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ABSTRACT

A numerical method has been developed to solve steady laminar flow through a
tube with multiple constrictions and puisatile flow through tubes with moving
boundaries. The goveming equations were formulated in body fitted curvilinear
coordinates so that arbitrary domains and moving boundaries could be handled.
A finite volume discretization procedure was used to solve the goveming
equations. Four practical flow probiems were numerically simulated in this work.
In the first case, tubes with one, two, three, four and seven constrictions were
considered. For the second case, the flow through a tube with multiple
constrictions was solved by considering a single module where the flow field was
assumed to be periodic. By comparing the results of these two cases, the effects
of the number of constrictions on wall shear stress, pressure drop, vorticity,
streamlines and velocity distributions as the flow passed through the tube were
studied and the development of periodicity characteristics was investigated. The
computations were carried out for a range of Reynolds number between 50 and
250. The third case studied had a pulsatile flow at the inlet of a tube having a
constriction which changed in shape periodically with time at a prescribed
frequency. The fourth case also had a pulsatile flow at the inlet with a portion of
the wall that changed shape periodically with time. In this case, however, the

variation caused contraction of the pipe at one portion of the cycle and distention



at arother portion altematively. The presence of moving boundaries in the above
mentioned cases caused additionz! unsteadiness to occur in the flow. This

unsteady behaviour in the flow was investigated over a range of frequency.
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CHAPTER | Introduction

1.1 Motivation

Internal flow through tubes has many applications in industry and in biofluid

mechanics.

Tubes with multiple axisymmetric constrictions have applications in enhancing heat
transfer in heat exchangers. A succession of annular tube inserts, uniformly
spaced along the length of the tube wall, are used tc enhance heat transfer in heat
exchangers. Another example of a heat exchanger with a periodic geometry in the
flow passage is the offset plate-fin heat exchanger (Patankar et. al (1977)). The
reflux condenser used in the distillation process is a concentric pipe heat
exchanger which has a number of spatially periodic constrictions in the circular
flow passage. The presence of a periodic geometry in the flow passage can lead
to spatially periodic flow conditions beyond a certain distance from the inlet. In this
region the flow and heat transfer characteristics can be modelled using one single
module in the flow region with periodic boundary conditions on the flow variables
(Sparrow and Prata (1983)). Identifying the distance from the tube inlet to where

the flow field becomes spatially periodic is important in the design of such heat



exchangers. The overall heat transfer rate from a tube of this geometry depends

upon the extent of this region.

A common human disease is the hardening of the arterial wall known as
atherosclerosis. It involves a lesion on the arterial wall characterized by the
accumulation of lipids (fatty acids) (Lighthill (1975)}. The build up of atherosclerotic
plaque causes a reduction of arterial distensibility and gives rise to increasing
demands on the human heart. A local build up of ptaque in an artery is commonly
known as a stenosis. This is a generic medical term indicating the narrowing of
any body passage. The exact reason for the initiation of this arterial growth is still
not known. However, some investigators have determined that minor injuries in the
arterial wall can quickly lead to the development of gross lesions in the vicinity of
the damaged area. The initial injury to the artery may be caused by the large shear
stresses which occur near the branches of arteries. It has also been suggested
that the localized change in pressure and shear stresses may trigger some
biological mechanisms whereby the endothelial cells which line the arterial wall,
proliferate with a subsequent narrowing of the artery (Young (1968)). Similarly
Lighthill (1975) has indicated that high rates of shear causes actual mechanicai
damage to the endothelial lining of the arterial wall and fosters the onset of

atherosclerosis.



Regardless of the exact initiating factors, the presence of a localized stenosis
causes disordered blood flow within and downstream of the constricted region.
Knowledge of the flow pattern through a partial occlusion may assist in
understanding the pathology of atherosclerosis (Deshpande (1976)). Clark et al.
{(1983) suggested that the additional changes in flow and shear that are initiated
by the atherosclerotic process can cause further build up in the artery.
Researchers working in this area place an emphasis on obtaining the precise
distributions of the velocity, pressure gradient and shear stress in the vicinity of the
stenosis. They believe that these quantities play an important role in the genesis
and proliferation of the stenosis. van Dreumel and Kuiken (1989) used the
geometry of a stenosis obtained from an angiogram and a numerical method to
model stenotic flow. It was suggested that the flow structure obtained numerically,
when correlated with the patients symptoms, might provide valuable information
regarding the patients prognosis. Angiograms taken from patients showing
coronary symptoms have also indicated the presence of several stenoses on the
same artery (Talukder et al (1977)). Eventhough this is a common clinical
symptom, only a limited amount of information is available on the effect of

stenoses in series on a given arterial segment.

The presence of a moving boundary occurs in practically all fiuid carrying conduits
in the human body. The asteries in the human body experience a positive pressure

difference between the inside and outside of the artery and are therefore distended



or inflated (Shapiro (1977)). During cardiac ventricular contraction, however, the
muscular action causes an increased pressure on the outside of the artery which
causes a contraction of the wall. Unsteady flow behaviour in the portion of the tube
which undergoes a contraction and distension of the tube wall may help to gain a
better understanding of the actual arterial blood flow. The time and space
dependent wall shear stress distribution obtained from studying such flows is
considered to be important in the early stages of atherosclerosis (Ralph and
Pedley (1988)). The airway in the lung is another example of a place in the human
body where repetitive shape changes of a vessel wall occur. The wall motion in
this case is a small-amplitude, high-frequency wall flutter. The sound heard during
wheezing is due to this motion. Distention of the arterial vessels may occur distal
to a stenosis and near bifurcations of arteries. The presence of a minor arterial
distention may lead to a condition known as an aneurysm (gross distention of the
arterial wall). This is thought to be caused in response to fluctuating pressures and
wall shear stresses. The pulsatile nature of the blood flow is also known to create

minor shape changes in stenoses.

A lack of information in the areas mentioned above indicates the need for a
systematic study of the fluid dynamic quantities and periodicity characteristics
associated with intemnal flow through tubes with constrictions. Also, the models
used to analyze moving boundary flows in the human body that are presently

available need to be improved upon considerably.



The complexity of the flow fields associated with arbitrary shapes and moving
boundaries makes it difficult to analyze the flow field either experimentaily or
theoretically. Analytical methods to solve fiuid flow problems are limited in their
range of applicability due to the difficulty in handling complex geometries.
Numerical solutions with greater accuracy and reliability are steadily becoming the
norm in industry. The advent of more powerful computers together with several
major developments in the field of computational fluid dynamics has resulted in an
ever increasing activity in the area of numerical simulations of fluid flow problems.
Numerical approaches with reliable and robust codes which are thoroughly
validated are powerful tools. The approach taken to analyze the problem of

arbitrary domains and moving boundaries in the present study is numerical.

A control volume formulation is used in discretizing the goveming equations. In
numerical simulations of moving boundary problems, there is a need to adapt the
grid with time as the shape of the boundary changes. The grid adaptation must be
performed with each time step and the movement of the grid must be properly
accounted for in the goveming equations. A boundary fitted curvilinear coordinate

transformation is used in the present study to accomplish this.

1.2 Objectives of the Present Work
The purpose of the present investigation is to study steady flow behaviour through

tubes with constrictions and pulsatile flow through a tube with moving boundaries.



The main objectives of this study are:

1. to investigate the spatial periodicity effects in the case of the steady flow
through tubes with multiple constrictions;

2. to solve the problem for a single isolated module where the flow field ic
assumed to be spatially periodic;

3. to provide a reasonable model of pulsatile flows with moving boundaries
and

4. to investigate the effect of the moving wall and the frequency of pulsation

on the unsteadiness present in the flow.

1.3 Statement of the Problem

Four practical problems were numerically simulated in this work in order to achieve
the objectives stated in Section 1.2 and to provide better models of various
physiological flows. The spatial periodicity effects were determined by solving the
problem of flow in a tube with multiple constrictions. The same problem was then
solved by considering a single module in the region where the spatial periodicity
of the flow is achieved. The effects of moving boundaries on pulsatile fiows were
studied using two models. The first model had a constriction which changed in
shape periodically with time at a prescribed frequency. The second model had a
portion of the wall that distended and contracted at a prescribed frequency of

pulsation.



This dissertation has the following format. A review of past work in the area of
interest is presented in the next chapter. Chapter 3 gives a detailed description of
the problem geometry and the formulation of the goveming equations in the
computational dornain. The boundary conditions and the assumptions associated
with the problem are also provided. The numerical methodology used in the
present study is presented in Chapter 4. The results obtained for the problems
studied are given in Chapter 5. Based on the discussion of the results, conclusions

are drawn in Chapter 6 along with recommendations for future work.



CHAPTER I Literature Review

The general area of concem in the present study is internal flows in pipes with
constrictions and moving boundaries. Abundant literature is available in the area
of steady and unsteady pipe flows and stenotic flows. The purpose of this review
is to outline only those investigations that have a direct bearing on the present
study. Accordingly an overview of the relevant literature on flow through pipes
having single and multiple constrictions, flow in regions having identical
geometrical modules in the flow domain, time dependent stenotic flows, flows
through flexible tubes and some of the other related works with irregular domains

and moving boundaries is presented in this chapter.

2.1 Flow Through Tubes with Constrictions in the Flow Passage

Studies of the stenotic flow fields have been conducted by numerous investigators.
Young and Tsai (1973) conducted a series of steady flow experiments conceming
stenotic flows for various steady flow factors such as pressure drop, separation
and turbulence. Young (1979) gave a wide overview of various aspects of the fluid
mechanics of arterial stenosis. Ahmed and Giddens (1983) investigated the

velocity field in the neighbourhood of axisymmetric constrictions using a laser

8



Doppler anemometer. Gowda et al. (1988) presented a flow visualization study of
flow through constrictions with different geometries. Ohja et al. (1989) investigated
pulsatile flows through constricted tubes using photochromic tracer methods.
Experimental studies of stenotic flows have been augmented by various numerical
and analytical models, Lee and Fung (1970) used a finite difference method to
solve the axisymmetric flow of a viscous incompressible fluid through a locally
constricted tube. A stream function-vorticity formulation was used to solve the
goveming equations and the numerical solution failed to converge for Reynolds
number greater than twenty-five. Deshpande et al. (1976) obtained numerical
solutions for steady flow utilizing a stream function-vorticity formulation in
cylindrical coordinates. O'Brien and Ehrich (1985) developed finite difference
approximations to study the effect of a simple pulsatile flow in a tube with
constriction. Durst and Loy (1985) summarized the results of experimental and
numerical investigations of laminar flow in a pipe with a sudden constriction in the
cross sectional area. The experimental investigation was conducted by using laser
Doppler anemometry and the numerical investigations were carried out using a
finite volume based method with a primitive variable formulation. They encountered
no difficulties for Reynolds numbers at which the flow is known to be laminar.
Theodorou and Bellet (1986) presented a perturbation method for determining the
velocity distribution for laminar flows of a non-Newtonian fluid under mild stenotic

conditions. Kasivisvanathan et al. (1991) studied flows of a non-Newtonian fluid



through axisymmetric pipes of varying cross-sections by means of a perturbation

method.

Investigations of flows through tubes with more than one constriction have also
been conducted by a few researchers. van Dreumel and Kuiken (1989) conducted
experimental and numerical investigations for flows in a tube with double
constrictions under steady conditions. The experiments were conducted using a
laser Doppler anemometer and numerical results were obtained using a
commercial code. Lee (1990) investigated the flow field in the neighbourhood of
double constrictions in a tube. The governing equations were expressed in stream
function-vorticity form and were transformed into body fitted coordinates. A finite
difference method was used to discretize the goveming equations. Talukder et al.
(1977) conducted an experimental study of the fluid dynamics of multiple
noncritical stenoses. In vivo and in vitro measurements of the pressure drop were
carried out in the experiments along with the flow visualization studies. They
concluded that the totai effect of a series of noncritical stenoses is approximately
equal to the sum of their individual effects and the combined effect of a series of

noncritical stenoses can be critical.

Patankar et al. (1977) identified the periodicity characteristics of ducts whose cross
sectional area varies periodically in the streamwise direction and confined the flow

field analysis to a single isolated module without involvement of the entrance

10



region problem. A numerical procedure using a finite volume based approach with
primitive variable formulation was used to solve the problem. Sparrow and Prata
(1983) obtained a numerical solution of the heat transfer problem in the fully
developed region in a pipe with periodically varying cross section. They solved the
problem for a module in the spatially periodic region in polar coordinates by
partially blocking the flow passage in such a manner to approximate the geometry
of a converging-diverging duct. The periodicity boundary conditions were used to
solve the problem. Prata and Sparrow (1984) obtained a numerical solution for the
heat transfer and fluid flow in an annular tube with periodically varying cross

section using essentially a similar approach as in the previous paper.

2.2 Flow Through Tubes with Moving Boundaries

An attempt towards a systematic study of the effect of a time dependent stenosis
on flow through a tube was first initiated by Young (1968). An analysis conceming
the effect of an axially symmetric, time dependent constriction of the tube of
nominally constant cross section, for a Newtonian fluid flow, was nresented in the
study. The approximate analytical solution presented was based on a simplified
model in which the convective terms were neglected. Misra and Chakravarthy
(1986) presented a theoretical study of the flow in arteries in the presence of a
stenosis by assuming the arterial wall is an initially stressed elastic tube. The wall

motion was accounted for by considering that the fluid adheres to the inner surface

-

11



of the wall, and the velocity of the fluid on the wall is equal to the velocity of the

wall.

Analytical solutions of wave propagation through elastic tubes have been
developed by a few researchers. These solutions assume axially symmetric two
dimensional flow with the convective terms neglected in the governing equations.
The wall motion was modelled as a second order response. Atabek and Lew
(1966) gave an analysis of the blood fiow in arteries as a viscous incompressible
fluid contained in an initially stressed elastic tube by casting the dependent
variables in terms of a power series and substituting them in the goveming
equation. Atabek (1968) analyzed the wave propagation for an initially stressed
elastic tube with the additional constraint that the wall was tethered. Dragon and
Grotberg (1991) investigated the mass transport of a diffusible substarice for
oscillatory flow in a flexible tube and derived general perturbation solutions for the
flow equations. Wang and Tarbell (1992) analyzed the nonfinear fiow of a
Newtonian fluid in an elastic tube subjected to an oscillatory pressure gradient

using a perturbation based method.

Numerous investigators have conducted experiments using collapsible tubes with
the objective of understanding the flow of various fluid carrying conduits in the
human body. Most of the work was done in this area using a silicone rubber tube

suspended between two rigid pipes. Brower and Scholten (1975) presented

12



experimental evidence of the instabilities in the flow for such a tube. Bertram
(1987) found the effects of wall thickness, axial strain and end proximity on the
pressure-area relation of collapsible tubes. Bertram et al. (1990) and (1991)
mapped the instabilities for the flow through collapsed tubes of differing tength. A
detailed study of the pressure-area relationships and application of nonlinear
dynamic concepts to the analysis of self-excited oscillations in the collapsible tubes

was also presented in the paper.

One dimensional mathematical models were also developed by many investigators
for collapsible tubes. Cancelli and Pedley (1985) presented a separated flow model
for collapsible tube oscillations. The main features of the model are the inclusion
of the wall tension and the energy loss of the separated flow downstream of the
time dependent constriction in a collapsing tube. Jensen and Pedley (1989)
investigated the existence of steady flow in a one-dimensional collapsible tube
model and compared the results with experiments. Jensen (1990) investigated the

stability of the steady flow present in a collapsed tube when subjected to small

time dependent perturbations.

Experimental and numerical studies have been conducted for flows in a 2-D
channel with time dependent oscillation in one wall and steady flow at the inlet with
the objective of studying physiological flows. Pedley and Stephanoff (1985)

conducted flow visualization experiments for flow along a channel with time

13



dependent indentation in one wall and gave some theoretical reasoning on the
development of various types of eddies created by the moving indentation. Ralph
and Pedley (1988) presented a numerical solution for such a flow. The solution
was obtained in stream function-vorticity form using a finite difference method.
Ralph and Pediey (1989) presented solutions for both viscous and inviscid flows
in a similar channel. The numerical results for inviscid flows were also compared
with the predictions using a small amplitude inviscid theory (Pedley and Stephanoff

(1985)).

2.3 Other Related Work with Irregular Domains and Moving Boundaries

A solution of the incompressible steady Navier-Stokes equations in a general
curvilinear coordinate system using a finite difference approximation by solving all
variables simultaneously was developed by Vradis et al. (1992). The method was
utilized to compute flow through channels with different geometries. Hamdan et al.
(1993) studied fluid flow through curved porous channels. The flow equations were
formulated using a stream function coordinate system and solved numerically using
a finite difference method. An and Barron (1995) solved transonic Euler flows in
stream function coordinates. This stream function coordinate system avoids the
grid generation step by introducing a von Mises transformation, which produces
a formulation in streamwise and natural body-fitting coordinates thereby allowing
a single set of equations to function both as flow equations and grid generation

equations.
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Rhie and Chow (1983) presented a finite volume numerical method for the solution
of the two-dimensional incompressible, steady Navier-Stokes equations in general
curvilinear coordinates. An ordinary grid system (collocated grid) was utilized
instead of the usual staggered grid arrangement. A specific scheme was
developed to suppress pressure oscillations. The numerical procedure used was
a modified version of the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) developed by Patankar and Spalding (1972). Peric et al. (1988) gave a
detailed comparison of finite volume numerical methods with staggered and
collocated grids. Majumdar (1988) studied the role of underrelaxation in momentum

interpolation for the calculation of flow with collocated grids.

Demirdzic and Peric {1990) developed a finite volume based method for the flow
through a channel with a moving indentation using the integral form of the
goveming equations for arbitrarily moving control volumes. Fully implicit temporal
differencing was used to make the method stable for any time step. Rosenfeld and
Kwak (1991) presented a time accurate method to solve incompressible Navier-
Stokes equations in generalized moving coordinates. A finite volume discretization
procedure that satisfies the geometric conservation laws for time-varying
computational cells was utilized. The discretized equations were solved by a
fractional step procedure. Venkat and Spaulding (1991) presented a numerical
model to predict the nonlinear response of extemnal flow over vibrating bodies. A

time dependent coordinate transformation was used along with a stream function-
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vorticity formulation. Yeung and Vaidhyanathan (1992) investigated the interaction
of two-dimensional water waves with a fixed submerged cylinder using a finite
difference scheme with boundary fitted coordinates. A mixed Eulerian-Lagrangian
formulation was used to satisfy the free surface conditions. Mateescu et al. (1994)
presented computational solutions for unsteady annular flows with oscillating
boundaries based on time dependent coordinate transformations in stream

function-vorticity variables.

To the candidate’s knowledge, no numerical simulations have been attempted to
study the periodicity effects of flow in tubes with multiple constrictions. Previous
numerical work has been limited to a maximum of two constrictions in the flow
passage. 1t was also found that flow characteristics in a module in the spatially
periodic region had not been solved in curvilinear coordinates. Papers dealing with
numerical work applied to the area of pulsatile flow in the presence of constrictions
are relatively few in number and no numerical work has been done which includes
changes in shape (moving boundaries) of the constriction. Authors of recent
numerical studies have modeled the flow through flexible tubes (arteries and veins)
as the flow i;'l a 2-D channel with a steady inlet condition and a time dependent
oscillation of one wall. No attempt has been made to study such flows using
pulsatile inlet conditions in a tube with a time dependent oscillation of a portion of
the wall. The purpose of the present investigation is to study pulsatile flow through

a tube with moving boundaries and steady flow with muitiple constrictions.
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CHAPTER il Problem Formulation

The problems that are formulated in this work are classified into four different
cases. The first case deals with tubes with one, two, three, four and seven
constrictions located equidistant from each other. Case 2 deals with the situation
where there are a number of constrictions in the tube equidistant from each other
and the problem is formulated for one module in the system using periodic
boundary conditions. Both these cases are at steady state conditions with the
constrictions creating a 75% reduction in the flow area at the constriction. In Case
3 there is a pulsatile fiow at the inlet of the tube and a time dependent constriction.
The constriction was allowed to change in shape with time at a prescribed
frequency. In Case 4 the flow behaviour in a tube which has a pulsatile flow inlet
condition and a time dependent motion which undergoes both contraction and
distension was studied. In the case of pulsating flow, frequencies are usually
represented in terms of a non-dimensional frequency parameter, o, which is
sometimes referred to as the Womersley frequency parameter. The phase lag of
the instantaneous mass flow rate to that of the pressure gradient increases from

zero in steady flow to 90° in a pulsation of infinite frequency. For a low frequency
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pulsation, i.e, & < 1, the phase lag is very close to zero and the flow field can be
approximated by quasi-steady behaviour (Uchida 1956). This was not considered
in the present study. For a 2 10, the phase lag is approximately 80°. Flow in a
human carotid artery has a frequency parameter of approximately 7.5 and hence
only the high frequency range was selected for study. Changes in the shape of the
wall of the tube in Cases 3 and 4 were assumed to vary with time at a certain
frequency of puisation. In both of these cases the interaction between the fluid and
the wall was decoupled and the infiuence of wall motion came through a
prescribed time dependent motion at the wall. In all of the cases studied, laminar

flow conditions were assumed.

Case 1. Tube with multiple constrictions

This case consists of five flow situations. The flows in a tube with one, two, three,
four and seven constrictions were simulated. The geometry of the model with four
constrictions, M4, is shown in Figure 3.1. The pertinent geometric characteristics
of the models are summarized in Table 3.1. The geometry of the models M1, M2,
M3 and M7 are essentially the same as shown in Figure 3.1 except that model M1
has only the first constriction, model M2 has the first and second constrictions,
model M3 has the first three constrictions and model M7 has totally seven
constrictions. The model with seven similar constrictions, M7, was used to test the

development of periodicity.
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Case 2. Modular approach

The basic assumption in this approach was that the fluid flowing in a tube with a
periodically varying cross section in space attains a spatial periodic regime in the
sense that the velocity field repeats itself at corresponding axial stations in
successive cycles under laminar flow conditions. Hence the goveming equations
for the fluid flow were solved for a single isolated module without dealing with the

entrance region problem. The geometry of such a module is shown in Figure 3.2.

Case 3. Pulsatile flow with time dependent constriction

The geometry of the model studied for pulsatile flows in a tube with a time
dependent constriction is shown in Figure 3.3. The height of the constriction, A,
was prescribed to vary between 0.15D, and 0.25D,, where D, is the unconstricted
tube diameter. The spread of the constriction, S,, was taken to be 2D,. it was
assumed that A, will have its lowest value when the instantaneous mass flow rate
is maximum and its highest value when the instantaneous mass flow rate is
minimum thereby ensuring that the instantaneous mass flow rate and the pipe
radius variation are in phase. This assumption is practical as it ensures that the

change in the shape of the constriction has a phase lag with respect to the

pressure at the wall.

Case 4. Pulsatile flow with moving boundary

Figure 3.4 represents the model studied for this case. The spread of the vibrating
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portion of the wall, S, was taken to be 2D,. The maximum and minimum values
of the amplitude of vibration of the wall was between +0.05D,,. It was assumed that
the tube wall will be distended to its maximum extent when the instantaneous
mass flow rate is maximum and contracted to its minimum value when the
instantaneous mass flow is minimum thereby ensuring that the instantaneous mass
flow rate and the pipe radius variation are in phase. This assumption ensures that
the change in the shape of the wall has a phase lag with respect to the pressure

at the wall.

3.1 Governing Equations

The goveming equations are expressed in cylindrical coordinates. Axisymmetric
flow conditions are assumed for all the problems considered. The equations
representing the flow are expressed in the primitive variable form. The primitive
variable form of the govemning equations is selected because it is easier to extend
the models to three dimensions and to include turbulence effects. A boundary fitted
coordinate transformation is necessary due to the presence of arbitrary domains
and moving boundaries. Accordingly, a boundary fitted curvilinear coordinate
system is selected to enable the problem to be solved in a fixed computational
domain. The use of a curvilinear coordinate system also enables the shape of the

wall to be changed without any changes to the numerical method.

The non-dimensional quantities are defined as;
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us= y V= y X5 —, r= — ’ p = ’
u u o 0 pU

__t:...q . = QDO y @ = & 2 d Re = pUDo
A U 2\ v K

(3.1)

where U is the time mean cross sectional average velocity at the inlet. The non-

dimensional frequency parameter, &, and Strouhal Number, St, are directly related

as can be seen from Equation (3.1). The governing equations for axisymmetric,

incompressible and laminar flow are the mass conservation equation and the x and

r components of the momentum equation which are given below.

Mass Conservation Equation

ou 1a(rv)=0.

—  —

ax r or

Momentum Equations

[Q , Sy | 1a(rvu)]= 1 {aau L a(r@)] _9p
ot ax r or Re ax2 ror or ox

v, A | 13w, 1 ,azv+1a(rg) vi- 2

at ax r or Ro'gx2 ror or ;2 or’

3.2 Transformation of Basic Equations

(3.2)

(3.3)

(3.4)

The physical domain is mapped into a fixed rectangular domain. The new

coordinate sysiem is defined as £ = E(x,,f) and n = n(x,rt). The transformed

computational domain is shown in Figure 3.5. The partial derivatives of any
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function, f, can be transformed as

-rf -xf + x.fI
fx= (rf]‘fE JrE\‘I) and fr= (KIEJ XEYI)' (3.5)

where J is the Jacobian of the transformation and given by

1
J = XEr“ = &‘ra = m . (3-6)
X' r

The time derivative is represented by the chain rule as
f,=f,+E,f5+m'§,- (3.7)
The terms &, and ), are obtained as

£, = XhH - 5% n, = _xer - xn) (3.8)
J J
The governing equations (Equations (3.2),(3.3),(3.4)) can be expressed as

(26, Aw) 13, 1 &b 18,80y, g0 (39)
at ax r or Re ax2 ror or

where ¢ = 1, u or v for the mass conservation and the x and r components of the
momentum equation respectively. S is a source term which is zero for the mass

conservation equation.

Employing the procedure of transformation given by Equations (3.5) to (3.8) on
Equation (3.9), the goveming equations are transformed into the (E,n,t) coordinate
system. T will be represented as t henceforth as both these quantities are the
same. The goveming equations in the transformed coordinate system takes the

following form.



&+ T(0wy - xe)O - (% - X0DR, +

—( 2 9) - ——(I'Vx,.cb) —'é;( vxed) - —(Ufg¢))

"H?J(a_aj( rde aa J(m,xn)cbg 3% J(,1 r)d, - _6_5 J(rx“ X))o, +

161

(rgrz)‘b ( F 5)4’ )4’{ = “5?1"‘1‘]( x“)‘bg) + 8¢

(3.10)

a,qJ(E‘I

The second and third terms in this equation represent the grid movement, thereby

enabling the equation to be solved in a fixed computational plane.

The terms in S® containing derivatives with respect to the original independent
variables are transformed in terms of the new independent variables. Hence for the

x and r components of the momentum equation

Sv=-—15+ 1("1195 - Xp,) and
Rer J (3.11)

¢ = 2trp + ).

respectively.
3.3 Assumptions and Boundary Conditions

For all the cases considered, the fluid was taken to be incompressible and

Newtonian with constant properties. Laminar flow conditions were assumed.
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Case 1. Tube with multiple constrictions
The transient terms were neglected as steady state conditions were assumed for
this problem. The flow was considered to be axisymmetric.

The boundary conditions on the symmetry line are;

U _oandv=0atr=0. (3.12)

ar

On the solid bounding walls the no-slip boundary condition is used as follows,

u=0andv=0atr=R. (3.13)

At the inlet, the flow is assumed to be fully developed and laminar, therefore,

u=2(1-4r)andv=0atx=0, (3.14)

and at the exit, the zero gradient boundary conditions are used,

U _0and @ - (3.15)
ox ax
The equation representing the shape of the wall is expressed as
n
1
R=05D,-% A exp(-————(x - S; ) - (3.16)
o 2 Ao X! 2(0.255)? @)

where n is the total number of constrictions. The constrictions are located
sufficiently apart from each other such that the shape of one of the constrictions

has practically no influence on the other constrictions.

Case 2. Modular approach
The modular approach was developed under the assumption that the fluid flow in
a tube with a periodically varying cross section attains spatial periodicity condition.

Hence the goveming equations for the fluid flow could be solved for a single
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isolated module without considering the entrance region problem. The periodic
conditions of the velocity components is expressed as:

ulxn = ux + A,n and
vxn = vix + 4.0,

where x is any arbitrary location in the spatially periodic region and A is the length

(3.17)

of the module (the distance between two successive constrictions). The cross
sectional pressure distributions at x and x + A are identical in shape, but the
pressure level is lower in the downstream station. It then follows that

pxA-plx + A0 = plx + A,D-plx + 20,0 = ... . (3.18)

The pressure drop across a module of length A is defined as:

pix.n - pxsan g (3.19)
A

where K is a constant. This pressure fisld at any location (x,r) could be subdivided
into two components as follows:

P = -Kx + pixd) (3.20)
where P(x,r) is the periodic component, the value of which is repetitive over
successive modules and X is an assignable parameter, which is related to the
average flow rate and Reynolds number. The pericdic condition for pressure is
expressed as; “

PeA = PlX + A . (3:21)
The goveming equations retain the same form as in Case 1, however, with the
following modifications. The reference velocity, p/(pD,), is used instead of the time

mean cross sectional average velocity at the inlet and the non-dimensional
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quantities were modified accordingly. The pressure gradient terms that appear in
the momentum equations (3.3) and (3.4) are modified using Equations (3.20) and

(3.21) as:

__E g - P gng P . (3.22)
ax ar - ar

and the S, term in Equatlon (3.11) has an additional term K. The boundary
conditions at the wall and symmetry line are the same as in Case 1. The periodic
conditions, Equations (3.17) and (3.21), are used at the inlet and exit of the
module and the value for K is assigned. The equation representing the shape of

the wall is expressed as

2
R=050,-A.e xp(-—- ) - A, exp(

— T _(x-2? .(323
20255  ° 2(0. 253,) 20zss ™ -6

Case 3. Pulsatile flow with time dependent constriction

The transient terms were included for this problem as the flow is unsteady. It was
assumed that the symmetry about the centreline is maintained and there is no wall
movement in the axial direction. |

The boundary conditions on the symmetry line are

ou

5 =0andv=0atr=0. (3.24)

On the solid bounding walls the no-slip boundary condition is used as given below.

R
ot

u=0andv==22atr= R0 . (3.25)
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The u component of velocity is zero at the wall because it is assumed that there

is no wall movement in the axial direction.

At the inlet, the flow is assumed to have a simple pulsation which is periodic in
time. The condition of simple pulsation indicates that only a single harmonic in
present. This condition of simple pulsating viscous flow superposed on the steady
laminar motion in a pipe has been determined analytically by Uchida (1956). The
pressure gradient for a simple periodic pulsation becomes a function of time and

can be expressed in terms of a steady and fluctuating component as

P _ (_9Py . (-Py 3.26
ax ( ax) ( ax) ! (3.26)
where
_9p . _9Pv _ 3.2
( ax) x, and ( ax)’ X C0S(2n1SY . (3.27)

X, represents the time mean component of the pressure gradient, whereas, X,

represents the amplitude of the fluctuating component of the pressure gradient.

The inlet velocity is assumed to be a fully developed simple pulsatile flow. This is
deterrnined by substituting Equations (3.26) and (3.27) into the goveming
equations for a fully developed time dependent flow. It is expressed in terms of a
steady component and an unsteady term as

u=u, + U . ) (3.28)

The radial component of the velocity is taken as zero at the inlet. The steady and
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fluctuating components of axial velocity are expressed respectively as

u, = 2(1-4r% and

X088 8(1-4) (3.29)
u' = f{—(a—)aoos(zntso + e sin(2nrso} .
A and B are determined from
A= ber(a)ber(2ar) + beia)bei2al) and
ber?(a) + bei%(x) (3.30)

B = beia)bern2ar) - ber(a)beilar) ]
ber?(c) + bei%(a)

The functions ‘ber’ and ‘bei’ are a certain class of Bessel functions known as
Kelvin functions and their generalizations are given by Watson (1966). The
instantaneous cross sectional average velocity for the simple periodic velocity

produced by Equation (3.28) also changes periodically and can be expressed as

u, =1+ 225 cos(@xtSt - 3) , (3.31)

where

(@)
y - 2c (3.32)
& = tan™ z 1,
20
1+ 4

are the coefficients of amplitude and phase lag with respect to the wave of the
pressure gradient, respectively. The coefficients C and D in Equation (3.32) are

given by Uchida (1956).
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At the exit, zero gradient boundary conditions are used as follows:

U _gand® -0. (3.33)
ax ox

The equation for the non-dimensional pipe wali radius which represents the

movement of the constriction is given by

1
R=fx)=05+A, -—(x - S,
Ax.9 Pl 20258 P)a( ) 330
where A, = A, (1-Bgos(2niSt-3)) .

Case 4. Pulsatile flow with moving boundary

The boundary conditions for this problem are the same as in Case 3. The equation

for wall motion is expressed as

A= fixd = 05 + A, @xp(-————(x - 5))
2(0.255,) (3.35)
whers A, = A, cos(@niSt-3) .

3.4 Grid Generation Methodology

Equation (3.10) is the goveming equation expressed in general curvilinear
coordinates. The grid system that is utilized to solve the goveming equations can
be generated using algebraic or differential equation methods. For the problems

considered here it is convenient to use algebraic grid generation as follows:
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Tt =1,

{ = xand (3.36)
q e
fAix.

where f(x.t) is the function which describes the variation of the tube radius. In the
present study f(x,t) is given by Equations (3.16), (3.23), (3.34) or (3.35) for different
cases. The metrics of the transformations (X,, T, Xy, & X, I,) can also easily be
found from Equation (3.36). The result is to transform a physical domain with a
moving boundary (or arbitrary fixed boundary if R = f(x)) into a fixed computational

domain like the one shown in Figure 3.5.

In the problems where there is a moving boundary the metrics of the
transformation carry information about the moving grid to the governing equations.
This effect is taken into account by the second and third terms in Equation (3.10)

which represent the grid movement for the problems studied.
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Figure 3.2 Geometry of a module
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Figure 3.3 Geometry of time dependent constriction
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CHAPTER IV Numerical Methodology

Numerical prediction of the fluid flow involves the discretization of a set of
transformed partial differential equations over the domain of interest to yield a set
of algebraic equations. These algebraic equations are solved sequentially by an
iterative method. The conversion of the differential equations into approximate
algebraic equations is carried out by integrating the differential equations over a
small control volume. The numerical scheme used in the present method is similar
to the SIMPLE method developed by Patankar and Spalding(1972). Rhie and
Chow (1983) adopted a curvilinear coordinate systemn to remove the geometric
limitations of the SIMPLE method for a steady flow problem. The present method
is a modified version of their method as it involves transforming the goveming
equations from polar coordinates to boundary fitted curvilinear coordinates and

extends the numerical scheme to handle unsteady problems.

4.1 Numerical Method
The staggered grid arrangement used for the solution is shown in Figure 4.1.

Integrating Equation (3.10) over the control volume, the approximation of the

integral conservation equation can be written as
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b, - & o
JAEAn(—LF—) + (GntbAn‘)‘r +

1
J Re

(Gzz‘bAEz = { (G1¢E - ﬁ1¢“)Ani + (4.1)

1 n
{m(l’% - Bz‘bg)AEl + S®JAEAN ,
where G,, = G, + J§, G, =G, +Jn, and

G1 = Urnp -

W, . G =

VX,

r r

— — -ur . 4.2)
£

r, I P

G, and G, are directly related to the contravariant components of velocity. The

terms &, and 1, given in Equation (3.8) correspond to grid movement in the physical

plane and

_ r - r
a 17 rﬂ pr;l + ?&l p&'l 4 B1 - rﬂ prE + ?&1 pXE '
P P

(4.3)

_ r _ r
Bo = il + —X X and vy = fele + —X X -
[ A

A relation between the dependent variable ¢ at point P and its neighbouring points,

E,W.N,S is then obtained as follows;

_1
ARe J

1 (4.4)

Re J

K I31¢,,Anl): . ( aaquAeS;].
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The coefficients, A, involve the effects of convection, diffusion and area. The last
Obluma

two terms in the equation are oerigirated-from the cross products of the diffusion

terms and can be included in the source terms for numerical computation.

Representing the source term as S, it can be linearized as § = S. - S;¢,. While

performing the calculations, the terms corresponding to S; are combined with A

The coefficients are calculated according to the power law scheme (Patankar and
Spalding (1972)) which is known to provide an accurate representation of the exact
solution when applied to a one-dimensional problem and performs reasonably well

in problems of higher dimensions.

The coefficients are expressed as

nAg = Dgnax(0 ,1-0.1{P,[5) + max(-F, ,0) ,
A, = D,max(0 ,1-0.1|P, |5 + mex(F, .0) ,

Ay = Dmax(0 ,1-0.1|P, %) + max(-F, ,0) ,

Ag = Dmax(0 ,1-0.1|P,[%) + max(F, ,0) , (4.5)
A; - JAEAB '
At

AP=AE+AW"'AN"'A3"’AP°+SPJAEATI and P=TF)-'

where
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D, - — v, A% and F, - (G)AE ,

Re J "An
D, = orar ad F, - (GAL, -
D, = %.-IG“% and F, = (Gy)An,
v = Fagewar and F, = (G)An

The quantities such as (G,), and D, are obtained by linear interpolation in the
physical plane and the pressure correction terms are derived in a manner similar

to the SIMPLE method.

4.2 Pressure Correction Equation

it can be seen that the momentum equations can be solved only when the
pressure field is known. The velocity field will not satisfy the continuity equation
and instead produces a net mass source if the pressure field is guessed.
Representing the imperfect velocity field as u” and v, based on the guessed
pressure field p, it can be seen that an imperfect (starred) velocity field will result

from the solution of the momentum equation.

To remove this mass source, it is assumed that at each iteration level the velocity

field is corrected by the following relations. The terms with primes represent the

correction terms
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u=u+(B'%/ +C%,) and

(4.7)
v=v'+ (B9 +C'p)).
where
BY - -r,AnAf v - rAnAg ‘
Ap Ap
(4.8)
B - X, AnAg cv- -X.AnAg ’
Ap Ap
and p’ is the pressure correction which is related to p according to
p=p +p. (4.9)

The cormection equations for G, and G, are obtained by using the velocity and

pressure corrections and Equation (3.2) as

G, =G, + (B "Jr;|jD - B"x“)pi’ + (C”r“p - T"C")q‘p)pn’ and
P

L
G (4.10)

. rav r
G, = G, + (-;;B X, - B“ri)pgf + (TPCVXEP - C"rzp)pﬂ’ .

The terms corresponding to p,’ in the equation for G, and p;’ in the equation for

G, are omitted as a matter of computational convenience and hence
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(a.11)

The pressure correction equation can be obtained by substituting Equation (4.11)
into the mass conservation equation (Equation (3.2)). The omission of various
terms in determining the velocity corrections will not affect the final converged
solution. In the final converged solution the correction terms vanish, thereby

satisfying the goveming equations.

The pressure correction equation takes the form;

(_(_51'511)9 - (GyAn)y, + (GE. AE), - (G Ag) + (8.12)
(Bp{an), - (BpiAn),, + (CpyAE), - (Cp,AE)= 0.

A relationship for the variable p at point P and its neighbouring points E,W,N,S can

be obtained is given as

AFp, = Ao + Aoy + APy + Afpd + m,  (413)

where
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ANp = —C—AE |

—=AE
., Af = C—],,
A'l']n s A'l'lls

AP = 'Bé_“.lo . AP = -Ei_‘gl"' ,

AE (4.149)

AP = AP + AP + AP + AP,

and m, = (G,"An), - (G,"An), + (G;AR), - (G,"AR), -

4.3 Solution Algorithm

The solution algorithm for the calculation of unsteady flows in curvilinear

coordinates and moving boundaries can be summarized as follows.

1.

The initial grid and the values of the dependent variables {at time t,) were
provided.

The time step was advanced by At. The new location of the boundary was
assumed to be known (as a function of time in this problem). The grid
system in the computational domain does not change, whereas, in the
physical domain the old grid automatically has moved to fit the new
boundaries because the govemning equations are represented in boundary
fitted curvilinear coordinates. The number of control volumes was thereby
kept constant.

The coefficients of the momentum equations were aSsémbled and the new
values of velocity components were obtained by employing the currently

available pressure and velocities. One pass of the solver was often



sufficient. An Altemating Direction Implicit (ADI) solver was used for this
problem.

4. The pressure correction equation was solved using the new values of the
velocity components and the solver was applied until the residuals became
negligible.

5. The velocity components and the pressure were corrected by using the
pressure correction values.

6. The procedure was repeated from step 3 until the difference of velocity
between two iterations became negligible.

7. The time was advanced by another increment At and the procedure was
repeated from step 2 repeated until the prescribed number of time steps

was completed.

Grid dependency tests were carried out using grid sizes of 150x15, 200x20,
250x25 and 300x30 for Cases 1, 2 and 3 and a grid size of 300x30 was selected
for these cases. For Case 2 grid dependency tests were carried out using grid

sizes of 20x15, 30x20, 35x25 and 40x30 and a grid size of 40x30 was selected.
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Figure 4.1 Staggered grid arrangement
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CHAPTER V Results and Discussion

Numerical solutions for steady laminar flow through a tube with constrictions and
puisatile flow through tubes with moving boundaries are presented here. The first
part of the chapter is concemed with validating the present numerical procedure
with other available results. Following that, the results obtained for the four cases
studied, namely tube with multiple constrictions, modular approach, pulsatile flow
with time dependent constriction and pulsatile flow with moving boundary, are

presented in detail.

5.1 Model Validation

The model was compared with several known results, such as pipe fiow, flow with
a single constriction and flow with simple periadic pulsation before applying it to
the problem of interest. In order to compare the model with steady pipe flow, the
amplitude of the vibrating wall in the present numerical model was made negligible
and the unsteady terms were neglected. Figure 5.1 shows a comparison of the
predicted friction factors with the analytical values for the steady pipe flow. The

predictions are considered to be quite accurate.
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The model was also compared with the experimental results of Young and Tsai
(1973). The experiments were conducted at steady state conditions and the
measured pressure drops across a single constriction for various models of
stenosis were compared. The fluid used in the experiments was water. Two test
cases were selected for comparison, cne with 89% constriction and a spread of
the constriction, S, four times the tube diameter and the other with 89%
constriction and the spread of the constriction twice the tube diameter. The tube
diameter was 18.9mm (0.744 inches) and the pressure taps were located
152.4mm (6 inches) on either side of the constriction. The numerical results

showed reasonable agreement with the experimental results as shown in Figure

5.2.

The velocity measurements in a tube with a single constriction in steady state
conditions were conducted by Ahmed and Giddens (1983) using a laser Doppler
anemometer. The tube intemnal diameter was 50.8mm (2 inches) and the spread
of the constriction was twice the tube intemal diameter. The fluid used had a
kinematic viscosity of 1.2 x 10° m%sec (0.12 stokes). The measurements were
taken in tubes having constrictions of 25% and 75% area reduction. The results
of these experiments were compared with the results obtained using the present
model for a Reynolds number of 500 at values of z equal to 0.0, 1.0, 2.5 and 4.0
where z is the distance measured from the centre of the constriction along the axis

in the direction of the flow. The results are shown in Figure 5.3. It can be seen that
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the predictions are quite reasonable. For the 75% constriction, the experimental
flow field was suspected of becoming turbulent. The probable cause of the
discrepancy in the comparison of results at 75% constriction may be due to the

onset of turbulence.

Uchida (1956) gives the skin friction factor for the simple pericdic pulsation as

16 [, X
C = E{1 +?‘:'otcos(21rt8t - a,)} (5.1)

where

(5.2)

o, and &, represent the coefficients of the amplitude of shearing stress at the wall
and the phase lag of the skin friction waveform to that of pressﬁre gradient
respectively. In the present model, the amplitude of the vibrating wall was made
to go to zero in order to compare the model with simple periodic pulsatile flow. The
skin friction factors were compared with the exact solution for a Reynolds number
of 200 in the range of & between 5 and 10. The results of the comparison are

shown in Figure 5.4 and were found to be reasonably accurate.

These test simulations show that the present model can handie arbitrary domains

and unsteady flow problems with reasonable accuracy.
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5.2 Tube with Multiple Constrictions (Case 1)

The characteristics of the flow were investigated for Reynolds numbers of 50 to
250 for models having one, two, three, four and seven constrictions in the tube
(Models M1, M2, M3, M4 and M7 in Case 1). The spread of the constriction, S,
was taken to be twice the tube diameter. The size of the constriction was assumed
to be such that it represents 75% reduction in the flow area. This corresponds *o
an A, value of 0.25D,. Other pertinent geometric characteristics of the models
studied were shown previously in Table 3.1. The maximum value of 250 was

selected for the Reynolds number to ensure that the flow remains laminar.

5.2.1 Pressure

The pressure flow relationship is one means of obtaining information about the
severity of a coronary stenosis. For a given Reynolds number the presence of a
constriction increases the resistance that the flow experiences. The pressure drops
across the constrictions for the various models are shown in Figure 5.5. It can be
seen that the pressure drop increases as the number of constrictions increases.
The non-dimensional pressure drop for each of the models, in a manner similar to

Poiseuille flow, decreases as the Reynolds number increases.

The non-dimensional pressure distribution along the tube wall in the axial direction
is also of interest and is shown in Figure 5.6 for various numbers of constrictions

and Reynolds numbers. There is a rapid fall in the pressure as the occlusion is
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approached, with pressure recovery taking place over a greater length. As the
number of constrictions increase the curves tend to show a similar pressure drop
and recovery across every constriction even as they are shifted correspondingly
downwards. This shift is due to the mass flow in the positive x direction. The
curves are, however, not similar enough to ciaim periodicity has been achieved.

A large number of constrictions is required, which will be considered later.

5.2.2 Velocity

The variation of centreline velocity in the axial direction, for the range of Reynoids
numbers considered, is shown in Figure 5.7 for one, two, three and four
constrictions. For all of the models, the maximum centreline velocity occurs slightly
downstream of the constriction due the formation of a recirculation zone near the
wall as a result of flow separation. This effectively reduces the cross sectional area
of the fiow. The centreline velocity is seen to take a larger distance to recover to
its initial value as the Reynolds number increases. As the number of constrictions
increases, the fluid does not have an opportunity to recover to its initial value of
the velocity before it encounters another constriction. Only for low Reynolds
numbers does the fluid have time to recover. For lower Reynolds numbers, the

velocity field is such that it is independent of the other constrictions.
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5.2.3 Wall shear stress, vorticity and streamlines

The wall shear stress is an important parameter in atherosclerosis. The non-
dimensional wall shear stress can be represented in terms of skin friction
coefficient, C,. The peak value of the skin friction coefficient decreases with an
increase in Reynolds number. The peak values of the dimensional wall shear
stress, however, increase with an increase in Reynolds number. The decrease of
the skin friction coefficient with the increase in Reynolds number can be explained
by noting that the wall shear stress is normalized by 0.5pU? to obtain the skin
friction coefficient. In order to indicate the increase in the peak value of wall shear
stress with the increase in Reynolds number, yet retain a non-dimensional
representation of the wall shear stress, a new non-dimensional quantity was
defined. The skin friction coefficient was muitiplied by the square of the Reynolds
number. This quantity, C;Re? is now used. Figure 5.8 shows the nature of the non-
dimensional wall shear stress variation in the axial direction. The wall shear stress
increases rapidly as the flow approaches the constriction and reaches a peak
value near the maximum constricted area. Downstream of the constriction, the wali
shear stress decreases rapidly and reverses sign which indicates a separation in
the flow near the wall of the tube. An increase in Reynolds number causes the
magnitude of the negative wall shear stress values to increase downstream of the
constriction. This is due to an increase in the size of the recirculation region. The
maximum value of wall shear stress generated by the first constriction is always

greater than the maximum value of wall shear stress generated by the second
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constriction. This is because the recirculation eddy formed downstream of the first
constriction has a diminishing effect on the vortices generated by the main stream
near the second constriction area. However, an increase in the number of
constrictions causes a tendency for the periodic nature of the flow to develop and
hence the wall shear stress to behave similarly for the other constrictions. In the
case of more than two constrictions, the peak value of wall shear stress is slightly
higher in the vicinity of the last constriction. This may be attributed to the presence

of no other constrictions downstream.

Sample streamlines and contours of vorticity are shown for a Reynolds number of
200 for all the models in Figure 5.9 and Figure 5.10 respectively. There is a
recirculation eddy downstream of each constriction. The recirculating eddies divide
the flow into two regimes, one of which is the recirculating region, and the other

is the main flow field carrying the bulk of the flow near the centre of the tube.

5.2.4 Periodic nature of the flow

The development of the periodic nature of the flow was studied by simulating the
flow passing through a tube with seven constrictions (Model M7). The results were
compared for a range of Reynolds numbers between 50 to 250. As the Reynolds
number is increased the flow is expected to reach its spatially periodic state after
a larger number of such constrictions. The results are presented by superimposing

plots of centreline velocity profile and wall shear stress profiles in each module.
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The space between the constriction is referred to as a module. For example
Module 1 is between constriction 1 and 2, Module 2 is between constrictions 2 and
3 and so on. This results in 6 modules for seven constrictions. As expected, the
last module did not exhibit periodic flow behaviour due to the non-periodic shape
of the wall downstream. Therefore, the results of Module 6 were omitted. The
superimposed profiles are shown in Figure 5.11 and Figure 5.12 for the centeriine
velocity and wall shear stress respectively. The development of the periodic nature
of the flow can be clearly seen from the results. The flow pattem repeats itself
after the second module for lower Reynolds numbers anid after the third module
for higher Reynolds numbers. An approximate expression for the length for
development of spatial periodicity for laminar flow can be obtained for a problem

having a similar geometry and inlet conditions as studied in this work. i.e.,

/
Moz 21 [[1‘3;+1ﬂ (5.3)
-]

where the function [ ] is the greatest integer function, n,, refers to the number of

modules and |, is the entrance length.

5.3 Modular Approach (Case 2)

The previous resuits indicate the development of periodic characteristics of the flow
in the streamwise direction after a number of similar constrictions. The flow field
under such conditions can be solved by isolating the problem in a single module

corresponding to the fully developed region in the duct. A sample problem is
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solved corresponding to a Reynolds number of 200. For this problem, the periodic
boundary condition must be applied at the inlet and outlet of the module. The
pressure drop across the module, K, is an assignable parameter which
comresponds to a particular value of the Reynolds number. The value of the
Reynolds number corresponding to the unconstricted tube diameter could only be
found after the model is solved by performing a numerical integration of the
following form at any axial location in the module, where D, is the unconstricted

tube diameter.

05D,

Re, = —2 [ un2xrdr (5.4)
0

v,

where u(r) is the veiocity at r, for this particular axial location. The simulation was
carried out for various values of K and the comresponding Raynolds number was
obtained using Equation (5.4). These results are shown in Figure 5.13. The model
was validated by comparing the results of the centreline velocity profile and wall
shear stress with module 4 (between the third and fourth constriction) in the tube
having seven constrictions for a Reynolds number of 200. Module 4 was selected
for comparison as the flow field has become periodic at this location. The results
of the comparison are shown in Figures 5.14 and 5.15 which indicate that the
model performs reasonably well. Sample plots of stream function and vorticity and
their comparisons with Module 4 are also shown for a Reynolds number of 200 in

Figure 5.16 and Figure 5.17. The results are similar to those discussed in Case 1.



5.4 Pulsatile Flow with Time Dependent Constriction (Case 3)

The shape of the constriction was specified to change periodically with a particular
frequency. The frequencies considered correspond to non-dimensional frequency
of pulsation, o, values of 10, 7.5 and 5. The height of the constriction, A_, was
prescribed to vary between 0.15D, and 0.25D,. The results were obtained for a
Reynolds number of 200. The results of the stream function are presented only for
an ¢ value corresponding to 10 due to the complex nature of the flow at this

frequency. For o values of 7.5 and 5, only the wall shear stress and pressure

variations are presented.

5.4.1 Stream function

The unsteady nature of the flow can be understood better by looking at the stream
function contours. The stream function contours for one complete cycle of
pulsation at a = 10 are shown in Figure 5.18. One complete cycle of pulsation
corresponds to a time span of 2T. The value of A, corresponding to 0.15D, is the

smallest position of the constriction and occurs at t = T/2.

The analysis is started at time step t = 3T/4. At this point in time the constriction
has just begun its inward motion. A recircutation eddy is formed immediately
downstream of the constriction. This eddy is referred to as the primary eddy. The
nature of the rotation of this eddy is counterclockwise. There is another eddy of

similar nature further downstream. This eddy was formed at an earlier time at the
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same position as the primary eddy and has been carried further downstream by
the flow. The downstream eddy is weaker than the primary eddy as the viscous
effects of the flow have dissipated the eddy. There is evidence that much weaker
eddies are present further downstream. The nature of the core flow at this point
is wavy. This waviness in the flow was created during the outward motion of the
constriction, the nature of which will become clearer later in this discussion. At t
= T the constriction moves further inward. The primary recirculation eddy has
increased in strength. The constriction is at its mean value and has maximum
inward velocity at this point, thereby, causing the fluid to be pushed inward (i.e,
towards the line of symmetry) with a greater velocity. At t = 5T/4 the constriction
moves further inwards causing the primary eddy to increase further in strength. Up
to this point in the cycle, the inward motion of the constriction has been pushing
the fluid into the mean flow as is evident from the streamlines. The constriction
begins to move outward at t = 3T/2. The velocity of the constriction is zero at this
point and the amount of the constriction is 2 maximum. The fluid immediately in
the vicinity of the constriction adheres to the wall of the constriction due to the no-
slip condition. There is some evidence of the outward motion of the fluid at this
point (core flow is beginning to get wavy). At t = 7T/4 the size of the constriction
becomes smaller as it moves outward. There is a clear evidence of the outward
motion of the fluid here and the primary eddy is pushed downstream. Att=0 {or
t = 2T) the constriction is at its mean position and has maximum velocity. The

primary eddy (counterclockwise rotation) is now formed upstream of the

56



constriction. A weak eddy of opposite sense (clockwise rotation) is also formed
immediately downstream of the constriction in the mean flow region due to the
outward motion. This eddy is referred to as the secondary eddy. The primary
recirculation eddy moves further downstream. At t = T/4 the constriction has further
decreased in size, the recirculation eddy at the upstream of the constriction has
been displaced downstream. At t = T/2 the size of the constriction is at its smallest
value and has zero velocity. The secondary eddy has dissipated but its effect is
still present in the form of a waviness in the core flow. The effects of both the
primary and secondary eddies are seen further downstream of the constriction
even though their strength has been dissipated. The small recirculation eddy
formed upstream of the constriction has moved downstream of the constriction and
becomes the primary eddy at time step t = 3T/4. From this discussion it is clear
that the movement of the constriction and the pulsatile nature of the flow causes
unsteadiness in the flow field creating waviness in the core flow. The eddies

created by the constriction are carried away downstream and are eventuaily

dissipated.

5.4.2 Wall shear stress and vorticity
The wall shear stress is represented as a non-dimensional parameter in terms of
skin friction coefficient. The profiles of the skin friction coefficient are shown, for

a = 10, 7.5 and 5 in Figure 5.19 indicate an oscillating wall shear stress profile.

The waviness in the profile is maximum in the vicinity of the constriction and exists
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further downstream until the eddies created by the constriction and its motion are
dissipated. The negative values of wall shear stress also give an idea about flow
separation and the extent of the associated recirculation zones. A change in the
wall shear stress value from positive to negative indicates flow separation and
negative to positive indicates reattachment. We can trace the development of the
primary recirculation eddy from the wall shear stress profiles (Figure 5.19) and the
stream function contours (Figure 5.18) for a = 10. Starting our discussion from t
= 3T/4 we can see that the wall shear stress value increases rapidly as the flow
approaches the constriction and reaches its peak value near the maximum
constricted area at x = 7.5. The increase in shear stress is due to greater fluid
average velocity at this point due to the presence of the constriction and its inward
motion. There is then a sudden drop in wall shear stress, changing from positive
to negative sign which indicates a flow reversal. Comparing wall shear stress
profiles with stream function contours we can see the existence of the recirculation
eddy downstream of the constriction. The profiles of the shear stress then take a
positive sense as there is greater bulk of fluid flowing near the wall caused by the
waviness of the core flow. This waviness is caused by the secondary eddy which
has dissipated. The value of the wall shear stress gradually becomes negative
again. If we look at the stream function contours at this point we can see the
existence of another weak eddy which was the primary eddy in the previous cycle
and has now become weak and is being carried downstream by the flow. The

evidence of this dissipation is indicated by the lower value of the wall shear stress
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compared to the previous one. The profile becomes positive and then negative
again, however, the values are very low indicating that the eddies created by the
constriction in the previous cycles have dissipated. A similar analysis can be

performed by comparing shear stress profiles at other time steps with the stream

function contours.

The maximum value of the wall shear stress occurs when the constriction is near
its maximum size on its inward motion (t = 5T/4). The wall shear stress profiles
take on negative values. The minimum value of the skin friction coefficient for this
time step is also lower compared to the other time step profiles which first show
a positive value and then a negative value. This is because the primary eddy is
maximum in size at this time step. The minimum value of the wall shear stress
occurs when the constriction is near its minimum size on its outward motion (t =
T/4). The maximum value which occurs after the minimum value of the shear
stress for t = T/4 is higher compared to the other time steps due the presence of
the secondary eddy in the core flow causing more fluid to be pushed against the
wall. A similar analysis can also be performed for the other dimensionless

frequencies which follow essentially the same pattem.

The values of the shear stress cormresponding to a=7.5 and 5 are also shown in
Figure 5.19. A similar wavy nature of the profile is observed. As the frequency

decreases we can see that the maximum and minimum values of wall shear stress
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correspondingly decrease. However, for the range of frequencies studied, the wall
shear stress profiles are similar at different frequencies at the same time step. The
lower maximum and minimum values of the shear stress profiles at &« = 7.5 and
a = 5 indicate that the recirculation eddies are smaller compared to o = 10. The
lower shear stress values are most likely due to the fact that a decreased
oscillation frequency with a constant oscillation amplitude of the constriction causes
a decrease in both the wall velocity and acceleration amplitudes. The shear stress
profiles at lower frequencies of oscillation show less waviness downstream of the

constriction indicating that the eddies are dissipated earlier by the viscous forces.

Figure 5.20 shows the contours of the negative skin friction factor along the wall
for one complete time cycle of t = 0 to t = 2T for a = 10, 7.5 and 5 respectively.
The abscissa represents the location along the wall and the ordinate represents
time. The bounding contour has a value of zero, i.e, only contours of C<0 are
shown. The fiow separation at the wall and its movement with time can be
visualized easily from these contours. The figures indicate that there are two major
separation regions. From these contours it is very clear that the size and extent
of the flow separation region decreases as the frequency decreases. At iow
frequencies the separation regions do not travel extensively in the axial direction.
At high frequencies, the separation region caused by the primary eddy in the
vicinity of the constriction remains relatively stationary whereas the separation

region caused by the weaker eddies show considerable downstream
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movement.

The vorticity contours for =10 are shown in Figure 5.21. The motion of the eddies
downstream is evident from the vortex shedding nature of the profiles and is
consistent with the movement of the separation regions. A comparison of the
streamline and vorticity contours shows the presence of the recirculating eddy

wherever there is a concentration of vorticity.

5.4.3 Pressure

The profiles for non-dimensional pressure along the wall are shown forae=10,7.5
and 5 in Figure 5.22 respectively. The lowest pressure corresponds to the
maximum instantaneous cross sectional average velocity and highest pressure
corresponds to a lowest instantaneous cross sectional average velocity due to the
phase difference between the instantaneous flow rate and the pressure. As the
flow approaches the constriction, there is a rapid fall in the pressure with the
pressure recovery after the constriction taking place over a greater length.
Whenever the size of the constriction is large the pressure downstream of the
constriction does not have time to recover. Another factor that is noticeable is that
the amount of pressure drop and recovery is greater at higher instantaneous cross
sectional average velocity as compared to the values at lower instantaneous cross
sectional average velocity. The amount of pressure drop and recovery decreases

as the frequency decreases.
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5.5 Pulsatile Flow with Moving Boundary (Case 4)

The wall of the tube was forced to vibrate at a non-dimensional frequency of
pulsation, ¢, values of 10, 7.5 and 5 respectively and at an amplitude of + 0.05D,,
The results were computed for a Reynolds number of 100. A detailed analysis of
the stream function, wall shear stress and pressure variation is presented for an

a value corresponding to 10 due to the complex nature of flow at this frequency.

For a values of 7.5 and 5, only the wall shear stress and pressure variations are

presented.

5.5.1 Stream function

The flow development and the unsteady nature of the flow can best be understood
by considering the stream function contours for o equal to 10 as shown in Figure
5.23 which contains eight diagrams. Each one contains the stream function
contours on the r-x piane for different times within the cycle of osciliation. One
complete cycle has a period of 2T. The flow behaviour is best explained when
analysis is started at time t=T. At this instance the wall is at its mean position and
has maximum inward velocity. This is evident from the nature of the streamiines
in the vicinity of the vibrating portion of the wall. There are no major areas of flow
separation. The core flow is beginning to get wavy. At t=5T/4, the size of the
contraction increases. The fluid is pushed inward towards the centreline due to the
inward motion of the flexible portion of the wall and there is a small recirculation

eddy which is formed downstream of the contraction. The nature of this eddy is
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counterclockwise and this eddy will be referred to as the primary eddy. The
existence of dissipated eddies on the wall further downstream of the contraction
is also seen from the streamline contours. At t=3T/2, the flexible portion of the wall
moves further inwards and the contraction is at its maximum size which
corresponds to a wall velocity of zero. The primary eddy has further increased in
strength due to the increase in size of the contraction. The waviness of the core
flow is very evident at this time step. This waviness of the core flow was created
during the outward motion of the vibrating wall, the nature of which will become
clear later in this discussion. At t=7T1/4 the size of the contraction has decreased
as the flexible portion of the tube wall has started its outward motion. During the
outward motion of the tube, the fluid adheres to the wall of the tube thereby
causing waviness in the core fiow. The primary eddy has shifted further
downstream. The strength of the primary eddy has started to decrease. Also,
another flow separation region is noticed to occur further downstream at a value
of x approximately equal to 13. Flow separation regions are associated with
recirculating eddies at the wall, hence this eddy is referred to as the secondary
eddy. The nature of this eddy is counterclockwise. At t = 0, which also corresponds
to t = 2T, the tube wall has maximum outward velocity and is at the mean position
of oscillation. The outward motion causes a weak clockwise recirculating eddy to
form in the core flow near the flexible portion of the wall causing the waviness of
the flow to increase further. The primary eddy is pushed further downstream and

its strength continues to decrease and the effects of the secondary eddy remain.
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At t=T/4 the tube wall moves further outwards thereby becoming distended. The
clockwise eddy has dissipated. In the vicinity of the distended portion of the wall
there is evidence of the outward nature of the flow due to the wall motion. There
is also another counterclockwise eddy being formed due to the flow separation at
the edge of the distended portion of the wall. This eddy is referred to as the
tertiary eddy. The primary eddy is pushed further downstream due to the flow and
the secondary eddy has disappeared. Att = T/2, the tube wall becomes distended
to its maximum extent and has zero velocity. The tertiary eddy has further
increased in strength and the primary eddy has dissipated. The waviness of the
core flow has also reduced. At t=3T/4, the tube wall is on its inward motion as can
be seen from the nature of the streamlines. The strength of the tertiary eddy has
decrsased as the size of the distended portion of the wall decreased. The core
flow also remains relatively smooth. From this discussion it is clear that the motion
of the tube wall and the puisatile nature of the flow causes unsteadiness in the
flow. During the inward motion there are relatively few flow phenomenon other than
the creation of recirculation eddies of a counterclockwise sense. During the
outward motion, the waviness of the core flow increases, and there are eddies of
both types (clockwise and counterzlockwise) are present and the core flow is more

wavy.



5.5.2 Wall shear stress

The wall shear stress profiles shown in Figure 5.24 indicate an oscillating wall
shear stress profile. The oscillation is maximum in the vicinity of the flexible portion
of the tube wall and dissipates further downstream. The creation of the
recirculation eddies can be traced by comparing the wall shear stress profiles
shown in Figure 5.24 and stream function contours shown in Figure 5.23 for a=10.
As in the case of stream function contours, we begin the discussion at t=T. It can
be seen that downstream of the flexible portion of the wall the shear stress profile
shows an oscillatory behaviour. The value of the shear stress is greater than zero
indicating no flow reversal. The waviness gradually reduces further downstream
due to the viscous force in the flow and the straightening of the wall. At t=5T/4, the
size of the contraction has increased causing an increase in the peak positive
value near the contraction. The fiuid has a greater instantaneous cross sectional
average velocity in this region which causes a greater velocity gradient near the
wall. The peak positive value is followed by a sudden drop in the shear stress to
a negative value as the distance from the inlet increases. This indicates a flow
reversal near the wall. Comparing the streamiine contours at this time we can see
the presence of a recirculating eddy (primary eddy) just downstream of the
contraction. The shear stress takes a greater positive value at t = 3T/2 as there
is a greater amount of the fluid pushed against the wall of the tube causing a large
velocity gradient in the vicinity of the contraction. Downstream of the contraction

the shear stress takes a negative value as the flow separates in this region. This
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again indicates the presence of a recirculating eddy mentioned at the previous time
caused by flow reversal near the wall. The region of negative shear stress that was
present at t = 3T/2 has moved downstream slightly at t = 7T/4. This region is
followed by a positive region and again becomes negative further downstream at
the location of the secondary eddy mentioned previously in the discussion of the
stream function. The shear stress values at t = 0 or (t = 2T), show that the
negative value of the shear stress present at t= 77/4 moves further downstream.
These downstream movements are also consistent with the motion of the primary
2ddy. At t = T/4, the shear stress profile has shifted slightly downstream and two
locations where minimum values occur are shown. These indicate the presence
of two recirculation eddies. A comparison with stream function contours at this time
indicates the creation of the tertiary eddy corresponding to the first minimum. The
magnitude of the second minimum, which is due to the primary eddy, is further
downstream and is lower than the first one. This indicates that the primary eddy
has become weaker in nature. At t = T/2 the wall is distended to its maximum
extent. The tertiary eddy at this time has maximum strength. Similarly the primary
eddy has maximum strength when the contraction of the wall is at its maximum
extent at time t = 3T/2. Comparing the values of the shear stress at these two
locations it could be concluded that the tertiary eddy is strongest and the

secondary eddy is the weakest.



A similar analysis can be done by comparing the shear stress profiles at other
times with stream function contours. At all times, there is a waviness in the profile
indicating that the fluid is pushed towards the wall at one instance and away from
the wall at another. The fluid gets pushed towards the wall either due to the
contraction created by the inward motion of the wall which causes the streamlines
to converge locally or due to the presence of the dissipating co-rotating eddy in the
core flow creating a positive value of the shear stress. Negative values of the
shear stress are created by flow reversals which correspond to the

counterclockwise recirculating eddies.

The values of the wall shear stress corresponding to o = 7.5 and 5 are shown in
Figure 5.24. A similar wavy nature of the profile is observed. As the frequency
decreases, however, the amplitude and the extent of the waviness in the wall
shear profiles decrease. This is most likely due to the fact that a decreased
oscillation frequency with a constant wall oscitlation amplitude causes a decrease
in both wall velocity and acceleration amplitudes. This causes the diffusive forces

to play a greater role in the dissipation of the eddies.

Figure 5.25 shows the contours of the skin friction coefficients along the wall for
one complete time cycle of t = 0 to t = 2T for & = 10, 7.5 and 5 respectively. Only
negative values and zero are shown. The abscissa represents the location along

the wall and the ordinate represents time. The bounding contour corresponds to
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a wall shear stress value of zero. The flow separation at the wall and its movement
downstream with time can easily be visualized from these contours. The presence
of multiple separation regions at higher frequencies could be seen from these

contours. At lower frequencies there is only one main separation region.

5.5.3 Pressure

The non-dimensional pressure along the wall is shown in Figure 5.26 for ¢ values
of 10, 7.5 and 5. There is a pressure drop as the flow approaches the contraction
if the flexible portion of the wall is on its inward motior. !f the vibrating portion of
the wall is on its outward motion there is an increase in pressure as the flow
approaches the distended region. When the contraction is on its inward motion
there is a pressure rise after the contraction. When it is on its outward motion the
pressure decreases in this region (after the distended region). As in the previous

case, the amount of pressure changes with time decreases as the frequency

decreases.
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Figure 5.5 Non- imensional pressure drop across the constrictions
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(b) two constrictions
Figure 5.6 Non-dimensional pressure distribution along the wall
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Figure 5.9 Stream function contours
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Figure 5.10 Vorticity contours
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(b) Case 2

Figure 5.16 Stream function contours

(b) Case 2
Figure 5.17 Vorticity contours



Figure 5.18 Stream function contours for one complete cycle of pulsation
(Case 3)
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Figure 5.18 Stream function contours for one complete cycle of pulsation
(Case 3) (cont’d)
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Figure 5.21 Vorticity contours for one complets cycle of pulsation
(Case 3)
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t=3T14

Figure 5.23 Stream function contours for one complete cycle of pulsation
(Case 4)
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Figure 5.23 Stream function contours for one complete cycle of pulsation
(Case 4) (cont'd)
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CHAPTER VI Conclusions and Recommendations

A numerical method has been developed to determine the fluid dynamic quantities
associated with the flow through a tube with multiple constrictions and pulsatiie
flow through tubes with moving boundaries. The goveming equations, in
transformed, body fitted curvilinear coordinates, are solved using a control volume
discretization procedure. The method presented here can also be used for other
flow problems having arbitrary axially-symmetric domains with or without moving
boundaries in the flow passage. Based on the computational investigation, a

number of conclusions are drawn as listed below.

6.1 Conclusions

6.1.1 Flow in a tube with multiple constrictions

The effect of the number of constrictions and the Reynolds number on flow
parameters such as pressure, velocity and wall shear stress were determined and

the development of periodicity characteristics were investigated.
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a) Pressure

1.

The increase in the number of constrictions causes an increase in the non-

dimensional pressure drop.

2. The non-dimensional pressure drop decreases with the increase in the
Reynolds number.

3. The wall pressure shows a rapid drop as it approaches the constriction with
the pressure recovery taking place over a greater length.

4, Subsequent constrictions show an increasingly similar pressure drop and
recovery with the downstream profiles shifting correspondingly downwards
due to the net mass flow in the positive x direction.

b) Velocity

5. The maximum centreline velocity occurs slightly downstream of the
constriction due to the formation of a recirculation zone near the wall as a
result of flow separation.

6. As the number of constrictions increases the fluid does not have an

opportunity to recover to its initial value before it encounters ancther

-constriction.

¢) Wall shear stress

7.

The wall shear stress reaches a maximum value near the maximum

constricted area. The wall shear stress takes a negative value downstream
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of the constriction due to flow separation.

The maximum value of the wall shear stress for the first constriction is
always greater than the maximum vaiue of the wall shear generated by the
second constriction as the recirculating eddies formed downstream of the

first constriction has a diminishing effect on the vortices generated by the

second constriction.

d) Periodicity characteristics

9.

10.

An approximate expression for the length for development of spatial
periodicity on flow through a tube with constrictions and inlet conditions

such as the one studied was found to be

/
nm=-—Diz1 +Hf0%+1“.

o
The numerical results for a module using periodic boundary conditions,
showed a reasonable comparison with the spatially periodic region of a pipe

having multiple constrictions.

6.1.2 Pulsatile flow with time dependent constriction

11.

At higher frequencies of pulsation two types of recirculating eddies
(clockwise and anticlockwise rotation) were created in succession to each
other causing an oscillating wall shear stress and creating waviness in the

core flow.
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12.

13.

14,

Two regions of flow separation were predicted and they both moved
downstream throughout the remainder of the cycle.

The size and extent of the flow separation regions decreased as the
pulsation frequency decreased.

A decrease in the frequency of pulsation caused the unsteadiness in the

flow to decrease.

6.1.3 Pulsatile flow with moving boundary

18.

16.

17.

18.

During the downward motion of the vibrating wall, the waviness in the core
flow was minimal and recirculating eddies of a counterclockwise nature
were created.

The upward motion of the wall created eddies of both clockwise and
counterclockwise rotation causing an increase in the waviness of the core
flow.

The number of separation regions decreased from three at higher
frequencies to one as the frequency was decreased.

A decrease in the frequency of pulsation caused the unsteadiness in the

flow to decrease.

6.2 Recommendations

The following suggestions are provided as possible ways of extending the scope

of the present study and improving the predictions:
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The problem of flow through a tube with multiple constrictions should be
extended to the turbulent flow regime as most of the flows in real life are
turbulent and such a study will also be useful in heat exchanger analysis.
In order to gain a better understanding of moving boundary flows, the
effects of frequency, Reynolds number and phase difference between the
pressure gradient and the wall motion should be examined in greater detail.
Accurate and faster sclvers should be employed to solve the pressure
corraction equation.

The equations that describe the motion of the wall can be coupled to the

equations considered in this work and solved simultaneousty.
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