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Abstract

Due to the ubiquity of electronic communication systems in consumers’ lives, it is

necessary to ensure that the sensitive information being transmitted is not accessible

by malicious parties. Because of advancements in technology, it is now possible to

easily steal data from these electronic systems, even if they are protected by a strong

encryption algorithm. These security threats, known as Side Channel Attacks, have

exposed weaknesses in the hardware architectures of the systems meant to be secure.

This research explores a novel method of designing a crypto processor component,

the adder, which allows it to produce minimal side channel information, rendering it

less vulnerable in terms of hardware. The results show that it is possible to maintain

a competitively low power consumption, as compared to conventional architectures,

all while providing a method to greatly improve data security systems.
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Chapter 1

Introduction

There is evidence of cryptography dating as far back as 4000 years ago [2]. Since

then, people have been searching for increasingly complicated methods of disguising

data from all but the intended recipients. Beginning with hieroglyphics in the ancient

Egyptian era, continuing to digital communication that is favored today, the study

and application of cryptography has an inexhaustible demand for development fueled

by the equally enduring field of cryptanalysis (deciphering hidden data). Figure

1.1 shows a general representation of cryptography principles. A typical message

is encoded based on an algorithm to disguise the data, sent over a channel to the

recipient, then decrypted by this recipient to reveal the original message.

Just as traditional methods for securing data involved applying mathematical

algorithms, familiar approaches to deciphering encoded messages were performed us-

1



1. INTRODUCTION

1001010101100
   011100101101
       0111001100
              010011
                    011
                        1

1001010101100
   011100101101
       0111001100
              010011
                    011
                        1

Message

Message

Send

Receive

Figure 1.1: The Principle of Cryptography

ing equally or often additionally complicated algorithms. As technology progresses,

computational devices used to secure and transmit data become increasingly fast.

This same rapid technology allows for quicker decoding as well as more sophisticated

attacks that may be accomplished without direct access to the encrypting device.

1.1 History of Side Channel Attacks

Side Channel Attacks may be considered a highly covert assault on electronic systems.

It is a sophisticated means of exploiting crypto system hardware weaknesses and

revealing critical data. This type of attack, contrary to the long-established software

hacking method, is aimed at the physical implementation of the system itself, the

hardware. Side Channel Attacks pose a major threat to data security, and to counter

measure these attacks, new and innovative specifically designed processing hardware

2



1. INTRODUCTION

Figure 1.2: Side Channel Attack

is required to mitigate such attacks.

Variations of the Side Channel Attack have been reported since 1965 when the

British intelligence agency, MI5, observed the sounds made by the Egyptian embassys

rotor-cipher machine, and subsequently were able to decipher their messages [35].

Since then, the Side Channel Attack had not been considered as a major threat against

the securities of modern technology, until the last decade when it started regaining

recognition. Modern advancements in technology allow the speed and precision neces-

sary for highly sensitive equipment to exist, and thus be misused to overcome barriers

of privacy.

Side Channel Attacks focus on imperceptibly accessing information directly from

the hardware itself, rather than algorithmic or brute force attacks targeted at soft-

ware, as the simplified depiction in Figure 1.2 implies. Such information as power

consumption, electromagnetic radiation and timing patterns are recorded using elab-

3



1. INTRODUCTION

orate measuring devices and then analyzed to deduce the encryption key. Once the

key is discovered, all further communications which are encrypted using this key are

easily exposed.

1.2 Overview of Research, Motivation

The variety of applications in which electronic systems are being used is contin-

ually increasing. We have come to rely greatly on electronics to further enhance

the convenience of daily life concerning such areas as communication, banking, and

transportation among others. These applications sometimes involve extremely sen-

sitive information, and other times have a significant correlation to human safety.

Due to the increase in known security breach methods, research for more secure elec-

tronic systems, especially pertaining to the circuitry level, is becoming popular in

academia [12] [10] [6].

The focus of this research is to present a novel circuit design approach to be

used in cryptographic processors for the purpose of securing data by minimizing side

channel information leakage. As new and improved algorithms are generally the focus

in the field of cryptography, it is essential that hardware specialists explore methods

of circuit implementation which may rise to the challenge posed by the ingenuity of

new highly sensitive measuring equipment.

This thesis will demonstrate the capability of designing a crypto processor able to

withstand Side Channel Attacks in the form of Power Analysis. It aims to minimize

side channel information as a whole, if not eliminate it, and to reduce the availability

of data to be acquired then subsequently analyzed, leading to a breach of security.

4



1. INTRODUCTION

The novel crypto processor design approach, presented in this research, combines

the advantages of using analog signals along with a new dual-rail multiple valued

analog arithmetic, aimed at suppressing the dependence of the power consumption

spurs on the data.

1.3 Organization of Thesis

Chapter 1 begins with an introduction to cryptography, as well as a brief descrip-

tion of the side channel attack, which is the main focus of the proposed hardware

design presented in this thesis. Chapter 2 elaborates on the fields of cryptology and

cryptanalysis, giving examples of popular methods and algorithms studied. Chapter

3 discusses current publicized hardware architectures intended to thwart side channel

attacks. Chapter 4 illustrates, by applying examples, Montgomery Multiplication as

well as its benefit, explains the theory of the Multiple-Valued Current Mode Logic

Carry Look-Ahead adder, then presents the novel hardware design of the adder.

Chapter 5 presents the results followed by the conclusion and recommendations in

Chapter 6.

5



Chapter 2

Cryptography and Cryptanalysis

There are two opposing fields of research regarding information security: Cryptology

and Cryptanalysis. Cryptology is concerned with securing sensitive information with

the aid of increasingly complex algorithms and ASIC design methods. Conversely,

the equally enduring study of Cryptanalysis aims to breach, or crack, these security

systems. In this chapter, several of the most important and widely used cryptographic

algorithms are reviewed.

2.1 Types of Encryption Schemes

Information security is one of the paramount criteria when designing or conceptual-

izing many electronic systems. When considering algorithmic security, there are typ-

6



2. CRYPTOGRAPHY AND CRYPTANALYSIS

ically two basic types of encryption schemes: Secret-Key Cryptography and Public-

Key Cryptography [30].

The main difference between these two schemes lies in the keys, and their dis-

tribution. In Secret-Key Cryptography, a single key is used by two parties to both

encrypt and then decrypt a message. In Public-Key Cryptography, there are two sets

of keys, one public, used for encryption, and one secret, used for decryption.

There are many different encryption algorithms that have been developed over

the years for data security. As computer speeds increase, security algorithms must

increase in complexity to avert attackers and guard data. After further describing the

aforementioned encryption schemes, examples of each are illustrated and explained.

2.1.1 Secret-Key Cryptography

Secret-Key Cryptography, also referred to as Symmetric-Key Cryptography, uses the

same key for the encryption as for the decryption of a transmitted message [30] [15].

For this reason, the key must be kept private and secured from the possession of

malicious parties. Figure 2.1 illustrates the general process of data encryption and

decryption using a Secret-Key Algorithm. The difficulty in this approach lies within

the delivery of the secret key. Under the classification of Secret-Key Cryptography,

the cipher schemes can further be divided among one of two categories: stream ciphers

or block ciphers [15].

In a stream cipher there exists a constant communication regarding the secret-key,

which allows it to be continually changed. In this scheme, encryption is only per-

formed on a single word of data at a time. In contrast, block ciphers use the same key

7



2. CRYPTOGRAPHY AND CRYPTANALYSIS

Figure 2.1: Secret-key Cryptography

to encrypt whole blocks of data at once using the same key. Examples of Secret-Key

Cryptography include: Data Encryption Standard (DES) [7] and Advanced Encryp-

tion Standard (AES) [24], which are both still used today. These schemes are reviewed

briefly in the next sections.

Data Encryption Standard

The Data Encryption Standard (DES) [7] was first developed in the IBM laboratories

in the early 1970s, and is regarded as playing the substantial role in the advancement

of Cryptography. This algorithm uses a key length of 56-bits operating on 64-bit

8



2. CRYPTOGRAPHY AND CRYPTANALYSIS

blocks. As it is a Secret-Key Algorithm, this same 56-bit key is used to both encrypt

and decrypt the data.

After a request was made by the National Bureau of Standards in 1973 for an

algorithm to protect the governments unclassified data, DES was submitted and ac-

cepted in 1977. It was designated an official Federal Information Processing Standard

in the United States. After this designation, and the publication of this algorithm,

it incurred great academic investigation and scrutiny due to its relatively short key

size.

In response to this argument, 3DES [7] was a suggested replacement for the initial

algorithm. The general configuration of this algorithm is shown in Figure 2.2. This

modification to the algorithm essentially uses each one of 3 different keys. It first

encrypts using key 1, decrypts using key 2, and then encrypts the data using key

3, to be sent over the channel. Decryption of this ciphertext is done in the exact

opposite order with the corresponding keys.

Advanced Encryption Standard

The Advanced Encryption Standard (AES) [24] is another Secret-Key Algorithm

which became the official successor to the previously used 3DES as of December

of 2001. Its development was also primarily for governmental applications and was

created by two Belgian Cryptography experts Joan Daemen and Vincent Rijmen.

In contrast to the very short key size employed by DES, AES allows a variable

key length of 128, 192, or 256 bits with equivalent block lengths, and thus proved

more successful against brute-force attacks. Among its advantages, the Advanced

Encryption Algorithm has significantly improved efficiency in terms of processing time

9



2. CRYPTOGRAPHY AND CRYPTANALYSIS

Figure 2.2: Encryption and Decryption using 3DES

[5] as well as greater security strength than that of the Data Encryption Standard.

2.1.2 Public-Key Cryptography

Public-Key Cryptography, also referred to as Asymmetric-Key Cryptography [30] [15],

is a dual key system which uses one key for encrypting a message and a second key

to decrypt this message.

The key used for data encryption is a public key that is visible to anybody who

wishes to use it, however, the key used for decryption is known only by the recipient

of the encoded message. Figure 2.3 shows the general concept behind this scheme.

10



2. CRYPTOGRAPHY AND CRYPTANALYSIS

Figure 2.3: Public-key Cryptography

The reasoning exploited for the effectiveness of the Public-Key Cryptography scheme

is based on the existence of one-way functions. These are functions of which the

inverse is nearly impossible to compute, thus they are ideal for the use in encryption

algorithms. Of the Public-Key Algorithms, RSA [26] (named after its creators) was

one of the first, and remains the most popular. The RSA algorithm, due to its

continued popularity, is the assumed algorithm for which our proposed novel hardware

design was created.

11



2. CRYPTOGRAPHY AND CRYPTANALYSIS

RSA Algorithm

RSA is a Public-Key Algorithm created by, and named after, the MIT scholars Rivest,

Shamir and Adleman [26]. RSA requires the use of one key to encrypt sensitive data

and a second different key to decrypt. The key strength of this algorithm is its

computational complexity. The RSA algorithm has the useful property that the keys

are commutative; this means, either of the two different keys (secret or public) may

be used to encrypt the data, while the opposite may be used to decrypt the data, this

is useful in sending a Signature.

Figure 2.4: Data Encryption and Decryption Using RSA

12



2. CRYPTOGRAPHY AND CRYPTANALYSIS

In order to explain the RSA algorithm, we consider two parties: one which sends

an encrypted message (Sender), and one who is intended to receive this message

(Receiver). The idea behind this Public-Key Algorithm is that the party that will be

receiving sensitive data, Receiver, will generate two keys; one private key that is used

to decrypt the data and is seen only by the Receiver, and one public key that is used

to encrypt the data, see Figure 2.4. This algorithm may also be used, as previously

stated, to send an electronic signature, as seen in Figure 2.5. The private-key holder

may encode a signature and send it, and the public-key (meaning everyone) is able to

decode this signature. This authentication process works on the premise that; if the

public-key can decode the signature, the signature must have only been encrypted

using the secret-key. Since there is only one party who has possession of this secret-

key, he must be the one who wrote the signature. This signature concept is illustrated

in 2.5.

13



2. CRYPTOGRAPHY AND CRYPTANALYSIS

Figure 2.5: Signature Encryption and Decryption Using RSA

The Receivers public key is readily available for anyone to access, and is used to

encrypt a message to be sent over a network to the Receiver. Only the secret-key

can be used to decrypt this data, thus, only the Receiver will have access to the

decoded message. Basically, this Public-Key algorithm ensures that the encrypted

data remain secured as long as the private key is kept secret.

RSA is still the most widely used and accepted Public-Key Encryption scheme to

date since its development in 1977. Due to its continued popularity and reliability,

14



2. CRYPTOGRAPHY AND CRYPTANALYSIS

the hardware design presented in this thesis was based on the RSA scheme.

To obtain the RSA keys, the following steps should be taken. The first step is

to choose two prime numbers, p and q, such that their product, n, is of the ade-

quate length, generally 1024 bits, (n=pq). The large bit length of n provides the

mathematical complexity that leads to the infeasibility of evaluation by malicious

parties.

Once p and q are chosen, the parameter φ is obtained as follows:

φ = (p− 1)(q − 1) (2.1)

At this point, the public key may be completed by choosing an integer, e, such

that 1 < e < φ and the greatest common denominator between e and φ is 1.

The resulting public key is (e, n). The secret exponent, d, is chosen such that 1

< d < φ and it satisfies Equation (2.2):

ed = 1(modφ) (2.2)

The resulting private key is (d, n). The parameter n is referred to as the modulus,

e, the encryption exponent, and d, the secret exponent or the decryption exponent.

The secret key remains hidden to anyone but the party who generated the keys,

which is an efficient and effective way to decode the cipher text. The encryption

algorithm is demonstrated as in Equation (2.3) below, and the decrypt as in (2.4).

C = M emod(n) (2.3)

15



2. CRYPTOGRAPHY AND CRYPTANALYSIS

M = Cdmod(n) (2.4)

In this algorithm, C represents the ciphertext, or in the encrypted message, M is

the original message, and (e, n) is the public-key, (d, n) is the secret key. Figure 2.4

presents the RSA algorithm.

Since n, the modulus, is typically chosen to be at least 1024 bits long, calculating

a modular exponentiation, as is found in the RSA algorithm, becomes a very arduous

and lengthy process. In the next section, weaknesses of encryption algorithms are

reviewed.

2.2 Security Weaknesses

With technology development, more complex and innovative methods for cryptanal-

ysis are emerging. There are weaknesses in every cryptological method, whether it is

in its computational strength, its logical operation, or its hardware implementation.

The attacks on these systems may be done through software, physically, or through

Side Channel Attacks [14] [19]. Though it is infeasible to know all of the conceivable

methods of breaching the data security measures, it is possible to design systems with

the capability of avoiding the attacks that are currently in play.

There are several different approaches that may be followed to breach data secu-

rity, such as:

• Software Attacks: These attacks exploit the algorithmic weaknesses, software

implementation faults, or protocol vulnerabilities in the communication channel.

16



2. CRYPTOGRAPHY AND CRYPTANALYSIS

• Fault Generation: This method employs knowledge of the systems normal con-

ditions, so that after generating a fault, the attacker may gain access to this

system.

• Microprobing: This requires direct access to the device to be able to measure

and observe by way of sophisticated tools, as well as manipulate the system.

• Side Channel Attacks: These are performed by monitoring analog characteris-

tics of a system without requiring direct access to the device.

In the past, software or algorithmic attacks were the predominant method of

infiltration and security breaches. Within the past decade however, Physical and

Side Channel Attacks have become an increasingly threatening means of acquiring

critical data.

There are generally two categories in which to classify these types of attacks:

invasive and non-invasive. Invasive attacks require direct access to the hardware and

are performed using probes and high tech machinery. Generally, the invasive approach

is expensive in terms of both equipment and time required to execute, however, the

information that may be extracted is greatest using this method. Non-invasive attacks

are done using tools to remotely monitor the device, and then exceedingly intelligent

methods are used to infer the coded data.

2.2.1 Physical Attacks

Physical attacks are an example of an invasive attack [19]. They require direct access

to the hardware itself, including the depackaging of the chip, allowing the attacker

17



2. CRYPTOGRAPHY AND CRYPTANALYSIS

to specifically probe the system to obtain critical information. Though this type of

attack is relatively expensive and complex to orchestrate, it is useful in obtaining

the necessary details of a device to be able to design less expensive, non-invasive,

subsequent attacks on similar devices. A simple example of a physical attack is to

connect an external wire to a data bus to eavesdrop on data transfers.

2.2.2 Side Channel Attacks

Side Channel Attacks are classified as non-invasive assaults. This means, physical con-

tact with the device is not required. Attacks are performed using sensitive measuring

devices that are able to obtain side channel information while being at a distance

from the crypto processor device. Modern Side Channel Attacks can be performed

through several different approaches, taking advantage of such information as: power

consumption [25], operation timing [17], electromagnetic emissions [11], sound [29],

and vibrations.

Side Channel Attacks are accomplished by making assumptions on sensitive pa-

rameters based on observations made through measuring various side channel data.

Side channel data is defined as the activity of the system which produces information

discernible to measuring equipment.

The research presented herein focuses on defending against Power Analysis At-

tacks. There are predominantly two types of power attacks: Simple Power Analysis

(SPA) [34] and Differential Power Analysis (DPA) [18].

The SPA strike is easier to execute compared to the DPA, however, it is more

time consuming with an increased amount of measuring that must be carried out.
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This method requires the observation of the power trace of the system, related to

the switching of the transistors in the CMOS circuit design. These measurements are

then directly interpreted to reveal operation information and other critical data.

The DPA is a more complex and effective method of revealing secret parameters

that requires advanced measuring tools and algorithms of a higher degree of com-

plexity involving statistical analysis. This attack has the advantage of being able to

extract useful information from crypto processors among electrically noisy environ-

ments due to its signal processing and error correcting properties.

2.3 Countermeasures: Hardware Versus Software

Cryptography is the study of how to better disguise sensitive information, or oth-

erwise keep it from being observed by unwanted parties. Generally, it is simpler to

implement algorithmic defenses, though these face the affliction of progressively inno-

vative algorithmic attacks. Contrarily, hardware implementations are able to provide

a more robust protection after a more challenging design process.

There are countless encryption algorithms which are used to secure data, a few of

which have been described in section 2.2, however, these algorithms do not protect

against Side Channel Attacks. These attacks, staged against the hardware of a system,

require special design consideration during the implementation of the system, rather

than a stronger algorithmic scheme. There are primarily two approaches to thwart

such Side Channel Attacks: Masking method and the Hiding Technique [27].

In brief, Masking [8] is a method in which the side channel information is disguised

by applying a randomized mask, or intermediate data. Hiding is performed by keeping
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a constant power consumption, and therefore eliminating, or greatly reducing the side

channel information to be observed.

2.4 Summary

This chapter discussed the types of encryption and presented examples of encryption

algorithms. Specific security weaknesses were listed and defined, though the Side

Channel Attack is of primary concern here.

This research focuses on the security of data beyond the algorithmic protection

measures. The implementation of a secure system is achieved by purposefully de-

signing the crypto processors circuitry to impede the external attacks known as Side

Channel Attacks. The Public-Key Encryption algorithm of RSA is assumed and the

hardware design of secure adder is implemented for its application.

The primary goal of this research was to defend against Differential Power Analy-

sis, though in removing most of the side channel information, nearly all types of side

channel attacks may be thwarted.
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Chapter 3

Countermeasures: Circuit

Architecture

This chapter will begin by defining the different approaches to securing data through

circuit implementation, meaning, different defences against Side Channel Attacks.

Then, the state of the art in circuit architectures that are currently being researched

as countermeasures to Side Channel Attacks, as well as their advantages and disad-

vantages are presented.
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3.1 Masking vs. Hiding

When referring to Power Analysis Attacks, there are two categories of countermea-

sures to be considered, Masking and Hiding [27]. These two techniques used to

obstruct such Side Channel Attacks, vary greatly in concept and approach.

The Masking method [8] functions by applying a randomized mask to the inter-

mediate data, anticipating that it may be measured by an outsider, which renders the

observed power consumption values themselves to be irrelevant and inadequate to-

ward obtaining the underlying secret message or key. The major disadvantage of this

technique is that it is effective against Simple Power Analysis; however Differential

Power Analysis Attacks or Timing Attacks may easily overcome this scheme.

The Hiding technique [23] concentrates on removing the dependency of glitches

in the power consumption on the intermediate data. In other words, the aim of the

Hiding scheme is to avoid creating any side channel information at all. Hiding can be

accomplished in the time domain by randomizing the time of occurrence of a specific

operation, or in the amplitude domain by minimizing the effect of the operations on

the overall power consumption. By maintaining a constant power consumption, any

quantity measured from the system is independent of secret values or intermediate

information. The biggest disadvantage of this scheme is that there is a greater overall

power consumption. The Hiding technique however, is a more secure technique that

is capable of defending against attacks of a higher degree of complexity such as the

Differential Power Analysis. Figure 3.1 illustrates the difference between the two

countermeasure techniques of Masking and Hiding.
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Figure 3.1: Countermeasure Techniques: (a)Masking (b)Hiding

3.2 Circuit Architectures

Since Side Channel Attacks began as a focus of researchers, there have been several

proposed circuit design approaches to impede such attacks. These methods employ

either the masking technique, or the hiding technique, previously described. There

are many examples that may be presented of each of these two countermeasure classes.

Two widely recognized security schemes, from which many others have derived, are

the Random Switching Logic (RSL) [32], a Masking technique, and Wave Dynamic

Differential Logic (WDDL) [33], a Hiding technique. These will be explained in

further detail in this chapter.

Many of the existing techniques employ a dynamic differential logic [23].The goal

of this technique is to reduce the possibility of information security breaches, carried

out through statistical analysis of the power consumption, and careful observation and

measurements, recognizing the dependence of this data on the inputs, and leading to

an unsecured system. The dynamic differential logic model employs the use of two

rails, carrying complimentary signals, in attempt to hide the otherwise useful data
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sought after during the Side Channel Attack.

3.2.1 Random Switching Logic

Random Switching logic (RSL) [32] is an example of a countermeasure which uses the

Masking technique. Here, a random mask is applied to disguise transition probabili-

ties of inputs and outputs. RSL is a single-rail logic which operates by employing a

1 bit random value to all input and output signals, this is the masking process. The

process is guided by an enable signal for synchronicity, and to assure security, the

transition of the random signal is not biased.

A disadvantage of the RSL is that the effectiveness of this technique is highly

dependant on the quality of the random number generator; this being a costly com-

ponent. This, along with the weight of the power consumption overhead render this

design method expensive in terms of implementation.

3.2.2 Sense Amplifier Base Logic

The Sense Amplifier Base Logic (SABL), proposed by Tiri et al. in [9], employs a

dual-rail with pre-charge technique. In dual-rail designs, a capacitance is constantly

being charged, regardless of the input, and every input is associated with a specific

switch position. In other words, for every input there is a complementary signal

generated and transmitted on a secondary wire. It means to impede Differential

Power Analysis attacks by maintaining a constant value at the load capacitance.

SABL employs the use of a clock to perform the pre-charging which has the disad-

vantage of adding a large clock load. Though this method is efficient in maintaining a
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constant power consumption regardless of the data, designing a circuit in this method

requires the implementation of a custom library. Standard CMOS libraries do not

include SABL gates, rendering this method unsuitable for current logic design. For

this reason, Tiri et al. proposed the Wave Dynamic Differential Logic as a solution.

3.2.3 Wave Dynamic Differential Logic

The Wave Dynamic Differential Logic (WDDL) [33] is a design scheme based on the

SABL, however, uses the standard cell library. In this design, CMOS gates as well as

a pre-charge phase are used in order to compensate for circuit activity. Here, instead

of a clock cycle being used for the pre-charge, it is done through a pre-charge wave

which travels through the circuit.

A disadvantage of WDDL is that it is known to be prone to early evaluation and

pre-charge [31] [13]. The primary cause for such effects is due to the mismatch in

delay of variables belonging to the same gate.

3.2.4 Masked Dual-Rail Pre-charged Logic

An improvement on WDDL, Masked Dual Rail with Pre-Charged Logic (MDPL) [20]

[1] is a design architecture that aims to solve the issue of unbalanced signal propa-

gation. This logic style was conceived by combining the WDDL and RSL methods,

resulting in a fusion of the dual-rail pre-charge logic and the masking technique. In

this logic style, the true and false routes are interchanged randomly. This results in

improvements to the routing balance, and that of the dual-paired gates. The MDPL

method is achieved in two phases, synchronized by a clock signal. When the clock
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signal is high, initialization of the circuit’s differential pair are executed by way of a

traveling wave, setting both signals and all flip-flops to (0,0). When the clock switches

low, the circuit enters its evaluation phase, changing the differential signals to (0,1)

or (1,0) based on the masking applied and the data imputed.

The disadvantage to this scheme is that it, as with the WDDL, remains prone to

early evaluation and pre-charge.

3.2.5 Dual-Rail Random Switching Logic

Due to the fact that a successful scheme that would solve the early evaluation and

pre-charged problem proved very difficult to be designed, dual rail random switching

logic (DRSL) [4] was created with the goal to render these two variables independent

of the data. In this scheme, there is a validity check of all the inputs before allowing

them to propagate. DRSL has a pre-charge phase and an evaluation phase. The

generation of the pre-charge signal has the effect of synchronizing the input signals.

Synchronization of the complimentary signals is imperative to maintain the indepen-

dence of the intermediate data to the input signals. The pre-charge phase forces all

signals to 0; the pre-charge signal becomes invalid after the inputs are evaluated in

the evaluation phase. Random mask changes occur every clock cycle, which are ap-

plied to the values in the registers for the following clock. In this scheme, glitches are

suppressed with the pre-charge logic in conjunction with a random mask.

Though this design technique overcomes the problems with early evaluation, the

main drawback to this style of design is its high complexity.
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3.2.6 Multiple-Valued Source-Coupled Logic

The Multiple-Valued Source-Coupled Logic (MV-SCL) [3] developed by Y. Baba and

his colleagues, employs the hiding scheme along with Multiple-Valued Source Cou-

pled Logic in designing an adder, to maintain a constant power consumption profile,

which would be independent of input values. This circuit design method begins by

converting the adder’s two digital inputs to their analog signal equivalents, followed

by a simple nodal summation. After this summation, these signals undergo a current

to voltage conversion before entering comparators and subsequently carry generator

unit. The main attribute of this method is in the generation of differential pairs in

the comparator process, balancing the signals, thus employing the hiding scheme.

Although this design method allows the power consumption to remain constant,

therefore minimizing the availability of side channel information, it does require a

significantly higher power consumption than its conventional digital counterpart. The

basic idea presented by Baba comprises of an analogous concept to the novel design

elaborated in this research thesis, however, the novel design approach offers significant

improvements to the issue of the high power consumption while maintaining the

security of the system.

3.3 Summary

Presented above are several existing techniques that were developed to protect against

Side Channel Attacks. As discussed in this chapter, these existing countermeasures

possess various weaknesses such as the requirement of a custom library, delayed signal

propagation, high implementation costs, early evaluation issues, high design complex-
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ity as well as very high power consumption.

In the research presented herein, a novel design for crypto processor implementa-

tion was designed to overcome these weaknesses while providing an increased security

against most known forms of Side Channel Attacks.
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Chapter 4

Proposed Circuit Architecture

This chapter explains the theory applied in the hardware design of a secure adder.

Montgomery Multiplication is presented and explained with the use of examples. The

design approach of the Current-Mode mixed signal adder is described, followed by a

discussion of the proposed overall circuit architecture.

In the proposed design, a mixed-signal approach was utilized in defending against

Side Channel Attacks. This novel design incorporates the advantages of using Current-

Mode Logic along with Domino Logic for a comparative power consumption and less

glitch ridden circuit than would be achieved through a fully digital circuit implemen-

tation.
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4.1 Montgomery Multiplication

Montgomery Multiplication is a widely used modular multiplication algorithm created

by, and named after, the mathematician Peter Montgomery. It was first published in

1985 [22], and since then has been used to greatly reduce the required resources and

time to evaluate the operation of modular exponentiation.

Modular exponentiation is defined as repeated modular multiplications. In such

applications as cryptography, where the variables consist of often over a thousand

bits, this mathematical process becomes a major bottleneck in the crypto processor

system.

The Montgomery algorithm allows efficient computation of modular arithmetic

when the word size of the operands are large. More specifically, this algorithm com-

putes the product of two integers modulo a third, without requiring a division by n

(the modulus). It yields the reduced product using a series of additions. Since it

is characteristic of Montgomery Multiplication to perform modular multiplication by

substituting addition and multiplication for the computationally expensive division,

there is a necessity for fast and efficient adders.

To compare the classic method of evaluating a modular multiplication versus the

Montgomery method, a simple example in radix-10 is demonstrated [21]. First, in Ta-

ble 4.1, the classical evaluation method is employed to find the result ofM=43×56(mod

97), then illustrated in the flow diagram in Figure 4.1, the Montgomery process is

divided into simple steps.

Following the Montgomery method of evaluating the modular multiplication in

the given example, as seen in Figure 4.1, it is plain to recognize that this method
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Table 4.1: Modular Multiplication Using Classical Evaluation Method

Step Find: 43×56 (mod 97)

1 43×56 = 2408 (mod 97)

2 2408-97 = 2311 (mod 97)

3 2311-97 = 2214 (mod 97)

4 2214-97 = 2117 (mod 97)

...
...

20 662-97 = 565 (mod 97)

...
...

24 274-97 = 177 (mod 97)

allows a drastically simplified means of computing the solution using fewer processing

resources and results in quicker completion.
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Find: 43*56(mod 97) 

Convert variables 
to Montgomery 

Domain 

x'= x*R(mod p) 
x'= 

43*100(mod97) 
x'= 32 

y'= y*R(mod p) 
y'= 56*R(mod 97) 

y'= 71 

Montgomery Representation of  

x*y(mod p) = a3/R 

4600/100  = 46 

a1= x' * y' 
a1= 32*71= 2272 

Zero the LSB in a1 
a2= a1+(4p) 

a2= 2272+388= 
2660 

Zero the next LSB  
a3= a2+(20p) 

a2= 2660+1940= 
4600 

x= 43 
y= 56 

p= 97 

R=10b  

such that b is 
minimal and R > p, 

thus b=2, R=100 

Figure 4.1: Modular Multiplication Using Montgomery Method

The Montgomery Multiplication process may be explained as follows: First the

multiplicands are set to x and y respectively, and the modulus is set to p. The variable
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R, is calculated such that it is the smallest power of the base in which the calculations

are being performed, while being greater than p, the modulus. Then, x and y are

both converted into the Montgomery domain, using R, according to the Equations

4.1 and 4.2.

x′ = x×R(modp) (4.1)

y′ = y ×R(modp) (4.2)

After multiplying x′ by y′, multiples of the modulus, p, is added to their product

in order to make the last two digits zero (this allows simple division by shifting

the decimal twice to the left). The result is the Montgomery representation of the

modular multiplication.

Note that the efficiency of this algorithm is achieved from the fact that in cryptog-

raphy, an actual result of the modulus is not necessary. This means, the computations

and results may all remain in the Montgomery Domain, where repetitive subtraction

is replaced with multiple additions and simple division by a power of the radix (accom-

plished by using shift registers). Conversely, applying the Montgomery Multiplication

to modular arithmetic where the actual final result is desired is costly; this, due to

the necessary conversion to and from the Montgomery Domain.
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Figure 4.2: An Adder as Research Focus

Since the modular arithmetic in the RSA algorithm, the focus of this research, is

conveniently replaced by simple addition, the main component of the crypto processor

becomes an adder. This point is demonstrated by Figure 4.2. Therefore, the circuit

design proposed in this research incorporates the layout of a mixed signal version of

a Carry Look-Ahead Adder (CLA) logic.
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4.2 Mixed Signal Carry Look-Ahead Adder

The design of this Multiple-Valued Carry Look-Ahead Adder (CLA) is the proposed

solution to the recently popular security issues related to Side Channel Attacks. This

novel design combines the benefits of Current Mode Logic and Domino Logic to result

in a very low power and secured hardware architecture. Figure 4.3 illustrates the full

block diagram of the proposed design.
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Figure 4.3: Block Diagram of the Proposed Full Circuit
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Current-Mode Logic permits the circuit to accurately and effectively balance the

values of the intermediate data, and allows for a constant power consumption inde-

pendent of the input values. While the proposed method does require an increased

area for the conversion of the input signal to analog and to generate its complement,

these signals, in contrast to the previously describes architectures, are both used later

in the circuit, removing unnecessary redundancy. Figure 4.4 illustrates the nature of

the signal throughout its propagation in the circuit.

 

1011010 
1101011 

11000101 

Digital Inputs Digital Outputs 

Analog 

DAC 
Carry 

Generator ADC 

Analog 

Figure 4.4: Signal Propagation of Proposed Design

4.3 Characteristics of the Proposed DAC

In order to hide the side channel information, a constant power consumption is de-

sired. This is accomplished by employing a Dual-Rail Current-Mode Logic to more

effectively and efficiently protect against Side Channel Attacks.

The digital inputs to the circuit are converted to their current-mode equivalent,

while a complement of the signal is generated simultaneously, in the dual-rail sys-

tem. A complement value in an analog system differs from that of a digital system.

For example, in a mixed signal design, if we consider the radix to be B, then the

complement value for the analog value, x, would be equal to B − x. Values of each
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signal as well as their complement are generated using Analog to Digital Converters.

As illustrated by Figure 4.5, the Digital to Analog Converter (DAC) is implemented

by employing switches to simultaneously generate the analog values as well as their

complement.
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Figure 4.5: Gate Level Diagram of the DAC and Carry Generator blocks
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There are, of course, two inputs (operands) to the adder circuit, namely A and B.

As depicted in part (a) of Figure 4.5, the block representation of the DAC portion, the

two 32-bit inputs, A and B, are divided into groups of 4-bits before being converted to

their analog equivalent signal and its complement. Part (b) of Figure 4.5 demonstrates

that the generated analog signal and its complement are summed by way of nodal

addition with the corresponding analog equivalent and complement signals from the

DAC of the second input, respectively. These new summed signals, forwarded to the

Carry Generator block, are referred to as Si for the summed analog equivalent signals

of A and B, and Si for the summed complement signals. Figure 4.6 shows that the

average of these two signals, Si and Si is a constant current value. Following their

conversion to the analog domain, these input signals are sent to the Carry Generation

block. The Carry Generator is a mixed signal unit, and is composed of current

comparators and domino logic. The gate level structure of the Carry Generator is

described in the next section.

 

Figure 4.6: Analog Equivalent Signal and its Complement
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4.4 Characteristics of the Proposed Carry Gener-

ator

An advantage of this design, is the facility with which it may be applied to the novel

dual-rail Current-Mode Logic architecture for the cryptographic processor.

The typical model of the CLA [16] is redesigned to function as a mixed signal

circuit. Figure 4.5 (c) shows that the inputs to the Carry Generator block of the

CLA are analog signals, however, the internal circuitry of the Carry Generator is

primarily implemented with the digital domino logic, while its outputs are again

in current-mode logic. The method in which this mixed signal design functions is

simplified and explained by the Equations 4.3 through 4.10.

The carries and sums are calculated based on Equations 4.3, 4.4, 4.5, and 4.6.

Here, Gi and Pi are known as the carry generate and carry propagate signals, re-

spectively. The constant Amax represents the maximum value representatble, and is

determined based on the resolution of the DAC sub-blocks. For example, since the

two 32-bit digital inputs are divided into groups of 4-bits, prior to their conversion to

Current-Mode Logic, Amax has an analog value corresponding to the maximal 4-bit

digital input of 1111. Ci denotes the carry and Si is the sum of the current-mode

input signals generated by the digital to analog converter, and Sout is the final result

of the addition.

Pi = 1 when Si ≤ Amax (4.3)
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Gi = 1 when Si > Amax (4.4)

Ci+1 = Gi + PiCi (digital logic) (4.5)

Sout = Si + Ci (digital logic) (4.6)

All of the carry signals, Si and Si, enter the Carry Generator circuit from the

DAC block simultaneously. These signals are then compared to the the value of Amax

as shown in Equations 4.3 and 4.4, to determine the values of Pi and Gi, respectively.

The last step of this block is to calculate the carries. The general method for the

carry signal calculation is given in Equation 4.5. Equation 4.6 shows the final sum

signal generation.

The logic used to generate the Pi and Gi signals is displayed in Table 4.2. The

encircled rows represent the critical cases in which a change occurs in the output for

the Carry Propagate and Carry Generate signals.
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Table 4.2: Logic for Signal Generation

Inputs to CLA Generated Signals

MV-CML

Decimal Representation Carry Carry

Value Si Si Propagate Generate

0 0 60 0 0

1 2 58 0 0

2 4 56 0 0

3 6 54 0 0

...
...

...
...

...

12 24 36 0 0

13 26 34 0 0

14 28 32 0 0

15 30(Amax) 32 1 0

16 32 30 1 1

17 34 26 1 1

18 36 24 1 1

19 38 22 1 1

...
...

...
...

...

28 56 4 1 1

29 58 2 1 1

30 60 0 1 1
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As demonstrated in Equations 4.7 through 4.10 (all digital logic), the results of

each consecutive carry relies only on the first carry input, C0 and the Carry generate

and Carry Propagate signals from each stage, which are, as previously discussed,

generated concurrently. The generation of these signals follow the traditional digital

CLA algorithm. The first four carry signals are presented here as follows:

C1 = G0 + P0C0 (4.7)

C2 = G1 + P1G0 + P1P0C0 (4.8)

C3 = G2 + P2G1 + P2P1G0 + P2P1P0C0 (4.9)

C4 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 (4.10)

Domino logic was used in the implementation of the Carry Generator logic block

for greater circuit optimization. This type of logic includes a pre-charge and an

evaluation phase. Domino logic allows a smaller area as well as smaller parasitic ca-

pacitances permitting a faster circuit speed, and more importantly it reduces glitches

and the circuit power consumption. Details on the circuit topologies are presented in

Chapter 5.
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4.5 Characteristics of the Proposed ADC

Once the carry signal is generated in the Carry Generator block, the sum signals,

along with the carry information, must be then converted back to the digital domain

by way of Analog-to-Digital Converter (ADC). Again in this block, it is essential to

minimize data dependent spurs that would compromise the security of the hardware,

and to maintain the feasibility of the proposed secure adder, it was an aim to minimize

the power consumption. In order to create an efficient and optimized analog to digital

converter, signals already generated and present in the circuit are scaled and used

along with comparators and digital logic, according to Figure 4.7, to produce the final

 

Figure 4.7: Block Diagram of Proposed ADC Design
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digital result of the desired addition operation.

As can be observed in Figure 4.7 (a), the first step in the ADC block is to determine

which of the sum+ carry (Sc) and its complementary signal sum− carry (Sc) is the

Primary (Prim), and which is the Secondary (Sec) signal, as well as setting the value

of the SELECT signal within this block. The value of SELECT is set to 1 if Sc

is greater than Sc. Once this is determined, the Prim and Sec signals proceed into

comparator units, scaled as depicted in Figure 4.7 (b). The blocks depicted in Figure

4.7 (b) and (c) determine the digital values of the 4-bit signal, A4A3A2A1, A4 being

the most significant digit, A1 the least significant.

After determining A4 and A3 in part (b) of Figure 4.7, they are again converted

back to the analog domain (A4A3) and forwarded to part (c) of Figure 4.7 derive the

two lowest significant binary digits, A2 and A1.

The last two bits are distinguished based on the logic exhibited in Table 4.3.
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Table 4.3: Logic for the Generation of the Two Least Significant Bits

2A4A3 2A4A3+2 2A4A3+4 Primary T3 T2 T1 A2 A1

0 2 4 0 0 0 0 0 0

0 2 4 2 0 0 1 0 1

0 2 4 4 0 1 1 1 0

0 2 4 6 1 1 1 1 1

8 6 8 8 0 0 0 0 0

8 6 8 10 0 0 1 0 1

8 6 8 12 0 1 1 1 0

8 6 8 14 1 1 1 1 1

16 18 20 16 0 0 0 0 0

16 18 20 18 0 0 1 0 1

16 18 20 20 0 1 1 1 0

16 18 20 22 1 1 1 1 1

24 26 28 24 0 0 0 0 0

24 26 28 26 0 0 1 0 1

24 26 28 28 0 1 1 1 0

24 26 28 30 1 1 1 1 1

Finally, as shown in part (d) of Figure 4.7, depending on the value of the SELECT

signal, which was previously determined, the final digital output of the adder is

obtained. The two conditions represented in Equations 4.11 and 4.12, define the

method in which the output is decided. The signal defined as D4D3D2D1 represents

47



4. PROPOSED CIRCUIT ARCHITECTURE

the final output of the circuit. If the SELECT signal has a value of 0, the binary

values of A4 through A1 are set directly as the output. If the value of the SELECT

signal is 1, the inverse of the digital signal A4A3A2A1 is set as the final output of

the circuit.

ifSc < Sc, then SELECT = 0, D4 = A4, D3 = A3, D2 = A2, D1 = A1 (4.11)

ifSc > Sc, then SELECT = 1, D4 = A4, D3 = A3, D2 = A2, D1 = A1 (4.12)
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Chapter 5

Results

This chapter presents the transistor level diagrams of the different components of the

overall design. Also explored in this chapter are the results obtained from simulating

the side channel resistent adder proposed in this research. The conclusions that may

be derived from the results are described, and then compared to those of the State of

the Art.

The 90nm technology, with a power supply of 1.2V, was used along with the

Cadence software to design and simulate the proposed architecture. This proposed

adder architecture is designed to be able to process blocks of data with a word length

of 32 bits. This work opens a path for extended resolution adder, which would be

able to function with a much higher input word length. Arbitrary digital values were

fed as inputs to this novel design to test the functioning and obtain the results of the
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circuit.

5.1 Digital-to-Analog Converter

The main goal of this research is to provide a solution for a robust building block of

crypto processors that is able to withstand the covert threats known as Side Channel

Attacks. Side channel information such as power consumption spikes, as is the focus

here, may be observed and analyzed to then decipher an encoded message. As was

previously mentioned, a technique referred to as hiding was employed to remove,

or greatly minimize, any power consumption dependence on data, whether input,

output, or intermediate, from the encryption operations it undergoes.

This first block is perhaps the most crucial to the overall design goal of the circuit.

It is here where the digital inputs are fed and converted to their analog equivalent

and its complementary signal concurrently.

As described in the previous chapter, there are two inputs to the adder circuit.

Each input is composed of 32-bits. In the first phase, the two 32-bit inputs are divided

into groups of 4-bits, prior to entering the DAC (Digital to Analog Converter) block

and being converted into Multiple-Valued Current Mode Logic. Since each DAC

block accepts a 4-bit digital input value, the possible binary inputs range from 0000

to 1111, in decimal this equates to a range of 0 to 15.

Figure 5.1 is the transistor level diagram of the digital logic switch connected to

each binary input. This switch is the initial step in implementation of the dual-rail

system. The value of the digital input to each switch directs the current to one of

the specified dual-rail lines, in turn simultaneously generating the current-mode logic
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equivalent to the input and its complement.

Figure 5.1: Transistor Level Diagram of One a One Bit Conversion
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Each increment of 1 in decimal corresponds to the analog equivalent value of

2µA (ex: 110 = 2µA, 210 = 4µA, 310 = 6µA, etc.). This means, with a maximum

binary value of 1111, or 1510, the maximum current value resulting any line from the

DAC stage is 30µA. Since the output of the DACs are summed, by way of nodal

current addition, with the output of the DAC of the correspondingly weighted inputs

of the second operand, the maximum summed current mode-logic equivalent (without

considering the carry at this stage) is 60µA. It follows that the complementary signal,

generated in each DAC, is equal to the maximum Current-Mode Logic (CML) output

minus the input’s equivalent CML value. This logic is described in Equation 5.1 to

find the complementary signal, outputi.

outputi = 30µA− outputi (5.1)

Furthermore, Equation 5.2 represents the value of the complementary signal, Si,

after nodal summation with the corresponding DAC output. The signals signals Si

and Si become the inputs to to Carry Generator which is explained in the proceeding

section.

Si = 60µA− Si (5.2)

To find the worst case power consumption of the digital to analog conversion

process, one of the 32-bit operands, A, was set to a constant value, and the other

input, B, was set to an incrementing binary value. These two operands can be seen

in Figure 5.2 and 5.3. The power consumption necessary to convert all 64-bits of

the two digital inputs to the analog domain, is demonstrated in Figure 5.4. From
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this figure, it is evident that the power consumption is successfully maintained at a

constant level.

 

Figure 5.2: 4-bit Input A: Constant Value

 

Figure 5.3: 4-bit Input B: Incrementing Value

53



5. RESULTS

Figure 5.4: Power Consumption of two 32bit Digital to Analog Conversions (64 bits)

An inherent disadvantage of any dual-rail circuit design, is a higher overall power

consumption. To oppose this negative property, the complementary signals, as well

as the equivalent signals, generated in this block of the design, are used further in the

circuit as a convenient and efficient comparator input for carry signal calculations.

The complementary signals are used in place of current reference, which are always

required for DAC and ADC. These signals are used for dynamic current comparators.

By avoiding the use of static current references, power consumption of the proposed

adder was reduced significantly. This approach lends to a more practical circuit

architecture, with a much improved overall power consumption.

5.2 Mixed Signal Carry Generator

Classically, the Carry Look-Ahead adder has an entirely digital composition. To

adapt this circuit model for the desired outcome of the design, the digital logic gates

were replaced by both analog signal comparators, as well as domino logic gates.
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Domino logic gates are a type of dynamic digital logic gate which functions with a

pre-charge and an evaluation phase controlled by a clock signal. This logic requires

fewer transistors to implement the same logic gates as in the typical static logic

implementation. See Figure 5.5 for a comparison of a 2-bit AND gate in static

CMOS Logic and Domino Logic. With the decrease in the number of transistors,

there is a decrease in area, as well as parasitic capacitances. The main advantage of

employing this logic is that it leads to a reduction in overall power consumption, as

well as reduced glitches in the power profile.

 

Figure 5.5: Static versus Dynamic Logic

The comparators, as seen in Figure 5.6, generate the required Carry Generate

(Gi) and Carry Propagate (Pi) signals by way of comparing the current-mode sums,

generated in the previous stage of the design, to the necessary constants of 30µA and

32µA.

In a 4-bit digital number, the maximum value that can be represented is 1111
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(1510), which in our multiple-value current mode environment is equivalent to 30µA.

This observation leads to the conclusion that, if the sum is greater than 30µA, there

will be a carry, hence the Gi signal is set to 1. Additionally, in the case where the sum

is equal to 30µA, the Pi signal is set to 1, indicating the possibility of the generation

of a carry. To synchronously determine the Gi and Pi signals, they are each compared

to constant values based on the following logic (see Table 5.1): If the input sum (Si)

≥ 32, then Gi=1, and if the sum complement (Si) ≤ 30, then Pi=1.

Table 5.1: Gi and Pi Generation Logic

Si Si Gi Pi

28 32 0 0

30 30 0 1

32 28 1 1

34 26 1 1

Once all of the Gi and Pi signals are established, Domino Logic is then employed

to, at once, determine all carry values based on the logic presented in Chapter 4.

By maintaining the mixed signal approach, and after modifying the architecture for

accurate arithmetic operation, a constant and low power consumption was able to be

conserved. This outcome may be confirmed by inspection of Figure 5.7.
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Figure 5.6: Transistor Level Diagram of the MV-CMDL Carry Generator

57



5. RESULTS

Figure 5.7: Power Consumption of the Carry Generator block

5.3 Analog-to-Digital Converter

Prior to entering this Analog-to-Digital Conversion (ADC) block, the carry informa-

tion, determined from the previous block, is combined to both the sum (Sc) and the

complement signal (Sc). This now means that since the carry may assume the value

of 0µA or 2µA, the new maximum values for Sc and Sc is 62 µA. These two new

signals are then compared to each other in order to determine the value of the Select

signal. The SELECT signal is useful in determining which of the signals, Sc or Sc,

is the primary, and which is the secondary signal. Additionally, the SELECT signal

identifies whether the digital value at the last stage is inverted or not before being

sent as the output. This logic can be seen in Table 5.2.
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Figure 5.8: Transistor Level Diagram of a 4-bit ADC
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Table 5.2: Function of the SELECT signal

Condition SELECT Signal Primary Secondary State of Outputs

Sc < Sc 0 Sc Sc Non-Inverted

Sc > Sc 1 Sc Sc Inverted

Figure 5.8 illustrates the transistor diagram for this specially designed ADC. As

previously described in Chapter 4, the secondary signal is scaled and then compared

to the primary signal. The secondary signal is scaled to find the two most significant

digital values, as seen in part (a) of the figure. These are then converted back to their

analog equivalent by passing through a smaller DAC as was designed during the first

stage of the circuit, as seen in part (b) of the figure. The analog signal generated here

can assume four values. This 2-bit conversion represents the MV-CML equivalent of

the two most significant bits, A4A3. The conversion is as demonstrated in Table 5.3.

Table 5.3: 2-bit DAC Conversion Equivalents

Input Digital Weight Analog Equivalent

00 0 0

01 4 8µA

10 8 16µA

11 12 24µA

A fundamental principle in this novel ADC design is in the re-use of the signals

already generated in the circuit. After analyzing the relationship of the signals prop-
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agating in the circuit, this ADC takes advantage of such correlation by next biasing

the signal A4A3 and then comparing the scaled primary signal again to determine the

last two digital values. As seen in Figure 5.8, the transistors M1 and M2, in part (c),

bias the A4A3 by the addition of 2µA and 4µ respectively. Depending on the value

of the signal SELECT , in part (d) of Figure 5.8. Making this efficient ADC allows

a low power consumption, and by applying similar logic as in the DAC proposed, the

power consumption is also maintained at a constant level, see Figure 5.9.

Figure 5.9: Power Consumption of two 32-bit Analog to Digital Conversions (64 bits)

5.4 Comprehensive Circuit Results

This section reports on the overall performance of the proposed adder circuit design.

The average overall power of the complete circuit was found by introducing a series

of random inputs to the circuit, and then through the Cadence software, measuring

the average power. As can be concluded from Figure 5.10, the ultimate research goal

of maintaining a constant power consumption profile, and completely dissolving any

dependance of the glitches in the side channel information has been achieved.
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Figure 5.10: Overall Circuit Power Consumption

In the Table 5.4, a comparison was made between the novel design model and

the leading state of the art results [3]. For a comprehensive comparison, data from

the conventional adder, used in the RSA algorithm, was presented. It must be noted

that, although the power consumption is much lower in the standard adder model, it

is highly susceptible to Side Channel Attacks, even if stronger algorithmic securities

are applied.

Table 5.4: Results Comparison

Conventional [28] Baba et.Al. [3] Proposed Design

Technology 90nm 90nm 90nm

Resolution 32 bits 32 bits 32 bits

Power Consumption Range 0.0014-14.88mW NA NA

Avg. Power Consumption 0.58mW 20.76mW 9.3mW
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Chapter 6

Conclusion and Recommendations

Technology is involved in nearly every aspect of modern life. More importantly,

the transmission of private information is increasing as the market for embedded

systems grows. Sensitive data is transmitted in financial transactions, Smartphone

applications, even transportation instruments. As a consequence of the ubiquity of

modern communication systems, it is imperative to consider hardware implementation

techniques as the key to safeguarding sensitive information from the outside attackers.

Previously, algorithmic attacks were the predominant method breaches of data

security measures. The research presented in this thesis focuses on the security of data

beyond the algorithmic protection measures. The implementation of a secure system

is achieved by purposefully designing the crypto processors circuitry to minimize

the generation of side channel information, impeding the external attacks known
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as Side Channel Attacks. The public-key encryption algorithm of RSA, which due

to its continued popularity, is assumed and the hardware design of secure adder is

implemented for its application.

The proposed solution to the Side Channel Attacks is the circuit design approach

of this Multiple-Valued Current Mode and Domino Logic (MV-CMDL) Carry Look-

Ahead Adder (CLA). This novel design proves to combine the benefits of Current

Mode Logic and Domino Logic, resulting in a very low power and secured hardware

architecture. The scheme used in disguising the side channel information created by

the electronic devices is called the Hiding technique. In Hiding, the side channel

information is obscured by keeping a constant power consumption, and therefore

greatly reducing the side channel information to be observed.

The novelty of this research is in the combination of MV-CML and domino logic to

this arithmetic system of an adder, and its application to a dual-rail system, producing

a circuit which maintains a constant, and low, power consumption. In fact, major

improvements have been accomplished in power consumption optimization compared

to the similarly endeavoring circuits. Indeed, results show that this novel architecture

consumes approximately 55% less power.

The main disadvantage of employing this design is the difficulty that is faced when

attempting to increase the resolution of the system. For that reason, my recommen-

dations for future work involve changing the logic of the carry signal generation from

Carry Look-Ahead adder to a Carry Save Adder, where the true sum may not be

calculated, but as the sum is solely needed for the purpose of multiplication, all that

is needed is a partial sum. Once carry logic is changed, the resolution should be

increased, for the advantage of crypto processor use. Another improvement that may
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be made on the design is to minimize the switching spurs by adding sized buffers in

the DAC block, as well as an enable/disable signal for further power saving measures.
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