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Abstract

Microarray technology, which provides detailed and abundant information about 

biological experiments, is a significant achievement in the history of biology. One of the 

key issues in the microarray processing is to extract quantitative information from the spots, 

which represent the genes in the experiments. The process of identifying the spots and 

separating the foreground from the background is known as microarray image 

segmentation. In this thesis, we present two methods for microarray image segmentation. 

First, we conduct an in-depth analysis of the influence of important factors on clustering- 

based microarray image segmentation algorithms. Based on our analysis, we present an 

optimized clustering-based algorithm for microarray image segmentation, which exploits 

more than one feature to gain better results comparing to the state-of-the-art clustering- 

based algorithms. We also consider the fact that most of the spots in a microarray image are 

ellipses in shape, and hence introduce a novel adaptive ellipse method. This method shows 

various advantages when compared to the adaptive circle method, one of the most used 

approaches in microarray image segmentation. The simulations on real-life microarray 

images show that our method is capable of extracting information from the images which is 

ignored by the traditional adaptive circle method, and hence showing more flexibility.
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CHAPTER 1 INTRODUCTION

1.1 Molecular Biology and Bioinformatics

Bioinformatics is an emerging interdisciplinary research area in which biology, 

computer science, and information technology merge into a single discipline. 

Bioinformatics uses the applications of computer technology to the analysis and 

management of biological data. It involves the production, extraction, storage, retrieval, 

and analysis of nucleic acid sequences, protein sequences and structural information. 

Various kinds of databases manage the sequences and structural information, and provide 

methods to access, search, visualize and retrieve the information.

On the other hand, the four basic types of molecules involved in life are amino acids, 

proteins, DNA, and RNA. The later three types of molecules are known collectively as 

biological macromolecules. The amino acids are small molecules that can either be 

regarded as the building blocks of the macromolecules or have independent functions. 

DNA, which carries the genomic information, is the basic molecule that directly controls 

the fundamental biology of life. A DNA genome consists of functional regions known as 

genes.

The process of expressing genes into proteins involves two steps, namely transcription 

and translation, which are described below.

l
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(i) Transcription. DNA sequences are first transcribed into mRNA sequences. During 

this process, macromolecules can be coded as alphabet strings. A string that encodes a 

DNA/RNA sequence is called nucleotide sequence; each element of the string is called a 

base. A DNA macromolecule is composed of nucleic acid, which is constructed from each 

of the four kinds of bases, namely A, G, C, and T. An mRNA macromolecule is also 

composed of nucleic acid with four kinds of bases, namely A, G, C, and U.

(ii) Translation. The second step in gene expression is protein extraction. The string for 

protein molecules is called protein sequence, and each element in the sequence is called 

amino acid. Proteins are sequences of 20 different amino acids. The amino acid sequences 

of proteins perform various cellular functions. Protein and RNA molecules form three- 

dimensional structures that determine the function of the macromolecules. Nucleotide and 

protein sequences together are called bio-sequences, or simply sequences.

The discipline of bioinformatics has been developed because of the need to understand 

DNA, the code o f  life. DNA codes for genes, and genes code for proteins that determine the 

biological composition and functions of humans or any living organism. Simple organisms 

such as bacteria have genomes in 1-5 million bases, whereas human genomes are 

approximately in 3000 megabase '. A human genome contains more than 30,000 genes.

The ultimate goal of bioinformatics is to discover the biological information from the 

massive sequence data and obtain a clearer insight into the fundamental biology of

1 One megabase is equivalent to 1,000,000 bases.

2
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organisms [2Ca-04]. This information can be used to benefit the standard of life for 

mankind as well as to reveal the possible promising unifying principles in biology. The new 

knowledge will have profound impacts on fields such as human health, molecular medicine, 

agriculture, the environment, and energy. For instance, in the area of molecular medicine, 

bioinformatics technologies are used to produce more efficient and customized medicines 

to prevent or cure diseases. In environmental areas, they can be used to identify bacteria 

that consume waste. And in agriculture, they can be used for producing high yield, low 

maintenance crops.

While the genomic era is coming, a massive explosion in the amount of biological 

experimental data is available due to huge advances in the fields of molecular biology and 

genomics. One of the most influencing technologies in those fields is the microarray 

technology. The analysis of the data fell behind the discovery of the data. The greatest 

challenge that the molecular biology community faces today is to make sense of the large 

data that is being produced by the new technologies.

1.2 Microarrays

Microarray technology makes use of the sequence resources created by the genome 

projects and other sequencing efforts to find out which genes are expressed in a particular 

cell of an organism, at a certain time and under specific conditions [Bro-99]. Measuring 

gene expression levels in different conditions provides biologists better understanding of 

gene functions. For example, microarrays allow comparison of gene expression between 

normal and cancerous cells. There are different names referring to the same technology —

DNA microarrays, DNA arrays, DNA chips, gene chips, etc. In this thesis, we use the term

3
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“microarrays”. Microarrays have enabled simultaneous measurements of the expression 

levels of thousands of genes.

A microarray is typically a glass slide, onto which DNA molecules are attached at fixed 

locations, i.e. spots, each related to a single gene. Microarrays exploit the theory of 

preferential binding of complementary single-stranded nucleic acid sequences, i.e. 

complementary single stranded nucleic acid sequences tend to attract to each other and the 

longer the complementary parts, the stronger the attraction. Most of the microarray 

experiments compare gene-expression levels from two samples, one called target level and 

the other the control level. The two samples are labeled by synthesizing single stranded 

DNAs that are complementary to the extracted mRNA by a special enzyme [Sch-99].

Figure 1. The production process of a microarray. The genes of interest are spotted 

on the surface of the microarray. Then, two samples of mRNA are converted into 

DNA segments, dyed with fluorescence, are eluted to the microarray surface. After 

the complementary sequences are combined, the microarray chip is washed.

A typical production process of a microarray is depicted in Figure 1. The spots are

1. print DNA from 
ta rg e t g en es ■

■ ■■ ■ ■ ■ ■ ■ ■ ■  
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

2. hybridize

reference

te s t

mRNA cDNA

4
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either printed on the microarrays by a robot, or synthesized by photolithography or ink-jet 

printing. After the complementary DNA of the target genes is generated and laid out on the 

chip surfaces at defined positions, the DNA extracted from two samples, labeled with 

fluorescence dyes, is eluted over the surface, which will bind with complementary DNA. 

The result of the bounding of DNA is detected by fluorescence following laser excitation. 

In order to read out the abundance of the DNA, Cy5 and Cy3 fluorescent probes are 

prepared from two mRNA sources to be compared. The dyes enable the amount of sample 

bound to a spot to be measured by the level of fluorescence emitted when excited by a laser 

and detected with a scanning confocal microscope. The relative intensity of Cy5/Cy3 

(red/green) probes is a reliable measure of the relative abundance of specific mRNA’s in 

each sample. In order to obtain the intensity, the microarray image is processed so that each 

gene in the microarray is identified, and the intensity of the signal and its surrounding areas 

are extracted. The ratio between the signals in the two channels is then calculated for each 

spot. Based on quick napkin calculations [Ans-01], the number of DNA molecules in a 

microarray spot is approximately 107. For gene expression studies, each of these spots 

typically identifies one gene in the genome.

Figure 2 shows a sample microarray image that contains thousands of genes, each

corresponding to a spot in the image. The physical dimension of such an array is about one

inch or less, and the spot diameter is of the order of 0.1 mm, for some microarray types

being even smaller. If the RNA from the sample in the condition that is dyed using Cy3 is in

abundance, the spot will turn to be green. As opposed to this, if  the RNA from the sample in

the condition that is dyed using Cy5 is in abundance, it will appear red. If both are equal,

the spot will be close to yellow, while if  neither is present it will appear black. Thus, from

5
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the fluorescence intensities and colors of each spot, the relative expression levels of the 

genes in both samples can be estimated. Figure 3 shows the color reflected by different 

abundance of fluorescence intensities in the two channels.

Figure 2. An enlarged illuminated microarray [2Ca-04]. The picture shows 

thousands of spots in a single microarray chip, each spot standing for a gene. The 

color of each spot reflects the relative abundance of the two fluorescence intensities.

The raw data produced from microarray experiments are called the hybridized 

microarray images. To obtain information about gene expression levels, these images have 

to be analyzed, each spot on the array identified, its intensity measured and compared to the 

background. This process is called image quantization. As microarray technology is still 

rapidly growing, it is natural that, at present, there are no established standards for 

microarray experiments and how the raw data should be processed. There are also no 

standard measurement units for gene expression levels.

Today’s biological experiments of microarrays are producing massive amounts of data

[Sta-04a] [Dow-04]. These data can help us to gain insights into underlying biological
6
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processes, only if they are carefully extracted and stored in databases, where they can be 

retrieved and analyzed. Some of the published data can be accessed publicly, such as 

Stanford yeast data, which covers 6,000 genes corresponding to a series of experiments 

[Sta-04b], and the Cancer Genome Anatomy Project (CGAP) data at NCI/NCBI [CGA- 

04].

Figure 3. An enlarged subset of microarray image [NPL-04]. Each spot appears to 

be green or red if the RNA from the sample dyed by Cy3 or Ct5 (respectively) is in 

abundance. Yellow spots indicate that both are equal.

1.3 Applications of Microarrays

Microarray analysis is a significant achievement in the history of biology, because no 

other technology has used such sophisticated tools, combined expertise from many 

different disciplines, and provided such detailed and abundant information about bio

sequences.

As DNA microarray technologies emerge, they conform to simple, yet efficient tools 

for experimental explorations of genomic structures, gene expression programs, gene

7
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function, and cell and organism biology. It is widely believed that gene expression data 

contain information that allows us to understand higher-order structures of organisms and 

their behavior. Besides their scientific significance, gene expression data have important 

applications in pharmaceutical and clinical research. For example, the comparison of the 

gene expression levels before and after cancer treatment helps identify the genes that the 

drug affects. Thus, this process helps provide a quicker and more accurate diagnosis and the 

subsequent treatment of the disease.

Although microarrays are a new emerging technology, they have already been widely 

adopted, and many users are now going beyond exploratory studies. Microarrays are being 

exploited in human diseases, drug discovery, and genetic screening and diagnostics. The 

most promising commercial application of microarrays is their potential use in clinical 

diagnostics. Its potential application goes from drug discovery to gene-based diagnostics. 

The most appropriate treatments can be reached by the study of changing the expression of 

genes over time, among tissues, and disease status. In addition, microarrays have a huge 

potential impact in the areas of preventative medicine, ability to diagnose accurately the 

disease, and design drugs that treat disease causes, rather than symptoms.

1.4 Microarray Data Processing

Measuring gene expression levels in different conditions provides biologists better 

understanding o f  the genes. In general, the analysis o f  D N A  microarray gene expression  

data involves two steps. The first step is image quantization, i.e. the extraction of gene 

expression data. The microarray image is processed in order to obtain the ratios of the 

intensities of the two probes for each gene. This is a very important step as the accuracy of

8
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the resulting data is essential in posterior analysis. The second step is gene expression data 

analysis. After the ratios of the intensities are obtained, various methods can be applied to 

cluster the genes into different function groups based on the ratios retrieved in the first step.

In the past few years, more than twenty [Fuc-04] commercial software and free 

packages have been devised, which are used to extract the intensities of each genes and 

conduct further analysis, being the most popular ones ScanAlyze [Eis-99], GenePix [Axo- 

99], ScanArray Express [GSI-99], and Spot [Buc-00] etc.

1.4.1 Scanning

The hybridized arrays are scanned to measure the red and green fluorescence 

intensities for each spot on the glass slide. These fluorescence intensities correspond to the 

level of hybridization of the two samples to the DNA sequences laid on the slide. The 

scanned original images are stored as a pair of 16-bit TIFF files, typically 2.5 — 20 MB in 

size, where one channel is for the testing samples and the other for the reference.

Gene expression levels in an array can vary in a wide range of orders of magnitude. It

is necessary to measure signals over a wide dynamic range, from saturated signals to

signals that are lost in the background noise. Additionally, the integration and scaling of the

two data sets involve difficult tasks. The two commonly used fluorescences have different

physical properties. The spots are w idely separated comparing to their individual size, so

the spots may be hybridized, washed, and scanned. These principles of microarray

production lead to the fact that spots are not of the same size and some spots have high or

low intensity. In Figure 4, a sample image from the Apo AI data [Apo-04] shows spots that
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have different sizes.

Figure 4. A sample microarray image of ApoAl microarray data [Apo-04]. It is 

typical that the sizes and the intensities of the spots vary in a wide range in a 

microarray image.

Using a fluorescent signal, the diameter of the spots printed on glass slide range from 

25 to 100 pm (1000 pm = 1 mm). There are two main kinds of microarray chips, 

traditional microarray and Affymetrix array. The size of a traditional microarray is 1x3 

inches, i.e. 25x76x0.94 mm whereas the size for Affymetrix array is 0.5x0.5 inches. The 

typical resolution is 3-5 pm per pixel. The minimum resolution that this type of arrays can 

reach is 8 pixels/dimension (assuming the pixels lie on a two-dimensional space), i.e. 64 

pixels/spot. The range of quotient of brightest and dimmest signals is in a 1000-fold 

dynamic range, while reducing the background can increase the dynamic range when 

detecting signals [Sch-02]. The most commonly used devices are laser scanners equipped 

with photomultiplier tubes, whereas the most advanced scanners can detect 0.1-0.01 

fluors/pm2.
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1.4.2 Addressing

The process of addressing, which is also called gridding, refers to the identification of 

the center coordinates of each spot. The basic structure of a microarray image is often 

provided by the manufacturer. This includes the number of sub-grids in the image, the 

number of rows and columns in each sub-grid, and often, the coordinate of a marker 

position. After gridding, each spot is identified and linked to a unique identifier. In Figure 5, 

we show a gridded microarray image. For better results, the foreground region should be 

located at the center of the each grid.

Figure 5. A gridded microarray image [Mic-04]. Horizontal and vertical lines 

separate the spots. For the best result, the foreground should locate at the center of 

the each grid.

Some issues need to be addressed when processing the image, including the 

misregistration of the red and green channels, the skewness of the sub-grids in the image, 

and the rotation of the grid axes relative to the image. The task of addressing is often done
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manually or interactively, usually by drag-and-drop of the mouse, sometimes together with 

providing initial parameters. User intervention may make the process very slow. However, 

when automatic addressing is desired, the following problems also need to be considered: 

the contamination of the slide surface, the variety of the spot shape and size, and the highly 

dynamic signal intensities. Usually, an initial guess of the parameters is given as the input 

for automatic addressing techniques to start the process. Sample parameters include the 

number of sub-grids, columns and rows in a sub-grid, row spacing, row and column 

resolution, tip spacing, and spot width and height. A few recent studies focus on automatic 

microarray image analysis [Kat-02] [Jai-02] [Ste-01]. A reliable addressing procedure is 

desirable to ensure the accuracy of the subsequential process discussed below.

1.4.3 Segmentation

In general, segmentation of an image refers to the process of partitioning the image 

into several regions, each having its own properties [Soi-99]. In microarray image 

processing, segmentation refers to the classification of pixels as either the signal or the 

surrounding area, i.e. foreground or background. The microarray image contains noisy 

pixels that come from contamination during different stages when producing the chips. The 

process of segmentation should be able to distinguish noise pixels and true foreground 

pixels.

As the intensities of some spots are weak in nature, image processing of microarray

data must be able to identify weak spots. The estimation of the signal background

components is quite crucial, especially for weak spots, because weak signals often

correspond to rare transcripts that are extremely important biologically. Some studies show
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that the gene expression level of weak spots not as reliable as bright spots [Yue-01], [Jen- 

02]. In order to increase the accuracy of data, a general criterion for data extraction is that 

signals lower than 1.5-fold above the median background are considered unreliable and 

will be discarded.

1.4.4 Background Correction

After the identification of spots, or the foreground, the next step in processing a 

microarray image is background correction. The pioneering paper on the statistical 

robustness of background correction and normalization is [Che-97].

The measured fluorescence intensity of a spot includes a contribution that is not due to 

the hybridization of mRNA samples to the spotted DNA. Besides contamination, the 

background also contains information about scan and hybridization effects, which can be 

used to correct spot signals. To reduce bias, background correction is recommended. A 

common procedure is to subtract the background intensity from that of the foreground for 

each channel before calculating the ratio of the two channels, following the equation:

It = W b, (1-1)

where I, is the true intensity of the spot, i.e. the intensity after eliminating the influence of 

the contamination and scan effects and hybridization effects. If is the foreground intensity, 

which is measured in the foreground region, and Ib is the background intensity, which is 

measured in the background region.

Equation (1.1) sometimes gives negative true intensity value for weak spots, thus 

makes the data for those spots unusable. An approach for improving background correction
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for low intensity spots using a Bayesian based method can be found in [Koo-00].

Although recent experiments suggest that DNA on slides mask background, which 

means it is not additive [Wlt-04], local background correction is recommended for most 

microarray images because even small variations in the background signal can affect the 

ratio values. In fact, background correction is preformed by most of the microarray 

processing packages.

1.4.5 Normalization

It has been conjectured that the process of normalization contributes more than 

background correction [Gor-01]. Normalization is conducted either within a single 

microarray slide or among multiple slides. Usually, the normalization factor is independent 

of the location, while in some cases it is not. Thus, this should be checked for each 

experimental setup. Also, the identification of weak spots can improve the performance of 

normalization [Yan-01]. Various normalization methods exist, most of them falling into one 

of the following categories.

i) Housekeeping genes: Chen et al. [Che-97] proposed this method in 1997. 

Housekeeping genes are selected based on both a biological basis and their experimental 

behavior [Nih-04]. The ratio of housekeeping genes in the same group of experiments is 

close to 1.0. The main problem is how to identify such genes in each experiment. This 

method is useful when cells reach a stable steady state [Sch-00].

ii) Control spots: Exogenous RNA is added as housekeeping genes to both sample and
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control conditions. The drawback of this approach is that an offset may be induced because 

all expression ratios are divided by an unknown factor, therefore, a systematic preference 

for incorporation of Cy5 or Cy3 may exist.

iii) Constant majority: Assume that the majority of genes do not change their 

expression level, Rigorous treatment for this process can be found in [Che-97]. The 

corresponding coefficient of variation does not need to be estimated, and does not rely on 

knowing the subset of genes that is constant with the condition that genes are not spotted on 

the array in any particular order.

iv) Integral balance: Assume that the total levels of gene expression in the sample and 

control conditions are the same, provided that cells will not significantly increase or 

decrease the total level of mRNA transcription.

After performing scanning, gridding, segmentation, background correction, and 

normalization, the ratio or logarithm of the ratio of the intensities for the two channels has 

to be extracted. Figure 6 shows the result of a normalization process using housekeeping 

genes. The systematic bias shown in Figure 6(a) and 6(b) is eliminated using the 

normalization process as shown in Figure 6(c). The reddish columns with low intensities 

are not unwanted artifacts but housekeeping genes or so called negative controls.

1.4.6 Gene Expression Data Analysis

While common features, or patterns, are regarded to be important for the biological 

functions of the macromolecules, a wide range of domains is involved in analyzing
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sequence data, among which, the most prolific field is pattern recognition.

array row

(a) O bserved background intensities (HGMP 2b Cy5)

0 20 40 60 80 100 120 140

array row

(b) O bserved spot intensities (HGMP 2b Cy5)

0 20 40 60 80 100 120 140

array row

W Corrected Spdt Intensity (HGMP 2b Cy5)

Figure 6. The effect of normalization [Vas-04], The images are shown in false 

colors (blue=high, red=low). The image (a) and (b) illustrate a systematic shift of 

the background and foreground intensities dependent to the location of the spots, 

and (c) shows the result of bias eliminated after the process of normalization.

Whether the training samples are available or not, a pattern recognition system can fall 

into either of the two categories, namely, supervised learning or unsupervised learning 

respectively [Dua-00]. In supervised learning, each sample in the training set is labeled and
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the cost of mislabeling samples is given. After the system is adjusted to achieve the 

minimum cost according to the result of classifying the training samples, it is used to assign 

labels to unknown objects. In unsupervised learning, no prior knowledge about the object is 

assumed, and hence the system attempts to group datasets into natural groups, or clusters.

In supervised learning, support vector machines (SVMs) are one of the most successful 

methods in gene expression data classification (see [Jaa-99], [Muk-98], [Spe-98], [Zie-00], 

[Cai-01], [Sch-01], [Din-01], [Cam-02], and [Guy-02]). Gene expression data 

classification is typically a high-dimensional problem, i.e. it involves an overwhelming 

number of features compared to the relatively small number of samples. Because of the 

powerful features of SVMs and the nature of gene-expression data, SVMs are well suited 

for high-dimensional classification problems.

In unsupervised learning, hierarchical clustering is one of the most widely used 

methods in gene expression analysis (see [Spe-98], [Wen-98], [Alo-99], [Tib-99], [Per-99], 

[Fur-00], [Bit-00], and [Bic-01]), even though Tamayo et al. [Tam-96] mentioned that 

hierarchical clustering lacks robustness and the solution may not be unique because the 

result is dependent on the order of the data. Apart from this drawback, hierarchical 

clustering has difficulties in dealing with noise.

Other pattern recognition techniques found in the literature include nearest-neighbor 

classifiers, aggregating classifiers, the naive Bayesian approach, self-organizing maps, 

hidden Markov models, fc-means clustering, neural networks, and classifier combination or 

fusion.
17
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1.5 Problem Formulation

In this thesis, we deal with the following problem, which is called microarray image 

segmentation. The aim is to partition the microarray image pixels into different regions or 

groups. As a result, the foreground pixels fall into one group, and background pixels fall 

into another group. There may exist other types of pixels, such as noisy pixels, which are 

contaminated pixels produced during microarray production and scanning, and should be 

excluded from the either the background or the foreground region during segmentation. 

Depending on the approaches to classify the pixels, another possible type of pixels includes 

the edge pixels surrounding the foreground region. Because the intensities of these pixels 

fall in between the foreground and the background, including or excluding them will lead to 

different signal to noise ratios.

In a few words, it can be said that the goal of segmentation is to obtain the foreground 

intensity and background intensity of each spot in the microarray image. The problem can 

be stated more formally as follows.

Let R be an m-by-n integer-valued matrix that represents the image corresponding to 

Cy5, {R(ij) | i=l,2,...,m;j=l,2, . ..,«}. Gbe an m-by-n integer-valued matrix that represents 

the image corresponding to Cy3, {G(iJ) \ i=l,2,...,m;j=l,2,...,n}. A pixel is an element of 

an image. We use R(ij) to refer to the pixel p 9 at row i column j  of an image R. We define I  

as the image obtained after combining/? and G using some arbitrary function/^.,•)> i-e. I(ij) 

= //? (v ) , G(ij)).
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Assume we deal with c clusters {(0 ,,..., Wc}, each representing one of the c categories 

of pixel intensities. In general, it is assumed that there are two clusters of interest, namely 

0), and (02, which represent foreground and background pixels respectively.

In our model, we use a real-valued, d-dimensional feature vector x=[xh ...,xd]‘ to 

represent the features (or information) that we can extract from a pixel p. The aim is to 

assign each pixel of R,G, or I, to one of the pre-defined classes, to,,... <nc. In particular, if we 

are dealing with the two-class problem, the result of the segmentation method will be a 

black and white or binary image B, {B(ij) \ i=l,2,...,m; j - 1,2, . . ,,n where B(iJ) equals to 

either 0 or 255}. After the label of classes is assigned to every pixel in the image, the 

foreground and background intensity can be computed using many different statistical 

measures of the two sets.

Part of the notation that we use in this thesis includes the following:

Number of background pixels: Nbg 

Number of foreground pixels: Nfg 

Number of noise pixels: Nn 

Background intensity: Ibg 

Foreground intensity: Ifg 

Coordinate of a pixel: x,y

Feature matrix: Rlxd, where l=m*n, the number of pixels in the image, d equals to the 

number of features.
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1.6 Contributions of the Thesis

In this thesis, we systematically introduce microarray technology, its background 

information, and microarray data processing. We review the existing approaches on 

microarray image segmentation, and discussed the advantages and drawbacks of each 

approach.

We analyze the different aspects of applying clustering techniques to microarray image 

segmentation, including the features, the number of clusters, and the clustering models. We 

conclude that a certain set of parameters taken as the input of the clustering algorithm 

generate better result. We, thus, propose a new approach for microarray image 

segmentation that involve more than one pixel feature, more than two clusters, and 

different clustering algorithm. We compare our result with the latest clustering-based 

microarray image segmentation methods. Our experiments show that our model is simpler 

and our algorithm is efficient and yielding better results.

We also developed a novel shape-based method, which we call adaptive ellipse method. 

Due to the fact that most of the spots in a microarray are circle or ellipse in shape, this 

method first use diagonalization to transform the feature space into another space where the 

shape of each spot is a circle. We then calculate a threshold to pre-classify the pixels into 

foreground and background, and subsequently use an algorithm to find the radius that 

defines the foreground region. The pixels whose radius is smaller than that radius are 

classified as foreground pixels. Our adaptive ellipse method produces quite good results 

compared to the adaptive circle methods, and can be applied to a much wider range of
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microarray images.

1.7 Outline of the thesis

In this chapter, we introduce the microarray technology and its background 

information, and provide a formal description of the microarray image segmentation 

problem, which we will discuss later in detail. In Chapter 2, we introduce the existing 

approaches for microarray image segmentation and discuss the advantages and 

disadvantages of each approach. In Chapter 3, we discuss the preliminaries of clustering 

methods, and introduce new models for microarray image segmentation using different 

clustering methods and tuning the parameters of each method. In Chapter 4, we present a 

novel method for microarray image segmentation that we called the adaptive ellipse 

method. In Chapter 5, we conclude the thesis with contributions and future work.
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CHAPTER 2 MICROARRAY IMAGE SEGMENTATION

In general, image segmentation is the process of distinguishing objects from the 

background [Asa-96]. Image segmentation is usually the first step in vision systems, and is 

the basis for further processing such as description or recognition. The goal of 

segmentation is to extract important features from images. Segmentation of an image can 

also be seen, in practice, as the classification of each image pixel to be assigned to one of 

the image compositions.

Most image segmentation approaches can be placed in one of five categories: 

clustering or threshold-based methods, boundary detection, region growing, shape-based 

methods, and hybrid methods. Many image segmentation approaches are intended for 

specific application domains to yield better results. For instance, real-time image 

segmentation, color image segmentation, 3-D image segmentation, motion image 

segmentation, etc.

Clustering or thresholding methods were one of the earliest image segmentation 

techniques (see [Puz-99] and [Wol-04]). In these methods, the information about the pixel 

and its neighbors is used to classify the pixel into one of the many regions.

Boundary detection or edge-based methods focus on contour detection. The image is 

segmented based on spatial discontinuity or edge finding and linking. This method is 

implemented as the convolution of mathematical gradient operators or template matching
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operators that use multiple templates at different orientations of the image. Sobel, Prewitt 

and Laplacian operators are examples of edge detection operators.

The region growing method performs image segmentation based on spatial similarity 

among pixels. The image is partitioned into connected regions by grouping neighboring 

pixels of similar intensity levels. Adjacent regions are then merged under some criterion 

involving the homogeneity or sharpness of the region boundaries.

Shape-based methods utilize some knowledge of the shape of the object to be 

segmented, e.g., mathematical morphology and template matching.

Although many methods exist for general image segmentation, specialized methods 

have been designed for microarray image analysis. These methods are able to consider the 

characteristics of the microarray image. While there are quite a few, most of them discussed 

in this chapter, they are being perfected so as to maximize the information being extracted 

from the microarray image.

2.1 Fixed Circle Segmentation

Fixed circle segmentation was first used in ScanAlyze. It assignes all the spots the 

same size and shape. It uses a constant-diameter circle as the shape of all the spots in the 

image. GenePix and ScanArray Express also provide the option for fixed circle method.

Fixed circle method is simple to implement, and works well when all the spots are 

circular and have approximately the same size. But as the shape and size of spots varies in
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practice, it clearly can not satisfy the needs. Figure 7 shows the resulting image after 

applying the fixed circle approach. We can see that some regions within the high intensity 

areas are left out of the foreground, and some regions within the low intensity areas are 

included in the foreground regions.

2.2 Adaptive Circle Segmentation

Roughly speaking, adaptive circle segmentation considers the shape of each spot as a 

circle, where the center and diameter of the circle is estimated for each spot. An 

implementation of this approach can be found in GenePix, ScanAlyze, ScanArray Express, 

Imagene [Ima-04], and Dapple [Buh-00].

Figure 7. A sample microarray image from ApoAl microarray data that shows the 
limitations of the fixed circle approach. Even though the actual size of spots varies, 
the radius of all the spots is the same.

Adaptive circle segmentation involves two steps. First, the center of each spot needs to
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be estimated. Second, the diameter of the circle has to be adjusted. There are different 

implementations for this approach. A typical edge detection technique, e.g. Laplacian 

transformation, can be applied to automatically estimate the diameter of the circle [Buh-00]. 

Another algorithm considers all pixels above a user-specified threshold to be foreground 

and finds the circle with the highest percentage of pixels that are foreground [MAG-03]. As 

opposed to automatic approaches, some software packages allow the user to manually 

adjust the diameter of each spot.

Algorithm 1 Adaptive_Circle_Laplacian

Input: a pair of microarray images, G and R.
Output: a binary image, B.
Method:

I(iJ) <- G(i,j) + R(i,j) 

kl <— CreateFilter(‘ave’, [3,3])

12 < r- Convolution^, kl) I I  smooth the image 

k2 <— CreateFilter('log', [5,5], 0.5)

13 = Convolution(/2, k2) II apply Laplacian of Gaussian filter 

for i <— 1 to m do // count zero crossings

fory <— 1 to « do 

edge(y') <— CountZeroCrossing(/3) 

endfor 

endfor

for n <— maxSpot II find the radius of the foreground region

for i <r- spot Width 

for j  <r- spotHeight 
if edge(/,y) = 255 then

distance^,/) <— GetDistance(/,y) 

endif 

endfor 
endfor
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radius <— Mean (distance) 

for i <— spot Width 

for j  <— spotHeight 

if distanced,7) < radius 

then B(i,j) <— 255 

else B(i,j) <— 0 

endif 

endfor 
endfor

endfor
end Algorithm Adaptive_Circle_Laplacian

The adopted algorithm for the adaptive circle segmentation in this thesis is shown in 

Algorithm 1. The centers of each spot are obtained as the center mean obtained from the 

weighted average of the pixel coordinates using the intensity of the pixel as the weight. 

Then, the Laplacian filter is applied in order to perform convolution on the image. 

Convolution provides a way of “multiplying together” two arrays of numbers, generally of 

different sizes, but of the same dimensionality, to produce a third array of numbers of the 

same dimensionality [Dai-04]. Equation (2.1) shows the function of convolution for two- 

dimensional images. In the equation, m x n  is the size of the image, and k  x / is the size of 

the filter. After the edge pixels are detected, the diameter of the spots can be estimated by 

computing the median of the radius of the edge pixels.

m n
o o j ) = X 2 > '  + k - \ , j  + l- \ )K (k ,l )  (2.1)

k=\ 1=1

One of the drawbacks of the Laplacian transformation is its extreme sensitivity to noise. 

Prior to the Laplacian transformation, the image has to be enhanced by applying a 

smoothing operator, such as the average filter, the Gaussian blur, or the Laplacian of
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Gaussian (LoG) filter in a single step [HIP-04]. In our algorithm, we apply both the average 

filter and the LoG filter. Using the detected edges to estimate the diameter can avoid the 

drawback of disconnectivity of Laplacian filters. By smoothing the pictures and carefully 

selecting the parameters of the filters, the typical double edge problem of Laplacian can 

also be avoided. Figure 8 depicts the resulting image after applying our adaptive circle 

segmentation algorithm to the Apo AI image.

Figure 8. The result of our proposed adaptive circle method to an ApoAl 
microarray image. The center of each spot is calculated as the weighted mean of 
coordinates, using intensity as the weight, and radius of the spots is estimated by 
applying Laplacian transformation.

The main drawback of the adaptive circle segmentation algorithm is that it restricts the 

shape of the spots to be circles. However, the spots in a microarray image can take shapes 

including ellipses, donuts, and other irregular shapes. As it will be seen later, assuming that 

the shapes of the spots are ellipses is advantageous.
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2.3 Adaptive Shape Segmentation

Seeded region growing (SRG) and watershed are common techniques that deal with 

different shapes in image segmentation. In SRG, the regions grow outwards from the seed 

points, preferentially, based on the difference between the pixel value and the running mean 

of values in an adjoining region [Ada-94]. These two methods require an initial point to be 

known, which is called the seed. One advantage of using SRG in microarray image 

processing is that the location of foreground pixels and background pixels can be 

estimated.

SRG has been implemented in microarray processing package Spot. In this package, 

the foreground seed is chosen as the center pixel of the horizontal and vertical grid line. To 

avoid the situation when the spot is small and the grid center is slipped out of the spot 

foreground, a small numbers of nxn square pixels, whose center has the maximum intensity 

in a small area around the grid center, are taken as foreground seeds. The background seed 

is chosen as the point in which the grid lines intersect. After obtaining the seeds, the process 

is repeated simultaneously for both foreground and background regions until all the pixels 

are assigned to either foreground or background. Those pixels that are adjacent to a region 

are assigned first according to its intensity [Yan-02],

Although SRG can be applied to microarray images containing spots of any shape and 

size, it has the disadvantage that the spots generated are generally smaller than the actual 

size. Refer to Figure 9 in which, the software package Spot is used to process the same Apo 

AI microarray image as in Figure 7 and Figure 8 . We can observe that the resulting shapes
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of the spots are irregular.

Figure 9. Spot’s result of seeded region growing on the ApoAl microarray data, 
which is the same image as we use in Figure 7 and 8. The shapes of spots are not 
restricted to circles.

2.4 Histogram-based Segmentation

Using histograms to classify a pixel into either foreground or background is a simple 

and intuitive idea. Chen et al. introduced a method that uses a circular target mask to cover 

all the foreground pixels, and computes a threshold using Mann-Whitney test [Che-97]. If 

the pixel intensity is greater than a certain threshold, it is assigned to the foreground region; 

otherwise it is assigned to the background region. They use a statistical test to find sets of 

signal pixels with intensities significantly different from the local background. The 

application of Chen’s method can be found in ScanArray Express, which also provides 

another version of a histogram method that uses a square target mask, and defines the ratio 

of foreground and background as the mean intensities between predefined percentile values,
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usually 5%-20% for background, and 80%-95% for foreground.

Histogram methods are simple in concept, but a suitable size of the mask is difficult to 

choose in comparison with the spot size. When the mask is too small, it may not cover all 

the foreground pixels. In contrary, when it is too large, it may overlap with neighboring 

spots. According to Yang et al., Chen’s method is not as accurate as other recently 

introduced segmentation methods [Yan-02].

2.5 Clustering-based Segmentation

Clustering is one of the pioneering approaches in image segmentation. The idea of 

clustering can be summarized as follows. Consider a dataset £)={x„ x2,..., x„}, where 

xi=[xiijc,2,...xid]t is a d-dimensional feature vector representing the features of each pixel in 

an image. Clustering in the feature space attempts to find an indicator of similarity of image 

regions, and has been successfully used for segmentation purposes.

Clustering methods have some advantages when applied for microarray image 

segmentation, since they are not restricted to a particular shape and size for the spot. 

Although a clustering method has been recently proposed in microarray image analysis 

[Wu-03], no commercial microarray processing software has adopted this method yet.

Wu et al. used a &-means cluster algorithm in microarray image segmentation, which 

we refer to as single-feature &-means microarray image segmentation (SKMIS). They 

attempt to cluster the pixels into two groups, one for foreground, and the other for

background. The first step of SKMIS method consists of initializing the class label for each
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pixel and calculating the means for each cluster. Let xmin and be the minimum and 

maximum value of intensity in the spot. If | xr  xmin\ > \ xr xmax\, assign x,- belongs to 

foreground, or equivalently the label of the pixel x, is set to 1. Otherwise, x, belongs to 

background, thus x, is labeled 0. After this process, the mean (or centroid) for each class, 

foreground or background, is calculated as

This method is quite fast because the first step, i.e. the initialization, is effective. The 

second step of the algorithm is the re-calculation of the means and the adjustment of the 

label of each pixel by the following criteria. Assign & = 2  for all the x, whose label is 1, if

otherwise assign oo, = 1 .

This step is repeated until no change in the means has been observed. Figure 10 shows 

the result of an Apo A l microarray image after applying SKMIS.

After implementing SKMIS, we found out that using this method alone can not deal 

well enough with noisy data and weak spots, and improvements can be made to achieve 

better accuracy. There are many techniques that can be used for clustering. By choosing a 

suitable method and tuning the parameters, we show in the next chapter that some models 

are suitable for microarray image segmentation.

One of the properties of SKMIS is that for a large number of pixels, its clustering

(2.2)

N i*lx,.-Mi N 2*\Xi- n 2 (2.3)
N, -1 N 0 +1
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method is equivalent to the standard &-means. This result is show below.

Figure 10. The result of SMIS on an ApoAl microarray image. The foreground and 
the edges after eliminating the noisy pixels using LCR method show that the shapes 
of the spots are not restricted to circles.

Theorem 2.1: Let D={xl,...,xn}, which has to be clustered into two classes. If n —» 

SKMIS produces the same results as &-means.

Proof: Let n=NI+N2. Since empty clusters are not allowed, then it is true that as n —» » , 

it implies N , , N2 —» °°. We can then write the asymptotic behavior of (2.3) as follows:

lim N i L  ^2 \ Xj - H2
nun2-*~ JV, - 1 N2+1

(2.4)

= \X; - f t  \ >\X( ~ f t (2 .5 )

Additionally, it is straightforward that, in the one-dimensional Euclidean space, (2.5) is 

equivalent to (xr |a,,)2 >(xi-p1)2.Clearly, (2.5) is the criterion used by the standard A>means,
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and thus, the result follows.

It is important to remark that the result of Theorem 2.1 is also applicable to the case in 

which N, and N2 are large, but not necessarily 8 . For some microarray images N, and N2 

can take values, for example, above 200, and, thus, (2.4) results in

1.005 | Xj -  n x |> 0.995 | x, -  fi2 \ = | xt -  /I, |> 0.990 | xt -  /r2 |

2.6 Conclusion

Microarray image segmentation is a specific sub-field in image segmentation. 

Although many methods exist for image segmentation, in general, custom-designed 

methods for microarray image segmentation are desirable to achieve better accuracy by 

considering the characteristics of the microarray image.

Methods found in the literature can be grounded into five categories: the fixed-circle 

method, the adaptive circle approach, adaptive shape techniques, histogram-based methods, 

and clustering-based methods. The first two methods are shape-based segmentations 

techniques. While the first one is too simple and naive to produce good results, the adaptive 

circle method achieves better results for circle-shaped spots. In this thesis, we present a 

more general shape-based method that we call the adaptive ellipse method. The histogram, 

adaptive shape, and clustering-based methods do not restrict to the shape and size of the 

spots. The adaptive shape methods, in general, produce smaller foreground area than the 

actual spots. The histogram methods have been found to obtain good results, but they suffer 

from the difficulty in choosing a suitable mask size. In the next chapter, we discuss in detail 

the application of different clustering methods to microarray image segmentation.
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CHAPTER 3 CLUSTERING-BASED MICRO ARRAY 

IMAGE SEGMENTATION

Image segmentation is the process of distinguishing objects from the image 

background. The goal of segmentation is to extract important features from images in order 

to assign each image pixel to one of the image parts. Microarray image segmentation aims 

to partition the microarray image pixels into different regions or groups, i.e. foreground and 

background.

Most of the image segmentation approaches fall into one of the five categories: 

clustering or threshold-based methods, boundary detection, region growing, shape-based 

techniques, and hybrid methods. Clustering based methods are one of the pioneering image 

segmentation techniques. Clustering based methods are built on the idea of grouping the 

pixels into natural groups, using the information about the pixels and their neighbors as the 

features.

Clustering-based algorithms have various advantages over other methods. The former 

does not depend on the shape of the objects in the image, albeit they can exploit the shape 

information as one of the many features to achieve a better segmentation for the image. 

Unlike region growing methods, they do not require an initial state of pixels be known. As 

a matter of fact, clustering-based algorithms do not need any prior knowledge about the 

labels of the objects be known. Common edge detection approaches have major drawbacks, 

such as the sensitivity to noisy pixels, the thickness of the detected edges, the
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disconnectivity of the edges, and the need of post processing to assign each pixel to one part 

of the image after edge detection. In this sense, clustering-based methods are more flexible 

in dealing with the aforementioned problems.

In the domain of microarray image segmentation, the shape of a spot in a microarray 

image can take the form of a circle or an ellipse in most of the cases, while for others it can 

look like donut or other irregular shape. Clustering has many advantages over other 

microarray image segmentation methods, since it can deal with irregular shapes, and it can 

extract more information from the image, including the pixel intensity, the coordinates of 

the pixels, the distribution of the intensities, the characteristics of the surrounding pixels, 

etc. We first discuss some of the existing clustering-based techniques before applying them 

to process microarray images.

3.1 Clustering Methods

Clustering, which belongs to the sub-field of unsupervised learning, organizes a set of 

objects into natural groups, or clusters, so that each object within a group is more closely 

related to the objects in that group than the objects assigned to other groups. The goal of 

clustering is to maximize the similarity within each group, or the dissimilarity among the 

groups.

Clustering algorithms fall into two well-defined models, hierarchical and partitional.

Hierarchical algorithms produce a tree-structured representation whose leaves are the input

data and each layer of non-leaf nodes is a different level of grouping. The partitional

approach is also called fla t clustering. The aim of the partitional approach is to cluster the
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data into a predefined number of clusters. In the applications of image segmentation, 

partitional clustering is a more suitable approach. An overview of partitional clustering 

methods and the preliminaries for clustering are given below.

3.1.1 Maximum Likelihood Estimation

The aim of a generic classification algorithm is to extract statistical information about 

the input data, which is used later to design a classifier. It is typically assumed that the data 

obeys a certain parametric probabilistic distribution, and hence the intent of the exercise is 

to estimate the parametric form of that distribution. Many estimation techniques have been 

proposed for this purpose, being maximum likelihood estimation (MLE) one of the most 

widely used method, due to its simplicity and efficiency. Suppose that we are given a 

dataset f > = { x „  x 2, . . . ,  x„} . Assuming that we know that the data conforms to a distribution 

of type / ,  and we do not know the parameters of f  MLE can be used to estimate the 

parameters o f /in  both supervised and unsupervised learning [Dud-00].

In the case when no prior knowledge of the class labels is available, i.e. the 

unsupervised learning case, the MLE approach assumes the density function of the class- 

conditional probabilities of the dataset D  of each cluster has a parametric form, typically, a 

mixture of density functions. The aim of the MLE is to estimate the parameters 0 of a 

predetermined statistical distribution. Roughly speaking, MLE finds the value of 0 that 

gives the density function that best represents D, i.e. it m axim izes the function P(D/6), 

given by the following equation:

p{D\e)  = Yi p(xj \ e)  (3.1)
1=1
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Many statistical distributions can be assumed, being the most important one the normal 

distribution, because of its many properties of theoretical importance, and its application to 

many real-life problems.

When considering the normal distribution, the parametric form of the probability 

density function (pdf) is assumed to be known. Suppose we are dealing with a certain 

(probably unknown) number of clusters {% ..., (Oc}, the aim is to find the parameters of a 

pdf, which are obtained as a sum of c normally distributed density functions as follows:

This function is known as the mixture density function. The parameters are given by 

0 =[0„..., 6C]‘, where for normal distribution each 0 ,=[/*„ ■£,]', with/*, and S t being the mean 

and covariance of a multivariate normally distributed random variable (or a random 

vector).

The aim of MLE is to maximize the likelihood of (3.1). There are many cases, 

depending on the information we know about the problem. Atypical case is to assume that 

the number of clusters is known and that the parameters are unknown. The MLE solution 

for this case is to start with arbitrary initial values for/*, and S it, and compute/?(&>, | xp 0) as 

follows.

C
P (x 1e ) = 2  ■P ( x I )0< ) (3.2)

i=1

pip)i | x , , 0 ) =  —
p(Xj | ft), ,0 , )/>(*»,.)

(3.3)
C

i=i
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Then, we compute p, and £ t< using the following equations:

£ p(col \x j,e )x j
--------------------  0-4)

£ Pico, |x,,0)
j =1

n
£  pico, |x, ,e)(x,  -  p,)i\j -  p,y 

Z,=Jzl---------    (3 .5)
£ Pico, |xy,0)

1

The next step is to re-computep{o), \ \ p 0) as in (3.3) and repeat this process until there 

is a small change in p., and This process is implemented in algorithm

MLE_Normal_Distribution, which is given below. In the algorithm, p init and Eiml are the

arbitrary values which are assigned for p, and ^  respectively.

To apply the MLE to microarray segmentation, we need to assume a pre-specified 

number of clusters (e.g. foreground and background), and that the distribution of the pixel 

intensities obeys the normal distribution. For this purpose, the features corresponding to 

each pixel have to be obtained.

Algorithm 2 MLE_Normal_Distribution

Input: A dataset, D, and the number o f classes, c.

Output: The label vector, label, the parameters p, and for 1=1,..., c 

Method: 

for i i— 1 to c

M i Mini,

%i Zinit

endfor
repeat

for i <—1 to c
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for j  <— 1 to n

re-compute | xp d) as in (3.3) 

endfor 

endfor 

for i <— 1 to c 

re-compute as in (3.4)

re-compute as in (3.5)

end

until small change in /i, and 

for j  <— 1 to n

labeiy] <— index i of max{ pity \ xp 6)} 

endfor 

end Algorithm MLE

3.1.2 k-Means Clustering

The most well known k-means algorithm was first introduced by MacQueen in 1967 

[Mac-67], which can be seen as a particular case of the unsupervised MLE approach. From 

a statistical point of view, when we assume that the probability of each sample belonging to 

a certain cluster can be estimated by a mixture of normal distributions with different means 

but identical variance and zero covariance, the clusters obtained by &-means coincide with 

the MLE solution.

The aim of &-means is to form groups by specifying a desired number of clusters, say, k, 

and then assign each object to one of the k  clusters so as to maximize the dispersion 

between the clusters. Each object is assigned to a cluster by using a certain “closeness”, or 

“similarity” criterion, which are measured by using a “metric”. The metric can be the 

distance to the centroids from the object, the sum of the variances over all clusters, the sum
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of the average distances to the centroids over all clusters, the total distance between all 

objects and their centroids, or other measurements. The distance can be any function of the 

feature vectors and the clusters, being the most widely used ones the Euclidean distance, 

the Mahalanobis distance, the Manhattan distance, and the Minkovsky distance. The k- 

means algorithm ensures that there are always k clusters, and that at least one sample is 

assigned to each cluster.

As discussed in Chapter 2, the central idea of A>means is to find k mean vectors, 

pk, in such a way that x, belongs to cluster i if  fit is the mean vector closest to xy. The 

algorithm, which is shown in Algorithm k_Means, starts with an initial guess of the 

partition, i.e. the centroids are chosen randomly. The second step is to calculate the distance 

from each sample to all the centroids and assign each object to its closest centroid. All the 

centroids are re-computed as follows:

This step is repeated until no change in the centroids is observed.

Although &-means can start with random values for the initial centroids, i.e. juinit, a good 

initialization can improve the progress of convergence, while certain initialization 

procedures may lead to poor results, which do not converge to the true centroids but to a 

local optimum.

Algorithm 3 k_Means
Input: a dataset D, the number of clusters, k.

(3.7)
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Output: the label vector, tables, the centroids/u,, for 

Method: 

for i <— 1 to k 

M i f  Minit 

ENDFOR

repeat 

for j  <— 1 to n 

for i <- 1 to k

dist[i] <— distance from Xj to /i, 

endfor

labels [/] <— index i of min{£fof[/]}

Hi <— re-compute /itas in (3.6) 

endfor 

until no change in fit 

end Algorithm k_Means

Another potential problem of &-means is how to choose a value of k  that leads to an 

optimal grouping of the data. This problem is out of the scope of this dissertation. We 

choose the value of k  based on the specific problem domain of microarray image 

processing. We will discuss later the consequences of using different values of k  in this 

context.

3.1.3 Fuzzy k-Means Clustering

Fuzzy &-means can be seen as a generalization of the &-means algorithm. Instead of 

assigning an object to a particular class, fuzzy A:-means assigns the class label by using the 

probability that the object belongs to that class. As in fc-means, fuzzy &-means requires that 

the value of k be known beforehand.
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The algorithm starts with an initial value for the mean for each cluster and maintains a 

membership matrix M. The subsequent task is to calculate the probability that x, belongs 

cluster i, referred to as mip as follows:

a / 4 ) 1/(6_1)
my = E~r-(j ^ - )T/in r  where d>j = \xj~ V i\ (3.7)

The means are then recalculated using the following equation.

'LnH mi b\ j
= ‘ h  /  (3-8)

The process is repeated until a small change in the means is observed. The fuzzy k- 

means method is implemented in Algorithm Fuzzy_k_Means. As in k_Means, nMt is the 

initial value for all the cluster centroids. Note that in (3.7) the Euclidean distance is used. 

As mentioned earlier, other distance functions can be used, producing different results 

depending on the nature of the problem.

Algorithm 4 Fuzzy_k_Means

Input: A dataset, D, the number of clusters, k, a blending factor, b
Output: A membership matrix, M

Method:

for i <r- 1 to k

A  ̂  k in i t

endfor

repeat
for j  <r- 1 to n 

for i 1 to k

dy <— |

my <— re-compute m9 as in (3.7) 

endfor
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endfor 

for i <— 1 to k

jUj <— re-compute /f,as in (3.8) 

endfor

until small change in /!,•, j- 1  k
end algorithm Fuzzy_k_Means

In (3.7) and (3.8), b is a blending factor that indicates how much the classes overlap: b 

= 1 indicates that the fuzzy &-means algorithm is equivalent to the &-means algorithm, while 

b > 1 means each x, belongs to multiple clusters. As the value of b increases, the 

“fuzziness” of the classification increases until all or the majority of the objects belong to 

each cluster equally, resulting in too much “fuzziness”. There is currently no established 

theory regarding the optimal choice of this parameter [Bez-84]. We use the value of b = 

1.25 in our experiments, which has been shown to be efficient in a wide range of clustering 

problems.

3.2 Clustering in Microarray Image Segmentation

In this section, we discuss the application of the above-mentioned clustering methods 

to microarray image segmentation. We investigate the effects of adopting different features 

and tuning the parameters. The first step in segmentation is to apply a clustering algorithm 

to cluster (or classify) the pixels in a spot into foreground and background. The most 

suitable clustering algorithms for this purpose are the non-hierarchical ones, such as k- 

means, fuzzy &-means, or MLE. We compare the effect of applying these methods, the use 

of different features, and the application of different parameters. Our experiments are 

performed on the ApoAl microarray data, obtained from [Apo-04].
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3.2.1 Single Feature Clustering

Knowledge about the problem domain is usually applied to guide the process of feature 

selection. If the features are not sufficient to express the most representative information 

about the data, then no amount of computational effort will produce good clusters. 

However, if the feature space is too large, then expensive computations are needed to 

cluster the data, or when the data are incorrectly characterized, no good results can be 

produced at all.

As discussed in Chapter 2, SKMIS uses one feature for clustering, i.e. it calculates the 

square root of the intensities of the two channels and takes the maximum of these two. We 

implemented SKMIS and studied the effect of different measurements of the intensity 

based on the algorithm. The results also apply to other clustering models without losing 

generality.

Besides the square root of the intensity, we also used the original 16-bit intensity. In 

addition to the maximum of the two channels, we also used the sum of the two channels. 

We tried different combinations and concluded that the sum of the two square roots of the 

intensities is a better measurement than any other combination when the feature space is 

one-dimensional, i.e. it only contains the intensity. In Figure 11, we show the results of 

applying SKMIS and different measurements for the feature to the microarray image 

contained in files “1230clG” and “1230clR” from the ApoAl data. We observe that if the 

noise intensity in a spot is too high, as in spot No. 11, using the maximum of the two 16-bit 

intensities finds only the noise. Table 1 shows the effect of different calculations for the
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feature to the clustering result of spot No. 8 from the 1230clG/R image. Table 2 includes a 

comparison of the results obtained after different measurements are used to cluster the 

whole 1230clG/R image. Nfg, Ifg, and Ibg are defined as in Section 1.5.

No.29 sum of 16-bit m axim al of maximal of sum o f
intensities 16;bit square root square root

intensities of intensities of intensities

Figure 11. Sample results obtained after applying SKMIS using different 
calculations for the single feature to the 1230clG/R microarray image. Using the 
sum of the square roots of the two channels gives a foreground that is closest to the 
real spot.

From Tables 1 and 2, we observe that the total number of foreground pixels is the 

largest using the sum of square roots of the intensities for the two channels. This 

corroborates the results shown in Figure 11, in which this measurement generates the 

largest foreground region.
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Feature

calculation

Square root 16-bit Intensity

Maximal Sum Maximal Sum

Nfg 28 28 22 27

Ifg green/red 8336.0/4604.4 8336.0/4604.4 9358/4834.5 8486.1/4662.5

I bg green/red 926.8925/1393.4 926.8925/1393.4 1148.8/1536.9 962.5851/1410.9

Table 1. Results obtained after applying SKMIS using different measurements for 

the feature for sample spot No. 8 from 1230clG/R microarray image.

To conclude this subsection, we observe that the sum of square roots of the intensities 

generates the largest foreground region. These regions, which are observed in Figure 11,

are the closest to the actual spot size. Since they result in larger foreground regions, the 

mean foreground intensity and the background intensity produce the smallest spots among 

the four methods.

Feature Square root 16-bit Intensity

calculation Maximal Sum Maximal Sum

Total Nfg 8,620 11,516 8,996 9,447

Total Ifg 2.0609/1.7723 2.0137/1.7014 2.1576/1.8992 2.1518/1.8379

green/red *106 * 106 * 106 * 106

Total I bg 3.6299/5.7540 3.3930/5.6170 3.8647/5.8740 3.7086/5.8195

green/red * 105 * 105 * 105 * 105

Table 2. Results obtained after applying different calculations for the feature using 

SKMIS to 1230clG/R microarray image. The sum of square roots produces the 

largest foreground region among the four measurements.

3.2.2 Double Feature Clustering

Traditional image processing algorithms have been developed based on the 

information of the intensity of the pixel only. In the microarray image segmentation 

problem, we encountered that the position of the pixel, for example, could also influence 

the result of the clustering, and subsequently that of the segmentation. The use of these
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kinds of features has also been successfully applied, for segmentation of nature pictures in 

[Car-02]. They showed that using the position of the pixels as additional information for the 

segmentation algorithm improves the quality of the results. Their results, based on human 

observations, are very good when compared to the traditional segmentation approaches. We 

have been motivated by this work, and utilized more features from the images in addition to 

the pixel intensity.

If we consider the shape of the spot, the pixels whose distance to the center of the spot 

is smaller are more likely to be foreground pixels. We can thus take this spatial information 

about the pixels into account, and construct different features. For example, we can take the 

Manhattan distance as one of the features, i.e. the distance from the pixel to the center of the 

spot in the x-axis direction and in the y-axis direction. Alternatively, we can consider the 

Euclidean distance from the pixel to the spot center as one of the features. In this case, the 

spot center refers to the weighted-mean of the coordinates using the intensity as the weight. 

The coordinates of the spot center is computed as follows:

£ 7</P V
c = , (3-9)

2 j  V
>,j

where Iy is the intensity of the pixel and = [px, py] contains its coordinates.

When we consider the fact that a pixel with most of its surrounding pixels belonging to 

the same cluster is likely to belong to the same group, we take into account the mean of the 

surrounding pixels within a certain distance and the variance of the intensities. Adjusting 

the size of the surrounding regions, we obtain different values of mean and variance for the
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pixel as its features.

One of the problems of feature extraction is the fact that different features come from 

different sources, and thus they lie on different ranges. For example, the intensity is in a 

range between 0 and 65,535, while the radius is usually less than 20. When clustering a 

dataset with these characteristics, some features will dominate over others. Thus, different 

scaling methods can lead to different clustering results. The dependency among each 

feature, e.g. the correlation, should also be taken into consideration. We would like a 

representation of the data that reveals the natural grouping of the pixels.

The distance from the pixel to the spot center is calculated as follows:

^ [ ( P f f - c y G P t f - c ) ] 1'2 , (3.10)

The feature vector is given by x = [x„ x2]‘, where x, is the pixel intensity, and x2 is the 

distance from c to p,-, as obtained in (3.10). We call the &-means algorithm that uses x as the 

feature vector double-feature k-means microarray image segmentation (DKMIS).

In order to compare DKMIS and SKMIS, where the latter uses the intensity only, we 

run both methods on the 1230clG/R microarray image. The resulting image obtained from 

DKMIS is shown in Figure 12. For most of the spots, the noisy pixels are excluded from the 

foreground when considering the information of pixel coordinates. More importantly, for 

some spots, using intensity alone leads to poor results. This case is shown in Figure 13, in 

which it is clear that the two features obtained from the intensity and distance from the 

center can retrieve the true foreground from the background of the spots.
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Figure 12. Using pixel intensity and distance from the pixel coordinates to the 

center as the features to cluster the 1230clG/R microarray image.

Spot No. 136,137 SKMIS DKMIS

Figure 13. The result of applying SKMIS and DKMIS to spots No. 136 and 137, 

extracted from the 1230clG/R microarray image. It is clear that using intensity and 

distance from the center as the features can reveal the true foreground for these 

spots.

It is important to highlight that it is not always true that using more features leads to 

better results. More elaborated feature extraction and normalization schemes, such as 

principal component analysis (PCA), should be used in order to expect better results. This 

by itself constitutes a future research avenue for the approach we propose in this thesis.
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3.2.2 Varying Number o f  the Clusters

Apart from increasing the number of features, we also studied the result of using 

different numbers of the clusters. In SKMIS, by setting k to 2, the pixels are clustered into 

two groups, one is for foreground, and the other is for background. We tested the number of 

clusters based on our implementation of the &-means algorithm, described in Algorithm 

k_Means, using the intensity as the feature. Our testing consists of the segmentation of the 

1230clG/R microarray image. The results for a sample spot (No 8) and for the whole image 

are shown in Tables 3 and 4 respectively. In order to further analyze our methods, in Figure 

14, we show the results obtained for different values of k, and for various spots of the 

1230clG/R image. From the figure, we observe that when k= 2, the clusters can be 

classified as foreground and background. When k= 3, the pixels are grouped into three 

clusters, one for foreground, one for background, and the other contains the pixels whose 

intensities are in between these two. In most of the cases, the latter constitutes the edge of 

the foreground region. However, in some cases, such as in spot No. 10, the third cluster 

represents the true foreground regions. When calculating the ratio of intensities, the edge 

pixels can be either included as the foreground or excluded from both.

When k=4, the results depend largely on how the clusters are grouped. In Table 4, we 

consider the two clusters o f  higher intensities as the foreground region, and the other two  

groups as the background region. In some cases, it generates spots which are similar to 

those of k= 3 when the edge is considered as foreground (see Spot No. 10). In other cases,

taking three clusters for the highest intensities as the foreground is a better representation
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for the spot (see Spot No. 29). It is quite difficult to predict which classes correspond to 

foreground and which ones should be assigned to background. From our experiments we 

conclude that it is impractical to use k=4 when automatic microarray image segmentation is 

required. This is a scenario that deserves further investigation.

S pot No. k=2 fc-3 k=4

29

Figure 14. Resulting spots obtained from &-means with different values of k  on the 

1230clG/R microarray image. While both k=2 and k=3 give reasonable results, the 

resulting spots for k=  3 are larger than those of h =2 and are closer to the original 

spots.

To analyze the results from another perspective, in Figure 15, we show the scatter plot

of the foreground and the background intensity of each spot. We observe that the intensities

for the foreground are larger for k= 3, especially for low intensity spots. Notice that the

noisy pixels are excluded after applying a post-processing noise-removal method, which
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we call largest continuous region (LCR), discussed later in this chapter. We notice that k- 

means with h= 3, where the edges are included in the foreground, is the best choice for the 

number of clusters.

K 2 3 4

28 45 28

N bg 93 76 93

4  s /r 8336.0/4604.4 5854.8/3557.2 8336.0/4604.4

4 s /r 926.8925/1393.4 738.6842/1295.3 926.8925/1393.4

Table 3. Comparison for the segmentation of spot No. 8 of the 1230clG/R

microarray image using &-means with different values of k.

k 2 3 4

Total Nfg 10240 19608 11724

Total Nbg 35538 24252 32747

Total Nn 2501 4419 3808

Total Ifg g/r 1.9435/1.5955* 106 1.4571/1.2567* 106 1.7897/1.4927* 106

Total Ibg g/r 3.3197/5.5679* 106 3.3981/5.6803*106 3.2063/5.4963 *106

Total Ibg before LCR 3.4416/5.6636*106 3.6107/5.8076* 106 3.3753/5.6147* 106

Table 4. Comparison for segmentation of 1230clG/R microarray image using k- 
means with different values of k. The last row shows the background intensity 

before noise post-processing

If we use the 1.5-fold threshold (which is typically used by bioinformaticians) to verify 

whether a spot is too weak to be reliable for the analysis, the SRG method produces 49 such 

spots, while &-means with k=2 produces 45; &-means with k=3, instead, produces 70 of 

those spots when the edge is considered as foreground. The case in which k=4 produces 46 

such spots. If we exclude the noisy pixels using LCR, k=2, k= 3, and k=4 give 3, 0, and 5 

weak spots respectively. We can, thus, safely conclude that k=3 can distinguish weak spots 

as good as k= 2 and k=4. Based on the comparison, and the clustering results depicted in
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Figure 14, we draw the conclusion that k= 3 is the best number of clusters, and a more 

natural way of performing microarray image segmentation.

14j£

k = 3

k = 2

Figure 15. Scatter plot of the foreground and background intensities obtained after 

applying &-means to the 1230clG/R microarray image. They-axis represents k=3, 

where the edges are excluded from both foreground and background. The red and 

blue dots correspond to foreground and background respectively.

3.2.3 Using Different Clustering Models

The use of different clustering models can also affect the result of the microarray 

image segmentation. We study three common clustering models, namely &-means, fuzzy 

£-means, and MLE. In this section, we consider the intensity as the only feature. The 

algorithms are referred as SKM, SFKM, and SMLE respectively. The analysis using 

multi-dimensional feature space constitutes a future work for our current research.
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iZi

m

SFKM

SKM

Figure 16. The spot intensities obtained after 

applying SKM and SFKM to the 1230c 1 G/R 

microarray image, where k= 2.

m

SKM

Figure 17. The spot intensities obtained after 

applying SKM and SFKM to the 1230c 1 G/R 

microarray image, where k=3.

SMLE .,.4* %

SKM

Figure 18. The spot intensities obtained after 

applying SKM and MLE to the 1230c 1 G/R 

microarray image, where k= 2.

SMLE

12

SKM

Figure 19. The spot intensities obtained after 

applying SKM and MLE, k=  3.

In SKMIS, the distance function is computed by using Equation (2.3). As shown in 

Theorem 2.1, this algorithm can be regarded as the Euclidean distance in the one

dimensional space, i.e. equivalent to the Manhattan distance, when the number of pixels 

becomes arbitrarily large. We adopted another distance metric, which is the standard 

Euclidean distance, in our £>means model. The cluster membership consists of computing
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the Euclidean distance from the feature vector to the center mean of the clusters, and 

choosing the label of the cluster that is closest to the feature vector. We also implemented 

the fuzzy A>means and the MLE method based on the algorithms described in section 3.1. 

We refer to these algorithms as SKM, SFKM, and SMLE respectively.

We now analyze the application of clustering models from anther perspective, and use 

scatter plots. Scatter plots show the relationship between the resulting intensities for 

different models. Each scatter plot compares the results for a pair of models, one axis is 

used for each model. Each point in the figure represents a spot, where the value of the x- 

axis and y-axis corresponds to the resulting spot intensity for each model. Red dots (in the 

figure **’) represent the foreground, and blue ones (*+’) represent the background.

We ran the three clustering models mentioned above on the 1230clG/R microarray 

image. Figures 16 and 17 show the comparison of the results of SKM and SFKM, where 

k= 2 and k=2 respectively. When k=3, the edge is considered as foreground. We observe that 

SKM and SFKM generate almost identical results for k=2. When k= 3, SFKM results in 

larger foreground intensities for some spots, implying that the foreground region produced 

is smaller.

Figures 18 and 19 show the comparison of the results of SKM and SFKM, where k=2 

and k= 3 respectively. When k= 2, the SMLE model results in lower intensities than SKM 

and SFKM, because it generates larger foreground regions than the actual foreground (see 

Figure 18). When k= 3, SMLE produces substantially large foreground regions, if  the edges 

are included in the foreground. When the edges are considered as background, SMLE
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results in much smaller foreground regions than SKM and SFKM.

In Figure 20, we also show the results obtained after applying the three methods to 

some spots drawn from the 1230clG/R microarray image. We observe that SMLE 

produces the largest foreground region among the three models when k= 2, especially for 

low intensity spots. When k= 3, SMLE produces edges that include many background 

pixels. However, when excluding those edges from the foreground, it generates a 

foreground region that is too small.

No. 10

No 11

No 12

No. 22

No. 29 SKM SKM SMLE SMLE SFKM SFKM

Figure 20. The results of SKM, SFKM and SMLE for some typical spots on an 

ApoAl microarray data.

Apart from the poor results of SMLE, it is sensitive to initial values, which makes it 

difficult to be applied in practice. From our experiments, we conclude that &-means is a
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more suitable model for microarray image segmentation than fuzzy &-means, because the 

former produces better results and the latter involves a slower algorithm.

3.3 Post-processing of Noisy Pixels

After applying a clustering algorithm, the resulting spots may contain true foreground 

pixels as well as noisy pixels due to the contamination introduced during the microarray 

experiments. Although different models and parameters can be chosen so that the 

foreground region contains very few noisy pixels, as it will be seen later, some post

processing methods may still be desirable to eliminate even more noisy pixels. The pixels 

labeled “foreground” contain not only the high-intensity true-foreground pixels, but also 

high-intensity noisy pixels scattered in the background region. Without post-processing of 

noisy pixels, the resulting spots may contain noise that will affect the accuracy of the 

subsequent steps during the experiment analysis. While it is hard to eliminate noisy pixels 

that reside in the foreground region, discarding noisy pixels in the background region is 

desired.

Noisy pixel processing can be achieved by applying many different noise removal 

algorithms. In the next two subsections, we introduce the different techniques: the k-means 

algorithm re-applied to the labeled pixels, and the largest continuous region (LCR) method.

3.3.1 Re-applying Clustering

We can apply &-means a second time in order to discard noisy pixels. Unlike the 

previous stage, in which we use the intensity as the feature to cluster foreground and 

background pixels, we use the distance from the center to the pixel coordinates as the
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feature in the SKM algorithm to eliminate the noisy pixels in the background region.

Instead of using the coordinates of the pixels, using the distance avoids the problem of 

determining how many noisy clusters are in a spot. The noisy pixels can all be erased in one 

step and the shape of the spot is trimmed towards a circle. This shows again that it is very 

important to choose good features in the problem of clustering.

3.3.3 Largest Continuous Region Method

Our alternative LCR method consists of calculating the largest continuous region using 

the pixels that compose the foreground, assuming the spot foreground is larger than any 

noisy area. Since it is expected that the spot foreground is the largest cluster compared to 

the noisy clusters, by assuming that the foreground is a continuous region, we can easily 

identify the cluster by finding the area with the largest number of pixels.

The procedure that implements the LCR is shown in Algorithm LCR. The algorithm 

first marks each continuous region with different labels by involving a recursive function 

called Paint. After the first step, the algorithm obtains a mask for the spot, in which each 

label stands for a different continuous region. Then the algorithm counts the number of 

pixels for each label of the mask. The spot foreground is the region with the largest number 

of pixels. Finally, the algorithm clears all the other labels except those of the foreground 

pixels. In the algorithm,/^represent the pixel at row i, column j ,  and mtj is the label for pixel 

P*

Algorithm 5 LCR

Input: Labeled pixel matrix, P; the size o f the image, m, n
Output: A matrix labeled only the foreground, M
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Method: 

for i <—1 to n 

for j <- 1 to m

if pij is a foreground pixel and mtj <> 0 then 

M <— Paint(P, M, i, j, k); //Label the pixel and its 4 neighboring pixels with the same value

k<r- k + l\

endif

endfor

endfor

labels <r- 0; 

for i < r- 1 to n 

for j  <r- 1 to m 

if rriij o  0 then

la b e ls[m <— labels[m^+1; // find the number of pixels of each value of mark 

endif 

endfor 

endfor

maxMark <— the index of max(labels) 

clear mask except maxMark

Procedure Paint(Labeled pixel matrix, P; a matrix labeled only the foreground, M; coordinate i,
j; the mark, k) return A matrix labeled only the foreground, M

Begin

ifPijis a foreground pixel then

my <- k,

if j>  1 and pv./ is a foreground pixel and m,vw = 0 then 

M <— Paint(P, M, i,j-1, k); 

endif

if j<n and py+/ is a foreground pixel and miJ+, = 0 then 

M <— Paint(P, M, i,j+1, k)\ 

endif

if i>l and p,,/y. is a foreground pixel and muliJ = 0 then 

M <— Paint(P, M, k); 

endif
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if i<m and pi+lJ is a foreground pixel and ml+1J = 0 then 

M <—Paint(P, M, i+ lj ,  k); 
endif

ENDIF

END

end Algorithm LCR

In the worst case, when all the pixels are foreground, every pixel is visited by Paint 

only once. The complexity of LCR is O(n2), when the size of the image is n by n.

Theorem 3.1. The worst-case time complexity of LCR is 0(n2), where the size of the 

input image is n x m, and n = O(m).

Sketch of proof. In the two for-loops in the main module, every pixel is tested once for 

the if-statement. This includes 2 cases:

Case I: py is a background pixel. In this case, Paint is not invoked.

Case II: p i} is foreground pixel. In this case, Paint is invoked.

In Case II, ifp 9 has a neighbor that is foreground and has not being marked, Paint will 

be recursively invoked. This implies that Paint will be invoked for every pixel only once. 

This implies that the complexity is O(nm) = 0(«2), where n = 0(m). From Case I, we see 

that the worst case will occur when all pixels belong to background, in which case, the 

worst-case complexity is 0 (n2) as well.

LCR generates almost the same result as the previous SKM algorithm that uses the 

distance as the feature, shown in Figure 21. For spots No. 26 and 27, although they are
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weak spots, the results are quite good.

No. 27 k-m eans LCR seco n d
lc=2 k-m eans

Figure 21. The post-processing of noisy pixels on the 1230clG/R microarray image.

The second k-means uses the distance as the feature.

3.4 Optimized Clustering-based Microarray Image Segmentation

Based on our previous analysis of the most important factors in a clustering algorithm, 

including the feature space, the number of clusters, and the clustering model, we present a 

clustering-based algorithm for microarray image segmentation, which we call optimized 

k-means fo r microarray image segmentation (OKMIS). OKMIS is a segmentation 

algorithm that uses k-means, and sets k to 3. The feature space contains two features: one 

being the sum of the square root of the intensities, and the other the distance from the pixel 

coordinates to the spot center.

In general, evaluating an image segmentation algorithm is not an easy task. Since

microarray technology is still rapidly growing, there are no established standards for the

analysis of microarray images. In this regard, there are no standard measurements for
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evaluating the results of microarray image segmentation. Subjective methods (based on 

human being observation) are used in literature to evaluate the results. In this section, we 

combine our subjective judgment and an objective measurement to compare the SKMIS 

method and our OKMIS method. Because the SKMIS method generates a foreground with 

a significant number of noisy pixels, Wu et al. applied a further mathematical 

morphological process, which they called foreground correction, to eliminate the noise 

[Wu-03], In our experiments, we apply our LCR to perform the foreground correction to 

SKMIS and OKMIS. Thus, in the simulations, we compare SKMIS, SKMIS after LCR, our 

OKMIS, and OKMIS after LCR. Figure 22 illustrates the result of applying OKMIS to the 

1230c 1 G/R microarray image. It shows OKMIS resulting in a much “cleaner” foreground 

region than SKMIS.

Figure 22. The result of applying OKMIS to the segmentation of the 1230clG/R 

microarray image.
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3.5 Experiments on Real-life Microarray Data

SKMIS

OKMIS

Figure 23. Comparison of SKMIS and OKMIS for some typical spots from the 

1230clG/R microarray image. For spots with high intensity noisy pixels, such as 

No. 10, OKMIS can reveal the true spot foreground instead of the noise produced by 

SKMIS.

In order to obtain a more consistent assessment about our segmentation methods, and

their comparison with other approaches, we performed some simulations on real-life

microarray images obtained from the ApoAl data [Apo-04]. We ran our experiments on an

Intel Pentium III (633MHz) computer under Windows 2000, and using the well-known

Matlab software. First of all, we compare the resulting binary images of the two clustering

methods to the original microarray image. A few spots from the 1230clG/R microarray

image are shown in Figure 23. We observe that in general OKMIS achieves better results.

In some cases (spot No. 10), OKMIS reveals the true foreground region while SKMIS finds

only the noisy pixels. In som e cases (spotN o.29), OKMIS can result in a foreground region

that contains fewer noisy pixels. In other cases (spots No. 11, 12, 22), both OKMIS and

SKMIS can obtain a reasonable foreground region, where OKMIS generates a region that

is closer in size to the real spot. In particular, Figure 24 shows the comparison of OKMIS
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with SKMIS for weak spots. In order to easily visualize the results, the intensities of the 

original spots have been enlarged 20 times. We observe that OKMIS results in larger, closer 

to the actual spot, and cleaner foreground regions. As it can be seen in the figures, OKMIS 

automatically removes most of the noisy pixels, and is more efficient than SKMIS because 

SKMIS must perform an additional nosy removal procedure.

No. 16 No.80

No. 27 No.83

No <58 No. 236

c
No.59 SKMIS OKMIS No-237 SKMIS OKMIS

Figure 24. The comparison of SKMIS and OKMIS for some weak spots of the 

1230clG/R microarray image. The intensities of the original spots have been 

enlarged 20 times to achieve better visualization.

After demonstrating that OKMIS generates better results than the SKMIS method, we 

now provide an objective measurement for a batch of real-life microarray images. To 

achieve this analysis, we compare the size of the resulting foreground region for both 

methods. The results are shown in Table 5. The first column for each method contains the 

total foreground intensity of the green channel, Ifg, and the second column represents the 

number of pixels in the foreground region, Nfg. In the first two columns, we note that the 

foreground region generated by SKMIS contains many noisy pixels. Thus, a post-
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processing method has to be applied in order to eliminate the noise. In the last two columns, 

we observe that OKMIS eliminates most of the noisy pixels — only 1,307 noisy pixels are 

left for the 8 images, totaling 3,192 spots. After the LCR process is applied, the changes to 

the size of the foreground and the foreground intensities are so minor that can be neglected. 

Therefore, in these cases, post-processing is not necessary at all. As opposed to this, 

SKMIS generates 23,575 noisy pixels, and hence a process to eliminate the noise must be 

performed. Full images resulting from the adaptive ellipse method can be found in

Appendix A.

SKMIS SKMIS after LCR OKMIS OKMIS after LCR

Images h h hz Nf* 4 Nf*

1230kolG/R 1,013,600 14,016 1,025,300 11,508 1,049,100 11,388 1,049,000 11,234

1230ko2G/R 1,420,000 11,323 1,439,400 7,520 1,365,900 9,843 1,366,100 9,701

1230ko3G/R 1,593,100 14,502 1,618,600 10,826 1,541,900 11,102 1,541,100 10,903

1230ko4G/R 1,549,200 10,085 1,559,100 8,141 1,520,300 9,159 1,518,300 9,046

1230clG/R 2,039,300 10,455 2,060,900 8,620 1,928,900 10,292 1,929,100 10,128

1230c2G/R 2,495,800 11,650 2,530,300 8,179 2,364,100 9,733 2,362,900 9,510

1230c3G/R 2,435,200 11,182 2,446,300 8,446 2,368,700 9,587 2,367,100 9,436

1230c4G/R 1,815,700 12,287 1,836,700 8,685 1,816,900 9,560 1,816,800 9,399

Total 14,361,900 95,500 14,516,600 71,925 13,955,800 80,664 13,950,400 79,357

Table 5. Comparison of SKMIS and OKMIS for a batch of images from the ApoAl

dataset, where the first sub-grid of each image is analyzed.

In addition to a nearly-noisy-ffee foreground, OKMIS generates a larger foreground 

region, which is closer to the real spot foreground (see Figures 23 and 24). When 

comparing OKMIS with SKMIS after LCR, the resulting foreground regions are larger 

than those of the latter for all the images except for the first pair. Thus, in most of the cases, 

OKMIS results in much better results than SKMIS, even after the foreground correction 

process. We observe that, for the weak spots, OKMIS is superior to SKMIS, in the sense 

that the resulting foreground contains less noisy pixels and the resulting foreground regions
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are closer to the real spots. In addition, OKMIS does not require an extra post-processing 

stage for removing the noise.

3.6 Conclusion

In this chapter, we analyze the most important factors that influence the accuracy of a 

clustering algorithm for microarray image segmentation, including the feature space, the 

number of clusters, and the clustering model. We propose a new microarray image 

segmentation method based on a clustering algorithm, which we call OKMIS, and sets k  to 

3. Its feature space has two features: the sum of the square root of the intensities, and the 

distance from the pixel coordinates to the true spot center. As shown in the experiments, our 

algorithm performs microarray image segmentation more accurately than the previous 

clustering-based microarray image segmentation methods, SKMIS, and does not need a 

post-processing stage to eliminate the noisy pixels.

The proposed algorithm, which generates quite satisfying results, still has room for 

improvements. More elaborated feature extraction and normalization schemes can improve 

the accuracy of a clustering algorithm. When considering more than one feature, the 

normalization process is very important, not only by scaling, but also analyzing the 

correlation between each pair of features. In this regard, PCA is a widely used method that 

could be used to produce even better results. This problem constitutes a possible avenue for 

future research.

When the number of clusters is more than two, an extra step is needed to determine

which clusters correspond to foreground and which ones belong to background. Although
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this is not an easy task, the refined classification may lead to more interesting results. An 

automated clustering algorithm is desired to evaluate the best number of clusters for each 

spot and classify the pixels into foreground and background.
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CHAPTER 4 ADAPTIVE ELLIPSE METHOD

As we discussed in Chapter 3, clustering methods work well in the problem of 

microarray image segmentation. If we choose the clustering model and features carefully, 

the clustering algorithm can achieve very good results. Yet, the clustering methods often 

need an extra step to erase the noise pixels from the foreground region. As opposed to this, 

shape-based segmentation methods have many advantages in this regard, because most of 

the spots in microarray images are regular in shape. In general, the shape of a microarray 

spot is a circle or an ellipse. Other shapes like donuts and irregular shapes can also be 

presented in a microarray image. In this chapter, we propose an adaptive ellipse method 

that works well for many microarray images.

The method that we introduce in this chapter is in its infancy and very promising. It is 

seen as a generalization of the adaptive circle technique. Although our results are 

preliminary, they show that a huge amount of work is worth to be done in this direction. We 

notice that the word “adaptive” usually refers to the property that an algorithm can improve 

itself in the procedure of learning. In microarray literature, however, it is used in adaptive 

circle method to refer to the fact that the algorithm results in different diameters for 

different sizes of spots. We inherit the meaning of the word “adaptive” as it is used in 

microarray literature, and call our approach adaptive ellipse method.

4.1 Diagonalization Transformation

Diagonalization is the process of transforming data from a multivariate normal
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distribution N(ju, 2) to N(0,1), where ju is the mean vector and 2  is the covariance matrix, by 

performing linear and whitening transformations [Rue-02]. After applying diagonalization, 

the normally distributed data with arbitrary mean and covariance matrix is transformed to a 

distribution in which the covariance is the identity matrix.

Diagonalization involves two steps. For a normally distributed random vector x  ~N(pi, 

a), first, the following linear transformation transforms x  into another vector y  = O* x, 

where O is a d x d orthogonal matrix that contains the d  eigenvectors of a, . 0 d. The 

next step is the whitening transformation, which transforms y  into a new matrix z = A'l/2y, 

where its random variables are uncorrelated and their variances are equal to unity, i.e. the

(a)

Figure 25. The steps o f the process of 

diagonalization. The normally distributed data 

with arbitrary mean and covariance matrix can 

be transformed into new normally distributed 

data where the covariance is the identity 

matrix, and the mean is arbitrary. The plots 

show points with the same Mahalanobis 

distance.
-1 -1 t 3 » * *

(c)
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identity matrix. A is a diagonal matrix whose elements are the eigenvalues of a, X„...Xd. 

The covariance matrix of z in the transformed space is the identity matrix. Figure 25(a) 

shows the points with the same Mahalanobis distance in the original distribution having 

arbitrary mean and covariance. Figure 25(b) shows the points with the same Mahalanobis 

distance in a new distribution in which the data are uncorrelated. Figure 25(c) shows the 

points with the same Mahalanobis distance in the new distribution, whose covariance is the 

identity covariance matrix. In our segmentation approach, we use two-dimensional random 

vectors, a particular case of the general scenario discussed above. The points that we show 

in the plots have the same Mahalanobis distance and a property in common: they all have 

the same probability.

4.2 Adaptive Ellipse Method

As shown in the previous subsection, diagonalization has an appealing propriety that 

can transform the normally distributed data with arbitrary mean and covariance matrix into 

a new distribution where the covariance is the identity matrix, and the mean vector is 

arbitrary. This, in certain cases, simplifies the analysis of the data. We noticed that the data 

points with the same Mahalanobis distance in the original distribution lie on an ellipse, 

while the data points with the same Mahalanobis distance in the transformed distribution lie 

on a circle. The model that considers spots to be ellipses is discussed in detail below.

In microarray image segmentation, the intensities of the pixels in the spot area can be 

regarded as a two-dimensional normally distributed random vector. The 3-D shape 

determined by the intensities is considered as a histogram, which is, in turn, used to 

estimate the parameters of the two-dimensional normally distributed random vector. The
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probability density function (pdf) of the two-dimensional normally distributed random 

vector is approximated using that histogram. After applying the diagonalization process to 

the underlying random vector, the data points with the same Mahalanobis distance, which 

lie on an ellipse in the original space, will lie on a circle in the new space. After this 

transformation has taken place, the aim is to exploit the properties of the circular shape of 

the spot to simplify the subsequent analysis. Note that the traditional circle-based 

segmentation methods can not be applied to the transformed pixels, because the pixel 

coordinates are given in terms of real numbers in the transformed space. Figure 26 shows a 

sample spot that takes the shape of an ellipse in the original space. After the diagonalization 

process is applied, the coordinates of the pixels are real numbers, as can be observed in the 

plot on the right hand side of the figure. For example, the pixel whose coordinates in the 

original space is [1,1] is represented as [-0.4139, 0.4934] in the transformed space.

Figure 26. Change of coordinates after diagonalization. The left image shows a 
sample spot (Spot No.12 of 1230clG/R microarray image) that takes the shape of 
an ellipse, instead of a circle. The plot on the right hand side shows the coordinates 
of each pixel in the new distribution after applying the diagonalization process.

The adaptive ellipse method involves three steps. First, the parameters of the dataset

are computed using the maximum likelihood estimation. The mean and the covariance
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matrix are then computed, followed by the diagonalization transformation. The coordinates 

of the pixels in the transformed space are computed using the eigenvalues and eigenvectors 

of the covariance matrix. Finally, after the dataset is transformed into the new distribution, 

the next task of the adaptive ellipse method is to compute the radius that defines the 

foreground region. For this purpose, different approaches can be applied. For example, we 

can compute the slope of the pdf for each pixel, and then find the radius that generates the 

largest slope average. In this thesis, we use another approach instead, and leave the former 

for future research.

4.2.1 Parameters Estimation

We consider the dataset D = {x,7 1 i =1 ...m ,j = 1 ...n}, where xy is the coordinate of a 

pixel. We assume that the dataset D conforms to normal distribution jc ~ N(ju, Z). ju is 

computed using the following equation:

1 m  n

<AX>

Z S / ,
i=l 7=1

The covariance matrix Z  is computed using:

m JL
- m) ‘

-------------  f4.2;m
i=l 7=1

4.2.2 Diagonalization

After the two parameters, /x and Z, of dataset D are computed, we apply 

diagonalization by seeking the eigenvalues, A, and eigenvectors, 0 , of Z. The coordinates
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for each point in the transformed space is calculated as follows:

v..=A-1/V x . .  (4.3)
V

This result can be verified by calculating ju ’ and E ’ in the new distribution: the mean 

obtained using the transformed points is the same as the mean obtained using the points in 

the original distribution. And E ' is the identity matrix. After the diagonalization process, 

the dataset is transformed into a new space, where the data points which have the same 

Mahalanobis distance in the original space, lie on a circle.

4.2.3 Computing the Radius

In the adaptive ellipse method, we adopt a statistical method to compute the radius of 

the foreground region. First, we use Mann-Whitney test to estimate a threshold. A more 

detailed discussion of Mann-Whitney test can be found in [Dou-90], Pixels from the 

predefined positions, i.e. the 4 comers and 4 middle-points in the edges in a gridded spot, 

are considered to be Y„ Y2,..., Ys. The pixels from the other region of the spot are sorted and 

the lowest 8 pixels are chosen as X„ X2, ..., X8. We need a parameter a  to compute the 

rank-sum statistic, namely W. If the null hypothesis is not rejected, we discard the pixel 

with the lowest intensity from the target set, and choose the next lowest intensity pixel from 

the remaining pixels. The process is repeated until the null hypothesis is rejected. The 

lowest intensity of the 8 pixels is the threshold that we are looking for. The pixels whose 

intensity is above the threshold are considered to be foreground pixels.

In the next stage, we sort all the pixels by their distance to the spot center /z in an
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increasing order. Starting from the smallest distance pixel, we count the number of

foreground pixels and background pixels for the next 2«+l pixels. The foreground and

background pixels are grouped according to the threshold obtained in the Mann-Whitney

test. The algorithm stops when the majority in the testing set is a background pixel.

Otherwise, we move the starting pixel to the next one in the sorted pixels and use the next

2«+l pixels. The average distance of the 2«+l pixels is the radius that defines the

foreground region. All the pixels whose distance to the spot center fx is smaller than the

radius are marked as foreground; otherwise they are assigned to the background. The

complete process is shown in Algorithm Adaptive_Ellipse. In the algorithm, we set the

size of the testing set to 3 pixels.

Algorithm 6 Adaptive_Ellipse

Input: The spot image, P; the size o f the image, m , n.

Output: A labeled matrix, la b e l  

Method:

Compute n  and E  using equations (4.1) and (4.2)

Compute eigenvalues A  and eigenvectors <P o f matrix I .  

for i <—1 to n  //compute the new coordinates, y 

for j <— 1 to m

Yu = A m  * transpose^) * x tj

ENDFOR

endfor

th r e h d  = MWT(P, a ) // use Mann-Whitney test to find the threshold 

for i <— 1 to n  // compute the distance from the pixels to the spot center 

for j  1 to m

radius[z',/| <— distance from y t o  fi  

endfor 

endfor

sortedr <— sort(reshape(radius))
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idxr <— index o f sort(radius) 

for i 4r-1 to n * m  

countOn <— 0 

countOff <— 0 

for j  <— i to i+2 

if P[idxr[/']] > th re h d  

c o u n tO n  <— c o u n tO n  +1 

else

c o u n tO f f  <— c o u n tO f f+1 

endif 

endfor

if  c o u n tO n  < c o u n tO f f  

r a d iu s F g  <— sortedr[z] 

endif 

i <— (+1 

endfor 

for i <—1 to n  

for j  <—1 to m  

if  radius[/,y] < r a d iu sF g  

la b e l \ i , /] <— 1 

else 

label]}, j ] <—0

ENDIF

endfor

endfor

Procedure MWT(dataset, D; the significance level, a ) return threshold, v 

Begin

w  <— rank sum value corresponding to a

set_y <— 8 pixels o f the comer and the middle point o f the edges //the background set

set_x <— 8 lowest intensity pixels from the remaining region // the foreground set

w m t <—MAXJVALUE
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while w m t < w

merge the two sets, and sort the resulting set in increasing order 

w m t <— the summation o f the index o f the foreground set 

discard the lowest intensity pixel from set_x 

add the lowest intensity pixel from the remaining pixels 

endwhile 

v < r- min(set_x)

END 

return v

END ALGORITHM ADAPTIVE_ELLIPSE

4.3 Experimental Results

In order to evaluate our adaptive ellipse method, we performed some simulations on 

real-life microarray images obtained from the ApoAl data [Apo-04], and compared the 

results with the widely used adaptive circle method. In our experiments, the significance 

level a  is set to 0.01. This value has been formed to give good result in most of our 

experiments.

4.3.1 Experiments Based on Visual Observation

Figure 27 shows the different results of the adaptive ellipse method and the adaptive 

circle method for some spots obtained from the 1230clG/R microarray image. For those 

ellipse-shaped spots, we observe that the adaptive ellipse method generates a foreground 

region that is closer to the original spot in both shape and size than adaptive circle method. 

Consider spot No. 49, for example. The foreground region generated by the adaptive ellipse 

method is an ellipse in shape, while the foreground region generated by the adaptive circle

76

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



looks like a circle. The same situation occurs as in spot No. 65, but in this case, the axes of 

the resulting ellipse are not coincident with the coordinates of the system. Full images 

resulting from the adaptive ellipse method can be found in Appendix A.

No, 65 Adaptive Circle A daptive Ellipse

Figure 27. Different results obtained from the adaptive circle and adaptive ellipse 

methods for ellipse-shaped spots taken from 1230clG/R microarray image.

Figure 28 shows the comparison of the two methods for some spots whose shape is 

similar to a circle. Because circle is a particular case of ellipse, the adaptive ellipse method 

also works well for circular spots. We observe that these two methods generate almost 

identical results for these spots.

Based on the above observations, we conclude that the adaptive ellipse method 

generates better results when dealing with spots that are ellipses in shape. Meanwhile, it 

generates results as good as the adaptive circle method when dealing with circular spots. In

7 7
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general, the adaptive ellipse method is suitable for a wider range of spots, and generates 

better results. This argument could be shown theoretically, and is observed in the 

experiments below. The former constitutes an open problem, and proposes a future avenue 

for research.

No. 162 A daptive Circle A daptive Ellipse

Figure 28. Adaptive circle and adaptive ellipse methods showing almost identical 

results for circular spots taken from 1230clG/R microarray image

4.3.2 Experiments Based on Numerical Comparison

After illustrating that adaptive ellipse method generates better results than adaptive 

circle method using some sample spots, we now provide a numerical comparison for a 

batch of real-life microarray images drawn from the Apo A1 experiments. The 

measurement that we adopt for the comparison is the intensity of the foreground region for 

each spot, and the number of pixels belonging to that region. The results are shown in Table
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6 . The first column of each method contains the number of pixels in the foreground region, 

Nfg, and the second column represents the total average foreground intensity of the green 

channel, Ifg. In the first two columns, we notice that the average foreground intensity 

generated by the adaptive ellipse is higher than adaptive circle in general. Meanwhile the 

number of pixels generated by the former is approximately in the same range as the latter, 

but slightly larger. This can be easily justified by fact that adaptive ellipse finds a 

foreground region that represents the spot foreground better, which means that, it includes 

more foreground pixels and less background pixels than the adaptive circle method. Thus, 

it results in higher foreground intensity even though it contains more pixels in general. In 

our experiments, 7 out of the 9 images result in higher foreground intensity.

Adaptive Circle Method Adaptive Ellipse Method

4 s 4 4 4 4 4
1230clG 28.24 3,652 846 28.34 3,670 843

1230c2G 25.36 4,301 1,120 25.80 4,314 1,123

1230c3G 28.17 4,178 595 28.29 4,181 592

1230c4G 24.37 3,248 818 24.57 3,235 816

1230c5G 26.88 2,914 459 26.91 2,961 459

1230kolG 33.86 2,018 396 33.81 2,022 387

1230ko2G 20.69 2,353 532 20.54 2,373 531

1230ko3G 29.05 2,884 577 28.85 2,902 576

1230ko4G 24.56 2,735 564 24.64 2,729 563

Average 26.80 3,143 656 26.86 3,154 655

Table 6. Comparison of Adaptive Circle method and adaptive ellipse method for a 

batch of images from the ApoAl dataset, where the first sub-grid of each image is 

analyzed.

In order to enhance the quality of our assessment about the experiments, we compare 

the number of “hits”, i.e. the number of the pixels that are incorrectly labeled by the two 

algorithms. Because there are no standard solutions for microarray image segmentation and
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classifying the pixels manually is still subjective and error-prone, we choose a histogram- 

based algorithm as the reference method to classify the pixels into foreground and 

background. Then, we apply the two methods to the same spots, and count the number of 

hits. The spots are obtained randomly from the Apo A1 image. Table 7 shows the results. 

We observe that, in most of the cases, the adaptive ellipse method generates fewer hits, 

which implies that it generates a foreground region that is more similar to that of the 

histogram-based approach.

Filename Spot Number Hits (adaptive ellipse) Hits (adaptive circle)

1230cl 12 25 29
24 8 8
36 7 7

1230c2 12 47 48
24 21 22
36 24 24

1230c3 12 9 12
24 14 12
36 9 11

1230c4 12 36 36
24 10 13
36 16 17

1230c5 12 18 21
24 15 17
36 23 23

1230kol 12 14 11
24 18 18
36 9 9

1230ko2 12 29 29
24 41 41
36 19 19

1230ko3 12 15 15
24 18 17
36 15 15

1230ko4 12 17 17
24 16 16
36 25 25

Total 518 532

Table 7. Comparison of the adaptive ellipse method and the adaptive circle method

with a histogram-based approach. In most of the cases, the adaptive ellipse method 

shows more similar results than the adaptive circle method.
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4.4 Conclusion

In this chapter, we introduce a new microarray image segmentation method, which we 

call the adaptive ellipse method. The advantage of this method is that it results in a 

foreground region that better represents the actual spots, and can be used for a wider range 

of microarray images than the traditional adaptive circle method. We view each spot in the 

microarray image from another perspective: the intensity represents the pdf of a normal 

distribution. Doing this enable us to extract statistical information from the images that is 

ignored by the traditional adaptive circle method, and hence showing more flexibility.

The method consists of three steps. First, we assume that the dataset is normally 

distributed. The two parameters, the center mean and the covariance matrix, are computed 

using the maximum likelihood estimation. Then, the diagonalization transformation is 

performed. The coordinates of the pixels in the transformed space are calculated using the 

eigenvalue and eigenvector of the covariance matrix. Finally, after the dataset is 

transformed into the new distribution, we use a statistical approach to estimate the 

threshold and find the radius of the foreground region. The results show that the adaptive 

ellipse method can reveal the true shape of the spots, and works better than adaptive circle 

method.

The adaptive ellipse method, which generates quite satisfying results, still has room for 

improvements. After the dataset is transformed to the new distribution, various methods 

can be applied to obtain the radius that defines the foreground region. A possible approach 

is to compute the slope of the pdf for each pixel, and then find the radius that generates the
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largest slope average. This problem constitutes a possible avenue for future research. More 

work can also be done in more elaborated experiments to seek for better parameters of the 

present approach in finding the foreground radius.
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

Microarray image segmentation is an important step in the process of microarray 

analysis. It extracts numerical information from the image files, thus, provides fundamental 

data for the subsequent analysis. Various methods exist in the literature, including the fixed 

circle method, the adaptive circle method, the seeded region growing, histogram 

approaches, and a recently proposed clustering-based algorithm. In this thesis, we provide a 

literature review and comparison on microarray image segmentation techniques. Then 

based on an in-depth analysis of clustering-based microarray image segmentation 

technique, we propose a novel algorithm, called optimized k-means fo r microarray image 

segmentation (OKMIS). In a subsequent chapter, we propose another shape-based 

algorithm, called adaptive ellipse method.

5.1 Contributions

As we investigated in Chapter 3, clustering algorithms can be used efficiently in 

microarray image segmentation, providing we choose the correct features and parameters. 

OKMIS is a segmentation algorithm that uses &-means, the feature space contains two 

features: one being the sum of the square root of the intensities, and the other the distance 

from the pixel coordinates to the spot center.

From the experiments depicted in the chapter, OKMIS is superior to previous 

clustering-based microarray image segmentation method. First, the resulting foreground 

regions after applying OKMIS are closer to the actual spots. Second, in some cases,
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OKMIS reveals the true foreground region while SKMIS finds only the noisy pixels. More 

importantly, the resulting foreground obtained after applying OKMIS method contains less 

noisy pixels, and in most of the cases, it does not require an extra post-processing stage for 

removing the noise.

The adaptive ellipse method views the image data as the probability density function 

(pdf) of a dataset. By assuming that the dataset conforms to normal distribution, we apply 

diagonalization to transform the dataset from an arbitrarily mean and covariance matrix to a 

new space where the covariance matrix of the resulting random vector is the identity matrix. 

After the transformation, the data points of the same Mahalanobis distance lie on a circle. 

Then, we exploit the simple property of a circle to find the radius that defines the 

foreground region.

The adaptive ellipse method is compared to the state-of-art adaptive circle method. In 

our experiments, the adaptive ellipse method performs better than the adaptive circle 

method. First, the adaptive ellipse method is suitable for a wider range of microarray 

images than adaptive circle method. It deals with not only circular spots, but also ellipse

shaped spots. Second, the adaptive ellipse method generates more accurate results than the 

adaptive circle method. It generates better results than the adaptive circle method for 

ellipse-shaped spots, while being comparable to the adaptive circle method when dealing 

with circular spots. Based on our numerical analysis, we conclude that the adaptive ellipse 

method results in a foreground region that is closer to the actual spots.
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5.2 Future Work

In the microarray image segmentation, it is not enough just grouping the pixels into 

foreground and background. In some cases, the noisy pixels may also need to be identified. 

We suggest that techniques such as Adaline, or SVMs, can be used to detect noise. In the 

process of background correction, an adaptive formula could be used to reveal the true 

foreground intensity instead of using the rigid formula described in Equation (1.1). Neural 

networks could also be applied to obtain the true foreground intensity. When conducting 

the gene expression data analysis, although hierarchical clustering is a widely used method, 

it suffers from drawbacks such as dealing with noise and providing a non-unique solution.

The OKMIS algorithm, which generates quite satisfying results, still has room for 

improvements. More elaborated feature extraction and normalization schemes can improve 

the accuracy of a clustering algorithm. When considering more than one feature, the 

normalization process has a high influence on the results of clustering. Normalization 

includes not only scaling, but also considering the correlation between each pair of features. 

In this regard, principle component analysis (PCA) is a widely used method that could be 

used to produce even better results. This problem also constitutes a possible avenue for 

future research.

When the number of clusters is more than two, an extra step is needed to determine 

which clusters correspond to foreground and which ones belong to background. Although 

this is not an easy task, the refined classification may lead to more interesting results. An 

automated clustering algorithm is desired to evaluate the best number o f clusters for each
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spot and classify the pixels into foreground and background.

The adaptive ellipse method, which generates quite accurate results, still in its infancy, 

and much work can be done for improvements. Our future work includes theoretically 

prove that the adaptive ellipse method is better than adaptive circle method. After the 

dataset is transformed into a new distribution, various methods can be applied to obtain the 

radius that defines the foreground region. A possible approach is to compute the slope of 

the pdf for each pixel, and then find the radius that generates the largest slope average. This 

problem constitutes a possible avenue for future research as well. More work can also be 

done in more exhaustive experiments to seek for better parameters for the present 

approach.

Another possible future work constitutes of a numerical comparison that includes 

incorporating white noise to the images, and subsequently tests the adaptive ellipse method, 

and compares it with the adaptive circle method. This approach is typically used in signal 

processing.
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Appendix A Experimental Results 

1. Results after applying SKMIS

The images are 1230clR/Q 1230c2R/Q 1230c3R/G, 1230c4R/G, 1230kolR/G, 1230ko2R/G, 

1230ko3R/G, 1230ko4R/G.
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2. Results after applying OKMIS

The images are 1230clR/Q 1230c2R/Q 1230c3R/G, 1230c4R/G, 1230kolR/Q 1230ko2R/G, 

1230ko3R/Q 1230ko4R/G.
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3. Results after applying the adaptive ellipse method

The images are 1230clR/G, 1230c2R/Q 1230c3R/G 1230c4R/G 1230c5R/Q 1230kolR/Q 
1230ko2R/Q 1230ko3R/G, 1230ko4R/G
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Appendix B. Source Code

1. MLE Algorithm Implementation

function label=omniMLE(ds,k);

[featuresize,datasize]=size(ds);
%guess an initial mu and set sigma=l 
[x,idx]=sort(ds( 1, 
mu=zeros(featuresize,k); 
sigma=zeros([k,featuresize,featuresize]);

% init method 1 
step=floor(datasize/k); 
for i=l:k 

for j=l: step 
mu(:,i)=mu(:,i)+ds(:,idx((i-l)*step+j)); 

end
mu(: ,i)=mu(: ,i)/step; 

end

for i=l:k 
sig=zeros(featuresize,featuresize); 
for j=l:step

fv=ds(: ,idx((i- 1 )*step+j)); 
sig=sig+(fv-mu(: ,i))*(fv-mu(: ,i))'; 

end
sigma(i,:, :)=sig/step; 

end

changes=0 ;
muold=zeros(featuresize,k); 
for i=l:k 

p(i)=l/k;
changes=changes+abs(mu(l ,i)-muold(l ,i)); 

end;

rounds=l; 
while ( changes>l ) 

rounds
rounds=rounds+1; 
muold=mu;

for i=l :datasize 
sum=0 ;
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for j=l:k
b(:,:)=sigma(j,:,:);
s(j)=det(b)A(-l/2)*exp(-l/2 *(ds(:,i)-mu(:j))'*(bA(-l))*(ds(:,i)-mu(:j)))*p(j);
sum=sum+s(j);

end
for j=l:k 

pc(ij)=s(j)/sum; 
end 

end

for j=l:k
p0')=o;
for i=l :datasize 

pO)=p(j)+pc(ij); 
end
p(j)=p(j)/datasize;

end

for j=l:k 
s l=zeros(featuresize, l);s2=0 ; 
for i=l :datasize 

sl=sl+pc(ij)*ds(:,i); 
s2=s2+pc(ij); 

end
mu(:j)=(sl/s2);

end

s 1 =zeros(featuresize,featuresize);s3=0; 
for j=l:k 

b(:,:)=sigma(j,:,:); 
for i=l :datasize

sl=sl+pc(ij)*(ds(:,i)-mu(:j))*(ds(:,i)-mu(:j))';
s3=s3+pc(ij);

end
sigma(j,:,:)=sl/s3;

end

changes=0 ; 
for i=l:k

changes=changes+abs(mu( 1 ,i)-muold( 1 ,i)); 
end; 

end

label=zeros(datasize, 1); 
for i=l :datasize

[max,idx]=max(pc(i,:));
label(i)=idx;

end

9 9

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2. The £-Means Algorithm Implementation

function g=omnikMeans(ds, k);
% use ins to initial first, change to radius.

ins=reshape(ds( 1,:),121,1); 
rad=reshape(ds(2 ,:), 121,1);
[sorted,idx]=sort(rad);
[n,datasize]=size(ds);

%initialize 
Number=zeros(k, 1); 
means=zeros(k,l);
Label=zeros(datasize, 1);
Label=Label+l;

chunk=floor(datasize/k); 
for c=l:k 

for i=l:chunk
Label(idx(chunk*(c-1 )+i))=c; 

end 
end

for f=l:n 
for c=l:k 

submeans(f,c)=0 ; 
end 

end

for i=l:datasize 
Number(Label(i))=Number(Label(i))+1; 
for f=l:n

submeans(f,Label(i))=submeans(f,Label(i))+ds(f,i);
end

end
for i=l:n 

for c=l:c
submeans(i,c)=submeans(i,c)/Number(c);

end
end

% loop
bChange=999; 
while ( bChange>l) 

bChange=0; 
for i=l :datasize 

for j=l:k 
distance(j)=0 ; 
for f=l:n

distance(j)=distance(j)+(ds(f,i)-submeans(fj))A2 ;
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end
distance(j)=sqrt(distance(j));

end
[mini,new]=min(distance); 
if ( Label(i)~=new) 

old=Label(i);
Label(i)=new; 
for f=l :n

submeans(f,old)=(submeans(f,old)*Number(old)-ds(f,i))/(Number(old)-l);
submeans(f,new)=(submeans(f,new)*Number(new)+ds(f,i))/(Number(new)+l);

end
Number(old)=Number(old)-1;
Number(new)=Number(new)+1; 
bChange=bChange+1; 

end 
end 

end
g=Label;

3. The Fuzzy A:-Means Algorithm Implementation

function g=fkMeans(D, k); 
b=1.25;
ins=reshape(D, 121,1);
[sorted,idx]=sort(ins); 
[datasize,x]=size(ins);

%initialize 
Number=zeros(k, 1); 
means=zeros(k, 1); 
M=zeros(k,datasize);

chunk=floor(datasize/k); 
for c=l:k 

for i=l:chunk 
M(c,idx(chunk*(c-l)+i))=l; 

end 
end

for i=l :datasize 
for c=l:k 

if M(c,i)==l
means(c)=means(c)+ins(i); 
Number(c)=Number(c)+1; 

end 
end 

end
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for c=l:c 
means(c)=means(c)/Number(c); 

end

% loop
bChange=999; 
while ( bChange>0.2) 

bChange=0; 
for j=l :datasize 

sum=0 ; 
for i=l:k 

d(i)=(ins(j)-means(i))A2 ; 
item(i)=( 1 /d(i))A( l/(b-1)); 
sum=sum+item(i); 

end
for i=l:k 

M(i,j)=item(i)/sum; 
end 

end

for i=l:k 
sum 1=0 ; 
sum2=0 ; 
for j=l:datasize 

sum 1 =suml +M(i j)Ab*ins(j); 
sum2=sum2+M(ij)Ab; 

end
newMean=suml/sum2; 
bChange=bChange+abs(newMean-means(i)); 
means(i)=sum 1 /sum2 ; 

end 
end

%retum label with the largest probability 
for i=l :datasize 

for j=l:k 
b(j)=M(j,i); 

end
[a,idx]=max(b);
label(i)=idx;

end
g=label;

4. The SKMIS Implementation

clear all;
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%the parameters of the image 
grid_rows_in_array = 4; 
grid_cols_in_array - 4;

rows_in_grid= 19; 
cols_in_grid=21 ;

spot_number=grid_rows_in_array*grid_cols_in_array*rows_in_grid*cols_in_grid;

width=ll;
height=ll;

half_w=(width-l)/2 ;
half_h=(height-l)/2 ;

%load the preprocessed spot center coordinates
load D:\Lily\WindsorStudy\RA\apo-data\images\try2\ac. 1 .center;
%read in the image file
img=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clGtif.marrayVtif);
ima=double(img);
imr=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clR.tif.marrayVtif);
imb=double(imr);
iml=ima+imb;
start_x=ac( 1,2)-half_w;
start_y=ac( 1,1 )-half_h;
imnew=zeros(round(rows_in_grid*height),round(cols_in_grid*width));
imnew2=zeros(round(rows_in_grid*height),round(cols_in_grid*width));
size_imnew=size(imnew);
subgrid=im 1 (round(start_y):round(start_y)+size_imnew( 1 ),round(start_x):round(start_x+size_i: 
new(2)));
[M,N]=size(subgrid);
edge=zeros(M,N);

%get the subgrid of the images 
start_x=ac( 1,2)-half_w; 
start_y=ac( 1,1 )-half_h;
imnew=zeros(round(rows_in_grid*height),round(cols_in_grid*width));
size_imnew=size(imnew);
suba=ima(round(start_y):round(start_y)+size_imnew( 1 )- 
1 ,round(start_x) :round(start_x+size_imnew(2)-1)); 
subb=imb(round(start_y):round(start_y)+size_imnew( 1 )- 
1 ,roimd(start_x) :round(start_x+size_imnew(2)-1));

countfg=zeros( 19*21,1); 
countbg=zeros( 19*21,1); 
sumfgg=zeros( 19*21,1); 
sumbgg=zeros(l 9*21,1); 
sumfgr=zeros( 19*21,1); 
sumbgr=zeros( 19*21,1);
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for spot=l:21*19 
spot
%get the spot grid
spa2=suba(round(ac(spot, 1 )-half_w-start_y+1):... 

round(ac(spot, 1 )+half_w-start_y+1),... 
round(ac(spot,2)-half_h-start_x+1):... 
round(ac(spot,2)+half_h-start_x+1)); 

spb2=subb(round(ac(spot, 1 )-half_w-start_y+1):... 
round(ac(spot, 1 )+half_w-start_y+1),... 
round(ac(spot,2)-half_h-start_x+1):... 
round(ac(spot,2)+half_h-start_x+1));

%square root of the intensity
spa=sqrt(spa2);
spb=sqrt(spb2);

%maximum value of the two channels 
for i= l: 11 

for j= 1:11
ims(isj)=max(spa(ij),spb(ij));

end
end
ins=reshape(ims, 121,1);
[sorted,idx]=sort(ins);

%initialize
NumberFore=0;
NumberBack=0;
MinPixel=sorted( 1);
MaxPixel=sorted( 121);
MeanFore=0;
MeanBack=0; 
for i= 1:121

if abs(ins(i)-MinPixel)>abs(ins(i)-MaxPixel) 
label(i)—f ;
NumberFore=NumberFore+l;
MeanF ore=MeanFore+ins(i); 

else
label(i)—b’;
NumberBack=NumberBack+1;
MeanBack=MeanBack+ins(i);

end
end
MeanFore=MeanFore/NumberFore;
MeanBack=MeanBack/NumberBack;

%loop
bChange=999; 
while ( bChange>4) 

bChange=0;
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for i= 1:121
if ( label(i)=='b' & NumberBack * abs(ins(i) - MeanBack) / (NumberBack-1) > NumberFore 

* abs(ins(i) - MeanFore) / (NumberFore+1)) 
label(i)='f;
MeanFore=(MeanFore*NumberFore+ins(i))/(NumberFore+l); 
MeanBack=(MeanBack*NumberBack-ins(i))/(NumberBack-1); 
NumberFore=NumberFore+l;
NumberBack=NumberBack-1; 
bChange=bChange+1;

elseif ( label(i)=='f & NumberFore * abs(ins(i) - MeanFore) / (NumberFore-1) > 
NumberBack * abs(ins(i) - MeanBack) / (NumberBack+1)) 

label(i)—b';
MeanFore=(MeanFore*NumberFore-ins(i))/(NumberFore-l); 
MeanBack=(MeanBack*NumberBack+ins(i))/(NumberBack+1);
NumberFore=NumberFore-l;
NumberBack=NumberBack+1; 
bChange=bChange+1; 

end 
end 

end

row=ceil(spot/cols_in_grid); 
col=rem(spot,cols_in_grid); 
if col== 0  

col=cols_in_grid; 
end

%show the binary labeled image 
for i= 1:11 

for j= l: 11 
if ( label((j-l)*l l+ i ) = 'f ) 

im3(ij)=255; 
else 

im3(ij)=0; 
end 

end 
end

%fmd the largest continuouse region, set the area as foreground 
%im4=findArea(im3); 
im4=im3; 
for i=l: 11 

for j= l: 11 
if (im4(ij)==255)

edge((row-l)*l l+i,(col-l)*l l+j)=255; 
countfg(spot)=countfg(spot)+1; 
sumfgg(spot)=sumfgg(spot)+spa2(ij); 
sumfgr(spot)=sumfgr(spot)+spb2(ij); 

else
edge((row-l)*l l+i,(col-l)*l l+j)=0 ; 
sumbgg(spot)=sumbgg(spot)+spa2(ij);
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sumbgr(spot)=sumbgr(spot)+spb2(ij);
end

end
end

countfg(spot); 
if countfg(spot)= =0  

meanfgg(spot)=0 ; 
meanfgr(spot)=0 ;
meanbgg(spot)=sumbgg(spot)/121; 
meanbgr(spot)=sumbgr(spot)/121; 

elseif countfg(spot) = 1 2 1  
meanfgg(spot)=sumfgg(spot)/countfg(spot); 
meanfgr(spot)=sumfgr(spot)/countfg(spot); 
meanbgg(spot)=0 ; 
meanbgr(spot)=0 ; 

else
meanfgg(spot)=sumfgg(spot)/countfg(spot); 
meanfgr(spot)=sumfgr(spot)/countfg(spot); 
meanbgg(spot)=sumbgg(spot)/( 121 -countfg(spot)); 
meanbgr(spot)=sumbgr(spot)/( 121 -countfg(spot)); 

end

% figure;imshow(uint8(ims*4));
% figure;imshow(uint8(im3)); 
end
means=zeros( 19*21,4); 
means(:, 1 )=meanfgg'; 
means(: ,2)=meanfgr'; 
means(:,3)=meanbgg'; 
means(:,4)=meanbgr';

save('intensity-wu-nn.txtVmeansV-ascii');
figure;imshow(uint8(edge));

% getedge2 0  return the edges which are the background pixels 
edge2=getedge2(edge)*255;

%newsubgrid( 1 :M, 1 :N, 1 )=edge+edge2;
%newsubgrid(l :M, 1 :N,2)=edge-edge2;
%newsubgrid( 1 :M, 1 :N,3)=edge-edge2; 
%figure,imshow(uint8(newsubgrid));

sum(countfg)
sum(meanfgg)
sum(meanfgr)
sum(meanbgg)
sum(meanbgr)
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5. The OKMIS Implementation

clear all;

%parameters 
grid_rows_in_array = 4 
grid_cols_in_array = 4

rows_in_grid=19
cols_in_grid=21

spot_number=grid_rows_in_array*grid_cols_in_array*rows_in_grid*cols_in_grid

width=ll;
height=ll;

half_w=(width- 1 )/2 ; 
half_h=(height- 1 )/2 ;

%read the image and spot centers from the file
load D:\Lily\WindsorStudy\RA\apo-data\images\try2\ac. 1 .center;

ima=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clGtif.marrayVtif);
ima=double(ima);
imb=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clR.tif.marray','tif);
imb=double(imb);
iml=ima+imb;

subgrid=0 ;
start_x0=ac(subgrid*rows_in_grid*cols_in_grid+l,2)-half_w;
start_yO=ac(subgrid*rows_in_grid*cols_in_grid+l,l)-half_h;
imnew=zeros(round(rows_in_grid*height),round(cols_in_grid*width));
size_imnew=size(imnew);
suba=ima(round(start_yO):round(start_yO)+size_imnew( 1 )- 
1 ,round(start_x0):roimd(start_x0+size_imnew(2)-1)); 
subb=imb(round(start_yO) :round(start_yO)+size_imnew( 1 )- 
1 ,roimd(start_x0):round(start_x0+size_imnew(2)-1));
subgrid=iml(round(start_yO):round(start_yO)+size_imnew(l),round(start_xO):round(start_xO+siz
e_imnew(2)));
subgrid2=sqrt(suba)+sqrt(subb);
figure;imshow(uint8(subgrid2));

countfg=zeros( 19*21,1); 
countbg=zeros( 19*21,1); 
sumfgg=zeros( 19*21,1); 
sumbgg=zeros( 19*21,1); 
sumfgr=zeros( 19*21,1); 
sumbgr=zeros( 19*21,1);

for spot=l:21*19
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spot
start_x 1 =ac(spot,2)-half_w; 
start_y 1 =ac(spot, 1 )-half_h;
im2=im 1 (round(ac(spot, 1 )-half_w) :round(ac(spot, 1 )+half_w),round(ac(spot,2)-half_h): 

round( ac(spot,2) +half_h)); 
spa2=suba(round(ac(spot, 1 )-half_w-start_yO+1):.. . 

round(ac(spot, 1 )+half_w-start_yQ+1),... 
round(ac(spot,2)-half_h-start_x0+1):.. . 
round(ac(spot,2)+half_h-start_x0+1)); 

spb2=subb(round(ac(spot, 1 )-half_w-start_yO+1):.. . 
round(ac(spot, 1 )+half_w-start_yO+1),... 
round(ac(spot,2)-half_h-start_x0+1):.. . 
round(ac(spot,2)+half_h-start_x0+1));

%square root of the intensity
spa=sqrt(spa2);
spb=sqrt(spb2);

%maximum value of the two channels 
for i=l: 11 

for j= l:ll
ims(ij)=spa(ij)+spb(ij);

end
end
start_x=ac( 1,2)-half_w; 
start_y=ac( 1,1 )-half_h;

a=round(ac(spot, 1 )-half_w); 
b=round(ac(spot,2)-half_h);

%xl intensity of the pixel 
xl=ims;

% mu 
Ti=0; 
mu=[0 ;0]; 
for i= l:ll 

for j= l:ll 
Ti=im2(i:j)+Ti; 
mu=+mu+[i;j]*im2(i,j); 

end 
end
mu=mu/(Ti);

% x2 radius
x2=zeros(width,height); 
for i= l:ll 

for j= l:ll 
x2(i j)=((i-mu( 1 ))A2+(j -mu(2)) A2); 

end
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end

%x3 mean of the surrounding pixels within <radius> range 
radius=l;
x3=zeros(width,height); 
for ii=l:width 

for jj=l:height 
k = 0 ; s=0 ; 
for i = 1 :width 

forj = 1 :height 
if abs(ii-i)+abs(jj-j) <= radius 

k = k+l; 
s = s+ims(i,j); 

end 
end 

end
x3(iijj)=s/k;

end
end

y 1 =reshape(x 1,1 ,width*height); 
y2=reshape(x2 ,1 ,width*height); 
y3=reshape(x3,1 ,width*height);

% scaling
[sorted 1 ,idx 1 ]=sort(y 1);
[sorted2 ,idx2 ]=sort(y2);
scale=(sorted2(121)-sorted2(l))/(sortedl(121)-sortedl(l))*0.9;
yl=yl*scale;

spot_dataset(l, 1 :width*height)=y 1; 
spot_dataset(2 ,1 :width*height)=y2 ;
%spot_dataset(3,1 :width*height)=y3;

% omnikMeans: dataset, k 
label=omnikMeans(spot_dataset, 3); 
for i= 1:11 

for j= l: 11
if ( label((j-l)*l l+ i ) = l ) 

im3(ij)=255; 
disp_im3(ij)=0; 

elseif ( label((j-l)*l l+i)==2 ) 
im3(ij)=0; 
disp_im3(ij)=255; 

else 
im3(ij)=0; 
disp_im3(i,j)=127; 

end 
end 

end
%figure;imshow(uint8(im3));
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%find the largest continuouse region, set the area as foreground 
%im4=findArea(im3);
%or not. 
im4=im3;
row=ceil(spot/cols_in_grid); 
col=rem(spot,cols_in_grid); 
if col=Q 

col=cols_in_grid; 
end

%display the result 
f=l;b=l;e=l; 
for i= 1:11 

for j= l:ll 
if ( im4(i,j)==255) 

ylf(f)=yl(a-iril+i); 
y2f(f)=y2((j-l)*l 1+i); 
edge((row-l)*l l+i,(col-l)*l l+j)=255; 
im3(ij)=65535; 
f=f+l;
countfg(spot)=countfg(spot)+l; 
sumfgg(spot)=sumfgg(spot)+spa2 (ij); 
sumfgr(spot)=sumfgr(spot)+spb2(ij); 

elseif ( label((j-l)*l l+ i)=2 | label(Q-l)*ll+i)=3 ) 
yle(e)=yl((j-l)*l 1+i); 
y2e(e)=y2((j-l)*l 1+i); 
edge((row-l)*l l+i,(col-l)*l l+j)=0 ; 
im3(ij)=0; 
b=b+l;
countbg(spot)=countbg(spot)+1; 
sumbgg(spot)=sumbgg(spot)+spa2(ij); 
sumbgr(spot)=sumbgr(spot)+spb2(ij); 

end 
end 

end

countfg(spot);
meanfgg(spot)=sumfgg(spot)/countfg(spot);
meanfgr(spot)=sumfgr(spot)/countfg(spot);
meanbgg(spot)=sumbgg(spot)/countbg(spot);
meanbgr(spot)=sumbgr(spot)/countbg(spot);

start_x=start_x 1 -start_xO; 
start_y=start_y 1 -start_y0 ;
subgrid(round(start_y+1 ):round(start_y+11 ),round(start_x+1 ):round(start_x+11 ))=im3; 

end

%figure; imshow(uintl6(subgrid* 10)); 
figure;imshow(uint8(edge));
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means=zeros(19*21,4); 
means(:, 1 )=meanfgg'; 
means(: ,2)=meanfgr'; 
means(:,3)=meanbgg'; 
means(:,4)=meanbgr';

saveCintensity3-okmis-nn.txt','means','-ascii');
sum(countfg)
sum(meanfgg)
sum(meanfgr)
sum(meanbgg)
sum(meanbgr)

6. The LCR Implementation

function g=findArea(im3)
k=l;
%initial the Mark metrix 
Mark=zeros( 11,11); 
for i=l:l 1 

for j= l:ll
%if the pixel is foreground, and it is not marked, mark it with k
%paint is recursive
if ( im3(ij)=255 & Mark(ij)==0)

Mark=paint(im3 ,Mark,i j  ,k); 
k=k+l; 

end 
end 

end

%find the largest area 
labels=zeros(k,l); 
for i= l:ll 

for j= l:ll 
if Mark(ij)~=0 

labels(Mark(i j))=labels(Mark(i j))+1; 
end 

end 
end
[a,b]=max(labels);

%set the area = 255, other = 0 
for i= l:ll 

for j= l: 11 
if Mark(ij)=b 

Mark(ij)=255; 
else 

Mark(ij)=0;
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end
end

end

g=Mark;

7. The Paint Implementation

function g=paint(im,Mark,x)y,k)

%paint the surrounding 4 pixels if they are not marked 
if im(x,y)==255 

Mark(x,y)=k;
if (y>l &im(x,y-l)==255 & Mark(x,y-1)==0) 

Mark=paint(im,Mark,x,y-1 ,k); 
end
if (y<l 1 &im(x,y+l)==255 & Mark(x,y+1)==0) 

Mark=paint(im,Mark,x,y+1 ,k); 
end
if (x>l &im(x-l,y)==255 & Mark(x-l,y)=0) 

Mark=paint(im,Mark,x-1 ,y,k); 
end
if (x<l 1 &im(x+l,y)=255 & Mark(x+l,y)==0) 

Mark=paint(im,Mark,x+1 ,y,k); 
end 

end
g=Mark;

8. The Adaptive Circle (Laplacian) Implementation

clear all;

grid_rows_in_array = 4 
grid_cols_in_array = 4

rows_in_grid=19
cols_in_grid=21

spot_number=grid_rows_in_array*grid_cols_in_array*rows_in_grid*cols_in_grid;

width=ll;
height=ll;
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half_w=(width- 1 )/2 ; 
half_h=(height-l)/2 ;

img=imread('D:\Lily\WindsorStudy\RA\apo-data\images\l 230c 1 G.tif.marray','tif);
imr=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clR.tif.marray','tif);
load D:\Lily\WindsorStudy\RA\apo-data\images\try2\ac. 1 .center
img=double(img);
imr=double(imr);
size_im=size(imr);
iml=img+imr;

grid=0 ;

ac(grid*rows_in_grid*cols_in_grid+1,1); 
ac(grid*rows_in_grid*cols_in_grid+1,2); 
start_x=ac(grid*rows_in_grid*cols_in_grid+1,2)-half_w; 
start_y=ac(grid*rows_in_grid*cols_in_grid+1,1 )-half_h; 
imnew=zeros(round(rows_in_grid*height),round(cols_in_grid*width)); 
imnew2=zeros(round(rows_in_grid*height),round(cols_in_grid*width)); 
size_imnew=size(imnew);
subgrid=iml(round(start_y):round(start_y)+size_imnew(l),round(start_x):round(start_x+size_im
new(2)));
[a,b]=size(subgrid);
imnew2=zeros(a,b);

%smooth the picture 
k=[l/9,1/9,1/9; 1/9,1/9,1/9; 1/9,1/9,1/9] 
im2=imfilter(double(subgrid),k,'replicate'); 
im2=imfilter(double(im2),k,'replicate');

%apply laplacian of gaucian 
k2=fspecial('log',[5,5],0.5);

im2=imfilter(double(im2),k2 ,'replicate');

%find zero-crossings
%may have double-edge problem
[M,N]=size(subgrid);
edge=zeros(M,N);
edge2=zeros(M,N);
subgrid2=sqrt(subgrid);
subgridnew=zeros(M,N);

for i=l:M 
for j=l:N 

count=0 ;
if i-l> 0  & im2(ij)*im2(i-l j )<0  

count =count+l; 
end
if i+l<=M & im2(ij)*im2(i+l J)<0
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count =count+l; 
end
if j+1 <= N & im2(ij)*im2(ij+l)<0 

count =count+l; 
end
if j- l>0  & im2(i,j)*im2(i,j-l)<0  

count =count+l; 
end
if j- l>0  & i-l>0  & im2(i,j)*im2(i-l j - l )<0  

count =count+l; 
end
if j+1 <= N & i-l>0 & im2(ij)*im2(i-l j+1 )<0 

count =count+l; 
end
if i+l<=M & j-l>0 & im2(ij)*im2(i+l j-l)<0 

count =count+l; 
end
if j+1 <=N & i+l<=M & im2(ij)*im2(i+l j+l)<0 

count =count+l; 
end
if im2 (ij)==0  

count = count+1; 
end
%
if count >= 4 

edge(ij)=l; 
else

edge(ij)=0 ;
end

end
end

figure;imshow(uint 16(im2* 10)); 
figure;imshow(uint8(edge*256));

edge2=zeros(a,b); 
for spot=l:21*19 

spot;
radius=0 ;n=0 ; 
clear r; 
for i= l: width 

for j=l:height
co_y=round(ac(spot, 1 )-start_y)-half_h+j; 
co_x=round(ac(spot,2)-start_x)-half_w+i; 
if (edge(co_y,co_x)==l) 

n=n+l;
r(n)=sqrt((i-5.5)A2+(j-5.5)A2); 

end 
end 

end
%radius=mean(r)
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radius=median(r);

int 1 =im 1 (round(ac(spot, 1 )-halfw):round(ac(spot, 1 )+half_w),round(ac(spot,2)- 
halfJi):round(ac(spot,2)+half_h));

Ti=0; 
mu=[0 ;0]; 
for i=l: 11 

for j= l: 11 
Ti=intl(ij)+Ti; 
mu=mu+[i;j]*intl (i j); 

end 
end
mu=mu/(Ti);

starty=round(ac(spot, 1 )-start_y-half_w); 
startx=round(ac(spot,2)-start_x-half_h);
for i= l: width 

for j=l:height
dd=sqrt((i-mu( 1 ))A2+(j -mu(2))A2); 
co_y=starty+i; 
co_x=startx+j; 
if abs(dd-radius)<0.5 

edge2(co_y,co_x)= 1; 
else

edge2(co_y,co_x)=0 ;
end

if dd-radius < 0
subgridnew(co_y,co_x)=255; 

else
subgridnew(co_y,co_x)=0 ;

end

% edge2((spot-l)*width+i,(spot-l)*height+j)=edge2(ij)*65536; 
edge2(co_y,co_x)=edge2(co_y,co_x)*65536; 

end 
end 

end

imnew2=subgrid;

newsubgrid_display( 1 :a, 1 :b, 1 )=subgrid*4+edge2; 
newsubgrid_display( 1 :a, 1 :b,2)=(subgrid-edge2)*4; 
newsubgrid_display( 1 :a, 1 :b,3)=(subgrid-edge2)*4; 
figure, imshow(uint 16(newsubgrid_display));

% the figure below is for comparison with other method.
% the figure above shows better result than the figure below.
% getedge2() return the edges which are the background pixels 
edge2=getedge2(subgridnew)*255;
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newsubgrid( 1 :M, 1 :N, 1 )=subgrid2+edge2; 
newsubgrid( 1 :M, 1 :N,2)=subgrid2-edge2; 
newsubgrid( 1 :M, 1 :N,3)=subgrid2-edge2; 
figure, imshow(uint8(newsubgrid));

9. The Adaptive Circle (Threshold) Implementation

clear all;

grid_rows_in_array = 4;
grid_cols_in_array = 4;
rows_in_grid=19;
cols_in_grid=21;
width=ll;
height=ll;
spot_number=grid_rows_in_array*grid_cols_in_array*rows_in_grid*cols_in_grid;
grid=0 ;

half_w=(width- 1 )/2 ; 
half_h=(height-l)/2 ;

load D:\Lily\WindsorStudy\RA\apo-data\images\try2\ac. 1 .center 
imnew=zeros(round(rows_in_grid*height),round(cols_in_grid*width)); 
imnew2=zeros(round(rows_in_grid*height),round(cols_in_grid*width)); 
size_imnew=size(imnew);
start_x0=ac(grid*rows_in_grid*cols_in_grid+l,2)-half_w; 
start_yO=ac(grid*rows_in_grid*cols_in_grid+1,1 )-half_h;

ima=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clGtif.marray','tif);
ima=double(ima);
imb=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clR.tif.marray','tif);
imb=double(imb);
iml=ima+imb;

iml=ima+imb;
subgrid=iml(round(start_yO):round(start_yO)+size_imnew(l),round(start_xO):round(start_xO+siz
e_imnew(2)));
subgridnew=subgrid;
subgrid2=subgrid;
countfg=zeros(19*21,1);
valid_count_fg=zeros( 19*21,1);
countbg=zeros( 19*21,1);
sumfgg=zeros(l 9*21,1);
sumbgg=zeros( 19*21,1);
sumfgr=zeros( 19*21,1);
sumbgr=zeros( 19*21,1);
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meanfgg=zeros(l, 19*21); 
meanfgr=zeros( 1,19*21); 
meanbgg=zeros( 1,19*21); 
meanbgr=zeros( 1,19*21); 
weak = 0 ;

[M,N]=size(subgrid);
edge2=zeros(M,N);

forspot=l:21*19

spot
im2=im 1 (round(ac(spot, 1 )-half_w):round(ac(spot, 1 )+half_w),round(ac(spot,2)- 

half_h):round(ac(spot,2)+half_h));
img=ima(round(ac(spot, 1 )-half_w):round(ac(spot, l )+half_w),round(ac(spot,2)-

half_h):round(ac(spot,2)+half_h));
start_x=ac(spot,2)-half_w; 
start_y=ac(spot, 1 )-half_h; 
start_x=round(ac(spot,2)-half_w-start_x0); 
start_y=round(ac(spot,l)-half_h-start_yO);

dl=im2 ;

%calculate mu, the center mean 
Ti=0; 
mu=[0 ;0]; 
for i= 1:11 

for j= l: 11 
Ti=dl(ij)+Ti; 
mu=mu+[iy]*dl(i,j); 

end 
end
mu=mu/(Ti);

%figure;plot(y 1 ,y2 ,'-rs');
%flgure;plot(round(yl),round(y2),'—rs');

d2=reshape(im2 ,121,1);
[sortedi,idx]=sort(d2);
y(l)=im2(l,l);
y(2)=im2(l,ll);
y(3)=im2(ll,l);
y(4)=im2( 11,11);
y(5)=im2(6,l);
y(6)=im2(6 ,l 1);
y(7)=im2(l,6);
y(8)=im2( ll ,6);

flag=l;
xy(l:8)=y;
MWT=0;
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while (MWT<90) 
if flag+7>size(sortedi) 

threhd=65535; 
break; 

end
x(l :8)=sortedi(flag:flag+7); 
xy(9:16)=x;
[xy2 ,idx]=sort(xy);
MWT=0; 
for i= 1:16 

if idx(i)>8  
MWT=MWT+i; 

end 
end
flag=flag+l;

end
threhd=min(x);

for i= l:ll 
for j= l:ll

radius2(i j)=sqrt((i-mu(l, l))A2+(j-mu(2 ,1))A2); 
end 

end

radius=reshape(radius2 ,121,1); 
[sortedr,idxr]=sort(radius); 
ins = sort(im2);

%improvement. 
rings=zeros(121,l); 
countOn = 0; 
countOff = 0; 
i=l;
stop='n';
while (stop=='n') 

countOn = 0; 
countOff = 0; 
for j=i:i+2

if ( j <= 121)
a = d2 (idxr(j)); 
if a> threhd 

countOn=countOn+1; 
else

countOff=countOff+1; 
end 

end 
end
if i>= 121 

stop='a'; 
elseif ( countOn<countOff) 

stop='y';
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else
i=i+3;

end
end

if stop=='y' 
count=i; 

else
count=121;

end
radiusFg=sortedr(count);

if (count >= 114) 
weak = weak+1; 

end

%pixels within the radius are foreground 
starty=round(ac(spot, 1 )-start_yO-half_w); 
startx=round(ac(spot,2)-start_x0-half_h); 
dispSpot=zeros(l 1,11); 
for i= l:ll 

for j= l:ll 
if ( radius2(i j)<=radiusFg) 

dispSpot(ij)=255; 
countfg(spot)=countfg(spot)+1; 
sumfgg(spot)=sumfgg(spot)+img(ij); 
sumfgr(spot)=sumfgr(spot)+img(ij); 

else
sumbgg(spot)=sumbgg(spot)+img(ij);
sumbgr(spot)=sumbgr(spot)+img(ij);

end
end

end
%figure;imshow(uint8(dispSpot));

if count <114 
valid_count_fg(spot) = countfg(spot); 
if countfg(spot)= =0  

meanfgg(spot)=0 ; 
meanfgr(spot)=0 ;
meanbgg(spot)=sumbgg(spot)/121; 
meanbgr(spot)=sumbgr(spot)/121; 

elseif countfg(spot)==121
meanfgg(spot)=sumfgg(spot)/countfg(spot);
meanfgr(spot)=sumfgr(spot)/countfg(spot);
meanbgg(spot)=0 ;
meanbgr(spot)=0 ;

else
meanfgg(spot)=sumfgg(spot)/countfg(spot); 
meanfgr(spot)=sumfgr(spot)/countfg(spot); 
meanbgg(spot)=sumbgg(spot)/( 121 -countfg(spot));
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meanbgr(spot)=sumbgr(spot)/( 121 -countfg(spot)); 
end 

end
row=ceil(spot/cols_in_grid); 
col=rem(spot,cols_in_grid); 
if col== 0  

col=cols_in_grid; 
end
subgridnew(start_y+l :start_y+l l,start_x+l :start_x+l l)=dispSpot; 

end
means=zeros(l 9*21,4); 
means(:,l)=meanfgg'; 
means(: ,2)=meanfgr'; 
means(:,3)=meanbgg'; 
means(:,4)=meanbgr'; 
means(: ,5)=valid_count_fg;

save('intensity-adpcir.txtVmeansV-ascii');

% getedge2() return the edges which are the background pixels 
edge2=getedge2(subgridnew)*65535;

newsubgrid(l :M, 1 :N, 1 )=subgrid2*3+edge2; 
newsubgrid( 1 :M, 1 :N,2)=(subgrid2-edge2)*3; 
newsubgrid(l :M, 1 :N,3)=(subgrid2-edge2)*3;
% figure; imshow(uintl6(subgrid*8));

% figure; imshow(uint8(subgridnew));
figure, imshow(uint 16(newsubgrid));
sum(countfg)/(399-weak)
sum(meanfgg)/(399-weak)
sum(meanfgr)/(399-weak)
sum(meanbgg)/(399-weak)
sum(meanbgr)/(399-weak)
weak
sum(valid_count_fg)/(399-weak)

10. The Adaptive Ellipse Method Implementation

clear all;

%parameter of the image files 
grid_rows_in_array = 4; 
grid_cols_in_array = 4; 
rows_in_grid=19; 
cols_in_grid=21 ;
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width= 11; 
height= 11;
spot_number=grid_rows_in_array*grid_cols_in_array*rows_in_grid*cols_in_grid;
gnd=0 ;

half_w=(width- 1 )/2 ; 
half_h=(height- 1 )/2 ;

%read from the image files and parameter file
load D:\Lily\WindsorStudy\RA\apo-data\images\try2\ac. 1 .center
ima=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clGtif.marray','tif);
ima=double(ima);
imb=imread('D:\Lily\WindsorStudy\RA\apo-data\images\1230clR.tif.marrayVtif);
imb=double(imb);
iml=ima+imb;

imnew=zeros(round(rows_in__grid*height),round(cols_in_grid*width)); 
imnew2=zeros(round(rows_m_grid*height),round(cols_in_grid*width)); 
size_imnew=size(imnew);
start_xO=ac(grid*rows_in_grid*cols_in_grid+1,2)-half_w; 
start_yO=ac(grid*rows_in_grid*cols_in_grid+1,1 )-half_h;

% using uintl6 seems generating better result than using uint8 
% ima=sqrt(ima);
% imb=sqrt(imb); 
iml=ima+imb;
subgrid=iml(round(start_yO):round(start_yO)+size_imnew(l),round(start_xO):round(start_xO+siz
e_imnew(2)));
[a,b]=size(subgrid);
subgridnew=zeros(a,b);
subgrid2=subgrid;

countfg=zeros(19*21,l); 
valid_countfg=zeros( 19*21,1); 
countbg=zeros( 19*21,1); 
sumfgg=zeros( 19*21,1); 
sumbgg=zeros(l 9*21,1); 
sumfgr=zeros( 19*21,1); 
sumbgr=zeros( 19*21,1); 
meanfgg=zeros(l, 19*21); 
meanfgr=zeros( 1,19*21); 
meanbgg=zeros( 1,19*21); 
meanbgr=zeros( 1,19*21); 
weak = 0 ;

[M,N]=size(subgrid);
edge2=zeros(M,N);

for spot=l:21*19

spot
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im2=im 1 (round(ac(spot, 1 )-half_w):round(ac(spot, 1 )+half_w),round(ac(spot,2)- 
half_h):round(ac(spot,2)+half_h));

img=ima(round(ac(spot, 1 )-half_w):round(ac(spot, 1 )+half_w),round(ac(spot,2)- 
half_h):round(ac(spot,2)+half_h)); 

im3=sqrt(im2); 
start_x=ac(spot,2)-half_w; 
start_y=ac(spot, 1 )-half_h; 
start_x=round(ac(spot,2)-half_w-start_x0); 
start_y=round(ac(spot, 1 )-half_h-start_yO);

dl=im2 ;

%calculate mu, the center mean 
Ti=Q; 
mu=[0 ;0]; 
for i= 1:11 

for j= l:ll 
Ti=dl(ij)+Ti; 
mu=mu+[i;j]*dl(i,j); 

end 
end
mu=mu/(Ti);

%calculate sigma, the covariance matrix 
sigma=zeros(2 ,2); 
for i= 1:11 

for j= l: 11 
%ellipse -> round 
xl l=[i;j]-mu;
sigma=sigma+xl l*xl l'*dl(ij); 

end 
end
sigma=sigma/(Ti);

[U,S,V]=svd(sigma);
%equal
S;
V'*sigma*V;
V*sigma*V';

%equal
eye(2);
S A(-1/2) * S* SA(-1/2);

%transform 
for i= 1:11 

for j= l: 11
a=SA(-l/2)*V'*[i;j]; 
yl(ij)=a(l,l); 
y2(i j)=a(2 ,1); 

end
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end

%varify, the result of method 1 should be same as that of method 2 
%calculate mu, the center mean in transformed space 
%method 1 
Ti=0;
mu2=[0 ;0]; 
for i= l:ll 

for j= l:ll 
Ti=dl(ij>Ti;
mu2=mu2+[y 1 (i j);y2(i j)]*dl (i j); 

end 
end
mu2=mu2/(Ti);
%method 2 
mu2=SA(-1 /2)*V'*mu;

%varify, the result of method 1 should be same as that of method 2 , and should be identity matrix 
%calculate sigma, the covariance matrix 
%method 1 
sigma2=zeros(2 ,2); 
for i= l:ll 

for j= l: 11 
%ellipse -> round 
xll=[yl(ij);y2(ij)]-mu2 ; 
sigma2=sigma2+xl l*xl l'*dl(ij); 

end 
end
sigma2=sigma2/(T i);
%method 2
sigma2=SA(- l/2)*V'*sigma;

%figure;plot(y 1 ,y2 ,’-rs');
%figure;plot(round(y 1 ),round(y2),'~rs');

d2=reshape(im2 ,121,1);
[sortedi,idx]=sort(d2);

%improvement from
%y( 1:8)=d2( 1:8);
y(l)=im2 (l,l);
y(2)=im2(l,ll);
y(3)=im2(ll,l);
y(4)=im2( 11,11);
y(5)=im2(6,l);
y(6)=im2(6 ,l 1);
y(7)=im2(l,6);
y(8)=im2( l l ,6);

%calculate the threshold using Mann-Whitney test, set mwt = 90. 
flag=l;
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xy(l:8)=y;
MWT=0; 
while (MWT<90) 

if flag+7>size(sortedi) 
threhd=65535; 
break; 

end
x(l :8)=sortedi(flag:flag+7); 
xy(9:16)=x;
[xy2 ,idx]=sort(xy);
MWT=0; 
for i= 1:16 

if idx(i)>8 
MWT=MWT+i; 

end 
end
flag=flag+l;

end
threhd=min(x);

%calculate the distance from each spot to the center 
for i= 1:11 

for j=1:11
radius2 (i j)=sqrt((y 1 (ij)-mu2( l , 1 ))A2+(y2(ij)-mu2(2 ,1 ))A2); 

end 
end

%sort the distance 
radius=reshape(radius2 ,121,1);
[sortedr,idxr]=sort(radius); 
ins = sort(d2);

%find the radius that define the foreground region
rings=zeros(121,l);
countOn = 0;
countOff = 0;
i—i;
stop='n';
while (stop=='n') 

countOn = 0; 
countOff = 0; 
for j=i:i+2 

if (j<=121) 
a = d2(idxr(j)); 
if a> threhd

countOn=countOn+1; 
else

countOff=countOff+1; 
end 

end 
end
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if i>=121 
stop-a'; 

elseif ( countOn<countOff)
stop-y';

else
i=i+3; % we can try i=i+l; 

end 
end

if stop=-y' 
count=i; 

else 
count=121; 

end
radiusFg=sortedr(count);

if ( count >=114) 
weak = weak +1; 

end

%pixels within the radius are foreground 
starty=round(ac(spot, 1 )-start_yO-half_w); 
startx=round(ac(spot,2)-start_x0-half_h); 
dispSpot=zeros( 11,11); 
for i= l:ll 

for j= l:ll 
if ( radius2(iJ)<=radiusFg ) 

dispSpot(ij)=255; 
countfg(spot)=countfg(spot)+1; 
sumfgg(spot)=sumfgg(spot)+img(ij); 
sumfgr(spot)=sumfgr(spot)+img(ij); 

else
sumbgg(spot)=sumbgg(spot)+img(ij);
sumbgr(spot)=sumbgr(spot)+img(ij);

end
end

end
%figure;imshow(uint8(dispSpot));

%statistics 
if countfg(spot)= =0  

meanfgg(spot)=0 ; 
meanfgr(spot)=0 ;
meanbgg(spot)=sumbgg(spot)/l 21 ; 
meanbgr(spot)=sumbgr(spot)/121; 

elseif countfg(spot) = 1 2 1  
meanfgg(spot)=sumfgg(spot)/countfg(spot); 
meanfgr(spot)=sumfgr(spot)/countfg(spot); 
meanbgg(spot)=0; 
meanbgr(spot)=0 ; 

else
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meanfgg(spot)=sumfgg(spot)/countfg(spot); 
meanfgr(spot)=sumfgr(spot)/countfg(spot); 
meanbgg(spot)=sumbgg(spot)/( 121 -countfg(spot)); 
meanbgr(spot)=sumbgr(spot)/( 121 -countfg(spot)); 

end

end
row=ceil(spot/cols_in_grid); 
col=rem(spot,cols_in_grid); 
if col== 0  

col=cols_in_grid; 
end
subgridnew(start_y+l :start_y+l l,start_x+l :start_x+l l)=dispSpot; 

end
means=zeros(19*21,4);
means(:, 1 )=meanfgg';
means(: ,2)=meanfgr';
means(:,3)=meanbgg';
means(:,4)=meanbgr';
means(:,5)=valid_countfg;
save('intensity-adpelp.txtVnieansV-ascii');

% getedge2 0  return the edges which are the background pixels 
edge2=getedge2(subgridnew)*65535;
% newsubgrid(l :M, 1 :N, I)=subgrid2*3+edge2;
% newsubgrid(l:M,l :N,2)=(subgrid2-edge2)*3;
% newsubgrid(l :M,1 :N,3)=(subgrid2-edge2)*3;
% figure; imshow(uintl6(subgrid*4)); 
figure; imshow(uint8(subgridnew));

% figure,imshow(uint 16(newsubgrid));
sum(countfg)/(399-weak)
sum(meanfgg)/(399-weak)
sum(meanfgr)/(399-weak)
sum(meanbgg)/(399-weak)
sum(meanbgr)/(399-weak)
sum(valid_countfg)/(399-weak)
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