2.5.12, Zoltan 1.52 and ParMETIS 3.1.

4.5.2 Test Application

Real word applications are represented with graph while the vertices represent the 

computation of an application and the edges represents the communication between two 

vertices. In our case, we represented an application with benchmark graphs from the 

University of Greenwich Graph Partitioning Archive [13]. This graph archive was used in 

[11]. We used the Chaco file input format, where the first line contains the integer value 

of total vertices or nodes N  and total number of edges E. Then the following N lines 

represent the neighborhood relation of corresponding vertex. An example is given below:

6 9

2 6

1 3 4

2 4 6

1 2 3  5

4 6

1 5

Figure 9. Chaco graph input file format 

In this file there are 6 vertices and 9 edges, where vertex 1 is adjacent to 2 and 6, vertex 2 

is adjacent to 1, 3 and 4 and so on. We represented an application in a reverse direction. 

We first selected the graph and created our application based on the graph pattern. We 

used the following graph for our applications.
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Graph Total number of 

Vertices in graph

Total number of Edges 

in graph

Description

t60k 60005 89440 Not available

wing 62032 121544 3D finite element mesh

brack2 62631 366559 3D finite element mesh

Table 4. Different Graph for our test applications

We selected these 3 graphs due to their differences in their edge number. All of the 

graphs have almost same number of vertices but they have different number of edges. 

This graph constitutes the application skeleton. This represents the applications with 

different computation and communication pattern.

For our test purpose we used these graphs as the basic skeleton of our application that 

defines the computation and communication pattern. Each process of our parallel 

application has a boundary array (updated_value[]) that contains the data of the adjacent 

nodes that are located in the neighbor processes. For example in the following figure, 

process 1 (partition 1) has a boundary array that keeps the data of the adjacent nodes that 

are in partition 2, 3, 4 and 5. In every iteration it does the computation, then sends the 

computed updated value of that boundary array to the adjacent processes and then receive 

the updated values from the adjacent processes (partitions). This sequence of computation 

and communication iterates until the maximum iteration limit is reached. At the end of 

certain number of iterations, the application synchronizes and checks if the controller 

advised for adaptation. The computation in our application is pretty simple; each node 

calculates the average value of all the adjacent nodes including its own value. At the end 

of this computation, processes exchange the values in the boundary array with the 

neighbor partitions that are other processes. Here we used the word process and partition 

in the sense that a process represents one or more partitions. We also presented our jobs 

with certain percentage of computation and the remaining percentage of communication. 

Application iteration number is 90000 except the test case where we expand and shrink 

the overlapped processes. So we can get the computation time of each iteration.
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Partition 2
Partition 5

Partition 1

Partition 3
Partition 4

Figure 10. Example o f  application structure.

Our test application does not represent all kinds of parallel application. We wanted to 

test our time adaptation framework with a test application, which is built on graphs taken 

from real applications. In our test application, we assumed that application can or able to 

adapt after completion of an iteration. But in reality, this might not be possible for 

complex structured application, where iteration is not just a sequence of computation and 

communication. One important limitation of our test application is that it takes certain 

amount of time for start-up. Since our application is built on graphs, we need to partition 

the graph and distribute over the processes of an application. Once the graph or partition 

of graph is distributed over processes, application can start working. In our cases, this 

start-up time takes 200 (on dedicated processors) to 400 (on time shared processor) 

seconds. In our application we also used some dummy block of computation that 

computes on double data type so that we can change the granularity of our application.
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4.5.3 Test Cases

• For all sets of application we will take the application runtime in the dedicated 

set of processors (while no other application is running on these processors), 

application runtime in timeshared environment without adaptation while the 

processes of an application is overlapped with another applications processes, 

and application runtime in timeshared environment with adaptation using our 

load balancing adaptation framework (using both over-partition and partition 

from scratch) providing the similar kind of timesharing overlap. Finally we 

compare all these three different kind of runtimes. This test is to evaluate the 

performance of our adaptation framework, and to get the slowdown factor for 

this particular pair of application.

Compare the speed up of our adaptation framework while imposing different 

overlap of application. The following figure explains this test. We have 

application 1 scheduled at time t2 on set of processors 1 to 8. Application2 gets 

scheduled at time t3 on set of processors 4 to 11. In this test, we will compare the 

different speed up of an application using our adaptation framework, changing the 

overlapped set of processors (in this example processor 5-8) while the application 

space does not change over time.

Space
tl

t2

t3

t4

t5

1 2 3 4 5 6 7 8
^  Application 1

4 5 6 7 8 9 10 11
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Figure 11. Test case 2, adaptation in different number o f  processor

In this test, we will change the number of processes overlapped with another 

application while keeping the application processes constant. By changing the 

overlapped set of processor we can evaluate the performance of our adaptation 

framework in different sets of under-loaded and over-loaded of processes.

•  Unlike the previous test, in this test, we will change the number of processes (0, 4, 

8, 16) of one application in different test run (not during the application run). This 

test is to evaluate the scalability of our adaptation framework. Here we will 

change the application process numbers and their overlapped processes number as 

well. Finally we will compare the different speed up with different process 

number of an application.

4.6 Test Results

In order to examine the performance of our adaptation frame work, we present the 

dedicated execution time of application of different granularity and we present the 

adapted execution time (both using over-partition and partition from scratch). While 

calculating the HT factor for weight vector as mentioned at the end of section 4.2, we 

collected the dedicated execution time of certain number of iteration and then shared 

execution time of same number of iteration. But in some cases we found that HT factor is 

little different for each of the application of application pair. In those cases we simply 

used the average of the two HT factor value for that application pair. The following table 

presents this execution time for application wing with 65 % computation and t60k with 

85% computation. All these times are taken by using MPI_Wtime(), which return time in 

seconds. Both applications are run on 8 processors and adaptations are done while 

imposing 4 processes overlapped. Here wing adapts at the arrival of t60k and again at the 

termination of t60k. t60k starts execution with adapted weight vector, but does not adapt 

during runtime. All execution or run times are calculated after the startup time of 

application, i.e. excluding the start-up time.
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Application Dedicated

Runtime

(sec)

Runtime

Without

Adaptation
(sec)

Adapted 
Runtime with 
Over­
partition 
(sec)

Speed up 

(OP)

Adapted 
Runtime with 
partition 
from scratch 
(sec)

Speed up 

(ZP)

Wing, 8P, 

65%
computation

822.6 1067.0 982.8 7.89%
84.2
sec

1005.9 5.73%
61.1
sec

T60k, 8P, 

85%
computation

385.4 635.0 593.0 6.61%
42.0
sec

598.4 5.76%
36.5
sec

fHT=1.17 OP_Adapt costl=1.004 ZP_Adapt costl=13.194

Table 5. Adapted runtime Vs non-Adapted runtime, for wing and t60k, both with 8 
processes and 4 processes overlapped

When we plot the gain achieved by adaptation using both over-partition (OP) and 

partition from scratch (ZP), we find the following figure. It is clear here that the 

adaptation is more expensive using partition from scratch than using over-partition. 

However, in this particular case, we used our HT factor fm=1.17. Here the second 

application (t60k) started 240 seconds after the start of wing. We could not have started 

t60k first, because in that case, by the time wing started after completion of its start up

84.226

61.149

42.014 36.592

l Over partition 

j a  K-way partition

wing t60k

Graph

Figure 12. Comparison o f adaptation gain using Over-partition and partition from  
scratch (wing 65% comp and t60k 85% comp).
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time, t60k would have terminated. The adaptation cost using over partition is more than a 

second, while the speed up gained is 84.2 seconds more for wing and 42 seconds more 

for t60k. We noticed here that the speed up gained using both methods for t60k is almost 

same, because the second application did not adapt during its execution. It started with its 

adapted weight vector and completed before the completion of wing.

The following table presents the adapted execution time for application brack2 with 

91% computation and application t60k with 85% computation. Both applications are run 

on 8 processors with 4 processor overlapped. The arrival delay between these two 

applications is 252 seconds, when brack2 starts first. Brack2 adapts at the arrival of t60k 

and again at the termination of t60k.

Application Dedicated

Runtime

Runtime

Without

adaptation

Adapted 
Runtime 
with Over­
partition

Speed up 

(OP)

Adapted 
Runtime 
with 
partition 
from scratch

Speed up 

(ZP)

Brack2, 8P, 

91%
computation

608.4 987.4 822.7 16.7%
164.6
sec

851.7 13.7%
135.7
sec

T60k, 8P, 

85%
computation

384.6 612.9 503.0 17.9%
109.8
sec

522.5 14.7%
90.3
sec

l/ftn—1-15 OP_Adapt cost= 1.178 ZP_Adapt cost=14.558

Table 6. Adapted runtime Vs non-Adapted runtime, fo r  brack2 and t60k, both with 8 
processes and 4 processes overlapped

When we plot this execution time, we get the following speed up gain for the two 

applications using over partition (OP) and partition from scratch (ZP). For this particular 

case, over partition cost is about 12 times less expensive than partition from scratch. For 

the very same reason like previous case, we scheduled t60k after 252 seconds of brack2 

schedule time. The HT factor that we used here for overlapped processes is l / f H T = 1 . 1 5 .
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■  Over partition 

□  K-way partition

brack2 t60k

Graph

Figure 13. Comparison o f adaptation gain using Over-partition and partition from  
scratch (brack2 91% comp and t60k 85% comp).

The following table presents the adapted execution time for application brack2 with 

91% computation and application wing with 65% computation. Both applications are run 

on 8 processors with 4 processor overlapped. The arrival delay between these two 

applications is 252 seconds, when brack2 starts first. brack2 adapts at the arrival of wing 

and again at the termination of wing.

Application Dedicated

Runtime

Runtime

Without

adaptation

Adapted 
Runtime 
with Over­
partition

Speed up 

(OP)

Adapted 
Runtime 
with 
partition 
from scratch

Speed up 

(ZP)

brack2, 8P, 

91%
computation

609.7 971.7 898.3 7.5% 
73.3 sec

926.019 4.6% 
45.6 sec

wing, 8P, 

65%
computation

831.8 1052.3 949.0 9.8% 
103.2 sec

981.163 6.7% 
71.1 sec

1 /  f*HT— 1 -1 OP_Adapt costl=1.0823 ZP_Adapt costl= 16.762

Table 7. Adapted runtime Vs non-Adapted runtime, for brack2 and wing, both with 8
processes and 4 processes overlapped
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We get the following figure after plotting these execution times and we found the 

adaptation using partition from scratch is more expensive than the adaptation using over 

partition.

180

103.267

73.327 7-1.182

457693

■  Over partition

■  K-way partition

brack2 wing

Graph

Figure 14. Comparison o f adaptation gain using Over-partition and partition from  
scratch (brack.2 91% comp and wing 65% comp).

It is noticed that for all three tests, we found partition from scratch is more expensive 

than over partition. This may not be true for every kind of application. The three test 

graphs that we considered indicate that adaptation using partition from scratch is more 

expensive than the adaptation using over-partition. However, these test results indicate 

that adaptation is meaningful, as the adaptation gain is greater than the adaptation cost. 

But if the application runs for a very short period of time, then adaptation might not be 

meaningful. We found that computation intensive applications can be benefited more 

than communication intensive applications.
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In the following test we vary the overlapped processes (0,2,4,8). Both of the 

applications we used have 8 processes each. Note that there is no adaptation when the 

overlapped process is either 0 or 8, because in those situations there is no relative change 

of share among the processes of an application. In other situations (overlap 2 & 4) wing 

adapts at the arrival of t60k and t60k adapts at the termination of wing. The following 

results are found when we perform this test between the application with wing (with 65% 

computation) and t60k (with 85% computation). The HT factor we found is l / f H T = 1 . 1 7 .

Application
1

Application
2

Overlapped
process
number

‘t i
NA

*T2
NA

jT i
Adapted

4T2
Adapted

Npeed 
up 1

8Speed 
up 2

4C1 6C2

Wing
8 processes 
(65%)

T60k
8 processes 
(85%) 
arrival 
delay 240 
sec

8 1283.7 715.7 1283.7 715.7 0.0% 0.0% 0.0 0.0

4 1067.0 635.0 982.8 593.0 7.9% 6.6% 1.056 0.538

2 955.1 582.4 876.8 513.5 8.2% 11.8% 0.449 0.469

0 822.6 385.4 822.6 385.4 0.0% 0.0% 0.0 0.0

Table 8. Adapted runtime with varying overlapped processes (wing 65% comp and t60k
85% computation)

1. execution time (seconds) of application 1 without adaptation.
2. execution time (seconds) of application 2 without adaptation.
3. adapted execution time (seconds) of application 1 using over partition.
4. adapted execution time (seconds) of application 2 using over partition.
5. adaptation cost (seconds) incurred in application 1.
6. adaptation cost (seconds) incurred in application 2.
7. speed up achieved by application 1 after adaptation using over-partition.
8. speed up achieved by application 2 after adaptation using over-partition.

We found the figure 15 and 16, when we plot the adapted execution time with varying 

overlapped processes and non-adapted execution time with the varying overlapped 

processes. It is found that adaptation cost of wing for 4 processes overlapped is about 

2.35 times than that of 2 processes, i.e. adaptation cost is less for less number of 

overlapped processes. However, for both of the application in this test achieved 

significant speed up by adaptation. Though it is not quite clear why the following two 

graphs have different shape. This could be due to the difference in their granularity.
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Figure 15. Adapted (OP) runtime Vs non-adapted runtime for wing (65% computation) 
while varying number o f overlapped processes with t60k (85% computation)
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Figure 16. Adapted (OP) runtime Vs non-adapted runtime fo r  t60k (85% computation) 
while varying number o f overlapped processes with wing(65% computation)
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The following results are found when we perform this test between the application 

with brack2 (with 91% computation) and t60k (with 85% computation) while varying the 

overlapped number of processes. The HT factor we found is l/fHT= l-15 and total process 

of both of the application are 8. In 4 overlapped processes case, brack2 adapts at the 

arrival and completion of t60k. But in 2 overlapped processes case, brack2 adapts at the 

arrival of t60k and t60k adapts at the completion of brack2.

Application
1

Application
2

Overlapped
process
number

*T1
NA

2T2
NA

sT1

Adapted
4T2
Adapted

;Speed 
up 1

8Speed 
up 2

5C1 6C2

Brack2 
8 processes 
(91%)

T60k
8 processes 
(85%) 
arrival 
delay 
252 sec

8 1048.6 691.6 1048.6 691.6 0.0% 0.0% 0.0 0.0

4 987.4 612.9 822.7 503.0 16.7% 17.8% 1.821
0.627

2 879.5 569.9 738.6 457.2 16.0% 19.6% 0.434 0.449

0 608.4 384.6 608.4 384.6 0.0% 0.0% 0.0 0.0

Table 9. Adapted runtime with varying overlapped processes (brack2 91% comp and t60k
85% computation)

We found the following two graphs for the two applications. It is noticeable that the 

adaptation cost for 4 overlapped processes is about 4.19 times expensive that that of 2 

overlapped processes.

1200 n

w" 1000
co
8  800«.
o>
|  600 

c
■2 400
3

Js 200 

0

Figure 17. Adapted (OP) runtime Vs non-adapted runtime for brack2 (91%> computation) 
while varying number o f  overlapped processes with t60k (85% computation)
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Figure 19. Adapted (OP) runtime Vs non-adapted runtime for t60k (85% computation) 
while varying number o f  overlapped processes with brack2 (91% computation)

In the following table we present the test result from brack2 (91% computation) and 

wing (65% computation) while varying the number of processes overlapped (0,2,4,8). 

Each application has 8 processes. The HT factor that we found for these two applications 

is l/fHT=l.l. In 4 processes overlap case, brack2 adapts during arrival and departure of 

wing, but in 2 processes overlap case, brack2 adapts during the arrival of wing and wing 

adapts during the termination of brack2.

Application
1

Application
2

Overlapped
process
number

T l
NA

"T2
NA

3T1
Adapted

4T2
Adapted

7Speed 
up 1

8Speed 
up 2

5C1 bC2

Brack2 
8 processes 
(91%)

wing
8 processes 
(65%) 
arrival 
delay 252 
sec

8 1141.8 1190.5 1141.8 1190.5 0.0% 0.0% 0.0 0.0

4 971.7 1052.3 898.3 949.0 7.5% 9.8% 1.561
0.622

2 862.3 985.7 802.1 898.7 7.0% 8.8% 0.947 0.482

0
609.7

831.8 609.7 831.8 0.0% 0.0% 0.0 0.0

Table 10. Adapted runtime with varying overlapped processes (brack2 91% computation
and wing 65% comp)
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We found the following two graphs for our applications. Both of them show 

significant speed up due to time adaptation.
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Figure 19. Adapted (OP) runtime Vs non-adapted runtime for brack2 (91% computation) 
while varying number o f  overlapped processes with wing (65% computation)
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Figure 20. Adapted (OP) runtime Vs non-adapted runtime fo r  wing (65% computation) 
while varying number o f  overlapped processes with brack2 (91%> computation)
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In these entire previous tests we used application with 8 processes. So that we can 

observe the adaptation affect on both of the application. We could have done similar kind 

of test for 16 processes, if  we had a test environment with 32 processors. But we perform 

similar kind of test on 16 process application imposing 0, 2, 4,8 and 16 overlap with 0, 2, 

4, 8 and 16 process application. But in this case, the second application is not going to 

adapt, only the first application with 16 processes can adapt while the overlapped 

processes are 2, 4 and 8. The first application does not adapt with 0 or 16 processes 

overlapped, as the relative resource share remain unchanged among the processes of an 

application. We get the following test results, which are the adapted execution time of our 

16 process test applications, while having different overlap with different number of 

application processes. Wing arrives after 240 seconds of the arrival of t60k. T60k adapts 

at the arrival of wing and wing adapts at the termination of t60k.

Application 1 Application 2
(14init=451)
shared

overlap yTl
NA

IUj i

Adapt
“ T2
Adapt

iaCl l3Speed 
up 1

t60k
16 processes

Wing 16p 16 533.0 533.0 794.5 0.0 0.0%

(70%) Wing 8p 8 479.9 468.3 826.1 5.4 2.2%

Wing 4p 4 470.6 451.0 1353.0 4.7 4.0%

Wing 2p 2 418.6 397.3 2257.5 6.1 5.0%

Op 0 370.1 370.1 0.0 0.0 0.0%

Table 11. Adapted runtime o f t60k (70% computation) with Varying overlapped 
processes with wing (65% computation)

9. execution time (seconds) of application 1 without adaptation.
10. execution time (seconds) of application 1 with adaptation.
11. execution time of (seconds) application 2 with adaptation.
12. adaptation cost (seconds) of applicationl.
13. speed up achieved by application 1 due to adaptation.
14. initial start up time (seconds) of application 2 using over-partition with 8 

processes.
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In the following test, t60k arrives after 252 seconds of the arrival of wing. Wing 

adapts during the arrival of t60k and t60k adapts at the termination of wing. However it is 

found that the speed up increases with the less number of overlapped processes. The 

second application (t60k) does not adapt, because it is entirely contained within the 

processor set of first application (wing). That is why we only focused on the speed up of 

the first application that adapts.

Applicaitonl Application2
(14init=409)
shared

Overlap yTl
NA

10T1
TA

UT2
TA

,2C1 13Spee 
dup 1

wing
16 processes

t60k 16p 16 1080.8 1080.8 659.2 0.0 0.0

(50%) t60k 8p 8 931.2 897.7 536.5 3.229 3.6%

t60k 4p 4 877.4 836.6 750.9 2.746 4.7%

t60k 2p 2 803.5 761.3 1373.8 3.889 5.2%

Op 0 695.4 695.4 0.0 0.0 0.0

Table 12. Adapted runtime o f wing (50% computation) with Varying overlapped 
processes with t60k (85% computation)

In the following test, t60k arrives after 252 seconds of the arrival of brack2. brack2 

adapts during both arrival and termination of t60k. It is important that the speed up 

brack2 is relatively less than that of wing, while both wing and brack2 had similar kind of 

overlapped processes with t60k. This is due the fact that brack2 is less computational 

intensive than wing.

Applicaitonl Application2
(14init=409)
shared

Overlap Vj i

NA

iuT l

TA
“ T2
TA

‘"Cl uSpe 
ed up 
1

brack2 
16 processes

t60k 16p 16 2995.2 2995.2 566.8 0.0 0.0%

(40%) t60k 8p(82%) 8 2296.2 2248.8 621.7 4.1611 2.1%

t60k 4p(86%) 4 2185.8 2105.1 1151.6 3.8716 3.7%

t60k 2p 2 1783.6 1698.0 2194.0 4.5273 4.8%

Op 0 1469. 9 1469. 9 0.0 0.0 0.0%
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Table 13. Adapted runtime ofbrack2 (40% computation) with Varying overlapped 
processes with t60k (85% computation)
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■ t60k (70% comp) with 
adaptation with wing 
(65% comp)
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without adaptation with 
t60k (85% comp)

wing (50% comp) with 
adaptation with t60k 
(85% comp)

• brack2 (40% comp) 
without adaptation with 
t60k(85% comp)

■ brack2 (40% comp) 
with adaptation with 
t60k(85% comp)_____

Figure 21. Execution time Vs number o f  overlapped processes

We found less speed up with more overlapped number of processes. This is due to the 

ratio of total weight in overlapped and non-overlapped processes. For an application with 

8 processes and l/fHT=l-2, with 4 processes overlapped and weight vector 

1:1:1:1:0.6:0.6:0.6:0.6, this ratio is 0.6. But with 2 processes overlapped this ratio 

becomes 0.2.

This implies that time adaptation is more suitable for computation intensive parallel 

application than computation intensive applications. The following two charts depicts the 

cost for adaptation (using over-partition) for same pair of application but with different 

number of total application process. First chart depicts when 50% process is overlapped 

(4p from 8p application & 8p from 16p application) and the second chart depicts when 

same number of process is overlapped (both has 4p overlapped).
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Figure 22. Adaptation cost fo r varying number o f application process with 50% overlap
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application with same amount of overlap

Figure 23. Adaptation cost fo r  varying number o f  application process with same overlap

In the following test, t60k expands and shrinks the overlapped processes (0 —> 4 —> 8 

—► 4 —»■ 0) while overlap with wing and brack2. This is depicted in the following figure. 

At T l, the overlapped process of t60k is 0. At T2, wing arrives, and overlapped process 

of t60k becomes 4. Again, at T3 brack2 arrives and the overlapped process becomes 8. 

The overlapped process of t60k becomes again 4 and 0 sequentially at T4 and T5 at the
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termination of brack2 and wing. So, here t60k adapts 4 times at T2 (0 —► 4), T3 (4 —*■ 8), 

T4(8 —► 4) and T5(4 —> 0). The test results are presented for this test in the following 

table.

T60k 8P (5-12)
T1

Wing 8p (9-16)
Brack2 8P (1-8)

■4-

T6

Figure 244. Expanding and shrinking o f overlapped process for t60k (85% comp)

Application Overlap T1 (NA) 
second

T1 (OP) 
second

Speed up (OP) Cost o f adaptation 
(OP) second

T60k
8P
85% computation 
start time=Tl

0 1098.1 1030.7 6.19% 0.0

4 1.136
(wing arrival)

8 1.548
(brack2 arrival)

4 1.214
(brack2 termination)

0 0.560
(wing termination)

Wing 8P
61% computation 
start time=T 1+252 sec

4
l/fHT=1.17

583.1 467.2 19.8% 0.0

Brack2 8P
85% computation
start time=Tl+384 sec

4
l/fHT=1.15

316.7 265.1 16.1% 0.0

Table 14. Expansion and contraction o f  t60k with wing and brack2.
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5. Conclusion and Future Work

In our approach, we have presented time adaptation for parallel application in time 

sharing environment exploiting the unbalanced resource allocation. We focused on 

adapting in time dimension, while adaptation in space dimension for space malleable 

application is equally important. Our adaptation framework uses over-partition and 

migration strategy from ATOP [11]. Our adaptation library provides option to bind either 

over-partition or partition from scratch. We let the application programmer decide which 

policy to select. But automatic and transparent binding of would be more promising if it 

can select the suitable method based on application and machine profiling, accessing 

from dynamic directory. A more appropriate weight vector can be formulated considering 

co-scheduling slowdown and granularity of applications that share the resources. Time 

adaptation in asynchronous manner as well as latency hiding is more promising.

In our design the dynamic directory is connected to the system scheduler, which can 

provide more accurate information about the resource share. But our implementation did 

not include the system scheduler. Even though, our result explains that adaptation in time 

dimension is meaningful, even multiple time adaptation would be meaningful with over 

partitioning if the application run for long enough.

Our approach is a sequence of integration of ATOP [11] approach and put that in a 

library so that parallel MPI application can use it for adaptation. The next phase would be 

to integrate the resource monitoring system and space adaptation as well. At the end this 

framework would be able to provide runtime adaptation for parallel application both in 

space and time dimension using the resource monitoring system and using the 

information from the dynamic directory.
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