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Abstract 

Based on the mass balance (conservation) equation and the ubiquitous ¼ power law in 

biological allometry, we derive a general governing equation for organism growth. It is 

the same as a previously published model by West et al., which was developed using a 

conservation of total energy formalism with respect to the maintenance of already 

existing tissue and newly created one. In the present model, the energy/nutrition 

(including oxygen) supply or consumption in metabolism is reflected in the production 

and death rates. We start by dividing an organism into different small systems which 

have identical cells and then unite them by introducing similarity of growth. Normal cells 

follow the rules for similarity of growth but tumor cells may not. This model is applied to 

tumor therapy. We model the response of tumor cells to the major standard tumor 

treatments: surgery, radiation and chemotherapy. This model explains the survival curves 

quite well (better than all previous models). Also, it consistently explains cell response to 

high and low LET (linear energy transfer) radiations. This work shows that the LQ model 

is an approximate result of the present model under specific conditions. 

Tumor interstitial fluid pressure (TIFP) has the potential to predict tumor response to 

non-surgical cancer treatments such as radiation and chemotherapies. We present the 

mathematical framework for a quantitative, non-invasive measure of TIFP. It describes 

the distribution of interstitial fluid pressure in three distinct tumor regions: vascularized 

tumor rim, central tumor region and normal tissue. We demonstrate that the acquisition of 

serial images of a tumor after the injection of a contrast agent can provide a non-invasive 

and potentially quantitative measure of TIFP.  

Keywords: organism growth, tumor growth, tumor therapy, high and low LET radiations, 

surviving fraction, the LQ model, tumor interstitial fluid pressure (TIFP), non-invasive 

measurement.  
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Chapter 1. Introduction 

 

Tumors are defined as abnormal growth of body tissue. They are life-threatening if they 

evolve into cancer. Malignant tumors (cancer) are the major cause of premature death in 

the Western World. They account for 29% of male and 25% of female deaths [1]. If we 

understand the properties of tumors, their development mechanisms, and their response to 

treatment, we may predict their growth process and find an efficient therapy for treatment 

before they evolve into cancer. Modelling is a widely used method in tumor research. It 

has been applied to tumor growth and metastasis, tumor prognosis, tumor therapy and 

treatment as well as the corresponding response of tumor cells. Based on our experience 

of modelling corrosion of magnesium and its alloys, we feel that the governing equation 

for corrosion might be adopted to describe the process of tumor growth and metastasis. 

For instance, a diffusion-reaction equation is often used in corrosion modelling. It is also 

used in tumor research, such as in modelling avascular tumor growth. If we take tumor 

cell production as the source, tumor cell death as the sink/drain, and tumor cell transport 

in metastasis as the flux, the idea of the diffusion-reaction equation may be applied to 

describe the process of tumor growth and metastasis. Tumor interstitial fluid pressure 

(TIFP) is an important factor in tumor prognosis. It is an early marker of tumor response 

to therapy and can be practically used to monitor the effect of a specific treatment. 

Similarly, considering the source and drain of tumor fluid, as well as its transport process, 

we may use the diffusion-reaction equation to find the distribution of TIFP in a tumor and 

its interface with normal tissue. This dissertation contains two aspects of tumor study: 1) 

A general model for describing tumor growth and response to therapies and a discussion 

of tumor metastasis. 2) A phenomenological model for describing TIFP formation, 

distribution, as well as a possible noninvasive determination and measurement thereof.  

Literally, the word tumor originates from Latin and means “swelling” though not all 

swellings are tumors [2]. Generally, a tumor is an abnormal growth of body tissue, which 

can be malignant (cancerous) or benign (noncancerous). Cell division is strictly 
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controlled in normal tissue, as Hershey pointed out: “New cells are created to replace 

older ones or to perform new functions. Cells that are damaged or no longer needed die to 

make room for healthy replacements [3].” When cells divide excessively in the body, the 

balance of cell division and death is disturbed, and a tumor occurs [3]. A tumor has 

properties of an organism with characteristics such as growth and metastasis. When a 

tumor grows to a certain stage, tumor cells leave the original organ or part and spread to 

another non-adjacent organ or part through blood vessels and the lymphatic system.  

Researchers in the field of oncology apply experimental techniques and theoretical 

approaches in the ongoing battle against cancer. They try to understand its mechanisms 

and principles and establish a mathematical model to quantitatively determine the process 

of tumor growth, metastasis and response to treatment, as well as tumor prognosis. 

However, tumor types and locations vary. They have their own properties and 

characteristics. Many new therapies and strategies are expected to improve and 

individualize treatment. Thus, modelling is a viable theoretical approach when money, 

time and energy are limited. Araujo pointed out: “The study of tumor growth and the 

development of anti-cancer therapies are most worthwhile pursuits, having significant 

potential to enhance quality of life and increase life-expectancies, which may, in turn, 

yield considerable economic and social benefits.” [1]  

Despite remarkable strides in the treatment of some solid cancers such as breast and 

prostate, many cancers remain resistant to treatment. As new therapies are developed and 

medications become increasingly individualized, a need exists for effective prognostic 

markers of response. Tumor interstitial fluid pressure, TIFP, is a physiological parameter 

with demonstrated prognostic value. However, its clinical use is limited at present 

because the techniques available for its measurement are invasive and provide only point-

measurements. Methods to detect it by noninvasive means are a popular topic which has 

attracted many researchers’ attention. If we understand its formation and distribution, we 

may actualize noninvasive detection and monitor the treatment response process. Then 

we will have found an efficient treatment strategy. 

In summary, tumor studies include the law of tumor growth and metastasis, the responses 

to tumor treatments and therapies, and connecting tumor interstitial fluid pressure (TIFP) 
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distribution and non-invasive detecting to improve clinical tumor prognosis. If we can 

quantitatively determine and predict the process of tumor growth and metastasis, its 

properties in different stages, and its response to therapy, we may make a prognosis and 

treat it efficiently. Also, this can benefit the patients the most.  

 

 

1.1 General Background 

1.1.1 Tumor Growth  

 

There are many different models of tumor growth. Here, we introduce some that are 

widely used in tumor study. Laird [4] first applied the Gompertzian equation to describe 

tumor growth empirically or phenomenologically (details are given in chapter 2). 

Subsequently, Lair et al. [5] applied this equation to describe the normal growth of an 

organism. Since then, Gompertzian equation has been used as an empiric model to 

explain the growth process of tumors and normal tissues both for theoretical and 

experimental studies. However, it is noted that the Gompertzian model may cause the 

proliferation rate of the cellular population to be unbounded, which does not represent 

that the proliferation rate of the cellular population is ultimately bounded by cell division 

time [6-8]. Steel [7] and Wheldon [8] noted that Gompertz’s function might not be 

suitable for describing the growth of a small sized tumor. Actually, many mathematical 

models for tumor growth are derived from a reaction-diffusion differential equation. For 

many solid tumors, there is a necrotic core where most cells are dead and there are no 

functional exchange vessels. By viewing a large number of human bronchial cancer 

samples, Thomlinson and Gray [9] found that the necrotic core enlarges when the tumor 

cord, the fundamental microarchitectures of solid tumors consisting of a microvessel 

nourishing nearby tumor cells, grows larger since the distance for oxygen diffusion is 

limited. Therefore, the thickness of the sheath of viable tumor cells remains nearly 

constant [10]. Based on experimental investigation, Thomlinson and Gray presented a 

mathematical model of the diffusion and consumption of oxygen [9]. Burton [11] 
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developed this model by considering both the distribution of oxygen in a spherical tumor 

and the “relative radius of the central zone to the total radius” [1]. To explain the 

existence of a steady-state tumor size, Greenspan [12] extended these models by 

considering that “a surface tension among the living cancer cells in order to maintain a 

compact, solid mass” and that “necrotic cellular debris continually disintegrates into 

simpler chemical compounds that are freely permeable through cell membranes” [1]. 

However, these models are limited to avascular solid tumors whose nutrition and oxygen 

are diffused from the stroma. The modeling of avascular tumors is just the first step 

toward building models for fully vascularised tumors since there are three distinct stages 

(avascular, vascular, and metastatic) to cancer development [13]. Later, many other 

models were developed by modifying or extending Greenspan’s model. Some new 

models based on the diffusion-reaction differential equation and mass balance equation 

also exist [12-21]. In addition, many other empiric and phenomenological models are 

presented based on random onset and statistics [20-27], as well as curve fittings and 

experimental data analysis [28-31]. However, all these kinds of models can only 

qualitatively reflect the process of tumor growth with three distinct phases: “an initial 

exponential growth phase, followed by some degree of retardation, culminating in a final 

phase where retardation by both mitotic inhibition and cell death ultimately gave rise to 

dormancy” [1]. This may explain why the Gompertz function is still an option for 

describing tumor growth in some cases at present. Based on the conservation of total 

energy formalism with respect to the maintenance of already existing tissues and newly 

created ones, and Kleiber law [32] (which is a fundamental biological law), West et al. 

[33] presented a general model for an organism’s growth (details are given in chapter 2). 

This model seems to provide a universal growth law: mammals, birds, fish, molluscs and 

even their tumors all follow this growth law. Guiot et al. [34] applied this model to fit 

some data collected, both in vitro and in vivo, from literature for tumor growth and found 

that tumor growth also follows this seemingly universal law. Even the growth curves for 

some small tumors such as 9L and U118 fit West’s model very well. 

Metastasis means “displacement” in Greek and is now defined as the transfer of disease 

from one organ or part to another that is not directly connected to it [35]. It is clear that 

tumor metastasis includes several processes: tumor cell motility/invasiveness, 
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intravasation, transit in the blood or lymph, extravasation and growth at a new site [36]. 

The quantitative study of tumor metastasis is different from the study of solid tumor 

growth in that it is less intensive and comes later both in experiment and theory. Liotta et 

al. developed an experimental model to quantify some of the major processes initiated by 

tumor transplantation and culmination in pulmonary metastasis in 1974 [37]. They 

confirmed the observations in their later study [38]. However, the mechanics of 

metastasis is still not clear. The primary clinical challenge is that metastasis is 

unpredictable at the onset. Also, because of its resistance to therapy, metastasis is the 

major cause of death from cancer [35]. Most models are qualitative. There are few 

quantitative mathematical models to express the process and mechanics of metastasis 

since the process is complicated and there are many uncertain factors that enhance the 

difficulty for quantitative studies.  

 

 

1.1.2 Tumor Therapies and Cell Survival Response 

 

The three standard therapies in widespread clinical use that are designed to decrease the 

growth of a tumor are surgery (removing tumor cells and decreasing tumor mass 

immediately), radiation therapy (killing tumor cells by using ionizing radiation such as x-

ray, γ-ray, α-particles and neutrons), and conventional chemotherapy (killing rapidly 

dividing tumor cells by using chemotherapeutic agents). In addition, antiangiogenic 

therapy (including metronomic chemotherapy) has gained acceptance in recent years. 

Surgery is effective and the best therapy for a tumor in its early stage if it is detected in 

time. For a late stage tumor, especially for metastases, radiation and chemotherapy are 

effective options, as well as a combination of the two. Relative to conventional 

chemotherapy, antiangiogenic therapy is promising since it works with fewer toxins.   

Surgery removes the majority of the tumor, but depending on the aggressiveness of the 

cancer, proximity of critical normal tissue, and skill of the surgeon, some tumor cells may 

remain. Radiation therapy and conventional chemotherapy kill tumor cells, though they 
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also harm normal cells. Destroying cancer cells via radiation is a stochastic process and 

the rate of cell death is dependent on the number of cells present. Conventional 

chemotherapy also kills cells randomly, but cells closer to a blood vessel will be 

preferentially affected since this kind of therapy targets rapidly dividing cells. 

Antiangiogenic therapy targets the supplying vasculature, starving the tumor. 

Antiangiogenic agents prohibit the growth of new blood vessels, so some cancer cells 

will be unaffected. It is generally accepted that when the doses of conventional 

chemotherapy are very low, tumor cells are not killed directly. However, the doses are 

high enough to reduce the growth of new capillaries that will supply nutrition to the 

tumor.  

Often these four therapies are administered in combination. How to optimally combine 

therapies is still being debated [39] and more study is required.  

The effects of therapies/treatments are reflected by cell responses. Ionizing radiations in 

all their forms are powerful methods used in biology and medicine, especially in cancer 

and tumor treatment. Generally, the survival curves of cells under radiation possess a 

characteristic curvature in the initial low dose region and show an almost linear 

relationship in the high dose region. The width of the curvature varies in different cases. 

For fitting or explaining experimental data, models like the linear-quadratic (LQ) model 

[10,40-43], the linear-quadratic linear (LQL) model [40, 44] and the lethal-potentially 

lethal (LPL) model [44, 45] have been presented and studied (see chapter 2 for details).  

The LQ model is widely used and is expressed as )](exp[ 2DDSF βα +−=  [10, 40-43] 

(where SF stands for cell surviving fraction, D is the radiation dose, α  and β are 

constants determined by cell response). However, many researchers noted that the LQ 

model does not fit the survival curves well, especially in the high dose region [40-45]. 

Astrahan [40] showed that the survival response for Chinese hamster cells in culture 

[40,46] does not fit the LQ model in the high dose region (D>7Gy), while Human HeLa 

cells in culture [10, 40] and DU145 cells in vitro [40,42,47,48] do not fit in even the low 

dose regions (D>2Gy). Garcia et al. [42] studied the behaviour of α, β and α/β in 

different dose regions by dividing the survival curves into three regions: 1) low-dose 
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region (LR), 2) linear quadratic or middle dose region (LQR), and 3) high-dose region 

(HR). These regions in terms of Gy are different for various cells. The conclusion 

reached is that the constants α, β, and thus α/β, have different values in different regions, 

which suggests that the LQ model fits the survival curves in the middle dose region but 

not in the low and high dose regions. They indicated that the mechanism for cell survival 

in the low dose region might deviate from the LQ model. Thus, some phenomenological 

models have been suggested for improving the model’s ability to reflect cell response to 

dose regions. Astrahan modified the LQ model phenomenologically and presented an 

LQ-L model [40]. This empiric model does fit some experimental data but only to an 

extent. However, it cannot fit the Human HeLa and DU145 cell survival curves in some 

dose regions, especially for DU145 cells (we will show those details in section 3). Also, 

the LQ-L model cannot be applied to the survival curves for EMT-6/Ro tumors under 

aerobic conditions [49]. Guerrero and Carlone [44] analysed the advantages and 

disadvantages of other models and modified an LQL model by considering a mechanistic 

formulation in the case of split-dose experiments and exponentially decaying sources 

(which is compatible with the LQL model). They compared their LQL model with the 

LPL and LQ models theoretically, and demonstrated better results relative to other 

models. However, they did not use their model to fit any survival curves directly. 

Actually, based on five complicated assumptions and three constrained characteristics, 

the LPL model itself is also a phenomenological model because of the variables and 

functions chosen for setting up the differential equations [45]. In fact, the initial nonzero 

slope might not be satisfied. Also, we do not know if the slope of the survival curve is a 

constant in the extremely high dose region.  

Some models for the response of mixed cell populations [50-53] fit the experimental data 

rather well, though they are empiric models. Skarsgard et al. [50] found that a two-

population LQ model (see eq. 2.12 in chapter 2 for details) gave the best fit. Their 

laboratory studies demonstrated the presence of two types of substructure in the radiation 

survival response of cultured mammalian cells [52]. However, there are no constraints 

upon the α and β (or α /β ) of different cell populations. This may cause the parameters to 

be redundant and the number of choices to be greater than one set--αs and βs, as well as 
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cell fractions fs--for the same survival response [50]. Powers and Tolmach [10, 54] 

reported radiation response in cell populations, which were constituted of solid, 

subcutaneous 6C3HED mouse lymphosarcomas. Survival is found to follow a 

multicomponent exponential curve. The results suggested that the survival kinetics were 

determined mainly by cells of only two sensitivities. Even so, no existing models fit the 

survival curve, including the two-population LQ model. 

It is accepted by many researchers that the effect of radiation are limited by some 

“radioresistant” cells, such as cancer stem cells [55, 56] and hypoxic/anoxic cells in 

tumors [41]. Rich [55] and Diehn et al. [56] showed that cancer stem cells are more 

resistant to radiation than other cancer cells. The partial oxygen pressure in tumor cells is 

also a parameter that determines response to radiation. There is a subpopulation of tumor 

cells that exist at low oxygen environment. They are 2 to 3 times more resistant to the 

damaging effects of radiation than well-oxygenated cells. Acutely hypoxic cells caused 

by transient flow of blood through vessels also form a resistant subpopulation. These 

hypoxic cells have their own response to radiation. Wouters and Brown [41] noticed that 

the hypoxic fraction of cells drastically affects the radiation response. A small fraction of 

a mixture of hypoxic cells can change the survival curves significantly. 

Though chemotherapy has successfully been used clinically and many experiments have 

been performed, there are relatively few theoretical models for actual response. The 

survival response of mammalian cells is diverse and complicated since it is strongly 

dependent on chemotherapeutic agents. Bleomycin and actinomycin D cause a rapid drop 

in the surviving fraction, which gradually slows down to a linear line with the increase of 

the agents’ doses/concentrations [10,57-59], whereas BCNU, MeCCNU, and PCNU, etc., 

(see appendix 1 for introduction of these anticancer drugs) cause a survival response 

similar to that of radiation [10,57,60]. However, Adriamycin shows a different response 

curve, which combines the features of cell responses to actinomycin D and BCNU [61]. 

We also investigated the survival responses to some other chemotherapeutic agents and 

chemotherapies [62-64]. In summary, most survival responses can be divided into three 

types: (1) the survival response possesses features similar to that caused by bleomycin, as 

shown in Fig. 1-1(a); (2) the survival response is similar to that caused by BCNU, 
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demonstrated in Fig. 1-1(b); (3) the survival response possesses features of (1) and (2) in 

combination, as shown in Fig. 1-1(c).  

 

     

 

 

For survival response to chemotherapy, the Hill-type model is often applied, in which the 

surviving fraction is expressed as SF=1/(1+Axm), where x is a measure of cellular damage, 

m and A are constants [65]. Another choice is the exponential kill model [65]. El-Kareh 

and Secomb [66, 67] presented a model that combined the sigmoidal model with the Hill-

type model. It may be the model that fits for experimental data best (more details will be 

given in chapter 2). However, one can tell that by observing the curves, many 

experimental data do not fit the model well. Also, this model does not fit cases (1) and (2), 

which were mentioned above. Compared with cell response to radiation, we assume there 

are also two kinds of “killing” mechanisms for chemotherapy: one is a “single event 

killing,” the other is a “double event killing,” which inactivates cell proliferation by 

damaging DNA (similar to radiation). 

(a) Bleomycin [57]                             (b)   BCNU [60]                                          (c) ADRM [61] 

Fig. 1.1 Cell responses to three typical chemotherapeutic agents 
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Similar to radiation response, studies [68-71] found that there is a small cell population 

that is more resistant to chemotherapy than other populations. Awad et al. [68] and Liu et 

al. [69] showed that some cancer stem cells are more resistant to chemotherapy than other 

cells. It is established [70, 71] that hypoxic tumor cells are also more resistant to 

chemotherapy. These effects may lead us to discern the mechanism of cell response to 

radiation and chemotherapy.  

 

 

1.1.3 Tumor Interstitial Fluid Pressure and Tumor Prognosis  

 

TIFP is an important parameter in tumor prognosis, therapy and treatment, drug delivery, 

and tumor metastasis [72-78]. Rofstad et al. [76] showed that radiation resistance may be 

associated with high TIFP. Ferretti et al. [73] observed the relationship between TIFP and 

the response to chemotherapy. It is established that TIFP originates mainly from fluid 

accumulation because of the increase in the capillary permeability and impaired 

lymphatic drainage in the tumor area. Interstitial fluid pressure (IFP) is elevated in tumors 

due to abnormal structure and the function of blood and lymphatic vessels [79]. Generally, 

tumor blood vessels are leaky, while lymphatics are malfunctional in a tumor and 

enlarged at the tumor’s periphery. A high IFP results from leaky vessels, which lack 

permselectivity (restriction of permeation) and are unable to sustain the hydrostatic and 

oncotic pressure gradients across the vessel wall. Baxter and Jain [80] presented a model 

(details are given in chapter 2) to express the transportation of fluid and the distribution 

of tumor pressure based on Starling’s law [72,80], (which connects TIFP p; the surface 

area A of the blood vessels; the vascular fluid pressure pv; the osmotic pressure difference 

πv−π, between the plasma in the blood vessels and interstitial fluid; the osmotic reflection 

coefficient σ ; the hydraulic conductivity L of the blood vessel [72]), which is adopted to 

explain the effect of capillary-capillary interaction; and Darcy’s law [72, 80], which 

reflects the porous tissue condition and states that the fluid velocity is proportional to the 

negative gradient of TIFP. Boucher et al. [81] measured TIFP distribution in tissue-
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isolated and subcutaneous tumors to support this model. Jain et al. [82] applied this 

model to study the “effect of vascular normalization by antiangiogenic therapy on 

interstitial hypertension, peritumor edema, and lymphatic metastasis”. Experiments and 

theoretical analysis [79-85] report that IFP is uniform throughout the central area of the 

tumor. There is a steep gradient of IFP in the peripheral area. Baxter and Jain [80] studied 

two cases. The first was an isolated tumor, where the enhanced TIFP is limited to the 

tumor. In the special case of an isolated tumor, the TIFP at the periphery rapidly 

decreases to zero (atmospheric level) or the pressure of the environment. The second was 

an embedded tumor (enclosed by normal tissue). In this more common situation, the 

raised TIFP extends beyond the tumor radius into the normal tissues before equilibrating 

to zero (relative to atmosphere), or the pressure of the environment. The schematic is 

shown in Fig. 1.2. Here, R represents the radius of a tumor, p0 is the tumor IFP (TIFP) in 

the central area and p∞ is the pressure of the environment (the IFP of normal tissue). 

 

 

 

 

The factors that lead to an elevated TIFP are known. Although it is recruited from normal 

vasculature by tumor pro-angiogenic factors, tumor vasculature is abnormal. Tumor 

microvasculature generally lacks pericytes and is often associated with a damaged basal 

lamina. Its morphology is usually tortuous, dilated, and saccular. Tumor microvessels are 

Fig. 1.2 Schematics of tumor interstitial fluid pressure distribution [72] 
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longer, larger in diameter, and denser than normal microvessels.  Importantly, tumor 

microvessels are generally much more permeable to blood proteins, with all of the 

mechanisms for transvascular leakage of blood proteins being evidenced, including 

enlarged fenestrae at the endothelial junctions, and increased vesicular transport. A 

leakage of proteins, with its corollary decrease in osmotic pressure, an increased blood 

supply, with its potential for increased vascular pressure, and the general lack of a 

competent lymphatic system, all contribute to an increased TIFP.  This, in turn, collapses 

the microvasculature, leading to flow that, despite the proliferation of blood vessels, is 

limited by the TIFP via the Starling effect.  As the tumor grows, these factors limit the 

flow of metabolites to the tumor center, eventually resulting in a necrotic core surrounded 

by a perfused and growing rim with an elevated interstitial pressure that drops sharply 

past the boundary of the tumor. However, in the boundary region, the increased 

interstitial fluid leads to a local ischemia, and a consequent release of the vascular 

endothelial growth factor (VEGF, a signal protein produced by cells, stimulates the 

growth of new blood vessels), recruitment of additional blood supply to the tumor, 

increased vascular permeability, and so on. 

The foregoing demonstrates that the distribution and evolution of tumor-associated 

vasculature influence TIFP distribution and evolution directly and vitally. Extending the 

single-tube model of Pozrikidis and Farrow [86], Pozrikidis [87] developed a network 

model that assumes the tumor vasculature is like a branching tree consisting of a cascade 

of straight bifurcating capillary segments. However, when this model is applied to the 

spherical symmetric case, it is incompatible with Baxter and Jain’s model [80], which 

considered a greater number of factors. Additionally, the solution of Pozrikidis’ model 

for TIFP may not possess the properties shown in Figs. 1 and 3. Baish and Jain [88] 

attributed the chaotic, poorly regulated growth of a tumor to “fractal” geometry. We 

described the chaotic growth of a tumor by comparing its growth to the growth patterns 

of normal cells and pointed out that “normal cells follow similar growth patterns, but 

tumor cells may not.” Chaplain et al. [89] modeled the angiogenesis of a solid tumor. 

Dreher et al. [90] investigated tumor vascular permeability, accumulation and penetration 

of macromolecular drug carriers. Karshafian et al. [91] modeled transit time kinetics in 

ordered and disordered vascular trees using the simple rules of branching and fractal 
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geometry in two dimensions. Pindera et al. [92] simulated the angiogenesis using a 

convected element method. Since the angiogenesis of a tumor is time dependent, the 

TIFP should be related to the stages of tumor growth. However, no existing TIFP model 

considered time dependence. Both Pozrikidis and Karshafian et al. view the vasculature 

system as a treelike branching structure. Normal tissues have an ordered treelike 

branching pattern, but a tumor vascular network has a chaotic and random nature [87, 91]. 

 

 

 

 

Baxter and Jain’s model [80] explains the spatial distribution of TIFP. Boucher et al. [81] 

measured the spatial distribution of TIFP and in some cases the results differ from their 

predictions. The experimental results for tissue isolated (t.i.) and subcutaneous (s.c.) 

tumors in Ref. 81 (See Figs. 3B and 6 for a mammary adenocarcinoma R3230AC in Ref. 

81) were reported to indicate that the TIFP reached a maximum value at a depth of less 

than 1mm from the tumor surface, and then the IFP stayed steady and uniform in the 

central region of the tumor. The best fit through the data suggests otherwise, as shown in 

Fig. 1.3. Since Fig. 3B of Ref. 81 is typical, we introduce it here in Fig. 1.3. We draw the 

Fig.1.3 Experimental results of TIFP distribution in a s.c. tumor [81] (surface is 0) 
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best fit curve, which is shown in blue (upper curve) in Fig. 1.3, for the black dots since 

they are the most complete data in the entire experimental region. Similarly, we can draw 

the best fit curves for other data. Considering the clear nature of the graph, we do not 

depict them in Fig. 1.3. We also draw the best fit curve for all data in red (lower curve). 

TIFP in the central area is steady and uniform with a smaller value relative to the 

maximum at about 1mm below the surface of the tumor. 

 

 

 

1.2 Problems 

 

Though there are various models for tumor growth, tumor metastasis and tumor therapies, 

these models are mostly limited or isolated to one aspect. A model for tumor growth may 

not be applied to tumor therapy, and vice versa. A good model should not only be able to 

reflect the properties of tumor growth and development, but also be able to predict the 

response to various therapies and treatments. However, so far no model possesses these 

functions. The models for tumor growth are independent of the models for tumor 

therapies and/or tumor metastasis. The widely used model for radiation therapy is the LQ 

model, which is different from the models used for chemotherapy and unrelated to tumor 

growth. However, if we think about the process for tumor growth and treatment carefully, 

we should realize that there must be something to connect them to each other. Though 

varied therapies/treatments have different effects when applied to an entire system of an 

organism, cell responses to different therapies should share the same mechanism for an 

organism’s growth.  

In summary, many models can only quantitatively predict the growth process of a tumor. 

Also, no single model provides a clear answer for the production and death rates of tumor 

cells, which are closely connected to tumor growth. Correspondingly, the theoretical 

principles governing response to therapies are not completely established. Also, those 
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models were not (or could not be) connected to experimental results; they were not 

applied to or could not explain many experimental data. Many of them are not practical. 

Though the Gompertz model has greatly influenced the understanding of organisms and 

tumor growth, and despite many workers trying to connect their theoretical or 

experimental results with the Gompertz curve, this model has limitations, especially 

during the very early stage of growth, as we discussed above. West et al. showed that 

their model fits the growth process of many different species of organisms. Guiot et al. 

showed that this model also fits the growth process of many tumors. However, West’s 

model also has its limitation. At first they idealized the entire organism as an identical 

cell system. Obviously, this is too inexact to describe multicellular organisms. Different 

tissues/organs have different kinds/types of cells. Malignant tumors are characterised by 

tumor cell heterogeneity [93, 94]. Also, in one single tumor there are many different 

regions that cannot be described by a simplified identical cell system. It is well 

established that tumor cells can be categorized as: a) viable oxygenated, b) viable 

hypoxic, or c) dying or necrotic, which stay in the tumor and form a necrotic region. 

These three types of cells have distinctly different growth rates. In addition, when a 

tumor metastasizes, West’s model cannot be applied. 

In tumor therapy, no existing theory for cell survival response can explain the 

experimental data consistently. The LQ model for radiation therapy does not fit many 

experimental survival curves [40, 42]. In fact, the LQ model is widely used and can be 

explained as the result of dDbaDNdN )(/ +−=  (where N represents cell number, and a 

and b are two constants). The linear term αD (derived from b) is assumed to be the result 

of the single event killing, and the quadratic term βD2 (derived from aD) is supposed to 

come from the double event killing [10]. Obviously, for a bio-system, it is not enough to 

only consider the terms of “killing.” The LPL and LQL models improved the LQ model 

to some extent. However, they cannot be applied to some cases, especially for samples in 

vivo. Also, some assumptions made in the LPL model may not be satisfied. Still, the two-

component LQ model fits some experimental data much better than other models, as αs 

and βs are not constrained. This causes the parameter to be redundant and one set of 

experimental data to correspond to more than one set of solutions (e. g. different αs, βs 
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and cell population fractions for the same survival curve of cell response). The theoretical 

model for chemotherapy is very limited. Many experimental data cannot be explained by 

any existing model.   

TIFP is an early-response marker of the effectiveness of treatment and may have a 

promising application for monitoring cell response to the treatment. However, at present 

a noninvasive prognosticator of tumor response to treatment is not widely available. For 

the distribution of IFP in a solid tumor, the existing models do not reflect the actual 

properties and characteristics accurately. Also, no model has considered the time 

variation; tumors grow. Various stages may have different TIFP distribution. Steady state 

merely approximates TIFP distribution at a fixed stage (e.g. is a tumor mature and does it 

metastasize?).  

 

 

1.3 The Idea of the Present Work 

 

Tumors possess some of characteristics of an organism with specific properties in their 

growth processes. Various tumors and their specific growth processes make mapping the 

development of tumors rather complicated. The growth of a tumor mimics the growth of 

an organism and mathematical models have the potential to predict their curative and 

sub-curative response to therapies. Also, a good model should reflect the response of the 

system to treatment. Although no theory can uniformly explain tumor growth, tumor 

metastasis and the results of tumor therapies, we aim to provide the foundation for a more 

general equation for these situations. A general model, which possesses the virtues of 

West’s model and can describe practical application, is the goal.  

By introducing a production rate, which is defined as the average number of cells 

produced in a unit volume in unit time, and a death rate, which is defined as the number 

of cells that died in a unit volume in unit time, based on the mass balance equation, the 

net growth rate of an organism should be proportional to the difference between the 
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production rate and death rate. Combining this equation with the ubiquitous ¼ law in 

biological allometry, which is more general and fundamental, we derive a general 

equation for organism growth. We will show that it is the same as West’s “universal law” 

for organism growth. We start by dividing an organism into many different small systems 

that have identical cells and then unite them by introducing similarity of growth. Normal 

cells grow harmoniously (even in different tissues), but tumor cells may not. For a tumor, 

there may be many different kinds of cells, with each set of identical cells having its own 

growth properties. When they can be unified by the rules of similarity of growth, we can 

express the total growth mass in a uniform equation. Otherwise, the growth process is 

chaotic. We have to arrive at the solutions separately and then add them together. Many 

previous mathematical models contained many parameters and factors and made their 

application complicated. It is true that many factors can influence the growth process of 

an organism and it is difficult to determine exactly how many of the parameters and 

which functions of each parameter contribute to growth. However, according to the idea 

of the present work, no matter how many parameters or ways a parameter may impact the 

growth of an organism, the consequence will be reflected by its production and death 

rates. It is the production and death rates that determine net growth and account for the 

metabolic process. All parameters such as nutrition supply, oxygen diffusion, and growth 

inhibition, as well as therapy/treatment, can be reflected by production and death rates. 

This may explain why the present model fits the experimental data very well when we 

apply it to radiation and chemotherapy.  

For understanding the growth process and tumor metastasis, let us see a simple example. 

We assume that there is a container that does not have a rigid wall. 

(1) Let us pour some identical beans into this container. We assume that mc is the 

mass of a single bean. The number density C (the number of beans per unit 

volume) in this system is always a constant. No matter what method is used, 

the mass change can be expressed by the equation:  

∫∫ ⋅−== AduCm
dt

CVmd

dt

dm
c

c
rr)(
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(2) Now each bean in the container proliferates from 1 to 2, 2 to 4, etc. (like a bio-

process). As some new beans are reproduced, some old ones die (metabolism). 

The production and death rates in a unit volume and unit time are supposed to 

be S and E (average number of cells produced and died per unit volume and 

unit time). The total number of beans in this system is proportional to the total 

volume of the beans. The rate of increase in net mass is proportional to the 

difference between the production and death rates, as well as the total volume. 

It is expressed as Vmc( S -E), where E is a constant but S is not. It is an 

average measurement. We gave detailed expression and process for 

determining it (as well as E) in section 2. Now the equation is modified as:  

)()(
)(

ES
C

m
AduCmESVmAduCm

dt

CVmd

dt

dm
ccc

c −+⋅−=−+⋅−== ∫∫∫∫
rrrr

                 

(3) If there is no flux term of beans, the above equation is reduced to 

)( ES
C

m

dt

dm −= . 

(4) Now suppose that there are many different kinds of beans in different 

compartments (like different cells in different tissues). Though they follow 

their own growth law, they grow harmoniously. Different beans are relatively 

restrained in their separate locations. Each set of beans can be expressed as: 

)( kk
k

kk KS
C

m

dt

dm −=  

(5) This ideal can be used to deal with the growth of normal cells and tumor cells. 

Cell response to therapies is a way to check the model for organism growth. In fact, when 

dose or dose rate is zero, a model for cell response to therapy should be compatible with 

the natural growth or death process before treatment is applied, as this model does. 

However, the LQ and LPL models do not possess this feature. Tumors are specific 

organisms. As a matter of fact, response to therapies, effect of treatment and prognosis 

are related to the process of tumor cell growth, as well as tumor metastasis. They can be 

derived from the governing equation for organism growth. Surgery decreases the mass 

immediately. Radiation and conventional chemotherapy cause an additional death rate, 
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whereas antiangiogenic therapy decreases the production rate by prohibiting the growth 

of tumor vessels that deliver nutrition and oxygen.  

Determining a way to model or explain the survival response to radiation and 

chemotherapy is an important goal and achieving it may lead to a better understanding of 

effective treatment methods. In this work, starting from a mass balance equation and 

attributing an additional death rate to therapy, we derive a general equation for response 

to treatment, which in turn connects the response with a growth process and may be 

applied to radiation and chemotherapy equally.  

When we do curve fitting for cell response to radiation based on the model we present, 

we find that there are always some (10% flexible) “resistant” cells under both well-

oxygenated and hypoxic conditions. If this is indeed the case, then these “resistant” cells 

should exist and respond differently to chemotherapy, though they may not be more 

resistant to some agents (e.g. response of EMT6 cells to Mitomycin-C is more resistant 

under aerated conditions than hypoxic [10]). It is known that there are some “resistant” 

cells in case of radiotherapy and chemotherapy. Cancer stem cells are hypothesized to be 

more resistant to radiation than other cancer cells [55, 56]. They are also a chemotherapy-

resistant population [68, 69]. Is it perhaps possible that there is a small fraction of stem 

cells in normal cells as well as cancer stem cells in cancer cells? No matter what the case 

may be, we cannot ignore the fact that some resistant cells exist.  

We also noted that some experimental data for survival response in both radiation and 

chemotherapy [54, 61] do not fit any existing models. In fact, the LQ equation is an 

approximate result of the present model under special conditions. When we apply the 

complete equation to deal with these experimental data, it fits the survival curves well. 
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Chapter 2. Previous Models and Theories 

 

To chart the growth of an avascular tumor, many mathematical models have been 

developed based on the diffusion-reaction equation. A typical model is expressed as [16, 

17]: 

nckckvn
t
n

dm )]()([)( −=⋅∇+
∂
∂

                                         (2.1) 

)()()( DLdLm VVncknVckv −−=⋅∇                                       (2.2) 
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t
c

m )]()([)( γβ +−∇⋅∇+
∂
∂

                                       (2.3) 

where n, v and c are three unknowns that represent the number of living cells, local 

growth velocity and nutrient concentration respectively. Here km and kd are the mitosis 

and death ratios. VL and VD represent the living and dead cell volume, and γ and β are the 

nutrient consumption rates of a cell in interphase and in mitosis, respectively. Also, 
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, where cc and cd represent the critical 

concentrations for cell proliferation and cell survival, respectively. A=km(∞)>0, 

B=kd(0)>0 and  kd(∞)=B(1-σ), where 0≤σ≤1. 

So far, no single diffusion-reaction model is accepted as a general model for an 

organism’s growth since diffusion-reaction models can only qualitatively fit the 

experimental data. Though many parameters have been considered the aforementioned 

model, it still may not describe the growth process exactly. We may ask how many 

parameters should be considered and what the exact pattern for each specific parameter 

should be. As we mentioned in the introduction, there might be many parameters that 

influence the growth process. However, no matter how many parameters determine the 
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growth of an organism, they embody the production and death rates, which reflect 

metabolism.  

Ever since Laird [4] first applied Gompertz’s function to fit the growth of tumors in 1964, 

theoretical and experimental studies have allowed for the application of the Gompertzian 

function to tumor growth [31, 95, 96]. In fact, the Gompertzian function for tumor growth 

stems from the Gompertz differential equation: 






−=
M

tm
tm

dt

tdm )(
ln)(

)( χ                                                   (2.4) 

where M represents the maximum mass that can be reached with the available nutrients 

and is expressed as )(lim tmM
t ∞→

= , and χ a positive constant related to the proliferative 

ability of the cells. We relate the size of the tumor to the mass m(t). The solution of this 

equation is 

)]exp()/exp[ln()( 0 tMmMtm χ−=                                       (2.4′) 

where m0=m(0). The problem is that the growth rate in the very early stage may deviate 

from this function. Wheldon [8] proposed a critical size for applying Gompertz’s function. 

Mathematically, equation (2.4) is the limiting case of the “generalized logistic” 

differential equation:  
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Here υ is a positive number. When υ is large or υ→∞, eq. (2.5) becomes eq. (2.4). The 

models that originate from eq. (2.5) are called “generalized logistic” models [95].  

Starting from the conservation of total energy for maintaining and creating tissue, West et 

al. [33] presented a general model to describe organism growth (mass-time relation) by 

combining energy conservation with Kleiber’s law [32], which reads [33] 
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The solution is [33] 
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where m0 is the initial mass, M is the asymptotic mass that corresponds to the maximum 

size, and a is a parameter that is related to the growth characteristics of the organism or 

tumor [33, 34]. When m = (3/4)4M≈M/3, d2m/dt2=0, the growth rate is maximal. West et 

al.’s model is based on a more fundamental biological law and shows that there is a 

“universal law” for ontogenetic development. The maximum growth rates for 

“generalized logistic” curve, Gompertz’s curve and West’s model happen at 

(256/625)M≈0.41M, (1/e)≈0.37M and (81/256)≈0.32M, respectively. The larger the mass, 

the less the difference amongst these models. Though the “generalized logistic” growth 

rate can be raised by increasing the value of υ, the limitation with the Gompertz’s curve 

is when υ→∞. We compare the growth rates of Gompertzian model and West et al.’s 

model in table 2.1. 

        Table 2.1 Growth rates of Gompertzian model and West et al.’s model 

                   m(t)/M 1/100 1/32 1/16 1/8 1/4 1/3 1/2 3/5 4/5 0.9 1 

Growth rate 

dm/dt(χM) 

Gompertz 0.046 0.108 0.173 0.260 0.347 0.366 0.347 0.306 0.179 0.095 0 

West 0.086 0.172 0.250 0.341 0.414 0.421 0.378 0.327 0.184 0.096 0 

 

From table 2.1, we see that the growth rate of Gompertz’s model from M/16 to M/4 fit 

that of West’s model from M/32 to M/8 quite closely. This means that these two models 

can fit well in a certain time period by choosing some specific parameters m0, M and χ. 

Fig. 2.1 shows that Gompertz’s model and West’s model can fit very well after m(t)>M/3 

when we choose a specific m0. If we want to fit the curve in the early growth stage, we 

can choose a very small m0 for both models and adjust the value of χ. However, the 
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research results of Steel [7] and Wheldon [8] implied that the Gompertz equation might 

not be good to model the growth of small tumors or organisms.  

 

 

 

 

Based on the mass balance equation, we derive a general equation for organism growth 

(including tumor growth), and show that it is the same as West et al.’s. In this model, we 

will see that a=β°M1/4=4χM1/4, where β° is a constant that controls the harmonious 

growth of an organism. Compared to Gompertzian and “generalized logistic” models, 

West et al.’s model as wells as the model we will present, show that the constant υ =4 

and the product factor is m3/4(t).  

As mentioned in chapter 1, for cell response to radiation, the widely used LQ model is 

expressed as [10, 40-42]: 

)](exp[ 2DDSF βα +−=                                                  (2.8) 

The α and β reflect cell killing mechanism. The α/β ratio represents the dose at which the 

linear and quadratic components of the LQ model contribute equally to cell killing [42]. 
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There are also some other models for cell response to radiation. The single-hit, 

multitarget (SHMT) model is expressed as [50]: 

])1(1 0/ nDDeSF −−−=                                        (2.9) 

where n is the number of targets in each cell and D0 the dose for an average of one hit per 

target. The RMR (repair-misrepair) two-parameter and RMR three-parameter models are 

expressed respectively as [50]: 
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where teT λ−−=1 , λ is the linear self-repair coefficient, ε=λ/κ is repair ratio, κ the 

coefficient for cooperative repair, φ is the probability that self-repair are all perfect. Since 

the LQ model does not fit many survival curves well, it has been modified to other forms. 

The two-population LQ model is described as [50] 

22

)1( DDDD rrss effeSF βαβα −−−− −+=                                  (2.12) 

where f and 1-f represent the fractions of sensitive and resistant cells respectively. The 

subscript “s” and “r” are used to identify the parameters for sensitive and resistant cells. 

Skarsgard et al. [50] compared the SHMT, RMR two-parameter, RMR three-parameter, 

LQ and two-population LQ models by applying them to fit the survival curves of 

asynchronous V79 cells. They found that the two-population LQ model fits best. Next is 

the RMR three-parameter model, and then the LQ model. The RMR two-parameter 

model is the worst fit. However, the two-population LQ model may cause parameters to 

become redundant since the αs and βs are not constrained.  

In order to fit the survival curves better, Astrahan [40] modified the LQ model and 

presented it as the LQ-L model empirically. In this model, the author introduced a dose 

DT and used a segment function to describe the surviving fraction under radiation:  
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When dose is smaller than DT, the survival response follows the LQ model. When dose is 

greater than DT, the logarithm of the surviving fraction versus the dose (lnSF—D) has a 

linear relation. DT is defined as the dose at the tangent point of the LQ curve and the 

linear lnSF—D line. However, this model does not fit some cases, which will be shown 

later.  

Curtis [45] presented an LPL (lethal and potential lethal) model that is based on five 

major assumptions. Mathematically, it is described as follows: 

1) During the irradiation: 
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where nPL and nL represent the mean numbers of potentially lethal and lethal 

lesions, respectively, during the irradiation period, εPL and ε2PL are the rates per 

unit time of correct repair and binary misrepair, respectively, for the potentially 

lethal lesions. The ηL and ηPL are the rates per unit absorbed dose for production 

of the lethal and potentially lethal lesions, respectively. The initial conditions are 

nPL(0)=nL(0)=0 since no lesions are assumed to be present at the start of the 

irradiation. The solutions are: 
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2) After the irradiation:  
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Assuming that the irradiation stops at time T, then  
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Now the initial conditions for eqs. (2.18) and (2.19) are NPL=nPL(T) in eq. (2.16) and 

NL=nL(T) in eq. (2.17). Similarly, we can solve these two eqs. and get the formulae for 

nPL and nL after irradiation: 
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where tr is the time available for repair after the end of the exposure. So the total mean 

number of lethal lesions per cell is  

)()()( rPLrLrtot tTntTntTn +++=+                                   (2.22) 

Using the Poissonian assumption for the distribution of lethal lesions per cell, we write 

the survival as the probability that a cell has no lethal lesion: 

εεε )]1(/1[)()()( rPLtotrPLrLrtot t
PL

NtTntTntTn eNeeeSF −−+−+−+− −+===     (Ntot=NL+NPL)   (2.23) 

This model has three characteristics: 1) There is an initial nonzero slope. 2) There is a 

region of the survival curve at low dose that can be approximated by a linear-quadratic 

function in the absorbed dose. In other words, the LQ model is approximately satisfied. 3) 

At high doses, the slope of the survival curve approaches a constant, which is a measure 

of the total number of initial biological lesions created by the radiation and corresponding 

survival response [45]. However, the first characteristic may not be satisfied in many 

survival curves. The other two characteristics can be included in the LQ-L model. The 
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typical results of the LPL model are shown in Fig. 2.2.  This model gives the linear 

survival response under low dose rate condition and the LQ survival response under high 

dose rate condition. 

 

 

 

After considering the mechanistic formulation of Astrahan’s LQ-L model and the method 

of the LPL model, Guerrero and Carlone presented their LQL model. Similar to the LPL 

model, the basic equations of the LQL model are described as: 

)()()()(2
)(
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dt
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LQεµ −−=                                        (2.24) 
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tdL
LQ

f εα +=                                             (2.25) 

where L(t) represents repairable lesions, Lf (t) fatal or irreparable lesions, R(t) the dose 

rate, p the yield of lesions per unit dose, εLQ the probability of an existing lesion forming 

Fig. 2.2. A family of survival curves as given from the LPL model [45] 



28 

 

a new lesion, µ the repair rate, and α the usual LQ parameter. This model combines the 

virtues of the LQ-L and LPL models theoretically. However, none of these models can 

completely fit or explain some of the radiation survival curves, as we will later show.  

Though many chemotherapeutic agents have been developed and corresponding survival 

responses have been tested, the mechanism used in chemo’s killing is not clear and 

theoretical models are limited. The survival curves are various for diverse 

chemotherapeutic agents. Responses of Chinese hamster and HeLa cells to doxorubicin 

can be fitted approximately with the exponential model, which is expressed as [66]: 

eckteSF exp−=                                                      (2.26) 

where SF is survival relative to controls, k is a parameter that depends on the cell line, texp 

is exposure time, and ce is extracellular drug concentration.  

Empirically, survival curves for chemotherapy can be well fitted with the Hill equation, 

which is expressed as [66]: 

nDA
SF

⋅+
=

1

1
                                               (2.27) 

D represents the cellular damage, which is a function of drug concentration and exposure 

time. A and n are constants. Many different formulae are given by modifying the function 

D with various contents.  

For the distribution of TIFP, the typical model was presented by Baxter and Jain [80]. 

They introduced a spherical model and used Starling’s law to estimate fluid leaking from 

blood vessels and Darcy’s law to estimate flow through a porous medium. 

Mathematically, it is expressed as: 

)()(2 rrpK LVi φφ −=∇−                                             (2.28) 

where K is the hydraulic conductivity of the interstitium, pi represents the interstitial 

pressure, r is the radial position, φV(r) is the fluid source term and φL(r) is the lymphatic 
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drainage term. The source term can be described by Starling’s law and the drainage term 

is assumed to be proportional to the pressure difference between the interstitium and the 

lymphatics. Mathematically, they are expressed as: 

)]([)( iVTiV
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V pp
V

SL
r ππσφ −−−=             for r≥rn                     (2.29) 
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0)()( == rr LV φφ                          for r<rn                     (2.31) 

where S/V is the surface area per unit volume for transport in the tumor, Lp and LpL are 

the hydraulic conductivities of the microvascular wall and the lymphatic wall,  pv is the 

vascular pressure, pL is the hydrostatic pressure of the lymphatics, σT is the average 

osmotic reflection coefficient for plasma proteins, and πv and πi are osmotic pressures of 

the plasma and the interstitial fluid, respectively. 

The boundary conditions are: 1) 00 =∇ =rip ; 2) ∞= = pp Rri for an isolated tumor, or 

+− ==
−=−

Rr
i

NRr
i

T dr

dp
K

dr

dp
K  and +− == =

RriRri pp for an embedded tumor. KT and KN are 

the hydraulic conductivities of the tumor and normal tissue, respectively. 
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Chapter 3. A general model for solid tumor growth and 

response to therapies 

 

3.1 The Present Model (Our Model) 

 

We assume that all cells in a specific organ/tissue are identical and treat them as a system. 

We use the subscript k to identify the system. In this small system, cells have a constant 

number density Ck and the mass of a cell is mck. When they grow, the number density 

does not change or changes little. This causes both the volume and mass to increase. 

Organism growth is the process of biological metabolism in terms of cell division. Some 

fluids such as blood and interstitial fluid may flow in and out in a balanced way, 

maintaining the metabolism by supplying nutrients and draining waste. Suppose at time t, 

the volume of this system is Vk, the number of cells that died in a unit volume in unit time 

is Ek, and the average number of cells produced in a unit volume in unit time is kS . The 

mass is mk=VkCkmck. In the natural growth process, cells in a specific tissue/organ are 

relatively steady. They do not flow from one tissue to another. Therefore, the cell flux is 

zero. The only exchange with the outside is when nutrition is supplied or when wastes are 

drained, maintaining the metabolism. This process embodies the production and death 

rates of cells, which determines the growth of the system. Since the cell flux is zero, the 

growth rate of this system can be written as: 

)( kkkck
k ESVm

dt
dm −=                                                       (3.1.1) 

In fact, eq. (3.1.1) is a mass balance equation. The system’s net growth rate is 

proportional to the difference between the production and death rate. This way, it is easier 

to control or influence the growth of the system by changing a term or both the 

production and death rate. We will see the advantage in doing so later in application to 

tumor therapies. 



31 

 

In a tumor, normal cells and tumor cells (which are usually pleomorphic) may coexist. 

Human solid tumors often possess heterogeneity of both neoplastic and normal cells. A 

tumor can also be divided into different systems since it may be composed of various 

tumor cells [93, 94], each made of identical cells. Similarly, we can use eq. (3.1.1) to 

describe the growth of each small system in a tumor before metastasis since there is no 

tumor cell flux during this growth stage. For an identical system, we can use the number 

of cells (which is the most common method), mass, or volume to express its growth. 

Once we know the percentage of specific cells in a tumor at a certain time, we can 

estimate the amount of those cells later on.  

Tumor blood vessels are larger, longer and denser than normal microvessels [72]. They 

are abnormal and leaky. On one hand, this results in elevated tumor interstitial fluid 

pressure; on the other hand, this may be a source of nutrition for tumor growth (which is 

angiogenesis dependent) that is reflected by the production and death rates. Eq. (3.1.1) 

can be applied before metastasis occurs. However, according to the activity of cells, a 

tumor may be divided into three regions: a necrotic core where most tumor cells are dead, 

a quiescent cell region where most cells are non-proliferating, and a well-vascularized 

region where tumor cells are active [72]. Tumor cells have different growth environments 

and nutrition supplies in different regions. Consequently, parameters such as kS , Ek are 

not the same. Some environments may even cause additional cell death rate. In the 

quiescent cell region, ES ≈ (the production and death rates are almost balanced). In the 

necrotic core, it is probable that ES <  (cells are dying or dead). In the well-vascularized 

region, ES >  (where tumor cells contribute the most towards tumor growth), which 

means we should concentrate on them. Nevertheless, in tumor therapy, the quiescent cells 

cannot be ignored since quiescent cells may be radioresistant and become active again 

under certain conditions.  

Now, let us determine the death rate Ek and production rate kS . For convenience, we 

ignore the subscript k from now on unless it is needed for identification. We adopt West’s 

viewpoint: “the cell death rate is proportional to the number of cells present” [33]. In a 

specific system, the average lifetime of every single cell is fixed, and so is the number of 

cells in a unit volume C. Thus, it is reasonable to assume that the death rate E of cells in a 
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unit volume in unit time is a constant in this case. The most important matter is to 

determine the production rate S . Most biological phenomena scale as a quarter power of 

the mass [32, 33, 97-102]. Though this is an empirical law that is similar to but more 

general than Kleiber’s law, it is ubiquitous in biological allometry. Based on the ¼ power 

law, some empirical equations fit the ontogenetic growth trajectories for organisms better 

than any biological model [33, 103-106]. West et al. indicated that “rates of cellular 

metabolism and heartbeat [scale] as M -1/4 and whole-organism metabolism rate as M 3/4.” 

[97] Considering the general ¼ power law in biological allometry, the production rate of 

cells during metabolic processes should be the reciprocal of the ¼ power of the mass, 

namely,  

4/1/1 mS ∝       or   4/1−Γ= mS ,                                                (3.1.2) 

where Γ is a proportionality factor. Also, considering the condition that m=M at dm/dt=0, 

we have 4/1EM=Γ . Thus, 
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ES                                                            (3.1.3) 

where M is the maximum mass reached asymptotically among species within a system 

[33], which corresponds to the mass when dm/dt=0. The production rate is much greater 

than the death rate at an early growth stage. It slows down gradually while the mass 

increases. When the mass reaches the asymptotic mass, the production rate equals the 

death rate. Substituting equation (3.1.3) into equation (3.1.1) results in 
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Next we will show that equation (3.1.4) is exactly the same as West’s equation [33]. West 

et al. consider a whole organism as a system composed of identical cells. In this case, the 

present model (ours) can be applied. Assume the initial, or birth, mass is m0. Then the 

solution of equation (3.1.4) is, 
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For a tumor, m0 and M are the initial and final masses respectively [34]. In reference [33], 

West et al. discussed the death rate of cells and discovered that death rate in the entire 

system is aM -1/4Nc, where Nc is the total cell number. It should be equal to EV in the 

present model. In this case, cNaMEV 4/1−= . Since C=Nc/V, 

4/1−= aM
C
E

  and   a
C

=Γ
                                            (3.1.6) 

Thus, equation (3.1.4) is the same as equation (2.6). Correspondingly, equation (3.1.5) is 

the same as equation (2.7). From the discussion above, we see that there is a direct 

method to derive the universal law for organism growth based on the mass balance 

equation. For a specific system, the number density of cells, the mass of a cell, as well as 

the average production and death rates are all fixed in the absence of therapy. When the 

environment is fixed, the growth law of the cell system is also fixed.  

West et al. view all cells in an organism as the same. However, as we have remarked 

above, cells of one tissue are different from those of another. Therefore, the number 

density, the production and death rate, and the mass may all be different. Each specific 

tissue has its own asymptotic maximum and initial mass. Generally, for tissue k, we can 

write the governing equation for growth as: 
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Then, the growth equation for the entire organism may be expressed as: 
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Here, N is the amount of different types of tissue in a given organism. Let us assume that 
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all types of tissue grow harmoniously, and that there is a standardized mass )(tm° . The 

relationship between it and the mass of each tissue is )()( tmwtm kk °= . Thus, °= MwM kk

and ∑
=

°=
N

k
kt wtmm

1

)( , which can lead to ∑
=

°=
N

k
kt wMM

1

. We call this the similarities of 

growth. Here wk is the proportionality coefficient of growth of tissue k and M° is the 

asymptotic mass of m°(t) . Since the death rate of cells is proportional to the number of 

cells, cells in a tissue with a higher number density also have a higher death rate. In each 

specific tissue, the number density Ck is fixed. It is reasonable to suppose that Ek /Ck=β°. 

Different tissues share the same β°. For a specific organism, β° of its various tissues 

should remain constant; otherwise, the entire system could not grow harmoniously or 

isotropically. Based on these two assumptions, we have: 
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By comparing eq. (2.6) with eq. (3.1.4), β° can be determined by the relation β°= CE /  

=aM -1/4. The value of β° reflects the relative death rate. For the entire organism to follow 

the growth law, it is necessary for different tissues to share a similarity in growth. M o, mo 

and βo should be the parameters of the original cells, which are often stem cells, of an 

organism. According to the explanation of West et al. [33], the asymptotic maximum 

mass M of an organism is constant at extreme nutrition condition. However, the 

asymptotic maximum mass of each tissue might be affected by the nutrition supply. This 

makes the growth of an entire organism complicated. 

Based on the rules for similarity of growth and eq. (3.1.5), it is easy to prove that the 

fractions of different cells in a system are invariable if assorted cells have the same 

β°=E/C and their asymptotic masses share the same fractions (Mk=xkM ). For instance, if 

a system is composed of two kinds of cells with fractions x1=9x2, then M1=9M2 and 

a1≈1.732a2 (since β °1=β °2).  



35 

 

Nutrition supply might be spatially dependent. Tumor cells proliferate and grow actively 

when they are close to a source of nutrition (including oxygen). Thomlinson and Gray 

recognized that the necrotic center enlarges when a tumor cord grows larger so that the 

thickness of the sheath of viable tumor cells remains essentially constant [9, 10]. In fact, 

the asymptotic mass is nutrition dependent. We can take it as a function of nutrition. 

Cells that are close to a nutrition source have plenty of nourishment. Correspondingly, 

they have a larger asymptotic mass M and growth parameter a than cells that are farther 

away. Based on eq. (3.1.7), it is easy to conclude that they grow faster. Even so, it does 

not mean that these cells will crowd around the nutrition source and be scattered if they 

are away from the source. In fact, all cells still have the same size and density (Here is the 

case for one type of cell system). They distribute evenly and, following eq. (3.1.9), grow 

harmoniously. This is a very important point. It makes a system have a constant (or 

relatively steady) density and death rate, whereas the production rate, and 

correspondingly the net growth rate, change spatially based on the distribution of 

nutrition. This is the real meaning of harmonious growth. In fact, eq. (3.1.9) is an average 

effect. According to the rules for similarity of growth, if the nutrition supply is spatially 

dependent, the proportionality coefficient w will also be spatially dependent. The sum of 

wk (∑wk) becomes an integral (∫dw). The total asymptotic mass is Mt=M °∫dw and total 

instant mass is mt=m°t ∫dw. If we know the distribution function of w, we can find the 

integral. The Mt and mt still follow eq. (3.1.9). Similarly, for multicellular population 

systems, Mt=M °Σ∫dwj and mt=m°t Σ∫dwj. If these cells follow the rules for similarity of 

growth, eq. (3.1.9) is satisfied. Things might become complicated if identical cells are 

separated by other cells spatially (e.g. tumor metastasis). They may grow at different 

times and growth rates.  
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3.2 Application of Present Model to Tumor Growth and 

Metastasis 

 

The theory that tumors originate from tumor stem cells is gaining acceptance [107-110]. 

This, in turn, implies that tumor growth is an ontogenetic process in an independent 

system. Tumor growth is also the process of cell proliferation, which is embodied in cell 

production and death. Therefore, tumor growth also follows the “universal” law for 

organism growth [34]. Multicellular organisms are composed of various organs/tissues. 

Consuming nutrients and excreting waste are necessary in order to maintain a regular 

metabolism. They are included in the production and death rates. West’s model applies to 

organism growth in an unrestricted dietary condition, which makes the asymptotic mass 

M maximum [33, 34]. Any lack of nutrition causes the asymptotic mass to decrease. 

Correspondingly, the production rate S decreases. Once the asymptotic mass becomes 

smaller than the present mass m(t), the production rate becomes smaller than the death 

rate ( ES < ); then the growth rate is less than zero (dm/dt<0).  

 

 

3.2.1 Primary Tumor Growth 

 

In the case of a primary tumor, no tumor cell flows or diffuses into it from the outside. 

Also, no tumor cells flow out before metastasis. Therefore, eq. (3.1.7) can be applied. If 

we let °= kkk CE β/ , the equation can be rewritten as: 
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In a tumor mass, there may be both normal and tumor cells. For normal cells, no matter 

how many different types there are, they all have the same β° and follow equation (3.1.9). 

We use subscripts “N” and “T” to identify the normal cells and tumor cells respectively. 

Assume there are G kinds of tumor cells. They all follow eq. (3.1.7) and/or (3.1.8), but 

may or may not follow equation (3.1.9). Therefore, the total mass of the entire tumor mt 

is: ∑
=

+=+=
G

j
jNTNt mmmmm

1

. Here, we only discuss two special cases: 

(1) All normal and tumor cells of the tumor follow the rules for similarities of growth. 

Therefore, tumor growth follows equation (3.1.9) and can be expressed as: 
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+==°β . This may be the case for benign tumor or hyperplasia. The 

entire system still grows harmoniously and is under control. The solution for the equation 

above is:  
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(2) All tumor cells obey the rules for similarities of growth, but °Tβ  is different from

°Nβ .  
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The solution for tumor cells is:  
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We ignore the mass of normal cells in the tumor and use equation (3.2.5) to approximate 

the growth of the entire tumor when tumor cells dominate tumor growth ( NT mm >> ). 

tT mm 00 ≈ , tT MM ≈ . Most tumors probably belong to this case. We may use equation 

(3.2.5) to express the growth of tumors modeled in reference [34]. The cases are: tumor 

cells in vitro (9L, SNB19 and U118), as well as those in vivo for rodents (Fibro, Walker, 

KHJJ, C3H, EMT6, NCTC2472, Osteo, C33ISS) and for patients (breast tumor and 

prostate tumor).  Table 3.2.1 shows the parameters for various tumors. 

Table 3.2.1 Values of some tumor parameters [34] 

Tumor SNB19 Fibro Walker KHJJ C3H EMT6 NCTC2472 Osteo C3H ISS Human breast Human prostate 

βT° (day -1) 0.057 0.037 0.440 0.19 0.14 0.38 0.30 0.0762 0.22 0.16 0.083 

mT0(g)[34] 0.025 1 0.348 .0012 .0348 .00135 0.052 0.0058 0.2 1 1 

MT(g)[34] 3 200 150 2 5 3 7 7 8 646 641 

 

Let 4/1)/( TT Mmr=  and ])/(1ln[ 4/1
04

1
TTT Mmt −−°= βτ . Equation (3.2.5) is reduced to 

)exp(1 τ−−=r . It fits the curves that Guiot et al. present in reference [34]. Here we 

introduce them into Fig. 3.2.1. 

 

 

 Fig. 3.2.1 Tumor growth curves (real line curves represent r =1-exp(-τ )) [34] 



39 

 

In other cases, since different tumor cells do not have the same β°, they cannot be unified 

by the rules of similarity of growth. We cannot express the total tumor mass in a uniform 

equation. Instead, we must find the solutions separately and then add them together. In 

this case, the growth process is complex, though each set of identical cells still follow the 

growth law for organisms in its own way. It is even more complicated when tumor cells 

metastasize to different locations and have different growth rates in various systems, 

especially when the growth time is asynchronous.  

 

 

 

3.2.2 Secondary Tumor Growth  

 

Despite the fact that no tumor cell can flow or diffuse into a primary tumor from the 

outside, some may flow out or diffuse into either blood vessels or lymphs once the tumor 

reaches a certain size. Some of them will be carried out of the primary tumor or even 

transported to other normal organs where the conditions are better for their growth (i.e. 

passive and active transport). This process should be related to the transport path and the 

environment. However, once a “seed” is planted into good “soil”, the growth process of 

this secondary tumor should follow the same pattern/equation as that of primary tumor 

growth. However, parameters such as number density, death and production rates may 

not be the same. Demidem et al. [96] studied the growth of secondary tumors and found 

that their growth curves also fit the “Gompertz” function. We use equation (3.2.5) to 

perform curve fitting for the data in Ref. [96]. The result is shown in Fig. 3.2.2. The 

symbol “♦” represents data that we obtained from Fig. 6 of Ref. 96 by measuring the 

coordinates (We choose this particular one as an example of a complex system). The 

curve represents equation (3.2.5). They fit rather well when some parameters are chosen. 

Here we let the first experimental point be the initial point. 
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The complexity is that the suitable “soil” and paths between the source (primary tumor) 

and the “soil” may cause more than one “seed” to grow in that location. Also, the growth 

of these metastases will likely not follow the rules for similarities of growth.  

 

 

 

 

 

 

3.2.3 Tumor Metastasis  

 

When metastasis occurs in a primary tumor, some cells flow out of the system. Therefore, 

assuming that all tumor cells spread out of the system, no cells can flow in. A mass flux 

exists and equation (3.1.1) must be modified to: 
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    (Divergence theorem) 

where ku
r  is the velocity of cells spreading out of the tumor in system k, Ak is the closed 

surface of Vk and the direction of kA
r

 is the outward-pointing normal of Ak. Equation 

(3.1.3) should still be satisfied if the nutrition supply and growth environment do not 

change. Since ku
r is usually spatially and temporally dependent, there is no analytic 

solution. Here we consider two simple cases:  

1) The outflow rate of tumor mass is a constant µ (u is a constant) and there is only 

one kind of tumor cell. Then, eq. (3.2.6) can be rewritten as: 
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There is an equilibrium mass Meq. When mT =Meq, dmT/dt=0, which means the primary 

tumor will not grow. When mT>Meq, dmT/dt<0, and the primary tumor decreases. The 

“unknown primary origin” cancers [111, 112] may relate to this case. When mT<Meq, 

dmT/dt>0, causing the primary tumor to increase until it reaches a specific size. Meq 

satisfies the following equation:  

04/34/1 =+°−° µββ eqTTeqT MMM                                             (3.2.8) 

This case may not be maintained if there is no external force. 

2) .consu =⋅∇ r
This causes the outflow rate of tumor mass to be proportional to the 

mass. This case is still for one type of tumor cell. Now equation (3.2.6) can be 

rewritten as: 
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where µ is a proportionality constant. Let dmT/dt=0, we can find the equilibrium mass 

Meq,  
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3.2.4 Modification of Tumor Mass 

 

When a tumor grows to a specific stage, it connects to other systems through blood 

vessels, lymphs etc. Fluid flows in and out in a balanced way in normal tissues. This 

maintains a normal metabolism. The balance may be upset in tumors and we must 

consider the issue of net inflow. In a primary tumor, the fluid that comes from blood 

vessels does not proliferate and eq. (3.2.6) is simplified to: 

∫∫ ⋅−=
∂

∂
FF

F Adu
t

V rr
                                                     (3.2.11) 

Solving equation (3.2.11) depends on the distribution and direction of the fluid’s velocity 

on the closed surface of the volume. The high capillary permeability and low lymphatic 

drainage of a tumor may cause fluid accumulation. According to Starling’s law, the net 

fluid flux across the capillary walls is expressed as: 

)( OV pppLAJ ∆−−=                                                    (3.2.12) 

where L is the hydraulic conductivity of the capillaries, A their surface area, pv the 

vascular fluid pressure (pressure in the capillaries), p the interstitial fluid pressure, and 

∆po the osmotic pressure difference. Here we consider a very simple situation by 

assuming that all fluid is accumulated in the tumor area. Then,  

dtpppALdtJtV OV

tt

F )()(
00

∆−−== ∫∫                                      (3.2.13) 

While spreading, the fluid meets resistance from the environment. We suppose that the 

pressure p(t) is proportional to the amount of accumulated fluid [72].  
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where γ is a proportionality coefficient. The differential form of equation (3.2.14) is  

])([
)(

OV ptppLA
dt

tdp ∆−−= γ                                                     (3.2.15)  

In the beginning, fluid flows in and out of the tumor in a balanced way, so there is no 

accumulated fluid. The initial value of IFP is zero, which is the same as that of normal 

tissue. So, 

)1)(()( LAt
OV epptp γ−−∆−=                                           (3.2.16) 

Comparing equations (3.2.11) and (3.2.13), we can get the direction of the normal 

component of fluid velocity: 
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OVOVF eueppLpppLtu γγ −−

⊥ =∆−=−∆−= 0)()()(                  (3.2.17) 
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Note that the starting point in time for tumor mass and fluid mass may not be the same. 

Suppose that mF starts to accumulate t0 units later than the tumor (it may depend on the 

condition of the interface between tumor and normal tissues). The total mass of a tumor 

can be expressed as: 
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                                                      (3.2.19) 

Tumor growth and fluid flow follow different laws. Therefore, unbalanced fluid flux 

causes the growth of some tumors in certain growth processes to not completely follow 

the “universal” law for organism growth. At steady state, the fluid leaked out from the 

vasculature is balanced with that which flows out of the tumor. The amount of fluid 

accumulated in the tumor is fixed. 
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3.3 Application to Tumor Therapy 

 

There are three widely used therapies for tumor treatment: surgery, radiation and 

chemotherapy. Each has its own properties and can be modelled. Different from 

conventional chemotherapy, antiangiogenic therapies like metronomic chemotherapy is a 

relatively new and promising treatment. However, its mechanisms are not completely 

clear, though we know it works by controlling vasculature growth. Cell survival response 

to these therapies is still a popular topic. Many experimental data cannot be explained by 

applying the existing models. How to combine these therapies to benefit patients the most 

is still being debated. 

All therapies are designed to reduce tumor growth, either directly or indirectly, and can 

be modeled by tumor cell production and death rate as well as flux term. Radiation 

therapy and conventional chemotherapy change the death rate, whereas antiangiogenic 

therapy controls the production rate. The effect of surgery is different. It changes the 

mass of the tumor directly so that the growth rate is negatively and drastically changed, 

though the death rate may not be affected. These therapies have different mechanics and 

should be discussed separately. The therapeutic approaches are modeled mathematically 

in this section. 

 

 

3.3.1 Surgical Therapy 

 

The response of a tumor following surgery is the immediate loss of most of the cells that 

comprised the tumor. Often, the growth rate of a tumor after surgery is greater than that 

of the original tumor [113]. To model the loss of tumor mass through surgery, assume 
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that the removed tumor mass is MR. Assuming all tumor cells are identical, the governing 

equation for the growth of remaining cells can be expressed as: 
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Focusing on the growth process of the remaining cells after surgery, the following 

transformation can be made: m' =m-MR, where m′ follows equation (3.1.4). If MR=m, it 

means that the surgery has effectively eliminated all tumor cells, so dm'/dt=0. In this case, 

the tumor will not grow any more. On the other hand, if some tumor cells remain, they 

will grow, typically at an accelerated rate. Even so, the growth rate dm′/dt may be very 

small if the remaining mass is very small. For example, a fibro tumor with M =200g, 

m=150g before surgery has a remaining mass m' =m-MR=1/1000g after the operation. The 

production rate before surgery (m=150g) is ES 075.1≈ (unit) and the growth rate is dm/dt 

=11.2E/C. The production rate after surgery becomes ES 15.21≈′ (unit) and the growth 

rate becomes dm'/dt=0.020E/C. Only when the remaining mass is (81/256)M can the 

growth rate be maximum, which is (27/256)ME/C. Therefore, whether the growth rate of 

a tumor after surgery is greater or smaller than the original tumor’s growth rate depends 

on the time and amount of tumor removed. If surgery is applied when the tumor is mature, 

the growth rate of a tumor after surgery will likely be greater than the original tumor 

growth rate.  

 

 

3.3.2 Radiation Therapy  

When ionizing radiations such as x-rays or α-particles interact with cells in a bio-system, 

some kinetic energy is being deposited in the system causing possible damage. Linear 

energy transfer (LET) is the measure of the energy deposited per unit length (kev/µm) of 

the radiation/particles’ track [10]. Depending on the value of LET, ionizing radiation may 

be divided into two types: low and high LET emissions. For cell response to a low LET 
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radiation such as x-ray, the linear quadratic (LQ) model is widely used [10, 40, 50, 114]. 

Many survival curves fit the LQ or two component LQ model [50]. However, many 

researchers noted that the LQ model does not fit the survival curves well, especially in 

the high dose region [40-42, 44, 45]. 

Unlike x-ray, alpha particle emission causes a linear survival curve in most cases 

[10,115,116]. Barendsen et al. [115] studied human cell response and corresponding 

oxygen-enhancement ratios (OER, which is the ratio of doses administered under hypoxic 

to aerated conditions needed to achieve the same biological effect) to α-particles with 

different energy. Instead of using air, Barendsen et al. used nitrogen for hypoxic 

condition. The results are summarized in table 3.3.1.  

    Table 3.3.1 Biological effect of human cells after α-particles radiation 

Energy (Mev) 2.5 3.4 4.0 5.1 8.3 25 
LET (kev/µm) 166±20 140±20 110±10 88±6 61±5 26±2 

OER 1.0±0.1 1.1±0.05 1.3±0.1 1.7±0.15 2.05±0.25 2.4±0.3 
log10(SF)~D  fit linear linear linear linear linear LQ 

LET increases to 166kev/µm while the kinetic energy of each particle decreases to 

2.5Mev. Correspondingly, OER decreases to 1.0. The survival curves fit almost linearly 

when the kinetic energy is less than 8.3 Mev and LET is greater than 61kev/µm. An α-

particle has a typical energy of 5 Mev (usually between 3-7 Mev) and is composed of two 

protons and two neutrons. Relative to other particles such as neutrons, protons and 

electrons, α-particle is of a large size and mass, which make it have low penetration depth. 

Therefore, the energy of α-particles is absorbed by tissues (cells) within a short range. 

This makes it extremely dangerous once the source is ingested or inhaled since all the 

particles stay. The damage of biological effects is about 20 times as that caused by an 

equivalent amount of gamma or beta radiation (e.g. number of cells killed in 1Gy =1J/kg 

dose). While interacting with cells, α-particle transfers most of its energy in a small 

region. Therefore, the localized DNA damage is difficult to repair or is even irreparable. 

Studies [10, 115] show that the OER is 1.0 when LET is greater than 165 kev/µm. 

Generally, the OER decreases with the increase of LET [117]. When LET is between 61 

and 110 kev/µm, the OER is from 2.0 to 1.3, though the survival response is still linear. 
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When LET reduces to 26 kev/µm, the OER increases to 2.4 and the survival curve shows 

features of the LQ model.  

Assuming that a double strand break in the DNA helix is the critical damage, Chadwick 

and Leenhouts statistically derived the LQ equation and approximated it as [114]: 

])1(exp[ 22
21 DkDkSF ∆−−∆−=                                           (3.3.2) 

where SF represents cell surviving fraction, k1, k2 are two constants, D is the absorbed 

dose; ∆ is a proportion of dose D that is inactivated via single event killing (meaning both 

strands of the DNA double helix are broken in one radiation event), and 1-∆ is the 

proportion that is inactivated via double event killing (meaning each strand of DNA 

double helix is broken independently during different radiation events). Here ∆ is LET 

related. This model implied that ∆ increases when LET increases. The linear term exp(-

k1∆D) dominates survival at low doses. With increase in LET or ∆, the quadratic term 

exp[-k2(1-∆)2D2] plays an increasing role [114]. The LQ model may be applied for cell 

response to high LET radiations such as α-particles if the quadratic term is ignored. 

However, there are some experimental data that do not fit the LQ model (including the 

linear limitation) and its multi-component forms. For cell response to α radiation, many 

survival curves fit a linear line and some might follow the LQ model, while other survival 

curves do not belong to either of these two cases. For example, Hieber et al. [118] 

showed that the response of C3H 10T1/2 cells to α radiation deviates upward from the 

linear line after 1.5 Gy. Beaton et al.’s experiment for A-549s’s cell response to α 

radiation [119] showed a similar result. According to the description for setting up the 

experiments, the results could not be merely explained as “unattached mitotic cells not 

reached by the α-particles”. From the experimental result given by Durante [120] for 

H184B5 F5-1 M/10 cell response to α-particles, we can also summarize that the curve is 

different from either the linear or the LQ model. Some additional experiments [116, 121-

125] also showed that the survival curves deviate upwards from a linear line. Some 

experimental results, such as the survival of asynchronous V79 cells vs. DNA-

incorporated activity [126] after 30-min exposure to 211AtdU (5-[211At]astato-2’-

deoxyuridine), may be explained by introducing the two-component exponential model 
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[126, 127]. However, the experimental data in references [118] and [119] do not fit the 

linear model, its two-component form or any other previous model. For cell response to 

x-ray radiation, Powers and Tolmach [54] reported the survival of subcutaneous 6C3HED 

mouse lymphosarcomas and suggested that the survival kinetics were determined mainly 

by two cell populations. Even so, no existing models fit the survival curve, including the 

two-population LQ model. Explaining all these survival curves consistently may lead us 

to propose a general model for cell response to radiation. In fact, all previous models are 

derived from statistical theory. In the LQ model, the surviving fraction is expressed as 
2DDeSF βα −−= , where α  and β are two parameters that are determined by cell response. It 

is assumed that the factor De α−  comes from single event killing, and the factor 
2De β−  is 

derived from double event killing [10, 114]. This implies that high LET radiations such 

as α-particles cause mainly single event killing. In fact, alpha radiation causes more 

serious damage to cell nuclei (mainly DNA) than other kind of radiations. High LET 

radiation increases the complexity of lesions due to the formation of multiply damaged 

sites [128]. The damage caused by DNA double strand breaks are considered important, 

and can be seen from evidence relating to cell lethality [128, 129]. In addition, when dose 

or dose rate is zero, a model for cell response to therapy should be compatible with the 

natural growth or death process before treatment is applied. However, previous models 

did not relate to this aspect. 

Damage to DNA such that proliferating cells lose reproductive integrity (often after a few 

cell divisions) is the cause of radiation cytotoxicity. The effect of radiation depends on 

conditions such as radiation dose, the fractionation schedule and environmental 

conditions, particularly the oxygen partial pressure of cells. Killing cells through 

radiation is not a direct process of removal of mass like surgery, but rather the indirect 

removal of mass via cell loss processes such as necrosis, apoptosis, and autophagy. No 

matter what the detailed procedure is, it results in the death of cells and the decrease in 

growth rate. We assume that the average additional death rate caused by radiation during 

treatment period is K . It represents the average additional number of dead cells in a unit 

volume per unit time. It is noteworthy that cells, and by extension organisms, have a 

smaller death rate when they grow or die/shrink with no radiation or chemotherapy 
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applied. The treatments cause additional death rate. If the production rate is greater than 

the total death rate, an organism grows; otherwise, it shrinks or even dies. Here, we are 

only interested in the behaviour of tumor cells and view all tumor cells as the same. 

Namely, for a uniform system composed of identical cells that respond equally to 

radiation. Thus, when treatment is applied, the equation for tumor cell growth is amended 

to read: 
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This is a general expression for cell response to treatment. For radiation such as x-rays 

and α-particles, the dose in a unit time (dose rate) can be selected or controlled and set as 

a constant since the energy per particle and the distance of target are fixed (dose rate

dtdDD /=& is set as a constant, where D represents radiation dose and mainly uses 

Gy=J/kg as its unit. If dose rate is not a constant [44, 45], the additional death rate will be 

complicated and we will not discuss it here). In a specific treatment period, the average 

dose rate is practically a constant. Therefore, the dose absorbed by an organism or a cell 

system is proportional to the amount of time it is exposed to radiation (D= tD& ). We 

employ a general relation t =λD, where g is the reciprocal of dose rate. Thus, eq. (3.3.3) 

becomes: 
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K is a key parameter for determining the survival response. Different cell “killing” styles 

may give various patterns of K. A correct pattern should reflect the experimental results. 

Here we discuss three cases (according to the LET value). 

a) When LET is greater than a specific value L0 (LET>L0) in a given cell system, the 

energy deposited is large enough to destroy all localized cells present equally (regardless 

whether the cells are hypoxic or oxygenated). The damage done to most cells is 

irreparable, or more accurately, the number of repairable damaged cells is much less than 

that of the irreparable ones. Therefore, the number of repairable cells may be ignored. 
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The additional death rates are proportional to the quantity of cells present, which should 

be constant since the cell density is constant. In this case, the OER is equal to 1.0.  

b) When LET is smaller than L0 but greater than a given value L1 (L1<LET<L0), the 

energy deposited is still large enough to cause serious damage immediately while 

interacting with cells and most damage is still irreparable. However, the energy deposited 

is not large enough to destroy all localized cells with the same effect. It is oxygen 

dependent. The damage under well-oxygenated condition is larger than that under 

hypoxic condition. The ratio of damage varies from one fold to nearly three folds. The 

exact value for a given cell system is LET dependent [10, 115, 117]. The number of cells 

killed is still proportional to the number of cells present, but the proportionality varies for 

cells under normoxic and hypoxic conditions. Therefore, the additional death rate is still 

constant (though the value is oxygen dependent) since the number density of cells is 

constant. In this case, the OER is greater than 1.0. 

c) When LET is smaller than L1 (LET<L1), the energy deposited is not large enough 

to destroy all localized cells immediately. The mechanism of cell killing is the same as 

that for cells under low LET radiation. There is a time accumulating effect. We classify it 

as a linear-quadratic case. 

We accept the view that DNA double strand breaks cause critical damage to cell 

proliferation. In cases a) and b), the LET is large enough such that the localized nuclei of 

cells are damaged by breaking DNA double strands immediately. There is no time 

accumulating effect. In this case, the additional death rate caused by α-particles is 

proportional to the cells present. For a specific kind of cell, the number density C is fixed. 

Thus, the additional death rate is a constant (K=ν). The solution of eq. (3.3.4) is: 
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The surviving fraction is   
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where M0 is the mass of cells when radiation starts. In actuality, M0/M can be determined 

theoretically by comparing two identical cell systems. Radiation is applied to one but not 
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the other. Usually, the additional death rate caused by alpha radiation is much greater 

than the production rate in a cell system, namely (E+ν)(m/M)1/4>>E is satisfied. In this 

case, it gives an approximately linear cell survival curve and is expressed as  

)exp(
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m
SF λν+−==                                                   (3.3.5″) 

Fig. 3.3.1 depicts log(SF) vs. D with various values of Eλ/(4C), νλ/(4C) and M0 based on 

eq. (3.3.5′). 

 

 

 

 

Regarding cell response to α-particle radiation, the present model is compatible with all 

existing models. However, for C3H 10T1/2 cell response to α radiation given in reference 

[118], the experimental data cannot be fitted by any previous models, even considering 

the form for two component cell system. The energy of α-particles is 2.7Mev, their dose 

mean is LET 147 kev/µm, and frequency mean of LET is 144 kev/µm. When we apply eq. 

(3.3.5′) to the experimental data, it fits well. According to the description of the 

experiment, the abnormal experimental result cannot be explained due to the fact that 

unattached mitotic cells cannot be reached by the α-particles. Here we choose M0/M=25% 
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since the plating efficiency of control cultures in the experiment was 20-30%. The result 

is shown in Fig. 3.3.2. 

 

  

 

 

Similarly, for A-549s’s cell response to α-particle radiation in reference [119], the 

survival curve deviates away from the linear line. The last experimental point does not fit 

a linear response at all. However, eq. (3.3.5′) fits the experimental points well, which is 

shown in Fig. 3.3.3.  
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For H184B5 F5-1 M/10’s cell response to α-particle radiation in reference [120], we can 

see that a linear line does not fit some experimental points well. Eq. (3.3.5′) fits the 

experimental points better, as show in Fig. 3.3.4.  
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if we know the variance of each experimental point, where σi represents the variance of 

logSFi. We do so since the increments of logSF are equally spaced and the differences of 

logSFi-logSFfit are “more easily correlated to the goodness of fit that is visually apparent 

in the usual semi-log plot of SF vs. D [50]”. The results are listed in table 3.3.2. It shows 

that the present model fits the curves better.  

               Table 3.3.2 The goodness of linear fit and the fit of the present model  

Cells 
The present model (free fit)             The linear fit 

RMS χ2            RMS χ2 
A549s 0.0464 5.69               0.110                  22.28  

      H184B5                     0.0730                                5.416                 0.0888                 5.717  
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For case c), the transferred energy is not large enough to damage some of the targeted 

nuclei immediately. The DNA damage of nuclei has a time accumulating effect. Since the 

energy deposited is not large enough, one attack does not break DNA double strands, so 

there is no serious damage to cells. With time accumulating, the number of DNA double 

strand breaks increases. The damage of some cells is proportional to the time. Therefore, 

the additional death rate also has a time accumulating effect. Mathematically, the LQ 

model is equivalent to the equation dDDNdN )2(/ βα +−= . The constant term α creates 

surviving fraction proportional factor De α− , which is assumed to originate from single 

event killing. The term 2βD causes surviving fraction proportional factor 
2De β− and is 

assumed to be derived from double event killing [10, 114]. In fact, the term 2βD contains 

the time accumulating effect since tDD &= . Also, accumulation of DNA single strand 

break can cause DNA double helix break. Studies show that α-particles cause much more 

serious damage in the nuclei than low LET radiations, such as x-ray [10]. DNA double 

strand breaks are the primary critical lesion for cell killing [128, 129]. Considering these 

effects, we assume that some of the nuclei are damaged immediately, causing a constant 

additional death rate ν, while others are damaged gradually under low LET radiation. 

With time or radiation dose accumulating, more and more DNA double strands are 

broken and nuclei are damaged correspondingly, which causes on average an additional 

death rate κ D. Therefore the total additional death rate in this case is expressed as K=κ D 

+ν, where κ and ν are two constants for a specific radiation and target. Now we rewrite 

eq. (3.3.3) as: 
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The complete solution can be expressed by using the confluent hypergeometric function, 

or it can be given numerically. However, in radiation, the conditions SK >> =E(M/m)1/4 

and EK >> are usually satisfied. Then, equation (3.3.7) is reduced to: 

)( νκλ +−= Dm
CdD

dm                                                    (3.3.7) 

The solution is:  
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]/)(exp[ 2
2
1 CDDSF νκλ +−=                                          (3.3.8) 

By way of comparison, we have:  

C/νλα = , C/2
1 κλβ = , κνβα /2/ = . 

The α, β and C are fixed for a specific target. Therefore, smaller λ (corresponding to a 

larger dose rate D& ) causes larger κ and ν. Besides using α-particles, Barendsen et al. 

[115] also used deuterons and neutrons to irradiate T-1g cells in culture under oxygenated 

condition (with air) and hypoxic condition (with nitrogen). For deuterons, when the LET 

is 20kev/µm, the survival curves are almost straight lines. However, when the LET is 

5.6kev/µm, they are not straight anymore. Here we apply the LQ model (eq. 3.3.8) to fit 

the experimental data. The result is shown in Fig. 3.3.5. Similarly, for the survival curves 

under 25 Mev α-particles with LET 26±2kev/µm, they cannot be fitted linearly, 

especially for the survival curve under hypoxic condition. We use the LQ model to fit the 

survival curves. The result is shown in Fig. 3.3.6. Obviously, it shows that the survival 

curves’ response to heavy particles such as α-particles and deuterons also have the 

characteristics of x-ray when LET is low.  
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For a multicell system, different kinds of cells (which grew harmoniously before therapy) 

may have different λ/C, but they have the same or proportional value of ν to κ (and 

correspondingly α to β) under equal radiation or chemotherapeutic treatment with 

identical environmental conditions. It means that the additional death rates of different 

populations should be equal or proportional when they are under the same radiation field 

or chemotherapeutic agent treatment. Though ν and κ are still variables dependent on 

specific tumors and radiation conditions, they relate both α and β (and correspondingly 

the response to radiation therapy) to the number density of tumor cells, C.  

As we know, a small fraction of radioresistant cells can change the survival curves 

significantly. We consider a general situation. Suppose a system is composed of more 

than one type of cell. For the sake of convenience, we take two different kinds of cells as 

an example, one “regular” and the other “resistant”. Let the fraction of “resistant” cells be 

x (making the fraction of “regular” cells 1-x). Similarly, we can also use this method if 

there are more than two types of cells. If there are only “regular” cells, x=0. For 

convenience’s sake, we use subscript 1 to represent “regular” cells and 2 for “resistant” 
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ones. The initial amount of cells in the system is M0. The final amount of cell 1 is m1 and 

cell 2 is m2. Here M0, m1 and m2 can be the mass or number of cells since the mass of 

identical cells is proportional to the number of cells. Fraction 1-x and x must coincide 

with m01=M0(1-x) and m02=xM0 respectively. It is easy to show that the fractions of 

different cells in a system before therapy (K=0) are constant if various cells have the 

same E/C and their asymptotic masses share the same fractions. These two conditions 

(Ek/Ck constant and Mk =xM ) ensure that the cells grow harmoniously before treatment. 

The different responses to therapy enable us to detect the existence of various cell 

subpopulations. If radiation is applied, the surviving fractions for cell 1 and cell 2 can be 

expressed respectively as: 

])(exp[
)1(

)( 1
0

1
1 DD

xM
m

SF βαγ +−=
−

=                                       (3.3.8′) 

])(exp[)( 2
0

2
2 DD

xM
m

SF βαγ +−==                                        (3.3.8″) 

Here, we use the same α and β for both cells 1 and 2 since they are subjected to the same 

radiation field; γ1 and γ2 are two relative coefficients which reflect the different responses 

of dissimilar cells to radiation. We can set γ1=1 and ignore the subscript of γ2. Then, the 

total surviving fraction of the system is: 

])(exp[])(exp[)1(
0

21 DDxDDx
M

mm
SF βαγβα +−++−−=+=                          (3.3.9) 

Eq. (3.3.9) is the same as eq. (2.12) under the condition that rrss βαβα // = . In Ref. [50], 

the authors applied eq. (2.12) to fit the experimental data. They expected approximately 

comparable numbers of sensitive and resistant cells in their experiment. Setting x=0.5, 

they found that αs=0.2414, βs=0.1006, αr=0.0886, and βr=0.0345. Thus, αs/βs=2.40 and 

αr/βr=2.57, which are close. The difference might be because the fractions of the two 

components are not exactly the same. In the free fitting case, they found that x=0.63, 

αs=0.2064, βs=0.1218, αr=0.1402, and βr=0.0318, which gives αs/βs=2.69 and αr/βr=4.41. 

The authors also tried a forced fit by letting x=0.37, and found that αs=0.2492, βs=0.0874, 
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αr=0.0231, and βr=0.0378, which gives αs/βs=2.85 and αr/βr=0.611. The values of αs/βs 

and αr/βr in these two cases are distinctly different. 

Based on the discussion above, we use the same α and β for different cell populations in 

eq. (3.3.9). The difference in response is reflected by γ. This makes the model that we 

have presented different from any other two- or multi-component LQ model [50-53]. 

Those models may give various cell fraction x by choosing different values of α and β 

[50], due to the fact that the αs and βs for different cell populations are not constrained. 

In the present model, since the αs and βs are constrained, only a unique x can give the 

best fit. In some cases, when the production rate is large, we may have to solve eq. 

(3.3.3)/(3.3.4) or (3.3.6) to find the surviving fraction. Because the value γ has an 

exponential effect on the surviving fraction, it may have a strong influence on the 

surviving fraction of the entire system. Fig. 3.3.7 shows this state of affairs. In fact, the 

red curve shows common features of many different radiation survival curves.  
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If we rewrite eq. (3.3.9) in the form of the LQ equation, 

DDDDDD xeexe )()()( )1( βαγβαβα +−+−′+′− +−=  

we get: 

]1ln[ ))(1(22 DDxexDDDD βαγβαβα +−+−−+=′+′  

Obviously, α ′ and β ′ are the functions of α, β, γ, x and D. For a specific species and 

radiation field, α, β, γ, and x are fixed. Therefore, α ′ and β ′ are functions of D. Many 

models introduce a G factor to the term β ′.  

We must consider two components of cell population in order to fit the survival curves 

for radiation. To correctly determine the fractions of each cell population, we need 

accurate experimental data. Astrahan plotted Elkind and Sutton’s experimental data [46] 

into an enlarged logarithmic coordinate system to show that Chinese hamster cells in 

culture closely fit the LQ model up to a dose of 6 Gy, but then starts to deviate from the 

LQ curve [40]. Here we use the data from reference [40] and fit the curve based on 

equation (3.3.9). The results are shown in Fig. 3.3.8 with the best fit curves. We also tried 

x=0.04, but we do not show it in this graph for the sake of clarity. It is close to the case 

where x=0.05. Fig. 3.3.8 shows that the curves for x≤0.03 do not fit the experimental data 

well. We estimate that the fraction x of “resistant” cell population should be between 0.04 

and 0.1. However, the result of equation (3.3.9) fits well over the entire dose range. The 

“linear” property of the survival curve is the total effect of “radio-resistant” cells (which 

have a smaller γ value compared to that of “regular” cells) and the “regular” cells 

expressed in equation (3.3.9). As noted above, even a small portion of “radio-resistant” 

cells can greatly influence the surviving fraction. We also apply equation (3.3.9) to 

Human HeLa cells in culture (using data from Fig. 3B in reference [40]) and DU145 cell 

line in vitro (using data from Fig. 4A in reference [40], though it was originally from 

reference [42]). The curves fit better than the LQ model and Astrahan’s LQ-L model, 

especially for DU145 (relative to the dots if there are error bars). The results and 

corresponding parameters are shown in Figs. 3.3.9 and 3.3.10 respectively. All 

parameters are chosen to get the closest fitting curve. 
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Figs. 3.3.8 to 3.3.10 clearly show that some “radio-resistant” cells exist in culture and in 

vitro for both normal and cancer cells. Studies show that cancer stem cells are more 

resistant to radiation than other cancer cells [55, 56]. A similar argument can be made for 

any sub-population of cells that are radioresistant. Currently there is considerable debate 

over the importance of tumor stem cells to radiation response. If tumor stem cells are 

indeed resistant to the damaging effects of ionizing radiation, the discussion above 

regarding radioresistant cells may be similar to one concerning stem cells. As we 

mentioned above, different cell populations in one system can grow harmoniously before 

treatment and may not be identified. However, different cell populations respond 

differently to therapy and can be discovered.  

For comparison, we display the curve fitting graph (Fig. 4-A in Ref. [40]), which is based 

on the LQ-L model for DU145 cell line in vitro, in Fig. 3.3.11. The blue (upper) dashed 

line is the best LQ-L fit and the red (lower) dashed line only constrains γ, which is 

approximately the slope of the line tangent to the LQ curve at dose DT, where the curve 

becomes linear [40]. Obviously, the blue (upper) dashed line does not fit the survival 

curve well in the lower dose region (2.0-4.5 Gy) and the red (lower) dashed line does not 

fit the survival curve well in the middle dose region (8.0-9.5 Gy). Also, the LQ-L model 
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does not fit the survival curves well for Human HeLa cells in culture from 1.5-3.0 Gy and 

C3H 10T1/2 cells in culture from 4.5-8.0 Gy (see Fig. 3-B and D in reference [40]). Here 

we calculate the root-mean-square (RMS) differences based on the formula 

∑
=

−=
m

i
fiti SFSF

m
RMS

1

2)log(log
1

 
[50]. We can also calculate

 
∑

=

−
=

m

i i

fiti SFSF

1
2

2
2 )log(log

σ
χ

 
if we 

know the variance of each experimental point, where σi represents the variance of logSFi. 

We do so since the increments of logSF are equally spaced and the differences of logSFi-

logSFfit are “more easily correlated to the goodness of fit that is visually apparent in the 

usual semi-log plot of SF vs. D [50]”. The results are listed in table 3.3.3, and we can see 

that the present model fits better than the LQ-L model. We can see that the surviving 

fraction of the second point in the graph below for DU145 is 1.0215, which is most likely 

an impossible value. If we take this point out, the fit for the present model will be even 

better than it does now. 

 

 

 Fig. 3.3.11 Curve fitting based on the LQ-L model for DU145 cell line in vitro [40] 
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          Table 3.3.3 The goodness of fit for different models (x=0.1) 

 The present model (free fit) The LQ-L Model 
 RMS χ2                                      RMS χ2 

Human HeLa 0.04725                                       0.05651  

DU145 0.03580 90.26 
Upper dashed blue line     0.05590 168.76 
Lower dashed red line      0.04536 113.37 

 

We also applied eq. (3.3.9) to fit the survival curve for C3H 10T1/2. The data is digitized 

from Ref. [40] and the result is shown in Fig. 3.3.12. Similarly, we extracted the 

experimental data for CP3 (a human prostate carcinoma cell line) and U-373MG (a 

human glioblastoma cell line) from Fig. 1 (a) and (b) in reference [42], and applied 

equation (3.3.9) to fit the survival curves. The results are shown in Figs. 3.3.13 and 

3.3.14. Since the errors of these three survival curves are relatively large, we only give 

graphs with the case of x=0.1. Generally, the survival curves fit these experimental data 

quite well. Garcia et al. [42] analysed these data in different dose regions and noticed that 

the dependence of the fitted α and β on the dose range has an impact on the α/β ratio, 

which is determined from the survival data. Here we found the cause and a method for 

solving it.  
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All curve fittings show that there are some “resistant” cells in both tumor and normal 

cells. Let us apply eq. (3.3.9) to fit the survival curves for EMT-6/Ro tumors under 

aerobic and anoxic conditions in order to verify the existence of “resistant” cells. The 
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Fig. 3.3.13 Survival curve for CP3 human prostate carcinoma cell line 

Fig. 3.3.14 Survival curve for U373MG human glioblastoma cell line 
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data are digitized from Fig. 3 in reference [49]. The results are shown in Fig. 3.3.15. This 

graph shows that there are some “resistant” cells in the cases under aerobic conditions. 

Obviously, the survival curves under aerobic conditions do not satisfy the LQL nor LPL 

models, though the surviving friction of a tumor under anoxic condition can 

approximately be fitted by the LQ model.  

 

 

 

 

Eqs. (3.3.8) and (3.3.9) are the results of SK >>  and EK >> . These two conditions 

may be satisfied in most cases. However, there may be some cases where they may not be 

satisfied in the low dose region or in early growth stage, where M0 is small. Therefore, 

we have to solve eq. (3.3.6) numerically for K=κD+ν. Powers and Tolmach [10, 54] 

reported the survival response of 6C3HED mouse lymphosarcoma cells to radiation in 

vivo. They plotted several sets of experimental data on a graph and fitted the curve by 

eye. It is impossible to fit the data when we try other models such as the LQ, LQL or 

multi-component LQ model. However, when we apply eq. (3.3.6) to this case, it fits well. 

The results are shown in Fig. 3.3.16. The points are digitalized from reference [54]. Here 
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we did not use various symbols to identify the data for different experiments. The 

responses of the same cells to a specific radiation are similar, though the data are taken 

from different experiments.  

 

 

 

Since an organism has various production rates at different growth stages, cell response 

to therapy should differ in each stage. The present model reflects this effect. However, 

the LQ, as well as other models, cannot. We take the two most radio-resistant cases, 

EMT-6 mouse tumor and MO16 human glioblastoma, which were thought to be 

incompatible with the LQ models [40], as an example and use eq. (3.3.6) to fit the 

experimental data. The results are shown in Fig. 3.3.17. The survival curves are different 

for various M0. In these two cases, the change of ν (and correspondingly α) is not 

sensitive enough to affect the survival curves since κ (and correspondingly β ) is 

relatively large, which places κD>>ν in the experimental dose region. This might be a 

common property for radioresistant cases. In Fig. 3.3.17, we use the parameters for one 

kind of cell population to fit the survival curves. It means that the difference between 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

-6

-5

-4

-3

-2

-1

0

Dose (Gy)

Lo
g 1

0(S
F

)

6C3HED cells
M=100, M

1
=90, M

2
=10

M
0
=50, M

01
=45, M

02
=5

E=0.5, κ=0.51, ν=1.0
γ1

=0.65, γ2
=0.21

M
1
=95, M

2
=5

M
01

=47.5, M
02

=2.5

γ1
=0.53, γ2

=0.21

Fig. 3.3.16 Survival of 6C3HED mouse lymphosarcoma cells irradiated in vivo. The dots 
represent experimental data that are digitalized from Fig. 1 in reference [54]. 



67 

 

“regular” and “resistant” cells is small. In this case, the “radiation shoulder” will be wide. 

The two most radio-resistant cases in Fig. 3.3.17 might have this condition.  

  

   Fig.3.3.17 Curvature of surviving fraction vs. radiation dose for radio-resistant cases 

 

Eq. (3.3.9) is a single-valued function and can be used to determine the fraction x of cell 

population and the response coefficient γ for a certain system (α and β are known for a 

particular radiation or chemotherapy). However, in the present situation, the x and γ are 

unknown, so we have to use this equation to fit the survival curve. When both α and β are 

small and in the low or even middle dose region, we have: 

L++−++−≈ DDxDDSF ))(1(])(exp[ βαγβα  

When we choose x and γ, it may cause x(1-γ)=constant, which means that many sets of x 

and γ correspond to the same surviving fraction.   

Garcia et al. [42] noticed that the LQ model only fits the survival curves in the middle 

dose region. In the low dose region, it cannot even explain the mechanism for cell 

survival. Many experimental data show that surviving fractions in the low dose region 

fluctuate. Some of them are even greater than 100%. This can be explained based on the 

present model. When the dose is low, the additional death rate is small. The total death 
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rate approximately balances the production rate so that if one weighs a bit more, it may 

cause opposite results. If the environment or conditions for cell population are slightly 

different and the cell growth is slightly uneven, the response to radiation is entirely 

different. In some cases, the production rate may even be greater than the total death rate, 

causing the system to grow and the surviving fraction to become greater than 1, as shown 

in Fig. 3.3.18 schematically.  

 

 
      Fig.3.3.18 Schematic of survival response in the low dose region where K+E< S 

 

 

If the LET is large enough to kill all localized cells equally, the additional death rates are 

proportional to the amount of cells present and have a relationship of νres/Cres=νreg/Creg=θ 

for different kinds of cells. For cells in the same tissue or from the same source which 

grow harmoniously before therapy, condition Eres/Cres=Ereg/Creg=β° should be satisfied. 

Also, Mres=xM and M0res=xM0. Thus we have, 
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In this case, the consequence is the same as eq. (3.3.5′) for single cell component system. 

When the total death rates are much greater than the production rates for both cell 

populations, we have: 

])(exp[ DSF λβθ °+−=                                        (3.3.10′) 

Eq. (3.3.10′) shows a linear relation of log(SF)~D. For cells that do not grow 

harmoniously before therapy, we have to use eq. (3.3.5′) for calculating the masses 

separately and then obtain the total surviving fraction of cells SF=(mres+mreg)/M0. Since M, 

M0 and β° are not related for different cell populations, the situation is complicated. If 

LET is not large enough, νres/Cres≠νreg/Creg since the number of reparable cells for one or 

even both subpopulations cannot be ignored. In this case, eq. (3.3.10) may not be 

satisfied. 

 

 

 

 

3.3.3 Chemotherapy 

 

Cell survival responses to chemotherapy are complicated. Different kinds of 

chemotherapeutic agents show varied cell killing patterns [17-21]. For tumor cells in an 

organism, the effects of chemotherapeutic agents depend upon absorption (the process of 

a drug entering blood circulation), distribution (the dispersion or dissemination of a drug 

throughout the fluid and tissues of the body), metabolism, and excretion [35]. For cell 

survival experiment in vitro, there are usually two cases: 1) cells are in the growing 

media with various drug concentrations for the same length of time; and 2) cells are in the 

growing media with the same drug concentration for different lengths of time. The 

metabolism and excretion can be ignored and drug concentration changes little during the 

experimental period. Analogous to radiation, chemotherapy also causes DNA damage. 

The difference is that radiation can bring the dose (energy) into a cell directly, whereas 

chemotherapy may accumulate the dose through diffusion and osmosis. Dose absorption 
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for radiation is time related. Considering the drug delivery process, absorption of 

chemotherapeutic agents is also time dependent and causes DNA damage in cells. 

Therefore, the additional death rate K should relate to the absorbed dose, which is defined 

as the product of drug concentration and the amount of time the cells are immersed, 

which is shown by the equation D=n⋅t [17, 20]. We assume that the additional death rate 

has a linear relation to the absorbed dose: K=κD+ν =κnt +ν. Here, ν should be related to 

drug concentration. For a fixed concentration, ν is constant. Term ν  is from single event 

killing, and term κnt derives from double event killing. When the concentration is fixed, 

the dose is proportional to time. Therefore, eq. (3.3.3) becomes 
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Usually, eq. (3.3.11) only has a numerical solution and can be expressed as a confluent 

hypergeometric function (see appendix 2).  
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In the case of fixed time, we can find the relationship between the mass/number of cells 

and the concentration of chemotherapeutic agent. Note that ν =ν (n). 

When κ n=0 (this may occur since some drugs only cause single event killing), eq. 

(3.3.11) has a complete analytic solution: 
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In the case of fixed drug concentration, ν should be a constant. The effect of treatment 

depends on ν and M0 (the mass or number of cells when a treatment starts). Fig. 3.3.19 
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shows that the result is opposite if M0 is different, even if all other parameters are the 

same. 

 

 

 

 

When condition E+κnt+ν >> E(M/m)0.25 is  satisfied, eq. (3.3.11) is reduced to
  

)( νκ ++−= ntE
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dt
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The solution of eq. (3.3.11′) is  
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When the amount of time for cell treatment in the drug medium is fixed, the mass or 

number of cells that survived is a function of drug concentration.  

1) Assume ν (n)=δ n, where δ  is a constant 

In this case, eq. (3.3.14) gives )exp(0 χα −−= nMm . Term χ is from the natural death 

rate, which is small. It might be balanced by the production rate in some cases. When we 
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Fig. 3.3.19 Survival curve of tumor cells with different initial masses (M0) 
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did curve fitting for cell response to radiation, we found that there are always some 

“resistant” cells. If this is true, then resistant cells should also exist and respond 

differently to chemotherapy, though they may not be as “resistant” to some agents (e.g. 

response of EMT6 cells to Mitomycin-C is more “resistant” under aerated condition than 

hypoxic [10]). Similarly, we assume that there is x fraction of “resistant” cells. The 

surviving fraction is  

)](exp[)exp()1( χαγχα +−+−−−= nxnxSF                          (3.3.15) 

2) Assume ν (n)=δ n2  

In this case, eq. (5.14) gives )exp( 2
0 χβα −−−= nnMm . If there is x fraction of 

“resistant” cells, the surviving fraction is 

)](exp[)exp()1( 22 χβαγχβα ++−+−−−−= nnxnnxSF                       (3.3.16) 

 

 

 

 

When we use eq. (3.3.11), (3.3.15) or (3.3.16) to fit the survival curves for chemotherapy, 

there is no way to fit the curves if we assume that only one kind of cell exists. However, 
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Fig. 3.3.20 Survival curve of CHO cells treated by BLM (Bleo) in the plateau phase 
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the curves fit well if we assume that there are two different kinds of cells which coexist in 

the system. We apply eq. (3.3.15) to fit the survival curve for Chinese hamster ovary 

(CHO) cells treated by BLM (bleomycin) [57]. The result is shown in Fig. 3.3.20. The 

experimental data are from Chart 2 of reference [57], which gives the effect of BLM on 

survival of CHO cells treated in the plateau phase. In this case, the value of χ might be 

from the natural death rate E. We also apply eq. (3.3.15) to fit the survival curve for V79 

hamster cells treated with graded doses of BLM for 4 hrs at 37.5°C [58]. The result is 

shown in Fig. 3.3.21, and the coordinates are digitalized from Fig. 2 of reference [58] 

under hypoxic condition.  

 

 

 

 

We also apply eq. (3.3.15) to fit the survival curves of human melanoma SK-MEL28 

cells after Cisplatin (CDDP) treatment and electrochemotherapy (ECT) with CDDP. The 

experimental data are digitalized from reference [63], and the results are shown in Fig. 

3.3.22.  
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Some chemotherapeutic agents such as BCNU and PCNU [60] cause cell survival 

response to be similar to that under radiation. We apply eq. (3.3.16) to fit the survival 

responses of human astrocytoma clones to BCNU and PCNU [60]. The experimental data 

are digitalized from Figs. 1 and 3 in reference [60]. The results are shown in Figs. 3.3.23 

and 3.3.24, from which we can see that 10% of “resistant” cells exist. When clone AST3-

3 is treated by BCNU, the difference of λ/C between “regular” and “resistant” cells is 

small; yet when it is treated by PCNU, the difference is large. We set χ=0 in both Figs. 

3.3.23 and 3.3.24.  

 

 

 

 

However, we have to use eq. (3.3.11) for the survival response of V79-182 Chinese 

hamster cells to Adriamycin (ADRM) [10, 61]. In this case, the concentration of 

chemotherapeutic agent is fixed, which makes ν a constant. Belli and Piro [61] gave a 

surviving fraction vs. time graph for V79 under a constant concentration of Adriamycin 

agent. Here we use eq. (3.3.11) to fit the experimental data of Chart 2 in reference [61]. 

The result is shown in Fig. 3.3.25.  

0 10 20 30 40 50 60
-3

-2.5

-2

-1.5

-1

-0.5

0

Dose PCNU (µg/mlx1hr.)

Lo
g 1

0
(S

F
)

AST1-1
x=0.1, γ=1/4
α=0.002, β=0.0015

AST3-3
x=0.1, γ=1/3
α=0.008, β=0.004

Fig. 3.3.24 Survival responses of human astrocytoma clones to PCNU 



76 

 

 

 

 

Conventional chemotherapy works mainly by killing tumor cells that actively proliferate, 

whereas metronomic chemotherapy works through reducing nutritional supply. 

Consequently, conventional chemotherapy directly causes an additional death rate K , 

whereas metronomic chemotherapy decreases the production rate S . The average 

production rate is determined by the biological death rate, the current mass and the 

asymptotic mass of the tumor. As we have discussed above, the asymptotic mass 

correlates to the nutrition supply [33, 34]. It means that we can control the production 

rate by restricting the source of nutrition supply (including oxygen). Therapies that target 

the supplying vasculature, and thus starving the tumor, are trying to solve the problem 

from the source. In fact, a solid tumor is spatially heterogeneous. The outer region has 

many exchange vessels. There is plenty of nutrition supplied to the tumor; therefore, it 

has rapidly dividing cells in this region.  

From eq. (3.3.3) or (3.3.11), we know that tumor mass (or surviving fraction) decreases 

exponentially when additional death rate is much greater than the production rate, which 

is shown as SK >> . This condition may need a very strong dose of therapy in order to 
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kill tumor cells. The problem is that a strong dose also kills many normal cells. It causes 

permanent negative effects on the human body. Additionally, if we only care about the 

additional death rate and ignore the production rate, it may cause the so-called “objective 

tumor response”. It will benefit patients the most if we can control the production rate 

and use a therapy that kills cells in a balanced way. According to equation (3.3.3), the 

growth rate is less than zero (dm/dt<0) when the production rate is smaller than the death 

rate ( KE
m
M

E +<







4/1

). It means that the tumor mass decreases, which shows us that 

we should also control the production rate of tumor cells. Antiangiogenic therapy, such as 

metronomic chemotherapy (involving minimally toxic doses on a frequent or continuous 

schedule), is used to decrease the production rate of tumor cells by affecting the 

endothelium of growing tumor vasculature and stimulating the anticancer immune 

response [130, 131]. In fact, based on eq. (3.3.3), when we apply metronomic 

chemotherapy or antiangiogenic therapy to control the production rate of a tumor, which 

gives 0
4/1
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dm −≈ . It means that a small additional 

death rate (correspondingly, a small amount of damage to the human body) can cause the 

mass of a tumor to decrease exponentially. This is much better for decreasing the mass of 

a tumor than applying a therapy that causes a large additional death rate K (therefore a 

large amount of damage to human body). If the condition 0
4/1

<−







E

m

M
E  is satisfied by 

applying metronomic or antiangiogenic therapy to control the production rate of tumor 

cells, the mass of a tumor will decrease naturally. For antiangiogenic therapy, the 

additional death rate can be taken as K≈ν since the dose is small. Also, the constant ν is 

small because antiangiogenic agents have a much lower toxicity. The main purpose of 

antiangiogenic therapy is to decrease the production rate by controlling the nutrition and 

oxygen supply. M=M(t) is expected to become a decreasing function once the therapy has 

been applied.  

The production rate S  is much greater than the death rate at the early stage; therefore, 

the model suggests that use of metronomic chemotherapy is warranted if surgery cannot 
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be applied. At the late stage, the production rate of a tumor is small; therefore, the model 

suggests the use of a therapy that kills tumor cells. Then, antiangiogenic therapy should 

be used again to ensure that there will be no growth of new tumor capillaries. In fact, the 

inequation above is very important. Inability to satisfy it implies that the tumor growth 

process is not really controlled. 

In the central area, many tumor cells may be “dormant” due to nutrition shortage. In this 

area, ES ≈ . The problem with using chemotherapy on these tumor cells is that the 

delivery of a chemotherapeutic drug is as difficult as the delivery of nutrition to this 

region. Thus, chemotherapy may not cure a tumor but rather control its growth, despite 

the fact that more than 90% of tumor cells respond to this treatment. The practice of 

combining chemotherapy with other therapies, such as surgery or radiation, is supported 

by this model.  

Different stages of tumor growth have distinct production rates. Therefore, treatment 

strategies should be dissimilar at various tumor stages. Fig. 3.3.19 shows how the results 

of chemotherapy could be opposite, even if all other parameters are the same. The sole 

exception is the initial mass, according to eq. (3.3.13). If a tumor is at an early growth 

stage, the model suggests the required dose is higher than expected since a large ν is 

needed to control its growth. 

Up till now, we have discussed the processes of tumor growth and cell response to 

therapies (e.g. radio- and chemotherapy). However, the effects of therapies differ 

depending on the situation. For instance, what are the dose and strategy that can benefit 

the individual the most? Usually, tumor treatments need a combination of therapies (e.g. 

surgery with radiation and/or chemotherapy). How to combine therapies for the most 

effective treatment? If we can get feedback regarding the results of clinical therapy in 

time, a proper and suitable strategy for treatment may be determined efficiently, which is 

necessary for saving the life of a cancer patient. Studies show that TIFP is a physiological 

parameter that has been shown to correlate inversely with tumor responsiveness to 

treatment. It is also an early marker of tumor response to radiotherapy and chemotherapy. 

The effects of treatments can be reflected by TIFP. Also, reduced TIFP allows increased 

delivery and treatment efficacy of drugs. Despite the importance of TIFP, its 
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measurement is, at present, limited to invasive point measurements. This kind of invasive 

measurement limits its clinical application. Therefore, studying the properties of TIFP 

and understanding its formation and distribution mechanisms are helpful in actualizing 

TIFP noninvasive measurement, which has the potential for clinical application.  

Generally, the mechanism for TIFP distribution is the formation of a pressure barrier in 

the well-vascularised region, created by the tumor-associated vasculature. Before the 

conditions for steady state are satisfied, the pressure in the central area is less than the 

pressure in the pressure barrier. The exact value depends on the state of the central region. 

At steady state, the pressure is uniform in the entire central area, while pressure in the 

periphery is dependent on the environmental conditions. The fluid flux follows Darcy’s 

law (an equation for fluid flowing within a porous medium) and the pressure is 

constrained by the continuity conditions. Based on this idea, once the conditions in the 

central, well vascularised and peripheral regions are known, the pressure distribution is 

set. We find that it is possible to detect TIFP noninvasively. Not only can noninvasive 

measurement be applied to measure the TIFP of a place where an invasive measurement 

cannot reach, but it can also be applied to monitor the development process and response 

to a specific treatment. 

Imaging technologies such as MRI and US are the primary means of detecting tumor, and 

may be promising tools for actualizing TIFP noninvasive measurement. Based on this 

purpose, we will concentrate on TIFP formation and distribution, as well as its possible 

noninvasive measurement in the next chapter. Also, the principles of MRI application in 

medicine will be introduced. As an example, we will demonstrate the consequences of 

high TIFP on contrast agent kinetics in a rat’s 9L cerebral glioma, which is acquired 

using a seven-Tesla MRI.  
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Chapter 4. TIFP Distribution and Its Noninvasive 

Measurement 

 

Tumor interstitial fluid pressure (TIFP) is an important marker of tumor response to 

treatment. If we can determine its distribution by estimating some tumor parameters, we 

may actualize the noninvasive measurement of TIFP and effectively develop the best 

treatment strategy. Based on this purpose, we propose a simple but practical model to 

explore the relationship between TIFP and fluid flow, and derive the distribution of TIFP 

in different regions. It relates to the structure of a tumor, the source of interstitial fluid, as 

well as the path and method for fluid transport. 

Since the denseness of vascular networks in the central region is completely different 

from that in the peripheral area, the activity of cells may be different. For simplicity’s 

sake, we model a tumor as a spherical structure. Later, we will explain why it is not 

necessarily limited to a spherical case. Tumor cells proliferate and grow actively only if 

they are close to a supply of nutrients and oxygen from the stroma [9, 10]. For avascular 

tumors, the nutrition and oxygen supply comes from diffusion. When a tumor grows 

larger, the necrotic center also enlarges since the efficient nutrient and oxygen supply is 

limited within a certain distance (about 70 µm). For a vascularised tumor, most vessels 

are in the peripheral region. Therefore, the result is similar: the larger the tumor, the 

bigger the necrotic core. Considering the differences in vascular network distribution and 

cell activity in various regions, especially the change in TIFP, we divide a tumor into 

three regions: (1) the necrotic core (r<rn) where most cells are dead; (2) the well perfused 

periphery (rn<r<R), which is composed of some quiescent tumor cells, a few abnormal 

vessels, and a peripheral well-vascularized rim with active tumor cells; (3) the 

intermediary region (r>R). It is assumed that there are no functional lymphatics within 

the tumor, though some enlarged lymphatics exist near the periphery. In the necrotic core, 

there are some dead cells but almost no functional exchange vessels. The existence of so-
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 p∞ 

called super capillaries in tumors is inefficient at best in regard to nutritional delivery and 

waste removal. Therefore, there is no source or drain in the necrotic core region. In the 

blood vessel area, there is fluid source but not an effective drainage system. We assume 

that the drain exists near the edge of the tumor. Outside the tumor (in the normal tissue), 

there are drains because of the functional lymphatics in normal tissue. In the well 

vascularized area, blood vessels or capillaries are very abundant (much more so than that 

in the normal tissue). They form a chaotic vascular network, which may maintain a 

pressure distribution in the tumor. The schematic is shown in Fig. 4.1.  

 

 

 

Usually, tumor tissues can be divided into three subcompartments: vascular, interstitial 

and cellular. The interstitial space is mainly composed of collagens and elastic fiber 

networks [132]. It can be divided into two compartments: the interstitial fluid and the 

structural molecules of the interstitial or the extracellular matrix [133]. The fluid that 

leaks out from blood vessels is inevitably met by resistance from the surroundings.  

Let us now show how the pressure forms in detail. According to Starling’s law, the net 

fluid flux Js (m
3/s) across the wall of a blood vessel is expressed as [80, 83]: 

)]([ ππσ −−−= VVs ppLAJ                                                  (4.1) 

where L (m2s/kg) is the hydraulic conductivity of the blood vessel, A (m2) the surface 

area of the blood vessel wall, pV (mmHg) the vascular fluid pressure (the pressure in the 

R 

                p(r) 

                    pin         rn                       

                  necrotic core 

          

 p∞ 

r r 

Fig. 4.1 Schematic of tumor structure 
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blood vessel), p (mmHg) the TIFP, σ the osmotic reflection coefficient, πV (mmHg) the 

osmotic pressure of the plasma, and π the osmotic pressure of interstitial fluid. In a tumor, 

L and A are much greater than that in normal tissue. Equation (4.1) describes the source 

of TIFP. The detailed distribution of TIFP depends on the drain/sink and the conditions 

of outflow flux.  

 

 

4.1 The IFP of Vascularized Spherical Shell 

 

In our model, blood vessels are mainly distributed in the periphery region. There must be 

a fluid resistance or pressure barrier that makes the leaked fluid contribute to the elevated 

pressure in the central region. At first, let us imagine that the vascularized region is 

isolated. Suppose there is no necrotic core in the tumor’s central area (meaning that there 

is only a vascularized spherical shell). If both inner and outer spherical surfaces of the 

vascularized region are closed and no fluid can flow out, then the IFP at steady state is 

pm=pV -σ (πV -π). When TIFP reaches this value, no fluid flows out from blood vessels. 

When there are openings on each spherical surface, the pressure from the two surfaces to 

the central area of the vascularized region will be modified. With increase in the width of 

openings, the pressure decreases, as shown in Fig. 4.2. Therefore, it forms a pressure 

barrier in the leaking (vascularized) region. In the maximum pressure region, the fluid 

remains still (velocity u(r)=0 because there is no pressure difference). The maximum 

pressure region becomes narrower when the openings become larger. Correspondingly, 

the flow rates on these two surfaces increase. Gradually, the maximum pressure region is 

narrowed down to a point when the openings widen to a critical value. If the openings 

continue to become wider, the highest pressure p0 becomes smaller than pm. The bigger 

the openings, the smaller the p0. The maximum value of IFP at steady state is between 0 

and pm (0<p0≤pm). Considering the fact that more functional blood vessels are distributed 

in the periphery region, we draw the highest pressure point closer to the tumor periphery. 

The exact value of p0 depends on the conditions, such as the pressure pv within blood 



83 

 

vessels, the lymphatic drainage ability, and fluid flow rate through the openings. The 

pressure at rn depends on the pressure in the necrotic core pin, and the pressure at R 

depends on the conditions of the environment. We will discuss them in detail later. 

Though p0 is higher when there is more accumulated fluid, it is noteworthy that this 

pressure is not caused by gravity on the collected fluid. In fact, it is from the resistance 

caused by collagen and elastic fiber network, as well as their interactions. Though we 

focus on the case of a tumor with a necrotic core, the results may also be applied to the 

case of one with a non-necrotic core, where rn=0.  

 

 

 

 

 

 

 

 

4.2 TIFP in the Central Area 

 

In our model, there is a pressure barrier p0 in the vascularized region, as shown in Fig. 4.2. 

In the beginning, the pressure in the necrotic core is smaller than p0. The leaked fluid 

flows into this area. Since there is no lymphatic system (drain/sink), more and more fluid 

accumulate in this area. The pressure in this region gradually increases. It reaches p0 once 

the fluid fills up this area, after which no more can flow into it. It maintains a constant 

pressure p0. Then, all leaked fluid will flow outward. We assume that the radius 

Fig. 4.2 Schematics of pressure modification for different boundary conditions in vascularized region 

TIFP in vascularized region 
with closed boundary TIFP in vascularized region with open boundary (opening increasing from left to right) 
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corresponding to the pressure barrier p0 is r0, and that fluid flows into the necrotic core 

with velocity uin across the core radius rn. Fig. 4.3 shows the schematic structure.  

 

 

 

 

 

We may take the vascularized region as a porous medium and use Darcy’s law to 

describe fluid flow in this region since the cells are alive. However, we may not take the 

necrotic core as a porous medium since there are dead cells. Instead, we take it as a 

uniform homogeneity. If we ignore gravity, we have the relation 

dr
rdp

Kru
)(

)( −=                                                         (4.2)  

where K is the hydraulic conductivity of the interstitium. The pressure in the necrotic 

core should be the same as that on the surface r =rn, where the fluid flows in. The more 

fluid accumulates in this region, the higher the pressure will become. Correspondingly, 

the pressure difference between p0(r0) and p(rn) becomes lower and lower. Therefore, 

fluid velocity across the surface (r =rn) of the necrotic core will be slower. When p(rn)=p0, 

the pressure difference is zero so no more fluid flows in. Then, the pressure within the 

region r<r0 reaches p0. In fact, at r=r0, the pressure p0 is at the maximum, so 0/
0

=rdrdp , 

0)( 0 =ru . This is consistent with the view that we have discussed above. The increased 

pressure in the necrotic core (r<rn) should be proportional to the amount of fluid inflow, 

so 

Fig. 4.3 Schematic of change in TIFP 
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Here, γ is a proportionality coefficient. Its unit is mmHg/cm3. Equation (4.3) can be 

rewritten as: 
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In equation (4.2), K can be taken as a constant when r0-rn is small (blood vessels are 

distributed in a narrow spherical shell) and the pressure varies linearly with radius. Thus, 
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Combining equations (4.3′) and (4.4), we have 
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Equation (4.5) shows that the IFP pin(t) in the necrotic core may be close to p0 

asymptotically. The actual situation depends on the initial pressure pin(0) of this region 

and the time constant α. The pressure reaches p0 at steady state. This corresponds to the 
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Fig. 4.4 TIFP of the necrotic core (r≤rn) vs. time 
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experimental results, which are given in reference [81]. If we let p0=15mmHg and 

pin(0)=10mmHg, we can get the pin(t) graph for different values of α, as shown in Fig. 4.4. 

The graph includes the results given in reference [83]. Equation (4.5) may also be applied 

to a contrast agent if one is used. In this case, the time constant is related to contrast agent, 

and the unit of time is seconds. 

The region inside r0 is a fluid reservoir. We assume the fluid is incompressible. Some of 

the fluid flows into this region until the pressure is balanced (at a steady state) and 

reaches p0. During this process, less fluid will flow inside and more will flow outside. 

Therefore, the flow rate at the tumor’s periphery will increase. This causes the fluid 

velocity to increase. Correspondingly, p0 may be elevated, which means TIFP in the 

entire tumor area will increase and Starling’s law will adjust the leaky source until a new 

balance (steady state) is reached. Then, r0=rn before p0 reaches pm since there is no fluid 

source inside rn. Whether p0 can reach pm or not depends on the drainage ability of the 

tumor. If p0 reaches pm, the radius r0 will be between rn and R (rn<r0<R), and only the 

blood vessels beyond r0 can leak out fluid since those within have an elevated TIFP p, 

which is caused by the fact that they all satisfy the equation Js(r≤r0)=LA(r≤r0)(pm−p)=0. 

Thus, at steady state, the total fluid flux leaking from the blood vessels should be the 

same (balanced) as the rate of fluid outflow from the tumor. The weaker the drainage 

ability of the tumor periphery, the bigger the r0. The fluid source and drain can become 

balanced this way. The schematic of the IFP in the central area (r<r0) with different 

drainage abilities at tumor periphery is shown in Fig. 4.5.  

 

 

 

 

Fig. 4.5 Schematics of IFP in the central area (r<r0) 

TIFP in a tumor with 
closed boundary  Variation of TIFP in the central area (flow rate at tumor periphery increases from left to right) 
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4.3 TIFP in the Periphery  

 

With pressure in the necrotic core gradually increasing, less fluid flows in while more 

fluid flows out. When the pressure in the necrotic core reaches the pressure barrier value 

p0, no more fluid will flow inward; instead, they flow outward. During this process, if the 

lymphatics at the periphery are capable of draining the fluid away in time, the pressure 

p(R) there may remain zero (relative to the atmosphere) or become the same as that of the 

environment. Otherwise, p(R) may increase, which means p0 will likely be elevated. Note 

that once p0 changes, Starling’s law will adjust the fluid flux to make the fluid source 

balance the sink/drain. A new steady state is then formed, but the fluid flux can still be 

described by equation (4.2). When R-r0 is small, an approximate equation similar to 

equation (4.4) may be applied: 
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Equation (4.6) connects p0, p(R) and u(R) together. Therefore, we can estimate the value 

of p0 by measuring p(R) and u(R). Velocity u(R) has been measured in the past through 

invasive means [81]. There is a potential for measuring u(R) non-invasively by using a 

contrast enhanced imaging modality, such as computed tomography (CT), magnetic 

resonance imaging (MRI), and ultrasound (US) [134, 135]. MRI has a particularly high 

potential because it has the best spatial resolution. However, it does suffer from poor 

temporal resolution and the signal intensity is not linearly proportional to the amount of 

contrast agent in the tissue.  

If u(R) increases, p0-p(R) also increases. When p(R) = 0, u(R) = 2Kp0/(R-r0). Therefore, if 

u(R) ≥ 2Kp0/(R-r0), p(R) = 0; if u(R) < 2Kp0/(R-r0), p(R)>0. We define critical fluid 

velocity as uc(R) = 2Kp0/(R-r0). For instance, let p0=15 mmHg, K=4.13×10-8 cm2/mmHg.s 

[80, 85], r0=0.9cm, and R=1.0cm. We get uc(R) = 0.124µm/s or 0.5mm/hour, which 

corresponds to the results for isolated tumors [80]. Butler et al. [136] measured the flow 
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rate of some solid tumors. Based on the data, Baxter and Jain [80] estimated that fluid 

velocity at the periphery of isolated tumors is 0.13-0.2µm/sec. For Gd-DTPA, a widely 

used MRI contrast agent, we would expect fluid flow in tumor to have an order of 

magnitude in millimetres per second. Depending on what iodide is bound to, the order of 

magnitude can be the same for iodinated contrast agents that are widely used in CT. 

According to the discussion above, we may conclude that the TIFP p(R) at the periphery 

is zero if the drainage ability of tumor lymphatics is large enough to ensure that 

maximum drainage Qm is greater than the critical flow rate Qc: 

Qm≥Qc=4πR2uc(R)=8KπR2p0/(R-r0). For a tumor with R=1.0cm, Qc=1.56×10-4ml/sec. 

Therefore, if Qm<Qc, the drainage ability is small, meaning TIFP at the periphery will be 

high. When the TIFP at the periphery is too high, the tumor must find a way to release the 

pressure by creating channels that connect with normal tissue. Unfortunately, this may 

cause the breakdown of normal tissues at the interface or make it complicated. In this 

case, the fluid flux Q at a tumor edge satisfies the condition Qm<Q=4πR2u(R) < Qc. The 

drainage ability Qm may be a factor for determining whether the tumor is isolated or 

embedded. When Q<Qm, no tumor fluid flows into normal tissue. It is limited to the 

tumor, and we define this kind of tumor as an isolated one. When Q>Qm, tumor fluid 

flows into normal tissue and forms an intermediary region between tumor and normal 

tissue, making the structure complicated. The tumor appears to be enclosed by normal 

tissue, and is defined as an embedded tumor. Some fluid crosses over the edge (r=R) and 

flows into normal tissue. There, lymphatics are plenty and functional, so some of the 

fluid is drained away. Similar to Starling’s law, the net fluid flux drained from the 

lymphatics may be expressed as [80]: ))(( LLLL pprALJ −∆=∆ , where R<r<rm. LL is the 

hydraulic conductivity of lymphatics, pL the pressure in lymphatics, and rm the maximum 

spreading radius (defined as the radius where pressure becomes the same as that of 

normal tissue). When balanced, the pressure pL in lymphatics should be the same as that 

of the environment, p∞. Total surface area of the lymphatics within radius rm is AL(rm). At 

steady state, the radius is a fixed value; therefore, AL(rm) is fixed. Since no fluid collects 

outside the tumor, the total fluid flux across the tumor edge should be conserved. Assume 

that the lymphatics are uniformly distributed. A fraction of the volume contains the same 
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fraction of the surface area of the lymphatics. Thus, the fluid velocity u(r) at the surface 

of radius r satisfies the following equation (since p is not uniform, we need to integrate 

the JL): 
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Considering u(r)=-Kdp/dr,  the derivative of eq. (4.7) can be written as: 
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If the drainage of the lymphatics is small, the third term on the right hand side of (4.7) 

can be ignored. The solution is reduced to 
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Here, p(R) and u(R) are related by equation (4.6). Usually, p0 is determined by the 

distribution of the capillaries and their permeability. Therefore, if we know the velocity 

or pressure at the tumor edge r=R, we may find the pressure distribution in the interface 

area between tumor and normal tissue. Consequently, any noninvasive measurement of 

fluid flow velocity may enable us to find the TIFP.  
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Now let us determine the TIFP distribution in region r0<r<R more accurately. We may 

not be able to obtain the exact pressure distribution there since we do not know the 

pressure gradient. Also, the fluid flux is not conserved. However, we know the TIFP at 

surfaces r=r0 and r=R, as well as their tangent values. We can use the continuity 

condition to determine a function of TIFP, which reflects the main features of the actual 

TIFP. Since this region is narrow, this approach should be good enough for describing 

real situations: 

(1) The drainage ability Qm is greater than the critical flow rate Qc (Qm>Q>Qc). Under 

this condition, p(r0)=p0, dp(r0)/dr =0 and p(R)=0. We can use a quadratic function to 

express the values and get:  
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(2) The fluid flux Q at the periphery is smaller than both the drainage ability Qm and the 

critical flow rate Qc: Q<Qm and Q<Qc. Now, p(r0)=p0, dp(r0)/dr =0 and p(R)=p∞≠0, 

which gives:  
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Here we use p∞ since it can be measured even though it may be related to Qm and Qc.  

(3) The drainage ability Qm is smaller than the fluid flux Q (Qm < Q <Qc). Under this 

condition, p(r0)=p0, dp(r0)/dr =0, p(R) value, and dp(R-)/dr=dp(R+)/dr. After we apply a 

cubic fit and combine it with equation (4.8), we get: p(r) = ar3+br2+cr+d, where 
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If we let p0=15mmHg, K=4.13×10-8cm2/mmHgSec [80, 88], r0=0.9cm, and R=1.0cm, we 

get uc(R)=0.124µm/sec or Qc=1.56×10-4ml/sec. Fig. 4.6 shows TIFP distribution at steady 

state for different cases of flow rate: a) Qm≥Q >Qc, which causes p(R)=0; b) Q<Qm and 

Q<Qc, Q=5.19×10-5 ml/sec; and c) Qm<Q<Qc. Cases a) and b) are for “isolated” tumors 

and case c) is for “embedded” ones. The slope of the IFP outside the tumor is dependent 

on flow rate across the surface Q(R) and the drainage ability at the periphery of the tumor.   

 

(a) Qm>Q (“Isolated” tumor) 

 

(b) Qm<Q (“Embedded” tumor) 
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Fig. 4.6 TIFP distribution at steady state 
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4.4 Time Dependent TIFP  

 

For an incompressible fluid, the increase rate of its volume equals that of the fluid source 

plus the inflow rate minus the fluid sink/drain and outflow rate (here we ignore diffusion).  

∫∫∫∫ ⋅−−⋅+=
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ds
F

rrrr
                                          (4.10) 

Here, VF is the total fluid volume in the tumor area, Js the fluid source and Jd the fluid 

drain/sink. There is no lymphatic drainage in the tumor, so Jd=0. Lymphatic drainage 

only exists at the periphery, and we take it as a constant, Qm. The second term on the 

right side of equation (4.10) represents the fluid inflow rate, while the fourth term 

represents the outflow rate. Since no fluid flows into the tumor from the outside, equation 

(4.10) can be simplified as: 
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In normal tissue, blood vessels grow harmoniously with the tissue and lymphatics are 

functional, so the interstitial fluid is balanced. We assume that all capillaries have the 

same L,σ, pressure difference pV-p and osmotic pressure difference πV-π. However, tumor 

capillaries are deformed, and different ones may have varying deformities. This means 

that they may have dissimilar L, σ and πV-π, though pV may stay the same. Also, the 

pressure p may be spatially dependent. The total fluid flux at time t can be expressed as: 

)]()()[()()()( ttpptAtLtJtJ iiiVi
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i
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is πσ ∆−−== ∑∑                                 (4.12) 

where ∆πi is the osmotic pressure difference. The faster a tumor grows, the more 

deformed the capillaries are. This causes the value of the hydraulic conductivity to 

increase; therefore, the permeability of the capillaries will also increase. The thinner the 

capillaries, the smaller the osmotic pressure difference. When the capillary is broken (or 
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there is a big hole in the capillary), the osmotic pressure ∆πi becomes zero. Most 

capillaries are concentrated near the edge, and their conductivity in this area is greater 

than that in the central region. Also, the osmotic pressure difference is smaller in this area. 

The total fluid flux near the edge should be much greater than that in the central area. We 

use the total fluid flux near the edge to represent that of the tumor. In this narrow area, 

the values of the parameters (L, σ and ∆π) should not change much. We take them as 

constants and use the average value to represent them. Thus, 
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where A(t) is the total surface area of blood vessels at time t. Substituting equation (4.13) 

into equation (4.11), we have 
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TIFP should be related to the accumulated amount of fluid in a tumor. As we know, the 

more the fluid accumulates, the higher the pressure rises. Reference [137] experimentally 

showed that TIFP is linearly related to tumor water content. We assume this content is 

proportional to the amount of accumulated fluid. The fluid’s effect should be relative to 

tumor size. If the size is large, the pressure may not be high despite the large quantity of 

accumulated fluid. By contrast, if the tumor size is small, a slight amount of accumulated 

fluid may cause high pressure. We assume that the average pressure )(tp has a linear 

relationship with the ratio of the amount of accumulated fluid to the size (volume) of the 

tumor, and is expressed as ∂ p /∂t=γ∂V/Vtumor∂t. Thus, 
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where γ is a coefficient and mc the mass of a tumor cell. Angiogenesis is an important 

property of tumors. Therefore, A(t) is different at various stages of tumor growth, and it 

usually increases with the progression of stage. When a tumor grows at a fast rate, its size 

(m) increases quickly, and the state of its blood vessels changes rapidly. This may cause 

)(tL  to increase and )(tπ∆  to decrease. At the fast growth stage, it is difficult to 
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determine the parameters. However, when a tumor is almost mature (m≈M), all 

parameters tend to remain constant. Thus,  
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The solution for equation (4.16) depends on the boundary conditions and initial 

conditions. It is difficult to get a general analytical solution. We are interested in the 

spatial distribution of pressure in a tumor. Here we consider the steady state condition 

∂p(r,t)/∂t=0, which gives the equation 

0])([ =⋅−−∆−− ∫∫ SduJrppAL draindV

rrπσ                                  (4.17) 

Here we consider the spherical symmetry case and take the tumor as a porous medium. 

Based on the discussions in sections 4.1, 4.2 and 4.3, we divide the domain into three 

regions: r<r0, r0<r<R and r >R. In the central region (r<r0), fluid does not flow at steady 

state and udrain=0. The TIFP is uniform. Thus, equation (4.17) gives: 
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J
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This provides a constant solution. If Jd=0, the equation becomes 

mV ppprp =∆−== πσ0)( . The results correspond with the cases that were discussed in 

sections 4.1 and 4.2. Since the outflow velocity udrain is unknown in the region r0<r<R, 

we cannot use equation (4.17) to get its pressure distribution. At steady state, the fluid 

leaked from capillaries in the region r>R should be equal to the total fluid flux across the 

edge (r=R):  

)(4])([ 2 RuRrppAL V ππσ =∆−−                                         (4.19) 

Considering lymphatic drainage, we can also derive equation (4.7) from equations (4.17) 

and (4.19). The results from section 4.3 can be applied, and are consistent with the 

situations that were discussed above. 

According to the present model, p0 and r0 are the most important parameters. It represents 

the IFP in the central area of a tumor at steady state. When r0>rn (including the case 

where there is no necrotic core, meaning rn=0), p0=pm=pV -σ (πV -π). In this case, IFP in 
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the central region is determined by the conditions of the vascular vessels in the tumor. 

When r0=rn, the situation becomes complicated, and p0 is between 0 and pm (0<p0<pm). 

The value can be estimated by using equation (4.6), as mentioned above in section 4.3. It 

is quite possible to estimate the values of r0 and rn through noninvasive means, such as 

MRI and CT. Lee et al. [137] found that tumor water content correlated significantly with 

TIFP. They actually showed that TIFP has a linear relationship with tumor water content. 

The line of best fit indicated that water content increased from 79% to 85% when TIFP 

increased from ~2 to ~14 mmHg for tumors (<500mm3). Leunig et al. [138] also found 

that TIFP correlated with tumor water content after they applied photodynamic therapy 

(PDT) to the amelanotic melanoma of a hamster. Some MRI images also suggested that 

TIFP is related to tumor water content [123-1142]. Image contrast of MRI in the central 

region is distinct from that in the outer region. These results strongly imply that tumor 

central region contains more water (protons), which coincides with the present model at 

steady state. Lyng et al. [143] suggested that there is no correlation between TIFP and T1 

or T2. Haider et al. [142] studied the correlations between DCE-MRI and IFP of cervical 

cancer in vivo and found that there is a moderate negative correlation between 

IAUC(60m), which is the initial area under the enhancement curve (relative to muscle), 

permeability (rktrans), and IFP. Hassid et al. [140, 141] suggested that the steady-state 

distribution of Gd-DTPA concentration in tissues reflected the TIFP distribution. 

Gulliksrud et al. [139] concluded that DCE-MRI may be developed into a useful 

noninvasive method for assessing TIFP without necrosis through the relation between 

E⋅F and TIFP (where E is the initial extraction fraction of Gd-DTPA and F the blood 

perfusion). It is noteworthy that the water content can only relatively reflect the IFP in a 

tumor since MRI is based on the density of water (protons). It shows only the variation of 

IFP in that tumor. Two different tumors may not have the same IFP, even if they have the 

same water content. This is due to the differences between their size and fluid 

composition. For example, if some other incompressible matter such as collagens has 

occupied the volume in the central region of a tumor, water may not enter. Even so, it 

does not mean that the pressure is lower there. Even in the same tumor, the distribution of 

water in the central region may not be even. Less water density in a small local region 

might not mean a low IFP there. It may be more reliable to determine r0 and rn 
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noninvasively and then estimate the IFP. Though we use a spherical model to describe 

the distribution of interstitial fluid and the pressure for convenience’s sake, it is not 

necessarily limited to a spherical structure. We may use the distribution difference of 

water content or the structure features of tumor to determine rn, or more generally, the 

necrotic region; and use the properties of velocity to determine r0 or the region with 

uniform IFP, p0. Before reaching steady state, the contrast agent flows inwards in the 

region r<r0 and outwards in the region r>r0. After reaching steady state, the contrast 

agent is stationary in the region r<r0 but flows outwards in the region r>r0. Once we 

know r0 and the pressure or velocity at R (meaning the value of R), we can find the TIFP 

distribution in the area from r0 to R based on eq. (4.9) or (4.9’). However, currently there 

is no general formula for TIFP distribution, so we must calculate the values of different 

points or different gradient directions.  

Ultrasound is also a method of noninvasive measurement. It is well established as a 

means of measuring blood flow/velocity [135]. Similarly, fluid velocity may also be 

estimated using the Doppler principle. 

In the present work, we illustrate the relationship between TIFP and fluid flow.  A 

dynamic measurement of contrast agent that is streaming away from a central mass may 

provide an estimation of fluid flow, and consequently of TIFP. This work may present a 

practicable method for determining TIFP quantitatively and noninvasively. Since TIFP is 

a critical predictor of tumor response to non-surgical cancer treatments, the methods 

proposed have a strong and practical clinical potential. 

 

 

 

4.5 Noninvasive Measurement of TIFP with MRI 

 

The principle of MRI is introduced in Appendix 3. We derive some formulae in order to 

better understand the principle of image contrast.  
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We should understand which variables relate MRI to TIFP and in what way when using it 

to measure the pressure. From the discussion above, we know that the image intensity of 

MRI is related to the equilibrium magnetization M0, the relaxation constants T1 and T2, as 

well as the frequency of RF signal ω and its altitude B1. Due to the formula for M0, we 

find that it is also related to the density of protons N, the applied magnetic field Bz, the 

gyromagnetic ratio γ, and the temperature T. Unlike image intensity of MRI, TIFP in the 

central region is related to the amount of accumulated fluid [72]. Its distribution at the 

periphery of the tumor is related to the fluid flux Q (and correspondingly the fluid 

velocity) there, the pressure of the environment p(R), the drainage ability Qm, etc. Proton 

density N is the variable common to both high TIFP and image intensity of MRI. The 

more water is accumulated, the higher the TIFP in a given tumor. The problem is that we 

cannot determine the TIFP just by measuring the amount of water. Therefore, there must 

be a reference point for comparison where the TIFP is known. Since many factors affect 

the image intensity of MRI, it is necessary to keep some variables as constants. In fact, 

the water/proton density in the necrotic core is the largest. Correspondingly, the 

intensity/brightness of MRI in this area should be the strongest. Therefore, we can use the 

change in MRI brightness to determine the interface of the necrotic core (rn) using spin 

density weighted MRI. Fluid flows outward outside r0 and inward inside r0, and the fluid 

velocity is zero at r0 before reaching steady state. No more fluid flows inward afterwards. 

DCE-MRI and DSC-MRI (see appendix 4) may be used to measure fluid flow and 

determine the position of r0, where the fluid is stationary.  

A minimally invasive measurement of TIFP is possible based on the model presented. 

We illustrate the approach using an MRI protocol that could be a simple extension of 

current standard practice. 

MRI diagnostic tests often use a vascular contrast agent to delineate a suspicious mass 

prior to a biopsy procedure. Depending on the imaging sequence used, the apparent 

tumor volume may vary and in fact appear to increase with duration (measured in 

minutes) after the administration of a contrast agent.  This phenomenon is shown in 

figure 4.7 using a pulse sequence and image analysis technique sensitive to the presence 

of contrast. The result shown reflects a contrast agent wave front, which appears to 
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increase as a function of time while contrast agent streams at a velocity u(R) from the 

tumor into surrounding normal tissue.  The rate of flux of contrast agent is proportional to 

TIFP, which is relative to that of surrounding normal tissue (usually near zero). 

 

 

 

 

 

 

Fig. 4.7  Demonstration of the consequence of high TIFP on contrast agent 

kinetics in a rat 9L cerebral glioma acquired using a 7 Tesla MRI.  The five 

panels are ratio images of T2* to T1 relaxivities, so called “Gamma-2 images”, 

calculated from minute 3 to 15 at 2.5 minute intervals after the injection of a 

contrast agent (Gadomer) and shown from left to right. The movement of the 

contrast agent wave front (blue circular region) in normal tissue is clearly 

visualized across this time period. 

 

Though a spherical model is used in the analysis presented, the theory is not limited to 

spherical geometry since contrast agent flux at irregular boundaries can be modeled at 

various gradient directions perpendicular to the tumor boundary. However, as an 

approximation, a simple spherical model may be adequate for describing the contrast 

agent kinetics at a distance away from most tumors. Usually, the shape of a tumor and its 

vascular distribution are not spherically symmetric. Even so, we can still determine the 

central area from the MRI despite its irregularity. However, now there is no general 

formula for TIFP distribution and we have to calculate the values of different points or 

different gradient directions. 

Any imaging modality capable of monitoring the dynamics of a contrast agent can be 

used to determine TIFP, including MRI, CT, US and perhaps PET (Positron emission 

tomography) and SPECT (Single-photon emission computed tomography). For MRI 

(shown in Fig. 4.7), the dyed contrast agent can visualize the fluid flow, which is 

correlated to TIFP variation.  
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In conclusion, a model describing the formation and distribution of TIFP is presented 

with an experimental illustration of the kinetics of contrast agent, opening up the 

possibility of minimally invasive TIFP measurements. 

In some cases of actual clinical application, we only need to know the variation in TIFP 

in order to judge the effects of therapy. In this case, the change in TIFP within the central 

area is most important since it reflects change in TIFP distribution and variation in fluid 

velocity. A contrast agent not only makes the fluid flux visible, but also strengthens, 

speeds up and magnifies the process of the tumor interstitial fluid movement. Before 

contrast agent is applied, TIFP in the central region might be uniform at a certain value. 

After a contrast agent is injected, more fluid leaks out from the capillaries in the tumor. 

Therefore, TIFP in the central region is smaller than the value of the pressure barrier p0. 

Some of the fluid flows inward to the central area and accumulate there. Thus, r0 

becomes larger and pressure increases. With increase in time, the pressure in the central 

area eventually reaches p0. A new balance is reached and r0 becomes maximal. After this 

occurs, all fluid flows outwards. The change in p0 affects TIFP distribution. Therefore, it 

causes variation in the motion of the fluid. This implies that if we can maintain the same 

amount of contrast agent and tumor environment conditions, we may compare the TIFP 

variation of a tumor before and after treatment by observing the movement of contrast 

agent, which can be shown clearly through MRI. Though this experiment may not be able 

to demonstrate the change in r0, it clearly shows the motion of the fluid, which implies 

that MRI is a promising tool in tumor therapy. We may compare the rate of change in the 

dyed contrast agent area and predict the change in TIFP within the central area. 
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Chapter 5. Discussion and Conclusion 

 

By decomposing cell proliferation rate into cell production and death rates and 

introducing cell additional death rate under therapy, we developed a general model for 

tumor growth, metastasis and response to therapy. For a multicellular system, we 

introduced rules for similarity of growth (Ei/Ci =β ͦ and Mi =xi M). If different types of 

cells satisfy these relations, the fractions will not change and they grow harmoniously. 

However, when they respond to treatment differently, we can detect the variation. As we 

have pointed out, normal cells usually satisfy the rules but tumor cells may not. This 

study confirms that there are some cells resistant to both radiation and chemotherapy in 

all experimental data, which is shown through curve fittings. Also, eq. (3.3.9) fits these 

experimental data better than any existing models. The results show us that some 

radioresistant cells (~1-10%) exist for both radiation and chemotherapy. For a two 

subpopulation system, we introduce a rule of equal ratio of α to β for different types of 

cells since they are under the same radiation field. This is different from the two 

component LQ model (which may cause the parameters to be redundant). This way, we 

use the least amount of parameters to get the best curve fit.  

This model consistently explains cell response to both high and low LET radiations. It 

may also be applied to describe cell response to radiation and chemotherapy, both in vitro 

and in vivo. It also shows that the LQ model is an approximation of the present model 

under a specific condition: the total death rate, which includes additional death rate 

caused by treatment and natural death rate, is much greater than the production rate. 

Through reading this dissertation, we know that there is a “universal” governing equation 

for an organism’s growth and development. It includes both biological (growth terms) 

and physical (mass flux terms) activities, and can be applied to tumor growth, metastasis 

as well as response to therapy. Therapies cause an additional death rate (relative to the 

natural death rate). The present model connects the consequence of treatment with the 

growth process of a biosystem. Based on this idea, we also applied this model to explain 
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the result of antiangiogenic therapy, which mainly controls the production rate by 

damaging nutrition supply. We may be able to apply this idea to cell mutation (change to 

other species with different M and β°) and other therapies.  

The present model is based on the condition of constant number density. It is reasonable 

since the energy for maintaining the metabolism of a single cell is fixed. This means that 

the size of a single cell (mck and rck) is constant. Correspondingly, the number density of 

cells Ck is a constant. In West’s model, M is the asymptotic mass for organism growth in 

unrestricted dietary conditions. Relation E/C=aM -1/4 shows that the growth parameter a 

decreases when M decreases, which slows down the growth rate dm/dt. The system can 

still grow harmoniously and isotropically when this happens. We sort identical cells into 

a particular system (tissue/organ) and use the rules of similarities of growth to unite the 

systems. It is noteworthy that different types of normal cells follow the rules and grow 

harmoniously and isotropically, while cells in a benign tumor may but those in a 

malignant one may not. In fact, M must depend on nutrition concentration cn and oxygen 

concentration co, which are very important for organism growth. We need further studies 

in order to determine the function M=M(cn,co). Nutrition supply might make organism 

growth complicated.  

We also investigated the distribution of TIFP and its possible noninvasive measurement. 

Due to the drainage deficiency of the lymphatic system, the resistance of collagen and 

elastic fiber network, as well as their interactions, the leaked fluid forms a pressure 

barrier [72], which contributes to the elevated pressure in the central region. This 

pressure barrier worsens the metabolism and treatment of a biosystem. According to our 

model [72], the pressure barrier is formed by the leaky blood vessels in the vascularized 

region. This pressure barrier limits (even prevents) the exchange of substances, decreases 

(even damages) metabolism in the central region, and obstructs drug delivery. No 

nutrition or oxygen can be supplied and no waste can be carried out efficiently. Even if 

the central region had a lower TIFP [81] before steady state, leaked fluid can fill this 

region quickly and reach the same TIFP as the pressure barrier. Substances in the central 

region are nearly confined there. When a tumor grows larger, the vascular vessels 

develop outwards; therefore, the pressure barrier expands outwards. This aids in 
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enlarging the necrotic core. Based on our model, p0 and r0 are the two most important 

variables. At steady state, TIFP within area r0 is uniform and equal to p0. Before reaching 

steady state, the contrast agent flows inwards in the region r<r0 but outwards in the 

region r>r0. After reaching the steady state, the contrast agent stays still in the region r<r0 

but flows outwards in the region r>r0. We may use the velocity property to determine r0 

or the uniform IFP p0 region. We can estimate the value of p0 by measuring p(R) and u(R), 

as shown in Ref. [72]. There is potential to measure u(R) non-invasively using a contrast 

enhanced imaging modality, such as computed tomography (CT), magnetic resonance 

imaging (MRI), or ultrasound (US). Once we know p0 and p(R), we can estimate the 

gradient of TIFP and get the approximate distribution of TIFP at the tumor periphery. 

Although the model described TIFP formation and distribution as well as its noninvasive 

measurement, a lot of work must be done before clinical application. Many parameters 

need to be determined in practice. Specifically, how to estimate the pv and σ∆π in the 

tumor area since they might be different from those in normal tissue. Can we use the 

parameters for normal tissue to speculate about those for a tumor? How can we determine 

the fluid drainage ability Qm on the periphery of a tumor? To find solutions for these 

questions, we still need to study some typical experiments. In the present model, we used 

a spherical structure to derive the TIFP distribution. However, many tumors have an 

irregular necrotic core and outline of the periphery. How to deal with these conditions 

practically will also require further studying. Since the order of magnitude of the fluid 

velocity is small (~0.1µm/sec.), the method of measurement should have a very high 

definition. In addition, standardizing the parameters for non-invasive measurement is 

essential, which makes it easy to perform and operate. Exploring an economic way for 

non-invasive measurement will be beneficial and practical for clinical use. 
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1. Introduction of several anticancer agents 

 

1) Bleomycin—C

As an anticancer agent, bleomycin works mainly by inducing DNA strand breaks. The 

chemical structural formula is shown in Fig. A1. It is usually used in the treatment of 

squamous cell carcinomas and testicular cancer. It is also used in the t

warts. When it is used as a component in the treatment of Hodgkin’s lymphoma, 

combined with doxorubicin

effect on DNA. In this case, doxorubicin acts by intercalating betwee

on topoisomerase II enzyme for relaxing the topoisomer

side effects are pulmonary fibrosis and impaired lung function. Other side effects 

fever, rash, dermatographism, alopecia (hair loss) and Rayna

(discoloration of fingers and toes) [

 

 

2) Actinomycin D

Actinomycin D is one of the older chemotherapy drugs and most commonly used in 

treatment of a variety of cancers

tumor and rhabdomyosarcoma. It is highly toxic and caus

thus inhibiting cell proliferation

A2. 

Appendices: 

Introduction of several anticancer agents  

C55H84N17O21S3  

As an anticancer agent, bleomycin works mainly by inducing DNA strand breaks. The 

chemical structural formula is shown in Fig. A1. It is usually used in the treatment of 

squamous cell carcinomas and testicular cancer. It is also used in the t

warts. When it is used as a component in the treatment of Hodgkin’s lymphoma, 

doxorubicin since these two drugs have an additive and complementary 

effect on DNA. In this case, doxorubicin acts by intercalating betwee

on topoisomerase II enzyme for relaxing the topoisomerase complexes. The most serious 

pulmonary fibrosis and impaired lung function. Other side effects 

fever, rash, dermatographism, alopecia (hair loss) and Rayna

(discoloration of fingers and toes) [A1].  

Actinomycin D—C62H86N12O16 

Actinomycin D is one of the older chemotherapy drugs and most commonly used in 

treatment of a variety of cancers, including gestational trophoblastic neoplasia, Wilm

tumor and rhabdomyosarcoma. It is highly toxic and causes damage to genetic material

thus inhibiting cell proliferation [A2]. The chemical structural formula is shown in Fig. 

Fig. A1 Chemical structural formula of bleomycin [A1]  
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As an anticancer agent, bleomycin works mainly by inducing DNA strand breaks. The 

chemical structural formula is shown in Fig. A1. It is usually used in the treatment of 

squamous cell carcinomas and testicular cancer. It is also used in the treatment of plantar 

warts. When it is used as a component in the treatment of Hodgkin’s lymphoma, it is 

additive and complementary 

effect on DNA. In this case, doxorubicin acts by intercalating between DNA strands and 

se complexes. The most serious 

pulmonary fibrosis and impaired lung function. Other side effects include: 

fever, rash, dermatographism, alopecia (hair loss) and Raynaud’s phenomenon 

 

Actinomycin D is one of the older chemotherapy drugs and most commonly used in 

including gestational trophoblastic neoplasia, Wilms’ 

damage to genetic material, 

. The chemical structural formula is shown in Fig. 



 

3) BCNU—C5H9

Carmustine or BCNU (bis

chemotherapy. It is able to form interstrand crosslinks in DNA, which prevents DNA 

transcription. The chemical structural formula is shown in Fig. A3. It is used in the 

treatment of several brain cancer

medulloblastoma and astrocy

include: pulmonary toxicity, hematologic toxicity, gastrointestinal toxicity, hepatotoxicity, 

and nephrotoxicity [A3]

 

 

 

4) MeCCNU—C

Methyl-CCNU, 1-(2-chloroethyl)

been used to treat malignant melanoma and cancer of the brain, lung, and digestive tract. 

It is an experimental tumorigen

 

 

 

9C12N3O2 

Carmustine or BCNU (bis-chloroethynitrosourea) is used as an alkylating agent in 

chemotherapy. It is able to form interstrand crosslinks in DNA, which prevents DNA 

transcription. The chemical structural formula is shown in Fig. A3. It is used in the 

treatment of several brain cancers (such as glioma, gliob

stoma and astrocytoma), multiple myeloma and lym

: pulmonary toxicity, hematologic toxicity, gastrointestinal toxicity, hepatotoxicity, 

[A3].  

 

C10H18C1N3O2 

chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (MeCCNU), has 

been used to treat malignant melanoma and cancer of the brain, lung, and digestive tract. 

It is an experimental tumorigen [A4]. The structural formula is shown in Fig. A4.

Fig. A2 Chemical structural formula of actinomycin D [A2

Fig. A3 Chemical structural formula of BCNU [A3]  
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sed as an alkylating agent in 

chemotherapy. It is able to form interstrand crosslinks in DNA, which prevents DNA 

transcription. The chemical structural formula is shown in Fig. A3. It is used in the 

(such as glioma, glioblastoma multiforme, 

toma), multiple myeloma and lymphoma. Side effects 

: pulmonary toxicity, hematologic toxicity, gastrointestinal toxicity, hepatotoxicity, 

nitrosourea (MeCCNU), has 

been used to treat malignant melanoma and cancer of the brain, lung, and digestive tract. 

. The structural formula is shown in Fig. A4. 

]  
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5) PCNU—C8H11C1N4O4 

PCNU is an alkylating chemotherapeutic agent. It inhibits DNA synthesis by alkylating 

DNA and causing DNA crosslinks. Side effects include pulmonary, hepatic and 

hematologic toxicities [A5]. The structural formula is shown in Fig. A5. 

 

 

 

 

6) CDDP –PtC12(NH3)2 

CDDP (Cisplatin) is a chemotherapy drug. It is used to treat various types of cancers, 

including sarcomas, carcinomas such as small cell lung cancer and ovarian cancer, 

lymphomas, and germ cell tumors. The platinum complexes react in vivo, binding to and 

causing crosslinking of DNA, which ultimately triggers apoptosis (programmed cell 

death). Side effects are: Nephrotoxicity (kidney damage), which is a major concern; 

neurotoxicity; nausea and vomiting; ototoxicity (hearing loss); electrolyte disturbance; 

myelotoxicity (causing bone marrow suppression); and hemolytic anemia [A6].  The 

structural formula is shown in Fig. A6. 

Fig. A4 Chemical structural formula of MeCCNU [A4]  

Fig. A5 Chemical structural formula of PCNU [A5]  



 

 

 

7) Adriamycin (ADRM)

Adriamycin is also named doxorubicin, a drug used in cancer chemotherapy. It works by 

intercalating DNA. It is

including hematological malignancies, many types of carcinoma, and soft tissue sarcomas. 

Its most serious adverse effect is life

neutropenia, complete alopecia (hair loss), 

bright red for up to 48 hours after dosing). Due to the side effects and its red color, its 

nickname is “red devil” or “red death” [

 

 

 

 

Adriamycin (ADRM)—C27H29NO11 

Adriamycin is also named doxorubicin, a drug used in cancer chemotherapy. It works by 

. It is commonly used in the treatment of a wide range of cancers, 

including hematological malignancies, many types of carcinoma, and soft tissue sarcomas. 

Its most serious adverse effect is life-threatening heart damage. It can also cause 

openia, complete alopecia (hair loss), and discoloration of the urine (which can turn 

bright red for up to 48 hours after dosing). Due to the side effects and its red color, its 

nickname is “red devil” or “red death” [A7]. The structural formula is shown i

 

Fig. A6 Chemical structural formula of CDDP [A6

Fig. A7 Chemical structural formula of ADRM [A7]  
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Adriamycin is also named doxorubicin, a drug used in cancer chemotherapy. It works by 

commonly used in the treatment of a wide range of cancers, 

including hematological malignancies, many types of carcinoma, and soft tissue sarcomas. 

threatening heart damage. It can also cause 

of the urine (which can turn 

bright red for up to 48 hours after dosing). Due to the side effects and its red color, its 

The structural formula is shown in Fig. A7. 

A6]  
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2. Confluent hypergeometric function and the general solution for 

the equation of cell response to radiation and chemotherapy 

  

Eq. (5.10) can be written as 
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M(a, b, Z) is confluent hypergeometric function [A8, A9]. Therefore, 
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By calculating numerically through a program, we find if Z≥45,  
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Program for testing the Z of confluent hypergeometric function: 

 

      Program ConfluentHyp 

      implicit real*16 (a-h, o-z) 

      Write (*,*) “Input of Z, should be greater than zero” 

      Read (*,*) Z 

      If (Z .LE. 0) Then 

        Write (*,*)  'Z is less than 0' 

        Stop 

      End if 

      call chf(z,nl1,ch1,nl2,ch2) 

      open (1, file='chf.dat') 

      write(1, 1000)z,nl1,CH1 

      WRITE(1, 2000)NL2,CH2   

 1000 FORMAT(1X,F6.2,1X,I8,2X,D30.20) 

 2000 FORMAT(1X,7X,I8,2X,D30.20)    

      END 

 

      SUBROUTINE CHF(Z,NL1,CH1,NL2,CH2) 

      IMPLICIT REAL*16 (A-H,O-Z) 

      NL1=0 

      NL2=0 

      CH1=0.D0 

      CH2=0.D0 

      IF (Z.GT.30.D0) THEN 

        S=1.0D0 

        F=1.0D0 

        NL=INT(Z)-1 

        DO 10 N=1, NL 

        F=(N-.5D0)*F/Z 

        S=S+F 
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          IF(F/S.LT.1.D-20)THEN 

            CH2=S/Z*.5D0 

            NL2=N 

            GO TO 15 

          ENDIF 

   10 CONTINUE 

        NL2=NL 

        CH2=S/Z*.5D0 

   15 ENDIF 

C**      IF(Z.GT.55) GO TO 80 

       S=1.0D0 

       F=1.0D0 

       N=0 

  100 N=N+1 

       F=Z*F*(2*N-1)/(N+2*N*N) 

       S=S+F 

       IF(F/S.GT.1.D-20) GO TO 100 

       NL1=N 

       CH1=S*EXP(-Z) 

   80 RETURN 

       END 
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3. Principle of MRI 

Magnetic resonance imaging (MRI), or nuclear magnetic resonance imaging (NMRI) 

[A10], applies the properties of nuclear magnetic resonance (NMR) in order to obtain 

images of atomic nuclei of tissues within the body. For a nucleus with a magnetic 

moment µr  and an angular momentum I
r

h , there is a relation of I
r

h
r γµ = , where γ is a 

magnetogyric (or gyromagnetic) ratio and a nucleus-dependent constant [A11].  

There is a fixed magnetic moment for a particular nucleus. Different kinds of nuclei have 

different magnetic moments. When there is no external magnetic field, the magnetic 

moment µr  distributes in random directions. The total magnetic moment is zero 

( 0=∑ iµr ). When there is an external magnetic field 0B
r

, the nuclei will be magnetized. 

They will gradually align to 0B
r

(parallel or antiparallel to it). If we let zBB ˆ00 =
r

, then the 

energy level of each nucleus is determined by the equation  

                                 000 BmIBBE Iz hh
rr γγµ −=−=⋅−= .                                             (A13)    

IIImI −−= ,,1, L . The I is the nuclear spin.  

Only nuclei with a specific number of protons and/or neutrons have a non-zero spin. 1) If 

the number of neutrons and the number of protons are both even, then the nucleus has a 

spin of zero; 2) If the number of neutrons plus the number of protons is odd, then the 

nucleus has a half-integer spin (i.e. 1/2, 3/2, 5/2); 3) If the number of neutrons and the 

number of protons are both odd, then the nucleus has an integer spin (i.e. 1, 2, 3). 

In the human body, which is largely made of water (or matter that contains hydrogen), 

there are many hydrogen nuclei (protons). A proton has a spin of I=½, so mI=±½. This 

means that the energy level splits into two levels (two energy eigenstates, known as the 

Zeeman effect) since it splits into 2I+1 levels ( 0BE hγ=∆ ), as shown in Fig. A8. If E∆

denotes the energy difference between the two levels, then  

                   00 Bhh γω = ,  00 Bγω =                                               (A14) 
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Eq. (A14) is the fundamental condition for magnetic resonance absorption. For protons,  

γ=2.675×108(s-1T-1),  and )(58.422/)( 00 TeslaBMHz == πωυ . 

The gyroscopic equation of nuclei in a magnetic field B is   

                         
B

dt
Id rr
r

h ×= µ           or  µωµγµγµ rrrrrr
r

×=×−=×= BB
dt
d

                      
(A15)

 
 

If a specimen is in a high magnetic field B0 long enough, protons in the sample will align 

themselves along the direction of the external magnetic field B0, creating a macroscopic 

nuclear magnetization. However, if perturbed magnetization is caused by an external 

field that is in a different direction to B0 (e.g. a perpendicular pulse B1), the magnetic 

moment of the magnetized nuclei and the total magnetic field B will be in different 

directions. Then, the magnetic moment of protons will precess about the total magnetic 

field B, which is shown by equation (A15). The frequency of precession is B
rr γω −= . We 

apply a uniform magnetic field B0, which is the principal field, as well as a radio 

frequency magnetic field B1. Then, 

 

10 BBB
rrr

+=         (B1⊥B0)                                             (A16) 

zBB ˆ00 =
r

        tBytBxB ωω sinˆcosˆ 111 −=
r

     (B0>>B1)                        (A17) 

The precession frequency is approximately ω0, which is mainly determined by B0 as 

shown in equation (A14).  

Fig. A8 Energy level splitting in a magnetic field 
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For the effect of all nuclei in a magnetic field, the nuclear magnetization M is the sum 

Σµµµµi over the total amount of nuclei in a unit volume.  

                     
∑=

i
iM µr

r

                                                              
(A18) 

If there is only one type of isotope, we have 

                   
BM

dt
Md rr
r

×= γ
                                                           

(A19) 

When there is a magnetic field B1, we get the equation 

tBytBxzBBBB ωω sinˆcosˆˆ 11010 −+=+=
rrr

             (B0>>B1),                    (A20) 

All nuclei magnetons precess about B (~B0). When there is no B1 (B1 is a RF pulse), the 

nuclei are in a static field zBB ˆ00 =
r

. The magnetization will gradually restore itself to a 

state of equilibrium. At temperature T, the equilibrium magnetization is: 

                     zTCBzBzMM ˆ/ˆˆ 0000 ≈== χ
r

                                           (A21)   

where χ0 is magnetic susceptibility and the Curie constant BkNC /2µ= . Here, N 

represents the number of protons in a unit volume.  

More accurately, for nuclei with I=1/2, the equilibrium magnetization is  

µ)( 210 NNM −=                                                        (A22) 

Considering the relation 21 NNN += , and Boltzmann distribution  

)/2exp(/ 012 TkBNN Bµ−= ]                                                  (A23) 

We get 

)/tanh( 00 TkBNM Bµµ=                                                    (A24)  
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At thermal equilibrium, the lower energy level will contain slightly more nuclei than the 

higher level due to small energy difference. It is possible to excite these nuclei into the 

higher level using electromagnetic radiation. Transitions between these two energy levels 

can be induced by applying an alternating magnetic field B1. When the radio frequency ω 

of B1 is adjusted so that it is the same as ω0, which is given by equation (A14), resonance 

absorption of energy occurs and the maximum number of protons in the lower energy 

level can be excited to the higher level. When there is no RF magnetic field B1, the 

protons will recover to their thermal equilibrium. It is assumed that the rate of recovery is 

proportional to the rate of departure from the equilibrium value M0. Therefore, 

1

0

T

MM

dt

dM zz −=                                                         (A25) 

T1 is called the longitudinal relaxation time or the spin-lattice relaxation time (the 

relaxation time describes the rate at which the nuclear spins to return to equilibrium).  

If the frequency ω of the 90° pulse B1 is ω0, the number of excited nuclei in the higher 

energy level reaches maximum (saturated state), and the protons are equally distributed in 

the two energy levels. The magnetization in the z-axis direction is zero (Mz=0). Mz will 

then gradually recover to M0 after the pulse. Therefore, 

                      )]/exp(1[)( 10 TtMtM z −−=                                                (A26) 

With a pulse of B1, the total magnetic field becomes B(t)=(Bx(t), By(t), B0+Bz(t)) and the 

magnetization is M(t)=(Mx(t), My(t), Mz(t)). Taking into account equation (A25), the z 

component of the equation of motion (A19) becomes [A11] 

                         
1
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z −+×=
rr

γ                                   (A27) 

The transverse magnetization component Mx (or My) will decay to zero when there is no 

B1, only B0. This is because Mx and My are zero at thermal equilibrium. Therefore [A11], 
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Similarly,            
2

)(
)]()([

)(

T

tM
tBtM

dt

tdM y
y

y −×=
rr

γ                                      (A29) 

T2 is called the transverse relaxation time. It is a time constant that describes the rate of 

signal decay. 

In a maintained field tBytBxzBBBB ωω sinˆcosˆˆ 11010 −+=+=
rrr

, the Bloch equations are: 
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Because B0>>B1, we ignore the terms γB1Mx and γB1My. The solutions of transverse 

components can be expressed as: 
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After the pulse, the recovery process of Mz as well as the decay process of Mx and My are 

very important. They are used to form images of different tissues. When B1 ends, 

zBBB ˆ00 ==
rr

. Equations (A24), (A25) and (A26) are then reduced to 

2
0
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tM
tMB

dt

tdM x
y

x −= γ ;      

2
0

)()(
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tM
MB

dt

tdM y
x
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1

0 )()(
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tMM

dt

tdM zz −=  

tTtmtM x ωcos)/exp()( 2−= ; 

tTtmtM y ωsin)/exp()( 2−−=     

)/exp()]0([)( 100 TtMMMtM zz −−−=  

Due to the RF magnetic field B1, the power absorption is [A11] 
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(A30) 

When ω=ω0, resonance absorption of energy occurs. The resonance (maximum) power is 

              

2
12000 )( BTMPP zγωω ==

                                                                             
 

Based on equation (4.38), the half-width of the resonance at  

half-maximum power can be found as shown in Fig. A9: 
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When ∆ω<<ω0, we find that the half width of resonance is ∆ω ≈1/T2. 

Fig. A9 Resonance power absorption 



130 

 

When we apply a 90° pulse B1 (which is perpendicular to B0), the total magnetic field (or 

effective field) is B1 at resonant frequency since 00 Bγω = . 

1010100 sinˆcosˆˆ)/( BtBytBxzBBeff

rr
=−+−= ωωγω

                           
(A31) 

In this case, the magnetization only exists in the xy plane, and 0)0( =zM . It corresponds 

to the saturation situation where the proton population is the same on both energy levels. 

When there is no B1, the z-component Mz of magnetization will recover to its thermal 

equilibrium value M0 with a time constant T1. Equation (A26) shows the recovery process. 

In the meantime, the xy plane components, Mx and My, will decay to zero with a time 

constant T2. Thus, T1-weighted or T2-weighted imaging can be used for better contrast.  

When we apply a 180° pulse (B1//-B0), there will be no xy plane components for both 

magnetic field and magnetization (Mx=My=0). When there is no B1, Mz will recover to M0 

from -M0. In this case, only T1-weighed imaging can be applied [A12]. 

                      )]/exp(21[)( 10 TtMtM z −−=                                          (A32) 

After a 90° RF pulse, the transverse magnetization components produce an oscillating 

magnetic field, as shown in Fig. A10 (a), which induces a small current in the receiver 

coil. This natural process of signal decay is called the Free Induction Decay (FID). In an 

idealized system, all nuclei precess with the same frequency in a fixed magnetic field 

(meaning there is no magnetic field gradient). Therefore, the FID signal decays to zero 

with a time constant T2. However, in real systems, there are minor differences in the 

environment of nuclei, which cause a magnetic field gradient. In a practical MRI system, 

a magnetic field gradient can actually be applied for the sake of contrast. This can lead to 

a distribution of resonant frequencies around the ideal one. Over time, this distribution 

can lead to a dispersion of the tight distribution of magnetic spin vectors, and a loss of 

signal [A12].  

                     0
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*
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TTTT in
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Here, γ represents the gyromagnetic ratio, and ∆B0 is the difference in strength of the 

locally varying magnetic field. This process leads to a smaller decay time constant T2
* 

than that under ideal conditions (T2
*<T2), and loss of signal due to phase dispersion. The 

time constant T2 is important for spin echo sequences, while T2
* is critical for gradient 

echo sequences. In practical MRI, T2
*-weighted imaging uses the same concept as T2-

weighted imaging. The difference is that there is no 180° refocusing pulse in a T2
*-

weighted sequence. This means that T2
*-weighting is a natural loss of phase coherence, 

resulting in an exponential T2
* signal decay due to magnetic field inhomogeneities. In the 

T2-weighted case, after a time period TE/2 of dephasing after the initial 90° RF pulse, a 

180° RF pulse is applied. All protons are now flipped in phase and begin rephasing. After 

a time period TE, all spins are in phase again. Figs. A10 and A11 show the differences 

[A13, A14]. 

 

 

 

 

       

 

 

 

            (a)  T2
*-weighting process                 (b) T2-weighting process 

        (b) T1-weighting process [A13] (a) Comparing T2-weighting and T2
*-weighting processes [A14] 

Fig. A10 The difference between T2
*-weighting process and T2-weighting process 

Fig. A11 The difference between T1-weighting process and T2-weighting process  
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The basic factor for determining the tissue brightness in an image is the number of 

hydrogen atoms (or protons), per unit volume of tissue, since the signal intensity after an 

RF pulse is proportional to the proton density in a scan with a long TR and a short TE. 

Weighting by relaxation time can be done by either short repetition time (TR) to give T1-

weighting, or by long echo time (TE) to give T2-weighting. 

T1-weighted scans use a gradient echo sequence, with short echo time (TE) and short 

repetition time (TR). It indirectly measures the longitudinal magnetization by using a 

receiver coil to detect the voltage induced by the recovering longitudinal magnetization. 

Therefore, T1 indirectly affects the amplitude of the signal, which reflects the brightness 

of the tissue in MRI. TR is chosen to give the best contrast. This is one of the basic ways 

of providing contrast, and is commonly used in clinical scanning. The T1-weighting can 

be increased (thus improving contrast) with the use of an 180° pulse. Due to the short 

repetition time (TR), this scan can be run very quickly. For instance, T1-weighted scans 

provide a good gray/white matter contrast in brain imaging.  

T2-weighted imaging creates image contrast (differences in tissue brightness) that 

depends on variations in T2. After a 90° pulse, the magnetization lies in the xy plane and 

generates maximum voltage in the receiver coil. This voltage first dies away and then, if 

a 180° pulse is applied, reforms as an echo at time TE. The amplitude of the echo 

depends only on the T2 of the tissue. T2-weighted scans use a spin echo (SE) sequence, 

with long TE and long TR. They have long been the clinical workhorse, as the spin echo 

sequence is less susceptible to inhomogeneities in the magnetic field. They are 

particularly well suited to edema imaging since they are sensitive to water content.  

T2
*-weighted scans use a gradient echo sequence, with long TE and long TR. The 

gradient echo sequence does not have the extra refocusing pulse that exists in spin echo, 

so it is subjected to additional losses above the normal T2 decay. All of these taken 

together are called T2
*. This also makes it more prone to susceptibility losses at air/tissue 

boundaries, but can increase contrast for certain types of tissue, such as venous blood. 

Spin (or proton) density weighted scans try not to have contrast from either T2 or T1 

decay. The only signal change comes from differences in the amount of available spins 
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(hydrogen nuclei in water). It uses a spin echo, or sometimes a gradient echo sequence, 

with short TE and long TR. 

Diseased tissues, such as tumors, can be detected because the protons in different tissues 

return to their equilibrium state at different rates. Changing the parameters on the scanner 

can create contrast between different types of body tissue. Careful design of the imaging 

pulse sequence allows one contrast mechanism to be emphasized while the others are 

minimized. In the brain, T1-weighting causes the nerve connections of white matter to 

appear white, and the congregations of neurons of gray matter to appear gray, while 

cerebrospinal fluid (CSF) appears dark. The contrast of white matter, gray matter and 

cerebrospinal fluid is reversed using T2 or T2
* imaging, whereas proton-density-weighted 

imaging provides little contrast in healthy subjects. To improve image contrast, certain 

contrast agents may be used for particular tissues. For example, superparamagnetic 

contrast agents  such as iron oxide nanoparticles appear very dark on T2-weighted images 

and may be used for liver imaging. This is because normal liver tissue retains the agent, 

while abnormal areas such as scars and tumors do not. Additionally, functional 

parameters such as cerebral blood flow (CBF), cerebral blood volume (CBV) and blood 

oxygenation can affect T1, T2 and T2
*, so they can be encoded with suitable pulse 

sequences.  

In order to generate an image, it is necessary to measure the spatial variation of MR 

parameters, such as spin density and the spin-lattice relaxation time T1. These 

measurements are made by degrading the uniformity of the static magnetic field so that 

the magnetization precesses at different frequencies. Therefore, there is a variation of 

resonant frequency across the sample. We may modify the uniformity of the field B0 by 

applying linear magnetic field gradients across the sample. In practice, a constant 

magnetic field gradient G(r) is applied in x, y and z directions, and encodes spins 

differently at varying locations by spatially modulating the Larmor frequency of protons. 

It is expressed as: 

         rrGBrB
rrrrrr

⋅+= )()( 0    and   ])([)( 00 rrGBr
rrrr ⋅+= γω                       (A34) 
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For example, if a linear gradient in the z-direction is employed, the resulting magnetic 

field parallel to the uniform field is zBzBB zz ∂∂+= /0 . Therefore, the variation of the 

resonant frequency with regard to position is [A15] 

)()()( 000 zGB
z

B
zBBz z

z
z +=

∂
∂+== γγγω

 

In this way, the detected signal contains spatial information. Conventionally, it is 

assumed that the region of interest has uniform sensitivity since signal excitation and 

detection are performed using a single RF channel. Therefore, the received signal can be 

expressed as [A16]: 

rdertS ti

FOV

rr
∫

∆∝ ωρ )()(  

Here, FOV stands for the field of view; ρ (r) is the proton density at position r, and it is 

proportional to the number N(r) of protons in a unit volume; and ω∆  is the frequency of 

M precessing about B0 in the rotating frame. Mathematically, rGB
rr

⋅=−=∆ γγωω 00 . 

The k-space (Fourier domain) transformation is very important for MRI signal processing. 

The MR signal S(t) is generated by freely precessing nuclear spins in the presence of a 

linear magnetic field gradient G. It is the Fourier transform of the effective spin density, 

and is given by [A10, A15, A16]: 

∫ ⋅≡ ])(exp[)()( rtkirrdtS
rrrrρ

                                            
(A35) 

where ∫≡
t

Gdtk
0

)()( ττγ
rr

. For a linear magnetic field gradient (G=constant), tGk
rr

γ= .  

From the basic k-space formula, we can reconstruct an image I(r) simply by taking the 

inverse Fourier transform of the sampled data: 

∫ ⋅−≡ ])(exp[))(()( rtkitkSkdrI
rrrrv

                                       
(A36) 

In summary, Clinical Magnetic Resonance Imaging uses the magnetic properties of 

hydrogen and its interaction with both a large external magnetic field and radiowaves to 

produce highly detailed images of the human body. The body is largely composed of 

water molecules, each containing two hydrogen nuclei or protons. When a person goes 

inside the powerful magnetic field of the scanner, the magnetic moments of these protons 
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align with the direction of the field. A radio frequency electromagnetic field is then 

briefly turned on, causing the protons to alter their alignment relative to the field. As the 

RF pulse continues at a frequency around the resonant frequency ω0, which is determined 

by equation (2), some of the spins in the lower energy state absorb energy from the RF 

field and make a transition into the higher energy state. This has the effect of “tipping” 

the net magnetization toward the transverse plane. When there is no RF field, the protons 

return to the original magnetization alignment. These alignment changes create a signal, 

which can be detected by the scanner. Because the frequency at which the protons 

resonate depends on the strength of the magnetic field, the position of protons in the body 

can be determined by applying an additional magnetic field during the scan, allowing an 

image of the body to be built up. This additional magnetic field is a gradient one, and we 

control it by turning gradient coils on and off while scanning (the gradient field is in the 

RF field rather than the static field).  

The principle of signal detection is based on Faraday’s law, which states that a varying 

magnetic field induces an electric field that can be detected by the receiver coil. In 

homogeneous media, the total magnetic field after a RF pulse is: 

)(ˆˆˆˆ)( 00 rMzzGyyGxxGzBrB zyx

rvrv
µ++++=                                    (A37) 

where B0 is the primary magnetic field, while Gx, Gy and Gz are respectively the gradient 

coefficients of magnetic field along x, y and z-axes. M(r) is the magnetization of protons 

at position r. When we use eq. (A35) to deal with the MRI signal, all modulating factors 

such as T1/T2-weighting and diffusion-weighting (which are all important for image 

contrast) are ignored [A16]. Also, MRI signal depends on the design of the receiver coil. 

In order to better understand the principle of image contrast, we consider these factors 

and derive some formulae. The signal detected by the receiver coil can be expressed by 

Faraday’s law. In a very small area, we take soft tissues to be homogeneous and use the 

average proton density to represent the proton density at that spot. This area is big enough 

in a microcosmic system, but small enough to be a small spot in a macrocosmic system. 
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The voltage of the received signal represents the intensity of the brightness of MRI 

images.  
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Since there is a gradient of magnetic field, M0, m and the resonant frequency ω0 are all 

spatially dependent. However, only at the resonant frequency ω0 can m have the largest 

value. Therefore, just like a factor of delta function δ (R-r), transverse magnetization Mxy 

has a large value only when the frequency is equal to or around ω0. Due to the gradient of 

magnetic field Gz(r), different places have different resonant frequencies ω0(r). We can 

only detect a strong signal at or around the point with the resonant frequency. At any 

other place, the strength of the signal can be ignored. We introduce a weight factor η to 

express the effect of the signal in the resonance area. Therefore, based on the value of 

resonant frequency, we can locate where the signal originates from. This way, the 

computer system records the signal information point by point. Compared to B0, the 

gradient is very small, so Mz may not change much spatially. The area of the receiver coil 

is fixed, but the direction is not. Therefore, we have: 
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where α, β, and γ are the azimuth factors of the receiver coil. When the normal direction 

of the receiver coil is the same as the magnetization direction, the voltage of the coil 

reaches maximum. 
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When the normal direction of the receiver coil is perpendicular to B0, then 
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When the normal direction of the receiver coil is parallel to B0, then 
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The contrast between tissues “a” and “b” should be proportional to ∆V=Va-Vb.  
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By letting d(∆V)/dt=0, we can discover at what time the image contrast is maximum. For 

T1 or T2 weighted process, if we take this time as the TE or TR, the optimal time is TE0 or 

TR0. This causes a maximum contrast between the two tissues. Usually, Mz(0)=0, so  
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Correspondingly, the maximum contrast can be expressed as: 
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In MRI, we use T1 or T2 weighting process and choose the TE and TR that give the best 

contrast, as shown in Fig. A12.  

 

      

 

 

 

 Fig. A13 Structure schematic of MRI [A15] 

Fig. A12 Schematics of image contrast between tissue a and tissue b [A13] 
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Rodríguez [A15] described the schematic structure of the MRI system concisely. An MRI 

system consists of five major components: a) a magnet, b) gradient systems, c) an RF coil 

system, d) a receiver, and e) a computer system. The structure schematic of MRI is 

shown in Fig. A13 [A15]. 

a) Magnet. The magnet aligns the nuclei into low energy (parallel) and high energy (anti 

parallel) states. Therefore, a strong magnet is necessary to generate a high magnetic field 

(B0), which should be uniform over a volume of interest. A high-field magnet provides 

better SNR resolution both in frequency and spatial domains. However, the main 

requirement for the B0 field is that its field uniformity should be very good. A few parts 

per million over a spherical volume, 50 cm in diameter, are required for a great variety of 

clinical applications. The optimal field strength and the type of magnet for imaging are 

dependent on the application, so permanent, resistive, or superconducting magnets may 

be used. For most clinical MRI systems, B0 varies from 0.05 to 3.0 Tesla, and permanent 

and superconducting magnets are mainly used. Superconducting magnets are made of a 

niobium-titanium alloy and are cooled to temperatures below 12 K by immersion in 

liquid helium, whose boiling point is 4.2 K. The main magnet rarely produces a field of 

sufficient uniformity by itself, so a shim system is necessary for maintaining the magnetic 

field homogeneity. 

b) Gradient coils. All type of MRI modalities require deliberate alteration of field 

uniformity by applying a magnetic field gradient Gz(r), which varies linearly with 

position r to spatially encode the NMR signal. Such gradients are generated by passing 

currents through specially arranged coils of wire, each placed on the former coil that 

surrounds the imaging subject. Three separate coils are needed in order to produce a 

linear variation of the z-component of the magnetic field along each of the three 

Cartesian directions. Many clinical MR systems are capable of producing 40mT.m-1 

gradients to this end.  

c) RF coil system. In MRI, it is necessary to irradiate the sample under test with an RF 

field (B1), in order to flip the magnetization away from its equilibrium state and generate 

a detectable NMR signal. This is usually done with an RF transmitter, which is 

responsible for pulse shape, duration, power, and timing (repetition rate). Since the 



140 

 

imaging subject is excited with an RF field, each spin produces a sinusoidal signal at a 

frequency dependent on the local magnetic field. To detect the signal coming from the 

spins, it is necessary for a device to couple the nuclei to some external circuitry. These 

devices are called RF coils/resonators/probes. RF coils can be divided into two main 

groups: volume and surface coils. Volume coils are typically cylindrical-shaped 

structures, and the most efficient volume coil at the present time is the so called bird-cage 

coil. Surface coils can be subdivided into single-loop coils and array coils (phased-array 

coils and array of independent coils for ultra-fast imaging schemes). 

d) Receiver system. In order to convert the received RF signal from the RF coil into a 

form suitable for an analog-to-digital converter (ADC) or digitizer, some receiver 

circuitry is often employed. The signal is first amplified with a low noise amplifier, and 

then transmitted to a remote location to form an image via computer processing. The rest 

of the process involves signal demodulation using a superheterodyne style circuit. This is 

normally done with respect to the same frequency as the emitted RF radiation. 

e) Computer system. This system represents the interface through which the user initiates 

measuring system functions (system test, display images, measure functions) and usually 

retrieves images. Particularly, for the reconstruction process, the computing requirement 

varies according to the imaging method used, but almost universally some form of 

Fourier transform (FT) is required. The best algorithm for FT is the fast Fourier transform 

(FFT), which can be used for two or three-dimensional images. The computer system 

should also be able to display images on a high-quality monitor.   
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4. DCE-MRI and DSC-MRI 

The advanced applications of MRI include dynamic contrast enhanced magnetic 

resonance imaging (DCE-MRI), dynamic susceptibility contrast magnetic resonance 

imaging (DSC-MRI), and diffusion magnetic resonance imaging (Diffusion MRI). 

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a novel 

approach to the identification and assessment of tumors in living bodies. DCE-MRI scans 

show the flow of the contrast agent, and therefore the blood flow, between vascular space 

and extracellular extravascular space (EES) since the contrast agent is too large to enter 

the cells. Growth of a tumor depends on its ability to initiate formation of new blood 

vessels that can grow inside it—a process called angiogenesis. So tumors are regions of 

high blood flow and of high fraction of vascular space, and therefore can be detected via 

DCE-MRI. Also, DCE-MRI can assess tumor perfusion, microvascular vessel wall 

permeability and extravascular-extracellular volume fraction. Analysis of DCE-MRI data 

is usually based on indicator dilution theory, which requires knowledge of the 

concentration of the contrast agent in the blood plasma, which is the arterial input 

function (AIF). In T1-weighted DCE-MRI, an intravenous bolus of gadolinium contrast 

agent enters tumour arterioles, passes through capillary beds and then drains via tumour 

veins. Gadolinium ions are paramagnetic and interact with nearby hydrogen nuclei to 

shorten T1-relaxation times in local tissue water. This causes an increase in signal 

intensity of T1-weighted images to a variable extent within each voxel. The degree of 

signal enhancement is dependent on physiological and physical factors, including tissue 

perfusion, arterial input function (AIF), capillary surface area, capillary permeability and 

the volume of the extracellular extravascular leakage space (EES). T1-weighted DCE-

MRI analysis generates parameters that represent one of, or combinations of these 

processes, and can be used to measure abnormalities in tumour vessel flow, blood volume, 

permeability, tortuosity and interstitial pressure.  

A major goal in functional magnetic resonance imaging is to evaluate tissue perfusion, or 

fluid flow, and the exchange between tissues and blood, or vessel permeability. The 

theory is based on the fact that the solution can be expressed as a convolution of the 
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arterial input function (AIF) with a single exponential function. Based on Fick’s principle 

[119], 

)()(
)(

21 tCktCK
dt

tdC
tissueplasma

tissue −=                                    (A49) 

 

Ctissue is the concentration of a flow tracer or contrast agent in tissue; K1 is the plasma to 

tissue transport rate constant; Cplasma, AIF, is the tracer concentration in plasma; and k2 is 

the tissue to plasma rate constant. Cplasma is effectively equal to Cblood because of the rapid 

exchange between blood cells and plasma [119]. This equation is depicted schematically 

in Fig. A14. 
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1                                               (A50) 

E is the extraction fraction, F represents flow, P is the permeability and S is the surface. 

In DCE-MRI studies, K1 is also called Ktrans or KPS (Volume transfer constant between 

plasma and EES). It is a function of blood flow (F), permeability (P), and the vascular 

surface (S). The term Ktrans is generally used to describe the kinetics of contrast agents 

with a high PS product, thus mainly representing perfusion, whereas KPS is used for 

contrast agents with a lower PS product and thus represents a mixed effect of perfusion 

and permeability. Equation (A13) can also be written as: 

 

Fig. A14 Schematic of the relation between Ctissue and Cblood [119] 
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Here, kep is the rate constant between EES and plasma, which is the ratio of the transfer 

constant to the EES (kep=Ktrans/ve). It represents the reflux coefficient or the transfer of 

contrast agent from tissue back to the blood. The solution of equation (A15) is  

 

)()()exp()1()( tCfPVtCtkKfPVtC plasmaplasmaep
trans

tissue ⋅+⊗−⋅⋅−=          (A52) 

 

Here, fPV is the fraction of plasma volume related to whole tissue volume. 

 

Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) uses rapid 

measurements of MR signal change following the injection of a bolus of a paramagnetic 

MRI contrast agent. The signal loss resulting from passage of this bolus, seen on T2
*-

weighted images, can be used to calculate the change in contrast concentration occurring 

in each pixel. These data can be used to produce calculated estimates of cerebral blood 

volume (CBV), mean transit time (MTT) and cerebral blood flow CBF. DSC-MRI is 

simple to perform in a clinical environment and is currently the most commonly used MR 

perfusion technique in clinical studies. The analysis of DSC-MRI data is based on the 

assumption that the contrast agent remains within the vascular space throughout the 

examination, acting as a blood pool marker. This assumption is untrue except within the 

brain, where there is no contrast leakage due to the blood–brain barrier (and in the testes 

where a similar barrier also exists). The application of DSC-MRI was therefore initially 

limited to studies of normal brain, although modifications of the technique have 

subsequently allowed its use in enhancing tissues. One of the main aims of DSC-MRI is 

the production of image based measurements of blood flow.  
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5. Program for calculating TIFP  

Program TIFP distribution 

Implicit none 

Real :: Q, Qm, Qc, r0, p0, R1, p1, r, p  ! R1=R, p1=p(R)--the pressure of the environment.  

Real :: A0, a, b, c, d, K, LL, AL, pL 

Real, parameter :: pi=3.1415927 

Print *, “Fluid flux at tumor edge Q=?” 

Read *, Q 

Print *, “Lymphatic drainage’ ability Qm=?” 

Read *, Qm 

Print *, “The critical flow rate Qc=?” 

Read *, Qc 

Print *, “The radius where fluid velocity is zero r0=?” 

Read *, r0 

Print *, “Pressure barrier p0=?” 

Read *, p0 

Print *, “Tumor radius R1=?” 

Read *, R1 

Print *, “Tumor pressure at the edge/environment p1=?” 

Read *, p1 

Print *, “The hydraulic conductivity of the interstitium K=?” 

Read *, K 

Print *, “The hydraulic conductivity of lymphatics LL=?” 

Read *, LL 

Print *, “Total surface area of the lymphatics with in radius rm AL=?” 

! rm is the maximum radius that the fluid from the tumor can spread. 

Read *, AL 

Print *, “The pressure in lymphatics pL=?” 

Read *, pL 

A0=(Q-Qm)/(4*pi*K*R1**2)-LL*AL*(p1-pL)/(4*pi*K*R1**2) 

a=(2*(p0-p1)-(R1-r0)*A0)/(R1-r0)**3 
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b=((R1+2*r0)*(R-r0)*A0-3*(R1+r0)*(p0-p1))/(R1-r0)**3 

c=(6*R1*r0*(p0-p1)-r0*(R1-r0)*(2*R1+r0)*A0)/(R1-r0)**3 

d=(R1**3*p0-r0**3*p1-3*R1*r0**2*p1+R1*r0**2*(R1-r0)*A0)/(R1-r0)**3 

Print *, “r=?”     

Read *, r 

IF (r<=r0) Then 

     Write(*,*)  “p=”, p0                      

Else if (r>R1) Then 

     Write(*,*)  “p=”, pL+(Q-Qm)/LL*AL-((Q-Qm)/(LL*AL)-p1+pL)& 

                             *exp(LL*AL*(1-R1/r)/(4*pi*K*R1))              !(r>R) 

Else if (Qm>=Qc) Then 

     Print *, “r=?”     ! r0<r<R 

     Read *, r 

     Write(*,*)  “p=”, -p0*(r*r-2*r0*r+R1*(2*r0-R1))/(R1-r0)**2    !(r0<r<=R) 

Else if (Qm>=Q .and. Qm<Qc) Then 

     Print *, “r=?”     ! r0<r<R 

     Read *, r 

     Write(*,*)  “p=”, -((p0-p1)*r*r-2*r0*(p0-p1)*r-R1**2*p0+2*R1*r0*p0-r0**2*p1)& 

                             /(R1-r0)**2              !(r0<r<=R) 

Else if (Q>Qm .and. Q<Qc) Then 

     Print *, “r=?”     ! r0<r<R 

     Read *, r 

     Write(*,*)  “p=”, a*r**3+b*r*r+c*r+d           !(r0<r<=R) 

Else 

      Write(*,*)  “not calculated” 

End If 

End Program  

 

 



146 

 

References 

[A1] http://en.wikipedia.org/wiki/Bleomycin. 

[A2] http://en.wikipedia.org/wiki/Actinomycin 

[A3] http://en.wikipedia.org/wiki/Carmustine 

[A4] http://www.iephb.nw.ru/~spirov/hazard/meccnu.html 

[A5] http://dtpws4.ncifcrf.gov/data/compounds/95466.html 

[A6] http://en.wikipedia.org/wiki/Cisplatin 

[A7] http://en.wikipedia.org/wiki/Doxorubicin 

[A8] John Pearson, Computation of Hypergeometric Functions, MSc. Thesis, University 

of Oxford, 2009. 

[A9] Muller, K. (2001). Computing the confluent hypergeometric function, M(a, b, x), 

Numerische Mathematik 90(1), 179–196. 

[A10]  http://en.wikipedia.org/wiki/Magnetic_resonance_imaging. 

[A11] Charles Kittel, Introduction to Solid State Physics, 8th edition, chap 13, John Wiley 

& Sons (2005) 361—390. 

[A12] http://en.wikipedia.org/wiki/Relaxation_(NMR) 

[A13] Mark A. Horsfield, Basis of MR contrast (MR Imaging in White Matter Diseases 

of the Brain and Spinal Cord / edited by Massimo Filippi, Nicola de Stefano, 

Vincent Dousset, Joseph C. McGowan), Springger-Verlag (2005), Berlin, 

Heidelberg.  

[A14] M Lepage and J C Gore, Contrast mechanisms in magnetic resonance imaging, 

Journal of Physics: Conference Series 3 (2004) 78–86. 

[A15] A. O. Rodríguez, Principle of magnetic resonance imaging, Revista Mexicana de 

FÍSICA 50 (2004) 272-286. 

[A16] L. Ying, Zhi-Pei Liang, Parallel MRI using phased array coils, Signal Processing 

Magazine, IEEE 27 (2010) 90-98. 

 

 



147 

 

Vita Auctoris 

NAME:                 Long Jian Liu 

BORN:                  Sichuan, China, 1963 

EDUCATION:     Lanzhou University, Lanzhou, China 

1982-1986 B. Sc.  

Fudan University, Shanghai, China 

1990-1993 M. Sc. 

University of Windsor, Windsor, Canada 

 2007-2009 M. Sc.  

 2009-2012 Ph. D. Sc. 

 

                            

 


	Study Regarding Properties of Solid Tumors in Mammals
	Recommended Citation

	Dissertation2012

