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Abstract

Conventional quality control devices for spot welding cannot perform on-line 

inspection and provide feedback to the welding control system. In this way, the 

traditional quality control systems are similar to statistical welding parameters monitoring 

systems. It is imperative to combine the idea of on-line quality inspection with closed- 

loop feedback control in a robust control system. However, there is no single acoustic 

method to date capable of manipulating real-time control and on-line quality inspection, 

concurrently, since specific procedures (e.g. scanning time and adjustment time) need to 

be adopted by traditional acoustic microscopes to retrieve proper information, and these 

procedures tend to disable the real-time and on-line capability of acoustic microscopy.

With recent hardware improvements, the novel portable acoustic device is able to 

reduce the scanning time to real-time fashion without losing any significant data. On the 

other hand, the adjustment time of the portable acoustic device can be reduced noticeably 

by employing intelligent control software instead of human operators. This new 

hardware-software configuration will be an ideal approach to the on-line, real-time 

nondestructive inspection of spot welds. The primary goal of this research is to develop 

an intelligent system to accomplish the on-line, real-time nondestructive inspection for 

spot welds. The following objectives were fulfilled to reach the final goal.

• Classification of the acoustic images of spot welds.

• Quantification of acoustic information as parameters.

Ill
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• The study of the influence of each parameter on the strength of spot welds.

• Identification of important and significant parameters.

• Integration of these parameters into the knowledge base of the software.

The system developed can be an on-line advisor that is capable of providing 

critical information about the quality of spot welds during the process. Furthermore, this 

system is able to render warning signals to the process control unit to prevent further 

mistakes.

IV
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Chapter 1 

Introduction

Sheet metal joining processes are widely used in many industries, such as the 

aerospace and automotive industries. Among these processes, resistance spot welding is 

the most common procedure used to join metal sheets because it has high process speed 

and is easily adopted in mass production lines. As these industries grow, the quality 

control of spot welds becomes an important issue for manufacturers eager to improve 

their output commodity. The quality of the spot weld is affected by welding processes 

and the design of the joint. Many factors have to be taken into account, such as 

metallurgic reactions, thermal behaviors, chemical composition and condition of the base 

metal, welding conditions, and the welding equipment. Furthermore, the intricate 

relationship between these factors makes it more difficult to control the quality of spot

1
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welds. Numerous efforts have been made to improve weld quality through different 

approaches; nevertheless, most of them are not overall solutions due to the lack of 

adequate equipment and efficient algorithms to inspect these improvements.

A conventional strategy for spot weld quality control inspection usually consists 

of: 1) an on-line weld current/resistance monitoring system to maintain consistent 

welding parameters, and 2) a spot weld examination standard set up by the American 

Welding Society (AWS) or the industries themselves. A spot weld examination standard 

includes visual inspection of the weld surface and destructive testing of collected 

weldment. The most important indicators of weld quality are the following [20]:

1. Surface appearance (by visual inspection);

2. Weld size (by visual/destructive inspection);

3. Penetration (by destructive inspection);

4. Strength and ductility (by destructive inspection);

5. Internal discontinuities (by destructive inspection);

6. Sheet separation and expulsion (by destructive inspection);

7. Weld consistency (by monitoring welding parameters).

The welding quality indicators listed above are vague due to the insufficient quantified 

description. To apply these specifications in practical manufacturing cases, these 

indicators must be converted to quantified inspection standards. From the Welding 

Handbook f20] and the Resistance Welding Manual [733, some of those quantified 

indicators are itemized in Table 1.1.

2
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Table LI Welding quality specifications
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In reference to the table above, the spot weld quality control relies mainly on an on-line 

supervising unit to monitor welding parameters, on-line inspectors to perform visual 

inspection, and statistical sampling techniques for off-line destructive testing.

It is obvious that the aforementioned conditions are mostly for visual inspection 

and destructive testing which do not take into account the combined effect of those
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indicators. Furthermore, the true quality of the spot weld, i.e. its strength, is only 

presumed by off-line destructive sample tests. Unless every spot weld is examined, there 

is no certainty that the required strength has been met.

The acoustic microscopy method is one of the extensively used nondestructive 

testing (NDT) methods and has been used for various inspection applications. Unlike 

other non-destructive methods, the acoustic method provides both surface and internal 

information. Moreover, the acoustic method stipulates deeper penetration into specimens 

and higher sensitivity to small discontinuities. By utilizing the acoustic nondestructive 

method, the internal structure of spot welds can be represented as acoustic images for 

further studies. However, acoustic methods are not flawless, and the nature of acoustic 

methods confines the applications of acoustic microscopy. The most common limitations 

of the acoustic method are:

1. Couplant fluid (propagating medium) is required for acoustic wave propagation 

between the acoustic probe and the test specimen; and

2. Skillful operators are needed to operate devices and to analyze the information.

The first limitation does not cause much difficulty in examining spot welds since 

the materials for joining in the automotive and aerospace industries are usually 

galvanized or coated. Thus, applying couplant fluid on surfaces to be examined will not 

damage the product. For the second limitation, manufacturers have to set up standards or 

training programs for the inspection personnel to ensure accurate NDT results. This 

limitation makes the on-line inspection of spot welds difficult because it is not

4
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economical to train every worker in the plant to be a tester/analyzer/operator. Besides, 

the nature of the acoustic method limits its practicality in on-line applications.

The acoustic method, unlike the optical or X-ray method which receives two- 

dimensional information through one process, has to go through point-to-point scanning 

procedures to obtain two-dimensional information. There are several ways to display 

acoustic information, and they can be categorized by the information obtained. The most 

common ones are A, B, and C scans that can be selected to show the internal defects as 

required [84l

A-scan:

The A-scan is the simplest presentation. It shows the amplitude of the echoes, or the 

reflection, as a function of time at a selected point of the work surface. The duration of 

time between different peaks represents the time needed for acoustic waves to travel 

between discontinuities.

B-scan:

The B-scan follows the same procedure as the A-scan but repeats the signal-catching 

procedures while the lens scans along the X-direction. Hence, an image of the cross- 

section of a component is built up. The measured amplitude is displayed as a colored dot 

on the monitor and its coordinate is defined by the position of the lens (X-coordinate) and 

the acoustic pulse’s traveling time (Y-coordinate).

5
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C-scan:

If the amplitude of a particular echo is monitored at each point on certain depth of the 

workpiece, a C-scan can be formed. Measurements at each point are taken using 

scanning and electronic gate mechanisms that produces a plan for the level of the defects. 

This scan only gives the information at the preset depth of the electronic gate.

Among these three types of scans, the C-scan provides the richest information and 

is therefore more desirable for our quality control purpose; however, it is also the most 

time-consuming scan.

The primary goal of this research is to develop a rapid and robust algorithm for 

the software of the acoustic microscope to reduce the role of experienced microscopy 

operators involved in spot weld inspection. By employing the recently developed ultra- 

Short Pulse Scanning reflection Acoustic Microscope (SPSAM) system, designed by the 

Center For Imaging Research and Advanced Materials Characterization, a large amount 

of acoustic information can be retrieved, processed, and represented in a short period of 

time. This state-of-the-art hardware design facilitates on-line acoustic non-destructive 

inspection for spot welds. To adapt this hardware for use in industrial plants, the 

accompanying software is equipped with algorithms that can help analyze the 

information acquired by the acoustic device, and is capable of providing the go/no-go 

responses to on-line workers in a real-time fashion. Furthermore, feedback can be 

provided to the welding control unit during the inspection process.

6
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The major contribution of this study is the development of software for an on-line 

feedback system for spot weld quality control. This developed system overcomes the 

limitations of the acoustic microscope and complements the acoustic spot weld inspection 

instrument to a closed-loop, feedback quality advisor system. Once the acoustic 

inspection system detects defects or inconsistent weld strength, the system will be able to 

provide advice for the welding unit. This system will render more accurate feedback than 

the traditional current/resistance monitoring system. Besides, this system can achieve the 

goal that old monitoring systems cannot, that is, to give on-line feedback of the weld 

quality and to perform inspections based on the internal structure of welds. This system 

functions as a complementary tool to the design unit since the integrity of any given weld 

can be predicted based on acoustic information. This helps designers to reduce the total 

number of spot welds and thereby reduces manufacturing costs.

The steps to achieve this goal are as followed.

Step One: Study of acoustic wave propagation in anisotropic, textured structures

including alloy and weld metals 

The spot weld nugget is an anisotropic material with microstructures different from its 

base metal. The study of acoustic wave propagation in the weld nugget includes 

metallurgical analysis and characterization by the acoustic microscope. The aim of this 

step was to study the mechanical and physical properties of weld nuggets including 

dendrite structures and ferrous areas. The propagation and interaction of focused 

acoustic beams inside spot welds is also studied. This step provides the fundamental

7
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understanding of the connection between weld nugget structures and the associated 

acoustic images.

Step Two: Quantitative study of acoustic information

The relationship between the acoustic information of spot welds and the quality of spot 

welds takes further efforts to clarify. Through the study of acoustic images, information 

such as the profile of surfaces, shape and size of weld nuggets, and size of defects are 

quantified. Afterward, this quantified information was formulated as the quality index of 

spot welds. The objective here is to analyze the acoustic image and to extract desired 

information. The procedures for this task are:

• Mathematical morphology: This procedure improves the acoustic images by 

eliminating noise, improving geometrical shape, and reshaping important objects 

inside the spot welds. By using morphology techniques such as dilation and erosion, 

some porosity is grouped geometrically and the joint effect of grouped porosity is 

studied.

• Segmentation image: This procedure uses a thresholding technique to distinguish 

desirable objects from noise. Thus, important information is left for further study. 

The threshold that separates the peaks on a color/gray level histogram is selected 

based on the knowledge gained from the previous step.

• Edge detection: At this stage, the task is to differentiate discontinuity information 

inside the nugget from the nugget area, and to build up clear and continuous 

boundaries for those objects.

8
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• Area calculation: The task involved is to use the boundaries obtained in edge 

detection to quantify the desired information for later study.

Details of these procedures are listed in Chapter 4.

Step Three: Destructive examination of specimens

Destructive testing of the samples will establish quality indexes for spot welds. These 

quality indexes could be the strength of the weld, the nugget size, and a good/bad quality 

judgment from experts. Later, the result is correlated with acoustic image parameters.

Step Four: Parameters study

Two approaches are used for this stage. The first task is the statistical analysis of the 

parameters through an ANalysis Of VAriance (ANOVA) method. This task will 

contribute to the selection of significant parameters to build up the quality index for 

welds. After the ANOVA analysis, a mathematical relationship is built between the weld 

index and the quantified information established in Step Two. The second task is to 

establish the relationship between the weld quality and screened parameters provided in 

the first task by artificial neural networks and non-linear regression methods. The first 

method is aimed at determining the weld index as a good/bad judgement, and establishing 

the relationship between these non-quantified judgments and quantified weld index 

information. The latter method targets simpler weld quality indicators, e.g. the size of 

welds, and builds mathematical relationship between weld indices obtained in the first 

task and the quality indicator. Details of both methods are listed in Chapter 4.

9
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Step Five: Integrate knowledge into software

The integration of knowledge is the last part of this research, and the most important part. 

By importing the extracted knowledge into its control mechanism, the portable acoustic 

device becomes an intelligent device for spot weld inspection. Both quality evaluation 

methods developed in Step Four show promising results. The statistical method is 

applied as a nugget diameter predictor, and the neural network model is employed in 

order to determine nugget integrity. Regardless of which model is adapted in the final 

hardware product, the knowledge accompanying the software will serve as an on-line 

advisor for workers, and will provide closed-loop feedback to the robot welding control 

system.

Chapter 2 presents a literature review of the spot weld process, spot weld 

metallurgy, and major studies on spot weld quality control. Review of the applications, 

historical development, and the advantages of acoustic microscopes are then introduced. 

Chapter 3 provides a general description of an acoustic device, its theory and the 

acoustic wave propagation inside spot welds. Chapter 4 describes the procedures for 

quantitative analysis of the acoustic information and establishes the relationship between 

this information and weld quality. Four steps are proposed in order to obtain a systematic 

result from analyzing acoustic images. Two methods are proposed to build the 

relationship between these parameters and the weld quality indexes. Chapter 5 is a 

report of experimental results. Chapter 6 is the conclusion.

10
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Chapter 2 

Literature review

2.1 Spot weld quality control

The American Welding Society (AWS) has established a standard method for 

testing resistance welds. The standard method describes five types of resistance weld 

processes including spot welds, roll spot welds, seam welds, project welds, and flash 

welds. Among them, there are 11 general test methods for spot welds. However, it is 

noted [20] that, “In general, the lack of nondestructive tests for resistance welds makes it 

necessary to depend largely upon sampling testing for the control of weld quality.” Thus, 

the standard employs the control chart methods, developed by the American Society of 

Quality Control (ASQC) to evaluate weld consistency.

11
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This off-line, statistical quality control (SQC) method does not meet the 

requirement of mass production industries simply because it cannot offer the timely 

feedback for their products. Hence, many industries tend to use on-line monitoring 

systems to accomplish the real time feedback inspection. Some systems include the 

automatic current and voltage control system, the voltage and current integrator monitor, 

the expansion rate monitor, the expansion correction system, and the resistance correction 

system. Johnson E50] reviews these techniques and their progress in his paper published in 

1975.

As industries expand, resistance spot welding becomes more important because it 

is a widely accepted joining process for mass production with high process speed. As a 

result, more studies have been devoted to spot weld process characterization to improve 

the quality of spot welds. Previous research about spot welds can be divided into three 

main groups: studies on the modeling of spot weld processes, studies on the welding 

characteristics by different materials, and studies on welding quality control by 

controlling certain weld parameters.

Greenwood [39] uses exact geometric models and numerical methods to study the 

temperature of spot welds on mild steel. Gould E37] examines nugget development on 

AISI 1008 steel using an experimental technique which studies a metallographic of the 

nugget’s microstructure and an analytic model which determines the heat required to melt 

the base metal, and for heat transfer in liquid. Cho et a l im establish a model to predict

12
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nugget growth, nugget penetration and temperature distribution on mild steel by taking 

into account factors such as heat generation from electric current, thermal conductivity, 

and the phase change from solid to liquid. Neid t67-1 and Tsai et al. t85][82l develop finite 

element analysis models for simulating the thermal exchange and the pressure of 

electrodes. Vlahopoulos et a l  [87] develop the finite element analysis method based on 

formulating the governing differential equations with respect to the energy variable. 

Hirsch [42], Bertram [7], and Fuerschbach t30] establish mathematical models based on 

different considerations for spot welding processes.

Aluminum welding has become an innovative application in recent years because 

of its light weight. Irving [46] discusses the welding techniques used in the four most 

common aluminum alloys, namely, Alloys 6061, 5083, 5052, and 5454. Gerry [321 from 

Texas Instruments develops an alternate method to join aluminum and steel. Browne et 

al. [11][12J develop a computer-based model to include the elastic-plastic mechanical 

deformation and the thermal conduction in aluminum resistance spot welding. Roset and 

Rager [72] study the welding parameter profile of aluminum spot welds. In the aspects of 

welding processes of various materials, Lin and Duh t60] examine the spot weld 

parameters on the Fe-Mn-Al-Cr alloy. Acoff and Thompson [2] study the weld heat 

treatment on the Ti-14Al-21Nb alloy by Gas Tungsten Arc Welding (GTAW). De et al. 

[2I] conduct a series of experiments of resistance spot welding in 1- mm thick St 1203 low 

carbon steel sheet.
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The welding parameters of spot welds are welding current, weld holding time, and 

electrode pressure. Controlling these parameters may help to manufacture a good spot 

weld. Experiments show a range of current values over which a given material may be 

successfully spot-welded. Many studies have focused on managing these parameters to 

produce indexes for good quality welds. In the 1960's and 70’s, a large amount of 

research was done on monitoring single or multi-welding parameter(s) to achieve quality 

control of spot welds. Recently, mathematical or finite element models were adopted to 

simulate the welding process in verifying the theoretical solutions to the experimental 

data. Snee and Taylor t77] provide an experimental study of an infra-red monitoring 

system for resistance spot weld. In their study, infra-red signal amplitude is used to study 

the development of a weld. Bhattacharya et al. [8:1 develop an in-process quality control 

technique of spot welding by monitoring the dynamic resistance during weld 

development. Dickinson et al. [24] characterize spot welding behaviors by monitoring 

dynamic resistance and critical expulsion energy. Taylor [80] develops a monitoring 

system by exploring the relationship between electrode displacement and expansion rate. 

Chang et al. [17J carry out a control method to track the movement of a desired electrode 

curve and to adjust the input voltage for an ideal weld. Tsai et al. [83:1 develop a single 

parameter, in-process and feedback control system on spot welds by using finite element 

analysis. Howe [44:| uses the ANOVA method to analyze a series of experimental data 

produced by specimens of different thicknesses and materials with respect to different 

welding parameters. Pal and Cronin t7°3 characterize spot welded sheet metal beams with 

static and dynamic tests. Other parameters have been studied for their on-line monitor 

possibility. Beersiek et al. [5] use penetration depth as the control parameter in on-line
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monitoring laser beam welding. Nava-Rudiger and Houlot[66] develop an integrated real

time system using infrared photodiodes to detect the appearance of geometric defects 

such as sagging or misalignment during laser beam welding.

There is, as yet, no comprehensive mathematical model for spot weld processes 

because of the variety of factors involved, e.g., different surface roughnesses, diverse 

material coatings, various material compositions, and human error. Furthermore, the 

traditional mathematical methods cannot handle chemical reaction, thermal behavior, 

electrical and mechanical conducts simultaneously in a single model. By implementing 

new modeling techniques such as fuzzy control and neural networks, it is possible to 

solve this complicated problem through different approaches. Much work has been done 

in this area. In one case, Jou et al. 151:1 introduce a fuzzy control system for spot welds 

based on neural network models. Spinella[79] develops a fuzzy logic model to determine 

the operation parameters of aluminum spot welding. Nevertheless, these methods are still 

dealing with the task of optimizing welding parameters alone and are unable to provide 

accurate indicators of the on-line quality of spot welds.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22  Spot weld metallurgy

This literature review section is devoted to the fundamental study of spot welds, 

especially for its microstructure and acoustic properties. The structure of weld nuggets 

directly affects the propagation of acoustic waves. Moreover, the non-homogeneous 

elastic properties inside spot welds affect the contrast of acoustic images. Thus, it is 

essential to understand the spot weld nugget structure before further inspection. A great 

deal of literature, e. g. Lancaster[58], Linnert[61], Bruckner [13], Seferian t74] and Easterling 

[26], discuss metallurgy in welding. Dix et al. [25] use an experimental method to study 

two phenomena: nugget formation and stuck welds in the spot weld process. Ledbetter 

[59] studies the mono-crystal elastic constants in a weld by the ultrasonic method. 

However, only a few of them are concentrated on the acoustic properties of weldment.

2.2.1 General metallurgy of spot weld

The idea behind a resistance spot weld is to join two or more parts by applying 

clamping pressure and high electrical current. The clamping pressure is applied during 

the welding process to provide the required intimacy of contact between faying surfaces 

and to confine melted liquid. Liquid metal is melted by the welding heat generated by 

the resistance of the metal at the site where electric current flows. The liquid metal 

serves as the joining bridge between surfaces.
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The amount of heat produced is dependent upon the value of I  (current), R 

(resistance) and t (the time during which the current flows). The heat generated is given 

by the equation

heat produced = I 2R t  joules

where I  is in amperes, R is in ohms, and t is in seconds.

There are different kinds of resistance involved in spot welding, and they are shown in 

Figure 2.1.

Case 1. Electrical resistance of the electrode material.

Case 2. Contact resistance between sheets.

Case 3. Interface resistance at the location where the weld is to be formed.

Case 4. Contact resistance between the electrode and sheet material.

case 4

case 2 case 3

'case 1

Figure 2.1 Type of resistances In spot weld

There are two stages, heating and cooling, when a spot weld is deposited. During 

the heating stage, the resistance in the path of the current flow does not remain constant. 

First, the contact resistance between sheets vanishes in the melted region. Then the 

resistance diverts the electrical current to the still solid metal surrounding the melted
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region. The diverted electrical current raises the temperature nearby and increases the 

volume of melted metal as the bridge of the weld bonds. When the temperature cools 

down, the melted region begins to solidify. The processes for solidification are:

1. Nuclei begin to form at preferred sites.

2. Individual nuclei grow into large, solid particles called grains. The orientation of the 

grain lattice differs from one grain to another.

3. Grains grow larger and meet at an irregular boundary called the grain boundary. The 

grain boundary forms a continuous network throughout the metal. The physical 

properties are often different at the grain boundary from elsewhere between grains.

The abstract interior structure of a spot weld after cooling is shown in Figure 2.2.

/  indentation due to electrode pressure

-v”_......^ Jh ea t affected zone (HAZ)

^xpressure welded region

^  nugget of fused metal (with dendritic
structure at the periphery and a core
section of equiaxed grains)

Figure 2.2 Diagram of resistance spot weld (following LancasterES8])

There are some factors which will affect the formulation of spot welds, and they are:
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1. Effect of welding current: The welding current has a greater influence on welding 

heat generation than resistance and time because it is in square form in the heat 

generation formula. A minimum current density is required for overcoming the heat 

conduction/ radiation loss and generating the efficient heat input to produce fusion at 

the interface. The maximum current density has to be limited because excessive heat 

input causes the expulsion of molten metal or a deep indentation on welding surfaces.

2. Effect of welding time: The heat input is proportional to the welding time. A 

minimum time is required to reach melting temperature at each current density. If the 

welding time exceeds the maximum, not only will expulsion or deep indentation 

occur, but the heat affect zone (HAZ) will be oversized as well, which results in 

certain metallurgy changes in the base metal.

3. Effect of welding pressure: The resistance is influenced by welding pressure which 

keeps the faying surfaces in contact.

4. Other factors: The presence of electrodes, surface conditions and metal composition 

are other factors that influence the welding process; however, these factors are taken 

into account in the welding design process.

2.2.2 Metallurgy in nugget area

When a weld is deposited, the first grains to solidify are nucleated by the un

melted base metal, and the orientation of crystal grains is in the same direction toward the 

steepest temperature gradient. While solidifying, metals grow more rapidly in certain 

crystallographic directions, and the direction of crystal growth is perpendicular to the
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isotherms. Hence, favorably oriented grains grow faster for substantial distances, while 

the faster growing grains block the growth of others in a non-favorable orientation. The 

aforementioned favorable crystallographic direction is the [100] direction in cubic 

crystals, such as body central cubic or face central cubic, the [100] direction being the 

least closely packed direction in cubic crystals. The [100] crystals’ growth direction and 

the direction of the steepest temperature gradient is the same in a spot weld because there 

is no welding speed involved.

Because of the crystals’ growth directions, weld pools solidify in a cellular or 

dendritic growth mode depending on the composition and solidification rates. Both 

modes cause micro-segregation of alloying elements. As a result, the weld metal may be 

less homogeneous than the base metal. During the welding solidification, three stages of 

microstructure formulations can be found.

First stage: Because the temperature differences inside a weld range have an extensive 

range, epitaxial growth from the base metal is likely to occur initially in the 

planar growth front.

Second stage: During further cooling, the temperature gradient decreases, resulting in a 

planar to cellular microstructure transition.

Third stage: When the temperature gradient further changes, the primary cellular 

microstructures become unstable, and develop secondary arms called 

dendritic structure.
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Although the dendrite structure is not yet fully understood, from experimental 

observation (Easterling E26]), the dendrite arm spacing decreases as the cooling rate 

increases. This fact that the dendrite direction does affect acoustic propagation 

contributes to later study. The following cause-effect table draws the microstructures and 

properties of the weld roughly.

Table 2.1 Cause-effects of the formulation of weld microstructure

CAUSE EFFECTS

welding process design 

(weld tip size, current, time)

weld pool size and geometry

composition of the melt metal 

(base metal, coating material, air)

constitutional supercooling and segregation

weld thermal cycle microstructural coarseness and type of 

transformation product during cooling
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2.2.3 Metallurgy in the Heat Affected Zone (HAZ)

The heat affected zone (HAZ) is adjacent to the weld metal. The HAZ is the 

portion of the base metal that has not been melted, but whose mechanical properties or 

microstructure have been changed by the heat of welding. Depending on the base metal’s 

characteristics, the HAZ has been recrystallized, transformed, or tempered. The material 

properties and the prior thermal/mechanical history of the metal also play an important 

role in the formulation of HAZ. These different factors, in addition to the post-weld heat 

treatment, control the properties of spot welds. HAZ can be divided into several sub

zones whose microstructures are different due to the temperature gradient during 

welding. A schematic plot of welding sub-zones is shown in Figure 2.3.

v
I>-

Uiquidso lid if ie d  Mold

liquid + 0’

p f t c r y s l a l t i s o d  s ono

i m M k ’K H K l I k i &o

F® W t % C
foes 5 «Il®c8 8?d.'S.Bne  --------------- — f -----—-a-

Figure 2.3 The sub-zones in resistance spot weld (following Easterlin m )
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Analyzing the formulation procedures of HAZ will help us to understand its 

microstructure and the propagating manners of acoustic waves through welds. Some 

characteristics directly affect the microstructure of HAZ and these are shown in the 

following table.

Table 2.2 Weld characters and their effects on the formulation of HAZ

WELD

CHARACTERISTICS

EXAMPLES

Base metal 1. For a plain carbon as-rolled steel, the heat of welding has 

little influence on those regions heated to less than 1350° F 

(700° C).

2. For a heat-treated steel quenched to martensite and 

tempered at 600 ° F (315 ° C), heating above 6000 F will 

change the mechanical properties of the metal.

3. For a heat-treated aluminum alloy age hardened at 250° F 

(120° C), any portion of a welded joint heated above this 

temperature is in the heat affected zone.

Mechanical history 1. Alloys that are strengthened by solid solution,

2. Alloys that are strengthened by cold work,

3. Alloys that are strengthened by precipitation hardening, and

4. Alloys that are strengthened by transformation (martensite).

thermal cycle 1. Temperature of recrystallization,

2. The rate of coarsening of carbides and nitrides,

3. The temperature of the solution of carbides and nitrides,

4. The main proportion of grain growth, and

5. The degree of superheating.
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2.3 Applications of scanning acoustic microscopes

Scanning acoustic microscopes are scientific instruments which use the 

characteristics of acoustic wave propagation to image the elastic variations of materials. 

Unlike optical and electron microscopes, the acoustic microscope can examine the 

internal structure of objects, and this advantage makes acoustic microscopes suitable for 

inspections where internal information is important. This instrument is now widely used 

in scientific, medical, biological, and industrial settings. Some of the applications are:

• Industrial applications in the non-destructive evaluation of internal structures such as: 

welds, composite structures, various joint systems, multi-layer stmctures and 

electrical chips.

• Scientific applications in determining the properties of new materials, such as 

ceramics or composite materials.

• Medical diagnosis of dental implants, and soft and hard tissues.

• Biological study of bio-cells, bio-structures, and their behaviors and dynamics.

2.3.1 The development of the acoustic microscope

The acoustic microscope was independently introduced in 1929 by both Sokolov 

and Muhlhauser. Sokolov proposed the first application of ultrasound radiation to 

visualize the mechanical structure of various objects and he named the application 

"acoustic visualization". Thereafter, researchers began to expand the field of ultrasound 

studies, with the development of higher frequency acoustic waves, different resolutions
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of acoustic images, or the application of acoustic microscopy to different areas. The 

following table shows the milestones of research and development activities involving 

high frequency acoustic waves for visualizing interior structures [34].

2.3.2 Advantages of the acoustic microscope

The acoustic method has many advantages in nondestructive testing, and it is by 

far the best solution for spot weld inspection. Some common nondestructive testing 

methods could not address the nature of spot welds and could not provide the type or 

amount of information that acoustic methods do. For instance, magnetic particle testing 

can only give the information near the surface of the specimen, but fails to offer the 

interior examination for spot welds. Radiographic testing has a higher initial cost and 

would increase the cost dramatically to inspect each weld. The Eddy Current method, 

which is the other potential method for examining internal structures, performs well only 

on flat pipe- or tube-shaped specimens. As a result, it is not a practical method for 

examining spot welds because the most common location for spot welds is not on flat 

surfaces. In addition, Utrata et al. t85] review various destructive and nondestructive 

techniques for spot welds evaluation.

Acoustic microscopy can be used to examine the internal structure of objects. It is one of 

the commonly used nondestructive testing methods and has many advantages. The 

approach of this method is to generate mechanical vibrations, to guide the vibrations 

through the desired examining specimen, then to receive the acoustic signals. The
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Table 2 3  Milestone of development of acoustic microscopes

Year Event
1929 Muhlhauser and Sokolov independently propose ultrasonic waves for materials 

evaluation. Scanned imaging is suggested outright in manuscripts by both.

1931 Muhlhauser obtains German patent for ultrasonic testing o f materials using continuous 
wave transmission.

1936 Sokolov proposes acoustic visualization o f the electric-charge distribution on a 
piezoelectric disk as a receiver.

1937 Bergmann writes Ultraschall with ~600 references. 
Pohlman transforms sound pressure into visible images.

1940 Pulse-echo ultrasonic testing is invented by Firestone Inc. (USA ), Sproule (England), 
and Kruse (Germany) independently.
SNT (later ASNT) chartered to provide a professional forum for NDT.

1943 The first commercial apparatus for using pulse-echo method in industrial application.

1947 First time this method is used as medical diagnostic tool.

1945 to 1958 Sperry acquires Firestone patent (ultrasonic reflectoscope). Erdman, Krautkramer, 
Pringle, and Smack develop ultrasonic C-scan equipment. Hasting, using an Erdman 
system, makes gray-scale C-scan image.

1959 First ASNT handbook by McMaster. C-scans, focused probe, scanned image, CRT 
grayscale C-scan image.

1963 Jacobs adds electron multiplier to Sokolov Tube.

1966 Korpel et al. at Zenith Corp. invent scanning laser acoustic microscope.

1967 First international symposium on acoustic holography.

1969 Batalle founded Holotron Inc., later Holosonics Inc., to market acoustic holography 
systems.

1971 Fowler at Panametrics Inc. introduces and markets a quartz buffer-rod-lens focused 50  
MHz transducer.

1973 Lemons and Quate invent and introduce 1 GHz SAM. Stanford group includes G. Kino, 
P. Khuri-Yakub, and B. Auld.

1974 Sonoscan Inc. founded by L. Kessler to market SAM. E. Ash builds SAM group at 
University College, London, UK, that includes C. Tsai and H. Wickramasinghe.

1977 Tsai builds second SAM in US at Carnegie Mellon University.

1978 W eglein and Wilson develop the first theory for quantitative characterization o f the 
contrast response in reflection acoustic microscope.

1980 Leitz Inc. and Olympus Ltd. introduce scanning acoustic m icroscopes to international 
market. Imaging is now seeing rapid growth.

1982 Kushibiki and Chubachi develop the cylindrical lens excites Rayleigh waves in one 
direction which can be applied as an effective instrument for anisotropic materials 
study.

1983 Stanford University builds the prototype o f  cryogen scanning acoustic microscope at 
frequency o f up to 6 GHz.

1988 M aev et al. develop device for polymer and medical diagnosis o f transmission 
microscope with 500 MHz frequency.

1990’s More than 30 firms manufacture industrial acoustic imaging/microscopy systems for an 
international market.
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acoustic wave propagation can be affected by various conditions such as the velocities of 

acoustic waves traveling in materials, the frequency of the acoustic wave, and the 

focusing of the acoustic beam. These various conditions increase the flexibility of 

acoustic nondestructive testing, and these advantages are summarized in reference l84].

Versatility

The acoustic method permits testing on objects of a wide range of sizes and 

geometries. The technique detects internal, hidden discontinuities that may be deep 

below the surface. Applications range from thickness measurement, and porous detection 

to residual stress detection.

Sensitivity

The use of a high frequency, well-defined beam of sound permits detection of the 

smallest critical discontinuities. In terms of detection sensitivity, disk shapes and cracks 

of almost zero thickness can be detected. In terms of the location of discontinuities, the 

depth of the cracks can be measured within millimeters.

Safety and Convenience

There is no hazard to the operator or to nearby personnel during the use of 

acoustic equipment. Acoustic devices can be used in shops, laboratories, warehouses, or 

open fields (allowing on-site tests). Moderate power is needed from an alternating 

current line or a small generator.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Many studies have been done concerning the application of the acoustic method 

in different areas. Lott t62] uses ultrasound to detect the molten/solid interface of Gas 

Tungsten Arc Welding (GTAW) pools. Ogilvy f68] studies the ultrasonic beam profile 

and beam propagation in austenitic welds by using a ray tracing model. Veidt and Sachse 

[86] use a point-source/point receiver technique to measure the mechanical properties of 

the {111} p-type semiconductor. Gilmore et al. [33] study ultrasonic images through the 

non-destructive examination of structural materials. In their studies, they establish 

accuracy by calibrating information from some known targets with which the flaw size 

and shape, and spacing between flaws can be imaged. Yuasa and Masazumif885 designed 

a device with linear array type inspection to examine the spot weld nugget diameter and 

thickness. Maev [64] et al. have developed a high resolution ultrasonic welding inspection 

device with a wide-field, short-pulse acoustic microscope at operating frequencies of 25, 

50, and 100 MHz. Sokolowski et al. C78] use acoustic microscopy to study the internal 

structures of aluminum 318 casting.

Acoustic waves propagating through anisotropic materials is a very complicated 

phenomenon and it is a material-dependent problem. Many researchers have studied this 

issue, especially in the area of composite materials. Briggs [10] examines ceramic fiber 

composites under scanning acoustic microscopy. Lee et al. [57] use line focus acoustic 

microscopy to examine the reflect function of layered anisotropic materials. Deschamp 

and Som t22] utilize scanning reflection acoustic microscopy to obtain high resolution 

acoustic images and perform a trial on anisotropic materials. These studies are all 

focused on composite materials. Adler et al. [3] characterize gas porosity in aluminum
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alloy casting with ultrasonic experiments. Dewey et al. [23] use the ultrasonic method 

and the tensile testing method to measure the anisotropic elastic constants of 308 stainless 

steel welds. Kupperman and Reimann t56] study the wave propagation and anisotropy in 

austenitic stainless steel weld metal. Gomaja and Aljoshin t35] use the Bom 

approximation to solve the problem of planar ultrasonic wave scattering in an anisotropic 

polycrystal medium.

The acoustic method is widely applied in many engineering areas including the 

spot weld integrity examination. One example is illustrated in the Ultrasonic Testing 

Handbook [84]. However, most commercial acoustic testing devices use A-scans 

representation for off-line quality control. These devices present acoustic information by 

A-scans, about which there is not enough information for us to understand the true 

quality of a given spot weld. To build the next generation of on-line devices with the 

ability to process more acoustic information in a short period of time becomes critically 

important.
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Chapter 3 

Overview of the theory of acoustic 

nondestructive testing method

3.1 Fundamentals of the acoustic microscope

Ultrasonic testing is one of the nondestructive testing methods which is widely 

accepted as a substantial technique for inspecting industrial products, biological tissue, 

and construction sites. The subsequent development of the Scanning Acoustic 

Microscope (SAM) has enlarged the capability of acoustic microscopes from one

dimensional to three-dimensional. This development provides higher resolution and
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makes the acoustic microscope another testing option distinct from the traditional optical 

and electron microscopic methods. The basic features of SAM are:

1. Acoustic pulse receiver and generator

The pulse generator generates an acoustic wave, and the pulse receiver collects it. The 

acoustic wave generated can be a continuous pulse or a short pulse, depending on the 

system requirements.

2. Focus transducer

Most focus transducers use a piezomaterial element with an optical quality ground lens 

to provide the desired quality of acoustic beam alignment and focusing. The material 

of the acoustic lens should have low attenuation and a high velocity to minimize 

aberrations. The lens can thereby focus the acoustic beam into various frequencies 

from 5MHz to 2GHz. The focus transducer converts electric pulses into mechanical 

vibrations or vice versa. Sapphire is a superior material for the lens in both respects. 

The precision of the acoustic beam focus primarily depends on spherical aberration; 

consequently, the spherical aberration itself depends on the ratio of the ultrasound 

propagation velocities in liquid and the velocities inside the sound-guide in the 

transducer.

3. Coupling fluid

Acoustic waves need a medium to support their propagation. Between the acoustic 

probe and the test specimen, the medium must be a fluid to allow the scanning 

procedure. Two major concerns in choosing a couplant fluid are the fluid's attenuation 

to acoustic waves and its applicability to the test specimen. The performance varies
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under different coupling fluids and different temperatures. Of all the coupling fluids, 

water and ethanol are the most preferred.

Basically, a SAM is a computer-controlled ultrasonic scanning system designed 

for examining the detailed internal structure of a wide range of parts. A SAM system 

usually consists of:

1) a piezoelectric transducer to generate a high radio frequency acoustical pulse,

2) a focusing acoustic lens, with a liquid coupling medium for the pulse to propagate 

through,

3) a scanning system that can relate to the desired region in reliable steps,

4) a memory unit to store the achieved signal step by step,

5) an analog to digital converter to transfer signals to images, and

6) a monitor to display images.

The performance of a SAM system depends on the frequency of the ultrasound 

wave, the lens of the system, the nature of the immersion medium, and the properties of 

the investigating materials. The nature of the frequency of ultrasound effects the 

resolution of microscopic imaging and the depth of penetration, but in a contrary way. A 

higher frequency of ultrasound offers a better resolution microscopic image, but 

shallower penetration of the testing samples. Thus, to choose a proper frequency of 

ultrasound for a particular testing example requires a compromise between the resolving 

power and the degree of penetration.
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3.2 Acoustic waves propagate through solid materials

Acoustics is the study of time-varying deformations or vibrations in elastic media. 

As discussed in Chapter 2, the microstructure of the nugget region of a spot weld is 

considered as an anisotropic region. It is crucial to formulate the phenomenon of 

acoustic waves propagation in anisotropic materials for this study. This section begins 

with a brief review of acoustic wave propagating in isotropic materials (with 2 elastic 

constants). Then a primitive anisotropic case (cubic symmetric case with 3 elastic 

constants) is introduced for a better understanding for the idea of "anisotropy". In the 

next section, the wave propagation in the nugget of a spot weld (hexagonal symmetric 

case with 5 elastic constants) will be studied.

The acoustic wave propagation theory from the literature (e.g. Achenback [l] and 

Briggs [10]) is summarized as:

The mechanism for acoustic wave propagating is governed by Newton’s Third Law and 

the stress-strain relation. In general, the displacement-strain relation is defined by the 

symmetric gradient operator which excludes rotation.

ij 2 dx- d x .......................................................................... ( 3 * 1 }

For a non-rotational system, the independent strain components are:
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(3.2)

For the stress-strain relation (constitutive equation):

(3.3)

where i, j, £ ,1=1, 2, or 3

This equation contains 81 constants. Since [x] and [s] matrices are symmetric, the 

following conditions are applicable:

For a rotation free system, Cijkl = Cjikl = Cijlk = Cjilk; and

for reciprocity, Cijkl = CkliJ.

The constants in the constitutive equation are now reduced to 36.

Then we can reduce the 4th rank tensor to a 2nd rank tensor by mutating ij and kj. Let ij 

or kl be represented by the following:

11 => 1; 22 => 2; 33=> 3;

23=> 4; 31=5* 5; and 12=5*6,

The constitutive equation can be rewritten in the following matrix form:
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—

*11 ~cn c 12 r 13 Cl4 C , s cl6~ *11
*22 C 2l ^ 2 2 C23 C 24 2̂5 C 26 S 22

*33 C 31 ^ 3 2 C 33 C34 C 35 C 36 *33

*23 Q i C42 c 43 ^4 C 45 C 46 2e23
* 31 CSx £ 5 2 r 53 C54 C 55 C 56 2*3!
*12 _ c 6l c 62 c 63 C64 C 65 C 6 6 _ 2  s 12

The independent elastic constants can be further simplified:

general anisotropic case: 21 elastic constants

orthorhombic case: 9 constants

hexagonal symmetric case: 5 elastic constants

cubic symmetric case: 3 elastic constants

isotropic case: 2 elastic constants (Lame constant X and p)

For a cubic symmetry, supposing that the symmetry directions coincide with the

coordinate axes, the stiffness matrix can be rewritten as:

* n ~ c n C \  2 r'- '12 0 0 0  '
’  * 1 1 "

*22 C \ 2 C n C \  2 0 0 0 *22

*33 C \ 2 C l2 C „ 0 0 0 *33

*23 0 0 0 C 44 0 0 2 * 2 3

*31 0 0 0 0 ^ 4 4 0 2 ^ 3 1

*12 _ 0 0 0 0 0 q 4 „ .2 * 1 2  _

There are three independent elastic constants.

For an isotropic system, the elastic constants can be further reduced to two independent 

constants, the so-called Lame constants X and p. Where:
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Cu = A. + 2/i
C12 = 1    (3.6)

4̂4 = ft

The relationship between the Lame constants and the much more familiar elastic 

constants are:

E(Young's modulus) —
A + p

G(shear modulus) = p  ............ ..................(3.7)
. . . A(A, + ju)u(Poisson ratio) = ---- -----

The next step is to plug this relationship into a wave equation. The three-dimensional 

wave equation is:

V2« = p it ............... .......... ...(3.8)

The plan wave solution for the above equation is: 

u(x,t) = Apei(m~kx')  ..... (3.9)

where A is the amplitude, co is the angular frequency, p  is the polarization vector, and k is 

the wave vector.

Rewriting equation 3.9 in detail,

ux = AlPlei0* e~Uc{d'Xi+dlX2*diXi)

u2 =  (3.10)
«3 =

where d is the propagation unit vector.
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By substituting the strain-stress matrix (equation 3.5) and the plane wave solution 

(equation 3.9) into the three-dimensional wave equation (equation 3.8), the Christoffel 

equation can be obtained. It is customary to denote the direction cosines di, di, and ds by

I, m, and n. With I, m, and n, the Christoffel equation can be written as:

<N1

l

a 2 A3 Pi ¥

A 2— p° As Pi = 0

A3 A 3 A 3 ~ PC Pl_ o_

where

/tjj = l2Cu + (tn2 +n2)C44 
A22 = m2Cn + (i2 + n2)C44 
Aj3 = n2Cn + (I2 +m2)C44
Aj2 = ml(C l2 + C44)
A13 = w/(C) 2 + ^ 4 4)
^3 = mn(Cn + Cm)

.(3.12)

The aniostropy of materials results from the orientation-dependence of its elastic 

modulus. The simplest anisotropic in a cubic symmetric system, where three mutually 

orthogonal directions of symmetry are equivalent, can be shown in Figure 3.1.

There are three special symmetry directions in the cubic crystal: [100], [110], and 

[111]. Only in these directions can a pure mode elastic wave propagate. In all other 

directions, quasi-longitudinal and quasi-transverse waves will propagate.
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Figure 3.1 Cubic crystal structure
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The following table lists the elastic constants in isotropic and cubic symmetric 

materials.

Table 3.1 Elastic constants in isotropic and cubic symmetric materials[1]

Isotropic materials Cubic symmetric materials

Stiffness matrix 

components

C n, C 12

C44=(Cll-Cl2)/2

C n , C12, and Caa

Christoffel

equation
X + l/ i - p c 2 0 0 

0 / / - / r 2 0 

0 0  ju -p c 2

K  ~ p 2 A 2 A 3

1̂2 2̂2 P
A[3 Aft Aft pc ^

Wave speeds Longitudinal

IA + 2 fi
CL~ i  p

shear

fp

[100] direction

ICU / Q
Ci~ i  P ’ C2~ C3~ i  P

[110] direction

jCn + C12 + 2C^
c , ~ i  2 p  

j c u — cl2
C2~)l  2 p

lC«
Cs V P

[111] direction

C,, +2C12 +4Cu  
C l_ 1 3/2

ICU — C12 + Cu
C2~ C3~) j  3p
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For different cases, the independent elastic constants can be shown in Table 3.2.

Table 3.2 Independent elastic constants in different crystal cases [1]

Most general case ~CU c 12 C13 C14 c 15 C16-

(Triclinic case) C \2 C-22 C23 C24 C 25 C26

C\$ C-23 c 33 C 34 C 35 C36

C „ c 24 c 34 C44 C45 C46

c 15 c 25 c 35 C45 c 55 C56

A *
c 26 r 36 C46 C 56 C « _

Orthorhombic case ~ c u c 12 c 13 0 0 0  '

ĉ
1 2 c 22 c 23 0 0 0

c
13

c 23 c 33 0 0 0

0 0 0 C 44 0 0

0 0 0 0 C 55 0

0 0 0 0 0 ĉ 6 6 _

Hexagonal case
" C „ C \2 r

13 0 0 0

C n C n r 13 0 0 0

r
13 r

13
r

33 0 0 0

0 0 0 C 44 0 0

0 0 0 0 C44 0

0 0 0 0 0
c'-'11 -  c 12

2

Cubic case r c u C \ 2 c'- '12 0 0 0 "

C u Cn C12 0 0 0
Cj2 c

12 Cn 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 c

44  _
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3 3  Acoustic waves propagate in spot welds

33.1 Wave propagation in the core of weld nugget

The spot weld nugget is an irregularly shaped artifact with rough surfaces on both 

sides, and its metallurgical structure is different from the original sheet metal. Moreover, 

the existence of discontinuities, porosity, and inclusion inside the weld nugget makes the 

acoustic wave propagation more difficult to study. Numerous studies ([26], [58]) have 

demonstrated that the solidification processes in welds affect the crystallographic 

orientation. The direction of the grain growth follows the steepest temperature gradient, 

and the crystal growth direction is the [100] direction of the cubic crystalf20]. Thus, for a 

spot weld, the examining acoustic waves are going through the [100] direction of the 

dendritic crystals [26]. Figures 3.2 and 3.3 (following Bently [6J) demonstrate the 

temperature distribution in both theoretical and experimental analysis. Figures 3.4 show 

the possible crystal growth direction in the spot weld nugget, which will be on the 

equiaxed grain.

Figure 3.2 Theoretical temperature distribution (°C)
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Figure 3.3 Experimental temperature distribution
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at the core of nugget area

crystal orientation [001]

Figure 3.4 The assumed nugget structure in spot weld
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Since acoustic waves propagate through the [100] direction of the spot weld 

nugget crystal in the core of the nugget, we can substitute the direction unit into equation 

3.12 as 1=1, m=0, and n=0. We can derive a simplified wave propagation model as:

^  11 = C  11
A 2 2 — ^ 3 3  =  C  4 4

Solving the eigenvalue problem, then:

(Cn - p C 2)(C44~ p C 2) = 0 .....................(3 .13)

The wave speeds are:

c » = c " = ^  (3-14)

The longitudinal wave speed and the direction calculated here is proven to be correct in 

Kupperman and Reimann’s study t56]. However, the shear waves traveling across the 

dendrites region with the polarization direction parallel to the dendrites will have a 

different attenuation pattern compared to the shear waves propagating in other directions.

The dendrites in spot weld nuggets are long, cylindrical single crystals with 

orientation in the vertical [100] direction. Assuming the dendrite’s cylindrical crystal is 

symmetric about the Z- axis (Figure 3.4), the general orthorhombic symmetry object can 

be reduced to be hexagonally symmetrical. The independent elastic constants are 

reduced from nine to five according to Kupperman and Reimann’s study [56]. The five 

independent elastic constants can be calculated by the modified formula as:
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ĉ  1 ID = £  2 2 D II fl + 3 / C
2 0

^ 33 D = £  1 ! +
2 y C  

5

£  44 D = C SSD = r 44 - y £
5

£  66  D = & 4 4  +
y £
2 0

c~1 3 0 = £  2 3 D = -
y £

5

c~12 J> = £  1 2 +
y £
2 0

where y is the texture anisotropy factor and

C can be calculated as: C= Cn -  Cl2 -  2CM.

Detailed description can be found in the literature[23] and [28l

For the spot weld type of anisotropy, an experiment is required to obtain these 

elastic constants. There are two ways to calculate these constants. The first one is to use 

static tensile testing and the second one is to use acoustic testing. Accordingly, the first 

method involves the following steps:

• Fabricate samples cut in three principle local directions,

• Apply tensile tests at different direction cosines,

• Measure the longitudinal elongation and the lateral contraction, and

• Use the strain-stress relationship to calculate the components of the stiffness matrix.

The second method, the acoustic testing method, starts with a fresh cut sample to allow 

precise directional measurement. Then the acoustical velocity is measured relative to a 

certain locally preferred solidification direction. Following this, begin with another fresh 

cut sample and measure another preferred solidification direction, and vice versa. While
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the directional acoustical velocities have been recorded, the elastic stiffness matrix can be 

obtained by the Christoffel equation in Table 3.1. Details of these procedures can be 

found in the study of Dewey et al. [23].

3.3.2 Wave propagation in other (non-core) regions of weld nugget

The previous section discussed acoustic wave propagation in the core of spot weld 

nuggets. Since the grain growth is in the [100] direction in the core region, the behaviors 

of acoustic waves can be anticipated. Nevertheless, in other regions of a weld nugget, the 

microstructures of equiaxed grain growth make the prediction of acoustic wave behaviors 

difficult. Due to the irregular nugget shape, the microstructures in non-core regions of 

the weld nugget are equiaxed yet randomly arranged. This kind of microstructure affects 

the pattern of acoustic wave propagation. Sometimes it will misguide the acoustic wave 

and return bias signals. The other major factor affecting acoustic wave propagation is the 

HAZ of the weld. The HAZ has usually been recrystallized and its microstructures have 

been changed (see detail in Chapter 2). The change in the microstructures will re-focus 

the acoustic beam and result in misinterpretation. Furthermore, the melted coating 

material will produce contact between the base metals and allow acoustic waves to pass 

through which may change the results of the analysis of the weld nuggets. In some cases, 

a deep indentation of weld nuggets re-focuses the acoustic beam and produces signal-free 

regions.
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The irregular shape of the nugget raises an interpretation problem for the acoustic 

method mathematically. However, this study helps to clarify interpretation problems. 

The experimental model described in the next chapter is based on the knowledge 

acquired in this chapter and provides another feasible approach to this problem.
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Chapter 4 

Quantitative analysis of acoustic images

The intention here is to establish an experimental model to predict spot weld 

quality based on its acoustic information. As the acoustic information about spot welds 

has been acquired, it is not clear what kind of information in the image is important to 

determine weld quality and what is not. From the literature review in Chapter 2, some 

basic indications of a weld’s quality already exist, e.g. nugget diameter (nugget size), 

surface indentation, and nugget penetration. Through quantitative study of the acoustic 

images introduced in this chapter, these indications can be studied and converted into 

acoustic parameters. By correlating the acoustic parameters and the results from experts 

and experiments, a reliable index of weld quality can be established.
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The results of acoustic image analysis are sets of pixel-based pictures with 

abundant information that allows us to scrutinize the detail of every aspect of the 

metallurgical and acoustic properties of each spot weld in the study.

4.1 Acoustic validity study

The acoustic microscopy method shows promising results for detecting flaws in 

weld nuggets[84]. This method can provide the information about quality of spot weld 

nuggets by examining the non-homogeneous objects inside nuggets such as: bubbles, 

inclusions, explosive welds, and porosity. However, due to the unpredictable nature of 

nuggets, the acoustic images shown on the display device are not actual size. The non- 

homogeneous objects inside, and the surface indentation, guide the acoustic waves and 

provide a pseudo-acoustic-image for welded nuggets. Thus, the accuracy of this 

information about welded nuggets acquired acoustically should be examined before 

further study.

There are two different types of studies performed for the validity test of the 

acoustic method. The first one is to verify the results of the acoustic method by using 

another nondestructive method. The second one is to test the ability of the acoustic 

method by describing the detection of artifact defects. In the first test, the commonly 

used optical examination procedure is employed as the tool for verifying the result of the 

acoustic test. The advantages and disadvantages of these two methods are tabulated as 

follows.
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Table 4.1 Advantages and disadvantages of nugget tests

Advantage Disadvantage

Acoustic test internal examination of structure 

and nugget size

the measurement results need to be 

calibrated

Optical test visual inspection of nugget size only surface information is 

obtained

4.1.1 Nugget examination by nondestructive methods

This approach is aimed at the calibration between the optical method and the 

acoustic microscope method. Instead of peeling the spot weld samples, this approach 

works on “peeling nuggets”. The procedures of this approach will be described as 

follows:

1. Cut and grind the welding coupons to nugget tablets.

2. Polish these samples from a selected side.

3. Perform acoustic inspection of spot weld samples from both sides.

4. Examine the peeled nuggets from the selected side by the optical method. Examine 

the peeled nugget from both sides by the acoustic method. The acoustic signal
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windows should be set close to the selected side of the nugget. This step will help to 

examine the correlation between the acoustic method and the optical method.

5. Peel the nugget into thinner tablets, and repeat steps 2 through 4.

6. Continue peeling the nugget until the desired thickness has been reached.

7. Calibrate the results from the optical method and the acoustic microscope method.

4.1.2 Verification results of the nondestructive method

This study uses three types of welding coupons according to their stack up, and 

they are: Type 1 (0.03” stack on 0.045”), Type 2 (0.04” stack on 0.06”) and Type 3 

(0.06” stack on 0.07”). Two welds of different welding parameters were produced on 

Type 1, and two and four welds on Types 2 and 3, respectively. The results are 

illustrated in Figure 4.1.

The results show that in Type 1 and Type 2 the acoustic estimation of the nugget 

diameter is very close to the diameter determined by the optical method. For Type 3, 

with thicker base metals which need a longer heating process during welding, the HAZ 

region is larger than Type 1 and 2. The HAZ affects the microstructures while 

recrystallization will substantially affect both nondestructive tests. For optical 

examination, the HAZ reacts to the etching process, and produces larger images. On the 

other hand, a ring-shaped region is observed by acoustic method. These results reinforce 

the conclusion drawn in section 3.3.2.
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Table 42  Results of estimated nugget diameter

diameter Diameter from back optical diameter
Type 1 #1 5.71 5.76 5.75
Type 1 #2 4.96 5.31 5.49
Type 2 #1 5.92 6.22 6.02
Type 2#2 4.88 5.34 5.80
Type 3#1 7.78 7.79
Type 3#2 5.70 7.30
Type 3#3 4.96 7.05
Type 3#4 3.58 5.77

(unit: mm)

4.1.3 Artifact flaws examination

This study uses four Type 3 stack up (0.06” stack on 0.07”) welds. An artificial 

flaw 2mm in diameter and 1.5 mm in depth was made in each of the four welds. The 

SPSAM is used to examine these flaws. The results shown in Figure 4.2 demonstrate that 

the acoustic estimation of the flaw size is very close to the real flaw size in the core 

region of the nuggets.
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>scan from back side Optical Image

Type 1 #1
first polishing (thickness: 2.02 nun) r

Estimated jfck
nugget 
size (in mm)

5.71 5.76 5.75

Type 1 #2
first polishing (thickness: 2.03 mm)

Estimated 
nugget 
size (in mm)

4.96 5.31 5 .49

Type 2 #1
first polishing (thickness: 2.44 mm)

Estimated
nugget
size (m mm)

5.94 6.22 6.02

Figure 4.1 Nugget diameters estimated by acoustic and optical methods
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C-scan from back side Optical image

Type 2#2
first polish ing (thickness: 2.50 mm)

Estimated  
nugget 
size (in mm)

4.8

m

5.34 5.80

Type 3#1
first polishing (thickness: 3.53 mm)

Estimated 
nugget 
size (in mm)

7.59 7.95

Type 3#2
first polishing (thickness: 3.55 mm)

Estimated 
nugget 
size (in mm) 6.13 7.22

Figure 4.1 Nugget diameters estimated by acoustic and optical methods (continued)
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C-scan Optical image

Type 3 #3
first polishing (thickness: 3.57 mm)

Estimated 
nugget 
size (in mm)

5.17 6.57

Type 3 #4
first polishing (thickness: 3.53 mm)

Estimated 
nugget 
size (in mm)

3.55 5.82

Type 3 #1
second polishing (thickness: 3.34 mm)

Estimated .
nugget 
size (in mm)

7.91 7.70

Figure 4.1 Nugget diameters estimated by acoustic and optical methods (continued)
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C-scan Optical image

Type 3#2
second polishing (thickness: 3.38 mm)

Estimated 
nugget 
size (in mm)

5.61 6.90

Type 3#3
second polishing (thickness: 3.43 mm)

Estimated 
nugget 
size (in mm)

5.32 7.76

Type 3#4
second polishing (thickness: 3.34 mm)

Estimated
nugget 
size (in mm)

3.45 5.63

Figure 4.1 Nugget diameters estimated by acoustic and optical methods (continued)
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C-scan Optical image

Type 3 #1
third polishing (thickness: 3.15 mm)

Estimated 
nugget
size (in mm)

7.93 7.46

Type 3 #2
third polishing (thickness: 3.15 mm)

Estimated 
nugget 
size (in mm)

5.40 7.30

Type 3#3
third polishing (thickness: 3.15 mm)

Estimated 
nugget 
size (in mm) 4.52 6.53

Figure 4.1 Nugget diameters estimated by acoustic and optical methods (continued)
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C-scan Optical image

Type 3 #4
third polishing (thickness: 3.15 mm)

Estimated
nugget
size (in mm)

3.48 5.38

Type 3#1
fourth polishing (thickness: 2.57 mm)

Estimated 
nugget
size (in mm)

7.67 8.04

Type 3 #2
fourth polishing (thickness: 2.57 mm)

Estimated
nugget
size (in mm)

5.66 7.77

Figure 4.1 Nugget diameters estimated by acoustic and optical methods (continued)
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Optical Image

Type 3#3
fourth polishing (thickness: 2.57 mm)

F
|

Estimated 
nugget 
size (in mm)

4.83

■

7.34

Type 3#4
fourth polishing (thickness: 2.57 mm)

Estimated
nugget
size (in mm)

3.85 6.23

Scale of this study

Figure 4.1 Nugget diameters estimated by acoustic and optical methods (continued)
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Acoustic image Diameter of flaw

* t  '  <:

1.94 mm

1.92 mm

1.91 mm

1.97 mm

Figure 4.2 Artifact flaw measurement by acoustic methods
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4.2 Acoustic image study

To study the acoustic image, four practical steps are employed to convert the 

information into quantities for further studies.

4.2.1 Step 1: Mathematical morphology

Mathematical morphology was first introduced in 1964 by Serra[75]. This method 

is used to characterize geometric structure by numerical value. This method usually is 

used prior to image recognition and pattern identification to improve the geometric 

shapes of objects inside an image for further study. The purpose of the process is to filter 

out unnecessary information about the image and to reshape objects inside the image to 

fundamental geometry for pattern recognition.

The fundamental operations of morphology are dilation, erosion, opening and 

closing. The effect of the dilation (erosion) operator on an image is to enlarge (erode) the 

boundaries of selected objects. The opening (closing) operation is to perform erosion 

(dilation) then following by dilation (erosion). Two basic operators, dilation and erosion 

operators are used in this study to emphasize the discontinuities inside nuggets. The 

definition of dilation and erosion operations and their mathematical representation is 

listed in Table 4.3.
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Table 4.3 Mathematical representations of dilation and erosion

mBBmBHBhhm i
[ Increase the geometrical area of an 

i object by setting the background 

| area pixel, which is adjacent to the 

i object, to the same gray-level as 

that of the object.

Smooth small negative gray-level 

regions.

A ® B  = {t e Z 2:t =a + b,a&A,b eB] A©2? = jtbx[ A(x+i,y+j) + B(i, j)]

Reduce the geometrical area of an 

object by setting the pixels at 

contour region to the gray-level of 

their background value.

Smooth small positive gray-level 

regions

A&B = (Ae © 2?c) A&B = minf A(x + i,y + j) -  B(i, j )]

Where © is the operator for dilation,

0  is the operator for erosion,

A is an object inside an image, and a is a pixel in A,

B is a structural function or mask, and b is a member in a structural function,

and

x, y are coordinators defined in A and B.

These two operations offer tools to study the combined effects of porous inclusion where 

multiple defects exist in a small region.
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4.2.2 Step 2j Segmentation of images by thresholding

After the acoustic images have been readied for further examination by 

morphological processes, the thresholding method is proposed as the means to separate 

the interesting objects inside welds, such as weld nugget size, nugget shape, porosity, and 

inclusion. This algorithm converts a multi-gray-level image into an image containing 

fewer gray-level values. The operation defined for three gray-level regions for separating 

noise of image, nugget area, and discontinuities inside nuggets can be:

g(x,y) =
G2 if f ( x ,  y) > T2 

G, if f  < f ( x ,  y) < T2 
G0 if f ( x ,  y) < 7j

.(4.1)

where f(x,y) represents the original image; g(x,y) is the image after thresholding; Ti and 

Ti are thresholding values; and Go, Gi, and Gi are the values of gray-level.

4.2.3 Step 3t Edge detection of acoustic images

The third proposed procedure for acoustic image study is edge detection. This 

process helps separate objects in acoustic images. The edges of objects can be 

distinguished by the discontinuities or abrupt changes in gray-level intensities. Since the 

gray-level numbers have already been reduced in the previous step, the edges between 

objects inside the weld nugget are quite clear. Edge detection is accomplished through
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the use of a range filter. The idea of a range filter is to calculate the difference between 

maximum and minimum gray-level values in a local region defined by a specific mask. 

The range filter can be defined as:

Range(A)= max [A(x+i, y+j)] - min [ A(x+i, y+j)]................................(4.2)

where x+i, y+j are coordinators existing in image A, and i, j  are defined in a special 

mask.

The special mask is the key of this operation, and it will decide what kind of pixel 

information will be included in the range operation.

4.2.4 Step 4: Area calculation in acoustic images

This operation calculates the number of pixels contained within an object in an 

acoustic image. Following the previous steps, the acoustic image becomes an image 

within which objects with well-defined boundaries appear. This algorithm can help to 

calculate the number of pixels of the nugget area, porosity, and inclusion, and later on, to 

convert this information into the real area. Besides area calculation, other geometrical 

measurement algorithms (e.g. maximum nugget diameter measurement and nugget 

surface indentation calculation) will be applied to collect the quantified information of 

acoustic images.

These algorithms proposed in section 4.3 are illustrated in Figure 4.3. A 

computer program written in JAVA language is developed to achieve this goal and the
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typical output carrying out these algorithms from this program is shown in Figure 4.4. 

Further analysis results are shown in Chapter 5.

o ise inc entation / nugget area

The original acoustic image

Same image after defects dilation

Same image after multi-thresholding

Same image after edge detection and 
ready for parameters calculation

Figure 4.3 Procedures for quantitative analysis of acoustic images
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The original acoustic image

Same image after defects dilation

Same image after thresholding

Same image after edge detection and 
ready for parameters calculation

Figure 4.4 Computer program for quantitative analysis of acoustic Images
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4.3 Data analysis

4.3.1 Analysis method I : Statistical correlation

The acoustic imaging method provides abundant information after image 

extraction. However, this information will consume a major part of the processing 

resource and is computationally exhausting. An important issue for this study is to select 

which parameters should enter the decision pool for determining weld quality. A 

fundamental study is performed to help obtain the list of essential parameters, e.g., 

nugget diameter, indentation, and inclusion inside nuggets. The ideal quality identifier is 

the strength of the weld nuggets. Nevertheless, the quantity is difficult to measure and 

will vary from process to process. Consequently, a substitute quantity -  the diameter 

measured from the destructive test (peel test) - is used for analyzing the welding quality.

The procedures for obtaining these quantity factors are described as follows:

1. Choose a group of selected welding coupons for this experiment.

2. Capture the B-scan image from the newly developed acoustic device.

3. Select a group of parameters according to existing knowledge.

4. Conduct destructive tests on these samples.

5. Measure the nugget diameters of the peel test result.

6. Use the ANOVA technique to screen out the insignificant parameters.
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7. Build up the nugget strength indicator by correlating significant parameters to the 

nugget diameters produced by peel tests.

For a three variable system, a, p, and y are related to the nugget diameter S.

The linear model will be:

S =  Cj +  C2ct +  +  C4y .......... ..................(4.3)

The polynomial model will be:

S = Cj + C2a + C2P  + C4y  + + Ĉ ocy + C7 py +  Ĉ oc2 +  C^fi2 + Cl0y 2

....................... .--.-(4.4)

where Q, i =1-10 are constant coefficients.

After the formulation, an ANOVA table can be established to investigate the 

significance of these variables. Thus, some of the insignificant parameters can be filtered 

out. The ANOVA provides the inferential procedure for testing the statistical hypothesis. 

One of the ways to judge the significance of each variable is by assessing the character of 

the F-score. A level of confidence for the significance test can be set as either 95% or 

99% to select the variables which are to enter the next stage.

The next stage of analysis is to use either the linear multiple regression or the 

non-linear multiple regression method to establish the constants associated with acoustic
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parameters. A variety of commercial software exists for solving non-linear regression. 

Most of them follow this procedure:

1. Start the initial estimation for each variable, then generate the curve defined by the 

estimation.

2. Adjust variables to fit the curve closer to data points through algorithms, e.g., 

Marquardt method.

3. Further adjust the curve and make it closer to the data set. Once the pre-set error limit 

is reached, stop and report the result.

Through these procedures, a set of significant parameters will be determined and their 

coefficients found. Consequently, the diameter of the weld will be predictable through 

the cumulative relationship, which will be an indicator of the spot weld quality.

4.3.2 Analysis method I I : Neural networks

Sometimes the assessment of a spot weld is made by a general description such as 

a good/marginal/bad weld instead of a more specific index, like bonding strength. The 

reason is that the general approach is usually the kind of criterion that can be easily 

adopted into industrial standards. For example, if we consider the variations among spot 

welds, including the materials, thickness and coating of base metal, or the type of 

electrode welding tip, the statistical analysis method may not check all the possibilities at
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one time and may need to be repeated for each different case. In such a situation, the 

artificial neural networks (ANN) analysis is an ideal analytical method.

ANN were originally designed as a model to simulate how the human brain 

works. The first ANN model was formulated in 1943 by McCulloch and Pitts. In 1949, 

Donald Hebb introduced Hebbian learning which states that changes in synaptic strengths 

are proportional to the activation of the neuron. In 1957, Frank Rosenblatt developed this 

idea into a two-layer network and established the perception convergence theorem. The 

next major step in the study of neural networks was the discovery of backpropagation by 

Werbos in 1974. Parker, in 1982, and Rumelhard and Hinton, in 1986, furthered the 

study of neural networks. Even today, neural network research flourishes, and new 

learning algorithms are developed every week.

The ANN is a simplified model that simulates human information passing 

behavior by artificial neurons. Each neuron has:

1) input and output which is related to the state of the neuron itself;

2) a threshold function to decide on the input-output relationship; and

3) unidirectional connection communication channels which carry numeric (as opposed 

to symbolic) data.

Figure 4.5 illustrates the abstract structure of a biological neuron. A brief explanation of 

some terms of Figure 4.5:

1. Axon: site where signals are transmitted between neurons by electrical pulses.
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2. Synapses: pulses traveling in an axon from neuron to neuron.

3. Soma (dendrites): found principally on a set of branching processes emerging from 

the cell body.

Efferent
Axon

•  ■ Other synapses

A xon Hillock

Axon

Nodes of Ranvier

Figure 4.5 Biological neuron (following Gurney[40])

The process of signal transmitting is described by Gurney[40]:

"Each pulse occurring at a synapse initiates the release of a small amount of chemical 
substance or neurotransmitter which travels across the synaptic cleft and which is then 
received at post-synaptic receptor sites on the dendritic side of the synapse. The 
neurotransmitter becomes bound to molecular sites here which, in turn, initiates a 
change in the dendritic membrane potential. This post-synaptic-potential (PSP) change 
may serve to increase (hyperpolarise) or decrease (depolarise) the polarisation of the 
post-synaptic membrane. In the former case, the PSP tends to inhibit generation of pulses 
in the afferent neuron, while in the latter, it tends to excite the generation of pulses. The 
size and type of PSP produced will depend on factors such as the geometry of the synapse 
and the type of neurotransmitter. Each PSP will travel along its dendrite and spread over 
the soma, eventually reaching the base of the axon (axon-hillock). The afferent neuron 
sums or integrates the effects of thousands of such PSPs over its dendritic tree and over 
time. If the integrated potential at the axon-hillock exceeds a threshold the cell 'fires' and
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generates an action potential or spike which starts to travel along its axon. This then 
initiates the whole sequence of events again in neurons contained in the efferent 
pathway."

ANN learn from examples and usually have training rules whereby the weights of 

connections are adjusted on the basis of presented examples. Alternatively, the model 

can be illustrated in Figure 4.6.

Incoming activation

synaptic weight
„ Wo

Ao,

Wi

adder
function

threshold
activation
function

outgoing
activation

Wn

Figure 4.6 Diagram of abstract neuron model

The proposed neural networks model is a three layer feed-forward model trained 

with the backpropagation method with logistic function as the activation function. The 

logistic threshold function is:

f  i x  ) =
1 + e  .........   ...(4.5)

where fix )  represents the output; and x is the input.
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The backpropagation method is the most popular model in neural networks. By 

backward training the errors, it is a suitable approach for examining the problem for the 

following reasons:

1. It is easy to apply to a practical problem such as the problem examined. This 

algorithm has been proven as very robust for training multiple layer networks.

2. It is very effective when the relationship between input/output layers is nonlinear and 

the training data are abundant.

The abstract neural networks model of this study can be illustrated as follows.

it layer

Figure 4.7 Proposed method, a multi-layer feed-forward net

Assume there are i quantified parameters, j  hidden units, and three output units 

(representing good/marginal/bad welds). Wij stands for the weight between input layer i-

weieht matrix W 2quantified
parameter!

good

marginal

bad
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tfa unit and j-th unit of the hidden layer. The activation function here has a special 

property such that f ’(x)=f(x)(l-f(x)). The details of backpropagation algorithm were 

described in the literature [401f41][65], and the typical steps could be described as:

1. Compute the hidden layer neuron activation:

The j-th hidden layer neural: y j  = /  ( ( ^  x f f l  [i][ j]) + 6 j )
i

2. Compute the output layer neuron activation:

The j-th output layer neural: Zj = /  ((^~! yiW2M UY) + Tj )
I

3. Compute the output layer error:

output differences = (desired value) - (computed value)

For the i-th component of error at the output layer:

et = z i ( l - z i ) ( p i - z t )

4. Compute the hidden layer error:

For the i-th component of error at the hidden layer:

t , ) (IW 2[i][./]ep
J

5. Adjust the weights for the second layer of the synapses:

For the i-th neuron in the hidden layer and the j-th neuron in the output layer:

A W 2[ i ] [ j ]  = p y ie j

6. Adjust the weights for the first layer of the synapses:

For the i-th neuron in the input layer and the j-th neuron in the hidden layer:
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= X xtt j

Notations:

x, y, z are vectors for the output neurons in the input layer, hidden layer, and output layer, 

respectively. Wi and W2 are weight matrices between the input/hidden layer and the 

hidden/output layer, p is the desired output vector, e and t are vectors for errors in the 

output and hidden layers. 0m d  rare vectors of the threshold or bias value for the hidden 

layer and the output layer, p  and X are learning rate parameters for the hidden layer and 

the output layer. Repeat steps 1 through 6 on all training data until the specified 

tolerance of the output error is reached.

The backpropagation network has the ability to learn any arbitrarily complex 

nonlinear mapping. With respect to the statistics method, the proposed feed-forward 

method with one hidden layer is a very close projection pursuit regression.
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Chapter 5

Results

The examined specimens used in this study were produced under carefully 

controlled welding parameters (welding current, electrode pressure, and holding time) 

and identical metal conditions (e.g., surface coating, thickness). Due to the continuous 

hardware improvement, weld specimens were separated into three groups 

chronologically. The first group with C-scan images as their results was examined earlier 

by ultra-Short Pulse Scanning reflection Acoustic Microscope (SPSAM). The quality of 

these specimens was certified by experts from the best to the worst as setup, nominal, 

m in im um, less than minimum, and stick weld, respectively. The minimum quality is the 

bottom line of an accepted weld. The second group with C-scan as their result was 

examined by SPSAM as well. This group was peel tested and served as the verification
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group to test the Artificial Neural networks (ANN) model built by group one. Later on, 

after the prototype of the hand-held microscope was bom, newly arrived specimens, 

categorized as group three, were examined by both hand-held microscope and SPSAM.

This experiment started with applying nondestructive acoustic tests to specimens 

and recording all the acoustic information. Then destructive testing was conducted on the 

second and third groups of specimens for conventional nugget diameter measurement. 

Through destructive tests, the nugget size of each spot weld could be found. This 

information was then integrated into the results together with the parameters recognized 

by the proposed method in a later section. The experimental procedures for the 

specimens are listed in the following table:
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Table 5.1 Detail of experiments

Group one Group two Group three

Time Early stage Early stage

After the prototype of 

hand-held device was 

developed

Microscope(s)

used

SPSAM SPSAM Hand-held device and 

SPSAM

Experiment

procedure 1

Nondestructive only Destructive and 

nondestructive

Destructive and 

nondestructive

Experiment 

procedure 2

Identified by expert for 

their quality (setup / 

nominal / minimum / 

less than minimum / 

stick)

Perform peel tests and 

measure 

the nugget diameters

Perform peel tests and 

measure 

the nugget diameters

Current

status

Serve as the calibration 

coupon for 

nondestructive testing 

in industries

destroyed destroyed

Result of 

collected data

Acoustic images and 

quality information 

(good/bad weld)

Acoustic images and 

quantity information 

(weld diameter)

Acoustic images and 

quantity information 

(weld diameter)

Number of

specimens 390 13 46
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5.1 Experimental results of group one

Two types of metal stack up were studied, and they are Type I (0.03" x 0.045") 

and Type II (0.04" x 0.06"). The criteria for identifying weld quality by experts for each 

metal stack up is based on the size of the weld nugget. The criteria are listed in table 5.2.

Table 5.2 Quality of weld (group I)

Type I Type II

Setup 5.1 ±0.4 6.4 ±0.4

Nominal 4.4 ±0.4 5.6 ±0.4

Minimum 3.6 +0.4 4.8 + 0.4

Less than minimum 1.8 ±0.4 2.4 ±0.4

Stick No nugget No nugget
(unit: mm)

The following table lists part of the result obtained by acoustic image measurement. 

The complete results are listed in Appendix I. Details of the measuring method were 

shown in Chapter 4, Section 2. Details of the analysis method were shown in Chapter 4, 

Section 3.
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Table 5.3 Acoustic image analysis results of group I

Result of image analysis Experts' result

TYPE I 

Stack up Area

1̂ 1 HXe

diameter diameter

Nugget

diameter Quality

14.0 4.5 3.3 1.9 Less than min.

15.0 5.3 2.8 1.4 Less than min.

18.0 5.7 3.0 2.1 Less than min.

12.0 5.0 2.5 1.9 Less than min.

16.0 5.0 2.5 2.1 Less than min.

14.0 5.2 7 c 1.9 Less than min.

11.0 5.0 7 c 1.7 Less than min.

12.0 4.9 2.5 1.5 Less than min.

16.0 5.3 2.5 1.7 Less than min.

14.0 5.1 7 C 1.5 Less than min.

14.0 4.9 7 5 2.0 Less than min.

15.0 5.3 3.5 1.8 Less than min.

14.0 5.1 3.3 1.8 Less than min.

These results involve the quality indicator (e.g. setup, nominal, minimum, less than 

minimum, stick) and will be adopted in the ANN model developed for this study. 

Among these specimens, 120 samples including 24 setup, 24 nominal, 24 minimum, 24 

less than minimum, and 24 stick were chosen for each type of stack up to train the ANN. 

The other 75 samples for each type were used to test the neural networks model. In Type 

I stack up, all 75 samples match the actual weld quality of the ANN corresponding 

model. For the Type II stack up, 71 out of 75 samples match the weld quality of the
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corresponding ANN model. The results indicate a coherent performance for this model 

based on expert knowledge.

The results of Type II is plotted in Figures 5.1 to 5.3 according to the selected 

acoustic parameters (area, maximum nugget diameter, and minimum nugget diameter). It 

is observed that there exists no clear boundary between weld quality by considering a 

single parameter. For example, in Figure 5.1, the range of "minimum" quality and "less 

than minimum" are overlapped between 20 and 30. In other words, the quality of weld 

cannot be decided by a single acoustic parameter.

Comparison of area (TYPE II)
60.0
50.0

40.0 
8  30.0

20.0 
10.0

0.0
0 10 20 30 40

Number of sample

♦ setup
■ nominal
* m inimum 

x  less
x stick

Figure 5.1 The distribution of weld qualities in terms of acoustic parameter 1
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Comparison of max. axis (TYPE II)

1 10.0

8.0
m

6.0

a 4.0
B

2.0
S 0.0

♦ setup
■ nominal
* minimum 

x less
x stick

0 10 20 30
Number of sample

40

Figure 5.2 The distribution of weld qualities in terms of acoustic parameter 2

Comparison of min. axis (TYPE II)

8.0
A

A w V *
.... ...................X "" ^

y  :W V x

* *  v & x * 3' ! * X XX

s ✓ 1 1“ 7$ '1----------------- 1— 1
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x less
x stick

10 20 30
Number of sample

40

Figure 5.3 The distribution of weld qualities in terms of acoustic parameter 3
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5.2 Experimental results of group two

One type of metal stack up (Type I, 0.03" x 0.045") was studied. This group of 

specimens was acoustically examined and peel tested. The acoustic C-scan images have 

been used to test the corresponding ANN model built by the specimens of group 1. The 

verification is 100% consistent to both (peel test and ANN) models. The results are listed 

in Table 5.4.

Table 5.4 Acoustic image analysis results of group II

area maximum
axis

minimum
axis

output peel test 
diameter

weld
quality

result

weld 78 31.0 6.7 5.5 good 5.65 setup match

weld 81 42.0 7.3 6.3 good 5.5 setup match

weld 82 38.0 7.6 6.0 good 5.5 setup match

weld 86 24.0 6.0 4.5 good 5.5 setup match

weld 88 22.0 5.8 4.3 good 4.45 nominal match

weld 90 21.0 5.9 4.0 good 4.0 minimum match

weld 92 21.0 5.7 4.3 good 3.65 minimum match

weld 94 19.0 5.6 4.0 bad 3.5 less than match

weld 96 19.0 5.7 3.8 bad 2.24 less than match

weld 98 17.0 5.6 3.8 bad 2.2 less than match

weld 100 15.0 5.2 3.8 bad 0 stick match

weld 102 14.0 5.2 3.8 bad 0 stick match

weld 104 0.0 0.0 0.0 bad 0 stick match
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5.3 Experimental results of group three

In this study, three parameters chosen for analyzing the weld quality are: surface 

indentation, nugget diameter measured from the acoustic method, and the total inclusion 

size inside the nugget. The data of these parameters and the results from the peel test are 

listed in Table 5.5. The experimental result is normalized and plotted in Figure 5.4 to 

provide visual assistance for choosing a proper interpretation of the weld quality:

Trend study of normalized parameters
y  =  0.9407X + 2.7243 V =  -0.0525X2 + 1,3394x + 2.232 

R2 = 0.8562 r2 = 0-8712
 * ♦—10.00

™  6.00

N 4.00 11

♦ ♦ #  A♦ ♦ t  ♦&—fc 0

diameter from peel test (mm)

♦  indentation 

■ diameter

*  inclusion

-  -  -  Poly.
(diameter)

—  — Linear
(diameter)

■Linear
(indentation)

■Linear
(inclusion)

Figure 5.4 Study of acoustic measured parameter
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Table 5.5 Experimental results

Peel test Acoustic parameters
Sample number diameter Diameter (mm) inclusion area indentation

#1 0 2 0 5
#1_opp 0 1.77 0.45 3
#3 0 3.85 3.3 5
#3-opp 0 4.2 5.6 3
#6 2.13 5.18 1.8 10
#6_opp 2.13 5.3 2.6 7
#9 3.27 5.52 1.9 12
#9_opp 3.27 5.41 2.15 10
#10 3.57 6.06 0.8 20
#10_opp 3.57 5.7 0.55 15
#12 4.15 5.83 0 22
#12_opp 4.15 5.7 0 18
#14 4.65 5.9 0 32
#14_opp 4.65 5.85 0 27
#16 5.2 6.47 0 40
#16_opp 5.2 6.41 0 34
#17 5.3 6.57 0 50
#17_opp 5.3 6.63 0 40
#19 6.05 6.74 0 50
#19_opp 6.05 6.52 0 45
#23 6.55 7.59 0 55
#23_opp 6.55 7.06 0 60
#26 6.45 6.64 0 65
#26_opp 6.45 6.46 0 50
#27 6.4 6.8 0 60
#27_op 6.4 6.85 0 55
#57 3 6.16 2.45 6
#57_opp 3 5.7 9 11
#59 4.2 6.5 3.5 6
#59_opp 4.2 6.5 9.75 11
#61 5.3 6.71 3.6 8
#61_opp 5.3 6.65 1.85 13
#66 5.4 6.6 1.7 8
#66_opp 5.4 6.77 1.15 15
#67 5.5 6.64 0 8
#67_opp 5.5 6.75 0 14
#68 5.58 6.51 0 9
#68_opp 5.58 6.8 0 15
#70 5.95 6.63 0 8
#70_op 5.95 6.85 0 20
#72 7.2 7.8 0 40
#72_op 7.2 7.87 0 50
#73 7.3 7.84 0 30
#73_op 7.3 7.8 0 50
#74 7.4 7.68 0 30
#74_opp 7.4 7.96 0 60
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There is no significant relationship between the normalized data and the diameter 

measured from the peel test. The only parameter capable of portraying the relationship is 

the distance between the weld boundaries, the order of which cannot be decided since the 

coefficient of determination (R2) of the first and second order equations are so close. 

Therefore, both linear and nonlinear regression models are tested for determining the 

suitable model. Later on, the appropriate model is used to carry out the magnitude of the 

coefficients of the equation.

These three variable systems, a, |3, and y, where they represent indentation, 

acoustic diameter, and inclusion, respectively, are related to the diameter from peel test 

D.

Rewriting equation 4.3, the linear model would be:

D = C0 + Cxa  +  C2fi + C , y ........................... (5.1)

Rewriting equation 4.4, the polynomial model would be:

D  = C0 + Cxa + C2/3 + C3y + C4ci2 +  C5/?2 4- C6y 2 +  C7ck/?+ C%£$y+C^cty

. . . . . . . ....... ........*4 5 .2)

where G, i =0-9 are constant coefficients.

The coefficients of the linear and nonlinear regression models are shown in the 

following table, and the results are plotted in Figure 5.5 and Figure 5.6, respectively. 

Figure 5.6 demonstrating the polynomial model with 10 constants is a closer prediction.
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The F-score of this model is 170.36, which is substantially greater than the F-critical 

value of 2.17. Therefore, this regression model is useful in predicting the diameters 

measured by the peel test. The sum of the residual square is reasonably small at 4.28.

Table 5.6 Coefficients of linear and nonlinear models

Linear model

Co Ci Cz C3

-3.340 0.0154 0.0791 0.0433

Nonlinear mode^

Co Ci Cz C3 C 4 Cs C6 c? Cs C 9

0.3962 0.2333 -1.050 -0.255 0.0008 0.2826 0.0201 -0.041 -0.029 0.0139

Predicted vs. observed diameter
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Figure 5.5 Predicted vs. observed diameter of linear model
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Predicted vs. observed diameter
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Figure 5.6 Predicted vs. observed diameter of nonlinear model

To reduce the calculation efforts of this model, a t-test for the statistical 

significance of each parameter is performed. The significance level is chosen as 95%, 

and the t-value is 1.645, which suggests that some of the terms are insignificant. Hence 

the reduced equation can be rewritten as:

D = C0 + Cxcc+ C2/3+ C3cc2 +C4/?2 + C 5y 2 -vC^ctfi  ...... (5.3)

The coefficients are listed in the following table:
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Table 5.7 Coefficients of linear and nonlinear models

Nonlinear model (after parameter screening)

Co Ci Cz Cs C 4 Cs Ce

0.93835 0.31894 -1.66622 0.00044 0.34996 -0.00739 -0.04926

The new model provides an explanation without losing much of the generality of the 

observed diameter with the coefficient of determination equal to 0.969. The sum of the 

residual square is 5.755.

Predicted vs. observed diameter
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■ § .§  4 
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8 2
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o  0

-1 0 1  2 3 4  5 6 7 8

Predicted diameter (mm)

Figure 5.7 Predicted vs. observed diameter of nonlinear model with 6 parameters
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Through these procedures, a set of significant parameters is determined and their 

coefficients can be retrieved. Consequently, the peel diameter of the weld will be 

predictable through the cumulative relationship, which will be an indicator of spot weld 

quality.
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5.4 The developed software

JAVA is chosen to be the programming language to carry out the software 

system. The main reason for using JAVA is its portability. This software is able to run 

under most operation systems, e.g. Windows, UNIX, MacOS, and LINUX, without 

changing a single line of code. There are many other advantages to JAVA: JAVA is a 

programming language and platform; JAVA is an object-oriented language; JAVA 

supports internationalization; and JAVA is a multi-thread language.

There are two versions of the Acoustic Image Analysis software (ALA). The first 

version is the analyzer with image processing tools and neural networks training/ testing 

functions. Users can manipulate AIA by a pull down menu. Users can load images, 

perform basic image processing techniques, run default operations (thresholding / dilation 

/ area calculation), prepare ANN training data, train ANN, prepare testing data, and test 

ANN results. The later version is aimed at performing spot weld quality examination on 

pre-trained ANN. Users can access file systems, perform the ANN test by clicking on 

one button on the toolbar. The following figures illustrate the user interface of these two 

versions of AIA:
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Figure 5.8 The user interface of Acoustic Image Analyzer (AIA)

Figure 5.9 The output screen shot of AIA
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Figure 5.10 The screen shot of the newer version of Acoustic Image Analyzer (AIA2)
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Chapter 6 

Conclusion and future research

The spot weld process is the most popular joining mechanism in various 

industries. The quality of the spot weld is very important since it directly affects the 

quality of products and its performance in these industries. Due to the complicated 

physical properties of the spot weld, its quality is difficult to control. Most companies 

use an on-line welding parameters monitoring system (welding current, holding time, 

electronic force) with an off-line statistical sampling examination to ensure their product 

quality. This mechanism will fail for the following reasons:
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1. The on-line parameter monitoring systems ignore many on-site errors such as the 

misalignment of weld tips, deterioration of the welding tip, electrical current 

oscillation, and fluctuation of the holding pressure.

2. The off-line inspection only offers a delayed response to the production line.

3. It is not an economic solution to reject a lot of high value products when mistakes 

happen.

The acoustic nondestructive method provides a feasible solution for spot weld 

quality inspection because it can examine the internal structures of spot welds. However, 

two problems prevent the current on-line application of the acoustic method. The first 

problem, involving the time-consuming scanning mechanism, can be solved by hardware 

renovation which is under development by The Center for Imaging Research and 

Advanced Materials Characterization. The second problem is that experienced operators 

are needed to operate the device and interpret the result. Even a skillful operator cannot 

operate the acoustic system and make a decision in an on-line fashion. This problem can 

be solved by building up a software program that is able to perform like an expert. Once 

reliable software is built, with the fast scanning hardware, every operator on the job site 

can be an expert in acoustic nondestructive testing.

The mathematical models reviewed in Chapter 3 provide a good fundamental 

knowledge of acoustic wave propagation in spot weld nuggets. However, due to the 

irregular shape of the nugget and the variation of materials, the mathematical model 

needs further work. An experimental approach is suggested in this study. This approach
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attempts to develop the correlation between acoustic images and the quality of spot 

welds.

In conclusion, the acoustic images were processed by using morphology 

techniques so that pre-set acoustic parameters could be acquired. Two methods, namely, 

statistical correlation and artificial neural networks (ANN), were used to build the 

correlation laws between the acquired acoustic parameters and the quality of spot welds. 

Conventionally, there are two ways to determine the quality of the spot weld, and they 

are the peel test, and opinions from experts, respectively. For weld quality obtained by 

the result of the peel test, a quantitative result is presented. This result is suitable for the 

statistical correlation study. On the other hand, for a qualitative result (good/bad weld 

indicator provided by experts), the ANN method which capable of manipulating boolean 

data, is a good choice. Both methods render excellent results for predicting weld quality.

Although statistical or related techniques are used in this research, this research is 

preferable to the conventional spot weld inspection method. The conventional 

examination method is only concerned with the statistical control of the periphery 

parameter and sampling techniques. By employing acoustic nondestructive inspection, 

which is able to acquire more internal information, this research provides a far more 

comprehensive analysis than the traditional statistical method. This study proves that an 

on-line acoustic examination is an achievable target. Through this approach, acoustic 

inspection of the spot weld can be applied as an on-line, feedback, real-time inspection 

device.
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Further research based on this work could include:

1. Comprehensive anisotropic study at the non-core regions of weld nuggets.

2. Software development suitable for the next generation of the hand-held acoustic 

microscope.

3. Introduction of more acoustic parameters in the decision pool to determine the quality 

of spot welds, such as depth of penetration, profile of indentation, and shape of nugget.

4. An increase in the process speed of software by adding advanced functions to the 

hardware. For example, develop the hardware to measure the profile of indentation 

during scanning.

5. Apply more data to obtain higher statistical confidence results.
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Result of image analysis Experts' result

TYPE I

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

12.0 4.9 2.5 1.5 Less than min.

16.0 5.3 2.5 1.7 Less than min.

14.0 5.1 2.5 1.5 Less than min.

14.0 4.9 2.5 2.0 Less than min.

15.0 5.3 3.5 1.8 Less than min.

14.0 5.1 3.3 1.8 Less than min.

10.0 4.9 2.5 1.7 Less than min.

10.0 5.4 2.5 1.4 Less than min.

17.0 5.6 2.8 2.1 Less than min.

15.0 5.0 3.5 1.8 Less than min.

10.0 4.8 3.3 1.5 Less than min.

14.0 4.6 3.2 1.9 Less than min.

16.0 4.8 3.5 2.0 Less than min.

10.0 4.6 3.2 1.4 Less than min.

12.0 4.9 2.5 1.5 Less than min.

15.0 5.0 3.5 1.7 Less than min.

13.0 5.0 2.8 1.6 Less tlhasi rauii.

13.0 4.6 3.2 1.8 Less than min.

12.0 4.7 2.5 2.2 Less than min.

11.0 4.6 2.8 1.8 Less than min.

12.0 4.8 3.3 1.8 Less than min.

16.0 5.2 3.2 1.8 Less than min.

9.0 4.2 3.2 1.5 Less than min.

8.0 4.2 2.5 1.9 Less than min.
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Result of image analysis Experts' result

TYPE I 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

14.0 4.8 2.5 1.7 Less than min.

14.0 4.8 3.3 1.7 Less than min.

5.0 3.5 2.5 1.6 Less than min.

14.0 4.8 2.5 1.9 Less than min.

15.0 4.7 3.3 1.8 Less than min.

10.0 4.6 2.5 1.5 Less than min.

13.0 4.7 3.3 1.7 Less than min.

12.0 4.7 3.2 1.7 Less than min.

24.0 5.8 5.0 4.0 Minimum

24.0 5.8 4.2 4.0 Minimum

. 24.0 6.1 4.4 4.0 M in im u m

24.0 5.7 4.9 4.0 Minimum

23.0 6.0 4.5 4.0 Minimum

23.0 6.3 4.0 4.0 Minimum

23.0 6.0 4.0 3.9 Minimum

24.0 6.0 4.8 4.0 Minimum

27.0 6.1 5.0 3.9 Minimum

23.0 5.7 4.8 4.0 Minimum

26.0 6.1 5.1 3.9 Minimum

25.0 5.8 5.0 3.9 Minimum

24.0 5.8 5.0 3.9 Minimum
.0 6.1 4.0 3 .9 Minimum

25.0 6.1 4.8 4.0 Minimum

24.0 5.8 5.0 4.0 Minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Result of image analysis Experts' result

TYPE I 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

20.0 5.4 4.2 3.8 Minimum

26.0 6.2 4.8 4.0 Minimum

19.0 5.3 4.3 3.7 Minimum

19.0 4.9 4.3 3.9 Minimum

19.0 5.2 3.8 4.0 Minimum

24.0 6.0 4.8 4.0 Minimum

22.0 5.5 4.7 4.0 Minimum

20.0 5.4 4.0 4.0 Minimum

20.0 5.1 4.4 4.0 Minimum

19.0 5.1 4.5 4.0 Minimum

19.0 5.3 4.2 3.9 Minimum

19.0 4.9 3.8 3.9 Minimum

22.0 5.5 4.3 3.9 Minimum

20.0 5.3 4.3 3.7 Minimum

19.0 5.2 4.2 3.7 Minimum

18.0 5.0 3.5 4.0 Minimum

20.0 5.1 4.6 4.0 Minimum

19.0 5.1 4.2 4.0 Minimum

20.0 5.3 4.5 4.0 Minimum

19.0 5.1 4.3 4.0 Minimum

19.0 5.1 4.5 3.9 Minimum

19.0 5.1 4.4 3.9 Minimum

21.0 5.4 4.0 4.0 Minimum

25.0 5.8 4.5 4.6 Nominal
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Result of image analysis Experts' result

TYPE I 

Stack up Area

Max.
diameter

Min.

diameter

Nugget

diameter Quality

27.0 6.3 5.3 4.6 Nominal

25.0 6.1 4.2 4.5 Nominal

25.0 5.8 4.2 4.8 Nominal

26.0 5.9 5.3 4.8 N ominal

24.0 6.0 4.3 4.6 Nominal

24.0 6.1 4.2 4.6 Nominal

24.0 5.8 4.5 4.5 Nominal

30.0 6.5 5.0 4.4 Nominal

24.0 5.8 4.3 4.6 Nominal

27.0 6.1 5.1 4.8 Nominal

25.0 6.0 4.2 4.6 Nominal

26.0 6.1 4.8 4.7 Nominal

24.0 6.0 4.2 4.6 Nominal

26.0 6.1 4.8 4.7 Nominal

26.0 6.0 5.0 4.7 Nominal

23.0 5.9 4.7 4.2 Nominal

26.0 6.1 4.8 4.8 Nominal

21.0 5.5 4.5 4.5 Nominal

21.0 5.4 4.4 4.5 Nominal

21.0 5.4 4.4 4.6 Nominal

24.0 5.8 4.5 4.5 Nominal

23.0 5.6 4.7 4.6 Nominal

22.0 5.4 4.5 4.7 Nominal

21.0 5.3 4.6 4.6 Nominal
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Result of image analysis Experts' result

TYPE I 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

25.0 6.1 4.9 4.6 Nominal

23.0 5.7 4.8 4.7 Nominal

20.0 5.2 4.5 4.5 Nominal

23.0 5.5 4.8 4.5 Nominal

22.0 5.4 4.5 4.6 Nominal

21.0 5.4 4.2 4.6 Nominal

21.0 5.4 4.5 4.4 Nominal

20.0 5.1 4.5 4.7 Nominal

20.0 5.1 4.5 4.6 Nominal

23.0 5.5 4.8 4.1 Nominal

20.0 5.2 4.5 4.1 Nominal

21.0 5.2 4.7 4.0 Nominal

20.0 5.3 4.5 4.0 Nominal

27.0 6.0 5.3 4.6 Nominal

32.0 8.1 5.5 5.2 Setup

32.0 6.9 5.1 5.2 Setup

26.0 6.0 5.1 5.2 Setup

33.0 6.7 5.8 5.4 Setup

28.0 6.0 5.4 5.2 Setup

27.0 6.1 4.6 5.2 Setup

27.0 6.3 4.5 5.1 Setup

27.0 6.0 5.1  ̂ iJL Setup

38.0 7.3 5.8 5.4 Setup

27.0 6.3 5.0 Setup
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Result of image analysis Experts' result

TYPE I 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

39.0 7.9 5.9 5.4 Setup

28J 6 . 0 5.5 5.4 Setup

38.0 7.8 6 . 0 5.4 Setup

28.0 6.2 4.7 5.1 Setup

38.0 6.3 5.2 5.2 Setup

28.0 6.1 5.5 5.3 Setup

35.0 7.9 5.8 5.4 Setup

31.0 7.8 5.5 5.4 Setup

33.0 7.1 5.7 5.4 Setup

33.0 7.5 5.7 5.3 Setup

34.0 6.7 5.7 5.4 Setup

27.0 6.0 5.1 5.1 Setup

24.0 5.9 4.9 5.0 Setup

23.0 5.5 4.8 4.9 Setup

35.0 6.6 6.0 5.1 Setup

31.0 7.0 5.4 5.2 Setup

25.0 6.1 4.6 4.9 Setup

36.0 7  1/  »JL 5.5 4.9 Setup

27.0 6.0 5.0 5.0 Setup

23.0 5.9 4.8 5.1 Setup

23.0 5.7 4.6 5.1 Setup

2 0 . 0 5.1 4.3 4.7 Setup

19.0 5.0 3.8 4.7 Setup

33.0 6.4 5.1 4.9 Setup
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Result of image analysis Experts' result

TYPE I

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

35.0 7.1 5.8 4.8 Setup

33.0 6.6 5.7 4.9 Setup

34.0 7.6 5.7 4.9 Setup

35.0 8.5 5.7 5.1 Setup

28.0 6.4 5.3 4.7 Setup

9.0 4.2 2.5 0.0 Stick

11.0 5.0 3.2 0.0 Stick

7.0 4.9 2.5 0.0 Stick

7.0 4.2 2.5 0.0 Stick

9.0 4.8 3.0 0.0 Stick

3.0 3.8 2.5 0.0 Stick

9.0 4.8 2.5 0.0 Stick

2.0 3.5 2.5 0.0 Stick

12.0 5.0 3.3 0.0 Stick

8.0 4.3 2.8 0.0 Stick

7.0 4.9 2.5 0.0 Stick

9.0 4.6 3.1 0.0 Stick

3.0 3.8 2.5 0.0 Stick

9.0 4.6 2.5 0.0 Stick

8.0 4.5 3.2 0.0 Stick

11.0 £ J
a - 'e tU 3.1 0.0 Stick

9.0 4.8 3.0 0.0 Stick

10.0 4.8 3.3 0.0 Stick

11.0 4.6 3.3 0.0 Stick
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Result of image analysis Experts' result

TYPE I 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

10.0 4.6 3.0 0.0 Stick

8.0 4.5 3.0 0.0 Stick

2.0 3.5 2.5 0.0 Stick

8.0 4.0 2.7 0.0 Stick

5.0 4.3 7 0.0 Stick

9.0 4.3 3.1 0.0 Stick

2.0 4.2 2.5 0.0 Stick

1.0 3.5 2.5 0.0 Stick

6.0 4.2 2.5 0.0 Stick

8.0 4.0 2.5 0.0 Stick

. 6.0 4.4 2.5 0.0 Stick

5.0 4.5 2.7 0.0 Stick

3.0 4.4 2.5 0.0 Stick

7.0 4.2 2.7 0.0 Stick

0.0 3.5 2.5 0.0 Stick

10.0 4.5 3.0 0.0 Stick

11.0 4.5 3.0 0.0 Stick

5.0 4.2 2.5 0.0 Stick

8.0 4.3 3.0 0.0 Stick

6.0 3.9 2.8 0.0 Stick

14.0 4.5 3.3 1.9 Less than min.

15.0 5.3 2.8 1.4 Less than num.

18.0 5.7 3.0 2.1 Less than min.

12.0
..............

5.0 2.5 1.9 Less than min.
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Result of image analysis Experts' result

TYPE I 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

16.0 5.0 2.5 2.1 Less than min.

14.0 5.2 2.5 1.9 Less than min.

11.0 5.0 2.5 1.7 Less than min.

Result of image analysis Experts' result

TYPE II 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

15.0 5.4 3.3 0.0 Stick

12.0 5.4 2.9 0.0 Stick

25.0 6.7 3.6 0.0 Stick
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Result of image analysis Experts' result

TYPEH  

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

0.0 0.0 0.0 2.5 Less than min.

15.0 5.3 3.6 2.1 Less than min.

20.0 5.6 4.5 2.8 Less than min.

18.0 5.6 3.8 2.4 Less than min.

19.0 5.5 3.5 2.4 Less than min.

16.0 5.0 3.5 2.4 Less than min.

20.0 5.3 3.8 2.0 Less than min.

18.0 5.5 3.6 2.0 Less than min.

17.0 5.5 2.5 2.0 Less than min.

18.0 5.1 3.6 2.1 Less than min.

10.0 4.3 2.9 2.5 Less than min.

12.0 4.0 3.0 2.3 Less than min.

19.0 5.5 3.3 2.3 Less than min.

20.0 5.5 4.0 2.0 Less than min.

23.0 6.1 4.0 2.5 Less than min.

24.0 6.0 4.0 2.8 Less than min.

18.0 5.5 3.6 2.0 Less than min.

25.0 6.0 4.3 2.6 Less than min.

23.0 5.8 4.2 2.8 Less than min.

21.0 6.0 2.8 2.3 Less than min.

10.0 5.0 2.5 2.8 Less than min.

26.0 6.0 4.0 2.7 Less than min.

27.0 6.1 4.0 2.8 Less than min.

22.0 5.4 4.0 2.4 Less than min.
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Result of image analysis Experts’ result

TYPE II 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

23.0 5.8 2.7 2.4 Less than min.

23.0 5.8 3.8 2.2 Less than min.

26.0 6.0 4.3 1.8 Less than min.

J 5.9 4.4 1.8 Less than min.

24.0 5.9 4.1 1.8 Less than min.

26.0 6.0 4.4 1.5 Less than min.

23.0 5.8 4.0 1.9 Less than min.

27.0 6.4 4.8 1.7 Less than min.

21.0 5.5 4.0 1.7 Less than min.

23.0 5.8 3.3 1.6 Less than min.

24.0 5.9 4.0 1.9 Less than min.

19.0 5.8 3.5 1.8 Less than min.

27.0 6.1 4.3 1.5 Less than min.

27.0 6.1 4.6 1.7 Less than min.

28.0 7.1 4.1 1.7 Less than min.

24.0 6.6 4.8 4.8 Minimum

23.0 6.0 4.6 4.8 Minimum

24.0 6.3 4.6 4.8 Minimum

22.0 6.0 4.6 4.8 M inimum

25.0 6.1 4.6 4.8 Minimum

24.0 6.1 4.7 5.1 Minimum

21.0 6.1 4.6 4.8 Minimum

25.0 6.1 4.3 5.0 M inimum

24.0 6.0 3.8 4.8 M inimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Result of image analysis Experts’ result

TYPED  

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

21.0 6.0 4.5 4.8 Minimum

25.0 6.1 4.8 5.0 Minimum

27.0 6.3 5.2 5.0 Minimum

23.0 6.1 4.4 4.8 Minimum

21.0 6.1 4.5 4.8 M inimum

30.0 6.6 5.5 5.2 Minimum

31.0 6.8 5.8 5.2 Minimum

25.0 6.1 4.3 5.0 Minimum

30.0 6.3 5.5 5.2 M inimum

33.0 7.0 5.7 5.2 Minimum

21.0 6.0 2.8 5.2 Minimum

30.0 6.4 5.5 5.2 Minimum

31.0 6.7 5.7 5.2 M inimum

32.0 6.6 5.8 5.1 Minimum

30.0 6.1 5.7 5.2 Minimum

30.0 6.2 5.1 5.2 M inimum

29.0 6.5 5.4 4.0 Minimum

32.0 6.4 5.7 3.9 Minimum

32.0 6.5 5.8 3.9 Minimum

32.0 6.9 5.7 3.9 Minimum

32.0 6.8 5.8 3.7 Minimum

6.7 5.8 3.7 Minimum

32.0 6.6 5.5 4.0 Minimum

30.0 6.6 5.7 4.® Minimum
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Result of image analysis Experts' result

TYPE II  

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

30.0 6.6 5.6 4.0 Minimum

32.0 6.8 5.7 4.0 Minimum

31.0 6.6 5.7 4.0 Minimum

35.0 7.1 5.7 3.9 Minimum

31.0 6.8 5.5 3.9 Minimum

36.0 7.4 5.7 4.0 Minimum

25.0 6.3 4.8 5.2 Nominal

23.0 5.7 4.6 5.0 Nominal

41.0 7.4 6.2 5.2 Nominal

24.0 5.8 4.9 5.2 Nominal

27.0 6.1 5.2 6.0 Nominal

27.0 6.4 4.3 5.3 Nominal

27.0 6.6 5.1 5.3 Nominal

25.0 6.3 4.9 5.2 Nominal

25.0 6.1 5.1 5.4 Nominal

27.0 6.1 5.4 5.3 Nominal

25.0 6.3 4.6 5.3 Nominal

25.0 6.3 4.6 5.3 Nominal

28.0 6.3 5.2 5.7 Nominal

24.0 6.0 4.8 5.3 Nominal

31.0 6.3 5.5 5.8 Nominal

32.0 6.4 5.7 5.9 Nominal

25.0 6.3 49 5.2 Nominal

30.0 6 3 5.7 6.0 Nominal
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Result of image analysis Experts' result

TYPE II 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

33.0 6.5 5.9 5.9 Nominal

33.0 6.7 6.0 5.6 Nominal

30.0 6.5 5.5 5.8 Nominal

32.0 6.9 5.7 5.8 Nominal

35.0 6.8 6.1 6.0 Nominal

30.0 6.4 4.5 5.9 Nominal

30.0 6.4 5.7 5.9 Nominal

32.0 6.6 5.5 4.6 Nominal

38.0 7.1 6.5 4.7 Nominal

31.0 6.7 5.7 4.5 Nominal

. 33.0 6.8 5.7 4.5 Nominal

32.0 6.5 5.8 4.6 Nominal

33.0 7.1 5.9 4.6 Nominal

31.0 6.5 5.5 4.4 Nominal

31.0 6.4 5.5 4.7 Nominal

30.0 6.4 5.7 4.6 Nominal

32.0 6.5 5.8 4.1 Nominal

33.0 6.7 5.9 4.1 Nominal

34.0 6.8 5.7 4.0 Nominal

30.0 6.7 5.1 4.0 Nominal

38.0 7.1 6.0 4.6 Nominal

27.0 6.0 S 1 5.9 Setup

30.0 6.6 5.4 6.0 Setup

32.0 7.0 5.7 6.0 Setup

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Result of Image analysis Experts’ result

TY PED  

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

34.0 7.0 5.7 6.1 Setup

27.0 5.9 5.1 6.0 Setup

37.0 7.3 6.1 6.1 Setup

30.0 6.6 5.4 6.1 Setup

27.0 5.9 5.1 6.0 Setup

25.0 6.1 5.0 6.0 Setup

27.0 5.9 5.2 6.0 Setup

31.0 6.4 5.8 6.1 Setup

40.0 8.0 6.4 6.3 Setup

29.0 6.3 5.4 6.0 Setup

28.0 6.2 5.2 6.1 Setup

32.0 6.5 5.7 6.0 Setup

40.0 7.7 6.3 6.5 Setup

25.0 6.3 4.9 6.0 Setup

31.0 6.6 5.5 6.3 Setup

32.0 6.6 5.7 6.0 Setup

32.0 6.4 4.6 6.2 Setup

32.0 6.6 5.8 6.0 Setup

33.0 6.7 5.8 6.1 Setup

42.0 7.6 6.6 6.1 Setup

31.0 6.1 5.7 6.1 Setup

32.0 6.5 5.7 6.1 Setup

32.0 6.6 5.7 5.2 Setup

47.0 8.4 6.8 4.9 Setup
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Result of image analysis Experts' result

TYPE II

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

32.0 6.6 5.7 4.9 Setup

41.0 7.9 6.3 5.0 Setup

35.0 7.3 6.0 5.1 Setup

48.0 8.2 7.1 5.1 Setup

33.0 6.7 5.7 4.7 Setup

33.0 6.6 5.7 4.7 Setup

32.0 6.5 5.7 4.9 Setup

33.0 6.5 5.7 4.8 Setup

33.0 6.9 5.7 4.9 Setup

33.0 6.5 5.4 4.9 Setup

33.0 6.6 5.7 5.1 Setup

37.0 7.5 5.7 4.7 Setup

11.0 5.0 3.0 0.0 Stick

15.0 5.1 3.1 0.0 Stick

9.0 5.0 3.2 0.0 Stick

11.0 5.3 2.7 0.0 Stick

8.0 5.0 ? 7ife/a g 0.0 Stick

17.0 5.3 3.6 0.0 Stick

10.0 4.9 3.3 0.0 Stick

14.0 5.3 2.8 0.0 Stick

9.0 4.6 2.5 0.0 Stick

11.0 5.0 2.8 0.0 Stick

12.0 4.9 2.5 0.0 Stick

6.0 3.9 2.5 0.0 Stick
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Result of image analysis Experts’ result

TYPE II 

Stack up Area

Max.

diameter

Min.

diameter

Nugget

diameter Quality

8.0 4.6 2.5 0.0 Stick

10.0 4.9 3.2 0.0 Stick

14.0 5.4 2.5 0.0 Stick

15.0 5.5 4.0 0.0 Stick

14.0 5.3 2.8 0.0 Stick

13.0 5.4 3.5 0.0 Stick

10.0 4.4 3.0 0.0 Stick

10.0 5.0 2.5 0.0 Stick

7.0 4.2 2.7 0.0 Stick

18.0 5.3 3.6 0.0 Stick

20.0 5.75 2.6 0.0 Stick

12.0 5.3 3.6 0.0 Stick

16.0 5.7 3.6 0.0 Stick

11.0 5.1 3.3 0.0 Stick

9.0 3.8 2.5 0.0 Stick

14.0 5.5 2.7 0.0 Stick

20.0 5.8 3.8 0.0 Stick

20.0 5.5 3.0 0.0 Stick

11.0 5.3 2.5 0.0 Stick

17.0 5.5 2.7 0.0 Stick

15.0 5.1 3.8 0.0 Stick

17.0 5.3 3.4 0.0 Stick

11.0 4.6 3.1 0.0 Stick

12.0 5.3 3.0 0.0 Stick

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix II

AIA program source code
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// L_.Img.java:
// load image with menu bar
// use image-filters method

import java.awt.*; 
import java.io.*; 
import j ava.awt.event. *; 
import ImageFilterBase; 
import BinaryFilter; 
import EdgeDetectionFilter; 
import GraylmageFilter; 
import Brighterlmage; 
import ImageDilationFilter; 
import java.awtimage.*;

public class AIA extends Frame implements WindowListener 
{
// MenuBar definitions 

MenuBar mb;
/ / - --------------------------------------------------------------------------------------------------
// Menu and Menu item definitions
//--------------------------------------------------------------------------

Menu ml; // File
Menultem FileOpen; II Open
Menultem FileSave; II Save
Menultem Closeltem; II Close
Menu m5; II Process
Menultem Originallmg; //back to original
Menultem ImgGray; //Gray Image
Menultem ImgB rightness; // Brightness
Menultem ImgHistogram; // Histogram
Menultem morph_dilation; II Dilation/Erosion
Menultem morph_threshold; // Thresholding
Menultem morph_edge; II Edge Detection
Menultem morph_calculation; II Area Calculation
Menultem morph_perform; // Perform
Menu m 15; II Preparing data for analysis
Menultem morphjraining; II Prepare data for training
Menultem moiphjest; II Prepare data for testing (NN or statstics)
Menu m l8; II Analysis (NN-training, NN-testing, statistics)
Menultem NN_T raining; IINN-T raining
Menultem NN_Test; II NN-Testing 
Menultem stat; // use statistics method 
Menultem once; II  one image-one button do it once
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Menu m23; // Help 
Menultem About; // About

// dialog for open more files----------------- need rework for better interface
M_dialog message 1= new M_dialog(this,"");

// Display panel definition

Panel westPanel; // Image Canvas definitions

// Menultem Listener
//--------------------------------------------------------------------------

private MenuItemListener menuItemListener = new MenuItemListenerQ;

II 
//
//

Class constructor

public AIA()
{

super ("");
setSize( new Dimension( 500, 300)); 
setResizable( true);
addWindowListener( this ); // Add listeners,
networks = new BPNet (3,50,1,0.1,1.0,1000000);
// Instant of neural networks class 
//BPNet(noi,noh,noo,leammg_rate,min_sse,max_cycle) 
makeGUIQ; / / Make the GUI.

}

// Method of graphic user interface

124

ti
ll
II-

Other variables

static String filename_now,filename_last; 
int times=0; int count 1=0; 
getlmg PicCanvas 1;
BPNet networks;
double diameter;
doublet] templ=new double[3];
doublet] temp3=new double[3];
doublet] [] testing_matrix=new double[50] [3];
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private void makeGUI()
{

mb = new MenuBarQ;

// Create menu and menu items and assign to menubar

ml = new Menu("File"); 
mb.add(ml);

FileOpen = new MenuItem("Open"); 
m 1. add(FileOpen);
FileSave = new MenuItem("Save"); 
ml.add(FileSave);
Closeltem = new MenuItem("Close"); 
m 1. add(Closeltem); 

m5 = new Menu("Process");
mb.add(m5);

Originallmg = new MenuItem("Back to Original Image"); 
m5 .add(Originallmg);
ImgGray = new MenuItem("Gray Image"); 
m5. add(ImgGray);
ImgBrightness = new MenuItem("Brighten Image"); 
m5 .add(ImgBrightness);
ImgHistogram = new Menultem(" Histogram"); 
m5. add(ImgHistogram);
morph_dilation = new Menultem( "Dilation/Erosion"); 
m5 .add(morph_dilation);
morph_threshold = new Menultem( "Thresholding");
m5 .add(morph_threshold);
morph_edge = new Menultem( "Edge Detection");
m5. add(morph_edge);
morph_calculation = new MenuItem("Area Calculation"); 
m5. add(morph_cal culation); 
morph_perform = new MenuItem("Perform"); 
m5. add(morph_perform); 

ml5 = new Menu( "Prepare Data"); 
mb.add(ml5);

morph_training = new MenuItem("Training Data"); 
m 15 .add(morph_training); 
morph_test = new Menultem( "Testing Data"); 
m 15.add(morph_test); 

ml8 = new Menu("Analysis"); 
mb.add(ml8);

NN_Training = new MenuItem("Training");
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ml 8. add(NN_T raining);
NN_Test = new MenuItem("Testing");
ml8.add(NN_Test);
stat = new MenuItem("Statistics");
ml8.add(stat);
once = new MenuItem("Do it once"); 
ml8.add(once); 

m23 = new Menu("Help"); 
mb.add(m23);
About = new Menultem(" About"); 
m23.add(About);

setMenuBar (mb);

// Create image canvas

westPanel = new Panel(); 
westPanel.setLayout(new BorderLayoutO); 
add(westPanel);
westPanel. setBackground (Color, yellow);

// Make action listener
/ I ------------------------------------------------------------------

FileOpen.addActionListener(menuItemListener);
FileSave.addActionListener(menuItemListener);
Closeltem. add ActionListener(menuItemListener);
Originallmg. addActionListener(menuItemListener);
ImgGray.addActionListener(menuItemListener);
morph_threshold.addActionListener(menuItemListener);
morph_edge.addActionListener(menuItemListener);
ImgBrightness.addActionListener(menuItemListener);
morph_dilation.addActionListener(menuItemListener);
morph_calculation.addActionListener(menuItemListener);
morph_perform.addActionListener(menuItemListener);
NN_Training.addActionListener(menuItemListener);
NN_Test.addActionListener(menuItemListener);
morph_training.addActionListener(menuItemListener);
morph_test. addActionListener(menuItemListener);
stat.addActionListener(menuItemListener);
once, add ActionListener(menuItemListener);

}
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public void windowClosing( WindowEvent event) { disposeQ; } 
public void windowOpened( WindowEvent event) {} 
public void windowIconified( WindowEvent event) {} 
public void windowDeiconified( WindowEvent event ){} 
public void windowClosed( WindowEvent event) {} 
public void windowActivated( WindowEvent event) {} 
public void windowDeactivated( WindowEvent event) {}

// Main program
//  -------------------------

public static void main(String args[])
{

AIA win = new ALAQ;

win.addWindowListener( new W indow Adapter()
{

public void windowClosed (WindowEvent event) { 
System.exit(O);}

});

win.setTitle("Acoustic Image Analyzer "); //+filename_now); 
win.show();

1

//--------------------------------------------------------
// Define action for different listener

class MenuItemListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
I

// menu for "File"
String command = e.getActionCommand(); 

if ( command.equals("Close"))
{

disposeQ;
System.exit(O);

}
else if ( command.equals("Open"))
{
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filename_now=loadFile(’'Open Image File.... 

show();
}
else if ( command.equals("Save"))

saveFile(false);
// menu for "Image Processing"

else if (command.equals("Back to Original Image")) 
PicCanvasl .imgBack(); 

else if (command.equals("Brighten Image")) 
PicCanvasl .brightenlmgO; 

else if (command.equals("Gray Image") )
PicCanvas 1 .gray(); 

else if (command.equals("Thresholding")) 
PicCanvas 1 .thresholding(); 

else if (command.equals("Edge Detection")) 
PicCanvasl .edge_detect(); 

else if (command.equals("Dilation/Erosion")) 
PicCanvas 1 .dilation(); 

else if (command.equals("Area Calculation")) 
PicCanvas 1 .area_calculation(); 

else if (command.equals("Perform"))
PicCanvas 1 .morph_perform();

// menu for "Analysis"
else if (command.equals("Training"))
{

double error; 
networks. set_init();
error=networks. training!); 
System.out.println(" The SSE is...." + error);

}
else if (command.equals("Testing")) 

networks.test();
// menu for "Prepare Data"

else if (command.equals("Training Data"))
// under preparing data

prepare_training_data(); 
else if (command.equals("Testing Data"))

// under preparing data
prepare_testing_data();

}
}

// Method 1 <loadfile>
private String loadFile (String fdtitle)

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1
FileDialog fd = new FileDialog( this, fdtitle, FileDiatog.LOAD );
fd.setFile("*.*");
fd.show();
String currentFile, fiiename„l = null; 
if ( ( currentFile = fd.getFileQ) != null)
{

filename,.! = fd.getDirectory() + currentFile; 
westPanel.removeAHQ;
PicCanvasl = new getlmg(filename_ 1); 
westPanel ,add(PicCanvas 1); 
fd.dispose();

}
return filename_l;

// Method 2 <savefile>
private String savePile(boolean in)
{

String temp_filename=null;
FileDialog fdl = new FileDialog( this, "Save File", FileDialog.SAVE); 
fdl.setFile("*.*");
fdl.showQ;
String currentFile 1= null;
while (in=true) // when int=l, <type 1> save as text file 
{

if ( (currentFile 1 = fdl.getFile()) != null)
I

temp_filename = fdl .getDirectory() + currentFile!; 
fdl.dispose();

}
break;

}
while (in=false) // indicate the file is a gif file, ctype 2> need gifEncoder

to save it
{break;}
System.out.println("the file will be save as " +temp_filename);
return temp_filename;

// Save file data...

// Method 3 <prepare_training_data>
private void prepare_training_data()
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filename_last=filename_now;
// message LshowQ;

showQ;
message l.show();
temp 1 =PicCanvas 1 .morph_perform 1 ();
N_dialog message2= new N_dialog(this,"");

}

// Method 4 <prepare multi-data for testing > 
private void prepare_testing_data()
{

Ml_dialog message2= new Ml_dialog(this,"");
showQ;
temp3=PicCanvas 1 .morph_perform 1 ();

}

// Inner class getlmg; mainly for image processing 

public class getlmg extends Canvas
{

private Image image;
// constructor 1 for images from file

public getImg(String filename)
{

image = T oolkit.getDefaultT oolkit() .getlmage(filename); 
repaint();

}
public void paint(Graphics g)
{

g.drawlmage(image, 0, 0, this);
}

// Method 1 coverride update>
public void update(Graphics g)
{

paint(g);
}

// Method 2 <update an image >
public void refreshQ 
{

Graphics g = this.getGraphics();
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paint(g);
}

// Method 3 cbring back an image > 
private void imgBack()
{

image = T oolkit. getDefaultT oolkit() .getImage(filename_now); 
repaint();

}

// Method 4 < gray image filter > 
private void gray()
{

FilteredlmageSource source =
new FilteredImageSource(image.getSource(),
new GraylmageFilterO); 

image=create!mage(source); 
repaint();

}

// Method 5 < thresholding image filter > 
private void thresholdingO
{

FilteredlmageSource source =
new FilteredImageSource(image.getSource(),
new BinaryFilter(O.l)); 

image=createImage(source); 
repaint();

}

// Method 6 < brighten image filter >
private void brightenlmgO
1

FilteredlmageSource source =
new FilteredlmageSourcefimage. getSource(), 
new Brighterlmage()); 

image=createImage(source); 
repaint();

}

// Method 7 < image edge detection filter > 
private void edge_detect()
{

FilteredlmageSource source =
new FilteredImageSource(image.getSource(),
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new EdgeDetectionFilter(20)); 
image=createImage(source); 
repaint();

}

// Method 8 < image delation filter > 
private void dilationQ
{

FilteredlmageSource source =
new FilteredImageSource(image. getS ource(),
new ImageDilationFilterO); 

image=createImage(source); 
repaintQ;

}

// Method 9 perform a set of morph on one image, for demonstration 
private void morph_perform()
I

FilteredlmageSource source =
new FilteredImageSource(image. getS ource(), 
new BinaryFilter(O.l)); 

image=createImage(source);
//repaint();
FilteredlmageSource source 1 =

new FilteredImageSource(image .getS ource(), 
new ImageDilationFilterO);

image=createImage(source 1);
//repain t();
FilteredlmageSource source2 =

new FilteredlmageS ource(image. getS ource(), 
new AreaCalculationFilter()); 

image=createhnage(source2);
repaintQ;

}

// Method 10 perform a set of morph on one image, pass the parameters of 
// an image for further usage

private double[] morph_perform 1 ()
{

doublet] temp5=new double[3];
FilteredlmageSource source -

new FilteredImageSource(image. getS ource(),
new BinaryFilter(O.l)); 

image=create!mage(source);
//repaintQ;
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FilteredlmageSource source! =
new Fi!teredImageSource(image.getSource(), 
new ImageDilationFilterO); 

image=createImage(source 1);
//repaintQ;
FilteredlmageS ource source2 =

new FilteredImageSource(image.getSource(),
new AreaCalculationFilter()); 

image=createImage(source2); 
temp5=AreaCalculationFilter.Cal(); 
return temp5;

}

// Method 11 <calculate image parameters 
private void area_calculation()
{

FilteredlmageSource source =
new FilteredImageSource(image.getSource(), 
new AreaCalculationFilter()); 

image=createImage(source); 
repaint();

1
}

/ / - --------------------------------------------------------------------------------------------------------------
// Inner class M_dialog; for preparing training data 
// interacting with user for
111. processing more images
112. call class N_dialog for result entering 
1/3. save training data

class M_dialog extends Dialog implements ActionListener 
{

int count=0;
double [][] training_matrix;
doublet] [] m_analysis=new double[200] [4];
public M_dialog( Frame frame, String title)
{

super(frame, "Analysis more images? ", true);
Button bl, b2;

add(bl = new ButtonQYES"), B orderLay out. WES T);
add(b2 = new Button("NO"), BorderLayout.EAST); 

b 1 .addActionListener(this);
b2. add ActionListener(this);

pack();
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show();
}
public void actionPerformed(ActionEvent evt)
{

String what = evtgetActionCommandQ;

I! Choose YES to proceed for next image and enter the target for this analysis
if ("YES".equals(what))
{

dispose();
System.out.println("true is pressed"); 
times++;
System.out.println("the yes button have been pressed for ... 
"+times+"... times");
System.out.println("=============================
= = = = = " ) ;
System.out.println("processing ...... the file in progress
is. "+filename_now);

// Display parameters
for (int i =0; i<3; i++)
{

m_analysis[times-1 ] [i]=temp 1 [i]; 
System.out.println("the parameters
are "+templ[i]);

}
m_analysis[times-1 ] [3]=diameter;

// Display prepared matrix for saving
System.out.println("Please use file dialog to enter the 
NEXT file you want to analysis ..."); 
filename_now=loadFile(" Open NEXT Image File for Pre
processing .......");

}

// Choose NO to save parameters and target value for training
else if ("NO".equals(what))
{

dispose();
System.out.println("false is pressed"); 
while (times > 0)
// break;
{

//

training_matrix=new double [200] [4];
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for (int i=l ;i<times-l ;i++)
{

System.out.println("matrix save for outputs
is "+m_analysis[i] [0]
+"..."+m_analysis[i][l]+"..."+m_analysis[i][
2]+”..."+m_analysis[i+l][3]); 
training_matrix[i-1 ] [0]=m_analysis[i] [0]; 
training_matrix [i-1 ] [ 1 ]=m_analysis[i] [ 1 ]; 
training_matrix [i- l][2]=m_analysis[i] [2]; 
training_matrix [i-1 ] [3]=m_analysis [i+1 ] [3];

}
for (int i=l;i<times~l;i++)
{

System.out.println("for saving matrix
is "+training_matrix [i-1 ] [0]

+training_matrix [i'
ll [ 1 ]+"... "+training_matrix[i-
1] [2]+"... "+training_matrix[i-1 ] [3]);

}
II . . . . .......................................................... ........................... ....................... .......................................................................................

// Ask an file dialog to save training data

String filename2=saveFile(true); 
System.out.println("the file will be save
as...this "+filename2);
FileOutputStream file_out;
DataOutputStream data_out; 
try 
{

file_out = new
FileOutputStream(filename2);

data_out = new DataOutputStream(file_out); 
data_out. writeInt(times-2); 
for (int i=0; i<times-2;i++)

// write parameters ( three of them) and target (one)
{

for (int j=0;j<4;j++)
{

data_out.writeDouble(trainin
g_matrix[i]03);

}
}
data_out.close();
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}
catch (lOException e)
{

System.out.println(e);
}

// times=0;
break;

//=========================================
//-----------------------------------------------------------------------------------
//  Inner class Ml_dialog; for preparing testing data 
// interacting with user for
//I . processing more images
111. save data

class Ml_dialog extends Dialog implements ActionListener
{

public Ml_dialog( Frame frame, String title)
{

super(frame, "Analysis more images? ", true);
Button bl, b2;
add(bl = new Button("More?"), BorderLayout. WEST); 
add(b2 = new Button("Stop!"), BorderLayout.EAST); 
b 1 .addActionListener(this);
b2. add ActionListener(this);
pack();
showQ;

}
public void actionPerformed(ActionEvent evt)
{

String what = evt.getActionCommand();

// Choose More to proceed for next image
if ("More?".equals(what))
{

disposeQ;
System.out.println("more is pressed!!"); 
count 1++;
System.out.println("the MORE button have been pressed 
fo r... "+countl+"... times");
System.out.printin("============================
= = = — ");

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



// Display parameters

}

System.out.println("Please use file dialog to enter the 
NEXT file you want to test
filename_now=loadFile(" Open NEXT Image for file 
preparation

for (int i =0; i<3; i++)
{

testing_matrix [count 1-1] [i]=temp3 [i]; 
System.out.println("the i-th pair of parameters 
are..... "+testing_matrix [count 1 -1 ] [i]);

}

// Choose Stop to save parameters for training
else if ("Stop!".equals(what)) 
{

disposeQ;

"+countl);

System.out.println("STOP acquairing images"); - 
S ystem.out.println( "the number of data set is.

while (count 1 > 0)
{

for (int m=0;m<count 1 ;m++)
{

System.out.println("for saving matrix 
is..... "+testing_matrix [m] [0]
+"... "+testing_matrix [m] [ 1 ]+"... "+testing_m 
atrix[m][2]+"...");

}
//.

// Ask an file dialog to save training data
String filename2=saveFile(true); 
System.out.println("the file will be save
as...this "+filename2);
FileOutputStream file_out;
DataOutputS tream data_out; 
try 
{

file_out = new
FileOutputStream(filename2);

data_out = new DataOutputS tream (file_out); 
data_out.writeInt(count 1-1);
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for (int i=l; i<countl;i++)
// write parameters ( three of them) and target (one)

{
for (int j=0;j<3;j++)
{

data_out.writeDouble(testing
_matrix[i](j]);
System.out.println(" training 
matrix is
+testing_matrix [i][j]);

}
}
data_out.close();

}
catch (IOException e)
{

System.out.println(e);
}

// count 1=0;
break;

}
}

1
}

//========================================
class N_dialog extends Dialog implements ActionListener
{

TextField t;
public N_dialog( Frame frame, String title)
{

super( frame,"Entering the target value for.... "+filename_last); 
t=new TextField(50); 
t. add ActionListener(this); 
add(t,BorderLayout.NORTH);
pack();
show();

}

public void actionPerformed(ActionEvent evt)
{

String value 1 =t.getText();
System.out.println("you entered "+valuel);
try
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{
Double d=Double.valueOf(valuel); 
diameter=d.double V alueQ;

1
catch (NumberFormatException e)
{

System.err.printlnO'Could not convert string to number 
"+valuel);

}
disposeQ;

}
1 

1
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//package piolaimagefilters;

import java.awt.*; 
import java.awt.image.*;

//Java class by Roberto Piola (http://www.ilpiola.it/roberto)

// an abstract filter that reads a whole image, and performs something 
// on it before giving it to its consumer; its subclasses MUST define 
// method do_action() (the action to do on the whole image after it has 
// been loaded)
// two examples of subclasses can be found in 
// http://www.ilpiola.it/roberto/imagefilters/EdgeDetectionFilter.java 
// and in
// http://www.ilpiola.it/roberto/imagefilters/ImageSmootherFilter.java

public abstract class ImageFilterBase extends ImageFilter
{

//protected static ColorModel defaultRGB
ColorModel.getRGBdefault();

protected ColorModel defaultRGB = ColorModel.getRGBdefault();

protected int raster[] ,newraster[]; 
protected int width,height; 
public ImageFilterB ase()
{

superQ;
1
11 method 1 

public void setDimensions(int w, int h)
{

width=w;
height=h;
raster=new int[width*height]; 
newraster=new int[width*height]; 
consumer.setDimensions(width,height);

}

// method 2
public void setColorModel(ColorModel model)
{

consumer.setColorModel(defauitRGB);
}
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// method 3
public void setHints(int hintflags)
{

consumer.setHints(TOPDOWNLEFTRIGHT
I COMPLETESCANLINES 
I SINGLEPASS
I (hintflags & SINGLEFRAME));

}

// method 4
public void setPixels(int x, int y, int w, int h, ColorModel model, 
byte pixels [], int off, int scansize)

{

int srcoff = off;
int dstoff = y * width + x;
for (int yc = 0; yc < h; yc++)
{

for (int xc = 0; xc < w; xc++)
{

raster[dstoff++] = model.getRGB(pixels[srcoff++] 
& Oxff);

1
srcoff += (scansize - w); 
dstoff += (width - w);

}
}

// method 5
public void setPixels(int x, int y, int w, int h, ColorModel model, 

int pixels [], int off, int scansize)
{

int srcoff = off;
int dstoff = y * width + x;
if (model == defaultRGB)
{

for (int yc = 0; yc < h; yc++)
{

System.arraycopy(pixels, srcoff, raster, dstoff, w); 
srcoff += scansize;
dstoff += width;

}
}
else
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{
for (int yc = 0; yc < fa; yc++)
{

for (int xc = 0; xc < w; xc++)
{

raster[dstoff++] =
model.getRGB (pixels [srcoff++]);

}
srcoff += (scansize - w); 
dstoff += (width - w);

1 
1

}

// method 6
public void imageComplete(int status)
{

if (status == IMAGEERROR II status == IMAGEABORTED)
{

consumer.imageComplete(status);
return;

}
DoProcess();
consumer. setPixels(0, 0,width,height, defaultRGB, newraster, 
0,width);
consumer.imageComplete(status); 
raster=null; // try to deallocate it 
newraster=null;

}

abstract public void DoProcessQ;
// it has to copy width X height pixels from raster[] to newraster[]...

}
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import java.awt.*;
import java.awt.image.*;

public class GraylmageFilter extends RGBImageFilter 
{

public GraylmageFilterQ 
{

canFilterlndexColorModel = true;
}

public int filterRGB(int x, int y, int rgb)
{

DirectColorModel cm =
(DirectCoJorModel)ColorModel.getRGBdefauIt();

int alpha = cm. get Alpha(rgb); 
int red = cm.getRed (rgb); 
int green = cm. getGreen(rgb); 
int blue = cm.getBlue (rgb); 
int mixed = (red + green + blue) / 3;

red = blue = green = mixed; 
alpha = alpha «  24; 
red = red «  16; 
green = green «  8;

return alpha I red I green I blue;
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import java.awt.*;
import java.awt.image.*;

public class ImageDilationFilter extends ImageFilterBase
{

public ImageDilationFilter()
1

super();
//degree=th;

}

// method
public void DoProcess()
{

int i,j,k,x,y;
/* initialize a black background */ 
for(y=0; y<height; y++) 
for(x=0; x<width; x++)

newraster[y*width+x]=Oxffffffff;
/* first pass: in the horizontal direction */ 
for(y=l; y<height-l; y++) 
for (x=l;x<width-l; x++)
{

k=y*width+x;
for (j=-l;j<l;j++) 
for (i=-l;i<l;i++)
{

if (raster[x+i+(y+j )*width] > OxffOOOOOO)
{
// newraster[x+i+(y+j)*width]=QxffOOOOOO;
// newraster [k] =Oxffffffff;

newraster[k]=0xff000000;
1 

1
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/* Build up a 3 layers neural networks 
input layer neuron =4 
hidden layer neuron =3 
output layer neuron =1 */
// by Hsu-Tung Lee June 25, 1998

import java.io.*; 
import java.util.* ;
import java.awt.*;

public class BPNet extends Frame 
{
int nop; // number of training pattern
int noi, noh, noo; // number of input, hidden, output neurons
double input[], output[], hidden[], target[], error[];
// matrix store the value of input, hidden, output, and target neuron 
double weight_l[][], weight_2[][];
// weight matrix between input/hidden and hidden/output 
double bias_l [], bias_2[]; // bias of hidden layer and output layer 
double i_pattem[][], t_pattem[][]; // all input pattern and all target pattern 
double leaming_rate, min_sse, sse;
// double me, moment;
//int max_cycle=1000000000;
double hidden_d[], output_d[]; II delta of hidden and output neuron 
double weightl_d[][J, weight2_d[][]; II weight matrix difference 
double biasl_d[], bias2_d[]; // bias difference 
long counter, cycle,max_cycle;
//double decre=0.95, incre=1.05; // increase/decrease rate of learning rate

public BPNet(int noi, int noh, int noo, double leaming_rate, double min_sse, long
max_cycle)
// constructor 
{
this.noi=noi; this.noh=noh; this.noo=noo;
this.leaming_rate=leaming_rate; this.min_sse=min_sse;
this .max_cycle=max_cycle;
weight_l=new double [noi] [noh];
weight_2=new double[noh] [noo];
bias_l=new double[noh];
bias_2=new double[noo];
}

II STEP 0. initialize weight and bias matrices, call once 
void set_init()
{
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for (int i = 0; i < noi; i++)
{
for (int j = 0; j < noh; j++)
{
weight. l[i]Q] = (double)Math.random()*2.0-1.0; 
weight_l[i][j]);
}
}
for (int i = 0; i < noh; i++)
{
for (int j = 0; j < noo; j++)
{
weight_2[i][j] = (double)Math.random()*2.0-1.0;
weight_2[i](j]);
}
}
for (int k = 0; k < noh; k++)
{
bias_l [k] = (double)Math.random()*2.0-1.0;
1
for (int k = 0; k < noo; k++)
{
bias_2[k] = (double)Math.random()*2.0-l .0;
}
}

public double training()
{
double tempO; // temp matrix for matrix mutiply
error = new double[noo];
hidden_d = new double[noh];
output_d = new double[noo];
weight l_d = new double [noi] [noh];
weight2_d = new double[noh] [noo];
biasl_d = new doublefnoh];
bias2_d = new double[noo];
input = new double[noi];
target = new double[noo];
hidden = new double[noh];
output = new double[noo];

// ===== read in all input and target patterns for training 
FilelnputStream file jn l;
DatalnputStream datajn l;
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FileDialog fd = new FileDialog( this, "Open Training File", FileDialog.LOAD );
fd.setFile("*.dat");
fd.showQ;
String currentFile, filename = null; 
if ( ( currentFile = fd.getFileQ) != null)
{
filename = fd.getDirectory() + currentFile;
fd.disposeQ;
}
try
1
file_inl = new FilelnputStream(filename); 
da ta jn l = new DataInputStream(file_in 1);
nop=data_in 1 .readlnt(); 
nop=nop-l;

Lpattem = new double[nop][noi]; 
t_pattem = new double[nop] [noo]; 
for ( int i=0; i < nop; i++)
{
for ( int j=0; j < noi; j++)
{
Lpattem [i] [j ]=data_in 1 ,readDouble();
i_pattem[i](j]);
}
for (int k=0;k<noo;k++)
{
t_pattem[i][k]=data_in 1 .readDouble(); 
t_pattem[i][k]);
1 
1
datajnl.close();
}
catch (IOException e)
{
System.out.println(e);
1

for (int i=0; i<nop;i++)
{
if (t_pattem[i][0]<4.8)
t_pattem[i][0]=0;
else
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t_pattem[i][0]=l;
}

cycle=0;
sse=10.0;
counter=0;
long iii=l;
// STEP 1. while stop condition is false 
while (sse > min_sse && cycle< max_cycle)
{
cycle++;
while (cycle=iii && iii<100000000000)
{
System.out.println("this is cycle number  "+cycle);
System.out.println("the is sse is  ....  "+sse);
iii=iii+100;
break;
}
sse=0;
// STEP 2. loop for each training patterns 
for (int 1=0; lenop; 1++)
{
counter++;
// STEP 3. prepare for next training pair ============================
for (int i=0; i<noi;i++)
{
input[i]=i_pattem[l] [i];
}
for (int i=0; i<noo;i++)
{
target[i]=t_pattem[l] [i];
targetp]);
}
// STEP 4. feed forward processing (input to hidden layer )================
temp = multiply(input, weight_l, noi, noh); 
for (int i=0; i<noh; i++)
{
hidden [i] = sigmoid(temp[i]+bias_l [i]);
}
// STEP 5. feed forward processing (hidden to output layer )===============:
temp = multiply(hidden, weight_2, noh, noo);
for (int i=0; i<noo; i++)
{
outputfi] = sigmoid(temp[i]+bias_2[i]);
}

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



// STEP 6. backpropagtion of error
// calculate error for the first time ===================
for (int i=0; i<noo; i++)
{
eiror[i]=target[i]-output[i]; 
sse+= error[i]*error[i];
}
// error information term (delta of output layer) = = = = =  
output_d = delta(output, error, noo);
// error information term (delta of hidden layer) =========
hidden_d = delta(hidden, output_d, weight_2, noh, noo);

// STEP 7. calculate weight and bias correction term ======
// calculate correction terms of weight matrix #2 and bias #2 
for (int i=0; i< noh; i++)
{
for (int j=0; j< noo; j++)
{
weight2_d[i]0] = leaming_rate*hidden[i] *output_d[j];
}
}
for (int i=0; i< noo; i++)
{
bias2_d[i] = leaming_rate*output_d[i];
}
// calculate correction term of weight matrix #1 and bias #1 
for (int i=0; i< noi; i++)
{
for (int j=0; j< noh; j++)
{
weight l_d[i][j] = learning_rate*input[i]*hidden_d[j];
}
}
for (int i=0; i< noh; i++)
{
biasl_d[i] = leaming_rate*hidden_d[i];
>
// STEP 8. update weights and bias 
for ( int i=0; i< noh; i++)
{
bias_l[i] = bias_l[i] + biasl_d[i]; 
for (int j=0; j< noi; j++)
{
weight. l[j][i] = weight. l[j][i] + weight l_d[j][i];
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}
for ( int i=0; i< noo; i++)
{
bias_2[i] = bias_2[i] + bias2_d[i]; 
for (int j=0; j< noh; j++)
{
weight_2[j][i] = weight_2[j][i] + weight2_d[j][i];
}
}
}
// end of an epoch----------------------------------------------------
}
// end of while loop (the stop condition)-------------------------------------

II STEP 9. write output information ========================
if (cycle>=max_cycle)
System.out.println("Exceed maximum learning cycle ");
else
{
FileDialog fdl = new FileDialog( this, "Save File", FileDialog.SAVE );

fdl.setFile("*.*");
fdl.show();
String currentFile 1, filename2= null; 
if ( (currentFile 1 = fdl.getFile()) != null)
{
filename2 = fdl.getDirectory() + currentFile 1; 
fd.disposeO;
}

FileOutputS tream file_out;
DataOutputStream data_out;
try
{
file_out = new FileOutputStream(filename2); 
data_out = new DataOutputStream(file_out); 
for (int i=0; i<noi;i++) II write weight_l
1
for (int j=0;j<noh;j++)
{
data_out. writeDouble(weight_ l[i][j]);
System.out.println(" weight_l matrix is +weight_l[i][j]);

}

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



}
for (int i=0; i<noh;i++) // write bias_l
{
data_out.wri teDouble(bias_l [i]);
System.out.println(" bias_l matrix i s b i a s _ l [ i j ) ;
}
for (int i=0; i<noh;i++) // write weight_2 
{
for (int j=0;j<noo;j++)
{
data_out. writeDouble(weight_2 [i][j]);
System.out.println(" weight_2 matrix is  ....."+ weight_2[i][j]);
}
1
for (int i=0; i<noo;i++) // write bias_2 
{
data_out.writeDouble(bias_2[i]);
System.out.println(" bias_2 matrix is bias_2[i]);
}

//System.out.println("Size of file written:" + data_out.size()); 
data_out.close();
}

catch (lOException e)
{
System.out.println(e);
}
}
System.out.println(" training epoch are...... " +counter);
System.out.println(" new training sets are ”+nop);
return sse;

}
// end of training

double sigmoid(double f)
{
if (f < -50) 
return 0.0; 
else if (f > 50) 
return 1.0; 
else
return (l/(l+Math.exp(-f)));
}
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//
II output layer only.
II
private double[] delta( doublet] out, doublet] err, int n)
I
doublet] delta= new double[n]; 
for (int i=0;i<n;i-H-)
{
delta[i]=out[i]*(l-out[i])*err[i];
}
return delta;
}

II
II hidden layer
II
private doublet] delta( doublet] out, doublet] d, doublet] [] w, int n, int m)
{

doublet] delta = new double[n]; 
doublet] err = new doublefn]; 
for (int i=0; i<n; i++)
{
for (int j=0; j<m; j++)
{
err[i]+=w[i][j]*d[j];
}
1
for (int i=0;i<n;i++)
{
delta[i]=out[i]*(l-out[i])*err[i];
I
return delta;
}

II
II matrices multiply (AxB)
II
private doublet] multiply(double[] A, doublet][] B, int n, int m)
{
doublet] C = new doublefm];
for (int i=0; i<m; i++)
{
C[i]=0;
for (int j=0; j<n; j++)

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



return C;

public void test()

FilelnputStream file_in, file jn l; 
DatalnputStream data_in, data_inl;
//:
//
//
//

NOTICE!!!!!!!!
this section is to assign the test result from image processing 
REMEMBER to modify image processing program to make this temp.

matrix for
//
//=

testing parameters

doublet] result_in = new double [noi];
String[] result;
doublet] result_out = new double[noo]; 
doublet] result_h = new double[noh]; 
doublet] temp;
int not; // number of testing sets

// Read in the pre-prapare weight file for testing

FileDialog fdl = new FileDialog( this, "Open Trained Weight File", FileDialog.LQAD ); 
fdl .setFile("*.dat");
fdl .show();
String currentFile 1 filename 1 = null; 
if ( (currentFile 1 = fdl.getFileQ) != null)
{
filename 1 = fdl.getDirectoryO + currentFile 1; 
fdl.disposed;
I
try
{
file_in = new FilelnputStream(filenamel); 
datajn = new DatatoputStream(fileJn);

for (int i=0; i<noi;i++) II read weight_l 
{
for (int j=0;j<noh;j++)
f
weight_ 1 [i] [}]=data_in.readDouble();
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}
for (int i=0; i<noh;i++) // read bias_l 
{
bias_l [i]=data_in.readDouble(); 
bias_l[i]);
}
for (int i=0; i<noh;i++) II read weight_2 
{
for (int j=0;j<noo;j++)
{
weight_2[i][j]=data_in.readDouble(); 
is weight_2[i][j]);
}
1
for (int i=0; i<noo;i++) // read bias_2 
{
bias_2[i]=data_in.readDouble();
bias_2[i]);
}
data_in.close();
}
catch (IOException e)
{
System.out.println(e);
}
II Read in the pre-prapare file for testing

FileDialog fd = new FileDialog( this, "Open Testing File", FileDialog.LOAD ); 
fd.setFile("*.dat");
fd.showQ;
String currentFile,filename = null; 
if ( (currentFile = fd.getFileQ) != null)
(
filename = fd.getDirectory() + currentFile; 
fd.dispose();
}
try
{
file_inl = new FilelnputStream(filename); 
datajn l = new DataInputStream(file„inl); 
not=data_in 1 .readlnt(); 
result= new String[not]; 
for ( int n=0; n < not; n++)
{
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for ( int j=0; j < noi; j++)
{
resultjn [j ]=data_in 1. readDouble();
}
System.out.println(n+"-th INPUTS "+result_in[0]+" ..... "+result_in[l]+" 
"+resuit_in[2]);
// feed forward processing (input to hidden layer )================
temp = multiply(result_in, weight. 1, noi, noh); 
for (int i=0; i<noh; i++)
{
result_h[i] = sigmoid(temp[i]+bias_l [i]);
1
// feed forward processing (hidden to output layer )= = = == === === ==
temp = multiply(result_h, weight_2, noh, noo); 
for (int i=0; i<noo; i++)
{
result_out[i] = sigmoid(temp[i]+bias_2[i]);
System.out.println(" The output of this analysis is " + result_out[i]);
}
// Assign result value 
for (int i=0; icnoo; i++)
{
if (result_out[i]<0.91)
result[n]="BAD";
else
result[n]="GOOD";
System.out.println("The result can be interpretate as a "+result[n]+" weld!!!");
}
System.out.println("===========================================")
}
data_inl.close();
}
catch (IOException e)
{
System.out.println(e);
1 
1
}
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