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Abstract

The actin cytoskeleton functions within processes such as cell extension, 

migration, and neurogenesis; yet the mechanisms of actin regulation are not completely 

understood. WD repeat proteins (WDR1) have recently been shown to interact with actin 

and regulate cortical actin dynamics through interactions with cofilin in a number of 

species. However studies on mammalian WDR1 have not been reported. Further studies 

in chick systems have also indicated several cofilin-independent functions of WDR1 

within cytokinesis and cell migration.

We investigated the human homologue of yeast WDR1 and identified the 

expression of two isoforms, a full length 60 kDa protein and an N-terminal truncated 50 

kDa protein. Analysis of WDR1 expression in transformed and non-transformed cell lines 

indicated that the two isoforms were differentially expressed. Sequence analysis revealed 

the WD motifs were homologous to kelch motifs found within Drosophila kelch. Kelch 

containing proteins are believed to mediate protein-protein interactions. Protein 

interaction experiments demonstrated WDR1 bound actin and formed hetero-multimeric 

complexes; however no interaction with cofilin was observed. Localization studies 

showed WDR1 localized to actin filaments (similar to vinculin) and to areas undergoing 

actin rearrangement with cofilin and CAP1. Interestingly, WDR1 was shown to remain 

attached to glass coverslips as part of a WDR1 aggregated complex (WAC) after trypsin 

mediated cell detachment. Latranculin A and cytochalasin D treatments indicated WDR1 

may stabilize actin filaments during depolymerizing events.
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Therefore, these results have provided an initial characterization of the important 

role of hWDRl within the critical cellular processes of attachment and migration, and 

have provided experimental avenues for future pursuit.

iv
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Chapter 1

Introduction

The eukaryotic cytoskeleton is responsible for initiating and affecting many 

important cellular processes such as cell division, adhesion, cell migration, endocytosis/ 

exocytosis, neurogenesis, cell morphology and vesicle transport (Cooper, 2000). Loss of 

cytoskeietal regulation occurs in such prevalent diseases as cancer, Alzheimer’s disease, 

and heart disease, therefore understanding the complex mechanisms regulating these 

processes is critical for the progress of both cellular biology and the production of 

improved medical therapies. The cytoskeleton is comprised of three major filament types; 

microfilaments, approximately 7 nm in diameter consist primarily of polymerized actin 

monomers; microtubules which are the thickest filaments (approximately 25 nm 

diameter) composed of mainly tubulin isofoims and intermediate filaments which unlike 

the previous two classes are comprised of a large variety of protein types (e.g. keratin and 

lamin) (Cooper, 2000). Each filament type performs discrete functions within the cell; 

however filament types are able to function synergistically to orchestrate complex 

cellular behaviours.

Our current understanding of the many proteins regulating the function and 

integration of cytoskeietal filaments is not yet complete, but is essential for the design of 

effective targeting of many prevalent diseases of the neurological, circulatory, digestive, 

and muscular systems. The focus of this thesis is to provide further insight into proteins 

regulating the actin cytoskeleton through the characterization of a recently identified

1
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mammalian protein belonging to the WDR1 family of proteins, which are known to effect 

actin (Konzok et al., 1999; Mohri and Ono, 2003; Okada et al, 1999; Rodal et al, 1999). 

Actin microfilaments are thin flexible fibers composed of polymerized actin monomer 

proteins (filamentous or F-actin). F-actin can be ordered into complex structures of dense 

bundles and loose three-dimensional actin mesh-works consisting of additional proteins, 

such as myosin, which each participate to provide a means for cellular motility, cell 

extension/ neurogenesis, cytokinesis, cell surface tension and dynamic membrane 

functions (Hamburg et al., 1999). Microtubules differ from microfilaments in that they 

are hollow cylindrical rods of considerable diameter composed primarily of alpha and 

beta tubulin proteins which function to regulate cell shape, various cell movements, 

neurogenesis, intracellular organelle transport, and chromosome separation during 

mitosis (Goode et al., 2000). Intermediate filaments are distinct from the previous two 

classes of filaments in several ways, the first being their proteomic composition, which is 

highly variable depending on both their location and function (Pollard & Eamshaw, 

2002). In addition, these filaments are not directly involved in cell motility or migration 

(Cooper, 2000). Intermediate filaments are comprised of intertwined protofilaments 

consisting of anti-parallel protein dimers which provide structural support to the cell 

through the provision of a scaffold to which organelle structures are able to integrate with 

dynamic cytoskeleton components (Pollard & Eamshaw, 2002).

Actin

The existence of actin was initially hypothesized in 1904 and first identified by 

Straub (1942) as a contractile element with myosin (Cooper, 2000). It has since been 

shown to form homogenous microfilament fibers conserved within all eukaryotic cells

2

permission of the copyright owner. Further reproduction prohibited without permission.



(non-muscle actin) (Bamburg, 1999). Actin is one of the most abundant cytoskeietal 

proteins, typically accounting for 5- 20% of total cellular protein (Cooper, 2000). Actin is 

highly conserved across eukaryotic vertebrate and non-vertebrate organisms such as 

yeast, slime mold, worm, insect, frog and mammal and is predicted to associate with >60 

binding proteins in higher eukaryotes (Cooper, 2000). The genome of Saccharomyces 

cerevisiae encodes one actin protein while the human genome encodes a total of six actin 

proteins with only two isoforms expressed within a tissue type (Kedes et al., 1985). The 

four muscle isoforms include a-cardiac, a-skeletal (both located within the sacromeric 

muscles of the skeletal and cardiac systems), a, y (both expressed within smooth muscle), 

(3 and y isoforms (both unique to non-muscle cells including immune cells, epithelial 

cells, and neural cells) (Kedes et al., 1985). This reflects a correlation between the 

relative complex capabilities of cellular function with the presence of a more complex 

actin cytoskeleton. Additionally, actin is able to interact with several other proteins such 

as fimbrin, tropomyosin, and myosin to expand its functional capabilities (Pollard et al., 

2000).

The six mammalian actin genes remain highly conserved (-90% amino acid 

homology to the yeast actin gene) and transcribe a 43 kDa globular (G-actin) protein 

containing. four domains which form a weak adenosine tri-phosphatase (ATPase) cleft 

structure that is capable of head-to-tail binding to other actin monomers (Otterbein et al., 

2001; Pollard et al., 2000). The G-actin protein is able to alter its binding affinity for 

adenosine tri- or di-phosphate (ATP or ADP respectively) depending on the cytosolic salt 

concentration, cellular pH, cation availability and accessory protein binding (Otterbein et 

al., 2001; Pollard et al., 2000). The four domains, consisting primarily of a-helices and a

3
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few p sheets, fold with direction from bound water molecules to encircle a central ATP 

binding cleft and periphery protein binding sites on the lateral loops (Otterbein et al,

2001). Each of the four domains interacts with a divalent cation (predominantly 

magnesium following the relative cytosolic availability, and to a lesser extent calcium) 

(Otterbein et al., 2001). The divalent ion bound centrally in the third domain is critical for 

the catalytic hydrolysis of ATP to ADP and is termed the catalytic ion (Blanchoin and 

Pollard, 2002). The catalytic cleft is comprised of two highly conserved P-hairpins within 

subdomain-1 which fold to interact with two homologous domains in subdomain 3 to 

generate the hydrolysis activity of the protein, which is coupled to the protein’s 

conformational change but is not required for its polymerization (Otterbein et al., 2001). 

The protein binding loops predominantly located in subdomains 2 and 4 allow the 

association of actin with proteins such as gelsolin, profilin, and deoxyribonuclease 

(DNase) I and undergo the most pronounced conformational alterations upon hydrolysis 

(Otterbein et al., 2001). G-actin spontaneously interacts in vitro at cellular conditions 

through subdomain 2 (in the DNase I binding site) and is able to dimerize and further 

polymerize into F-actin. However, this process is highly regulated through many 

monomer, dimer, trimer and polymer binding proteins in vivo (Pollard & Eamshaw,

2002).

Filamentous Actin

In order to assemble F-actin filaments in vivo, two actin monomers must dimerize 

and further trimerize to effectively facilitate their head-to-tail binding to other actin 

dimers to yield short multimer fragments which are then incorporated to generate the 

extending filament (Figure 1.1) (Oosawa & Asakura, 1975). In the absence of actin

4
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binding proteins, the stability of actin dimers and trimers is dramatically reduced and thus 

presents insurmountable difficulties for the direct study of dimer/ trimer interactions, 

however the use of in vitro polymerization assays has added to the current understanding 

of actin dynamics (Blanchoin and Pollard, 2002; Pollard et al., 2000).

Spontaneous polymerization will occur in vitro when the monomer concentration 

exceeds ~ 0.1 pM under physiological conditions; however within the cell the G-actin 

concentration is maintained at ~ 100 pM owing to the presence of actin associated 

proteins (discussed below) (Pollard et al., 2000). Actin was first characterized in 

association with myosin (a muscle motor protein) and so the terms for the ends of the 

filament are derived from the appearance of an actin-myosin filament with the pointed 

end equating to the minus (slow growing) end and the barbed end referring to the plus 

(fast growing) end (Figure 1.1) (Straub, 1942). The rate limiting step of actin 

polymerization is the initiation (nucleation) of the multiple dimer and trimer bindings 

(Oosawa & Asakura 1975). As stated, the hydrolysis of the ATP molecule bound within 

the actin protein is not required for filament polymerization or filament nucleation 

(Blanchoin and Pollard, 2002). The conformational state of ATP-bound actin is more 

favorable for maximizing accessibility of the actin binding site by other monomers; 

however ADP-bound actin may still remain bound, although the bond strain is increased 

thus typically inhibiting ADP- filament nucleation (Otterbein et al., 2001). The cell 

utilizes the additional strain of the ADP-actin-actin bond within filaments to aid 

accessory proteins in the removal of monomers because the altered conformation changes 

the availability of protein binding sites as well as the reduced actin bond strength

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.1 Regulation and function of actin within dynamic cellular processes.

The polymerization dynamics of actin generate force for cell migration and neurite 
extension. A, the regulation of actin polymerization by pointed-end capping proteins 
(purple ovals), barbed-end capping proteins (blue ovals), monomer sequestering proteins 
(pink diamonds) and monomer recycling proteins (gray ovals) is depicted. The 
hydrolyzed (GDP-bound) actin is shown in blue while the ATP-bound actin is shown in 
red. Actin is removed from the pointed-end of the filament and incorporated at the 
barbed-end. B, branched cortical actin meshwork at the edge of the cell. C, (adapted from 
(Sarmiere and Bamburg, 2004) actin within an extending neurite within the P domain is 
located at the neurite tip (blue bracket), the T domain behind the tip in the neurite pad 
(red bracket), and the C domain within the neurite extension (purple bracket). D, (adapted 
from (Condeelis et al., 2001; Critchley, 2000; Dawe et al., 2003; Medley et al., 2003)the 
leading lamellipodia of a migrating cell demonstrating an extending filopodia. E, 
(apdapted from Minamide et al. 2003; Medley, Buchbinder et al. 2003) FA complex 
within the tip of the attaching filopodia. The EC signal (blue circle) binds the cell surface 
receptor (gray dimer) and signals through the membrane receptor (yellow) to the FA 
proteins (pink).

permission of the copyright owner. Further reproduction prohibited without permission.
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(Blanchoin and Pollard, 2002). Therefore, as would be expected, in stable fibers the 

concentration of ADP-actin is increased at the pointed end while the barbed end consists 

of primarily ATP-actin (Cooper and Schafer, 2000). Some actin filaments with ADP- 

barbed ends are observed but it is thought the hydrolysis allows actin-binding proteins to 

identify and depolymerize older fragments and so these filaments are much less common 

in the cell (Cooper and Schafer, 2000). The actin proteins in a filament are rotated by 

approximately 166° relative to each other which accounts for both the unique double 

helix filament structure and the dynamic capabilities of the filaments (Pollard et al., 

2000). The double-helix structure allows rapid filament compression and stretch by bond 

rotation while the degree of twist within the filament determines the position of the 

incorporated monomers exposed protein binding sites for regulatory and supporting 

proteins which are able to regulate filament generation and degradation directly through 

their interactions with the bound monomers availability of protein binding sites 

(Paavilainen et al., 2004; Pollard et al., 2000). Additionally, the twist in the filament 

influences the rate of ATP hydrolysis thereby further effecting filament stability (Cooper, 

2000).

As mentioned previously the hydrolysis of bound ATP ultimately alters the 

stability of the filament thus facilitating removal of short multimer ADP-fragments by 

actin accessory proteins such as ADF/cofilin. The fragments are further degraded into 

dimers then monomers which are sequestered by monomer binding proteins such as 

CAJP1 and profilin (Figure 1.1) (Paavilainen et al., 2004). The protein-bound liberated 

ADP-actin monomers readily undergo nucleotide exchange catalyzed by the bound 

accessory protein (such as profilin) and thus enter a large reserve pool (~ 100 pM)

8
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remaining poised for re-incorporation back into the filament at the barbed end (Pollard et 

al., 2000). This process of actin protein recycling, as the monomers are removed from 

one end and added to the other, is termed treadmilling and is responsible for generating a 

polarized force for such processes as cell motility, growth, division and neurogenesis 

(Figure 1.1) (Pollard et al, 2000).

F-actin Types

In the cell there are two main pools of F-actin fibers that function together in the 

eukaryotic cell; a responsive, dynamic highly branched meshwork termed the cortical 

actin layer and a more stable fibrous filament network (Pollard et al., 2000). The cortical 

actin pool localizes to areas of dynamic cytoskeietal rearrangement and is responsible for 

processes such as leading edge motility, endocytosis/exocytosis, and 

lamellipodia/filopodia formation and often associates with actin-associated proteins 

involved in directing actin treadmilling and branching such as ADF/cofilin, profilin and 

Arp2/3 proteins (Pollard et al., 2000). The more stable filaments are typically observed 

within the main body of the cell and associate with stabilizing proteins such as 

tropomyosin to yield structural strength and scaffold support to the cell, as observed with 

the occurrence of stress fibers in cultured fibroblast cells (Pollard et al., 2000). Both 

populations of fibers share certain actin-associated protein binding relationships; however 

both fiber pools interact with different actin binding proteins which function to regulate 

the fibers differing functional abilities (Paavilainen et al., 2004; Pollard et al., 2000).
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Actin-Based Cellular Processes: Migration

The quiescent cell may be regarded as possessing a uniform cytoskeleton 

consisting of strong actin-myosin contractile fibers (stress fibers) strengthening the 

interior while maintaining a flexible actin meshwork at the periphery (Critchley, 2000; 

Pollard and Borisy, 2003). The initiation of motility is directed through the activation of 

cell surface receptors by extra-cellular ligand binding such as growth factors or other 

chemotactic signals which stimulate the actin cytoskeleton to undergo rapid 

rearrangement that polarizes the cell by generating a polymerizing and disassembling 

actin gradient (Condeelis et al., 2001; Kuhn et al., 1998; Medley et al., 2003). This 

process had been classified into three distinct stages; the protrusion of the leading edge of 

the cell, the formation of stable adhesions to the extra cellular matrix (ECM) and the 

release and retraction of the lagging edge (Critchley, 2000; Kuhn et al., 2000; Small et 

al., 2002). The leading edge or leading lamella (lamellipodium) formation begins with 

alteration of the local actin meshwork into a more dynamic flexible array which 

accommodates the incorporation of actin protein addition and polymerization (Chen et 

al., 2000; Condeelis et al., 2001). Small filament assembly and branching begins, initiated 

through actin polymerizing and branching proteins such as profilin, and Arp2/3 proteins 

which enable actin to provide the driving force to stretch the cell forward (Hahne et al., 

2001; Machesky and Hall, 1997; Small et al., 2002). The small filaments, termed 

microspikes are approximately 1-5 pm in length (equaling the breath of the lamellipodia) 

which push the edge forward while larger protrusion of bundled actin filaments termed 

filopodia extend segments of the membrane considerably further (Small et al., 2002). The 

filopodia initiate the second stage of motility through extension beyond the cell into the
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ECM and establishing a strong contractile focal adhesion (FA) complex (Figure 1.1) 

(Abe et al., 2003; Critchley et al., 1999; Rodriguez et al., 2003). It is currently unknown 

if filopodia generation de novo filaments or bundle existing filaments, however the 

filopodia extend and establish physical interactions between extra-cellular membrane 

receptors and actin cytoskeietal proteins which allows the cell to anchor securely to the 

ECM and exert force through the actin contractions and dynamics (Mohri et al., 1998; 

Rodriguez et al., 2003; Small et al., 2002; Turner et al., 2000). The FA complex is critical 

for motility and requires the binding of ECM ligands to cell adhesion integrins resulting 

in the clustering of additional integrin receptors and subsequent activation of cellular 

signaling cascade molecules such as Rac and focal adhesion kinase (FAK) (Critchley, 

2000; Medley et al., 2003; Turner, 2000). The ultimate result of the activated signaling 

cascades is the recruitment of actin stress fibers to region of the integral receptors through 

the association of linking proteins such as talin (activated by FAK), vinculin, a-actinin 

(which are both activated though Rho) and filamin (responsive to Cdc42) that bind and 

localize the fibers to the inner membrane (Critchley, 2000; Medley et al., 2003).

The final stage of motility is initiated at the opposite side of the cell (the rear edge 

or uropodia) by dissociation of the FA and actin cytoskeleton (Rodriguez et al., 2003). 

This final process is initiated by the physical pull of the membrane which disrupts the 

interaction of proteins linking the fiber to membrane and activates signals pathways such 

as LIM kinase which activate actin depolymerizing proteins such as cofilin to initiate 

liberation of free monomers (Gungabissoon and Bamburg, 2003; Small et al., 2002).

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Neurogenesis: Neurite Formation and Extension

The process of neurite extension is initially similar to motility leading edge 

dynamics in that it requires the formation of an actin rich lamellipodium; however the 

lamellipodia for neural extension are evenly dispersed around the cell at set intervals 

without the presence of an uropodia (Figure 1.1) (Kaverina et al., 2002a; Sarmiere and 

Bamburg, 2004). The lamellipodia then undergoes a segmentation represented by the 

recruitment of dense patches of microtubules which polymerize to extend the 

lamellipodia out and away from the cell which creates a neural outgrowth (Adams and 

Schwartz, 2000; Sarmiere and Bamburg, 2004). The actin-rich lamellipodium remains 

intact at the periphery domain (P domain) of the extension while the central region (C 

domain) of the neurite contains dense patches of micro tubules, actin and organelles 

(Sarmiere and Bamburg, 2004). An additional transition area (T domain) separates the P 

and C domains and serves as the primary location of actin turn over, as growing barbed 

ends face the terminus of the P domain, the retrograde flow of actin towards the pointed 

ends approaches the T domain where it is broken down and recycled by actin associated 

proteins (Figure 1.1) (Gungabissoon and Bamburg, 2003; Sarmiere and Bamburg, 2004). 

The P domain, also termed the growth cone, characteristically appears splayed and 

consists of a lamellipodium edge complete with microspikes and numerous filopodia 

extensions (Gungabissoon and Bamburg, 2003; Sarmiere and Bamburg, 2004). The 

filopodia, as in motile cells, consist of parallel actin bundles and are thought to determine 

the direction of neuron growth (Nakayama and Luo, 2000; Sarmiere and Bamburg, 

2004). Additionally, true nerve cells form dendritic spines; dense regions of actin 

extending from the C domain which function in neural signaling, and axonal processes

12
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which occur from the conversion of a neurite extension from a stimulus sensory region to 

a signal transmittance region, however in the model system used in this thesis these 

processes are absent (Sarmiere and Bamburg, 2004).

Actin Binding Proteins

Cytoskeletal remodeling requires the coordinate interaction of a multitude of 

actin-interacting proteins which regulate polymerization, branching, depolymerization, 

and bundling of filaments. Each process requires a distinct class of effector including 

barbed and pointed end capping proteins, filament bundling/cross-linking proteins, 

monomer and binding/sequestering proteins (Table 1.1). Identification of the proteins 

functioning within these processes is critical to expanding our knowledge of actin-based 

events. Recently, a novel family of actin-interacting proteins termed WD repeats proteins 

(WDR) was identified yet their precise role remains to be discovered.

WDR1 Protein Structure:

The Mammalian WDR1 gene encodes a 601 aa protein containing nine 

tryptophan and aspartic acid (WD) repeats and an N-terminal truncated 534 aa protein 

which is thought to contain only seven WD repeats, yet six unidentified additional 

isoforms are proposed to exist (www.ncbi.nlm.nih.gov Homologue gene #6628). The 

WD motifs in both proteins are comprised of approximately 30-40 conserved amino-acid 

residues bracketed by an amino-terminus non-polar glycine and a basic histidine (GH) 

repeat and a carboxyl-terminus non-polar tryptophan and a negatively charged aspartic 

acid (WD) pair which interact to form a {3-propeller structure. From the retrieved

13

permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ncbi.nlm.nih.gov


Table 1.1 Characterization of selected actin
Interacting proteins

Barbed-Capping Pointed-Capping Bundling/ Cross linking Monomer Binding
Gelsoiin Arp2/3 Filamin Profilin

Capping Protein Tropomodulins a-actinin CAP
Formin Fascin Cofilin

Table 1.2 Function and size of selected kelch 
proteins

Protein Function Size (kDa)
Ral2 Ras effector -60

P & a Scruin F-actin binding -95
IPP Actin cytoskeletal modulator -65

Kelch F-actin binding -70
Mayven Neural actin binding -60
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crystallized structure of the yeast and C. elegans WDR1 proteins and prediction based on 

protein sequence the orientation of the propellers blades is such that each of the encoded 

WD repeats folds into 4-anti parallel beta sheets which in turn forms one blade of the 

propeller protein (Ono, 2003; Voegtli et a!., 2003). These structural motifs are prevalent 

in eukaryotic cells, as 1% of the S. cerevisiae genome is predicted to encode WD 

proteins; however these motifs are unique among eukaryotes (Pollard & Eamshaw,

2002). The pre-mRNA transcript of WDR1 is approximately 42.78 kb long and generates 

a 3.3 kb mRNA transcript that is thought to undergo alternative splicing to produce the 

full length 60 kDa protein which contains nine blades and the truncated 50 kDa protein 

predicted to contain seven blades (www.ncbi.nim.nih.gov/IEB/Research/Acembly). The 

structure of both the yeast and C. elegans proteins reveal the propellers are divided and 

twisted into two domains with each containing 7 propellers, however as both the yeast 

and C. elegans proteins contain 14 propellers; the prediction by structure is the number of 

blades is evenly dispersed between the two protein domain halves (Voegtli et al., 2003, 

Ono, 2003). Interestingly, the mammalian proteins are predicted to contain an un-even 

number of propellers comparison among these structures will be quite informative.

WDR1 Family Homology

The WD motif encodes four anti-parallel beta sheets which give rise to an 

elaborate tertiary structure of a beta-propeller and was first identified in the beta-subunit 

of the trimeric guanine nucleotide binding protein (G- protein Beta-transducin) which 

acts to mediate signaling between membrane signaling proteins and intracellular 

pathways (Adler et al., 1999). Importantly this motif is also abundant in the p40 subunit
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of Arp2/3 complex which is known to be a predominant modulator of cortical actin 

rearrangement through the nucleation of actin elongation and branching (activated 

through Wiskott - Aldrich syndrome Protein (N-WASP) (Uruno et al., 2003). This motif 

also bears strong homology to the Drosophila kelch protein motif, denoted by conserved 

C-terminal WD and N-terminal GH repeats, which are found in a variety of beta- 

propeller proteins performing a wide range of functions including actin binding and 

rearrangement while the most conserved function of this domain is the regulation of 

mediating protein-protein interaction (Table 1.2) (Adams et al., 2000; Kim et al., 1999; 

Soltysik-Espanola et al., 1999). Notable Drosophila actin associated kelch proteins 

include Ral2, intracistemal A particle-promoted polypeptide (IPP), (3- & a-Scruin, kelch, 

and Mayven (Adams et al., 2000; Robinson and Cooley, 1997; Soltysik-Espanola et al., 

1999; Way et al., 1995). Interestingly Kelch {3-propellers are able to comprise one protein 

of multiple blades or a larger propeller comprising many WD repeat blades which one or 

two domains similar to the predicted structure of hWDRl (Adams et al., 2000).

The function of WDR1 orthologues (Aipl. UNC-78. and SCF1) in other species

The mammalian WDR1 was formerly termed Aipl after the yeast protein actin 

interacting protein (Aiplp). However owing to the subsequent the identification of 

multiple WD motifs, Aipl was later termed WDR1 (Adler et al., 1999; Rodal et al.,

1999). WDR1 orthologs are present in a large number of eukaryotic organisms and have 

been classified from Arabidopsis, Physarum polycephalum, Dictyostelium, Drosophila 

melanogaster, yeast, Xenopus, chicken, rat, mouse, and human (Adler et al., 1999; Iida
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and Yahara, 1999; Konzok et al, 1999; Okada et al., 1999; Ono, 2001; Rogers et al., 

2003). As expected no prokaryotic orthologs have been reported.

Saccharomyces cerevisiaei

Actin interacting protein or suppressor of temperature sensitive (ts-) cofilinl 

(Aiplp/ SCFlp) was originally identified in S. cerevisiae as a 67 kDa actin binding 

protein through a yeast two-hybrid screen performed by Amberg et al., (1995) as a 

protein able to interact with the yeast actin protein. Rodal et al., (1999) later confirmed 

this interaction using the same technique however they also observed a novel reciprocal 

interaction between cofilin-Aiplp proteins. Cofilin was the first member identified of the 

Actin Depolymerizing Factor family by Bamburg et al., (1980) and since been shown to 

be of critical importance in yeast for the regulated break down of F-actin into G-actin 

proteins, however no additional binding partner had been previously identified (Bamburg 

et al., 1991). Cofilin binds actin in dynamic areas of actin breakdown such as the cortical 

actin patches and the termini of the more stable actin cables (Bamburg, 1999). Rodal et 

al., (1999) generated anti-Aiplp antibodies to examine the distribution of Aiplp and 

confirmed a pattern similar to that of cofilin and strengthened the two-hybrid data 

suggesting the existence of either a direct or indirect interaction with actin and cofilin. 

Data obtained using mutant yeast cells defective in either cofilin activity, Aiplp activity 

or actin polymerization abilities have elucidated that loss of Aiplp does not severely 

impair cell growth or cortical actin architecture (Rodal et al., 1999). However the 

expression of both cofilin and Aiplp proteins is required for their correct localization to 

areas of cortical actin as the combination of AAiplp with either mutant cofilin or G-actin
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is synthetically lethal in yeast cells (Rodal et al., 1999). These data coupled with the 

identification of only cofilin-Aiplp and Aiplp binding sites on actin and distinct Aiplp 

and actin binding sites on cofilin supported the existence of a regulatory ternary complex 

of the actin-cofilin-Aip 1 p (Rodal et al., 1999). The nature of the regulatory mechanism of 

the complex interaction was proposed by lida & Yahara (1999) through the observations 

of long cofilin-decorated actin rods in cells lacking Aiplp and the ability of Aiplp 

expression to rescue the temperature sensitivity phenotype of Acofilin cells. This data 

suggested that Aiplp regulates cofilin’s activity through its unique ability to enhance the 

actin depolymerizing abilities of cofilin (lida & Yahara, 1999).

This model was challenged by two-hybrid screening data obtained by Drees et al., 

(1999) which showed Aiplp was able to interact strongly with the actin binding protein 

Srv2p (Suppressor of Rasval14, homologue to the mammalian Cyclase-Associated Protein, 

CAP1) (Freeman and Field, 2000; Hubberstey and Mottillo, 2002). The protein Srv2p 

was identified by Field et al., (1990) as an actin-binding effector of the Ras pathway of 

adenylyl-cyclase signaling and has since been shown to associate with cofilin-actin 

complexes during active actin remodeling (Moriyama and Yahara, 2002). The reported 

interaction of Srv2p with Aiplp suggested an additional function of Aiplp and further 

proposed that the binding of actin or cofilin by Aiplp may not necessarily be a direct 

interaction (Freeman and Field, 2000).

The accomplished work of Balcer et al., (2003) generated the current model of a 

bi-functional role for cofilin during cortical actin dynamics through the identification of a 

interaction between a high-molecular-weight 1:1 complex of six G-actin and Srv2p 

proteins, and an F-actin barbed-end protein capping complex consisting of cofilin and
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Aiplp proteins. Balcer et al, (2003) also observed the Aiplp-cofilin barbed end capping 

complex prevents re-annealing of severed fragments and allows their further 

depolymerization by cofilin. It was also verified that Srv2p was able to competitively 

interact with cofilin bound ADP-G-actin and catalyze the actin nucleotide exchange 

cooperatively with profilin by replacing cofilin binding, hence liberating cofilin and 

increasing the ATP-actin reserve (Balcer et al., 2003).

This model is well supported with evidence obtained thus far in both yeast and 

higher eukaryotes and serves as the template for the further study of functioning of 

CAP 1, WDR1, cofilin proteins in higher eukaryotic organisms.

Xenopus laevis:

Xenopus Aipl (xAipl) was first identified as a 65 kDa protein by Okada et al., 

(1999) using an affinity chromatography column of Xenopus cofilin (xAC) and actin. 

Interestingly, several other large polypeptides (94, 90, 65, 63, 60, and 55 kDa) were 

eluded from the column however antiserum generated to the xAC fraction detected 

primarily the 65 kDa protein, which through sequence data was identified as xAipl 

(Okada et al., 1999). The cloned cDNAs of the 65 kDa protein obtained from a stage 30 

embryonic library revealed two transcripts, one full length and the other lacking part of 

the N-terminus, however antibodies raised against the protein were specific and did not 

detect a second truncated protein (Okada et a l, 1999). Okada et al., (1999) reported that 

xAipl localized with cofilin to the dynamic embryonic cleavage furrow within early 

embryos. Further investigation revealed xAipl localized within cells at the blastula stage 

to cortical actin regions, mitotic apparatus and nuclei. The developmental significance of
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this pattern of expression was investigated through microinjections of xAipl protein into 

one cell of two-cell stage blastomeres which resulted in abnormally large, round 

blastomeres exhibiting eventual arrested development (Okada et al, 1999). Upon closer 

inspection of the cells Okada et al., (1999) described the apparent loss of correct cortical 

actin and cofilin staining, instead replaced by diffuse and broad protein localization 

which is in contrast to the effects of the over expression of cofilin on actin that typically 

resulted in large filamentous aggregates.

Further detailing of the molecular relationship of xAipl with cofilin and actin 

using DNAse 1-actin affinity columns, xAC affinity columns, and gel filtration techniques 

demonstrated that xAipl was unable to bind G-actin in the presence or absence of cofilin, 

but was able to bind F-actin only in the presence of cofilin but not induce significant twist 

in the filaments (Okada et al., 1999). These data supported a role for xAipl has an 

enhancer of actin depolymerization through a cooperative interaction with cofilin (Okada 

et al., 1999). Supporting data for the interaction was obtained from light scattering 

studies, sedimentation and polymerization assays which showed that the affinity of xAipl 

for F-actin was dependent upon cofilin expression, and the presence of xAipl protein was 

able to slightly increase the ability of cofilin to depolymerize filaments, however further 

localization studies were required to clarify the precise mechanism (Okada et al., 2002; 

Okada et al., 1999). Gold-labeling immuno-electron microscopy experiments described 

an association of xAipl with F-actin which was dependent upon the presence of cofilin 

and the ability of xAipl to exclusively bind the barbed-ADP ends of the cofilin-severed 

F-actin filaments (82% fragment binding) (and to a lesser degree the sides of filaments 

(38%)) (Okada et al., 2002). However no affinity of xAipl for ATP-barbed synthesized
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in vitro was observed, which was in agreement with the results of depolymerization 

assays (Okada et al., 2002). Together, these results generated a model in which xAipl is 

able to cooperatively bind to barbed end of filaments with cofilin and also interact with 

cofilin-severed short filaments which effectively increases the amount of pointed filament 

ends available for cofilin severing and thereby enhances cofilin’s depolymerizing activity 

(Okada et al., 1999, Okada et al., 2002). Yet this model did not account for their 

observations that although xAipl was able to bind filamentous actin the addition of the 

protein had little effect on the rate of either polymerization or depolymerization, which 

suggested the mechanism of Xenopus depolymerization may be more complex then 

postulated (Okada et al., 2002).

Dictyostelium discoidium:

The Dictyostelium WDR1 ortholog gene (DAipl) was originally identified from a 

screen searching for a p21-activated kinase gene as being 33% homologous in sequence 

to the yeast Aipl gene (Konzok et al., 1999). Konzok et al., (1999) investigated the 

localization of DAipl through the production of antibodies raised against bacterially 

derived recombinant proteins and reported DAipl localized with cofilin, although did not 

overlap cofilin within the cortical actin region of cells. DAipl also appeared abundant in 

areas undergoing active F-actin rearrangement such as the lamellipodia of motile cells, 

the filopodia and pseudopodia, the phagocytic cup, and the poles of dividing cells 

(Konzok et al., 1999). Further work using a green-fluorescent-protein labeled DAipl 

demonstrated DAipl was shuffled between those dynamic structures undergoing rapid 

actin rearrangement (Konzok et al., 1999). DAipl-null cells were generated to assay in
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vivo protein function and determined that unlike cofilin, DAipl is not essential for 

viability and loss of expression generated several interesting actin-based phenotypes 

(Aizawa et al., 1999; Konzok et al., 1999). The most striking impairment of the DAipl - 

null cells was the defect in cytokinesis which resulted in larger slow-growing multi­

nucleated cells typically exhibiting hyperactive and exaggerated lamellipodia, filopodia 

and pseudopodia formation and extensions (even throughout cytokinesis) (Aizawa et al., 

1999; Konzok et al., 1999). These null cells were also dramatically impaired for several 

actin-dependent processes such as the constitutive uptake of fluids (macropinocytosis), 

ligand-induced phagocytosis, and cell motility (Konzok et al., 1999). However these cells 

remained able to form multicellular fruiting bodies and demonstrated normal cofilin 

localization, suggesting that although DAipl may regulate may actin processes it is not 

essential for cell survival, multi-cellular behaviour or correct cofilin localize to actin 

(Konzok et al., 1999). These mutant phenotypes were specific to the loss of DAipl 

activity since the introduction of DAipl back into null cells completely restored the 

defective motility and macropinocytosis to wild-type rates, and increased the rate of 

phagocytosis to nearly 50% more then exhibited by the wild type cells; however the 

mutants displayed only a partial restoration of normal cytokinesis (Konzok et al., 1999).

To determine which region of the protein was responsible for activity, this group 

also compared the rescue ability of the C and N termini of DAipl through the fusion of 

either end to GFP-protein tag within the DAipl-null cells (Konzok et al, 1999). Konzok 

et al., (1999) found that although the C-terminus-GFP protein was able to localize to the 

expected areas such as the lamellipodia and filopodia, only the N-terminus-GFP protein 

was able to restore partial function to the defective processes, suggesting the active
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domain resides within the C-terminus while the N-terminus function to localize the 

protein within the cell (Konzok et al., 1999).

The ability of DAipl to partial restore cytokinesis to expressing cells is consistent 

with results reported from work performed by Aizawa et al., (1999) who showed that 

over-expression of DAip was able to impair cytokinesis and generated multi-nucleated 

cells. The function of DAipl during cytokinesis was further investigated by Gerisch et 

al., (2004) through the visualization of cellular mitotic events in vivo within DAipl-null 

mutant cells, cortexillin-null cells (an actin bundling protein of Dictyostelium), and 

myosin-II null cells expressing green-fluorescent-protein (GFP) labeled tubulin. Gerisch 

et al., (2004) confirmed the previous description of the mutant cells and demonstrated the 

large multi-nucleated nuclei of both the DAipl-null and cortexillin-null contained 

polyploid chromosome numbers and were due to an abundance of constitutively active 

centrosomes which directed multiple synchronous mitotic events in the absence of 

cytokinesis. The phenotypes of the two null mutants were comparable yet differed from 

those observed from the myosin-II mutants enabling Gerisch et al., (2004) to conclude 

the phenotypes observed from the DAipl-null cells were primary due to the presence of 

extra centrosome structures and not due to a deficiency in cytokinesis suggesting DAipl 

may be involved in centrosome or mitotic regulation but not likely in the induction of 

cytokinesis.

Together, these results strongly suggested DAipl is a critical regulatory protein 

during cytokinesis and may function as an actin bundling protein able to colocalize with 

cofilin and maintain regulation of the actin cytoskeleton during processes of F-actin 

remodeling such as endocytosis, lamellipodia and filopodia formation (Konzok et al.,
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1999, Gerisch et al., 2004). These results were not able to indicate any protein interaction 

with cofilin and actin and the Daipl-null mutant cells displayed contrast phenotypes to 

the cofilin over-expressing cells characterized by the presence of dense fibrous bundles of 

cytoplasmic actin (Aizawa et al., 1999).

Evidence was reported by Aizawa et al., (1999) used electron micrographs as well 

as actin polymerization and light scattering assays to demonstrate that DAipl was able to 

bind actin filaments in vitro and enhance the depolymerization activities of cofilin, 

however in the absence of cofilin the affinity of DAipl for actin was reduced and the 

binding of DAipl was not able to induce a twist or depolymerization. These data 

suggested that DAipl cooperatively bound the barbed end of filaments and lengths of 

filament and enhanced the severing ability of cofilin through twist induction (Aizawa et 

al., 1999).

Konzok et al., (1999) suggested the function of DAipl was more complex then 

proposed from the model of Aizawa et al., (1999) and provided supporting data through 

the closer investigation of the DAipl-null mutant cells. Konzok et al., (1999) examined 

the mode of DAipl actin regulation using actin disrupting agents of known mechanism to 

contrast the phenotypes observed in the DAipl-null cells. The treatment of the null cells 

with the actin depolymerizing agent latrunculin-A and the barbed-end capping agent 

cytochalasin-A resulted in phenotypes opposing those displayed by the over-expressing 

DAipl suggesting DAipl exerted its effects through other mechanisms then barbed-end 

capping or filament severing (Konzok et al., 1999).

The current model of DAipl supports a strong interaction with cofilin at the cell 

cortex within processes requiring rapid F-actin rearrangement and depolymerization
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currently accomplished through unknown mechanisms. and also suggests a novel role 

regulating cytokinesis perhaps independent of the established interaction with cofilin 

(Aizawa et al., 1999, Konzok et al., 1999, Gerisch et al., 2004).

Caenorhahditis elegans:

The C. elegans gene uncoordinated-78 (UNC-78) was originally described by 

Waterston et al., (1980) to be essential for correct body wall muscle formation and 

muscle motility, but it was the sequence comparisons with established WDR1 sequence 

data performed by Ono (2001) which led to the identification of UNC-78 as the C. 

elegans WDR1 ortholog gene. In order to determine the function of UNC-87 the gene 

was cloned from a C. elegans library and the recombinant UNC-78 protein was expressed 

in Escherichia coli (Mohri and Ono, 2003).Upon assaying protein function it was 

reported that despite the bacterial origins of the protein, UNC-78 displayed the ability to 

enhance the depolymerizing activity of the C. elegans muscle-cofilin protein (UNC-60B) 

on rabbit F-actin and demonstrated little affinity for F-actin in the absence of UNC-60B 

(Mohri and Ono, 2003). This suggested that UNC-78 could bind actin with UNC-60B 

and UNC-78 may function to maintain the cytoskeletal regulation by cofilin. A surprising 

result obtained during the depolymerization assays was the inability of UNC-78 to 

depolymerize filaments in the presence of C. elegans non-muscle cofilin isoform, UNC- 

60A which suggests the interaction of UNC-78 is isoform specific (Mohri & Ono, 2003). 

Complementary to this finding was the identification of two existing UNC-78 genes 

encoded within the C. elegans genome as the isoform gene K08F9.2 which shares 68% 

homologous sequence to the gene encoding the 65 kDa UNC-78 protein (Mohri & Ono,
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2003). This is in striking contrast to the WDR1 gene found in other organisms which all 

appear to contain only one WDR1 ortholog gene within their genomes (Mohri & Ono, 

2003). To distinguish between the two isoforms, antibodies against a synthetic peptide 

sequence derived from a region unique to the UNC-78 protein which bound specifically 

to the 65 kDa protein during assays were produced (Mohri & Ono, 2003). Protein 

localization using the antibody demonstrated that during early embryo development, 

UNC-78 expressed only within a small subset of cells which corresponded at later stages 

to an expression pattern restricted only to body wall muscle, the pharynx, and the 

spermatheca (Mohri and Ono, 2003). Further immuno-staining revealed UNC-78 was 

localized in developing worms within muscle cells with myosin adjacent to muscle 

myofibrils (Mohri & Ono, 2003). In adult worms UNC-78 displayed a striated pattern 

which instead corresponded to the actin filament arrangement peripheral to the 

myofibrils, and matched the expression pattern of UNC-60B identically (Mohri & Ono,

2003). As this data supported a muscle-specific localization of UNC-78 with UNC-60B 

and actin, further investigation into the function of UNC-78 within these cells was 

accomplished using recombinant worms. Ono (2001) generated several null and mutant 

UNC-78 and UNC-60B worms to elucidate the role of UNC-78 during actin 

rearrangement (Ono, 2001). UNC-78 expression was shown to be critical for proper body 

wall muscle structure and function as previously reported, but it was observed to be 

essential for correct actin organization in muscle cells and required for UNC-60B 

localization to the periphery of myofibrils (Ono, 2001). It was further determined the loss 

of UNC-60B expression did not disrupt UNC-78 localization to actin filaments
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suggesting UNC-60B was not required for the binding of UNC-78 to actin filaments 

(Ono, 2001).

Together these data strongly support a regulatory interaction between UNC-60B 

and UNC-78 in the generation and maintenance of the actin cytoskeleton in muscle cells; 

however the molecular mechanism remained unknown (Mohri and Ono, 2003; Ono, 

2001; Ono, 2003). Therefore to address this issue Mohri & Ono (2003) used their 

recombinant UNC-78 and UNC-60B proteins for further in vitro polymerization protein 

perfusion assays. Mohri & Ono (2003) first assayed the effects of UNC-78 as a barbed 

end capping protein by comparing the effects of two known strong barbed-end capping 

agents, gelsolin and cytochalasin D (CD) with UNC-60B on actin depolymerization rates. 

The first set of experiments challenged the barbed end capping mechanism through which 

UNC-78 was thought to enhance UNC-60B filament depolymerization ability (Mohri and 

Ono, 2003). The experiment was based on the assumption that if UNC-78 caps the barbed 

filament end then the rate of depolymerization by UNC-60B with UNC-78 should be 

comparable with other capping agents (Mohri and Ono, 2003). Mohri & Ono, 2003 

reported the effects of either CD or gelsolin were similar to each other but determined the 

rate of depolymerization to be the highest with UNC-78 and UNC-60B and was 

unaffected by the addition of either agent. Additionally they reported that despite their 

observations of the addition of UNC-78 in either the presence or absence of the capping 

agents impaired no effect on actin dynamics; both capping agents were able to inhibit the 

activity of UNC-60B and produced longer filaments (Mohri and Ono, 2003).

The observations reported by Mohri & Ono, 2003 were critical to understanding 

the role of UNC-78 and UNC-60B because they were able to demonstrate UNC-78
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functioned with UNC-60B through a novel actin-dependent and barbed-end capping 

independent mechanism. These results were further verified using rhodamine-actin 

polymerization assays to definitively test the successful capping of the barbed end by 

UNC-78 (Mohri and Ono, 2003). If the barbed end capping was complete then the protein 

cap would prevent the incorporation of G-actin onto the existing filament as Mohri & 

Ono, 2003 experimentally demonstrated for both the gelsolin proteins and cytochalasin D 

agents; however UNC-78 was not able to prevent the polymerization of the label actin 

proteins, and further evidence confirmed the presence of both UNC-78 and UNC-60B 

increased depolymerization but yet did not impact the rate of novel polymerization. To 

further verify their data Mohri & Ono, 2003 repeated the localization experiment 

performed by Okada et al., 1999 using different in vivo techniques and reported UNC-78 

binding along the length of the filament in addition to the barbed end, thus further 

supporting their in vitro polymerization data.

Taken together these results demonstrate the inability of UNC-78 to cap the 

barbed filament end and confirm the F-actin-dependent association of UNC-78 with 

UNC-60B. This interaction has been shown to be critical for proper actin cytoskeleton 

arrangement and regulation in C. elegans provides a well-founded model for the function 

of WDR1 homologues identified in other eukaryotic species.

WDR1 Studies from Other Species:

The results from the detailed study of S. cerevisiae, Dictyostelium, C. elegans and 

Xenopus have elucidated preliminary functions of WDR1 as a potential regulatory protein 

able to potentially interact and cooperate with cofilin to influence actin depolymerization
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dynamics and additionally control aspects of complex actin cytoskeletal processes such 

as cytokinesis, endocytosis, and cell motility (Adler et al, 1999; Mohri and Ono, 2003; 

Okada et al., 2002; Rodriguez et al., 2003). Preliminary studies in several organisms 

including Drosophila and human systems have generated some evidence supporting these 

proposed roles (Rodriguez et al, 2003; Rogers et a l, 2003). Recently work in Drosophila 

S2 cells has implicated WDR1 (with cofilin) for critical actin processes such as forming 

the lamellipodia for cell migration and actin regulation for cytokinesis (Kelso et al., 2002; 

Pollard and Borisy, 2003; Rodriguez et al., 2003; Rogers et al., 2003). These results have 

been partially supported by studies of human smooth muscle cell substrate-dependent 

attachment and proliferation which demonstrated WDR1 expression is maintained in 

quiescent, static cells but is increased >5 fold during active cell proliferation and motility, 

thus indicating the observed functions within Drosophila and Dictyostelium appear to 

have remained conserved within the more complex human system (Ichii et al., 2001).

Interestingly, another line of study has suggested that in other species such as P. 

polycephalum, chick, and mouse the main function of WDR1 ortholog proteins is a 

stress-response protein (Lomax et al., 2001; Matsumoto et al., 1998; Oh et al., 2002; 

Verma et al., 2004b). The P. polycephalum WDR1 ortholog gene, p66 was identified by 

Matsumoto et al., (1998) as a heat shock protein up-regulated in response to elevated heat 

(independently of cofilin) able to interact with both actin and cofilin during remodeling 

of the actin cytoskeleton to enable the rapid generation of cytoplasmic actin rods during 

microcyst formation. More recently Oh et al., (2002) have reported observing an increase 

in WDR1 expression, also independent from cofilin expression, in chick cochlea organs 

following excessive noise damage within the actin-rich basal homogene and cuboidal
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cells without any change of cofilin expression, A complementary observation was 

reported from the study of nickel-induced transformation mouse embryo cells which 

generated data indicating an immediate transcriptional up-regulation of WDR1 in 

response to elevated calcium concentrations induce by the carcinogenic nickel effects, 

hence supporting a stress-induced response (Verma et al., 2004a).

Various orthologues of WDR1 proteins have been studied in many organisms to 

varying degrees with the attempts of yielding some insight into the function of WDR1 

proteins, however more detailed studies should work to yield the precise functioning of 

WDR1 proteins in higher organisms and clarify our current understanding of the 

mechanisms control the diverse range of functions of our mammalian actin cytoskeleton.

Additional actin binding proteins: Barbed end capping proteins:

Gelsolin, Capping Protein, Formin

The barbed (fast growing) end of the filament is the dominant regulator of actin 

rearrangement dynamics both in stable and transient filament types and is 

characteristically orientated towards the cell membrane (Table 1.1) (Bailly et al., 2001; 

Pollard et al., 2000). The barbed-end associated proteins control the rate of filament 

extension by tightly binding to the end of a growing filament and either facilitating or 

inhibiting filament extension (Bamburg, 1999). The barbed-end capping proteins are also 

able to influence the activity of pointed end capping proteins, as the dissociation of the 

barbed-capping protein decreases the binding affinity of the pointed-capping protein for 

the pointed-end, although this relationship is not well understood as current models are 

derived from primarily in vitro polymerization studies (Condeelis et al., 2001; Pollard
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and Borisy, 2003). The removal of barbed capping proteins is accomplished by 

interactions with polyphosphoinositides either through direct contact with the cell 

membrane or cytosolic signaling pathways, yet removal may also be influenced by the 

presence of actin-associated proteins and the activity of ATP-hydrolysis, although the 

mechanisms of these processes require further study (Kowalczynska and Nowak- 

Wyrzykowska, 2003; Paavilainen et al., 2004). Within the cell it has been deduced from 

in vitro polymerization assays that the concentration of barbed-ends are very low and are 

a key regulator of actin polymerization since in vitro ATP-actin polymerizes readily at a 

free barbed end, and in the absence of barbed capping proteins this would quickly deplete 

the cell’s monomeric actin pool (Pollard et al., 2000). Without the presence of cytosolic 

barbed ends the actin dynamics would be static, however upon increased free barbed end 

availability the balance of severing and polymerization commences (Belmont and 

Drubin, 2001).

Gelsolin is a conserved barbed-capping protein known to regulate barbed end 

dynamics through its ability to both tightly cap barbed ends and block the filament 

extension and sever long polymers (Cooper and Schafer, 2000; Pollard et al., 2000). The 

promotion of filament severing occurs in response to high cytosolic (Ca2+) and is initiated 

by its localization along the length of the polymer thereby resulting in the dissociation of 

multimer actin fragments which are rapidly capped (at their newly generated barbed 

ends) by gelsolin and further depolymerized through the binding and activity of 

additional proteins (Cooper and Schafer, 2000; Pollard et al., 2001). The removal of the 

gelsolin cap allows rapid filament growth and is regulated through contact with 

polyphosphoinositides (Cooper and Schafer, 2000; Pollard and Borisy, 2003).
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Capping protein (CP) is a highly conserved and abundant barbed capping protein 

with various isoforms including a muscle (CapZ) and non-muscle (CapG) form 

(Blanchoin et al., 2000; Mohri et al., 2004; Paavilainen et al., 2004). CP is a dimer 

consisting of an alpha and beta subunit which associate together to bind the actin 

terminus and are removed from the barbed end through interaction with 

polyphosphoinositides, which allows for rapid actin polymerization (as with gelsolin) 

(Falck et al., 2004; Kong and Kedes, 2004). CP is unique in that this protein is able to 

bind the ADP-monomer binding protein twinfilin and although twinfllin does not actively 

participate in elongation, its association with CP is essential for correct spatial 

organization of cortical actin yet the nature of this relationship is presently unclear and 

requires further study (Falck et al., 2004, Paavilainen et al., 2004).

The formin family of proteins is a unique and exciting class of barbed-end 

capping proteins conserved from yeast to human which are able to bind both the barbed 

end and the membrane and hence serve to physically anchor the barbed end to the cell’s 

inner membrane (Chang and Peter, 2002; Pruyne and Bretscher, 2000). Interestingly, 

formins have been shown to be essential for long stable fiber formation (through barbed 

end binding) and function to directly transduce Rho G-protein signals (via Cdc42 -see 

below) to facilitate cytoskeletal rearrangement (Chang and Peter, 2002; Evangelista et al., 

2002; Pollard, 2004). However they have also recently been shown to form large multi­

protein complexes, such as that of the Arp2/3 complex, Bud6, and profilin, and facilitate 

pointed end capping and nucleate branching, thus indicating an increasing regulatory 

potential of formins in cytoskeletal dynamics (Evangelista et al., 2002; Pollard, 2002; 

Pollard, 2004).
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Pointed end capping proteins:

Actin-related-protein (Arp) proteins and tropomodulins

The pointed (slow growing) end is the furthest end of the actin filament from the 

membrane, facing towards the inner part of the cell (Blanchoin et al, 2000; Pollard et al., 

2000). The regulation of the pointed end by capping proteins is not as dramatic as the 

barbed-end capping proteins and the two classes are thought to work synergistically as 

the presence of barbed-end capping proteins are postulated to serve a regulatory role for 

the pointed end capping proteins and their ability to influence the rate of actin 

disassembly, filament branching and protein dissociation (Blanchoin et al., 2000; Uruno 

et al., 2003). Pointed end capping is essential for de novo filament assembly, and is the 

rate limiting step for in vitro polymerization assays (Cooper and Schafer, 2000; Pollard et 

al., 2000). The binding of the pointed capping protein in vivo regulates multimer subunit 

dissociation rates as the hydrolyzed ADP-actin are high, and therefore this terminus is 

less stable and prone to attack by actin depolymerizing proteins, such as ADF/ Cofilin 

(Blanchoin et al., 2000; Pollard and Borisy, 2003). Contrary to expectation, the 

dissociation of proteins at the pointed end has little impact of the volume of reserve 

ADP/ATP monomers as the pool of G-actin is relatively large, but activation of pointed 

capping proteins initiates nucleation of ATP monomers and additional activation 

stimulates the branching of cortical actin networks (Pollard et al., 2000). Cortical actin 

populations are localized to dynamic areas (such as the leading edge of motility) and 

provide a three-dimensional scaffold of short actin branches which polymerize to push 

the membrane forward and generate force (Goode et al., 2000; Pollard et al., 2000). The
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branches of this meshwork are situated at 70 degree angles to maximize strength and 

construction efficiency (Pollard et ah, 2000). Pointed capping proteins orchestrate the 

branching by nucleating short filaments which are then localized to the periphery of 

existing filaments, a process that is regulated through pointed capping protein activation 

via accessory proteins (Belmont and Drubin, 2001; Goode and Rodal, 2001; Pollard,

2001).

The best understood class of pointed capping proteins is the Actin-Related-Protein 

(Arp) 2/3 complex of proteins, which is a group of seven conserved proteins known to 

bind and nucleate filament polymerization, and direct actin branching through activation 

by the Wiskott-Aldrich Syndrome protein (WASp) family (Paavilainen et al., 2004, 

Pollard et al., 2000). The Arp2/3 is comprised of two known actin related proteins, Arp2, 

Arp3, and five currently unclassified proteins, pl8, pl4, pl9, p35, and p40 which interact 

in sequential order to nucleate actin assembly and branching (Paavilainen et al., 2004). 

The WASp protein family (including WASp family verprolin [WAVE] homologous 

family) are activated by the Rho G-proteins Cdc42 and Rac-1 which transduce 

cytoskeletal rearrangement signals by accelerating monomer shuttling to the barbed end 

(Bishop and Hall, 2000; Higgs and Pollard, 2001; Xu et al., 2003). This in turn activates 

the formation of nucleating proteins and initiates branching through the Arp2/3 complex 

(Paavilainen et al., 2004). Upon activation by WASp proteins, the Arp2/3 nucleates fiber 

formation until actin incorporation is blocked by the binding of capping proteins (Pollard 

et al., 2000). Additionally, interaction with selected WASp proteins can result in Arp2/3 

complex binding at the periphery at existing filaments and nucleating branches (Pollard et 

al., 2000).
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Tropomodulins, contrary to the Arp2/3 complex localizes primarily within stable 

filament complexes (stress fibers) and is most abundant in muscle cells in actin fibers 

associated with tropomyosin (Kong and Kedes, 2004). Tropomodulins proteins nucleate 

fiber stable formation and are not associated with branching, yet function to facilitate 

fiber interaction with other elements of the cytoskeleton, such as myosin proteins (Kong 

& Kedes, 2004).

Filament Bundling/ Cross-Linking proteins:

Filamin, a-Actinin and Fascin

Bundling/cross-linking proteins are localized in dynamic F-actin regions (cortical 

actin at the leading edge, and filopodia) and function to yield strength and flexibility to 

the actin network hence providing structural support and rapid response to deformations 

in cell shape (Pollard, 2003; Tseng et al., 2002). Bundling proteins are unique in that they 

typically dimerize to produce both branched meshworks and are able to bundle long F- 

actin fibers into parallel arrays and thus generate strength to facilitate extension and can 

also confer flexibility through the compressibility of short branched fibers (Peraud et al., 

2003; Tseng et al., 2004). The flexibility of cortical actin patches owes to the structure of 

bundling proteins as these proteins form homodimers which function as a hinge, with one 

arm binding the existing filament and the other associating with the short filament branch 

from which further branches can extend (Tseng et al., 2004). The strength is conferred 

through the angle the branches are bound at by the bundling protein dimer which aligns 

each branch at 70° relative to each other in the array so as external deforming forces will 

be resisted until the hinge connecting the two bundling proteins bends causing the
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meshwork to compress and accommodate the stress (Krendel and Bonder, 1999; Tseng et 

a l, 2004).

Fascin is a highly conserved actin bundling protein which is unique in its ability 

to generate firm and flexible actin arrays without cooperation from other actin proteins 

(Brieher et al., 2004). Fascin has been shown to be the sole requirement by the 

intracellular bacterial pathogen Listeria monocytogenes, which enters the cell and hijacks 

actin and actin-associated proteins for motility (Adams and Schwartz, 2000; Brieher et 

al., 2004). This species utilizes two phases for transport; the first involves the Arp2/3 

complex of proteins to generate motility, yet recent studies have shown the second is 

Arp2/3 independent and requires only fascin proteins to design long hollow cylindrical 

for the production of cytosolic elongation-based motility (Brieher et al., 2004). 

Additionally, fascin has been shown to be one of only a small number of actin associated 

proteins essentially required for oncogenic motility and invasiveness thus demonstrating 

the unique ability of these proteins to interact solely with actin to perform the critical 

bundling function (Peraud et al., 2003).

The actinin proteins are widely distributed actin bundling protein, conserved from 

yeast to their four classes in human and localizes predominantly to dynamic areas of 

cortical actin patches (Kowalczynska and Nowak-Wyrzykowska, 2003; Tseng et al., 

2002; Virel and Backman, 2004). Interestingly, in vitro studies have shown the 

predominant non-muscle isoform of a-actinin is able to function in a similar method as 

fascin, although it is able to confer more rigidity to actin arrays then fascin, and further in 

vivo studies have demonstrated a-actinin is able to respond directly and quickly to
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integrin signaling thus making these proteins unique among the bundling proteins (Chen 

et al., 2000; Virel and Backman, 2004).

The best characterized bundling protein is filamin which is highly conserved from 

lower eukaryotes to humans and functions both within loosely branched networks 

(preferentially at low concentrations) and strong, tensile-force resistant densely bundled 

meshworks at high filamin concentrations (Critchley et al., 1999; Tseng et al., 2004). 

Filamin has been shown to contain an N-terminal actin binding site and undergo 

dimerization to cross-link similar to both fascin and a-actinin (Tseng et al., 2004). 

However, filamin is unique among bundling proteins in that it is able to provide elasticity 

within both strong actin arrays and flexible dynamic branching actin networks (Tseng et 

al., 2004; Tseng et al., 2002). It is currently postulated that filamin proteins, although 

redundant in their responsive cortical actin binding, uniquely provide the cell with a 

means to rapidly regulate resistance to deforming stresses and hence serve a critical 

function (Tseng et al., 2004).

Monomer binding/ Sequestering proteins:

Profilin, CAP, Cofilin

Monomer binding proteins are vital modulators of actin dynamics (Paavilainen et 

al., 2004). This is due to their regulatory ability to control G-actin availability within the 

cell and consequently represent one of the most widely studied families (Blanchoin et al., 

2000; Paavilainen et al., 2004; Sagot et al, 2002). Sequestering proteins preferentially 

associate with either ADP- or ATP-G-actin in a 1:1 binding ratio to sequester the 

monomer from dynamic areas into the cytosolic reserve actin pool, until they are
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stimulated to release their monomer either for polymerization or nucleotide exchange 

(Pollard & Eamshaw, 2002). Numerous studies have shown actin will spontaneously 

polymerize under cellular conditions when the G-actin concentration exceeds the critical 

concentrate of -  0.1 pM proteins, however the cellular G-actin pool is estimated at ~ 100 

pM concentration thus demonstrating the importance and the high degree of regulation of 

monomer sequestering proteins by actin associated proteins (Pollard et al., 2000). 

Sequestering proteins are vital for the regulation of actin polymerization as they are not 

only able to rapidly bind newly dissociated proteins, but also catalyze the ATP nucleotide 

exchange (Paavilainen et al., 2004). This effectively re-activates the monomer for 

additional polymerization and further delivers the protein to actively polymerizing barbed 

ends (Paavilainen et al., 2004). A relative comparison of abundance of actin and actin- 

associated proteins in the cytosol of un-activated (un-coagulated) human platelet cells 

reflects the critical function of these proteins (Paavilainen et al., 2004; Pollard et al.,

2000). Pollard et al., 2000 quantitatively reported F-actin accumulates to -330 pM, G- 

actin totals -220 pM, the sum of the capping proteins Arp2/3, gelsolin, CP is merely -19 

pM, while the sum of ADF/cofilin, profilin and thymosin-P4 equates to -580 pM 

emphasizing the important cytoskeletal regulatory role of these proteins (Pollard et al., 

2000; Pollard and Borisy, 2003).

Profilin is highly conserved across eukaryotic species as the smallest G-actin 

binding protein (12-16 kDa) which preferentially associates with ATP-actin monomers 

and this binding is essential for major processes such as cytokinesis and polarized actin 

polymerization (Bamburg, 1999; Bamburg and Wiggan, 2002; Paavilainen et al., 2004). 

In yeast, profilin is essential for actin recycling as it interacts with cofilin bound ADP-
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actin and is thought to catalyze the actin nucleotide exchange which further causes the 

monomer to dissociation from cofilin (Bamburg et al., 1999; Rosenblatt et al., 1997). The 

recharged ATP-monomer remains bound by profilin and upon initiation of active 

polymerization is escorted by profilin to polymerizing barbed ends (Birkenfeld et al, 

2003; Chan et al., 2000). A current debate exists regarding the precise nature of the 

profilin-ATP-actin binding relationship as it was postulated profilin catalyzed the 

nucleotide exchange by initiating the dissociation of ADP from bound G-actin for the 

more favorably actin-bound ATP (Moriyama and Yahara, 2002; Paavilainen et al., 2004). 

However studies with yeast demonstrate profilin null phenotype could be restored with 

the expression of Arabidopsis profilin which lacks the typical profilin exchange factor 

binding site (Paavilainen et al., 2004). Therefore further studies are required to clarify the 

exact role for profilin in actin binding.

The CAPs (Cyclase-Associated Protein) represent a unique family of actin 

associated proteins which were first characterized in yeast as an effector of the adenylyl 

cyclase signaling pathway for actin rearrangement and have since been shown to be 

highly conserved from yeast to higher eukaryotic systems such as mammals (Freeman 

and Field, 2000; Hubberstey and Mottillo, 2002; Paavilainen et al., 2004). CAP proteins 

were originally thought to function homologously with profilin proteins owing to their 

ability to catalyze nucleotide exchange on ATP-depleted cofilin bound monomers and 

localize ATP-monomers to actively polymerizing cortical barbed ends (Hubberstey and 

Mottillo, 2002; Moriyama and Yahara, 2002). However recent studies have since 

revealed CAP proteins are able to form large multi-proteins complexes as homodimers 

and proteins such as cofilin, actin, and actin-interacting protein (Aipl/ WDR1) which
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may yield additional functions for CAP proteins (Balcer et al., 2003; Moriyama and 

Yahara, 2002). Previous studies have shown CAP was able to form large protein 

complexes although it was thought these heterogeneous complexes consisted primarily of 

CAP and actin proteins, and so future studies will hopefully investigate the capabilities of 

CAP proteins and work to elucidate its complex functioning (Hubberstey et al., 1996; 

Hubberstey and Mottillo, 2002; Moriyama and Yahara, 2002).

Cofilin was originally identified as an F-actin binding protein and was named for 

its formation of co-filamentous structures with actin (co-filin), however further analysis 

revealed it was a member of a previously categorized family of monomer binding Actin 

Depolymerizing Factor (ADF) proteins which are named for their ability to 

spontaneously disassemble actin filaments, and are currently referred to as the 

ADF/Cofilin (AC) family of proteins (Bamburg et al., 1999; Dawe et al., 2003; Sarmiere 

and Bamburg, 2004). AC proteins are the predominant regulators of filament 

dissociation, yet they typically do not influence the reserve pool of G-actin (as it is too 

abundant) (Bamburg, 1999; Gungabissoon and Bamburg, 2003). These proteins are 

essential for dynamic fiber retraction and dramatically impair many major cellular 

processes when removed from the cell (Bamburg, 1999; Bamburg and Wiggan, 2002). 

AC proteins cooperatively bind to ADP-filaments and induce an un-stable twist in the 

fiber resulting in the liberation of small actin multimers which cofilin further 

disassembles into the single monomer, which remains bound by cofilin (or ADF) in a 1:1 

stoichiometric ratio (Bamburg, 1999; Ojala et al., 2001). AC proteins remain bound to 

ADP-monomers until the interaction with additional actin associated proteins catalyzes 

the monomer’s nucleotide exchange (ADP for ATP) which then results in AC
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dissociation from the monomer, and upon further activation (de-phosphorylation) through 

the LIM kinase pathway (an effector of Rac and Rho) is able to continue filament 

degradation (Bamburg, 1999; Birkenfeld et al., 2003; Mohri et al., 2000; Sarmiere and 

Bamburg, 2002). It has been shown that CAP may participate with cofilin to increase 

monomer nucleotide exchange; however the first ever identified binding partner of cofilin 

was recently reported in yeast to be Actin-Interacting-Protein (Aipl, homologue to the 

mammalian WDR1 protein) and cofilin has since been implicated in large protein 

complexes with CAP, Aipl, and actin thus suggesting the presence of a novel regulatory 

mechanism for actin (Amberg et al., 1995; Dawe et al., 2003; Kuhn et al., 2000; Rodal et 

al., 1999).

Control Over Actin Remodeling Pathways:

Guanine tri-phosphatases (GTPases or G-proteins) represent a broad class of 

molecular switches through which a cell initiates morphological responses to extra­

cellular signals (ECS). ECS are perceived through three main pathways, the first being 

direct entry of the ECS into the cell through the membrane (as is the case of steroid 

hormones), the binding of a surface ligand to initiate pinocytosis or endocytosis (e.g. viral 

invasion) or through the production of intracellular messenger molecules, stimulated by 

the binding of specific ligands on the surface of the cell which then initiate signal 

transduction cascades through either the phosphorylation (addition of a phosphate group), 

prenylation (addition of 20 carbons), or famesylation (addition of 15 carbons) of effector 

proteins (Adjei, 2001; Bishop and Hall, 2000). The activation of signal transduction 

cascades occurs through the activation (phosphorylation) of cell surface receptors which
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span the membrane to transduce the ECS to membrane-localized cytosolic proteins 

(adaptor proteins) which in turn activate additional (more mobile) cytosolic effector 

proteins (Adjei, 2001).

Actin Signaling Through G-proteins

The Rho GTPase Family comprises a unique class of G-proteins that primarily 

localize away from the membrane within the cytosolic during their quiescent state but 

bind the cytosolic C-terminal domain if activated integrin membrane receptors (Adjei, 

2001; Hall, 1998b). Rho GTPases mediate their signals through guanine exchange factors 

and guanine dissociation inhibitory proteins through which they are able to induce a 

variety of cellular responses which include endocytosis, exocytosis, cell proliferation, 

neurogenesis and cell motility (Blangy et al., 2000; Hall, 1994; Hall, 1998a).

The Rho family of G-proteins encompasses three subfamilies: Rho, Rac, and 

Cdc42 proteins (Bishop and Hall, 2000; Clayton et al., 1999; Hall, 1995). The Rho 

subfamily of G-proteins were the first classified by Ridley & Hall, 1992 through their 

ability to direct the assembly of contractile myosin-actin filaments (stress fibers) and 

initiate the assembly of focal adhesion structures for mediating cell attachment (Hall and 

Nobes, 2000; Nobes et al., 1998; Olivo et al., 2000). The Rho family has been expanded 

to include many proteins such as Rho A (with p i60 ROCK), Rho B, C, L, and Rnd 1, 2, 3 

(Bishop and Hall, 2000; Blangy et al., 2000; Drechsel et al., 1997; Hall and Nobes, 2000; 

Kroeze et al., 2003). Subsequent studies have shown the stress fiber formation induced by 

Rho does not involve de novo filament assembly but is instead triggered through the 

activation of bundling proteins to assemble strong filament bundles (Hall, 1998b; Kroeze
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et al., 2003; Ridley and Hall, 1994). Interestingly, Rho has also been implicated in 

neurogenesis and is currently thought to be the dominant regulator of neurite retraction 

and cellular rounding by directing the assembly of contractible fiber formation (Hall, 

1998b; Kuhn et al., 2000; Nobes and Hall, 1995). Complementary to these findings Rho 

has also been shown to be a dominant regulator of the first Gap phase (Gj) of the cell 

cycle, and further interacts with other regulators (such as Rac) later during cytokinesis 

and cell division (Cotteret and Chemoff, 2002; Nobes and Hall, 1999; Verma and Ihler,

2002). Rho is thought to impart this effect through the recruitment of focal adhesion 

proteins and assembly of contact mediated FA structures (Critchley, 2000; Hall, 1998b; 

Machesky and Hall, 1996). Rho signaling is not only critical for FA formation but also 

FA maintenance, as studies have demonstrated that within 15 minutes of blocking Rho 

activity integrin receptors dissociate from the FA which disrupts the adhesion dependent 

signaling that is critical for progression through the cell cycle and cell viability (Hall, 

1998b; Ridley and Hall, 1994). Interestingly, the signals responsible for integrin 

clustering are also required for correct FA formation but not for stress fiber formation or 

for FA protein (such as vinculin) localization to the ends of the fibers, suggesting a 

cooperation of pathways is needed to induce FA assembly (Bailly, 2003; Bailly et al., 

2003; Machesky and Hall, 1997; Medley et al., 2003).

The next subfamily of Rho proteins to be identified was the Rac family of G- 

proteins which was shown to activate actin dynamics at the leading edge of motile cells 

and is known to include the Rac proteins Racl, 2, 3 (Blangy et al., 2000; Cotteret and 

Chemoff, 2002; Hall, 1995; Kuhn et al., 1998; Verma and Ihler, 2002). The Rac proteins 

differ from the Rho proteins primarily in their regulatory mechanism of actin proteins, as
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Rac family is able to induce active actin polymerization, not just actin filament bundling 

(Adjei, 2001; Machesky and Hall, 1997). However Rac, like Rho has been shown to 

induce FA formation, although the FA structures formed by the Rac proteins are typically 

smaller and unlike true FA structures, are only present in the actively growing lead edge 

of motile cells (Machesky and Hall, 1997). These small FA structures consist of 

concentrated polymerizing actin filaments and are termed microspikes and are 

responsible for generating motility by driving the leading edge forward (Adams and 

Schwartz, 2000; Little et al, 2004; Small et al., 2002). The Rac family was shown to 

interact closely with the third Rho subfamily of Cdc42 proteins at the leading edge of 

cells and subsequent study reveal Cdc42 proteins localize to areas of active Rac proteins 

to regulate microvilli and filopodia extensions through a large number of effector proteins 

including Cdc42, G25K, Chp, Rho D, G, H and TC10 (Bishop and Hall, 2000; Drechsel 

et al., 1997; Hall and Nobes, 2000).

As the Rac proteins polymerize actin to push the cell edge forward the Cdc42 

proteins produce microvilli and filopodia extensions of the cell membrane which 

facilitate substrate attachment and progression of motility (Hall, 1998b; Ho and 

Bretscher, 2001; Rodriguez et al., 2003). The mechanism of actin rearrangement within 

the filopodia is currently unknown, whether it be through bundling or de novo filament 

generation, however filopodia has been shown to exist in N-WASp defective fibroblast 

cells suggesting the Arp2/3 complex is not required which may suggest bundling protein 

activity (Bishop and Hall, 2000; Higgs and Pollard, 2001; Nakagawa et al., 2001). The 

mechanism of actin associated protein activated by Cdc42 is under current study.
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Further studies examining activation, localization and protein targets have 

revealed many redundancies amongst these three families and have led to much debate 

about the correct categorization of family members, and even families since an increasing 

number o f researchers group the preceding two families of Rac and Cdc42 families into 

one large class (Adjei, 2001; Bishop and Hall, 2000; Hall, 1998b).

Summary:

The main objective of this thesis was to identify and examine the role of 

mammalian WDR1 in actin rearrangement that occurs during cell adhesion, migration 

and neurogenesis.

The thesis is divided into two major chapters. Chapter two outlines the initial 

characterization of human WDR1 and analyses of the expression of WDR1 mRNA and 

protein in a variety of cells and tissues. Chapter 3 examines the localization of WDR1 

proteins during dynamic actin remodeling processes such as cell retraction, migration, 

adhesion, and neurite extension during PC 12 differentiation.

The results of this thesis provide further insight into the expression and potential 

role of mammalian WDR1 proteins during actin remodeling.
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Chapter Two

Isolation and Characterization of M am m alian WDR1

Introduction:

Understanding the signal transduction pathways generating the multitude of 

cellular behaviours utilized by the cell is critical for the design of novel and innovative 

medical therapies and disease treatments. The human actin cytoskeleton regulates many 

vital cellular processes such as migration, endocytosis, exocytosis, mitosis/ cytokinesis, 

and neurogenesis. However a complete understanding of the mechanisms governing actin 

remodeling still remains elusive despite the involvement of actin in several prevalent 

diseases such as Alzheimer's disease, heart disease, and cancer. Currently, several families 

of regulatory proteins have been identified and their functions have been reported however 

most actin-interacting proteins and pathways that control actin remodeling remain 

unknown.

One family of recently identified actin interacting proteins has been classified 

according to a highly conserved motif of 30-40 amino acids bracketed by an N-terminal 

glycine-histidine (GH) residue pair and a C-terminal tryptophan-aspartic acid (WD) pair 

(Amberg et al., 1995; Gettemans et al., 2003; Rodal et al., 1999; Voegtli et al., 2003). 

Each motif encodes four anti-parallel J3-sheets which interact to form one beta-propeller 

blade structure (Gettemans et al., 2003; Rodal et al., 1999; Voegtli et al., 2003). Proteins 

containing beta-propellers are typically involved in mediating protein interactions
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(Amberg et al., 1995; Gettemans et al., 2003). These proteins are termed WD proteins and 

are conserved throughout eukaryotic species such as Arabidopsis, Physarum, 

Dictyostelium, Drosophila, yeast, Xenopus, chicken, rat, and mouse (Adler et al., 1999; 

Konzok et al., 1999; Oh et al., 2002; Ono, 2003; Rogers et al., 2003). WD proteins have 

been shown to interact with the actin depolymerizing protein cofilin and actin to enhance 

filament depolymerization in yeast (Okada et al., 2002; Ono, 2001; Rodal et al., 1999). 

However several reported observations of both Drosophila and Dictyostelium systems 

have recently supported a novel cofilin-independent function for WDR1 proteins during 

cytokinesis (Gerisch et al., 2004; Konzok et al., 1999; Rogers et al., 2003). Loss of WDR1 

regulation has been shown to impact several actin-based processes such as endocytosis, 

exocytosis, cell migration and lamellipodia dynamics yet the most severe effects included 

induction of unregulated synchronous carcinogenic mitotic events (Aizawa et al., 1999; 

Gerisch et al., 2004; Konzok et al., 1999; Rogers et al., 2003). Recent studies of avian 

WDR1 demonstrated elevated protein expression during basal hair cell regeneration 

independent of cofilin (Adler et al., 1999; Oh et al., 2002). Preliminary studies on human 

endothelial cells have additionally implicated WDR1 to function within cell attachment 

and support the role of WDR1 during cell proliferation (Ichii et al., 2001). Despite the 

established study of WDR1 proteins in other eukaryotic organisms the human WDR1 gene 

remained uncharacterized. To help elucidate the function of human WDR1 proteins we 

have cloned and characterized the full length human WDR1 gene. During the cloning of 

full length WDR1, a second amplicon was discovered and through the use of WDR1 

antibodies we have confirmed two forms exist in mammalian cells, a 50 kDa isoform 

(devoid of the final -73 C-terminal amino acids) and the full length 60 kDa protein.
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Materials and Methods:

WDR1 Isolation and HA-tagged Vector Construction:

The isolation of the full-length human WDRlgene (hWDRl) was accomplished 

using polymerase chain reaction (PCR) with primers #133F & #139R (Sigma) (Appendix 

A) designed using the human WDR1 sequence reported in the GenBank database as a 

template (www.ncbi.nlm.nih.gov). A human brain cDNA library was used as the template 

and an amplicon of 1821 bp corresponding to the full length gene was isolated and 

purified using a gel-purification kit (Sigma). The PCR product was subjected to restriction 

enzyme digestion with Eco RI and Not I which cleaved at sites embedded within the 

forward and reverse primers respectively. The purified digested product was ligated into 

the mammalian protein expression cloning vector pCI-HA (Promega) (Hubberstey et al., 

1996) using T4 DNA ligase (MBI Fermentas) and transfected into DH5ot Escherichia coli 

cells (by calcium chloride transformation). The C-truncated isoform of WDR1 (WDN534) 

was amplified using the primers (#132R & #133F) (Appendix A) and was digested with 

Not I and Eco RI enzymes (Promega). The WDN534 cDNA was then ligated into the pCI- 

HA and expression vector using T4 DNA ligase and transfected into DH5a cells.

Construction of HA-tagged Cofilin:

The human cofilin gene was cloned from a human brain cDNA library using PCR 

and primers designed against the human cofilin sequence available on the GenBank 

database (www.ncbi.nlm.nih.gov). The primers #143F and #141R were designed to 

contain an Eco RI and a Not I restriction enzyme site (respectively) which were used to
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cleave the 501 nt amplicon for column purification and ligation into the pCI-HA vector 

(Hubberstey et al., 1996).

Production of the MYC-tagged proteins:

The production of MYC-tagged WDR1, WDN534 and cofilin was accomplished 

through the ligation of the inserts into the pCI-MYC mammalian expression vector (as 

described for the HA-constructs) (Hubberstey et al., 1996).

Gene Sequence Analysis:

All of the HA-tagged cDNA clones were completely sequenced at the York 

University core-facility to confirm sequence integrity. Further sequence comparisons and 

searches were performed using the NCBI BLAST on-line software program 

(http://www.ncbi.nlm.nih.gov/BLAST/).

Tissue Culture and Transfection:

Human embryonic kidney (HEK 293) and rat embryonic fibroblast (REF52) cell 

lines were maintained in Dulbeco’s media (DMEM-Sigma) supplemented with 10% fetal 

bovine serum (Sigma) and 100 units/ml of penicillin/streptomycin (Sigma). The cells were 

grown at 37° C with an atmosphere of 5% CO2, until -90%  confluency at which point the 

cells were spilt using IX trypsin/EDTA (Sigma) and continued to be grown on either 10 

cm, 6  cm, or 3.5 cm tissue culture dishes (Sarstedt) as appropriate for the experiment.
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Western Blot Analysis:

The constructed plasmids were transfected into HEK 293 cells using 

Lipofectamine 2000 transfection reagent as outlined in the manufacturer’s protocol 

(Invitrogen) using 1 pg of the DNA vector. The transfected cells were allowed to express 

the proteins for approximately 36-48 hours prior to protein extraction.

Total cytosolic protein extracts from the transfected and un-transfected control 

cells were collected by scraping the cells from their dishes in RIP A buffer (20mM Tris pH 

7.5, 150 fflM NaCl, 10 mM KC1, 1% NP-40 (IGEPAL CA-630), 10% glycerol) containing 

a protease-inhibitor (Roche Complete mini protease inhibitor cocktail tablets). The cells 

were then sonicated (power 3 for 2X 15 seconds on ice) and the cytosolic extracts were 

purified by centrifugation at 500 RPM for 8  minutes at 4° C. The total extracts were then 

denatured by boiling in IX Laemmli protein sample buffer (SB) for 4 minutes and 

approximately 20 pg of protein was separated on a 10% SDS-PAGE gel and subjected to 

western blot analysis using a Bio-Rad blotting apparatus and Tris-glycine-methanol 

transfer buffer. After blotting onto nitrocellulose, identification of the HA- of MYC 

tagged proteins of interest were detected using a mouse-anti HA antibody (1:1000 in 

TTBS) or anti-MYC antibody (1:500) (a gift from Dr. Dalian Young, University of 

Calgary) for 1 hour at RT followed by a secondary incubation with horseradish 

peroxidase-conjugated (HRP) goat anti-mouse antibody (Chemicon) (1:4000 in TTBS). 

The blot was rinsed three times for 10 minutes in IX TTBS and the tagged proteins were 

visualized using the LUMI-Light chemiluminescent kit (Roche). The size determination of 

the proteins was determined by the relative distance the proteins migrated compared to a 

protein ladder marker (MBI Fermentas).
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Immunocvtochemical Analysis of Cellular Protein Localization:

The cellular localizations of both endogenous and heterologous proteins were 

determined by immunocytochemical (ICC) analysis. Prior to plating cells, round glass 

coverslips (CS) (16 mm, Fisher) were prepared by heating in 500 ml of 1 M HC1 at 50- 

60°C for 4-6 hours. The solution was cooled, rinsed three times with HaO and sonicated 

for 15 minutes (1 complete cycle on the GE portable sonicating water bath) in three 

washes of dd^O , one wash of 50% and 70% ethanol and a final 30 minute wash of 95% 

ethanol. Mammalian cells were seeded onto the washed CS and grown until the cell 

density was -50% confluent and then transfected as described previously with either one 

of the two HA-WDR1 vectors or the two control HA-tagged CAP1 (Hubberstey et al., 

1996) and HA-tagged cofilin constructs. After 36-48 of protein expression, the cells were 

fixed onto the CS in 3.7% formaldehyde in IX phosphate-buffered saline (PBS- 14 mM 

NaCl, 2.7 mM KC1, 10 mM NaaHPCL, 1.75 mM KH 2 PO 4 ) for 10 minutes, and 

permeabilized for 10 minutes in 0.5% Triton X-100 in IX PBS. The cells were then 

incubated with 100 pi of primary anti-HA mouse antibody (12CA5) diluted 1:500 in IX 

PBS for 1 hour at 37° C, after which the excess unbound antibody was removed and the 

CS were washed in 0.05% Tween-20 in IX PBS for 10 minutes followed by a 5 minute 

IX PBS wash to removed excess detergent. The cells were once again hybridized for 1 

hour at 37° C with an appropriate secondary Alexa fluor-conjugated goat anti-mouse 

antibody (Molecular Probes) and washed in 0.05% Tween-20 in IX PBS. The coverslips 

were then rinsed three times in double distilled water and placed face down on a glass 

microscope slide coated with Slow-Fade Light anti-fade reagent (Molecular Probes) and 

sealed with clear nail polish prior to confocal microscopy analysis. The confoca! analysis
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was performed using an MRC 1024 laser scanning confocal microscope and the confocal- 

assistant software (Bio-rad). Further image manipulations were performed with either 

Adobe Photoshop or CorelDraw software.

GST-WDR1 Protein Production:

To generate bacterially expressed recombinant GST-WDR1 novel forward and 

reverse primers were designed (#144F and 145R) encoding the restriction sites Eco RI and 

Xho I respectively (Appendix A). The PCR was performed using one nanogram of pCI- 

HA-WDR1 as template and the amplicon was purified from a restriction digest using a 

plasmid purification column kit. The product was cloned into the pBlueScript /SK II 

(Stratagene) vector and further subcloned into the glutathione 5-transferase (GST)-tag 

containing inducible vector pGEX-KG. The resulting GST-WDR1 vector was expressed 

in DH5a, XL1 Blue, and DH10P E. coli cells each grown at either 25° C, 30° C or 37° C 

and isolated using glutathione-agarose immobilized beads (Sigma). Briefly, the overnight 

plasmid-expressing bacterial cultures were diluted -1:100 in fresh LB media and grown to 

an optical density (OD600) of -0.45 before recombinant protein expression was induced by 

the addition of isopropylthio-p, D-galactopyranoside (IPTG- Fisher) (1 mM final 

concentration). The cultures were induced for approximately 2-3 hours before they were 

centrifuged at 8000 rpm for 15 minutes and washed briefly in cold IX PBS before the iced 

culture was lysed by sonication (3X on setting 3). The lysed cells were incubated in -1.0% 

Triton X-100 for 30 minutes on ice and then centrifuged at 10,000 rpm for 15 minutes. 

After centrifugation 5 ml of supernatant was retrieved and nutated with 50 pi of a 50% 

slurry of IX PBS and glutathione-beads for thirty minutes at 4° C. The beads and bound
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proteins were washed three times in IX PBS before boiling for 4 minutes in IX SB to 

disrupt the glutathione-GST bond allowing the GST-fusion protein to be analyzed on a 

10% SDS-PAGE gel and visualized using Coomassie Blue protein stain. Analysis of the 

GST-WDR1 recombinant protein demonstrated the fusion protein was not stable and was 

degraded by the E. coli cells. Therefore, two additional primers sets were designed from 

the WDR1 sequence to produce two smaller N-terminal (GSTWDN) (#144F & #146R) or 

C-terminal truncated (GSTC190) GST-fusion proteins (#145R & #147F) (Appendix A). 

The bacterial expression and protein analysis were performed on both the N- and C- 

terminal constructs as described above and resulted in the production of only one partially 

stable recombinant protein (GSTC190). To increase protein stability GSTC190 was 

expressed as two smaller products. Additional primer sets complementary to the C l90 

fragment and were designed which produced both an N-terminal 146 aa GSTC158 (#147F 

& #162R) and a C-terminal 130 aa GSTC136 (#163F & #145R) recombinant protein 

(Appendix A). The purification of the two recombinant proteins was performed as 

described above using a 100 ml 1:100 diluted LB culture except following the post-triton 

incubation centrifugation half of the pellet was washed three times in thrombin cleavage 

buffer (20 mM Tris pH 8, 150 mM NaCl, 2.5 mM CaCh) and subjected to a 30 minutes 

incubation in the thrombin cleavage buffer containing 3-4 units of thrombin (~3 units/1 pi 

thrombin enzyme). The thrombin cleavage reaction was stopped by the addition of 

phenylmethylsulphonyl fluoride (PMSF) (Sigma) (1 mM final concentration).
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WDR1 Antibody Production and Purification:

Rabbit antibodies were raised against a synthetically generated 17 residue peptide 

sequence corresponding to a highly conserved and stable hWDRl epitope as predicted by 

software computations (acetyl-TEDSKRIAVVGEGREKC-) (SynPep Corporation). The 

N-term inal hWDRl epitope is present in both the full length and truncated N534 proteins. 

The peptide was conjugated to a KLH tri-peptide and injected into two female NZW 

(SPF) rabbits (named Fluffy and Bananas) for 28 days prior to the first of three collections 

of antibody containing serum by SynPep Corp.

The serum of both rabbits was assayed for antibody titer against the WDR1 peptide 

by SynPep following each extraction and was verified upon reception using western blot 

analysis of HA-tagged proteins WDR1, WDN534, cofilin, and CAP1. The blot was 

probed initially with the anti-WDRl serum, then stripped using Restore stripping buffer 

(Pierce) and reprobed with the anti-HA antibody to verify antigenic specificity. The serum 

was subjected to further purification using ammonium-sulfate precipitation and dialysis. 

The ammonium-sulfate reaction was performed using 10 ml of serum to which 10 ml of a 

cold saturated ammonium sulfate solution was added drop-wise and mixed at 4° C for one 

hour before centrifugation at 3000 x g for 20 minutes. The pellet was resuspended in 10 

ml of sterile IX PBS and the ammonium-sulfate was removed over night at 4° C through 

dialysis using three changes of IX PBS buffer (Pierce dialysis cassettes). The specificity 

of the antibody was again assayed as described above and the purified rabbit serum was 

then centrifuged at 3000 x g for 4 minutes and aliquoted for storage.
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Additional Antibodies and Stains:

The cofilin polyclonal rabbit antibody and the vinculin monoclonal mouse 

antibody were both purchased from Cytoskeleton Inc. while the hCAPl was previously 

produced by Dr. A. Hubberstey (Swiston et al., 1995). The ICC 594 nm red and far-red 

647 nm phalloidin dyes and the secondary anti-mouse and anti-rabbit Alexa 488 nm (or 

594 nm) fluor-conjugated antibodies were all purchased from Molecular Probes. The anti- 

G-actin monoclonal antibody was purchased from Chemicon while the anti-P-tubulin 

monoclonal mouse antibody was obtained from Sigma. The HRP-conjugated secondary 

goat anti-mouse or anti-rabbit antibodies for western blot analysis were also purchased 

from Molecular Probes.

The endogenous localization patterns of WDR1, F-actin, cofilin, CAP, vinculin 

and p-tubulin proteins were examined using the ICC technique described above in both 

HEK 293 cells and REF 52 cells. The IX PBS dilutions of the antibodies used were anti- 

WDR1 (1:200), anti-cofilin (1:100), anti-CAPl (1:100) and anti-P-tubulin (1:500) and an 

anti-F-actin 568 phalloidin stain (1:50).

The simultaneous staining of two target proteins was performed as described 

previously with the exception that two primary antibodies were added together, washed 

and incubated for 1 hour at 37° C with both of the two corresponding secondary 

antibodies. For the preparation of the triple labeled CS the two targeted proteins were 

prepared as described above with the exception of the second antibody hybridization 

which included a 1:30 dilution of Alexa 684 phalloidin (blue) to stain F-actin. The 

visualization of protein localization was performed using ICC confocal analysis as 

described.
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Tmmiimoprecipitation Analysis:

To determine binding partners of WDR1, immunoprecipitation (IP) experiments 

were performed using Protein-A agarose conjugated HA-antibody columns targeted 

against the exogenous HA-tagged proteins. The HA-affinity columns were prepared by 

chemical linking -1.0 mg (300 pi) of 12CA5 anti-HA antibody to 1.5 ml of Protein-A 

beads (Sigma) washed in sterile IX PBS. The 12CA5 antibody heavy chain was 

covalently linked to the amino groups of the Protein-A beads using 20 mM imidoester 

containing dimethylpimelidate in a 0.2 M sodium borate solution (sterile IX PBS) for one 

hour. The reaction was stopped by the addition of 0.2 M ethanolamine (pH 8 ). The beads 

were then washed with IX sterile PBS and following analysis on SDS-PAGE gel, and the 

gel was stained with Coomassie blue to verify the covalent cross-linking reaction was 

complete. The beads were then stored at 4° C in a 50% slurry in sterile IX PBS until 

further use.

HEK 293 cells at 50-60% confluency on 60 mm plates were transfected as 

described previously using Lipofectamine 2000 with either the HA- constructs or co­

transfected with both HA- and MYC- vectors. After 36-48 hours, the cells were sonicated 

and total cytosolic protein was collected in either 1 ml or 0.5 ml of protease-inhibitor 

containing RIP A buffer (as described previously except with 0.1% NP 40, 15 mM NaCl 

and 1% glycerol). A portion of the extract was retained and prepared in IX SB to assay 

protein expression (transfection efficiency) using western blot analysis while the 

remaining total protein extract was incubated with 40 pi of the affinity column slurry for 

one hour. The column was then washed three times with 0.5 ml of RIP A buffer before 

boiling for 4 minutes in IX SB and resolving on a 10% or 12% SDS-PAGE gel for
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western blot analysis using either anti-actin, anti-MYC and anti-HA antibodies for protein 

detection.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR):

Total human RNA from lung, kidney, liver, heart, brain and trachea (Ambion) was 

used to synthesize cDNA templates in a reaction containing 1 jig of each sample, 0.5 pg of 

oligo dT (Promega), and 10 pM of dNTPs and heated for 15 minutes at 65° C followed by 

the addition of 5X reverse transcriptase buffer, 2 nmol of DTT, and 1 pi of RNAse Out 

(Invitrogen). Each reaction was heated initially for two minutes at 42° C before the 

addition of 1 pi of Superscript II reverse transcriptase (Invitrogen) and incubated for 50 

minutes, followed by a 15 minute 70° C incubation. The cDNA reaction was cooled on 

ice, briefly centrifuged and stored at -20° C expression of WDR1 and WDN534 transcripts 

within each tissue were analyzed using PCR Supermix (Invitrogen) and primers directed 

against a commonly shared 400 bp N-terminal domain using the primers #133F & #155R 

and a unique 600 bp sequence within the C-terminal domain of WDR1 (#156F & #139R) 

(Appendix A). The constitutively expressed glycolytic enzyme glyceraldehyde-3 - 

phosphate dehydrogenase (GAPDH) was additionally amplified to serve as an internal 

control for both the reverse transcriptase reactions and PCR reactions (#149F & #15 OR) 

(Appendix A). This experiment was also repeated using rat cerebellum, frontal cortex, 

post cortex, pons, spinal cord, medulla, and hippocampus RNA samples for cDNA 

template generation to non-quantitatively determine the expression of WDR1 within 

several isolates of neural tissue.
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Northern Blot Analysis:

Total RNA was collected from a variety of cell lines including HEK 293, REF 52, 

rat pheochromocytoma (PC 12), human breast adenocarcinoma (MCF7), human brain 

astrocytoma (U87), human lung cancer (Calu), and human prostate cancer (DU145) cells 

maintained in 10% FBS DMEM with 1% P/S (as defined previously with the exception of 

the PC 12 cells which contained an additional supplement of 5% horse serum) on 10 cm 

plates. To avoid RNAse contamination all distilled water for either solution preparation or 

equipment pre-washing was treated with 0.1% (v/v) diethyl pyrocarbonate (DEPC, Sigma) 

followed by 2-3 multiple autoclaving cycles. Laboratory equipment was additionally 

presoaked in RNAse-Out solution (Ambion) and washed three times with DEPC-H2O. 

The total RNA was collected using TRIzol (Invitrogen) as per supplied instructions with 

the exceptions only 0.5 ml of 75% ethanol was used for the final washes and the pellet 

was resuspended in only 30 pi of RNAse free water to increase the concentration of the 

RNA. The samples were prepared by adding -10 pg of RNA to a solution of 15 pi 

formamide, 3 pi 5X MOPS pH 7 (2.0 g N-morpholino propane sulfate, 80 ml DEPC- H2O, 

5 mM sodium acetate) and 5 pi formaldehyde and were heated to 65 C for 15 minutes 

before the addition of 2 pi northern 5X SB. The samples were then loaded onto a 1.2% 

agarose formaldehyde gel (8  ml 5X MOPS, 7.15 ml 37% formaldehyde, 25 ml DEPC-H2O 

and 0.5g agarose) pre-run for 5 minutes at 39 volts in IX MOPS running buffer. The 

samples were run at 50-55 volts for 4-5 hours until the bromophenol blue dye front 

migrated approximately 7 cm into the gel. The gel was then soaked in three rinses of 

DEPC- H2O for a total time of 1 hour to remove excess formaldehyde and then soaked in 

sterile 20X SSC buffer pH 7 (175.3 g NaCl, 88.2 g sodium citrate, 800 ml DEPC- H2O)
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for 45 minutes to 1 hour. The RNA samples were then transferred over night to a 

positively charged nylon membrane (Osmotics) solid support using capillary transfer. 

Following the overnight transfer of RNA, the nylon membrane was soaked for 5 minutes 

in 6 X SSC prior to the immobilization of the RNA by covalent cross-linking using 

shortwave UV light of 254 nm for 1 minute using a Bio-rad crosslinker followed by 

dehydration of blot under vacuum for 1 hour at 80° C in a Bio-rad gel dryer. The 

membrane was then placed in 10 ml of ULTRAhyb hybridization buffer (Ambion) at 55° 

C for one hour before the addition of the [ P]-dCTP isotope-labeled DNA probe which 

hybridized with the membrane for 12-14 hours. After hybridization the radioactive 

membrane was briefly washed at RT twice for 5 minutes and once for 10 minutes using 

0.1% (w/v) SDS 2X SSC, and finally for 20 minutes with 0.1% SDS IX SSC before the 

membrane was wrapped in Saran wrap and exposed to blue Kodak film using a 

BioScience intensifying screen in a Kodak film cassette. The cassette was stored at -80° C 

for two to four days before the film was removed and developed using Kodak developer 

and fixer.

Probe synthesis for Northern Blot Analysis:

The synthesis of the WDR1 DNA probe was performed using magenta DNA 

Klenow polymerase (Stratagene) and 50 ng of purified PCR generated WDR1 cDNA for 

10 m inutes at 37° C using the Stratagene Prime-It labeling kit and [a-P32] cytosine tri­

phosphate (Amersham). The probe synthesis reaction was terminated by the addition of 5 

mM EDTA and immediately purified using a Sephadex column (Amersham). During the 

probe synthesis reaction 1 pi samples were taken to assay both reaction efficiency and
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probe activity using scintillation p-particle counting analysis (Packard Bell). Following 

elution of the labeled probe from the column, the probe was denatured by boiling for 3 

minutes at 100° C, quickly centrifuged and added directly to the pre-hybridized membrane. 

The synthesis of the GAPDH probe was performed as described above using 50 ng of 

purified PCR generated GAPDH template using the primers #149F and #150R (Appendix 

A).

To reprobe the northern blot, the hybridized DNA probe was stripped prior to the 

next pre-hybridization by immersion of the membrane in two 150 ml washes of boiling 

0 .1% SDS 0.1 X SSC solutions. Excess liquid was removed and the membrane was 

incubated in the pre-hybridization buffer prior to subsequent hybridization.

Results:

The Cloning of hWDRl and Sequence Characterization:

The cloning of the human WDR1 (hWDRl) gene from a human brain library 

resulted in the isolation of an 1821 bp cDNA which corresponded to the full length WDR1 

gene transcript and encoded nine WD motifs. At that time no complete full length 

sequence existed, however several reported partial cDNA sequences were used to compile 

the entire sequence which was used to design the PCR primers. Using the human genome 

database sequence we confirmed that the human WDR1 gene resides on chromosome 4 

(4pl6.1) (Adler et al., 1999).

In addition, a database search for WDR1 homologs indicated that a C-terminal 

truncated isoform also existed in some species. Therefore, primers were designed to 

amplify a truncated WDR1 transcript that lacked the final 287 nucleotides (nt) of the full
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Table 2.1 Comparisons of WDR1 orthologs

Species Size #WD Motifs % Seq. Identity
Human 60.6 Kd 9 WD 100%

Mouse 60 Kd NA 95%

Chick 67 Kd 9 WD 88%

Xenopus 65 Kd 7 WD 78%

C. elegans 65 Kd 9 WD 38%

Yeast 67 Kd 8 WD 28%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1 Comparisons of WDR1 orthologs.

The sequences of WDR1 orthologs were compared. The sequence of proteins from 
human (top line), mouse (second line), chick (third line), Xenopus (fourth line), C 
elegans (fifth line) and yeast (bottom line) were analysed. The star (*) indicates residues 
that are conserved within the species, (:) denotes residues displaying conserved 
substitutions while (.) identifies semi-conserved residue substitutions. The locations of 
the hWDRl WD motifs are as reported in GenBank, and shown in the blue text.
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Figure 2.2 Examination of the kelch-like WDR1 motifs.

The WD motifs of WDR1 are similar to motifs identified from the Drosophila kelch 
protein. The typical kelch motif is shown (top). The essential (red), the hydrophobic 
(green), the large (blue), the small (pink), and polar (gray) amino acid groups are shown. 
Comparisons of sequences of hWDRl, S. cerevisiae, and S. pombe WD motifs are 
displayed and mismatched residues are indicated in yellow.
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length WDR1 sequence. Table 2.1 compares the sequence of hWDRl and the reported 

nucleotide sequences of other WDR1 genes, the number of predicted WD motifs and the 

percent homology to the hWDRl gene. Figure 2.1 displays sequence comparisons of the 

WDR1 genes and the predicted location of the WD motifs. The comparison of the gene 

sequences displays evolution of the WDR1 gene as the human gene is approximately 

28% homologous to yeast and 95% similar to rat gene sequences.

This indicates that WDR1 may serve an essential function within vital cyto skeletal 

processes. The WD motif of the hWDRl gene was noted to show strong homology to a 

motif described in the Drosophila Kelch protein family identified through a conserved 

kelch motif containing an N-terminal GH dipeptide and a C-terminal WD dipeptide. These 

conserved residues flank a central core containing one large amino acid preceding three 

hydrophobic acids followed by two glycines and finally terminating downstream with a 

tryptophan residue six amino acids downstream from a conserved tyrosine residue, 

typically preceded by a polar acid as shown in Figure 2.2 (Adams et al., 2000; Gettemans 

et al., 2003; Kim et ah, 1999). The kelch motif typically consists of 44-56 residues 

encoding four anti-parallel beta-sheets which fold and form one blade of a beta-propeller 

structure. Proteins containing (3-propellers typically mediate protein interactions and are 

used by a large percent of the kelch proteins to bind and modulate actin (Adams et al., 

2000; Kim et ah, 1999; Soltysik-Espanola et ah, 1999; Way et ah, 1995).

The hWDRl protein contains three keich-like motifs located within the beta- 

propeller motifs at residues (GH 145) 224-242 (WD263) in the fifth WD motif, (GH 218) 

338-359 (WD 359) in the sixth WD motif and at (GH 530) 546-559 (WD 584) in the 

eighth WD motif as indicated in Figure 2.2. The keich-like motifs of hWDRl display the
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conserved di-glycine peptides, the aromatic tyrosine and tryptophan reported in more then 

90% of known kelch proteins. However these motifs notably lack the conserved six amino 

acids spacing between the Y and W residues typically observed within -70% of the 

identified kelch proteins (Adams et al., 2000; Kim et al., 1999). The yellow residues in 

Figure 2.2 indicate amino acid types not typically exhibited within -70% of the kelch 

proteins examined, however the remaining coloured residues indicate the high homology 

between the kelch motif and the WDR1 keich-like sequences which suggest WDR1 may 

be classified as a keich-like protein. The presence of presumptive kelch motifs within 

WDR1 further suggests that WDR1 serves a critical function in mediating protein 

interactions involved in actin rearrangement.

Expression of WDR1 in Mammalian Cells:

To examine potential proteins interacting with WDR1, HA- and MYC-tagged 

WDR1, WDN534, and cofilin vectors were used to over-express these proteins in 

mammalian cells. Western blot analysis revealed that the cloned WDR1 MYC- and HA- 

tagged proteins (Figure 2.3, lanes 1 & 5) were found to both produce a 60 kDa protein, 

consistent with the sizes of previously reported WDR1 proteins. A small discrepancy in 

size between the HA- and MYC-WDR1 proteins was observed with MYC-WDR1 protein 

appearing slightly larger in size. This difference was attributed to the presence of the 

larger MYC epitope tag as this result was consistently observed between the WDN534 

(Figure 2.3, lanes 2 & 6), and cofilin (Figure 2.3, lanes 3 & 7). The expression of the HA- 

and MYC-tagged WDN534 generated a C-terminal truncated 50 kDa protein (Figure 2.3, 

lanes 2 & 6). The expression of the HA- and MYC-tagged cofilin is shown in Figure 2.3
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Figure 2.3 Expression of HA- and MYC- tagged WDR1, cofilin and CAP1 vectors.

Verification of correct exogenous protein expression in HEK 293 cells was performed 
using SDS-PAGE analysis. The expression of both HA- (lanes 1-4) and MYC- (lanes 5- 
7) was assayed. HA-WDR1 (lane one), HA-WDN534 (lane two), HA-cofilin (lane three), 
HA-CAP1 (lane four) were constructed with MYC-WDR1 (lane five), MYC-WDN534 
(lane six), and MYC-cofilin (lane seven).
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(lanes 3 & 7) and yielded proteins approximately 19 kDa and 22 kDa respectively (owing 

to the MYC epitope tag size difference) which is consistent with the established size of 19 

kDa for full length cofilin (Bamburg, 1999).

Since no data exists on the expression of WDR1 in various tissues, an analysis of 

WDR1 transcript levels was performed using human RNA. RT-PCR analysis was 

performed on human cDNA that had been produced using human total RNA as template. 

Three amplicons were produced, two expressing either the N or C-terminus of WDR1 and 

a third 800 bp fragment reflecting the control gene glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH). The strong expression of the GADPH fragment in each lane 

confirmed the quality of the cDNA. The two WDR1 gene fragments that were amplified 

attempted to distinguish between the full length and the truncated WDR1 transcripts 

(Figure 2.4A). A C-terminal 600bp fragment corresponding to only the full length WDR1 

gene was observed (Figure 2.4B, lane 2-7). An N-terminal fragment which would amplify 

both the full length and truncated transcripts was also observed in all tissues (Figure 2.4B, 

lanes 2-7). The same expression pattern was also observed within rat cerebellum, frontal 

cortex, post cortex, pons, spinal cord, medulla and hippocampus samples (Figure 2.4C, 

lanes 2-8). Although the RT-PCR was not quantitative, the results indicated that WDR1 

was expressed in a variety of human tissues; however the relative N-terminal and C- 

terminal amplicon intensities varied amongst samples, suggesting that at least two 

isoforms of WDR1 exist in tissues.

To further investigate the presence of alternate WDR1 transcripts, northern blot 

analysis of WDR1 expression in the human cell lines DU145, MCF7, HEK 293, Calu, 

U87 and the two rat cell lines of REF 52 and PC12 cells resulted in the identification of a
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Figure 2.4 RT PCR analysis of WDR1 and WDN534 tissue expression.

The expression of both WDR1 and WDN534 within selected rat and human tissues was 
investigated using RT PCR. A, schematic representation (top) of the N- (400 bp) and C- 
terminal (600 bp) WDR1 amplicons. Additionally, the co-amplification of the 
constitutive 800 bp GAPDH was used for an internal control. B, expression of hWDRl 
within lung (lane two), liver (lane three), kidney (lane four), heart (lane five), brain (lane 
six), and trachea (lane seven). C, expression of WDR1 within rat brain extracts of 
cerebellum (lane two), frontal cortex (lane three), post cortex (lane four), pons (lane five), 
spinal cord (lane six), medulla (lane seven), and hippocampus (lane eight) tissues.
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Figure 2.5 WDR1 transcript expression analyses.

The endogenous expression of mammalian WDR1 was examined within a variety of cell 
lines using northern blot analysis. A, northern blot identifying the primary 3.0 kb WDR1 
transcript (arrow), and the less intense 2.2 kb WDR1 band (arrow). B, northern blot 
verifying the presence of the 1.3 kb control transcript of GAPDH (arrow). C, the 
methylene blue staining of the 2.4 kb 18S and the 6.3 kb 28S RNA bands on the nylon 
membrane (arrows).
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prevalent WDR1 transcript of approximately 3.0 kb (Figure 2.5A, lanes 1-7). However in 

some tissues a smaller truncated transcript of approximately 2.2 kb was also observed 

(Figure 2.5A, lanes 1-7). Additionally observed was some cross-reaction of the hWDRl 

probe with ribosomal band fragments; however these results further support the RT-PCR 

data and suggests that at least two WDR1 transcripts may exist in some tissues. The 

quantity and quality of the RNA on the blot was then assayed using the 1.3 kb transcript of 

GAPDH as a positive control (Figure 2.5B, lanes 1-7). The GAPDH control hybridization 

pattern intensity corresponded to the WDR1 hybridization pattern which suggested the 

faint WDR1 expression in lanes 5-7 (Figure 2.5A) reflects a lower concentration of RNA. 

The RNA on the nylon membrane was further quantified using a bromophenol blue stain 

to visualize the ribosomal RNA 28S and 18S subunit transcripts (Figure 2.5C, lanes 1-7) 

and confirmed to be of inconsistent concentrations corresponding to the intensity of 

WDR1 hybridization. Therefore, the results of these experiments suggest WDR1 is widely 

expressed across many cell lines and that the WDR1 isoform may also be differentially 

spliced from the 3.0 kb full length transcript as predicted by Verma et al., (2004) and 

Adler et al., (1999).

WDR1 Antibody Production and Protein Expression

In order to generate anti-WDRl antibodies, different fragments of hWDRl were 

cloned into a GST expression vector in DH5a E. coli. Other reports had suggested that 

bacterial expressed WDR1 recombinant proteins were unstable (Oh et al., 2002) therefore 

various regions of hWDRl were selected to provide the GST-fusions. The production of 

the 90 amino acid C-terminal recombinant WDR1 protein (GSTC190) was produced in E.
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Figure 2.6 Recombinant WDR1 protein expression.

The production of recombinant GST-WDR1 in DH5a cells was assessed using SDS- 
PAGE analysis. The identification of GST-C190 (lane one, arrow), and the subsequent 
result of the two hour thrombin cleavage (lane two, arrow) and six hour cleavage (lane 
three, arrow). Within these lanes the cleaved GST fragments are visible (-28 kDa), and 
degradation products of incomplete cleavage reactions. The two consistently present 
bands indicated with two arrows in lane three are nonspecific interactions.
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coli and analyzed on a 10% SDS-PAGE gel. It was observed that although the complete 

60 kDa fusion protein was produced, it was significantly less abundant then the 28 kDa 

GST fusion tag (Figure 2.6, lane 1, arrow). The subsequent purification of the WDR1 

protein required thrombin cleavage of the protein from the GST-tag which was performed 

for either two or six hours (Figure 2.6, lane 2 & 3 respectively). The two hour digest 

resulted in the liberation of small amount of C l90 (as indicated by the arrow), and 

cleaved GST (-28 kDa), however complete C l90 protein degradation was observed after 

six hours (Figure 2.6, lane 3, arrow) indicating that although the cleaved protein was 

stable enough for expression, it was not stable enough for purification. To maximize 

protein stability two smaller recombinant proteins were designed against the GSTC190 

C- and N-termini (GSTC136 and GSTC158, Appendix A) predicted to encode 13 kDa 

and 14.6 kDa proteins respectively. However expression analysis demonstrated that 

neither of the two proteins was stable in sufficient abundance for purification and so it 

was decided that a synthetically derived peptide was to be used instead of the bacterially 

expressed protein.

To generate polyclonal antibodies against WDR1, a synthetically derived 

conserved 17 aa epitope in the N-terminus was synthesized in vitro and used to inject into 

rabbits. Purified serum was assessed for WDR1 specificity using over-expressed proteins 

in HEK 293 cells. As shown in Figure 2.7A all proteins were expressed in equal amounts 

and detected using anti-HA antibodies. However, only the WDR1 proteins in lanes 1 & 2 

and not the cofilin or CAP1 proteins in lanes 3 & 4 were detected on a western blot using 

the anti-WDRl antibody (Figure 2.7B).
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Figure 2.7 Anti-WDRl antibody specificity assays.

The specificity of the un-purified WDR1 polyclonal antibodies raised against synthetic 
WDR1 peptides was examined by western blot using HEK 293 cell extracts. A, the 
immunoprecipitated HA-tagged WDR1 (lane one), HA-WDN534 (lane two), HA-cofilin 
(lane three), HA-CAP1 (lane four), are shown with the total extracts of exogenously 
expressing HA-WDR1 (lane five), HA-WDN534 (lane six) and HA-CAP1 (lane seven) 
positive controls. B, the specificity of the un-purified anti-WDRl antibody was assayed 
and found to detect only the IP extracts of HA-WDR1 (lanes one & five) and the total 
extracts of HA-WDN534 (lanes two & six).
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Figure 2.8 In vivo localization of endogenous WDRL

The endogenous pattern of WDR1 localization was investigated using ICC confocal 
analysis of REF 52 fibroblast cells. Images A (400X total), G (600X), K (600X) display 
the endogenous WDR1 staining patterns. B (400X), E (600X), M (600X) indicate F-actin 
phalloidin staining. D (600X), H (600X), L (600X) show the localization of vinculin. C 
(400X), F (600X), I (600X), M (600X) display the merged images.
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Determination of Endogenous Localization of WDR1 within REF 52 Cells:

To detect the presence and localization of endogenous WDR1, the WDR1 

antibody was utilized in ICC confocal analysis of REF 52 cells. Interestingly, it was 

observed that WDR1 proteins localized to the end of actin filaments in a pattern similar 

to the FA protein vinculin (Figure 2.8, A-C, D-F). The localization of vinculin to the FA 

with actin was first established (Figure 2.8, D-F) and was contrasted to the endogenous 

expression pattern of WDR1 (Figure 2.8., A-C). The results demonstrate a similar pattern 

of localization for both WDR1 and vinculin, as WDR1 appeared to co-localize with 

vinculin at the barbed ends of actin filaments (Figure 2.8, G-I, K-M). The localization 

pattern of cofilin was also compared to vinculin (as cofilin and WDR1 cannot be 

simultaneously detected since both are rabbit antibodies). It was observed that the pattern 

of cofilin localization was quite distinct from that of WDR1 and vinculin, and was 

general and diffuse however higher amounts of cofilin were co-localized to both filament 

termini and lamellipodia with vinculin (Figure 2.9, A-C). A similar pattern of general 

diffuse staining was observed for CAP1 with increased intensity within cortical actin 

regions (Figure 2.9, D-F).

The localization of WDR1 with P-tubulin was also investigated with confocal 

analysis as tubulin is an element of the FA complex; however no evidence to support an 

interaction was collected as the two proteins do not appear to localize together (Figure 2.9, 

G-I).
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Figure 2.9 In vivo localization of additional actin interacting proteins.

The endogenous expression patterns of cofilin, CAP1, and P-tubulin proteins were 
examined in REF 52 cells with confocal analysis. A (1200X) displays the staining pattern 
of cofilin. D (1200X) shows endogenous CAP1 expression. B (1200X) & E (1200X) 
detail the pattern of vinculin localization. G (400X) demonstrates WDR1 staining. H 
(400X) indicates p-tubulin localization. C (1200X), F (1200X), I (400X) are the merged 
images.
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Figure 2.10 Interactions of WDR1 with actin.

The interactions of WDR1 with actin were investigated using immunoprecipitation 
analysis of transfected HEK 293 cells. A, the expression of HA-tagged WDR1 (lane one), 
WDN534 (lane two), cofilin (lane three), and CAP1 (lane four) was confirmed as shown. 
B, the blot was then striped and reprobed for actin. The presence of actin was observed 
within the immunoprecipitated extracts of HA-WDR1 (lane one), HA-WDN534 (lane 
two), and the two positive controls HA-cofilin (lane three), and HA-CAP1 (lane four).
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Determination of WDR1 Protein Interactions:

Previous studies have suggested that WDR1/ Aipl proteins interact with elements 

of the actin cytoskeleton (Amberg et al., 1995; Konzok et a l, 1999; Okada et al, 2002; 

Ono, 2001). Therefore the ability of WDR1 to interact with actin was tested using co­

precipitation experiments. The presence of actin in the immunoprecipitated protein 

extracts of exogenously expressed HA-tagged WDR1 and WDN534 from REF 52 cells 

demonstrated that both WDR1 proteins were able to interact with actin (Figures 2.10A & 

2.10B, lanes 1 & 2). The actin binding abilities of two established actin interacting 

proteins, cofilin and CAP1 were assayed as positive controls and were confirmed to 

interact with actin (Figure 2.1 OB, lanes 3 & 4). Total cellular actin was used in lane 5 as a 

positive marker (Figure 2.1 OB). Therefore, this confirms that both human isoforms of 

WDR1 can interact with actin.

The ability of HA-tagged WDR1 to bind other actin binding proteins was tested 

using co-expressed MYC-epitope proteins and immunoprecipitation experiments. 

Therefore, the ability of HA-WDR1 to bind MYC-cofilin, MYC-CAP1, MYC-WDN534, 

or other MYC-WDR1 proteins was tested in HEK 293 cells using anti-HA IP reactions 

and analyzed using anti- HA and anti-MYC western blots. Interestingly the WDR1 

proteins were found to bind both themselves and each other (Figure 2.11A & 2.11B, 

lanes 1 & 3) and a combination of the two (Figure 2.11A & 2.11B, lane 2). However, 

using the previous IP conditions no interaction with cofilin was detected (Figure 2.1 IB & 

2.11C, lane 4) or with CAP1 (data not shown).

The apparent similar localization of endogenous WDR1 and vinculin within cells 

led to an investigation of whether WDR1 could physically interact with vinculin.
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Figure 2.11 Interactions of WDR1 with additional actin interacting proteins.

The interactions of WDR1 with selected actin proteins were examined in HEK 293 cells 
using double IP experimental technique. A, the verification of immunoprecipitated HA- 
constructs of WDR1 (lanes one, two and four), WDN534 (lane three), CAP1 (lane five). 
B, the identification of MYC-tagged protein presence within the IP extracts of WDR1 
(lane one), WDN534 (lanes two and three), and CAP1 (lane four). C, the conformation of 
the expression of MYC-tagged constructs of WDR1 (lane one), WDN534 (lane two and 
three), cofilin (lane four), and CAP1 (lane five) within the total extracts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89



33
B
85 “  
46 “
33 

26 -  

19.5

85
46

33

26

19.5

Qtiti -HA

1

anti-MYC
1 2 3 4 5

anti-MYC 
Figure 2.11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.12 Interactions of WDR1 with vinculin.

The interaction of WDR1 with the FA protein vinculin was examined in REF 52 cells 
using IP experiments and western blotting analysis. A, the presence of vinculin was 
indicated within positive vinculin control (lane five), however not in lanes one-three. B, 
the identification of HA-WDR1 (lanes one, two and three) and HA-WDN534 proteins 
within REF 52 total cell extract was verified.
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Therefore, the potential interaction between vinculin and each of the exogenously 

expressed HA-WDR1 and HA-WDN534 proteins was assayed using IP and western blot 

analysis. Under the experimental conditions used no apparent interaction was observed 

between either WDR1 (Figure 2.12A & 2.12B, lanes 1-3) or WDN534 (Figure 2.12A & 

2.12B, lane 4). A sample of REF 52 cell extract was used as a positive vinculin control 

(Figure 2.12A, lane 5).

WDR1 Protein Expression within Human and Rat Cell Lines:

The conserved evolution of WDR1 orthologs suggests an essential and conserved 

cellular function of WDR1 proteins. To determine the conserved nature of hWDRl 

proteins the endogenous patterns of WDR1 expression in several different human cell 

lines and a rat cell line were compared. The patterns of endogenous WDR1 expression 

within a variety of transfected and non-transfected cells were examined. Western blot 

analysis was performed on the total protein extracts of MCF7, DU145, REF, Calu, U87, 

and HEK 293 cells (Figure 2.13, lanes 1-6) cells in addition to HEK 293 cells expressing 

exogenous HA-WDR1 and WDN534 proteins (as positive controls) (Figure 2.13A-B, 

lanes 7& 8, 2.13C, lanes 1 & 2). The anti-HA WDR1 control extracts were used to 

determine relative WDR1 protein size (Figure 2.13C, lanes 1 & 2). The anti-WDRl 

staining revealed the presence of bands ranging from 46-70 kDa, however it was observed 

the DU145, Calu, and U87 cells lines (Figure 2.13A, lanes 2, 4, 5) all expressed both the 

full length 60 kDa WDR1 and a typically amount of the truncated 50 kDa proteins. The 

U87 cell line was also observed to express a 65 kDa band (Figure 2.13A, lane 5). 

Interestingly, the MCF7 and HEK 293 cells expressed only the truncated isoform in 

significant quantity (Figure 2.13A, lanes 1 & 6). Additionally, the MCF7 cells were shown
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Figure 2.13 Expression of WDR1 within human and rat cell lines.

The expression pattern of WDR1 within several human and rat cell lines was examined 
using anti-WDRl SDS-PAGE analysis of total cell protein extracts. A, the expression of 
WDR1 proteins was examined within MCF7 (lane one), DU 145 (lane two), REF 52 (lane 
three), Calu (lane four), U87 (lane five), HEK 293 (lane six) using a positive controls of 
both WDR1 and WDN534 (lane7), and a WDN534 (lane 8). B, expression analysis of 
vinculin (lanes one to eight) on the same blot containing the same cell lines described 
above. C, Verification of WDR1 size determinations using HA-WDR1 and HA-WDN534 
(lane one), and HA-WDN534 (lane 2).
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to express a 46 kDa band (Figure 2.13A, lane 1). The REF 52 cell line also demonstrated 

expression of the truncated isoform; however this cell line also significantly expressed a 

larger ~7Q kDa protein (Figure 2.13A, lane 3). The identity of the 46, 65 and the 70 kDa 

proteins are still unknown. The apparent display of differential protein expression 

between the non-transformed and carcinoma cell lines may be an indication of an 

apparent difference in the cellular functions of WDR1 and WDN534 during cell growth, 

division and attachment. Additionally, the ICC data demonstrating the co-localization of 

WDR1 and vinculin proteins may suggest a role for WDR1 within the FA complex, so 

vinculin expression was also assayed as a marker of FA activity. The protein extracts 

found to express a relatively consistent amount of vinculin protein as only a slight 

difference of amounts could be observed between cell lines (Figure 2.13B, lanes 1-8).

Together these results indicate that hWDRl is expressed in a variety of human 

tissues and can associate with the actin cytoskeleton. The results also suggest WDR1 may 

form oligomeric complexes with itself which may influence its function and potential 

binding partners in both transformed and non-transformed cells.

Discussion:

The mammalian actin cytoskeleton directs numerous vital cellular processes, and 

yet complete characterizations of the many proteins effecting actin remodeling remain 

unknown. WD proteins have been reported to interact with both cofilin and actin to 

enhance filament depolymerization in several organisms (Konzok et al., 1999; Okada et 

al., 2002; Okada et al., 1999; Rodal et al., 1999). To identify and describe mammalian 

WDR1 both the full length 1821 bp cDNA gene and a 1534 bp C-terminal truncated
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isoform (WDN534) was amplified using primers designed against compiled cDNA 

fragments. The 1821 bp WDR1 cDNA showed 22% and 95% sequence homology to the 

reported WDR1 yeast and rat sequences. The identification of the truncated isoform 

WDR1 appears unique amongst other WDR1 transcripts confirmed within other species. 

The complex genome of Xenopus has been observed to express a possible isoform 

transcript lacking a portion of the N-terminus WT sequence, although it was reportedly a 

product of genome tetraploidy and was not considered to be of genuine expression 

(Okada et al., 2002; Okada et al., 1999). Organisms such as C. elegans have been 

reported to contain two WDR1 genes both expressed in a tissue specific manner; however 

this pattern is currently unique to this species (Mohri and Ono, 2003; Ono, 2001).

Sequence analysis of WDR1 and truncated WDN534 fragments described the 

presence of nine and seven repeated WD motifs respectively. These motifs are known to 

encode four anti-parallel beta-sheets able to interact and produce a beta-propeller blade 

tertiary structure ((Adams et al., 2000; Gettemans et al., 2003)). Typically WDR1 

orthologues have been reported to contain between eight and fourteen WD motifs, 

however structure analysis of both yeast and C. elegans WDR1 described fourteen WD 

motifs producing two-seven blade domains (Ono, 2003; Voegtli et al., 2003). Structural 

identification of hWDRl will be intriguing due to the odd number of WD motifs. Further 

analysis of WD motif sequences of hWDRl, S. cerevisiae and S. pombe identified three 

WD motif domains exhibiting 82.5%, 91.2%, and 84.5% amino acid homology to the 

Drosophila kelch protein motif (Figure 2.2). Interestingly, of the three WD motifs of 

hWDRl displayed the most homology to Kelch motifs are primarily characterized by the 

presence of conserved C-terminal WD and N-terminal GH repeats bracketing a 44-56
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conserved amino-acid known to encode a beta-propeller consisting of four anti-parallel 

beta-sheets. Although the position and number of kelch motifs is variable within kelch 

proteins, they are typically known to mediate protein interactions and several have been 

shown to interact with actin (Adams et a l, 2000; Gettemans et al., 2003; Kim et al, 1999). 

The two Drosophila kelch proteins kelch and actinfilin each contain 6 C-terminal kelch 

motifs through which they bind and regulate the actin cytoskeleton during cytoplasmic 

nutrient transfer between nurse cell and oocytes and facilitate long-term memory storage 

(Adams et al., 2000; Chen et al., 2002). Another kelch protein, a-Scruin has twelve WD 

motifs which bind actin and regulate the bundling of F-actin during the acrosomal 

reactions in sperm cells (Adams et al., 2000; Way et al., 1995). Therefore, the presence of 

kelch-like motifs within WDR1 together with the observations that WDR1 interacts with 

both itself and actin implies a role of WDR1 for actin turnover in human cells.

Protein expression analysis revealed the presence of two isoforms exhibiting 

approximately 10 kDa difference in size. The size of full length hWDRl is currently 

consistent with the average size of known WDR1 proteins which range from 60-70 kDa; 

however no previous WDR1 studies have demonstrated the expression of a truncated 

isoform. Interestingly, Okada et al., (1999) identified several polypeptides in the cofilin- 

affmity column used to isolate the 65 kDa full length xAipl including a 55 kDa peptide 

which could have represented the expression of the identified N-terminal truncated 

transcript, however further study is needed to confirm the identity of this protein (Okada, 

et al., 1999).

WDR1 expression studies with both chick and Xenopus showed WDR1 was 

expressed within embryos non-specifically, and adult chick tissue analysis confirmed the
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conserved expression pattern within multiple tissue types including muscle, heart, liver, 

kidney, and brain (Konzok et al., 1999; Oh et al., 2002; Okada et al., 2002; Okada et al., 

1999). However several reports also demonstrated tissue-specific functions of WDR1 

which correlated to the location of cells containing high amounts of F-actin (Adler et al, 

1999; Mofari and Ono, 2003). Chick WDR1 was identified as one of three genes up- 

regulated during tectorial membrane and hair ceil regeneration within the auditory 

epithelium of acoustically damaged cochlea, and the WDR1 C. elegans ortholog localizes 

exclusively within body wall muscle, pharynx, and the spermatheca (Adler et al., 1999; 

Mohri and Ono, 2003).

Our investigation of hWDRl tissue expression revealed both hWDRl and 

hWDN534 are expressed in a conserved pattern since WDR1 cDNA for both isoforms 

were isolated from human lung, kidney, liver, heart, brain, and trachea total RNA. Further 

examination of WDR1 expression in rat brain supported the conserved pattern of 

expression as WDR1 was detected within the cerebellum, frontal cortex, post cortex, pons, 

spinal cord, medulla and hippocampus samples. These tissues represented a relatively 

limited collection of cell types. Therefore to determine the cellular expression of WDR1, 

rat pheochromocytoma, rat embryonic fibroblast, human embryonic kidney, breast 

adenocarcinoma, brain astrocytoma, and lung and prostate cancer cell lines RNA extracts 

were used to reveal the presence of a 3.0 kb WDR1 transcript in all cells. The analysis also 

revealed the presence of a smaller 2.2 kb transcript which is thought to encode truncated 

WDN534. Interestingly, Ichii et al., (2001) previously suggested hWDRl was -3.0 kb 

however cDNA analysis and northern blot analysis in Xenopus and chick (respectively)
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have suggested the existence of two WDR1 transcripts -3.0 kb and -2.0 kb, therefore 

these results strongly suggest the existence of two WDR1 transcripts.

Further characterization of cellular WDR1 expression was performed using 

purified antibodies directed against a synthetically derived 17 amino-acid peptide as the 

attempted production of four recombinant GST-WDR1 proteins in E. coli yielded unstable 

protein fragments. Interestingly, both recombinant chick and C. elegans WDR1 fusion 

proteins were unstable and subsequently their characterization required the production of 

antibodies targeted against a synthetically-derived WDR1 epitope (Mohri and Ono, 2003; 

Oh et al., 2002; Ono, 2003). The successful production of bacterially generated stable 

recombinant Xenopus and yeast WDR1 suggested that some WDR1 fusion proteins are 

stable and can be produced with enough yield to be utilized for antibody production 

(Okada et al., 1999).

In vivo WDR1 was shown to localize to the barbed-ends of actin filaments both 

w ithin areas undergoing active actin dynamics and within stable actin structures. The 

localization of WDR1 to the barbed-end of filaments appeared similar to vinculin FA 

expression. Additional investigation of the relative localization of two actin interacting 

proteins, cofilin and CAP1 demonstrated both co-localize with WDR1 to areas of dynamic 

actin remodeling, however both cofilin and CAP1 demonstrated a diffuse expression 

pattern and lack the distinct pattern of filament association displayed by WDR1. The 

difference in localization expression of the three proteins may indicate that any interaction 

between these proteins may be indirect or transient.

The ICC co-localization indicated that WDR1 and vinculin may be present within 

the FA complex; however a direct HA-WDR1 -vinculin interaction was not detected using
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IP analysis. A direct interaction between WDR1. and the two actin-interacting proteins 

cofilin and CAP1 was also not observed. Recently these proteins had been shown to 

interact with complexes isolated from S. cerevisiae, additionally all WDR1 currently 

characterized have been shown to interact with cofilin and actin (Balcer et al., 2003; Ono, 

2003; Rodal et al., 1999). We were able to determine mammalian WDR1 was able to 

interact with actin which is a defining feature of all WDR1 proteins and additionally we 

identified novel oligomeric complex interactions between each of the two WDR1 isoforms 

as well as with WDR1 and WDN534. WDR1 homo and/or hetero oligomeric interactions 

have not been previously reported, and their formation may influence WDR1 function or 

potential binding partner interaction. These oligomeric interactions have been well 

established in vivo for several kelch proteins that are only able to interact with actin after 

dimerization, which may provide future insight into the functional purpose of the 

interaction (Adams et al., 2000; Gettemans et al., 2003; Robinson and Cooley, 1997). The 

kelch protein a-scruin has been established to form homodimers and enhance the 

structural stability of actin filaments bundled by the protein (Adams et al., 2000; Way et 

a l, 1995).

To further characterize the function of WDR1 the in vivo endogenous expression 

patterns of WDR1 within rat embryonic fibroblast, human embryonic kidney, breast 

adenocarcinoma, brain astrocytoma, and lung and prostate cancer cell lines demonstrated 

dramatically different WDR1 and WDN534 expression patterns. Comparisons of the 

expression profiles of cofilin, CAP1, vinculin and actin revealed WDR1 was the only 

differentially expressed protein within each cell line, which could suggest a regulatory 

function of the oligomeric WDR1 protein complex as these cell lines display dramatically
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different actin cytoskeletal properties. Further characterization of the interactions of 

WDR1 with both itself and other proteins within additional species is required. However, 

this data implicates a potential regulatory function of mammalian WDR1 proteins within 

essential and conserved actin-based cellular processes.
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Chapter Three

Determination of WDR1 Proteins Functions during Cell Migration,

Attachment, & Neurogenesis

Introduction:

Elucidating the complex cytoskeletal signal transduction pathways of cell 

attachment, adhesion and neurogenesis is important for understanding the basic 

mechanisms of cell behaviour and the numerous diseases that result from perturbations in 

these processes. Actin has been established to be a dominant cytoskeletal element 

essential for effecting a wide range of morphological changes such as endocytosis, 

exocytosis, cell cycle, neural extension and cell movement. Actin remodeling occurs 

through the activation of filament capping proteins, bundling proteins, severing proteins 

and monomer sequestering proteins in response to extra-cellular (EC) signals (Adjei, 

2001; Kroeze et al., 2003). The recent focus of actin signaling has concentrated on the 

three main G-protein families of the Rho superfamily; the Rho, Rac and Cdc42 families 

which have all been shown to regulate actin rearrangement, neurogenesis, cell cycle 

progression and have all been implicated in cell transformation (Hall, 1998b; Nobes and 

Hall, 1999; Olivo et al., 2000). The Rho signaling proteins have additionally been 

classified as regulators of actin stress fiber formation and of focal adhesion formation and 

maintenance (Bishop and Hall, 2000). Rho is activated by adhesion of integrin receptors
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and initiates FA formation through the activation and recruitment of essential linking 

proteins such as talin, vinculin, a-actinin and filamin (Bailly et al, 2003; Bass et al., 

2002; Nobes and Hall, 1995). The FA linking proteins associate with Rho-recruited stress 

fibers and microtubules to localize the filaments to the FA protein complexes (Critchley, 

2000; Critchley et al., 1999). The Rac and Cdc42 G-proteins have shown to cooperate 

within the leading edge of migrating cells interact to generate motility (Hall, 1998a; 

Nobes and Hall, 1999; Xu et al., 2003). Rac has been established to induce the formation 

of lamellipodia in migrating cells and recruit Cdc42 which has been proven to generate 

the filopodia and microvilli extensions required for motility (Bishop and Hall, 2000; Hall 

and Nobes, 2000; Machesky and Hall, 1997). Rac and Cdc42 proteins are also localized 

to the tips of neurites during neurogenesis and regulate the actin dynamics within the 

growth cone (P & T domains) (Gungabissoon and Bamburg, 2003; Sarmiere and 

Bamburg, 2004). Rho functions to bundle actin filaments to provide strength and 

extension force during neurogenesis at the base and shaft of the neurite (C domain) 

(Bishop and Hall, 2000; Sarmiere and Bamburg, 2004).

The function of actin interacting proteins can be elucidated by the cellular 

localization exhibited during these dynamic actin processes. We have shown WDR1 

localizes to the leading edge of migrating cells and to the tips of neurites during 

neurogenesis. Additionally we have observed a novel role for WDR1 proteins functioning 

in cell adhesion at FA complexes.
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Material & Methods;

WDR1 Protein Expression within Human and Rat Cell Lines:

The WDR1 protein expression patterns of MCF7, DU145, REF, Calu, U87, and 

HEK 293 human and rat cell lines were assayed using western blot analysis of total 

protein extracts. The cells were grown to -80% confluency on 60 mm dishes and scraped 

off the plate in 0.5 ml of RIP A buffer (defined previously in chapter 2). The protein 

extracts were obtained by sonicating the cells in RIP A buffer and centrifugation and 

examined using an anti-WDRl antibody (1:2000) for detection on a 10% PAGE followed 

by western blotting (as detailed in chapter 2). The blot was then striped for 1 hour at 37 C 

with Restore Western Blot stripping buffer (Pierce), washed three times with IX PBS and 

reprobed with the 12CA5 anti-HA antibody (1:5000) to target the HA-WDR1 protein 

controls (as described in chapter 2). The blot was stripped as described above and the 

pattern of vinculin expression was investigated using an anti-vinculin monoclonal 

antibody (1:500) (Cytoskeleton, Inc.).

Immunocvtochemical Analysis:

The relative localization of WDR1 with actin and the other actin interacting 

proteins vinculin, cofilin, CAP1, and p-tubulin in REF 52 fibroblasts was investigated 

using ICC analysis performed as described in chapter 2 in the following assays.

Migration Analysis:

Fibroblast migration was stimulated through the removal of one half of -95% 

confluent REF 52 cells from the CS using a cell scraper (Sarstedt). This stimulated the 

remaining cells to migrate into the vacant area of the CS. ICC confocal analysis was 

performed 12 hours after wounding.
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Attachment Analysis:

Analysis of cell attachment was performed using ICC confocal analysis as 

detailed in chapter 2 with the exception that the REF 52 cells (~85%-90% confluent) 

were re-plated (1:5) on CS and fixed in 3.7% formaldehyde in IX PBS at 6, 12, and 24 

hour time points after splitting. ICC confocal detection of WDR1, vinculin, cofilin, 

CAP1, F- actin and P-tubulin proteins was performed as outlined in chapter 2.

The role of WDR1 protein during cell adhesion was investigated using the partial 

enzymatic removal of fibroblast cells with trypsin and subsequent ICC analysis of protein 

localization. REF 52 cells were grown on CS until cells were ~85%-90% confluent, then 

the CS were immersed in 37° C IX Trypsin/EDTA (Sigma) for 3-5 minutes or for 

specific time points of 3, 4, 6 or 10 minutes. Immediately following the trypsin 

treatments the CS were fixed in 3.7% formaldehyde IX PBS for ICC detection of WDR1, 

vinculin, cofilin, CAP1, F- actin and P-tubulin protein localizations.

Actin Disruption Analysis:

The influence of actin dynamics on the stability of the WDR1 barbed-end protein 

caps was examined using two G-actin sequestering agents known to inhibit in vivo actin 

polymerization and disrupt focal adhesion formation, latrunculin A (lat A, Sigma) and 

cytochalasin D (CD, Sigma) (Geiger et al., 2000; van Kooyk et al., 1999). The lat A 

treatments were performed on REF 52 cells (~65%-75% confluent) maintained in 

DMEM media (10% FBS + 1% P/S, Sigma) and supplemented with 2 nmol/ ml of lat A 

for 5, 10 or 20 minutes at 37 C before immediate 3.7% formaldehyde IX PBS fixation. 

The localization of WDR1, vinculin, cofilin, CAP1, F- actin and P-tubulin proteins was 

then determined using ICC confocal microscopy. The CD assays were done in the same
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manner using REF 52 cells maintained in DMEM media (10% FBS + 1% P/S, Sigma) 

and subjected to 8, 12, and 20 minute treatments of 5 fig /ml of CD (Sigma) at 37 C 

before ICC fixation and staining as performed for the lat A treatments.

Neurogenesis:

The endogenous localization of WDR1, cofilin, CAP1, CAP2, tubulin and F-actin 

proteins during neurogenesis was investigated using the rat PC 12 neural model of 

differentiation (described above). The cells were grown on acid washed CS (as described 

in chapter 2) which had been etched for approximately 2-3 minutes with sterile metal 

needle-tipped tweezers and washed briefly in 95% ethanol. The cells were maintained as 

described above and washed with Dulbeco’s low serum media before the addition of 

Dulbeco’s low serum media supplemented with NGF (as described). The cells were 

differentiated for 1, 3, 5 and 10 days before fixation in 3.7% formaldehyde IX PBS for 

ICC analysis. The localization patterns of WDR1, cofilin, CAP1, CAP2, tubulin and F- 

actin were then examined using ICC confocal analysis with the previously described 

antibody concentrations (chapter 2).

Neural Differentiation and RT-PCR Analysis:

To examine the regulation of WDR1 during the actin driven process of 

neurogenesis, reverse transcriptase polymerase chain reaction experiments were 

performed on the RNA of rat pheochromocytoma (PC 12) cells during neural growth 

factor (NGF) induced differentiation. The PC 12 cells were maintained DMEM 

supplemented with 10% FBS, 5% horse serum and 100 units/ ml of penicillin/ 

streptomycin (P/S) and differentiated in Dulbeco’s low serum media [1% FBS, 0.5% HS, 

and 1% P/S] supplemented with 100 ng/ml of murine submaxillary gland NGF. The cells
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were differentiated on two sets of 10 cm plates for 0.5, 1, 2, 3, 4 and 5 day periods after 

which total RNA was isolated using a mammalian RNA isolation kit (Sigma) as per kit 

instructions with the exception that the RNA was concentrated in 30 pi during elution. 

The two control plates were prepared in Dulbeco’s low serum media (above) without 

NGF for 5 days and the total RNA was collected as described above.

To examine any differential expression of WDR1 and WDN534 during 

neurogenesis the two primer sets detailed in chapter 2 were used to target the commonly 

shared 400 bp N-terminal sequence (#133F & #155R) and the unique 600 bp sequence of 

the WDR1 C-terminus (#156F & #139R) (appendix A). To quantify the expression of 

both of the WDR1 targets, the two amplicons were amplified in a triplex PCR with 

GAPDH, which functioned as an internal control. The PCR was performed using either a 

Robo Cycler PCR machine (Stratagene). The PCR was completed by initially using a 5 

minute 95° C heating to disrupt any internal secondary or tertiary interactions of the 

template or primer nucleotides and a repetition of cycles consisting of a melting 

temperature of 94° C for 45 seconds, an annealing temperature of 50° C for 1.5 minutes, 

and an extension temperature of 70° C for 2 minutes each cycle. Prior to the final cycle 

the reactions were heated for an additional 10 minutes at 70° C then immediately cooled 

to 4° C before ethidium bromide agarose gel analysis. Saturation experiments were then 

performed to determine the number of cycles required to maximize the amplification of 

the most prevalent amplicon and saturate the pixel detection of the visualization system 

used. The maximum amount of cycles was determined to be 35 cycles and so each 

quantification PCR experiment was limited to 25 cycles and was repeated 14 times. The 

quantification of the three amplicons was performed using 7-10 pi of each reaction
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separated on a 1.2% agarose gel and stained with ethidium bromide for 30 minutes 

followed by a 30-45 minute wash in ddtUO to remove excess ethidium bromide. Using 

an Alpha Innotec gel imaging system, the WDR1 amplicon intensities of each sample

were compared to the internal GAPDH control intensity.

Results:

WDR1 Localizes Along the Leading Edge during Cellular Migration:

The process of cellular motility requires the entire remodeling of the cytoskeleton 

which is accomplished through regulated actin filament rearrangement, including 

synthesis and depolymerization. Identifying the location of a protein relative to 

characterized proteins within a motile cell can allow for reasonable extrapolation of 

potential function. Therefore, to investigate the function of WDR1 within motile cells the 

localization of WDR1 and cofilin were examined using ICC confocal microscopy. Both 

proteins were observed to localize to the leading edge of migrating REF 52 fibroblast 

cells (Figure 3.1). WDR1 localized to the leading edge as thick filamentous structures 

associated the barbed-end of actin filaments (Figure 3.1, A-C). The localization pattern of 

cofilin was similar to WDR1 in that cofilin localized to areas of actin dynamics however 

cofilin exhibited diffuse distribution across the entire lamellae and did not appear 

restricted to filament ends as was observed for WDR1 (Figure 3.1, D-F). The localization 

of cofilin along the cortical leading edge actin pool corresponded with WDR1 expression 

during cell migration and may suggest an actin-based interaction between the two 

proteins (Figure 3.1, A & D). The localization of vinculin was not assayed in these 

experiments however it is known FA establishment (requiring vinculin localization)
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Figure 3.1 Localization of WDR1 within migrating fibroblast cells.

The endogenous expression pattern of WDR1 during cell migration was examined in 
REF 52 cells using ICC confocal analysis. A, the localization of WDR1 (400X) is shown. 
B, details F-actin (400X). D, demonstrates the localization of cofilin (600X). E, shows 
the F-actin (600X). C (400X) & F (600X) detail the merged images.
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occurs at the leading edge of migrating cells (Bass et al, 2002; Critchley, 2000; Kaverina 

et al., 2002b; Pollard and Borisy, 2003; Rogers et al., 2003; Small et al., 2002). 

Identification of a Novel Function of WDR1 during Cell Adhesion:

The process of cellular adhesion requires both the formation of stable actin 

structures for cell attachment and rapid remodeling and dissociation of those structures 

for cell migration and division and therefore requires the interaction of an abundance of 

actin interacting proteins. The in vivo localization pattern of WDR1 demonstrated the co­

localization of WDR1 with the barbed-ends of actin filaments. Interestingly, the co­

localization of WDR1 with vinculin suggested WDR1 may also interact at FA complexes 

to maintain cell adhesion. To determine whether WDR1 functions in cell attachment REF 

52 cells were trypsinized for 3-4 minutes and fixed for ICC confocal analysis. The 

endogenous WDR1 pattern of localization with F-actin was confirmed (Figure 3.2, A, C,

E) as it was observed WDR1 localized to the barbed ends of actin filaments as well as the 

peripheries of the filaments as described in chapter 2. The analysis of WDR1 location 

during attachment was determined from the ICC staining of trypsin treated fibroblasts. In 

detaching cells, WDR1 localized to the immediate cell periphery and demonstrated actin 

filament barbed-end binding. Interestingly, it was observed that WDR1 staining remained 

in specific areas on the CS after cell detachment (Figure 3.2, A, C, E). This was a 

repeatable observation and suggests the WDR1 protein provided an attachment function 

to the cell prior to trypsinization. This WDR1 staining pattern left on the CS will be 

referred to in this chapter as the WDR1 aggregate complexes (WACs). This pattern was 

compared to that displayed by actin which was shown to reveal two actin filament pools 

(Figure 3.2, B, D, F); the dynamic cortical leading edge of condensed filaments
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Figure 3.2 Investigation of WDR1 using trypsin-treatment assays.

The localization of WDR1 during cell adhesion was explored using ICC confocal 
examination of detaching REF 52 cells. A (400X), C (600X), E (600X) detail the 
endogenous pattern of WDR1 localization. B (400X), D (1200X), F (2400X) show the in 
vivo F-actin pools.
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(corresponding to WDR1 localization, Figure 3.2, G, lower portion) and the stronger 

more stable interior F-actin stress fiber pool (Figure 3.2, G upper portion).

To further clarify the functional interaction between WDR1 and actin during cell 

attachment, REF 52 cells were trypsinized for 3-4 minutes and the relative localizations 

of WDR1 and actin was examined. WDR1 was observed to localize in thick microspikes 

at the immediate edge of adhering cells and remained attached to the CS after cell 

detachment as short filamentous-type structures described previously (WACs) (Figure 

3.3, A, D, G). The staining of trypsinized REF 52 cells with phalloidin identified the 

presence of F-actin within both the cellular cortical WDR1 and to a notably lesser extent 

the attached WACs (Figure 3.3, A, B, D, E, G, H). Actin often appeared to be present 

only in small quantities and was not consistently localized with WDR1 as some WAC 

structures lacked phalloidin staining (Figure 3.3, A, B, D, E, G, H). These data suggest 

WDR1 interacts with either cortical actin or the barbed termini of stable F-actin fibers at 

the periphery of the cell to affect cell migration and attachment.

A dramatically different pattern was observed for the membrane-associated FA 

protein vinculin which appeared to dissociate from FA complexes prior to trypsin 

disruption and diffusely relocate deep within the cytosol (Figure 3.4, E & G). Vinculin is 

an established marker of FA complexes and the diffuse pattern within trypsinized cells is 

indicative of the dissociation of FA attachments (Critchley, 2000; Kaverina et al., 2002b; 

Small et al., 2002). The relative localization of vinculin with WDR1 was examined and 

confirmed the absence of vinculin from the WACs and the retracting cortical actin 

cytoskeleton (Figure 3.4, D-F). These data suggest WDR1 does not interact within FA 

complexes as vinculin localization was disrupted upon trypsin treatment, which is
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Figure 3.3 Co-localization analysis of WDR1 with actin during cell detachment.

The relative localization of WDR1 with actin during cell detachment was examined in 
REF 52 cells through ICC confocal experimentation. A (400X), D (400X), G (400X) 
identify endogenous WDR1 localization. B (400X), E (400X), H (400X) detail the F- 
actin. C (400X), F (400X), I (400X) show the merged images.
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Figure 3.4 Co-localization analysis of WDR1 with vinculin during cell detachment.

The relative localization of WDR1 was compared with confocal analysis to vinculin 
localization during REF 52 trypsin-mediated cell detachment. A (400X), & D (400X) 
endogenous WDR1 localization. B (400X), & H (400X) show F-actin. E (400X), & G 
(400X) detail vinculin expression. C (400X), F (400X), I (400X) show the merged 
images.
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indicative of FA disassembly as vinculin only interacts with intact FA complexes (Bailly, 

2003; Bass et al., 2002; Critchley, 2000). The difference between the loss of vinculin 

localization and the persistence of WDR1 filament localization after trypsin treatment 

suggests WDR1 is probably not a FA protein. The data for WDR1 localization however 

support a model of WDR1 barbed-end actin filament capping protein in conjunction with 

cell attachment.

To further investigate the attachment function of WDR1, the localization patterns 

of the actin interacting proteins CAP1 and cofilin within the WACs was contrasted to 

WDR1 expression. The ICC staining of trypsinized REF 52 cells revealed cofilin also 

localized at the retracting edges of detaching cells and associated in very slight amounts 

within WACs containing the small proportion of the attached actin filaments (Figure 3.5, 

A-C). A similar pattern was observed for CAP1 expression as CAP1 also localized to the 

retracting edges of cells and remained bound only within WACs containing actin 

filaments (Figure 3.5, D-F).

To further determine potential interactions of other FA complex proteins, the 

localization of P-tubulin during cell detachment was examined using the trypsin assay. 

The localization of p-tubulin after trypsin treatment was examined and observed to be 

similar to vinculin as p-tubulin also appeared to disperse diffusely within the cytosol as 

cell detached and was absent from the WACs (Figure 3.5, G-I). The lack of co­

localization of p-tubulin with actin confirmed the lack of P-tubulin localization within the 

WACs (Figure 3.5, G-I).

To determine the persistence of the WDR1 staining within the WACs, a time 

course of trypsinization of REF 52 cells was performed. The cells were grown and treated
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Figure 3.5 Co-localization analysis of WDR1 with actin associating proteins.

The relative localization of additional actin interacting proteins was investigated using 
trypsinization assays and confocal analysis of REF 52 cells. A (400X) shows the 
endogenous localization of cofilin. D (400X) details CAP1 expression. G (400X) 
demonstrates P-tubulin localization. B (400X), E (400X), H (400X) compare F-actin. C 
(400X), F (400X), I (400X) detail the merged images.
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for either 3, 4, 6, or 10 minutes of trypsin before immediate formaldehyde fixation 

(Figure 3.6). After three minutes the cell contacts were enzymatically cleaved and the 

cells were beginning to retract with WDR1 remaining at the ends of actin filaments. The 

appearance of short thick WACs staining with a slight amount of F-actin was also visible 

(Figure 3.6, A-C). Four minutes of trypsin treatment increased the number of detaching 

cells and consequently resulted in an increase in the number of filamentous attachment 

structures that were left on the CS. However WDR1 was still localized within the cell at 

the end of retracting actin cables (Figure 3.6, D-F). After six minutes of treatment the 

cells were almost completely removed from the CS and exhibited a dramatic reduction in 

size and distinct actin filament visualization was difficult, but some WDR1 appeared to 

localize to the retracting cell edge while most WDR1 remained bound to the CS (Figure 

3.6, G-I). After 10 minutes, the cells were completely removed from the CS and only 

WACs staining was visible in conjunction with a slight amount of actin (Figure 3.6, J-L).

WDR1 Localization to Cortical Actin of Adhering Cells

To investigate the function of WDR1 during cell attachment, confocal analysis of 

WDR1 localization during the settling and attachment of REF 52 cells on CS was 

performed. REF 52 cells were split into a tissue culture dish containing several CS and 

were stained for actin and WDR1 at 6, 12, and 24 hours after cell settling. Analysis of the 

cells after 6 hours of attachment revealed circular cells containing continuous 

lamellipodia with uniform thick filamentous microspike structures of WDR1 localized 

along cortical actin fibers (Figure 3.7, A-C). After 12 hours, WDR1 filamentous 

microspikes appeared to localize to distinct segregated attachment points (Figure 3.7, D-
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Figure 3.6 Localization of WDR1 during trypsin treatments.

The effect of trypsin activity on the localization of WDR1 and the WAC structures was 
investigated in REF 52 cells using ICC confocal analysis of 3, 4, 6 and 10 minute trypsin 
treatments. A (400X), D (400X), G (400X), J (400X) show the endogenous localization 
of WDR1 examined after three minutes (A-C), four minutes (D-F), six minutes (G-I), and 
ten minutes (J-L). B (400X), E (400X), H (400X), K (400X) detail the corresponding F- 
actin. C (400X), F (400X), I (400X), L (400X) show the merged images.
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Figure 3.7 Localization of WDR1 during the attachment of settling fibroblast cells.

The further examination of the function of WDR1 during cell adhesion was investigated 
using ICC confocal examination of REF 52 fibroblast cells after six hours (A-C), twelve 
hours (D-F), and twenty-four hours (G-L) of adhesion. A (600X), D (600X), G (600X), J 
(400X) detail the endogenous localization of WDR1. B (600X), E (600X), H (600X), K 
(400X) display the corresponding F-actin. C (600X), F (600X), I (600X), L (400X) 
represent the merged images.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126



Figure 3.7
j[' J »

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F). The upper portion of the cell in Figure 3.7 (D-F) demonstrates a long actin containing 

fiber extension co-stained with WDR1. Following 24 hours of attachment the majority of 

the cells attached to the CS displayed the typical structural architecture of established 

fibroblasts, indicated by the presence of stress fiber formation, and FA structures as 

formed in the upper cell in Figure 3.7 (J-L). Interestingly, after 24 hours of settling the 

localization of WDR1 appears less diffuse and is exclusive to the end of established actin 

filaments (Figure 3.7, J-L).

These results indicate the localization of WDR1 at the barbed-ends of actin 

filaments remains throughout the process of cell attachment. The process of FA 

establishment requires sequential protein recruitment and the persistence of WDR1 

localization with actin throughout cellular detachment and attachment is not consistent 

with the expected pattern of temporal localization (as observed with vinculin). These data 

indicate the existence of a stable WDR1 barbed-end actin attachment and suggest a 

possible regulatory role of WDR1 within actin remodeling events.

Actin Filament Disruption Alters WDR1 Localization:

Cell survival critically depends on the initiation of rapid and unified responses to 

many changing environmental stresses. As actin is one of the most abundant cellular 

proteins the remodeling of the actin cytoskeleton requires the coordinated interactions of 

a plethora of actin interacting proteins. These proteins are typically responsive to many 

actin events such as depolymerization/polymerization, filament branching, and capping 

protein activity. To further define the relationship between WDR1 with F-actin, the 

localization of WDR1 was examined in the presence of actin disrupting agents.
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Latrunculin A (lat A) is a G-actin binding agent which is able to prevent G-actin 

incorporation into growing actin polymers and block filament growth, and so lat A was 

used to assay the effect on actin polymerization on WDR1 localization. REF 52 cells 

were grown on CS and exposed to either 5, 10 or 20 minutes lat A treatments and the 

results are shown in Figure 3.8. After exposure to 5 minutes of lat A WDR1 barbed-end 

filament binding was still observed in cells, however it was diminished with the apparent 

loss of F-actin cables (Figure 3.8, A-C). Following 10 minutes of treatment the binding of 

WDR1 to actin filaments was dramatically reduced as compared with the presence of F- 

actin filaments; however regions retaining slight WDR1 staining also appeared to contain 

the most intact F-actin remnants (Figure 3.8, D-F). The 20 minute exposure of lat A to 

fibroblast cells disrupted almost all the F-actin however a few small fibrous patches 

remained with some WDR1 protein characteristically bound, indicating some WDR1 

containing complexes were retained during actin polymerization inhibition (Figure 3.8, 

G-I).

To determine if the pattern of WDR1 expression was specific to lat A or was 

influenced by sequestration of monomeric actin, another G-actin binding agent was used 

to inhibit actin polymerization. Cytochalasin D (CD) binds and sequesters G-actin 

proteins similar to lat A, and inhibits filament extension and has also been shown to 

disrupt FA establishment and maintenance. REF 52 cells were treated with CD for either 

5, 10 or 20 minutes and immediately prepared for ICC confocal analysis. Observations of 

the 5 minute cell exposure to CD resulted in a decrease of F-actin fiber presence and a 

corresponding reduction of WDR1 staining, which was similar but less dramatic to the 

effects of the 5 minute lat A treatments (Figure 3.9, A-C). Following 10
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Figure 3.8 Effect of latrunculin A on WDR1 localization within fibroblast cells.

Examination of the interaction between WDR1 and actin was performed using ICC 
confocal analysis of REF 52 cells treated for five minutes (A-C), ten minutes (D-F) and 
twenty minutes (G-I) with the G-actin binding agent latrunculin A. A (600X), D (600X), 
G (600X) show the pattern of WDR1 localization. B (600X), E (600X), H (600X) 
demonstrate the F-actin staining. C (600X), F (600X), I (600X) detail the merged images.
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Figure 3.9 Effect of cytochalasin D on WDR1 localization within fibroblast cells.

Further investigation of the effects of actin on WDR1 localization was assayed in REF 52 
cells which were treated with a second G-actin bind agent, cytochalasin D for five 
minutes (A-C), ten minutes (D-F) and twenty minutes (G-I). A (400X), D (600X), G 
(600X) detail the endogenous pattern of WDR1. B (400X), E (600X), H (600X) show the 
F-actin pattern. C (400X), F (600X), I (600X) are the merged images.
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minutes o f treatment a large amount of F-actin fibers remained intact within the cell and 

WDR1 was still observed to bind the barbed ends of filaments (Figure 3.9, D-F). The 20 

minute CD treatment resulted in the substantial loss of F-actin staining; however some 

fibrous patches were observed which appeared co-localized with some diffuse WDR1 

(Figure 3.9, G-I).

These data indicate the WDR1 actin filament cap was not immediately disrupted 

upon treatment which suggests the association of WDR1 with actin is not critically 

dependent on dynamic actin polymerization. However prolonged disruption of the actin 

polymerization increased filament depolymerization and resulted in the loss of WDR1 

localization, implicating the structural integrity of actin filament is important for WDR1 

interactions. A very interesting observation was the persistence of WDR1-associated F- 

actin fragments observed within the cells of both CD and lat A experiments. This data 

could support a function for WDR1 in stabilizing F-actin filaments as the presence of 

WDR1 appeared to confer protection from depolymerization to the associated filaments.

Localization of WDR1 and Actin Interacting Proteins during Neurite Extension:

Neurogenesis is a process that requires a dynamic actin cytoskeleton to generate 

neurite outgrowth. To examine the function of WDR1 during neurogenesis, the pattern of 

localization of WDR1 was compared to the relative expression of the actin-associated 

proteins cofilin, CAP1, CAP2, and the cytoskeletal protein P-tubulin during NGF induced 

neurogenesis in PC12 cells. Standard classification categorizes cells induced for < 7 days 

as containing young, immature neurites while NGF induction for > 7 days produces 

mature established neurons (Jacobs and Stevens, 1986). The analysis of relative protein
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localization during early, intermediate and established NGF-induced PC 12 neurite 

development and extension was examined at 1, 3, 5 and 10 days after induction of 

neurogenesis.

A major limitation of the PC 12 cell line is their small size which can often 

increase the difficulty of obtaining detailed images however during neurogenesis ICC 

confocal analysis the majority of actin interacting proteins appeared to be present both at 

the peripheral edge of the cell body and within the tips of growing neurites. Throughout 

the 10 day NGF induction, cofilin appeared to remain localized within the immediate tip 

of growing neurites, while some protein was localized within the peripheral edges of the 

cell body (Figure 3.10, A-D). This pattern was similar to the pattern of CAP1 expression 

which demonstrated more diffuse localization within the tips and pads of growing 

neurites, and some peripheral localization within cell bodies (more established within 

early neurite formation) (Figure 3.11, A-E). The pattern of CAP1 expression was similar 

to the expression of CAP2 however CAP2 was more diffuse within the cell bodies and 

did not exhibit the same peripheral localization but was uniquely located at neural branch 

points throughout neurogenesis (Figure 3.12, A-F). The pattern of (3-tubulin localization 

was also examined and observed to be very similar to actin, as p-tubulin was 

concentrated with actin within areas undergoing dynamic cytoskeletal rearrangement 

(data not shown). The pattern of WDR1 localization was the most dramatic of the 

proteins examined. Analysis of the one day NGF induced PC 12 cells revealed WDR1 

localized within the lamellipodia behind the actin growth cone of extending neuritis 

(Figure 3.13, A & B). However after three days WDR1 is remained localized to the 

peripheries of the cell body but also within the tips of growing neurites (Figure 3.13, C).
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Figure 3.10 Localization of cofilin during neurogenesis.

The endogenous pattern of cofilin expression during NGF-induced PC 12 neurogenesis 
was investigated using ICC confocal experimentation. The location of cofilin (green) and 
actin (red) was shown (merged) in PC12 cells exposed NGF for A (1200X) one day, B 
(1200X) three days, C (1200X) five days and D (600X) ten days of induction.
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Figure 3.11 Localization of CAP1 during neurogenesis.

The localization of CAP1 through neurogenesis of PC12 was investigated using confocal 
investigation. The localization of CAP1 (green) and actin (red) was demonstrated 
(merged) at A (1200X) one day, B (1200X) three days, C (1200X) & D (2400X) five 
days, and E (600X) ten days after the addition of NGF.
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Figure 3.12 Localization of CAP2 during neurogenesis.

The investigation of the endogenous localization of CAP2 throughout PC 12 neurogenesis 
was assessed using ICC confocal examination. The localization pattern of CAP2 (green) 
and actin (red) was demonstrated (merged) at A (1200X) & B (1800X) one day, C 
(2400X) three days, D (600X) five days, and E (600X) & F (1800X) ten days after 
induction.
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Figure 3.13 Localization of WDR1 during PC12 neurogenesis.

The endogenous localization of WDR1 during NGF-induced PC 12 neurogenesis was 
investigated through ICC confocal analysis. The location of WDR1 (green) and actin 
(red) was shown (merged) in PC12 cells exposed NGF for A (1200X) & B (2400X) one 
day, C (600X) three days, D (600X), E (1800X), F (3000X) five days and G (600X) & H 
(600X) ten days.
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Figure 3.14 Localization of only WDR1 during PC12 neurogenesis.

The endogenous localization of WDR1 during NGF-induced PC 12 neurogenesis was 
shown merged with actin in Figure 3.13. The WDR1 ICC confocal data demonstrated in 
Figure 3.13 is shown. The location of WDR1 (green) within PC12 cells at A (1200X) & 
B (2400X) one day, C (600X) three days, D (600X), E (1800X), F (3000X) five days and 
G (600X) & H (600X) ten days ofNGF-induction.
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Figure 3.15 Localization of only actin during PC12 neurogenesis.

The confocal observations of F-actin filaments within the NGF-induced PC 12 cells 
shown in Figure 3.13 are shown. The location of F-actin (red) in PC 12 cells after A 
(1200X) & B (2400X) one day, C (600X) three days, D (600X), E (1800X), F (3000X) 
five days and G (600X) & H (600X) ten days of induction.
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The expression of WDR1 remained consistent in both intermediate (5 days after NGF) 

and mature (10 days after NGF) PC 12 cells as WDR1 expression continued within 

neurite tips and cell body peripheries (Figure 3.13, D-F, & G-H). Figure 3.14 

demonstrates the WDR1 staining at one day (A & B), three days (C), five days (D-F) and 

ten days (G & H) after NGF-induction while the actin localization is shown in Figure 

3.15. These results demonstrate an active role of WDR1 during the PC12 actin 

remodeling of neurogenesis, and further confirmed the involvement of cofilin and CAP 

(CAP1 & CAP2) proteins during neural actin rearrangement.

WDR1 Isoforms Maintain Consistent Expression Throughout Neurogenesis:

To analyze the expression of WDR1 during NGF induced neurogenesis, RNA was 

collected and cDNA was produced from PC 12 cells undergoing neurogenesis for 12, 24, 

48, 72, 96, and 136 hours (Figure 3.16, lanes 1-6). The quantification of the RT-PCR 

analysis was preformed using the constitutively expressed GAPDH transcript co­

amplification as an internal control to quantify the WDR1 amplicon expression. The 

expression analysis of both WDR1 and WDN534 was determined by the relative pixel 

intensity of an N-terminal 400 bp amplicon which is unique to WDR1 transcript and a C- 

terminal 600 bp amplicon common to both isoforms which reflects the presence of the 

two transcripts (as outlined in chapter 2). Interestingly, the analysis of 14 RT-PCR 

reactions demonstrated both amplicons exhibited a slight decrease in expression through 

out the course of 136 hours (Figure 3.17). The N-terminal 400 bp: GADPH ratio average 

was 20.5%; however expression declined from 25% at 12 hours to 17% at 136 hours
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Figure 3.16 RT PCR analysis of taWDRl expression during neurogenesis.

The expression of WDR1 during NGF-induced neurogenesis of PC12 cells was examined 
using RT PCR. The 400 bp N-terminal and 600 bp C-terminal WDR1 amplicons were co- 
amplified with an 800 bp GAPDH internal control. Quantitative triplex PCR data of 
NGF-induced neurogenesis in PC12 cells for 12 hours (lane one), one day (lane two), two 
days (lane three), three days (lane four), four days (lane five), and five days (lane six). 
The ratio of WDR1 amplicon was compared to the control GAPDH, which was further 
contrasted to the five day low-serum control (lane seven) plate expression.
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Figure 3.17 Ratio of WDR1 amplicon: GAPDH amplicon expression intensities.

The ratio of WDR1 N- (odd lanes 1, 3, 5, 7, 9, 11, 13) or C- (even lanes 2, 4, 6, 8,10, 12, 
14) amplicon intensities were compared to the amplification of the internal GADPH 
control transcripts in PC12 undergoing NGF-induced neurogenesis. The average relative 
expression data are shown indicating the relative statistical significance of expression.
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(with the low serum control ratio being 22%, Figure 3.17). The C-terminal 600 bp: 

GAPDH average expression ratio was 42% but exhibited a more substantial decrease as 

after 12 hours the ratio was 55% which declined to 38% after 136 hours (with the 136 

hour low serum control demonstrating a 45% expression ratio, Graph 3.18). These data 

suggest WDR1 is not transcriptionally altered during PC 12 differentiation although the 

relative protein levels still have to be examined.

Discussion:

Actin is a dominant effector of many vital cellular processes such as cellular 

adhesion to extra-cellular substrate, cellular migration and neural extension however 

many proteins regulating these essential behaviours still require characterization. 

Recently a novel family of actin-interacting WDR1 proteins has been shown to function 

during actin rearrangement with actin and the actin depolymerizing protein cofilin (Adler 

et al., 1999; Konzok et al., 1999; Oh et al., 2002; Rodal et al., 1999). However previous 

experimental evidence (chapter 2) did not identify an interaction with cofilin but did 

support one with actin.

However, in vivo co-localization studies (chapter 2) demonstrated a similar 

pattern of both vinculin and WDR1 expression and suggested WDR1 may be involved in 

cellular adhesion. The investigation of WDR1 localization during cell migration 

supported this function as WDR1 was observed to localize within both the leading edge 

lamellipodia as thick filamentous structures at the barbed-ends of actin filaments and to a 

lesser extent within the detaching uropodia. These data suggest a role for WDR1 in the 

establishment of the focal contacts structures required for the progression of motility, and 

additionally implicate WDR1 within the pathway of Rac signaling proteins which are
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known to establish FA and lamellipodia through de novo filament generation (Bishop and 

Hall, 2000; Hall, 1998b). Additionally, cofilin was diffusely localized to the lamellipodia, 

however (as observed in static fibroblast cells) lacked distinct barbed-end association. 

These results suggest a barbed-end stabilizing or adhesion association with WDR1 during 

cell migration which is supported from studies within both Dictyostelium and C. elegans 

systems as WDR1 mutant cells have been shown to contain impaired cortical actin 

organization and inhibited motility, further implying that WDR1 may be controlled 

through the Rac signal pathway (Aizawa et al., 1999; Konzok et al., 1999; Mohri and 

Ono, 2003).

The elucidation of the novel function of WDR1 within cell adhesion was 

performed using a novel trypsin cleavage assay of REF fibroblast cells. Trypsin is a 

proteolytic enzyme isolate from pancreatic tissue which uses a serine residue to 

specifically cleave the peptide bonds of arginine and lysine residues. During trypsin- 

mediated cleavage of cell adhesion two distinct types of F-actin filaments were confirmed 

to exist within the cell. A small peripheral cortical actin layer containing short and 

dynamic actin fibers exists surrounding the thicker more stable inner structure of stable 

actin stress fibers. Localization of WDR1 demonstrated it was present at the barbed-ends 

of cortical actin filaments, and also identified the presence of interesting WDR1 

aggregated complex structures (WACs) which remained attached to the CS during and 

after cell retraction. WDR1 participating within cell adhesion is a novel function of 

WDR1, however several studies within Dictyostelium and Xenopus have implicated 

WDR1 as regulators of cell division yet the mechanism of action remains unknown 

(Gerisch et al., 2004; Konzok et al., 1999; Okada et al., 2002; Okada et al., 1999).
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Further confocal examination of the composition of the WACs demonstrated the 

presence of only a slight amount of F-actin. Interestingly, the FA proteins vinculin and p- 

tubulin were absent as vinculin localization was disrupted immediately upon trypsin 

treatment and became diffuse within the cell as the FA complex was disrupted. A similar 

pattern was observed for p-tubulin, which exhibited a slightly more diffuse cellular 

localization after trypsin disruption. Since vinculin is an established component of the FA 

adhesion complex and P-tubulin containing microtubules are localized prior to FA 

establishment, the absence of these two proteins within the WACs structures indicates the 

absence of FA complex within the adhered structures (Critchley, 2000). Interestingly, the 

actin interacting proteins cofilin and CAP1 are only slightly present within the WACs 

along with a small amount of F-actin, suggesting these two proteins are not interacting 

with WDR1 within the WACs and therefore are not true components of the adhered 

structures. However the slight amount of both cofilin and CAP1 with actin within the 

WACs may suggest the existence of an actin-regulating complex involving the 

interaction of the WDR1, cofilin and CAP1 proteins, as suggested by Balcer et al (2003).

Interestingly, the slight amount of actin within the WACs did not appear to 

fluctuate throughout the trials further defining the stability of the adhesive structures. The 

identification of the WAC structures represents the characterization of a method of 

cellular attachment, which when combined with the differential protein expression data of 

human transformed and non-transformed cell lines strongly implicates a functional role 

of WDR1 within cell adhesion. However, the analysis of WDR1 localization during cell 

attachment demonstrated high, uniforms amounts of WDR1 were present bound to the 

barbed-ends of actin filaments after 6 hours of substrate re-attachment within the
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lamellipodia, and remained highly expressed within the peripheral lamellipodia as.the cell 

settled-out for an additional 6 hours. After 24 hours of cell adhesion the amount of 

WDR1 protein appears consistent although more dispersed within the larger established 

cell to the ends of actin filaments within the edges of cells. The consistent expression and 

localization of WDR1 to the barbed-ends of actin filaments confirms previous reports 

classifying WDR1 as exclusive F-actin-binding proteins yet does not clarify the cellular 

function of this interaction (Adler et al., 1999; Konzok et al., 1999; Okada et al., 1999; 

Rodal et al., 1999).

The effect of actin polymerization on WDR1 localization was assayed using two 

G-actin sequestering agents, CD and Lat A. Both agents were shown to dramatically 

disrupt the actin cytoskeleton and resulted in loss of the associated barbed-end WDR1 

structures, and a diffuse pattern of WDR1 cellular dispersal. These results were more 

dramatic with the lat A treatments, however both agents cause some fragments of F-actin 

to persist and WDR1 was co-localized with these remnants suggesting WDR1 may 

impart a stabilizing or protective function when bound to the barbed-filament ends.

The function of WDR1 was investigated during the active actin remodeling within 

extending neurites during NGF induced PC 12 differentiation. The localization of several 

actin interacting proteins was established to confirm the dynamic actin remodeling 

occurring at both the bases of growing neurites, and the T and P domains of extending 

neurite tips (Gungabissoon and Bamburg, 2003; Sarmiere and Bamburg, 2004). The 

expression of cofilin was restricted within the cell to the lamellipodia of actively 

developing neurites and within the P domain of extending neurons and indicated the 

localization of active actin depolymerization within NFG-induced PC 12 cells. The
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expression of CAP1 was similar to both CAP2 and cofilin, however CAP1 appeared more 

diffuse then cofilin within the tips of extending neurites, and was additionally detected 

further back within the T domain (the neurite pad). CAP1 also demonstrated a diffuse 

localization within the cell body but was concentrated within extending lamellipodia, thus 

the similar localization of CAP1 and cofilin expression patterns confirm the locations of 

actively remodeled actin. CAP2 was diffusely located within the cytoplasm and appeared 

to only slightly localize to developing lamellipodia, however CAP2 was uniquely 

expressed within the branches of PC12 neurites.

The expression pattern of WDR1 displayed the most dramatic localization 

throughout NGF-neurogenesis. Initially WDR1 localized within the lamellipodia of 

developing neurites immediately posterior to the actin growth cone, in which a slight 

amount of WDR1 was observed, indicating responsiveness to the Rac/ Cdc 42 G-protein 

transduction pathways (Bishop and Hall, 2000; Hall, 1998b). Throughout neurite 

extension WDR1 expression was observed within both the P and T domains, further 

implicating the regulatory influence of Rac/ Cdc 42 pathways and also within the 

lamellipodia of the cell body (Hall, 1998b; Sarmiere and Bamburg, 2004). Expression in 

developed neurites remained localized within the P and T domains and cellular 

lamellipodia of extending neurites, which further implies the existence of a potential 

interaction between WDR1, CAP1, cofilin and CAP2 as each is localized within the same 

areas of actin rearrangement during neurogenesis, however CAP2 is the only protein 

which exhibited a unique expression pattern within the PC 12 cells.

Further analysis of WDR1 NGF-induced transcript expression was assayed using 

RT-PCR amplification which revealed that both isoforms were slightly down-regulated
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through the course of five day PC 12 NGF-induction as compared to the expression 

pattern of the low serum control cells. The decrease in WDR1 expression compared to 

control expression was not significant and did not indicate a function for WDR1 proteins 

during neurogenesis independent of actin regulation. However WDR1 proteins were 

observed to function with cofilin during Rac/ Cdc42 regulated actin rearrangement within 

the neural P zone and the leading lamellipodia of PC12 and REF52 cells, which may 

suggest a mechanism of activation for WDR1 proteins (Bailly, 2003; Cotteret and 

Chemoff, 2002; Kaverina et al., 2002b). This data is currently supported by several 

reports from the dynamic actin events of yeast, Dictyostelium and Xenopus which 

demonstrate WDR1 localizing to cortical actin areas undergoing cell division (Konzok et 

al., 1999; Okada et al., 2002; Okada et al., 1999; Rodal et al., 1999). However, the 

observation of WDR1 FA-like expression at the ends of actin filaments could also 

suggest WDR1 responds to Rho-mediated transduction pathways, which have been 

shown to regulate cofilin activity through the LIM kinase pathway (via LIMK2) 

(Birkenfeld et al., 2003; Cotteret and Chemoff, 2002; Hall, 1994). Yet the novel WDR1 

attachment and localization data provided in this thesis, combined with additional 

observations from studies of chick, mouse, and human systems may suggest a more 

complex mechanism of regulation of WDR1 which is independent of cofilin mediating 

pathways (Ichii et al., 2001; Oh et al., 2002; Verma et al., 2004a). Despite the 

discrepancies, the final conclusions drawn from the current collection of WDR1 data is 

that the function of WDR1 within the cell requires further investigation before the 

mechanism of in vivo WDR1 regulation and cytoskeletal function can be further 

understood.
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Chapter Four

Conclusions and Future Directions

General Conclusions:

The work presented in this thesis initiated the characterization of the human 

homologue of yeast Aiplp and suggested several novel functions of mammalian WDR1. 

The sequence analysis demonstrated the WDR1 proteins may be classified as kelch 

proteins as three WD motifs are shown to be highly homologous to the Drosophila kelch- 

like motifs. Additionally hWDRl protein interaction experiments appeared to 

demonstrate a few kelch-like functions such as the ability to bind actin and form hetero- 

multimer complexes, in addition to functioning in active actin filament dynamics. 

Expression data of both hWDRl and hWDN534 transcripts were shown to be 

conservatively expressed within a variety of human tissues types such as brain kidney, 

liver, lung, trachea, heart. Both isoforms were shown to be expressed in several rat brain 

rat structures such as the cerebellum, frontal cortex, post cortex, pons, spinal cord, 

medulla, and hippocampus. Further examination of protein expression across several non­

transformed and transformed human and rat cell lines were also assayed and indicated a 

differential expression of WDR1 proteins between the transformed and non-transformed 

cell lines. Transcript analysis through northern blot assays demonstrated the presence of 

both a 3.0 kb transcript and a less prevalent 2.2 kb transcript. The in vivo localization of 

WDR1 revealed that WDR1 localized to the barbed ends of actin filaments and was
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present along with cofilin and CAP1 within areas of dynamic actin rearrangement such as 

the leading edge of migrating fibroblasts and the base and tips of extending neurites of 

PC 12 cells undergoing neurogenesis. Investigation of the regulation of both WDR1 

isoforms during neurogenesis indicated a slight down regulation of both transcripts; 

however no significant patterns correlated to NGF neural induction.

Similarities between hWDRl:

Several previous studies with other WDR1 orthologues have indicated an 

interaction with WDR1 and cofilin, CAP1 and actin. However our studies described a 

novel function of WDR1 during cell adhesion as WDR1 was found to localize in a 

manner similar to the FA vinculin, but unlike vinculin WDR1 was shown to remain 

attached to CS within a WDR1 aggregated complex (WACs) during and after trypsin 

mediated cell detachment. Latrunculin A and cytochalasin D treatments indicated WDR1 

may protect and stabilize actin filaments during depolymerizing events.

These data have provided basic insight into the classification and function of 

hWDRl proteins, however further study investigating the regulation and function of 

WDR1 proteins within several actin based processes is still required. Interestingly, data 

reported from numerous WDR1 orthologues indicates a general characterization pattern 

which differs from that displayed by hWDRl. Typically WDR1 orthologues have been 

shown to localize with cofilin and function synergistically to enhance the disassembly of 

actin filaments in vitro (Adler et al., 1999; Konzok et al., 1999; Matsumoto et al., 1998; 

Mohri and Ono, 2003; Oh et al., 2002; Okada et a l, 2002; Rodal et al., 1999). 

Additionally, several WDR1 orthologues have been shown to be synthetically lethal with 

cofilin null-mutants, however WDR1 null-phenotypes differ from those of cofilin null
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cells. The WD null- phenotypes of yeast and Dictyostelium included impaired cortical 

actin dynamics affecting the processes of endocytosis, cell motility, cytokinesis, 

phagocytic cup formation (Gerisch et a l, 2004; Konzok et al., 1999; Rodal et al., 1999). 

WDR1 has also been shown to have distinct functions in both Dictyostelium and 

Drosophila mediating cytokinesis and lamellipodia formation, and has been shown to 

localize to cleavage furrow of Xenopus embryos (Gerisch et al., 2004; Okada et al., 2002; 

Rogers et al., 2003). These data indicate WDR1 proteins typically interact with cofilin 

during active actin dynamics and enhance regulation of several critical actin dependent 

processes.

The data collected in this thesis demonstrate hWDRl shares a common feature of 

WDR1 proteins and interactively binds F-actin. However it is currently unique amongst 

WDR1 proteins as no interaction with cofilin was observed. The characterization of 

hWDRl suggests the function of WDR1 proteins during cell migration may be through 

the establishment of cell adhesion and attachment. However, hWDRl is the first higher 

eukaryotic WDR1 protein reported to express multiple isoforms (with the exception of 

the muscle and non-muscle WDR1 genes of C. elegans) and so the data collected from 

both the rat and human cell lines may be reflective of differential isoform expression and 

not represent a conserved WDR1 function (as indicated by the REF 52 cell system) 

(Mohri and Ono, 2003). However, since these data also confirmed a conserved pattern of 

WDR1 expression (as both hWDRl isoforms were detected in a wide variety of human 

and rat cell types), an overall conserved function of WDR1 is suggested.
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Future Experiments:

Owing to the essential functions WDR1 proteins have been implicated in (such as 

cell adhesion, neurogenesis, cytokinesis, and migration), the work presented in this thesis 

identified and characterized mammalian WDR1. However, as many aspects of hWDRl 

function are still unknown and will require further experimental investigation, the results 

presented in this thesis can be expanded in several ways.

Isoform Detection:

The investigation of proteins capable of interacting with hWDRl and hWDN534 

would provide further data for the processes requiring WDR1 function, and may 

additionally provide evidence of novel WDR1 isoforms. The identification of novel 

hWDRl isoform multimer interactions could be determined by the use of anti-WDRl 

protein A beads using immunoprecipitation experiments. Identification of potential 

isoforms could then be assayed using anti-WDRl antibody detection and protein 

sequence analysis. The demonstration of the two tissue specific WDR1 gene expression 

in C. elegans and the isolation of multiple polypeptides during the Xenopus Aipl affinity 

column experiments indicate the possible existence of multiple isoforms (Okada et al., 

1999). Strong supporting data for this possibility in mammalian systems was obtained 

from the identification of the presence of hWDRl and WDN534 isoforms, and their 

differential expression within transformed and non-transformed human cell lines and the 

presence of the unique -70 kDa protein was detected in REF 52 cells using anti-WDRl 

antibodies. The sequence identification of this protein and those of additional WDR1 

isoforms may provide insight into their transcriptional regulation. Examination of the
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localization patterns of different WDR1 isoforms and analysis of the cytoskeletal effects 

from their over-expression in cells will be helpful for determining isoform functions. 

Novel WDR1 Interacting Proteins:

Identification of novel proteins interactions (including additional isoforms) could 

be assayed in a similar manner using sequence analysis or direct antibody detection. The 

interaction established in yeast between WDR1 (Aipl), cofilin, CAP1 and actin would be 

of extreme interest to validate in mammalian systems. It is possible that the lack of 

interaction between these proteins and hWDRl could be due to inappropriate 

experimental conditions. Therefore, the repetition of the IP interactions experiments 

should be performed using protein extracts from cells treated with actin remodeling 

agents such as Latrunculin A (binds G-actin and inhibits actin polymerization), 

Cytochalasin D (similarly blocks actin polymerization), Forskolin (stimulator of adenylyl 

cyclase), Phorbol 12-myristate 13-acetate (PMA, stimulates lamellipodia formation), 

Lysophosphatidic acid (LPA, induces stress fiber formation), as well as expressing 

constitutively active mutants of the Rho effectors Rho, Rac, and Cdc42 to induced 

different mechanisms of actin remodeling events. These experiments would augment the 

identification of transient or dynamic protein binding interactions. Immunoprecipitation 

experiments for the detection of possible multimer protein complexes could also be 

performed using actin disrupting agents.

WDR1 and Cell Migration:

The identification of WDR1 (and potential interacting proteins) within the WACs 

could be performed using mass spectrometry analysis. The effect of WDR1 proteins 

during cell attachment and migration could also be assessed using both endogenous and
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exogenous protein expression and temporal ICC localization techniques. The effect of 

WDR1 within motile cells could be investigated using either ICC imaging of several 

motile cell types employing different adhesion complexes such as keratinocyte and 

fibroblast cell lines. Additionally, the effects of several actin disrupting compounds could 

be employed to further characterize the mechanism through which WDR1 associates with 

actin to form adhesion complexes.

Furthermore, disruption of hWDRl expression could be performed through 

inhibitory RNA technology (RNAi) and the effect of decreasing WDR1 expression on 

these processes could be examined.

Examination of Isoform Expression:

To further explore the function of WDR1 proteins and their mechanisms of 

expression, the regulation of WDR1 transcripts within different cell types should be 

investigated using northern blot analysis. Particularly, the differential regulation of 

WDR1 transcripts within non-transformed and transformed cell lines and their 

corresponding WDR1 protein expression patterns should be compared. The exogenous 

manipulations of the endogenous expression levels of WDR1 proteins should be assayed, 

with particular attention to cell CS adhesion. Additional investigation could employ 

RNAi to disrupt the expression of WDR1 within both the transformed and non­

transformed cell lines. The function of WDR1 proteins during neurogenesis, cell division, 

and cell migration could also be investigated using RNAi studies, and may further 

support distinct functions of WDR1 isoforms.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Final Considerations:

The recent identification of WDR1 proteins has identified a family of proteins 

characterized by the presence of multiple WD motifs, which also show strong homology 

to the kelch motifs identified in Drosophila kelch proteins. WDR1 proteins, similar to 

kelch proteins have been shown to interact with actin and other actin-associated proteins 

such as cofilin and CAP1 during dynamic cortical actin rearrangement events. The 

proteins have also been shown to regulate membrane dynamics, cytokinesis, cell 

migration, and in this thesis cell adhesion. Additionally, the differential display of 

hWDRl proteins between transformed and non-transformed cell types has been 

demonstrated. These results clearly indicate potential regulatory functions for WDR1 

proteins during several critical cellular behaviours implicated in many mechanisms of 

disease. Further study of these proteins should hopefully not just embellish our current 

understanding of cellular processes, but also provide a potential target for novel 

molecular therapies and medical treatments.
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Appendix A

Forward Primer Sequence
133 TTGAATTCATGCCGTACGAGATCAAGAG
163 TTGAATTCTTAACGTCCGCCTGTATTCCATC
143 TTGAATTCATGGCCTCCGGTGTGGCTG
144 TTG A ATTCT AATGCCGT ACG AG ATCAAG
147 TTGAATTCTGGACAGAAACAACCCCAGC
156 GTGTGCATTGGACAGATTGTCCT
149 CTCCTTGGAGGCCATGTGGGCC

Reverse Primer Sequence
139 TTGCGGCCGCTCAGTAGGTGATTGTCCAC
132 TTGCGGCCGCTT ATTTTTCATGGTGTCCAT A

141 TTGCGGCCGCTCAAAAGGCTTGCCCTCC
145 TTCTCGAGTCAGTAGGTGATTGTCCACTC
146 TTCTGAGTCAGTACCCGGACAGGGAGACAC
162 TTCTCGAGTCAGTACCCGGACAGGGAGACAC
155 GACCACGGCGATCCTCTTACTGT
150 CTCCTTGGAGGCCATGTGGGCC
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