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ABSTRACT

In this work, the possibilities and the peculiar properties of trace chemical 

detection by the phenomena of surface-enhanced Raman scattering (SERS) and surface- 

enhanced resonance Raman scattering (SERRS) are examined.

Detection of single-molecule SERRS of three-dye molecules from Langmuir- 

Blodgett monolayers on nanostructured metal films is presented. Here the observation of 

overtones and combinations in the single-molecule spectra of several perylene derivatives 

is shown for the first time. Characteristic differences in the behavior of the SERRS signal 

arising from a few molecules to that of the ensemble are described. In addition, the 

particular experimental challenges encountered in the use of SERRS for single molecule 

detection are presented and discussed.

The unique complexities of enhanced Raman spectroscopy are highlighted 

through the study of several systems. First, an extensive study into the SERS signal of 

the small molecule 1,8-naphthalimide is presented. An attempt is made to explain the 

many perturbations to the characteristic Raman spectrum that are a result o f SERS. In 

particular, the dispersion relations of field polarization at a metal surface, which give rise 

to surface selection rules, and non-uniform enhancement factors, are detailed. This is 

shown to be one of the clearest examples of surface selection rules in SERS to date. 

Second, the photodynamic behavior of the SERRS signal for several dyes is presented. 

This is one of the first systematic studies of the temporal behavior of the SERRS signal, 

and it explores important questions to both single molecule detection and SERRS in 

general.

Finally, the fabrication, characterization, and application of several new substrates 

for SERS/SERRS are demonstrated. These substrates include the following: mixed

iii
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Ag/Au evaporated metal films; self-sustained, Au nanoparticle embedded chitosan films; 

and Layer-by-Layer, avidin/Ag nanoparticle films.

iv
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CHAPTER 1 

INTRODUCTION
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1.1 Introduction

Surface-enhanced Raman scattering (SERS) has been the subject of vast 

theoretical and practical developments.1,2 In particular, it is recognized as an 

ultrasensitive analytical technique, and it has been proven to be a viable single molecule 

spectroscopy.2-7 In addition, it has the potential to be a very powerful spectroscopic tool 

for emerging fields in nanoscience.8-10

SERS is based on the fact that a metallic nanostructure with the right optical 

properties, proper size and morphology can enhance optical fields by orders of 

magnitude. These “optical amps” can augment the photo-processes of molecules located 

near their surface when excited with the appropriate frequency of radiation. In the case of 

Raman scattering, the total enhancement has been suggested to reach upwards towards 

1010 and possible larger.11 Theoretically, there is no implicit molecular specificity to the 

process, in practice however this is often not the case. SERS, a technique now over 30 

years old, continues to draw a great deal of interest due to its unique ability to provide 

vibrational fingerprint at trace levels with unparalleled potential in many areas of 

analytical chemistry. A sampling of the current scientific literature finds SERS being 

applied in all branches of science. The life sciences have shown extensive interest in the 

possibilities offered by trace chemical detection through remote, non-evasive means. 

SERS has been used in a vast range of applications, from immunoassays to bio

recognition sensors.12-14 Promising developments such as real time recording of glucose 

levels for diabetes,15,16 the rapid detection and identification of pathogens,17 early cancer 

detection,18 and even potential use for the rapid sequencing of DNA19 have only added to

2
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the growing interest in SERS. Material science, particularly the area of fullerene 

chemistry, has found SERS to be extremely useful for characterization.20'22

Those investigating the fringes of nanoscience look anxiously towards 

developments in SERS for the potential to monitor the bond formation in single molecule 

chemistry. SERS, as a direct application of metallic nanostructures, is part of an area of 

frantic research in nanoscience. It is now at the point that a demonstration of SERS 

activity, is part of the tool chest for characterization, along with plasmon absorption and 

transmission electron microscopy, for every new metallic nanoparticle synthesized.23'29

The field of SERS has also contributed to fundamental science, particularly the 

expanding fields of nanomaterials and plasmonics.30,31 Much of the current knowledge of 

the optical properties of metallic nanoparticles has been fuelled, in part, as an attempt to 

explain the SERS phenomenon. Since the demonstration of single molecule detection by 

SERS, this area of research has exploded in the subsequent attempts to explain the large 

electromagnetic fields necessary for related observations.32'36

Of course all this great promise comes with a caveat. Aside from a set of well 

behaved average SERS measurements, SERS spectroscopy can be extremely challenging. 

Perturbations to the experiment are numerous and the interpretation of the results can be 

extremely perplexing.37 This is especially evident at the trace and single molecule 

regime.38"42

To maximize SERS as a viable analytical tool, a deeper understanding of all the 

variables that impact the experiment is necessary. The limitations and the possibilities 

should be understood. The SERS practitioner will face many challenging questions, such 

as: How do the parameters of the experiment affect the measurements? What is the

3
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impact of nanostructures and substrates on the recorded spectrum? At what level do the 

ensemble statistics break down? What are the signatures of single molecule detection?

The work presented in this thesis is an attempt to provide insight into some of 

these questions. The title of this thesis, “Surface-enhanced Raman Scattering for Trace 

Chemical Detection,” was chosen because all the work presented here deals, in one way 

or another, with various aspects of trace detection by enhanced Raman scattering. After 

this introduction, Chapter 2 sets the stage for the discussions to follow. The foundations 

of Raman scattering are discussed, followed by an overview of the underpinnings of the 

electromagnetic mechanism responsible for the augmented signal seen in SERS and 

SERRS experiments.

In Chapter 3, the instrumental methods used for this thesis are discussed, with 

particular emphasis on the role of instrumentation in Raman and SERS studies. Included 

in the third chapter is an overview of the methods used for the fabrication of nanoparticle 

films and the tools used for their characterization.

The results presented for the thesis can be divided into three sections. The first 

covers single molecule studies. The middle section is an examination of important 

peculiarities of enhanced Raman experiments, and the last encompasses work done on 

SERS substrate development.

Chapter 4 presents the use of monomolecular Langmuir-Blodgett for the SERRS 

studies of overtone and combination in the spectra of single molecules. The success and 

the challenges of SM-SERRS are highlighted.

In Chapters 5 and 6, several of the most relevant challenges to enhanced Raman 

experiments are examined and discussed. What at first may be seen as complications in 

SERS, may actually open doors to new ways to extract information from the SERS
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experiments. In particular, Chapter 5 looks at the many dispersion relations that are 

present in the SERS experiment through the case study of a small molecule. While in 

Chapter 6, the photodynamic studies of several systems investigated under resonance 

Raman conditions are presented and discussed.

In Chapter 7, the fabrication, characterization and application of several new 

substrates for SERS are presented. And finally Chapter 8 reiterates the main conclusions 

of this thesis, and possible future directions of study are discussed.
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2.1 Introduction

SERS is a meeting ground between vibrational spectroscopy and the plasmonics 

of metal nanoparticles and nanostructures. In this chapter, both these aspects of SERS are 

discussed. Ultimately, SERS is a branch of vibrational spectroscopy, and as such, it is 

necessary for any proper interpretation of SERS results to have a robust understanding of 

the underpinning theoretical foundations of the vibrational theory of molecules and in 

particular of the vibrational spectrum observed using the inelastic scattering of light or 

Raman effect. In this section the theory of molecular vibrations will be discussed. The 

physics behind Raman scattering, both classical and semi-classical, are highlighted and 

the section ends with a look at Raman intensities

In the second part of this chapter the optical properties of nanoparticles and their 

role in the theoretical framework of surface enhanced Raman scattering are discussed.

2.2 Theory o f Molecular Vibrations

The theoretical modeling of molecular vibrations can begin with the classical 

picture of a molecule as a collection of N objects connected through a set of massless 

springs. This assembly has a total of 3N degrees of freedom to describe the ability of each 

atom to move in the 3 Cartesian directions (x,y,z). The molecular system is treated as a 

whole, and so the translational movement accounts for 3 of these degrees of freedom, and 

3 more (2 for a linear arrangement) have to be assigned to describe the rotational 

movement. This leaves 3N-6 (or 3N-5 for a linear molecule) vibrational degrees of 

freedom to describe the vibrational motion. Within the harmonic approximation, each 

degree of freedom is set in correspondence with the so called “normal modes of

10
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vibration”, and they correspond to motions where all the nuclei undergo harmonic 

motion, move in phase and have the same frequency of oscillation.1

A very simple approximation for a molecular vibration is a classical harmonic 

oscillator that obeys Hooke’s law:

Here, Req is the equilibrium position for the vibration between two atoms and k  is the 

force constant. Like the classical oscillator, the frequency v is given by the equation:

where fx is the reduced mass.

Though this is a rough estimate, it does give a rationale for the frequencies 

measured in vibrational spectroscopy. This approximation fails to account for the 

presence of any anharmonicity, be it electrical or mechanical. As such, a better 

description is attained with the Morse potential, which can be seen in Figure 2.1. The 

presence of an anharmonicity relaxes the Av = ±1 selection rule, explaining the 

observation of vibrational overtones and combination in the Raman spectrum. This is a 

spectral feature that will play an important role in the single molecule spectroscopy 

experiments discussed later.

A molecular system can reveal its vibrational information through the interaction 

with light. This can be either through the absorption or the scattering of photons. Two 

spectroscopies that arise from these two physical phenomena are: Infrared Absorption 

(IR) and Raman Scattering (RS). Although both techniques probe the same set of 

vibrations, each has a different physical origin. IR occurs with a change in a dipole

F  = -k(R  -  Re(j) (2.2.1)

(2.2.2)

11
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moment, whereas RS requires a net change in the polarizability with the corresponding 

normal coordinate. As such, these methods are complementary tools for the 

characterization of the vibrational modes in a molecular system.

<D
C

LU

Internuclear Separation (R )------ ►

Figure 2.1: Potential energy diagram for a molecular vibration

2.2.1 Infrared Absorption

For the absorption of a photon by a molecule for a vibrational mode to occur the 

dipole moment must change during the motion of vibration, i.e. a change in the 

equilibrium geometry produces a net change in the dipole moment. When this condition is 

met a quantum of light of the same frequency as the vibration can be absorbed. The 

energy levels associated with molecular vibrations are in the infrared region of the 

electromagnetic spectrum thus forming the basis for infrared absorption spectroscopy.

12
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One measure of the efficiency of an optical process is the cross section, which 

gives a measure of the probability for an event to occur. The cross section for IR 

absorption is on the order of 10"20 cm2 per molecules. For comparison, typical cross 

section values for the most common optical processes are shown in Table 2.1.2

Table 2.1: Cross Section for various Optical Processes

Process a (cm )

Absorption UV
IR

10-i*
10'21

Fluorescence n r 19
Raman Scattering 10"28
Resonance Raman Scattering 10’24

2.2.2 Raman Scattering

The interaction between a molecular system and monochromatic source of light 

can result in several types of scattering. The impinging photons can be scattered either 

elastically or inelastically. When there is no loss in energy, this elastic scattering is called 

Rayleigh scattering. In addition, there are a very small number of photons that experience 

an energy change that is equal to a vibrational quantum transition. These are the Raman 

scattered photons and provide the basis for Raman scattering spectroscopy. It is named in 

honour of Dr. C.V. Raman and his experimental discovery in 1928. Raman scattering is 

very inefficient compared to other optical processes as can be seen in Table 2.1. The 

probability for the generation o f a Raman scattered is about 1 for every ten m illion  

photons scattered by a molecule. In comparison, the top chromophores have a 

fluorescence quantum yield approaching 1, i.e. almost all the photons that are absorbed 

are emitted as fluorescence.

13
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The Raman effect can be described both classically and quantum mechanically. 

Both treatments are based upon the molecular response property of polarizability (a). 

More precisely, the property of interest is the induced polarization (P) that is the result of 

an interaction of the molecule with an electromagnetic field (E):

2.2.2.1 Classical Treatment

The response function is the polarizability, which is a description of the electron 

cloud that surrounds a molecule and essentially describes it’s deformability in the 

presence of an electric field. Just as an oscillating dipole will radiate, so too will an 

induced dipole that arises due to an interaction with electromagnetic radiation. If the 

electric field of frequency va is given by E -  Ea cos I tcvJ  or E = E0 cos coj, then the 

induced dipole will be:

At any one time the molecule is in a complex motion of vibrations which is 

approximated as the summation of normal vibrations. Of course the polarizability is a 

function dependent upon the normal coordinates Q = Q() cos coj, where coj is the frequency

of the y'th vibration. The polarizability can be expanded out as a Taylor series about the 

equilibrium:

P = aE (2.2.3)

ju = a -E 0-cos coj (2.2.4)

Qa cos co/
(2.2.5)

and the induced dipole moment becomes:

14
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I * - a E 0Q0 cos coj+ 

which can be expressed as:

1

•Q0'E0• cos ojjt • cos cdJ  (2.2.6)

ju = a„E' cosa>gt+  ^
dec )
~ J  QoEo [cos(«y„ + 6)j)t + cos(0)o - Wjy ] (2.2.7)

Thus the induced dipole oscillation is comprised of three frequencies which 

correspond to elastic scattering (Rayleigh), and inelastic scattering (Raman) with a lower 

frequency (Stokes) and higher frequency component (anti-Stokes) as illustrated in Figure

2.2. The main selection rule for Raman scattering results from the change in the

f
polarizability during the motion of the vibration: — U o

s e l

While this formalism explains the basic mechanisms of Raman scattering, there 

are several properties that are missing. Among these is any gauge of relative intensity as 

well as any inclusion of electronic resonance effects. For that we must turn to quantum 

mechanics.
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Stokes
W0 - W j

Rayleigh
o

Anti- 
Stokes
W o + O ) :

Figure 2.2: Illustration of the scattering processes.

2.2.2.2 Quantum Mechanical Treatment

In the QM formalism, the molecule is treated as a quantum object while the 

interacting electromagnetic field is treated classically. Here, the scattering events are seen 

as a result of an impinging photon initiating a transition between energy states. When the 

excitation is far from an electronic absorption the transition involves an intermediate state 

often referred to as a “virtual” state. When the excitation is coincident with an electronic 

excitation of the molecule, the transition involves a true eigenstate of the system and is 

known as resonance Raman scattering. The different possibilities are illustrated in Figure

2.3.

16
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Rayleigh
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Stokes

Figure 2.3: Energy level diagram for the scattering processes.

Resonance
Raman

'0

The classical polarizability tensor is replaced by a transition polarizability tensor 

Pmn = which can be calculated from second-order perturbation theory.4 This

leads to the Kramers-Heisenberg-Dirac (KHD) equation:4

( ol t  , H D p \ e ) { e \ D M
y y 'p v  )m yn j /  *h \ *  vem - V,  -/T,, v„+v,-rif. ,v„+vL- iT e j

(2.2.8)

Here, vl is the frequency of the excitation, vem is the frequency between two states, D is 

the electronic dipole moment operator, \e) corresponds to the intermediate state, and iT 

is the damping term and is related to the lifetime of the state.

17
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2.2.2.3 Resonance Raman Scattering

There can be several changes in the Raman scattering of a molecule if the 

wavelength of the exciting line falls under the envelope of absorption. Looking at the 

KHD equation, one can see that as the excitation energy approaches an electronic 

resonance, the denominator tends to zero. This is manifested as a significant amplification 

of Raman intensity. Experimentally, increases on the order of 104 to 106 have been 

measured.5 This intensity increase does not apply equally to all vibrations. Enhancement 

for a particular vibrational mode is strongly correlated to the bands symmetry. As well, 

modes that are involved in the electronic transition are those that are seen with the highest 

intensity in the RRS spectrum. It has been shown that there are several different 

mechanisms that can account for resonance enhancement. These can be expressed when 

the KHD is written as a Herzberg-Teller expansion of the electronic wavefunctions. The 

resulting expressions are grouped into what are known as the Albrecht terms:

(apa) = A + B + C 4 The RR for the molecular systems studied in this thesis is

predominantly described by the ̂ 4-term.

The Albrecht A-term is comprised of calculations that measure vibrational overlap 

factors and the squares of which are called the Franck-Condon factors, hence RR 

scattering where this term is dominant is said to undergo a “Frank-Condon 

Enhancement”. This term describes situations in which a component of the normal 

coordinate of the vibration is in a direction in which the molecule expands during an 

electronic excitation. The more the molecule expands along this axis when it absorbs 

light, the larger the enhancement factor. The magnitude of the intensity increase for a 

vibrational mode can be related to the quantity AQ, which is the measure of change in the

18
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equilibrium position of the normal coordinate of the ground state to that in excited state. 

This is pictorially presented in Figure 2.4. The ^4-term is applicable only to totally 

symmetric vibrations. Hence resonance Raman scattering under conditions where the A- 

term is active have spectra dominated by these modes.

£>
<D
c

LU

A Q
Internuclear Separation (R)

 ►

Figure 2.4: Energy Diagram  o f the ground and excited state. The potential energy o f  

the ground and excited state is shown and the change in normal co-ordinate between the 

two, AQ
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An additional consequence of ,4-term scattering is that overtones and 

combinations are often observed. Their intensity and the extent of their progressions can

differences between the ground and the excited state equilibrium geometries, as well as 

changes in the lifetimes of excited states.6

2.2.2A The observed Raman intensities

The best place to begin in the analysis of Raman intensities is to look at the power 

output for a classical dipole oscillator:

where fi is the dipole moment and v is the frequency of oscillation. The Raman intensity 

can be similarly expressed with the induced dipole moment expressed in terms of the 

elements of the polarizability derivative:

As is evident, the intensity of a Raman band is a function of a molecule’s 

polarizability derivative.

Experimentally, the transition probability and polarizability derivative tensor are 

related to a quantity more familiar in optical spectroscopies, the cross section, o (cm2):

Experimentally measured Raman intensity for the /th  band can then be written in 

the simplest terms as:

be used as an indicator of the AQ factor. Their magnitude can give insight into possible

(2.2.9)

(2 .2.10)

(2.2.11)

i B = t r u r (2.2.12)
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where Irs is the measured intensity for a given volume element, I0 is the exciting 

intensity, and N is the number density of scatterers.

This describes the scattering of a collection of non-interacting molecules, in a 

vacuum, off resonance, with signal collection assumed to be over a complete integrated 

sphere. Neither temperature nor wavelength effects are included. To better predict what is 

measured in experiment, this intensity relation can be built up to account for additional 

terms as needed.

For instance, a common expression is the differential cross- section, which gives a 

measure of the rate of the removal of energy from a light source per unit of solid angle, 

dQ. Following the formalism of McCreery7, this is given as:

Recall that the power output of an oscillating dipole has v4 dependence. This can 

be incorporated into the differential cross section so as to give a frequency-dependent 

cross section:

Present-day spectrometers use photon counting detectors, so an adjustment is made to 

have the cross section containing units of photons*s'', instead of Power (W):

In addition, the intensity for anti-Stokes (AS) scattering can be related to that of 

the Stokes. Since AS arise from molecules in excited vibrational energy states, one needs 

to look at the energy distribution of molecules as governed by the Boltzman distribution. 

The ratio of anti-Stokes to Stokes intensity is described by the following:

(2.2.13)

(2.2.14)

(2.2.15)
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/  (ffl +m )
^  ^ ---- ^-exp(-A £, IkT) (2.2.16)
h  (co0-G)j)

In summary the intrinsic intensity of Raman band is related to the properties of 

polarizability derivative tensor and the wavelength of light used for excitation. Later in 

the instrumental section, it will be shown how the Raman intensity that is measured is 

further modified by the experimental condition when recorded, and how ultimately what 

is measured can be related back to the original inherent molecular cross section.

2.3 Theoretical foundations for SERS

2.3.1 Introduction

The first measurement of “surface enhanced” Raman scattering was in the 

laboratory of Fleischmann. It was recorded from samples measured on the surface of a 

roughened electrode and was reported in 1974.8 The enhancement was prescribed to the 

rough surface and the increase in surface area compared to a flat electrode. In 1977, two 

groups independently confirmed the results but refuted the explanation.910 In the wake of 

these discoveries and the mountain of work that has followed, it is now generally 

accepted that the SERS effect predominantly is the result of enhanced electromagnetic 

local fields,211,12 A second type of contribution, that can be provided by charge transfer 

resonances and other surface effects, are collected under the general term of “chemical 

effects” or chemical enhancement.

From the beginning SERS was used with the caveat that, “the surface is a rough 

surface”, where rough was envisioned as protrusions that were modeled as semi-
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spheroids.13'15 This has lead to the somewhat misleading moniker of SERS. The 

experimental results accumulated over the years have made it clear that SERS is observed 

on nanostructures. More importantly, it is the localised surface plasmons that are 

supported by these nanostructures that are the source for the optical enhancements 

measured.16"21

The intrinsic properties of the SERS experiment then can be explained in terms of 

an electromagnetic enhancing mechanism (EM enhancement). These include; distance 

dependence, metal selectivity, shape and size dependence, and the role of cavities and 

interstitial spaces. The SERS signal that is generated from the EM mechanism is 

proportional to the fourth power of the excitation field. The physical meaning of this 

mechanism can be appreciated using the most basic and simplest of formalisms, that of 

“the spherical model” with a single dipolar resonance as illustrated by the cartoon in 

Figure 2.5. It describes SERS at the surface of a spherical particle with dielectric 

function s(co) excited with incident laser line represented by a plane electromagnetic wave

E t {r,C0o ) • Though the sphere is rarely what is encountered in experiment, the beauty of

the spherical physical model is that it helps to rationalize many SERS features, and as 

such, is a useful guide for the experimentalist. The theory was put forth by several 

researchers in the immediate years following the discovery of SERS.11,22,23

23
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s ( ( 0 )

Figure 2.5: Illustration of the Single Sphere model.

2.3.2 Single Particle Model

For a singular spherical particle of radius R, composed of a material characterized 

by a complex wavelength-dependent dielectric functions^) = s'(A) + is’(A) . The 

electric field strength is dependent on the complex dielectric function of the metal, as well 

as that of the surrounding medium, shown in the following relation:

E oc £W (2.3.1) 
s(A) + 2s„(A)

where e and e0 are the dielectric functions for the metal and the surrounding medium 

respectively.

From this, a key resonance condition becomes apparent. The large electric fields 

will occur when the following condition is met (provided that s ’ is negligible):

Re{s(A)} = -2s0(A) (2.3.2)
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This relation determines not only the wavelength dependence of the surface plasmon but 

also gives an indication as to what metals are of use. The values for the real and 

imaginary parts of the dielectric function at the peak plasmon resonance for silver and 

gold, the two most common materials used for SERS substrates, are given in Table 2.2.

Table 2.2: Real and imaginary parts of the dielectric function for silver and gold
Metal Plasmon

s' s" Resonance
(nm)

Silver -2.029919 0.60192 350
Gold -2.546544 3.37088 496

The dipole surface plasmon behaves as an emitter, so not only will the molecule 

experience the enhanced field of the laser, but whatever Raman scattered photon interact 

with the plasmon will be radiated with a greater intensity. This concept is illustrated in 

Figure 2.6.

hv

Metallic 
nanoparticles

-XM.
Wavenumber /  cm"1

Wavenumber /  cm'1

Figure 2.6: Illustration of the surface plasmon behaviour as an amplifier and emitter
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The enhancement factor is as follows:

s  {laser)—s  „ £ {Raman)-£„
(2.3.3)

e {laser)+ 2sa s  {Raman)+ 2e0

This is often simplified to:
EF = GlG2RS (2.3.4)

Or neglecting the Raman shift:
EF = G4 (2.3.5)

This is the basis for the SERS effect. The key points to illustrate is that regardless of 

the nanostructure used for the substrate, the enhanced Raman signal is predominately a 

factor of the local enhanced fields, and as such, any factor that tends to increase these 

fields will in turn increase the enhanced Raman scattering (or any other optical process 

for that matter).

These variables include a structure’s composition, shape and morphology, as well 

as, contributions from field interactions (such as dipole-dipole interactions). These field’s 

in-between nanostructures have been uncovered to be a significant factor for the extreme 

enhancements encountered in many single molecule studies.

There are several general features directly resulting from the EM enhancement that 

are worth mentioning.

1. It is dependent on nanostructures that can sustain dipolar plasmon resonances.

2. The average enhancements predicted are on the order of 103-107

3. The strength of the EM enhancement is dependent on the exciting frequency

being in tune to a dipolar plasmon resonance of the nanostructure. This could
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be the dipolar mode of an isolated particle or a multimode present in 

aggregates.

4. Any substrate evoking an EM mechanism will demonstrate a distant

dependence. For spheres, this is given by a ------- — relation where a is
(a  + d )

the radius of the sphere, and d is the distance from the enhancing surface. 

When covered with a monolayer at a distance d, the dependence has been

found to be — ——nr -24 
(a+Jf

2.3.3 Advanced SERS Theories

While the spherical model is usefully for a rudimentary understanding of the 

phenomena, it is not a realistic description of what is encountered in the laboratory. 

Experimentally, the highest enhancements are realized with disordered, aggregated 

substrates such as evaporated metal island films and cast colloids.25'27 Models have 

subsequently been developed in an attempt to account for these much more complex 

systems. Much theoretical work in this regard has been put forth by Stockman28"30, as well 

as Shalaev31,32, and Pendry33. From these works a more complex picture of the EM 

mechanism emerged, one where interparticle interactions become much more important. 

An example of this would be the extensively used fractal aggregates, or any similar 

collections of particles close enough to interact strongly as illustrated in Figure 2.7.
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Figure 2.7: Illustration of typical nanoparticle interactions encountered in SERS 

experiments

Here the dipolar eigenmodes are complex electromagnetic modes of which some 

can be highly localized. There is a useful analogy between the theory of molecular 

vibrations and the present development of EM SERS. In the theory of molecular 

vibrations, the simplest case is the vibration of a diatomic molecule: one harmonic 

oscillator, one fundamental frequency. Similarly, the spherical nanoparticle sustains one 

dipolar resonance, a single mode. In polyatomic molecules one has 3N-6 (3N-5 for a 

linear molecule) normal modes or fundamental vibrational frequencies, some of which are 

highly localized. These are the characteristic vibrational modes, such as a C-H stretching 

vibration, that are easily identified in a spectrum. Others modes are highly delocalized 

and cannot be assigned to any specific functional group within the cluster of atoms. 

Similarly, a cluster of nanoparticles or small-particle composites and fractal aggregates, 

can sustain many eigenmodes or normal modes, and some of these dipolar eigenmodes 

can be highly localized. These highly localized modes are believed to be the origin of the
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areas of extreme enhancement known as “hotspots”. Therefore* SERS as we know it 

seems to arise from highly localized, optically active surface plasmon resonances, which 

are sustained in metallic nanostructures with complex topologies. Hence, the incredible 

enhanced fields needed for single molecule detection can be the result of a purely 

electromagnetic phenomenon (apart from any chemically related resonance). This 

distribution of dipolar eigenmodes can impact the SERS experiment, as has been 

demonstrated by Etchegoin et al. in a series of papers.34'38 As well, this influence can be 

seen in the results obtained from single molecules experiments to be presented here.
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CHAPTER 3 

INSTRUMENTATION
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3.1 Introduction

In this chapter, the various tools of characterization used for the work presented in 

this thesis will be discussed. As the focus of this thesis was SERS spectroscopy, Raman 

instrumentation is covered in depth. That is followed with briefer overviews of the other 

instrumental and experimental methods utilized.

3.2 Raman Instrumentation

In 1928, the “spectrometer” used for the first recording of the inelastic scattering 

of photons by a molecule, used filtered sunlight as the excitation source, a telescopic lens 

for the focusing optics, a coloured filter to block all light but the inelastically scattered 

photons (the dispersive element) and Sir Raman’s eyes as the detector.1

Instrumentation has made amazing advancements since these humble 

beginnings.1'5 The old, massive, room-filling equipment of double and triple 

monochromometers, diffraction gratings and photomultipliers has been superseded by 

compact, desktop-sized manufactured instruments. In the past decade, advancements in 

optical components and detector technology have greatly increased the sensitivity of 

Raman spectrometers. In addition, the coupling of spectrometers to microscopes has 

given the experimenter the ability to achieve high spatial resolution of the probed sample. 

These developments have led to an explosion in the field of Raman Microscopy, or 

Micro-Raman. In particular, Micro-Raman has been extremely instrumental in the 

development and understanding of the SERS phenomena and as will be shown, been 

crucial in the application of SERS to the detection of a single molecule.6'8

Essential to every Raman experiment is the performance of the spectrometer and 

the optical components that comprise that system. This is even more so in the case of
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enhanced Raman experiments where the signals dependence on the nature of the light 

delivery and collection is closely intertwined. It is necessary then, to outline the system 

used for my studies of SERS, and to highlight those aspects that are of key importance. 

Contained in Figure 3.1, is an illustration for a typical dispersive Raman spectrometer. 

The optical components of the system can be divided into those that belong to the 

following areas; optics for light delivery, light dispersion and finally detection.

Grating ^

Sample

Rayleigh
Filters

Optics
for

light delivery and  
collection

Figure 3.1: Illustration of the key components of a Raman spectrometer.

Raman spectroscopy is extremely flexible in terms of instrumentation. There are 

many possible configurations allowing one to tailor the instrumentation to a host of 

different applications. For example, systems that use a triple monochromometer for the 

separation o f the Raman scattering from that o f  the Rayleigh, allow  for the measurement 

of very low frequency Raman bands, but the throughput is extremely low, requiring the 

use of large laser powers. Enhanced Raman experiments, in contrast, require the use of 

relatively low energy densities for excitation due to the extreme conditions experienced in
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SERS (high local fields, reactive surfaces) which may lead to photodegradation of the 

molecular system under investigation. In particular, studies of single molecules under 

resonant conditions require an extremely small photon flux to avoid damage, presenting 

an additional challenge considering the already marginal signal to noise levels involved. 

This necessitates that the systems used for SERS studies incorporate optics and detectors 

that maximize both sensitivity and throughput.

3.2.1.1 Spectrometers

The spectrometers used for the work contained within this thesis were bench top 

systems manufactured by Renishaw (Renishaw, UK.). These are the “InVia” and the 

“System 2000”, shown in Figure 3.2. A photograph of the interior is shown in Figure 3.3.

There are several key features that make these systems ideal for SERS studies. 

Primarily, they are Micro-Raman systems, which, with the proper choice of objectives, 

allows for high spatial resolution and control of probe volumes, both essential for single 

molecule studies. Secondly, these systems have optical configurations that maximize 

throughput and are equipped with high sensitivity detectors.

A proper interoperation of a recorded spectrum is impingent on a thorough, 

detailed understanding of all the optical elements. These key components will be 

discussed in the next section.
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Figure 3.2: Photographs of Raman instruments. Ramanscope 2000 (Left) and the 

InVia (right) (Renishaw, UK)

Figure 3.3: Inside a Raman Spectrometer.
A) Laser entrance and beam expanding optics. B) Location of the Rayleigh rejection 
filters. C) Pre-Slit lens and slits. D) Grating. E) CCD detector
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3.2.1.2 Excitation Lasers

The excitation lines used in this thesis are collected in Table 3.1. 

Table 3.1: Excitation Lasers

Laser Type Wavelength (nm) Output Power (mW)

HeCd (Coherent) 442/325 20

Tunable Ar+ (Lexar) 488,514 10-100

HeNe 633 18

Solid State Diode 785 19

Each line had at the time of use, an appropriate plasma-rejection line filter in 

place. The system’s entrance beam path allows the laser light to pass through a set of 

neutral density (ND) filters which allow a degree of control over the laser light intensity 

at the sample used for the Raman experiment. The available attenuations begin with 50%, 

10%, 5% and 1 % with a value down to 0.00025% possible. The light path is directed 

through beam expander optics which aids in keeping uniformity of the beam profile 

(Figure 3.3(A))

3.2.1.3 Rayleigh Blocking Filters

The laser beam is directed towards the microscope by the use of a special filter 

combination positioned at position B in Figure 3.3, and are shown in Figure 3.4. These 

filters provide two functions. First, in their capacity as beam splitter, they direct the light 

onto the optics for the coupled microscope. Secondly, and most importantly, they are 

filters for the Rayleigh scattered light that returns to the spectrometer in addition to the 

Raman scattered photons. Rayleigh scattering is much more intense than that of Raman, 

hence it is crucial to remove this light from the beam path so as not to obscure the much
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weaker Raman signal. This is accomplished in these instruments through the use of filters 

that block the unwanted light but allow the Raman photons to pass with minimal 

attenuation. There are two types of filters used in these experiments that accomplish this. 

They are edge filters and holographic notch filters (HNF). Edge filters are dielectric films 

and essentially block all light below a certain wavelength. HNF’s are multilayered films 

that have the ability to block a small region of the spectrum by reflecting a narrow band 

of wavelengths, while all other wavelengths are transmitted with high efficiency.

There are two main advantages to the use of HNF. Both stokes and anti-stokes can 

be measured and HNF’s have a much smoother transmission profile as evidenced by the 

characteristic transmission profiles in Figure 3.5. In either case, each filter has a cut-off 

that limits the instruments ability to measure low wavenumber frequencies. Two filters 

are used to remove as much Rayleigh scattering as possible. Each filter has an Optical 

Density of ~ 5, with a transmission greater than 80%. Because of the nature of these 

filters, each laser line requires its own set and hence will have a different cut-off. The 

InVia system is equipped with a motorized turret that can rotate to the needed filters to 

match the excitation line being used. This allows Raman measurements to be taken from 

the same spot with excitation from different laser lines without any optical realignment.
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Figure 3.4: Holographic Notch Filter

b

14001000 1800600

a

-100 o 100 200-200

Raman shift I cm-1 Raman shift / cm-1

Figure 3.5: Characteristic Profiles of HNF and edge filter. The spectrum to the left (a) 

shows the typical cut-off for a HNF. The spectrum to the right illustrates the ripple 

background encountered with edge filters.

In the studies presented here HNF’s were used for Raman spectra collected with 

488, 514, 633, 785 nm excitations, while edge filters were used for 325 and 442 nm 

excitation, unless otherwise noted.
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3.2.1.4 Slits and Gratings
The scattered light is focused through a set of slits set to 50 pm for all

measurements unless otherwise noted. The light is then focused onto a dispersive grating. 

The gratings used in these systems are holographic-ruled. There are several different 

gratings employed here depending on the excitation line used; these are collected in Table

3.2. The main feature of concern is the groove density, which in turn determines the 

effective spectral resolution. The approximate resolution for each laser/grating 

(determined from the measurement of the isotopic splitting in CCI4) is also shown in 

Table 3.2.

Table 3.2: Spectral Resolution for Grating -  Laser combinations

Laser Line

nm

Grating

grooves/mm

Resolution 
cm 1 

(50 pm silt)

325 3600 3
442 2400 2
488 1800 2
514 1800 3
633 1800 2
785 1200 3

3.2.1.5 Detector
Finally, the spatially-dispersed light is focused onto a detector, in this case a CCD 

(Charge Coupled Device). The type of CCD used in these instruments is a UV sensitized, 

deep depleted, detector. Deep depletion is used for additional sensitivity in the near IR 

region; while the special coating for UV, allows its use at 325 nm. The CCD is in an array 

format with 578 X 385 pixels, and each pixel having dimensions of 22 pm x 22 pm. The 

peak Q.E. of the CCD is ~ 45%, but is wavelength dependent, as seen in Figure 3.5.
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The CCD used in these systems are thermo-electrically cooled (Peltier) to -70°C. 

The low operating temperature ensures very low thermal dark current counts with a 

recorded dark current rate of ~ 0.01 e' pixel"'sec'1. This combination of sensitivity and 

low background is very important for SM experiments, as the measured S/N is so low.

so
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Figure 3.6: Response curve for a CCD detector. The CCD used in the both Raman 

spectrometers are deep depleted. Reprinted courtesy of Renishaw U.K.

3.2.2 UV Raman Spectrometer

Because of the nature of UV light, when using the 325 nm excitation for Raman 

spectroscopy, additional modifications to the optical configuration must be made.
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Primarily, the three focusing lenses must be exchanged for those that work in the UV, (a 

change of glass lenses to those made of quartz). As well, objectives that are optimized for 

UV light must be used.

3.2.3 Microscopy

The most crucial components for a Raman system are the optics for light delivery 

and collection. In micro-Raman systems this is accomplished through the coupling of the 

spectrometer to a microscope. In the 180° backscattering collection geometry used in 

micro-Raman, the objective is the important element as it defines both the excitation and 

probe volumes. The defining features of an objective are its Numerical Aperture (NA) 

value and its magnification. These in turn determine the spot size (diameter) of the 

exciting laser as given by the following relation:

/ •  61*A n nspots ize =-------  (3.6)
NA

The laser spot size is a crucial parameter for single molecule SERS studies since 

the experimental procedure is based on this spatial resolution. The NA is also an 

important value as it is a measure of an objective’s light collecting efficiency, where the 

higher the NA the better. In the micro-Raman there are two configurations that were used. 

Almost all measurements were taken in arrangement shown in Figure 3.7a. When a 

longer working distance was needed or a larger probe volume was desired, the 

configuration in Figure 3.7b was used.
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Figure 3.7: Micro and Macro Sampling Configurations

3.2.3.1 Objectives

In Table 3.3 the various objectives used in this study are given with their 

approximate measured laser spot size and NA. The NA is a key parameter which gives a 

measure of the light gathering ability for an objective.

Table 3.3: List of Objectives

Objective NA Spot Size 
fim2

5 X 0.12 50

20 X 0.40 20

50 X 0.75 1

50 XL 0.55 1

100 X 0.90 < 1

f/15 0.34 30

40XUV 0.32 5
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3.2.3.2 Energy Density

As has been mentioned before, laser power and energy density are always a 

concern. Generally, a laser’s power is measured in [W] and its energy density (ED), is 

reported as [W/cm2] The CCD though, measures photons/sec (electrons/s which is related 

to photons/s by a proportionality factor). In Table 3.4, the energy density and laser 

powers for a few lines are given in several equivalent units of measurement.

Table 3.4: Laser powers and energy density in equivalent units of measurement.

X
n m

Spot size
Power

m W

Energy Density
Diameter

f im W /cm 2 W /n? P h o to n  s 1 f i m 1

442 1 2 2 .5 5 E + 0 5 2 .5 5 E + 0 9 4 .4 5 E + 1 5

5 1 4 1 1 1 .2 7 E + 0 5 1 .2 7 E + 0 9 2 .5 8 E + 1 5

5 1 4 1 0 .1 1 .2 7 E + 0 4 1 .2 7 E + 0 8 2 .5 8 E + 1 4

5 1 4 1 0 .0 0 0 1 1 .2 7 E + 0 1 1 .2 7 E + 0 5 2 .5 8 E + 1 1

6 3 3 1 3 3 .8 2 E + 0 5 3 .8 2 E + 0 9 9 .5 5 E + 1 5

7 8 5 1 2 2 .5 5 E + 0 5 2 .5 5 E + 0 9 7 .9 0 E + 1 5

3.2.4 Calibration and Instrument Correction

Though it may not be the most tantalizing of subjects, calibration and instrument 

response are essential elements. This part will be divided into two sections. The first will 

deal with the calibration of the instrument for frequency accuracy and range and the 

second will deal with steps taken for relative intensity corrections, which were needed for 

a several SERS experiments to be presented in Chapter 5.
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3.2.4.1 Calibration

Initial calibration of each instrument is performed by measurement comparisons to 

the emission spectrum of a calibrated neon light source. Once this is done, only small 

adjustments are needed on a day to day basis. Frequency accuracy is accomplished by 

comparison to a standard material whose Raman spectrum is well known, usually the 520 

cm'1 band of silicon. Occasionally* other calibration checks are required; in this case 

materials with well resolved bands in the low and high wavenumber region are used. 

There are many materials that meet these requirements. In accordance with the National
N

Institute of Standards & Technology (NIST)* several materials were used to regularly 

confirm the spectrometers accuracy. These include the before-mentioned Si wafer (for 

frequency), Diamond (for frequency), Cyclohexane (for system response and frequency), 

and elemental Sulfur (S&) (for calibration and system response for the low wavenumber 

region), as well as CCI4 to test for polarization dependences.
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Figure 3.8: Raman Calibration References, a. Diamond, b. Si wafer, c. Elemental 

sulphur (Sg). The highlighted region shows the low wave number cut-off for 785 nm ( 

top) and 514.5 nm (bottom) with due to their respective HNF.

3.2.4.2 System Response & Instrument Correction

Typically, the main goal in a Raman measurement is to attain the characteristic 

spectrum and one is generally concerned only with peak frequencies, with little regard for 

the relative intensities of the bands within a spectrum. When knowledge of the relative 

intensities is needed, die Raman experiment takes on an additional level o f difficulty. 

There are many reasons to look at relative intensities^ particularly for SERS studies as 

will be shown in later chapters. One possibility is to see how the molecular system
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responds to different excitation energies, by comparing spectra taken at various excitation 

lines. Here, the main challenges will be outlined for when relative intensity information is 

required.

The main difficulty is that the optical elements each have a different response 

function to die wavelength of light. The CCD has a frequency dependence that has a 

higher efficiency for the blue/green part o f the spectrum over that of red with a steep drop 

off at ~ 1000 nm, corresponding to the CH region for a spectrum taken with the 785 nm 

excitation. As well, each grating has an efficiency that is wavelength dependent To 

correct for these factors, the response of the instrument for a  given configuration can be 

recorded. A general approach is to use a white light source (blackbody radiator) with a 

known intensity vs. wavelength relation. A spectrum is recorded and compared to die 

expected. A  correction term can then be generated to be applied to the measured spectra.

White light sources have a disadvantage in that they can be difficult and 

cumbersome to use. Recently another type o f standard source has emerged, that o f 

luminescent standards. These materials have known luminescent intensity vs. wavelength 

curves for a given excitation and can be either a solution of fluorescent chromophores or 

solids such as doped glass.9 The latter is the form that has found favour from NIST and is 

from what their issued standards for Raman intensity calibrations are constructed. These 

materials are glass, doped with rare earth elements. They have extremely reproducible 

and well-behaved luminescence outputs. As well they offer several advantages over that 

of the white light sources. For instance, they can be treated just as the samples would with 

the same optical configuration without any additional modifications. The standard then 

can be measured with the same optical geometry as would a sample.
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For some of the experiments to be presented here, it was necessary to have an 

accurate understanding of how the relative intensities of a SERS spectrum changed as a 

function of the excitation line used (see Chapter 5}. The reference materials used to 

calibrate for relative intensity were the NIST Standard Reference Material® 2242 for 

488/514.5 nm excitations and NIST Standard Reference Material® 2241 for 785 nm 

exeitafian.9'12

The reference material was placed in the same optical geometry as the sample, 

under die same systems configuration (gating, filters, objective) and its luminescence 

curve was recorded. The instrument response correction (IRC) was then generated with 

the following:

IRC = Ctr,ified (3.7)
Measured

This generates an IRC term specific to that configuration by which all subsequent 

measured spectra are multiplied by for correction.

The need for such a correction can be seen in Figure 3.9, where the uncorrected 

Raman spectrum is presented for several different excitation lines for the liquid 

Cyclohexane.
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Figure 3.9: Uncorrected Raman Spectra of Cyclohcxane

As can be seen going from blue to red excitation, the relative intensity of the CH 

region to die lower region is dramatic. This is primarily the result o f the CCD response 

function as well as that of the grating. In Figure 10, the known luminescence profile 

(generated from a certified polynomial provided by NIST), the measured luminescence 

and the resulting correction file for SRM® 2241 785 are presented. In addition, the 

cyclohexane spectrum is shown with the instrument response correction applied. With the 

IRC, a direct comparison between different excitation lines can be made.
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Figure 3.10 : Intensity Correction for 785 nm using NIST SRM 2182.
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3.3 Thin Film Fabrication by Vacuum deposition

Metal nanostructures can be created by evaporating a metal under vacuum 

conditions. This method is known as physical vapour deposition or thermal evaporation. 

The key point is that a solid is vaporized and passed onto a substrate. In the set up used 

for this thesis this was accomplished by the passing of a high current through a tungsten 

boat that held die metal, with the resulting high temperatures causesing the vaporization 

of the metal. The metal vapour condenses onto a substrate which is suspended above and 

under the proper conditions, can coalesce to form nanostructures. The evaporation must 

be done under high vacuum conditions so to remove contaminates as well as to reduce 

collision rates between the source atom and impurities* resulting in uniform arrival rates 

to the sample. The shape and morphology of the resulting nanoparticles can be controlled 

by changing the parameters of the evaporation. These include: rate o f deposition, amount 

of material deposited (mass thickness) and the temperature of substrate both during the 

evaporation and after. Each is discussed in turn below. 13-16

Rate o f deposition: The rate of deposition is a measure of the metal atom flux. In the 

system used here this is controlled by the amount of current passed through fee boat. 

Generally for fee island films created in these studies, fee rate of evaporation was held 

between 0.3 and 0.6 A/s.

Mass Thickness: This is a measure of fee amount of metal deposited. The mass thickness 

is measured as i f  all the metal was deposited as a solid block. It is monitored during the 

deposition wife a quartz crystal oscillator. The mass thicknesses used for the island films 

used in fee work were between 5-10 nm. At these deposition amounts, particles wife 

features between 20 and 100 nm are formed.
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Figure 3.11: Metal Evaporation System. Photographs of the evaporation system used 

for this thesis. The full system is shown in the left image. The sample chamber with 

source and detector (top Right) and the controls and monitors (bottom right) are also 

shown

The evaporation system used in this work is shown in Figure 3.11, with the 

components of the system as described below.

1) Vacuum System

The entire evaporation system must be held under vacuum, with a pressure below 

10‘6 Torr. This is accomplished with a two-stage vacuum system. Initial vacuum 

conditions are achieved with a BOC-Edwards rotary vacuum pump, which lowers the 

pressure to ~ 10'2 Torr. After this pressure is achieved, an oil diffusion pump is used to 

lower the pressure to the needed sub 1 O'6 Torr levels.
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2) Deposition Chamber

The deposition chamber contains the evaporation source, the substrate 

holder/heating element and the mass thickness/ rate sensor. As well, the chamber contains 

the shield that either blocks or allows deposition on the substrate.

3) Evaporation Source

The holder of the metal solid is referred to as the “boat”. These boats are made of 

tungsten mid the particular design of the ones used here is known as “dimpled” boat. The 

evaporation control is through die use of a Balzers BS V 080 glow discharge evaporation 

system.

4) Substrate holder and Heater

The substrates (glass slides) are affixed to a heating element whose temperature 

can be controlled. The substrate is positioned to be a set distance above the source.

5) Sensors for pressure and mass thickness.

There are 2 pressure sensors used in this system, a  Pirani gauge to monitor 

pressures between atmosphere and 10'2 Torr, and a Penning ionization gauge to monitor 

the vacuum pressure below 10‘2 Torr.

Mass thickness and deposition rates were monitored with an XTC Inficon quartz 

crystal oscillator.

3.4 Atomic Force Microscopy

Atomic Force M icroscopy (AFM ) is part o f  a larger fam ily o f  surface 

characterization techniques collectively known as Scanning Probe Microscopy (3PM). 

SPM is a collection of methods for mapping forces on the nanometric scale. All SPM 

methods work upon a similar basic principle. A probe is scanned across the surface of the
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sample, (or as is the case for this system, the tip is stationary and the sample is moved) 

and the resulting interaction forces are recorded to create a data correlation between 

response and position. These forces include, but are certainly not limited to, friction, 

magnetism, and chemical. In almost all cases, a flexible cantilever extends from a rigid 

substrate to which a tip or probe, which will respond to the force to be measured, is 

attached. Small perturbations as a result of interactions between the sample and probe are 

monitored by recorded the change in deflection of a laser that is reflected off the tip.

Figure 3.12: Illustration of the principles behind scanning probe microscopy.

Two methods of Atomic Force microscopy were used for the work presented in 

this thesis, Contact mode and the non-contact method of “TappingMode”

3.4.1 Contact AFM
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In contact mode AFM, the cantilever acts as a spring, allowing the tip to react to 

surface forces. The tip used is a v-shaped cantilever made of a silicon nitride. The typical 

spring constant for the tips used was 0.38 N/m. Because the tip is dragged across the 

surface, high lateral forces can result, which can damage “soft” samples. For this reason it 

is often necessary to use the less damaging non-contact mode for imaging.

3.4.2 Tapping Mode

By measuring the effect of surface interactions of an oscillating tip, a less 

damaging sampling o f the surface can be accomplished. This is known as non-contact 

mode or “TappingMode.” (a proprietary mode of Digital Instruments). This method is 

used in an attempt to minimize contact AFM forces, and is achieved by oscillating a tip 

and measuring the resultant damping on the tip’s amplitude as well as any change in the 

phase of the vibration upon interaction with a surface. The oscillation occurs at or near 

the resonant frequency of the cantilever. The cantilevers are rigid silicon crystals with a 

typical resonant frequency ca. 300 kHz. The main advantage is a much gentler method for 

surface imaging that can by used for easily deformed or damaged samples such as 

biopolymer films. The tips used for tapping mode were, n+-silicon tips (NSC 14 model, 

Ultrasharp) with a reported tip radius of -12 nm. There are three types of information 

recorded during a typical scan: height, the amplitude difference* and the phase change. 

The amplitude difference (or amplitude), is a measure of the change in the tip’s 

amplitude, though there is no height information contained in these images they tend to 

have much better contrast then the height images. The phase image are described in the 

next section.
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3.4.3 Phase Imaging

An extremely useful method for characterizing a surface is Phase Imaging. In this 

type of imaging, the oscillation of the cantilever is monitored for changes in the phase. 

The technique can be used to differentiate between hard and soft materials, as well as 

compositional differences, for example the imaging of metal nanoparticles embedded in a 

polymer matrix. This type of application is illustrated in Figure 3.13. The additional 

requirement for phase imaging is that to achieve a good contrast it is necessary to increase 

the driving force (hit the sample “harder”) than what is used in normal tapping mode.

Figure 3.13: Illustration showing the ideas behind phase imaging. The blob material 

is a soft matrix while the sphere represents a metallic nanoparticle. In the phase image the 

contrast between “hard “and “soft” can be seen.
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3.4.4 SPM System

The SPM used for the AFM images presented in this work was the Veeco Digital 

Instruments Multi Mode SPM with Nano IV control hardware. The scanner consists of a 

piezoelectric scanner (the E scanner) with a xy range of 10 pm and maximum z 

displacement o f  3.64 pm. Scan rate were typically between 0.5 and 1.0 Hz, with 512 

sample lines per image. The software used for instrument control and data, manipulation

17was the Veeco’s Nanoware. Images were also generated with Nanotec WxSM 2.2.

Figure 3.14: SPM Microscope

3.5 Infrared Absorption

The instrument used for all FT-IR measurements was die Bruker Equinox 55 

FTIR equipped with a microscope shown in Figure 3.15. This system uses a nitrogen-
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cooled mercury cadmium telluride (MCT) detector. The spectral resolution used for the 

IR spectra recorded for this thesis was 4 cm'1.

Figure 3.15: Bruker 55 Equinox FT-IR spectrometer

3.6 UV-visible Absorption

All molecular and plasmon absorptions were measured with the Cary 50 UV-Vis 

single beam spectrometer. It has a spectral range of 190 -1100 nm and is pictured in 

Figure 3.16.
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Figure 3.16: Cary 50 UV-Visible spectrometer

3.7 Langmuir- Blodgett Deposition system

The Lauda Langmuir film balance, shown in Figure 3.17, was used for the 

fabrication of the Langmuir-Blodgett films discussed in this thesis. Deionized water 

acquired from a Millipore system (measured resistivity of 18.2 MO cm) containing CdCl2 

(2.5 x 10'4 M) was used as the subphase, and maintained at a constant temperature of 15 

°C. A Lauda Film Lift FL-1 electronically controlled dipping device was used for film 

depositions. Film compression was done with a constant surface pressure setting of 25 

mN/m. The Langmuir films were transferred to glass slides, with and without metal island 

films, in the z-deposition style
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Figure 3.17: Lauda Langmuir film balance

3.8 Computational Resources

Spectral analysis was executed using Grams/AI (7.0) from ThermoGalactic.

All theoretical calculations presented in Chapter 4 were carried out using the Gaussion 03 

computational package.18 DFT calculations were performed using the density functional 

theory of Becke’s three-parameter functional including the correlational functional of 

Lee, Yang, and Parr (B3LYP).19,20 The 6-31 lG (d), and Lanl2DZ basis set s were 

used.21,22 No scaling factors were applied to calculated Raman frequencies.

GaussView 03 for Windows was used to view all calculated structures and to view 

molecular vibrations.23

Mie scattering calculations were performed using an in-lab Maple program.24
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CHAPTER 4

SINGLE MOLECULE SERRS USING LANGMUIR-BLOBGETT FILMS
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4.1 Introduction

The ultimate limit of detection for any analytical technique is the ability to 

identify and quantify the signal arising from a single molecule. SERS has joined a small 

handful of optical spectroscopies with the capabilities to achieve this limit. Chemistry 

books are written with single molecule reactions and formulae. However, chemists and 

physicists only measured average quantities, not the single molecule reactions or the 

properties of single molecules. The detection of a single molecule was first achieved in 

fluorescence spectroscopy, however, its identification by its vibrational fingerprints had 

to wait for the powerful SERS.1 Today, it is clear that by studying single molecules, new 

areas of research are developing (single molecule spectroscopy, SMS), revealing features 

that ensemble measurements average out. SMS could be used for instance to study 

molecular dynamics at surfaces or to follow the behaviour of a molecule during 

interactions with its surroundings, an important advance for understanding chemical and 

biochemical processes. In addition, developments in nanotechnology will soon require the 

ability to measure single molecular chemistry and SM-SERS would be a powerful tool in 

this regard. Ultimately, it is an attempt to push the limits, to see what is happening at the 

edges and uncover behaviour that differs from the collective.

The first optical spectroscopy reported to detect a single molecule was low 

temperature fluorescence. In subsequent years, fluoresce has been successfully used to 

detect SM’s in a variety of environment with relative ease.2 While this approach has 

proven to be very successful, fluorescence lacks chemical information when compared to 

Raman, which provides complete vibrational detail. Furthermore, fluorescence requires 

molecules with exceptional quantum efficiency, something that, at least in theory, SERS
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does not. Early work by Kneipp suggested single molecule detection by SERS was 

possible, in particularly SERRS.3 In 1997, two groups made claims that this was indeed 

so. Papers by Kneipp and Nie marked the beginning of SM-SERS.4’5 These seminal 

papers started a new found interest in SERS and opened a floodgate of research activity
c  1 C

which continues to this day. '

4.2 Counting Photons

There is plenty of published work that has supported, and seems to attest to, the

feasibility of SM detection using SERS and/or SERRS. However, for many the question

naturally arises “Is it really possible?” A back of the envelope calculation will show that, 

indeed it is.

Recall, the Raman intensity for a given band can in simplest terms be written as:

Irs^ rsN (4.2.1)

where. IrS [photons/sec], I0 [photons/sec • cm2], a [cm2] and N  would be the number of 

scatterers. The following experimental parameters are assumed;

1) The measured “count” = 1 photon for an ideal detector.

2) The signal is collected over complete sphere with no loss due to optics.

3) A typical Raman cross section (non-resonant) is ca. 10'28 cm2.

4) A detection level of at least 100 “counts” • s'1 is needed to be discemable above 

the background noise (a value typically encountered in SM-SERS).

Looking at the needed laser intensity for single molecule experiments (N = 1):

T 100 XT 100I = — N = — — r = l0 photons Is  (4.2.2)
cr^ 10 cm
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For 514.5 run, the flux then would need to be ~ 3.86 x 10n W/cm2, an experimentally 

unreasonable value. For comparison, the 514.5 nm laser used in these experiments is 

generally measured at the sample to have an energy density of 1 mW/pm2 (9.97 x 104 

W/cm2). Using an energy density of 1 mW/pm2 with the same Raman scattering cross 

section, N  would then need to be 107 to allow for the detection of a signal.

In the case of resonance Raman, the cross section can increase to 10'24 cm2. Then 

for 1 mW at 514.5 nm, the number of molecules that can be detected would be ~103. If 

we assume that aRRS does not change when interacting with a metal nanoparticle substrate 

(not always the case) then for SM detection there needs to be an enhancement of at least 

103. This is an idealized experiment where every photon is counted. A more realistic 

quantum efficiency for the detector would be in the range of 30 to 50 %, with only a 

fraction of the total scattering sphere collected. In addition, to prevent laser damage with 

SERS, it is necessary to use pW’s of laser power. Of course, any decrease in the Raman 

cross section, or in instrument efficiency would require a larger enhancement by SERRS 

for SM detection. Even with these additional considerations, assuming a SERRS 

enhancement of 106, a value routinely realized both theoretically and experimentally, SM 

detection is indeed possible.

4.3 An alternative approach to SM-SERRS0

Most reports on SM detection by SERS have been attained with Ag or Au

aggregated colloidal nanoparticles. The approach used, often relies on the ability to dilute

the target analyte in solution to levels where it is believed to be at most, 1 molecule in the

probe volume during the time of data collection. The drawback is that these arguments

a T h is  w o r k  w a s  a  c o l l a b o r a t iv e  e f f o r t  w i th  P .  J . G . G o u le t .  L a n g m u ir - B lo d g e t t  f i lm  f a b r i c a t i o n  w a s  m o s t ly  

c o m p le te d  b y  P .  J . G . G o u le t
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are thermodynamically driven and there is no real control of the concentration of 

analyte.16 There is an experimental technique that provides an alternative approach to 

SM-SERS. This was demonstrated by Aroca and collaborators when they extended their 

work o f studying monomolecular Langmuir-Blodgett films by SERRS to show that the

% "1 1 €  1 *7 O /i

method can successfully be applied to SM studies. ’ 1

4.4 Langmuir- Blodgett film s

The Langmuir-Blodgett (LB) technique is based on the fact that certain classes of 

molecules, such as amphiphilic molecules with hydrophilic “heads” and hydrophobic 

tails, will organize themselves on the surface of a subphase (typically water) in a single 

molecular layer.25 This layer can be carefully transferred to a substrate through a 

controlled deposition as shown in the cartoon of Figure 4.1. An advantage o f LB films is 

that they allow control of molecular architecture such as orientation and intermolecular 

distances. Additionally, the concentration of target analytes can be controlled with a great 

deal o f certainty. This can be accomplished by systematically reducing the concentration 

of target analyte in a spectrally “inert” matrix (a molecule with a very low Raman and 

SERS cross section compared to the target analyte), typically a fatty acid such as 

Arachidic Acid. The use of monomolecular films reduces the probe volume to a probe 

area. The reduction from 3D to 2D greatly reduces the ambiguity of analyte 

concentration. When coupled with the spatial resolution and sensitivity of Raman 

microscopy, highly controlled experiments are possible.
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Substrate

H20
Figure 4.1: Illustration of the Z-type deposition of a Langmuir-Blodgett F ite

The LB methodology was used in the study of three perylene dyes down to SM 

levels. The goal was to further the previous work done on SM-SERRS both to address 

experimental challenges in addition to attempting to see spectral features that had not 

been recorded in previous studies, such as overtones mid combinations. These vibrations 

arise under resonance condition in Raman spectroscopy.26 Since in RRS they are related 

to the excited state of a molecule, they could be used potentially as sensitive probes for 

perturbations to a molecule’s electronic state as a result o f interactions with either the 

metallic nanostructure or the extremely high local fields encountered in SERRS.

This work will demonstrate how the technique of LB monolayers was used for the 

successful detection of the SM-SERRS signal, containing overtones and combinations, 

for 3 different dyes.13,18
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4.5 Experimented

The materials used for SMD here are Bis-fbenzylimido) perylene, 

(Bbip-PTCD), n-pentylimido-benzimidazo perylene, C35H23N3O3 (pentyl-PTCD), and Bis 

(benzimidazo) perylene C36H16N4O2 (azo-PTCD). (Structures can be seen in Figure 4.4)

In this work, Langmuir-Blodgett films of these 3 different PTCD derivatives were 

deposited onto thin silver island films, in varying concentrations. The films used in this 

study were formed from evaporating Ag onto glass substrates (Coming 7059 glass slides). 

The 6 nm (mass thickness) Ag island films were prepared by vacuum evaporation at a 

pressure of 10'7 Torr, and a temperature of +200 °C with deposition rate of 0.5 A/s. These 

films were then heated at the same temperature for f hour after evaporation, and then left 

to cool to room temperature under vacuum. An AFM image of a typical film is shown in 

Figure 4.2. The average particle diameter was measured to be ca 50 nm.
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Figure 4.2: AFM image of a 6 nm Ag island film.

The spreading solutions used were composed of both a perylene derivative, and a 

fatty acid (arachidic acid (AA), C19H39COOH) that is known to form very well 

characterized, and stable Langmuir films that can be transferred to form LB films. These 

solutions were prepared in such a way as to achieve various concentrations from 106 to 1 

dye molecule per square micron of trough area. The corresponding molar ratios of 

perylene to arachidic acid are shown in Table 4.1. The choice of 1 pm2 is determined by
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the laser spot size for the 50X objective (NA =.75) used in these experiments.

Table 4.1: Probe Molecule to Fatty Acid Ratio with the approximate number of 
molecules in 1 pm2

Approximate Number of Molecules in 1 pm
Ratio Dye AA

1:1 2,000,000 2,000,000
1:10 363,636 3,636,363

1:100 39,604 3,960,396
1:1000 3,996 3,996,004

1:40,000 100 3,999,900
1:400,000 10 3,999,990

1:4,000,000 1 3,999,999

The preparations of all perylene/fatty acid solutions were accomplished using the 

same procedures and calculations as outlined below for the case of a “single molecule” 

spreading solution.

To begin, the area of the matrix molecule, arachidic acid, must be considered. It 

has a well-established area per molecule of 25 A2.27 Therefore, within 1 pm2 of trough 

area, there will be 4 X 106 molecules. Of these, only one will be the probe molecule. This 

dye will comprise .000025 % of the total number of spread molecules, while arachidic 

acid will make up the remainder. For the Lauda Langmuir Film Balance used in this work 

the number of molecules set to be on the subphase is 8.640 X 1016. In order to achieve a 

single probe molecule per micron squared, it then becomes necessary to spread a total of 

2.16 X 1010 PTCD molecules, and 8.64 X 1016 fatty acid molecules on the trough. A 

convenient spreading volume (500 pL), is assumed and the concentrations of both the 

PTCD and AA in the spreading solution are calculated using the equation:

. ^ m o le cu les  2  3 ^

N  VA spread
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For a “single molecule” solution, using a 500 pL spreading volume, the 

calculated concentrations are 7.18 X 10'n M and 2.87 X lO^M for PTCD and AA 

respectively.

All solutions were prepared using spectrophotometric grade dichloromethane as 

the solvent. However, due to the limited solubility of PTCD’s, it was necessary to add 

spectrophotometric grade trifluoroacetic acid to initial stock solutions (lO^M) in order to 

fully dissolve the powders. The TEA amounts are extremely low in die very dilute 

solutions, as they only make up 10% of the initial stock solution. It was not used in the 

preparation o f any o f the less concentrated solutions.

Mixed PTCD-AA Langmuir films were fabricated using a Lauda Langmuir film 

balance with a subphase of pure water (18.2 MQ cm), containing small amounts of 

cadmium chloride (2.5 Id*4 mol L1), and maintained at a constant temperature of 15 °C. 

Coming 7059 glass slides, clean, or coated with 6 nm Ag island film, were immersed in 

the water subphase using a Lauda Film Lift FL-1 electronically controlled dipping device.

The mixed PTCD-AA solutions were then spread (500 pL), and 20 minutes was 

allowed for solvent evaporation. Film compression was then begun with a single barrier 

moving at 3.5cm/min. It was continued using a constant surface pressure setting of 

25mN/m, corresponding wife the condensed phase of the Langmuir film. After allowing 

the monolayer to completely stabilize on the subphase, it was transferred to a glass slide 

supporting a 6 nm Ag while maintaining constant surface pressure using the Film Lift 

with a speed o f 3 mm/min. All transfers were performed by Z-deposition, and transfer 

ratios were calculated to be near unity. An outline to the LB approach to SM-SERRS is 

illustrated in Figure 4.3.
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Figure 4.3: Schematic of the LB approach to SM-SERS
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The 514.5 nm excitation line was used in this investigation in order to take full 

advantage of the increased scattering efficiency of resonance Raman. In single molecule 

experiments, laser power was kept low (< 20 pW) to diminish the chance of 

photodegradation of the target molecule. Laser spot sizes were ca. 1 pm using a 50X 

(NA .75) objective. Spectra collected over a large range (3500 to 200 cm*1) were recorded 

in the continuous mode of the Renishaw system with accumulation times on the order of 

10 seconds. Static spectra (fixed spectral window) were collected with a 1 second 

exposure time.

4.6 Results and Discussion

4.6.1 Absorption and Fluorescence

The absorption spectra of 10*6 M solutions of the three dyes are shown in Figure 

4.4 The perylene moiety common to all of them, has characteristic absorption peaks 

(vibronic structure) associated with a %-%* electronic transition. For example, for Bbip- 

PTCD, the 0-0-transition band appears at 527 nm with additional vibronic structure at 490 

and 458 nm. The absorption cross section calculated from a series of dilute solutions at 

527 nm is ca. 10'17 cm2/molecule. The plasmon absorption spectrum of a 6 nm silver 

island film is shown together with the solution absorption of Bbip-PTCD to demonstrate 

the double resonance conditions for these experiments in Figure 4.5.
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Figure 4.4: Solution absorption spectra for the 3 PTCD molecules in 

dichloromethane. Structure of each molecule is also shown
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Figure 4.5: Plasmon absorption of a 6 nm Ag island film. Also shown is the solution 

absorption spectrum of Bbip-PTCD. The wavelength of the laser line is shown to 

demonstrate the double resonant condition of these experiments.

Typical fluorescence trends for these dyes are shown by the spectra of dilute 

Bbip-PTCD solutions in dichloromethane in Figure 4.6. The profile measured from the 

higher concentration of 10"4 has the red-shifted excimer emission characteristic of

* f\ ftaggregated PTCD as the dominant feature. At the lower concentrations of 10' and 10' 

M, this feature is absent and the monomer fluorescence is clearly seen as the main 

absorption. This result indicates that the spreading solutions used for SM molecule 

samples contained no aggregates of the PTCD molecules.
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Figure 4.6: Fluorescence spectra of the Bbip-PTCD solution.

700

4.6.2 Surface Enhanced Resonance Raman Scattering of the Ensemble

To begin, the evidence that it is indeed SERRS that is being recorded in these 

experiments is provided by examining the Raman spectra recorded on Ag and on glass for 

a concentrated monolayer (1:1). These spectra, excited with the 514.5 nm laser line are 

shown in Figure 4.7.
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Figure 4.7: RR and SERRS spectrum of a 1:1 azo-PTCD film on 6 nm Ag island 

film. RRS of the same film on glass. Both spectra acquired with 514.5 nm.

The spectrum of the concentrated PTCD LB monolayers on silver contain the 

signature SERRS on a background of surface-enhanced excimer fluorescence and is 

approximately 100X greater than that recorded from glass under the same conditions. In 

Figure 4.8, the SERRS spectrum of pentyl-PTCD of the same concentration is shown. 

First, the raw spectrum and, secondly, the baselined SERRS spectrum is given to illustrate 

the overtone and combination regions that are present in the spectra of these systems. The 

approximate Raman shifts for the 3 strongest fundamentals and the location of their 

overtones and combinations are listed is Table 4.2.
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Figure 4.8: SERRS spectrum of a 1:1 pentyl-PTCD film on 6 nm Ag island film.

Strong overtone and combination progression is seen as it the enhanced excimer emission 

(top). The same spectrum is baselined for comparison of the fundamental to the overtone 

regions
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Table 4.2: Peak Positions for fundamentals, overtones and combinations

cm' Assignment Overtones Combinations
Fundamental 1st 2nd 

A Ring Stretch 1299 2598 3897 A+B 2675
B Ring Stretch 1376 2752 3158 A+C 2873
C Ring Stretch 1574 3148 4722 B+C 2950

A+B+C 4249
2C+A 4457
2C+B 4534

The progressions of overtones and combinations, which can be seen in the SERRS 

spectra shown in Figures 4.7 & 4.8, are unique due to their high relative intensity. This is 

evidenced by a comparison of the RRS obtained from the solid at 244 nm, which itself 

has a strong overtone progression, to the SERRS spectrum of Bbip-PTCD in Figure 4.9.

bbip PTCD

SERRS at 514.5 nm

£
M
C
2c

RR at 244 nm

1000 1500 2000 2500 3000
Raman Shift I cm*1

Figure 4.9: RR and SERRS of 1:1 film of Bbip-PTCD on Ag. Comparison between 

the overtone progressions seen in the SERRS spectrum of a 1:1 film of Bbip-PTCD on 

Ag, to the RR spectrum of the solid at 244 nm
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From these ensemble SERRS measurements there are two observations relevant to 

single molecule detection. First, the resonance Raman spectrum and the SERRS spectrum 

show vibrational frequencies with the same wavenumbers. The absence of evidence of 

frequency shifting indicates that the PTCD molecules do not strongly interact with the 

metal nanostructures, atid that the metal-molecule interaction in all these cases can be 

treated as physical adsorption. The second important observation is that the SERRS signal 

decays with laser exposure. Figure 4.10 shows a series of 20 SERRS spectra taken from a 

concentrated 1:1 Bbip-PTCD LB film. Spectra were collected for a 10 second 

accumulation period with approximately 5 second lag between acquisitions. When plotted 

in 3D, the decrease in the SERRS signal is clearly evident. This experiment was 

performed with relatively low laser intensity at the sample (0.5 mW) and is evidence for 

the propensity of these systems to undergo photodegradation. This will be an important 

issue as the single molecule regime is approached.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

82



1576 cm-1

1376 cm-1 

I 1297 cm-1

Figure 4.10: Time study of the photobleaching of a concentrated 1:1 Bbip-PTCD LB 

film on a Ag island film.

In Figure 4.11, the breakdown from ensemble to truly trace detection can be seen 

for the case of pentyl-PTCD, when the changes in the SERRS spectrum is followed as the 

molar ratio of PTCD to AA is diluted. The spectrum of the ensemble shows strong 

SERRS and can be seen from any location of the LB sample with little change in spectral 

profile. In addition, the overtone and combination region can be clearly observed and the 

excimer emission (Figure 4.9), characteristic of dye aggregates, is seen. As the 

concentration of analyte is reduced to approximately 100 molecules these spectral 

features change. First, excimer emission is no longer detected, indicating that the probe 

molecules are present as monomers. In addition the overall spectral intensity is much 

weaker. The weakly enhanced CH bands of the AA now appear in the spectrum. The 

characteristic spectrum of the probe molecule is also no longer uniformly detected. At the
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“10” molecule level, the detection of a measurable signal was a rare event requiring many 

measurement attempts of different areas of the sample.

0)c  
o

pentyl-PTCD

“100” molecules

“10” molecules

1000 1500 2000 2500 3000 
Raman Shift / cm-1

Figure 4.11: SERRS spectra of pentyl-PTCD at decreasing concentrations

4.6.3 Single Molecule SERRS and the evidence for overtones and combinations

All the SMD presented here were collected with 514.5 nm excitation so to take 

advantage of the increased intensity found with resonance Raman. Other excitation lines 

of 488 and 633 nm were attempted but failed to measure spectra from the SM samples.
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The high sensitivity of SERRS with the combination of the spatial resolution of 

Raman microscopy and the validity of the LB method, gives confidence to the fact that 

for the 1 molecule/pm2 samples, if a characteristic Raman spectrum is detected, it is 

indeed arising from a single molecule. The challenge is to actually record a quality 

Raman spectrum. With proper care this was indeed possible as evidenced by the SM 

spectra in figures 4.12 and 4.13 for azo-PTCD and pentyl-PTCD.

Azo-PTCD

1 molecule

*
atc
3c

~106 molecules

3000250020001500

Raman Shift / cm-1

Figure 4.12: Single molecule SERRS spectrum of azo-PTCD as compared to the 

SERRS arising from 106 molecules
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Figure 4.13: Single molecule SERRS spectrum of pentyl-PTCD as compared to the

SERRS arising from 106 molecules.

In each figure, the single molecule spectrum is compared to that measured for the 

ensemble. In the SM spectra of each molecule, the fundamentals and the overtones and 

combinations, though weak, are recorded.

The measured SM spectra for Bbip-PTCD are shown in Figure 4.14, where again 

the average SERRS spectrum is included for comparison.
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Figure 4.14: Single molecule SERRS spectrum of Bbip-PTCD. SM spectra are 

compared to the SERRS signal arising from 106 molecules. The variability seen in SM 

spectra is shown
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Single molecule spectra from two different spots on the LB surface are shown. 

Although weak, the presence of overtone and combination bands is unquestionable in 

both. These spectra illustrate a common feature of SM detection; there is much variation 

in the spectral parameters of the measured SM spectra. Changes in relative intensity, 

bandwidth and peak position can be seen. The reproducible spectrum encountered with 

the concentrated samples, is no longer measurable.

Measuring single molecule spectra is confounded in this work by at least two 

main factors. The first was the background contributions from photoproducts that can be 

generated on the silver surface. Above a certain power density, these can effectively bury 

any single molecule signal. An example of this is shown is Figure 4.15, where the 

ubiquitous carbon background that is seen is shown relative to a successful SM detection. 

This interference can be attributed to possible impurities on the metal surface and the high 

reactivity of the silver substrate with both the monolayers and molecules in the 

environment.
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Figure 4.15: Spectra of the background carbon background. Comparison of the 

carbon background to successful single molecule detection (bottom)

The second major challenge to SMD, was the peiylene signal diminishing with the 

molecule’s increased exposure to laser light. This effect could be attributed to 

photodegradation, as observed for the concentrated LB SERRS, or could be the result of 

some other photoinduced process such as molecular movement driven by the laser. To 

minimize these problems, it was necessary to use very low laser power, generally < 20 

pW at the sample. Even with these levels, large collection times still resulted in poor 

spectra that were dominated by the background. This was also true for all attempts at

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



increasing the number of accumulations. Attempts at acquiring accumulated spectra 

resulted in a blurring and broadening of the signal caused by a changing spectrum with 

time. This is demonstrated in Figure 4.16, where two consecutive spectra from the same 

spot are shown.

1st Accumulation

2nd Accumulation

i i i i i
1000 1500 2000 2500 3000 

Raman Shift I cm'1
Figure 4.16: Difficulties in collecting SM Spectra. Illustrating the difficulty in 

attempting to accumulate signal from single molecule of azo-PTCD, the top spectrum is 

the initial signal recorded. The second was recorded 10 seconds later. The SM signal is 

gone and the carbon background is dominant.
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The disappearance of the single molecule spectrum is shown for the case azo- 

PTCD. To further investigate these signal losses, static spectra with a reduction in 

exposure times to 1 second were taken. These SERRS experiments were perforated on an 

LB film containing 1 azo-PTCD molecule/pm2 and using 514.5 nm excitation. Spectra 

were recorded upon the first illumination of the sample. On initial exposure, single 

molecule spectra were recorded from several spots of the LB film, with the characteristic 

fundamental peaks observed with relatively strong intensity. However, subsequent 

spectra, recorded 1 second later, showed no signal. Figure 4.17 shows one such 

occurrence of signal disappearance. Dynamical studies of the SM-SERRS signal proved 

elusive for there was no return of the signal at a given spot after the initial spectrum had 

been recorded. Again the origin of the signal loss is not clear but SM bleaching has been 

reported for the case of SM-SERRS of Rhodamine 6 G.u The more general problem of 

photodegradation is addressed in the Chapter 6 .
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Figure 4.17: Demonstration of the disappearance of SM signal for azo-PTCD.

To summarize, only with low ED, small collection times (< 10s) and a single 

accumulation, were SM signals detected. In addition, sampling had to be conducted on 

fresh spots upon first exposure to the laser excitation. Any exposure prior to accumulation 

resulted in a background dominated spectrum. By carefully following these steps, SM- 

SERRS could be measured with reasonable quality.

An important observation for these results is the fact that SM spectra are “rare 

events” in these experiments. When a single spectrum is recorded, it is the result of a very 

labour intensive search for SM’s. ( experiments were carried out by a random sampling of
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the surface). It generally took many attempts, probing many spots before a spectrum 

could be recorded. Consider the images in Figure 4.18. The top image shows the laser 

spot as observed through a mounted CCD camera on the microscope, giving the ~ lpm2. 

The middle picture is a representative AFM image of the 6 nm mass thickness Ag island 

film used in this investigation. The dimension of the image is a 1 x 1 pm. Outlined is the 

approximate 1pm2 probe area sampled by the laser when using a 50X (NA .75) objective. 

The probe molecule is slightly exaggerated in size for ease of viewing, but the image is 

roughly to scale (1 probe molecule ~ 65 A2). The final image is that of 250 X 250 nm 

magnification of the same film, again with probe molecule approximately to scale. These 

are provided to give a clearer insight to the LB approach to SM detection. Within the 

probe area there are ~ 4,000,000 molecular sites for the target molecule to reside. As can 

be see in the AFM image, in the same area there are distributed ~ 400 particles. It is 

known that nanostructures such as this have very complex distribution of EM fields.29,30 

Figure 4.18 is an attempt to illustrate that fact. Only when a probe molecule resides in an 

area which has a significant enhancement at the excitation frequency will a SM signal be
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Figure 4.18: Illustration of the SM experiment.
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detected. The latter gives a possible explanation to the low probability of the SM events. 

The LB experiments on silver and gold island films for SM detection suggest that even at 

100 and 10 molecules/pm levels, what is detected are SM events. The plasmonics of 

these films as illustrated in Figure 4.19, may help to understand the arguments put forth at 

the beginning of this chapter. For SM detection, a minimum intensity is needed, in the 

case where resonance Raman is at play the required field enhancement is what is needed 

to put the signal above the detection limit as shown in Figure 4.20. This implies that the 

extreme field enhancement of “hotspots’ are not required for SM detection in SERRS. If 

the excitation excludes any possibility of RR, then the needed enhancement is orders of 

magnitude higher and would require the intense fields associated with electromagnetic 

‘hotspots”.
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Figure 4.19: Illustration of the distribution of hotspot in an island film.
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Figure 4.20: Graphical representation of the contributions to enhancement. The

graph shows the relative contributions of the Electromagnetic enhancement and resonance 

Raman at two different laser lines for different hypothetical areas of a substrate, A-F.

4.7 Conclusions

Using the LB technique, and the spatial resolution of Raman microscopy, the 

SERRS of a single molecule, for three different PTCD derivatives, was collected. In each 

case, it was found that the single molecule SERRS allows for the observation of 

fundamentals and at least the first set of overtones and combinations. Evidence of 

possible single molecule photobleaching, as well as other peculiar features of SM spectra, 

has also been presented.
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CHAPTER 5 

DISPERSIONS RELATIONS IN SERS
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5.1 Introduction

In principle, there exists a dispersion of the Raman spectral bands even when the 

excitation is far from the energy required for a molecular electronic transition. In practice, 

excluding the v4 dependence, for normal Raman scattering, the relative intensities of 

Raman bands, which follow the laser line used for excitation, and the Raman spectrum 

can be considered independent of exciting frequency. This approximation breaks down 

though when the excitation line is within the envelope of an electronic absorption of the 

molecular system, which is the case of the resonance Raman scattering (RRS) effect. The 

RRS creates a dispersion profile that is characteristic to a given molecular system. In the 

case of Surface-Enhanced Raman Scattering, there are additional dispersion relations 

present which can be advantageously used for chemical identification. In this section, it 

will be shown how the measured spectrum can be influenced by both the effect of 

molecular dispersion and the various consequences of the electromagnetic fields that give 

rise to the enhancement. As a demonstration the small organic molecule 1,8- 

naphthalamide on silver colloids is presented as a case study. Spectral interpretation is 

aided with computational calculations and spectral simulations. This example is also used 

as a guide to discuss what factors and variables must be considered in the interpretation of 

SERS spectra. As well, I will suggest how these relations may one day be used in the use 

of single molecule studies to probe the local electromagnetic field.

5.2 B ackground

To bring about the enhancement of signal seen with SERS; a target molecule must 

be brought into proximity to an enhancing “surface”. In the interaction between the 

analyte and the surface, there are many variables that come into play.1 The most
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important is what type of adsorption, chemical or physical, will occur. The additional 

complexities of the former are due to the fact that what is being analysed is no longer the 

original target molecule, but now a complex with different molecular properties. The 

complex may present a completely different Raman spectrum as well as new electronic 

states (new absorption spectrum). In the presence of new electronic states, additional 

resonances can exist which may result in resonance Raman contributions. These new 

electronic resonances (for instance, charge transfer states) carry a large intrinsic Raman 

cross section and correspondingly an intense Raman signal, a result that is generally 

termed a “chemical” enhancement and can account for a small part to the overall 

enhancement. Even though the result of chemical adsorption is a complex (new species), 

it can be characterized for a given analyte-metai system. With cautious vibrational 

analysis of the SERS spectra, it can be linked directly to the original analyte.

This illustrates one of the primary difficulties of SERS spectroscopy, the proper 

interpretation of the recorded spectra. The classification of SERS spectra provides a 

unique challenge over that of traditional Raman by the presence of features that are 

dependent on the excitation line used. The various dispersions relations seen in SERS 

experiments are discussed in this section. The observed dispersions may be separated into 

two categories, those that are dependent on the excitation line used (X), and those that are 

dependent on the particular frequency of the Raman scattered photons (cm'1). The 

dispersions due to the excitation frequency include: resonance Raman enhancement3, the 

magnitude of SERS enhancement4, and, as will be shown, the so called surface selection 

rules5. The second dispersion effect is due to the fact that the SERS enhancement factor 

cannot necessarily be applied uniformly to the Raman scattering of all vibrations.6
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5.2.1 Surface Selection Rules

In addition to chemical perturbations, the SERS spectrum impacted by the fact 

that electric fields are polarized at metallic surfaces. As was pointed out by Moskovits, 

this polarization is responsible for what is called the surfaces selection rules or propensity 

rules of SERS.5 This effect is briefly summarized here.

The metal surfaces that generate the necessary surface plasmons have a 

preferential treatment to the components of an electric field. Each metal nanostructure has 

a peak plasmon resonance frequency. To the red of this frequency, the metallic surface 

preferentially enhances the electric field component tangential to the surface, Et. To the 

blue, it is the normal component of the electric field, E„ that is relatively enhanced. At the 

plasmon resonance frequency, the enhancement is approximately equal for both 

components. This can be better illustrated by looking at the special case of a silver 

nanosphere. At the surface of a sphere of radius R, Moskovits and Suh have shown that 

the relative enhancement of the averaged field components can be summarized by the 

following relationships:5

]? = c 2 £ „ 2| l - g | 2

i£=c,E„2 |l + 2 g |2 (5.1.1)

In Figure 5.1, the ratio of these components were calculated for a single silver 

sphere in water (e0 = 1.77) with a plasmon resonance at 390 nm, and are plotted as a 

function of wavelength.
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Figure 5.1: Ratio of normal to tangential field components. The field components are 

plotted as a function of wavelength for a silver sphere, peak plasmon resonance at 390 nm

For a molecule whose orientation is fixed to the surface, (such is the case of 

chemisorbed molecules) this will impact the fields a particular vibrational mode will 

experience. For instance, for an analyte fixed with its main axis (z) of symmetry aligned 

normal to the surface, the following predictions can be made. To the red of the plasmon 

resonance frequency, modes with polarizability components that have azz will be 

preferentially enhanced over those that have , ayz , components. To the blue, the 

dominance of azz is significantly lessened and bands of all symmetries can be seen with 

measurable intensity.

5.2.2 Dispersion in the Enhancement factor

Recall that the magnitude for a particular Raman vibration is a factor of the field 

enhancement at frequency of excitation and the Raman scattered photon:
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This implies that for a well defined plasmon mode, not all vibrational modes are 

enhanced equally. Modes that are shifted farther away from the excitation line, and the 

center of the plasmon resonance, will be less enhanced than those that lie close. This is 

shown in Figure 5.2, for the case of a single ellipsoid.7 The maximum enhancement 

occurs when the two factors are coincident, and sharply drops off from there.

In addition, though the Raman spectrum is assumed to be independent of the laser 

line used for excitation (outside resonance conditions), the spectral wavelength span that 

a Raman spectrum covers is not. This is shown in Figure 5.3, where the span for a Raman 

spectrum taken with 514 nm and 785 nm excitations, is compared, given 116 nm and 297 

nm respectively.
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Figure 5.2: Calculated Enhancement Factor for a silver ellipsoid. The ellipsoid has an

aspect ratio 3:1. The enhancement factor is plotted as function of Raman shift when

excited at peak resonance (407 nm). Calculation of enhancement factor based on the 

formulism of Zeman and Schatz.8
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Figure 5.3: Comparison of the wavelength span of a Raman spectrum when taken at

514.5 and 785 nm

In the section to follow, the role of these dispersion relations are examined for the 

case study of the small molecule 1,8-naphthalimide and its SERS signal as measured with 

Ag colloids as the substrate.

5.3 Experimental

1,8-naphthalimide (NPIMH) (99% pure) was acquired from Aldrich. Raman 

spectra were acquired with < 1 mW of laser power. Solid spectra were recorded with 50X 

objectives, while solution spectra were recorded with the samples in a quartz cuvette and 

the f/15 objective. Silver colloids were prepared by the citrate reduction method outlined 

by Lee and Meisel.9 The resulting nanoparticles in an aqueous solution showed a peak 

plasmon at 420 nm. Samples for SERS studies were prepared from a stock 10'3 M
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NPIMH ethanol solution with 10 (xL added to 3 mL of silver colloids, giving a final 

concentration of NPIMH to be 10'5 M.

5.4 Computational Method

The vibrational analysis in this study was aided by quantum mechanical 

calculations for geometry optimization and computation of Raman frequencies and 

intensities. The Gaussian 03 computational suite with the density functional theory of 

Becke’s three parameter functional, including the Lee et al. correlational functional, was 

used (B3LYP).10’11 Calculations for the gas phase monomer were completed with the 6- 

311G(d) basis set, while for the gas phase Ag complex, the Lanl2DZ basis set was
1 I  -5

used. ’ No scaling factors were applied to calculated Raman frequencies. These 

structures were visualized with the aid of Gauss View 03 for Windows.

5.5 Results and discussion

5.5.1 Raman and Resonance Raman Scattering of NPIMH

NPIMH is a molecule with C2V symmetry with a total of 60 normal modes.14 In 

previous vibrational and SERS studies of this molecule it was shown to form a surface 

complex with Ag.14 The molecule shows two strong electronic absorptions, at 231 and 

338 nm, when measured in an ethanol solution as shown in Figure 5.4.
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Figure 5.4: UV-Vis absorption spectrum of 1,8-naphthalimide in ethanol. The

absorption spectrum is shown as well the wavelengths of the excitation lines used for 

SERS are indicated.

To ascertain the best vibrational assignment for the SERS spectra, a full and 

thorough investigation of the spontaneous non-enhanced Raman scattering was first 

conducted. Raman spectra of the powder were recorded with several excitations lines 

covering the UV to near-IR (325, 442, 514, 633, 785 nm). Looking at the UV-Vis 

absorption in Figure 5.4, the molecule has a strong band about 338 nm. This would 

indicate that Raman spectrum taken with the 325 nm laser would constitute a resonance 

Raman spectrum. The non-resonant Raman spectral profile of NPIMH shows little 

variation in the range of 800 cm'1 to 1700 cm'1.
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To aid in vibrational assignment and to establish symmetry species of the normal 

modes, theoretical calculations were carried out. Geometry optimization and frequency 

calculation for the monomer were determined with DFT B3LYP level of theory with the 

6-311g(d) basis set utilized. The C2V symmetry was confirmed and the 60 normal modes 

were found to be distributed among the following symmetry species; 21ai, 8a2 ,20 b2 and 

1 lbi. The calculated Raman spectrum shows excellent agreement when compared to that 

measured for the solid as seen in Figure 5.5 .

" ■£

i ill
Calculated 1 I 

|  b3ly p/6-311g(d) j |  |

i ,  l

Powder 

633 nm

U k. . . . . . . . . . . . . . .  j
500 1000 1500 2000 2500 3000 3500

Raman Shift / cm 1

Figure 5.5: Comparison of calculated and experimental Raman spectra.

5.5.2 Surface Enhanced Raman Scattering of NPIMH

The SERS spectrum was attained from solutions of NPIMH and Ag citrate 

colloids. The plasmon absorption of the colloids before and after the addition of NPIMH 

is shown in Figure 5.6. The appearance of a broad band centered at 725 nm is indicative
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of aggregation of the colloid on addition of analyte. This results in a redshift of the 

surface plasmon for those aggregated particles.15

436 nm

8
S
€0
1

Ag citrate colloids 
+1, 8-naphthalimide
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colloids

900700 800500 600300 400
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Figure 5.6: Plasmon absorption spectra of Ag colloids with and without NPIMH
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Figure 5.7: Comparison between the SERS and Raman spectrum of 1,8- 

naphthalimide powder
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A comparison between the spectrum measured for the solid and the measured 

SERS spectrum at 633 nm is shown in Figure 5.7.

There are several key differences that are seen between the two spectra. The 

appearance of new bands is indicative of the surface complex between silver and NPIMH. 

In particular is the presence of the low wavenumber bands around 200 cm'1 which have 

been assigned to the Ag-N stretching vibrations.14 To help explain the other changes in 

the Raman profile a theoretical calculation of the silver salt of naphthalimide was carried 

out. To establish a clear comparison between the two calculations, a visualization 

program (GaussView 03) was used to assign corresponding vibrational modes. The 

complex showed the same C2V symmetry and the results of this analysis are given in Table 

5.1, in addition to band assignments. In the assessment of the vibrations of the NPIMH 

monomer and those of the vibrations of the NPIM-Ag complex there is one noticeable 

change, a down shift in the frequencies of the C=0 bands. In the monomer, the symmetric 

CO stretch is found at 1775 cm'1, while in the complex it is found at 1586 cm'1. This trend 

is confirmed in the SERS spectrum where there is the appearance of a prominent new 

band at 1568 cm'1 not seen in the solid. This comparison between monomer, complex and 

the SERS spectrum are all shown in Figure 5.9
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Table 5.1: Observed and Calculated Raman frequencies and intensities

sym

Calculated Measured SERS
AssignmentMonomer Ag-Complex

442
X (nm)

785cm'1 Activity cm'1 Activity 5145 633
177 9.9 223 226 N-Ag stretch

ai 464 2.4 515 18.9 496 494 494 495
a! 570 39.5 577 49.6 598 594 595 595 Ring Breathing
ai 703 1.8 738 31.0 715 711 713 713
ai 816 1.7 818 0.9 789 787 787 785
ai 954 24.2 951 48.0 949 945 946 948 Ring Stretch
ai 1096 11.7 1096 20.9 1071 1075
ai 1188 0.1 1184 12.9 1160 1158 1160 1161
ai 1233 5.3 1234 21.1 1213 1206 1207 1209
ai 1378 4.3 1347 12.7 1352 1345 1346 Ring Stretch
a t 1392 94.9 1449 274.6 1376 1375 1376 1379 C-N symm. stretch
at 1431 96.8 1411 0.5
ai 1477 40.2 1470 86.7 1400 1409 1409 1412
at 1624 183.0 1627 121.2 1586 1583 1583 1587 Ring stretch

1636 41.0 1643 91.7 Ring stretch
a, 1775 106.9 1586 44.7 1568 1567 1569 C=0 symm. stretch
a t 3171 130.4 3196 99.7 2979 C-H stretch
ai 3189 202.0 3219 135.3 3153 C-H stretch
ai 3207 309.6 3237 319.7 C-H stretch
ai 3590 156.1 N-H stretch

a2 432 3.5 443 3.6 455 454 452
a2 626 0.1 636 0.1 615 615

b» 708 1.9 758 1.0 740 735 733 734
b, 770 3.2 778
b2 800 0.3 812 0.9 805 804 805
b i 858 0.6 890 4.2 897 895
b, 960 1.3 1004 0.3 986
bi 999 1.6 1048 3.8 1012 1010 1003 1006

b2 402 9.7 407 7.6 396 393
b2 556 8.0 559 10.8 547 546 545 546
b2 679 0.7 697 0.5 655
b2 825 2.9 868 7.0 824 821
b2 1178 13.3 1201 10.2 1138
b2 1219 0.1 1244 0.8 1197 1194
b2 1253 5.5 1268 14.4 1297 1287
b2 1265 0.8 1350 0.8 1459 C-N anti-symm. stretch
b2 1500 4.8 1497 3.7 1316 1314 1312
b2 1665 0.7 1675 7.4 1616 1614
b2 1773 20.0 1576 6.4 C=0 anti-symm. stretch
b2 3168 3.3 3194 6.5 2933 2930 2930 C-H stretch
b2 3188 151.1 3218 123.7 3063 3061 3059 C-H stretch
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Figure 5.8: Comparison of Calculated and SERS spectra. The SERS spectrum 

(middle) is compared to the calculated monomer (top) and Ag complex (bottom). An 

artificial FWHM of 5 cm'1 is added to the calculated bands for comparison.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In
te

ns
ity

442 nm

j_j i

514 nm

633 nm

VwAtai

/V 785 nm

500 1000 1500 2000 2500
Raman Shift I cm-1

Figure 5.9: SERS spectra of NPIMH for several excitation lines.
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In Figure 5.9, the SERS spectra of NPIMH as recorded for excitation lines o f442, 

514.5, 633, 785 nm, are shown. A quick glance can see the spectral profile is dependent 

on the excitation line. This is even clearer when the region of 400-1700 cm'1 is focused 

on as in Figure 5.10. In attempt to explain these changes, it is necessary to examine the 

extent of the contribution of the several dispersion relations discussed above.

(ft
C
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442 nm

 r » A n  A /  — »

514 nm

— ^  -.-A—..,—-,...

633 nm

785 nm

400 600 800 1000 1200 1400 1600
Raman Shift /  c m 1

Figure 5.10: Comparison of SERS of NPIMH for several excitation wavelengths.
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5.5.3 Selection Rules and Spectral modeling

Beginning at the blue extreme, the SERS spectral profile at 442 nm can be, in part, 

explained by the contribution o f a pre-resonant enhancement as evidenced by the 

dominance of the ring modes in the spectrum. This is supported by the similarities 

between the 442 spectrum and that taken of the solid NPIMH at 325 nm, seen in Figure

5.11.

325 nm Powder

-A .wc
2c

442 nm SERS

400 600 800 1000 1200 1400

Raman Shift I cm'1

Figure 5.11: Comparison of SERS and UV-RR of NPIMH. The SERS spectrum from 

442 nm is compared to the resonance Raman spectrum of the bulk at 325 nm. Evidence of 

pre-resonance is seen in the SERS spectrum.

This does not explain though the variation in the profile of the SERS spectra 

especially when compared to that measured at 785 nm, as seen in Figure 5.12. The 442 

nm SERS spectrum clearly has many more modes contributing, while that at 785 nm is
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dominated by only a few. To explain this variation it necessary to look at the different 

symmetry species in conjunction with the surface selection rules for SERS.

LL= 442 nm

LL= 785 nm

400 500 600 700 800 900 1000 1100 1200

Raman Shift / cm'1 

Figure 5.12. SERS at 442 nm and 785 nm.

The effect of the selection rules can be modeled by using as a basis set, the 

calculated vibrational modes of the NPIM-Ag complex. For a Czv molecule oriented with 

axis of symmetry parallel to the surface normal, modes of ai symmetry will contain the 

ctzz polarizability tensor component, while az, bi and l>2 modes will have polarizability 

tensor components a^, and respectively.16 Using the model for a silver sphere as a 

reference, at 442 nm, E, and E„ are approximately equal and so to should be the relative 

enhancements of a\ modes to those of a2, bi and bz symmetry. A simulated spectrum 

which includes all modes should find good agreement with the SERS profile measured at 

442 nm. This was not the case; it was found that a better agreement occurred when Et was
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considered to be slightly greater than En. By applying a factor of 5 (representing a E2t/E2n 

ratio of 5) to the calculated activities of a2, bi and b2 modes, a  simulated spectrum was 

generated that shows good agreement with that of the SERS taken at 442 nm, as seen in 

Figure 5.13. This is not unreasonable result for the system studied here. Moskovits and 

Suh have shown that for aggregated systems of colloids, the main plasmon may be red- 

shifted; giving the possibility that 442 nm excitation is actually slightly to the red of the 

plasmon resonance, accounting for this obsevation.5

442 nm SERS

£
0)c
Stc

b„ and b, modes

500 600 700 800 900 1000 1100 1200 1300

Raman Shift I cm'1

Figure 5.13: Comparison of measured spectrum and that been simulated with E2t /

E2„ = 5.

At 785 nm, which is far to the red of the main plasmon resonance of silver 

colloids, the rules predict that En is enhanced over Et. In turn, at modes should dominant 

the spectrum. The effects of the surface can again be modeled by applying an appropriate
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factor (here E2„/E2t = 25) to account for the relative field enhancements. The resulting 

theoretical spectrum is dominated by the ai modes, with a spectral profile that compares 

very favourably with the SERS spectrum recorded at 785 nm, as shown in Figure 5.14.

SERS

LL =785 nm

toc
1

ax Modes 
Ag complex

400 600 800 1000 1200 1400 1600

Raman Shift / cm'1

Figure 5.14: Comparison of measured spectrum and simulated with E2„/ E2t =25.

The changes in the spectral profile of the measured SERS for NPIM-Ag at 

different laser lines can be satisfactorily explained by the inclusion of local field 

properties through the application of the surface selection rules of SERS as well as a 

consideration of molecular symmetry. What is still left to explain is the variation in 

relative intensities with changing excitation line. This will be addressed in the next 

section.

5.5.4 Dispersion of Surface Enhancement

To determine if the dispersion in relative intensities seen is real and not just an 

artefact of the experimental conditions, it is necessary to correct the measured spectrum
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for several factors. First the spectrum should be corrected for instrument response, as was 

outlined in chapter 2.2.3. At the time of these experiments only corrections for 785 and 

514 nm laser lines were available. In addition, the concept of a “reduced Raman spectra”

17is useful and is outlined here briefly.

The measured Raman intensity can be given by:

m * C acvo(yo- v Jf 0 jF-x (5.1.4)

where Qrc is the correction for instrument response, v0 is the excitation frequency, y, is 

the frequency difference in scattered radiation (Raman shift) and fa is the scattering cross 

section of the j th vibration. F is the approximation used to account for the effects of 

temperature:

F  = 1 -  exp(-hVjC / kT) (5.1.5)

The temperature and frequency dependence can be factored out of the measured intensity 

to give a function that is directly proportional to the scattering cross section. This is the 

concept of the reduced Raman spectrum and is defined by:

R(v)ccI(y)v0- \ v 0- V jy 3F  (5.1.6)

With the reduced Raman spectrum, the effect of excitation energy on relative intensities is 

more readily apparent.

These corrections were applied to the SERS spectra of NPIMH as taken at 785 

and 514.5 nm. The result is shown in Figure 5.15.
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Figure 5.15: Comparison of the reduced spectra. SERS taken at 514.5 nm and 785 nm

corrected for Instrument Response, Wavelength and Temperature.

Even upon correction, there is still a significant difference in relative intensities 

between 785 and 514.5 nm excitations for bands below 1000 and to those above 1200 cm' 

L. This result could be rationalized by considering the fact that the SERS enhancement 

factor is not uniform across the spectral range. In addition, as the excitation is moved to 

the red, the distance a given vibrational mode is away from the driving frequency of the 

laser and the center of the plasmon resonance center is greater and the enhancement it 

will experience is less. This effect will be strongly dependent on the width of a plasmon 

and this is illustrated in Figure 5.16.
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Figure 5.16: Illustration for the possible cases of dispersion of the enhancement 

factor. Line (a) represents the case of average enhancement with a wide surface plasmon 

envelope. Line (b) is for an intermediate case, while (c) is indicative of the case of a 

dispersion that might be seen in extreme field enhancement and a narrow SP that may be 

experienced with hotspots.

These results suggest new possibilities for a SERS experiment. Consider the 

following, the same dispersion relations seen in this case of average SERS should exist at 

the trace and single molecule regimes. In particular, the dispersion of the SERS 

enhancement may be even more pronounced. Based on the present theoretical 

understanding of “hotspots”, the plasmon absorption of areas of high fields are narrower
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than that which gives rise to average enhancement.18,19 This could result in a steeper drop 

in enhancement away from the driving frequency of the excitation line and extremely 

high enhancement for low wavenumber vibrations compared to the rest of the spectrum. 

The local plasmon absorption may be imprinted in the spectrum of a carefully considered 

probe molecule. With meticulous procedures and knowledge of true relative intensities of 

vibrational bands, this information could be extracted. In essence it may be possible to 

reverse the SERS experiment and use a probe molecule as a reporter to the complex local 

fields in nanostructures.

5.6 Conclusion

In this chapter the impact on the measured SERS spectra of several dispersive 

dependencies were examined. It was shown how, with careful consideration of molecular 

symmetry and the appropriate application of the surface selection rules, the SERS profile 

measured at different wavelength of excitation, can be satisfactorily simulated. The 

demonstration of these rules with the SERS of 1,8-naphthalimide is one of the strongest 

and clearest examples to date. In addition, the effect of non-uniform enhancement factors 

is discussed. Finally, possible future experiments based on these results are suggested
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CHAPTER 6

PHOTODYNAMICS OF SURFACE-ENHANCED RESONANCE RAMAN
SCATTERING
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6.1 Introduction

In this section, experimental results of signal decay of the surface enhanced 

resonance Raman scattering (SERRS) of several systems is presented. Many of the 

problems that plague SM fluorescence are present in SM-SERRS studies. The advantage 

gained by using an excitation energy that is in a region of a molecular absorption is the 

large increase of the Raman scattering cross section, up to a 106 enhancement, over that 

of normal Raman. While the strength of the absolute signal is greater, SERRS inherits all 

the unwanted side effects associated with molecular absorption and traditional resonance 

Raman, such as the propensity for photochemistry.1

In addition, the high fields present in SERRS experiments fosters conditions where 

the photobleaching process can be exasperated. There is a strong dependence between the 

rate of signal decay and the laser intensity used. The SERRS signal is dependent on a 

complex relationship between the excitation rate, the relaxation rate and the rate of 

photobleaching. It will be shown how the survival times of molecules are significantly 

lengthened by low flux excitation. As well, analysis of the signal decay reveals a multi

exponential fit which suggests the presence of both a fast and slow process. It is 

suggested that these trends may be a consequence of the contribution to the signal of 

molecules residing in areas of high enhancement (“hotspots”) and those experiencing an 

average enhancement from the surface.

6.2 B ackground

In previous chapters it has been shown that when resonance Raman is coupled 

with plasmon enhancement, extremely high molecular cross sections can allow for the 

detection of single molecules to be achieved. The presence of the plasmon enhances both
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the local electric field, as well as that of the Raman scattered photons. In addition, the 

increase in field strength can also lead to enhanced absorption Mid fluorescence. The 

proximity of a molecule to a nanostructure has been shown to effect the lifetimes as 

well.3,4 These processes can compete with each other and, as will be shown, this 

competition creates collection regimes based upon the intensity used in the collection of 

the SERRS signal. The simplified state diagram in Figure 6.1, will help illustrate the 

discussion that follows.

PD

Figure 6.1:. Simplified energy level diagram indicating three possible pathways. The

pathway to PD,( kpo ) represents all processes that lead to photodegradation

where kex is the excitation rate, /:re/ax is the relaxation rate and kPD would give the rate as to 

which a photodegradation or photobleaching event would occur.

Photobleaching (Photodegradation) is a process where a molecule loses its ability 

to fluoresce due a chemical change or destruction upon exposure to excitation light.5 The 

mechanism of photobleaching is very dependent on the molecular system under study, 

and in many cases not clearly known. Often, it is a triplet state which plays an important
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role, since these long lived states are the pathway for photochemical reactions.6'8 The 

presence of a photobleaching mechanism effectively creates saturation thresholds that 

have a bearing on the energy density (ED) that can be used in the experiment. Consider 

the following system where, for low ED intensities, photobleaching (photodegradation) 

occurs through a long lived triplet state:9

hr
S ^ S ^ T ^ P B  (6.1)

At high intensities of photon flux, excited states, including reactive triplet states, 

are more likely to be occupied, which can lead to increased chance of photobleaching 

when the relaxation rate is long compared to the rate of incoming photons:

hv hv
S ^ S ^ T ^ T ^ P B  (6.2)

This population of these reactive states leads to a much higher rate of photobleaching.

In the presence of nanoparticles, the kex term can be modified due to the enhanced 

local field. Similarly, Weitz et al, have shown that there is an increase in the non-radiative 

decay rate for a molecule at a metal surface.3,10 This would suggest that there is a 

competition between die excitation rate, the relaxation rate (including any effects due to 

the proximity of a nanoparticle) and the rate of photobleaching.

It is reasonable to assume that in the enhanced resonance Raman experiment there 

exists a similar dependence between photon flux and the rate of signal decay. Such that if

»  kreiax then kpo would be extremely probable and would result in high

photobleaching rates.

Supporting evidence for photobleaching as a source of the signal loss in SERRS, 

was the inability to fit the signal decay with a single exponential:

S(t) = e-Ilk> (6.3)
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A biexponential of the form below was found to fit the data extremely well:

S(t) = S0 + A ,e"k‘ + Axe t/k‘ (6.4)

In the fluorescence photobleaching studies found in the literature, this type of fit is 

often rationalized as inhomogeneous environments for the molecules under 

investigation.6"8 It is not too much of a stretch to see the inhomogeneity of fields 

encountered in SERRS experiments with metal island films may lead to similar 

behaviour.

In the following section the results of time studies of the SERRS spectroscopic 

signal for two systems are presented. The first is a binary monolayer composed of two 

dyes: a perylene and a phthalocyanine. The second is series of studies on the signal loss 

o f the SERRS of rhodamine 6G (R6G) when measured from a silver island film.

6.3 E xperim ental

The fabrication procedure for evaporated Au/Ag films (10 average thickness) is 

described in Chapter 7. Neat Langmuir-Blodgett films of titanyl (IV) phthalocyanine 

(TiOPc) and bis(neopentylimido)perylene (BNPTCD) LB as well as LB film with 1:1 

TiOPc:BNPTCD ratio, were provided for these studies by T. DelCano. Full 

characterization of these films can be found in the following references.11’12 The 1:1 LB 

film was created to have an equal number of TiOPc to BNPTCD molecules per unit area.

In the study of R6G, SERRS studies were of dilute solutions cast onto evaporated 

6 nm silver island films. A 10'7 M solution of R6G was prepared with deionised water. A 

small drop of 10 pi was east onto the Ag island film and left to dry before analysis.

UV-Vis and plasmon absorption were recorded. The excitation lines of 514.5 and 

633 nm were used in this investigation to explore each molecules resonance and off
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resonance enhanced Raman All Raman spectra reported here were recorded under 

ambient condition.

6.4 R esu lts

6.4.1 SERRS/ SERS of TiOPc and BNPTCD

In the study case presented here, the sample is that of a LB monolayer fabricated 

so as to have an equal number of a perylene derivative (BNPTCD) and phthalocyanine 

(TiOPc) molecules per unit area.11 These molecules have very distinct electronic 

absorptions also shown by the absorption spectra for neat monolayers for die two 

materials in Figure 6.2.

Figure 6.2: UV-Visible absorption spectra of BNPTCD and TiOPc neat monolayers 

on glass. Absorption spectra of the two dyes are overlaid with the plasmon of the Au/Ag 

island film. The structures for the two dyes are also shown.

BNPTCD

TiOPc

TiOPc

N— C.H.

400 500 600 700 800
A / nm

BNPTCD
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BNPTCD is in resonance with the 514.5 nm laser line while the TiOPc is in 

resonance with 633 nm excitation. The LB was deposited on an Ag/Au metal island film. 

The surface plasmon for this film is also shown in Figure 2. Notably, the 633 nm line is 

in full resonance with both the surface plasmon and the TiOPc electronic absorption, 

hence creating a double-resonance situation. The BNPTCD molecule meanwhile should 

only experience an enhancement from the resonance with the surface plasmon and not 

from any molecular resonances. In Figure 6.3, the SERRS of a neat LB of TiOPc and the 

SERS of a  neat LB of BNPTCD, as taken with 633 nm excitation, is shown.

15241340
TiOPc LB SERRS 

LL -633 nm 1301

&
C®c
3c 13771292 1570

BNPTCD LB SERRS 
LL =633 nm

600 800 1000 1200 1400 1600
Raman Shift / cm'1

Figure 6.3: SERS and SERRS spectra of neat monolayers on glass of the two dyes.

The two-dimensional and well organized LB of the 1:1 mixed monolayer is ideal 

system to study SERS and SERRS under the same conditions. Of particular interest here 

is the effect of energy density on the intensity of the SERS/SERRS spectra. The spectra 

shown in Figure 6.4 were measured under identical conditions (illumination with a 633
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nm laser, through a 50X objective with an accumulation time of 10s) but for two different 

laser powers {different energy density at the sample of the same frequency).

LL -  633 nm

4.5 mW

COc

0.045 mW

1400600 1000 1800200

Raman Shift / cm 1

Figure 6.4: SERS/SERRS signal from a TiOPc / BNPTCD 1:1 mixed monolayer at 

two energy densities.

The top spectrum is one recorded with ~ 4.5 mW at the sample, while the bottom 

spectrum was recorded with the laser power lowered to 0.045 mW, or 1% of that initially 

used. The former contains only the fingerprint spectrum of BNPTCD while the latter 

shows the expected compliment of bands of both chemical species. When the experiment 

is conducted with higher laser powers, it is the vibrational fingerprint bands of BNPTCD 

that is seen with little or no evidence of TiOPc. To better understand the contrasting 

spectra, the laser power was further reduced to 0.0225 mW and the accumulation time 

was reduced to 1 second. Consecutive speefra were recorded every second for 40 seconds.
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This time evolution of signal is shown in Figure 6,5 and a sampling of spectra from the 

beginning, middle and end of the collection, is shown in Figure 6 .6 .

TiOPc Bands 

^  BNPTCD Band

Raman Shift / cm-1

Figure 6.5: Time-Dependent photobleaching of the SERS/SERRS signal from a 

TiOPc / BNPTCD 1:1 mixed monolayer.
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T = 1 s

T = 40 s

1200 1300 1400 1500 1600

Raman Shift I cm 1

Figure 6.6: SERS/SERRS signal from a TiOPc / BNPTCD 1:1 mixed monolayer at 

T=ls, T=20s, T=40s for the time series shown in Figure 6.5.

It can be seen that the main peaks of both the BNPTCD (1292, 1377, 1570 cm'1) 

and TiOPe (1301,1340, 1524 cm'1) are present in the initial spectrum. Within 20 seconds, 

the TiOPc signal is diminished, while that of BNPTCD remains relatively constant. After 

40 seconds the BNPTCD bands are dominant. The normalized integrated intensity for a 

representative band for each molecule is plotted in Figure 6.7.

1 3 7
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Figure 6.7: Signal decay in SERS and SERRS. Normalized integrated intensity for a 

representative band for each molecule is plotted.

It is clearly seen that while the TiOPc signal decays, the BNPTCD signal stays 

relatively constant. The fact that the SERS of the BNPTCD molecules is maintained, 

suggests that the underlying enhancing metallic nanostructure is not being modified and 

can be excluded as the reason for the intensity loss. The key difference between the two 

molecules is their molecular resonances. With 633 nm excitation, the TiOPc, is SERRS 

enhanced, and undergoes an expedited photodegradation, while the BNPTCD being 

SERS enhanced, is relatively unaffected. This changes when the wavelength of excitation 

is 514.5 nm, which is in resonance with BNPTCD, as evidenced by the plot in Figure 6.8.
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Figure 6.8: Comparison of the signal decay for BNPTC!> when excited with 

resonance and non-resonant excitation.

The reason for the rapid decay of the TiOPc signal is not quite clear. The

the behaviour encountered here.

An attempt was made to model the dynamics of the SERRS signal with a simple 

exponential decay; it was found that this curve fitting was inadequate. When a double 

exponential of the form shown in the introduction was used, excellent agreement could be 

found as shown in Figure 6.9.

molecule is known to have a reactive triplet state.13 It is possible that a situation similar to 

that described earlier in the chapter for a system with a reactive triple state may explain
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Figure 6.9: Intensity decay of SERRS of TiOPc. Spectra taken with 633 nm, at 45 pW,

1 second exposure and 1 second between scans for 100 scans. Fitted curve is a double 

exponential with the following parameters S0 = 0.29, Ai= 0.45, A2 = 0.31, ki = 62 s'1, k2 =

6.4 s'1 (R2=.99)

As discussed earlier, the presence of a biexponential fit could be interpreted in 

terms of inhomogeneity in the environment for the analyte under study. This could be 

related to variation in the EM fields or morphology of the enhancing surface. To see if 

this is a more general property of SERRS, a dynamics study on the SERRS signal of the 

dye molecule, rhodamine 6G, were carried out.

6.4.2 Time Studies of R6G on Ag island films

Besides being the probe molecule of choice for SERS investigations, 14'17 R6G is
o 10

also an extremely well researched molecule for photobleaching studies. ' ’ In Figure
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6.10, the electron absorption spectrum for R6G is shown along with the plasmon for a 6 

nm silver island film. With 514.5 nm excitation, the double resonance condition for 

SERRS is achieved.

Plasmon
6 nm Ag island film

R6G 10-7 
Solutiono

Vin<

400 450 500 550 600 650 700 750

A / nm
Figure 6.10: UV-Visible absorption spectra of 10"7 R6G Solution and the plasmon of 

the 6 nm Ag film.

In Figure 6.11, the SERRS spectrum for R6G is given; with the strongest band 

observed at 1650 cm'1. It is the integrated intensity o f this band that is used for all 

dynamic analysis presented in this section.
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Figure 6.11: SERRS of a 10 pi casting of a 10'7 M R6G solution on a Ag island film.

In Figure 6.12, the signal decay of the R6G is plotted as a 2D map. This map 

demonstrates that even when there is loss of total intensity with time, the entire spectrum 

is still being recorded and the decay affects the entire fingerprint region.
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Figure 6.12: Time Study of the SERRS signal of 10'7 R6G. Spectra taken from a 

casting of R6G on a Ag island film with 514.5 nm, ED= ImW, 1 second 

accumulation, 30 scans.

In Figure 6.13, the decay in signal is shown thorough the plot of the integrated 

intensity of one band (1650 cm 1). Based on the intensity map shown in Figure 12, 

photobleaching is expected, and the shape of the curve reveals that something more than a 

simple exponential decay is occurring. Again the biexponential provides an excellent fit 

to the data suggesting this behaviour may be a general trend for SERRS-photobleaching 

on Ag island films.
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Figure 6.13: Intensity decay for SERRS R6G. Spectra were taken with 0.5 mW at 

514.5 nm, 1 second exposure and 2 seconds between scans for 30 scans. Fitted curve is a 

double exponential with the following parameters S„ = 0.27, A-j=0.19, A2 = 0.53, kj = 1.47 

s'1,k2= 17.4 s'1, (R2= 0.99).

To see the effect of energy density of the rate of degradation a series of 

measurements where taken at different laser powers at the sample. The summary of these 

results are presented in Figure 6.14.
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Figure 6.14: Signal decay for the SERRS signal of R6G for several ED. Condition for 

collected spectra are: accumulation time = 0.5 s for 30 scans, 2 s dead time between 

scans

At each laser power, 30 spectra were collected 2 seconds apart (dead time of 

instrument) with a time of accumulation of 0.5 s. Each set of data was normalized to what 

was measured on first exposure. As can be seen, for anything above 0.05% there is 

significant drop off in the first few seconds. This type of behaviour has an important 

impact when attempting any type of accumulation of signal, especially if moderately high 

powers are used. Take for instance the data for the full 1.2 mW, where within the first 5 

seconds there is over a 30% loss of signal.
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Figure 6.15: Signal decay for the SERRS signal of R6G for 3 ED’s for equal number
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To see that the effect of ED is beyond doubt, it is informative to look at the signal 

decay as a  function of total photons delivered. SERRS signal of R6G was examined at 

different laser intensities, ranging from 800 to 0.4 pW. To ensure that the same numbers 

of photons were delivered, the exposure time was adjusted from 0.05s to 100s 

accordingly. By increasing exposure time with decreasing power, the same number of 

photons can be delivered to the sample. The result of this test is shown in Figure 6.15 and 

it can be clearly seen that ED has a huge impact in SERRS.
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Figure 6.16: Integrated SERRS intensity for the 1650 cm'1 band of R6G for one dose

for three different ED’S.

Recall that Raman intensity should be linear with time and laser intensity. These 

results demonstrate that the linear relationship between Raman intensity and laser 

intensity is lost in SERRS due to the effects of photodegradation. The “survival” time of 

analyte is strongly tied to the photon flux that is used. This is starkly illustrated by the 

graph shown in Figure 6.16, were the initial intensity that is recorded for equal number of 

striking photons is given for each laser power. Approximately, 12 times more “counts” in 

the first “dose” can be attained with 0.4 pW compared to 800 pW.

The behaviour of R6G investigated here is consistent with results o f Bout et al. ,7 

In their study of single molecule fluorescence of the R6G molecule, they have shown that
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the rate of photobleaching is strongly dependent on the energy density used. They found 

that excitation with low ED resulted in unexpectedly high photon yields and a longer 

lifetime for the molecule. It stands to reason that a similar situation is occurring here, only 

amplified by the enhanced fields involved. Thus, photon flux, increased absorption, 

competing rates of excitation and relaxation times, the presence of nonradiative relaxation 

routes, and excited state photochemistry, all play a part in the photodegradation seen in 

SERRS experiments.

These results help the understanding and give a possible interpretation of the 

biexponential decay. There may be two types of molecular sites for analytes deposited 

onto Ag island films that contribute to the SERRS spectra. These could be attributed to 

those molecules that reside in hotspots and those situated in areas of average 

enhancement. It is known that the SERS/SERRS signal is dominated by those molecules 

residing in areas of highest enhancements.19,20 At these hotspots, the fields can be orders 

of magnitude larger than the average enhancement. Molecules situated in hotspots 

experience a local field that would be considered extremely intense. This could create a 

situation where kex »  kreiaX • For molecules in areas of average enhancement, kex > kreiax 

then kpo is small as the probability of photobleaching is less likely. When the conditions 

are such that keX ~ kreiax, the non-radiative decay can play a more dominate role. This may 

reduce kPD and as such a molecule is less chance to be in a state where a photochemical 

process can occur. Under these conditions the effective scattering life time for a molecule 

is significantly increased. This is one possible explanation for the decay profiles recorded 

here, and this idea is illustrated in Figure 6.17.
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Figure 6.17: Illustration of the possible mechanism for the signal decay seen in 

SERRS experiments.

The excitation rate can be considered to be related to the enhanced local field

K ^ G E l  (6.4)

where G is the enhancement factor. So to is the rate of photobleaching kpo- This would 

manifest itself in the decay rates (T), for photobleaching. This has been suggested by Le 

Rue et al, with T ~ G I0.19 Hence, the photobleaching rate is dependent on both the local 

field enhancement and the incident excitation intensity. This actually gives as starting 

point to the possible use of photobleaching to measure the enhanced local fields and 

possibly their distribution.
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6.5 Conclusion

SERRS experiments in general are plagued by photodegradation of the analyte. 

By various processes, the target molecules stop scattering and the quality of signal 

degrades in time. This is especially evident at SM-SERRS regime as seen in Chapter 3 in 

the work of SM detection of several perylene derivatives. Here, I have presented 

experimental evidence of the photobleaching for three different dyes and for two types of 

samples. Photobleaching is observed in numerous cases and it is a common occurrence 

in experimental SERS/SERRS.21 The biexponential behaviour is associated with the 

inhomogeneity in the electromagnetic enhancement, one coming from molecules in 

“hotspots” aid the more common enhancement referred as “average enhancement”. The 

experiment with varying energy density seems to support this interpretation Mid the use of 

low energy density becomes crucial when the experiment approaches the single molecule 

detection. The results may be important for future work of SM-SERRS, and SERRS in 

general, to fully understand the frill impact of these enhanced fields.
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CHAPTER 7 

SUBSTRATE DEVELOPMENT
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7.1 Introduction

A  major challenge in experimental SERS arises from the fact that the phenomenon 

is observed on nanostructured substrates of one form or another, with the required optical 

properties. Therefore the properties of that surface have an immense impact on the 

success or failure in the detection of a desired analyte, and correspondingly, there has 

been an explosion of reports on the fabrication of enhancing surfaces SERS substrates.1 

SERS substrates are, in general, metal nanostructures (nanoparticles and nanoparticle 

aggregates), and they come in all shapes and forms, from random distributions, to well 

organized two-dimensional patterns.3 To illustrate, the SERS substrate gallery, a sample 

of some of the substrates used in this work, is shown in Figure 7.1. It includes the 

commonly used metal colloids prepared by wet chemistry, (for which you can find 

hundreds of variations), metal island films prepared by physical methods, as well as some 

more sophisticated substrates that will be presented in this chapter.

Colloids in 
Solution

Cast Colloids Metal island 
films

Embedded
Nanoparticles

Figure 7.1: Gallery of SERS substrates
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As stated before, substrate development is in itself a rich and diverse area of 

research.4"8 An analysis of the experimental results have made it clear that there is no 

point in searching for a “universal SERS substrate”. It has become evident that each 

SERS substrate must be tailored to the type of analyte and application it is to be used for.

The substrates presented were designed to address specific issues that would 

improve the probability of attaining a good SERS/SERRS spectrum. The first substrate to 

be discussed is a mixed silver/ gold island which was created to overcome some of the 

limitations encountered when using pure Ag films. The second substrate development 

was an attempt to create SERS substrates that could find applications as possible 

biosensors by embedding the enhancing nanoparticles in a bio-friendly matrix. The final 

substrates development discussed here are the result of a desire to add functionality to the 

SERS substrates through the incorporation of a bio-recognition element.

7.2 Island Films o f Mixed Silver and Gold*

7.2.1 Introduction

The motivation for the work presented here stemmed from the previous single 

molecule studies of LB using Ag island films as substrates. One of the chief problems, as 

was discussed in that chapter, was the large interference of impurities and a carbon 

background which is believed to be due to the reactivity of the silver surface. In attempt 

to suppress this, modification to the island film was sought. The next metal in relative 

strength of enhancement is gold. The gold plasmon resonance is to the red of that of silver

b T h is  w o r k  w a s  a  c o l l a b o r a t iv e  e f f o r t  w i th  P .  J .  G . G o u le t .  L a n g m u ir - B lo d g e t t  f i lm  f a b r ic a t io n  w a s  m o s t ly  
c o m p le t e d  b y  P .  J .  G . G o u le t
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with peak plasmon absorption generally above 600 nm. Though its average enhancement 

factor is less than silver, it is known to provide a less reactive surface.

Here, a method was developed to combine gold and silver for the creation of a 

new substrate that demonstrated enhancement factors high enough for single molecule 

detection. In this section, this fabrication is described and characterized. The use of these 

films for SM studies is demonstrated with the SMD of a PTCD molecule in a LB 

monolayer. The novel substrate is characterized by its plasmon absorption, XPS of the 

metal surface and atomic force microscopy (AFM) topographical imaging. This work 

introduped a new substrate for trace detection as this was the first report of mixed Ag/Au 

film to be used for single molecule detection.

7.2.2 Experimental

Metal island films were prepared by vacuum evaporation at pressures of 10'7 Torr, 

and temperatures of +200 °C (maintained for 1 hour after evaporation), With total mass 

thicknesses of 10 nm, these substrates were prepared by two separate evaporation steps. 

First, 5 nm Ag films were deposited onto 7059 Coming glass slides, and, after allowing 

sufficient cooling times (1-2 hrs.), a second layer film of 5 nm Au was then deposited on 

top at the same +200 °C temperature. All depositions were carried out at evaporation rates 

of ca. 0.5 A/s. The characterization of all mixed Ag/Au substrates was accomplished 

through the use of three complimentary techniques; UV-visible absorption spectroscopy, 

X-ray photoelectron spectroscopy (XPS)°, and atomic force microscopy (AFM).).

c X P S  s a m p le s  w e r e  s e n t  o u t  f o r  a n a ly s i s  t o  S u r f a c e  S c ie n c e  W e s te r n ,  L o n d o n ,  O n ta r io
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Mixed Langmuir-Blodgett films of bis-benzylimido perylene (Bbip) and arachidic 

acid were deposited onto mixed silver/gold island films at concentrations down to 1 

molecule/|im2. These mixed BBIP-AA Langmuir films were fabricated in the same 

manner as previously detailed in Chapter 3 with the exception that the substrate is now a 

glass slides coated with mixed Ag/Au (5 nm Ag + 5 nm Au) island films. All Raman 

spectra were collected with the Renishaw Ramanscope 2000. Excitation lines of 514.5, 

and 633 nm were used in this investigation to explore both resonance and off resonance 

Raman. In single molecule experiments, laser power was kept low (< 20 pW) to diminish
•y

the chance of photodegradation. Laser spot sizes were ca. 1 pm using the 50X objective. 

Accumulation times were between 10 and 20 seconds.

7.2.3 Results and Discussion

The plasmon spectrum of a 10 nm mixed film (5 nm Ag + 5 nm Au) is shown in 

Figure 2. For reference, the plasmons for the more traditional substrates of the 6 nm Ag 

and 5 nm Au island films are also shown. The mixed substrate shows a much redder 

plasmon maximum (697 nm) due to the presence of gold as well as an overall broader 

absorption. The broader and shifted plasmon may be explained by slightly larger particles 

seen in the AFM (Figure 2). The particle size ranged between 20 and 120 nm, a larger 

size range than is typically measured for 6 nm Ag island films.
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Figure 7.2: Plasmon absorption and AFM for Ag/Au island films. Plasmon 

absorption is shown for 6 nm Ag island film, 5 nm Au island film and a mixed Ag/Au (5 

nm Ag + 5 nm Au) island film (top). AFM image of a 500 x 500 nm section of the Ag/Au 

film is also shown

The mixed Ag/Au character of these films were confirmed by XPS. Results 

indicated an equal amount of gold and silver on the surface of films made from this 

deposition process.
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Silver is very reactive surface in nanostructures and can be contaminated by 

interaction with the ambient environment. As the single molecule regime is approached 

this becomes even more of an issue, as has been shown in several independent reports.9 

The enhanced Raman scattering of these contaminations can compete and conceal the 

SERS signal of an analyte. By mixing the silver with gold, the high reactivity of the metal 

film with the environment is reduced while still maintaining the high Raman 

enhancement that is attained with the unique optical properties of silver island films.

LB 1:1 BBip on Au/Ag Film

LL = 514.5 nm

wc©
£

LL = 633 nm

1000 2000 2500 30001500

Raman Shift I cm*1

Figure 7.3: SERRS and SERS of BBip. SERRS (top) and SERS (bottom) spectra of a 

1:1 Bbip film on mixed Ag/Au island film.

The effectiveness of these films as SERS and SERRS substrates is exemplified in 

Figure 7.3. The SERRS spectrum of a 1:1 Bbip monolayer on a Ag/Au film is shown
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along with the SERS spectrum attained at 633 nm. The latter also demonstrates that these 

mixed Ag/Au substrates are versatile and can be used with several laser lines. The 

average surface enhancement for Raman was estimated to be on the order of 10 from a 

comparison of the Raman signal recorded from the LB on glass to that of the SERRS 

measured from the LB on the island film. The use of these substrates for detection for a 

single Bbip molecule is shown in Figure 7.4. Here several of the SMD signals detected 

from these films are presented. The SERRS spectrum for the 1:1 concentrated film is also 

shown for reference.

BBip

COc
c

1300 1500 1700

Raman Shift / cm'1

Figure 7.4: Several SM spectra of Bbip compared to the ensemble SERRS spectrum
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The SM character of the spectra is evident with changes in relative intensities and 

bandwidth seen in the detected signal. The use of Ag/Au mixed films did succeed in 

providing a large reduction in the interference of contaminations and carbon resulting in 

better quality SM spectra. Though the SM signal was still hard to pin down, the number 

of SMD events was on average higher then what was encountered with the 6 nm silver 

island films.

7.2.4 Conclusion

An interesting new substrate has been employed in this work, and has shown to be 

a very promising. The use of the high enhancing metal of Ag with the less reactive gold 

has resulted in a film that greatly reduces interferences as well as providing a high SERS 

enhancement. In addition the broad and red shifted surface plasmon allows the use of this 

substrate for wide range of excitation frequencies. The potential for single molecule 

SERRS studies was shown in the successful measurement of the SM signal of Bbip- 

PTCD.
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7.3 Gold nanoparticle Embedded Chitosan Self-Sustained thin filmsd

7.3.1 Introduction

The development of novel, environmentally friendly methods for the fabrication 

of nanoscale structures has now become an important challenge facing materials science. 

In this work, self-sustained, biocompatible, biodegradable films containing gold 

nanostructures were fabricated for potential applications in sensitive chemical and 

biochemical analysis. This was accomplished through a novel synthesis of gold 

nanoparticles mediated by the biopolymer chitosan. Self-supporting thin films were 

formed from the resultant gold-chitosan composite solutions, and characterized by UV- 

visible surface plasmon absorption, transmission electron microscopy, atomic force 

microscopy, infrared absorption, and Raman scattering measurements. Results 

demonstrated a degree of control over the size and distribution of the nanoparticles 

produced. The SERS activity of these films is demonstrated for the test molecule R6G

7.3.2 Experimental

Chitosan, obtained from shrimp chitin (an N-acetylglucosamine polymer), was 

provided by Cyrbe do Brasil Corporation. It has an average molecular weight of 500,000 

g/mol, as determined by viscometry, and a 75% degree of deacetylation.10 It was purified 

twice in 1% aqueous acetic acid solution, filtered with filter paper, precipitated with a 1% 

aqueous sodium hydroxide solution, and washed extensively with deionized water until 

neutral pH was reached. Hydrochloroauric acid was purchased from Aldrich, and used

d  T h is  w o r k  w a s  d o n e  in  c o l l a b o r a t io n  w i th  D .  S . d o s  S a n to s  J r  a n d  P .  J .  G . G o u le t .  W i th  f i lm  p r e p a r a t io n  

c a r r ie d  o u t  b y  D .  S . d o s  S a n to s  J r  w i th  f e e d  b a c k  a n d  d i r e c t i o n  f r o m  N . P .  W . P i e c z o n k a  a n d  P .  J .  G .
G o u le t
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without further purification. All glassware was thoroughly cleaned by detergent, aqua 

regia, and copious rinsing with deionized water. Solutions were prepared using deionized 

water. Films were prepared by casting measured volumes of the solutions onto glass 

slides at room temperature, and allowing for evaporation of the solvent.

UV-visible absorption spectroscopy was used to monitor the plasmon absorption 

of the gold nanoparticles produced. AFM images were recorded in non-contact tapping 

mode with a n+-silicon tip. A scan rate of 1 Hz was used with 256 and 512 sample lines 

per image. Transmission electron microscopy (TEM) images were obtained with a Philips 

CM20 STEM operating with a 120 kV accelerating voltage.6 Infrared absorption 

measurements were recorded with the Bruker Equinox 55 FTIR spectrometer. Each 

spectrum was measured in transmission mode with 256 scans, and 4 cm-1 resolution. All 

Raman spectra were acquired using a 633 nm excitation line directed through a 50X 

objective with < 1 mW of laser power at the sample.

7.3.3 Results and Discussion

Chitosan has been extensively studied for more then 30 years as an inexpensive, 

renewable material.11 It has unique structures and physicochemical characteristics that 

differ considerably from typical synthetic polymers.12,13 Chitosan’s structure is similar to 

that of cellulose, but it has better processability due to the presence of amino groups. In 

fact, its chemistry is largely determined by its amino and hydroxyl groups. Chitosan is 

well known as a strong chelating agent for metals and proteins making it particularly

6 A l l  t r a n s m is s io n  e le c t r o n  m ic r o s c o p y  ( T E M )  s a m p le s  w e r e  s e n t  f o r  im a g in g  t o  M c M a s t e r  U n iv e r s i t y ,

H a m i l to n  O N
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useful in sensor development.14,15 It has been shown to make biocompatible, 

biodegradable films; all these properties make the material a good candidate as a basis for 

new types of SERS substrate with potential application in biosensing.

The use of chitosan to facilitate the production of gold nanoparticles showed the 

capability to generate a vast range of films with a range of particle densities and sizes. 

The resulting optical properties of the fabricated films were found to be dependent on the 

relative ratio of gold to chitosan, as well as the temperature at which the reaction was 

carried out. The chitosan is believed here to be both a catalyst and stabilizing agents for 

the gold nanoparticles. In conjunction with the use of the mild reducing agent, acetic acid, 

this synthesis demonstrated a degree of control over the resulting size and density of gold 

nanoparticles in these films.

Each synthesis was monitored by plasmon absorption to track particle growth and 

particle density. A typical progression is shown in Figure 1 for the syntheses denoted SI. 

The reaction was monitored for 5 hours. Here the increase in the plasmon intensity 

indicates an increase in particle density. This particular syntheses was made by mixing 

equal volumes (15 mL) of a 1% chitosan solution in 1% aqueous acetic acid with a 0.01% 

aqueous tetrachloroauric(III) acid (HAuCfi) solution at 85 °C. The observed increase in 

the extinction of the 528 nm surface plasmon band can be attributed to the formation and 

increasing population of gold nanoparticles.
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Figure 7.5: Growth of surface plasmon with reaction time. The growth in the plasmon 

indicates the production of Au nanoparticles. The inset is a cartoon of the proposed 

substrate.

For thin film fabrication, these solutions were allowed to cool under ambient 

conditions, and were cast onto glass substrates, where they were allowed to dry for 24 

hours. The resulting films showed a wide range of colors from light pink to dark violet. 

This large range of films that could be produced is evidenced by the variety of colour 

films captured in the photograph shown in Figure 7.6. Plasmon absorptions of the dried 

films showed a range a Xmax ,also shown in Figure7.6.
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Figure 7.6: Plasmon absorption of several of the films made from gold/chitosan 

composite solutions. Plasmon absorption is shown along with a photograph of several 

different films. The top image is an example of a typical self-sustained nanocomposite

One major advantage of working with chitosan is that is can form thin films, free 

of glass support. This is accomplished by a process of neutralization with a 1% aqueous 

solution of NaOH. Self-sustained, stable, and flexible nanocomposite films are the result, 

an example of one of them is shown in the top comer of Figure 7.6. Films such as these 

could be used in investigations where traditional SERS substrates, such as metal island 

films on glass, could not. As well, the bioffiendly nature of the matrix material makes 

these films possible candidates for in vitro sensors.16

film
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While a large variety of films could be generated, only two syntheses were chosen 

for extensive characterization. The first films to be studied were produced by the above 

SI reaction, which created a film embedded with small, well separated particles. The 

second were from syntheses (S3), where the amount of HAuCU was increased to a 0.0625 

% while keeping all other parameters the same. This produced films with a high degree of 

aggregated gold nanoparticles. Films fabricated from these two solutions provided an 

interesting contrast into what works for a SERS substrate as the former showed no SERS 

activity while the latter did. Full details of these syntheses can be found in reference 17.

7.3.4 Characterization of Films

Since one of the primary motivations for using chitosan are to take advantage of 

its many unique properties, it was hoped that there would be little modification to the 

biopolymer upon reaction with gold. FT-IR measurements of the free films seem to 

support this. Films with and without gold particles are shown in Figure 7.7. There were 

no noticeable changes in the spectra when compared.
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Figure 7.7: Comparison of FT-IR absorption spectra of pure chitosan film and 

chitosan film embedded with Au nanoparticles
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Figure 7.8: Comparison in AFM images between a pure chitosan film and a chitosan 

film embedded with Au nanoparticles

7.3.4.1 SI Films

AFM of the surface of these films were done to see changes in morphology. Being 

a biopolymer, the surface is relatively soft and it was found contact mode was ineffective
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at producing quality images; tapping mode though caused little problems and produced all 

images presented here.

In Figure 7.8, height, amplitude and phase images were used for characterizing the 

surface. The AFM of samples of the pure chitosan film indicated the surfaces were 

relatively flat, with an average of surface roughness found to be 3.8 nm. In contrast, films 

with gold nanoparticles were very rough with values over 25 nm. Films with gold 

particles were also found to be very inhomogeneous making characterization of the 

topography of the surface difficult. However, the AFM did show that there were very few 

gold particles on the surface of these films. The Au nanoparticles seem to be truly 

embedded. TEM was required to determine the size and shape and distribution of the 

nanoparticles inside these films. Embedded Au nanostructures provide a rationale to 

forecast the analyte/substrate interactions, since the analyte would have to permeate into 

the film for SERS enhancement, a property that could be very advantageous with 

potentially built-in selectivity. In Figure 7.9, the characterization results for a chitosan 

gold particle embedded film created by SI are shown. TEM at two magnifications (low 

and high) reveal well spaced small particles, with a size of ca. 20 nm. The AFM images 

again showed little gold on the surfaces. The usefulness of phase imaging is 

demonstrated here by being able to distinguish between the softer polymer and the harder 

nanoparticles. Though they are not distinguishable in the height image, the locations of 

the metallic particles are indicated by white dots in the phase image. The plasmon 

measured for these films was 538 nm. Mie extinction calculations for 20 nm Au sphere in 

a chitosan matrix (refractive index = 1.5),18 showed great agreement with the measured 

plasmon. This supports the mono disperse nature of the particles in this particular film, 

which again showed negligible SERS activity

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TEM

100 nm

ms

AFM

Amplitude P hase

538 nm
co Film
oc
usX
lli Mie Calculated

400 600500

A / n m
Figure 7.9: C haracterization o f the SI film s. TEM, AFM and plasmon absorption. The 

calculated extinction spectrum is shown for comparison.
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7.3.4.2 S3 Films

In contrast, excellent SERS activity was found with films produced with the S3 

synthesis. In Figure 7.10, the characterization for this sample is presented. The plasmon 

absorption maximum at 555 nm is redshifted in comparison to SI. A photograph of the 

film is shown as an inset. TEM images clearly show the presence of Au aggregates, 

which is believed to be the source the SERS activity. In Figure 7.11, the AFM images of 

the samples are presented, with the rough topography again makes surface imaging 

difficult. The phase imaging shows once more very little gold on the surface. The higher 

magnification images show the few particles and aggregates that do peak through the 

surface.
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Figure 7.10: Characterization of the S3 films. TEM and plasmon absorption. A 

photograph of the film is shown as a inset.
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Figure 7.11: AFM of the SERS active films (S3).
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To test the SERS activity of this film, a film of the S3 variety was dipped in a 

solution of the analyte R6G at concentration range from KT4 to 10‘6 M. For comparison 

pure chitosan films (without gold)) were dipped in the same solutions. The SERRS signal 

of R6G was easily seen down to 1CT6 M. In comparison, only the florescence of R6G 

could be seen from the pure chitosan film, even at KT4, as seen in Figure 7.12.

The role of aggregates for SERS is evident in the comparison of the two film 

types. The mono disperse particles registered no SERRS activity under these conditions, 

while the aggregated particles did. This supports a general property of SERS substrates, 

the highest enhancements arise from aggregated systems.

SERS
R6G
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c
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Figure 7.12: SERS obtained with a Au-chitosan film. SERRS spectrum recorded from 

a Au-chitosan film (S3) dipped in a 10"4 M R6G solution (Top). Spectrum recorded from 

a pure chitosan film dipped in the same solution (Bottom)

7.3.5 Conclusions
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The development of biocompatible analytical methods is now becoming 

increasingly important. In particular, the in situ detection of trace quantities in living 

systems, without disturbing them, is of utmost importance. This work shows the 

fabrication and testing of self-sustained, biocompatible, biodegradeable, and non-toxic 

thin films for the detection and chemical analysis of trace quantities. It is hoped that this 

work will provide new perspectives into the development of ecologically responsible 

analytical methods, and find application in new biological and medical technologies.

7.4 A vidin  an d  A g  L ayer-by-L ayer F ilm s f

7.4.1 Introduction

It has been wildly established that the plasmonics of metal nanoparticles is one of 

most interesting properties of any material in the nano regime. As a result of a dipole 

plasmon resonance that is dependent on the dielectric function and is sensitive to size, 

morphology and environment, metal nanostructures may be used in a wide range of 

applications. It is this versatility that makes their use in biosensors so appealing and also 

why their incorporation into bio-recognition systems is such a vibrant field of research. In 

this pursuit, nanoparticles have been functionalized with, antibodies,4 ligands,19 and DNA 

strands, to mention but a few.

An alternative way of incorporating the unique optical properties of metal 

nanoparticles with chemically selective materials is provided by the Layer-by-Layer 

(LbL) method for thin film fabrication. Since its inception, this technique has been shown

f
T h is  w o r k  w a s  a  c o l l a b o r a t iv e  e f f o r t  w i t h  P . J .  G . G o u le t .
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to be extremely successful in creating multi-component, structured films with tailored 

functionality and properties. Pioneered by Dresher21 the method allows through 

consecutive adsorption steps, composite films to be constructed from a variety of 

materials, such as polymers and proteins. A cartoon of this wet chemistry procedure is 

shown in Figure 7.13

WaterAvidinAg
Colloids

Water

Figure 7.13: Illustration of the layer-by-layer method

Nanostructures, such as quantum dots,22 and metal nanoparticles,23 have been 

shown to be included in these layered films with no loss of their photonic ability. Here 

this is extended to chemical selective materials, particularly those that are active 

components of bio-recognition systems. The presence of optically active nanoparticles 

allows the resulting binding events to be reported by several methods. These include, 

localized surface plasmon resonance spectroscopy,24 enhanced fluorescence,25 and of 

particular interest here, SERRS.

1 7 7
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LbL is an easy and versatile method for combining the unique optical properties 

of metal nanoparticles with chemically selective materials for use in functional SERRS 

substrates. For example, films constructed with alternating layers of avidin and silver 

nanoparticles can be fabricated. These films are used as “smart” substrates that can 

significantly increase the SERRS signal for a target analyte through an effective 

concentration enhancement. The prototype system chosen to illustrate the possibilities of 

this approach is the avidin/biotin pair. Avidin is a glycoprotein (molecular weight, 68 

000), found in egg whites and contains four identical binding sites for the biotin ligand. 

The affinity between avidin and biotin is one of the strongest known to exist, with a 

reported binding constant of 1015 M'1.26 This incredible affinity has been utilized in 

numerous applications where selectivity is desired. The Ag colloids used here are 

effectively negatively charged with a measured zeta potential to be approximately -50 mY 

at pH of 6.27 Contrary, avidin is strongly cationic at neutral pH values due to its

OSisoelectric point of 10.5. These opposing charges favour a LBL process that occurs 

through electrostatic interactions, with each layer providing an effective surface charge 

reversal. The films presented here were created through alternating depositions of Ag and 

avidin.

The ultimate goal for these types of films is to have a degree of selectivity built 

into the SERS substrate. This general idea is shown in the Figure 7.14. Analytes that are 

biotinylated will reach the substrate, where an effective concentration enhancement will 

occur. In this section, concentration enhancements will be demonstrated for two types of 

analytes, a probe molecule which is biotinylated and another where the biotinylation is 

accomplished in situ.
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Avidin 

Ag Nanoparticle 

Biotinylated Dye

Figure 7.14: Illustration of construction of LbL avidin/Ag film showing the selective 

absorption of biotinylated species.

7.4.2 Experimental

Silver nitrate, sodium citrate, avidin (from egg white), fluorescein, and biotin 3- 

sulfo-N-hydroxysuccinimide ester were purchased from Sigma-Aldrich, while biotin-4- 

fluorescein (B4F) and 5-(aminomethyl)fluorescein (5-AF) were purchased from 

Molecular Probes. All were used without further purification. Colloidal Ag solutions were 

prepared by citrate reduction of AgNC>3 according to the well known method of Lee and

•  7Q •Meisel, and diluted by a factor o f 2 before use. All avidin, fluorescein, B4F, 5-AF, and 

biotin solutions were prepared in 10 mM phosphate buffered saline (PBS) at pH 7.5. The 

in situ biotinylation of 5-AF was carried out by mixing it with biotin 3-sulfo-N- 

hydroxysuccinimide ester in a 1:1 molar ratio in PBS solution (pH 7.5) at room
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temperature, to produce a solution 10-4 M of each. The reaction was allowed 30 min to 

reach completion.

Prior to film fabrication, all glass microscope slides were cleaned and silanized. 

The slides were first washed in detergent and deionized water, immersed in 20% H2SO4, 

rinsed again in deionized water, and dried. Next, they were immersed into pure acetone 

for 5 minutes, immersed into a 2% acetone solution of 3-amino-propyltriethoxysilane for 

5 minutes, and then rinsed thoroughly with water and dried. All LbL films were prepared 

by immersing these clean, silanized slides into colloidal Ag solution for 30 min, rinsing 

them with water, drying them with air, then immersing them into a 50 pg/mL avidin 

solution in PBS for 30 min. Upon removal, these films were again rinsed and dried, then 

re-immersed into colloidal Ag solution. Through these alternating deposition steps, films 

were built up until they were composed of 14 bilayers.

To monitor their surface plasmon absorption, UV-visible absorption spectra were 

obtained from LbL films after each bilayer was added. AFM measurements were 

performed in tapping mode with a n+-silicon tip (NSC 14 model, Ultrasharp). All images 

were collected at a scan rate of 0.5 Hz 512 lines per image. Topographical, amplitude, 

and phase images were all used for analysis of the surface morphology of these films, 

Raman scattering experiments were conducted with the InVia system with 514.5 nm laser 

excitation and a 50x objective.

All SERRS spectra were recorded from 14 bilayer films immersed for 30 min into 

fluorescein, 5-AF, B4F, and biotinylated 5-AF solutions with concentrations ranging from 

10"4 to 10‘7 M. After removal from these solutions, films were thoroughly rinsed with 

deionized water and dried before measurement.
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7.4.3 Results and Discussion

In Figure 7.15, the sequential building of these films is shown through the growth 

of the surface plasmon absorption from 2 to 10 bilayers. It can be seen that the extinction 

of these films grows with increasing number of bilayers, confirming effective film 

building and the advantage of adsorption over desorption under these conditions. These 

spectra reveal two well-resolved high energy bands at ca. 377 nm and 410 nm that 

redshift slightly with increasing number of bilayers. These bands can be assigned to 

quadrupolar and dipolar particle plasmon resonances, respectively, with the quadrupolar 

mode being due to the presence of larger spherical particles with diameters up to 70 nm. 

The slight redshifting of these bands can be attributed to changes in the dielectric function 

of the medium surrounding the particles with film growth. Also observed in these spectra 

is a very broad feature with a maximum at about 700 nm that increases in relative 

intensity as the number of bilayers deposited is increased. This band can be assigned to 

particle aggregates that are known to increase in number as film growth proceeds.
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Figure 7.15: Surface plasmon absorption from films with 2 to 10 bilayers. The

plasmon absorption of the Ag colloid is shown in inset

The images shown in Figure 7.16, are the optical images of the films with 2, 8 and 14 

bilayers. From these, it can be seen that at 14 bilayers the film is relatively homogeneous 

on the macro scale.
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Figure 7.16: Optical images of the avidin/Ag nanoparticle LbL films. Images b-d are 

the films for 2,8,14 bilayers as seen with a 50X.

To understand the relationship between the optical and physical properties of the 

avidin/Ag nanoparticle LbL films produced in this work, their surface morphologies were 

analyzed by AFM imaging.
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Figure 7.17: AFM topography images showing the progression from 2,4,6,8,12,14 

bilayers. Each image is a 5 X 5 pm height image shown in 3D profile.

Selected representative topographical, or height, images are presented in Figure 

7.17 for substrates consisting of 2, 4, 6, 8, 12, and 14 bilayers. It can be seen that as the 

number of bilayers deposited is increased, there is a general trend toward greater surface 

coverage, increased particle-particle interaction, and cluster/aggregate formation, as is 

expected. This trend is supported by increasing RMS roughness values with film growth, 

from 7.2 nm for2 bilayersto 32.6 nm for 14 bilayers.
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Figure 7.18: AFM for 14 bilayers. 5 x 5 nm height images for 2, 8 ,14 bilayers (left). 2 

x 2 pm height image of a 14 bilayer film with the line scan indicating a typical clusters 

size of 260 nm (right)

Also, from the analysis of these images, the diameter of single isolated particles 

was found to be between ca. 30 and 70 nm, while clusters were generally found to range 

between ca. 150 and 300 nm as can be seen in Figure 7.18. These results are consistent 

with what is expected on the basis of the surface plasmon results presented for these 

films.

SERRS test were conducted with these films using the common SERS test 

molecules R6G. It was found that the measured SERRS intensity levelled off after 14 

brlayers.23 Therefore, based on these results, i t  was decided that 14 bilayer films would be 

used for this application.

The ability of avidin/Ag nanoparticle LbL films to act as ‘smart’ SERS/SERRS 

substrates was then tested. The target analyte chosen was the common dye fluorescein.
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This molecule can be purchased with the biotin moiety attached. Fluorescein is resonant 

at 514.5 nm, as shown by the solution absorption spectrum given in Figure 7.19.
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Figure 7.19: UV-Visible absorption spectrum of a B4F Solution.

A film composed of 14 bilayers of avidin and Ag nanoparticles was immersed into 

a 10"4 M solution of biotinylated fluorescein (B4F) for 30 min, while another was 

immersed into a solution with an equal concentration of neat fluorescein (without biotin), 

for an equal period of time. Upon removal, both were thoroughly rinsed with water, dried, 

and their SERRS spectra were recorded using 514.5 nm excitation. It was found that the 

spectra recorded from the two samples were essentially the same in terms of vibrational 

band frequencies, widths, and relative intensities. However, the biotinylated sample was 

found to exhibit absolute intensities that were on average 102 greater than its non-tagged 

counterpart. It was also found that fluorescein could not be observed at all spots and was 

near its detection limit, while B4F could be readily observed at all spots (homogeneous
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enhancement) with strong intensity. Further experimentation revealed B4F to be 

detectable from substrates dipped, using identical procedures, into solutions with 

concentrations as low as 10' M as shown in Figure 7.20. The neat fluorescein in contrast 

was undetectable from these substrates when extracted from solutions with concentrations 

below 10'5 M. Since SERRS bands for each sample arise from the same central 

ehromophore, which is, of course, expected to have the same cross section, tire 100 fold 

increase in intensity, and related 100 fold increase in detection sensitivity, associated with 

biotinylation can be attributed to a ‘concentration enhancement’ that arises specifically as 

a result of the strong, bio-speeifie interaction between the avidin in the LbL film and the 

biotin tag of B4F.

e

Raman Shift (cm1)

Figure 7.20: SERRS signal of B4F from 14 bilayer avidin/Ag films with decreasing 

concentration.
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To ensure that this was indeed an effect of the presence of the biotinylation, films 

were prepared and first exposed to a concentrated solution of biotin before that of the 

biotinylated analyte. In this ease, the concentration enhancement is not observed, 

confirming the role of avidin binding sites. In addition, these films demonstrate an 

impressive uniformity of response over the surface of the substrate. In Figure 7.21, the 

intensity map for a characteristic band of fluorescein (1640 cm 1) is plotted for a 10 x 10 

pm map. The signal was relatively the same from each spot measured.

Raman Shift (cm1) u

Figure 7.21:10 x 10 fim SERRS Intensity map for the B4F for the indicated band at 

1640 cm'1

It is hoped that these sensors can be used for directed selectivity. There is an entire 

field of work using the biotinylation of different chemical species, and a substrate such a 

as die one described here, could be used for selective extraction and enhancement of 

specific targets.
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As a proof of concept, the same chromophore of fluorescein without prior 

biotinylation was probed in solution, but now with a primary amine present (5-AF). There 

are many biotin precursors that readily react with the primary amine. Here die water 

soluble biotinylation reagent, biotin 3-sulfo-N-hydroxysuccinimide ester which couples to 

the primary amine in the biological relevant pH range 6.5-8.5, was used. The fluorescein 

and the biotinylation reagent were combined in a 1:1 molar ratio m phosphate buffer at 

desired concentrations. The reaction was given ample time to complete before the 

substrate (a 14 bilayer avidin/Ag film) was submerged. Quality SERRS spectra were 

again recorded for concentrations down to 10'7 levels as shown in Figure 7.21. This 

demonstrates that in situ biotinylation is possible for these substrates.
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Figure 7.22: SERRS signal of 5-AF after in situ biotinylation from 14 bilayer 

avidin/Ag films

7.4.4 Conclusions

In conclusion, a versatile way to incorporate silver nanoparticle with the 

avidin/biotin system has been demonstrated. The fabrication, characterization, £md 

application o f avidin/Ag nanoparticle LbL to SERRS studies have been shown for two 

cases o f analyte and preferential adsorption yielded an additional concentration 

enhancement of ca. 102. Therefore, detection limits were improved by at least 2 orders of 

magnitude. This is the first step towards the development of systems incorporating
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metallic nanoparticles in bio-recognition systems using the powerful LbL technique and it 

is anticipated that the approach can be successfully applied to many similar systems.
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CHAPTER 8 

CONCLUSIONS
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8.1 Conclusions

In the work presented in this diesis, the potential, as well as the peculiar properties 

of trace chemical detection by SERS and SERRS were explored through investigations in 

several areas. New insights into these phenomena were uncovered. Questions put forth in 

the introduction were addressed and new areas of research have been suggested.

In Chapter 4 the successful observation of overtones and combinations in the 

single-molecule spectra of three PTCD dyes was demonstrated for the first time. The 

validity of the LB method to SM studies was supported and the many challenges to SM- 

SERRS were detailed. In particular, the role of contaminants and the need for low ED’s to 

avoid photodegradation of the analyte. The key differences in the behavior of the SERRS 

signal arising from a few molecules to that that of the ensemble is described. In addition 

the unique spectral features of SM molecule spectra were highlighted. Finally, the rarity 

of the SM event was rationalized within the context of present understanding of the 

plasmonics of disordered systems, such as silver island films.

In an attempt to fully rationalize the SERS profiles collected from 1,8- 

naphthalimide and Ag colloids, the impact on the measured SERS spectra of several 

dispersive dependencies were examined in Chapter 5. It was shown how the SERS profile 

measured at different wavelength of excitation can be satisfactorily simulated with careful 

consideration of molecular symmetry and the appropriate application of the surface 

selection rules. This demonstration of the selection rules to SERS for 1,8-naphthalimide is 

one of the strongest and most unambiguous examples to date. In addition, the effects of 

non-uniform enhancement factors were discussed. Finally, possible experiments based on 

these results were suggested for future avenues of study.
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In Chapter 6, the experimental evidence for the photobleaching of three different 

dyes, and for two types of samples was presented. The biexponential behaviour was 

associated with the possible inhomogeneity in the distribution of the electromagnetic 

enhancement found is a disordered systems such as silver island films. It was suggested 

that the measured SERRS signal is composed from molecules in “hotspots” and those in 

areas of more common enhancement, or “average enhancement”. Experiments with 

varying energy density, support the idea of increased scattering lifetime for a molecule 

under low intensity conditions. These results are important for future work of SM- 

SERRS, and SERRS in general, to fully understand the full impact of enhanced fields.

The fabrication, characterization, and application of three substrates were 

presented in Chapter 7. Work on mixed Ag/Au metal island film showed the possibilities 

and the benefits of combining the large enhancement of silver with the less reactive gold. 

When these two metals are mixed as described here, a highly effective substrate for single 

molecules detection, and SERRS studies in general, can be made.

Work involving the embedding of gold nanoparticles in the matrix of the 

biopolymer chitosan was also presented. This created self-sustained, biocompatible, 

biodegradeable, and non-toxic thin films. When the proper conditions of synthesis were 

followed, effective SERS substrates could be generated. The importance of disorder for 

achieving high SERS enhancements was shown. This type of film will be important for 

future applications of SERS for in situ detection of trace quantities in living systems.

Finally, a versatile way to incorporate silver nanoparticles into biorecognition 

systems was demonstrated. Using the avidin/biotin system as a basis, LbL films of 

avidin/Ag nanoparticle where shown to be excellent SERRS substrates. Studies with two 

classes of analyte, demonstrated that preferential adsorption yielded an additional
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concentration enhancement of ca. 102. This is the first step towards the development of a 

relatively easy way to build functionality into SERS substrates. The method for 

incorporating metallic nanoparticles into the biorecognition pair presented here can be 

successfully applied to many similar systems.

8.2  F u ture W ark

I believe that the research presented here lays the groundwork for new paths of 

investigation. In the area of single molecule studies, the LB approach SM-SERS is ready 

to move beyond static measurements. Experiments with the inspiration taken from 

behaviour uncovered in Chapters 5 and 6 would be the next step. These types of studies 

should give important insight to the mechanism of hotspot enhancement.

Further work on the photodynamics of SERRS and also SERS is essential to SM 

studies. SM-SERS is at a similar point to where SM-Fluorescence was in its first 10 

years, where the limitations to SM studies by photobleaching were just starting to be 

examined. The work presented here has raised several questions that will need to be 

addressed in future experiments. In particular, what is the mechanism for signal decay 

and can it be suppressed? All the work presented here was conducted under ambient 

conditions. A logical progression would be to conduct experiments under conditions of 

environmental control, including atmosphere and temperature.

The substrates developed here represent a small fraction of what is possible with 

the approaches discussed. Recent work on SERS substrates embedded in rats to m onitor 

glucose levels suggest that bio-friendly substrates such as these made with chitosan, may 

soon find real applications as sensors. Work demonstrated with LbL for the incorporation
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of nanoparticles into biorecognition materials is only the beginning of the types of 

substrates that can be made with this method.
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