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“The virtue o f the candle lies not in the wax that leaves its trace, but in its light. ”
ANTOINE DE SAINT-EXUPERY

ABSTRACT

The development of lightweight internal combustion engines using materials such 

as cast aluminum alloys represents one of the most significant technological 

developments in the automotive industry. These engines reduce weight, which in turn 

reduce fuel consumption and emission. However, poor wear resistance and low seizure 

load of unprotected Al-Si alloys are a major drawback for applications involving sliding 

contact in automotive engine blocks. The wear resistance of cast aluminum parts can be 

improved by depositing coatings on the sliding surfaces. In this respect, iron based 

coatings deposited through a thermal spray process may play an important role in 

improving wear resistances of aluminium parts used in the automotive industry. These 

coatings can be produced economically and be easily deposited on the curved surfaces in 

ambient air atmosphere. In this research, two promising thermal spray deposition 

processes were considered: These were i) plasma transfer wire arc thermal spraying 

(PTWA) process, and ii) high velocity oxy-fuel (HVQF) process. The research work 

presented in this dissertation primarily focussed on the wear behaviour of low carbon 

steel thermal spray coatings which were applied using PTWA and HVOF processes 

deposited on engine grade cast aluminum alloy substrates. The main objective of the 

work was to characterize the micromechanisms of wear that control the wear rates of the 

coatings. Several new wear mechanisms that were previously unknown in thermal spray 

coatings were identified. In addition, the effect of the environment on the wear 

performance of coatings was investigated. The importance of controlling the atmospheric 

conditions during the sliding contact of coated aluminum components was established.

iv
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Detailed analyses of compositions and microstructures of iron based coatings that were 

produced using PTWA and HVOF thermal deposition processes showed that the wear 

resistances of the coatings were sensitive to the production method. A model to calculate 

the friction induced contact temperature increase was developed and used to explain the 

differences in the wear rates of the coatings.

Wear maps for thermal sprayed coatings have been constructed for the first time. 

The wear maps constructed showed the wear rates as a function of the loading conditions 

(load and velocity). The potential industrial application of wear maps includes prediction 

of scuffing behaviour of lightweight engines coated by thermal spray coatings. A 

laboratory experimental method has been developed based on information provided on 

the wear maps to simulate the wear mechanisms seen in the scuffed engines.

v
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of 10-6 g/m. Experiments were conducted using the pin-on-disc geometry, at room 

temperature in air (RH=10%).
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at the same loading conditions.
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CHAPTER I 

INTRODUCTION

The automotive industry continues to allocate considerable resources to reduce 

vehicle mass and improve fuel economy. In this respect replacing the traditional use of 

cast iron in components such as engine block with ones made of cast aluminum alloys is 

becoming a viable cost-effective method for reducing the mass of automotive 

components. The wear resistances of cast aluminum parts used in moving component are 

not satisfactory and is currently improved by protecting the sliding surfaces with liners 

made of cast iron. This technology is not desirable from a manufacturing point of view. 

The lightweight alternatives of wear resistance surfaces include aluminum matrix 

composites that incorporate hard particles and/or graphite flakes. Aluminum matrix 

composite liners are not cost effective. Although the research and development work in 

on metal matrix composites have been continuing since mid 1980’s, these materials have 

not found widespread applications as liners due to difficulties in their manufacturing 

processes and their high cost. A potential alternative is to coat the aluminum surfaces 

with a wear resistant coating. At the present time there are many technologies available to 

produce wear resistant coatings for aluminum but most of them are expensive and only 

found applications in the aerospace industry. The challenge that must be met in 

manufacturing wear resistance coatings is to obtain the required performance while 

minimizing the overall cost and manufacturing complexity. In this respect thermal spray 

coating deposition technologies are of significant interest for the automotive industry [1]. 

In general, the use of thermally sprayed coatings can be to provide resistance to heat,
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wear, erosion and corrosion for the base materials. The coatings can be deposited in 

ambient atmosphere and have lower production costs compared to other deposition 

technologies.

Thermal spraying has been practiced since the early 1900s. The first patent in this 

area was for a technique using a flame as the heat source, which was patented by Schoop 

[2]. In the beginning the technique was limited to low melting point materials such as tin 

and lead, and was progressively extended to steel. Wire plasma spraying was developed 

to avoid unmelted particles in the spray jet. In this technique the wire feed stock was 

introduced into the plasma. Here again, the materials melting temperature was limited to 

1500-1600 °C. In 1957, plasma spraying became accepted as an attractive option, at first, 

by the aeronautics industry, (NASA) and later by the aircraft industry. The development 

of the plasma jet method dramatically extended the technological possibilities to any 

material that could melt without decomposition. Later on, coating deposition under 

vacuum [3] or controlled atmosphere [4] made it possible to produce dense coatings with 

almost no oxidation. These coatings showed excellent bonding and cohesive strength. A 

recent development in surface fabrication by this method is the introduction of rotation of 

the spray gun which allows the inside surfaces of the engine blocks cylinders to be 

sprayed without having to rotate the part.

Thermal spray coatings have typically a layered microstnicture that consists of 

splats separated by oxide veins. The literature on the wear behaviour of thermal spray 

coatings is very limited. The wear mechanism observed in thermal spray coatings is 

usually referred to as the splat delamination [5]. It has been reported that the splat 

delamination mechanism is due to the presence of ‘weak links’ caused by the oxide veins
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in the coating roicrostmctiires [6 , 7]. High wear rates were generally associated with the 

formation and propagation of subsurface cracks within the oxide veins, resulting in the 

removal of whole splats during the sliding process. With the exceptions of splat 

delamination and mechanisms related to the laminated microstructures of these coatings, 

there are several similarities between the wear behaviour of thermal spray low carbon 

steel coatings and low carbon steels. Since the focus of this work is on the wear 

mechanisms of ferrous thermal spray coatings it is appropriate to summarize the main 

points of wear research performed on iron and steel here. According to Welsh [8,9], when 

pins made of plain carbon steel (0.12 to 0.78% C) were rubbed against rings of the same 

material, at a critical sliding speed, which depended on the composition of steel tested, 

the high wear rates (severe wear) suddenly diminished to low values (mild wear). This 

was attributed to a self-induced quench hardening process, as a result of frictional heating 

of asperities. Archard [10], by studying the wear behaviour of 0.52% C steel in detail, 

found critical speeds at which the severe to mild wear transitions occurred for the tests 

carried on at two loads. It was shown that at those critical speeds the surface temperature 

was high enough for a ferrite to austenite phase transformation and subsequent quench 

hardening. Lim and Ashby [11] studied the wear of steels using a wear map approach; 

they classified the wear mechanisms by accounting for the frictional heating and 

calculating the flash temperatures for four mechanisms. As will be shown in this thesis, 

among these wear mechanisms observed, the oxidation-dominated wear and severe 

plastic deformation induced wear appear to be most closely related to the wear of thermal 

spray low carbon steel coatings. The work presented in this work provides a detailed 

metallographic characterization of the thermal spray coatings manufactured at the
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General Motors Research and Development Center, Warren MI. The coatings were 

produced by two different thermal spray processes. The wear behaviour of the coatings 

was systematically investigated and the micromechanisms of wear were determined.

The thesis is organized into seven chapters including this one (Chapter I). Chapter 

II reviews wear phenomena in metallic systems in particular in ferrous materials. The 

relevant literature on the micromechanisms of wear processes and the microstructural 

changes that occur during wear are reviewed. An introduction to the literature on wear 

and scuffing of internal combustion engines is also given.

Chapter III describes the materials and experimental procedures used in this work. 

In this chapter the thermal spray deposition processes used for the production of the low 

carbon steel coatings are explained. Three coatings were fabricated using two different 

thermal spray processes. These were the plasma transfer wire arc (PTWA) deposition, 

and the high velocity oxy-fuel (HVOF) deposition processes. Experimental procedures, 

used to characterize the microstructures of the coatings as well as the details of the wear 

tests and subsequent metallographic analyses are described.

The presentation of the results arising from the experimental work, are divided 

according to the coatings studied. First, the chemical compositions and microstructures of 

PTWA 1020 coating are given, followed by wear test results. The results of HVOF 1020 

and HVOF 1020-2.5% A! thermal spay coatings are presented in the same order.

The discussion of the experimental observations is presented in Chapter VI. The 

micromechanisms that control the wear rates in the thermal spray coatings are discussed. 

The role of the coatings microstructures as well as the role of the production processes 

used to fabricate the coatings on the wear behaviour of the coatings are discussed by
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comparing the wear tests results of the PTWA 1020 and the HVOF 1020 coatings. Model 

to analyse friction induced surface temperature increase, generated during sliding wear is 

developed and used to explain the differences in the oxidative wear mechanisms of the 

coatings that showed different wear rates. The surface temperatures generated at different 

loads and velocities are summarized in the form of the temperature maps for each 

coating. Wear mechanisms and wear rates of the three thermal spray coatings, namely 

PTWA 1020, HVOF 1020, and HVOF 1020-2.5% A1 coatings, are summarized in the 

form of the wear maps that are constructed separately for each coating

Chapter VI focuses on the engineering applications of the thermal spray coatings. 

Wear of actual engines in which thermal spray coatings were used as cylinder bore 

coatings are investigated. Micromechanisms responsible for scuffing damage in actual 

engines with bores coated with high velocity oxy-fuel (HVOF) 1020-2.5% A1 low carbon 

steel thermal spray coating are studied using SEM, TEM, and other material 

characterization techniques. A methodology is developed in order to select a laboratory 

scale pin-on-disc type scuffing tests applicable to studying cold scuffing of coated 

engines. Strong correlations between the wear mechanisms in the scuffed engines and 

those that occurred in the laboratory wear tests were found. The conclusions and 

summary are given in Chapter VII.
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CHAPTER II

LITERATURE SURVEY

In this section the existing literature on the micromechanisms of wear processes, 

in particular studies focussed on the micromechanisms of sliding wear is presented. Since 

the thermal spray coatings that are studied in this work are being developed for 

automotive engines, an introduction to the literature on the wear and scuffing of internal 

combustion engines is also given. The literature on the wear of thermal spray coatings is 

very limited. The previous studies on the sliding wear of these coatings together with the 

studies on their fabrication methods and microstructures are also reviewed in the current 

section.

2.1. GENERAL INTRODUCTION

Whenever two surfaces move over each other, wear occurs on one or both 

surfaces to a certain degree depending on the surface conditions. Wear is defined [12] as 

“damage to one or both surfaces, generally involving progressive loss of material”. In

most cases, wear is detrimental, leading to increased clearances between the moving 

components. Unwanted freedom of movement and loss of precision may occur, often 

accompanied with increased noise and vibration. In machine elements this may lend itself 

to increased mechanical loading and an accelerated material removal rate, and sometimes 

may lead to scuffing and seizure.

The potential tribological applications of ferrous thermal spray coatings 

investigated in this dissertation are in internal combustion engines made of cast
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aluminum. Lightweight aluminum engines commonly made of B 319 or A 356 are not 

sound tribological components but are susceptible to wear and scuffing. One of the 

principal objectives for the development of thermal spray coating is to provide wear 

resistant surfaces during the sliding contact of the cylinder bore and piston ring assembly. 

It is important to emphasize that wear is not a material property. It depends critically on 

the conditions under which the sliding contact occurs. The environment, the surface 

temperature, as well as the contact load (pressure) and relative motion speed are all 

important in determining the sliding wear rates. The role of these factors on the wear 

rates and mechanisms will be discussed in detail in the following sections.

Wear is one of the main components of tribology. The term tribology 

encompasses the science and technology of friction, wear, and lubrication. An excellent 

review of die history of tribology was presented by Zum Gahr [13]. The word tribology is 

in fact a very new term, which was first used in 1966 by a UK government committee. In 

1986, the National Research Council of Canada [14] estimated that the losses due to wear 

amounted to $5 billion per year. This is in broad agreement with the estimates made by 

other national committees that at least 1% of the gross national product might be saved 

with investment in tribology research. The savings arise from several sources. These 

include the reduction in energy consumption; savings in maintenance and replacement 

costs, saving in losses due to breakdowns etc.

One well established method of reducing friction, and often wear, is to lubricate 

the surfaces. The study of lubrication is very closely related to that of friction and wear. 

Indeed, even when an artificial lubricant is not added to a system, components of the 

atmosphere (especially oxygen and water vapour) often play a similar role. Therefore
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their role must be considered in studying the interaction of the surfaces. Another way of 

reducing tribological costs is to select the most appropriate wear resistant material for the 

specific engineering components. In order to do this the micromechanisms of wear that 

occur in surfaces in sliding contact must be well characterized. This is because there is 

currently no reliable design equation that can be used in tribological material selection. A 

thorough understanding of the wear mechanisms is necessary in order to build these 

models from the microstructural point of view. Prior to reviewing these mechanisms it is 

instructive to review the “modes of wear”.

2.2. MODES OF WEAR

In an attempt to classify various forms of wear, a large number of terms related to 

describing features of worn surfaces and wear modes have been proposed [13, 15-25]. 

The different modes of wear observed in industrial practice can be broadly classified as 

follows:

- Abrasive Wear

- Rolling Contact Wear

- Fretting Wear

- Erosive Wear

- Sliding Wear
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2.2.1. ABRASIVE WEAR

Abrasive wear occurs when a sharp particle or asperity penetrates a softer surface 

and scratches that surface or cuts a chip. There are two common types of abrasive wear. 

These are known as i) two-body abrasion, and ii) three-body abrasion. In two-body 

abrasion a rough hard surface slides against a relatively soft opposing surface and causes 

damage to the softer surface either by ploughing or micromachining it. Three-body 

abrasion involves action of rough hard particles trapped between the two sliding surfaces 

that cause the surfaces to be abraded [26], The degree of surface damage is usually higher 

if the hardness difference between the particles and the contact surface is large. Literature 

on abrasive wear is more than the literature on other wear modes since this type of wear 

accounts for the majority of tribological failures. A detailed quantitative description of 

abrasive wear was first developed by Rabinovicz [27]. Materials aspects of abrasive wear 

are recently reviewed by Zum Gahr [13].

2.2.2. ROLLING CONTACT WEAR

This type contact mode between the surfaces of two solids is characterized by a

rotational motion that occurs together with a transitional (sliding) motion. The rotational 

axes of both bodies are parallel to the contact area, and the vectors of velocity are of 

different magnitudes [13]. In practice, this type of wear is commonly seen in bearings.
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2.2.3. FRETTING WEAR

The term fretting characterizes a small oscillatory motion between two solid 

surfaces in contact. The direction of the motion is usually, but not necessarily, 

tangential to the surfaces. The amplitude of the motion lies in a range typically 

between 1 and 100 pm. The surface degradation occurs as a result of repeated 

oscillations with small amplitude.

2.2.4. EROSIVE WEAR

In some situations, wear is caused by the action of hard particles striking the 

surface. These particles are either carried by a gas stream or by a flowing liquid. 

This type of wear mode is called solid particle erosion. Particle velocities in 

erosive wear commonly vary between 5 and 500 m/s. If the hard particles are carried 

by a liquid, the wear is termed slurry erosion [26]. In general, erosive wear is 

caused on solid bodies by the sliding or impacting action of solids, liquids, gases or 

a combination of these [13].

2.2.4. SLIDING WEAR

Sliding wear is defined as a motion between two moving bodies in relative motion 

with each other. The surface velocities of these two bodies in the common contact area 

are different and usually one of them is stationary [28]. Therefore, sliding wear refers to a 

wear mode generated by pure sliding without rolling or spinning. The term “adhesive
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wear” is sometimes used to describe sliding wear but adhesion is only one of the several

physical and chemical processes that are involved in sliding wear.

Sliding wear can be divided into two types [23, 26, 29, 30]: (a) Mild wear that 

usually occurs at low loads and sliding velocities; and (b) Severe wear, which is 

promoted by high temperatures, loads and velocities.

Sliding wear usually involves debris formation mechanisms such as 

delamination, subsurface fatigue, and oxidation [21, 30-32]. Material transfer from one 

surface to another, often accompany sliding wear, in particular in the severe wear regime. 

According to the earlier theories of sliding wear [33], when asperities come into contact, 

they adhere strongly to each other and form asperity junctions that become welded to 

each other. Subsequent separation of the surfaces takes place in the bulk of the softer 

asperities, which adhere to the harder surface [27]. Whenever material is removed from 

its original surface in this way, an adhesive wear fragment, or loose debris is created. 

Adhesion between the asperities is favoured by clean surfaces, by chemical and structural 

similarities between the sliding pairs [34]. The vacuum environment or inert atmospheric 

conditions also favour adhesion between the surfaces. However, it is difficult to prove 

adhesion at the asperity level as well as wear debris formation as a result of asperity 

fracture phenomena by metallograpMc and other surface characterization techniques. As 

pointed above, adhesion may not be considered as a mechanism itself other than a result 

of severe localized surface deformation.

The mechanisms of the debris formation are influenced by the severity of surface 

deformation and the stress and strain distributions in the material layers adjacent to the 

contact surfaces. In ceramics the material removal and debris formation during sliding is
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mostly caused by brittle fracture as a result of inter-granular crack propagation [35, 36]. 

In ductile materials, where a subsurface crack growth occurs as a result of a void 

nucleation and propagation (e.g. at around second phase particles and precipitates), 

delamination of die highly strained subsurface layers becomes an important wear 

mechanism [37]. This mechanism may lead to the formation of plate-like or flaky debris 

particles [38], It was suggested that when a local cyclic plastic deformation zone Is 

present at the crack tip (possibly mode II, or shear type) fatigue crack propagation may 

occur leading also to the formation of flaky debris particles [39, 40, 41]. The fatigue 

crack propagation takes place in an elastic material. The plastically deformed region 

ahead of a growing crack is small compared to the total length of the crack. Therefore 

wear by fatigue many occur in brittle or quasi-brittle materials. In contrast in highly 

ductile materials damage accumulation processes and ductile failure as a result of 

subsurface delamination are more common. In these materials subsurface strains can 

reach levels of the order of 2-3 or higher. The nature of subsurface zones are examined in 

the next section.

2.4. SUBSURFACE ZONES IN SLIDING WEAR

It is well known that sliding friction may produce large amounts of plastic 

deformation in the material layers adjacent to contact surfaces [42-51]. Rice et al. [51] 

suggested that the material under the sliding surfaces can be examined in three separate 

zones. According to his description the farthest zone from the sliding contact is the 

original undeformed bulk material (zone 1). The next layer (zone 2) contains plastically 

deformed material, where the magnitudes of the plastic shear strains increase towards the
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contact surface. Depending on the type of material, testing environment, and the nature of 

contact geometry, zone 2 may become harder or softer than the undeformed bulk 

material. In ductile materials, voids may develop within this zone. Cracks may nucleate 

in brittle materials. Heilman et al. [52] have observed a large rotational of grains in 

copper samples subjected to dry sliding. The rotation of the grains occurred about an axis 

normal to the sliding direction and parallel to the wear surface and extended to 2 0  

microns in depth leading to the distortion of flow lines. At higher magnifications, it was 

observed that the flow lines consisted of a network of fine grains of small thickness 

elongated in the sliding direction. The aspect ratio of these grains increased on 

approaching the surface. By comparing the grain shape before and after the sliding, the 

magnitude of accumulated strains (e) can be estimated as a function of depth. In most 

cases, the shear strain increases exponentially with decreasing depth and may be 

approximated by the expression [53]

s  =  s surfa« exP(“ A Z) C2-1)

where Z is the depth below the contact surface.

For approximately 10 microns below the sliding surface, the plastic deformation is very 

severe. The heavily deformed grains are difficult distinguished from one another. TEM 

studies have shown that the microstructure at this depth consisted of a substructure with 

small dislocation cells. The cells are normally elongated in the sliding direction with a 

thickness of 0.3-0.5 microns [54-57], The cell sizes decrease as the material gets closer to 

the contact surface and also there is an increase in the dislocation density from 10s cm2 to 

1010 cm2 in the case of lubricated wear of aluminum under light load [58]. Ohmae et al.
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[59] have observed equiaxed cells at depths greater than 5 microns, which may indicate

extensive thermal recovery during sliding wear.

Zone 3 is a tribolayer, which forms on the contact surface and consists of a 

mechanical mixture of original specimen material counterface materials and oxides [59], 

The triboiayers consist of either chemically mixed or mechanically mixed species coming 

from both surfaces. Chemical species from the counterface and from the test environment 

may diffuse into the contact surface and contribute to the formation of the triboiayers. 

Mechanical mixture may occur as a result of transfer and back transfer of species 

between the contacting surfaces. Riahi and Alpas [60] reported that in graphitic 

aluminum matrix composites, the mild wear rates were primarily controlled by the 

formation of the tribo-layers, which were mechanically mixed and oxidized surface layers 

on the contact surfaces. Given the high strains and strain rates generated during sliding 

contacts this process is sometimes regarded as equivalent to high-energy ball milling 

process. In some cases zone 3 appears homogeneous with a nanocrystalline 

microstructure [61]. The nanocrystailine structure was reported to be formed as a result o f 

mechanical mixing [62].

Rigney and Hirth [63] developed a model for the source of friction during steady 

state sliding of metals. The model focussed on the plastic work done in the near-surface 

region, described in terms of work hardening, and recovery processes that took place 

during steady state sliding. Rosenfield [64] proposed a model of sliding wear by 

considering subsurface strain distribution to predict the flake thickness during sliding 

wear.
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2A  TRANSFER AMP MECHANICAL MIXING

In dry sliding systems material transfer may occur from one sliding surface to 

another. This phenomenon has led to the idea that the formation of surface layers may 

reduce wear by reducing adhesion [60]. In some systems amorphous layers on the surface 

are produced by sliding, but in most cases a significant part of the tribolayer is composed 

of ultrafine grained crystalline material [54], varying from about 3 nanometers to several 

tens of nanometers. The ultrafine nature of the triboiayers, which are termed as 

mechanically mixed layers (MML) in Al-SiC composites was reported by Li and Tandon 

[65].

Rigney et. al [61, 66] observed that the wear debris collected from wear tests on 

fiie Cu, Cu-Ni, Cu-AI, Ni and Mo worn against steel, contained components from both 

materials in contact. The wear debris and the surface layers had similar ultrafine grain 

structure, and the same average composition. It has been shown that during sliding, back 

transfer of material to the counterface was veiy common [30]. Cocks [67] and Antler [68] 

have suggested that the preferential material transfer direction may depend not only on 

the material combination in the tribosystem but also on the geometry of the system. It 

was also shown that for similar metals, the rate of material transfer may be as high as 50- 

100 times that of dissimilar metal systems [30],

2 3 . ARCHARP EQUATION

In dry sliding wear, it is often found that the wear rate changes with the sliding 

distance during the early stages of sliding due to the changes in the topography and
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microstracture of the surfaces in contact. After the initial period of running, three types of

wear curves have been observed.

i) The first type of wear curve shows a linear dependence of the volume or mass 

loss during wear to the sliding distance. This type of wear curve, with constant slope is 

commonly observed in the mild wear regime.

ii) In this type of wear, initially the wear rate is high so that the surfaces and 

debris appear to be metallic. The curve shows a transitional behaviour and the wear rate 

reduces to a lower steady value for the remainder of the test.

iii) The third type of wear curve depicts a transitional behaviour. Usually mild 

wear occurs first but after a certain sliding distance the wear rate increases suddenly to 

severe wear ( e.g. [69]).

When the material does not show a wear transition and the amount of material 

loss remains constant, the wear rate can be regarded as the "equilibrium wear rate" [29] 

or “steady state wear rate”. It should be noted that this is applicable to the mild wear rates 

only. Severe wear usually represents a condition of instability and wear rates usually 

increase with time often leading to seizure.

Many quantitative models for mild wear have been developed, but one of the 

simplest is given by Archard. Archard [59] first derived a theoretical expression (Linear 

Wear Law or Archard Equation), which predicts the rate of sliding wear W at a constant 

sliding speed as:

w = r  a (2-2)
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Where ‘w’ is the wear volume, ‘S’ is the sliding distance, ‘F’ is the applied normal load, 

‘H’ is the bulk hardness of the material subjected to wear in sliding contact, and K is a 

constant which is called the wear coefficient The value of ‘K’ strongly depends on the 

sliding environment. For example, changes in the humidity of air can change the wear 

coefficient of brass by a factor of 100 [30].

Although the Archard equation is usually a good starting point to describe the 

wear rates, it should be used with caution. As noted before, the Archard equation is valid 

only for low loads up to some point at which the rate of wear may increase sharply. When 

the applied loads exceed this point, the wear coefficient K is no longer a constant, and 

may rise rapidly for small increases in load, until the onset of seizure (or welding of 

surfaces to each other).

The main limitation of the Archard equation arises from the fact that the equation 

assumes that the bulk hardness of the material at room temperature is the only materials 

property that controls the wear rate [71]. As discussed above, the bulk hardness cannot be 

regarded as the sole factor that influences the wear rates. The hardness of the surfaces

change with the accumulation of surface strains during sliding. Friction induced surface 

temperature changes will also affect the hardness of the material layers near the contact

surfaces. In fact, the existence of sudden transitions that depend on changing the surface 

conditions at critical loads and speeds makes it uncertain whether the phenomenological 

Archard equation can be used for design purposes over a wide range of load conditions 

[60, 72]. There is therefore a need to understand the wear behaviour of engineering 

materials from the microscopic point of view by characterizing the more fundamental 

microstructural changes as a function of the applied mechanical factors and environment.
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In the past ten years or so the use of wear maps that show the wear rates in conjunction 

with the underlying mechanisms has become an accepted method of presenting 

laboratory scale wear data as a function of experimental conditions. The research done on 

the development of wear maps is summarized in the next section.

2.6. WEAR MAPS ANP THEIR APPLICATIONS

Lim and Ashby [11] studied the sliding wear of steels and developed a wear map 

using the wear data they collected from the literature. The wear map that they constructed 

summarized the wear behaviour of the mild steel over a wide range of load and sliding 

velocity, identifying the dominant mechanism and showing die overall wear rate. The 

load and speed conditions corresponding to the operation of a primary wear mechanism 

that control the wear rates under these conditions were indicated on the wear map. The 

map is divided into different regions. These involved ultra mild wear at low speeds and 

loads, delamination wear at moderate loading conditions, mild and severe oxidational 

wear at high loads and speeds. The wear mechanisms were categorized by taking into 

account the effects of the coefficient of friction and friction induced temperature 

increases. The flash temperatures, i.e., the temperature reached at the tip of the asperities 

were calculated and these were used in modelling the oxidational wear mechanisms.

In 1988, Antoniou and Subramanian [73] developed a wear mechanism map for 

ataminium-silicon alloys by following the mapping method proposed by Lim and Ashby 

[11, 74]. They identified the wear mechanisms by direct observations of the worn 

surfaces of the aluminium alloy samples, the steel counterface, and the wear debris 

morphology. This map was however generic and did not indicate the effects of important
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microstructural factors such as silicon particle size, volume fraction, and morphology on

the wear rates.

Wang et. al. [75] constructed a wear mechanism map for dry sliding of an Al 

6061 alloy reinforced with 20% SiC. The wear map showed a transition from mild to 

severe wear and showed that seizure occurred ultimately by increasing the loading 

condition. Mild wear was associated with oxidation of aluminium surfaces. The sliding 

surface of the aluminum was relatively smooth and the wear debris was small and brittle. 

It was suggested that at the severe wear regime, rapid surface degradation caused high 

wear rates.

Liu et. al. [76] constructed a qualitative wear mechanism map for Al alloys using 

wear data collected from the literature. Rohatgi et al. [77] were also involved in 

constructing wear maps of Al alloys. These alloys contained various solid lubricant 

particles such as graphite and hard particles such as zircon.

Another approach to the development of wear maps was adopted by Kato et al. 

[78] and consisted of empirical tests performed using pin on disc type wear testers over a 

wide variety of loads and speeds for the nitrided steel. The characterization of the wear 

debris produced during tests was used as the primary means for distinguishing between 

mild and severe wear regimes on load versus speed axes. It was shown that gas nitriding 

not only reduced the wear rate, but also expanded the mild wear region toward higher 

loads and sliding speeds.

Zhang and Alpas [69] studied the wear behaviour of a wrought aluminum alloy 

(6061) as a function of applied load and sliding speed. They also developed an empirical 

wear transition map constructed on load versus sliding speed axes for this aluminum
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alloy, A16061 sliding against SAE 52100 steel [69]. They have shown that the transition 

to severe wear was controlled by a critical temperature condition. They suggested that 

measured bulk temperatures could be used as a simple criterion to detect the onset of 

severe wear.

Wilson and Alpas [79] developed a wear map when the effects of applied load 

and speed on the wear behavior of an A356 Al alloy and A356 Al- 20% SiC composite 

were summarized. The role of SiC particle addition on the wear behavior of A356 Al was 

discussed. The experimentally determined load and sliding speed data were used to 

calculate the critical transition temperature to severe wear in A356 Al by assuming a 

relationship between asperity contact size and debris particle diameter.

Riahi and Alpas [80] developed a wear map for grey cast iron. According to the 

wear map constructed, transition boundaries between the mild to severe wear, and the 

ultra-mild to mild wear regimes were linear on the log load versus log velocity scale. 

They concluded that the transition from mild to severe wear occurred at constant sliding 

energy. An empirical equation was developed to show that the transition from mild to 

severe wear in grey cast iron occurred when the energy generated at the contact surfaces 

(pFtj-v) reached a constant value.

Fracture of graphite flakes grouped to form a rosette type morphology, as well as 

fracture of the matrix at the “necks” formed between the graphite flakes and the contact 

surface led to the formation of large-slze debris in the mild wear regime, which was 

otherwise dominated by oxidative wear [80],

In Summary, the literature survey indicates that the wear maps are useful tools to 

summarize wear rates as a function of operating conditions. These maps have been
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constructed for aluminum and steel. In this research work the maps are constructed for 

ferrous coatings on aluminum alloys.

2J„ SURFACE TEMPERATURE M  PRY SLIDING CONTACT

When two surfaces are put in sliding motion against each other, almost 90% of 

the work done as a result of surface traction or friction is dissipated in the form of heat. 

The friction induced temperature increase almost always modify the mechanical and 

physical properties of the sliding surfaces, and may cause softening by recrystallization, 

surface oxidation, or may even result in melting. The highest temperature increase occurs 

at the tips of contacting asperities, which make up the true area of contact at the sliding 

interface. The instantaneous temperature increase of these contact points, which is named 

the flash temperature, is much higher than the average or ‘bulk temperature’ of the 

surface, especially at low loads and sliding velocities. Several research studies have been 

done to measure or predict contact surface temperatures [11, 81-83].

The bulk temperature or the temperature of the surface in a region 0-100 pm 

below the contact surfaces can be measured by inserting thermocouples inside the 

samples or using other methods. However, the flash temperatures, because of their very 

localized nature are extremely difficult to measure experimentally. The role of the 

experimentally determined contact surface temperature (bulk temperature) on the wear 

transition was studied by Zhang and Alpas [69] using miniature thermocouple probes 

positioned inside the specimens subjected to sliding wear. It was observed that in 6061 Al 

alloy the transition from mild to severe wear occurred when the bulk surface temperature 

Tb exceeded a critical temperature of 123 °C. This observation thus provided a practical
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means by which the onset of severe wear for a given tribo-system can be predicted, using 

a single bulk temperature measurement for Al alloys sliding against steel.

Temperatures generated by sliding processes were first calculated by Jaeger [84] 

using a so called moving heat source analysis, in which the energy input is modelled as a 

plane heat source moving along the surface. In some analyses the energy input due to the 

plastic deformation of subsurface regions were taken into account [81]. Welsh [8,9] 

studied the sliding behaviour of plain carbon steel (0.12 to 0.78% C) pins against rings 

made of the same material. He observed that at a critical sliding speed the high wear rates 

suddenly diminished to low values. The critical sliding speed depended on the 

composition of steel. This was attributed to a self-induced quench hardening process, as a 

result of frictional heating of asperities [8, 9]. Archard’s observations [10] indicated that 

critical speeds existed for the severe to mild wear transitions at two loads in 0.52% C 

steel. He showed that at those critical speeds the surface temperature was high enough for 

a ferrite-austenite transformation and a reduction in wear rates as a result of subsequent 

quench hardening.

Archard and Rowntree [82] modelled the temperature distribution at the surface

and in the substrate region in sliding wear. They validated their model by comparing the 

surface temperatures with those necessary for producing a metallurgically transformed 

material, namely martensite, on steel surfaces as a result of a single rubbing contact.

Ashby et al. [73] developed a model by considering a pin-on-disc configuration. 

The heat, q, which is generated at the contact surface, per unit of nominal contact area An 

per second is given as
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Considering that the temperature generated at the contact surface flows both into 

the pin (identified by subscript 1) and the disk (identified by subscript 2), the bulk

temperature Tt, is expressed as

In this equation T0 is the temperature at a distance sufficiently remote from the 

contact surface so that the effect of the friction induced temperature is negligible, ki and 

ka are the thermal conductivities of the material at the two surfaces and lu, and kb are the 

two lengths. These are defined as equivalent diffusional lengths and described in 

reference [73]. They depend on the physical lengths of the pin and the disk but also on 

the geometry of heat flow, thermal contact resistance between the pin and clamp etc.

In the bulk temperature calculations the frictional heat was assumed to be injected 

uniformly across the nominal contact area An. To calculate the flash temperatures it was

assumed that the heat generated at the contact surface entered the surface through the 

asperities, which are represented by the true contact area Ar. The average flash Tf 

temperature was expressed as:

Here T„ is the “sink” temperature. The heat flowing through the asperity contacts is 

reduced to the bulk temperature levels very quickly and thus the “sink” temperature is

- 1

(2.4)

- !

(2.4)
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equivalent to the bulk temperature. The distances lif and fef are called effective heat 

diffusion distances and they depend on the size of the asperities.

Wilson and Alpas [79] presented the temperature measurements in map form for 

A356 Al alloy and A356 Al-20% SiC composite against steel and compared them with 

their observed wear transitions. An interesting aspect of the temperature map for this 

tribological system was that the oxidation of the steel counterface that occurred at the 

onset of the transition temperature to severe wear (in the unreinforced A356) became an 

important factor in delaying the transition to severe wear in the composite. A layer of iron 

oxide with a low coefficient of friction was formed at the contact surface, and higher 

temperatures were needed to observe a transition to severe wear.

Quinn [85] studied the effect of flash temperature, which he called hot-spot 

temperature, on the unlubricated wear of steel using the same material pairs of low alloy 

and medium carbon steels. He showed that the hot spot temperature is an important 

variable in the wear of steel. This was attributed to the change in the surface oxidation 

characteristics of the contacting surfaces, which are examined in detail in the next 

section.

2.8. OXIDATION DURING SLIDING CONTACT

In general, the friction of pure metals sliding against themselves in air under 

unlubricated condition is determined by the presence of surface oxides. If the oxide film 

remains intact during sliding, a small amount of surface damage is expected to occur and 

the coefficient of friction (p) of the oxide determines the average coefficient of friction of
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the tribologicai system. In several metals the transition to severe wear is delayed because

the oxide is fractured and removed at very light loads, the contact is always metallic and 

wear rates are usually high. The value of the p. may be low at higher loading conditions if 

the oxide film is thick and metallic contact between asperities is prevented. Otherwise if 

the oxide film is not continuous and metallic contact is allowed to occur, considerable 

surface damage and rapid wear take place.

A detailed review of oxidational wear of metals is given by Quinn [31, 32, 85]. 

Mild oxidational wear was defined [31] as a mechanism of wear in which protective 

oxide films are formed at the real areas of the contact at a given contact temperature [31]. 

When the oxide film reached a critical thickness, it broke up and eventually appeared as 

wear debris. It was shown that temperature plays an important role in determining the 

structure of the oxide film present, which in turn affected the wear properties of the 

sliding interface. Quinn [86] assumed that normal stress and shear stress applied during 

sliding contact had no effect on the oxides formed. The comparison that was made on the 

basis of this assumption revealed a good correlation between the oxide actually obtained 

in the wear experiments and those to be expected from the oxidation data of Davies et al. 

[87], and of Moreau and Bardolle [8 8 ], In this comparison it was assumed that oxidation 

occured at the hot-spot temperatures predicted from Archard’s [82] curves for single 

contact wear conditions. Briefly, it was suggested that the oxide growth rates obeyed an 

Arrhenius equation:

the protective oxide coating is retained over a wide range of load, while in others, where

(2.5)
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where ‘r’ is the rate constant for growth of the oxide film. ‘TP can be taken as the flash 

temperature and ‘R’ is the gas constant. ‘Q’ is the activation energy for diffusion leading 

to oxide growth. ‘CP is a pre-exponential constant. Quinn estimated the C values for the 

oxidation of mild steel at different temperatures. The calculations were made for both 

static oxidation and under sliding conditions. It was shown that for the temperature range 

450 - 600° C, the value of “C” was 3.2 x 10'2 (kg2m'4s‘1) for static oxidation while this 

value was as high as 103 for oxidation induced by sliding contact. This indicates that 

oxidation under sliding conditions is much faster by a factor of (105) than would be 

expected from static oxidation.

Under static conditions, FeaOs is the equilibrium phase that forms under ambient 

conditions [89], however the temperature at the asperity contact area during sliding of 

steel at relatively low loads and speeds could easily reach 300 °C or above [11]. This 

could promote formation of FesCLi and FeO, although Fe304 grows under static conditions 

at above over 450 °C, and FeO above 600 °C [26, 31, 32],

Molgaard [90] studied oxide growth and oxide transfer phenomena in wear. He 

stated that an increase in the plasticity of the oxide layer, particularly if the layer contains 

FeO may cause a decrease in the wear rates.

Oxidational wear in aluminum alloys has been examined by Eyre [91], Eyre 

studied sliding wear of aluminum alloys containing silicon, copper, iron and nickel 

against steels with different hardness, and grey cast iron samples. In all cases oxidative 

wear occurred at low loads and speeds. It was shown that the transition load between 

oxidational and metallic wear increased as the silicon and copper content increased. The 

work further showed that in the oxidational wear regime iron oxide was formed during
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sliding transfer to the contact surface of the aluminum alloy from the counterface and 

created a complex surface containing AlFe and 01AI2O3. Fracture and spallation of the

oxidized layer was the controlling wear mechanism under these conditions.

2.9. EFFECT OF ENV1ROMMEMTAL HUMIDITY

Lancaster [92] has reviewed the effect of environmental humidity on wear and 

friction of different materials and noted that the coefficient of friction of iron decreased 

with increasing humidity due to rust formation. The fretting of pure metals as a function 

of humidity was investigated by Goto and Buckley [93]. They found that fretting wear 

rates decreased at high humidity conditions; however, the maximum fretting wear 

occurred at a certain humidity. The wear of three different types of carbon steels at 

moderate humidity levels of 30-70% was investigated by Oh et al. [94], The results 

showed a transition from severe to mild wear increasing the humidity. Papaphilippou et 

al. [95] studied the effect of humidity on the wear of cast iron. They attributed the low 

wear rate at high humidity to the less abrasive character of the debris.

Barnes .et al [96] studied the influence of oxide films on the friction and wear of 

Fe-5%Cr alloy in unidirectional and reciprocating motions in controlled oxygen pressure. 

They reported that protective islands of compacted debris developed as the partial 

pressure of oxygen increased.
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2.10. TR1BOLOGICAL ASPECTS OF INTERNAL COMBUSTION ENGINES

The research work presented in this dissertation is aimed at studying wear 

resistances of coatings that can be used to protect surfaces of the cylinder bores in 

internal combustion engines made of aluminum. It is therefore instructive to summarize 

the tribological aspects of the internal combustion engines.

2.11. WEAR RESISTANT MATERIALS FOR INTERNAL COMBUSTION

ENGINES:

The automotive industry is interested in reducing vehicle weight to improve fuel 

economy. A significant weight saving is provided by replacing cast iron in engine blocks 

with cast aluminum alloys. In designing new engines with aluminum block, it is 

important that engine durability is not sacrificed for lighter weight. One essential area of 

concern is the cylinder bores. The cast aluminum alloys, 380, A319 and A356 (hypo- 

eutectic) that are currently used in engine block castings have poor tribological 

properties. The compromise that has been adopted at the present time is to insert cast iron 

sleeves, which solves the durability problem, but adds significant amount of weight and 

dimension to the bore area. Fig. 2.1 shows three groups of lightweight materials that are 

being developed as alternatives to cast iron liners in aluminum engine castings.

2.11.1. ALUMINUM ALLOYS FOR INTERNAL COMBUSTION ENGINES

One of the three options to reduce the scuffing and seizure tendency of aluminum 

engines is to use a different aluminum alloy than the conventional A319. These alloys
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must possess high wear resistance at the expense of ease of castability and machlnability 

characteristics of the A319. In view of the importance of Al-SI alloys as lightweight 

tribo-materials with potential widespread applications in the automotive industry, 

several investigations have been conducted on the sliding wear resistances of Al-Si 

alloys [69, 79, 97-101]. Engine components made of Al-Si alloys may suffer from 

scuffing during cold start and oil starvation periods. Scuffing that occurs under 

boundary lubrication [102-106], and dry sliding conditions [106-110] has been 

studied. Most of these investigations were limited to testing conditions that led to 

mild and/or severe types of wear. The results generally suggested that the wear 

resistance of Al-Si alloys was a weak function of the silicon content of the alloy [96, 

97, 99]. Other studies indicated that the size and morphology of silicon particles 

affect the wear and scuffing resistance (e.g. [108]), and that the eutectic 

composition provided the best wear resistance [98, 100]. Therefore, microstructures 

and morphologies of Al-Si alloys have yet to be optimized to maximize the wear 

and scuffing resistance.

Several wear mechanisms have been reported in studies of aluminum and its 

alloys in dry sliding contact against steel surfaces. The observations of Shivanath et al. 

[111] are typical. They identified two wear mechanisms in Al-Si alloys: one oxidational 

and the other metallic. In the oxidational wear regime, wear rates were low, with the 

worn surfaces covered by a dark compacted transfer layer, presumed to consist of 

aluminum oxide and some transferred steel, although its exact nature was not 

investigated. The onset of metallic wear occurred above a characteristic load at which 

massive deformation of the aluminum alloy surface occurred, accompanied by the
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formation of metal fragments, which tended to adhere to the steel counterface. Wear rates 

in this severe wear regime were at least an order of magnitude greater than those in the 

mild wear regime.

These observations are similar to those of Hirst and Lancaster [112] on the sliding 

wear of 99% pure Al against stellite, where a transition from mild (oxidational) to severe 

(metallic) wear occurred at a critical normal load. Several subsequent investigations on 

the wear of Al-Si alloys (e.g. [113-115]) have also discussed these two main wear 

mechanisms and the effects of the sliding parameters and alloy composition on transitions 

between them.

Recently, Wilson and Alpas [116] calculated flash temperatures in the mild 

wear regime for A356 Al using empirical seizure load and asperity size data and the 

equations developed by Ashby et al. [11]. The onset of metallic flake/plate debris 

formation was attributed to a critical flash temperature that was close to the critical 

bulk surface temperature (Tcru — 125 °C) observed for bulk seizure and severe wear. 

The onset of flake/plate delamination wear can thus be thought of as a highly 

localized form of seizure occurring in the sliding contact zone. This phenomenon is 

different from the delamination mechanism [117, 118], which occurs under 

effectively isothermal sliding conditions with low frictional heating, and in which 

most of the wear debris also consists of plate-like particles.

Newly developed wear resistant aluminum alloys include:

i) ALUSIL (-17% Si, 4% Cu, 1% Mg (close to the composition of A390)) made by 

Kolbenschmidt-Pierburg, and used by Audi and Volkswagen in some production 

engines;
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ii) LOKASIL, an aluminum metal matrix composite using a silicon pre-form in a 

high pressure die casting process, in production at Porsche for low volume 

applications; and

iii) Silitek (>25% Si, Fe, Ni) produced by PEAK using the Osprey process, which is 

used by Mercedes as cylinder liners (all compositions given here are in weight 

percent). All alternative alloys currently in automotive production share the 

characteristic of being hypereutectic alloys containing >17% silicon.

At the present time there is very little information in the open literature on the wear 

mechanisms that operate in these new aluminum alloys.

2.11.2. METAL MATRIX COMPOSITES

Metal matrix composites have been developed over the past 30 years. The 

primary user of the metal matrix composites is the aerospace industry for airframe and 

spacecraft structures. More recently, the automotive, and electronic industries have been 

interested in these composites. Metal matrix composites can be classified into either

continuous fibre composites or discontinuously reinforced composites. The 

reinforcements have been introduced into matrices of aluminum, magnesium, copper, 

titanium, nickel, nickel based super alloys, or various alloys of iron. The aluminum 

matrix composites are among those that have become broadly available. Discontinuously 

reinforced composites have become the most commonly used to date. Additions o f SiC, 

A I 2 O 3 ,  ZrOi, and other ceramic particles, fibers, and whiskers to A l alloys generally 

improve their wear and seizure resistance. However, it must be emphasized once more 

that wear resistance is not a material property and that the micromechanisms of wear
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of metal matrix composites depend on the conditions under which they are tested or 

used in practice. Therefore, in studying the wear of metal matrix composites it is 

important to examine wear behaviour as a function of the applied mechanical factors.

2.11.2.1. M1LP AND ULTRAMILD WEAR

Numerous investigations of the dry sliding wear of aluminum matrix 

composites against steels have reported significant increases in their wear resistance 

compared with unreinforced aluminum alloys. When contact loads and sliding speeds 

are kept very low, so that frictional heating effects are negligible, ceramic reinforcing 

particles tend to support the contact stresses. Subsurface plastic deformation and 

shear of the matrix alloy is prevented by the constraint introduced by the reinforcing 

phase. Hosking et al. [119] observed this effect by the sliding wear rates for a 2024 

Al alloy reinforced with different amounts of A I2O3 particles. The wear rate falls 

significantly with increasing A I2O3 content. Composites containing larger AI2O3 

particulates show greater wear resistance than alloys with smaller particulates and 

equivalent reinforcement content. The load support provided by particulate 

reinforcement in uitramild wear was also demonstrated by Zhang and Alpas [37] in 

sliding wear tests of 6061 Al-20 vol%  AI2 O3 against SAE 52100 bearing steel. At a 

low loading condition it was observed that the worn surface exhibited AI2O3 

particulates standing proud of the matrix alloy.

Increasing the normal load to a level above which the reinforcement can no 

longer constrain the matrix alloy from shear deformation introduces damage 

mechanisms to the matrix [120]. Wang and Rack [121] studied the transition wear
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behaviour of SiC particulate and SiC whisker-reinforced 7091 Al alloys in pin-on- 

disk dry sliding against 17-4 PH stainless steel disks at a constant contact load of 13 

N (0.43 MPa nominal pressure). At sliding velocities below 1.2 m/s the wear rates of 

unreinforced 7091 Al and the 20 vol% SiCp and SiCw reinforced 7091 Al MMCs 

were of similar magnitude. The wear debris produced by both the composites and the 

unreinforced alloy below 1.2 m/s was dark in color and consisted of fine, equiaxed, 

predominantly metallic particulates, typical of that seen in the mechanical 

mixing/oxidation regime for aluminum alloys [69, 79]. Wang and Rack [121] 

suggested that the mechanism of wear under these conditions resulted from cracking 

by surface fatigue to produce the small metallic debris particles.

2.11.2.2. TRANSITION TO SEVERE WEAR

The transition to severe wear, associated with an increase in wear rate by a 

factor of 10-100, occurs in these materials when a critical surface temperature is 

reached. This critical temperature is raised, and thus the transition takes place at

higher pressure and sliding speed in composites than in unreinforced aluminum 

alloys. In work by Alpas and Zhang [122], severe wear and seizure was initiated at a 

load of 98 N and sliding surface bulk temperature of 145 °C in dry sliding wear of Ai- 

7% Si (A356 Al) against SAE 52100 bearing steel. No severe wear was observed in 

an A356 Al-20vol% SiC composite, which was tested up to a load of 150N, at which 

steady-state bulk surface temperatures of approximately 200 °C were measured. A 

similar result has been reported for an A I2O3 reinforced MMC based on Al-22% Si
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the transition load for the MMC in dry sliding against steel at 1 m s'1 was more than 

three times that for the unreinforced matrix [123].

The presence of SiC in these composites can cause increased wear of 

traditional grey cast iron piston ring materials, leading to premature losses in engine 

compression and increased piston slap and scuffing effects. The use of piston rings 

with harder surfaces (e.g., plasma nitrided high Cr steels or Cr coatings) has reduced 

ring wear to within the range experienced by traditional cast iron rings in sliding 

contact against cast iron liners. Another factor preventing the widespread use of the 

metal matrix composites as cylinder liner at the present time is the high manufacturing 

cost of these materials. In this respect thermal spray coatings present themselves as 

viable alternatives.

2.113. THERMAL SPRAY COATINGS

Thermal spray processes offer an effective way of applying a thick or thin coating 

to surfaces. Thermal spraying is a group of process in which finely divided metallic and 

non-metallic materials are deposited in a molten or semi-molten state on a prepared 

substrate. Traditionally, the use of thermally sprayed coatings can be divided into two 

areas [124]. One is to protect structural steel work against corrosion or oxidation, an 

example being the application of zinc or aluminum (or their alloys) to provide sacrificial 

or barrier coatings. The other is to provide specific surface properties to mechanical 

components. These include resistance to wear often combined with resistance to 

corrosion or chemical attack, improved electrical or thermal properties. The coating 

material can be metals, cermets, oxides, ceramics, or combinations of these elements
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including alloys and composites. The thermal spray coatings that are being developed for 

automotive applications are based on low carbon steel. Therefore the raw material is cost 

effective. They also have the advantage of being fabricated in air and deposited on curved 

surfaces.

The principle of thermal spraying is that the coating material is raised to its 

melting point and small particles are projected on to the prepared substrate (workpiece) 

by a high pressure gas, where they immediately quench and form a cohesive coating. The 

coating material may be in wire or powder form and the heat source maybe a combustion

flame, a plasma jet or an arc struck between consumable wires or between a consumable 

and non consumable.

One popular thermal spraying technique, which uses combustion gases as a source 

of heat, is the high velocity oxy-fuel (HVQF) process [125, 126]. The combustion gases 

used are typically propane, propylene, methane or hydrogen mixed with oxygen. The 

high pressures and flow of the gases result in very high gas velocities and consequently, a 

particles travel at many times the speed of sound. The kinetic energy of the particle is 

released in the form of heat as it impacts the substrate. If the flow of gases is carefully 

controlled to ensure maximum combustion efficiency, which results in dense coatings 

with low oxide content [127,128]

Plasma spray processes use an electric arc to heat gases to peak plasma 

temperatures of >25,000 K, producing plasma jet with temperature distributions of 3,000- 

15,000 K. At these temperatures, the plasma gases (Ar, H2, He, or N2) dissociate and 

ionize into an equilibrium mixture of ions and electrons, as energy is pumped into them 

by the confined arc discharge. This plasma state gives the process its capability to melt
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any material with a stable melting point. In plasma transferred wire arc (PTWA), an arc is 

created between consumable and non-consumable electrodes. The molten droplets are 

accelerated towards the substrate by plasma and propellant gases.

The twin wire arc thermal spray process employs two wires that act as 

consumable electrodes and the arc provides the heat energy to melt them. Plasma 

spraying employs a high temperature plasma as the heat source (approximately 15,000 

°C), to melt the coating materials, which is usually in powder form. This method is 

suitable for spraying refractory materials such as oxide ceramics.

HVOF processes typically have the highest particles velocities, but its gas 

temperatures limit the maximum particle temperatures achievable. Wire arc spray has 

lower processing temperatures and produces intermediate particle velocities but, due to 

its low gas temperatures, may be used for thermally sensitive substrate materials. Finally, 

plasma spray, with its high processing temperatures, is the most flexible with respect to 

materials. In addition, due to its ability to operate under inert gas conditions, it is 

commonly chosen for consolidating environmentally reactive materials. [129].

The microstructure of the coating generated by thermal spray processes can be 

best described as a layered structure consisting of "splats", resulting from flattening of the 

molten metal droplets as they hit the surface. The particles in a molten or plastic state 

impact on the substrate or previously deposited layer; the next particle impacting on an 

already completely solidified one. Thus thermo-mechanical properties of the coating 

depend not only on the way particles flattened and the resulting splats solidify and coo! 

down, but also on the thermal history of the particles layering at the same location. These 

facts were studied in detail by McPherson [130]. The splat size in the coatings normally
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varies from a few microns to hundreds of microns. However, it is difficult to clearly 

distinguish the splats in most of the thermal spray coatings since they are highly irregular 

in shape. During the spray process, as the splats stack up, they may entrap gas and/or air 

in the valleys of the roughened surface or between adjacent splats, thereby forming 

micropores upon solidification. Oxides are present in thermal spray coatings since 

particles oxidize easily in the flame. Oxide content is less when spraying is done in 

vacuum or under an inert gas cover. Oxides are usually present as a thin layer between 

splats and are considered to be the weakest link in the coatings. Unmelted particles are 

common in plasma spraying, especially when powder metal is used as feedstock [128- 

131]. Thus, thermally sprayed coatings have a structure markedly different from that of 

cast, wrought and powder metallurgy materials.

The mechanical properties of low carbon steel coatings produced by PTWA and 

HVOF processes were studied by Rabiei et al. [6]. Their investigation showed that the 

thin oxide layers between the splats had a local mode I type interfacial fracture toughness 

of only 0.2-1.0 MPaVm and slightly higher toughness in mode III loading.

Neiser et al. [132] investigated the oxidation of wire HVOF sprayed steel during 

the spray process. They found that oxidation of the top surface of flattened droplets is not 

the dominant oxidation mechanism. They used a model and analytically predicted a 

thickness of a few nanometers for FeO on the splat surface as it cools. However, 

experimental evidence showed that the oxide layers were typically 100  times thicker than 

the predicted value. They concluded from the oxide distributions that most of the oxide 

forms before the droplet impacts the substrate.
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Hackett and Settles [133] have studied turbulent mixing of HVOF thermal spray 

and coating oxidation. They suggested that a hot boundary layer containing significant 

amount of oxygen envelopes the surface. They analyzed sprayed aluminum coatings and 

concluded that the coating oxide content results principally from oxidation after particle 

impact while the still hot coating is exposed to this boundary layer and the oxidation of 

spray particle in flight is a minor source of oxide inclusions. Matejicek et al. [134] 

investigated the effects of deposition temperature on the formation and properties of 

plasma sprayed molybdenum coatings. They found that with increasing temperature, the 

nature of the splat changes from irregular and fragmented towards round-shaped. The 

deposits formed at higher temperatures exhibited fewer pores and interlamellar voids.

Erickson et al [135] used scratch and bend tests to evaluate the cohesive strength 

of alumina plasma sprayed coatings. They reported that the investigated coatings tended 

to fracture along thermal cracks and pores rather than splat interfaces indicating that the 

former were the weakest links in the coatings.

2.113.1. WEAR BEHAVIOUR OF FERROUS THERMAL SPRAY COATINGS

Hartfield and Tung [7] used thermal sprayed cylinder liners and piston rings on a 

bench top wear tester to investigate the effect of microstructure on the wear behaviour of 

thermal spray coatings. They described the wear behaviour of several thermal spray 

coatings and compared them to a grey cast iron, 390 aluminum alloy, and a Nikasil 

coating. They reported that splat delam matron was the common wear mechanism in 

thermal spray coatings. This was in the form of loss of entire splats adjacent to the 

contact surfaces. They found that porosity had a negative effect on the wear resistance.
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However, unmelted particles did not appear to have an effect on the wear resistance. It 

has been reported that the low fracture toughness of the interfacial oxide could cause 

splat delamination upon frictional contact [6,7].

McCune et. al [136] used two thermal spraying methods, namely twin wire arc 

process and plasma transferred wire arc processes, using graphite filled cored wires with 

steel and nickel sheaths to develop wear and friction resisting surfaces on light weight 

materials such as cast aluminum alloys. They found that the overall carbon content of die 

coatings could not be maintained at the levels of the prepared cores. The improvement 

was achieved by encapsulation of graphite with nickel and using nitrogen as a propellant 

to minimize loss by oxidation. The coefficient of friction and wear characteristics of the 

coatings were investigated under dry sliding conditions to determine the effect of the 

graphite as a solid lubricant, and also a lubricated condition was used to simulate the 

ring/bore contact They suggested that their results showed that the tribological behaviour 

of the coatings were similar to that of gray cast iron.

2.12. FRICTION AND WEAR OF INTERNAL COMBUSTION ENGINE PARTS

2.12.1. PRINCIPLES OF OPERATION

In an internal combustion engine, fuel is burned within the engine, and the 

combustion products serve as the mechanism that converts the latent energy of the fuel 

into mechanical energy. Principal features of internal combustion engines consist of 

following: (1) the compression of air, (2 ) the raising of air temperature by the combustion 

of fuel, (3) the generation of energy from the heated air and the resultant expansion of
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pressure, and (4) exhaust of the gases [137,138]. Fig. 2.2 illustrates these steps 

schematically. For the intake stroke, the intake valve opens and the piston moves 

downward, drawing air and gasoline vapour into the cylinder. During the compression 

stroke, the intake valve closes, the piston moves upward, and compresses the mixture. 

During the power stroke, the ignition system produces a spark that ignites the mixture. As 

it bums, high pressure is created, which pushes the piston downward. For the exhaust 

stroke, the exhaust valve opens and the piston moves upward, forcing the burned gases 

from the cylinder. The interaction of the moving parts during the engine cycle results in a 

complex tribosystem.

The four-stroke cycle engine (Fig. 2.2) is based on the reciprocating piston 

principle and spark-ignition (Otto cycle). In spark-ignition engines, the fuel and air are 

mixed in either the carburetor or intake port (fuel injection) prior to entry into the 

combustion chamber. In compression-ignition engines, the intake system supplies only 

air, which is compressed before the fuel is injected into the combustion chamber. Four- 

stroke compression-ignition and spark-ignition engines are used in most automotive 

applications. Depending on the cylinder arrangement, four-stroke engines can be 

subcategorized as in-line, V (vee), opposed piston, and radial types [137-139].

2.12.2. EMG1NE TYPES AMP DESIGN CONSIDERATIONS

The most common engines in modem cars are in-line four-cylinder designs for 

smaller cars and in-line six-cylinder, V-6, and V-8 designs for larger cars. Smaller 

engines, both in terms of cylinder number and size (displacement), provide improved fuel 

economy. The displacement of modem passenger cars ranges, on average, from 1.6 to 5.7
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L liquid-cooling passages are provided around the bore of each cylinder as well as in the 

hot regions of the combustion chambers and exhaust ports in the cylinder head. Modem 

pistons are generally made from aluminum alloys, but grey iron or malleable iron pistons 

are used in heavy-duty diesel applications. Crankshafts are usually made from cast iron 

(grey iron or ductile iron) or forged steel. Similarly, connecting rods are made from cast 

iron (malleable iron), conventional steel forgings, or powder metallurgy steel forgings. 

Detachable cylinder heads contain the inlet and exhaust valves (overhead valves). Some 

engines employ a single exhaust and inlet valve, while other designs feature three or four 

valves per cylinder. Exhaust gas is directed through short passages to the exhaust 

collector or manifold.

Fuel and air are delivered to the cylinder head by a compact inlet manifold, 

usually made from aluminum. Fuel management is provided by either a carburetor or an 

electronic fuel injection system. In most cases, feedback from an exhaust gas combustion 

sensor is used to provide precise control of the fuel/air ratio and to optimize the 

performance of the emission control system. Electronic ignition virtually eliminates the 

need for periodic ignition system maintenance [137].

Fuel economy goals have also resulted in strong interest in the understanding of 

engine friction and wear in the design of engine components with improved tribological 

performance. For example, recent studies have indicated that a 6.9 kPa mean effective 

pressure (MEP) reduction in engine friction yields a 1 to 2% fuel economy improvement 

in four-cylinder automobiles [139].
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2.123. PISTONS ANP PISTON RING ASSEMBLY

Among the many moving parts in an internal combustion engine, the piston and 

piston ring assembly are considered to be the components that contribute the most to total 

engine friction and wear. It is estimated that piston ring friction amounts to 

approximately 50 to 70% of the friction loss of the piston assembly, and that the piston 

assembly is responsible for about 25% to as much as 75% of total engine friction losses 

[131-133]. Most pistons for automotive applications are made from aluminum alloys. The 

acceptance of aluminum alloy pistons by gasoline engine manufacturers can be attributed 

to their lightweight and high thermal conductivity. Aluminum automotive pistons 

generally are permanent mould castings. The alloy most commonly used for passenger 

car pistons is 332.0-T5, an aluminum silicon alloy that has a good combination of 

foundry, mechanical, and physical characteristics, including low thermal expansion. 

Piston alloys for heavy duty engines include 336-T551, a low expansion alloy, and 242- 

T571 because of its higher thermal conductivity and superior properties at elevated 

temperatures [140]. Piston rings are mechanical devices used for sealing pistons. They 

are generally split-type, self expanding metal rings. When they are placed in the grooves 

of the piston and provided with a lubricant, a moving seal is formed between the piston 

and the cylinder bore (liner).

There are two types of piston rings: i) compression rings and ii) oil-control rings. 

Compression rings, generally two or more, are located near the top of the piston. 

Compression rings have to perform two basic functions gas sealing and oil control under 

the most hostile conditions, being exposed to high temperatures, high gas pressures, 

extreme stresses, impact, corrosion, and abrasion. They must be able to operate with a
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minimum of lubrication and still provide service at low wear conditions. Therefore, the 

basic design considerations are efficient sealing, lightweight, and good material strength 

and minimum wear under elevated-temperature conditions [141]. Oil rings, generally one 

or more, are placed below the compression rings to prevent the passage of excessive 

lubricating oil into the combustion chamber, yet provide adequate lubrication for the 

compression rings. Major factors affecting this basic function are ring-bore contact 

pressure, ring-bore conformability, sliding surface characteristics, and drainage for the 

surplus oil. Other factors that influence oil ring design include amount of oil transported, 

oil viscosity, and engine operating and temperature conditions.

2.12.4. ENGINE WEAR

Normally, all reciprocating engines operate with lubrication. Oil of the wrong 

viscosity or oil that deteriorates in service may cause wear of cylinders, cylinder liners, 

rings, camshafts, and valve trains. The products of combustion of the fuel contain water 

vapour that carries potentially corrosive gases, such as oxides of sulfur, carbon, and 

nitrogen. If allowed to condense on engine parts, these oxides form acids and may cause 

excessive corrosive wear [142].

Other mechanisms associated with piston ring and cylinder liner wear include 

abrasive wear. Abrasion appears to be responsible for the normal mechanical wear that 

occurs in the majority of liners. In liners with a long wear life, corrosion is observed, this 

may contribute indirectly to increased abrasion. The combined action of abrasion and 

corrosion appears to produce a smooth surface with well defined graphite and a pitted and 

etched surface which may aid the retention of lubricant on the surface [142].
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Both the type and extent of wear varies down the cylinder liner wall, to improve 

resistance to abrasive wear it may only be necessary to protect the cylinder liner for some 

distance just below the top dead centre position. Also an increase in corrosion resistance 

would be particularly significant over the middle of the liner.

The principal factors that influence wear of piston rings are speed, temperature, 

load, frequency of use, dirt, corrosion, surface finish, and quantity of lubricant [139]. 

Speed influences ring wear largely as a function of piston travel per kilometre. 

Tribological design weaknesses of rings, pistons, and cylinders become more evident as 

speed increases. Although radial face wear is the prime consideration, wear of ring and 

groove sides cannot be ignored. Engine speed affects side wear because it affects the 

acceleration forces on the rings [129]. Although high temperature occasionally causes 

wear by interfering with lubrication of cylinder surfaces, low temperature is a far more 

frequent source o f excessive piston and ring wear. As coolant temperature falls below 65 

°C, cylinder and ring wear increases rapidly because of corrosion caused by condensate 

that carries corrosive combustion products, as shown in Fig. 5 (c). When it is impossible 

to maintain proper temperature, lubricating oils that contain additives are helpful [139].

Engine load affects the wear rates of both cylinders and rings principally through 

its influence on temperature and corrosive wear. Engines in light load service generally 

have a high rate of corrosive wear. High loads do not generally cause wear problems 

unless design weaknesses cause scuffing because of distortion or destruction of the oil 

film by hot spots [139].

In engines, three wear mechanisms may operate either separately or together: 

abrasion, corrosion and scuffing. Scuffing is the most detrimental of the wear
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mechanisms. Scuffing is local damage on the contact surface and defined differently by 

different researchers. Some researchers defined scuffed surfaces as those that were 

involved in sudden failure, and others described them as having grooves, marks of 

transferred material, transferred particles, and other physical features [69]. A roughening 

of surfaces by plastic flow whether or not there is material loss or transfer was defined by 

Ludema [143]. In this thesis scuffing is defined as local damage to the sliding surfaces 

either as a result of material transfer or as a result of scratching.

Of the several known mechanisms of wear, scuffing is among die least 

understood. Scuffing has been observed in gears, between cams and tappets, and 

between piston rings and cylinders [144, 145]. In the case of piston rings and cylinder 

liners, scuffing resistance is a function of surface roughness of the cylinder and the 

materials involved [146]. The scuffed surface characteristics are similar to those 

observed during running-in of piston rings, there is also considerable similarity to 'severe' 

metallic wear.

In summary the literature survey shows that in the area of wear of thermal spray

composites there is a lot of room for basic research work. The wear mechanisms need to

be characterized in a better way and related to the engine scuffing characteristics.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tribo-materials for Lightweight 
Engines

PTWA & HVOF Steel 
Coatings

Coatings 
on Cylinder Bores

Al-Si Alloys Cylinder Liners

Graphitic Matrix 
Composites

Hypereutectic Al-Si Alloys

Ceramic Particles 
Reinforced Al Matrix

Thermal Spray CoatingsEutectic Al-Si Alloys

Fig. 2.1- Three groups of the lightweight materials, which are being developed as alternatives to the cast iron 
liners in cast aluminum engines.



intake port Spark plug Exhaust port

Intake Compression Power Exhaust

Fig. 22- Illustrates four strokes of internal combustion engines schematically: (1) the 
compression of air, (2) the raising of air temperature by the combustion of 
fiiel, (3) the generation of energy from the heated air and the resultant 
expansion of pressure, and (4) exhaust of the gases.
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CHAPTER III

MATERIALS ANP EXPEMMEHTAL METHODS

In this chapter the thermal spray deposition processes used for the production of 

the low carbon steel coatings are described. Two different thermal coating processes were 

used. These were the plasma transfer wire arc (PTWA) deposition, and the high velocity 

oxy-fiiel (HVOF) deposition processes. Next, the sliding wear tests conducted using a 

pin-on-disc apparatus at different environments and loading conditions are described. The 

methods used in the determination of wear rates, and sliding induced contact 

temperatures are explained. Analytical methods that were employed to characterize 

microstructures, morphologies and compositions of the worn surfaces and the loose 

debris are also given. These methods include scanning electron microscopy (SEM) with 

energy dispersive spectroscopy (EDS), X-ray difffactometry (XRD) with Rietvelt 

refinement method, and optical surface profilomety. In the last part of the chapter 

experimental techniques used to examine the two worn (scuffed) engines that were coated 

with the thermal spray coatings are given.

3.1.1. COATING DEPOSITION PROCESSES

3.1.1. FABRICATION OF PLASMA TRANSFER WIRE ARC LOW CARBON

STEEL COATINGS (PTWA 1020 COATINGS)

PTWA samples were deposited on 319 aluminum alloy substrates with the 

following composition in weight percent: 5.5-6.0 Si, 1 Fe, 3.0-4.0 Cu, 0.5 Mn, 0.1 Mg, 

0.35 Ni, 1 Zn, 0.25 Ti, and the balance Al. The stock for the 319 Al substrates was cast
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using a sand casting process in the General Motors Research and Development Foundry 

(Warren, Michigan) as 25.4 mm chill blocks (in order to have comparable dendrite size 

with that in the 319 aluminum alloy used in the engine cylinder). In the casting process 

nitrogen gas (N2) was injected in order to degas molten aluminum.. The aluminum blocks 

were cut in the form of square coupons with dimension 25mm x 25mm x 5mm, using a 

wire electric discharge machine (EDM).

The substrate surface was roughened to an average surface roughness of Ra=10±2 

pm, with an 80 grit sand blaster operating at 0.62 MPa (90 Psi) prior to the deposition. 

The purpose of this operation was to provide a mechanical interlock for the coating to 

adhere to the substrate.

The coatings were deposited using a commercial plasma transfer wire arc 

(PTWA) gun manufactured by Flame Spray Industries (New York). A photograph of the 

PTWA set up used to coat the inner surfaces of the cylinder bores is shown in Fig. 3.1.

This set up is located at the General Motors Research and Development Centre, Warren, 

MI. In this work, five 319 Al coupons were fixed on a holder, which was then placed in

the deposition chamber. The wire feed stock for the PTWA gun was mild steel with a 

nominal SAE 1020 composition. The wire was coated with copper to prevent oxidation. 

The gun was operated with a distance to the substrate of 45 mm. The plasma plume 

included molten iron droplets of 100-300 pm diameter, traveling at a nominal velocity of 

100  m/s, which was measured using a thermal spray imaging system manufactured by 

Control Vision Company. The process parameters are given in Table 3.1. The coating 

was built up by translating the gun over the coupon surface multiple times to produce
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coatings that were 250±10 microns thick. These coatings were designated as PTWA EM­

IL 2K by General Motors. They are referred as PTWA 1020 in this thesis.

The surface roughness (R*) of the as-deposited coatings was measured using a 

stylus type surface profilometer (Mitutoya MST-301). The average roughness of ten 

different samples was 18±2 pm.

Wire
Composition

Wire

Diameter
(mm)

Wire Feed

Rate
(kg/hr)

Plasma
Gas

Spray

Distance
(mm)

Propellant

SAE 1020 
Steel

(0.2 % C)
1.5 3.2

65% Ar 
35% H2 45 Air

Table 3.1- The plasma transfer wire arc (PTWA) processes parameters.

3.1.2. FABRICATION OF M G S  VELOCITY OXYGEN FUEL (HVOF1 LOW 

CARBON STEEL COATINGS

HVOF process was used to produce two types of coatings. One of these was the 

coatings produced with the base SAE 1020 feed stock. The second type of HVOF 

coatings had 2.5 wt% A1 added in the base SAE 1020 composition.

3X2.1. HVOF 1020 COATINGS

Samples for the substrates for HVOF 1020 type of coatings were taken from 

extruded cylinders that were made of 6061 A1 alloy with the following composition in
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weight percent 0.4-0.8 Si, 0.7 Fe, 0.15-0.40 Cu, 0.15 Mn, 0.18-1.2 Mg, 0.04-0.35 Cr, 

0.25 Zn, 0.15 TI, and the balance Al. Prior to thermal spraying using a high velocity oxy- 

fiiel (HVOF) gun, the cylinder bores were cut with an electro-discharge machining 

process (EDM). The surfaces were then roughened using a high-pressure water jet. 

During the deposition process, the HVOF gun traveled along the length of the bore as it 

rotated inside the cylinder. The rotating gun on the surface of cylinder bores made a 

single pass to produce coatings with a thickness of 400±10 pm. Methane was used as the 

fuel gas. The wire, with a nominal SAE 1020 composition, was used at a rate of 7.7 kg/hr 

in an oxidizing flame. The jet of material sprayed from the gun included molten Fe 

droplets with a nominal diameter of 25-100 pm, and a nominal velocity of 200 m/s. The 

HVOF process parameters are given in Table 3.2. These coatings were designated as 

HVOF EM-12K by General Motors. They are referred as HVOF 1020 coatings in this 

thesis.

Wire
Composition

Wire

Diameter
(mm)

Wire Feed
Rate

(kg/hr)
Fuel Gas

Spray

Distance
(mm)

Propellant

SAE 1020 
Steel

(0.2 % C) &
1020+2.5%A1

3 7.7 Methane 45 Air

Table 3.2- The high velocity oxy-foel (HVOF) processes parameters.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3X2.2. HVOF 1020-2.5% A1COATINGS

The deposition process of this type of coatings are the same as those of HVOF 

1020 steel wire based coatings with the exception that the wire had a 2.5 wt% A1 

addition, which was introduced with the purpose of reducing the oxide content of the 

coating. These coatings were designated as HVOF HAR-4001 by General Motors. They 

are referred as HVOF 1020-2.5% A! coatings in this thesis.

The average surface roughness of the both types of the HVOF coatings (with and 

without Al) after deposition were 30+2 pm.

3.2. LABORATORY WEAR TESTING PROCEDURES

3.2.1. DESCRIPTION OF THE PM  ON DISC TR1BOMETER

The wear tests were performed using a pin-on-disc sliding wear apparatus. Fig.

3.2.a shows the general view of the pin on disc set-up. This tribometer was designed and 

manufactured at the University of Windsor.

The apparatus comprised a variable speed rotating shaft arrangement to which a 

stainless steel sample holder was attached. A vertical loading aim, which was attached to 

the pin counterface at its bottom end, was lowered on to the rotating samples to produce a 

circular wear track of 16 mm average diameter. The load was applied using dead weight 

placed on a pan located on the upper end of the vertical loading arm. The pin contact 

geometry used was a flat-on-flat configuration. An enlarged view of the sample holder 

and the pin are shown in Fig. 3.2.b,
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A special sample holder was designed to ensure that the contact surface of the test 

sample was parallel to the surface of the counterface pin. This was achieved by placing a 

self-adjusting sample holder where the samples were placed on a set of six small ball 

bearings and clamped in such a way that the top surface was always flush with the 

contact surface of the counterface.

A schematic drawing identifying the main parts of the set up is shown in Fig. 3.3. 

The test speed and the duration of the test were controlled by a PC driven motor. The 

control system consisted of a Lab-View control software (Version 5.0 Graphical 

Programming for Instrumentation software).

An enclosure around the machine equipped with a humidifier and dehumidifier 

system was used in order to run tests under controlled atmospheric conditions. Details of 

the environmentally controlled tests are given in Section 4.1.8.

3.2.2. SAMPLE PREPARATION FOR PIN ON DISC TESTS ANP

MEASUREMENT OF WEAR RATES

To eliminate the initial high wear rate normally caused by the coating roughness, 

and to ensure that the sample surfaces were flat, an automatic polishing machine was 

used to polish the wear test sample surfaces. As a result of polishing the average surface 

roughness was decreased to 038±0.0S pm with the exception of some small areas, where 

the coatings contained large amounts of porosity.

Wear tests were performed at sliding speeds between 0.2 and 2.5 m/s, and at 

constant loads between 5 and 75 N. The wear tests were normally run to a constant
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sliding distance of 5 xlO3 m. Prior to wear tests both the pin and the coated samples were 

ultrasonically cleaned in acetone, left for 24 hours under vacuum and weighed to 

±0.000Ig using an electronic balance. After each test the specimens were cleaned of 

loose debris and weighed to determine the amount of mass change during the test. Wear 

rates of both the coatings and the pins were obtained by dividing mass loss by the total 

sliding distance.

3.23. DESCRIPTION OF COUNTERFACE MATERIAL

The material for the counterface for the wear tests was AISI M2 type high-speed 

steel with the following composition in weight percent: 0.8 C, 4.0 Cr, 5.0 Mo, 6.0 W, 2.0 

V, and the balance Fe. The dimensions of the pin were as follows: Diameter: 5.0 mm, 

length: 30 mm. The pins were cut by EDM, and the contact surfaces were then polished 

using 600 grid SiC paper. The roughness of the polished surfaces was Q.38±0.08 pm, the 

same as that of the coating.

3.2.4. SLIPM G CONTACT TEMPERATURE MEASUREMENTS

A 0.5 mm diameter K-type (Chromel-Alumel) ungrounded thermocouple probe 

was placed in a 0.6 mm diameter hole in the pin, which was drilled with EDM at about 

200 pm from the pin contact surface. This was used to monitor the changes in bulk 

surface temperature (Tb) generated by frictional heating at the sliding interface as a 

function of sliding distance at various constant load and sliding speed levels. The Lab- 

view software was used to collect and store the temperature data.
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3.2.5. MEASUREMENTS OF COEFFICIENT OF FRICTION

The tangential force generated during sliding contact was measured using a 

bending type load cell from Omega Instruments (max. load 25 lbs). The load cell was 

attached to the motor that rotates the sample through a shaft. The friction data was 

recorded continuously during the sliding tests via a.software interface (Lab-View).

3.2.6. ENVIRONMENTALLY CONTROLLED WEAR TESTS

3.2.6.I. WEAR TESTS UNDER CONTROLLED HUMIDITY

A controlled environment chamber was built around the pin on disc tribometer. 

The dimensions of the chamber were 79 cm x 64 cm. The chamber was built of 0.5 cm 

thick plexiglass and equipped with a humidifier and a dehumidifier that were controlled 

with a humidity controller (Electro-Tech Systems). With this equipment the relative 

humidity in the chamber could be controlled from 0 to 99 percent. The controller 

measured and controlled the humidity level in the environmental chamber with an 

accuracy of +2%. The humidifier set up included an ultrasonic humidifier and 10 cm 

circular fan to circulate the chamber environment. The dehumidifier consisted o f a 

vacuum-pressure pump and desiccator kit with calcium sulphate as drying medium.

3.2.H.2. WEAR TESTS UNDER ARGON ATMOSPHERE

The purpose of these experiments was to investigate the wear mechanisms that 

precluded oxidational wear. For this reason, a certain number of wear tests have been 

performed under an argon atmosphere. The environmental chamber around the pin-on-
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disc tribometer was purged with compressed argon gas in order to eliminate oxidation 

during sliding.

3.2.7. MICROHARDNESS MEASUREMENTS

Microhardness tests were done on the cross-sections of the coatings as well as on 

the flat sections of the worn surfaces to measure the hardness of coating on a microscopic 

scale. A Vickers diamond indenter was impressed into the material using constant loads 

between 15 and 1000 gf. A Buehler Microhardness Tester was used to measure the 

hardness of the coatings and the worn surfaces. The indentations were made using a 

square-based pyramid indenter (Vickers hardness scale).

33 . EXAMINATION OF SAMPLES WORN UNDER THE LABORATORY 

CONDITIONS

3.3.1. SCANNING ELECTRON MICROSCOPY

A scanning electron microscope (JEOL 5800 LV SEM) equipped with an energy 

dispersive spectroscope (EDS) was used to characterize the morphology of the plan view 

and cross sectional views of the worn surfaces, and to examine the wear debris particles. 

The cross-sectional samples for the SEM investigations were prepared as described in the 

next paragraph.
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33X 1. CROSS-SECTIONAL SEM METALLOGRAPHY

Worn samples for the SEM investigations were sectioned using a low-speed 

circular diamond saw. The sectioning was done as shown in Fig. 3.4 such that the 

metallographic cross-section to be examined was parallel to the sliding direction. The 

cutting was initiated at the free surface of the coating to reduce the possibility of 

separation from the substrate for metallographic preparation of the cross-sections. A fast 

curing epoxy resin mixed with a hardener was used as the mounting media. The surface 

of the mounted samples was ground with 180-grit SiC paper until the marks caused by 

the diamond saw were removed. The grinding operation was continued using 240, 400, 

600, 1200 and 2500 grit SiC papers. To avoid oxidation of the steel coatings anhydrous 

ethanol was used as lubricant after the 400-grit stage of grinding. Samples were then 

polished on polishing cloths impregnated with 3.0, 1.0, 0.25 and 0.1 pm diamond paste. 

The samples were ultrasonically cleaned in methanol after each stage of polishing.

33.1.2. EXAMINATION OF LOOSE DEBRIS PARTICLES

A low accelerating voltage of 7-10 kV was used to examine the debris particles in 

the SEM. This was done in order to prevent charging of the debris particles that usually 

comprised of non-conductive oxides.

33.2. COMPOSITIONAL ANALYSES BY X-RAY DIFFRACTION METHOD

A Rigaku DMAX-1200X-ray diffraction (XRD) machine, equipped with Cu K a 

tube located at the University of Windsor, and a Siemens D-500 XRD machine equipped
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with Cu Ka tube located at the General Motors Research and Development Centre were 

used to characterize the composition of the wear debris particles. The quantitative phase 

analyses of the oxides formed were done using the Rietveld refinement technique. The 

Rietveld refinement method was used because in the conventional X-ray analysis method 

the iron oxide peaks were grossly overlapped. In principle, the Rietveld method provides 

an effective way to separate these overlapping XRD peaks, thereby allowing an accurate 

determination of the structure. In this method the expected XRD pattern, including 

overlapped peaks of various shapes, is calculated from a model involving the crystallite 

size and strain characteristics, absorption and various geometric features, and 

instrumental profiles. The calculated and observed patterns are then compared point by 

point and the parameters in the model are adjusted (by a computer program) to give the 

best fit, in a least-squares sense, of the calculated and observed patterns. In this way, 

quantitative phase analyses use of all of the information that can be extracted from an 

XRD pattern. Detailed information on the Rietveld method can be found in references 

[147-149],

3 3 3 . WYKO AUTOMATED INTERFEROMETER

The surface morphologies of the wear tracks were quantified using an optical 

surface profilometer. For this purpose a WYKO surface profiler system (WYKO NT 

8000 System) was used. This is a non-contact optical profiler that uses two technologies 

to measure a wide range of surface heights. The phase-shifting interferometry (PSI) mode 

allows measurement of smooth surfaces. In the PSI mode, the maximum height resolved 

between adjacent pixels is 160 nm. The vertical-scanning interferometry (VSI) mode
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allows measurement of rough surfaces and steps. In the VSI mode, the greatest vertical 

distance is up to 500 pm. The basic interferometric principles are similar in both 

techniques and can be summarized as follows: Light reflected from a reference mirror 

combines with light reflected from a sample to produce interference fringes, the best- 

contrast fringe occurs at best focus. In the VSI mode, the white-light source is not 

filtered, and the system measures the degree of fringe modulation, or coherence, instead 

of the phase of the interference fringes. A beam splitter reflects half of the incident beam 

to the reference surface. The beams reflected from the sample and reference surface 

recombine at the beam splitter to form interference fringes. In this work, the VSI mode 

has been used to identify morphologies of the asperities on contacting surfaces, and the 

debris that is produced during sliding contact.
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Fig. 3.1- The PTWA set up used to coat inner surfaces of the cylinder bores. This set up 
is located at the General Motors Research and Development Centre, Warren, 
MI.
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Fig. 3.2- Photograph showing a) The general view of the pin on disc tribometer. b) The
sample holder and the pin.
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Fig. 3.3- Schematic drawing showing the main components of the pin-on-disc machine.
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. -► Wear Track

A’

Fig. 3.4- This figure schematically shows the way that the worn sample was sectioned 
(AA’). This method provided a good way for the examination of the 
subsurface damage parallel to the sliding direction.
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CHAPTER IV

RESULTS

COATING MICROSTRUCTURES, PIN-QN-DISC WEAR TESTS. 

AND CHARACTERIZATION OF WORN SURFACES

In this chapter, the results of the wear and friction tests performed on the PTWA 

1020, HVOF 1020 and HVOF 1020-2.5% A! thermal spay coatings are presented. In 

addition, microstructural characteristics of the coatings that are used in the interpretation 

of the tribological data are described.

All three coatings had layered microstructures consisting of steel splats and oxide 

phases. The oxide phase was mainly in the form o f thin veins (stringers) between the iron 

splats. Micropores that were formed during the thermal spraying process were also found 

to exist, mostly between the splats.

Wear tests were performed using a pin-on-disc type wear tester with a load range 

of 5-75 N and a sliding speed range of 0.2-2.5 m/s against tool steel pin. The majority of 

the tests were done in a dry air atmosphere. As will be shown later in this chapter, the 

wear rates of all the three types of coatings were high at low speeds and high loads. The 

wear rates of PTWA 1020 and HVOF 1020-2.5% A! coatings decreased by increasing the 

sliding speed. However, the HVOF 1020 coating showed a different behaviour; the 

coating showed high wear rates at high sliding speeds. The current chapter also includes 

the results of the microhardness tests done before and after the wear tests. The results of 

the wear tests done on the PTWA 1020 coatings in relative humidity levels between 10
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and 99% are also presented. The worn surfaces were characterized and the compositional, 

as well as the morphological changes that took place during wear were presented

following the results on the friction and wear measurements.

4  1. PLASMA TRANSFERRED WIRE ARC COATINGS (PTWA 1020)

4.1,1. MICROSTRUCTURE. COMPOSITION AND PROPERTIES

A typical SEM picture of the surface of the PTWA 1020 in the as-deposited 

condition is shown in Fig. 4.1. As shown in this secondary electron SEM image, the 

surface became rough after the thermal deposition process. The unmolten steel droplets 

can be seen on the surface as spherical protrusions, with an average diameter of 20-40 

pm. There are also large and relatively featureless areas (mostly on the upper side of the 

figure), which correspond to the molten material. The micrograph also shows the 

existence of the micropores of about 10 pm in diameter in the microstructure. Micropores 

were formed when gas or air bubbles were trapped between the splats as they stacked up 

during the deposition process. The volume fraction and the size of the pores were 

analysed using an image analysis system and are presented in Table 4.1.

According to the WYKO optical profilometery measurements taken from the as- 

deposited condition of the coating surface, the average roughness (R,) was 18±2 pm.

Fig. 4.2 is a back-scattered SEM micrograph of the top surface of the same 

PTWA 1020 coating after polishing it to an average surface roughness, Ra of 0.1 pm. The 

circular features are the remnants of the unmolten droplets. The network of the thin oxide
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Coating Thickness (pm) 250 ±10

Coating Density (g/cm3) 7.4 ±0.1

Vickers Hardness of Coating (kg/mm2) 310 ±30

Volume Fraction of FeO 0.20 ±0.02

Thickness of FeO Phase (pm) 0.2-5.0

Volume Fraction of Pores 0.05 ±0.01

Diameter of Pores (pm) 3-18

Thickness of Steel Splats (pm) 10-20

Table 4.1- Microstructural characteristics o f the PTWA 1020 coatings. Note that the
volume fraction of constituents was computed using an image analysis system 
and Vickers hardness was measured using a load of 25 g.

vein structure that was formed between the steel splats can be seen clearly. The average 

width of the steel splats, as measured in the top view varies between 10 to 100 pm.

Fig. 43  shows the general cross-sectional view of the 319A1 alloy that was used 

as the substrate on which the PTWA 1020 coating deposited. The interface of the coating 

and the substrate is rough (Ra =10±2 pm) as a result of the sand blasting process 

described in Section 3.1.1. In this section, it was indicated that the surface roughening by 

sand blasting served to provide a mechanical adhesion and interlocking between the 

coating and the substrate. The thickness of the coating estimated from this figure is about 

250+30 pm.
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Fig. 4.4a is a back-scattered SEM micrograph of a polished cross-section of the 

PTWA 1020 coating (unetched). This micrograph shows the presence of two different 

phases in the microstracture. The energy dispersive spectroscopy (EDS) analysis of the 

light grey area shows the existence of only elemental Fe. The EDS spectrum of this area 

is shown in Fig. 4.4.b. The iron splats are separated by thin veins that are dark grey in 

colour. The EDS analysis from the veins shows the presence of Fe and O elements (Fig.

4.4.c). The X-ray diffraction spectrum of the coating indicates that the oxide corresponds 

to the peaks that belong to FeO type iron oxide. The diffraction pattern of the coating can 

be seen in Fig. 4.4.d, where a-Fe and FeO peaks are labelled. No other type of oxide 

could be detected.

The main microstructural properties of the PTWA 1020 coating, including the 

volume fraction FeO phase, the thicknesses of the oxide layers and iron splats, and the 

average pore diameter are listed in Table 4.1.

4.1.2. PIN-QN-DISC WEAR TEST RESULTS; WEAR RATES UNDER DRY

ATMOSPHERE

The variation of wear rates of the PTWA 1020 coating as a function of sliding 

speed determined at several constant load levels of 5 N, 10 N, 25 N, 50 N and 75 N is 

shown in Fig. 4.5. As explained in Section 3.2.1., these tests were conducted using a pin- 

on-disc type wear machine under a dry air atmosphere with relative humidity, RH =7- 

10%. The wear rates of the PTWA 1020 coatings were obtained by dividing mass loss 

after the wear test by the total sliding distance. Each point on the plots shown in Fig. 4.5 

represents wear rate data for the coating worn at a given sliding speed and load. At 10 N
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load and 0.5 m/s sliding speed, the coating wear rate was 5.80 x 10"6 g/m. The wear rates 

decreased to 1.50 x W 6 g/m as the speed increased to 2.5 m/s. At 50 N load, for the tests 

performed at a low speed of 0.2 m/s, the measured wear rate was 30.52 x 10”6 g/m. At this 

load level, by increasing the sliding speed to 2.5 m/s, the wear rate decreased

significantly to 7.52 x 10”6 g/m.

In summary, the wear rates of the PTWA 1020 decreased by increasing sliding 

speed. This was particularly evident at high loads of 50 N and 75 N. The decrease in the 

wear rate with speed indicates that the PTWA 1020 coatings were subjected to a 

transition at speeds approximately above 1.0 m/s. At sliding speeds more than 1.0 m/s, 

the wear behaviour of the coating was independent of the sliding speed, and remained 

almost constant at all the applied loads.

The measured weight loss was converted to volume using the density of the 

coating. The volumetric wear of the coating for different loads versus sliding speeds is 

presented in Fig. 4.6. As an example of typical volumetric wear rate values, for the tests 

performed at 50 N load and a sliding speed of 0.2 m/s, the measured wear rate was 4.12 x

10'3 mm3/m; by increasing the sliding speed to 2.5 m/s, the wear rate decreased to 1.02 x

10” nun /m. The purpose of presenting the wear data in terms of volumetric wear was to 

compare the wear rates of the PTWA 1020 coatings with those of the two other coatings 

with different densities.
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4.13. SEM OBSERVATIONS OF WORM SURFACES

4.13.1. SEM OBSERVATIONS OF THE SAMPLES TESTED AT LOW SPEEDS

The back-scattered SEM micrograph of the worn surface of the coating tested at 

10 N load and 0.5 m/s sliding speed after 5000 m sliding distance is shown in Fig. 4.7.a. 

The SEM micrograph shows two different regions. The EDS analysis of the dark grey 

areas, which is shown in Fig. 4.7.b, indicates the formation of the oxygen rich patches 

during the sliding. The EDS analysis o f the light grey area, which is given in Fig. 4.7.c, 

reveals the dominant presence of Fe. The light grey regions are identified as the iron 

splats. The micrograph shows that the top surfaces of the iron splats were subjected to 

plastic deformation and extruded in the direction parallel to the sliding direction. The 

surface also exhibits microscratches that have a typical width of a few micrometers. The 

oxide rich layers were formed within the microscratches on the contact area. These oxide 

rich layers covered about 20% of the total area of the worn surface. At this loading 

condition, the oxide rich patches on the contact surfaces had a powdery and porous 

appearance. The morphology of the oxide patches can be seen more clearly in Fig. 4.8, 

where they are tilted at an angle of 15° to the worn surface to emphasize the 

morphological details.

The wear debris generated at 10 N load and 0.5 m/s sliding speed was orange in 

colour to the naked eye. The secondary electron SEM image of the debris collected from 

the test performed under 10 N load and 0.5 m/s speed (Fig. 4.9) showed very fine 

particles agglomerated to form oxide aggregates of 2-4 pm thick. The XRD analyses of 

the debris indicated that Fe2<)3 was the predominant constituent of the wear debris. 

Details on the X-ray diffraction analyses of the debris will be presented in Section 4.1.4.
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Fig. 4.10.a is the back-scattered SEM micrograph of the worn surface of a sample 

tested at 75 N load and 0.5 m/s sliding speed. Once again, the micrograph shows two 

different areas that are light and dark grey in colour contrast. The EDS analyses from the 

light grey areas showed the presence of elemental Fe, indicating that they are steel splats. 

The top surfaces of the steel splats were flattened as a result of plastic deformation during 

wear, and extruded in the sliding direction. However, the mechanical damage was much 

more severe than those tested at 10 N load at the same low sliding speed. An important 

feature of the surface morphology is the presence of surface cracks mostly at the tip of 

the flattened steel splats. These cracks were formed as a result of the fracture of the edges 

of the severely deformed steel splats. The fractured edges of the steel splats are marked 

with the arrows on the micrograph in Fig. 4.10.a, The EDS of the dark grey regions 

indicated that the constituents in this area included iron and oxygen. About 30 % of the 

wear tracks were covered by the oxide rich films. Attempts were made to obtain the XRD 

spectra directly from selected areas on the wear tracks in this and other samples, but the 

oxide coverage was small, and the surface layers were too thin to resolve reliable 

information about the state of oxidation of these layers. However, the XRD spectra of the 

debris particles detached from the worn surfaces provided information about the oxides 

formed during sliding wear. This data is presented in Section 4.1.4. Fig. 4.10.b is a higher 

magnification micrograph, which shows the severe plastic deformation on the surface and 

fracture at the tip of the splats. The micrograph was taken from the worn surface of the 

coating tested at 50 N load and 0.2 m/s speed.

The wear debris collected under these conditions was magnetic, and dark brown 

in colour. The secondary electron SEM image from the debris gathered from the test
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conducted at 50 N and 0.5 m/s is shown in Fig. 4.11. This figure illustrates plate-like 

fragments mixed with small powdery particles. The thickness of the plate-like debris was 

about 5-20 pm with an average width of 50- 200 pm. The XRD results of the wear debris 

showed the presence of ferrite, FeaOs, FesO^ and FeO (see Section 4.1.4). It is important 

to emphasize that there was also a significant amount of metallic ferrite in the debris. The 

high magnification SEM image illustrating the morphology of the plate-like debris is 

shown in Fig. 4.11.b.

In summary, the surface of the coatings, which exhibited the highest wear, rates 

under test conditions of high loads (50 N and 75 N) and low speeds were characterized by 

relatively thin, oxide-rich films. However, the most important aspect of the worn surfaces 

was the presence of highly deformed steel splats with fractured tips.

4.13.2. SEM OBSERVATION OF THE SAMPLES TESTED AT HIGH SPEEDS

The back-scattered SEM micrograph of the sliding surface of the coating, worn at 

50 N and 2.5 m/s is shown in Fig. 4.12. The EDS analyses showed the presence of Fe and 

O in the dark grey regions, and only the Fe peaks in the light grey areas. The micrograph 

shows evidence of deformation mostly in the form of surface grooving of both the oxide- 

rich layers and the iron splats. On the other hand, the steel splats although severely 

deformed, appeared to be much less susceptible to fracture compared to the coatings 

tested at the same load but at lower speeds (see Fig. 4.10). The worn surfaces of the 

samples tested at 50 N and 2.5 m/s were significantly different from the sliding surface of 

the coating tested at 50 N and 0.5 m/s, this was also the case in terms of the area fraction 

of the iron-oxide-rich layers on the worn surfaces. About 70% of the wear track of the
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samples tested at high loads and high speeds were covered by relatively thick oxide rich 

layers, whose average thicknesses varied between 1-3 pm. In contrast, the oxide-rich 

layers on the high load and low speed samples were thinner (less than 1 pm) and 

discontinuous. The micrograph in Fig. 4.12 is selected in order to Illustrate the 

deformation pattern, and to demonstrate that the area fraction of the oxide-rich layers was 

less than the average coverage. Fig. 4.13 is a back-scattered SEM image from worn 

surfaces of the samples tested at 50 N and 2.5 m/s that shows the section of the wear 

track that was almost totally covered by an oxide rich film. This micrograph also shows 

the spallation of the oxide film. A low-magnification SEM image that shows another 

example of the spallation of the oxide layers is given in Fig. 4.14. Therefore, formation 

and removal of the oxide layers, rather than the surface deformation and fracture, controls 

the wear rates under these loading conditions.

The wear debris collected under these conditions was magnetic and black in 

colour. The secondary electron SEM image from the debris gathered from the test 

performed at 75 N and 2.5 m/s is shown in Fig. 4.15. This figure illustrates plate-like iron 

oxide with a thickness of about 1-3 pm with an average width of 50-200 pm.

Samples tested at high velocities but low loads show some differences compared 

to those tested at high loads. For example, the percentage of the area covered by the oxide 

was smaller in comparison: Approximately, 50% of the worn surfaces of the samples 

tested at low loads and high speeds (e.g., tested at 10 N and 2.5 m/s) were covered by the 

oxide rich layers as shown in Fig. 4.16. These layers typically extended over the top of 

the steel splats, rather than being located in the grooves. Another difference was in the 

thickness of the layers, which was less than 1 pm in this region. On the other hand, the
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SEM evidence for the steel splat fracture was very rare in this region as in the high load 

tests at the same as the high speed conditions. This could be seen by comparing Figs. 

4.12 and 4.13 with Fig. 4.10.

4.1.4. X-RAY DIFFRACTION OF LOOSE DEBRIS PARTICLES

The XRD spectra of the loose wear debris obtained from samples tested at three 

different test conditions are shown in Figs. 4.17-4.19. Fig. 4.17 shows the XRD pattern 

of debris taken from samples tested at low loads and speeds, namely at 10 N and 0.5 m/s. 

Fig. 4.18 shows the XRD pattern for high load and low speed tests, i.e., at 50 N and 0.5 

m/s. The high speed and high load XRD spectra is represented in Fig. 4.19 for samples 

tested at 50 N, 2 m/s. (Refer to Fig. 4.5 for the corresponding wear rates). XRD tests 

could not be done on the samples tested at high speeds and low loads because of the 

small amount of debris produced during wear under these condition. Although some 

oxide peaks overlapped, each oxide had a unique set of peaks that did not overlap with 

the others, making it possible to unequivocally identify each type of oxide in the debris.

Quantitative phase analyses of the oxides generated during wear at different 

testing conditions were done using the Rietveld analysis as described in Section 3.3.2. 

The results obtained from the Rietveld refinement of the spectra of Figs. 4.17-4.19 are 

summarized in Table 4.2. These samples exhibited different ranges of wear rates and 

were expected to follow different wear mechanisms. The XRD spectrum of the debris at 

10 N load and 0.5 m/s speed, representing low load and low speed conditions, shows the 

peaks for hematite (FeiOs) and a few small peaks of ferrite (Fig. 4.17). The quantitative 

phase analysis shown in Table 4.2 confirms that at low loading and speed conditions,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FeiOs was the predominant constituent (> 99.9 %) of the wear debris. As shown in Table

4.2, by increasing the load to 50 N at the same speed (0.5 mis), the proportion of Fe203 in 

the debris was decreased. The XRD spectrum in Fig. 4.18 shows that at high load and 

low speed conditions, the debris consisted of a mixture of three types of iron oxides: 

FeaOs, Fe304 , and FeO. It is important to emphasize that there was also a significant 

amount of metallic ferrite in die debris, due to the fracture of the splat tips. Referring to 

Fig. 4.19 and Table 4.2, by increasing the sliding speed from 0.5 m/s to 2 m/s at a high 

load (50 N), the constituents of the debris remained the same, consisting of ferrite and 

three types of iron oxides, namely Fe203, Fe304, and FeO. However, the relative amounts 

of the oxide phases changed slightly. It was also noted that the percentage of ferrite in the 

debris was considerably smaller.

Phase ION, 0.5m/s SON, 0.5m/s SON, 2 m/s

Ferrite
(Fe)

0.02 15.38 6.70

Hematite
(Fe20 3)

99.97 41.43 60.31

Magnetite
(Fe30 4)

0.01 20.30 22.13

Wuestite
(FeO)

0.00 22.89 10.85

Table 4.2- Quantitative XRD phase analysis of the debris (in weight fraction) at three 
different loading conditions.
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4X5. SEM OBSERVATIONS OF THE CROSS-SECTION IW PEE THE WORN

SURFACE

The wear tracks of the PTWA 1020 samples that showed mechanical wear 

(deformation and splat tip fracture) at high loads and speeds were sectioned in order to 

observe the extent of subsurface damage. Figs. 4.19 and 4.20 are the back-scattered SEM 

micrographs of the cross-sections of the worn tracks of the PTWA 1020 coating tested at 

50 N and 0.5 m/s where the highest wear rates were measured. Fig. 4.20 shows that the 

splats adjacent to the contact surfaces were deformed during wear and elongated in the 

sliding direction. Fig. 4.21 shows another area beneath the worn surface where steel 

splats adjacent to the worn surface delaminated along the FeO veins within the coating, 

causing the removal of entire individual splats as a whole. However, the removal o f entire 

splats was not a commonly observed wear mechanism. Normally, only the tip of the 

severely deformed splats was fractured (Fig. 4.10). This mechanism will be discussed in 

detail in Section 5.1.1.

4.1.6. MEASUREMENTS OF TEMPERATURE ANP COEFFICIENTS OF

FRICTION

The contact surface temperature of the coating increased when both the sliding 

velocity and the applied load were increased. Tests were done to study the increase of the 

surface temperature at a constant load of (50 N), and the temperature was measured using 

a thermocouple embedded under the surface of the samples tested at different sliding 

velocities. The coefficients of friction were determined simultaneously. At any given 

loading condition, the surface temperature increased rapidly with the sliding distance at
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the beginning of the test, and then reached a plateau. The temperatures reached a steady 

state after running to a certain sliding distance. This data is plotted in Fig. 4.22. The 

figure shows the variation of sliding induced temperatures increase and coefficients of 

friction with sliding speed, for samples tested at a constant load of 50 N. Another set of 

tests was performed at a constant sliding speed, and the load was changed systematically. 

Fig. 4.23 shows the variation of sliding induced temperature rises, and coefficients of 

friction (COF) with normal loads for samples tested at a constant speed of 2.5 m/s. In 

both cases, the coefficient of friction decreased as the load or the speed was increased. As 

shown in Figs. 4.22 and 4.23, the surface temperature increased significantly with the 

sliding speed (to 250°C at 2.5 m/s) and load (to 340°C at 75 N). This was attributed to an 

increase in the rate of surface oxidation. This was consistent with the SEM observations 

that the oxide rich layers on the wear tracks were thicker and more continuous when the 

test loads and speeds were high, hence reducing the COF. It should be noted that the 

temperatures reported in Figs. 4.22 and 4.23 were the average temperatures o f a region of 

100-200 pm above the contact surfaces. It is expected that the contact temperatures at the 

asperity tips (flash temperatures) could readily reach values approximately 3 times higher 

than those measured values.

4.1.7. HARDNESS OF WORN SURFACES

Fig. 4.24 shows the variations of the microhardness of the coating after wear 

testing with sliding speed at constant loads of 25 N, 50 N and 75 N. For samples where 

there was an oxide layer on the wear track, the hardness data were obtained from regions 

where the flattened top surfaces of the iron splats were exposed. An example of such an
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area where a Vickers indentation was made at the surface of a non-oxidized part o f the 

wear track is shown in Fig. 4.25. The hardness of the wear track was always higher 

compared to that of the unworn area of the coatings (310 kg/mm2) under all conditions. 

For example, the average worn surface hardness of samples tested at 25 N and 0.2 m/s 

was about 400 kg/mm2. The increase of hardness after the wear test could be attributed to 

work hardening of the sliding surfaces as a result of severe plastic deformation o f the 

steel splats at or near the contact surface. The effect of surface hardening was more 

pronounced at higher loads. For example, a surface hardness of 550 kg/mm2 was 

measured at 75 N (0.5 m/s). In fact, the worn surface hardness increased as the test 

conditions became more severe.

For the tests conducted at high loads and velocities, the hardness of wear tracks 

increased to exceptionally high values o f over 700 kg/mm2. At 75 N and 2.5 m/s, for 

example, the average hardness of the steel splats on the contact surfaces reached 800 

kg/mm2. TEM analyses carried on the deformed subsurface of the sample tested at 75 N 

and 2.5 m/s will be presented in Section 5.3. to provide a more detailed understanding of 

the fundamentals of the surface hardening during the sliding.

4 .0 .  WEAR RATES UNDER CONTROLLED HUMIDITY ATMOSPHERE

In the tests described so far, the humidity of the testing environment was kept low 

at 7-10% RH. Results of wear tests done at higher humidity levels are presented in this 

section. The variations of the wear rates of the PTWA 1020 coatings with the relative 

humidity (RH) -are shown in Fig. 4.26. The coatings tested at 5 N and 0.1 m/s showed 

that at 30% RH, the wear rate dropped to zero. For humidity levels above 30%, the
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samples gained weight during sliding (see the insert in Fig. 4.26 for the wear rates at 5 N 

and 0.1 m/s). The high humidity atmosphere could cause weight gain by either increasing 

the rate of oxidation, or hydrating the nascent surface oxide. The measured wear rate for 

the tests at 12% RH was 6 x 10"8 g/m. By increasing the relative humidity to 60%, the 

wear rate reached a negative value of 7 x 10'8 g/m.

Similarly, for the testing conditions of ION and 0.5 m/s, the wear rates decreased 

as the relative humidity increased. By increasing the relative humidity from 10 to 80%, 

the wear rates decreased from 5.8 x IQ*6 to 0.98 x 10"6 g/m, but no weight gain occurred. 

On the other hand, when the tests were performed at the same sliding speed of 0.5 m/s, 

but a higher normal load of 50 N, the wear rates became significantly higher at all 

humidity levels. At %RH = 10, the wear rate was measured as 16 x IQ-6 g/m. At relative 

humidity levels higher than 50%, the wear rates showed a small decrease up to %RH = 

40, but then reached a maximum of 17 x 10"6 g/m at about %RH = 55. A steep decrease 

to 0 8.14 x 10"6 g/m at %RH = 90 occurred after this point.

For the tests at 50 N and 2 m/s, the wear rates first increased to a peak (12.4 x 10'6 

g/m), after which, they showed a decline. The peak corresponded to a relative humidity 

level of 85% (Fig. 4.26). This rather complex dependence on the wear rates to the 

humidity has been rationalized by considering the effects of competing micromechanisms 

of wear that occurred as the humidity increased. The changes in the surface morphologies 

as determined by the SEM are described in the next section.
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4.1.9. SEM OBSERVATIONS OF WORN SURFACES UNDER CONTROLLED

HUMIDITY

Figs. 4.27 and 4.28 are the back-scattered SEM micrographs of the worn surfaces 

of the coatings tested at a load of 5 N and 0.1 m/s sliding speed, at low humidity (12% 

RH) and high humidity (80% RH) conditions respectively. The wear track of the sample 

tested at 80% RH (Fig. 4.28) was much smoother than that shown in Fig. 4.27 for 12% 

RH, which showed higher wear rates (see the insert in Fig. 4.26). EDS analyses identified 

the light grey areas as metallic, and the dark areas as oxygen-rich layers. At low humidity 

levels (Fig. 4.27), the oxide layer was uniformly distributed between the microscratches 

on the contact area. The metallic, parts were subjected to plastic deformation and 

extruded in die sliding direction. The micrograph of the sample worn at high humidity 

levels (Fig. 4.28) showed a different behaviour. The metallic parts were polished to 

almost a mirror finish, so well that the oxide veins (FeO) between the splats can be 

clearly observed on the worn surfaces. At high humidity levels, the oxide that formed 

during wear was hydrated, and easily removed from the surface. This oxide was 

transported to and compacted in the surface pores and non-contact areas. At 10 N load 

and 0.5 m/s sliding speed, the worn coating morphologies were similar to those tested at 

5 N and 0.1 m/s.

Figs. 4.29 and 4.3# show the worn surfaces of the coatings tested at 50 N load and 

0.5 m/s sliding speed at a moderate humidity level of 50% (the highest wear rate among 

all the test conditions), and a high humidity level of 90% RH (the low wear rate). Fig. 

4.29 shows two different morphologies of oxides on the worn surfaces. Using the EDS, 

the dark grey areas were identified as an oxide. The oxide decorated the depressions on
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the surface and had a granular microstructure. The medium grey regions, which were 

surrounded by light grey areas were also identified as oxides. The light grey regions 

represent the steel splats. The steel splats were flattened as a result of plastic deformation 

during wear. This micrograph also shows that some of the splat fragments were forged on 

the contact surface by the counterface. In Section 5.1.1, it was reported that the fracture 

of the edges of the highly deformed steel splats was the primary reason that led to debris 

formation under dry air conditions. The same mechanical wear mechanism appeared to 

control wear at 50% RH (Fig. 4.29). At 90% RH, however, the metallic surfaces were 

smoother (Fig. 4.30), and there was less evidence for fracture and fragmentation 

compared to 50% RH.

In summary, at low humidity conditions, the splats adjacent to the sliding surfaces 

were deformed plastically, especially at high loads and low speeds conditions. Severe 

plastic deformation at the edges of the splats caused fracture and fragmentation of the 

splat tips. At high humidity conditions, the metallic parts of the contact areas were 

smoother, and exhibited less evidence for surface damage and fracture at high loads.

4.1.10. THE EFFECT OF HUMIDITY ON THE COEFFICIENT OF FRICTION

Figs. 4.31.a and b show the variation of the COF of the PTWA 1020 coatings 

with the sliding distance at different humidity levels for samples tested at 5 N - 0.1 m/s, 

and SON - 0.5 m/s. These plots show that the COF decreased at high RH for tests at both 

load levels. However, this effect was more pronounced at 50 N and 0.5 m/s and 50% RH 

(highest wear rate) where the average COF was 0.65 (Fig. 431.b). The COF decreased to 

0.5 at 90% RH (lowest wear rate). It is also noted that the COF curve was smooth.
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The change in the average COF as a function of humidity is shown in Fig. 432 

for wear tests performed under the loading conditions of 50 N - 0.5 m/s. The data shows a

monotonic decrease in the COF with increasing humidity.

4.1.11.RESULTS OF XRP ANALYSES

The XRD spectra of the wear debris of samples tested at 50 N and 0.5 m/s at two 

different relative humidity conditions of 50% and 90% are given in Fig. 433. Rietveld 

analyses were performed in order to analyze the relative amounts of four different 

components, namely, a-Fe, FeaOs, FeO, and FesO^ in the wear debris. As mentioned 

previously, it was difficult to differentiate between the various iron oxide phases because 

many X-ray intensity lines overlapped. However, the relatively strong a-Fe reflection at 

20 = 44° does not overlap with any oxide peaks, and consequently, the analysis resulted 

in a reliable estimate of the amount of non-oxidized iron in the debris. Fig. 434 shows 

how the metallic iron content in the debris varied as a function of the relative humidity of 

the wear environment for samples tested at 50 N and 0.5 m/s. The iron content of the 

debris first increased for RH values up to 50%, which corresponded to the highest wear 

rates, and then decreased for the tests done under higher humidity conditions. In this 

respect, there is a close correlation between the wear rates and the amount of metallic 

iron present in the debris. This was explained on the basis of a transition from mechanical 

wear that occurred by fracture of iron splat tip to a water activated chemical polishing 

wear which produced small amounts of metallic debris. These two wear mechanisms will 

be discussed in detail in Sections 5.1 and 5.4.
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4.2. HIGH VELOCITY OXY-FUEL HVOF 1020 COATINGS

4.2.1. MICROSTRUCTURE. COMPOSITION AND PROPERTIES

Fig. 435.sa is a back-scattered SEM micrograph of a polished cross-section of the 

HVOF 1020 coating. This micrograph shows the different constituents that existed in the 

microstructure. The energy dispersive spectroscopy (EDS) analysis of light grey regions 

seen in Fig. 4.35.a shows the existence of only elemental Fe (Fig. 4.35.b). The EDS 

analysis (Fig. 4.35.c) from the grey areas in Fig. 4.35.a shows the presence of Fe and O 

elements. The X-ray diffraction analyses of the coating exhibited the peaks that belonged 

to FeO type iron oxide and a-Fe. The diffraction pattern of the coating is presented in 

Fig. 4.35.d. The HVOF 1020 coatings had a composition similar to that of the PTWA 

1020 for which the EDS and XRD results were reported in Section 4.1. However, the iron 

splats in the HVOF 1020 coatings were wavier, and in general thinner than those in the 

PTWA 1020.

It is important to note the considerable difference in the amount of FeO between 

the coatings. The amount of FeO in the PTWA 1020 coatings was estimated at 20% by

volume using an image analysis system while the amount of FeO in HVOF 1020 was

significantly higher, and was estimated at about 65%. Table 4.3 presents the important

microstructural features and properties of the HVOF 1020 coatings.

4.2.2. PIN-ON-DISC WEAR TEST RESULTS UNDER DRY ATMOSPHERE

The variation of wear rates of the HVOF 1020 coating as a function of sliding speed at 

several load levels of 5 N, 10 N, 25 N, 50 N and 75 N is shown in Fig. 4.36. The wear
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tests were conducted using a pin-on-disc type tribometer under a dry air atmosphere with 

relative humidity of 7-10%. The wear rates of the HVOF 1020 coatings were obtained by 

dividing mass loss after the test by the total sliding distance. The measured weight losses 

were converted to volumes using the density of the coating. For the tests performed at 25 

N and 10 N, the wear rates increased monotonically as the sliding speed increased. At 10 

N, the wear rate measured at a sliding speed of 0.2 m/s was 0.25 x 10' mm Im. By

■y 3

increasing the sliding speed to 2 m/s, the wear rate increased to 0.76 x 10' mm Im.

Coating Thickness (pm) 400+10

Coating Density (g/cm3) 7.1 ±0.1

Vickers Hardness of Coating (kg/nun2) 370 ± 25

Volume Fraction of FeO 0.65 ± 0.02

Thickness of FeO Phase (pm) 0.2-8.0

Volume Fraction of Pores 0.02 ± 0.01

Diameter of Pores (pm) 0.7- 5.0

Thickness of Steel Splats (pm) 1.5-7

Table 43- Microstractural characteristics of the HVOF 1020 coatings.
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Similar wear behaviour, namely higher wear rates with increasing speed, was 

observed at a 25 N load. At high loads, the wear rates of the HVOF 1020 showed more 

sliding speed dependence. At 75 N, the wear rates at low speeds were very high, i.e., 7.6 

x 10' mm /m at 0.2 m/s. The wear rates at this load decreased to a minimum at mid­

range sliding speeds, i.e., 1.32 x 10'3 mm3/m at 1 m/s, which was comparable to the wear 

rate of the PTWA 1020 measured under the same conditions in Fig. 4.6. However, 

contrary to the behaviour of PTWA 1020 in HVOF 1020 samples tested above Im/s, the 

wear rates increased significantly with sliding speed, and reached 4.56 x 10'3 mm3/m at 2 

m/s. The wear rate of the HVOF 1020 coating at 75 N and 2 m/s loading condition was 

74% higher than that of the PTWA 1020 coating at equal testing conditions.

4.2.3. SEM OBSERVATIONS OF WORN SURFACES

The secondary and back-scattered SEM images of the worn surface of the coating 

tested at 10 N load and 0.5 m/s sliding speed for a sliding distance of 5000 m are shown 

in Figs. 4.37.a and b. The microscratches are seen clearly in Fig 4.37.a. The secondary 

SEM image in Fig. 4.37.a exhibits the surface topography more clearly. The 

microscratches on the sliding surface of the coating extend parallel to each other with a 

typical width between 2 and 4 microns. The back-scattered image shows the existence of 

three different regions on the sliding surface. The EDS analyses of the medium and dark 

grey regions indicated the presence of the oxygen and iron. The medium grey areas had a 

morphology consisting of veins, with the composition of FeO, similar to the composition 

of the veins in the unworn samples. The dark grey regions were recognized as the oxygen 

rich patches. The SEM micrograph (Fig. 4.37A) shows that iron oxides occupy regions
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between the plastically deformed iron splats, and are inside the microscratches. The wear

debris gathered was a non-magnetic powder that was dark orange in colour. The XRD 

analyses of the debris from this loading condition indicated that FeiOs was the 

predominant constituent.

The highest wear rates for the coating were .observed at high loads and low sliding 

speeds. The back-scattered SEM micrograph of the worn surface of the coating tested at 

75 N load and 0.5 m/s is shown in Fig. 438. The micrograph shows two different 

morphologies of oxides on the worn surfaces. Using the EDS, the dark grey areas were 

identified as oxygen rich regions (possibly mixed oxides). The oxide particles formed the 

granular microstructure seen on the upper part of this figure. The medium grey regions 

were also identified as oxides, which stayed on the surface and were surrounded by light 

grey regions identified as steel splats. The sliding surface of the coating was severely 

damaged, and in some parts the iron splats deformed and extruded in the sliding 

direction. Fig. 4.39 shows a back-scattered SEM image from the worn surface of the 

coating tested at the same loading conditions. In this figure, the splats on the contact 

surface appeared flattened as a result of plastic deformation during wear. The wear debris 

gathered under these conditions was magnetic and dark brown in colour. The quantitative 

XRD phase analysis of the debris of the coating tested at 75N load and 0.5 m/s shows the 

presence of ferrite, Fe2C>3, FesO^ and FeO (Table 4.4). It is important to emphasize that 

there was a considerable amount of metallic ferrite in the debris. Similar observations 

were made on the PTWA 1020 coatings tested at the same loading conditions (Section 

4.1.3.1.).
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Fig. 4.40 shows the worn surface of the coating tested at high load (75 N) and 

high sliding speed (2 m/s) after 5000 m sliding distance. The micrograph shows a 

severely deformed and damaged surface associated with the cracks normal to the sliding 

direction. The existence of the cracks suggests that residual stresses of large magnitude 

existed in the oxide layers that covered the deformed surfaces. Fig. 4.41 shows a back- 

scattered SEM micrograph of the HVOF 1020 coating worn at 50 N load and 2.5 m/s. 

The micrograph was taken from a region on the wear track, which shows evidence for 

surface oxidation during sliding, and deformation mostly in the form of surface grooving 

of the iron splats. Fig. 4.42 exhibits the larger area of the worn surface. The micrograph 

shows that the worn surface has a high roughness along with scattered oxide patches. The 

sample tilted about 60 degrees in the direction of the horizontal axis to show the details of 

the surface roughness.

The observations summarized in the above paragraph indicated that the worn 

surfaces of the HVOF 1020 coatings tested at high loads and speeds were significantly 

different from the sliding surfaces of the PTWA 1020 coating tested at the same loading

condition. The iron oxide rich layers generated on the contact surfaces of the HVOF 1020 

samples were generally 3-10 pm thick. The oxide layers on the sliding surfaces were 

discontinuous and well apart. Fig. 4.43 shows that rich film as thick as 7 pm were formed 

on the sliding surface of the HVOF 1020 coating tested at 75 N and 2 m/s for a sliding 

distance of 5000 m. The micrograph was taken at a tilted angle of 60° to the worn surface 

to accentuate the morphological details. Fig. 4.44 is another micrograph, which shows 

again the formation of the thick oxide layer. This image shows cracking and the 

fragmentation of the oxide film. The secondary electron SEM image from the debris
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gathered from the test done under 75 N and 2.5 m/s is shown in Fig. 4.45. This figure 

illustrates the plate-like iron oxide debris with a thickness of about 3-7 pm was detached 

from the oxide layers formed on the contact surface.

4.2.4. X-RAY DIFFRACTION OF LOOSE DEBRIS PARTICLES

The quantitative phase analyses obtained from Rietveld refinement of the XRD 

spectra of wear debris at high loads and low sliding speeds of HVOF 1020 are given in 

Table 4.4. The proportion of ferrite among the oxidized debris particles produced at these 

testing conditions was higher compared to other testing conditions. In HVOF 1020, 23% 

of the debris generated at 75 N, and 0.2 m/s consisted of ferrite. This was reduced to 6% 

on the surfaces of samples tested at 2.0 m/s, indicating that a transition from mechanical 

to oxidative wear mechanism occurred.

Phase 75N, 0.5m/s 75N, 2sn/s 50N, 2 m/s

Ferrite
(Fe) 23 6 6

Hematite
(FeaOa) 30 16 10

Magnetite
(Fe30 4) 20 36 36

Wuestite 
....... (F®0)

27 42 48

Table 4.4 - Quantitative XRD phase analysis of debris (weight percent) of the HVOF 
1020 coatings tested at different loading conditions.
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The other aspects of the wear of HVOF 1020 coatings, such as the frictional 

temperature increase are given in Section 5.2.2. where this data was analysed and 

compared with similar data from other coatings.

43. HIGH VELOCITY OXYGEN FUEL HVOF 1020-2.5% A! COATINGS

43.1. MICROSTRUCTURE. COMPOSITION ANP PROPERTIES

The microstructure of the HVOF 1020-2.5% A1 coatings (Fig. 4.46.a) exhibited 

similarities to the others and showed steel splats, and FeO layers between them. 

However, the addition of 2.5% A1 caused two important changes. These were: i) The 

formation of an additional Fe, O, and A1 rich phase (Fig. 4.46.b), and ii) the significant 

reduction of the FeO (60%) in the HVOF 1020 coatings to 15%. Therefore, the FeO 

amount in the HVOF 1020-2.5% A1 was similar to that in the PTWA 1020. The 

diffraction pattern of the HVOF 1020-2.5% A1 coating is presented in Fig. 4.46.d. The 

XRD spectrum in Fig. 4.46.d shows peaks that belong to ferrite. Unlike the EDS 

analyses, the XRD result from the coating did not show the presence of the Fe, O, and A1 

rich phase.

4 3 . 2 .  P M - O N - P I S C  WEAR TEST R E S U L T S ;  WEAR RATES UWPER PRY 

ATMOSPHERE

Wear tests on the HVOF 1020-2.5%A1 coatings have been performed at constant 

loads of 10, 50, and 75 N, and the wear rates are shown in Fig. 4.47. At 10 N, the wear 

rates of the HVOF 1020-2.5%A! were low and decreased slightly with the sliding speed.
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Coating Thickness (pm) 400 ± 10

Coating Density (g/cm3) 6 .8  ± 0.1

Vickers Hardness of Coating (kg/mm2) 290 ± 40

Volume Fraction of FeO 0.15 ±0.02

Thickness of FeO Phase (pm) 0.2

Volume Fraction of Pores 0.01 ± 0.01

Diameter of Pores (pm) 0.7-1.5

Volume Fraction of (Fe, O, Al) 
Inclusion 0.06 ± 0.02

Thickness of Steel Splats (pm) 1.5-7

Table 4.5- Microstructural Characteristics of the HVOF 1020-2.5% A1 Coatings.

It is important to note that at 75 N, the wear behaviour of HVOF 1020-2.5% A1 

was similar to that of the PTWA 1020 rather than HVOF 1020 in such a way that the 

wear rates of HVOF 1020-2.5% A1 were high at low sliding speeds, but decreased when 

increasing the sliding speed. This can be seen from the results of the tests at 75 N for 

which increasing the sliding speed from 0.2 to 0.5 m/s caused a decrease in the wear rates 

of HVOF 1020-2.5% A1 from 6.51 x 1 O'3 mm3/m to 1.39 x 10'3 mm3/m. The wear rates o f 

HVOF 1020-2.5% Ai further decreased to 0.67 x 10‘3 mm3/m at 2 m/s, and as such were 

comparable to those of the PTWA 1020, but about 80% lower than those of the HVOF 

1020 tested under the same conditions.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 3 3 . SEM OBSERVATIONS OF WORW SURFACES

The SEM investigations of the worn surfaces of the HVOF 1020-2.5% A1 

coatings indicated the existence of scratch paths in the sliding direction. Fig. 4.48 is a 

back-scattered SEM micrograph of the worn surface of the coating, which shows the 

scratches at low magnification. The micrograph was taken from the worn surface of the 

coating tested at 75 N and 2 m/s. The origin of the surface scratches can be attributed to 

the presence of (Fe, Al, O) rich inclusions on the surface. An example of these inclusions 

that lay on the contact surface is shown in Fig. 4.49. The inclusion is fractured and 

possibly acted as a third body particle causing formation of the scratch marks on the 

surface. Fig. 4.50 is a back-scattered SEM image that was taken from the worn surface of 

the coating tested at 75 N load and 0.2 m/s.

The EDS analyses showed the existence of the elemental Fe and O in the medium 

grey areas, and the presence of the Fe in the light grey regions of the micrograph. The 

figure shows the severe deformation and fracture of the iron splats on the sliding surface 

of the coatings. The micrograph also shows that the metallic fragments were flattened and

forged on the sliding surface. Therefore, fracture of the tips of severely deformed splats

was the main mechanism responsible for the high wear rates of the HVOF1020-2.5% Al 

coatings like the other two coatings (PTWA 1020 and HVOF 1020) at high loads and low 

sliding speeds.

The SEM investigations from the worn surface of the coating, which was tested at 

75 N and 2 m/s showed the formation of the uniform iron oxide films on the sliding 

surfaces similar to those covered the surfaces of the PTWA 1020 tested at the same 

loading conditions. Fig. 4.50 shows the spallation of the oxide film on the sliding surface
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of the coating. From this micrograph the thickness of the oxide film is estimated to be 1 

pm. At this loading condition, the average thickness of the oxide layers formed on the 

sliding surface varied between 1 and 3 pm. In summary, the worn surfaces of the HVOF 

1020-2.5% Al coating were covered with mixed iron oxides at high loads and velocities. 

The oxide layers were thin, and similar to those formed during the sliding wear of PTWA 

1020  that showed similar low wear rates under these conditions.
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Fig. 4.1- A typical secondary electron SEM image of the surface of the PTWA 1020 
coating in the as-deposited condition shows that the surface is veiy rough after 
the thermal deposition process.
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Fig. 4.2- A back-scattered SEM micrograph of the top surface of the PTWA 1020 coating 
after polishing to an average roughness ( R a )  of 0.1 pm.
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Fig. 43- The general cross-sectional view of the 319A1 substrate coated with PTWA 
1020  with as-deposited morphology.
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Fig. 4.4- The structure and chemistry of an unworn PTWA 1020 coating, (a) A back- 

scattered SEM image of a polished cross-section of the coating (unetched). 
Three distinct regions are evident in this photograph: The light areas labelled
(b) in the image are iron as is shown in the EDS spectrum of Fig. 4.4 b; the 
dark grey regions labelled (c) are Fe and O as is shown in the EDS spectrum 
of Fig. 4.4 c; the round black regions are porosity (d). Fig. 4.4 d is the XRD 
spectrum of this sample showing the presence of iron and (FeO).
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Fig. 4.5- The variation of the wear rates (g/m) of the PTWA 1020 thermal spray coatings 
plotted versus the sliding speed for four different normal loads. The trend is for 
decreased wear rates at increased speed.
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loads plotted against the sliding speeds.
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Fig. 4.7- (a) Back-scattered SEM micrographs of the worn surfaces of the PTWA 1020 
coating tested at 10 N load and 0.5 m/s sliding speed after 5000 m sliding 
distance. The SEM micrograph shows two different regions. EDS analysis o f 
the dark grey areas marked as (b) on the SEM image are shown in Fig 4.7 (b). 
EDS analysis of the light grey area marked as (c) on the image are shown in Fig. 
4.7 (c).
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Fig. 4.8- A back-scattered SEM micrograph of the sliding surface of the PTWA 1020 
sample worn at 10 N load and 0.5 m/s after 5000 m sliding distance. The 
micrograph is taken at a tilted angle of 15° to the worn surface to accentuate 
morphological details.

Fig. 4.9- A secondary SEM micrograph of the debris collected from the test performed 
under 10N load, and 0.5 m/s showing that the fine particles agglomerated to 
form oxide aggregates of 2-4 pm.
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Fig. 4.10- (a) A back-scattered SEM micrograph of a sample worn at 75 N load and 0.5 
m/s. The dark grey regions were identified as the oxygen rich film with the aid 
of EDS. EDS analysis from the medium grey areas shows the presence of 
elemental Fe. The arrows on the micrograph show cracks on the deformed 
splats.
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Fig. 4.10- (b) Another example of the deformation and fragmentation processes of the 
splats at the sliding surface of the PTWA 1020 coating at high loads (50 N) 
and low speed (0.5 m/s) testing conditions.
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(b)

Fig. 4.11- (a) A secondary SEM micrograph shows the plate-like iron splat fragments 
mixed with powdery iron oxide particles, (b) A high magnification SEM 
image illustrates the morphology of plate-like debris from PTWA 1020 
coatings tested at 75 N and 0.2 m/s.
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Fig. 4 12- A back-scattered SEM micrograph of a sample worn at 50 N load and 2.5 m/s. The micrograph is taken from a region, 
which shows evidence for deformation mostly in the form of surface grooving of both the oxide rich layers and the iron splats. 
(Note the micrograph was deliberately selected to illustrate the deformation pattern and that the area fraction of the oxide rich 
layers is less then the average coverage).



Fig. 4.1- A back-scattered SEM image of the worn surfaces of the PTWA 1020 coating 
tested at 50 N and 2.5 m/s shows the wear track was covered by an oxide rich 
film and the micrograph also shows the spallation of the oxide film.

Fig. 4.14- Another example of the spallation of the oxide layers generated during the 
sliding of PTWA 1020 tested at 75 N and 2.5 m/s. The secondary SEM 
micrograph also shows the distribution of the oxide layers more accurately 
(70%).
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Fig. 4.15- A secondary SEM micrograph of the debris from the test performed on PTWA 
1020 at 75N load and 2.5 m/s that shows the plate like oxide particles.

Fig. 4.16- A back-scattered SEM micrograph of a PTWA 1020 sample worn at 10 N load 
and 2.5 m/s. The dark grey extended regions are an iron oxide film that is 
smeared over the surface of the steel splats during sliding.
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Fig. 4.17- The XRD spectra of the wear debris collected from PTWA 1020 at ION (low
load) and 0.5 m/s (low speed) shows the peaks for hematite (FeaCb), and a few 
small peaks of ferrite.
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Fig. 4.18- The XRD spectra of the wear debris collected from PTWA 1020 at 5ON (high 
load) and 0.5 m/s (low speed) shows the debris consisted of a mixture of three 
types of iron oxides: FeaOs, FesCLj, and FeO with a significant amount of 
metallic ferrite in the debris.
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Fig. 4.19- The XRD spectra of the wear debris collected from PTWA 1020 at SON (high 
load) and 2 m/s (high speed) shows that the debris consists of ferrite, and three 
types of iron oxides, namely FezOs, FesO^ and FeO.
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Fig. 4.20- A back-scattered SEM micrograph of the cross-section of the PTWA 1020 
coating tested at 50 N and 0.5 m/s shows that the splat adjacent to the contact 
surfaces was deformed during wear and elongated in the sliding direction.

Fig. 4.21- The area beneath the worn surface of PTWA 1020 where the steel splats 
adjacent to the worn surface delaminated along the FeO veins within the 
coating causing removal of entire individual splats as a whole.
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constant speed of 2 .5 m/s.
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Fig. 4.24- The variation of hardness with sliding speed for high loads. The hardness 
measurements were taken from regions of the wear track where the PTWA 
1020  coating was exposed through oxide deposit.
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(b)

Fig. 425- (a) A Vickers indentation impression on the surface of a non-oxidized part o f 
the wear track of the PTWA 1020 coating sample tested at 75 N and 2.5 m/s 
after 5000 m sliding distance, (b) the secondary SEM image from the coating 
tested at the same loading condition that shows the non-oxidized area on the 
wear track.
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Fig. 4.26- Variation of wear rates of PTWA 1020 coatings with the relative humidity for 
four different testing conditions. The insert shows wear rates for tests at 5 N 
and 0.1 m/s at different humidity levels.
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Fig. 4.27- A back-scattered SEM micrograph of a PTWA 1020 sample worn at 5 N load, 0.1 
m/s sliding speed and 12% RH. The dark grey regions are thin oxide rich films, 
which are entrapped between the micro-scratches on the surface of the steel splats 
(medium grey regions).
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Fig. 4.28- A back-scattered SEM micrograph of a PTWA 1020 sample worn at 5 N load, 0.1 
m/s sliding speed and 80% RH. The metallic parts are highly polished, and the 
oxide layers between the splats (dark grey veins) are noticeable. The porosity and 
the space between the contact areas are filled by the oxide layers, which were 
removed from the contact surfaces (dark grey regions).
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Fig. 4.29- A back-scattered SEM micrograph of a PTWA 1020 sample worn at 50 N load 
and 0.5 m/s and 50% relative humidity. The edges of the deformed steel splats 
show fracture and fragmentation.

Fig. 4.30- A back-scattered SEM micrograph of a PTWA 1020 sample worn at 50 N load 
and 0.5 m/s and 90% relative humidity. The polishing wear mechanism is 
active at this relative humidity level, but there is still evidence of fracture.
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Fig. 4.31.a- A variation of the coefficient of friction with the sliding distance at different 
humidity levels for the PTWA 1020 coatings tested at 5 N - 0. Im/s.
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Fig. 4.32- The change in the average coefficient of friction of PTWA 1020 coatings for 
the wear tests performed under 50 N, 0.5 m/s loading condition as a function 
of humidity.
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Fig. 433- The XRD spectra of the PTWA 1020 wear debris collected from a constant 
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Fig. 4.34- The fraction of the elemental iron content of debris of PTWA 1020 obtained 
from wear tests performed at 50 N and 0.5 m/s as a function of the relative 
humidity of the wear environment. The quantitative phase analysis was 
obtained from the Rietveld analyses with an accuracy of ± 0.5%. The iron 
content follows a similar trend as the wear rate.
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Fig. 4.35- Microstructure and composition of HVOF 1020 coatings: (a) is a back- 

scattered SEM micrograph showing the cross-sectional microstructure. The 
light areas labelled (b) in the micrograph are the steel splats, (see the EDS 
spectrum of (b); the dark grey regions labelled (c) consist of Fe and O as 
shown in the EDS spectrum of (c); the black regions labelled (d) are the pores.
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Fig. 4.35.d~ XRD spectrum ofHVOF 1020 confirming the presence of iron and (FeO).
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Fig. 4.36- Variation of wear rates (mm3/m) of the HVOF 1020 coatings is plotted as a 
function of sliding speed at several load levels of 5 N, 10 N, 25 N, 50 N and 
75 N.
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Fig. 4.37- (a) Secondary and (b) back-scattered SEM images of the worn surface of the 
HVOF 1020 coating tested at 10 N load and 0.5 m/s sliding speed after 5000 
m sliding distance.
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Fig. 438- A back-scattered SEM micrograph of the worn surface of the HVOF 1020 
coating tested at 75 N load and 0.5 m/s shows severe plastic deformation on 
the sliding surfaces.
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Fig. 439- A back-scattered SEM micrograph of the worn surface of the HVOF 1020 
coating tested at 75 N load and 0.5 m/s shows severe deformation and fracture 
at the tip of the splats on the contact surface.
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Fig. 4.40- A secondary SEM micrograph of the worn surface of the e HVOF 1020 
coating tested at high load (75 N) and high sliding speed (2 m/s) after 5000 m 
sliding distance that shows a severely deformed and damaged surface 
associated with the cracks (marked with arrows) normal to the sliding 
direction.

Fig. 4.41- A back-scattered SEM micrograph of the HVOF 1020 coating tested at 50 N 
load and 2 m/s. The micrograph was taken from a region on the wear track, 
which shows evidence for surface oxidation during sliding.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 4.42- A low magnification back-scattered SEM image from the worn surface (on a 
tilted angle 60°) of the HVOF 1020 coatings tested at 50 N and 2 m/s shows 
that the worn surface has a high roughness along with scattered oxide patches.

Fig. 4.43- A secondary SEM image of the HVOF 1020 that shows the 7 pm thick oxide 
rich films that formed on the sliding surface of the coating tested at 75 N and 
2 m/s after 5000 m sliding distance.
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Fig. 4 .44- Another example of the formation of the thick oxide layers of the HVOF 1020 
during sliding at high loading conditions. The figure also shows cracking in 
the oxide film.
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Fig. 4.45- A secondary electron SEM image from the debris gathered from the HVOF 
1020 tested under 75 N and 2.5 m/s shows the plate-like iron oxide debris.
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Fig. 446- Microstructure and composition of HVOF 1020-2.5% A1 coatings: Fig. 4.46.a 

is a back-scattered SEM micrograph showing the cross-sectional 
microstracture. The light areas labelled (b) the steel splats (see EDS spectrum 
of Fig. 4.46.b); the medium grey regions labelled (c) are the iron oxide veins 
that consists of Fe and O as shown in the EDS spectrum of Fig. 4.46.c; the 
dark grey regions labelled (d) are inclusions consisting of Al, Fe and O as 
shown in the EDS spectrum of Fig. 4.46.d; the black regions labelled (e) are 
the pores. Fig. 4.46 f  is the XRB spectrum of this coating.
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Fig. 4.47- The variation of the wear rates (mm3/m) of the HVOF 1020-2.5% A1 coatings 
is plotted as a function of sliding speed at load levels of 5 N, 10 Ns 25 N, 50 N
and 75 N.
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Fig. 4.48- A back-scattered SEM micrograph was taken from the worn surface of the 
HVOF 1020-2.5% A1 coating tested at 75 N and 2 m/s, which shows the 
scratches at low magnification.

Fig. 4.49- A back-scattered SEM image that was taken from the worn surface of the 
HVOF 1020-2.5% A1 coating tested at 75 N load and 0.2 m/s that shows that 
the metallic fragments were flattened and forged on the sliding surface.
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Fig. 4.50-A back-scattered SEM micrograph shows the fracture of the inclusions into the 
small particles which can act as abrasive and scratch the sliding surfaces of 
HVOF 1020-2.5% Al.

Fig. 4.51- A secondary SEM micrograph (on a 60° angle) showing the morphologies of 
the worn surface of HVOF 1020-2.5% Al coatings tested at 75 N load and 2 
m/s sliding speed. Iron oxide layers on the worn surface are about 1 pm thick.
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CHAPTER V

DISCUSSION OF THE RESULTS:

WEAR MECHANISMS AND WEAR MAPS

The results presented in Chapter IV are discussed in this chapter. The current

chapter is organized as follows:

1) The micromechanisms that control the wear rates in the thermal spray coatings 

are discussed. These mechanisms are divided into several groups. They are: a) 

Mechanical wear (by severe plastic deformation and splat tip fracture, and splat 

delamination through oxide veins), b) Oxidational wear, c) Polishing wear, and 

d) Surface hardening. The first two of these mechanisms, namely mechanical 

wear and the oxidational wear were the most important mechanisms that 

operated under dry air. Polishing wear occurred under high humidity conditions. 

Significant surface hardening occurred during sliding wear at high loads and 

speeds.

2) The role of the coating microstructure and the production process of the thermal 

spray coatings on wear are discussed by comparing the wear tests results of the 

PTWA 1020 and the HVOF 1020 coatings. The discussion includes analysis of 

the friction induced temperature increase for both coatings. The surface 

temperatures generated at different loads and velocities are summarized in the 

form of temperature maps.

3) Wear rates and wear mechanisms that operate in thermal spray coatings, are 

summarized in the form of wear maps constructed for each of the coatings. The
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wear maps show the wear rates as a function of applied load and speed. These 

maps could now be considered as practical guidelines for tribological 

applications of coatings under the actual service conditions.

4) The use of wear maps in material selection is illustrated by comparing the wear

maps of the coatings among themselves and with that of aluminum.

Wear mechanisms that are common to all three coatings are illustrated using 

PTWA 1020 coatings as an example. The wear rates of the PTWA 1020 coatings at 

constant load decreased as the sliding speed increased to 1.0-1.5 m/s, at higher speeds the 

wear rates were almost constant as shown in Fig. 4.7 of Section 4.1.2. This behaviour 

became more obvious at high loads such as 50 N and 75 N, where the wear rates were 

higher initially, and decreased faster than those at lower loads. From Fig. 4.7, four wear 

regimes can be identified amongst the testing conditions. They are defined as low speeds 

< 1 m/s, high speeds > Im/s, low loads < 20 N, and high loads > 20 N. These regimes 

were defined according to the differences in the wear rates as well as in the chemical 

compositions and/or microstructures of the worn surfaces and the debris, and will be 

considered separately below. The characteristic features of the worn surfaces and debris 

are summarized in Table 5.1.a and b.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Low Loads <2#N

Low Sliding Velocity <
Im/s

High Sliding Velocity >
Im/s

Worm Surfaces

Porous oxide rich patches, 
mostly located between 
deformed splats. Area 
percentage =20%.

Oxide rich layers extend on 
iron splats. Area percentage 
= 50%.
No significant splat
fracture.

Dark orange non-magnetic
powder.

Dark brown magnetic 
powder.

Wear Debris
Sub-micron particles of iron 
oxide.

Very small amount of sub- 
micron particles of iron 
oxide.

FeiOs (99%) and Fe 
(XRD analysis).

Insufficient amount of 
debris generated for XRD 
analysis.

Wear Mechanisms
Heavy surface oxidation to
FeaOs.

Formation of mixed iron 
oxides covering most o f the 
coating surface.
(lowest wear rates)

Table 5.1.a- Summaiy of metallographic observations of worn PTWA 1020 coatings at 
low loads < 20 N.
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High Loads (>20N)

Low Sliding Velocity < 
lm/s

High Sliding Velocity ;>
lm/s

Worn Surfaces

Extensive fracture of steel 
splat tips. ~ 25% of contact 
surface covered by oxide rich 
layer, with average thickness 
<lpm.
Average hardness = 450- 
550 (kg/mm2).

Thick oxide rich layers (1-3 
pm thick), covering ~ 70% 
of contact surfaces. Severe 
steel splat deformation but 
no significant fracture. 
Average hardness = 550- 
800 (kg/mm2).

Dark brown magnetic 
powder. Black magnetic powder

Wear Debris

Mainly deformed plate-like 
metallic iron fragments 
mixed with iron oxide 
particles.

FeaOa, FeO, FesC^ & Fe 
(XRD analysis).

Thick iron oxide plates, 
occasionally containing iron 
fragments.

FeaOa, FeO, Fe304 
& Fe (lower Fe 
concentration compared to 
low velocity). (XRD 
analysis).

Wear Mechanisms

Fracture and fragmentation 
of steel splats at the contact 
surface (primary
mechanism).
(Highest wear rates)

Formation of a thick, 
protective iron oxide films 
reducing coefficient of 
friction. Hardening of steel
splats during sliding.

Table 5.1.b- Summary of metallograpfaic observations on worn PTWA 1020 coatings at 
high loads > 20 N.
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5.1. MECHANICAL WEAR

5.1.1. SEVERE PLASTIC DEFORMATION ANP SPLAT TIP FRACTURE

The highest coating wear rates were measured in the tests performed under the 

conditions of high loads and low speeds (Fig. 4.7). This was the case for all the three 

coatings tested. SEM and XRD results of the wear debris showed the presence of plate­

like iron fragments mixed with small particles of iron oxide. The XRD spectrum of the 

wear debris of a PTWA 1020 sample tested at these loading conditions showed the 

presence of metallic ferrite, Fe2Q3, Fe304, and FeO (Table 4.2). It is important to note 

that under these conditions, the percentage of ferrite in the debris in the three coatings 

was relatively high. Therefore, the wear mechanism at high loads and low velocities must 

account for the presence of the metallic ferrite particles in the wear debris (Table S.l.b).

The typical type of damage that could be observed from the SEM images of the 

worn surface of the coatings tested at high loads and low velocities was the fracture of the 

iron splats. Iron fragments were formed and detached from the surfaces as a result of 

fracture of the splats that were subjected to severe plastic deformation. In particular, the

tips of the splats on the contact surfaces were severely deformed and fractured.

Damage accumulation events resulting in the splat tip fracture is shown 

schematically in Fig. 5.1. At the first stages of sliding (Fig. 5.1.a), iron splats adjacent to 

the contact surfaces start to deform and elongate in the direction of sliding. These splats 

have nominally 0.2% C, and hence have high ductility that can accommodate large 

surface strains imposed during sliding. At the subsequent stage, as the sliding continues, 

more deformation is induced especially at the tips of splats, which become progressively 

work hardened (Fig. S.l.b) as they elongate parallel to the direction of the imposed strain.
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Finally, the exhaustion of ductility of the material at the splat tips causes fracture and 

fragmentation as shown in Fig. 5.1.c. Examples of fractured splat tips can be seen in Fig. 

4.11. Occasionally, repeated fracture and fragmentation of splats progresses to a degree 

where the entire splat is lost. Porosity or surface defects makes this mechanism worse. 

Steel splats adjacent to surface depressions can plastically deform and elongate into these 

regions more easily than in dense smooth regions that are self-supporting.

5.1.2. SPLAT DELAMINATION THROUGH THE OXIDE VEINS

Another wear mechanism that operates in the coatings is the delamination or 

removal of entire splats. Oxide layers between splats are considered as the weakest link 

in many spray deposited coatings [6]. In order to observe the fracture behaviour of the 

coatings during bending, PTWA 1020 coated 319 Al alloy samples were subjected to 

three point bending tests. Rectangular samples 10 mm wide, 25 mm in length, and 1 mm 

thick were tested using a specially constructed miniature three point bending jig. Round 

pins (4 mm in diameter) were put in contact with the lower face of the aluminum 

substrate (away from the coating) as shown in Fig. 5.2. The load was increased in regular 

steps of about 20 N to a maximum of 160 N. The cross-sectional morphology of the 

coating tested at 160 N is shown in Fig. 53. It is seen that a large crack perpendicular to 

the contact surface propagated through the coating into the substrate. The path of the 

crack was more torturous in the coating, but relatively straight in the 319 Al substrate. A 

high magnification micrograph of the fractured PTWA 1020 is given in Fig. 5.4. It was 

observed that the path of the crack followed the oxide veins, and splats along the crack

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



path were delaminated. This observation has proven that the oxide veins are the weakest 

link in the coatings.

In previous publications [e.g., see 7], high wear rates were generally associated 

with the formation and propagation of subsurface cracks within the oxide veins in the 

thermal spray deposited coatings, resulting in the removal of entire steel splats during the 

sliding process. The splat orientation and surface waviness were suggested to have an

influence on the delamination mechanism. Delamination was shown to be easier when 

the splats were parallel to the coating surface, and more difficult when they were wavy 

and not parallel to the interface

Splat delamination was observed in the coatings tested in this work. An example 

is shown in Fig. 5.5. However, this was not a dominant wear mechanism for the thermal 

spray coatings. The severe surface delamination leading to the localized fracture (Fig. 

5.2) of the splat tips was by far the most common type of mechanical wear mechanism.

5.2. OXIDATIONAL WEAR

The observations of the worn surfaces of PTWA 1020 coatings showed that for

most loading conditions, surface oxidation created a chemically altered layer that played 

a critical role in controlling the wear rates.

At high speeds and low loads, the wear rates had the lowest values compared to 

the other regimes. The SEM investigations of the worn surface of the coatings tested 

under these conditions showed a deposit of an oxygen rich film on the sliding surfaces. 

This layer extended over the top of the steel splats. The measured pin temperature for the
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sample tested at 10 N and 2.5 m/s was 110°C, which indicated that surface oxidation was

likely to occur. The oxide layers were almost continuous acting as the protective layers.

The wear rates of the coatings at high loads and high speeds were about 50% 

lower than those measured at similar loads, but using low sliding speeds. The temperature 

measurement results presented in Section 4.1.6. showed that surface temperatures 

reached higher values. The high surface temperatures reduced wear rates by producing a 

uniform oxide layer on the sliding surface of the coatings that suppressed the splat tip 

fracture mechanism. An investigation of the plotted pin temperatures (Figs. 4.23 and 

4.24) showed that the sliding induced temperature rise was influenced more by the sliding 

speed than the load. The maximum bulk temperature rise occurred on the samples tested 

at 75N and 2.5 m/s, where the increase was about 390°C. SEM investigations from the 

worn surface of the coating tested at this loading condition showed that the splat tip 

fracture mechanism that was responsible for the high wear rates at low load and velocity 

conditions was not as significant when the sliding speed was high. About 70% of the 

wear track of the coating tested at high loads and speeds were covered with a uniform 

oxygen rich film whose thickness varied between 1-3 pm (Fig. 4.15). The results on the 

variation of the coefficients of friction as a function of the sliding speed showed that by 

increasing the speeds from 0.5 to 2.5m/s at 50 N load, the coefficient of friction 

decreased from 0.78 to 0.56, which is consistent with the formation of oxide rich films 

and less metal to metal contact. The XRD spectrum of the wear debris gathered from the 

test carried out on the coating that was tested at these loading conditions showed the 

presence of F^O^, FesO^ and FeO type iron oxides. The quantitative phase analysis 

showed the relative amount of ferrite at high velocity was significantly lower.
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Therefore, the oxide layers that were composed of mixed oxides appeared to 

reduce the wear rates by protecting the surfaces from mechanical wear. Wear occurred by 

the spallation of oxide layers (Fig 4.15). In PTWA 1020 coatings, these layers reached a 

thickness of 1-3 pm before they became detached from the surface.

5.2.1. COMPARISON OF WEAR RATES DUE TO OXIDATIONAL WEAR IN 

PTWA 1020 AND HVOF 1020 COATINGS

As shown in Fig 4.6, the wear rates of the PTWA 1020 coatings, and the HVOF 

1020-2.5% Al coatings (Fig. 4.48) decreased by increasing the sliding speed, at sliding 

speeds greater than 1 m/s. In contrast, the wear rates of the HVOF 1020 coatings 

increased by increasing the speed (Fig 4.37), and were significantly higher than those of 

the PTWA 1020 and HVOF 1020-2.5% Al coatings in this speed range, especially when 

tested at high loads. According to Tables 4.2 and 4.4, when the sliding speed increased 

from 0.5 mis to 2 m/s at a high load (e.g., 50 N), the constituents of the debris remained 

the same for all three coatings. They consisted of iron and three types of iron oxides, 

(Table 5.1) although the relative amounts of the oxide phases increased at the expense of 

native iron in the debris. The iron oxide rich layers generated on the contact surfaces of 

HVOF 1020 samples were thicker compared to PTWA 1020, and HVOF 1020-2.5% Al. 

The worn surface of the HVOF 1020 coatings tested at 75 N and 2 m/s is shown in Fig. 

4.44. At this loading condition, the average thickness of oxide layers formed on the 

sliding surface of PTWA 1020 (Fig. 4.15) and HVOF 1020-2.5% Al (Fig. 4.51) varied 

between 1 and 3 pm. However, the high wear rates of HVOF 1020 observed under 

similar loading conditions were associated with the formation of a much thicker oxide
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rich films, about 7 pm, as shown in Figs. 4.44 and 4.45. The oxide layers on the HVOF 

1020  was discontinuous, and the worn surfaces were rough compared to the worn 

surfaces o f the two other coatings. Therefore, severe oxidation and spallation of the thick 

oxide layers were responsible for the high wear rates of HVOF 1020 at high loads and 

speeds.

5.2.2 THE ROLE OF SURFACE TEMPERATURE ON OXIDATIONAL WEAR

The contact surface temperatures in HVOF 1020 reached higher values compared 

to other coatings tested under the same sliding conditions because of the higher initial 

inherent oxide (FeO) content in this coating (Table 4.2). Because of the lower thermal 

conductivity of the oxide compared to the iron splats, when tested under the same loading 

conditions, the surface friction increased the contact temperature of the HVOF 1020 

coating to higher temperatures than the coatings with lower oxide contents. In this 

section, an analysis of friction induced contact temperature increase will be given as a 

function of the initial oxide content of the thermal spray coatings.

The surface temperature increase (AT) due to the sliding contact can be calculated 

the following equation [11]:

i -  1

AT
A n 1 1 , 

P d

(5.1)

where F and v are the applied load and sliding speed, and p is the coefficient of friction. 

An is the nominal contact area, lp and J<j are the linear heat diffusion lengths for the pin
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and the disk.Jq, is the thermal conductivity of the pin, and kd is the thermal conductivity 

of the disk (which consists of the plasma spray coating and 319A1 alloy substrate).

In the present experiments, the pin is an AISI M2 type tool steel, so that kp = 45 

J/msK [150]. At any instant of the sliding process, the nominal contact area An can be 

considered equal to the cross-sectional area of the pin (An= 5 x lO-6 m2). lp is the physical
•y

length of the pin (lp =2.5 x 10 ' m), and U is the total thickness of the coating and the 

substrate (Id = 5 x 10 *3 m).

The thermal spray coatings can be considered as composite materials with a two- 

phase mixture. The thermal conductivity of such material is a function of die volume 

fraction of each phase. The thermal conductivity of the thermal spray coatings kc can be 

estimated using the following equation assuming that the coating is a series of plates of 

iron oxide, and iron normal to the direction of heat flow [151].

k =c

r Y  ( 1 - V ’ FeO , 1 FeO

v^FeO ^steel
(5.2)

where kpe© is the thermal conductivity of FeO taken as 3.2 J/msK [11], and ksteef= 65 

J/msK is the thermal conductivity of the 1020 steel [150].

Table 4.1, shows that for the PTWA 1020, the volume fraction of FeO, ¥|?eo is 

0.20 (± 0.02). The volume fraction of HVOF 1020 is 0.65 (± 0.02). Accordingly, using 

equation 5.2, the thermal conductivities of the PTWA 1020 and HVOF 1020 coatings are 

calculated as 13.4 J/msK and 4.8 J/msK respectively.

The coated substrate assembly can be considered as a simple series made up of 

two different materials with two different thermal resistances. The total thermal
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resistance of the disk Rj is simply the sum of the coating thermal resistance R c =
c AK„

and the thermal resistance of the substrate R = — — so that R , = R r + R ,, and thus
s AKC d c 5

ld -  lc +  —L  (5.3)
AKd AKC A Ks

where ls is the thickness of the substrate, and Ks is the thermal conductivity of the Al 

alloy substrate Ks=160 J/msK [152]. Equation 5.3 can then be rearranged in the following

form

k ks c
Is k +

~1c

K .
c

L'dJ

The thermal conductivity of the disk, kd, can be calculated using the kc values obtained 

from equation 5.2, and ignoring the effect of surface oxidation.

Equation 5.4 shows that the thermal conductivity of the 319A1 alloy samples 

coated with the PTWA 1020 is 103.0 J/msK. On the other hand, the thermal conductivity 

of the samples coated with the HVOF 1020 is 65.2 J/msK. This analysis assumes 

identical microstmctures. The difference in K between the thermal conductivity of HVOF 

and PTWA is probably even greater due to splat size.

In order to calculate the temperature increase AT in equation 5.1, the values o f  the 

coefficients of friction are needed. The average values of coefficients of friction o f  the 

PTWA 1020 samples measured during the wear tests at 75 N were 0.54 (0.5 m/s), 0.48
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(1.0 m/s), and 0.51 (2.0 m/s). The coefficients of friction of HVOF 1020 at 75 N were 

0.47 (0.5 m/s), 0.45 (1.0 m/s), and 0.46 (2.0 m/s) (Table 5.2). Accordingly, the friction 

induced temperature increases in the samples coated with PTWA 1020 and HVOF 1020 

were calculated at 75 N as a function of sliding speed. The results are shown in Fig. 5.6.

0.5 m/s 1.0 m/s 2.0 m/s

PTWA 1020 0.54 0.48 0.51

HVOF 1020 0.47 0.45 0.46

Table 5.2- The coefficients of friction of the PTWA 1020 and HVOF 1020 coatings 
measured at 75 N at different velocities.

A comparison of the surface temperature increase curves for the two coatings 

shown in Fig. 5.6. This indicates that at any testing velocity the contact surface

temperature of the HVOF 1020 reached a higher value than the temperature that was 

reached on the contact surface of PTWA 1020. More specifically, under the conditions 

where oxidation controlled wear took place, the temperatures on the contact surfaces of 

HVOF 1020 were about 50 K higher than the PTWA 1020. For example, at 75 N and 2.0 

m/s, the temperature increase on the contact surface of the HVOF 1020 coatings reached 

230°C. The surface contact temperature of the PTWA 1020 under the same loading 

conditions was calculated as 180°C. Therefore, it is expected that thicker oxide layers 

should form on the surfaces of the HVOF 1020 coatings. This is in agreement with the
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observations that the mixed oxides generated on the surfaces of HVOF 1020 samples are 

2 to 3 times thicker compared to those generated on the surfaces of the PTWA 1020 

coatings. The worn surfaces of PTWA 1020 were covered with thinner oxides layers (1-3 

pm). The spallation of thinner oxide layers was responsible for the lower wear rates in 

PTWA 1020.

It should be noted that the temperature analysis presented above is for the average 

surface contact temperature, and the flash temperatures (local temperatures at the tip of 

asperities) are higher. In summary, the temperature analysis shows that for thermal spray 

coatings that incorporated a large amount of inherent oxide, higher surface temperatures 

are reached during sliding wear. If the sliding conditions are such that an oxidational 

wear mechanism becomes operative, the coatings with lower oxide content, such as 

PTWA 1020, exhibit lower wear rates. This is an important conclusion since it clearly 

implies that the wear mechanisms in the plasma thermal spray coatings are closely related 

to the microstructures of the coatings. The coatings that had approximately three times 

higher FeO content (HVOF 1020) exhibited higher wear rates (2-3 times) in the oxidative 

wear regime. Another important conclusion is that the surface oxide production process 

plays a significant role in controlling the wear rates. The HVOF coatings that were 

produced from the same wire stock of 1020 steel as the PTWA 1020 coatings showed 

higher wear rates because during the HVOF process larger amounts of oxides were 

introduced in the microstructure. Therefore, control of the FeO content of the coating is 

of significant technological importance. This was proven by the examination of the wear 

rates of the HVOF 1020-2.5%Ai coatings that exhibited the same wear rates as the 

PTWA 1020, because they had the same low FeO content.
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5.3. SURFACE HARDENING DURING WEAR

An important observation that was reported in Section 4.1.7. was the increase in 

the hardness of the sliding surfaces of the PTWA 1020 during the course of the sliding 

wear process. The hardness increase was especially high at high loads and speeds. For 

example, during tests at 50 N and a sliding speed of 2.5 m/s, the surface hardness 

increased to 650 kg/mm2 from the initial hardness of 310 kg/mm2 of the unworn surface. 

The hardness increase was even more dramatic during the tests done at 75 N, and a 

sliding speed of 2.5 m/s where surface hardness values of 800 kg/nun2 were measured as 

depicted in Fig. 4.25. This increase in hardness cannot be attributed to the formation of 

the surface oxides, because the indentations were taken from the regions on the wear 

tracks that were not covered by the oxide layers. The measured hardness thus reflect, 

changes that occurred in the microstructure of the iron splats.

In order to investigate the microstructural changes that took place during wear, 

the longitudinal cross-sections (parallel to the sliding direction) of the PTWA 1020 

coatings tested at 50 N and 75 N at 2.5 m/s were examined by TEM l. As mentioned

above, samples tested at both these loads showed considerable hardening on the wear 

tracks after the sliding wear test. The cross-sectional TEM micrograph (Fig. 5.7) shows 

that the hardened subsurface microstructures consisted of three different regions. In the 

region close to the contact surface, namely about 0-400 mn below the contact surface, 

grains had an uftrafine structure with an equiaxed grain morphology (Region I). The grain 

size in this region can be estimated to be about 200-300 ran. The substructure that formed 

at the depths of about 400-1500 nm below the contact surfaces consisted of deformation

^  TEM studies were preformed at Sheffield University using a FEI Teetotal 20 TEM operated at 
an accelerating voltage of200kV.
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bands (Region II). These bands were elongated in the sliding direction (marked by the 

arrow on the top surface). The width of the elongated structures was about 250 nm. Their 

length appeared to reach several micrometers. The region marked as Region III shows the 

undeformed bulk structure, which usually extends at depths below 2 pm.

The existence of the ultrafme grains adjacent to the sliding surfaces suggested that 

a large strain gradient existed under the worn surfaces of the coatings. The strain 

increased significantly towards the surface, and caused grain refinement in the material.

As indicated above, the original hardness of 310 kg/mm2 of the unworn surface 

increased to 800 kg/mm2 during wear that caused the development of the microstructure 

shown in Fig 5.7. Using the Hall-Petch equation [153], an approach was to rationalize the 

relationship between the hardness increase and the structural refinement. Expressing the 

Hall-Petch equation in terms of the hardness gives

where Ho is the hardness of the coating without contributions from grain boundaries 

(intrinsic hardness), and H is the hardness of the worn surface. The grain size is d, and m

is the Hall-Petch coefficient, which is usually attributed to the resistance of the grain 

boundaries to the passage of dislocations. The average ferrite grain size in the 

undeformed splats is 1.0 pm. As shown in Fig. 5.7, as a result of surface deformation, the 

original grain size has been reduced to 50nm in the layers adjacent to the contact surfaces 

worn in the sample in the sample at 75 N. Therefore, from equation 5.5.

(5.5)

H-H,  _ C °-5
IT  t t  J  -0.5

(5.6)
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where Ho is 167.8 kg/mm2. Using the initial hardness value of undeformed surface of 310

9 9kg/mm and 800kg/mm of the sample surface tested at 75N, the ratio of both sides of this 

equation is 0.21. Therefore, the strengthening due to plastic deformation during wear is 

scaled according to the reduction in the grain size in agreement with the prediction of the 

Hall-Petch equation.

5. 4. POLISHING WEAR

The wear mechanisms that were discussed so far in Sections 5.1-5.3. operate 

essentially under dry air conditions. In this section, a wear mechanism that was found to 

operate in the thermal spray coatings tested under high humidity conditions is discussed.

In Sections 4.1.8.- 4.1.10., it was shown that complex relations existed between the 

humidity levels in the test atmosphere and the coating wear rates. An important 

observation was that the reduction in the wear rates and coefficients of friction, and 

polishing of the surface under the counterface contact as the humidity was increased. The 

typical worn surface of the coating tested under 80% RH, (Fig. 4.29) had a highly 

polished contact area with compacted (hydrated) oxide that filled the exposed pores, and 

the depressions between the contacts points. The appearance of the worn surface was 

strikingly similar to the surface of the coating that was carefully polished using 

metallographic methods. The comparison of the SEM micrograph of the top surface of 

the coating worn under 80% RH revealed the surface details equally well. Individual iron 

splats, inter-splat oxides, and pores can be clearly distinguished on the worn surface (Fig. 

4.29). This observation led to the conclusion that a polishing type wear mechanism 

operated on the surfaces of the coatings tested at high humidity levels.
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An interpretation of the polishing wear mechanism in PTWA 1020 coatings is 

shown schematically in Fig. 5.8. In the first stage, a hydrated iron oxide layer was formed 

across the entire surface (Fig. 5.8.a). Then the counterface mechanically removed the 

peaks of the oxide layer. The detached hydrated iron oxide particles were compacted, and 

became entrapped in the spaces between the actual contact areas (Fig. 5.8.b). The 

process progressed by repetition to a degree where the crests of surface asperities were 

removed, and the surface became levelled (Fig. 5.8.c). This mechanism is expected to be 

active whenever there is a balance between chemical and mechanical wear. In many 

ways, this mechanism is similar to that proposed in [154] for ceramics.

Tests done under the same loading conditions that gave rise to polishing wear, but 

in the absence of the high atmospheric humidity resulted in mechanical wear. Splat 

deformation and fracture dominated the surface degradation, and as a result, the wear 

rates were high. The coefficient of friction decreased at high humidity levels, and the 

amount of metallic debris, indicative of high wear rates, was also considerably reduced. 

All this evidence indicates the beneficial effect of humidity in reducing the wear rates of 

the thermal spray coatings.

5.5. WEAR MECHAMSM MAPS FOR THE THERMAL SPRAY COATINGS

The micFomechanisms of wear that control the wear rates under a specific set of 

experimental conditions are summarized in the form of wear maps. The wear maps are 

constructed for each of the three coatings tested as discussed in the following sections.
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5.5.1. WEAR MAP FOR PTWA 1020

Wear rates of the PTWA coatings for tests in the 5 N-75 N load, and 0.25 m/s-2.5 

m/s sliding speed ranges under dry air atmosphere (REN 10%) are presented in the form 

of a map on load versus sliding speed axes (Fig. 5.9). The wear rates are given 

numerically at different sliding velocities and loads combinations in units of 10'6 g/m. 

The wear rates were high at low sliding velocities, but decreased when the sliding 

velocity increased. The map shows four main regimes. The wear regimes are classified 

on the basis of differences in wear rates, worn surface (Fig. 5.9.a-d) and debris 

morphologies, and compositions.

Regime I

Regime I occurs at low sliding velocities and loads i.e., below approximately 1 

m/s and 20 N. In this regime, the oxide rich layer was uniformly distributed between the 

micro-scratches on the contact area. The metallic parts were subjected to plastic 

deformation, and extruded in the sliding direction (Fig. 5.9.a). The XRD spectrum of the 

debris at 10 N load and 0.5 m/s velocity, representing regime I, showed the peaks for 

hematite (FeaOs), and a few small peaks of ferrite. The quantitative phase analysis 

confirmed that at low loading and velocity conditions, FeaCb was the predominant 

constituent (> 99%) of the wear debris. Therefore, the main wear mechanism in Regime I 

was surface oxidation to Fe203 .

Regime II

Regime II is the region of high wear rates at loads above approximately 20N, and 

sliding speeds lower than 1 m/s. An important aspect of wear in this regime is the fracture
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of the edges of the highly deformed steel splats (Fig. 5.9.b). It is important to emphasize 

that there was also a significant amount of metallic ferrite in the debris. The iron 

fragments were the result of the fracture of splat tips. Steel splats adjacent to contact 

surfaces were deformed and became elongated in the sliding direction. At subsequent 

stages, more deformation was induced, especially at the elongated tips of splats. 

Exhaustion of ductility of the material at the splat tip caused their fracture and 

fragmentation. Occasionally, repeated fracture and fragmentation of splats progressed to 

a degree where the entire splat was lost. This regime is marked as Regime II, splat 

fracture (mechanical wear) on the wear map (Fig. 5.9).

Regime III

Regime III exists at sliding speeds above those in regime II, and at the same 

loads. In this regime, the wear rates were about 50% lower than those measured in regime 

II. About 70% of the wear tracks of the high load and high velocity samples were covered 

by relatively thick oxide rich layers, whose average thicknesses varied between 1-3 pm. 

The worn surface appeared to be much less susceptible to splat fracture (Fig. 5.9.c). The 

friction results showed that by increasing the velocity, the coefficient of friction 

decreased, which is also consistent with the formation of oxide rich films. In this regime, 

especially at high loading conditions, the hardness of wear tracks increased to 

exceptionally high values of over 800 kg/mm2. Therefore, the wear rates were reduced in 

regime III as a result of two mechanisms; i) the production of thick oxide rich layers that 

reduced the coefficient of friction, and probably suppressed the splat tip fracture 

mechanism, and ii) surface hardening during wear that was possibly due to local strain 

hardening.
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Regime IV

At sliding speeds above 1 m/s and loads below approximately 20 N, the wear 

rates were the lowest compared to those in the other regimes. The oxide coverage was 

more significant than at low load and low velocity conditions, and extended over the top 

of the steel splats (Fig. 5.9.d). The favourable factors, including the formation of an 

almost continuous oxide rich films, hardening of the coating during wear, and lack of any 

significant iron splat fracture are among the possible reasons why the wear rates are the 

lowest under these conditions.

5.5.2. WEAR MAP FOR HVOF 1020

The wear map for the HVOF 1020 coatings plotted on load versus sliding speed

axes is presented in Fig. 5.10. The wear map shows wear rates and mechanisms for 

HVOF 1020 coatings in dry sliding against tool steel pin material using the pin-on-disc

geometry, at room temperature in air (RH—10%). The wear rates are given numerically 

(units of K f6 g/m) at different sliding speeds and loads combinations in a similar way as 

they are presented in the wear map for PTWA 1020.

It can be seen that the wear map for the HVOF 1020 coatings is similar to the 

wear map of the PTWA 1020 coatings (Fig. 5.9). However, the map for this coating 

consists of five regimes. Four of these regimes exhibited wear mechanisms that were 

identical to those in PTWA 1020. The oxidational wear regime in Fig. 5.10 (regime I) 

during which the Fe203 type oxides are formed on the contact surfaces is located at the 

lowest loads and speeds end of the wear map. The quantitative XRD phase analysis
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confirmed that at low loading and velocity conditions, Fe2C>3 was the predominant 

constituent (> 99%) of the wear debris. Another common wear regime is labelled as the 

splat fracture and oxidation regime (regime II). This regime occurs at higher loads but at 

speeds lower than 1 m/s, which coincides exactly with the loading conditions under 

which mechanical wear takes place in the PTWA 1020 coatings. The wear rates decrease 

in regime HI, where a uniform and protective oxide film forms. The whole wear track in 

this regime was covered by a uniform and protective oxide. Regime IV, where mixed 

oxides are generated, can be regarded as an extension of this regime, but this regime 

shows similarities with the same regime (regime IV) on the wear map of the PTWA 

1020. In both coatings, in this regime the wear rate was controlled by mixed oxidation to 

Fe2C>3 and FesC^. Fig. 5.10 indicates that the wear map for HVOF 1020 coatings shows 

an additional wear regime, which is marked on the wear map as the regime V. At sliding 

speeds above 1.5 m/s and loads above approximately 25 N, the wear rates increased as 

the sliding speed increases. In this regime, the contact surface was severely deformed and 

damaged due to crack formation normal to the sliding direction. The oxide layers on the 

HVOF 1020 were discontinuous, and the worn surface was rough compared to the worn 

surfaces of the two other coatings. Therefore, severe oxidation and spallation of the much 

thicker oxide layers were responsible for the high wear rates of HVOF 1020 at high loads 

and speeds. Fig. S.li.b  shows a back-scattered SEM micrograph from this regime (at 50 

N load and 2.5 m/s). It shows evidence for oxide formation on the contact surfaces of 

HVOF 1020 samples during sliding. At this loading condition, the average thicknesses of 

oxide layers formed on the sliding surfaces of the HVOF 1020 reached 7 pm, as shown in 

Fig. 5.1 J x .  The topographical features of the thick oxide layers formed in this regime on
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the surfaces of HVOF 1020 can be appreciated better from the Wyko optical surface 

profilometer scans presented in Fig. 5.11.a. The surface profile in this figure is from the 

sample tested at 75 N and 2 m/s. The oxide topography shown is typical of regime V and 

exhibits a very rough surface. The average roughness of the surface is Ra= 2.61 pm but 

spots that are as high as 34 pm, (due to the remnants of spalled oxide layers) can also be 

observed. As mentioned before this regime was not observed during sliding wear of 

PTWA 1020 samples. A representative Wyko image that was taken from a PTWA 

sample tested at 75 N and 2m/s is given in Fig. S.ll.b  for comparison. It is clear that the 

average surface roughness of this sample (R*= 1.25 pm) is lower and the oxide film is 

continuous. This continuous oxide layer acted as a protective coating as a result in regime 

III in the PTWA 1020 samples (Fig. 5.9) the wear rates are three times lower than those 

measured in Regime V in the HVOF coatings despite the fact that both regimes extend in 

approximately the same load and velocity conditions on the respective wear maps.

5.53. WEAR MAP FOR HVOF 1020-2.5% AS

The wear map for HVOF-2.5% A1 under a dry air atmosphere (RH=10%) is 

presented in Fig. 5.12 on load versus sliding speed axes in a similar way as the previous 

two wear maps. The wear map for the HVOF-2.5% A1 coatings consists of five regimes. 

The map for this coating is similar to the wear map of the PTWA 1020 coatings (Fig. 5.9) 

, it exhibits the same mechanical wear mechanism (regime II) by splat tip fracture during 

which the wear rates are high; as well as the oxidation wear regime at high speeds, where 

a decrease in the wear rates are observed (regime III). Other oxidative wear regimes 

cover similar load and speed conditions that were found in the wear maps of PTWA 1020
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(Fig. 5.9) and HVOF 1020 (Fig. 5.1©) coatings. It is observed that the wear map of 

HVOF 1020 (Fig. 5.10) exhibits the mechanical wear regime (regime II) that corresponds 

to the same loading conditions as in that of HVOF 1020-2.5% Ai. The major difference 

between the wear maps of these two HVOF coatings is that without the Al addition the 

wear rates at high loads and speeds are high, as depicted by regime V in the wear map of 

HVOF 1020. This high wear rate regime does not exist in the wear map of HVOF 1020 - 

2.5% Al. Therefore, the comparison of the wear maps shed light on the beneficial effect 

of the addition of Al in the HVOF coatings under certain conditions. It is also seen that a 

new regime, namely regime IV, which is identified as abrasive wear appears in the wear 

map of HVOF 1020-2.5% Al. As will be discussed below this is due to the abrasive 

action of the hard Al rich inclusions that exist in the microstructure of this coating (Fig. 

4.49). A more comprehensive discussion of the wear mechanisms in each regime 

operating in HVOF 1020-2.5% Al is given in the paragraphs below.

In Regime I surface oxidation to FeaQs was the main wear mechanism for lowest 

load and speeds conditions. Regime II has the highest wear rates as a result of mechanical 

wear in the form of severe plastic deformation and fragmentation at the tip of the splats,

this regime was shown in the previous wear maps (Figs. 5.9 and 5.10).

Regime III takes place at sliding speeds greater than 1 m/s. In this regime, the 

wear rates of the HVOF 1020-2.5% Al decrease with increasing the sliding speed. The 

wear rates of HVOF 1020-2.5% Al at this regime are comparable to those of the PTWA 

1020, but significantly lower than those of the HVOF 1020. The average thickness of 

oxide layers formed on the sliding surfaces of HVOF 1020-2.5% Al (Fig. 5.12) at high 

loading condition varies between 1 and 3 pm similar to regime III in the PTWA wear
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map. In this regime formation of a uniform oxide film on the sliding surface and surface 

hardening were the mechanisms that control the wear rates.

The thickness of the surface oxide layer is related to the initial oxide (FeO) 

content of the coating, as discussed in Section 5.2.1. The addition of Al during the 

production of the HVOF coatings reduced the oxide content from 60% to 15%, to a level 

similar to that in PTWA 1020 coatings. Consequently the sliding induced surface 

temperature increase in the HVOF 1020-2.5% Al coatings did not increase as much as in 

the HVOF 1020, resulting in lesser amount of surface oxidation and hence lower wear 

rates. For this reason regime V (severe oxidative wear regime) of the HVOF 1020 map 

does not exist in the wear map of HVOF 1020-2.5% AL This is clearly an advantage of 

this type of HVOF coating over the HVOF 1020 coatings that do not contain Al. Based 

on the information arising on the wear map, it can be suggested that the production 

method of the thermal spray coatings can be modified for better wear resistance. The 

composition of PTWA 1020 coatings that have a low FeO content in their 

microstructures could be modified by the addition of 2.5% Al to further reduce the initial 

oxide content of the coating. This may be potentially useful method to control oxidative 

wear in the thermal spray coatings.

Fig. 5.12 shows that the wear map for HVOF 1020-2.5% Al coatings shows an 

additional wear regime, which is marked on the wear map as the Regime VI. This regime 

does not exist on the other maps. Regime V is located at loads between 20 N and 50 N 

and sliding speeds above Im/s. Abrasive wear due to existence of the hard inclusions in 

the coatings was significant in this regime. Fig. 5.12.d shows a typical microstructure of 

the sliding surface of the coating. The micrograph shows less oxide coverage compared
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to those of PTWA 1020 coatings tested at the same loading conditions. This is due to the 

abrasive action of the hard inclusions that exist in the microstmcture of this coating only 

(see Fig. 4.51). The Al rich oxides fracture and leave scratch marks on the surface. This 

is can be regarded as a disadvantage of the coatings that contain hard inclusions. The hard 

inclusions can be abrasive to the counterfaces, such as piston rings. The wear 

mechanisms that operate in actual engines will be discussed in Chapter VI.

5.6. TEMPERATURE MAPS FOR THE THERMAL SPRAY COATINGS

The friction induced surface temperature plays an important role in controlling the

wear mechanisms of the coatings. The surface temperature increase is particularly 

important in understanding the oxidational wear mechanisms. As stated in Section 5.2.1., 

the differences between the thicknesses of the oxide films generated on the contact 

surfaces are directly related to the surface temperature increases. Therefore, it is useful to

present the surface temperature information in the form of temperature maps on load and 

speed axes similar to the wear mechanism maps. A method to calculate the surface 

temperatures as a function of the oxide content of the coatings was given in Section 5.2.1. 

Using this method surface temperature maps for PTWA 1020 and HVOF 1020 coatings 

were constructed. The temperature maps for PTWA 1020 and HVOF 1020 are presented 

in Figs. 5.13 and 5.14 respectively. In constructing these maps an additional step was 

taken in such a way that the boundaries that delineate transitions from one wear 

mechanism to another are plotted on the same axes. By superimposing the temperature 

maps over the wear mechanism maps it become possible to compare the temperature 

isotherms that correspond to each wear regime. For example Fig. 5.14 reveals that in
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HVOF 1020 the onset of severe oxidation regime corresponds to a frictional temperature 

increase of 110 °C.

5.7. COMPARISON OF THE WEAR MAP OF ALUMINUM 356 WITH PTWA

1020 COATINGS

Since the thermal spray coatings are being developed to improve the wear 

resistance of cast aluminum alloys. The wear maps can be used as guidelines to assess the 

degree of protection the coatings provide to the aluminum alloys. A simplified version of 

the wear map of PTWA 1020 is superimposed on the wear map of the cast A356 alloy. 

This composite wear map is shown in Fig. 5.15. The map indicates that at low sliding 

velocities and loads, corresponding to mechanical wear of the PTWA 1020 coatings, the 

wear resistance of 356 Al is better than that of the coating. Therefore, the use of the 

PTWA 1020 under these conditions does not provide wear resistance. On the other hand, 

356 Al shows a mild to severe wear transition at high loads and speeds [116] and 

consequently the wear rates increase dramatically. This corresponds to the oxidative wear 

regime in the PTWA 1020 coatings where the wear rates are relatively low. 

Consequently, the wear resistance of the PTWA 1020 coatings in this region is 

considerably better than the aluminum substrate and it is useful to protect aluminum 

surfaces with the PTWA 1020 coatings (Fig. 5.15). This example illustrates the benefits 

of the wear mapping approach on the selection and design of the protective coatings.
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ig. 5.1-A schematic diagram illustrating the mechanism for deformation and fracture of 
steel splats. a) shows a cross-section of the unworn surface, b) shows a cross- 
section of plastically deformed splats elongated along the sliding direction, c) is 
a surface view showing fracture at the edges of the splats.
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Fig. 5.2- Rectangular PTWA 1020 sample of 10 mm wide and 25 mm in length with 1 
mm in thickness were tested using a miniature three point bending jig. 4 mm 
diameter round pins were put in contact with the lower face of the aluminum 
substrate.

Fig. 5.3- The cross section of the PTWA 1020 coating after the three point bending test at 
the maximum load of 160 N shows a large perpendicular crack to the surface 
propagated through the coating into the substrate.
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Fig. 5.4- A high magnification micrograph of the cross section of the PTWA 1020
presented in Fig. 5.3.
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Kg. 5.5-A back-scattered SEM micrograph from the cross section of the worn surface of 
HVOF 1020-2.5% Al shows the cracks propagated through the oxide veins and 
caused delamination of an entire iron splat adjacent to the contact surface. The 
same type of delamination wear was also observed in PTWA 1020. But the 
occurrence of this wear mechanism is rare.
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Fig. 5.6- Comparison of friction induced surface temperatures for PTWA 1020 and 
HVOF 1020 at different sliding speeds at 75 N load.
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Fig. 5.7- TEM metallographic investigations on the longitudinal sections of the PTWA 
1020 sample tested at 75 N and 2.5 m/s which showed surface hardening after 
wear. The microstructure is divided into three distinguished layers: 1) on the 
contact surface where the grain size is about 50 nm, and 2) adjacent to the layer 
where there is a substructure consisting of an elongated sub-grain and 3) 
undeformed coating.
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Fig. 5.8- Schematic diagrams illustrating a mechanism for polishing wear by chemical 
and mechanical mechanisms, a) a cross-section of the coating and the formation 
of the oxide film at high humidity, b) the detached hydrated iron oxide by 
counterface becomes entrapped in the spaces between the actual contact areas, 
c) The crests of asperities are removed and the surface becomes flat.
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Fig. 5.9- Wear map showing wear rates and mechanisms for PTWA 1020 thermal spray 
coatings in dry sliding against tool steel pin material. The coatings wear rates 
have units of MT6 g/m. Experiments were conducted using the pin-on-disc 
geometry, at room temperature in air (RH-10%). (a-d) Typical SEM 
micrographs (backscattered electron (BSE)) of worn surface morphologies 
from Regimes I-IV.
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Fig. 5.10- Wear map showing wear rates and mechanisms for HVOF 1020 thermal 
spray coatings in dry sliding against tool steel pin material. The coatings 
wear rates have units of 1Q~6 g/m. Experiments were conducted using the 
pin-on-disc geometry, at room temperature in air (RH-10%). (a-c) Typical 
SEM micrographs of worn surface morphologies.
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(b)

Fig. 5.11- (a) Wyko optical surface profilometer image from the worn surface of the 
HVOF 1020 coating tested at 75 N and 2 m/s shows the topographical features 
of the thick and rough oxide layers formed during sliding, (b) Wyko image 
from the worn surface of the PTWA 1020 coating tested at same loading 
condition shows uniform and protective oxide film on the sliding surface.
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(d)
Fig. 5.12- Wear map showing wear rates and mechanisms for HVOF 1020-2.5% Al 

thermal spray coatings in dry sliding against tool steel pin material. The 
coatings wear rates have units of 10~6 g/m. Experiments were conducted 
using the pin-on-disc geometry, at room temperature in air (RH=10%). (a-d) 
Typical SEM micrographs of worn surface morphologies.
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Fig. 5.13- The surface (bulk) temperature map for the PTWA 1020 constructed on load 
vs. speed axes. The temperature map shows the temperature increase (in °C) 
on the sliding surface during the sliding at various combinations of load and 
velocity. The wear regimes are superimposed on the temperature map.
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CHAPTER VI

ENGINEERING APPLICATIONS: INVESTIGATION OF SCUFFED 

ENGINES WITH THERMAL SPRAY COATINGS

The objectives of this chapter are to:

1) Investigate the micromechanisms responsible for scuffing damage in 

actual engines, namely (a) a Corvette engine block with bores coated 

with High Velocity Oxy-fuel (HVOF) 1020-2.5% A1 low carbon steel 

thermal spray coating; and (b) a Saturn engine block with bores coated 

with the same type of coating.

2) Establish the correlation between the wear mechanisms observed in the 

scuffed engines and those on the wear map for HVOF 1020-2.5% A1 

coatings that were presented in Chapter V.

3) Design a pin-on-disc test to simulate the micromechanisms responsible

for cold scuffing in engines.

6.1 MATERIALS AND TESTING METHODS

6.1.1. SCUFFED THERMAL SPRAY COATED ALUMINUM ENGINES

Microscopic investigations were performed on actual engines that had failed with 

scuffing type of damage under different conditions. These engines were:

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1) A standard LSI Corvette engine block (5.7 litre V8 , 350

horsepower). The Corvette engine failed under racetrack 

conditions.

2) A standard Saturn engine (2.2 litre inline 4 cylinder, 140 horse 

power). The Saturn engine failed during dynamometer cold

scuffing tests.

The engine blocks were cast from 319-A1 alloy. The deposition process of the 

actual engine bores is shown schematically in Fig. 6.1. The bores were cut to a rough 

size, and prepared for thermal spraying by a water jet machining process [155]. During 

the water jet machining process, water was forced through nozzles of 0.005 inches at 

speeds up to 3000 feet/second. The spray disc was rotated at a speed of 500- 1500 rpm 

and the surface was roughened at a water pressure of 55,000 psi. The average depth of the 

water eroded peaks ranged between 10- 75 pm [155]. The process cleaned and roughened 

the surface, providing a good mechanical interlock adhesion for the coating. The blocks 

were subsequently coated with a High Velocity Oxygen Fuel gun using a wire with a 

nominal 1020-steel composition with the addition of 2.5 wt.% A1 as feedstock (HVOF 

1020-2.5% Al). During the deposition of the coating, the gun traveled along the length of 

the bore as it rotated inside the cylinder. The last step of this process was honing the 

rough surfaces of the thermal spray coatings. In this step, sufficient excess coating was 

applied so that about 30 % of the coating layer was removed subsequently.

The chemical composition and the microstructure of the coating were described in 

Chapter IV. The bores were single-pass diamond-reamed (microsized) from the as-
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sprayed condition and then peak honed, also with a diamond abrasive, producing a 30° 

crosshatch angle with a surface finish of 0 .6  pm Ra-

A detailed description of the properties of the Corvette engine is given in Table

6.1. The pistons were originally tin-plated. The top ring was made of nitrided stainless 

steel with a symmetric barrel face and positive ovality. The second ring was the standard 

production cast iron ring, but modified with a burnished lower edge radius, while the oil 

ring used a reduced tension (4 lbs.) expander. Some properties of the Saturn engine 

studied are given in Table 6.2.

Corvette LSI Engine Block

Type 5.665 litre V-8

Horsepower 345 @ 5600 rpm
Torque (Ib-ft) 350 @ 4400 rpm
Max. Engine Speed 6000 rpm
Bore/Stroke 99.00/92.00mm

Engine Materials

Block A-319 cast aluminum
Cylinder Head A-319 cast aluminum

Table 6.1 Properties of the LSI engine
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Saturn Engine Block

Type 2.2 litters 4 cylinder in line

Horsepower 137
Torque (Ib-ft) 147
Max. Engine Speed 5400 rpm
Bore/Stroke 92.00mm.

Engine Materials

Block A 319 cast aluminum
Cylinder Head A 319 cast aluminum

Table 6.2- Properties of the Saturn engine.

6.1.2. RACE TRACK PROCEDURES OF THE CORVETTE ENGINE

The Corvette engine was first installed in a prototype Z06 vehicle that was 

prepared for race track testing in order to compare oil consumption with a bogie that was 

established for a production Z06 at the Grattan Race Track in Grattan, MI. Following 

successful completion of the evaluation, the engine was installed in a Michigan State 

University sponsored ASA race car for demonstration purpose in the 2001 ASA season 

where a total of 4 races were ran. After the MSU team finished its race activities, the 

engine was removed from the ASA car. The scuffed parts were obtained from this engine.

6.13. COLD SCUFF ENGINE TESTING PROCEDURES ON THE SATURN

ENGINE

The cold scuffing tests were performed on a Saturn engine in an environmental 

chamber in which the temperature was less than -20 °C. The engine was turned on and
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off about 50 times. After that, the engine was left running until the temperature of the oil

reached 65 °C.

6.1.4. METALLOGRAPMC SAMPLE PREPARATION FROM THE SCUFFED

ENGINES

One bore with the most visible damage from each engine was cut into four stripes 

with consideration given to major, minor, front, and back faces. Fig. 6.2 shows the 

sectioned faces of the Corvette engine. 1.5 x 1.5 cm coupons were cut from the front, 

major, and minor sections at a distance of 45 mm from the deck face, and also from 5 mm 

below the deck face on the major section using a low-speed circular diamond saw. Each 

of these samples was then cut in half, providing two sections to be used later for plan and 

cross-sectional view microscopy parallel to the sliding direction. The cutting was initiated 

at the free surface of the coating to reduce the possibility of separation from the substrate. 

Hexane solution was used to remove the residual engine oil from the sliding surface of 

the coupons. The parts were ultrasonically cleaned in methanol and washed with ethanol 

prior to the WYKO and SEM investigations. The parts were mounted in Buehler Diallyl 

Phthaiate Blue compound for the cross-sectional microscopy. The surface of the mounted 

sample was ground with 180 grit silicon paper until the marks caused by the diamond 

saw were removed. The grinding operation was continued using 240,400, 600,1200 and 

2500 grit SiC papers. Samples were then polished on polishing cloths impregnated with 

3, 1, 0.25 and 0.1 pm diamond paste respectively. The samples were ultrasonically 

cleaned in methanol after each stage of polishing.
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The most damaged part of the top ring was selected by visual inspection. 2 cm 

sections were cut from the ring using a diamond saw. These samples were used for plan 

view and cross-sectional microscopy of the sliding surface. Additionally, a segment of 

the second ring was prepared in a similar way for cross-sectional imaging. Mounting, 

grinding and polishing were the same as for the bore sections. Coupons were also cut 

from the major and minor faces of the piston skirt, and mounted and polished in a similar 

way.

In order to study the scuffing mechanisms in the Saturn engine, the microscopic 

investigation has been carried on the major thrust face of the scuffed bore. One-inch (2.54 

cm) diameter coupons were cut from the major face of the engine bore at a distance of 45 

mm from the deck face (top surface of the bore). These samples were then cut in half, 

providing two sections to be used later for plan and cross-sectional view microscopy 

parallel to the sliding direction. The cutting was initiated at the free surface of the coating 

to reduce the possibility of separation from the substrate. Hexane was used as a solvent to 

remove the residual engine oil from the sliding surface of the coupons. The same 

metallographic preparation sequence was used for these samples as previously described 

for the Corvette engine bores.

TEM investigations were performed on the major face of the scuffed Corvette 

engine. TEM samples were taken along both the longitudinal and the transverse 

directions of the engine. Strips were cut from the damaged area of the major face o f the 

engine with the length of 2.3 mm and width of 1.1 mm using a diamond low speed saw. 

The samples were further glued together with worn surfaces towards each other using 

epoxy. They were then mounted into copper tube with inner diameter of 2.3 mm. The
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surfaces with the scuffing damage were located in the centre of the tube. Disks were 

sectioned from the tubes with a thickness of 0.7 mm and hand polished down to 100 pm. 

The centres of the samples were then mechanically dimpled using a dimple grinder to a 

minimum thickness of 30 pm. The dimpled disks were then argon-ion-beam milled at 

room temperature using an ion polishing system until the final perforation.

6.1.5. PIN-ON-DISC WEAR TESTS UNDER ARGON ATMOSPHERE

Careful experiments were made to determine the laboratory test conditions 

under which the scuffing micromechanisms that occurred in the engines could be 

simulated. There are a number of advantages using a tribometer (e.g. pin-on-disc) in a 

laboratory in order to simulate scuffing. They include:

1) Pin-on-disc tests enable precise control of test load and duration.

2) It is possible to continuously monitor the coefficient of friction, 

so that the onset of scuffing may be determined.

3) Tests can be stopped at the onset of scuffing for metallograpMc 

investigation.

Engine tests are time consuming and expensive to set up and run. Therefore, if the

conditions under which scuffing occurs in a given material can be simulated using pin- 

on-disc tests, an efficient and cost effective way of improving wear, and scuffing 

resistance materials can be obtained.

The problem of studying a damage accumulation events leading to scuffing is 

much more complicated in an engine bore than the controlled laboratory tests. The
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temperature and atmosphere that the contacting surfaces are exposed to are not constant 

in an engine. The loading is more complicated and variable, because neither the sliding 

velocities nor the normal loads are fixed, as in pin-on-disc bench tests. The bore wall 

experiences loading from the gas pressure, which may be corrosive from the piston 

ring(s) and from the piston skirt. It must also be recognized that the interaction of the 

cylinder bore wall with engine oil is a critical parameter in determining the thickness of 

the lubricant film. There are many other effects that influence the thickness of the 

lubricant oil film between the bore wall and the rings or piston. These include the amount 

of oil available to the contact, ring tensions, surface finish, pressure, temperature, oil 

properties, etc. Consequently, the thickness of the lubricant in the contact is unknown, 

neither its quality and physical properties. Furthermore, the onset of scuffing is usually 

not immediately apparent in a running engine. The damage observed then becomes the 

combined result of the initial scuffing and any subsequent wear due to fracture, seizure, 

3-body wear from loose hard particles, etc. The main points can be summarized as 

follows:

1) The temperature and atmosphere of the contact surfaces in an 

engine bore are not constant.

2) Loading is complicated since the loads and speeds are not constant 

as they are in pin-on-disc tests.

3) The bore wall experiences loading from the piston rings, the piston 

skirt, and from gas pressure which may be corrosive.

The pin-on-disc wear tests in this work were conducted on HVOF 1020-2.5% A! 

samples under an argon atmosphere to avoid oxidation of the contact surfaces of the
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coatings. The tests were performed under a boundary-lubricated conditions. An all 

purpose oil was used as a lubricant to eliminate the formation of chemical components 

(e.g. zinc dialkyldithio phosphate (ZDDP)) on the sliding surfaces. Tests were run to

15,000 m. The wear samples were in the form of 25mm x 25mm x 5mm square 319 A1 

alloy coupons coated with HVOF 1020-2.5% Al, which was the same as the coatings in 

the scuffed engines.

Engine grade cast iron samples (ASTM A30 grey cast iron) were tested for 

comparison of their scuffing resistance. The A30 grey cast iron has a pearlitic matrix with 

graphite flakes of 45 pm in average length, and a distance of approximately 9 pm 

between them. The properties of this material are as follows: Vickers hardness at 25 g 

251+10 (kg/mm2) , density 7.3± 0.3(g/cm3), tensile strength 238 ± 6 (MPa) [80].

The surfaces of all the samples (HVOF 1020-2.5% Al coatings and cast iron) 

tested under the argon atmosphere were polished to a roughness of R® = 0.10± 0.05 pm 

prior to the wear tests. The tests were performed under a high load of 100 N to produce 

high shear stresses and to deform the surfaces, and a low speed of 0.2 m/s to minimize

the contact temperature increase during deformation. The pin was an AISI type M2 high 

speed tool steel with a diameter of 5 mm. The worn coatings were sectioned both 

normal and parallel to the sliding direction with a diamond saw to produce samples for 

cross-sectional microscopy in both directions. The same metallograpMc preparation 

sequence was used for these samples as previously described for the preparation of 

engine bores (Section 6.1.4).
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6.2. RESULTS

6,2.1. SCUFFED CORVETTE ENGINE BORES

§.2.1.1. OPTICAL SURFACE PROFILOMETER MORPHOLOGY

Visual inspection showed that the scuffing damage depended strongly on the 

position around the bore. As seen in Fig. 6.2, the damage was the greatest on the major 

thrust face. The damage was also visible on the minor thrust face, but not as severe as the 

damage on the major face. In contrast, the front and back of the cylinders had no visible 

damage. The WYKO surface profiler system (WYKO NT 8000 system) was used to 

measure the surface roughness of the faces of the scuffed bores. The vertical-scanning 

interferometry (VSI) mode was used because it was more suitable to investigate rough 

surfaces and steps generated during scuffing. The system was able to sweep a wide 

surface area by using the stitching option. Because the samples were cut from the actual 

cylinder bores, cylinder and tilt correction, were applied. Low pass filtering was chosen 

to eliminate noise. The initial visual observations were confirmed by the WYKO optical 

profilometery data from the front, major, and minor faces, and these are shown in Figs. 

63, 6.4, and 6.5 (a and b) respectively. The important features seen on these images are 

explained in the following paragraph.

Fig. 6.3 is a 3D WYKO image from the front face of the bore, which shows the 

30° crosshatch hone marks very clearly with no evidence of scuff marks. An analysis of 

the profilometery data found the average surface roughness, Ra, to be 0.6 pm, which is 

consistent with the original surface preparation. The back of the bore was found to have a 

similar profile. The surface morphologies of these faces differ significantly from the 

minor thrust face (Fig. 6.4) where evidence of the hone marks was almost completely
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removed, and wear scars parallel to the direction of piston travel are apparent. The 

average roughness of this surface has increased slightly to Ra = 0.7 pm. Fig. 6.5.a is a 

typical 3D WYKO image from the scuffed area on the major thrust face, which 

demonstrates the severity wear associated with deep scratches. The hone marks are 

completely removed, and the scars from the scuffing are very deep, resulting in a surface 

Ra of 3.6 pm. Fig. 6.5.b is the 2D WYKO image of the major face, which shows Y 

(perpendicular to the direction of surface scratches) and X (parallel to surface scratches) 

profiles. The important information arising from this figure is that the depth of the 

scratches can be as large as 15-20 pm. This is shown in the Y profile where Rv= - 

17.27 pm was obtained. The Rv is defined as the depth of the lowest point of a valley on 

the surface. The main observations can be summarized as follows:

1) The scuffing damage depended strongly on the position around the

bore.

2) The scuff marks were parallel to the direction of piston movement.

3) The crosshatch hone marks were removed on the major and minor

faces, and scuff marks were visible on both faces.

4) The scuffing damage was much more significant on the major face.

6.2.I.2. SIM  OBSERVATIONS OF THE MAJOR FACE OF SCUFFED 

CORVETTE ENGINE BORES

SEM and EDS analyses were performed on the surfaces and cross-sections of the 

major, minor, front, and back faces of the scuffed cylinder bores. Fig. 6.6 shows a plan
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view secondary electron SEM image taken from the surface of the major face of the bore 

at 45 mm below the deck face of the engine (middle part of the bore). This area of the 

bore was subjected to the sliding contact motion of both the piston skirt and the piston 

rings. The magnification of this image is 400 times the WYKO images presented in Fig.

6.5.b. There is no evidence of hone marks at this magnification, and the deep 

longitudinal scratches with widths of 500 jim are apparent. There are cracks on the 

sliding surfaces perpendicular to the sliding direction. The large areas that have a rough 

appearance are the regions where subsurface cracks have propagated to the surface, and a 

part of the coating delaminated and induced high surface roughness. It is also important 

to note that the surface is free of oxide, indicating that the scuffing of the engine on the 

coating did not exhibit the oxidative wear mechanisms observed in laboratory tests done 

in air.

Cross-sectional micrographs taken from the area on the major thrust face (middle 

part of the bore) with different magnifications are shown in Figs. 6.7.a and b. The sample 

was prepared according to the metallographic preparation method explained in Section

5.1.3. The micrograph shows that a subsurface crack extended to the free surface, and it 

also shows the presence of a mechanically mixed tribolayer at the sliding surface. The 

high magnification micrograph in Fig. 6.7.b shows the features of the severely deformed 

region more clearly. At this magnification, the mechanically mixed layer appears to be 

less than 5 pm thick, usually with a sharp boundary with the underlying material. The 

layer appears to be compact and exhibits a fine oxide particle morphology that is different 

from the ones found in the underlying bulk. There is no oxide vein or chunky inclusion 

structure; rather the oxide appears to have been fractured into small spherical particles of
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0.5-1.00 jim in size. (TEM investigations showed that the particles were actually reduced 

to nanometric size, as will be discussed in Section 6.3.2.). The micrograph shows that 

subsurface cracks propagated along the oxide veins at the Fe /PeO interfaces, which have 

a low local fracture toughness of only 0.5 MPa (m1/2) [6]. The cracks eventually reached 

the free surface and caused the formation of the fractured areas seen in Fig. 6 .6 .

Fig. 6.8 is another SEM image of the tribolayer that was formed on the major 

face. The micrograph shows oxide veins and the iron splats that are aligned in a direction 

parallel to the direction of the plastic deformation. The significance of this figure is that it 

indicates that the deformation is unidirectional, because all the visible microstructural 

elements were aligned in the same direction, namely from the right to the left of the 

figure. This implies that the direction of the shear stress that was generated during the 

sliding contact of the rings and/or the piston was significantly higher in one direction. 

This is discussed in detail in Section 6.3.2 by taking into consideration the magnitudes of 

the thrust forces in the combustion cycles. Oxide inclusions in the tribolayers were 

aligned in the direction of the strain gradient as shown in Fig. 6.8.

Fig. 6.9 is another micrograph taken from the same region revealing in more

detail the mechanism for the cracking in the inclusions. Using the energy dispersive 

spectroscopy (EDS) capability of the electron microscope, the large medium grey 

particles were identified as iron, aluminum and oxygen containing constituents. These 

particles had a stoichiometric composition of FeAlOs (according to selected area 

diffraction patterns of TEM, see Section 6.3.2.). The micrograph in Fig. 6.9 shows 

cracking in these particles. Several of the particles show cracks that are localized within 

the particles; others show cracks that extend between adjacent particles, and some to the
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free surface. These observations imply that the FeAlOs inclusions in the HVOF 1020 

2.5% Al coatings played a detrimental role and caused degradation of the coating 

surfaces deposited inside the Corvette engine bores.

Fig. 6.10 is a secondary electron SEM image of the longitudinal cross section 

from the major face of the Corvette engine that shows how the surface layers were 

detached from the scuffed HVOF 1020 2.5% Al coatings. It shows that highly deformed 

tribolayers were delaminated at some parts of the coating, and produced plate like loose 

debris of about 100 pm width. A large crack propagating parallel to the sliding direction 

near the bottom of the tribolayer, i.e., 10-20 pm below the contact surface is also clearly 

seen. Fracture of the part of tribolayer to the right of the figure appears to be imminent. 

The fractured section shown in this cross section corresponds well to the fractured 

sections observed on the scuffed surfaces shown in Fig. 6.6.

Therefore, it can be concluded that the main mechanism causing material loss 

during scuffing is the detachment of the tribolayers from the surface.

6.2.1.3. SEM OBSERVATIONS OF THE MINOR FACE OF SCUFFED

CORVETTE ENGINE BORES

The damage on the minor side of the engine bore was not as severe as the 

damage on the major face. Therefore, only a brief discussion of the SEM observations is 

presented here. Fig. 6.11 is a cross-sectional secondary SEM image taken from 45 mm 

below the deck face of the minor face. The micrograph shows deformation of the tips o f 

the iron splats on the contact surface. It also shows deiamination of the part of the splats 

as a result of crack propagation along the oxide veins/iron splat interfacse and total
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separation of some splats. The microstracture however, is considerably different from 

the one found for the equivalent position on the major face. There is no evidence of a 

mechanically mixed layer or of any flow parallel to the shear loading direction. There is 

also no evidence for fracture of the oxide inclusions. Therefore, the damage on the 

minor face was mainly due to the fracture of the deformed splat tips, and the removal of 

some splats adjacent to the contact surface.

In summary, the current metallographic observations revealed the following 

important features of the scuffing mechanisms:

1) The cross-sectional microstructures of the major and the minor

faces are considerably different from each other, with the major 

face exhibiting more severe scuffing damage.

2) The mechanically mixed tribolayers were formed only on the

major face, which consisted of a matrix of deformed iron with fine 

particles of inclusions dispersed in it.

3) Plastic deformation beneath the mechanically mixed layer on the 

major face exhibited a unidirectional pattern, which was due to the 

application of high loads during the power stroke of the 

combustion cycle.

4) The delamination of the tribolayers was the primary source of

material removal during scuffing. This process was facilitated by 

crack formation at the FeAlOs inclusions as well as fracture along 

the FeO veins between the iron splats.
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0 . 0 .  SEM OBSERVATIONS OF THE PISTON SKIRT

Figs. 6.12 a and b are photographs taken from two sides of the piston skirt in 

contact with the major and minor faces of the cylinder bore. Just as the bore was more 

damaged on the major thrust face than on the minor face, the piston skirt also had more 

damage on the side in contact with the major face. The piston skirts originally had tin 

plating. This plating is known to reduce scuffing during break in. The plating is thin and 

wears away rapidly on the high points during the first few hours of operation. The back- 

scattered SEM images from the side of the piston in contact with the major side of the 

bore are shown in Figs. 6.13 a and b. The micrographs show surface damage in two 

different magnifications. In Fig. 6.13 a, cracks perpendicular to the sliding direction are 

clearly visible. The light grey areas in the image are identified as iron by the EDS. The 

iron particles were transferred from the HVOF 1020-2.5%A1 coating on the cylinder 

bores. Fig. 6.13b shows higher resolution microscopy of the transferred iron particles. 

There was no evidence of tin-plating on the damaged regions of the piston in contact with 

the major face.

The main observations on the piston skirt can be summarized as follows:

1) The piston skirt had more damage on the side in contact with the 

major face, and less damage on the side in contact with the minor 

side.

2) SEM observation of the major side shows materials transferred 

(presence of iron) from the bore coating.
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6.2.1.4 SEM OBSERVATIONS OF THE TOP PISTON RING

Visual inspection of the top piston ring showed that some parts of the ring were 

severely damaged, and the damage was not uniform around the ring. A segment of the 

top ring that was prepared from the undamaged area for cross sectional microscopy 

imaging is shown in Fig. 6.14. The cross sectional micrograph shows the microstructure 

of die ring. Fig. 6.15 is a back-scattered SEM micrograph of the mid section of the 

damaged area of the contact surface of the ring. The image shows that the contact surface 

of the ring was cracked along a direction perpendicular to the sliding direction with 

scratches parallel to the sliding direction. There is also evidence of material transfer (dark 

region) to the surface of the ring. The EDS analysis of the dark coloured area in Fig. 6.15 

showed that this area consists of Al, Fe, O, and Cr. Possible sources of the Al are i) the 

transfer of aluminum directly from the Al containing inclusions detached from the 

surface of the coating or ii) the Al is transferred from the other parts of the engine, most 

likely from the piston skirt. Fig. 6.16 consists of secondary and back-scattered SEM 

micrographs taken from the edges of the severely damaged area. The edge of the ring in 

the damaged area was fractured in chips. The released particles could have contributed to 

the surface damage and deformation by scratching the coating surfaces. The longitudinal 

scratches seen on the sliding surface in Fig. 6.6 may be due to the action of the particles 

fractured from the ring.

In summary, the metallograpMc observations of the piston top ring underline the

following points:

1) The damage on the ring was asymmetric.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2) The edges of the ring were chipped in the most severely damaged

areas. This may have contributed to the damage of the coating 

surfaces on the bore surfaces.

6 2 2 .  SEM OBSERVATIONS OF THE SCUFFED SATURN ENGINE BLOCK

Extensive SEM investigations have been performed on the major face of the bore 

45 mm below the deck face (middle part of the bore) of a Saturn engine that failed during 

a cold scuff test. Fig. 6.17 shows a typical microstructure of the scuffed area. The 

micrograph shows a three-layered microstructure. The first layer was the undeformed 

bulk structure. Near the contact surface, the microstructure was very fine and severely 

deformed. It consisted of finely fractured oxide inclusions aligned in the power stroke 

direction. Mechanically mixed tribolayers existed on the top. The micrograph shows that 

the tribolayers were almost completely detached from the sliding surface. Therefore, the 

material removal mechanism during scuffing was similar in both the Corvette and Saturn 

engines.

Fig. 6.18 shows that a subsurface crack extended parallel to the contact surface at 

a depth of 5 pm below the contact surfaces. Similar to the coating in the scuffed Corvette 

engine, the propagation of subsurface cracks appeared to have caused the delamination of 

tribolayers.

The deformation patterns of the highly deformed coating layers beneath the 

tribolayers in both engines were similar. This can be seen when the features shown in 

Fig. 6.18 are compared with those in Fig. 6 .8 . Fig. 6.18 reveals that at a depth of 10-15
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pm, the oxide veins have assumed a preferred symmetry along lines running from the 

lower left area to the upper right area of the image. This indicates that the direction of the 

damage was unidirectional, and that it was dictated by the direction of the power stroke.

It is clear from Fig. 6.19 that AlFeOs inclusions acted as crack initiators. They 

were the raicleation sites for more extensive cracks that propagated beneath the 

tribolayers. This is another common aspect of scuffing damage in the HVOF 1020-2.5%

Al coatings taken from the two engines.

In conclusion, the SEM investigations of the scuffed Saturn engine showed 

considerably similar microstructures to those found at the same locations in the Corvette 

engine. The mechanisms of scuffing of the HVOF 1020-2.5% Al coatings in both engines 

were the same.

6.2.3. SEM OBSERVATIONS OF HVOF 1020-2.5% Al COATINGS AFTER PIN-

ON-DISC WEAR TESTS

HVOF 1020-2.5% Al coatings were tested at 100 N load, and 0.2 m/s speed for

15,000 m sliding distance under Ax atmosphere and boundary lubricated conditions in 

order to simulate scuffing under the laboratory conditions (see Section 6.1.5.). The worn 

samples were examined under the SEM to observe the similarities between the 

microstructures of the coatings scuffed under the laboratory conditions, and those taken 

from the scuffed engines. SEM cross sections prepared parallel to the sliding direction of 

the samples subjected to pin-on-disc wear tests are shown in Figs. 6.20 and 6.21. Fig. 

6.20 is a back-scattered image, and shows the presence of a highly defomied layer at the
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sliding contact of the coating. This layer was generally discontinuous with a thickness of 

less than 4 pm. The layer had a microstracture consisting of small oxide particles that 

were distributed in the severely deformed iron matrix. This morphology of finely 

distributed oxide particles was different from the large inclusions and the oxide veins 

seen in the underlying bulk material. The micrograph also shows cracking of inclusions, 

which were identified as FeAlO? with the aid of a TEM. Similar microstracture was 

observed in the scuffed engines bores, as reported in Section 6.2.2. It is also important to 

note the presence of a long crack extending parallel to the contact surface at the bottom of 

the tribolayer. Similar to the coatings taken from the scuffed engines, this type of crack 

formation led to a surface fracture during the pin-on-disc tests.

Fig- 6.21 shows extensive damage to the inclusions. The fractured particles became 

connected to form longer cracks that typically propagate through the tribolayer to the 

surface. Fig. 6.22 shows that the highly deformed tribolayer fractured, this led to the 

formation of loose debris during pin-on-disc tests.

In summary, the pin-on-disc tests that were performed on the thermal sprayed 

coatings of HVOF 1020-2.5% Al under Ar atmosphere and boundary lubricated condition 

were successful in reproducing the microstractures that closely matched with those 

generated in the scuffed engine bores coated with the same coating. This microstructural 

link suggests that the pin-on-disc tests can be used to simulate engine scuffing provided 

that the appropriate conditions are used.
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6.2.4. SEM OBSERVATIONS OF CAST IRON AFTER PIN-ON-DISC WEAR

TESTS

Cast iron engines subjected to the same cold scuff tests did not scuff where as the 

HVOF 1020-2.5% Al coatings showed extensive surface damage. Cast iron samples were 

subjected to pin-on-disc tests under the same conditions as the HVOF 1020-2.5% Al 

coatings for comparison. The SEM investigations from the longitudinal cross-section of 

the worn cast iron showed that unlike the HVOF 1020-2.5% Al, no severe subsurface 

damage occurred in cast iron. There was no evidence of the formation of the deformed 

layer in the material below the worn surface nor of the tribolayers on the contact surface 

(Fig. 6.23). The only type of damage that could be observed was the occasional fracture 

of a fragment of iron that was sandwiched between graphite flakes that were adjacent to 

the contact surface and the steel pin of the tribometer (Fig. 6.24). In this mechanism the 

fragment of iron was separated from the bulk by the graphite flake and removed when the 

flake delaminated. The detached fragments were typically 10-20 pm in size. This 

mechanism has been reported previously [80] and it is known to correspond to the typical 

mild wear mechanism in cast iron.

As noted previously, the pin-on-disc tests on the HVOF 1020-2.5% Al were done 

under argon atmosphere using a load of 100 N. Cast iron samples did not show evidence 

for scuffing under these conditions. In order to observe the scuffing phenomena in the 

cast iron, a higher load, namely 150 N, was applied. The sample tested at 150 N exhibited 

damage due to scuffing on the contact surface. The cross sectional SEM investigations of 

the sample parallel to the sliding direction showed deformed graphite flakes that 

elongated parallel to the sliding direction. Several of these graphite flakes that were
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elongated in the sliding direction are marked in Fig. 6.25. A layer of material on the 

contact surface is seen just before it became detached. This layer was 150-200 pm in 

length. Fig. 6.26 is a higher magnification micrograph of a section near the contact 

surface, and shows the extent of damage and fracture of the material adjacent to the 

contact surface. It is clear from the length of the graphite particle extended parallel to the 

contact surface that the strains in this region were very large (probably greater than 5). 

The iron layers at these strains were fractured and fragmented into smaller pieces. This 

mechanism shows similarities to the scuffing mechanism in the HVOF 1020-2.5% Al 

coatings where the surfaces were also very severely deformed.

In summary, the fracture and fragmentation of brittle constituents in grey cast iron 

led to the formation of the tribolayers that were subsequently delaminated and detached 

from the surface. This is similar to the same scuffing mechanism observed in HVOF 

1020-2.5% Al coatings.

6.3. AMALYSIS OF ENGINE SCUFFING MECHANISMS

Results of the investigations presented in Section 6.2. shed light on certain 

important aspects of scuffing in the engines. The microscopic events leading to scuffing 

on the major thrust surface of the bores namely, extensive subsurface deformation, 

tribolayer formation, and fracture of the surface layers have been chracterized using 

surface profilometery and SEM. In the next section an analysis of the mechanical events 

that took place during the engine cycles (Section 6.3.1.) is given to provide a better 

understanding as to why the major surface of the bore is subjected to scuffing TEM 

analyses of the deformed subsurface layers taken from the scuffed Corvette engine are
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presented in Section 6.3.2. to provide a more detailed understanding of the fundamental 

physical mechanisms leading to scuffing of the thermal spray coated engines.

63.1. CONSIDERATION OF FORCES DURING THE ENGINE CYCLES

The damage on the bores of the scuffed engines was localized on the major and 

minor thrust faces. A comparison of the major and minor thrust face damage showed that 

both faces experienced enough surface damage to remove the hone marks, and to exceed 

the threshold for scuffing. This was visually determined at the end of cold scuffing tests 

with the observation of scratch marks on the surface. However, the damage was 

significantly more severe on the major face. The major and minor thrust faces of the bore 

carry larger piston skirt loads than the front and back portions of the bore. Figs. 6.27.a 

and b are the free body diagrams of the forces that act during combustion and 

compression strokes. During the combustion stroke, the crankshaft position changes 

between 0° and 180° angles. The connecting rod forces the piston skirt to make contact 

with the major thrust face during this event. Fig. 6.21a  shows the free body diagram of a 

piston during a power stroke at the crank angle of 30° after top dead centre (TDC) 

position. The x component of the force exerted by the connecting rod drives the piston 

against the major trust face. This is seen from Fig. 6.21a  where the piston skirt is in 

contact with the major thrust face, while there is no contact at the minor thrust face. The 

position of the rings is also asymmetric in the contact. The crankshaft position varies 

between 180°- 360° during the compression stroke. Fig. 6.27.b shows the free body 

diagram of a piston during the compression stroke at the same position. At this cycle, the
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x component of the force applied by the connecting rod drives the piston against the 

minor trust face.

Variation of the cylinder pressure against the crank angle during each of the four 

major engine cycles namely, intake, compression, expansion, and exhaust is shown in 

Fig. 6.28. It is important to note that the gas pressure during combustion and compression 

are not equal, and the peak gas pressure during combustion is greater than throughout the 

compression stroke. This explains why more severe damage exists on the surface of the 

major thrust face, which is consistent with the metallographic results presented in Section

6.2. Fig. 6.28 also illustrates an important point. Although the total motion of the piston 

against the major face can be seen as a reciprocating motion in fact because the force 

applied to the cylinder bore is much higher in the combustion cycle the scuffing is due to 

the unidirectional sliding motion. This point will be discussed in more detail in Section

6.3.3.

The differences between the major and minor faces initially seen in the WYKO 

and optical micrographs from the scuffed bores were subsequently confirmed by die SEM 

images. The microstructure that was observed in the micrographs from the major thrust

face was different from the minor face. There was clear evidence of a mechanically 

deformed tribolayer on the major face. A typical microstracture of the major face of the 

scuffed engines also exhibited the deformed layer beneath the tribolayer that indicated a 

region characterized by a pattern of oxide veins elongated towards an orientation in one 

direction parallel to the surface, which again was indicative of a unidirectional 

deformation pattern.

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The extensive subsurface plastic deformation consisted of iron matrix and 

fractured oxide particles. Because the deformation microstructure of the subsurface layers 

and the microstracture of the tribolayers were very different from the original matrix 

structure additional characterization studies were done on these layers by TEM. They are 

discussed in Section 6.3.2.

63.2. TRANSMISSION ELECTRON MICROSCOPY (TEM) FROM THE 

MAJOR FACE OF THE CORVETTE ENGINE BORES

TEM investigations on a longitudinal (parallel to the sliding direction) section of 

the major face of the scuffed Corvette engine confirmed that a graded microstracture was 

formed as a function of depth in the scuffed HVOF 1020-2.5% A1 coating. The 

substructure formed at depths of about 0.4-0.6 pm below the contact surfaces, and 

consisted of elongated sub-grains of 0.2-0.3 pm in width, and about 0.1 pm in thickness. 

These sub-grains were elongated in the direction of sliding. The elongated grain structure 

can be seen in the TEM micrograph in Fig. 6.29, which is a section parallel to the scuffed 

surface. It should be noted that a similar structure of elongated grains was formed under 

the contact surfaces of the samples subjected to pin-on-disc tests carried out in air at 75 

N, 2.5 m/s (Section 5.1.4.). The elongated grain structure of the subsurface material 

obtained from the TEM micrograph of the scuffed coating is schematically shown in Fig. 

63®.

In the region closer to the contact surface, namely 0-0.3 pm below the contact

surface, the grain size was remarkably smaller and it was difficult to distinguish the
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individual grains. The high magnification TEM micrograph (Fig. 6.31) taken from the 

material layers immediately below to the contact surface, namely about 0 .2  pm below the 

surface, is shown in Fig. 6.29. This figure reveals the nano-size grain structure more 

clearly. The nano-size grains are no longer elongated but assumed equiaxed morphology. 

As shown in Fig. 6.29, the Fe grain size in this region was 20 run, and the equiaxed 

grains were mixed with AlFeOj particles that were reduced to almost the same size as the 

Fe grains. The presence of AlFeOs is confirmed by the SAED pattern shown in the insert 

of Fig. 6.29. The features of the layers adjacent to the contact surfaces, namely the 

fragmented oxide particles and the nano-sized Fe grains, are schematically shown in Fig. 

6.30.

It is suggested that the nanostructured grains were formed by the subdivision of 

the elongated grains into smaller sizes as the strain increased towards the surface, and by 

the increase in the misorientation angle between them. It is well known that these two 

processes cause grain refinement as the strain in the material increases [156]. This is 

consistent with increasing strain gradients towards the contact surfaces in the scuffed 

coatings. Typically, strains in excess of 3-4 are needed to refine the grain size to the 

nanoscale range, i.e. less than 50 nm [157]. Therefore, the mechanically mixed layers 

should have formed under the influence of such high strains.

In summary, TEM results in conjunction with the SEM investigations indicated 

the formation of the tribolayer on the sliding surface of the scuffed major face and a 

severely deformed layer below the tribolayer.
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6 3 3 . CORRESPONDENCE BETWEEN THE MECHANISMS IN THE

SCUFFED ENGINE AND THE WEAR MAP FOR HVOF 10211-2.5% A1

It Is instructive to compare the mlcrostractural information obtained from the 

investigation of the scuffed engine bores with the wear micromechanisms presented in 

the wear map of the HVOF 1020-2.5% Al. The wear map for the HVOF 1020-2.5% A! 

coatings is presented in Section 5.2.3., and shows the wear mechanisms in this coating at 

low relative humidity (10% RH) levels on load vs. sliding speed axes. The wear map of 

the HVOF 1020-2.5% Al (Fig. 5.12) distinguishes between five different wear regimes. It 

was found that in most areas on the wear map, surface oxidation created a chemically 

altered layer that played the critical role in controlling the wear rates. It was at high loads 

and low speeds that the mechanical wear was a dominant wear mechanism. Although 

some surface oxidation also occurred at this loading condition, the oxide layer was too 

thin to eliminate the mechanical contact between the sliding surfaces. The highest coating 

wear rates were measured in tests performed under these conditions. Fracture of splats 

that were subjected to severe plastic deformation was the principal wear mechanism for 

the coating under this testing condition. The scuffing mechanism that occurred on the 

minor face of the Corvette and Saturn engines was similar to the mechanical wear by 

splat tip deformation, and fracture observed on the wear mechanism map of the HVOF 

1020-2.5% Al coatings.

The scuffing damage inflicted on the major faces of the engine bores was much 

more severe than the mechanical damage identified on the wear map. The wear map was 

constructed using pin-on-disc tests that were run in air, and as mentioned before, was 

influenced by the surface oxidation. It is conceivable that the oxides reduced the friction
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coefficient hence the shear forces transmitted to the contact surfaces in the mechanical 

wear regime of the HVOF 1020-2.5% Al coatings. Consequently, mechanically mixed 

tribolayers that were the typical features of the scuffed sub-surfaces of the coatings on the 

engines were not observed on the wear map of the HVOF 1020-2.5% Al coatings because 

the maps were constructed for sliding in air.

The arguments presented above imply that, if a correlation is to be established 

between the microstructures generated during engine scuffing and those in the pin-on- 

disc tests, the role of the environment must be taken into account The gases surrounding 

the surfaces within a running engine differ significantly from the ambient air. The bore 

surfaces are periodically exposed to a combustion mix that can be partially reduced. 

When the engine is appropriately lubricated, the oil film protects the bore wall from 

excessive shear forces, and can provide a diffusion barrier to oxygen slowing surface 

oxidation. In addition, sulphur in ZDDP is known to react with the surface and reduce 

oxygen absorption. The oil has a double role of reducing both the shear stress by reducing 

the coefficient of friction, and the rate of oxidation. This is the reason why the pin-on- 

disc tests that were used to replicate the engine scuffing were conducted in -an Argon 

atmosphere. Furthermore, it is useful to introduce lubricants to the surface during these 

tests. The similarities between the microstructures of the scuffed engines and those of the 

pln-on-disc tests that were done under the argon atmosphere, and boundary lubricated 

conditions (see Section 6.1.5) justified the choice of the selection of these conditions.

On the other hand, as discussed in Section 6.3.1. that the motion of the piston 

against the bore surface is reciprocal; the bore walls are not symmetrically loaded. 

Because the loading is substantially heavier during the combustion stroke than the
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exhaust stroke, the damage is unidirectional on the major face. Therefore, it is appropriate 

to use unidirectional pin-on-disc tests to simulate the scuffing engine damage. Contrary 

to general belief, unidirectional tests provide a closer simulation of the engine scuffing 

than reciprocating tests. This is proven with the close match of the microstructures 

generated in the experiments described in Sections 6.2.1. and 6.2.3.

To replicate comparable shear loads in the pin-on-disc tests, it was necessary to 

apply a high normal load to the surface of the coating. This load was found by iterative 

process, starting from a load of 10 N, and increasing to 100 N, where microstructures 

exhibited similar features as those found in the scuffed HVOF 1020-2.5% Al coated 

engines. As noted in Section 6.2.4., cast iron samples is scuffing during the cold scuff 

tests. Cast iron samples did not exhibit scuffing damage when they were subjected to pin- 

on-disc tests at 100 N, but they showed scuffing at the higher load of 150 N.

The methodology that was used to develop the laboratory scale pin-on-disc type 

scuffing tests for the coatings is summarized in Table 6.3.

In the future, it may be possible to further develop these tests as an economical

and effective way to determine the onset of engine scuffing under laboratory conditions. 

An understanding of the mechanism of scuffing in these coatings using laboratory tests 

will help to optimize their compositions, microstructures, and their fabrication process. 

Therefore, laboratory scale scuffing tests are expected to provide an efficient way to 

design scuff resistant coatings for automotive engine applications.
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HVOF 1020-2.5% Al thermal spray coatings

Tested under laboratory 
conditions

2.5 x 2.5 cm sample undergone dry 
sliding Pin- On- Disc under dry air

 - r f .........................
Different wear mechanisms under 

different loading conditions

T
Results organized in the form of a

wear map
T

Mechanical wear along with 
surface oxidation at the high loads 
and low speeds portion of the wear 
map Severe splat tip deformation 

and fracture. No tribolayer 
observed unidirectional test

O Tested under actual 
engine condition

Corvette engine undergone
racetrack test

Saturn engine undergone 
cold scuff test

Both engines failed with so 
of damages

±
Scuff damages were clearer on the 

major face of the bores
 :1 __________

Mechanical wear and severe plastic 
deformation no oxidation observed 
Tribolayer formation and flow due 
to unidirectional stress parallel to 
the direction of the power stroke

New laboratory POD wear tests under which same type of 
scuffing micromechanisms could be identified

Test Conditions: argon atmosphere, boundary lubricated, 
low speed high loads

Result: Microstracture after test exactly similar to the 
scuffed region in the engine

Conclusion: POD tests can be used to simulate cold 
scuffing in engines.

Table 63- Methodology used to develop new laboratory test in order to determine the scuff 
resistance of the materials.
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HVOF
(a)

GO (c) (d)

Fig. 6.1- Schematic of the thermal spray deposition process inside a cylindrical sample
(a) illustrates the boring of the cast cylinder wall; (b) shows the water jet 
cleaning/surface roughening treatment of the cylinder wall; (c) illustrates the 
application of the thermal spray coating to the cylinder wall and (d) shows the 
honing of the cylinder wall to the finished dimension.
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(a)

(b)

Fig. 6.2- a) Photographs of the sectioned bore coated with HVOF 1020-2.5% Al; b) 
severe scuffing of the major thrust surface of the bore.
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Fig. 63- Surface profilometry image from the front face of the scuffed Corvette engine, 
which shows the crosshatch hone marks on the surface of the HVOF 1020-2.5% 
Al coating.
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Fig. 6.4- Surface profilometry image from the minor face of the scuffed corvette engine, 
which shows that the hone marks are completely removed. Scratches and wear 
scars appeared on the surface of the HVOF 1020-2.5% Al coating.
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Surface profilometry image from the major face of the scuffed Corvette 
engine. The rough surfaces associated with deep scratches and deep wear 
scars are clearly seen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X Profile
X: 3.809 mm

f  X: 4.593 mm S  
m f i u n i j

ir%
I ■■vy\P| VI 1 /  V vk

 i  I f  r •
 1

f  Yc 0.988 mm I
J  |

■ ■ ■■ 1 *  ̂ I i • . 1 > " T " f '" v - f - f - r  r  -r- r T "  , - >  .
0 .00  0.50 1.00 150 2 .0 0  2.50 3 .00  3.50 4.00

Y Profile

0 J )  0 .5  t J J  1 .5  2SS 2 £  3 £  3 .5  4 .0  4 .5  5 .0

W
/"’V'WV /ft AiA \

X: 3.044 mm 
Y: 5.4 um

X: 1389 mm 
Y: -173 um

ige 6050b- Plan view WYKO image of the major face, along with Y and X profiles of 
selected points as marked on the image.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V: 1.3 
um 

Y: 22.6 
um



Fig. 6.6- Plan view secondary electron SEM image taken from the surface of the major 
face of the middle part of the scuffed Corvette engine bore.
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Fig. 6-7.a- Cross-sectional micrograph taken from the same area on the major thrust face (middle part of the bore), the 
micrograph shows 2-5 pm tribolayer thick on the sliding surface and extensive sub-surface cracking. Fig. 7b High 
magnification of the back-scattered SEM image of the damaged surface region (area inside the rectangle) in Fig. 7a 
shows a mechanically mixed tribolayer, evidence of plastic deformation and flow beneath the tribolayer more clear.



Fig. 6.8- Secondary SEM micrograph taken from the major face of the Corvette engine 
shows that the shear stress from sliding of the rings or piston induced subsurface 
plastic deformation and a net flow of the relatively soft matrix. This shear stress 
also fractured the oxide particles in the tribolayer, reducing their size and 
dispersing them in the matrix.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 6.9- Back-scattered SEM image from the major face of the Corvette engine bore that 
shows cracking in the particles identified rich in Fe, Al and O using EDS 
analyses.
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Fig. 6.10- Secondary electron SEM image of the longitudinal cross section from the major face of the Corvette engine shows 
how the surface layers were detached from sliding surfaces.
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Fig. 6.11- Cross-sectionai secondary SEM image taken from the minor face 45 mm 
below the deck face shows the surface damages in the form of splat 
delamination. There is no evidence of the tribolayer.
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fa) (b)

Figs. 6.12- Photographs taken from  two sides of the piston skirt in contact with (a) the 
major and (b) minor faces of the cylinder bore.
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Fig. 6.13- (a) Back-scattered electron SEM image taken from the side of the piston skirt 
in contact with the major face of the bore with the greatest damage; (b) High 
magnification micrograph that shows iron patches (light grey area) transferred 
from the HVOF 1020-2.5% Al coating on the cylinder bores.

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 6.14- Cross-sectional micrograph of the nitrated stainless steel top ring.

Fig. 6.15- Back-scattered SEM micrograph of the centre of the damaged area of the ring 
shows that the surface is cracked along a direction perpendicular to the sliding 
direction with scratches parallel to the sliding direction. There is also evidence 
of material transfer (dark region) to the surface of the ring.
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Fig. 6.16- Secondary and back-scattered SEM micrographs taken from the edges of the 
severely damaged part of the top ring shows that chipping has been occurred 
at this area.
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Fig* 6 .17- Back-scattered SEM micrograph from the cross section of the major side of the 
scuffed Saturn engine bore shows the tribolayer were almost completely 
detached from the sliding surface.

Cracks in ultrafine layer Missing part of tribolayer

Deformed layer

Fig. 6.18- Back-scattered SEM micrograph from the cross section of the major side of the 
scuffed Saturn engine bore that shows subsurface cracks parallel to the 
surface.
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Fig. 6.19- Back scattered SEM micrograph from the major side of the scuffed Saturn 
engine that shows cracking of the inclusions and also the crack in the 
deformed layer extending parallel to the contact surface.

Fig. 6.20- Back scattered SEM image from the cross section of HVOF 1020-2.5% Al 
tested at 100 N load and 0.2 m/s speed under Ar atmosphere and boundary 
lubricated condition to 15,000 m using pin-on-disc tribometer that shows 
formation of deformed layer and cracks in the inclusions.
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Fig. 6.21- Back-scattered SEM image from the cross section of HVOF 1020-2.5% A1 
tested at 100 N load and 0.2 m/s speed under Ar atmosphere and boundary 
lubricated condition to 15,000 m using pin-on-disc tribometer that shows 
extensive cracks in the inclusions and subsurface cracks which reached the 
surface.

i racunvd I nbolaxTribolayer

Fig. 6.22- Back-scattered SEM image from the cross section of HVOF 1020-2.5% A1 
tested at 100 N load and 0.2 m/s speed under Ar atmosphere and boundary 
lubricated condition to 15,000 m using pin-on-disc tribometer that shows the 
highly deformed tribolayer fractured and this has led to the formation of loose 
debris during sliding.
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Fig. 6.23- Back-scattered SEM image from the cross section of cast iron tested at 100 N 
load and 0.2 m/s speed under Ar atmosphere and boundary lubricated 
condition to 15,000 m using pin-on-disc tribometer that shows no visible 
damage and deformed layer at the contact surface.

Fig. 6 .24- Back scattered SEM image from the cross section of cast iron tested at 100 N 
load and 0.2 m/s speed under Ar atmosphere and boundary lubricated 
condition to 15,000 m using pin-on-disc tribometer that shows the typical type 
of damage.
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Fig. 6.25- Back-scattered electron image from the cross section of cast iron tested at 150 
N load and 0.2 m/s speed under Ar atmosphere and boundary lubricated 
condition using pin-on-disc tribometer that shows elongated graphite flakes 
(marked on the micrograph).

Fig. 6.26- High magnification of the back-scattered SEM image of the damaged surface 
region (area inside the rectangle in Fig. 6.25) shows elongated graphite flakes 
in detail. Extensive fracture of the iron near the contact surface is evident.
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Fig. 6.27- (a) A free body diagram showing the forces during a combustion stroke, (b) A 
free body diagram during a compression stroke.
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Fig. 6.28- Major engine cycle events. EVC = Exhaust valve closing, IVC -  Intake valve 
closing, EVO = Exhaust valve opening, and IVO = Intake valve opening.
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Fig. 6.29- TEM metallographic investigations on the longitudinal sections of the major 
face of the scuffed Corvette engine along with the corresponding selected area 
electron diffraction (SAED) pattern from the ultrafine region.
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Fig. 6.30- Schematic diagram showing the microstracture of the longitudinal sections of 
the major face of the scuffed Corvette engine. The microstructure is divided 
into two separated layers of a mechanically mixed layer with nanosize grains 
of Fe and FeAlOs particles and a highly deformed layer with elongated grains 
due to severe plastic deformation.
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Fig. 6 31- High magnification TEM micrograph from the material layers immediately 
below to the contact surface, namely about 0.2 pm below the surface of the 
scuffed Corvette engine shows nano-size grain structure with an equiaxed 
morphology.
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CHAPTER VII 

SUMMARY AND CONCLUSIONS

1) The wear behaviour of Sow carbon steel thermal spray coatings, which were 

deposited using plasma transfer wire arc (PTWA), and high velocity oxy-fuel 

(HVOF) processes on cast 319 A1 alloy were investigated. It was observed that 

the micromechanisms of the wear that control wear rates under dry sliding 

conditions could be classified in two main groups: a) mechanical wear, which 

involved by severe plastic deformation and splat tip fracture and splat 

delamination through the oxide veins; b) oxidational wear that took place by the 

formation of various iron oxides whose compositions and thicknesses depended 

on the loading conditions. A third type of wear namely, chemical polishing wear 

occurred in tests performed under high humidity conditions.

2) The wear mechanisms and the wear rates of the all three types of thermal spray 

coatings, which consisted of PTWA 1020, HVOF 1020, and HVOF 1020-2.5% A! 

were summarized in the form of wear maps that were constructed separately for 

each coating. In the wear map for the PTWA 1020 coatings four main regimes 

were identified as follows:

i) At low load and velocity conditions, surface oxidation by formation of 

Fe2 0 s was the main wear mechanism.

ii) At low velocity and high load conditions the high wear rates that were 

observed were associated with severe deformation of the steel splat tips 

and eventually splat fracture and fragmentation. In addition tribological
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layers consisting of a mixture of FeiOs, FeO, and Fe3 0 4 were formed on 

the contact surfaces.

iii) At high loads and velocities the wear rates decreased. Evidence was found 

for two different wear mechanisms that accounted for the relatively low 

wear rates. The first mechanism was the formation of a continuous 

protective oxide layers on the wear track. The second mechanism was the 

hardening of the coating surfaces during sliding contact.

iv) The wear rates were the lowest at high velocity and low load conditions

where there was no evidence for the splat tip fracture mechanism and the 

surfaces were covered with oxide rich tribolayers.

3) Comparison of the wear maps of all three coatings led to the following

conclusions:

i) The wear rates of all the coatings were high at low sliding speeds due to 

the fracture of heavily deformed iron splat tips at the contact surfaces.

ii) The wear rates of PTWA 1020 decreased with the sliding speed. However

the wear rates of HVOF 1020 increased significantly until the sliding 

speed after passing through a minimum.

iii) Wear rates of HVOF 1020-2.5% Ai were lower than those of HVOF 1020

at all conditions tested. An improvement in the wear resistance of HVOF

1020 was observed as a result of addition of 2.5% Al in the wire feed

stock used to produce the coating.

4) In order to study the role that the production method played on the wear

behaviour of the thermal spray coatings, sliding wear behaviour of the iron based
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PTWA 1020 and HVOF 1020 thermal spray coatings were compared. It was 

found that the HVOF coatings despite the fact that they were produced from the 

same wires stock as the PTWA 1020 coatings contained 65 % by volume FeO as 

opposed to 20% by volume FeO in PTWA 1020. The wear rates of HVOF 1020 

coatings were significantly higher than those of the PTWA 1020 coatings at high 

loading conditions and their surfaces were severely oxidized. This was attributed 

to the higher oxide content of HVOF 1020 coatings. It was concluded that the 

wear rates were sensitive to the production process and hence to the composition 

of the coatings.

5) In order to explain the differences in the oxidative wear behaviour of PTWA 1020 

and HVOF 1020 coatings, friction induced surface temperatures for both coatings 

were compared at different loading conditions. A model was constructed to 

estimate the contact surface temperature. It was shown that under high loading 

conditions where oxidation induced wear rates were high in HVOF 1020, the 

temperatures on the contact surfaces were also high (about 100°C higher 

compared to PTWA 1020. The PTWA 1020 samples whose surfaces were 

covered with thinner oxide layers showed lower wear rates. Therefore the sliding 

surface of the coating with the higher initial iron oxide content reached higher 

temperature.6 ) The effect of the test atmosphere on the wear rates of the coatings 

was studied by performing sliding wear experiments under various relative 

humidity levels. The results of the wear tests under relative humidity levels 

ranging between 10% and 99% showed that the wear rates of the PTWA 1020 

coatings were a strong function of the testing environment. At high humidity
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conditions the wear rates and the coefficient of friction decreased. The decrease in 

wear rates coincided with higher relative humidity levels at high loads and sliding 

velocities. SEM investigations have shown that:

i) At low humidity conditions, the splats deformed plastically, especially at 

high load and low velocity loading conditions. Severe plastic deformation 

at the edges of splats caused fracture and fragmentation.

ii) At high humidity conditions, the metallic parts of contact areas were 

smoother and exhibited less evidence for surface damage and fracture at 

high loads. At low loads, high humidity caused polishing of the worn 

surfaces to a mirror like finish. It was suggested that the lower wear rates 

at high humidity atmosphere were due to the effect of a tribo-chemical 

wear mechanism.

7) The micromechanisms responsible for scuffing damage in actual combustion 

engines were investigated. For this purpose a Corvette engine block with bores 

coated with HVOF 1020-2.5% A1 low carbon steel thermal spray coating, and a

Saturn engine block with bores coated with the same type of coating were 

subjected to detailed metallographic investigations. Microscopic observations on 

these two engine blocks that exhibited scuffing type wear damage showed that the 

damage on the bores depended strongly on the position around the bore and the 

scuffing damage was much more pronounced on the major faces. SEM 

observations have revealed the following important aspects of scuffing damage in 

the engines:
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i) The mechanically mixed tribolayers were observed on the major face. 

These tribolayers were composed of a matrix of deformed iron with fine

particles of inclusions. The tribolayers had a nanocrystalline structure.

ii) Plastic deformation beneath the mechanically mixed layer on the major 

face exhibited the unidirectional pattern. This was due to the high loads 

applied during the power stroke of combustion cycle.

The delamination of the tribolayers was the principal source of material 

removal during scuffing. This process was facilitated by crack formation at the 

FeAlOs inclusions that were presented in HVOF 1020-2.5% A1 coatings as well 

as at FeO veins between the iron splats.

8) A correlation was established between the wear mechanisms observed in the 

scuffed engines and those deposited on the wear map for the HVOF 1020-2.5% 

A1 coatings. The close correlations between the wear microstructures generated in

HVOF 1020-2.5% A1 coatings in the scuffed engines and those tested under Ar 

atmosphere and boundary lubricated conditions using the pin-on-disc tribometer

suggested that the unidirectional pin-on-disc tests can be used to study the 

m icromechanism of the scuffing in the actual engines.
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