University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2003

Variation of bloom filters applied in distributed
query optimization.

Yue (Amber). Zhang
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation

Zhang, Yue (Amber)., "Variation of bloom filters applied in distributed query optimization." (2003). Electronic Theses and Dissertations.
Paper 4508.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F4508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/4508?utm_source=scholar.uwindsor.ca%2Fetd%2F4508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Variation of Bloom Filters Applied in Distributed
Query Optimization

by

Yue (Amber) Zhang

A Thesis
Submitted to the Faculty of Graduate Studies and Research
Through the School of Computer Science
In Partial Fulfillment of the Requirements for the
Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-84557-5
Our file Notre référence
ISBN: 0-612-84557-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

98907!

Yue (Amber) Zhang 2003
© All Right Reserved

Abstract

Distributed query processing is important for Distributed Database Systems. Through the
past years, the research focus in distributed query processing has been on how to realize
join operations with different operators such as semi-join and Bloom Filter. Experiments
show that using bloom filters, the hash-semijoin, almost always does better than semi-
join for the query processing. However as long as you use bloom filter, you cannot avoid
collisions. So in order to get the cheaper processing, some of the past work uses two or
more bloom filters to do the hash-semijoin. However several factors still affect the cost

and optimization result.

1. How to decide the perfect number of the bloom filters, and what kind of bloom filter
should be chosen.

2. There is no way to avoid collisions when utilizing bloom filters.

3. With bloom filter, we cannot keep the exact location information of the joining
attributes (loss of join information).

4. With bloom filter, we never can combine the useful composite semi—join in the

process.

Taking the idea of PERF join into account, why not use the bloom filter (hash-semijoin)
concept but come up with a new kind of filter “Complete Reducing Filter” (CRF), which

can avoid the disadvantages of bloom filter, as well as inherit the advantages of it?

We propose and implement a new algorithm called Complete Reducing Filter (CRF)
based on PERF join, which can keep the join location information, as well as lower
transmission cost (because it’s still using the filter concept). At the same time, CRF can
combine the composite semi-join into the process, which overcome the impossibility if
only using a bloom filter. With the variation of the bloom filter, we try to achieve better

performance with lower cost.

Keywords: Distributed query processing, semi-join, bloom filter, hash-semijoin,

composite semi-join

iv

To my family

Acknowledgement

I am very happy to take this opportunity to thank people who helped me a lot
during the whole process of my graduate study, and towards the
achievement of my thesis. It’s the only section that I can express my
appreciation and love in the thesis.

First, I would like to convey my deep affection to my supervisor, Dr.
Morrissey. The work could not be accomplished without her extensive
guidance. Besides that, she is kind, nice and supportive, who can be
regarded as a sincere friend in study and life. I always feel I am so lucky to
be given a chance to know my supervisor and work with her ...

Secondly, I would like to thank all my friends and colleagues, who shared
with me their precious time to discuss academic issues, provide useful
suggestions, and worthwhile experience during the research.

Thirdly, I would like to give my special thanks to my aunt, uncle and cousin,
who give me continuous support and guidance through my university years.

Next, I would like to thank my committee members: Dr. Akshai Aggarwal,
Dr. Scott Goodwin and Dr. Myron Hlynka, for their time and instructive
suggestions and comments.

Thanks, my dear mom and dad, for your valuable care and endless love...

Of course, thanks must be given to my friends and acquaintances who
enlighten me and bring cheerful days for me...

Table of Contents

ADSEPACE ...t erese e ne e v
DEAICALION ... v
Acknowledgement...................ooeeecoeeeeeeeieeerieeereeeeeeeseenenn vi
TADIE Of CONLERUS.........coooooeeeeeeeeeeevreeeeeereseeneee s vii
LISt Of FIGQUEESooooeeoeeeeeeeee e viii
Chapter 1 — INtroduction...............oeeeeeeeeeeeeeeeeeresriesrenios 1
Chapter 2 — Literature Review (Background)...................... 3
2.1 Distributed Database System (DDBS)cccooveeierneeniienirneeccncieenee, 3
2.2 Query Optimization Processing..........ccovveeeeeveererieenereienecnerceeennees 6

2.3 AlZOTIERIMSvevrevvecirenieeererr e sires e e resnesssesnesaessassssasssesssessnesanens 8
Join Operator 8
Semi-join 10
Hash-semijoin 14
Two-way Semi-join 16

Global Semi-joins 16
Domain specific Semi-join 17
Composite Semi-joins 19

PEREF join 20
Interleaving join with semi-join 22
Chapter 3 — Motivation & Evaluation Methods................... 23
3.1 MOtIVALION....cutirieriiieiertrtestesieetesaeseeeessessesesesaesssesseseesanessesseensesaes 23
3.2 Evaluation Methodscccceeineriiiiiinineneseneenesnesiese e 28
Chapter 4 — Experiments & Evaluation.................... 29
4.1 Experimental SYStEMccovviiiivineiieiiecceeceeseceeeeeseeeesresaseseereens 29
Methodology 29
Test-bed 31

4.2 Experimental Result and Evaluationc.ceceveeveevveveeveenieneesvennene. 32
Results 33
Evaluation 45
Chapter 5 — Conclusion & Future work....................... 47
5.1 CONCIUSIONonviriieretiiitrtreceste et te et sae s e n s a e e e saenesnanns 47
S.2 FUUIE WOTK....coiiiiiiiiietecteceere ettt a e a e 49
REJEFONCE.........coooeoeeeeeeeeeeeeeee e 51
VEIEQ AUCIOTIS ... es e, 60

List of Figures

Figure 1.1 Distributed Database Systems 4
Figure 1.2 Layout of Distributed Environment 5
Figure 2.1 Join 9
Figure 2. 2 Semi-join 11
Figure 2.2.1 AHY 13
Figure 2.3 Hash-semijoin 14
Figure 2.4 Semi-join Only 19
Figure 2.5 Composite Semi-join 20
Figure 2.6 PERF Join 21
Figure 3.1 Projection and Position information locally produced- - 25
Figure 3.2 Scan projections and produce filters 25
Figure 3.3 Tables of Relations 26
Figure 3.4 Final filters for each relation 27
Figure 4.1 Database Statistical Information 30
Figure 4.2.1.1 Three Relations 33
Figure 4.2.1.2 Four Relations 34
Figure 4.2.1.3 Five Relations 35
Figure 4.2.1.4 Six Relations 35
Figure 4.2.2.1 Joining Attributes’ Effect on Five relations with Medium
Selectivity 36
Figure 4.2.3.1 High Selectivity 5X2 37
Figure 4.2.3.2 Medium Selectivity 5X2 37
Figure 4.2.3.3 Low Selectivity 5X2 38
Figure 4.2.3.4 High Selectivity 4X4 38
Figure 4.2.3.5 Medium Selectivity 4X4 39
Figure 4.2.3.6 Low Selectivity 4X4 39
Figure 4.2.4.1 Average Benefit Ratio by factors 40
Figure 4.2.5.1.1 Average percentage of full reduction with collisions using a
single set of filters 41
Figure 4.2.5.1.2 Average percentage of full reduction with collisions using
two sets of filters 42
Figure 4.2.5.2.1 Average reduction with collisions using a single set of
filters 43

Figure 4.2.5.2.2 Average reduction with collisions using two sets of filters44
Figure 4.2.5.2.3 Average full reduction size 44

Vviii

Chapter 1 — Introduction

Database Systems are the corner stone of our current highly developed society. In recent
decades, we have achieved great progress in this field, from the first generation — file
system to current relational, object-relational or multimedia database systems
[Gra96][0zs00]. With the change of organizations’ structure and business style,
distributed database systems (such as Mariposa [Ols94], System R* [MOHS84], Ingres
[U1189]) are naturally playing an important role for enterprises. Whether catering to the
needs of large data warehousing or data mining, or even mobile database systems,
effective query processing is a key factor affecting the system’s performance. In a
distributed database system [OV91][Ols94][Pik97], query processing plays the role.
Different algorithms that improve the performance of queries have been developed
during the past two decades. The overhead of distributed query processing contains two
parts: Local cost and communication cost. Various techniques provide many algorithms
to optimize these two aspects for better performance. Most of them take communication
cost as the focus for distributed query optimization. Operations such as join, semi-join,
hash-semi join and so on are used in various algorithms to achieve optimal results. It has
been proved that the optimal query processing problem is NP-hard
[HR94][GZ98][PV88]. So through different search strategies, whether heuristic or
dynamic programming, we only try to find a near-optimal strategy for query optimization.

The query is usually processed as follows [AHY83][BGW'81]:

1. Initial local processing: All local operations are processed (Selections and
projections).
2. Specific operations (Such as semi-join reduction).

3. Final Reassembling (send all needed relations to the final site for final joins).

To consider effectively reducing the communication cost, most of the algorithms focus
on the second step. With different operators (semi-join, hash-semijoin or PERF! join
[LR95]), and different searching strategies (dynamic programming, greedy, or
randomized methods), the size of needed relations (or fragments) is reduced, so that cost
of transmission to the final site is reduced as much as possible. Different cost models
have different criteria, among which response time and total time are often used.
Response time cost models consider that each operation is processed in parallel, so the
maximum time from sending the query to getting the result is the cost of the processing.

The total time model considers the whole time consumed during processing.

The rest of this thesis will be divided into several parts. In chapter 2, the literature review
and various strategies for distributed query processing are described. In chapter 3, we
introduce the motivation for the thesis, and the methods we propose to use for
implementation and evaluation. The experiments and evaluation results will be given in

chapter 4. Finally we will give conclusions and look forward to future work.

' PERF is Positionally Encoded Record Filter, which was described in details in the paper [LR95].

Chapter 2 — Literature Review (Background)

2.1 Distributed Database System (DDBS)

The use of a database system is motivated by the desire to integrate the operational data
and to provide autonomic control over the data. A database system is an evolution from
the traditional management systems such as a file system. Database Management systems
provide integrated manipulations on data instead of depending on the various applications
for random control of the data. With the widespread use of networks, a new kind of
database system is coming into being, that is, the distributed database system. It is a
combination of a database system with the computer networks [CY91]. As Figure 1.1
shows, for any organization, in order to implement and maintain the necessary source
management and data flow, it may need several databases for the whole organization,
which are located in more than one place, or even distributed far away from each other.
But the most important fact is, they are connected by a network, and communicate with
each other and provide correct functions for any upper queries. However, for the users
sitting in front of any terminal, who try to find a query result, they even don’t notice the
IQwer layer’s distributed features. In front of them, it seems a big central database below

in the system that provides everything they want.

Figure 1.1 Distributed Database Systems

Generally speaking, control of a database is changing from the centralized to the
distributed, which brings many advantages together with many issues. In the environment
of distributed database systems, the manipulation of data, or data processing can be
realized in parallel, with the support of multiple computers geographically distributed.
What is a real distributed database system (DDBS)? We can define it as a collection of
multiple, logically interrelated databases distributed over a computer network. A
distributed database management system (DDBMS) is then defined as the software
system that permits the management of the DDBS and makes the distribution transparent
to the users. We may get a rough idea about a distributed environment from Figure 1.2.
The first upper layer is terminal layer, which can be regarded as clients, who send out
queries and fetch information from the lower layers to meet their needs. The second layer

can be regarded as servers, which execute commands coming from clients, and send the

outcome back to clients as well. This layer is the intermediate layer, which connects the
clients and the data source. Under it, is the data source layer. More than one database is
sitting there. If we look at the layout horizontally, we can see different servers have
connections to each other. So do the database systems. This horizontal connection
between different database systems will fulfill the functions of distributed database

systems, such as data sharing, replication and so on.

Figure 1.2 Layout of Distributed Environment

Basically, distributed database systems can have such attributes as the following:

The database is stored on several computers, or sites, which are connected via a network.
Different sites have different data, functions and relations, and each one has to maintain a
local database, but at any time, it can participate in a global query. With such systems,
data sharing between sites becomes easy, and in many systems, local control in function
over local data is maintained to allow autonomy. With replication, reliability and
availability can be ensured. At the same time, such systems have increased complexity,

more development costs, greater potential for coding errors, and increased overheads due

to communication via a network. Also we have to think much more about security over

the network.

Among complex issues, the most important is query processing, which is the core of a
database system for effective response. So what is the optimal execution plan for a query
in a distributed database system? How do we get the best outcome in a distributed

environment? Query optimization is what we have to focus on.

2.2 Query Optimization Processing

As mentioned above, in distributed database systems, a large number of parameters affect
the performance of distributed queries [Kos00][Pik97]. In particular, the relations
involved in a distributed query may be fragmented [Seg86] and/or replicated to reduce
the communication overhead costs. Furthermore, with many sites to access, query
response time can be very high. We just draw our attention to relational distributed

database systems, which are popular.

The main function of a relational query processor is to transform a high level query
(direct user input query) into an equivalent lower level query. Then the lower level query
processing implements the execution plan. The transformation from the high level query
to the low level query should be correct and efficient. Because a relational query may
have multiple equivalents and correct transformations into relational algebra, where each
execution strategy can lead to a great difference in performance and cost, the main

problem of query optimization is to find or select the strategy that minimizes the cost. So

one of the core components for a query optimizer is its search strategy or enumeration
algorithm. Among the operations on a database, select-project-join is the most commonly
used. In the literature, many different methods are proposed by different researchers on
such operations, especially on joins. The basic steps for distributed query processing are

[LPP91]:

v Sequencing optimization: The best sequence of binary joins is selected to execute n-
ary joins

v’ Materialization: Each relation has to be retrieved. It may exist in multiple copies in
the system or may be fragmented horizontally or vertically. The optimal site for
materializing is chosen.

v' Distribution: The optimal allocation of binary join executions as well as the storing
of intermediate result relations among the available sites is determined.

v' Execution strategy: A binary join can be implemented by means of a number of

techniques.

In order to achieve optimal or near-optimal execution plans, different kinds of operators
are introduced to deal with join operations, such as semi-join, bloom filter
[AHY83][BGW '81][TC92][WLC91]. Most research assumes that the transmission cost
via a network is the most expensive part of query processing cost except the local cost for
local processing. There are different situations based on different network topologies. In
some rapid networking environments, local cost is comparable with transmission cost.

Whatever the case is, the join operation is one of the most time-consuming operations, so

current research pays lots of attention to how to reduce the cost for join operations in
distributed database system, such as what the join order is, what kind of operators are
involved and so on. In the following sections, we give more details of powerful

algorithms occurring in query processing.

2.3 Algorithms

Different algorithms based on different views can be classified into the following

categories: join, semi-join, hash-semijoin, PERF join and interleaving join with semi-join.

Join Operator

Join is a very time consuming operation in database systems [UlI89]. When we migrate
from centralized database systems to distributed database systems, the join operation
becomes the most costly process. Look at Figure 2.1. Suppose we have two relations that
are residing separately on different sites. In relation R, we have the information about ID
and Name, while in relation S we have ID and Age. In order to get full information on ID,
Name and Age, we need to join these two relations in the distributed database system.
Based on the joining attribute: ID, we do the join operation, and get the final relation as
shown in this figure. As we can see from this example, even though the final result of the
join operation is always same, the way to implement the join operation varies a lot.
Because relation R and relation S are not residing in the same database, we can have
many means to do that. For example, we can first send the whole relation R to the site
where relation S is residing, then do the join operation locally at the site of S, and finally

send the join result to the query site. So many authors focus on how to minimize the cost

of join operations. The main focus of the join method in System R”

is as follows

[MOH&4]:
R
ID | Name
1 | Mary
2 | John
5 | Mike

1D Name | Age
1 Mary |15
5 Mike | 18

S

ID | Age
1 15

3 120
5 18

Figure 2.1 Join

Join order — Same as in the centralized case, the optimizer has to select the join ordering.

Access method — When access each fragment, do we use clustered index or sequential

scan?

Join method — Use merge join or nested loop join?

The decisions for these three issues are based on statistics and formulas used to estimate

the size of intermediate results and access path information. In the meantime, the

optimizer has to select the join site and the method of transferring data between sites.

Join site — Decide the best site or required site for the join operations. There are three

candidate sites for the join operation: the site of the first relation, the site of the second

relation and a third site, such as the query site where the join result needs to be presented.

Inner table transfer strategy — When we need one relation (called inner table or slave
relation) to join with the other one (called outer table or master relation), what is the inner
table transfer strategy. Just transferred as needed (called Fetch-as-needed) or wholly
transferred (called Ship-whole)? Ship-whole generates a larger data transfer but fewer
messages than fetch-as-needed. It is obviously better to ship whole relations when they
are small. However, when the relation is large and the join has good selectivity (only

small parts of tuples matched), we should use fetch-as-needed.

The R* algorithm uses the total time as the standard for the strategy. It can be regarded as
an exhaustive search among all alternatives that are defined by the permutation of the
relation join order, join methods, result site, access method and intermediate site transfer

mode.

Semi-join

The semi-join has become the most popular operator recently to replace joins, because it

effectively reduces the inter-site’s relation size and minimizes the cost of transmission.

What is a semi-join? Basically, a semi-join has the following steps to go through

[AHY83][BGW'81] [Gra96] [HR94] [WLC91]:

1. Local processing (Selection-Projection).

2. On the joining attribute, give the projection of that attribute of one relation.

3. Transfer the projection to the other relation and execute join between the projection
and the second relation.

4. Finally transfer the reduced relation to the final site for joining.

10

Suppose we wish to join two relations R; and R, which means we want to execute R R,
over the join attribute j. A semi-join from relation R, to relation R, over the join attribute
J, 1s executed as follows:

1. Project relation R, over attribute j to get the projection d;

2. Ship the projection d, to the site of relation R,

3. Execute d; R,

The semi-join reduces the size of R, by eliminating the tuples that cannot be part of
R, » R,. The reduced R, can now be shipped to the query site with savings on
transmission costs. In a similar way we can reduce R, using the reduced R,. Here is an

example. Two relations R, and R, on joining attribute j:

Rk
R,
i B
A j 1 2
1 2 RJi] 2 3
2 2 j ———— - 3 6
3 4 > 2 5 8 R’
4 4 4 6 10 > i B
5 4 6 7 14 2 3
6 6 6 | 10
R[i
R’ j /
A i 2
1|2 B = [T6
2 2
6 6
Site 1 Site 2

Figure 2.2 Semi-join

11

First, we project relation R; on the joining attribute j, we then get the projection R;[j] with
3 tuples valued as 2, 4 and 6. Then we ship the projection R;[j] to site 2 and join it with
relation Ry Therefore, we get reduced relation Ry as Ry’. So far we finish the first semi-
join from R;to Ry Similarly, we project Ry’ on the joining attribute j. Ship the projection
R ’[j] back to site 1. At site 1, we join projection Ry’[j] with R;, so that we implement the
semi-join in the other direction, and reduce R; as well.
SDD-1 [BGW'81]
SDD-1 was the first method in Distributed query processing to use the semi-join as
the reducer to minimize the cost. It uses the set model as the estimation of cost and
benefit. In the SDD-1 distributed system, queries are submitted to SDD-1 in a high
level procedural language called Datalanguage. Optimization begins by translating
each Datalanguage into a relational calculus form called an Envelope. Then
Envelopes are processed in two phases.
Phase 1: Subset (Database) — Execute relational operations at various sites of the
distributed database in order to delimit a subset of the database that contains all data
relevant to the envelope. The semi-join operator is used in the reduction phase to

reduce the size of the relations that do not satisfy the qualification of the query.

Phase 2: Transmit the reduced relations to one designated site.

AHY [AHYS83]

In this paper, instead of computing the joins immediately, we first reduce the sizes of

each relation by possible restrictions and projections. If one relation has the join

12

attributes, we use an operation called semi-join to delete the unnecessary tuples. To
compute a semi-join, the unique values of the joining attribute of one relation are sent
to the other relation. It is cheaper to compute this semi-join than the complete join. In
the result node, the complete join will be computed after the reduced relations have
arrived by concatenating matching tuples on the joining attributes. The data
transmissions are used for reducing a relation and the transmission of the reduced
relation to the query computer form a schedule for the relation. We first give some
notation. d;; represents the projection of relation i on joining attribute j. For example,
as shown in Figure 2.2.1, d;; means projection of relation 2 on joining attribute 1.
Attributed dy, is sent to attributed ds;. A semi-join is performed on relation R;. The
reduced ds; attributed is sent to relation R; in parallel with attributed dy,. Further
relational operations reduce the size of relation R;. Finally the reduced relation R is

sent to the result node.

R [!— ------------------ Result
i Node

Figure 2.2.1 AHY

Hevner and Yao introduced and investigated algorithms Parallel and Serial, which

respectively compute minimum response and total time schedules for simple queries.

A general query has more than one joining attribute. So, a relation can be reduced in

size by semi-joins on different joining attributes. However each time it considers just

13

a simple join, which means all the relations are involved in the semi-join with a single

attribute. This may not give the optimal solution from the algorithm.

Hash-semijoin

The idea of hash-semijoin is to use a new operator hash-semijoin to replace the semi-join
in order to reduce the transmission cost of semi-join, so as to get the reduced result more

efficiently [CCY92][Gra96].

Step 1: Initialize a bit array of F bits all to be 0. The size of F is computed by
F=(d/In2)*[R|

Step 2: For each value of the join attribute in R, generate d bit addresses using the d hash
functions and set the corresponding d bits in the bit array to 1

Step 3: Transmit the bit array to the site of R..

Step 4: For each tuple of R, use the d hash functions to hash the join attribute value to d
bit addresses. Test if all the d bits in the bit array are 1s. If Yes, output the tuple to
the result relation R;’, else discard the tuple.

For Example: Hash (B attribute value) — address

R1 H(B) filter R2 R2’

UIUJUJUJ
TIEN S le)

(0 [N [VC] [O] P
|| |w|w |

0
0
| =—>
0
1

oo |u|wlwlm

ANV IE SISl

Figure 2.3 Hash-semijoin

14

For each tuple in relation R;, we use the hash function H(B) — address. Because we
only have value 3 and 5 in the column B, so in the filter bit array, at the addresses 3 and 5,
we set ‘1’, the other bit we set ‘0’, which means we do not have any value that can be
hashed to this address. Then we send the H(B) filter to relation R,. Based on the same
hash function, we probe relation Ry row by row. If the correspondent address in the H(B)
filter is “1°, we keep this tuple in R, otherwise, we get rid of the tuple, because it can not
be in the final join result anyway. Therefore, we get the reduced relation R, as Ry’, as

shown in Figure 2.3.

The hash-semijoin is proposed for more cost-effective distributed query processing. The
search filter in the hash-semijoin achieves considerable savings in the cost of a semi-join
operation. However it only works on tree queries, and the performance is tightly related
with the hash functions (bloom filters). For the bloom filter, the main advantages are cost
reduction and less storage demand; Comparably, Value vector [Mul96]: Va = (ni....,0m)
is defined such that n; is the number of tuples in a relation which have value vi for
attribute A. To join two relations, which have not been reduced, the value vector method
will be very accurate. For already reduced relations, the bloom filter method does not rely
on assumptions about independence of attributes. So bloom filter method is more reliable.
In the value vector approach, one must store the number of tuples, which contain each
possible value of each attribute. In the bloom filter approach, one scan of the relation is
enough to build the filter (for all attributes desired). Only a few thousand bits is needed

for storage [Mul96].

15

Two-way Semi-join

Two-way semi-join is an extended version of the semi-join for more cost-effective

distributed query processing [Seg86]. If we denote the two-way semi-join of Ri and Rj on

attribute A as R«A—R, then R<A—-R={R—A—-R, R—A—-R} It is computed by

the following steps:

1. Send R[A] from sitei to j.

2. Reduce R, by eliminating tuples whose attribute A does not matching any of R[A].
During reduction of R, partition R[A] into R[A]m and R[A]nm where R[A]m is the
set of values in R[A] which match one of R[A] and R[A]nm is R[A]- R[A]m.

3. Send either R[A]m or R[A]nm, whichever is less in size from site j back to i.

4. Reduce R using either R[Alm or R[A]nm. If R[A]m is used, then tuples whose
attribute A does not matching any of R[A]m are eliminated. If R[A]nm is used, then

tuples whose attribute A matches one of R[A]nm are eliminated.

Global Semi-joins

In [RK91], a sequence of forward semi-joins with a sequence of backward semi-joins is
applied to propagate the benefit of semi-joins on relations. In the process, a structure
known as a connector is used, which records the former semi-join’s effect. This is a small
table, which can easily fit in the memory for the next step semi-join. However, this
method is a serial method, which excludes the possibility of processing in parallel, and it
omits the local processing cost, which may be high. Comparably, in [WLC91][CCY92], a
parallel semi-join execution method is proposed. The goal of one-shot semi-join
execution is to remedy the inefficiency of traditional semi-join processing algorithms,

which favor sequential execution of semi-joins. Under this new method, the initial local

16

processing and final join processing for a distributed query remain the same. But, the
query optimizer has to decide on a set of semi-joins to be executed first and the semi-join
processing step is further partitioned into three phases, namely, the projection phase, the
transmission phase and the reduction phase. In the projection phase, a relation R; is
scanned once to generate all the necessary semi-join projections. Then all the semi-join
projections are transmitted in parallel to the corresponding sites to perform semi-joins in
the transmission phase. After the transmission, for each semi-join to a relation R;, its
semi-join projection is available at the site where R; resides. Therefore, global semi-join
optimization is possible. Global semi-join optimization is impossible if semi-joins are

executed sequentially.

Domain specific Semi-join

Many query optimization algorithms proposed for fragmented databases apply semi-joins
to reduce the size of the fragments of joining relations before they are sent to a final
processing site. When semi-joins are employed in such a system, they have to be
performed in a relation to relation or a relation to fragment manner to avoid eliminating
contributive tuples. Many algorithms [AHY83][BGW81][CL84] only propose semi-
joins for non-fragmented databases. In order to improve the semi-join associated with the
joining fragmented relations, domain specific semi-join is introduced [CL90]. It may be
performed in a fragment to fragment manner and provide more flexibility in distributed
query processing. In horizontally partitioned databases, a domain is a set of values.
Tuples of a relation are horizontally partitioned into disjoint subsets called horizontal
fragments. A fragmented relation R, can be reconstructed by performing a union

operation on all its fragments. R=U, R,. So a join between two fragmented relations R,

17

and R is equivalent to a union over joins between each fragment of R, and each fragment

of R;: (| JRu) [A=B] (| JRim)=|_JRu[A =b]Rim)
k m k,m

When using the traditional semi-join in fragmented relations this way, it is easy to lose
contributive tuples for the fragment join. The domain specific semi-join operation
R,(A=B]R,, A, B are the joining attributes and R, R,, are two fragments of the joining

relations R, and R,, is defined as

R,(A=BIR,, ={rlre R,, r.Ae R,, [B] U (Dom[R_.B]-Dom([R,,.B]). Here, Dom[R;.B]
represents the domain of the joining attribute B in relation R;, while Dom[R, .B]
represents the domain of the fragment R, on joining attribute B. The whole formula
means when we semi-join the two segments of each correspondent relation, the domain
specific semi-join result is the semi-join result of the two segments’ normal semi-join
union the semi-join by the first segment with the remaining part getting from the domain

of the joining attribute on second relation minus the domain of the second fragment on

the joining attribute.

Then for a fragmented relation R, involved in multiple joins, the domain specific semi-
joins on any fragment of R, are permutable if the restricting relations are fragmented by
their joining attributes. Let R,’ be R, (A=B) R,,, the fragment R, after the domain
specific semi-join reduction by R,. We also assume Dom[R.A] = Dom[R;.B], then

(1-| Dom{R«.A] N Dom[RnB] | ,

R, = |Rik (A=B] ijl = IRik|| | Dom[RiA]|

R l]Dom[Rik.A]r\Dom[ij.B] | Rin [B]| _IR.| |Rim[B] |
* | Dom[Rix.A] || Dom[R;n.B] | “" | Dom[R;n.B}|

18

Composite Semi-joins

A composite semi-join is a semi-join in which the projection and transmission involve
multiple columns [PC90]. In most of the algorithms multiple semi-joins may be
performed with common source and common result sites. In this situation it may be
beneficial to do the semi-joins as one composite rather than as multiple single column
semi-joins. The paper looks at two classes of algorithms that may be improved with
composite semi-joins. The first is the variations on Algorithm General response time
version [AHY83], and selectivity is the main estimation method. The second is variations
on Algorithm W. It uses “worst case elimination” to estimate attribute sizes after semi-
joins. However both are static algorithms, not dynamic. For example, we have two
relations 1 and 2 shown in Figure 2.4. Two common joining attributes 1 and 2 exist in
both relations, which are denoted as D11, D12 and D21, D22. If we do only common
semi-joins on the two joining attributes one by one, we will not reduce relation 2 at all.
However, by comparison, if we do the composite semi-join, we’ll reduce the redundant

tuples greatly.

We come to the following conclusion: Composite semi-joins are not always the best,

however by combining semi-joins and composite semi-joins in one algorithm, it may be

the best approach.

D11 | DIi12 D1 1D D21 [D22
1 A >4 1 C —> 1 C

1 A 1 A
1 B > B 9 B
2 C 3 B 3 B
3 C

Figure 2.4 Semi-join Only

19

D11 | D12 D21 | D22
1 - v 1 C > D21 | D22
1 B 2 B
3 C 3 B
3 C
Figure 2.5 Composite Semi-join
PEREF join [LR95]

A PEREF is based on the relation tuple scan order instead of hashing. Hence it doesn’t
suffer any loss of join information incurred by hash collisions [GZ98]. The basic idea of
PERF join is as follows: in 2-way semi-join, relation S is reduced by a semi-join with
projection of relation R, Pr. But instead of transferring Ps back to R, send a bit-vector
(PERF) that contains one bit for every tuple in Pg. That bit is set to 1 ifit is inPg and 0
otherwise. The order of the bits in the bit vector is the same tuple order of P that R’s site
sent initially. Over semi-join or bloom-join, it is possible to apply PERF join among the
partially reduced relations to further decrease the amount of spurious data being
transmitted to the query assembling site, which in turn lowers the overall query response

time.

PERF preserves the complete join information and minimizes network and storage
overhead. It leads to cheap local join processing cost, especially when buffer memory is

scarce. It also can handle the inequality join query and cyclic join query [LR95].

20

R(A,X) S(X.B)

1 Al | 10 100 | BI1 1
2 A2 | 20 30 | B2 2
3 A3 | 30 50 | B3 3
4 A4 | 40 % | B4 4
5 A5 | 50 20 | B5 5
6 A6 | 60 70 | B6 6

PERF(R) PERF(S)

1 [0 o] 1

2 |1 1 2

3 (1 113

4 [0 0] 4

5 1 1 5

6 [0 E 6

Figure 2.6 PERF Join

From the above figure, we can know clearly how to get the PERF vector of each relation.
In the two relations R and S, X is the joining attribute. So we can get projections on
joining attribute X of each relation denoted as Pr and Ps. When we begin to produce
PERF(R), we pick each tuple in the projection Pg and look into Pgto see whether its
value exists in Pg_If it does exist, we set correspondent ‘1’ in the bit vector, otherwise,
we set ‘0’. After going through all the tuples in the projection Pg, we get PERF (R).
Similarly, we scan each tuple in projection Pg and search that value in projection Pr If
this value exists in the projection Pg we set ‘1’ for the bit vector, otherwise ‘0’. Finally,

we will get the PERF (S).

21

Interleaving join with semi-join

In distributed query processing the conventional approach to reduce the amount of data
transmission is to first apply a sequence of semi-joins as reducers and then ship the
resultant relations to the final site to carry out the join operations. In view of this fact
sometimes if we mix semi-join and joins, we can get better performance. In [CY91], an
algorithm first establishes the join sequence, and it uses heuristics to insert semi-join

operators.

22

Chapter 3 — Motivation & Evaluation Methods

3.1 Motivation

From experiments in [MO99], we can tell that it is almost always better to use hash-
semijoins than semi-joins. New algorithms which use hash-semijoins exclusively should
give better performance than simply taking the schedule produced by a semijoin-based
algorithm and replacing the semi-joins with hash-semijoins. However, using hash-
semijoin or bloom filter can never avoid false drop or so called collisions. In order to
minimize the collisions that happen using the bloom filter, in [Lia99] two bloom filters
are used, and experiments show that it is almost always better than using only one bloom
filter. Will it be better to use more bloom filters? How should we choose the bloom
filters? In fact, it so far has not been well formulized (only in [Mul96], some
experimental data were given). Generally speaking, as long as you use bloom filters, you
cannot avoid collisions. Why not use some new filter that can avoid collisions to reduce
relations, so that we can get the benefit of using bloom filters, as well as avoid further
collisions to achieve better performance? Taking
[CCY92][Lia99][LR95][Ma97][MOLO0][WLC91] into consideration, if we can find and
use a new kind of operator (filter) which does not have any collisions to produce the
schedules, we may not only get the benefit from filter based methods, but also avoid the
cost produced by collisions of bloom filters. Another consideration is, whenever you use
bloom filter, you cannot use composite semi-join as well. Based on the general idea from
PEREF join [LR95], I propose the new algorithm called Complete Reducing Filter (CRF).
Using CRF algorithm, we can not only get the benefit of filter based methods, but also

can combine composite semi-join with reducing filter to get better performance.

23

Complete Reducing Filter (CRF)

1. Apply one bloom filter: Reduce each remote relation R, with bloom filters generated
from a subset of the other joining relations. The resulting relation R’ might still
contain some non-joining tuples.

2. Send join attributes: Transmit join attributes projection(s) Pry in parallel to the
assembling site. Combining the composite semi-join, join the Pry and generate a
CRF(R/’) for each corresponding R’

3. Receive CRF: Ship CRF(R.’) and combine with each R;’. R’ will be fully reduced
into a relation R’ which contains only the matching tuples.

4. Transmit matching tuples: After excluding the join attributes, send each R’ in

parallel to the assembling site to compose the final join result.

As to the step 1 of CRF algorithm, optionally, we can work directly on the original large-
size relations, because the input (relations to be dealt with) is transparent to CRF. We can
take original relations as input to test CRF alone, also we can take the result of bloom
filter as input to test whether it is also beneficial to apply CRF on the relations already

processed.

First, let us look at a simple example about how the CRF works.

Suppose we have two relations R; and R, In each relation, they have joining attributes J.
In order to produce the CRF's as we planned, we go through the following steps:

1. At each local site, project R; =1 or2)0n the joining attribute. Here the joining attribute

is only J.

24

2. Make up the special form of projections locally with joining position information, as
shown in Figure 3. 1.

3. Only transfer the joining attribute column to an assembly site.

4. Scan the projections across, and produce each CRF

5. Send back each corresponding CRF and reduce each relation locally

6. If at the assembly site we have more than one projections from one relation, we use
the logical operation AND to combine the filters, so as to implement the composite

semi-join operation.

For example, we have CREF filters on relation R;, totally the numbers of such filters for R;

is equal to j. Therefore we can collectively get the final CRF filter on R; CRF(R;), which

is: CRF(R;)= II 1= 1o j CRF(R)k
Site of R, Site of R;

Figure 3.1 Projection and Position information

locally produced
J J 1 1
A C > 0 1
B A 1 0
C D CRF(R;) CRF(Rp
P(R1) P(R2)

Figure 3.2 Scan projections and produce filters

25

Here, we recap the whole algorithm with a comprehensive example:

Suppose we have three relations R, R; and R;, In relation R;, we have three attributes A,
B and C, while B and C are joining attributes. In relation R, we have four attributes B, D,
E and F, while B and F are the two joining attributes. In relation R3; we have two
attributes F and G, while F is the joining attributes.

Here are the tables:

R] R2 R3
A B c B C D E F F G
0 3 2 3 8 vy | mr. | x X F
w M
1 5 8 5 2 N Ms Q
Y M
2 7 4 7 3 A Mr P W M
3) 6 9 6 Y Ms w z F

Figure 3.3 Tables of Relations

1. First we project each relation on the joining attributes to get every joining attributes’
projections, Pri), Pri(c), Pr2B), Pr2(c), Pr2(F) and Prir).

2. Choose the relation with maximum degree to begin. In the example, because relation
R, has three joining attributes, so it has the maximum degree. We start the algorithm

from Ro.

On each joining attribute of R, we scan the other projections of the same joining
attributes and produce the CRF of R, on each joining attribute. So we get CRF ra),

CRF ro), CRF g2 () and the composite CRF filter CRF rypc) When we finish the

26

individual CRF filters of R2, we do the AND operation, to produce the CRF gy as

shown in Figure 3.3, the left frame.

CRF ro(c), CRF gr2(8),CRF ros), CRF r2 (7)] CRF riB), CRF Ri(C), CRF RIBC)| CRF R3(R)

[Bt
ol (=2 L) Ll
it | et | et |
[l L=] [=] []

it | 9§ i |
—lolofm
s o [t [=

O [O st |1t

N R

CRFrRi
CRF p» o
0 0 1
0 p |0 » |0
0 0 1
1 1 0

Figure 3.4 Final filters for each relation

Similarly, based on the related projections of other relations and available CRF g, we get
CREF g, Here the existing of new produced CRF g, will provide the updated information
about Ry’s projections needed for the following steps. Next based on the previous CRF g;

and correspondent projections, we get CRF g3,

3. Send the CRF g; back to each site.

4. Locally reduce each relation.

After the whole procedure, we are done with the reduction, and finally we can send the

totally reduced relations to the assembly site for real join.

27

3.2 Evaluation Methods

In order to measure the performance of our algorithm, we need to find the objective

comparable algorithms to carry on the evaluation.

1. Is it beneficial to apply this algorithm alone on relations involved?

2. Tt is a filter-based algorithm. Does it really outperform the popular bloom-filter
algorithm? If no, what’s the condition to apply this algorithm for better performance?

Due to the two main concerns, we choose the following two comparison methods:

a) Compare the experimental result without applying CRF (e.g. Initial Feasible Solution)
with that using CRF

b) Compare the experimental result using bloom filters with that using CRF

There are two ways to implement the CRF algorithm:
1. Sequential method

2. Parallel method or also called One-shot method.

Sequential method: Send the projection from one site to other, to get CRF(R;) in order.
Parallel method: Send all projections of each relations to a third site, to get CRF(R;) at

one-shot. In my work, I want to find out how to implement the algorithm so that it is

more cost-effective.
Concerns:
1. The local cost to implement the CRF algorithm (Sort-Scan).

2. Inrun time, the different cost from the sequential method and from parallel method.

28

Chapter 4 — Experiments & Evaluation

In this chapter, we present our experimental scenario and summarize the experimental

results under such an environment.

4.1 Experimental System

The experimental System includes 3 parts: Database related statistical information
generator (create_query.exe), true relations generator (relbuilder.exe), and the proposed
algorithm producer (test.exe). The statistical information generator (create_query.exe)
and true relations generator (rebuilder.exe) were created by previous colleagues in
Database Group of Windsor University, and revised by me. The CRF algorithm producer

(test.exe) is fully implemented by me.

Methodology

The framework of evaluating this Algorithm (CRF) is based on objectives:
1. To measure the performance enhancement of this algorithm in terms of response time

2. To measure the performance under a wide variety type of queries

The whole process looks like this way:

User query — create queries and statistical information for the whole database — create
relations which meet such requirements — Execute Algorithm CRF — measure the
performance

An example of query statistical table is shown below:

User query type: 6 relations and 2 joining attributes

| 6 | 2 |

29

Database Statistics:

S(Ri) S(din) o (diy) S(di) p (dip)

2000 0 0.000000 867 0.704878
2000 783 0.760194 0 0.000000
3200 683 0.663107 0 0.000000
1000 918 0.891262 0 0.000000
900 730 0.708738 895 0.727642
1900 0 0.000000 986 0.801626

Figure 4.1 Database Statistical Information

The size of relation R; is denoted as S(R;). The size and selectivity of each individual

attribute are represented by S(d;) and o (dj) respectively. Here, we recap the definitions

on relation size, attribute size and selectivity.

S(R)) is the size of relation R;. Suppose cardinality of R; is | R; |, width of a tuple in R; (in

bits) is W(R;), S(Ri) =|R;|* W(R)).

S(dj) is the size of joining attribute j of relation R;. d;; represents the joining attribute, the
cardinality of dj; is | d;j | (or | R; |, when we don’t eliminate the duplicates), then the width

of the join attribute in bits is W(dy), S(dij) =| d;j | * W(dy).

p (dj) is the selectivity on each joining attribute j of relation R;. It is the number of

different values occurring in the attributes divided by the number of all possible values of
the attribute. Suppose the cardinality of the joining attribute is | d;; |, the domain of dj; is

| di]

Dom(dy), ¢ (dy) = Dom(ds)

. The selectivity is regarded as high when p (djj) is small.

30

For example as shown in Figure 4.1, the size of R1 is 2000, which doesn’t have joining
attribute 1, so the size of the projection on joining attribute 1 and the selectivity are both
0. However it has joining attribute 2, the size of the projection of relation R1 on joining

attribute 2 is 867 and the selectivity is 0.704878.

Test-bed

In order to measure the performance of utilization of the CRF algorithm, we investigate
the following characteristics in this thesis:

1. The number of relations involved in the query.

2. The number of possible joining attributes involved in the query.

3. The selectivity of the attributes in the query.

4. The domain size.

5. The number of tuples in a relation.

However what we focus on and try to answer in this thesis is:

1. How does the number of relations in the query affect the performance?

2. How does the number of joining attributes in the query affect the performance?
3. How does the selectivity of the attributes affect the performance?

4. How does the relation size affect the performance?

As mentioned in the last motivation section, the real implementation of such an algorithm
can be done with a parallel method and a sequential method. However in this simulation,

past research suggests that the parallel method should have better performance than the

31

sequential method. Because the operations are in parallel, the response time is less, and
the parallelism is maximum, which is quite suitable for any real distributed database
system. So in all my following experiments, I am using the parallel method to simulate

the whole process and get the experimental results.

4.2 Experimental Result and Evaluation

Because in the real practice, the numbers of relations involved in join operations are
usually no more than 6, and joining attributes involved are not many. So in this
experimental environment, the range for the number of relations is from 3 to 6, while the
range for number of joining attributes is from 2 to 4. The selectivity is classified into 3
categories: Low (0.7 — 0.9), Medium (0.4 — 0.7) and High (0.1 - 0.4). Each relation in the
query consists of 500 to 6000 tuples, while the attribute domain contains 500 to 1500
distinct values. The experiments carried out are classified into three parts based on the
selectivity of all joining attributes in the test queries. Fifty queries were constructed and
executed using the algorithm CRF, or in other words, each type of query will be run for

50 times (runs).

32

Results

4.2.1 Effect of the number of relations

Effect of Selectivity

B High Selectivity
& Medium Selectivity
O Low Selectivity

1:2 joining attributes
2:3 joining attributes
3:4 joining attributes

1 2 T 3
& High Selectivity N SH13 356417 323129
W Medium Selectivity 68.179 6967585 34.3336
O Low Selectivity 54.2813 36.2892 300733

Type of Joining Attribute

Figure 4.2.1.1 Three Relations

As Figure 4.2.1.1 shows, when we deal with three relations in the simulation, medium
selectivity always produces a higher beneficial rate than other selectivity, which is
represented in purple by sequence. Generally, when the numbers of the joining attributes
increase from 2 to 4, the beneficial rate shows deterioration for low selectivity. But for
high selectivity or medium, three joining attributes case gives the relatively best
performance. And one more feature of the 3 relations case is that the beneficial rate

changes greatly. It can vary from about 30% to about 70%.

33

Effect of Selectivity

B High Selectivity o 50
. - o
B Medium Selectivity § 5O
OLow Selectivity
40

1:2 joining aftributes 20

2:3 joining attributes ‘

3:4 joining attributes 1 5 3
& High Selectivity 48.3794 46.547 4 48.7263
& Medium Selectivity 47.0789 44.8458 45.7247
O Low Selectivity 56.8182 46.6148 44 4746

Type of Joining Attribute

Figure 4.2.1.2 Four Relations

When we increase the relation numbers to 4, performance of the simulation changes a
little bit. With the increase of the numbers of joining attribute, the beneficial rate doesn’t
get worse greatly, under medium or high selectivity, it may be better than or relatively
good. But compared to 3 relations case, the beneficial rate for any selectivity doesn’t vary

a lot.

34

@ High Selsctivity Effect of Selectivity
| Medium Selectivity a0
O Low Selectivity £ 70
=]
%= 60
& 50
40
30
1:2 joining attributes 20
2:3 joining attributes 10
3:4 joining attributes 0 1 5 73
B High Selectivity 54.4874 53.402 55.6945
W Medium Selectivity | 95.7262 54.5174 56.9686
O Low Selectivity 54.4049 57.3914 51.3048
Type of Joining Attribute

Figure 4.2.1.3 Five Relations

Effect of Selectivity
M High Selectivity £ 80
W Medium Selectivity .% 70
[0 Low Selectivity ™~ B0
50
40
30
1: 2 joining attributes 20
2: 3 joining attributes 10
3: 4 joining attributes 0
1 2 3

®High Selectivity 63.4072 61.251 61.5682

B Medium Selectivity 59.8218 63.9427 61.9891

OLow Selectivity 61.2744 59.7311 59.7851

Figure 4.2.1.4 Six Relations

When we come to 5 relations or 6 relations, an outstanding phenomena is that more

joining attributes don’t necessarily worsen the performance, sometimes, such as 5

35

relations with high or medium selectivity, it benefits the whole performance. And

compared to 3 relation or 4 relation cases, the beneficial rates are rising at large.

4.2.2 Effect of the number of joining attributes

Effect of Joining Attribute —e— 2 Attributes
—a— 3 Attributes

4 Attributes

Ratio

Figure 4.2.2.1 Joining Attributes’ Effect on Five
relations with Medium Selectivity

At a whole, when we are dealing with 4 joining attributes, the performance varies in a
wider range. Sometimes it can give the relatively highest beneficial ratio, sometimes it

can be the worst. For 2 joining attributes or 3 joining attributes, no special pattern found

yet.

36

4.2.3 Effect of the selectivity

5X2-High selectivity

ratio
Coo0oooo
O—=pNWEMO~CO

o

10 20 30 40 50 60
rung

Figure 4.2.3.1 High Selectivity 5X2

5X2-Medium selectivity

ratio

runs

Figure 4.2.3.2 Medium Selectivity 5X2

Roughly speaking, higher selectivity is good for the performance when we have 5
relations for the simulation. The individual worst case occurs when we have low

selectivity.

37

5X2-Low Selactivity

=
i
0 10 20 30 40 50 60
runs
Figure 4.2.3.3 Low Selectivity 5X2
4%4-High selectivity
0.8
07
0b
o 0.5
% 0.4
=03
0.2
0.1
0
funs

Figure 4.2.3.4 High Selectivity 4X4

However, when we come to 4 relations case, the situation changes a little bit. High

selectivity is not bad, but medium selectivity can bring worst performance sometimes.

38

4¥4-Medium Selectivity

2
w©
x
runs
Figure 4.2.3.5 Medium Selectivity 4X4
4X4-Low Selectivity
2
&

] 10 20 30 40 50 60
uns

Figure 4.2.3.6 Low Selectivity 4X4

Just as shown in Figure 4.2.3.5, when we run the simulation with medium selectivity,
sometimes, zero benefit can occur. But from all the experiments we did, we met no minus
benefit, which means to some degree, this algorithm does not cause deterioration in

performance.

39

4.2.4 Summary

Number of relations

Average
beneficial 3 4
ratio %
High Medium Low High Medium Low
Ul s7.97 65 63.8889 69.4915 69.2913 67.5926
2] Al 315130 68.1790 64.2813 48.3794 47.0789 56.8182
L 0 0 0 9.7561 13.2353 7.9545
Number Ul 64375 64.1509 64,0625 72.2222 70.8333 69.7479
of joining | 3| A] 35.6417 69.6758 36.2892 46.5474 44.8458 46.6148
attribute L 0 0 0 19.1919 7.8947 11.3821
U| 65.5172 60.7843 64.1509 71.1538 72.3164 66.6667
4| A] 323129 34.3336 30.0733 48.7263 45.7247 44.4746
L 0 10.5263 0 19.7802 8.4507 9.0909
Average 33.1559 57.3961 43.5479 47.8844 45.8831 49.3025
Average 5 6
beneficial
ratio % High Medium Low High Medium Low
U| 76.4706 74.5665 74.1573 79.4286 80.0000 77.2727
2| A| s54.4874 55.7262 54.4049 63.4072 61.2510 61.5882
L| 30.0000 32,6389 23.1707 37.8698 42.0792 45.2703
Number U| 73.0435 72.0588 75.5274 78.6885 78.6517 79.5775
of joining | 3| A| 53.4020 54,5174 57.3514 59.8218 63.9427 61.9991
attribute L| 21.1538 30.9353 23.8806 38.5542 36.7647 36.2832
U| 745763 79.1667 72.9560 78.3069 80.9524 77.3946
4| Al 55.6945 56.9686 51.3049 61.2744 59.7311 59.7851
L| 23.2558 29.4643 16.3462 42.8571 35.9477 31.2500
Average 54.5280 55.7374 54.3537 61.5011 61.6416 61.1241

Figure 4.2.4.1 Average Benefit Ratio by factors

Above, we present results coming from the comparison between CRF and IFS. High,

Medium and Low are the three categories for selectivity. U, A and L represent the upper,

average and lower ratio.

40

So far we have finished the experiments that focus on the answer for our first concemn: Is
it beneficial to apply this algorithm on relations involved? The answer is positive, and

we can say it’s almost always beneficial and the benefit is on average between 30%~90%.

Next, we need to discuss the experiments that can outline the difference between bloom-

filter algorithm and our algorithm CRF.

4.2.5 Comparison between bloom-filter and CRF

4.2.5.1 Full reduction

From reference [MOLOO0], we can get the average percentage of full reduction with
collisions using a single set of filters or using two sets of filters in the simulating

environment. This is summarized in the following tables:

Collision% 1 5 10 20 30 40 50 60 Average
3-2 26 19 19 18 19 17 21 13 21
4-2 50 4 40 34 39 29 29 14 37
5-2 70 66 58 47 43 44 40 30 54
6-2 80 66 52 46 41 36 32 25 52

Average 57 48 42 36 35 32 31 21 41

Figure 4.2.5.1.1 Average percentage of full reduction
with collisions using a single set of filters

41

Collision% 1 5 10 20 30 40 50 60 Average
3-2 47 41 31 46 42 34 34 30 38
4-2 59 54 54 61 57 55 45 53 55
5-2 82 74 72 71 70 72 69 77 74
6-2 87 90 85 90 o1 79 84 82 86

Average 69 65 61 67 65 60 58 61 63

Figure 4.2.5.1.2 Average percentage of full reduction
with collisions using two sets of filters

In the above two tables, we know the first row represents the possible collision rate when
using hash functions. The first column represents the types of queries, such as 3-2
represents 3 relations with 2 joining attributes. The data in the main area give information

about the average percentage of full reduction under each collision situation of each type

of query.

As we know, one of the good features of CRF is its full reduction capability. On this
aspect, any other bloom-filter based algorithm can never do better than this algorithm.
From the statistics of the above tables and from the past experimental data, even
assuming the bloom-filter has a perfect hash function, the average full reduction
percentage is only 74%. The above two tables show that, with a single set of filters, the
full reduction rate can be only 41%. Even with two sets of filters, the rate is only raised to

63%.

42

4.2.5.2 Cost
On the other hand, we need to know the computational cost for each algorithm. So based
on the above results from the bloom-filter based algorithm, we do the evaluation as

follows:

1. Compare the result only using one single bloom-filter with CRF

Collision% 1 5 10 20 30 40 50 60 Average
3-2 89.27 | 86.65 | 87.56 | 87.10 | 84.44 | 78.52 | 80.39 | 70.12 83.59
4-2 94.73 | 94.29 | 94.63 | 92.88 | 92.43 | 90.49 | 87.88 | 86.35 91.92
5-2 97.65 | 97.22 | 98.58 | 97.80 | 96.53 | 96.06 | 93.57 | 92.23 96.42
6-2 99.14 | 98.97 | 99.43 | 98.57 | 98.58 | 97.86 | 97.73 | 94.23 98.17

Average | 95.20 | 94.28 | 95.05 | 94.09 | 93.00 | 90.73 | 89.89 | 85.73 92.53

Figure 4.2.5.2.1 Average reduction with collisions using a single set of filters

On average, 92.53% of all relations involved are fully reduced by the bloom-filter based
algorithm. There we just refresh the definition of average reduction (%) and full

reduction (%).

Average reduction (%) = reduced size/(total size-full size)*100, where total size is the
total size of all relations involved in queries, reduced size is the size of the relations being
reduced by applying such algorithm, and full size should be the size the relations after

being fully reduced.

For example, the total size of all relations involved is 10,000, the reduced size is 1,000,

while the full size should be 8,000.

43

Then average reduction (%)=1000/(10000-8000)*100=50%
Full reduction is percentage of queries fully reduced out of the total queries. For example,
we run each type of query for 50 times. Out of these 50 queries, 25 queries are fully

reduced. So the full reduction (%)=50%.

2. Compare the result using two sets of filters with CRF

Collision% 1 5 10 20 30 40 50 60 Average
3-2 89.08 | 89.17 | 85.53 | 89.14 | 88.63 | 88.91 | 87.53 | 89.39 88.29
4-2 94.79 | 94.57 | 93.46 | 96.88 | 95.03 | 95.06 | 93.12 | 94.95 94.79
5-2 98.24 | 97.66 | 97.76 | 98.09 | 97.30 | 97.41 | 97.39 | 98.52 97.85
6-2 99.23 | 99.61 | 99.37 | 99.30 | 99.41 | 99.02 | 99.01 | 99.46 99.25

Average | 95.38 | 95.25 | 94.03 | 95.85 | 95.09 | 95.11 | 94.26 | 95.58 95.05

Figure 4.2.5.2.2 Average reduction with collisions using two sets of filters

We can deduce from the two figures that the real average reduction rate, for only a single
set of filters is (Average reduction) X (full reduction) = 41% x 92.53% = 37.9%, while for
the two sets of filters, it is raised to 63% X 95.05% = 59.88%. Then the extra cost

percentage we have to pay when using bloom filters would be: (100- 37.9)% = 62.1% for

a single set of filters, and 1 - 59.88% = 40.12% for two sets of filters.

X-2 type query 3 4 5 6 Average

Average full reduction size 2696 5135 7400 9770 6250

Figure 4.2.5.2.3 Average full reduction size

44

From the experimental result I got based on CRF algorithm, the average beneficial rate
for X-2 type (X here represents 3, 4,5 or 6 relations, 2 represents two joining attributes)
query is 55.6%, which means the cost we have to pay using this is about 44.4%.
Compared to the extra cost percentage we have to pay when using only one set of bloom
filters, this is obviously better. When compared with the result from two sets of bloom
filters, we can approximately see 40.12% (extra cost)+ ~ 5% (cost) = 45.12% is the real
cost to be paid. Thus, CRF is a little bit more beneficial than using two sets of filters. In

other words, CRF is comparable to two sets of bloom filters.

Evaluation

From the experimental results, especially referencing to the average beneficial rate

(Figure 4.2.4.1), the general trends are:

1. This algorithm is almost always beneficial.

2. The lowest beneficial rate is 0 (occasionally occurs), and highest bound from the
experiments we got is 81%. The average is 52.2%.

3. With the increase in the numbers of relations, the beneficial ratio is getting higher,
however, the performance on three-relation type is exceptional.

4. Generally speaking, with high selectivity, our algorithm performs well, at least not
worse than medium or low selectivity, except in situations in three relations.

5. Considering the non perfect hash function used for the bloom filter, collisions will
always occur, which makes the result of the bloom filter algorithm not as good as its
theoretical expectation. Based on the collision rate, we can see CRF works better

than the bloom-filter based algorithm on average.

45

The past research only focuses on bloom-filters. When one set of bloom filters
doesn’t work well under collision situation, they found out using one more set of
bloom filters could lead to better performance. From the experiments above we can
see, even compared with the average result from two sets of bloom filters, CRF
works alone better, at least not worse.

We conjecture that a bigger relation size will lower the benefit we can get using
CRF. However from the experiments, it may not be true. Generally, when more
relations are involved, the total size of the relations is bigger, but the performance is
better. Another case we consider is the use of one set of bloom filters to reduce the
relations, then use the CRF as the second step. In this experimental environment, we
do not run under this circumstance. However, from the theoretical analysis based on
the experimental result, it is not worse when using one set of bloom filters with CRF

combination than using two sets of bloom filters.

46

Chapter 5 — Conclusion & Future work

5.1 Conclusion

The optimization of general queries in Distributed Database System (DDBS) is a very
important research area, which is a core part in improving the whole database system’s
performance. The main concern or problem in this area is the selection of the best
sequence of various operations to process queries to keep the cost to minimum. Because
finding the optimal solution is NP-hard, a realistic and beneficial approach is to use

heuristic algorithms which can produce near-optimal solutions.

During the past two decades, various possible algorithms have been presented and tested,
which can be classified into following categories:

Join based algorithms, Semi-join based algorithms, hash-semijoin (or bloom filter) based
algorithms, and join/semi-join combined algorithms. In general, semi-join based
algorithms perform better than join-based algorithms. However what we can see is, we
still have to spend a lot when using semi-join based algorithms for transmission.
Focusing on transmission cost, not local processing cost, filters are proposed as a cheap
way to implement semi-joins. This is a good approach compared to the former ones,
however, since bloom filters are constructed by hash functions, collisions can never be
avoided. This is the problem or bottleneck for bloom filter based algorithms. When
collisions occur, we cannot reduce the relations to the full extent, which means a higher
transmission cost than necessary. How can we overcome such a disadvantage of bloom
filters? Some research proposed the use of more than one set of bloom filters. To a

certain extent, it is better than only using a single set of bloom filter, for it reduces the

47

possibility of false-drop that occurs under collision. However, it still cannot promise the
full reduction. It does give a way of solution, which is to increase the number of filters
for use. However, a filter itself is not costless. It is not an easy job to find the balance
between a false drop and amount of filters to use. So far no research has studied the
formula or rules to find the right number of filters to use (Only in [Mul96], experimental
numbers are given). In reality, there is more than one joining attribute in queries.
Experiments show that using composite semi-join, we can get not worse result than semi-
join. When taking all these factors into account, several considerations are very

meaningful.

1. Replace semi-join with filters if possible.
2. Avoid collisions in filters if possible.

3. Apply composite semi-join into other algorithms if possible.

In this thesis, we investigate a new filter based algorithm CRF. This algorithm can use
the filter concept. However it can avoid collisions. Thus after applying such algorithm,
we can assure the full reduction. Secondly, it can keep the join information, which can
combine composite semi-join with filters, however it’s never possible for bloom filter-

based algorithms.

Algorithm CREF is a filter-based algorithm, which gets insight from PERF join. The main

procedure to implement CRF is as follows:

48

1. Send join attributes: Transmit join attributes projection(s) Pgy in parallel to the
assembling site. Combining the composite semi-join, join the Pg;: and generate a
CRF(R,’) for each corresponding R’

2. Receive CRF: Ship CRF(R’) to and combine with each R’. R’ will be fully reduced
into a relation R, which contains only the matching tuples.

3. Transmit matching tuples: After excluding the join attributes, send each R’ in

parallel to the assembling site to compose the final join result.

5.2 Future work

In my current work, I do not do any local actions for removal of duplicates. Even though
we do not take local time into account, the local cost is still there. If doing the removal of
duplicates on projections locally, sort and scan cost will occur. With the augmentation of
relation size, the cost will be larger. So that in my current work, I do not remove the
redundancy of projections, just send them for filter generation directly. However, we can
tell, it will cost extra transmission cost for sure. Maybe future work can focus on finding

out the real beneficial way to deal with the duplicates.

Secondly, due to the simulating environment for these experiments, I do not especially
choose cases that favor the composite situation. But it’s clear, if more special cases favor
the composite situation, the result, beneficial rate will be higher. So future work can

continue work on special cases to find out how beneficial the composite situation is.

49

Thirdly, the comparison between CRF and bloom-filter based algorithms is tested only
limited to X-2 type queries. When joining attributes increase, combined with the situation
of more composite joins occur, the test results need to be proved, though theoretically we

expect CRF is better than bloom-filter based algorithms.

Fourthly, future work can further the research and put it into the real database product for

performance testing and improvement if possible.

50

Reference

[AHY83]

P. Apers, A. Hevner, and S. Yao, “Optimization algorithms for distributed queries”, IEEE
Transactions on Software Engineering, 9(1), pp. 51 — 60, 1983.

[BFS00]

S.Bandyopadhyay, Q.Fu and A. Sengupta, “A cyclic multi-relation semijoin operation for
query optimization in distributed databases”, Proc. 19th IEEE International Performance,
Computing and Communications Conference - IPCCC 2000 PERFORMANCE,
February, 2000.

[BGW'81]

P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J. Rothnie, “Query processing in a
system for distributed databases (SDD-1)”, ACM Transactions on Database Systems,
Vol. 6(4), pp. 105 — 128, 1981.

[BMS96]

Bandyopadhyay, S; Morrissey, J; Sengupta, A, “Query optimization strategy for
distributed databases on all-optical networks”, Canadian conf. Electrical & computing
Engineering, IEEE, Piscataway, NJ, (USA), vol. 1, pp. 245 — 248, 1996.

[BR88]

Peter Bodorik, J. Spruce Riordon, “Heuristic Algorithms for Distributed Query
Processing”, IEEE, pp.144 — 155, 1988.

[BRJ89]

Peter Bodorik, J. Spruce Riordon and C. Jacob, “Dynamic Distributed Query Processing
Techniques”, Proceedings of the seventeenth annual ACM conference on Computer
science: Computing trends in the 1990's: Computing trends in the 1990's, pp. 348 — 357,
February 1989, Louisville, Kentucky, United States.

[BRP92]

Peter Bodorik, J. Spruce Riordon, James S. Pyra, “Deciding to Correct Distributed Query
Processing”, IEEE Transactions on Knowledge and Data Engineering, Vol.4, No.3, pp.
253 — 265, June 1992.

[CA99]

Dunren Che and Karl Aberer, “A Heuristics-Based Approach to Query Optimization in
Structured Document Databases”, 1999 International Database Engineering and
Applications Symposium, August 02 — 04, 1999, Montreal, Canada, p. 24.

[CCY92]

Tung-Shou Chen, Arbee L.P. Chen and Wei Pang Yang, “Hash-semijoin: A new
technique to minimizing Distributed Query time”, Proc. of the Third IEEE Workshop on
Future Trends of Distributed Computing Systems, Taipei, Taiwan, R.O.C., April 1992.

51

[CL00]

Hao Chen and Chengwen Liu, “An Efficient Algorithm for Processing Distributed
Queries Using Partition Dependency”, Seventh International Conference on Parallel and
Distributed Systems (ICPADS'00), July 04 - 07, 2000 Iwate, Japan, p. 339.

[CL84]

L.Chen and V.Li, “Improvement algorithms for semi-join query processing programs in
distributed database systems”, IEEE Transaction on Computers, Vol. 33(11), pp. 959 —
967, 1984.

[CL90]

L. Chen and V. Li, “Domain-specific semi-join: A new operation for distributed query
processing”, Information Science, Vol. 52, pp. 165 — 183, 1990.

[CMT00]
Bogdan Czejdo, Ruth Miller, Malcolm Taylor and Marek Rusinkiewicz, ‘“Distributed

Processing of Queries for XML Documents in and Agent Based Information Retrieval
System”, Kyoto International Conference on Digital Libraries 2000, p.31.

[CR94]

Chungmin Melvin Chen and Mick Roussopoulos, “Adaptive Selectivity Estimization
Using Query Feedback”, ACM-SIGMOD International Conference on Management of
Data, pp. 161 - 172, 1994,

[CY91]

Ming-Syan Chen and Philip S. Yu, “Determining Beneficial Semijoins for a join
Sequence in Distributed Query Processing”, ICDE 1991: pp. 50 — 58.

[CY92]

M. Chen and P. Yu, “Interleaving a Join Sequence with semi-joins in Distributed Query
Processing”, IEEE Transactions of Parallel and Distributed Systems, 3(5): pp. 611 — 621,
September 1992.

[DF96]

Suzanne Wagner Dietrich & Changguan Fan, “An Application of Fragmentation
Transparency in a Distributed Database System: A case study”, Journal of Systems and
Software, Vol. 35, No. 3, Dec. 1996, pp. 185-197

[GHROO0]

Nalin Gupta, Jayant R. Haritsa and Maya Ramanath, “Distributed Query Processing on
the Web”, 16th International Conference on Data Engineering February 28 - March 03,
2000, San Diego, California, p. 84.

[GM95]

Bojan Groselj and Wutaibah M. Malluhi, “Combinatorial Optimization of Distributed
Queries”, IEEE Transactions on Knowledge and data Engineering, Vol. 7, No.6, pp. 915-
927, Dec. 1995.

52

[Gra00]

Goetz Graefe, “Dynamic Query Evaluation Plans: Some Course Corrections?”, IEEE
Computer Society, June 2000, Vol.23, No.2, pp. 3 — 6.

[Gra96]

Jim Gray, “Data Management: Past, Present, and Future”, Microsoft Research, June
1996, Technical Report MSR-TR-96-18.

[GS96]

Bezalel Gavish and Arie Segev, “Set query optimization in distributed database systems”,
Vol. 11, No.3, pp. 265 — 293, 1986.

[GZ98]

Qadah, GZ, “Filter-based join algorithms on uni-processor and distributed memory
multiprocessor database machines”, Lecture notes, Vol.303, pp. 388 — 413, 1998.

[HCY94]

Hui-I Hsiao, Ming-Syan Chen and Philip S. Yu, “On parallel execution of multiple
pipelined hash joins”, ACM SIGMOD pp. 185 — 196, 1994.

[HFC'00]

Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran and Amol Deshpande,

“Adaptive Query Processing: Technology in Evolution”, IEEE Computer Society, June
2000, Vol.23, No.2, pp. 7-18.

[HI97]

Yun-Wu Huang and Ming Jing, “A Cost Model for Estimating the Performance of Spatial
Joins Using R-trees”, the 9th International Conference on Scientific and Statistical
Database Management (SSDBM '97) August 11 — 13, 1997, Olympia, WA, p. 30.
[HKL94]

Jorng-Tzong Horng, Cheng-Yan Kao and Baw-Jhiune Liu, “A Genetic Algorithm for
database query optimization”, Proceedings of the First International Conference on
Evolutionary Computation, pp. 350-355, 1994.

[HMOO]

Abdelkader Hameurlain, Franck Morvan, “An Overview of Parallel Query Optimization
in Relational Systems”, 11th International Workshop on Database and Expert Systems
Applications (DEXA'00), Sept. 06 - 08, 2000 Greenwich, London, UK, p. 629.

[HR94]

Evan P. Harris and Kotagiri R., “Join Algorithm Costs Revisited”, VLDB Journal Vol.5,
1994, pp. 64 — 84.

[JKR99]

Vanja Josifovski, Timour Katchaounov and Tore Risch, “Optimizing Queries in
Distributed and Composable Mediators”, Information Systems, September 02 - 04, 1999,
Edinburgh, Scotland, p. 291.

53

[JPS91]

Anant Jhingran, Sriram Padmanabhan and Ambuj Shatdal, “Join Query Optimization in
Parallel Database Systems”, SIGMOD Record 20(4), pp. 81 — 82, 1991.

[KG99]

Max Kremen & Jarek Gryz, “A survey of Query Optimization in Parallel Database”,
York University, November 1, 1999, Technical Report CS-1999-04.

[7S98]

Faiza Jajjar and Yahya Slimani, “Distributed Optimization of Cyclic Queries with
Parallel Semijoins”, DEXA Workshop 1998, pp. 717 — 722.

[KKM98]

Alfons Kemper, Donald Kossmann and Florian Matthes, SAP R/3 (tutorial): a database
application system, p. 499,1998.

[K0s00]

Donald Kossmann, “The State of the Art in Distributed Query Processing”, ACM
Computing Surveys, Vo0l32, No.4, December 2000, pp.422 — 469.

[KR87]

H. Kang and N. Roussopoulos, “Using 2-way semi-joins in distributed query processing”,
in Processing 3rd International Conference on Data Engineering, pp. 644 — 650, 1987.

[KS00]

Donald Kossmann and Konrad Stoker, “Iterative Dynamic Programming” A new Class of
Query Optimization Algorithms”, ACM Transaction on Database Systems, Vol.25, No.1,
March 2000, pp. 43 — 82.

[KTY82]

Larry Kerschberg, Peter D. Ting and S. Bing Yao, “Query optimization in star computer
networks”, pp. 678 —~ 711, 1982.

[Lia99]

Yan Liang, “Reduction of collisions in bloom filters during distributed query
optimization”, M.Sc. Thesis, University of Windsor, 1999.

[LCO1]

Chang-Hung Lee and Ming-Syan Chen, “Distributed Query Processing in the Internet:
Exploring Relation Replication and Network Characteristics”, The 21st International
Conference on Distributed Computing Systems, April 16 - 19, 2001, Mesa, AZ, p. 0439.

[LCK96]

Chenwen Liu, Hao Chen and Warren Krueger, “A Distributed Query Processing Strategy
using Placement Dependency”, ICDE 1996, pp. 477 — 484.

[Leg97]

Cesar Galindo-Legaria, “Outerjoin Simplification and Reordering for Query
Optimization”, ACM Transactions on Database Systems, Vol. 22, No. 1, March 1997, pp.
43 - 74.

54

[LOG93]

Hongjun Lu Beng-Chin Ooi and Cheng-Hian Goh, “Multidatabase Query Optimization:
Issues and Solutions”, Proceedings of Third International Workshop on Research Issues
in Data Engineering: Interoperability in Multidatabase Systems, pp. 137-143, 1993.
[LOZ95]

Xuemin Lin, Maria E. O. and Xiaofang Zhou, “Using Parallel Semi-join Reduction to
minimize Distributed query response time”, Proceedings of the 1st IEEE International
Conference on Algorithms and Architecture for Parallel Processing, pp. 517 — 526, April
1995, Brisbane, Australia.

[LPP91]

P. Legato, G. Paletta, and L. Palopoli, “Optimization of join strategies in distributed
databases”, Info. Systems, Vol. 16(4), pp. 363 — 374, 1991.

[LR94]

Li, Z., and Ross, K. A, “A new client-server architecture for distributed query
processing”, Tech. Rep. CUCS-014-94, Columbia University, 1994.

[LRIS]

Zhe Li and Kenneth A. Ross, “PERF join: An Alternative to Two-way Semijoin and
Bloomjoin”, In CIKM '95, pp 137 — 144, 1995.

[LS91]

Hongjun Lu and Ming-Chien Shan, “On global Query Optimization in Multidatabase
Systems”, SIGMOD Conference 1991, pp. 168 — 177.

[LW86]

Stéphane Lafortune and Eugene Wong, “A state transition model for distributed query
processing”, ACM Transactions on Database Systems (TODS), Vol. 11 No.3, pp. 294 —
322, 1986.

[Ma97]

Xiaobo Ma, “The use of bloom filters to minimize response time in distributed query
processing ”’, M.Sc. Thesis, University of Windsor, 1997.

[MBO95]

J. Morrissey and S. Bandyophdhyay, “Computer Communication Technology and its
effects on Distributed Query Optimization Strategies”, FElectrical and Computer
Engineering, Canadian Conference, Vol.1, pp. 598 -601, Sep 1995.

[MIK*00]

Mena, Eduardo; Illarramendi, Arantza; Kashyap, Vipul; Sheth, Amit P, “OBSERVER:
An approach for query processing in global information systems based on interoperation

across pre-existing ontologies”, Distributed and Parallel Databases, vol. 8, no. 2, pp. 223
—-271, 2000.

[MO98]

J. Morrissey and W. K. Osborn, “Distributed Query optimization using reduction filters”,
IEEE Canadian Conference on, Volume: 2, pp.707 — 710, 1998.

55

[MO99]

J Morrissey and O.Ogunnbadejo, “Combining semijoins and hash-semijoins in a
distributed query processing strategy”, Proceedings of the 1999 IEEE Canadian
Conference on Electrical and Computer Engineering, May 1999.

[MOH&4]

C.MOHAN, “Tutorial: Recent Advances in Distributed Data Base Management”, ISBN
0-8186-0571-5, IEEE Catalog Number EH0218-8, IEEE Computer Society Press, 1984.
[MOLO00]

J. Morrissey, Wendy Osborn and Y. Liang, “Collisions & reduction filters in distributed
query processing”, Can conf. Electrical & computing Engineering, IEEE 2000, vol. 1,
Pp. 240 — 244,

[Mul96]

James K. Mullin, “Estimating the size of a relational join”, Information Systems, Vol.
18, No.3, pp. 189 — 196, 1993.

[NS99]

Faiza Najjar and Yahya Slimani, “Cardinality Estimation of Distributed Join Queries”,
Expert Systems Applications September 01 - 03, 1999 Florence, Italy,
p. 66.

[NWM"99]

Kenneth W. Ng, Zhenghao Wang, Richard R. Muntz and Silvia Nittel, “Dynamic Query
Re-Optimization”, 11th International Conference on Scientific and Statistical Database
Management, July 28 - 30, 1999 Cleveland, Ohio, p. 264.

[O1s94]

Michael Olson, “Mariposa: A new Architecture for Distributed Data”, In Proc. 10th Int.
Conf. on Data Engineering, pp. 54 - 65, Houston, Texas, 1994.

[0T99]

B.Johm Oommen and Murali Thiyagarajah, “Query Result Size Estimation Using a
Novel Histogram-like Technique: The Rectangular Attribute Cardinality Map”, 1999
International Database Engineering and Applications Symposium, August 02 - 04, 1999,
Montreal, Canada, p. 3.

[OV91]

M.Tamer Ozsu and Patrick Valdureiz, “Distributed Database Systems: Where are we
now? ”, ACM Computing Survey, Vol. 24, No. 8, pp. 68-78, August 1991.

[OV99]

M. Tamer Ozsu & Patrick Valduriez, “Principles of Distributed Database Systems”,
Second Edition, Printice Hall, Upper saddle River, New Jersey 07458, 1999.

[Ozs00]

M.Tamer. Ozsu, “Next Generation Distributed DBMSs: Some Views & Research
Directions”, http://www.ualberta.ca/~ozsu.

56

[PCI0]

William Perrizo, Chun-Shwu Chen, “Composite Semijoins in Distributed Query
Processing”, Information Sciences, Volume 50, No.3, April 1990.

[PCV93]

Jignesh M. Patel, Michael J. Carey and Mary K. Vernon, “Accurate Modeling of the
Hybrid Hash Join Algorithm”, SIGMOD Conference 1993, pp. 59 — 68.

[Pik97]

John Pike, “Distributed Characteristics and Performance Database (DCPDB)”,
http://www.fas.org/irp/program/disseminate/dcpdb.htm, 1997.

[PKO1]

Sangwon Park and Hyoung-Joo Kim, “A New Query Processing Technique for XML
Based on Sigmature”, 7th International Conference on Database Systems for Advanced
Applications (DASFAA '01), April 18 - 21, 2001 Hong Kong, China, p. 0022.

[PLL"99]

Ho-Hyum Park, Chan-Gun Lee, Yong-Ju Lee and Chin-Wan Chung, “Early Separation of
Filter and Refinement Steps in Spatial Query Optimization”, Proc. DASFAA, pp. 161 -
168, 1999.

[PRW94]

William Perrizo, Prabhu Ram and David Wenberg, ‘“Distributed Join Processing
Performance Evaluation”, Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, Jan. 1994.

[PV8S]

Sakti Pramanik and David Vineyard, “Optimizing join queries in distributed database”,
IEEE Transaction on software engineering Vol. 14, No.9, pp. 1319-1326, Sept. 1988.

[RBD96]

Fausto Rabitti, Leonardo Benedetti and Federico Demi, “Query Processing in Distributed
PIOS”, DEXA Workshop 1996, pp. 470 — 475.

[RK91]

N. Roussopoulos and H. Kang, “A pipeline n-way join algorithm based on the 2-way
semi-join program”, IEEE Transactions on Knowledge and Data Engineering, Vol. 3(4),
pp. 486 — 495, 1991.

[RP95]

Prabhu Ram and William Perrizo, “Multidatabase Global query optimization”,
proceeding of the 28th Annual Hawaii International Conference on System Sciences,
p.253, 1995.

[SC97]

Scheuermann, Peter; Chong, Eugene Inseok, “Adaptive algorithms for join processing in
distributed database systems”, Distributed and Parallel Databases, vol. 5, no. 3, pp. 233 —
269, Jul 1997.

57

[SD89]

Donovan A. Schneider and David J. DeWitt, “A Performance Evaluation of Four Parallel
Join Algorithms in a Shared-Nothing Multiprocessor Environment”, Proc. ACM
SIGMOD int'l. Conf. on Management of Data, ACM Press, NY, pp.110 - 121, 1989.

[Seg86]

Arie Segev, “Optimization of join operations in horizontally partitioned database
systems”, ACM Transactions on Database Systems Vol. 11 No.3, pp.48 — 80, 1986.

[SHC96]

Myra Spiliopoulou, Michael Hatzopoulos and Yannis Cotronis, “Parallel Optimization of
Large Join Queries with Set Operators and Aggregates in a Parallel Environment
Supporting Pipeline”, IEEE Transactions on Knowledge and Data Engineering, pp. 429 —
445, June 1996.

[SKB'01]
Konrad Stocker, Donald Kossmann, Reinhard Braumand and Alfons Kemper,
“Integrating Semi-join-Reducers into State-of-the-Art Query Processors”, 17th

International Conference on Data Engineering, April 02 — 06, 2001, Heidelberg,
Germany.

[SMB'01]

Leonard Shapiro, David Maier, Paul Benninghoff and Keith Billings, “Exploiting Upper
and Lower Bounds in Top-Down Query Optimization”, 2001 International Database
Engineering Applications Symposium (IDEAS '01), July 16 - 18, 2001, Grenoble,
France, p. 0020.

[SMK97]

Michael Steinbrumm, Guido Moerkotte and Alfons Kemper, “Heuristic and Randomized
Optimization for Join Ordering Problem”, VLDB Journal 6(3): 191 — 208, 1997.

[SWO1]

Dennis ShaSha and Tsong-Li Wang, “Optimizing Equijoin Queries in Distributed
Databases Where Relations Are Hash Partitioned”, ACM Transactions on Database
Systems, Vol. 16, No. 2, pp. 279 — 308, June 1991.

[TC92]

Judy C.R.Tseng, Arbee L.P. Chen, “Improving Distributed Query Processing by Hash-
Semijoin”, Journal of Information Science and Engineering, pp. 525 — 540, December
1992.

[TC94]

Pauray S.M.Tsai and Arbee L.P. Chen, “Optimizing Entity Join Queries by Extended
Semijoins in a Wide Area Multidatabase Environment”, ICPADS 1994, pp. 676 — 681.

[TL95]

Kian-Lee Tan and Hongjun Lu, “Optimization of Multi-Join Queries in Shared-Nothing
Systems”, Journal of Computer Science and Technology, Vol.10, No. 2, March 1995, pp.
149 — 162.

58

[TRO1]

David Taniar and J.Wenny Rahayu, “Parallel Processing of “GroupBy-Before-Join”
Queries in Cluster Architecture”, 1st International Symposium on Cluster Computing and
the Grid, May 15 - 18, 2001, Brisbane, Australia, p.178.

[UFA98]

Tolga Urhan, Michael J. Franklin and Laurent Amsaleg, “Cost-Based Query Scrambling
for Initial Delays”, Proceedings of the 1998 ACM SIGMOD international conference on
Management of data, 1998, Seattle, Washington, United States, pp. 130 — 141.

[U1189]

Jeffrey D. Ullman, “Principles of Database and knowledge base Systems”, Volume II:
The new Technologies, Standford University, 1989.

[VM89]

Bennet Vance and David Maier, “Rapid bushy join-order optimization with Cartesian
products ”, ACM SIGMOD, Vol.14, No.1, pp. 35 — 46, 1989.

[Wan80]

Chihping Wang, “The complexity of processing tree queries in distributed databases”,
SIGMOD Conference 1980, pp. 169 — 178.

[WC96]

Chihping Wang and Ming-Syan Chen, “On the Complexity of Distributed Query
Optimization”, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 4,
pp. 650-662, Aug. 1996.

[WLC91]

C. Wang, V. Li, and A. Chen, “Distributed query optimization by one-shot fixed
precision semi-join execution”, in Processing 7th International Conference on Data
Engineering, 1991, pp.756 — 763.

[WWD'97]

L. Wang, M. Wing, C. Davis and N. Revell, “Query Processing and Optimization in
Temporal Object-Oriented Databases”, DASFAA 1997, pp. 381 —390.

[WWHO0]

Wang, Yijie; Wang, Yongjun; Hu, Shouren, “Parallel execution of multi-join query”,
Jisuanji Xuebao, vol. 23, no. 2, pp. 177 — 183, Feb. 2000.

[YL90]

Clement Yu and Chengwen Liu, “Experiences with distributed query processing”, VLDB
1990, pp. 519 — 538.

[YL99]

Ramana Yerneni, Chen Li, “Optimizing Large Join Queries in Mediation Systems”,
SIGMOD Conference 1999, pp. 311 ~322.

59

Vita Auctoris

Name: Yue (Amber) Zhang

Place of Birth: Tianjin, P.R.China

Date of Birth: September 7, 1976

Education: M.Sc. Computer Science
University of Windsor
Windsor, Ontario, Canada
2001 —2003

B.Sc., Computer Science
Tianjin University
Tianjin, P.R.China

1994 — 1998

B.Sc., Management
Tianjin University
Tianjin, P.R.China
1994 — 1998

Honors and Awards: OGSST 2002, 2003
University of Windsor Graduate Scholarship 2002

Working Experience: Vice President of Graduate Student Society
University of Windsor
2002 — 2003

Graduate/Teaching Assistant
University of Windsor

2002 — 2003

Software Developer and tester
Microsoft and Symbiosys
1999 —2001

Software Engineer
Long Computer Technology Co. Ltd.
1998 — 1999

Research Assistant

IBM-Tianjin University Computer Lab
1996 — 1998

60

	University of Windsor
	Scholarship at UWindsor
	2003

	Variation of bloom filters applied in distributed query optimization.
	Yue (Amber). Zhang
	Recommended Citation

	tmp.1364478124.pdf.KKFTY

