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ABSTRACT 
 

The focus of this thesis is the incorporation of the 1,2-bis(pyridinium)ethane motif 

into new [2]rotaxane ligands for the purpose of developing new metal organic rotaxane 

frameworks (MORFs). Both new stoppers that can act as ligands as well as new crown 

ethers with appended donors were synthesized and these components combined to create 

new [2]rotaxane ligands and eventually new MORFs. 

Chapter 2, looks at the synthesis and coordination chemistry of a [2]rotaxane 

containing terpyridine stoppers. The [2]rotaxane was shown to form mixed ligand 

complexes with RuII, AgI, ZnII, and PdII. The complexes were studied in solution by 

NMR, and UV/vis spectroscopy and mass spectrometry and in the solid state by X-ray 

crystallography. 

Chapter 3 and 4, focuses on the synthesis of new tetrasubstituted dibenzo-24-

crown-8 ethers and their inclusion into [2]pseudorotaxanes and [2]rotaxanes. The new 

[2]pseudorotaxanes and [2]rotaxanes were characterized in solution by NMR 

spectroscopy and mass spectrometry and in the solid state by X-ray crystallography. The 

new crown ethers were then used for the development of [2]rotaxane ligands and metal-

organic rotaxane frameworks. The complexes were studied in solution by NMR, and 

UV/vis spectroscopy and mass spectrometry and in the solid state by X-ray 

crystallography. 

Chapter 5, focuses on a new class of MORFs in which donor groups have been 

incorporated on to the crown ethers which allows for the [2]rotaxane ligands to link 

though the wheel rather than axles to propagate the coordination polymer. The highlight 

was formation of a coordination complex with CdII that is a 2-periodic, metal-organic 
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rotaxane framework. The synthesis and characterization of all the species were studied by 

NMR spectroscopy and mass spectrometry in solution and in the solid state by X-ray 

crystallography. 

Chapter 6, looks at ways to combine chelating axles with coordinating crown 

ethers to form unique “combo” [2]rotaxane ligands capable of forming two independent 

frameworks by virtue of having coordinating groups on both components of the rotaxane. 

A new stopper based on a the polydentate ligand bis(2-pyridylmethyl)amine was 

developed for this purpose. “Combo” [2]rotaxane ligands were prepared and 

characterized in solution by NMR spectroscopy and mass spectrometry.  
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Chapter 1 
 

Background  
 

1.1 Origins of Supramolecular Chemistry 
 
Chemistry is a science of interactions, transformations and modeling. It has the power to 

create new molecules and new materials bearing novel properties. Ever since the 

synthesis of urea,1 “molecular chemistry” has had the power of making and breaking 

covalent bonds. As time went on, it was shown that most biological molecules involve 

weak, non-covalent interactions that bind substrates to receptor proteins. The 

observations, study and utilization of these weak interactions have lead to a new field of 

chemistry known as supramolecular chemistry, defined as “chemistry beyond the 

molecule”. Supramolecular chemistry relies on organized entities of higher complexity 

that result from the association of two or more chemical species held together by 

intermolecular forces.1 This 1978 definition by Jean-Marie Lehn, was further elaborated, 

in 2002 to, “Supramolecular chemistry aims at developing highly complex chemical 

systems from components interacting by non-covalent intermolecular forces.”2    

The field of supramolecular chemistry is different from molecular chemistry because 

it does not rely solely on covalent bonds. The molecules are instead held together by non-

covalent interactions such as electrostatic forces, hydrogen bonds, and van der Waals 

forces. These interactions can generate new molecules known as supermolecules, with 

structures that depend on the non-covalent interactions between two or more species. 

These molecules that make up the new species must complement each other both in size 

and shape (geometry) and binding site (energy). When the two new molecules combine, 
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they give us the information needed to understand the weak interactions present in 

supermolecules. 

The field of supramolecular chemistry has its origin in the 1960’s with the 

development of macrocyclic chemistry from the groups of Curtis, Busch, Jager, and 

Pederson.2 In 1967, Pederson3 worked on new macrocyclic ligands known as “crown 

ethers” shown below in Figure 1.1.  

O O

OO

O O

O

O

O
O

O
O

OO
O

12-crown-4 15-crown-5 18-crown-6  
Figure 1.1 Structures of crown ethers. 
 

In the following years, Lehn developed bicyclic compounds similar to crown ethers 

called “cryptands”, shown in Figure 1.2. Both these cryptands and crown ethers have 

properties that allow them to bind to alkali metals, ammonium salts and anions. The 

properties that allow for the formation of complexes are: the size of the ring, the number 

of donor atoms, co-planarity of the donor atoms, the basicity of the donor atoms, steric 

hindrance and solvation of the ion.3 

N
O

N
O O
O O

[2.2.1]-cryptand  
Figure 1.2 Structure of a cryptand. 
 

In 1973, Cram defined a new term to explain this phenomenon; he called it “host-

guest complexation”.2 Host-guest complexes are held together by non-covalent 

interactions. For their development in supramolecular chemistry of molecules with 
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specific structures and interactions, Cram, Lehn, and Pederson were rewarded with the 

Nobel Prize in chemistry in 1987.4 Today, as a result of large collaborations between 

different researchers in physics, theoretical and computational modeling, crystallography, 

inorganic and solid state chemistry, synthetic organic chemistry, biochemistry and 

biology, a great deal of work is being done to expand and explain the relatively new area 

of supramolecular chemistry. 

1.2 Interpenetrated and Interlocked Compounds 
 
Since the beginning of supramolecular chemistry, much attention has focused on the 

formation of host and guest complexes. One such complex is the interpenetrated adduct 

called a pseudorotaxane, composed of two molecules threaded to each other, which can 

lead to interlocked compounds called rotaxanes and catenanes. 

1.2.1 Pseudorotaxanes 
 
Pseudorotaxanes are supramolecular complexes in which a cyclic wheel and a linear axle 

are interpenetrated but free to dissociate from each other as seen in Figure 1.3.5  

 
Figure 1.3 Cartoon representation of [2]pseudorotaxane formation. 
 

There are many different templates to construct pseudorotaxanes that rely on non-

covalent interactions such as π-π stacking (including C-H···π), hydrogen bonding, charge 

transfer complexes, and hydrophobic interactions.6,7 The preformed [2]pseudorotaxane 

[2]pseudorotaxane 
“bead” or “wheel” 

“thread” or “axle” 
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comprised of a thiol-functionalized thread and α-cyclodextrin which relies on the 

hydrophobic interaction was used to build a [2]catenane; Figure 1.4.8 

O O
(H2C)8 (CH2)8

HSH2C HSH2C
 

Figure 1.4 The first interpenetrated molecular species. 
 

Later on, molecules relying on π-π stacking, and charge transfer interactions acted as 

templates for interpenetrated species between electron-rich π systems, and electron- 

deficient aromatic systems; Figure 1.5.9 

N

N

N

N

O
OOO

O

OO
O

PhH2CO

OCH2Ph

n n

n =2

 
Figure 1.5 A [2]pseudorotaxane that relies on electron rich and electron poor aromatics. 

 

Hydrogen bonding templates were investigated as interpenetrated molecules were found 

to form between ammonium salts and large crown ethers. In particular, Stoddart showed 

dibenzo-24-crown-8 (DB24C8) and bis(paraphenylene)-34-crown-10 (BPP34C10) could 

form complexes with dialkylammonium (R2NH2
+) ions that were [2]pseudorotaxanes.10 

Later on, the groups of Loeb11, Tiburcio12,13 and Schmitzer14 developed the axles 1,2-

bis(pyridinium)ethane, bis(benzimidazolium), and methylenediimidazolium respectively 

which formed [2]pseudorotaxanes with crown ethers similar to the example shown in 
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Figure 1.6. Other templates involved the use of anions or halogen bonds to hold the 

[2]pseudorotaxane together. Figure 1.7 shows an example from Beer et al.15,16 
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Figure 1.6 A hydrogen bonding [2]pseudorotaxane.  
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Figure 1.7 An anion binding template. 
 

Today, besides the use of crown ethers as wheels, research is focused on the development 

of other macrocyclic receptors as wheel components such as cyclodextrins, cucurbiturils, 

calix[n]arenes, and pillar[n]anes.17-20 Sauvage was the first to use metal ions as templates, 

holding the different components together to form pseudorotaxanes, and then carrying out 

further reactions to form [n]rotaxanes (and [2]catenanes); Figure 1.8.21 There has also 

been a focus on the use of metals as templates for [2]pseudorotaxanes formation. Wisner 

and co-workers have shown that trans-dichlorobis(pyridine)palladium(II) complexes 

undergo second-sphere interactions with a macrocyclic tetralactam; Figure 1.9.22 
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Figure 1.8 Sauvage used metal ions as templates for [n]pseudorotaxane formation. 
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Figure 1.9 Second-sphere interaction to form [2]pseudorotaxane. 
 

1.2.2 Measuring Association Constant  
 
While developing new templates for the formation of pseudorotaxanes, a question arises 

as to the strength of the interactions, which hold the wheel and the axle together. The 

higher the association constant, the more the product side of the equilibrium is favoured, 

i.e. formation of [2]pseudorotaxane. There are a number of methods that allow 

determination of the strength of the interaction: an example is the noticeable change of 

colour during a UV/Vis titration, while another is the observation of a significant 

chemical shift in 1H NMR spectroscopy. Two commonly used techniques – 1H NMR 

(single point determination, or titrations) and isothermal titration calorimetry (ITC) – will 

be discussed below: 
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1. 1H NMR spectroscopy - Single point determination 

At slow exchange on the NMR time scale, the bound and free components can be 

distinguished by their differences in chemical shifts. The association constant can be 

determined since the association is temperature dependent and both chemical shifts are 

known. The binding constant can be calculated simply from knowing the original host 

and guest concentrations and the abundance of each species at various temperatures as 

determined by integration. The association constant, enthalpic and entropic components 

can then be obtained from a van’t Hoff plot (RlnK vs T-1), which results in a straight line 

with a slope of -∆H and an intercept of ∆S. There are cases where a van’t Hoff plot is not 

a linear plot, as a result of the thermodynamic properties being temperature-invariant. 

Many factors contribute to this phenomenon including conformational, vibrational and 

hydrophobic interactions but the phenomena can be taken into account by introducing a 

heat capacity (∆C°p) term.23-25 

2. 1H NMR spectroscopy - Titrations 
 
When the component interactions are at fast exchange only an average signal is observed 

for both the wheel and axle resonances. The axle can be titrated with increasing amounts 

of wheel until saturation is reached and non-linear least-squares analysis results in the 

curvature of the van't Hoff plot becomes evident, utilized to extract the association 

constant using a non-linear refinement program. This requires starting concentrations of 

wheel from the observed protons shifts, and initial estimations of association constants, 

and complexed and uncomplexed chemical shifts of the probe proton.26   
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3. Isothermal Calorimetry 
 
The thermodynamic parameters of the stoichiometry of the interaction (n), the association 

constant (Ka), the free energy (∆Go), enthalpy (∆Ho), entropy (∆So), and heat capacity of 

binding (∆Cp) can be calculated by measuring the binding equilibrium directly from the 

heat evolved upon association of axle with the wheel. Upon titration of axle into a 

solution of the wheel, the heat released (H) is measured over time. The addition of small 

volumes of axle until the heat diminishes results in a binding curve of heat release versus 

the mole ratio.27  

1.2.3 Rotaxanes  

Rotaxanes are molecules that contain a linear component (the axle) encircled by one, or 

more, macrocyclic component (the wheel). In order to prevent the wheel from slipping 

off the axle, the linear component must be terminated at both ends by large blocking 

groups or stoppers, as seen in the cartoon representation of a rotaxane in Figure 1.10. 

 
Figure 1.10 Cartoon representation of [2]rotaxane. 
 

1.2.4 Early Attempts at the Synthesis of Interlocked Molecules   
 
Interlocked supramolecular species can be traced back to when Harrison and Harrison 

made the first interlocked species with the help of a resin with a yield of 6%.28 They used 

a "statistical" approach, when a molecular axle, functionalized on both ends, may enter 

into a macrocycle of adequate size, but the probability that cyclization occurring while 

“stoppers” 
[2]rotaxane 

+ 2 
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the linear axle is threaded through the macrocycle is very small. One can only expect 

poor yields in this kind of synthesis.29 Later on, I. T. Harrison used a “statistical slipping” 

approach by heating a mixture of cyclic hydrocarbons over the end groups of the 

dumbbell-shaped 1,10-bis(tripheny1methoxy)-decane at 120°C;  Figure 1.11.30 

 

Figure 1.11 Harrison’s “statistical slipping” methodology.30 

 

The statistical method has disadvantages of using harsh conditions and producing low 

yields of the preferred product. An attempt to overcome these nuisances was developed 

by Schill with [2]catenanes, called “directed” synthesis. It involved making a pre-

rotaxane composed of macrocyclic and acyclic components linked by covalent bonds. 

Subsequently, the linking bond is cleaved, leaving in place only mechanical bonds; 

Figure 1.12.31 Unfortunately, this method proved to be challenging due to the multistep 

syntheses which are time-consuming and also of low yields. Other methods used to form 

rotaxanes were published by Stoddart in a review in 19955 with the advancement of 

supramolecular chemistry allowing for molecular recognition to improve on the yield of 

the [2]rotaxane formation. 

∆ 
O (CH2)10 O O (CH2)10 O

(CH2)11-39

(CH2)29
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Figure 1.12 “Directed” synthesis of a [2]rotaxane.31 

1.2.5 Synthesis of Rotaxane Using Molecular Recognition Templates 
 
There exist a number of modern methods for rotaxane synthesis such as: capping, 

clipping and slippage. The capping method involves the formation of the equivalent 

[2]pseudorotaxane, to which bulky substituents or stoppers are added to the extremities of 

the axle after the equilibrium of the [2]pseudorotaxane has been achieved; Figure 1.13.  

A number of synthetic methods have been made available for capping such as 

alkylation, ester (carbonate and acetal formation), oxidative coupling, cycloaddition, 

Wittig reactions, coordination chemistry, electronic blocking groups, and click 

chemistry.32-39 Other elegant ways in which rotaxanes have been made include 

photoisomerization and boron-based, donor-acceptor chemistry.40,41 Figure 1.14 shows an 

example of a click synthesis without the use of catalysts which uses a nitrile N-oxide as 

the stopper by reacting pseudorotaxanes possessing alkene, alkyne, or nitrile groups.39 

 

Figure 1.13 Cartoon illustration of the treading/capping method. 

+ 2 
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Figure 1.14 Example of a [2]rotaxane formed by the threading/capping process.39 

 

The clipping process relies on the macrocyclization of the subunits of a wheel-like 

component around the recognition site of a dumbbell-shaped component42 followed by 

the clipping of another subunit to complete the cyclization; Figure 1.15. 

 
Figure 1.15 Cartoon representation of clipping. 
 

Stoddart used the clipping process to make [2]rotaxanes by formation of an imine bond 

from amine and carbonyl groups in the presence of a dibenzylammonium cation thread; 

Figure 1.16.   

+ 
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Figure 1.16 Example of the clipping process in the formation [2]rotaxane.43 

 

The final process called slippage requires a fine balance between the size of the bulky 

extremities on the axle and the macrocyclic wheel. Under proper thermodynamic 

conditions, the rotaxane may be slowly formed by the wheel slipping onto the axle, as the 

name suggests, and upon cooling the macrocyclic wheel becomes kinetically trapped 

causing the two components to be interlocked; Figure 1.17. 

 

Figure 1.17 Cartoon illustration of slippage of a [2]rotaxane. 
 

Figure 1.18 shows a recent example of slippage rotaxane with a DB24C8 wheel and a 

1,2-bis(pyridinium)ethane type axle.44 

∆ 

+ 
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Figure 1.18 Example of a [2]rotaxane formed by slippage.44 

 

Sauvage used Cu(I) to coordinate diphenylphenanthroline flanked by 2,2′:6′2″-

terpyridine groups and followed this by stoppering with Ru(terpy)Cl3 to form a 

[2]rotaxane; Figure 1.19.45 
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Figure 1.19 The use of transition a metals for templation by Sauvage. 
  

Metals have also been used for the catalytic, ring closing metathesis (RCM), the 

Huisgen–Meldal–Fokin copper(I)-catalysed terminal alkyne–azide cycloaddition; the 

CuAAC ‘‘click’’ reaction.46 The newest methodology called “active template” involves 

transition metal ions acting as both the template for the threaded architecture and as the 

catalyst for the covalent bond forming reaction that captures the interlocked structure. 
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This removes the requirement for a recognition motif in the thread. Leigh has recently 

developed a [2]rotaxane using Ni(II) and a pyridine-2,6-bisoxazoline macrocycle ligand 

to and sp3-sp3 coupling of alkyl chains; Figure 1.20.47 
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Figure 1.20 A [2]rotaxane formed using Leigh’s “active metal” template coupling of 
alkyl chains.47 

 

Even though the synthesis of new interlocked molecules with metals allows for 

interesting rotaxane formation, the question arises whether one can use these moieties to 

form periodic crystalline frameworks via metal ligand interactions. 

1.3 Polymeric Frameworks 

Crystal engineering by Desiraju as “the understanding of intermolecular interactions in 

the context of crystal packing and the utilization of such understanding in the design of 

new solids with desired physical and chemical properties”.2  Over the years, chemists 

have begun to be able to control the non-covalent interactions that are used to form 

crystalline frameworks.  

1.3.1 Coordination Polymers 

The term coordination polymer (CP) was first used in 1964 by J. C. Bailer to describe 

metal-ligand compounds that extend “infinitely” into one, two or three dimensions (1D, 

2D or 3D) as illustrated in Figure 1.21.48 
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Figure 1.21 Schematic representation of the networks that CPs can form, where E are 
donor atoms.  
 

The construction of coordination polymers is usually carried out using polydentate 

ligands with rigid back bones and the donor atoms are usually nitrogen or oxygen. The 

mostly popular ligands are 4,4’-pyridine derivatives, pyrazine, or polycarboxylates.49 The 

CPs are held together through coordination interactions and often combined with weaker 

forces such as hydrogen bonds, π-π stacking or van der Waals interactions.50 

The “node and spacer” approach developed by R. Robson has become a widely 

employed strategy for synthesizing coordination polymers with various dimensionalities 

and network topologies. It relies on the strength and directionality of the coordination 

bonds established between the metal ions and the ligands.51 The type of network topology 

can be controlled by considering a numbers of factors such as geometry, charge, hard soft 

acids and bases (HSAB) behaviour of the metal, and shape, size, and HSAB behaviour of 

the ligands. One of the simplest of networks obtained is the diamond-like structure shown 

in Figure 1.22, where the diamondoid network in Cu[C(C6H5CN)4]BF4 is built around the 

tetrahedral Cu(I) centre and the central tetrahedral C-atom of the tetranitrile ligand. The 

spaces in the lattice are filled with solvent and BF4 anions. The crystal readily underwent 

anion exchange whilst retaining its crystal structure.52  
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Figure 1.22 Diamond-like network of Cu[C(C6H5CN)4]BF4.

52 

 

Solid-state architectures are determined by several factors: 1) metal-to-ligand 

stoichiometry, 2) the stereochemical preference (coordination algorithm) of the 

assembling cations, 3) the use of ancillary ligands attached to the metal ions or the use of 

additional bridging ligands, 4) the intervention of noncovalent interactions (hydrogen 

bonds, π-π stacking), 5) the role of the anions (coordinated, bridging, uncoordinated), and 

6) the presence of organic guest molecules, which can act as templates.49 

The solid-state architectures that are generated by the above interactions can lead to 

unusual properties in the polymers which are of great interest as potential candidates for 

new materials with applications such as fluorescence, magnetism, catalysis, nonlinear 

optics, gas absorption or as semiconductors.48,50   

There are many molecular building blocks available to construct networks held 

together by weaker bonds like the ones seen here. Nowadays, another class of networks 

that gets a lot of attention uses robust metal clusters entirely formed by strong covalent 

bonds; the so-called metal organic frameworks (MOFs). 
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1.3.2 Metal Organic Framework 
 
Over the years, a number of materials have been synthesized that contain a metal and an 

organic linker with varying terms of description such as coordination polymer, hybrid 

organic-inorganic, organic zeolite, and metal organic framework. 

A metal organic framework can be defined as having 1) strong bonds providing 

robustness, 2) linking units that are available for modification by organic synthesis and 3) 

a geometrically well-defined structure.53 One of the important parts in the construction of 

MOF is structure prediction. To aid in prediction, the concept of secondary building units 

(SBUs) is useful. These are most often multidentate linkers such as carboxylates, which 

have the ability to aggregate with metal anions into M-O-C clusters. These clusters are 

important in forming porous structures because 1) the M-O-C cores give a well- defined 

shape that is important in predicting the geometry of the overall topology, 2) the 

carboxylate ligands can be bi- or tridentate in order lead to extended frameworks, and 3) 

some clusters contain weak coordinating solvent molecules that can be removed to 

produce pores or replaced with other ligands.54 The simplest example of a metal organic 

framework uses 1,4-benzenedicarboxylate. The resulting MOF-5 with the tetrahedral 

Zn(II) ions and formula [Zn4O(BDC)3] is a representative example of a cubic framework 

and is shown in Figure 1.23.54 
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Figure 1.23 A representation of the cubic arrangement of SBU and linkers in MOF-5 
where blue blocks are M-O-C clusters and the black lines are the organic linkers. 
 

With the large number of organic linkers available, numerous different topologies can 

be obtained. There are a number of ways to get single crystals from these frameworks 

such as slow evaporation of a solution of the precursors, layering of solutions, or slow 

diffusion of one component solution into another through a membrane or an 

immobilizing gel. For more robust frameworks, there is also the solvothermal technique 

available. These frameworks have found applications in hydrogen storage, carbon dioxide 

capture, gas separation, sensing, molecular recognition, nonlinear optics, luminescence, 

magnetic ordering, heterogeneous catalysis, and drug delivery.55  

MOFs have also been made with mixed ligands by using pyridine linkers and 

carboxylate corners to develop more porous frameworks that give the system both 

stability and framework flexibility. These porous frameworks, called porous coordination 

polymers (PCPs), have the same properties as MOFs and have also been used in 

regulating polymerization. 

PCPs usually involve a “pillaring” strategy as this allows for designing open metal-

organic frameworks by using appropriate pillars to connect well-defined two-dimensional 

(2D) layers either in a one-pot reaction or in two separate steps. These 2D layered 

structures are based on common “paddlewheel” units.56 With solvent molecules 
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occupying both ends of the binuclear centre, this type of charge-neutral 2D layer is an 

ideal candidate to pillar into a 3D open frameworks by using linear connectors that are 

usually nitrogen based linkers; Figure 1.24. 
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Figure 1.24 Representation of a mixed linker system. 
 

So... is there away to combine the interesting properties of interlocked molecules into 

such ordered frameworks producing materials that have readily addressable and 

controllable molecular components? 

1.3.3 Metal Organic Rotaxane Framework (MORF)s 
 
One such approach is to form metal-based polyrotaxanes, which involves taking an axle 

and a wheel that have suitable functional groups at both ends and coordinating them to 

metal centres thus forming coordination polymers or frameworks in 1-, 2- or 3D.  

Kim et al. first demonstrated such structures by combining a cucurbituril (CB[6]) 

wheel with diaminoalkane axles containing pyridyl, cyano, or carboxylic acid functional 

groups to coordinate to metals.57 They determined that the overall resulting topology  can 

be controlled by the coordination number and geometry of the metal linker, as seen in 

Scheme 1.1. 
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Scheme 1.1 Kim framework with diaminoalkanes, axle, and cucbituril(CB[6]) wheel.  
 

Loeb et al. demonstrated that a 1,2-bis(pyridinium)ethane axle and a DB24C8 wheel 

can form MORFs; Figure 1.25. However the nature of the framework does not simply 

depend on the metal but also on the solvent used in the formation of the MORFs.  A 

linear 1D framework was obtained when a coordinating solvent, such as MeCN was used 

but a 2D grid network was obtained with non-coordinating such as MeNO2; Figure 

1.26.58 
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Figure 1.25 A polyrotaxane. 
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Figure 1.26 (a) A 1D framework and (b) a 2D grid with 1,2-bis(4,4’-dipyrdinium) 
ethane, thread and DB24C8 wheel. 
 

Regardless of the metal-to-ligand ratio, a 2D square net was the highest periodicity 

attainable with this dynamic ligand and d-block transition-metal ions. This is because the 

placement of six of these sterically demanding ligands around a single metal ion would 

be too crowded. To obtain a higher dimensional framework a longer axle was synthesized 

with N-oxide groups as seen in Figure 1.27. 
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Figure 1.27 N-oxide axles developed to form 3D networks. 
 

Larger lanthanide ions, such as Sm(III), Eu(III), Gd(III), Tb(III) or Yb(III) prefer higher 

coordination numbers and can thus lead to 3D coordination polymers; Figure 1.28.58  The 

cavities in the above framework are filled with solvents (MeCN) and counterions (OTf) 

and also another lattice due to interpenetration. Although these materials do meet the 

required stability for further study they are not porus but, it is reasoned that eventually we 

will be able to construct MORF materials that are crystalline solids that are physically 

and thermally robust and have sufficient porosity to allow the dynamic components to 

“function” in a well-defined “space”.59 

 
Figure 1.28 3-D Framework using a 1,2-bis(4,4’-dipyridinium-N-oxide)ethane axle and 
DB24C8 wheels. 
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Loeb’s first approach to neutral frameworks was to eliminate counterions by using 

neutral [2]pseudorotaxane linkers containing the 1,2-bis(4,4’-dipyridinium)ethane 

dication and employing the anti isomer of disulfonated-dibenzo-24-crown (DSDB24C8) 

as the wheel (Figure 1.29).60 The ligands can then be capped/linked with either the Cu(II) 

paddlewheel (Cu2BnO4) or CuBr to form 1D MORFs as seen in Figure 1.30.60  
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Figure 1.29 Extended axle used for the neutral 1-D MORFs. 
 

 
Figure 1.30 1-D Framework with 1,2-bis(4,4’-dipyridinium)ethane axle, DSDB24C8 
wheel and Cu2BnO4 linker.60 

 

Due to the limited number of neutral metal nodes available to create porous networks 

in this manner, attention was switched from neutral to anionic ligands. This was achieved 

by simply eliminating one of the positive charges of the axle. Combining this new axle 

with DSDB24C8 resulted in a negatively charge [2]pseudorotaxane linker; Figure 1.31.60  
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Figure 1.31 A negatively charged [2]pseudorotaxane linker. 
 

Reaction with one equivalent of Zn(NO3)2·4H2O in MeOH resulted in a 1D framework. 

By increasing the amount of metal used and using a mixture of 1:9 MeOH/MeNO2 a 2D 

grid was formed, where each layer is stacked by water molecules through extensive 

hydrogen bonding.61 

Besides using [2]pseudorotaxanes as linkers for the formation of MOFs, Stoddart and 

Yaghi developed macrocyclic polyethers which are themselves linkers containing 

carboxylate groups; Figure 1.32. These linkers can combine with Zn4O(CO2)6 clusters to 

form a MOF structure similar to MOF-5. These new MOFs are able to interact with 

paraquat as [PQT][PF6]2 to form a [2]pseudorotaxanes inside the MOF as seen in Figure 

1.32.62 They later applied similar macrocyclic polyethers linkers to form 2D frameworks 

with [2]catenanes as shown in Figure 1.33.62 
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Figure 1.32 Stoddart’s macrocyclic polyether linkers that form a MOF-5 type structure 
use to “dock” PQT2+. 
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Figure 1.33 Stoddart’s macrocyclic polyether used to form a framework containing a 
[2]catenane. 
 

Stoddard later developed a chiral MOFs containing γ-cyclodextrin that could potentially 

be used for chiral-recognition of substrate guests.63  
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Very recently an anionic 3D MORF, was developed by Sessler using flexible 

tetracationic imidazolium macrocycles and 2,6-naphthalene dicarboxylate dianions  with 

Zn(II) cations (Figure 1.34).64 

 
Figure 1.34 Schematic representations of the binding mode of Sessler’s MORF where 
the pink balls are the Zn(II) ions, black lines are the axles, and rectangles are the wheels.  

 
1.4  Scope of this Thesis 

 
This thesis describes the incorporation of the 1,2-bis(pyridinium)ethane 24-crown-8 

rotaxane motif into a variety of ligand-based architectures. This begins (in Chapter 2) by 

using the recognition elements of the axle to form a [2]rotaxane containing a terpyridine 

ligand that can act as stopper. The complexation with labile and inert metals is studied. 

The synthesis, characterization and solid-state of the metal based ligand [2]rotaxane are 

examined. The templating motif was then incorporated (in Chapter 3) into a series of 

tetrakis-substituted DB24C8 wheels. Characterization and [2]pseudorotaxane formation 

studies were preformed to investigate whether there would be any correlation between the 

appended groups of the macrocycle and the association constant with known axles. 

[2]Rotaxanes containing these new crown ethers were then synthesized and 
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characterized. The new crowns were incorporated (in Chapter 4) into metal based 

[2]rotaxane ligands and coordinated to an inert metal as well as used in the construction 

of MORFs. The study of the effect of the substituted crown ether on the MORF structure 

was investigated. Crown ethers with monodentate and chelating ligands on the 

macrocycle (in Chapter 5) were synthesized, characterized, and coordinated to metal 

ions. The resulting materials were studied in the solid-state. A new class of MORFs was 

discovered which links [2]rotaxane wheels rather than axles to propagate the structure. 

Finally, these chelating macrocycles were incorporated (in Chapter 6) into a [2]rotaxane 

based ligand with potential linking groups on both the axle and wheel. These 

multidentate, multi-topological ligands were synthesized and characterized. 
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Chapter 2 
 

A [2]Rotaxane Ligand with Terminal Terpyridine Groups 
 

2.1. Introduction 
 
Combining the properties of transition metals (electronic, magnetic, and catalytic) with 

the dynamic properties of interlocked molecules has the potential to create chemical 

systems that can lead to new applications.1 A number of such systems have been 

developed where the transitions metal acts as 1) a templating ion to help 

interpenetration,2 2) a reporter group to sense the binding of a guest,3 3) an additive that 

elicits molecular motion,4 or 4) a building block to create coordination polymers 

(MOFs).5 However, the synthesis of interlocked ligands and their transition metal 

complexes is still a major problem to overcome. The conversion of [2]pseudorotaxane 

into [2]rotaxane with metal coordination as been demonstrated in the literature where a 

metal complexes to the [2]pseudorotaxane.5-8 For [2.1⊂DB24C8]2+ (see Figure 2.1), the 

external pyridine groups have been shown to form metal coordination with a cationic 

palladium complex and an anionic metal fragment such as MBr3
- (M = Co, Mn), as 

shown in Figure 2.2.9,10  In addition, Branda and Goldberg used porphyrins with either 

Ru(II) or Zn(II) to act as stoppers as seen in Figure 2.311,12  while Sanders has reported 

that porphyrin can be attached to nanoparticles to form a metal based [2]rotaxane.13 
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Figure 2.1 Rotaxane ligand [2.1⊂DB24C8]2+. 
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Figure 2.2 Rotaxane formation via metal coordination. 
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Figure 2.3 Rotaxane formation via porphyrin coordination. 
 

The problem with the self-assembly process for metal incorporation is that conditions for 

formation of the metal-ligand bonds must be compatible with the weak non-covalent 
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bonds that hold the [2]pseudorotaxane together. One way to overcome that problem is to 

change monodentate to polydentate ligands. Previously in the Loeb group, an axle 

containing 2,2’:6’,2”-terpyrdine was employed as a blocking group, at one end of the 

axle, but, there still needed to be a stopper added at the other end; Figure 2.4. This ligand 

was shown to be capable of binding to Fe(II) and Ru(II) centres.14,15  
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Figure 2.4 2,2’:6’,2”-Terpyrdine group ligand utilized as stopper for a [2]rotaxane. 

 
In a similar fashion, Leigh has incorporated the polydentate ligand bis(2-

pyridylmethyl)amine (BPMA ) to form molecular shuttles; Figure 2.5,16 but this was made 

by the clipping method which is not possible with the bis-pyridinium axle. 
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Figure 2.5 Bis(2-pyridylmethyl)amine utilized as a stopper for a [2]rotaxane. 
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2.2. Results and Discussion  
 

2.2.1 Terpyridine based ligands 
 

The ligand 4’-p-tolyl-2,2′:6′,2″-terpyrdine (tolylterpy ) was chosen as the source of the 

terpy unit which will act as the stopper for [2]rotaxanes. The synthesis of tolylterpy  

proceeded smoothly via the condensation of 2-acetylpyridine with 4-tolualdehyde, in the 

presence of base, forming the 1,5-diketone. Subsequent ring closure of the 1,5-diketone, 

in situ with ammonium acetate (NH4OAc) produced the desired compound, tolylterpy , as 

previously reported (Scheme 2.1).17  

N
H3C

O

2
+

HO

i) ii)

N
N NN N

OO

tolylterpy  
Scheme 2.1 i) 1:1 MeOH/H2O, NaOH, ii) excess NH4OAc, reflux. 
 

Bromination of tolylterpy  occurred thermally through a radical process with N-

bromosuccinimide in the presence benzoyl peroxide to produce the desired compound, 

Br-tolyterpy , as previously reported (Scheme 2.2).17  

N
N N

i)

N
N N

Br

Br-tolyterpy  
Scheme 2.2 i) NBS, BzO4, CCl4, reflux. 
 

N-alkylation of the 4-pyridyl group of the pseudorotaxane formed between bis-1,2-

(4,4’-dipyridinium)ethane and DB24C8 was accomplished by stirring in MeNO2 at room 
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temperature for 7 days to produce compound [2.1⊂DB24C8]4+
 in relatively low yield, but 

high purity, as mixtures of dibromide and ditriflate salts. Treatment of [2.1⊂DB24C8]4+
 

in a two-phase nitromethane/sodium triflate (MeNO2/NaOTf(aq)) mixture at room 

temperature resulted in a red solid; as shown in Scheme 2.3. 

O
N

O

O
O

O

O

O

O

N N
N

N
N N

N

O

O O

O

O

OO

O

10+ + 3

Br

N
N N

i)

N

N

N

N
N

N

a

bcde
f

g
h

i

j

k l

m

q rpon

 
Scheme 2.3 i) [2.1][OTf] 2, DB24C8, Br-tolyterpy  in MeNO2/NaOTf(aq) at RT for 168 
h. 
 

The 1H NMR spectrum of compound [2.2][OTf] 4 and [2.2⊂DB24C8][OTf] 4 in 

CD3CN are shown in Figure 2.6 and some of the major peaks are summarized in Table 

2.1. The spectra show evidence supporting the various supramolecular interactions in this 

rotaxane such as hydrogen bonding and π-π stacking.  

[2.2]4+(no crown) = 31%  

[2.2⊂DB24C8]4+ = 31% 
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Figure 2.6 Comparison of the 1H NMR shifts of (a) [2.2⊂DB24C8][OTf] 4, and (b) 
[2.2][OTf] 4 in CD3CN at 500 MHz. 
 

Table 2.1 Comparison of the chemical shifts of the dumbbell [2.2][OTf] 4, and 
[2]rotaxane, [2.2⊂DB24C8][OTf] 4. 

Protons [2.2]4+ [2.2⊂DB24C8]4+ 

a 5.27 5.60 (0.33) 
b 9.04 9.31 (0.27) 
c 8.49 8.19 (-0.30) 
d 8.46 8.15 (-0.31) 
e 9.04 9.01 (-0.03) 

 

Hydrogen bonding between the ethylene (a) and α-pyridinium (b) protons of the axle 

with the polyether oxygen atoms of the macrocycle is evidenced by a downfield shift of 

the signals for a  and b of 0.33 and 0.27 ppm respectively. The 1H NMR spectrum also 

reveals the presence of two separate resonances for protons q and r  at 6.66 and 6.48  

ppm, compared to 6.93 ppm for free DB24C8, which are indicative of π-stacking 

between pairs of electron-poor pyridinium and electron-rich crown aromatic rings. The 

electrospray ionization mass spectroscopy (ESI-MS) result of ligand 

[2.2⊂DB24C8][OTf] 4  also confirmed the interlocked nature of the complex, with just the 

loss of two counter ions resulting in observation of the parent molecule as 

{[ 2.2⊂DB24C8][OTf] 2}
2+ at 865.2775 m/e.  
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2.2.2 Labile metal complexes 
 
To investigate the coordination ability of this unique rotaxane ligand, silver(I), 

palladium(II), and zinc(II) complexes were prepared. These metals are known from 

literature to adopt square planer or distorted octahedral environments depending on the 

metal with any open coordination sites occupied by solvent molecules.18-23 Scheme 2.4, 

shows generally how the monomer would look in solution when two equivalents of 

[Ag][OTf], [Pd(MeCN)4][BF4]2, or [Zn(H2O)6][OTf] 2 in MeCN were added to 

[2.2⊂DB24C8][OTf] 4.  

The 1H NMR spectrum of the Ag(I) complex was recorded in CD3CN and the 

numbering scheme can be seen in Scheme 2.4. The spectrum for the Ag(I) complex 

revealed upfield shifts of the protons m-j . Proton m in complex 

[(Ag(MeCN))2(2.2⊂DB24C8)]6+ shifts from 8.70 ppm for the uncomplexed [2]rotaxane 

to 8.48 ppm when coordinated to the Ag(I) centre. The 1H NMR spectrum of the Pd(II) 

complex was recorded in CD3NO2. The spectrum for the Pd(II) complex also showed 

upfield shifts of the protons m-j . Proton m in complex [(Pd(MeCN))2(2.2⊂DB24C8)]8+ 

shifts from 8.77 ppm for the uncomplexed [2]rotaxane to 8.65 ppm when coordinated to 

the palladium (II) centre. The 1H NMR spectrum of resulting Zn(II) complex showed 

only broadened resonances for [2.2⊂DB24C8]4+ presumably due to rapid metal ligand 

exchange. 
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Scheme 2.4 i) 2 equivalents of Ag(OTf) or Pd(MeCN)4[BF4]2 or Zn(H2O)6[OTf] 2 in 
MeCN for 24 h at RT.  
 

The ESI-MS of labile metal species show a loss of one of the metals from the 

complex. [(Ag(MeCN))2(2.2⊂DB24C8)][OTf] 4  shows how labile Ag(I) is with the loss 

of AgOTf and MeCN to give the mass of 697.8 m/e with formula of 

{[(Ag(MeCN))(2.2⊂DB24C8)][OTf] 5}
+. The Pd(II) complex becomes 

{[Pd(H2O)(2.2⊂DB24C8)][OTf+BF4]}
4+  with a mass of 448.6074 m/e. The Zn(II) 

complex just shows the parent molecule of [(2.2⊂DB24C8)]4+ 
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Figure 2.7 A ball-stick representation of the cationic portion of the X-ray crystal 
structure of [(Zn(H2O)3)2(2.2⊂DB24C8)]8+. The complex occupies a crystallographic 
centre of symmetry. All hydrogen atoms, except those on the coordinated water 
molecules, all anions and all solvent molecules have been omitted for clarity. (Zn = blue-
gray, O = red, N = blue, C = black, H = white; wheel bonds = silver, axle bonds = gold). 
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Single crystals of the Zn(II) complexe were grown by slow diffusion of isopropyl 

ether into a solution of MeNO2 producing orange crystals. Two different cations were 

present in the structure [(Zn(H2O)3)2(2.2⊂DB24C8)]8+ and 

[(Zn(H2O)(BF4))2(2.2⊂DB24C8)]6+. Only the former isomer is shown in Figure 2.7; the 

other simply has a BF4 anion coordinated to the Zn(II) in place of a water molecule.  

As seen with other [2]rotaxanes made using the axle [2.1]2+,  the [2]rotaxane adopts 

an anti conformation of the central NCH2CH2N moiety while the DB24C8 wheel exhibits 

a typical S-shaped conformation. Coordination to Zn(II) changes the terpyridine stopper 

from a transoid arrangement in the free ligand to a cisoid arrangement. The 

[(Zn(H2O)3)2(2.2⊂DB24C8)]8+ complex has a distorted octahedral environmental, Zn-N 

bond distances range from 2.06(1) Å for Zn(1)-N(6) to 2.14(1) Å for Zn(1)-N(4). The 

other three coordination sites are filled with water molecules, with Zn-O bond distances 

ranging from 2.05(2) Å for Zn(1)-O(1) to 2.11(2) Å for Zn(1)-O(2). The Zn(II) metal to 

metal distance is 37.1 Å. The complex [(Zn(H2O)(BF4))2(2.2⊂DB24C8)]6+ adopts  a 

trigonal bipyramidal geometry with one water molecule, and one BF4 anion.  The Zn-N 

bond distances range from 2.02(9) Å for Zn(1)-N(2) to 2.14(9) Å for Zn(1)-N(1), the Zn-

O bond is 2.01 (1) Å, and the Zn-F bond distance is 1.97(1) Å. The Zn(II) metal to metal 

distance is 34.0 Å. All of the Zn-N bonding parameters are similar to other mono 

terpyridine structures reported in literature.22,23 

2.2.3 Inert metal complex 

The reaction of [2]rotaxane ligand [2.2⊂DB24C8][OTf] 4 with Ru(terpy)Cl3 resulted in 

the formation of a Ru(II) complex. As outlined in Scheme 2.5, the synthesis was carried 

out in a 1:1 EtOH/H2O mixture and the reaction mixture was refluxed for 1 day. As was 
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shown previously in the Loeb group, these conditions are sufficient for the reduction of 

the metal centre and showed no decomposition of the [2]rotaxane. The dark red complex 

could be easily isolated and purified by recrystallization from acetonitrile and diethyl 

ether. 
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Scheme 2.5 i) Ru(terpy)Cl3,1:1 EtOH/H2O, reflux, 24h. 
 

The 1H NMR spectrum of the ruthenium complex was recorded in CD3CN as the 

triflate salt. The numbering scheme can be seen in Scheme 2.5. The spectrum for the 

Ru(II) complex revealed upfield shifts of the protons m-j  and m’-j’  attributed to the 

[(Ru(terpy))2(2.2)]8+(no crown) = 98% 

[(Ru(terpy))2(2.2⊂DB24C8)]8+ = 96%  
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electronic effects of the ruthenium(II) centre, confirming the formation of the complex. 

The spectrum also reveals a nice pattern whereby chemically equivalent peaks from the 

two different terpy groups, m and m’ or l and l’  were different enough that they could be 

resolved as seen in Figure 2.8 for complex [(Ru(terpy))2(2.2⊂DB24C8)][OTf] 4. 

 
Figure 2.8 1H NMR spectrum of [(Ru(terpy))2(2.2⊂DB24C8)][OTf] 4 at 500MHz  
 

In order to determine which set of peaks belonged to which terpyridine unit, conventional 

2D NMR techniques (1H – 1H COSY) were employed.  
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Table 2.2 A comparison of the 1H NMR chemical shifts for dumbbell [2.2][OTf] 4, 
[2]rotaxane ligand [2.2⊂DB24C8][OTf] 4 and complexes [(Ru(terpy)2)(2.2)][OTf] 8, 
[(Ru(terpy)2)(2.2⊂DB24C8)][OTf] 8. 
proton [2.2] 4+ [2.2⊂DB24C8] 4+ [(Ru(terpy) 2)(2.2)] 8+ [(Ru(terpy) 2)(2.2⊂DB24C8)] 8+ 

a 5.27 5.60 (+0.33) 5.34 (+0.07) 5.64 (+0.04) 
b 9.04 9.31 (+0.27) 9.19 (+0.15) 9.36 (+0.05) 
c 8.49 8.19 (-0.30) 8.58 (+0.09) 8.31 (+0.12) 
d 8.46 8.15 (-0.31) 8.58 (+0.12) 8.31 (+0.16) 
e 9.04 9.01 (-0.03) 9.14 (+0.10) 9.14 (+0.13) 
f 5.94 5.95 (0.01) 6.04 (+0.10) 6.05 (+0.10) 
g 7.71 7.47 (-0.24) 7.88 (+0.17) 7.94 (+0.47) 
h 8.04 7.75 (-0.39) 8.34 (+0.30) 8.37 (+0.62) 
i 8.76 8.79 (+0.03) 9.03 (+0.27) 9.05 (+0.26) 
j 8.70 8.72 (0.02) 8.50 (-0.20) 8.50 (-0.22) 
k 7.98 7.99 (0.01) 7.92 (-0.06) 7.91 (-0.08) 
l 7.46 8.08 (+0.61) 7.16 (-0.30) 7.16 (-0.92) 
m 8.70 8.72 (0.02) 7.41 (-1.29) 7.41 (-1.31) 

 

Proton m, in complex [(Ru(terpy))2(2.2⊂DB24C8)]8+, shifts from 8.72 ppm for the 

uncomplexed rotaxane to 7.41 ppm (∆δ = -1.31).  Proton i is also shifted downfield from 

8.79 ppm to 9.05 ppm (∆δ = +0.26) in the complex when coordinated to a Ru(II) centre. 

The difference in chemical shifts between the [2]rotaxane and the corresponding Ru(II) 

complex are summarized in Table 2.2. An informative peak that appears for the 

compound is h’ . This proton appears as a triplet at approximately 8.41 ppm with coupling 

constant of roughly 8 Hz. This proton, which lies on the mirror plane of the complex, 

integrates to half of most of the others, as expected, and again confirms the formation of 

the desired ruthenium(II) complex.  

The ESI-MS of complex [Ru(terpy)2(2⊂DB24C8)][OTf] 8 also confirmed their 

interlocked nature as the {[Ru(terpy)2(2⊂DB24C8)][OTf] 5}
3+ ion at 949.2072 m/e was 

observed.  
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Figure 2.9 Ball-and-stick representation of the cationic portion of the X-ray crystal 
structure of [(Ru(terpy))2(2.2⊂DB24C8)]8+. The complex occupies a crystallographic 
centre of symmetry. All anions and all solvent molecules have been omitted for clarity. 
(Ru = blue-gray, O = red, N = blue, C = black, H = white; wheel bonds = silver, axle 
bonds = gold). 
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Single crystals of [(Ru(terpy))2(2.2⊂DB24C8)][OTf] 8 suitable for X-ray diffraction 

were grown by the diffusion of isopropyl ether into a solution of MeNO2 containing the 

complex; Figure 2.9 shows a ball-and-stick representation of the cationic portion of 

[(Ru(terpy))2(2.2⊂DB24C8)]8+. As was observed previously for the Zn(II) complex, the 

dumbbells adopts a zig-zag shaped conformation that is essentially linear throughout the 

interlocked component but bent at the benzylic units linking the terpyridine and 

pyridinium groups. Coordination to the Ru(II) changes the terpyridine stopper from a 

transoid arrangement in the free ligand to a cisoid arrangement. The ruthenium(II) metal 

to metal distance is 36.6 Å. The ruthenium(II) metal centre sits in a distorted octahedral 

environment as a result of the terpyrdine bite angle.24 The bite angle can be measured 

from the terminal nitrogen of the ligand to the central nitrogen of the other ligand and has 

a range between 75-80°. Table 2.3 summarizes the bite angle for complex 

[(Ru(terpy))2(2.2⊂DB24C8)]8+, which compare to [Ru(terpy)2]
2+ and other Ru(II) 

complexes. The ruthenium-nitrogen bond distances range from the 1.95(5) Å for Ru(1)-

N(3) to 2.07(4) Å for Ru(1)-N(6). 

Table 2.3 The bite angle of complex [(Ru(terpy))2(2.2⊂DB24C8)]8+ as compared to 
other [Ru(terpy)2]

2+  complexes. 
Atoms Ru(terpy)2 

Angle (°)25 
Ru(biphterpy)(terpy) 

Angle (°)26 
(Ru(terpy))2(2.2⊂DB24C8)] 

Angle (°) 
N(1)-Ru-N(2) 78.3(4) 79.5(4) 79.7(2) 
N(2)-Ru-N(3) 79.3(4) 78.6(3) 78.8(3) 
N(1)-Ru-N(3) 177.5(4) 158.1(3) 158.4(3) 
N(4)-Ru-N(5) - 78.8(3) 79.0(3) 
N(5)-Ru-N(6) - 79.2(3) 80.6(3) 
N(4)-Ru-N(6) - 158.0(3) 159.5(3) 

 

The UV/Vis absorption spectra of ruthenium(II) complexes containing 

heterocyclic ligands show characteristic absorption bands arising from how the metal 
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interacts with the ligand, or how the ligand interacts with the metal. The bands in the UV 

region can be assigned to a ligand centered (LC) π→π
* transitions. The intense and broad 

band in the visible region that gives the complex an intense red look is caused by a spin 

allowed d→π metal to ligand charge transfer (MLCT).27 The MLCT are caused by the 

π* L and σ*M orbitals on the metal being the HOMO and the π* orbital being the LUMO; 

Figure 2.10.28 

 
Figure 2.10 Schematic energy level diagram of an octahedral metal complex showing 
possible transitions.28  
 

The UV/Vis spectra of compounds [(Ru(terpy))2(2.2)]8+ and 

[(Ru(terpy))2(2.2⊂DB24C8)]8+ are dominated by the high energy π-π* LC bonds at 271 

nm and 303 nm respectively. The MLCT band for the complex was found at 485 nm, 

which is red shifted from that of the parent compound [Ru(terpy)2]
2+. The red shift is 
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caused by the electron-donating tolyl group, the MLCT excited state energy decreases as 

a consequence of the larger destabilization of the metal-centered π(t2g) orbital compared 

with the ligand-centered π* orbital.33 The extinction coefficients (ε) for both were found 

to be 11,900 L mol-1 cm-1. Figure 2.11 shows the UV/vis spectra of both 

[(Ru(terpy))2(2.2)]8+ and [(Ru(terpy))2(2.2⊂DB24C8)]8+ for comparison. Table 2.4 

summarizes the UV/Vis data for [Ru(terpy)2(2.2)]8+, [Ru(terpy)2(2.2⊂⊂⊂⊂DB24C8)]8+ and 

other related [Ru(terpy)2]
2+ based complexes. 
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Figure 2.11 UV/Vis spectra of complex [Ru(terpy)2(2.2)]8+ (—) and 
[Ru(terpy)2(2.2⊂DB24C8)]8+  (—) at concentration of 1.0 x 10-5 M in CH3CN. 
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Table 2.4 UV/Vis data for complex [Ru(terpy)2(2.2)]8+, [Ru(terpy)2(2.2⊂DB24C8)]8+ 
and a few other selected ruthenium(II) complexes. 

Ru complex(a) MLCT λmax 
(nm) 

ε (L mol-1 cm-1) ref# 

Ru(bipy)3
 452 13 000 29 

Ru(terpy)2
  475 17 600 30 

Ru(tolyterpy)2
  490 28 000 31 

Ru(terpy)(tolyterpy)  483 19 300 31 
Ru(biptpy)(tpy) 484 17 000 26 

[(Ru(terpy))2(2.2)]8+ 485 25 000 35 
[(Ru(terpy))2(2.2⊂DB24C8)]8+ 485 11 900 35 

Ru(terpy)(tolyterpy-DAP)  482 20 300 32 
(a) Counter ion of PF6

-
 

 
2.3. Conclusion  

The idea of creating an interlocked molecule with a chelating group as a stopper that can 

be used to form binuclear species has been presented. The robust nature of the 

[2]rotaxane was confirmed by 1H NMR spectroscopy, which showed that the interlocked 

components have not dissociated from each other. Complexes of the labile metals 

silver(I), palladium(II), and zinc(II) were synthesized and characterized. The solid state 

structure of the binuclear Zn(II) with co-ligands showed that the ligand has the potential 

of self-assembly into 1-periodic terpy-based coordination polymer. A binuclear complex 

of the inert metal ruthenium(II) was synthesized and characterized. The solid state 

structure of the mixed ligand complex of the Ru(II), clearly demonstrates the utility of the 

“rotaxane as ligand” approach for providing a way to form robust complexes that require 

harsh reactions conditions.  
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2.4 Experimental  
 

2.4.1 General Methods 
 
4-Tolualdehyde, 2-acetylpyridine, N-bromosuccinimide, 2,2′:6′,2″-terpyridine, 

RuCl3xH2O, and DB24C8 were purchased from Aldrich and used as received. 

[RuCl3(tpy)],34 and 1,2-bis(4,4’-bipyridinium)ethane triflate [2.1][OTf] 2
36 was 

synthesized using literature methods. Solvents were dried using an Innovative 

Technology Solvent Purification Systems. 1H NMR spectra were obtained on a Bruker 

Avance 500 instrument operating at 500 MHz. Deuterated solvents were purchased from 

Cambridge Isotope Laboratories Inc. and used as received. High-resolution mass spectra 

were recorded in 50/50 MeCN/H2O on a Micromass LCT Electrospray TOF mass 

spectrometer.  UV/Vis absorption spectra were run on a Cary 50 series spectrometer. The 

absorption spectra were recorded in acetonitrile (BDH®) at concentrations of 1.0 x 10-5 M 

for complexes [Ru(terpy)2(2.2)]8+ and [Ru(terpy)2(2.2⊂DB24C8)]8+.   

 
Synthesis 4-tolylterpyrdine 
 
4-Tolualdehyde (12.6 g, 12.4 mL, 0.105 mol) was dissolved in methanol (40 mL) and 

cooled to 0°C. To this was added 2-acetylpyridine (25.4 g, 23.5 mL, 0.209 mol) dissolved 

in methanol (20 mL) and 40% aqueous solution NaOH (30 mL). The mixture was stirred 

at -10°C for an hour then allowed to warm to room temperature and stirred overnight. 

NH4CH3CO2 (40.0 g, 0.516 g) was added to the reaction mixture which was then refluxed 

for 24 h. The reaction was cooled to room temperature and then the methanol was 

evaporated. The product was extracted with CHCl3, and then the CHCl3 was dried with 

MgSO4, filtered, and evaporated. The residue was recrystallized from CH3CN to yield 4-

tolylterpyridine as an off-white powder. Yield: 11 g (31%). 
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Table 2.5 1H NMR spectroscopic data in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.73 d 2 3Jab =5.8 
b 7.44 ddd 2 3Jba = 5.8, 3Jbc = 

7.5,4Jbd = 0.8 
c 7.96 ddd 2 3Jcb = 7.5, 3Jcd = 

7.8, 4Jca = 1.7 
d 8.68 d 2 3Jdc = 7.8 
e 8.73 s 2 - 
f 7.81 d 2 3Jfg  = 8.1 
g 7.40 d 2 3Jgf  = 8.1 
h 2.43 s 3 - 

 
 
Synthesis Bromo-4-tolyterpyridine 
 
4′-(4-Tolyl)-2,2′,6′,2″-terpyridine (2.0011 g, 0.0062 mol) was dissolved in CCl4 (40 mL). 

To this solution was added N-bromosuccinimide (1.10 g, 0.0062 mol) and benzoyl 

peroxide (0.54 g, 0.0022 mol) and the reaction solution refluxed overnight and cooled to 

room temperature. The reaction was filtered to remove succinimide and then the CCl4 

organic layer was washed with NaHCO3(aq) (3 x 50 mL) then H2O (2 x 50 mL), dried with 

MgSO4, filtered and then evaporated. The residue was recrystallized from 2:1 

EtOH/Acetone mixture to give an off-white powder. Yield: 0.872 g (31%). 
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Table 2.6 1H NMR spectroscopic data in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.73 d 2 3Jab = 6.0 
b 7.45 ddd 2 3Jba = 6.0, 3Jbc =  

7.4, 3Jbd = 1.6 
c 7.97 ddd 2 3Jcb = 7.4, 3Jcd = 

7.8, 4Jca = 1.6 
d 8.69 d 2 3Jdc = 7.8 
e 8.75 s 2 - 
f 7.90 d 2 3Jfg  = 8.2 
g 7.63 d 2 3Jgf  =8.2 
h 4.69 s 2 - 

 
 
 

Synthesis [2.2][OTf] 4 

[2.1][OTf] 2 (0.100 g, 0.157 mmol) was dissolved in MeNO2 (10 mL) and bromo-4-

tolyterpyridine (0.189 g, 0.470 mmol) added and the mixture allowed to heat at 60 °C for 

3 days. The organic layer was removed and the orange solid dissolved in a two layer 

solution of MeNO2 and NaOTf(aq) and stirred overnight. The colourless layer was 

separated, dried with anhydrous MgSO4, filtered and the solvent removed by evaporation. 

The residue was stirred in CHCl3. The resulting white solid was dissolved in CH3CN, and 

iso-propyl ether allowed to slowly diffused into the solution producing an off-white solid, 

yield 0.100 g (31%). 
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Table 2.7 1H NMR spectroscopic data for [2.2][OTf] 4 in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.27 s 4 - 
b 9.04 m 4 - 
c 8.49 d 4 3Jcb = 6.8 
d 8.46 d 4 3Jde = 6.8 
e 9.04 m 4 - 
f 5.94 s 4 - 
g 7.71 d 4 3Jgh = 8.0 
h 8.04 d 4 3Jhg = 8.2 
i 8.76 s 4 - 
j 8.70 m 4 - 
k 7.98 t 4 3Jkl = 7.5, 3Jkj = 

7.7 
l 7.46 t 4 3Jlm = 5.6, 3Jlk = 

6.9 
m 8.70 m 4 - 
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Synthesis [2.2⊂DB24C8][OTf] 4 
 
DB24C8 (0.702 g, 157 mmol) and [2.1][OTf] 2 (0.100 g, 0.157 mmol) were dissolved in 

MeNO2 (10 mL) and stirred overnight. Bromo-4-tolyterpyridine (0.189 g, 0.470 mmol) 

was dissolved in MeNO2, and the mixture was stirred for 7 days. The organic layer was 

removed, and the orange solid dissolved in a two layer solution of MeNO2 and NaOTf(aq) 

stirred overnight. The organic layer was separated, dried with MgSO4 and evaporated. 

The residue was stirred in toluene. The orange solid was dissolved in CH3CN; isopropyl 

ether was slowly diffused in to give an orange solid. Yield: 0.100 g (31%). ESI-MS: m/z 

[2.2⊂DB24C8]2+ calc. 865.2752, found 865.2775. 
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Table 2.8 1H NMR spectroscopic data for [2.2⊂DB24C8][OTf] 4 in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.60 s 4 - 
b 9.31 d 4 3Jbc = 6.6 
c 8.19 d 4 3Jcb = 6.6 
d 8.15 d 4 3Jde = 6.6 
e 9.01 d 4 3Jed = 6.6 
f 5.95 s 4 - 
g 8.08 d 4 3Jgh = 8.2 
h 7.73 d 4 3Jhg = 8.1 
i 8.79 s 4 - 
j 8.71 m 4 - 
k 7.99 t 4 3Jkl = 6.8, 3Jkj = 

8.7 
l 7.47 t 4 3Jlm = 5.3, 3Jlk = 

5.3 
m 8.71 m 4 - 
q 6.66 m 4 - 
r 6.48 m 4 - 

n-p 4.04-4.00 m 24 - 
 
Table 2.9 1H NMR spectroscopic data for [2.2⊂DB24C8][OTf] 4 in CD3NO2 

 
Proton δ (ppm) Multiplicity # protons J (Hz) 

a 5.90 s 4 - 
b 9.60 d 4 3Jbc = 5.1 
c 8.36 d 4 3Jcb = 5.4 
d 8.32 d 4 3Jde = 4.8 
e 9.18 d 4 3Jed = 5.5 
f 6.12 s 4 - 
g 7.52 m 4 - 
h 7.84 d 4 3Jhg = 7.4 
i 8.84 s 4 - 
j 8.77 m 4 - 
k 8.05 m 4 - 
l 8.18 d 4 3Jlk = 7.3 
m 8.77 m 4 - 
q 6.61 m 4 - 
r 6.76 m 4 - 

n-p 4.13-4.04 m 24 - 
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Synthesis [(Ru(terpy))2(2.2⊂DB24C8)][OTf] 8 
 
To a solution of [2.2⊂DB24C8][OTf] 4 (0.030 g, 0.0148 mmol) dissolved in 1:1 

EtOH/H2O solution was added solid (terpy)RuCl3 (0.013 g, 0.0246 mmol) and the 

mixture was brought to reflux for 24 h to give a deep red solution. The reaction mixture 

was cooled to room temperature and filtered through a Celite pad and washed with EtOH 

until the eluent was colourless. The filtrate was then reduced to half the volume and the 

addition of NaOTf produced a red precipitate. The red solid in CH3CN, isopropyl ether 

was slowly diffused in to give a red solid in quantitative yield. Yield: 0.047 g (98%). 

ESI-MS: m/z [[(Ru(terpy))2(2.2⊂DB24C8) + 5 OTf]3+ calc. 949.2006, found 949.2072. 
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Table 2.10 1H NMR spectroscopic data for [(Ru(terpy))2(2.2⊂DB24C8)][OTf] 8 in 
CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.64 s 4 - 
b 9.36 d 4 3Jbc = 6.1 
c 8.31 m 4 - 
d 8.31 m 4 - 
e 9.14 d 4 3Jed = 6.2 
f 6.04 s 4 - 
g 7.94 m 4 - 
h 8.37 d 4 3Jhg = 8.0 
i 9.05 s 4 - 
j 8.50 d 4 3Jjk = 8.1 
k 7.91 m 4 - 
l 7.16 m 4 - 
m 7.41 d 4 3Jml = 5.2 
q 6.70 m 4 - 
r 5.10 m 4 - 

n-p 4.07-403 m 24 - 
m’ 7.35 d 4 3Jm’l’ = 5.3 
l’ 7.16 m 4 - 
k’ 7.91 m 4 - 
j’ 8.68 d 4 3Jj’k’ = 8.0 
i’ 8.76 d 4 3Ji’h’ = 8.1 
h’ 8.41 t 2 3Jh’i’ = 8.1 

 
 
 
Synthesis [(Ru(terpy))2(2.2)][OTf] 8 

To a solution of [2.2][OTf] 4 (0.030 g, 0.0148 mmol) dissolved in 1:1 EtOH/H2O solution 

was added solid RuCl3(terpy) (0.013 g, 0.0246 mmol) and the mixture was brought to 

reflux for 24 h to give a deep red solution. The reaction mixture was cooled to room 

temperature, filtered through a Celite pad and then washed with EtOH until the eluent 

was colourless. The filtrate was then reduced to half the original volume and NaOTf 

added which produced a red precipitate. The red solid was dissolved in CH3CN and iso-

propyl ether slowly diffused to give a red solid. Yield: 0.046 g (96%).  
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Table 2-11 1H NMR spectroscopic data for [(Ru(terpy))2(2.2)][OTf] 8 in CD3CN. 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.34 s 4 - 
b 9.19 d 4 3Jbc = 6.9 
c 8.58 d 4 3Jcb = 6.6 
d 8.58 d 4 3Jde = 6.6 
e 9.14 d 4 3Jed = 6.9 
f 6.04 s 4 -  
g 7.88 d 4 3Jgh = 8.3 
h 8.34 d 4 3Jhg = 8.3 
i 9.03 s 4 - 
j 8.50 d 4 3Jjk = 8.0 
k 7.92 dd 4 3Jkj = 8.0 
l 7.16 m 4 - 
m 7.41 d 4 3Jml = 5.1 
m’ 7.35 d 4 3Jm’l’ = 5.5 
l’ 7.16 m 4 - 
k’ 7.92 dd 4 3Jk’l’ = 8.1 
j’ 8.67 d 4 3Jj’k’ = 8.1 
i’ 8.76 d 4 3Ji’h’ = 8.2 
h’ 8.42 t 2 3Jh’I’ = 8.2 
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Synthesis [(Ag(MeCN))2(2.2⊂DB24C8)][OTf] 6 
 
To a solution of [2.2⊂DB24C8][OTf] 4 (0.030 g, 0.0148 mmol)  was dissolved in 1mL of 

CH3CN was added to AgOTf (9 mg, 0.0350 mmol) and the mixture was stirred at room 

temperature overnight. Isopropyl ether was slowly diffuse to give an orange solid in 

quantitative yield. ESI-MS: m/z [Ag2(2.2⊂DB24C8) + 3 OTf ]3+ calc. 697.7707, found 

698.4532. 
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Table 2.12 1H NMR spectroscopic data for [(Ag(MeCN))2(2.2⊂DB24C8)][OTf] 6 in 
CD3CN 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.61 s 4 - 
b 9.34 d 4 3Jbc = 6.0 
c 8.26 d 4 3Jcb = 7.0 
d 8.23 d 4 3Jde = 6.9 
e 9.06 d 4 3Jed = 6.2 
f 5.97 s 4 - 
g 8.14 m 4 - 
h 7.77 d 4 3Jhg = 8.0 
i 8.59 s 4 - 
j 8.49 d 4 3Jjk = 7.5 
k 8.07 ddd 4 4Jkm = 1.7, 3Jkl = 

6.0, 3Jkj = 6.1 
l 7.59 dd 4 3Jlm = 5.8, 3Jlk= 

6.6 
m 8.72 d 4 3Jml = 5.0 
q 6.67 m 4 - 
r 6.48 m 4 - 

n-p 4.06 – 4.01 m 24 - 
 
 
 
 
Synthesis [(Pd(MeCN))2(2.2⊂DB24C8)][OTf] 8 
 
To a solution of [2.2⊂DB24C8][OTf] 4 (0.030 g, 0.0148 mmol)  was dissolved in 1mL of 

CH3CN was added to Pd(MeCN)4[BF4]2 (14 mg, 0.0315 mmol) and the mixture was 

stirred at room temperature overnight. Isopropyl ether was slowly diffuse to give an 

orange solid in quantitative yield. ESI-MS: m/z [Pd2(2.2⊂DB24C8)+H2O+OTf+BF4]
4+ 

calc. 448.1286, found 448.6074. 
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Table 2.13 1H NMR spectroscopic data for [(Pd(MeCN))2(2.2⊂DB24C8)][OTf] 8 in 
CD3NO2 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.90 s 4 - 
b 9.60 d 4 3Jbc = 5.1 
c 8.36 d 4 3Jcb = 5.4 
d 8.33 d 4 3Jde = 5.9 
e 9.17 d 4 3Jed = 5.1 
f 6.14 s 4 - 
g 8.22 d 4 3Jgh = 7.8 
h 7.90 d 4 3Jhg = 7.3 
i 8.65 m 4 - 
j 8.65 m 4 - 
k 8.54 m 4 - 
l 7.95 m 4 - 
m 8.65 m 4 - 
q 6.78 m 4 - 
r 6.61 m 4 - 

n-p 4.11-4.14 m 24 - 
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Synthesis [(Zn(H2O))3(2.2⊂DB24C8)][OTf] 8 
 
To a solution of [2.2⊂DB24C8][OTf] 4 (0.030g, 0.0148mmol) dissolved in 1mL of 

CH3CN was added to Zn(OTf)2 (11mg, 0.0311mmol) and the mixture was stirred at room 

temperature overnight. Isopropyl ether was slowly diffused to give an orange solid in 

quantitative yield. 
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Chapter 3 
 

The Effect of Crown Ether Substitution on the  
1,2-Bis(pyridinium)ethane⊂24-Crown-8 Templating Motif 

 
3.1 Introduction 

 
There are a number of strategies for the preparation of interlocked molecules, the most 

common way involves utilizing non-covalent interactions between a linear axle and a 

cyclic wheel to form an interpenetrated adduct, a [2]pseudorotaxane, followed by 

conversion to a permanently interlocked [2]rotaxane by capping with bulky end groups. 

There are a number of linear axles available such as dibenzylammonium ions, N-

benzylanilinium cations, and 1,2-bis(pyridinium)ethanes cations. The electronic 

properties of these axles can be tuned by adding different functional groups or changing 

their positions.1,2 A question that has not been addressed to the same extent, is can the 

association between the axle and wheel be effected in a similar fashion by varying the 

steric and electronic nature of the wheel? 

It seems, however, that the preparation of derivatives of DB24C8 can be challenging 

with reported long reactions times and low yields and only a few examples have been 

studied to evaluate their effect on pseudorotaxane formation. Gibson reported a version 

of DB24C8 containing two ester groups that gave a lower association constant with 

dibenzylammonium axle, [(Bn)2NH2⊂DEDB24C8]+; see Figure 3.1.3 It was concluded 

that the two electron withdrawing groups reduce the electron density of the oxygen atoms 

in the crown ether ring both inductively and through resonance therefore weakening the 

hydrogen bonding with the acidic protons on the axle. 
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Figure 3.1 [2]Pseudorotaxane with [(Bn)2NH2⊂DEDB24C8]+. 
 

Another study with 1,2-bis(pyridinium)ethanes axles by Liu, looked at both electron 

donating groups and electron withdrawing groups attached to DB24C8; see Figure 3.2.4 It 

was concluded, similar to Gibson’s study, that electron donating groups enhanced the 

binding ability, where as electron withdrawing groups reduced binding ability. One 

significant difference between the two studies was that Gibson pointed out that different 

association constants could be obtained if the ester groups were syn or anti to each other, 

with the more symmetric crown having the higher Ka, while Liu, and took no efforts to 

separate the positional isomers. 

O
NX

O

O
O

O

O

O

O

N X
R = H, CHO, NO2, CH3, NH2
X = H, CH3, C6H5, C5H5N

R

R  
Figure 3.2 Structural formula of the [2]pseudorotaxane studied by Liu.4 

 

In this chapter, we look at the effects on pseudorotaxane formation of using DB24C8 

with four aryl ether groups and various 1,2-bis(pyridinium)ethanes derivatives. We will 

also report the preparation of two classes of [2]rotaxanes using these new crown ethers. 
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3.2 Results and Discussion  
 

3.2.1 Synthesis of tetrakis-substituted crown ethers  
 
Tetrakis(bromomethyl)dibenzo-24-crown-8 was synthesized using a modified version of 

the procedure reported by Nishimura involving a double Friedel-Crafts alkylation of both 

the DB24C8 aromatic rings followed by bromination in-stiu to give TB-DB24C8 as a 

white solid; Scheme 3.1.5 The 1H NMR spectrum of TB-DB24C8 in CD2Cl2 reveals the 

presence of one aromatic peak at 6.85 ppm and the benzylic protons at 4.62 ppm. The 

main core remains virtually unchanged. 

O

O

O

OO

O

O

O

Br

Br Br

Br

O

O

O

O O

O

O

O

i)

TB-DB24C8 = 50%  
Scheme 3.1: i) (CH2O)n, CHCl3/CH3COOH, HBr, 60ºC 48h. 
 

In order to gain insight into the effect that these relatively bulky substituted groups 

have on [2]pseudorotaxane formation, different phenols groups were appended to 

DB24C8. The new crown ethers were prepared using a Williamson ether synthesis 

conditions with K2CO3 as the base (Scheme 3.2) and precipitation from MeCN. The 

desired compound was isolated as off white solids in about 60 % yield.  
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Scheme 3.2 i) TB-DB24C8, PhOH or 4-EtO2CPhOH, K2CO3, MeCN, N2, ∆ 120h. 
 

The 1H NMR spectrum of compounds TP-DB24C8 and TE-DB24C8 show the main 

core remains unchanged, relative to the starting material TB-DB24C8. The major 

differences arise from the aromatic (d) and the benzylic (e) protons. In both TP-DB24C8 

and TE-DB24C8 these resonances are shifted downfield due to the change from Br to 

phenolic oxygen; Table 3.1. The ESI-MS verifies that four substituent groups have been 

added to the crown ether. In each, the crown ethers interact strongly with sodium ions 

present; [TP-DB24C8 + Na]+  and [TE-DB24C8 + Na]+ at 895.3658 and 1183.4524 m/e, 

respectively. 

Table 3.1 Comparison of the chemical shifts of the wheels TB-DB24C8, TP-DB24C8, 
and TE-DB24C8 in CD2Cl2. 

Proton TB-DB24C8 TP-DB24C8 TE-DB24C8 
a 3.37 3.54 (0.17) 3.74 (0.37) 
b 3.85 3.77 (-0.08) 3.90 (0.05) 
c 4.12 4.01 (-0.11) 4.17 (0.05) 
d 6.86 7.03 (0.17) 7.01 (0.15) 
e 4.62 5.05 (0.43) 5.10 (0.48) 

 

Single crystals of TP-DB24C8 were grown by slow diffusion of hexanes into a 

saturated solution containing TP-DB24C8 in CHCl3. The new crown ether crystallizes 

with two molecules in a triclinic unit cell in space group P-1. The molecule takes on an S-

shaped conformation similar to other DB24C8 derived crown ethers, the appended ring 
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of the phenyl groups are pointing away from the opening of the macrocyclic cavity; 

Figure 3.3. The plane of the catechol rings extends to C11 and C16 (C17-C10-O2-C11 = 

-169.47º(4) and C10-C17-O5-C16 = 178.07º(4)). The adjacent carbon atoms in the 

polyether chain are included in the plane as well (C10-O2-C11-C12 = 168.87º(4) and 

C17-O5-C16-C15 = 176.81º(4). 

 
Figure 3.3 Crystal structure of TP-DB24C8. (O = red, C = black, wheel bonds = silver). 
 

The axles used for the [2]pseudorotaxane study were synthesized by a Menshutkin 

reaction with substituted pyridines and 1,2-dibromoethane; Scheme 3.3. The benzyl axle 

was synthesized by quaternization of the nitrogens of the 4-4’-pyridyl thread; Scheme 

3.4.2a 
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Scheme 3.4 i) benzyl bromide in MeNO2, NaOTf(aq), for 72 h. 
 

Due to the low solubility of the two tetrakis-substituted crown ethers in polar solvents 

such as MeCN, the crown ethers were individually dissolved with heat, and cooled to 

room temperature before being combined with the threads. The position of resonances 

from the individual components relative to their threaded counterparts allowed facile 

identification of the non-covalent interactions occurring between the two components and 

suggests that threading of the axle through the wheel gives rise to a [2]pseudorotaxane 

geometry. These chemical shift changes are summarized in Table 3.2 for 

[2]pseudorotaxanes.  

Table 3.2 1H NMR chemical shifts for the axles and [2]pseudorotaxanes undergoing slow 
exchange. 

Compound CH2N H-ortho-N+ H-meta-N+ 
[3.1]2+ 5.13 8.68 8.34 

[3.1⊂TP-DB24C8]2+ 5.48 9.02 7.54 
[3.1⊂TE-DB24C8]2+ 5.44 9.03 7.90 

[3.2]2+ 5.24 8.96 8.52 
[3.2⊂TP-DB24C8]2+ 5.56 9.21 8.17 
[3.2⊂TE-DB24C8]2+ 5.55 9.24 8.16 

[2.1]2+ 5.16 8.89 8.40 
[2.1⊂TP-DB24C8]2+ 5.54 9.18 8.04 
[2.1⊂TE-DB24C8]2+ 5.55 9.17 8.05 

[3.3]2+ 5.27 9.04 8.42 
[3.3⊂TP-DB24C8]2+ 5.63 9.33 8.22 
[3.3⊂TP-DB24C8]2+ 5.66 9.36 8.25 
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With observation of both the free and complexed components via slow exchange, the 

1H NMR spectra were used to measure the association constants (Ka) using the single 

point determination analysis. A complete set of thermodynamic parameters (∆Ho, and 

∆So) could be extracted utilizing a standard van’t Hoff analysis as follows.  

Starting from equation 1.1. 

KRTG ln−=∆ o   (1.1)    

and solving for the natural log, equation 1.2 can be obtained. 

RT

G
K

o∆−=ln  (1.2) 

Since for a change in temperature, the Gibbs free energy can be expressed in terms of 

enthalpy (∆H), and enthropy (∆S), as in equation 1.3. 

STHG ∆−∆=∆  (1.3) 

Substitution of equation 1.3 into 1.2 gives the linear expression of the van’t Hoff 

relationship, equation 1.4. 
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 (1.4) 

The [2]pseudorotaxane adducts formed between TP-DB24C8 or TE-DB24C8 and 3.1-

3.3 and 2.1 were subjected to variable temperature 1H NMR spectroscopy (VTNMR) 

experiments. The association constants of the new crown ethers with the selected threads 
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are reported in Table 3.3 along with previously measured parameters for DB24C8 as a 

comparison. 

Table 3.3 Ka (M
-1) and ∆G (kJ mol-1) values for the [2]pseudorotaxane formed between 

TP-DB24C8, TE-DB24C8 and 3.1-3.3 and 2.1 at 298K. 
Axle DB24C8 TP-DB24C8 TE-DB24C8 

[3.1]2+ 400 (-14.8) 1260 (-17.7) 880 (-16.8) 
[3.2]2+ 1940 (-18-8) 570 (-15.7) 390 (-14.8) 
[2.1]2+ 930 (-16.9) 1620 (-18.3) 1190 (-17.7) 
[3.3]4+ 1000 (-17.1) 820 (-16.6) 430 (-15.1) 

 

With respect to the association constants for [2]pseudorotaxanes derived from  

standard 1,2-bis(pyridinium)ethane axles and these new substituted crown ethers, it is 

clear that deviations from values found for DB24C8 must be a result of either electronic 

or steric affects. One would predict that, the association constant would increase due to 

the presence of four weakly inductive alkyl groups which make the crown aromatic rings 

more electron rich. This would increase the strength of the non-covalent interactions 

compared to DB24C8; Table 3.3.  Therefore, the lower Ka values observed in Table 3.3 

must be the result of steric effects playing a major role and off-setting these electronic 

effects. In general, ∆H◦ values are significantly negative indicating strong interactions and 

a true molecular recognition process.2 Interestingly, both ∆H◦ and ∆S◦ (see Table 3.4.) are 

significantly more favourable than with DB24C8.2 Both these trends can be attributed to 

the more efficient π-stacking contributions between axles and the crown. 

Table 3.4 Complete listing of ∆H◦ (kJmol-1) and ∆S◦ (Jmol-1K-1) values for 
[2]pseudorotaxanes in CD3CN. 

Axle DB24C8 TP-DB24C8 TE-DB24C8 
[3.1]2+ -60.8 (-147.2) -53.2 (-34.9) -71.6 (-54.1) 
[3.2]2+ -44.3 (-98.8) -58.9 (-41.2) -52.2 (-45.4) 
[2.1]2+ -48.4 (-99.4) -58.5 (-42.8) -34.2 (-19.5) 
[3.3]4+ -57.7 (-136.7) -53.7 (-37.0) -63.1 (-48.1) 
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Single crystals of [3.2⊂TP-DB24C8][OTf] 2 were grown by the slow diffusion of 

isopropyl ether into a MeCN solution of the [2]pseudorotaxane mixture. Figure 3.5 shows 

a ball-and-stick representation of the cation [3.2⊂TP-DB24C8]2+.  The crown ether takes 

up an S-shaped conformation comparable to the free crown itself. The axle takes on an 

anti conformation as observed previously.2a As expected, the cationic axle interpenetrates 

the central cavity of the wheel allowing the electron-rich aromatic portion of the wheel to 

π-stack with the electron-deficient axle. The structure is held together by a combination 

of N+···O ion dipole interactions, C-H···O hydrogen bonding and π-stacking. For the 

N+···O ion dipole interaction, there are close contacts between the quaternarized 

dipyridinium nitrogen atoms and the oxygen ethers at N1···O8 = 3.61, N1···O5 = 3.54, 

N1···O7 = 3.95, N1···O6 3.82 Å. The C-H···O hydrogen bonds between the methylene 

components of the thread and alternating oxygen atoms of the crown are summarized in 

Table 3.5 and the ~3.5 Å distance between aromatic rings of the axle and wheel is 

evidence of the π-stacking. In addition to these interactions which are known for all 

[2]pseudorotaxanes involving DB24C8, there is a close approach of an axle ester group 

of the quaternized N-atom of the axle to the crown ether at a distance of ~3.25 Å and a C-

H···π interaction with a phenyl groups on the crown with a distance ~3.01 Å; Figure 3.4. 

Table 3.5: Hydrogen bonds parameter in the crystal structure of [2]pseudorotaxane 
[3.2⊂⊂⊂⊂TP-DB24C8][OTf] 2. 
Hydrogen bonded atoms Distance (Å) C-H···O Angle (°) 

C9-O5 3.55 149 
C9-O7 3.50 163 
C6-O6 3.49 155 
C7-O6 3.10 129 

 

Single crystals of [3.3⊂TE-DB24C8][OTf] 4 were also grown by the slow diffusion of 

isopropyl ether into a MeCN solution of [2]pseudorotaxane. Figure 3.6 shows a ball-and-
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stick representation of the cation [3.3⊂TE-DB24C8]4+. As expected, the two components 

are held together by the same non-covalent interaction as the previous structure.  The 

N+···O ion dipole interactions are N2···O4 = 3.39, N2···O12 = 3.60, N2···O4 = 3.39, 

N2···O12 = 3.60 Å. The hydrogen bonds to the methylene components of the axle are 

with alternating oxygen’s on the crown ether as summarized in Table 3.6. 

Table 3.6: Hydrogen bonds parameter in the crystal structure of [2]rotaxane  [3.3⊂TE-
DB24C8][OTf] 4. 
Hydrogen bonded atoms Distance (Å) C-H···O Angle (°) 

C14-O4 3.30 142 
C14-O12 3.32 121 
C15-O5 3.23 153 
C13-O13 3.38 140 

 

The [2]pseudorotaxane [3.3⊂TE-DB24C8]4+ also shows evidence of π-stacking between 

the aromatic ring of the axle with the catechol ring on the crown ether. There is also a C-

H···π interaction from the benzoate group to the benzyl group of a distance of 3.53 Å; 

Figure 3.4. 
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Figure 3.4 Cartoon representation of the new addition interactions observed in the crystal 
of [2]rotaxane. The black dash lines indicate new secondary interactions. 
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Figure 3.5 A ball-stick representation of the cationic portion of the X-ray crystal 
structure of [3.2⊂TP-DB24C8]2+. The complex occupies a crystallographic centre of 
symmetry. All hydrogen atoms, all anions, and all solvent molecules have been omitted 
for clarity. (O = red, N = blue, C = black; wheel bonds = silver, axle bonds = gold). 
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Figure 3.6 A ball-stick representation of the cationic portion of the X-ray crystal 
structure of [3.3⊂TE-DB24C8]4+. The complex occupies a crystallographic centre of 
symmetry. All hydrogen atoms, all anions, and all solvent molecules have been omitted 
for clarity. (O = red, N = blue, C = black; wheel bonds = silver, axle bonds = gold). 
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3.2.2 Synthesis of the [2]rotaxanes via alkylation 

N-Alkylation of the 4-pyridyl group of the [2]pseudorotaxane formed between 

[2.1][OTf] 2 and TP-DB24C8, or TE-DB24C8 was accomplished by stirring in MeCN 

with 4-t-butylbenzyl bromide at room temperature for 4 days to produce compounds 

[3.4⊂TP-DB24C8]4+, or [3.4⊂TE-DB24C8]4+ in relatively low yield, but high purity, as 

mixtures of dibromide and ditriflate salts. Treatment of [3.4⊂TP-DB24C8]4+, or 

[3.4⊂TE-DB24C8]4+ in a two-phase nitromethane/sodium triflate (MeNO2/NaOTf(aq)) 

mixture at room temperature resulted in a red solid, as shown in Scheme 3.5.  
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Scheme 3.5 i) [2.1][OTf] 2, TP-DB24C8 or TE-DB24C8, 4-t-butylbenzyl bromide, 
CH3CN, RT  96 h ii) MeNO2/NaOTf(aq) at RT for 24 h.  

[3.4⊂TP-DB24C8]4+ = 30% 
[3.4⊂TE-DB24C8]4+ = 20% 
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Figure 3.7 Comparison of the 1H NMR shifts of (a) TP-DB24C8 (b) [3.4][OTf] 4, and (c) 
[3.4⊂TP-DB24C8][OTf] 4 in CD3CN at 500 MHz. 
 

 
Figure 3.8 Comparison of the 1H NMR shifts of (a) TE-DB24C8 (b) [3.4][OTf] 4, and (c) 
[3.4⊂TE-DB24C8][OTf] 4 in CD3CN at 500 MHz. 
 

The 1H NMR spectra of compound [3.4⊂TP-DB24C8][OTf] 4 and [3.4⊂(TE-

DB24C8][OTf] 4 in CD3CN are shown in Figure 3.7 and 3.8, and some of the major peaks 
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are summarized in Table 3.7. Evidence supporting the various supramolecular 

interactions such as hydrogen bonding and π-π stacking are apparent. Hydrogen bonding 

between the ethylene (a) and α-pyridinium (b) protons of the thread and the polyether 

oxygen atoms of the wheel are demonstrated by a downfield shift of the signals for a at 

5.53 ppm for compound [3.4⊂TP-DB24C8]4+ and 5.61 ppm for compound [3.4⊂TE-

DB24C8]4+. The α-pyridinium (b) proton signal is at 9.36 ppm for both compound 

[3.4⊂⊂⊂⊂TP-DB24C8]4+ and [3.4⊂TE-DB24C8]4+.  

Table 3.7 1H NMR assignments for [3.4][OTf] 4, [3.4⊂TP-DB24C8][OTf] 4, and 
[3.4⊂TE-DB24C8][OTf] 4 in CH3CN. 

Proton [3.4]4+ [3.4⊂TP-DB24C8]4+ [3.4⊂TE-DB24C8]4+ 
a 5.26 5.61 (0.35) 5.53 (0.27) 
b 8.99 9.36 (0.37) 9.36 (0.37) 
c 8.47 8.23 (-0.24) 8.25 (-0.22) 
d 8.42 8.16 (-0.26) 8.19 (-0.23) 
e 8.99 8.86 (-0.13) 8.83 (-0.16) 

 

Table 3.8 Comparison of the chemical shifts of the [2]rotaxanes [3.4⊂TP-
DB24C8][OTf] 4 and [3.4⊂TE-DB24C8][OTf] 4  in CD3CN. 
Proton TP-DB24C8 [3.4⊂TP-DB24C8]4+ TE-DB24C8 [3.4⊂TE-DB24C8]4+ 

j 3.66 4.05 (0.39) 3.65 4.05 (0.40) 
k 3.78 4.05 (0.27) 3.77 4.05 (0.28) 
l 4.14 4.05 (-0.09) 4.12 4.05 (-0.07) 
m 7.10 6.86 (-0.24) 7.10 6.86 (-0.24) 
n 5.09 4.67 (-0.42) 5.14 4.76 (-0.42) 

 

The 1H NMR spectrum also shows changes for the wheel as is summarized in Table 

3.8. The differences arise from the single aromatic proton on the catechol ring (m), and 

the benzylic protons (n). As mentioned, the free crown ether, TP-DB24C8, shows a 

singlet at 7.10 ppm for m but for the [2]rotaxane [3.4⊂TP-DB24C8]4+ this singlet shifts 

upfield to 6.86 ppm (∆δ = 0.24 ppm). Also the benzylic protons for the free crown ether 

show a singlet at 5.09 ppm but this singlet shifts upfield to 4.67 ppm (∆δ = 0.42 ppm). 

Similarly, for crown ether TE-DB24C8, the singlet appears at 7.10 ppm for m but for the 
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[2]rotaxane [3.4⊂TE-DB24C8]4+ this singlet shifts upfield to 6.86 ppm (∆δ = 0.24 ppm). 

Also the benzylic protons for the free crown ether, show a singlet at 5.14 ppm but for the 

[2]rotaxane this singlet shifts upfield to 4.76 ppm (∆δ = 0.38 ppm). The ESI-MS 

confirmed the interlocked nature of the complex, with just the loss of three counter ions 

{[ 3.4⊂TP-DB24C8][OTf]} 3+, and {[3.4⊂TE-DB24C8][OTf]} 3+ at 551.9100 m/e and 

647.9409 m/e respectively. 

Single crystals were grown by the slow diffusion of isopropyl ether into a MeCN 

solution containing [3.4⊂TP-DB24C8][OTf] 4. The red crystals appeared as small blocks 

over a few days. Figure 3.10 shows a ball-and-stick representation of the cationic portion 

of [3.4⊂TP-DB24C8]4+. The structure reveals typical features for the DB24C8 portion 

adopting an S-conformation while the NCH2CH2N unit exhibits an anti conformation. 

[3.4⊂TP-DB24C8]4+ is stoppered at both ends by a t-butyl benzyl group. As expected, 

the cationic axle interpenetrates the central cavity of the wheel allowing the electron-rich 

aromatic portion of the wheel to π-stack with electron-deficient axle. The structure also 

reveals a high degree of C-H···O hydrogen bonding between the components. The four 

protons ortho- to N3- as well the four central protons attached to ethylene bridge form 

eight hydrogen bonds with the oxygens of the wheel with C-O distances ranging from 

3.42 - 3.64 Å. Examination of the appended phenolic ether groups of the crown shows 

there is T-shaped π-interaction of the phenolic ether group of O1 with the benzylic 

protons off the stopper, as seen in Figure 3.9a. 

Single crystals were grown by the slow diffusion of isopropyl ether into a MeCN 

solution containing [3.4⊂TE-DB24C8][OTf] 4. Figure 3.11 shows a ball-and-stick 

representation of the cationic portion of [3.4⊂TE-DB24C8]4+. The structure reveals 
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typical features of the DB24C8 portion which adopts a typical S-conformation while the 

NCH2CH2N unit exhibits an anti conformation. [3.4⊂TE-DB24C8]4+ is stoppered at both 

ends by a t-butyl benzyl group. As expected, the cationic axle interpenetrates the central 

cavity of the wheel allowing the electron-rich aromatic portion of the wheel to π-stack 

with electron-deficient axle. The structure also reveals a high degree of C-H···O hydrogen 

bonding between the components. The four proton ortho- to N3- as well the four central 

protons attached to ethylene bridge form eight hydrogen bonds with the oxygen’s of the 

wheel with C-O distances ranging from 3.63 to 3.73 Å. Examination of the appended 

benzoate groups of the crown shows that one of the aromatic rings is involved in π-

stacking with the aromatic ring of a 4-t-butyl benzyl stopper at a distance of 

approximately 3.5 Å; Figure 3.9b 
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Figure 3.9 Cartoon representation of the new additional interactions observed in the 
crystal structure of [2]rotaxanes. The black dash lines indicate new secondary 
interactions. 
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Figure 3.10 A ball-stick representation of the cationic portion of the X-ray crystal 
structure of [3.4⊂TP-DB24C8]4+. The complex occupies a crystallographic centre of 
symmetry. All hydrogen atoms, all anions, and all solvent molecules have been omitted 
for clarity. (O = red, N = blue, C = black; wheel bonds = silver, axle bonds = gold). 
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Figure 3.11 A ball-stick representation of the cationic portion of the X-ray crystal 
structure of [3.4⊂TE-DB24C8]4+. The complex occupies a crystallographic centre of 
symmetry. All hydrogen atoms, all anions, and all solvent molecules have been omitted 
for clarity. (O = red, N = blue, C = black; wheel bonds = silver, axle bonds = gold). 



 84 

3.2.3 Synthesis of [2]rotaxanes through acylation 
 
[2]Rotaxanes were synthesized through esterification of the [2]pseudorotaxane formed 

between 1,2-bis(4-pyridine-4-phenylmethanol)ethane [3.5][BF4]2 with TP-DB24C8, or 

TE-DB24C8 stirring in MeCN/CH2Cl2  at room temperature for 3 days. 
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Scheme 3.6 i) [3.5][BF4]2, TP-DB24C8 or TE-DB24C8, 4-tert-butylbenzoic anhydride, 
nBu3P (cat.), MeCN/CH2Cl2 for 72 h. 
 

[3.6⊂TP-DB24C8]2+ = 57% 
[3.6⊂TE-DB24C8]2+ = 10% 
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Figure 3.12 Comparison of the 1H NMR shifts of (a) TP-DB24C8 (b) [3.6][BF4]2, and 
(c) [3.6⊂TP-DB24C8][BF4]2 in CD3CN at 500 MHz. 
 

 
Figure 3.13 Comparison of the 1H NMR shifts of (a) TE-DB24C8 (b) [3.6][BF4]2, and 
(c) [3.6⊂TE-DB24C8][BF4]2 in CD3CN at 500 MHz. 
 

For the 1H NMR spectra of compounds [3.6⊂TP-DB24C8][BF4]2 and [3.6⊂TE-

DB24C8][BF4]2
 in CD3CN  (see Scheme 3.6, and Figure 3.12, 3.13), some of the major 
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peaks are summarized in Table 3.9. Evidence supporting the various supramolecular 

interactions such as hydrogen bonding and π-π stacking are apparent. Hydrogen bonding 

between the ethylene (a) and α-pyridinium (b) protons of the thread with the polyether 

oxygen atoms of the wheel are demonstrated by the downfield shift of these signals; (a) 

protons to 5.48 ppm for both and (b) protons to 9.03 and 9.04 ppm for [3.6⊂TP-

DB24C8]2+ and [3.6⊂TE-DB24C8]2+ respectively.  

Table 3.9 1H NMR assignments for [3.6][BF4]2, [3.6⊂TP-DB24C8][BF4]2, and 
[3.6⊂TE-DB24C8][BF4]2in CH3CN. 

Protons [3.6]2+ [3.6⊂TP-DB24C8]2+ [3.6⊂TE-DB24C8]2+ 
a 5.10 5.48 (0.38) 5.48 (0.38) 
b 8.65 9.03 (0.38) 9.04 (0.39) 
c 8.30 7.98 (-0.32) 8.00 (-0.30) 
d 7.96 7.59 (-0.37) 7.63 (-0.33) 
e 7.54 7.44 (-0.10) 7.31 (-0.23) 

 

The 1H NMR spectra also show changes in the wheel, which are summarized in Table 

3.10. The differences arise from the single aromatic proton on the parent DB24C8 unit 

(m), and the benzylic protons (n). As mentioned, the free crown ether, TP-DB24C8, 

shows a singlet at 7.10 ppm for m but for the [2]rotaxane [3.6⊂TP-DB24C8]2+ this 

singlet shifts upfield to 6.87 ppm (∆δ = 0.23 ppm). Also the benzylic protons for the free 

crown ether, shows a singlet at 5.09 ppm but this singlet shifts upfield to 4.63 ppm (∆δ = 

0.46 ppm). Similarly the crown ether, TE-DB24C8 the singlet at 7.10 ppm for m but for 

the [2]rotaxane [3.6⊂TE-DB24C8]2+ but this singlet shifts upfield to 6.84 ppm (∆δ = 

0.26 ppm). Also the benzylic proton for the free crown ether show a singlet at 5.14 ppm 

but for the [2]rotaxane this singlet shifts upfield to 4.65 ppm (∆δ = 0.49 ppm). The ESI-

MS confirmed the interlocked nature of the complex, with just the loss of two counter 
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ions, [3.6⊂TP-DB24C8]2+ and [3.6⊂TE-DB24C8]2+ at 795.3798 m/e and 939.4182 m/e, 

respectively. 

Table 3.10 Comparison of the chemical shifts of the [2]rotaxanes [3.6⊂TP-
DB24C8][BF4]2 and [3.6⊂TE-DB24C8][BF4]2  in CD3CN. 
Proton TP-DB24C8 [3.6⊂⊂⊂⊂TP-DB24C8]2+ TE-DB24C8 [3.6⊂⊂⊂⊂TE-DB24C8]2+ 

j 3.66 4.02 (0.36) 3.65 4.05 (0.40) 
k 3.78 4.02 (0.24) 3.77 4.05 (0.28) 
l 4.14 4.02 (-0.12) 4.12 4.05 (-0.07) 
m 7.10 6.87 (-0.23) 7.10 6.84 (-0.26) 
n 5.09 4.63 (-0.46) 5.14 4.65 (-0.49) 

 

3.3 Conclusion  
 
The combination of linear 1,2-bis-(pyridinium)ethane axles with symmetric substituted 

crown ethers is a versatile templating motif for the formation of [2]pseudorotaxanes, both 

in solution and solid state. It was shown that the strength of the non-covalent interactions 

can be controlled by varying the nature of the substituent on the wheel. In general, with 

electron donating groups on wheel the association increases relative to DB24C8. 

However, we have also shown that the besides electronic effects, sterics can affect the 

strength of these non-covalent interactions if the axles are elaborated with large stoppers. 

The bulky groups of the wheel can interfere with the benzyl group of the axle therefore 

lowering the association. The 1,2-bis(pyridinium)ethane–24-crown-8 templating motif is 

a versatile recognition entity for the formation of [2]rotaxanes with these substituted 

crown ethers adding additional non-covalent interactions to the motif. 
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3.4 Experimental  
 

3.4.1 General Methods  
 
DB24C8, paraformaldehyde, phenol, 4-hydroxybenzoate, 4-t-butylbenzyl bromide, 47% 

HBr, and nitromethane were obtained from Aldrich and used as received. Acetic acid was 

obtained from ACP chemicals, and chloroform obtained from VWR; both were used as 

received. Solvents were dried using an Innovative Technology Solvent Purification 

System. 4-t-Butylbenzoic anhydride, 1,2-bis(4-phenyl-1-pyridyl)ethane[OTf]2 

[3.1][OTf] 2,
2a (1,2-bis(4-ethylester-1-pyridyl)ethane[OTF]2 [3.2][OTf] 2,

2a 1,2-bis(4,4’-

dipyridyl)ethane[OTf]2 [2.1][OTf] 2,
2a and 1,2-bis(4’-benzyl-4-4’-dipyridyl)ethane[OTf]4 

[3.3][OTf] 4,
2a  1,2-bis(4’-t-butyl-benzyl-4-4’-dipyridyl)ethane[OTf]4 [3.4][OTf] 4,

2a 1,2-

bis(4-pyridine-4ylphenylmethanol)ethane[BF4]2 [3.5][BF4]2
6 and 1,2-bis(4-t-butyl-

benzoate)benzyl-pyridinium))ethane tetrafluoroborate [3.6][BF4]2
6 were synthesized 

using literature methods. Thin layer chromatography (TLC) was performed on Merck 

Silica gel F254 plates and viewed under UV light. Column chromatography was 

performed using Silicycle Ultra Pure Silica Gel (230 – 400 mesh).  1H NMR spectra were 

obtained on a Bruker Avance 500 instrument operating at 500 MHz. Deuterated solvents 

were purchased from Cambridge Isotope Laboratories Inc. and used as received. High-

resolution mass spectra were recorded in 50/50 MeCN/H2O on a Micromass LCT 

Electrospray TOF mass spectrometer. 
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Synthesis TB-DB24C8 
 
DB24C8 (2.00 g, 4.45 mmol) and paraformaldehyde (3.17 g, 20 mmol)  were added to 

1:1 mixture CHCl3/AcOH (20 mL) and heated to 60 °C before a solution 47% HBr (4 

mL) in AcOH (5 mL) was added. The reaction was heated at 60 °C for 2 days during 

which time a white solid forms. The reaction was poured over ice, and washed with 

CHCl3 (2 x 20 mL). The solvent was evaporated and recrystallized twice from CHCl3. 

Yield 1.62 g (50%). MP: 202-205°C. 
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Table 3.11 1H-NMR spectroscopic data for TB-DB24C8 in CDCl3 

 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 3.79 m 8 - 
b 3.90 m 8 - 
c 4.15 m 8 - 
d 6.83 s 4 - 
e 4.59 s 8 - 

 
Table 3.12 1H-NMR spectroscopic data for TB-DB24C8 in CD2Cl2 

 
Proton δ (ppm) Multiplicity # protons J (Hz) 

a 3.37 m 8 - 
b 3.85 m 8 - 
c 4.12 m 8 - 
d 6.86 s 4 - 
e 4.62 s 8 - 
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Synthesis TP-DB24C8 
 
To a solution of TB-DB24C8 (1.00 g, 1.22 mmol) and phenol (0.459 g, 4.88 mmol) in 

degassed MeCN was added K2CO3 (1.01 g, 7.32 mmol) and the mixture was stirred under 

reflux for 5 days. The solvent was then evaporated and the residue was partitioned 

between CH2Cl2 and water. The organic layer was washed with water (2 x 50 mL), dried 

(MgSO4), and concentrated to give TP-DB24C8 as an off-white solid which was 

recrystallized from MeCN. Yield 0.806 g (76%).  MP: 135-136°C. ESI-MS: m/z [TP-

DB24C8 + Na]+ calc. 895.3669, found 895.3658. 
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Table 3.13 1H-NMR spectroscopic data for TP-DB24C8 in CD2Cl2 

 
Proton δ (ppm) Multiplicity # protons J (Hz) 

a 3.75 m 8 - 
b 3.85 m 8 - 
c 4.14 m 8 - 
d 7.04 s 4 - 
e 5.06 s 8 - 

f,h 6.95 m 12 - 
g 7.27 t 8 Jg,f = 7.6, Jg,h = 

8.2 
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Table 3.14 1H-NMR spectroscopic data for TP-DB24C8 in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 3.66 m 8 - 
b 3.78 m 8 - 
c 4.13 m 8 - 
d 7.10 s 4 - 
e 5.09 s 8 - 

f,h 6.92 m 12 - 
g 7.27 t 8 Jg,f = 7.6, Jg,h = 

8.2 
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Table 3.15 13C-NMR spectroscopic data for TP-DB24C8 in CD2Cl2 

 
Carbon δ (ppm) 

1 121.3 
2 128.7 
3 115.6 
4 159.0 
5 67.8 
6 129.8 
7 115.6 
8 149.0 
9 69.8 

10 70.1 
11 71.5 
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Synthesis TE-DB24C8 
 
The same procedure as for the preparation of TB-DB24C8 (1.00 g, 1.22 mmol) was used 

with ethyl 4-hydroxybenzoate (0.810 g, 4.88 mmol) instead of phenol. Yield 0.877g, 

(62%). MP: 120-123°C. ESI-MS: m/z [TE-DB24C8 + Na]+ calc. 1183.4515, found 

1183.4524. 
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Table 3.16 1H-NMR spectroscopic data for TE-DB24C8 in CD2Cl2 

 
Proton δ(ppm) Multiplicity # protons J (Hz) 

a 3.79 m 8 - 
b 3.90 m 8 - 
c 4.17 m 8 - 
d 7.01 s 4 - 
e 5.10 s 8 - 
f 6.95 d 8 Jf,g = 8.5 
g 7.98 d 8 Jg,f = 8.4 
h 4.35 q 8 Jh,i = 7.0  
i 1.39 t 12 Ji,h = 7.0 
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Table 3.17 1H-NMR spectroscopic data for TE-DB24C8 in CD3CN 
 

Proton δ(ppm) Multiplicity # protons J (Hz) 
a 3.65 m 8 - 
b 3.77 m 8 - 
c 4.12 m 8 - 
d 7.10 s 4 - 
e 5.14 s 8 - 
f 7.03 d 8 Jf,g = 8.5 
g 7.90 d 8 Jg,f = 8.4 
h 4.28 q 8 Jh,i = 7.0  
i 1.32 t 12 Ji,h = 7.0 
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Table 3.18 13C-NMR spectroscopic data for TE-DB24C8 in CD2Cl2 

 
Carbon δ (ppm) 

1 14.7 
2 61.2 
3 166.6 
4 124.0 
5 128.3 
6 116.1 
7 162.8 
8 68.4 
9 132.0 

10 114.9 
11 145.0 
12 70.0 
13 70.3 
14 71.6 
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Synthesis [3.4⊂TP-DB24C8][OTf] 4 

 

TP-DB24C8 (0.140 g, 0.160 mmol) and [2.1][OTf] 2 (0.050 g, 0.078 mmol) were 

dissolved in CH3CN (10 mL) and stirred overnight. 4-t-Butylbenzyl bromide (0.150 g, 

0.660 mmol) was added, and the mixture stirred for 4 days. The organic layer was 

removed, CH2Cl2 (25 mL) was added to the residue and the mixture was stirred for 30 

min. The solid that remained was filtered and the CH2Cl2 was removed. The resulting 

orange solid was added to a mixture of MeNO2 and NaOTf(aq) stirred overnight. The 

organic layer was separated, dried (MgSO4) and then evaporated to give an orange 

residue which was stirred in toluene. The remaining orange solid was dissolved in 

CH3CN and isopropyl ether was slowly diffused to give an orange solid. Yield 0.030 g, 

30 %. ESI-MS: m/z [3.4⊂TP-DB24C8 + OTf]3+ calc. 551.9104, found 551.9100. 
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Table 3.19 1H-NMR spectroscopic data for [3.4⊂TP-DB24C8]4+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.53 s 4 - 
b 9.36 d 4 Jb,c = 6.6 
c 8.25 d 4 Jc,b = 6.6 
d 8.19 d 4 Jd,e = 6.6 
e 8.83 d 4 Je,d = 7.0 
f 5.62 s 4 - 
g 7.02 d 4 Jg,h = 7.3 
h 7.24 d 4 Jh,g = 8.3 
i 1.22 s 18 - 

q,p 7.32-7.36 dd 12 Jk,l = 8.0, Jk,j = 
6.9 

o 6.91 d 8 Jl,k = 8.0 
n 4.67 s 8 - 
m 6.86 s 4 - 

l,k,j 4.08-4.02 m 24 - 
 
 
Synthesis [3.4⊂TE-DB24C8][OTf] 4 
 
TE-DB24C8 (0.185 g, 0.159 mmol) and [2.1][OTf] 2 (0.050 g, 0.078 mmol) were 

dissolved in CH3CN (10 mL) and stirred overnight. 4-t-Butylbenzyl bromide (0.150 g, 

0.660 mmol) was added, and the mixture was stirred for 4 days. The organic layer was 

removed, CH2Cl2 (25 mL) was added to the residue and the mixture stirred for 30 min. 

The solid that remained was filtered and the CH2Cl2 was removed. The orange solid was 

dissolved in a mixture of MeNO2 and NaOTf(aq) and then stirred overnight. The organic 

layer was separated, dried (MgSO4) and evaporated. The residue was then stirred in 

toluene. The remaining orange solid was dissolved in CH3CN and isopropyl ether slowly 

diffused to give an orange solid. Yield 0.037 g, 20 %. ESI-MS: m/z [3.4⊂TE-DB24C8 + 

OTf]3+ calc. 647.9385, found 647.9409. 
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Table 3.20 1H-NMR spectroscopic data for [3.4⊂TE-DB24C8]4+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.61 s 4 - 
b 9.36 d 4 Jb,c = 6.8 
c 8.23 d 4 Jc,b = 6.8 
d 8.16 d 4 Jd,e = 6.6 
e 8.86 d 4 Je,d = 6.9 
f 5.62 s 4 - 
g 7.24 d 8 Jg,h = 8.3 
h 7.34 d 8 Jh,g = 8.3 
i 1.22 s 18 - 
r 1.35 t 8 Jj,k = 7.1 
q 4.33 q 8 Jk,j = 7.1 
p 7.98 d 8 Jl,m = 8.8 
o 6.96 d 8 Jm,l = 8.8 
n 4.76 s 8 - 
m 6.86 s 4 - 

j,k,l 4.02-4.08 m 24 - 
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Synthesis [3.6⊂TP-DB24C8][BF4]2 

 
[3.5][BF4]2 (0.060 g, 0.105 mmol) was combined with TP-DB24C8 (0.183 g, 0.210 

mmol) and 4-t-butylbenzoic anhydride (0.142 g, 0.63 mmol) in acetonitrile/CH2Cl2 (10 

mL). nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 72 

h at room temperature. The solvent was removed under pressure and the product was 

stirred in anhydrous ethanol for 30 min. Column chromatography was performed using 

MeOH/CH2Cl2 (3:2) and the solvent removed. The product was dissolved in acetonitrile 

and isopropyl ether was allowed to diffuse into the solution. The final product was white 

solid. Yield 0.107 g. 57 %. ESI-MS: m/z [3.6⊂TP-DB24C8]2+ calc. 795.3766, found 

795.3798. 
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Table 3.21 1H-NMR spectroscopic data for [3.6⊂TP-DB24C8]2+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.48 s 4 - 
b 9.03 d 4 Jb,c = 6.9 
c 7.98 d 4 Jc,b = 6.9 
d 7.59 d 4 Jd,e = 8.3 
e 7.44 d 4 Je,d = 8.6 
f 5.36 s 4 - 
g 7.91 d 4 Jg,h = 8.6 
h 7.71 d 4 Jh,g = 8.4 
i 1.31 s 18 - 
q 6.92 dd 4 Jj,k = 7.4 
p 7.23 dd 8 Jk,l = 7.5, Jk,j = 

7.4 
o 6.90 d 8 Jl,k = 7.9 
n 4.63 s 8 - 
m 6.87 s 4 - 

l,k,j 4.03-4.11 m 24 - 
 
 
 
 
Synthesis [3.6⊂TE-DB24C8][BF4]2 

 

[3.5][BF4]2 (0.060 g, 0.105 mmol) was combined with TE-DB24C8 (0.242 g, 0.210 

mmol) and 4-t-butylbenzoic anhydride (0.142 g, 0.63 mmol) in acetonitrile/CH2Cl2 (10 

mL). nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 72 

h at room temperature. The solvent was removed under pressure and the product was 

stirred in anhydrous ethanol for 30 min. Column chromatography was preformed with 

MeOH/CH2Cl2 (3:2) and the solvent removed. The product was dissolved in acetonitrile 

and isopropyl ether was allowed to diffuse into the solution. The resultant product was 

white solid. Yield 0.015 g, 10 %. ESI-MS: m/z [3.6⊂TE-DB24C8]2+ calc. 939.4188, 

found 939.4182. 
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Table 3.22 1H-NMR spectroscopic data for [3.6⊂TE-DB24C8]2+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.48 s 4 - 
b 9.04 d 4 Jb,c = 5.4 
c 8.00 d 4 Jc,b = 5.6 
d 7.63 d 4 Jd,e = 7.7 
e 7.74 d 4 Je,d = 7.5 
f 5.36 s 4 - 
g 7.31 d 4 Jg,h = 7.9 
h 7.81 d 4 Jh,g = 7.9 
i 1.26 s 18 - 
r 1.32 t 12 Jj,k = 7.1 
q 4.27 q 8 Jk,j = 7.1 
p 7.87 d 8 Jl.m = 8.5 
o 6.91 d 8 Jl.,m = 8.5 
n 4.65 s 8 - 
m 6.84 s 4 - 

l,k,j 4.01 – 4.09 m 24 - 
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Chapter 4 
 

Effects of Crown Ether Substituents on [2]Rotaxane ligands, 
Complexes and Metal-Organic Frameworks  

 
4.1 Introduction  

 
Incorporating transition metals into interlocked molecules has created a number of 

interesting systems such as coordination polymers (CPs), metal organic frameworks 

(MOFs)1 and interlocked molecules with stoppers as ligands.2 Since the rotaxane linker 

can be modified by changing the crown ether wheel but retaining the bridging axle unit, 

this may be a useful methodology for changing the resulting properties of the polymer, 

framework or complex. Recently, Loeb changed the length of the axle by converting 

pyridine linkers to pyridine N-oxides, allowing the formation of 3D MORFs with 

lanthanide ions.3 Using transition metals with this extended axle gave an interesting 2D- 

square grid framework with two pseudorotaxane ligands, and two axles (Scheme 4.1).  
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Scheme 4.1 i) Cd(OTf)2 in MeNO2. 
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4.2 Results and Discussion  
 

4.2.1 Synthesis of tolyterpy [2]Rotaxane 
 
As in Chapter 2, the ligand tolylterpy  was chosen as the source of the terpyridine unit to 

be introduced as the stopper for a [2]rotaxane ligand. N-alkylation of the 

[2]pseudorotaxane formed between [2.1]2+ and TE-DB24C8, was accomplished by 

stirring in MeNO2 at room temperature for 7 days to produce [4.2⊂(TE-DB24C8)]4+
 in 

relatively low yield, but high purity, as mixtures of bromide and triflate salts. Treatment 

of [4.2⊂(TE-DB24C8)]4+
 in a two-phase MeNO2/NaOTf(aq) mixture at room temperature 

resulted in a red solid; Scheme 4.2. 
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Scheme 4.2 i) [4.1⊂TE-DB24C8]2+, Br-tolyterpy  in MeNO2/NaOTf(aq) at RT for 168 
h. 
 

The 1H NMR spectrum of [4.2][OTf] 4, [4.2⊂(TE-DB24C8)][OTf] 4 and TE-DB24C8 

in CD3CN are shown in Figure 4.1 and some of the major peaks are summarized in 

[4.2⊂TE-DB24C8]4+ = 30% 
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Tables 4.1 and 4.2. The rotaxane shows evidence supporting the various supramolecular 

interactions such as hydrogen bonding and π-π stacking. Hydrogen bonding between the 

ethylene (a) and α-pyridinium (b) protons of the axle with the polyether oxygen atoms of 

the macrocycle is evidenced by a downfield shift of the signals for a  and b with a ∆δ of 

0.35 and 0.32 ppm respectively. The benzylic protons (f) from the stopper are shifted ∆δ 

0.17 ppm.  The 1H NMR spectrum reveals the presence of benzylic protons (r ), and a 

singlet for the aromatic protons (s) which are shifted upfield by ∆δ 0.50 and 0.25 ppm 

respectively due to π-stacking. 

 
Figure 4.1 Comparison of the 1H NMR spectra of TE-DB24C8, [4.2⊂TE-
DB24C8][OTf] 4, and  [2.2][OTf] 4, and  in CD3CN at 500 MHz. 
 
 
Table 4.1 Chemical shift data [2.2][OTf] 4, and [2]rotaxane, [4.2⊂TE-DB24C8][OTf] 4. 

Protons 2.24+ [4.2⊂TE-DB24C8]4+ 

a 5.27 5.62 (0.35) 
b 9.04 9.36 (0.32) 
c 8.49 8.27 (-0.22) 
d 8.46 8.27 (-0.18) 
e 9.04 8.98 (-0.06) 
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Table 4.2 Chemical shift data TE-DB24C8, and [4.2⊂TE-DB24C8][OTf] 4 in CH3CN. 
Protons TE-DB24C8 [4.2⊂TE-DB24C8]4+ 

s 7.10 6.84 (0.26) 
r 5.14 4.64 (0.50) 
q 6.95 6.94 (0.01)  
p 7.98 7.88 (0.10) 
o 4.35 4.14 (0.21) 
n 1.39 1.21 (0.18) 

 

The ESI-MS of {[4.2⊂(TE-DB24C8)][OTf]} 2+ shows a peak at 1221.4041 m/e, 

which demonstrates the [2]rotaxane containing the substituent crown ether present.  

Single crystals of [4.2⊂(TE-DB24C8)][OTf] 4 were grown by the slow diffusion of 

isopropyl ether into a MeNO2 solution. The orange crystals appeared as blocks in a few 

days. The tetra-substituted crown ether shows the typical features of the parent DB24C8 

adopting an S-conformation; Figure 4.3. The appended ethyl 4-hydroxybenzoate groups 

point towards the stoppers, while the cationic NCH2CH2N unit exhibits an anti 

conformation typically exhibited by other [2]rotaxanes built with this 1,2-bis 

(pyridinium)ethane core. [4.2⊂(TE-DB24C8)]4+ is stopped at both ends with a tolylterpy  

group. The structure also reveals a high degree of C-H···O hydrogen-bonding between the 

components. The four α-pyridinium protons as well as the four protons attached to the 

ethylene bridge form eight hydrogen-bonds with the oxygen atoms of the wheel with C-

C-H…O distances ranging from 3.25(8) – 3.34(8) Å. The terpyridine group is essentially 

planar with the nitrogen atoms in the expected transoid arrangement.4 In addition to the 

hydrogen-bonding and π-stacking between the thread and the wheel, there is π-stacking 

between the tolyl group of the terpyridine and one of the appended ethyl 4-

hydroxybenzoate groups at ~3.4 Å; Figure 4.2. This interaction is reflected in a 0.17 ppm 

upfield shift of proton f. 
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Figure 4.2 Additional interaction observed in the crystal of [4.2⊂TE-DB24C8]4+. The 
black dash line indicates a new secondary interaction. 
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Figure 4.3 Ball-and-stick representation of the cationic portion of the X-ray crystal 
structure of [4.2⊂TE-DB24C8]4+. The complex occupies a crystallographic centre of 
symmetry. All anions and all solvent molecules have been omitted for clarity. (Ru = blue-
gray, O = red, N = blue, C = black; wheel bonds = silver, axle bonds = gold). 
 

The reaction of [4.2⊂TE-DB24C8][OTf] 4 with Ru(terpy)Cl3 is outlined in Scheme 

4.3. The synthesis was carried out in a 1:1 EtOH/H2O mixture and the reaction mixture 

was refluxed for 1 day. The dark red complex could be easily isolated and purified by 

recrystallization from acetonitrile and diethyl ether. 
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Scheme 4.3 i) Ru (terpy)Cl3, 1:1 EtOH/H2O, reflux, 24 h. 
 

The 1H NMR spectrum of the ruthenium complex was recorded in CD3CN as the 

triflate salt. The numbering scheme can be seen in Scheme 4.3. The spectrum revealed an 

upfield shift of the protons m-j  and m’-j’  attributed to the electronic effects of the 

ruthenium(II) centre, confirming the formation of the complex. The spectrum also 

showed a nice pattern whereby chemically equivalent peaks from the two different terpy 

groups, that belong m and m’ or l and l’  were resolved enough that they could be clearly 

distinguished from each other; Figure 4.4. In order to determine which set of peaks 

belonged to which terpyridine unit, conventional 2D NMR techniques (1H – 1H COSY) 

were employed.  

[(Ru(terpy))2 

(4.2⊂TE-DB24C8)]8+ = 98% 
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Figure 4.4 1H NMR spectrum of [Ru(terpy))2(4.2⊂TE-DB24C8)][OTf] 8 at 500MHz. 
 
Table 4.3 A comparison of the 1H NMR chemical shifts for dumbbell [2.2][OTf] 4, 
[2]rotaxane ligand [4.2⊂TE-DB24C8][OTf] 4 and complex [(Ru(terpy)2)(2.2)][OTf] 8, 
[(Ru(terpy)2)(4.2⊂TE-DB24C8)][OTf] 8. 

proton [2.2]4+ [4.2⊂ 
TE-DB24C8]4+ 

[(Ru(terpy) 2)(2.2)]8+ [(Ru(terpy) 2)(4.2⊂ 
(TE-DB24C8)]8+ 

a 5.27 5.62 (0.35) 5.34 (0.07) 5.67 (0.05) 
b 9.04 9.36 (0.32) 9.19 (0.15) 9.43 (0.07) 
c 8.49 8.27 (-0.22) 8.58 (0.09) 8.42 (0.15) 
d 8.46 8.27 (-0.19) 8.58 (0.12) 8.42 (0.15) 
e 9.04 8.98 (-0.85) 9.14 (0.10) 9.11 (0.13) 
f 5.94 5.77 (-0.17) 6.04 (0.10) 5.87 (0.10) 
g 7.71 7.71 (0.00) 7.88 (0.17) 8.09 (0.38) 
h 8.04 7.52 (-0.52) 8.34 (0.30) 7.69 (0.17) 
i 8.76 8.57 (-0.19) 9.03 (0.27) 8.83 (0.26) 
j 8.70 8.73 (0.03) 8.50 (-0.20) 8.51 (-0.22) 
k 7.98 7.99 (0.01) 7.92 (-0.06) 7.92 (-0.06) 
l 7.46 7.47 (0.01) 7.16 (-0.30) 7.19 (-0.28) 
m 8.70 8.70 (0.00) 7.41 (-1.29) 7.45 (-1.25) 

 

Proton m, in complex [(Ru(terpy))2(4.2⊂TE-DB24C8)]8+, shifts from 8.70 ppm for the 

uncomplexed rotaxane to 7.45 ppm (∆δ = -1.25). The differences in chemical shifts 

between the [2]rotaxane and the corresponding Ru(II) complex are summarized in Table 

4.3. The ESI-MS also confirmed their interlocked nature with the loss of four counter 

ions and observation of {[(Ru(terpy))2(4.2⊂TE-DB24C8)][OTf] 4}
4+ at 852.6795 m/e. 
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Single crystals of [(Ru(terpy))2(4.2⊂TE-DB24C8)][OTf] 8 suitable for X-ray 

diffraction were grown by the diffusion of isopropyl ether into a solution of MeCN 

containing the complex. Figure 4.5 shows a ball-and-stick representation of the cationic 

portion of [(Ru(terpy))2(4.2⊂(TE-DB24C8))]8+. The Ru(II) changes the terpyridine 

stopper from transoid arrangement in the free complex to a cisoid arrangement. The 

Ru(II)…Ru(II) distance is 34.4 Å. There is evidence of a T-shaped C-H π-interaction 

occurring between the tolyl- group of the terpyridine and one of the appended ethyl 4-

hydroxybenzoate groups ~2.8 Å. Table 4.4 summarizes the bite angle for complex 

[(Ru(terpy))2(4.2⊂TE-DB24C8)]8+ which are in good agreement with  

[(Ru(terpy))2(4.2⊂DB24C8)]8+. The ruthenium-nitrogen bond distances range from 

1.90(4) for Ru(1)-N(3) to 2.11(4) Å for Ru(1)-N(6).  

Table 4.4 The bite angle for [(Ru(terpy))2(4.2⊂TE-DB24C8)]8+ and 
[(Ru(terpy))2(2.2⊂DB24C8)]8+. 

Atoms [(Ru(terpy))2(2.2⊂⊂⊂⊂DB24C8)]8+ 
Angle (°) 

[(Ru(terpy))2(4.2⊂⊂⊂⊂TE-DB24C8)]8+ 
Angle (°) 

N(1)-Ru-N(2) 79.7(24) 76.1(19) 
N(2)-Ru-N(3) 78.8(25) 80.4(17) 
N(1)-Ru-N(3) 158.4(26) 156.6(20) 
N(4)-Ru-N(5) 79.0(28) 76.1(14) 
N(5)-Ru-N(6) 80.6(28) 77.5(14) 
N(4)-Ru-N(6) 159.6(34) 153.1(13) 
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Figure 4.5 Ball-and-stick representation of the cationic portion of the X-ray crystal 
structure of [(Ru(terpy))2(4.2⊂TE-DB24C8)]8+. (Ru = blue-gray, O = red, N = blue, C = 
black; wheel bonds = silver, axle bonds = gold). 
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The UV/Vis spectrum of [Ru(terpy))2(4.2⊂TE-DB24C8)]8+ is dominated by the high 

energy π-π* ligand centered bonds at 270 nm and 306 nm respectively but also shows an 

MLCT band at 485 nm, which is red-shifted from that of the parent compound 

[Ru(terpy)2]
2+. The red shift is caused by the π

* orbital being stable by the cationic nature 

of the thread. The extinction coefficient (ε) for [(Ru(terpy))2(4.2⊂TE-DB24C8)]8+ was 

found to be 48,510 L mol-1 cm-1; Figure 4.6. Table 4.5 compares the UV/Vis data for 

[(Ru(terpy))2(4.2⊂TE-DB24C8)]8+ to other related [Ru(terpy)2]
2+ based complexes. 
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Figure 4.6 UV/Vis spectra of complex [(Ru(terpy))2(2.2)]8+(---) and 
[(Ru(terpy))2(2.2⊂DB24C8)]8+ (— —) and [(Ru(terpy))2(4.2⊂TE-DB24C8)]8+  (—) at 
concentration of 1.0 x 10-5 M in CH3CN. 
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Table 4.5 UV/Vis spectra for [(Ru(terpy))2(4.2⊂TE-DB24C8)]8+ and a few other 
selected ruthenium(II) complexes. 

Ru complex(a) MLCT λmax (nm) ε (L mol-1 cm-1) ref# 
Ru(terpy)2

 475 17 600 5 
Ru(tolyterpy)2

 490 28 000 6 
Ru(terpy)(tolyterpy) 483 19 300 6 
[(Ru(terpy))2(2.2)]8+   485 25 000 2 

[(Ru(terpy))2(2.2⊂DB24C8)]8+   485 11 900 2 
[(Ru(terpy))2(4.2⊂TE-DB24C8)]8+   485 20 200  

(a) Counter ion of PF6
- 

 

Comparing the bottom three Ru(II) complexes in the table, the addition of crown ether 

wheels has no effect on the MLCT band. This is presumably because the metal is too far 

away from the cationic center of the rotaxane to have an appreciable effect. 

4.2.2 Synthesis of a 2-D polyrotaxane 

It has previously been shown that 1-, 2- and 3-dimensional metal organic frameworks 

could be constructed using a 1,2-bis(4,4’-dipyridinium)ethane axle and DB24C8.7 The 

question arises, what would be the effect if one molecular component of the 

supramolecular structure was to change; in this case the wheel component with a 

substituted crown ether? We were successful in creating a 2-dimensional framework by 

reacting one [2.1][BF4]2 with two equivalents of TP-DB24C8 and half an equivalent of 

[Cd(H2O)6][BF4]2 in MeNO2. 
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Scheme 4.4 i) MeNO2, excess TP-DB24C8. 
 

X-ray quality crystals of [(Cd(H2O)2)(2.1)(4.3⊂TP-DB24C8]8+ were grown by 

diffusion of isopropyl ether into the reaction mixture. The yellow-orange blocks 

crystallized in the monoclinic space group Pc. Figure 4.7 shows the use of Cd(II) ions in 

a non-coordinating solvent such as MeNO2 results in an octahedral coordination 

geometry comprised of two [2]pseudorotaxane ligands, and two “naked” axles in a square 

planar arrangement, and two water molecules in the axial positions. The sides of the 

square net are defined by Cd···Cd distance of 22.2 Å. 

[2.1⊂TP-DB24C8]2+ 
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Figure 4.7 Ball and stick representation of the coordination spare of the metal centre in 
[(Cd(H2O))2(2.1)(4.3⊂TP-DB24C8)]8+. (Key: dark blue = Cd(II),  blue = 2.12+, red = 
crown, green = water). 
 

The structure is very similar to the 2D MORF {[(Cd(H2O)(BF4)(2.1⊂DB24C8)2]
8+} x 

but is probably best described as a 1D polyrotaxane in which the individual polyrotaxane 

units have the crown ether in a C-conformation and these polyrotaxane strands are 

bridged by an ancillary linker; in this case the ‘‘naked’’ axle; Figure 4.8. The C-

conformation of the crown ether enshrouds the “naked” axle with several edge-to-face 

and T-shaped C-H…π interactions between the phenolic ether appendages of the crown 

ether and the α-pyridyl group of the “naked’ axle. 
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Figure 4.8 A space-filling model showing four square-grids of 
[(Cd(H2O))2(2.1)(4.3⊂TP-DB24C8)]8+. MeNO2 solvent molecules and anions are 
omitted for clarity. 
  

Figure 4.9 compares the previously reported 2-D MORF structure containing DB24C8 in 

the S-conformation with this new one containing TP-DB24C8 in the C-conformation. 

 
Figure 4.9 Comparing MORFs with DB24C8 (left) and TP-DB24C8 (right). 
 

The reasons for the change in network topology upon changing from a simple wheel such 

as DB24C8 to a substituted version such as TP-DB24C8 are presumably steric in nature. 

The adoption of a C-conformation for TP-DB24C8 likely minimizes the interactions 
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between phenyl groups of adjacent crown ethers while still allowing the phenyl groups to 

undergo favourable interactions with the pyridyl groups from the “naked” axles. 

4.3 Conclusion 

Pseudorotaxane and rotaxane ligands were prepared with DB24C8 derivatives having 

four fairly large substituents on the aromatic rings. The ability of these new interlocked 

ligands to form transition metal complexes and metal organic frameworks was studied 

and compared to similar systems already known with DB24C8. The robust nature of the 

[2]rotaxane was confirmed by 1H NMR spectroscopy and a binuclear complex of 

[Ru(terpy)]2+ was synthesized and characterized. The solid state structure of the mixed 

ligand complex demonstrated that addition of a substituted wheel yields addition non-

covalent interactions between components. The use of similar tetra-substituted crown 

ether in the formation of MORFs yielded a 2D square network but with only one 

rotaxane. 

4.4 Experimental  

4.4.1 General Methods 

2,2’:6’,2”-Terpyridine, RuCl3.xH2O, and cadmium(II) tetrafluoroborate were obtained 

from Sigma-Aldrich and used as received. [RuCl3(tpy)],7 and 1,2-bis(4,4’-

bipyridinium)ethane triflate8 [2.1][OTf] 2 was synthesized using literature methods. 

Solvents were dried using an Innovative Technologies Solvent Purification System. 1H 

NMR spectra were obtained on a Bruker Avance 500 instrument operating at 500 MHz. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories Inc. and used 

as received. High-resolution mass spectra were recorded in 50/50 MeCN/H2O on a 

Micromass LCT Electrospray ToF mass spectrometer.  UV/Vis absorption spectra were 
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recorded on a Cary 50 series spectrometer. The absorption spectra were recorded in 

acetonitrile (BDH®) at concentrations of 1.0 x 10-5 M for complexes 

[(Ru(terpy))2(4.2⊂TP-DB24C8)]8+. Single crystal X-ray diffraction experiments were 

run on a Bruker APEX diffractometer with CCD detector.  

Synthesis [4.2⊂TE-DB24C8][OTf] 4 

TE-DB24C8 (0.185 g, 0.159 mmol) and [2.1][OTf] 2 (0.050 g, 0.078 mmol) were 

dissolved in MeNO2 (10 mL) and stirred overnight. Bromo-4-tolyterpyridine (0.189 g, 

0.147 mmol) was dissolved in CH2Cl2, and the mixture was stirred for 7 days. The 

organic layer was removed, and the orange solid stirred between MeNO2 and NaOTf(aq) 

stirred overnight. The organic layer was separated, dried (MgSO4) and evaporated. The 

residue was stirred in toluene. The orange solid was dissolved in CH3CN, isopropyl ether 

was slowly diffused to give an orange solid. Yield: 0.065g (30%). ESI-MS: m/z 

[4.2⊂TE-DB24C8]2+ calc. 1221.4011, found 1221.4041. 
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Table 4.6 1H NMR spectroscopic data for [4.2⊂TE-DB24C8]4+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.62 s 4 - 
b 9.36 d 4 3Jbc = 6.8 
c 8.27 m 4 - 
d 8.27 m 4 - 
e 8.98 d 4 3Jed = 6.7 
f 5.77 s 4 - 
g 7.71 d 4 3Jgh = 8.2 
h 7.52 d 4 3Jhg = 8.1 
i 8.57 s 4 - 
j 8.73 d 4 3Jjk = 4.5 
k 7.99 t 4 3Jkl = 7.8, 3Jjk= 

7.6 
l 7.47 t 4 3Jlm = 5.7, 3Jlk = 

4.9  
m 8.70 d 4 3Jlm = 7.9 
n 4.14 q 12 3Jno =  7.1, 3Jon 

= 7.2 
o 1.21 t 8 3Jon = 7.0, 3Jno = 

7.0 
p 7.88 d 8 3Jpq = 8.8 
q 6.94 d 8 3Jqp = 8.9 
r 4.64 s 8 - 
s 6.84 s 4 - 

t, u, v 4.02 – 4.07 m 24 - 
 
 
Synthesis [(Ru(terpy))2(4.2⊂TE-DB24C8)][OTf] 8 
 
To a solution of [4.2⊂TE-DB24C8][OTf] 4 (0.030 g, 0.0109 mmol) dissolved in 1:1 

EtOH/H2O solution was added solid (terpy)RuCl3 (0.010 g, 0.020 mmol) and the mixture 

was brought to reflux for 24 h to give a deep red solution. The reaction mixture was 

cooled to room temperature, filtered through a Celite pad and washed with EtOH until the 

eluent was colorless. The filtrate was then reduced to half the volume and the addition of 

NaOTf produced a red precipitate.  To the red solid in CH3CN, isopropyl ether was 
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slowly diffused to give a red solid in quantitative yield. ESI-MS: m/z 

[(Ru(terpy))2(4.2⊂TE-DB24C8)]4+ calc. 852.67613, found 852.6795. 
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Table 4.7 1H NMR spectroscopic data for [(Ru(terpy))2(4.2⊂TE-DB24C8)]8+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.67 s 4 - 
b 9.43 d 4 3Jbc = 6.4 
c 8.42 m 4 - 
d 8.42 m 4 - 
e 9.11 d 4 3Jed = 6.4 
f 5.87 s 4 - 
g 8.09 d 4 3Jgh = 8.0 
h 7.69 d 4 3Jhg = 8.0 
i 8.83 s 4 - 
j 8.51 d 4 3Jjk = 8.1 
k 7.92 m 4 - 
l 7.19 dd 4 3Jlm = 6.4, 3Jlk = 

6.3 
m 7.45 d 4 3Jml = 5.2 
n 4.06-4.13 m 12 - 
o 1.21 t 8 3Jon = 7.0, 3Jno = 

7.0 
p 7.92 m 8 - 
q 7.03 d 8 3Jqp = 8.7 



 120 

r 4.81 s 8 - 
s 6.92 s 4 - 

t, u, v 4.06-4.13 m 24 - 
m’ 7.37 d 4 3Jm’l’ = 5.3 
l’ 7.19 dd 4 3Jlm = 6.4, 3Jlk = 

6.3 
k’ 7.92 m 4 - 
j’ 8.59 d 4 3Jj’i’  = 8.0 
i’ 8.77 d 4 3Ji’j’  = 8.2 
h’ 8.42 m 2 - 

 
 
Synthesis [(Cd(H2O))2(2.1)(4.3⊂TP-DB24C8)][BF4]8 
 
To a solution of 1,2-bis(4,4’-dipyrdinium)ethane, [2.1][BF4]2, (13 mg, 0.025 mmol) in 

MeNO2 (1mL) was added 2 equivalents of TP-DB24C8 (42 mg, 0.048 mmol). The 

resulting solution was stirred at room temperature for 1hr, at which time 

[Cd(H2O)6][BF4]2 (5 mg, 13 mmol) dissolved in 0.5 mL of MeNO2/MeOH was added. 

Slow diffusion of isopropyl ether into the MeNO2 produced yellow crystals. 
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Chapter 5 
 

Linking [2]Rotaxane Wheels to Create a New Type of 
Metal-Organic Rotaxane Framework 

 
5.1 Introduction 
 

The use of rotaxanes as ligands in the construction of coordination polymers (CPs) is a 

unique methodology for the creation of new materials; a sub-class of metal-organic 

frameworks (MOFs) known as metal organic rotaxane frameworks (MORFs).1 To date, 

MORFs have been constructed by utilizing the axle [2.1⊂DB24C8]2+ as an organic linker 

to connect metal nodes with the wheel not participating in any type of interaction with the 

metal centres (see Figure 5.1).  
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Figure 5.1 An example of the axle used in the construction of MORFs. 
 

A number of crown ether compounds possessing chelating groups have been 

synthesized such as those containing terpyridine2, pyridine diacid3, bipyridine4 or 1,10-

phenanthroline units.5 Stang has reported crown ether derivatives that contain either 

acceptors or donor groups designed to form different metal-ligand architectures when 

coordinated to Pt(II) corners, while the crown ether wheel was available to form 

[2]pseudorotaxanes with an ammonium axle.6 
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Figure 5.2 Stang’s acceptor and donor crown ethers.6 

 

Can a new strategy for MORFs be developed that inverts the function of the axle and the 

wheel, making the wheel act as the linker while the axle does not participate in metal 

coordination? 

5.2 Results and Discussion 
 

5.2.1 Chelating [2]rotaxane  
 
For a simple and convenient chelating group, we turned to a ligand developed by Steel et 

al. containing 8-hydroxyquinoline (oxine) as the donor group. As can be seen in Figure 

5.37, the backbone of the ligand is similar to the aromatic group of DB24C8. 

O
O N

N

 
Figure 5.3 Steel’s oxine type chelating ligand.7 

 

The chelating crown ether containing the oxine groups was prepared by a Williamson 

ether synthesis from TB-DB24C8, and oxine (Scheme 5.1). The product precipitated 

from MeCN, the desired compound was isolated, generating a red solid in moderate 

yield. 
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Scheme 5.1 i) NaH, oxine, THF, stirred 2 h ii) TB-DB24C8, ∆ 36 h.    
 

The 1H NMR spectrum of TO-DB24C8 shows the main core remains unchanged 

relative to the starting material TB-DB24C8. The main differences arise from the 

aromatic (h) and the benzylic protons (g). For TO-DB24C8, these protons are shifted 

downfield compared to the starting material due to the weaker electron-donating effect of 

the phenolic oxygen. Some of the major peaks are summarized in Table 5.1. The ESI-MS 

shows that four oxine groups are now present on the crown ether. 

Table 5.1 Comparison of the chemical shifts for TB-DB24C8, and wheel TO-DB24C8 
in CD2Cl2. 

Protons TB-DB24C8 TO-DB24C8 
j 3.37 3.79 (0.42) 
k 3.85 3.83 (-0.02) 
i 4.12 4.29 (0.17) 
g 6.86 7.17 (0.31) 
h 4.62 5.50 (0.88) 

 

The chelating [2]rotaxane, [5.2⊂TO-DB24C8]2+ was synthesized in moderate yield 

through esterification of the [2]pseudorotaxane formed between [3.5][BF4]2 and TO-

DB24C8 by stirring in MeCN/CH2Cl2  at room temperature for 3 days; see Scheme 5.2. 

 

TB-DB24C8 

TO-DB24C8 = 63% 
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Scheme 5.2 i) 3 eq.[3.5]2+, 1 eq. TO-DB24C8, 9 eq. 3,5-dimethylbenzoic anhydride, 
nBu3P (cat.), MeCN/CH2Cl2 for 72 h. 
 

Some of the major peaks from the 1H NMR spectrum of [5.2⊂TO-DB24C8][BF4]2 in 

CD3CN, are summarized in Table 5.2. The [2]rotaxane shows evidence supporting the 

various supramolecular interactions such as hydrogen-bonding and π-π stacking. 

Hydrogen bonding between the ethylene (a) and α-pyridinium (b) protons of the axle 

with the polyether oxygen atoms of the wheel is evidenced by a downfield shifts of the 

signals for a  and b of 0.67 and 0.37 ppm respectively. 

 

 

[5.2⊂TO-DB24C8]2+ = 32% 
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Table 5.2 Comparison of the chemical shifts of the dumbbell [5.2][BF4]2, and 
[2]rotaxane, [5.2⊂TO-DB24C8][BF4]2  in CD3CN. 

Protons [5.2]2+ [5.2⊂TO-DB24C8]2+ 

a 5.11 5.78 (0.67) 
b 8.66 9.03 (0.37) 
c 8.33 8.20 (-0.13) 
d 7.98 7.46 (-0.52) 
e 7.73 7.46 (-0.27) 
f 5.46 5.32 (-0.14) 

 

The 1H NMR spectrum also shows changes in the wheel, which are summarized in 

Table 5.3. The differences arise from the single aromatic proton on the parent DB24C8 

unit, (q), and the benzylic protons (p). As mentioned, the free crown ether, TO-DB24C8, 

shows a singlet at 7.18 ppm for q but the singlet shifts upfield to 7.03 ppm (∆δ = 0.15 

ppm) for [5.2⊂TO-DB24C8][BF4]2. Furthermore, the benzylic protons for the free crown 

ether shows a singlet at 5.50 ppm but the singlet shifts upfield to 5.01 ppm (∆δ = 0.49 

ppm) for the [2]rotaxane. The ESI-MS also confirmed the interlocked nature of the 

complex, with just the loss of two counter ions resulting in observation of the molecular 

ion [5.2⊂TO-DB24C8]2+
 at 869.3685 m/e. 

Table 5.3 Comparison of the chemical shifts of the wheel, TO-DB24C8 and [2]rotaxane 
[5.2⊂TO -DB24C8][BF4]2  in CD2Cl2. 

Protons TO-DB24C8 [5.2⊂TO-DB24C8]2+
   

j 8.85 8.71 (-0.14) 
k 7.41 7.43 (0.02) 
l 8.10 8.13 (0.03) 
m 7.36 7.43 (0.07) 
n 7.36 7.85 (0.49) 
o 7.14 7.17 (0.03) 
p 5.50 5.01 (-0.49) 
q 7.18 7.03 (-0.15) 

 

A metal complex was prepared by stirring [Cd(H2O)6][BF4]2 with [5.2⊂TO-

DB24C8][BF4]2  in CH3CN overnight to give a brown solid. The 1H NMR spectrum of 

the product showed evidence of coordination to Cd(II) revealed by upfield shifts of the 
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protons j-o. Protons j, in [(Cd(MeCN)2(H2O))2(5.2⊂TO-DB24C8)]6+ shifted upfield 

from 8.81 ppm as observed in the uncomplexed compound to 9.13 ppm (∆δ = 0.32 ppm), 

when coordinated to the Cd(II) centre. Table 5.4 compares the crown protons of the 

uncomplexed oxine rotaxane ligand to the Cd(II) complex. The ESI-MS of this labile 

metal species showed loss of both Cd(II) ions resulting in observation of only cations of 

the parent ligand [5.2⊂TO-DB24C8]2+. 

Table 5.4 Comparison of the chemical shifts of the [5.2⊂TO-DB24C8][BF4]2 and 
[(Cd(MeCN)2(H2O))2(5.2⊂TO-DB24C8)][BF4]6 in CD3CN. 

Proton [5.2⊂TO-DB24C8]2+
    [(Cd(MeCN)2(H2O))2(5.2⊂TO-DB24C8)]6+ 

j 8.81 9.13 (0.32) 
k 7.37 7.67 (0.30) 
l 8.03 7.88 (-0.15) 
m 7.40 7.73 (0.33) 
n 6.67 7.88 (1.48) 
o 7.11 7.00 (-0.11) 
p 4.88 4.97 (0.09) 
q 6.97 6.93 (-0.04) 

r, s, t 4.09 - 4.00 4.17-4.05 (0.07) 
 

Single crystals of the Cd(II) complexes were obtained by slow diffusion of isopropyl 

ether into a solution of CH3CN containing the complex. Figure 5.4 shows a ball-and-stick 

representation of the cationic portion of [(Cd(MeCN)2(H2O))2(5.2⊂TO-DB24C8)]6+. As 

seen with other [2]rotaxanes made using the axle [3.5]2+,  the [2]rotaxane adopts an anti 

conformation of the central NCH2CH2N moiety while the wheel TO-DB24C8  exhibits a 

typical S-shaped conformation, with 3,5-dimethylphenyl groups as the stopper. 



 128 

 
Figure 5.4 Ball-and stick presentation of [(Cd(MeCN)2(H2O)2(5.2⊂TO-DB24C8)]6+, 
with H-atoms and anions omitted for clarity. (Colour key: Cd = teal, O = red, N = blue, C 
= dark gray, axle = gold bonds, wheel = silver bonds). 
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To emphasize how the metal coordinates, the axle is removed in Figure 5.5. 

 
Figure 5.5 The crown ether and the Cd(II) coordination sphere to emphasize the metal 
ligand bonding (the axle omitted for clarity). 
 

The ligand is coordinated to Cd(II) ions by both the nitrogen and oxygen donors of the 

oxine group. The Cd-N and Cd-O bonds are 2.28(7), 2.27(7) Å and 2.46(4), 2.58(4) Å, 
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respectively. The Cd(II) is seven-coordinated in a distorted pentagonal bipyramidal 

geometry. Besides the oxine ligand, the other sites are filled with two MeCN molecules 

with Cd-N distances of 2.39(7) and 2.43(7) Å and an H2O molecule, with a Cd-O 

distance of 2.34(6) Å. This single water molecule produces another non-covalent 

interaction between the axle and the wheel, as it is involved in hydrogen-bonding with 

the ester carbonyl oxygen atom of the stopper group, with HO-H···O bond of 1.96 (2) Å 

and an O-H-O angle of 164.8 (3)°.8  

5.2.2 Polymeric rotaxane  

Crown ethers with pyridyl donor atoms in either in the three or four position were 

synthesized by Williamson ether synthesis conditions seen in Scheme 5.3. The new 

crown ethers were isolated as yellow solids in good yields. 
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Scheme 5.3 i) NaH, 3-py or 4-py, DMF, rt 2 h ii) TB-DB24C8, 60°C, 36 h.    
 

The 1H NMR spectrum of compounds T4P-DB24C8 or T3P-DB24C8 shows the main 

core remains unchanged relative to the starting material TB-DB24C8. The main 

differences arise from the aromatic (h) and the benzylic protons (g). In both T4P-

DB24C8 and T3P-DB24C8, respectively h and g are shifted downfield due to the 

presence of the pyridinemethanol groups. Table 5.5 shows a comparison of these 

T4P-DB24C8 = 74% 
T3P-DB24C8 = 74% 
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chemical shift changes to DB24C8. The ESI-MS shows that four substitutions of 

pyridinemethanol groups are present on the crown ether. 

Table 5.5 Comparison of the chemical shifts of the wheels TB-DB24C8, T4P-DB24C8, 
and T3P-DB24C8 in CD2Cl2. 

Protons TB-DB24C8 T4P-DB24C8 T3P-DB24C8 
j 3.37 3.68 (0.31) 3.68 (0.31) 
k 3.85 3.78 (-0.07) 3.78 (-0.07) 
i 4.12 4.06 (-0.06) 4.06 (-0.06) 
g 6.86 6.88 (-0.02) 6.91 (-0.07) 
h 4.62 4.69 (-0.07) 4.51 (-0.11) 

 

The [2]rotaxanes designed with bridging appendages were prepared under similar 

conditions used to synthesis the chelating [2]rotaxane (Scheme 5.4), and some of the 

major peaks are summarized in Table 5.6. 

i)

O

N

O

O

O

O

O

O

O

N

a

bcde

O

O

o

h

g

f

q

p

n
m l kO

O

i

O

j

O
O

O

O

N

O

O

O

O

O

O

O

N

a

bcde

O

O

r

h

g

f

p

so

n
mO

q

O

i

O

l

O
O

O

N
N

OH

HO

N

N

N

N

N

N

N

N

k j

 
Scheme 5.4 i) 3 eq. [5.1]2+, 1 eq. T4P-DB24C8 or T3P-DB24C8, 9 eq. 3,5-
dimethylbenzoic anhydride, nBu3P (cat.), MeCN/CH2Cl2 for 72 h. 
 

[5.2⊂T4P-DB24C8]2+ = 26% 
[5.2⊂T3P-DB24C8]2+ = 30% 
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Evidence supporting the various supramolecular interactions such as hydrogen-

bonding and π-π stacking were apparent. Hydrogen-bonding between the ethylene (a) and 

α-pyridinium (b) protons of the thread with the polyether oxygen atoms of the wheel is 

demonstrated by a downfield shift of the signals for a from 5.11 ppm in [5.2]2+ to 5.46 

ppm for T4P-DB24C8 and T3P-DB24C8. The α-pyridinium (b) proton signal is also 

shifted downfield from 8.65 ppm in [5.2]2+ to 9.03 ppm for both T4P-DB24C8 and T3P-

DB24C8.  

Table 5.6 Comparison of the chemical shifts of the dumbbell [5.2][BF4]2, and 
[2]rotaxane [5.2⊂T4P-DB24C8][BF4]2, and [5.2⊂T3P-DB24C8][BF4]2 in CD3CN. 

Protons [5.2]2+ [5.2⊂T4P-DB24C8]2+ [5.2⊂T3P-DB24C8]2+ 

a 5.11 5.46 (0.35) 5.46 (0.35) 
b 8.65 9.03 (0.38) 9.03 (0.38) 
c 8.33 7.97 (-0.36) 7.97 (-0.36) 
d 7.98 7.57 (-0.41) 7.57 (-0.41) 
e 7.73 7.50 (-0.23) 7.50 (-0.23) 

 

The 1H NMR spectra also show changes in the wheel, which are summarized in Table 

5.7. The differences arise from the single aromatic proton on the parent DB24C8 unit 

(m), and the benzylic protons (n). As mentioned, the free crown ether, T4P-DB24C8, 

shows a singlet at 6.96 ppm for m but this singlet shifts upfield to 6.68 ppm (∆δ = 0.28 

ppm) for [5.2⊂T4P-DB24C8]2+. Also, the benzylic protons for the free crown ether show 

a singlet at 4.51 ppm but this singlet shifts upfield to 4.28 ppm (∆δ = 0.23 ppm) for 

[5.2⊂T4P-DB24C8]2+. Similarly, for crown ether T3P-DB24C8 the singlet at 6.96 ppm 

for m shifts upfield to 6.70 ppm (∆δ = 0.26 ppm) for [5.2⊂T3P-DB24C8]2+ while the 

benzylic protons n which shows a singlet at 4.51 ppm which shifts upfield to 4.29 ppm 

(∆δ = 0.22 ppm) in the [2]rotaxane. The ESI-MS also confirmed the interlocked nature of 

the complex, with the loss of two counter ions, and protonation of one of the pyridine 
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rings to give the molecular ions [5.2⊂(H+T4P-DB24C8)]3+ and [5.2⊂(H+T3P-

DB24C8)]3+ at 531.9138 m/e. 

Table 5.7 Comparison of the chemical shifts of the [2]rotaxanes [5.2⊂T4P-
DB24C8][BF4]2 and [5.2⊂T3P-DB24C8][BF4]2 in CD3CN. 
Proton T4P-DB24C8 [5.2⊂T4P-DB24C8]2+ T3P-DB24C8 [5.2⊂T3P-DB24C8]2+ 

j 3.68 4.07 (0.39) 3.66 4.06 (0.40) 
k 3.80 4.07 (0.27) 3.78 4.06 (0.28) 
l 4.10 4.07 (0.03) 4.09 4.06 (0.03) 
m 6.99 6.70 (-0.29) 6.96 6.68 (-0.28) 
n 4.56 4.29 (-0.27) 4.49 4.28 (-0.21) 
o 4.52 4.29 (-0.23) 4.51 4.28 (-0.23) 

 

Single crystals of [5.2⊂T4P-DB24C8][BF4]2 were grown by the slow diffusion of 

isopropyl ether into a MeCN solution. The yellow crystal appeared as small block over a 

few days. Figure 5.6 shows a ball-and-stick representation of the cationic portion of 

[5.2⊂T4P-DB24C8]2+. The structure reveals typical features of DB24C8 portion adopting 

a typical S-conformation while the NCH2CH2N unit exhibits an anti conformation. 

[5.2⊂T4P-DB24C8]2+ is stoppered at both ends by a 3,5-dimethylphenyl group. As 

expected, the cationic axle interpenetrates the central cavity of the wheel allowing the 

electron-rich aromatic portion of the wheel to π-stack with the electron-deficient axle. 

The structure also reveals a high degree of C-H···O hydrogen bonding between the 

components. The four protons ortho- to N3- as well the four central protons attached to 

ethylene bridge form eight hydrogen bonds with the oxygens of the wheel with C-O 

distances ranging from 3.20(8) - 3.64(7) Å. The –CH2OCH2(C5H4N) appendages flank 

the ester stopping groups and are pulled away from the core of the [2]rotaxane.9 This 

conformation shows that it should be possible to use the pyridine donors for coordination.  
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Figure 5.6 Ball-and-stick representation of [5.2⊂T4P-DB24C8]2+ (anions and H-atoms 
are omitted for clarity. Colour key: O = red, N = blue, C = dark gray; axle =  gold bonds, 
wheel = silver bonds). 
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The synthesis of  bis(pyridyl) ligands in which the pyridyl groups are separated by 

spacer groups of varying flexibility can give rise either polymers or chelating complexes. 

The bis(pyridylether) ligand developed by Son9 from the reaction of 4-pyridylethanol 

with α,α’-dibromo-o-xylene gave the ligand as seen Figure 5.7. This ligand forms either a 

polymer when reacted with Ag(I) or a monomeric complex when reacted with either 

Co(II) or Cu(II).  

O

O

N

N

 
Figure 5.7 Son’s bis(pyridylether) ligand that can form polymers.9 

 

It was predicted that with the increased flexibility of the pyridine methanol group, the 

polymeric system will be much more likely for [5.2⊂T4P-DB24C8][BF4]2 or  [5.2⊂T3P-

DB24C8][BF4]2 

Single crystals of a metal complex were grown by slow diffusion of isopropyl ether 

into a saturated MeCN solution of [Cd(H2O)6][BF4]2 and [5.2⊂T3P-DB24C8][BF4]2. 

After a few days crystals with the formula of [Cd2Cl4(H2O)4(5.2⊂T3P-DB24C8)][BF4]2 

developed. The source of chloride ion was determined to be the residual anions from 

column chromatography where NH4Cl(aq) was used (Figure 5.8).  
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Figure 5.8 Shows a ball and stick representation of [Cd2Cl4(H2O)4(5.2⊂T3P-DB24C8)]2+ 
showing how the 3-pyridyl groups each coordinate to a different Cd(II) ion. All 
counterions and all solvent molecules have been omitted for clarity. (Colour key: Cd = 
teal, Cl = green, O = red, N = blue, C = dark gray; axle = gold bonds, wheel = silver 
bonds). 
 

As was observed previously for the [5.2⊂T3P-DB24C8]2+ the parent basic structure of 

the [2]rotaxane remains the same, except the pyridyl groups are extended to coordinate to 

four Cd(II) centres. The metal nodes consist of [(H2O)2Cd(µ-Cl)2Cd(H2O)2] clusters with 

Cd···Cd distances across the Cd(µ-Cl)2Cd linkage of 3.73(2) Å, while the closest Cd···Cd 

distance between nodes is 17.01(3) Å. The 3-pyridyl donors from different rotaxanes end 

up in the plane of the node, and trans to each other in the axial coordination sites, with 

N···Cd···N angle of 175.2(3)°. The Cd···N distances are 2.29(1) and 2.33(1) Å.8 
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The four different 3-pyridyl groups of one single crown ether are coordinated to four 

different Cd(II) ions resulting in a 2-periodic metal organic framework, with large holes 

through which the axle can be threaded as seen in Figure 5.9. 

 
Figure 5.9 A space filling model of the complete 2-periodic network. All non-
coordinating anions have been omitted for clarity. (colour key: Cd = teal, Cl = green, axle 
= blue, wheel = red). 
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5.3 Conclusion  

A new style of metal organic rotaxane framework material can be produced by inverting 

the metal coordinated roles of the rotaxane components – the axle and wheel. 

[2]Rotaxanes, [5.2⊂TO-DB24C8][BF4]2, containing the oxine wheel were able to 

coordinate to Cd(II) in a chelating mode for this ligand and also bind to two MeCN 

solvent molecules with hydrogen-bonds to a water molecule via the axle carbonyl group. 

The [2]rotaxane [5.2⊂T3P-DB24C8][BF4]2 containing pyridyl groups can form a 2-

periodic array of crown ethers and the metal ions, making a grid filled with large holes 

though which the axle can be threaded. 

5.4 Experimental 
 

5.4.1 General Methods 
 
Chemicals were obtained from Aldrich and used as received. 

Tetrakis(bromomethyl)dibenzo-24-crown-8 TB-DB24C8,10 3,5-dimethylbenzoic 

anhydride,11 and 1,2-bis(4-pyridine-4ylphenylmethanol)ethane tetrafluoroborate 

[3.5][BF4]2
11 and 1,2-Bis(3,5-dimethylbenzoate)benzyl-pyridinium))ethane 

tetrafluoroborate [5.2][BF4]2
12 were synthesized using literature preparations. Solvents 

were dried using an Innovative Techniques Solvent Purification Systems. 1H NMR 

spectra were obtained on a Bruker Avance 500 instrument operating at 500 MHz. 

Deuterated solvents were purchased from Cambridge Isotope Laboratories Inc. and used 

as received. High-resolution mass spectra were recorded in 50/50 MeCN/H2O on a 

Micromass LCT Electrospray TOF mass spectrometer. 
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Synthesis TO-DB24C8 
 
Oxine (0.798 g, 4.88 mmol) was added to a solution of NaH (132 mg, 5.50 mmol) in dry 

THF (30 mL) and was stirred for 2 h at room temperature. After which time TB-DB24C8 

(1.00 g, 1.21 mmol) and DMF (2 mL) were added, and the mixture was refluxed for 36 h. 

The reaction mixture was cooled to room temperature, and water (4 mL) was added. The 

THF was removed, the oil was dissolved in CH2Cl2 (50 mL) and washed 1 M NaHCO3 

(3x50 mL) and H2O (50 mL), and then dried with MgSO4, filtered, and concentrated. The 

solid was recrystallized from CH3CN twice to give a reddish solid. Yield: 0.830 mg 

(63%). MP: 133-136. ESI-MS: m/z [TO-DB24C8 + H]+ calc. 1077.4286, found 

1077.4332. 
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Table 5.8 1H NMR spectroscopic data for TO-DB24C8 in CD2Cl2. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.85 d 4 J3ab = 2.5 
b 7.41 m 4 - 
c 8.10 d 4 J3cb = 8.3 

d,e 7.37-7.35 m 8 - 
f 7.14 d 4 J3ef = 6.9 
g 5.50 s 8 - 
h 7.18 s 4 - 
i 4.29 m 8 - 
j 3.83 m 8 - 
k 3.79 m 8 - 
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Table 5.9 13C NMR spectroscopic data for TO-DB24C8 in CD2Cl2. 
 

Carbon δ (ppm) 
1 149.7 
2 122.1 
3 136.2 
4 129.2 
5 141.2 
6 120.5 
7 127.1 
8 110.7 
9 155.1 

10 69.4 
11 130.0 
12 116.3 
13 149.3 
14 70.0 
15 70.3 
16 71.6 

 
 
Synthesis T4P-DB24C8 
 
4-Pyridinemethanol (0.545 g, 4.99 mmol) was added to a solution of NaH (0.066 g, 2.74 

mmol) and dry DMF (30 mL) and the mixture was stirred for 2 h at room temperature. 

After which time, TB-DB24C8 (1.00 g, 1.21 mmol) was added and the mixture was 

refluxed for 36 h. The reaction mixture was then cooled to room temperature and water (4 

mL) was added. The DMF was removed, the oil was dissolved in CH2Cl2 (50 mL), and 

then washed with 1 M NaHCO3 (3x50 mL) and H2O (50 mL), and then dried with 
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MgSO4, filtered, and concentrated. Yield: 0.837 g (74%).  MP: 97-100°C. ESI-MS: m/z 

[(T4P-DB24C8 + Na]+ calc. 955.4099, found 955.4147. 
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Table 5.10 1H NMR spectroscopic data for T4P-DB24C8 in CD2Cl2. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.44 d 8 J3ab = 4.5 
b 7.15 d 8 J3ba = 5.0 
c 4.43 s 8 - 
d 4.69 s 8 - 
e 6.88 s 4 - 
f 4.06 m 8 - 
g 3.78 m 8 - 
h 3.68 m 8 - 

 
 
Table 5.11 1H NMR spectroscopic data for T4P-DB24C8 in CD3CN. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.49 d 8 J3ab = 4.5 
b 7.28 d 8 J3ba = 5.0 
c 4.52 s 8 - 
d 4.56 s 8 - 
e 6.99 s 4 - 
f 4.10 m 8 - 
g 3.80 m 8 - 
h 3.68 m 8 - 
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Table 5.12 13C NMR spectroscopic data for T4P-DB24C8 in CD2Cl2. 
 

Carbon δ (ppm) 
1 150.0 
2 122.3 
3 148.9 
4 71.5 
5 69.9 
6 129.8 
7 115.9 
8 148.2 
9 70.3 

10 70.4 
11 70.8 

 
 
Synthesis T3P-DB24C8  
 
3-Pyridinemethanol (0.545 g, 4.99 mmol) was added to a solution of NaH (0.066 g, 2.74 

mmol) and dry DMF (30 mL) and the mixture was stirred for 2 h at room temperature, 

after which time, TB-DB24C8 (1.00 g, 1.21 mmol) was added and the mixture was 

refluxed for 36 h. The reaction mixture was then cooled to room temperature and water (4 

mL) was added. The DMF was removed, the oil was dissolved in CH2Cl 2 (50 mL) and 

washed with 1 M NaHCO3 (3x50 mL) and H2O (50 mL), and then dried with MgSO4, 

filtered, and concentrated. Yield: 0.837 g (74%).  MP: 82-85°C. ESI-MS: m/z [T3P-

DB24C8 + Na]+ calc. 955.4099, found 955.4147. 
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Table 5.13 1H NMR spectroscopic data for T3P-DB24C8 in CD2Cl2. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 9.04 s 4 - 
b 8.54 d 4 J3bc = 4.2 
c 7.24 dd 4 J3bc = 5.1, J3cd = 

7.4 
d 7.63 d 4 J3dc = 7.6 
e 4.48 s 8 - 
f 4.51 s 8 - 
g 6.91 s 4 - 
h 4.06 m 8 - 
i 3.78 m 8 - 
j 3.68 m 8 - 

 
 
Table 5.14 1H NMR spectroscopic data for T3P-DB24C8 in CD3CN. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.51 s 4 - 
b 8.47 d 4 J3bc = 4.2 
c 7.30 dd 4 J3bc =5.1, J3cd = 

7.4 
d 7.67 d 4 J3dc =7.6 
e 4.51 s 8 - 
f 4.49 s 8 - 
g 6.96 s 4 - 
h 4.09 m 8 - 
i 3.78 m 8 - 
j 3.66 m 8 - 
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Table 5.15 13C NMR spectroscopic data for T3P-DB24C8 in CD2Cl2. 
 

Carbon δ (ppm) 
1 149.6 
2 149.4 
3 123.9 
4 136.9 
5 134.4 
6 71.5 
7 69.9 
8 134.4 
9 115.9 

10 148.9 
11 70.1 
12 70.3 
13 70.3 

 
 
Synthesis [5.2⊂TO-DB24C8][BF4]2  
 
[3.5][BF4]2 (0.088 g, 0.154 mmol) was combined with TO-DB24C8 (0.054 g, 0.050 

mmol) and 3,5-dimethylbenzoic anhydride (0.390 g, 1.38 mmol) in acetonitrile/CH2Cl2 

(10 mL). nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 

72 h at room temperature. The solvent was removed under reduced pressure and the 

product was stirred in anhydrous ethanol for 30 min. A column was done with 

MeOH/CH2Cl2 (4:1), and solvent was removed. The product was dissolved in acetonitrile 

and isopropyl ether was allowed to diffuse into the solution. The product was yellow 
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solid. Yield 0.030 g (32%). ESI-MS: m/z [5.2⊂TO-DB24C8]2+ calc. 869.3671, found 

869.3685. 
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Table 5.16 1H NMR spectroscopic data for [5.2⊂TO-DB24C8][BF4]2  in CD3CN. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.78 s 4 - 
b 9.03 d 4 J3bc = 7.3 
c 8.20 d 4 J3cb = 6.7 
d 7.46 m 4 - 
e 7.46 m 4 - 
f 5.32 s 4 - 
g 7.46 m 4 - 
h 5.05 s 2 - 
i 2.07 s 12 - 
j 8.81 d 4 J3jk = 5.5 
k 7.37 t 4 J3kj = 7.7, J3kl = 

8.1 
l 8.03 d 4 J3lk = 6.7 
m 7.40 d 4 J3mn = 8.1 
n 6.67 d 4 J3nm = 8.2 
o 7.11 d 4 J3on = 7.5 
p 4.88 s 8 - 
q 6.97 s 4 - 

r, s, t 4.09 - 4.00 m 24 - 
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Table 5.17 1H NMR spectroscopic data for [5.2⊂TO-DB24C8][BF4]2  in CD2Cl2. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.50 s 4 - 
b 9.08 d 4 J3bc = 7.3 
c 8.25 d 4 J3cb = 6.7 
d 7.43 m 4 - 
e 7.43 m 4 - 
f 5.25 s 4 - 
g 7.57 m 4 - 
h 7.13 s 2 - 
i 2.21 s 12 - 
j 8.71 d 4 J3jk = 5.5 
k 7.43 m 4 - 
l 8.13 d 4 J3lm = 6.7 
m 7.43 d 4 J3mn = 8.1 
n 7.85 d 4 J3nm = 8.2 
o 7.17 d 4 J3on = 7.4 
p 5.01 s 8 - 
q 7.03 s 4 - 

r, s, t 4.15-3.96 m 24 - 
 
Synthesis [5.2⊂T4P-DB24C8][BF4]2 

 
[3.5][BF4]2 (0.088 g, 1.54 mmol) was combined with T4P-DB24C8 (0.072 g, 0.077 

mmol) and 3,5-dimethylbenzoic anhydride (0.032 g, 0.524 mmol) in acetonitrile/CH2Cl2 

(10 mL). nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 

72 h at room temperature. The solvent was removed under pressure and the product was 

stirred in anhydrous ethanol for 30 min. The product was dissolved in acetonitrile and 

isopropyl ether was allowed to diffuse into the solution. The product was yellow solid. 

Yield 0.035 g (26%). ESI-MS: m/z [5.2⊂H+T4P-DB24C8]3+ calc. 531.9138, found 

531.9134. 
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Table 5.18 1H NMR spectroscopic data for [5.2⊂T4P-DB24C8][BF4]2  in CD3CN. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.46 s 4 - 
b 9.04 d 4 J3bc = 6.9 
c 7.98 d 4 J3cb = 7.0 
d 7.51 d 4 J3de = 8.3 
e 7.58 d 4 J3ed = 8.2 
f 5.36 s 4 - 
g 7.69 s 4 - 
h 7.22 s 2 - 
i 2.36 s 12 - 
q 8.48 d 8 J3jk = 5.0 
p 7.17 d 8 J3kj = 5.0 
o 4.29 s 8 - 
n 4.29 s 8 - 
m 6.70 s 4 - 

l,k,j 4.16 – 4.03 m 24 - 
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Synthesis [5.2⊂T3P-DB24C8][BF4]2 

 
[3.5][BF4]2 (0.088 g, 1.54 mmol) was combined with T3P-DB24C8 (0.072 g, 0.077 

mmol) and 3,5-dimethylbenzoic anhydride (0.032 g, 0.524 mmol) in acetonitrile/CH2Cl2 

(10 mL). nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 

72 h at room temperature. The solvent was removed under pressure and the product was 

stirred in anhydrous ethanol for 30 min. A column was done with MeOH/CH2Cl2 (4:1), 

and solvent was removed. The product was dissolved in acetonitrile and isopropyl ether 

was allowed to diffuse into the solution. The product was yellow solid. Yield 0.040 g 

(30%). ESI-MS: m/z [5.2⊂H+T3P-DB24C8]3+ calc. 531.9138, found 531.9134. 
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Table 5.19 1H NMR spectroscopic data for [5.2⊂T3P-DB24C8][BF4]2  in CD3CN. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.46 s 4 - 
b 9.04 d 4 J3bc = 6.8 
c 7.98 d 4 J3cb = 6.8 
d 7.58 d 4 J3de = 8.0 
e 7.58 d 4 J3ed = 8.0 
f 5.37 s 4 - 
g 7.70 s 4 - 
h 7.28 s 2 - 
i 2.35 s 12 - 
p 8.46 s 4 - 
q 8.49 d 4 J3kl = 4.4 
r 7.29 m 4 - 
s 7.49 d 4 J3lm = 8.2 
m 6.68 s 8 - 
o 4.28 s 8 - 
n 4.28 s 4 - 

l,k,j 4.03 – 4.08 m 24 - 
 
 
 
Synthesis [(Cd(MeCN)2(H2O)2(5.2⊂TO-DB24C8)][BF4]6 
 
 To a solution of [5.2⊂TO-DB24C8][BF4]2 (30 mg) was dissolved in 1 mL of CH3CN 

was added to Cd(BF4)2·6 H2O (9 mg) and the mixture was stirred at room temperature 

overnight. Slow diffusion of isopropyl ether into the solution gave brown crystals. Yield 

0.054 g (99%). ESI-MS: m/z [(5.2⊂TO-DB24C8)]2+ calc. 869.3670, found 869.3115. 
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Table 5.20 1H NMR spectroscopic data for [(Cd(MeCN)2(H2O)2(5.2⊂TO-DB24C8)]6+ in 
CD3CN. 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 4.97 m 2 - 
b 9.02 d 12 J3bc = 5.4 
c 8.67 d 4 J3cb = 7.9 
d 7.34 d 4 J3de = 7.4 
e 7.41 d 4 J3ed = 7.1 
f 4.97 s 4 - 
g 7.50 s 4 - 
h 7.16 s 4 - 
i 2.26 s 4 - 
j 9.13 d 4 J3jk = 3.3 
k 7.67 t 4 J3kj = 7.8, J3kl = 

8.0 
l 7.88 m 4 - 
m 7.73 d 4 J3mn = 7.9 
n 7.88 m 4 - 
o 7.00 d 4 J3on = 6.6 
p 4.97 m 8 - 
q 6.93 s 4 - 

r, s, t 4.17-4.05 m 24 - 
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Synthesis [Cd2Cl4(H2O)4(5.2⊂T3P-DB24C8)][BF4]2 
 
To a solution of [5.2⊂T3P-DB24C8)][BF4]2 (30 mg) was dissolved in 1 mL of CH3CN 

was added to Cd(BF4)2·6 H2O (9 mg) and the mixture was stirred at room temperature 

overnight. Slow diffusion of isopropyl ether into the solution gave yellow crystals in 

quantitative yield. 
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Chapter 6 
 

[2]Rotaxane Ligands with Donors on Both the Axle and Wheel 
 

6.1 Introduction 
 
The focus of this chapter is to combine the “rotaxane as a ligand” concepts from chapters 

2 and 5 to design a sophisticated [2]rotaxane with coordinating groups appended to both 

the axle and the wheel. This could, in an ideal metal-ligand system, give rise to two 

independent coordination networks linked only by the interpenetration of the ligand. In 

particular, the focus will be on a design in which the ligands on the axle could lead to a 1-

periodic coordination polymer and the ligands on the wheel could form a 2- periodic 

coordination network. To date, there are no known examples of this type of coordination 

polymer or metal organic framework material. 

Recently we have shown that a terpyridine ligand can be utilized as the stopper of a 

[2]rotaxane to form a 1-periodic coordination polymer.1 However, due to unseen 

problems with synthesis such a chelating group could not be used in this case. In place of 

the terpyridine group, the bis(2-pyridylmethyl)amine ligand as a stopper was developed; 

Figure 6.1. 

 
Figure 6.1 The new stopper based [2]rotaxane with bis(2-pyridylmethyl)amine.  
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Recently, Leigh developed a [2]rotaxane that contains two bis(2-pyridylmethyl)amine 

(BPMA ) chelating sites, one attached to the rotaxane macrocycle and one to the rotaxane 

thread. This was synthesized using a hydrogen bond-templated clipping strategy; Figure 

6.2.2  
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Figure 6.2 Leigh “combo” chelating rotaxane.3 

 
6.2 Results and Discussion 

 
6.2.1 Synthesis of Bis(2-pyridylmethyl)amine 

 
The ligand BPMA  was chosen as the ligand unit for eventual inclusion as the stopper for 

these new type of [2]rotaxane ligands. The synthesis of BPMA  proceeded smoothly via 

the condensation of pyridine-2-carboxaldehyde with 2-aminomethylpyridine, to form the 

imine. Subsequent reduction of the imine, in situ with NaBH4 produced the desired 

compound BPMA  as previously reported; Scheme 6.1.3  

 



 154 

N
H

O

+
N

NH2
i)

N
NN

ii) N
H

NN

BPMA = 65%  
Scheme 6.1 i) EtOH, ii) NaBH4, reflux. 
 

Alkylation of the secondary amine occurred via a literature procedure, in moderate 

yield with methyl p-(bromomethyl)benzoate, and triethylamine to produce ((p-

methylbenozote)benzyl)bis(2-pyridylmethyl)amine (MeCO2BzBPMA). Hydrolysis of 

the ester was carried with NaOH in MeOH to produce N-(p-carboxybenzyl)bis(2-

pyridylmethyl)amine (HCO2-BzBPMA), as previously reported; Scheme 6.2.4   
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Scheme 6.2 i) Et3N, THF, reflux, 2h ii) 2M NaOH(aq), MeOH.  
 

Similar ligands have been studied in previous years to coordinate to number of metals 

such as ruthenium(II), osmium(II), and group 10 and 12 transition metals.5 The methyl 

ester ligand was studied with Cu(II), Zn(II), and the metal carbonyl fragments  

Mo(CO)6
5, Mn(CO)5Br and Re(CO)5Br.  These complexes with MeCO2-BzBPMA were 
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generally prepared by reacting equimolar amounts of both M(CO5)Br (M = Mn or Re) 

and AgOTf in refluxing methanol in the presence of the ligand; Scheme 6.3.5 
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Scheme 6.3 i) M(CO)5Br, AgOTf, MeOH, 60 min (M = Mn or Re) ii) 
[Re(CO)5(MeOH)][OTf], MeCO2-BzBPMA , 60 min. 
 

The IR spectrum of [Re(CO)3(MeCO2-BzBPMA)][OTf] was recorded in a KBr 

pellet and showed the characteristic bands of the ligand as well as two bands of a nearly 

C3v-symmetrical Re(CO)3 fragment, with the doubly degenerate E band slightly split 

(2029, 1949 cm-1).  

The 1H-NMR spectrum of [Re(CO)3(MeCO2-BzBPMA)][OTf] in CD3CN is 

summarized in Table 6.1. Metal coordination was observed by higher chemical shifts for 

the proton adjacent to the pyridine (a) and splitting of the methylene groups next to the 

amine nitrogen (e) by -0.31 and -1.18/-0.46 ppm respectively. The ESI–MS also 

confirmed coordination resulting in observation of the parent ion as [Re(CO)3(MeCO2-

BzBPMA)]+ at 618.1031 m/e. 
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Table 6.1 Comparison of the chemical shifts of free ligand MeCO2-BzBPMA and metal 
[Re(CO)3(MeCO2-BzBPMA)][OTf]. 

Proton MeCO2-BzBPMA [Re(CO)3(MeCO2-BzBPMA)]+ 
a 8.47 8.78 (-0.31) 
b 7.20 7.28 (-0.08) 
c 7.69 7.83 (-0.14) 
d 7.57 7.79 (-0.22) 
e 3.75 4.93 (-1.18), 4.31 (-0.46) 
f 3.73 4.97 (-1.24) 
g 7.54 7.34 (0.20) 
h 7.94 8.14 (-0.20) 
i 3.92 3.92 (0.00) 

 

Single crystals of the Mn(I) complex were grown by slow diffusion of isopropyl ether 

into a solution of MeCN. The cationic portion of the structure, [Mn(CO)3(MeCO2-

BzBPMA)]+ is shown in Figure 6.3. The manganese centre is in a slightly distorted 

octahedral coordination environment, with the N3 ligand and the three carbonyl ligands 

coordinating facially. The angles between the Mn(I) and the carbonyl ligands are bent 

towards each other such that the C(2)-Mn(1)-C(3) angle is only 86.3° and the other 

angles are significantly different less 180°; Table 6.2 shows selected bond lengths and 

angles. Although no related Mn(CO)x structures were found in the CCDC, a related 

Re(CO)3 complex was found to have the bond angles in good agreement with this Mn(I) 

complexes.6,7 

Table 6.2 Bond lengths(Å) and bond angles(º) for [Mn(CO)3(MeCO2-BzBPMA)]+. 

Mn-N(1) 2.06(2) N(1)-Mn-N(2) 83.4(5) 
Mn-N(2) 2.04(2) N(2)-Mn-N(3) 82.3(6) 
Mn-N(3) 2.12(2) N(1)-Mn-N(3) 80.5(5) 
Mn-C(1) 1.83(2) C(1)-Mn-C(2) 88.7(6) 
Mn-C(2) 1.82(2) C(2)-Mn-C(3) 86.3(8) 
Mn-C(3) 1.82(2) C(1)-Mn-C(3) 91.7(6) 
C(1)-O(1) 1.13(1) Mn-C(1)-O(1) 178.2(9) 
C(2)-O(2) 1.14(1) Mn-C(2)-O(2) 173.4(11) 
C(3)-O(3) 1.14(1) Mn-C(3)-O(3) 176.5(12) 
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Figure 6.3 A ball-stick representation of the cationic portion of the X-ray crystal 
structure of [(Mn(CO)3(MeCO2-BzBPMA)]+. All hydrogen atoms, all anions and all 
solvent molecules have been omitted for clarity. (Mn = blue-gray, O = red, N = blue, C = 
black, ligands bonds = gold). 
 

6.2.2 Synthesis of a BPMA stoppered [2]rotaxane 

The [2]rotaxane were synthesized in good yield through esterification of the 

[2]pseudorotaxane formed between [3.5][OTf] 2, DB24C8 with HCO2-BzBPMA and 

N,N'-Dicyclohexylcarbodiimide (DCC) in MeCN at room temperature; Scheme 6.4.8,9  
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Scheme 6.4 i) DB24C8, HCO2-BzBPMA, DCC, nBu3P (cat.), MeCN, RT for 72 h. 
 

The 1H NMR spectrum of compounds [6.2][OTf] 2 and [6.2⊂DB24C8][OTf] 2 in 

CD3CN are shown in Figure 6.4 and some of the major peaks are summarized in Table 

6.3. The spectrum of the [2]rotaxane showed evidence supporting the various 

supramolecular interactions such as hydrogen bonding and π-π stacking. Hydrogen 

bonding between the ethylene (a) and α-pyridinium (b) protons of the axle and the 

polyether oxygen atoms of the macrocycle is evidenced by a downfield shift of the 

signals for a  and b of 0.32 and 0.18 respectively. 

[6.2]2+(no crown) = 18%  

[6.2⊂DB24C8]2+ = 59% 
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Figure 6.4 Comparison of the 1H NMR shifts of (a) [6.2⊂DB24C8][OTf] 2, and (b) 
[6.2][OTf] 2 in CD3CN at 500 MHz. 
 

Table 6.3 Comparison of the chemical shifts of the dumbbell [6.2][OTf] 2 and the 
[2]rotaxane, [6.2⊂DB24C8][OTf] 2. 

Protons [6.2]2+ [6.2⊂DB24C8]2+ 

a 5.15 5.44 (0.32) 
b 8.84 9.02 (0.18) 
c 8.31 8.03 (-0.28) 
d 7.96 7.65 (-0.31) 
e 7.58 7.60 (0.02) 

 

In addition to resonances which are diagnostic of the capping process and rotaxane 

formation in general. The presence of the singlet at 5.47 ppm for f also indicated 

acylation of the alcohol had occurred. The 1H NMR spectra reveals the presence of two 

separate resonances for o and p at 6.65 and 6.56 ppm, compared to 6.93 ppm for free 

DB24C8, are indicative of π-stacking between pairs of electron-poor pyridinium and 

electron-rich crown aromatic rings. The ESI-MS confirmed the interlocked nature of the 

complex, with the loss of two counter ions, [6.2⊂DB24C8]2+
 at 738.3438 m/e. 

To investigate the coordination ability of this unique ligand, a Re(I) complex was 

prepared. Scheme 6.5, shows generally how the monomer looks in solution when two 

equivalents of [Re(CO)5(MeOH)][OTf]  were reacted with [6.2⊂DB24C8][OTf] 2.  
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Scheme 6.5 i) [Re(CO)5(MeOH)][OTf]  in MeOH, reflux, 1 hr. 
 

The 1H NMR spectrum of the Re(I) rotaxane complex was recorded in CD3CN 

revealed upfield shifts of the protons n-j . Proton n, in complex 

[(Re(CO)3)2(6.2⊂DB24C8)]4+ shifts from 8.78 ppm for the uncomplexed [2]rotaxane to 

8.48 ppm when coordinated to a rhenium(I) centre. Also seen is the splitting of the 

methylene proton j  at 4.94 and 4.32 ppm. Conventional 2D NMR techniques (1H – 1H 

COSY) were also employed to help assign the observed resonances. The differences 

between the [2]rotaxane ligand and the corresponding rhenium(I) complex are 

summarized in Table 6.4. The ESI-MS of the metal complex showed the loss of all the 

counter ions to give [(Re(CO3))2(6.2⊂DB24C8)]4+
 at 504.6403 m/e. 

[(Re(CO)3)2(6.2)]4+(no crown) 

[(Re(CO)3)2(6.2⊂DB24C8)]8+  
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Figure 6.5 1H NMR spectrum of [(Re(CO)3)2(6.2⊂DB24C8)][OTf] 4 at 500MHz. 
 
Table 6.4 A comparison of the 1H NMR chemical shifts for dumbbell [6.2][OTf] 2, 
[2]rotaxane ligand [6.2⊂DB24C8][OTf] 2 and complex [(Re((CO)3)2)(6.2)]4+, 
[(Re((CO)3)2) (6.2⊂DB24C8)][OTf] 4. 
proton  [6.2]2+ [(Re(CO3))2(6.2)] 4+ [6.2⊂DB24C8] 2+  [(Re(CO3))2(6.2⊂DB24C8)] 4+ 

a 5.15 5.12 (-0.03) 5.44 5.50 (0.06) 
b 8.84 8.72 (-0.12) 9.02 9.06 (0.04) 
c 8.31 8.35 (0.04) 8.03 8.24 (0.18) 
d 7.96 8.01 (0.05) 7.65 7.70 (0.05) 
e 7.58 7.77 (0.19) 7.60 7.66 (0.06) 
f 5.45 5.52 (0.07) 5.47 5.52 (0.05) 
g 8.01 8.22 (0.21) 7.94 7.97 (0.03) 
h 7.71 7.82 (0.11) 7.60 7.83 (0.23) 
i 3.75 4.98 (1.23) 3.79 4.99 (1.20) 
j 3.75 4.93 (1.18), 4.31 

(0.56) 
3.79 4.94 (1.15), 4.33 (0.54) 

k 7.58 7.33 (-0.25) 7.60 7.35 (-0.25) 
l 7.71 7.82 (0.11) 7.73 7.83 (0.10) 
m 7.20 7.28 (0.08) 7.21 7.29 (0.08) 
n 8.48 8.79 (0.31) 8.49 8.79 (0.30) 
o - - 6.65 6.67 (0.02) 
p - - 6.53 6.55 (0.02) 

 

To investigate the coordination ability of this unique rotaxane ligand, silver(I) and 

cadmium(II) were investigated as these metals are known to form complexes with this 

ligand.10,11 Scheme 6.6  shows generally how the monomer would look in solution when 

two equivalents of [Ag][OTf], or [Cd(H2O)6][BF4]2 in MeCN were added to 

[6.2⊂DB24C8][OTf] 2. The coordination of Ag(I) with the BPMA  results in the 

formation of a dimeric species with two Ag(I) coordinating to two BPMA  ligands 
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through the pyridyl and amine groups and a Ag(I)…Ag(I) interaction.10 A similar dimer 

still exists if the amine group is substituted, and does not depend on solvent or counter 

ions.10b  NMR data supports that the dimer exists but with the loss of the amine 

coordination and the Ag(I)…Ag(I) interaction but is replaced with either solvent or 

counter-ion filling the coordination sphere.  
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Scheme 6.6 i) 2 equivalents of Ag(OTf) or [Cd(H2O)6][BF4]2 in MeCN for 24 h at RT.  
  

The 1H NMR spectrum for the Ag(I) complex revealed downfield shifts of the 

protons n-j . Proton n, in complex [(Ag)x(6.2⊂DB24C8)]4+ shifts from 8.48 ppm for the 

uncomplexed [2]rotaxane to 8.55 ppm when coordinated to a silver(I) centre. The 
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resonances due to j  and i in the uncomplexed [2]rotaxane both appear at 3.79 ppm but in 

the silver(I) complex shifts them upfield to 3.77 and 3.70 ppm respectively. The 

difference between the [2]rotaxane and the corresponding silver(I) complex was 

summarized in Table 6.5. 

The coordination of Cd(II) with the BPMA  results in a bis-ligand species with one 

Cd(II) coordinating to two BPMA  ligands through the pyridyl and amine groups.12 The 

1H NMR spectrum for the Cd(II) complex revealed downfield shifts of the protons n-j . 

Proton n, in complex [(Cd)x(6.2⊂DB24C8)]x+ shifts from 8.48 ppm for the uncomplexed 

[2]rotaxane to 8.70 ppm when coordinated to a cadmium(II) centre. Proton i, in 

[(Cd)x(6.2⊂DB24C8)]x+ shifts from 3.79 ppm for the uncomplexed [2]rotaxane, to 3.91 

ppm when coordinated to the cadmium(II) centre. In addition, splitting of the methylene 

proton j  from 3.79 ppm into downfield resonances at 3.76 and 4.13 ppm is observed upon 

complexation. 

Table 6.5 1H NMR chemical shifts for [2]rotaxane [6.2⊂DB24C8][OTf] 2 and  complex 
[(Ag)x(6.2⊂DB24C8)][OTf] x+ and [(Cd)x(6.2⊂DB24C8)][OTf] x+ in CD3CN. 

protons [6.2⊂DB24C8]2+ [(Ag)x(6.2⊂DB24C8)]x+ [(Cd)x(6.2⊂DB24C8)]x+ 
a 5.44 5.43 (-0.01) 5.49 (0.05) 
b 9.02 9.04 (0.02) 9.06 (0.04) 
c 8.03 8.00 (-0.03) 8.14 (0.11) 
d 7.65 7.62 (-0.03) 7.66 (0.01) 
e 7.60 7.62 (0.02) 7.66 (0.06) 
f 5.47 5.46 (-0.01) 5.49 (0.02) 
g 7.94 7.94 (0.00) 7.97 (0.03) 
h 7.60 7.48 (-0.12) 7.44 (-0.16) 
i 3.79 3.70 (-0.09) 3.91 (0.12) 
j 3.79 3.77 (-0.02) 4.13 (0.36), 3.76 (-0.03) 
k 7.60 7.37 (-0.23) 7.53 (-0.07) 
l 7.73 7.84 (0.11) 8.07 (0.34) 
m 7.21 7.40 (0.19) 7.66 (0.45) 
n 8.49 8.55 (0.06) 8.70 (0.21) 
o 6.65 6.64 (-0.01) 6.66 (0.01) 
p 6.53 6.50 (-0.03) 6.54 (0.01) 
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6.2.3 [2]Rotaxane ligand with donors on both the axle and wheel 
 
The synthesis of a [2]rotaxane ligand with donor groups on both the axle and the wheel 

followed the same procedure as that used to prepare [6.2⊂DB24C8][OTf] 2 except that 

the crown used was T3P-DB24C8; Scheme 6.7. Some of the major 1H NMR peaks are 

summarized in Table 6.6. The 1H NMR spectrum of [6.2⊂T3P-DB24C8][OTf] 2 shows 

evidence supporting the various supramolecular interactions such as hydrogen bonding 

and π-π stacking. Hydrogen-bonding between the ethylene (a) and α-pyridinium (b) 

protons of the thread and the polyether oxygen atoms of the macrocycle is demonstrated 

by a downfield shift of the signals for a to 5.37 ppm, the shift of proton b to 9.02 ppm for 

[6.2⊂DB24C8][OTf] 2. 
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Scheme 6.7 i) T3P-DB24C8, HCO2-BzBPMA, DCC, nBu3P (cat.), MeCN for 72 h. 
 

 [6.2⊂T3P-DB24C8]2+ = 28% 



 165 

Table 6.6 1H NMR assignments for [6.2][OTf] 2, and [6.2⊂T3P-DB24C8][OTf] 2 in 
CD3CN. 

Protons [6.2]2+ [6.2⊂⊂⊂⊂T3P-DB24C8]2+ 

a 5.11 5.37(0.26) 
b 8.65 9.02(0.37) 
c 8.33 8.02(-0.31) 
d 7.98 7.55(-0.43) 
e 7.73 7.70(-0.03) 

 

 The 1H NMR spectrum also shows changes for the wheel, which are summarized in 

Table 6.7. The differences occur at the singlet aromatic proton on the parent T3P-

DB24C8 unit (u), and the benzylic protons (t). As mentioned, the free crown ether, T3P-

DB24C8, shows a singlet at 6.96 ppm for u but this singlet shifts upfield to 6.66 ppm (∆δ 

= 0.30 ppm) for [6.2⊂T3P-DB24C8]2+. Also, the benzylic protons for the free crown 

ether show a singlet at 4.51 ppm but this singlet shifts downfield to 4.52 ppm (∆δ = 0.01 

ppm). The ESI-MS of [6.2⊂T3P-DB24C8]2+ also confirmed the interlocked natures of 

the complex, with the loss of two counter ions resulting in observation of the parent ion 

[6.2⊂⊂⊂⊂T3P-DB24C8]2+ at 980.4467 m/e.  

Table 6.7 1H NMR assignments of T3P-DB24C8 and [6.2⊂T3P-DB24C8][OTf] 2 in 
CD3CN. 

Protons T3P-DB24C8 [6.2⊂T3P-DB24C8]2+ 
o 8.51 8.46(-0.05) 
p 8.47 8.46(-0.01) 
q 7.30 7.24(-0.06 
r 7.67 7.49(-0.18) 
s 4.51 4.52(-0.01) 
t 4.49 4.51(-0.02) 
u 6.96 6.66(-0.30) 

 

Upon coordination, it is possible that this new “combo” ligand rotaxane could form two 

independent frameworks, one created by linking axle to axle and another by linking of 

the wheels. Both of these metal ligand interactions have been observed in separate 
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systems containing only one of the donor sets. Figure 6.6 shows a schematic view of this 

concept. 

 
Figure 6.6 Possible coordination of the “combo” rotaxane ligand. 

6.3 Conclusion  

An interlocked molecule with a new chelating group BPMA  as a stopper was prepared 

and coordinated to a number of metals. Upon coordination to Mn(I) the ligand adopts a 

facial orientation around the metal as seen previously with related ligands of this type. 

The robust nature of this [2]rotaxane was confirmed by 1H NMR spectroscopy. The 

complex with Re(I) demonstrates a further example the “rotaxane as ligand” approach for 

preparing robust complexes that require harsh reactions conditions. The Ag(I) and Cd(II) 

complexes demonstrate the possibility of preparing coordination polymers. 

The idea of creating a “combo” ligand rotaxane with donors appended to both axle 

and wheel was also presented and the successful preparation of such a ligand confirmed 

by 1H NMR spectroscopy and mass spectrometry. Future coordination studies on the 
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“combo” rotaxane ligand may provide solid state evidence that a MORF with 

independent networks derived from this design may be possible. To date, all attempts to 

grow X-ray quality crystals with different labile metal ions have failed.   

6.4 Experimental  

6.4.1 General Methods  

Pyridine-2-carboxaldehyde, 2-aminomethylpyridine, NaBH4, triethylamine, methyl-p-

(bromomethyl)benzoate, and AgOTf were purchased from Sigma-Aldrich and used as 

received. Re2(CO)10 was obtained from Strem and used as received. Re(CO)5Br13, 1,2-

bis(4-pyridine-4ylphenylmethanol)ethane9 and [3.5][OTf] 2 were synthesized using 

literature methods. Solvents were dried using an Innovative Technology Solvent 

Purification System. 1H NMR spectra were obtained on a Bruker Avance 500 instrument 

operating at 500 MHz. Deuterated solvents were purchased from Cambridge Isotope 

Laboratories Inc. and used as received. High-resolution mass spectra were recorded in 

50/50 MeCN/H2O on a Micromass LCT Electrospray TOF mass spectrometer.   

Synthesis BPMA  
 
Pyridine-2-carboxaldehyde (8.0 g, 76.5 mmol) was dissolved in 30 mL of absolute 

ethanol in a 250 mL three-neck round bottom flask. 2-Aminomethylpyridine (8.27 g, 76.5 

mmol) dissolved in 60 mL absolute ethanol and added dropwise via a constant addition 

funnel over a 15 min period to the carboxaldehyde solution. The reaction mixture was 

stirred for 30 min at room temperature. Sodium borohydride (5.80 g, 153 mmol) was then 

added to the solution. After complete addition, the reaction mixture was refluxed for 3 h 

and subsequently cooled in an ice bath and acidified to pH = 2 using 12M HCl. The white 

solid was filtered and the filtrate was evaporated to get rid of the ethanol. The resulting 
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oil was dissolved in 120 mL ethanol and 30 mL concentrated HCl and 70 mL diethyl 

ether was added. The clear solution was cooled in the freezer overnight, revealing white 

crystals. The crystals were filtered and dried, then dissolved in a minimal amount of H2O 

and made basic to pH = 10 by addition of 10% NaOH. The product was extracted with 3 

x 20 mL of CH2Cl2 and subsequently dried over anhydrous MgSO4. The CH2Cl2 was 

removed by rotary evaporation to yield pale yellow oil. Yield = 9.62 g (65%)   

 

N
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N
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c
d e
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Table 6.8 1H NMR spectroscopic data for BPMA  in CDCl3 

 
Proton δ (ppm) Multiplicity # protons J (Hz) 

a 8.46 d 2 J3ab = 8.3 
b 7.07 dd 2 J3ba = 4.7, J3bc = 

7.0 
c 7.54 dd 2 J3cb = 1.6, J3cd = 

6.2 
d 7.27 d 2 J3dc = 6.5 
e 3.90 s 4 - 
f 2.99 s 1 - 
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Table 6.9 13C-NMR spectroscopic data for BPMA  in CDCl3 

 

Carbon δ (ppm) 
1 149.2 
2 121.8 
3 136.3 
4 122.2 
5 159.4 
6 54.5 
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Synthesis MeO2-BzBPMA 
 
Triethylamine (0.69 mL, 5.00 mmol) was added to a solution of BPMA  (1.0 g, 5.00 

mmol) and methyl p-(bromomethyl)benzoate (1.15 g, 5.00 mmol) in THF (35 mL), and 

the mixture was refluxed for 2 h. The mixture was allowed to reach room temperature 

and filtered to remove a white precipitate. After removal of solvent under reduced 

pressure, the oily residue was redissolved in Et2O (40 mL) and filtered to remove a red 

solid. The Et2O was removed to yield orange oil. Yield = 1.49 g (85%) 

 

N
N

O

O

a
b

c
de

f

g
h

i

N

 
 
Table 6.10 1H-NMR spectroscopic data for MeO2-BzBPMA in CDCl3 

 
Proton δ (ppm) Multiplicity # protons J (Hz) 

a 8.53 d 2 J3ab = 4.2 
b 7.16 dd 2 J3ba = 5.6, J3bc = 

6.7 
c 7.67 dd 2 J3cb = 7.7, J3cd = 

7.6 
d 7.56 d 2 J3dc = 7.9 
e 3.81 s 4 - 
f 3.75 s 2 - 
g 7.49 d 2 J3gh = 8.1 
h 7.99 d 2 J3hg = 8.1 
i 3.90 s 3 - 
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Table 6.11 1H-DMR spectroscopic data for MeO2-BzBPMA in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.47 d 2 J3ab = 4.2 
b 7.20 tt 2 J3ba = 5.6, J3bc = 

6.7 
c 7.69 dd 2 J3cb = 7.7, J3cd = 

7.6 
d 7.57 d 2 J3dc = 7.9 
e 3.75 s 4 - 
f 3.73 s 2 - 
g 7.54 d 2 J3gh = 8.1 
h 7.94 d 2 J3hg = 8.1 
i 3.92 s 3 - 

 
 

N
N

O

O

1
2

3
456

7
8
9

101112
13

N

 
 
Table 6.12 13C-NMR spectroscopic data for MeO2-BzBPMA in CDCl3 

 
Carbon δ (ppm) 

1 149.5 
2 122.1 
3 136.5 
4 122.8 
5 159.3 
6 60.1 
7 58.2 
8 144.5 
9 128.7 
10 129.6 
11 128.9 
12 167.0 
13 52.0 
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Synthesis [Re(CO)3(MeCO2-BzBPMA)][OTf]  
 
Under an inert atmosphere, AgOTf (0.139 g, 0.542 mmol) and Re(CO)5Br (0.200 g, 

0.492 mmol) in methanol (1 mL) were heated to reflux for 60 min. The AgBr precipitate 

was removed by filtration though Celite. The MeO2-BzBPMA (0.188 g, 0.542 mmol) 

was dissolved in methanol (5 mL) and the solution was refluxed for an additional 1 h. 

After cooling to room temperature, the solvent was removed in vacuo and the residue 

dissolved in a minimum of diethyl ether. The precipitate was filtered and recrystallized 

from CH3CN/Et2O. After standing for a day, a quantitative yield of brown solid 

[Re(CO)3(MeCO2-BzBPMA)][OTf] was obtained. ESI-MS: m/z [Re(CO)3(MeCO2-

BzBPMA)]+ calc. 618.1033, found 618.1031. IR(KBr) υ(cm-1): 2029, 1949. 
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Table 6.13 1H-NMR spectroscopic data for [Re(CO)3(MeCO2-BzBPMA)]+ in CD3CN 

 
Proton δ (ppm) Multiplicity # protons J (Hz) 

a 8.78 d 2 J3ab = 5.3 
b 7.28 dd 2 J3ba = 6.0, J3bc =  

6.7 
c 7.83 dd 2 J3cb = 7.3, J3cd =  

7.6 
d 7.79 d 2 J3cd = 7.7 
e 4.93, 4.31 d 4 J3e,e’ = 16.1 
f 4.97 s 2 - 
g 7.34 d 2 J3gh = 7.7 
h 8.14 d 2 J3hg = 7.8 
i 3.92 s 3 - 
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Synthesis HCO2-BzBPMA 
 
A solution of NaOH (0.4 g, 20 mmol) in H2O (5 mL) was added to a solution MeCO2-

BzBPMA (0.695 g, 2.0 mmol) in MeOH (20 mL), and the mixture was stirred for 2h at 

room temperature. The pH was adjusted to 7 by drop wise addition of 1M HCl (10 mL), 

followed by removal of the solvent under reduced pressure. The sticky white residue was 

stirred in CHCl3 (100 mL), followed by filtration to remove NaCl. The CHCl3 solution 

was dried with MgSO4. Yield: 0.534 g (80%).    
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Table 6.14 1H-NMR spectroscopic data for HCO2-BzBPMA in CDCl3 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.65 d 2 J3ab = 4.2 
b 7.23 tt 2 J3ba = 5.6, J3bc =  

6.7 
c 7.73 dd 2 J3cb = 7.7, J3cd = 

7.6 
d 7.64 d 2 J3dc = 7.9 
e 3.92 s 4 - 
f 3.80 s 2 - 
g 7.47 d 2 J3gh = 8.1 
h 8.02 d 2 J3hg = 8.1 
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Table 6.15 1H-NMR spectroscopic data for HCO2-BzBPMA in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 8.47 d 2 J3ab = 4.2 
b 7.20 tt 2 J3ba = 5.6, J3bc =  

6.7 
c 7.69 dd 2 J3cb = 7.7, J3cd = 

7.6 
d 7.57 d 2 J3dc = 7.9 
e 3.75 s 4 - 
f 3.73 s 2 - 
g 7.54 d 2 J3gh = 8.1 
h 7.94 d 2 J3hg = 8.1 
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Table 6.16 13C-NMR spectroscopic data for HCO2-BzBPMA in CDCl3 
 

Carbon δ (ppm) 
1 148.5 
2 122.5 
3 137.2 
4 123.6 
5 158.6 
6 59.1 
7 58.0 
8 142.7 
9 129.1 
10 130.8 
11 130.0 
12 169.3 
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Synthesis [6.2⊂DB24C8][OTf] 2 

 
[3.5][OTf] 2 (0.060 g, 0.105 mmol) was combined with DB24C8 (0.141 g, 0.314 mmol), 

in acetonitrile (5 mL) and stirred over night. The reaction was cooled to 0 oC before 

HCO2-BzBPMA (0.140 g, 0.420 mmol) and DCC (0.173 g, 0.838 mmol) were added. 

nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 96 h at 

room temperature. The side-product was filtered. The solvent was removed under 

pressure and the product was stirred in toluene and isolated by filtration. Yield 0.090 g 

(59%). ESI-MS: m/z [6.2⊂DB24C8]2+ calc. 738.3427, found 738.3438. 
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Table 6.17 1H-NMR spectroscopic data for [6.2⊂DB24C8]2+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.45 s 4 - 
b 9.04 d 4 J3bc = 6.5 
c 8.04 d 4 J3cb = 8.3 
d 7.65 d 4 J3de = 8.4 
e 7.60 m 4 - 
f 5.47 s 4 - 
g 7.94 d 4 J3gh = 6.4 
h 7.60 m 4 - 
i 3.76 s 4 - 
j 3.76 s 8 - 
k 7.60 m 4 - 
l 7.72 dd 4 J3lm = 7.7, J3lk = 

6.0 
m 7.24 m 4 - 
n 8.49 d 4 J3nm = 4.1 
o 6.65 m 4 - 
p 6.53 m 4 - 

q,r,s 4.03-3.95 m 24 - 
 
 
Synthesis [6.2][OTf] 2 

 
[3.5][OTf] 2 (0.060g, 0.105 mmol), the reaction was cooled to zero degrees before the 

addition of HCO2-BzBPMA  (0.140 g, 0.420 mmol) and DCC (0.173 g, 0.838 mmol). 

nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 96 h at 

room temperature. The side-product was filtered. The solvent was removed under 

pressure and the product was stirred in hexanes. The solid was filtered, and stored in 

chloroform to remove any excess stopper leaving the capped thread as an off white solid. 

Yield 0.020 g (18%). 
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Table 6.18 1H-NMR spectroscopic data for [6.2]2+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.15 s 4 - 
b 8.84 d 4 J3bc = 6.7 
c 8.31 d 4 J3cb = 6.6 
d 7.96 d 4 J3de = 8.5 
e 7.58 d 4 J3ed = 6.3 
f 5.45 s 4 - 
g 8.01 d 4 J3gh = 8.3 
h 7.71 m 4 - 
i 3.75 s 4 - 
j 3.75 s 8 - 
k 7.58 d 4 J3kl = 6.3 
l 7.71 m 4 - 
m 7.20 t 4 J3mn = 3.8, J3ml 

=  7.3 
n 8.48 d 4 J3nm = 3.2 
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Synthesis [(Re(CO3))2(6.2⊂DB24C8)][OTf] 4 

 
Under an inert atmosphere, AgBF4 (0.042 g, 0.218 mmol) and Re(CO)5Br (0.044 g, 0.109 

mmol) in MeOH (1 mL) were heated to reflux for 60 min. The AgBr precipitate was 

removed by filtration though Celite. The [6.2⊂DB24C8][OTf] 2 (0.090 mg, 0.055 mmol) 

dissolved in methanol (5 mL) was added to the solution which was refluxed for an 

additional 1 h. After cooling to room temperature, the solvent was removed in vacuo and 

the residue dissolved in a minimum of diethyl ether and stirred for 30 min. The 

precipitate was filtered and recrystallized from CH3CN/Et2O. After standing for a day, a 

brown solid was isolated. Yield 0.130 g (98%). ESI-MS: m/z 

[(Re(CO3))2(6.2⊂DB24C8)]4+ calc. 504.6406, found 504.6402. IR(KBr) υ(cm-1): 2036, 

1940. 
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Table 6.19 1H-NMR spectroscopic data for [(Re(CO3))2(6.2⊂DB24C8)]4+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.50 s 4 - 
b 9.06 d 4 J3bc = 6.7 
c 8.23 d 4 J3cb = 8.2 
d 7.69 d 4 J3de = 8.4 
e 7.65 d 4 J3ed = 8.4 
f 5.49 s 4 - 
g 7.96 d 4 J3gh = 6.8 
h 7.34 m 4 - 
i 4.99 s 4 - 
j 4.94, 4.33 d 8 J3jj’  = 16.1 
k 7.83 m 4 - 
l 7.83 m 4 - 
m 7.27 m 4 - 
n 8.78 d 4 J3nm = 5.0 
o 6.66 m 4 - 
p 6.54 m 4 - 

q,r,s 4.03-3.98 m 24 - 
 
 
 
Synthesis [(Re(CO3)2)(6.2)][OTf] 4 

 
Under an inert atmosphere, AgOTf (0.030 g, 0.117 mmol) and Re(CO)5Br (0.024 g, 

0.059 mmol) in MeOH (1 mL) were heated to reflux for 60 min. The AgBr precipitate 

was removed by filtration though Celite. The [6.2][OTf] 2 (0.020 g, 0.015 mmol) 

dissolved in MeOH (1 mL) and the solution was refluxed for an additional 1 h. After 

cooling to room temperature, the solvent was removed in vacuo and the residue dissolved 

in a minimum of diethyl ether and stirred for 30 min. The precipitate was filtered and 

recrystallized from CH3CN/Et2O. After standing for a day, a brown solid was isolated. 

Yield 0.030 g (98%). IR(KBr) υ(cm-1): 2035, 1917. 
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Table 6.20 1H-NMR spectroscopic data for [(Re(CO3)2)(6.2)]4+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.12 s 4 - 
b 8.79 d 4 J3bc = 5.1 
c 8.35 d 4 J3cb = 7.0 
d 8.01 d 4 J3de = 8.4 
e 7.77 d 4 J3ed = 8.4 
f 5.52 s 4 - 
g 8.22 d 4 J3gh = 8.2 
h 7.82 m 4 - 
i 4.98 s 4 - 
j 4.93, 4.31 d 8 J3jj’  = 16.1 
k 7.33 d 4 J3kl = 7.9 
l 7.82 m 4 - 
m 7.28 dd 4 J3mn = 6.7, J3ml 

= 6.5 
n 8.72 d 4 J3nm= 7.0 
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Synthesis [(Ag)x(6.2⊂DB24C8)][OTf] x 
 
To a solution of [6.2⊂DB24C8][OTf] 2  (0.030 g, 0.0148 mmol)  dissolved in CH3CN (1 

mL) was added AgOTf (9 mg, 0.0350 mmol) and the mixture stirred at room temperature 

overnight.  Isopropyl ether was slowly diffused into the solution to give a yellow solid. 

Yield 0.130 g (98%). 
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Table 6.21 1H-NMR spectroscopic data for [(Ag)x(6.2⊂DB24C8)]x
+ in CD3CN 

 
Proton δ (ppm) Multiplicity # protons J (Hz) 

a 5.43 s 4 - 
b 9.04 d 4 J3bc = 6.9 
c 8.00 d 4 J3cb = 8.3 
d 7.62 m 4 - 
e 7.62 m 4 - 
f 5.46 s 4 - 
g 7.94 d 4 J3gh = 6.9 
h 7.37 d 4 J3hg = 7.8 
i 3.70 s 4 - 
j 3.77 s 8 - 
k 7.48 d 4 J3kl = 8.3 
l 7.84 dd 4 J3lm = 7.7, J3lk = 

7.8 
m 7.40 m 4 - 
n 8.55 d 4 J3nm = 4.2 
o 6.64 m 4 - 
p 6.50 m 4 - 

q,r,s 4.03-3.96 m 24 - 
 
 
Synthesis [(Cd)x(6.2⊂DB24C8)][OTf] x 
 
To a solution of [6.2⊂DB24C8][OTf] 2  (0.030 g, 0.020 mmol) dissolved CH3CN (1 mL) 

was added to [Cd(H2O)6][BF4]2 (5 mg, 0.127 mmol) and the mixture stirred at room 

temperature overnight.  Isopropyl ether was slowly diffused into the solution to give a 

yellow solid. 
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Table 6.22 1H-NMR spectroscopic data for [(Cd)x(6.2⊂DB24C8)]x

+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.49 s 4 - 
b 9.06 d 4 J3bc = 6.9 
c 8.14 d 4 J3cb = 8.3 
d 7.66 m 4 - 
e 7.66 m 4 - 
f 5.49 s 4 - 
g 7.97 d 4 J3gh = 6.9 
h 7.44 d 4 J3hg = 7.8 
i 3.91 s 4 - 
j 4.13, 3.76 s 8 J3

ij = 15.7 
k 7.53 d 4 J3kl = 8.3 
l 8.07 dd 4 J3lm = 7.7, J3lk = 

7.8 
m 7.66 m 4 - 
n 8.70 d 4 J3nm = 4.3 
o 6.66 m 4 - 
p 6.54 m 4 - 

q,r,s 4.04-3.98 m 24 - 
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Synthesis [6.2⊂T3P-DB24C8][OTf] 2 

 
[3.5][OTf] 2 (0.060 g, 0.105 mmol) was combined with T3P-DB24C8 (0.294 g, 0.315 

mmol), in acetonitrile (5 ml) and stirred overnight. The reaction was cooled to zero 

degree before HCO2-BzBPMA (0.140 g, 0.420 mmol) and DCC (0.173 g, 0.838 mmol). 

nBu3P (5 mol %) was added as a catalyst and the mixture was allowed to stir for 96 h at 

room temperature. The side-product was filtered. The solvent was removed under 

pressure and the product was stirred in ethyl acetate to remove the excess crown. The 

solid was filtered giving us the product as [6.2⊂T3P-DB24C8][OTf] 2  adducted. Yield 

0.093g (28%). ESI-MS: m/z [6.2⊂T3P-DB24C8]2+ calc. 980.4467, found 980.4487. 
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Table 6.23 1H-NMR spectroscopic data for [6.2⊂T3P-DB24C8]2+ in CD3CN 
 

Proton δ (ppm) Multiplicity # protons J (Hz) 
a 5.37 s 4 - 
b 9.02 d 4 J3bc = 6.9 
c 8.02 d 4 J3cb = 8.7 
d 7.55 m 4 - 
e 7.69 m 4 - 
f 5.44 s 4 - 
g 7.92 d 4 J3gh = 6.9 
h 7.55 m 4 - 
i 3.72 s 4 - 
j 3.72 s 8 - 
k 7.55 m 4 - 
l 7.69 m 4 - 
m 7.21 m 4 - 
n 8.48 m 4 - 
o 8.48 m 4 - 
p 8.48 m 4 - 
q 7.25 m 4 - 
r 7.49 d 4 J3rg = 8.6 
s 4.52 s 4 - 
t 4.51 s 8 - 
u 6.66 s 4 - 

v,w,x 3.77-3.71 m 24 - 
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Chapter 7 
 

Future Directions 
 

The build up of the whole thesis has to lead to the development of new so-called 

“combo” rotaxane ligands. From the initial studies involving ligands as stoppers and 

appending ligand groups to crown ethers, the idea of being to form a “double” set of 

independent frameworks appears, at least, plausible. Even though there are many 

different possible coordination outcomes using [6.2⊂T3P-DB24C8][OTf] 2 as a ligand, 

the most likely metal-ligand self-assembly interactions are those that link axle to axle and 

wheel to wheels as pictured in Figure 7.1. 
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Figure 7.1 Possible “double” network that [6.2⊂T3P-DB24C8][OTf] 2 will form upon 
coordination where M = Cd(II) or Ag(I). 
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Besides using nitrogen based donors there are many different donors available such as 

sulfur donors that can be used in the construction of MORFs; Figure 7.2, where R is any 

aryl or alkyl group, and R’ being a bulky aryl group that can as a stopper.  

O

N

O

O

O

O

O

O

O

N

O

O

O
O

S

S

S

S
R

R

R

R

S

S

R'

R'  
Figure 7.2 Sulfur donor “combo” rotaxane ligand. 
 

Besides just forming the “combo” rotaxane ligand with the same donor ligands, we could 

mix and match the donor ligands with each other; Figure 7.3. 
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Figure 7.3 Possible mixed donor [2]rotaxane system that could be made. 
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The generation of a mixed donor “combo” rotaxane ligand may allow for the generation 

of mixed metal MORF by considering the hardness and softness of the donors and 

metals.  
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