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ABSTRACT

The topic of this dissertation is development of the software modules for simulation 

and off-line programming of 5-axes waterjet cutting gantry robot. In order to verify and 

validate the quality of the written software modules, a 5-axes gantry robot manufactured 

by Flow Robotics Company and equipped with an Allen-Bradley 9 series controller has 

been used for testing. The mentioned simulation and off-line programming software 

modules are not stand alone applications, therefore they are dependent on the software 

platform they are written for. In this case, Workspace 5® software package serves the 

purpose of being the platform for the written add-ins.

In order to get a proper simulation, the robot controller programming language -  G 

code, has been translated to a common format to be used internally by the simulation 

package. The robot native language has been translated first into C and then to 

Workspace Simulation Language code, in order to call the motion planning routines 

through the Component Object Model (COM) interface. Flex and PRECCX together 

form a compiler-compiler tool used for translation. A supporting C file has been created 

to add the flexibility to the way PRECCX compiler works.

A Realistic Robot Simulation (RRS) set of services has been implemented in the 

default motion planner of the simulation software to execute the robot’s functions and 

behaviors in the same way a robot controller does. Due to a fact that Realistic Robot 

Simulation is primarily designed for 6-axes vertically articulated robots, several Realistic 

Robot Simulation services must have been modified and a preprocessing graphical 

interface made in order to reflect the kinematics differences from 5-axes gantry robots.

To make a powerful and effective simulation, a workpiece has been designed that is 

complex enough to require 5-axes machining. Also, a CAD model of the gantry robot has 

been designed and the appropriate kinematics template associated with it.

The reverse process -  off-line programming, has also been developed. Having 

known the robot’s trajectory and motion parameters, the off-line programming software 

module has been developed to automatically emit G-code part programs into designated 

output files. This module communicates with other modules of the simulation package

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



like default motion planner, simulation engine, and default kinematics in order to retrieve 

the information needed for accurate formatting of the output code.

This thesis had its practical verification in Flow International Corporation. The 

results of preliminary testing showed that the recorded value difference between the 

position and orientation values (both Joint and Cartesian) of the teachpoints created 

during simulation and the Joint and Cartesian values read from the robot controller was 

satisfactory. Also, simulation and real robot cycle time accuracy has been determined 

comparing the corresponding cycle time values recorded in Workspace and in the robot 

controller. The cycle time accuracy has been assessed as satisfactory and acceptable, 

because the error value was below the acceptable upper limit set by Realistic Robot 

Simulation standard.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv



I) K I> ICATI O N

DEDICATED TO MY FAMILY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF ABBREVIATIONS

AGV -  Automated Guided Vehicle

ASCII -  American Standard Code for Information Interchange

AST -  Abstract Syntax Tree

CAD -  Computer Aided Design

CAM -  Computer Aided Manufacturing

CAR -  Computer Aided Robotics

CNC -  Computer Numerical Control

COM -  Component Object Model

FLOW -  Flow International Corporation

GP -  Geometric Point

IGES -  Initial Graphics Exchange Specification 

OLP -  Off Line Programming 

OOS -  Object Oriented Simulation 

PC -  Personal Computer

PRECCX -  Prettier Compiler-Compiler Extended

RRS -  Realistic Robot Simulation

SAT -  Save As Text graphics exchange format

VBA -  Visual Basic for Applications

VR -  Virtual Reality

VRC -  Virtual Robot Controller

WS5 -  Workspace5®

WSL -  Workspace Simulation Language 

YACC -  Yet Another Compiler-Compiler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT................................................................................................................................................ iii

DEDICATION............................................................................................................................................. v

LIST OF ABBREVIATIONS................................................................................................................. vi

CHAPTER I. INTRODUCTION............................................................................................................ 1

1.1. THE THESIS OVERVIEW............................................................................................................ 1

1.2. THE THESIS RELEVANCE..........................................................................................................7

1.3. APPLICATION IN AUTOMOTIVE INDUSTRY..................................................................... 9

1.4. GENERAL LAYOUT OF THE THESIS....................................................................................10

CHAPTER II. BACKGROUND...........................................................................................................12

2.1. SIMULATION OVERVIEW........................................................................................................12

2.1.1. Object-Oriented Simulation.................................................................................................. 13

2.1.2. Advantages and disadvantages of simulation.................................................................... 14

2.1.3. Cost of Simulation..................................................................................................................16

2.2. OFF-LINE PROGRAMMING CONCEPT.................................................................................16

2.3. INTRODUCTION TO REALISTIC ROBOT SIMULATION............................................... 18

2.3.1. Objectives of the Project "Realistic Robot Simulation"....................................................19

2.3.2. Technical Aspects of the RRS Interface.............................................................................20

2.3.3. Benefits and Disadvantages of the RRS Interface............................................................ 21

2.3.4. Availability of the RRS Interface.........................................................................................22

2.4. LEXING AND PARSING OVERVIEW................................................................................... 22

2.5. INTRODUCTION TO WATERJET CUTTING...................................................................... 23

2.5.1. Components of a waterjet cutting system.......................................................................... 25

2.5.2. Advantages and disadvantages of waterjet cutting technology....................................... 32

2.6. INTRODUCTION TO CNC CONTROLLER PROGRAMMING LANGUAGE (G- 

CODE)................................................................................................................................................ 34

CHAPTER III. LITERATURE SURVEY.........................................................................................38

3.1 PARSER GENERATOR RELATED ARTICLES....................................................................38

3.2. SIMULATION AND OFF-LINE PROGRAMMING RELATED TECHNICAL 

ARTICLES......................................................................................................................................... 44

3.3. INTRODUCTORY AND GENERAL PURPOSE ARTICLES............................................. 48

3.4. NEW TECHNIQUES IN SIMULATION AND OFF-LINE PROGRAMMING OF 

INDUSTRIAL ROBOTS................................................................................................................. 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.1. Virtual Reality Approach in Simulation and Off-line Programming of Industrial 

Robots, (Boud and Steiner, 1999)......................................................................................... 49

3.4.2. Knowledge Based Simulation and Off-line Programming Approach, (Bernhard, 

Schahn, and Schreck, 1999)................................................................................................... 52

CHAPTER IV. ROBOT MODELING AND KINEMATICS........................................................56

4.1. ABOUT ROBOT MODELING AND FUNDAMENTAL QUESTIONS OF ROBOT 

KINEMATICS...................................................................................................................................56

4.1.1. CAD based graphic simulators for robotic systems..........................................................58

4.2. THE DESCRIPTION OF ROBOTIC CELL DESIGN PROCEDURE USED IN THE 

DISSERTATION.............................................................................................................................. 59

CHAPTER V. SIMULATION MODULE DEVELOPMENT.......................................................67

5.1. CREATON OF A ROBOT LANGUAGE TRANSLATOR................................................... 67

5.1.1. Language translators created by compiler-compilers.......................................................67

5.1.2. Creation of G-code language translator..............................................................................69

5.1.2.1. The translation process..................................................................................................70

5.1.2.2. Writing the grammar rules to describe the syntax of G-code language.................71

5.1.2.3. Solution for the PRECCX action execution problem...............................................71

5.1.2.4. Solution for the Flex ambiguity problem....................................................................74

5.2. ADDING SIMULATION LANGUAGE FUNCTION CALLS TO ACTION 

STATEMENTS OF THE LANGUAGE TRANSLATOR.........................................................76

5.2.1. Simulation languages in general.......................................................................................... 77

5.2.2. The output from the language translator -  Workspace Simulation Language (WSL) 79

5.2.2.1. Realistic Robot Simulation services as a part of Workspace Simulation Language 

 81

5.2.2.2. Creation of the Visual Basic for Applications language library of supporting 

functions.......................................................................................................................... 83

5.3. IMPLEMENTATION OF THE WORKSPACE SIMULATION LANGUAGE 

FUNCTIONS IN WORKSPACE MOTION PLANNER........................................................... 85

5.3.1. Robot Motion Planning in general.......................................................................................85

5.3.2. Motion Planning in Workspace............................................................................................ 86

5.3.2.1. Trajectory velocities and accelerations....................................................................... 91

5.3.2.2. Trajectory calculation....................................................................................................93

5.4. CREATION OF THE G-CODE LANGUAGE PREPROCESSOR..................................... 102

CHAPTER VI. OFF-LINE PROGRAMMING MODULE DEVELOPMENT..................... 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.1. OFF-LINE PROGRAMMING IN ROBOTICS............................................................. 109
6.1.1. Why Should Off-line Programming Be Used?....................................................... 109
6.1.2. Requirements of an Off-line programming system..................................................110

6.2. CREATION OF OFF-LINE PROGRAMMING MODULE FOR FIVE-AXIS WATERJET
CUTTING GANTRY ROBOT........................................................................................111

6.3. ON-LINE TESTING.................................................................................................... 119
CHAPTER VII. CONCLUSION.........................................................................................................122

APPENDIX A: USING PRECCX...................................................................................................... 126

APPENDIX B: GLOSSARY OF THE PARSING AND LEXICAL ANALYSIS

KEY TERM S..................................................................................................................................... 131

APPENDIX C: ALLEN-BRADLEY G-CODE SPECIFICATION ............................ 133

APPENDIX D: CIRCULAR INTERPOLATION MAPPING................................................... 137

APPENDIX E: G-CODE LANGUAGE GRAMMAR SCRIPT................................................. 146

APPENDIX F: C FUNCTION LIBRARY FOR PARSER CUSTOMIZATION.................. 157

APPENDIX G: WORKSPACE SIMULATION LANGUAGE LIBRARY FILE.................162

APPENDIX H: DEFAULT MOTION PLANNER SOURCE CODE....................................... 172

APPENDIX I: G-CODE OFF-LINE PROGRAMMING SOURCE CODE...........................180

APPENDIX J: THE TEST G-CODE PART PROGRAM GENERATED OFF-LINE 194

REFERENCES....................................................................................................................................... 196

VITA AUCTORIS..................................................................................................................................200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I 

INTRODUCTION

1.1. THE THESIS OVERVIEW

The installation and operation of a robotic manufacturing system frequently proves 

to be a much more expensive venture than initially planned or imagined. Robotic systems 

are expensive to purchase, install, and operate. Unrealistic expectations based on 

technical equipment specifications may lead to errors in the robotic cell and application 

design. Such errors are very expensive and difficult to rectify once the robotic equipment 

is selected, purchased, and installed.

The operation of robots is also frequently less efficient and effective than expected. 

The main advantage of robots is their flexibility (the ability to easily change the 

programmed tasks, regardless of how different and how complex they are) which allows 

their implementation for manufacturing a variety of products in small and medium batch 

sizes. Flexibility is essential in modem manufacturing to respond to short product life 

cycles, varying demand, small production lots, and model changes. However, 

productivity is much easier to achieve in a dedicated mass production system, and few 

flexible systems are also highly productive. One of the key reasons for low productivity 

in robotic systems is the fact that robot programming requires the allocation of a 

considerable amount of robot production time, both for program development and for 

testing.

CAD (Computer Aided Design)-based graphic emulators and simulators of robotic 

systems can potentially help to avoid some of the roadblocks on the way to successful 

robot system installation and operation. Cell design, robot selection, verification of robot 

reach and of correct placement of the cell elements, off-line programming, and simulation 

of the robot task can all be done in a virtual CAD and simulation environment. 

Simulation models that accurately represent the proposed robot and cell geometry and the 

robot kinematics and dynamics performance are valuable tools for evaluating design 

alternatives, verifying feasibility, designing workcell layout, verifying robot programs, 

and evaluating cell performance.

1
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Compared with the advantages during the optimization of robot cell layout or 

during collision and reachability testing, there are difficulties in transferring user 

programs that have been generated and simulated off-line to the real production. Different 

sources of errors during simulation and off-line programming have been depicted on the 

block diagram below (Figure 1.1.), followed by more detailed explanation of each error 

source.

b e g in

e n d

system  dynam ics 
reg u la tin g  c ircu its / 

actuators...

t r a n s la to r

in te rp o la to r

lrans formation/ 
inverse kinematics

robot program

environm ent model

remarks;

m ade with an  off-line programming 
an d  simulation system

incomplete translation of the  robot program 
into the IR programming language 
(SRCL, IR L ,...), conversion errors

interpolation algorithms which differ from the 
original robot control algorithms (slew, point to 
point, linear and circular m ovem ent,...)

simplified robot m odels with an ideal geom etry 
of links and ax es (parallel or rectangular arrange­
ment, no elastic and therm al deformation)

system dynamics (link inertias, gravity, 
coriolis- and centrifugal forces, joint friction,...) 
are disregarded

inaccurate modelling of the production cell 
(CAD data, process data)

Figure 1.1. Sources of errors during simulation and off-line programming (the flow 

chart portion of this figure), followed by more detailed explanation of each error source

(the description section of this figure).
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Interpretation of the robot programming language

The first group of errors often occurs in the language processing of the system, the 

so-called interpreter or translator. One reason for this is that the extent and semantics of 

the language differ between off-line programming system and real robot controller. A 

typical example for this is the description of fly-by records (distance or velocity 

approximation records). Conversion or even simple syntax errors may seriously affect the 

execution of a user program. A fundamental condition for the transfer of simulated user 

programs is a post-processor, which is free of syntax errors.

Motion interpolation

Interpolation is used, for instance, in the motion modes: point-to-point, linear and 

circular, as well as, in the transition between different motion modes (fly-by). 

Interpolation can be described mathematically by numerous parameters (distance, 

velocity, and time parameters) and again exhibits its own variations in interpolating 

orientation. Even large industrially established off-line programming systems may not be 

able to cope with this large number of different algorithms with their fundamental path 

planning functions. Thus deviations cannot be avoided between simulation and real 

application in terms of:

• Cycle time,

• Path accuracy,

• Path velocity, or

• Behavior near singularities.

Inverse kinematics

Calculation of the inverse kinematics is performed by ideal, simplified kinematics 

models. Deviations in the lengths of the robot axes and assembly errors are disregarded. 

The effector load, thermal influences or gear elasticity affect the static compliance and 

decrease the absolute accuracy of the robot. Even small changes in the axis angles may 

seriously affect the angular configuration and may cause collisions of the robot with 

peripheral components.

3
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System dynamics

A large number of parameters affect the controller systems behavior, such as mass, 

inertia, coulombic and viscous friction as well as elasticity. The system dynamics is 

generally disregarded in the simulation owing to the lack of dynamic data or because of 

inflexible dynamic interfaces.

Environment model

Simulation errors, in this part of the error chain, are caused by inaccurate modeling 

of the manufacturing environment. The following has to be taken into consideration:

• Modeling of the tools and workpieces.

• Arrangement of positioners, workpieces, tools, industrial robots, and other cell 

components in relation to the world coordinate system.

• Process modeling (such as: coating, grinding, cutting, etc.).

Efficient off-line programming and simulation system does not aim to eliminate all 

of the above-mentioned error sources. It would be very time-consuming and expensive to 

reduce the errors in the kinematics chain by a reduction of manufacturing tolerances. 

Practice-oriented off-line programming and simulation system requires at least:

1. An efficient post-processor, which is free of syntax errors.

2. A realistic motion interpolation for applications in which path accuracy or the 

determination of cycle time plays an important role.

3. Suitable, user-friendly calibration algorithms to avoid costly teach-in corrections, 

(Nof, 1999).

Taking into account the mentioned three requirements, the master thesis topic was 

defined accordingly. The first two requirements have been fulfilled by developing off­

line programming and simulation software modules (based on the new concepts 

introduced in Realistic Robot Simulation specification, in order to significantly increase 

the accuracy of simulation software packages) in form of add-ins to an existing 

simulation and off-line programming software package. Workspace5® software package

4
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has been chosen to be the development platform, due to its modular architecture and its 

calibration software module, therefore satisfying the third requirement.

Waterjet cutting manufacturing process will be used for on-setting validation and 

verification of the developed software modules. The important reason for choosing such a 

manufacturing process is that waterjet equipment is ideally suited to robotic applications 

because it is lightweight, highly flexible, multidirectional and readily adaptable to 

pedestal or gantry systems.

In more detail, technical advantages of waterjet cutting technology include:

•  LightweightL A typical waterjet cutting assembly, including a nozzle, nozzle support 

and associated high-pressure water delivery components, weights 4 kilograms and 

reaction load is less than 5 kilograms. This is important, because the factor in 

determining if particular robot can be adopted for waterjet cutting is the robot’s load 

capacity. The abrasivejet cutting system has a typical reactive load of less than 15 

kilograms, which many industrial robots can effectively handle.

•  Adaptability. A wide array of swivels, fittings, tubing, and coils allows high-pressure 

water to be delivered to the "wrist" of a robot without inhibiting or hampering its 

useful range of movement. Equipment has been successfully integrated with 5-, 6-, 

and even 7-axis robots.

•  Multidirectional Cutting. A high-pressure jet of water can be moved in any direction 

across the material being cut. It does not have to cut in a straight line. It can cut 

extremely tight curves and inside comers and "starting holes" are generally not 

required.

Therefore, the thesis (as an arguable statement) elaborated in this document is the 

use o f Realistic Robot Simulation interface in conjunction with PRECCX parser 

generator in robotics simulation and off-line programming software packages can 

substantially improve the positional and cycle time accuracy o f a 5-axes waterjet cutting 

gantry robot.

The dissertation is organized as follows:

1. CAD modeling o f the workpiece and the 5-axis gantry robot Kinematics definitions 

of the CAD models.

5
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2. Development o f the simulation module. This is the central and the most complex part 

of the dissertation. The first sub-task is the development of G-code (CNC controller 

programming language) language translator. Compiler-compiler software utilities 

Flex and PRECCX (Prettier Compiler-Compiler Extended) have been used for lexical 

analysis and parsing of the G-code language. Parser action statements have been 

written to emit Workspace Simulation Language (Visual Basic for Applications based 

simulation language, which contains calls to the functions of the motion planner via 

Component Object Model RRS interface) code. Also, all the Realistic Robot 

Simulation services called from the parser’s action statements have been designed and 

implemented in the motion planner module of the simulation platform software. The 

preprocessing graphical interface has been developed in order to capture the internally 

stored robot controller information that is not provided in the part programs, but 

presents a mandatory input for accurate simulation.

3. Development o f G-code off-line programming module. Knowing all the path 

parameters defined during simulation and taking into account the grammar of the G- 

code programming language, the C++ source code has been written to recast all the 

path data into sequence of Computer Numerical Control machine instructions.

The next flow chart (Figure 1.2.) shows the interactions among the modules written 

by the author and the modules of the software package built in the development platform. 

Different background colors represent different levels of participation (color mappings 

are contained within the figure caption).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1.2. Simulation and off-line programming modular concept of Workspace5, 

where different colors represent different levels of author’s participation (white -  no 

participation, light gray -  input modules, gray -  complete design and implementation,

dark -  partial design and implementation)

1.2. THE THESIS RELEVANCE

Relevance of the issue of this thesis will be presented through the next three major 

points:

• Highly accurate simulation due to implementation o f Realistic Robot Simulation 

services. One major problem in achieving exact simulation of the robotic cell is the 

availability of a model of the robot controller. The algorithms defining the robot’s 

motion behavior are not publicly available. To overcome this problem a consortium 

of automotive companies, controller manufacturers, and simulation systems 

manufacturers initiated the Realistic Robot Simulation project. It aimed at integrating 

original controller software (black box) into simulation and off-line programming 

systems via the specification of an adequate interface. The project goal was to 

improve the simulation accuracy of industrial robot simulation systems in order to 

achieve more realistic simulation of robot controllers. The goal was achieved by the

7
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definition of a common Realistic Robot Simulation interface for the integration of 

controller simulating modules into simulation systems. Using original controller 

software parts, controller manufacturers provide simulation modules for their latest 

controller types. Strictly following the standardization rules in the Realistic Robot 

Simulation specification default set of the RRS services has been implemented in 

default motion planner of the simulation software. In other words, when the task 

programs written in robot languages developed by manufacturers who did not 

participate in the Realistic Robot Simulation consortium (including CNC 

manufacturers) need to be simulated, the default set of Realistic Robot Simulation 

services (implemented in the simulation software source code) will be called to 

provide the accurate motion of the simulated robot. The Realistic Robot Simulation 

interface has been tested on software and hardware platforms used for robotic 

simulation in the automotive industry and has demonstrated impressive results of 

accurate simulation of motion behavior, robot kinematics, and condition handling, 

(Willnow et al., 1996). It has been proven that the deviation between simulated and 

real joint values is less than 0.001 radians, (Willnow et al., 1996). The ideal case, of 

course, would be if there was not any difference between the simulated and real joint 

values. However, taking into account that non-Realistic Robot Simulation simulation 

software packages have on average approximately 10 times lower angular accuracy 

(Nof, 1999), Realistic Robot Simulation showed considerable improvement. 

Concerning task cycle times, a difference of less than 3% could be reached, (Willnow 

et al., 1996). Again, in comparison with the non-Realistic Robot Simulation systems 

where the cycle time difference is in range of 5% to 10% (Nof, 1999), Realistic Robot 

Simulation systems are obviously better, but in this field additional improvement can 

still be made (Realistic Robot Simulation II interface promises 99.5% cycle time 

accuracy and 99.9% joint accuracy, which still remains to be proven).

• The first industrial application o f currently the most efficient compiler-compiler 

utility - PRECCX. The use of programs intended for compiler generation facilitates 

the work on translator construction, so a programmer does not have to be concerned 

about techniques and computer limitations during translator implementation. 

According to the conducted literature and Internet Web search, this will be the first

8
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industrial application of PRECCX software utility. Making a compiler by using some 

of the contemporary programming languages (mainly C and C++) is attainable, but it 

takes too much time. Alternatively, using PRECCX for the same purpose will be 

faster and less prone to errors and also, it will have some advantages over the most 

frequently used compiler-compiler utilities -  YACC (Yet Another Compiler- 

Compiler) and Bison (section 3.1.).

• CNC controller simulation based on the customization o f the robotic simulator. 

Computer Numerical Control (CNC) machines can be considered gantry robots as far 

as their kinematics is concerned, but programming language that they use (often 

called G-code language) has its own characteristics that differ from the robot 

programming languages. A typical example is the definition of circular interpolation. 

Therefore, using Realistic Robot Simulation interface to simulate CNC programming 

language has required considerable amount of work, in depth knowledge of CNC 

controller software and Realistic Robot Simulation specification. Mapping CNC to 

default Realistic Robot Simulation instructions did not necessarily have one to one 

matching due to limited compatibility between the interface and the language.

1.3. APPLICATION IN AUTOMOTIVE INDUSTRY

This thesis had its practical verification in Flow International Corporation. The 

results of preliminary testing are given in the Chapter VI.

Most of Flow’s gantry robots with waterjet equipment have Allen-Bradley 9-series 

controllers. The company needed a simulation and off-line programming software 

product, which would have been delivered together with their CNC and robot equipment 

to the customers. That software package must be capable of simulating the pre-generated 

part programs and comprehensive enough to use the CAD geometry of a workpiece to 

automatically generate the robot path, which may be translated into CNC part programs.

The results of preliminary testing (which will be presented in Chapter VI) led to a 

conclusion that the work presented in this thesis combined with the core functionality of 

Workspace5 software package are able to fulfil the requirements of the Flow 

International Corporation.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4. GENERAL LAYOUT OF THE THESIS

The thesis is organized as follows:

• Chapter I presents the thesis statement and explains how the dissertation is organized.

• Chapter II presents the background issues (concepts of: simulation, off-line 

programming, Realistic Robot Simulation interface, lexing and parsing, waterjet 

cutting technology, and G-code programming).

• Chapter III is the literature survey of different simulation and off-line programming 

software packages and compiler-compiler techniques.

• Chapter IV describes creation of the workpiece and 5-axis gantry robot CAD models 

and techniques for setting-up their kinematical properties.

• Chapter V encompases the robot language translator development, lexing and parsing 

of the native robot language, Realistic Robot Simulation interface calls embedded in 

Visual Basic for Applications programming language (i.e. creation of Workspace 

Simulation Language source code modules), implementation of the most important 

Realistic Robot Simulation services in the motion planner and the development of 

preprocessing graphical user interface.

• Chapter VI presents the development of off-line programming software module and 

the results of testing in the industrial environment.

• Chapter VII lists the conclusions of this research.

• Appendix A contains the survey of PRECCX basic features and programming 

techniques with appropriate examples.

• Appendix B is the glossary of parsing and lexical analysis key terms.

• Appendix C shows the G-code language and the CNC machine specification used for 

testing.

• Appendix D contains the mathematical equations used for mapping of CNC circular 

interpolation to robot circular interpolation.

• Appendix E contains the G-code grammar description using PRECCX syntax, with 

action code attached.

• Appendix F presents the set of C functions written for the parser customization.

10
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• Appendix G shows the library of Workspace Simulation Language support functions.

• Appendix H contains the motion planner’s C++ source code (Realistic Robot 

Simulation services are implemented in the motion planner module).

• Appendix I shows the C++ source code of the created off-line programming class.

• Appendix J shows the listing of the G-code part program generated off-line, based on 

the geometry of the testing part and robot path properties.

• List of references used and the Vita Auctoris are included at the end of the document.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11



CHAPTER II 

BACKGROUND

In order to get the full understanding of the issues presented in the next chapters, 

basic concepts of simulation, off-line programming, lexing and parsing, Realistic Robot 

Simulation interface, wateijet cutting technology, and G-code programming language 

will be addressed in this chapter.

2.1. SIMULATION OVERVIEW

Simulation is the imitation of the operation of a real-world process or system over 

time. It involves the generation of an artificial history of the system and the observation 

of that artificial history to draw inferences concerning the operating characteristics of the 

real system that is represented (Banks, 1998). Simulation is an indispensable problem­

solving methodology for the solution of many real-world problems. It is used to describe 

and analyze the behavior of a system, ask what-if questions about the real system, and aid 

in the design of real systems. Both existing and conceptual systems can be modeled with 

simulation.

The techniques of Computer Aided Design (CAD) have found extensive use in 

improving or replacing the process of engineering drawing, architectural drawing, and 

many other applications. However, an engineering process involving many moving parts 

can only be understood fully through the process of simulation.

Early developments in this field have involved the simulation of computer 

controlled machining centres using existing CAD systems. Additional software is used to 

take the original CAD drawing of a machined part and analyze a path across its surface. 

An animated simulation of the movements that a machining centre must go through to 

create the part from a "raw" block is then displayed. As well as providing a visualization 

of the process, a file can be created containing the required instructions to the machining 

centre. The file can then be executed to create the part.

This extension of computer aided design to computer aided manufacturing is highly 

applicable to industrial robotics. Simulation provides an efficient, interactive graphical

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



environment which can improve the programming methods of industrial robots. Ever- 

increasing numbers of robot installations are now being planned using computer 

simulation. Only a few years ago the cost of the technology to achieve these requirements 

was prohibitive for all, but the largest organizations. However, as with CAD before it, 

simulation of industrial robots is possible even on standard, low-cost PC-compatible 

computers.

2.1.1. Obiect-Oriented Simulation

An object-oriented simulation models the behavior of interacting objects over time. 

Object collections, called classes, encapsulate the characteristics and functionality of 

common objects. A set of object classes has to be written in an object-orientated 

programming language (such as C++, Java, Smalltalk, etc.) by software developers, 

which are then used to create simulation models and simulation packages. The 

simulations built with these tools possess the benefits of an object-oriented design, 

including the use of encapsulation, inheritance, polymorphism, run-time binding, and 

parameterized typing. These concepts are illustrated by creating a set of objects to 

describe various simulation requirements. Object interactions define the behavior of any 

object-oriented simulation. In order to control the execution of the simulation, the 

development of a simulation language is mandatory, which has several notable features 

not available in other non-object-oriented simulation languages. Object-oriented 

simulations provide full accessibility to the base language, faster executions, portable 

models and executables, a multi-vendor implementation language, and a growing variety 

of complementary development tools.

The idea of an object-oriented simulation has great intuitive appeal because it is 

very easy to view the “real world” as being composed of objects. In a manufacturing cell, 

the physical objects may include machines, workers, parts, tools, conveyors, etc. 

However, part routings, schedules, work plans, and other information items could be also 

viewed as objects. All these objects interact to produce system behavior. A simulation 

engine manipulates these objects over the simulation run-time.

Since object-oriented simulations focus on objects, there is the possibility of

13
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dividing the simulation computation among objects. Objects provide a natural means of 

organizing the simulation and offer the potential of delegating portions of the execution 

to different processors, either parallel or distributed. Finally, since objects are often 

themselves made up of other objects, it is natural to decompose a system by its objects 

and view its behavior in terms of interacting objects (Banks, 1998).

2.1.2. Advantages and disadvantages of simulation

The benefits of simulation are mentioned in several technical references (Waterjet 

Web Reference, 2000), (OMAX Abrasive Waterjets, 2000), (Flow International 

Coorporation, 2000), and (Bo, 1994) which include the following:

1. Simulation lets one test every aspect of a proposed change or addition without 

committing resources to their acquisition. This is critical, because once the hard 

decisions have been made or the equipment has been installed, changes and 

corrections can be extremely expensive. Simulation allows one to test his designs 

without committing resources to acquisition.

2. By compressing or expanding time, simulation allows speed up or slow down 

phenomena to happen, so that important events can be investigated more thoroughly, 

while non important ones can be speeded up or skipped.

3. With simulation, one can determine the answer to the “why a certain phenomenon 

occurs" questions by reconstructing the scene and taking a microscopic examination 

of the system to find out the answers.

4. One of the greatest advantages of using simulation software is that once a valid 

simulation model have been developed, one can explore new policies, operating 

procedures, or methods without the expense and disruption of experimenting with the 

real system.

5. Simulation allows better understanding of the interactions among the variables that 

make up complex systems.

6. By using simulation to perform bottleneck analysis, one can discover the cause of the 

delays in work in process, information, materials, or other processes.

7. Simulation studies aid in providing understanding about how a system really operates

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rather than indicating someone’s predictions about how a system will operate.

8. Taking the designs beyond CAD drawings by using the animation features offered by 

many simulation packages the actual work of simulated facility or organization can be 

monitored. Therefore, it is possible to detect design flaws that appear credible when 

seen just on a two-dimensional CAD drawing.

9. The typical cost of a simulation study is substantially less than 1 % of the total 

amount being expended for the implementation of a design or redesign (Weisel,

1996). Since the cost of a change or modification to a system after installation is so 

great, simulation is in most cases a wise investment.

10. Simulation models can provide excellent training when designed for that purpose. 

The team, and individual members of the team, can learn by their mistakes and learn 

to operate better.

Conversely, simulation process is not ideal and flawless. According to Banks

(1996), Law and Kelton (1991), and Pegden, Shannon, and Sadowski (1995) the main

disadvantages of simulation include the following:

1. Model building requires special training. It is a skill that is learned over time and 

through experience.

2. Simulation results may be difficult to interpret. Since most simulation outputs are 

essentially random variables it may be hard to determine whether an observation is a 

result of system interrelationships or randomness.

3. Simulation modeling and analysis can be time consuming and expensive. Skimping 

on resources for modeling and analysis may result in a simulation model and/or 

analysis that is not sufficient to the task.

4. Simulation may be used inappropriately. Simulation is used in some cases when an 

analytical solution is possible, or even preferable.

5. Simulation is only as good as the model it is based on. Therefore, simulation cannot 

eliminate the errors made during the model design phase.

Potential users of simulation software packages should compare very carefully the

benefits and the drawbacks of using the simulation to solve their industrial problems,
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because in some cases it might not be the most efficient engineering tool.

2.1.3. Cost of Simulation

An important fact that is often not considered is the cost to conduct computer 

simulation. A simulation study can easily cost as much as $30,000 just in staff time, 

(Owen, 1995). Average cost of a complete simulation that addresses all the user’s 

concerns is estimated at $25,000-$100, 000, (Owen, 1995). The software itself runs from 

$2000 to $50,000, (Owen, 1995). The big costs are also in time-polling the people who 

know the system best and collecting the data the simulator needs.

2.2. OFF-LINE PROGRAMMING CONCEPT

Off-line or indirect programming refers to generating a robot program without 

interacting with a robot controller or using a programming device, remote from the 

industrial robot’s workplace.

In contrast to this, so-called teach-in or direct programming occurs at the industrial 

robot’s workplace by directly moving the end effector to the command positions, either 

with the help of a programming device or even manually, and then storing the positions 

in the robot controller’s memory. The working positions of the robot are usually defined 

with sample workpieces (for instance sample car bodies). The use of this programming 

technique, which still dominates today, generally makes the halting of a production cell 

or a production line unavoidable during the set-up time and is therefore an important cost 

factor. The programming time in which the facility cannot be used productively may in 

some cases last days or even weeks. Therefore the most important reason for employing 

an off-line programming system is to reduce the set-up time.

A distinction has to be made between simple systems, for example textual pro­

gramming systems, and costly off-line programming and simulation systems. The 

formers allow existing robot programs to be edited or archived, and are used to develop 

the program frame, usually without the determination of the individual positions and 

orientations of the robot motion. In combination with certain robot controllers textual
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programming systems also enable the syntax of robot programs to be checked. The latter 

costly off-line programming and simulation systems are interactively operated and allow 

a description to be made of the nominal path in the base coordinate system of the 

industrial robot. While textual programming systems are usually Personal Computer- 

based products, powerful workstations are often required for the three-dimensional real 

time graphics of the simulation systems.

Off-line programming systems still need to overcome several major problems to be 

widely accepted in automation industry. The following paragraphs will present the most 

important issues with respect to that.

The ideal case would be to load an off-line generated robot program down into the 

robot controller and to execute it without any adaptation. However this would assume 

good compatibility of the simulated and real manufacturing task. Even the leading 

companies in the domain of robot simulation and off-line programming, Technomatics 

and Deneb, do not claim that the simulation made by their software packages will 

completely match the reality every time their product is used (Nof, 1999). Primarily the 

reason for that is the discrepancy between the way a real robot controller and its virtual 

representation work. A possible remedy for that problem has been recently introduced in 

form of the Realistic Robot Simulation interface. The goal of the Realistic Robot 

Simulation is to use parts of the original controller software for more accurate simulation. 

The whole Realistic Robot Simulation concept is explained in detail in sections 2.3 and

5.2.2.1.

The development of postprocessors for translating from a simulation language to a 

robot language is not a straightforward task. The postprocessor must translate not only 

simple structures such as movement commands, but also more complex structures such as 

condition handlers, branching and looping statements, subroutines, and variables. There 

are very few established standards (Recommendations, rather than standards, have been 

developed by several national robotics associations. VDI (Verein Deutscher Ingenieure) 

robotics standard, developed in Germany, has had a certain success, but the problem was 

that only German manufacturers used it). The Realistic Robot Simulation standard is 

definitely the most accepted by robot manufacturers and certainly the most complete 

(Nof, 1999), and (Willnow et al„ 1996).
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Having carried out the translation, it is then necessary to transfer the program files 

from the computer running the simulation to the robot controller, either by using a 

communications link or else by copying the files onto a disk that is compatible with the 

controller. Again, this is an area in which there are few standards. Even the "standard" 

RS232 serial port poses problems of electrical wiring and protocol methods. However, 

once a link is established it is even possible to preprocess a robot program from its 

controller and translate into the language required by the simulation, allowing existing 

robot programs to be evaluated and improved.

2.3. INTRODUCTION TO REALISTIC ROBOT SIMULATION

In recent years, interactive and graphics-based tools for the planning, simulation 

and off-line programming of industrial robots have been introduced in industry. 

Compared to conventional planning and programming, Computer Aided Robotics (CAR) 

enables a better planning of robotic cells and reduces costly down-times of the 

manufacturing equipment due to on-line programming.

In order to depict robot manipulators, robot controllers, and task programs these 

Computer Aided Robotics software packages provide simulation models representing the 

real world equipment. The user applies these models via the user interface of the 

Computer Aided Robotics software package. Since different controller types possess 

different task languages, motion generator and methods for inverse kinematics, special 

controller models are required for an accurate simulation of each type.

Attempts to realistically model specific controller types have been undertaken by 

robotics specialists from the automotive industry and Computer Aided Robotics software 

suppliers. In general, these models showed a significant increase in simulation accuracy. 

However, without detailed controller knowledge, the implementation of specific 

controller models is very time-consuming. Furthermore, extensive measurement series are 

needed for the verification of the simulation model; yet this approach cannot guarantee 

the completeness and accuracy of the model. Whenever new controller type is introduced 

on the shop floor and its precise simulation is required, a new controller model must be 

implemented and verified.
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As a consequence, these design flaws cause usually significant discrepancies 

between a robot’s simulated and real behavior, generating the errors that are intolerable in 

today’s high demanding industrial environment (RRS Maintenance Management, 1997). 

Refer to section 1.1 for more details.

The need to simulate more precise specific controller behavior has lead to the

development of procedural interfaces within Computer Aided Robotics software 

packages. Today several Computer Aided Robotics software packages provide specific 

interfaces for the execution of controller models. By applying the interface

documentation, robotics specialists can implement simulation models for dedicated

controller or manipulators types. Depending on the Computer Aided Robotics software 

package, these interfaces allow different functionality and different data passing 

mechanisms. Therefore, a controller model provided for the interface a specific Computer 

Aided Robotics software package cannot be integrated in another Computer Aided 

Robotics software package without modification of the software.

To solve the above problems, the automotive industry has initiated the project 

"Realistic Robot Simulation" in which suppliers of robot controllers and robotic 

simulation systems cooperate. The project began on January 1, 1992 and was successfully 

completed in December 1993, (RRS Maintenance Management, 1997).

2.3.1. Objectives of the Project "Realistic Robot Simulation*1

The project goal was to improve the simulation accuracy of industrial robot 

simulation systems in order to achieve a more realistic simulation of robot controllers.

The goal was achieved by defining a common software interface (Realistic Robot 

Simulation interface) that integrates the controller simulating modules into simulation 

software systems. Using original controller software parts, controller manufacturers 

provide simulation modules for their latest controller types. Simultaneously, simulation 

system suppliers have implemented the Realistic Robot Simulation interface in their 

software products (Figure 2.1).
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Figure 2.1. Realistic Robot Simulation integration chart that shows the method to 

interface robot controllers and robot simulation software packages using Realistic Robot

Simulation software modules.

2.3.2. Technical Aspects of the RRS Interface

In order to assure simulation accuracy and efficient implementation of original 

controller software, the Realistic Robot Simulation interface was derived from the robot 

manufacturer’s controller software structures. The integrated controller software fulfils 

the requirements of the automotive industry for an accurate simulation of robot’s:

• motion behavior,

• inverse and forward kinematics, and

• condition handling.

It has been proven that the deviation between simulated and real joint values is less 

than 0.001 radians, (Willnow et al., 1996). Concerning cycle times a difference of less 

than 3% could be reached (Willnow et al., 1996). The Realistic Robot Simulation 

interface runs on software and hardware platforms used for robotic simulation in the 

automotive industry.
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2.3.3. Benefits and Disadvantages of the RRS Interface

There are several benefits of this interface:

•  Benefits o f Robot Controller Suppliers: By applying the Realistic Robot Simulation 

interface, controller suppliers can provide simulation products, which assure a better 

utilization of Computer Aided Robotics software packages at their customer’s site. 

These simulation products can be used in all Computer Aided Robotics software 

packages equipped with this interface. Hence, by using this interface, controller 

suppliers do not need to implement n different simulation products for n Computer 

Aided Robotics software packages. Furthermore, they can focus on the development 

of dedicated products without reimplementing the general parts of Computer Aided 

Robotics software packages. Consequently, this effort allows the controller supplier to 

minimize implementation efforts.

•  Benefits o f Computer Aided Robotics software suppliers: Suppliers of Computer 

Aided Robotics software packages are no longer obliged to implement and verify 

specific controller models for accurate simulation of their Computer Aided Robotics 

software packages. Verification will become obsolete because the original controller 

software is used.

•  Benefits o f Computer Aided Robotics software users: By using original controller 

software within Computer Aided Robotics software packages, the simulation 

accuracy of the industrially applied Computer Aided Robotics software packages will 

be improved. This reduces costly downtimes of the manufacturing equipment. Once a 

new controller type is acquired, the automotive companies can also buy the 

corresponding simulation product for a precise simulation. Without a long 

implementation and verification phase, a precise simulation can be used during the 

initial operation phase of a new controller type, (RRS Maintenance Management,

1997).

The main disadvantage of the RRS interface is its cost. RRS software modules must 

be purchased directly from the robot manufacturers, and depending on the manufacturer, 

the module prices are in range from $5000 to $10000 (Willnow, 1996).
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2.3.4. Availability of the RRS Interface

The Realistic Robot Simulation-Interface Specification has been available to the 

public (though only the companies that participated in the Realistic Robot Simulation 

project are entitled to obtain the Realistic Robot Simulation technical documentation) 

since January 1994. It is distributed by the Fraunhofer Robotics Institute in Berlin, 

Germany.

2.4. LEXING AND PARSING OVERVIEW

Lexers and parsers (definitions of these terms are provided below) help write 

programs that transform structured input. This includes an enormous range of 

applications; anything from a simple text search program that looks for patterns in its 

input file to a C compiler that transforms a source program into optimized object code 

(Levine, Mason, and Brown, 1995).

In programs with structured input, two tasks that occur repeatedly are dividing the 

input into meaningful units, and then discovering the relationship among the units. For a 

text search program, the units would probably be lines of text, with a distinction between 

lines that contain a match of the target string and lines that do not. For a C program, the 

units are variable names, constants, strings, operators, punctuation, and so forth. This 

division into units (which are usually called tokens) is known as Lexical analysis, or 

Lexing for short. Software programming utilities like Lex, or its dialect - Flex (so called 

lexer generators) take a set of descriptions of possible tokens and produce a C routine, 

which is called a Lexical analyzer, or a Lexer, or a scanner for short, that can identify 

those tokens. The set of descriptions given to a lexer is called a Lex specification.

The token descriptions that a lexer generator uses are known as regular 

expressions. A lexer generator turns these regular expressions into a form that the lexer 

can use to scan the input text extremely fast, independent of the number of expressions 

that it is trying to match. A lexer generated by a lexer generator is almost always faster 

than a lexer that might be written in C by hand, (Levine, Mason, and Brown, 1995).

As the input is divided into tokens, a program often needs to establish the
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relationship among the tokens. A C compiler needs to find the expressions, statements, 

declarations, blocks, and procedures in the program. This task is known as parsing and 

the list of rules that define the relationships that the program understands is a grammar. 

Software utilities such as PRECCX, YACC, Bison (so called parser generators) et 

cetera, take a concise description of a grammar, and produce a C routine that can parse 

that grammar - a parser. A parser automatically detects whenever a sequence of input 

tokens matches one of the rules in the grammar and also detects a syntax error whenever 

its input doesn’t match any of the rules. A parser written by parser generator is generally 

not as fast as a parser that could be written by hand, but the ease in writing and modifying 

the parser is invariably worth any speed loss. The amount of time a program spends in a 

parser is rarely enough to be an issue, (Levine, Mason, and Brown, 1995).

2.5. INTRODUCTION TO WATERJET CUTTING

Waterjet cutting, also referred to as hydrodynamic machining, is an advanced 

technology characterized by a cutting tool that uses a stream of ultrahigh-pressure water 

forced through a sapphire nozzle. The waterjet removes workpiece material and produces 

a narrow kerf (a cut in a workpiece made by a waterjet stream) by the cutting action of a 

fine (.075 mm to .0.5 mm diameter), high velocity (more than twice the speed of the 

sound), high pressure (170 to 415 MPa) stream of water or water-based fluid with 

abrasives.

The first application of waterjet technology was in early 70s. Pressurized jet has 

been used in the timber, lumber, and pulpwood industries for many years as a means of 

quickly debarking logs from huge trees.

The concept of using an abrasive waterjet for machining metals was first developed 

in 1974, but since the mid-1980s practical equipment has become available for use only 

in precision machining. The principle was quite similar, the only difference was in the 

use of abrasive. Abrasive mixes with waterjet after the water flows out of the orifice, thus 

creating abrasive jet, which is much more efficient than the waterjet. Abrasivejet can cut 

almost any known material. Manufacturers of equipment now claim that the process can 

be used to cut "everything" from simple gray cast iron to 50 mm thick armor plate and
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boron-reinforced aluminum, (Waterjet Web Reference, 2000). Table 2.1. shows how 

cutting speed changes with respect to the type of material being cut (nominal thickness 

for all the samples is 50 mm).

Material
Cutting speed

[in/min] [mm/min]

17-4PH Stainless steel 2.0 51

HY-80 High-strength steel 2.0 51

6A1-4V Titanium 2.0 51

Ni-Cr Superalloy 2.0 51

Aluminum 4.0 102

Lead 18.0 457

Glass 18.0 457

Table 2.1. The change of cutting speed with respect to the type of material being cut 

(nominal thickness for all the samples is 50 mm), (Waterjet Web Reference, 2000)

Figure 2.2 shows a relation between a pump pressure and the jet velocity during 

abrasive waterjet cutting.

400 500 600 700 800 900 1000
Jet Velocity [m/s]

Figure 2.2. Relation between a pump pressure and the jet velocity during abrasive 

waterjet cutting, (Waterjet Web Reference, 2000).
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2.5.1. Components of a waterjet cutting system

Waterjet and abrasivejet systems are almost the same, except for a few features. 

Main parts of both types of the systems are:

• filtering system,

• pump,

• manipulator,

• nozzle,

• control system, and

• catcher.

Abrasive jet has an additional abrasive recycling system, which collects the 

abrasive from a catcher, filters the reusable abrasive, washes and dries it, preparing it for 

the new cycle.

Filtering System

Water used in waterjet cutting has to be purified before entering the waterjet 

system. Inner diameters of the pipes used in waterjet systems are relatively small, and 

impurities can clog the system after long time of operation. Therefore the filtering system 

is the absolute requirement.

Water filtering can be done in several ways -  through filtration, softening, or 

treatment by reverse osmosis.

Pumps

Wateijet and abrasivejet cutters use two types of pumps -  intensifier pumps and 

crank pumps. Both types of pumps apply the same principle -  the piston moves inside a 

cylinder, alternating directions, pressurizing, and pushing the water out of the cylinder 

into the wateijet system. However, there are many differences between the pumps:

•  The method o f moving the piston -  crank pump moves the piston in exactly the same 

manner like an internal combustion engine. Intensifier pump uses a hydraulic cylinder 

to move the piston.
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•  Energy conversion problem -  fluids are compressible under high and ultra high 

pressures. Under the pressure of 275 MPa, water is compressed for approximately 

10%, (Waterjet Technology, 2000). The piston moves in one direction and raises the 

pressure, thus compressing the water. Once the outlet valve opens, water rushes out of 

the cylinder into the system. The pressure drops and the outlet valve closes. Water left 

in the cylinder expands, pushing the piston in the opposite direction. Energy resulting 

from water compressing and expanding is being treated differently:

1. Crank pump -  converts this energy into the kinetic energy that moves the crank and 

other rotating elements, the same as the internal combustion engine,

2. Intensifier pump -  energy has to be taken away by heat exchangers in order to provide 

the normal operation of the system. The result is different efficiency -  crank pumps 

have efficiency of 95% and higher, while intensifier pumps have efficiency of 

approximately 70%, (Waterjet Technology, 2000).

• Pressure uniformity -  intensifier pump usually pumps water in the system once or 

twice per second. Although the time interval is relatively short, still the pressure value 

jumps and drops enough to influence the cutting process significantly (uniform 

pressure is of vital importance for the cutting process). To eliminate pressure changes, 

an additional element in the pressure system is required -  an accumulator. However, 

the problem with the accumulator is that it has to be massive in order to cope with 

ultra high pressures. Crank pump, on the other hand, makes around 30 strokes per 

second, thus the pressure remains uniform. Furthermore, there is no need for 

accumulator, (Waterjet Technology, 2000).

• Other differences

- Noise -  crank pumps make less noise than intensifier pumps,

- Maintenance costs -  crank pumps are easier to maintain, and parts are cheaper,

- Price -  crank pumps are cheaper,

- Operating speed -  operating speed relates to the piston speed. Crank pump moves the 

piston at speeds of approximately 0.75 meters per second, while the intensifier pump 

moves the piston at speed of approximately 0.15 meters per second, (Waterjet 

Technology, 2000). To achieve the same water flow, the intensifier pump must have
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larger capacity, i.e. it has to be of larger size. This reflects in the higher price for the 

same water flow.

Selection of the optimal pump type is one of the most important tasks when it 

comes to introduction of waterjet cutting systems into industrial production. If the energy 

consumption represents a problematic issue, then a crank pump is a better solution. If the 

manufacturing process requires a lot of interruptions and a lot of changes, again the crank 

pump is the solution. However, for larger waterjet cutting systems, such as large gantry 

waterjet/abrasivejet cutters that work for long time without interruptions, intensifier pump 

is a better choice. Intensifier pump is a better solution for systems that use more than one 

nozzle, as well as the systems where the period between the preventive maintenance 

cycles must to be long.

Manipulators

The main purpose of the manipulators is to place a nozzle, i.e. a tool, in the desired 

position and orientation. Since most of the waterjet/abrasive cutting is done in an XY 

plane, manipulators are mostly of gantry type. The following pictures (Figures 2.3. and 

2.4.) show some of the gantry type manipulators:

\ .
\  v-euus

\

Water Pum p,

Figure 2.3. The sketch of OMAX 2-axes waterjet cutter, (Omax Abrasive Waterjets,

2000).
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Figure 2.4. The photograph of Flow Automation 2-axes waterjet cutter, (Flow

International Corporation, 2000).

Manipulators can be of different size and can be extremely large, such as Flow 

Corporation custom-made gantry manipulator that performs three-dimensional machining 

(Figure 2.5.). In this case, dimensions of the manipulator’s work envelope are 20ft x 50ft 

x 5ft, {Flow International Corporation, 2000)

Figure 2.5. Two different views at Flow Automation 5-axes (3 translational and two

rotational) gantry robot.
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Other types of manipulators are robotic arm manipulators. For example, ABB I-R 

turnkey system represents a complete waterjet cutting cell system, which includes one or 

two inverted, vertically articulated robotic arms.

Nozzle

There are two types of nozzles used:

-  waterjet nozzle, and

-  abrasivejet nozzle.

The pictures below (Figure 2.6.) show both types of nozzles:

Figure 2.6. The cross-sections of a waterjet nozzle (left) and an abrasivejet nozzle (right),

(OMAX Abrasive W aterjets, 2000).

Essentially, both types are the same, however the abrasivejet nozzle has an extra 

inlet that provides the flow of abrasive into the mixing tube. Simply by replacing a 

waterjet nozzle with an abrasive nozzle, the same machine becomes an abrasivejet cutter
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and vice versa. Replacement takes only several minutes, thus keeping the downtime to 

minimum, (OMAX Abrasive Waterjets, 2000).

Nominal life of a nozzle varies, and depends on the orifice quality and the seals 

inside the nozzle. The orifice is exposed to intense tearing, and seals are exposed to ultra 

high pressures. Usually, nozzle’s life is approximately 40 - 75 hours, (Bo, 1994). Lately, 

a new type of nozzles, “long-life” nozzles were introduced on the market, whose lifetime 

ranges from 60 to 100 hours, (OMAX Abrasive Waterjets, 2000). Used nozzles do not 

have to be thrown away, they still can be used for rough cutting.

A key part of the nozzle is called a “jewel” or an orifice. The orifice is usually 

made out of sapphire, although other materials can be used instead. Diamond may be 

used as well, however the problem is its hardness, and the production of such a small 

orifice. Sapphire represents optimal solution, when it comes to quality, orifice life, and 

the manufacturing {Flow International Corporation, 2000). Another important parameter 

is the inner diameter and it ranges from 0.076 mm for soft materials up to 0.89 mm for 

hard materials, {Waterjet Web Reference, 2000).

It is important to note that the position of the orifice is located at the exit of the 

nozzle for the waterjet cutter, whereas for the abrasive cutter the orifice is located above 

the abrasive inlet. The reason is very simple. Abrasivejet involves more intense tearing 

than the waterjet, therefore the regular operational time of an orifice would be shorter if it 

was positioned passed the abrasive inlet.

In the wateijet nozzle, its position does not make any difference, since there is no 

abrasive in the water, and the abrasive effect is everywhere the same. Still, the orifice is 

located at the very end of the nozzle. If it were located farther from the nozzle end, the 

cutting efficiency would be partially lost due to the pressure distribution. Pressure 

significantly drops farther from the nozzle end, and that is the main reason for keeping 

the nozzle very close to the workpiece.

Control System

Control system represents the most important part of any waterjet/abrasivejet 

system. Basically, there are two types of the control systems:

• Manual control systems, and
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• CNC control systems.

Before explaining the differences between the two types of control systems, the 

cutting process will be described. It is important to understand the process itself, because 

it will make the difference between the control systems more clear.

The most difficult problem of waterjet machining is the control of the cutting 

process. Although the waterjet is a straight line “tool”, it tends to “bend” while cutting a 

workpiece. Bending is used here to describe the shape of the jet. In case of two- 

dimesional machining, the point where the jet enters the workpiece and the point where 

the jet exits the workpiece should be on the same vertical line. This is not the case, 

however. There is always a lag that depends on several factors such as the nozzle speed, 

acceleration, material properties, and workpiece thickness.

The existence of the lag does not represent a problem if machining is performed 

along a straight line. There is always enough time for the jet to catch up. However, small 

radii and sharp changes in the direction are problematic. Since jet lags behind, it is not 

quite known where the jet will exit the workpiece. The only way to solve this problem, or 

at least to minimize its influence to acceptable level, is to decrease the speed every time 

the direction changes.

Manual control is used exclusively for trial and error testing. This kind of testing 

is used for determining the motion parameters that will provide the satisfactory cutting 

results. The number of tests that have to be performed is large, time consuming, and 

require highly skillful employees to conduct the tests.

On the other hand, each CNC controller manufacturer defines its own speed and 

acceleration profiles, which might be or might not be suitable for specific waterjet cutting 

operations. Still, the use of CNC controllers is a big step forward because of at least two 

reasons:

• G-code language typical for CNC controllers is simple and powerful language, and

• CNC controllers offer a lot of easy programmable features.

What is usually done in order to solve the jet lagging problem is to divide into 

segments all the lines and arcs of the cutter path, and then to set the motion parameters
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for each individual segment. However, there are at least two problems related to this 

solution. Firstly, the time required for segmentation, especially if the part geometry is 

complex, may be very long. The other problem is that the amount of memory required to 

store all the instructions can by far exceed con toller’s buffer capacity.

Recycling System

Abrasive usage makes the machining cost higher, since the abrasive is one of the 

main components of the process. The costs of abrasive usage can built up to 50% of the 

total cost, (OMAX Abrasive Waterjets, 2000). Therefore it is very important to recover as 

much abrasive as possible in order to decrease the costs.

The way the recycling system is designed is very simple -  sludge is pumped out 

of the water tank (catcher) into the recycling machine. The water entering the recycling 

system contains particles of abrasive and material the workpiece is made of. Water is 

filtered through the screens of different mesh size. Particles of the material as well as the 

abrasive of smaller size are deposited, while the rest of the abrasive is recovered. 

Recovery involves washing and drying of abrasive, thus preparing it for a new cycle.

Between 50 and 70 percent of the abrasive can be recycled after the first use, 

{OMAX Abrasive Waterjets, 2000). In turn, this decreases the waterjet cutting costs for up 

to 40%.

2.5.2. Advantages and disadvantages of waterjet cutting technology

The major advantages of waterjet cutting over other cutting techniques are:

• Application to flexible manufacturing systems, since changeover of cutting patterns is 

easily accomplished under computer control.

• The elimination of sharpening requirements.

• Increased production speeds.

• No heat-affected zone in the material being cut as with laser, electron beam and 

plasma arc cutting. Even abrasive waterjet cutting produces no heat that can degrade 

metallurgical properties, (Waterjet Web Reference, 2000). Because of the smooth 

edges produced, often no post machining is required.
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• Maneuverability is also an excellent feature of this technology. Saws, for example, 

are mainly limited to straight cuts or essentially small arcs of circular cuts, whereas 

the jet can be easily directed to cut curves, holes, and complex shapes. In addition to 

metals and glass, waterjet cutting can be used to cut through large sections of concrete 

blocks.

• Material-savings through reduced kerf (a cut in a workpiece made by a water jet 

stream) and closer part spacing.

• Improved product characteristics through precise, clean edge cuts that eliminate 

crushing, hard edge, deformation, delamination, strings, burrs, or die slivers.

• Reduced dust, noise, heat, and sanitary problems.

Major disadvantage of waterjet cutting is its accuracy. Although accuracy has been 

improved with the new types of motion control, still the waterjet cutters have lower 

accuracy then EDM (Electro Discharge Machine) and laserjet cutting (two non- 

conventional machining processes similar to waterjet cutting) machines.

Laser machining achieves tolerances up to 0.025 mm and represents the most 

accurate of three methods, (Waterjet Web Reference, 2000).

Waterjet cutting achieves tolerance of up to 0.075 mm, (Waterjet Web Reference, 

2000). The quality of the tolerances has improved significantly in last couple of years, 

due to the improved motion control.

EDM achieves tolerances that are in between the laser and waterjet cutting 

tolerances, (Waterjet Web Reference, 2000). Usually, waterjet cutting is used as first 

operation, used for quick cuts and rough tolerances, while EDM comes as second 

operation to bring the tolerances closer to the ones that were set.

This partially limits the application of waterjet cutting systems to areas where the 

high accuracy is not required (Waterjet cutting machines still cannot replace highly 

accurate milling and turning machining centers that can achieve machining tolerances of 

up to 0.001 mm). Waterjet cutting systems are often installed in the following industries:

•  Automotive Industry -  waterjet cutters have two areas of application. The first is a 

pre-processing role that involves the rough and quick cutting of a workpiece,
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followed by the fine cutting with EDM. The second area of application is important as 

well -  cutting of doors, carpets, instrument panels, console parts, etc.

• Aerospace Industry -  uses a lot of composite materials and alloys that are often 

difficult to be cut. Abrasivejet is the solution -  it can cut almost any material with no 

heat generated. Cutting and drilling can be done without delaminating the material.

• Food Industry -  water entering the wateijet system is absolutely clean of any kind of 

bacteria or microorganisms. Cutting is done in a very clean manner. There is no touch 

between the food and the nozzle, unlike with the knife. Cutting is done with no heat 

generated, so no potentially damaging processes can be started with waterjet cutting.

• Tile and Marble Industry -  highly expensive diamond tools are replaced with the 

waterjet cutters. A case study showed that cutting speed increased almost 10 times, 

accuracy increased from 1.58 mm to 0.075 mm, and the control was significantly 

simplified, (Bo, 1994).

2.6. INTRODUCTION TO CNC CONTROLLER PROGRAMMING

LANGUAGE (G-CODE)

A CNC controller performs machining operations by executing a series of 

commands that make up a part program. These commands are interpreted by the 

controller which then directs axis motion, spindle rotation, tool selection, and other CNC 

functions.

Part programs can be executed from the controller's memory or from a CNC tape (a 

memory device that can sequentially store CNC instructions) . Programs on tape can be 

executed directly from the tape, or can be loaded into the controller and executed from its 

memory.

Each machining operation performed by the controller is determined by the 

controller's interpretation of a group of words (commands) called "blocks" Individual 

blocks in a part program define each machining process. Part programs consist of a 

number of blocks that together define a complete operation on a part.

Part program blocks are made up of:

• Characters - A character is a number, a letter, or a symbol that has a specific
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meaning for the controller. For example, “1”, “G”, and are characters that 

controller recognizes as meaningful information 

• Addresses - An address is a letter that defines the instruction for the controller. The 

complete list of addresses for Allen-Bradley controllers is shown in the next table 

(Table 2.2.).

Function Address
Rotary axis about X A
Rotary axis about Y B
Rotary axis about Z C
Tool radius compensation number D
Thread lead E
Feedrate function (F word) F
Preparatory function (G-code) G
Tool length offset number H
X arc centre in circular interpolation I
Y arc centre in circular interpolation J
Z arc centre in circular interpolation K
Number of repetitions L
Miscellaneous function M
Sequence number N
Program name O
Subprogram name f P
Arc radius R
Spindle rpm function S
Tool selection function T
Incremental axis name U
Incremental axis name V
Incremental axis name W
Main axis X
Main axis Y
Main axis Z

Table 2.2. List of programming addresses for Allen -  Bradley 9 - series controllers

• Words - A word consists of an address followed by a numeric value. Examples of 

words are: G01, X I5, F50, M2. For each word used in a part program, there is a
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format that designates the number of digits allowed as a numeric value for that word. 

The format for an M-code, which is a word, for example, is normally M2, which 

indicates that an M-address can be followed by only two digits.

• Codes -  Represent CNC instructions that can be executed by CNC controllers. They 

are usually composed of words followed by parameters (in some cases a word alone 

can be a code. For example G17, which is a word, represents XY work plane 

selection, which is a CNC code at the same time). There are several groups of CNC 

codes: G-codes, which are motion and controller set-up instructions, M-codes which 

define program control and manufacturing application related instructions, T-codes 

which are tool related instructions, etc.

• Parameters - The controller has a number of fixed cycles that are initiated by a 

specific CNC code. When other words appear in those code blocks, they are referred 

to as "parameters", because their values are relevant only to that CNC code. For 

example, a Z word generally refers to a Z axis move, but when it appears in a block 

with a G83 peck drilling cycle, its value refers to the depth of the hole to be drilled. In 

that case, it is a "parameter" of the G83 fixed cycle.

A block is a set of codes that define the operations of the controller. For example:

/N 3 G00X10Z10M 3;

is a block composed of:

/ - optional block delete character,

N3 -  sequence number word,

GOO -  preparatory function word (rapid positioning mode),

X10 Z10 - axis movement words (parameters of GOO),

M3 -  miscellaneous function word (spindle on forward in clockwise direction), and

; - end o f  block character.

The controller sequentially executes blocks in a part program to conduct the

required machining operation.

A part program has three logical sections:

• Beginning - setting up the controller and the machine to perform the operations
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wanted.

• Middle - performing the machining operations.

• End - returning the machine to a safe stop position, and preparing the controller for 

the next part program.

The blocks programmed vary for each section of the program. For example, the 

following simple program consists of the three mentioned logical sections.

G91G21; -beginning

G00X28;
G33Z-46E4; -middle 
G00X5;

Z2; -end
M02;

Example 2.1. Simple G-code part program divided into three logical sections

Furthermore, a complete part program may consist of a main program and 

subprograms, which can be called from the main program.
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CHAPTER III

LITERATURE SURVEY

This chapter is divided in two subsections. The first subsection points out 

similarities and differences between the world’s most utilized compiler-compiler (parser 

generator) software utilities YACC® and Bison®, and the one used in this study -  

PRECCX®, taking into account authors’ opinions expressed in several technical articles 

and books in domain of parser generation. The aim is to show that PRECCX was chosen 

with solid reason, due to its indisputable advantages over YACC and Bison.

The second subsection presents the different simulation and off-line programming 

techniques introduced in score of technical articles. Those articles are divided into three 

different groups: the articles realated to development of language translators and off-line 

programming modules in robotics simulation software packages, the several general and 

introductory robotics simulation articles that have been mainly used to complement the 

simulation and off-line programming background sections of this dissertation, and finally 

the technical articles that describe the new techniques in simulation and off-line 

programming of industrial robots. The goal of this subsection is to present the work that 

has been done in the field of robotics simulation and off-line programming and to show 

how much this thesis is unique and in which aspects.

3.1 PARSER GENERATOR RELATED ARTICLES

Development of the robot language translator is one of the key parts of this thesis 

work. Compiler-compilers or parser generators are software utilities used to create 

various types of language translators (including translation of: one human-spoken 

language into another, a human-spoken language into a machine language, or a machine 

language into another machine language). Creation of fast, small (in memory size), and 

flexible (multi-purpose) translator primarily depends on the selection of a parser 

generator. Therefore, a considerable amount of literature research should be conducted 

before deciding which parser generator should be the most suitable for a translation task. 

Contemporary software market offers a variety of parser generators, but for majority of
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computer applications YACC® and Bison® parser generators are used. The reasons for 

the aforementioned are YACC and Bison’s long-time availability on the market (since 

early eighties), several improved versions since the first release date, satisfactory amount 

of supporting documentation (insufficient or incomplete documentation is considered to 

be one of the major obstacles for less known parser generators to become more popular), 

and, of course, the variety of parsing options and techniques that these products offer.

Recently, a new parser generator has been introduced, named PRECCX (Prettier 

Compiler-Compiler Extended) offering several new features (such as: grammar contexts, 

synthesized attributes, infinite lookahead, complex expressions and macros) that can 

significantly shorten translation process, make the process of translation easier and more 

intuitive for developers, and generate parsers more modular and flexible.

This subsection presents the author’s reasons for selecting PRECCX parser 

generator to be used in this dissertation, by pointing out PRECCX advantages and 

disadvantages over YACC and Bison. The technical articles written by Costagliola 

(1997), Rackovic (1996), Levine, Mason, and Brown (1995), and Breuer and Bowen 

(1992 -  1995) have been used as a knowledge base that has contained relevant 

information to justify the PRECCX parser generator selection. Thus, the next paragraphs 

sublimate the conclusions drawn after reading the mentioned articles. The definitions of 

the key terms required for good understanding of this section are presented in Appendix 

B.

PRECCX is intended to extend the Unix YACC and Bison utility. However, the 

technology is entirely different, which leads to some fundamental differences in the way 

that definition scripts have to be written. One can convert YACC or Bison scripts to 

PRECCX script quite easily, but PRECCX scripts cannot be converted to YACC or Bison 

scripts because of the extra expressiveness of the semantics involved. But the 

fundamental differences mean that sub-expressions cannot be converted independently of 

their context (YACC and Bison scripts are heavily context dependent), and some special 

features of YACC or Bison do not covert easily, such as precedence declarations, because 

they depend vitally on YACC or Bison semantics (Breuer and Bowen, PRECCX User 

Manual, 1999).
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As far as possible, the PRECCX scripting language has been designed to look like 

an extension of YACC's and Bison’s, with the result that PRECCX can be thought of as 

YACC or Bison with parameters, arbitrarily complex compound expressions, infinite 

lookahead and a better way of dealing with attributes.

The main advantages of PRECCX over YACC and Bison are presented below:

• Contexts

Each grammar definition may be parameterized with contexts. For example, n is the 

context in the following definition:

@ decl(n) =  space(n) expression < \n ’> decl(n+1)*

This definition uses a grammar term decl(n), which expresses the idea that a new line 

starts n spaces in from the left-hand margin. The right-hand side of the expression 

contains a term decl(n+l), which designates that each following line will have one 

character longer indentation than the previous one. Some languages determine whether a 

declaration is local (and to what) or global in scope by relative indentation, and this is 

how to express this kind of constraint. It will be necessary to cast parameters to the type 

PARAM (long) if they are not of the same size (as long) under the model of C.

E.g.

@ decll = decl((PARAM)l)

This is rarely necessary.

• Synthesized Attributes

PRECCX can synthesize attributes immediately after matching a rule. An attribute is built 

by following the clause for which it is the attribute by an @, followed by the expression 

for the attribute, followed by a final @. The expression must not be side effecting, 

because PRECCX may execute the expression more than once if it backtracks. E.g.

@ foo  =  bar gum {@ 1 @}

@ | nay {@ 2 @}

attaches the attribute 1 to the first clause and 2 to the second. Attributes already attached 

to the terms of the clause may be referenced and then dereferenced as follows:

@ arfarf= arj\x arf\y {@ $x+$y @J
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The dereferencing $ in front of the x  in $x is only necessary to ensure proper casting of 

types from (PARAM to VALUE) in all circumstances. It will usually not be required, but it 

is safer to use it. The x  can and should always be used as a parameter without the $. E.g.

@ bowwow =  bow\x wow(x)

This is where the real power of synthesized attributes comes in. An attribute synthesized 

during the parse can be used as a parameter in the remainder of the parse. This makes it 

possible, for example, to identify a single token:

@ foo  =  7\x what(x)

whereas otherwise a construction like 

@ foo  =  <’a ’> what( 'a ’)

@ | <’b ’> what(’b ’)

@  | ...

would have been necessary. The attributes can be passed into actions too:

@ foo = ?\k {:printf("%c",(int)$x);:}

but the actions are not executed until the end of the parse phase. In particular, it is no use 

expecting an action to alter an attribute value.

• Infinite Lookahead

PRECCX has infinite lookahead and backtracking in place of the YACC 1-token 

lookahead, This means that PRECCX parsers distinguish correctly between sentences of 

the form foo bah gum and foo bah NAY  on a single pass. If one cannot imagine why he 

should want to decide between the two, a good example is to think about if... then and if 

... then ... else. One can write the grammar definition down straight away in PRECCX as 

@ statement 1 =  < ’/ ’>  < f’> boolexpr

@ <’t ’> <’h ’> <’e ’>  < ’n ’>  statement

@ [ < ’e ’> <’l ’> < ’s ’> <’e ’> statement ]

but this is much harder to do for YACC-style.

• Complex Expressions

Complex compound expressions like 

explain {{this | that} {several \ no} times}+
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are legal almost anywhere within PRECCX definition scripts. The definition can be 

substituted for the definee anywhere in a script except in the parameter list of a higher- 

order parser application. Grouping parentheses may be required.

• Macros

PRECCX Macros may be defined in a script, simply by defining one parser as a context 

for another. For example,

@ optional(parser) = parser | {}

may be defined (this particular example is an equivalent for the built-in [parser] 

construct). Then the construct

@ ice_cream(flavour) =  tub(flavour) optional(sauce)

may be used. The macros are really ordinary grammar definitions, which just happen to 

take other grammars as parameters. It may be necessary to cast these parameters to be the 

same length as all the others, if the model of C uses different sized pointers for function 

addresses than long. The cast is only required when one introduces a grammar name as a 

constant:

@ ice_cream(flavour) =  tub(flavour) optional((PARAM)sauce)

and he may also find that he has to declare 

extern PARSER sauce;

somewhere above the line, just to let C know what is going on.

The main disadvantages of PRECCX in comparison with YACC and Bison and 

how important they are, are listed below:

• Speed

PRECCX compilation time is somewhat longer then in case of YACC and Bison. 

However, the compilation time is still short enough to be considered problematic. 

Therefore, PRECCX is moderately fast, typically taking two to five seconds to compile 

scripts of several hundred lines.
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• Action Execution

There is a difference in PRECCX between the time at which the parse occurs and the 

time at which actions are executed. The parse occurs first and the actions are “built” 

during this phase, and executed either at the end of the parse, or at an explicit “!” 

command in the parse definition. This is in contrast to YACC and Bison where parse and 

the execution of actions are interleaved - but then PRECCX has to be able to backtrack 

across actions, and therefore cannot execute them immediately they are encountered. But, 

the complication of having to remember that the two phases are distinct is more than 

compensated for by the infinite lookahead that it allows.

• Precedence

There is at present no equivalent for the declaration of YACC or Bison precedences and 

associativity. Instead, these have to be coded explicitly for PRECCX using the preferred 

ordering.

It is obvious that PRECCX features marked as disadvantages are not even remotely 

as important for the parser to be generated as the features that are considered to be 

advantages over YACC and Bison. Therefore, according to conducted literature search, 

PRECCX has been considered to be the most appropriate solution for the task of robot 

language translation.
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3.2. SIMULATION AND OFF-LINE PROGRAMMING RELATED

TECHNICAL ARTICLES

The next several technical articles (below) have been reviewed in order to compare 

language translation process proposed by their authors with the translation process used 

in this thesis work.

Rackovic (1996) describes a method for construction and implementation of a robot 

language translator using compiler-compilers. Starting from the academic robot 

programming language PASRO, a new robot language is formed, as well as the translator 

for the newly formed language into the symbolic robot language of the robot control 

system EDUC-NET, using the compiler-compiler COCO-2. This paper presents very 

similar language translation methodology to the one applied in the dissertation. The major 

difference is that COCO-2 compiler-compiler lacks a lot of features that PRECCX has 

and therefore requires additional development of several supporting C files (very time 

consuming), and very long and sometimes trivial grammar rules (Trivial rules assign just 

a single token to the left hand side of the rule. They are mandatory in the grammars that 

can only accept symbols (left hand side of the rule) as parameters, but not single tokens.).

Kamisetty and McDermott (1992) concentrated their research on the design and 

development of the robot language translator for IBM SCARA (Selective Compliance 

Assembly Robotic Arm) configured robots. The translator converts simulation data from 

McDonnell Douglas’ PLACE system into AML (A Manufacturing Language) robot 

language. This translator has been coded in C language. According to authors, the code 

maintenance is not straightforward, due to many function and variable dependencies. 

Also, grammar rules are coded in a programming language instead of scripting language, 

thus every rule change requires considerable changes in the source code.

All the developed software modules, which are the integral part of the thesis work, 

are written for the Workspace simulation platform. Also, if the software modules are 

analyzed separately, neglecting the interactions with other modules, the chances are that 

the wrong conclusions may be drawn. Therefore, to find out how efficient and accurate 

the concepts introduced in this dissertation are, the characteristics of whole platform 

along with added modules should be taken into consideration. The following literature
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survey has been conducted to compare such upgraded software platform with simulation 

and offline packages described in several technical articles. It is important to note that in 

this study Workspace has been compared to the software packages running on powerful 

workstations like IGRIP®, ROBCAD®, and SILMA®, which can offer considerably 

more to a user, but the price of those packages is more than ten times the price of 

Workspace. On the other hand, it will be proven that when compared to the other peer 

software packages presented in technical articles written by: Fujiuchi, et al. (1992), 

Danni, et al. (1996), Lee and ElMaraghy (1990), Rooks (1997), Krishnavrasad and 

McDermott (1992), Wozniak and Warczvnski (1989), Fukuda, Murakami and Kojima 

(1992), and, Zeghloul, Blanchard, and Ayrault (1997), Workspace has some strong 

advantages.

Due to the fact that there is no standard procedure that would define which criteria 

are the most significant for the simulation and off-line software package comparison, the 

twelve most common features that have been pointed out in almost every technical article 

regarding robot simulation, have been chosen to be comparison criteria (refer to the 

header row of Table 3.1). Some of the criteria are explained in more detail below:

•  Compatibility -  the ability of a software package to manipulate (export and import) 

different graphical file formats.

•  Customizability -  the ability of a software package to allow users an option to change 

the existing and to add new software features based on complexity of a simulated 

task.

•  Accuracy -  refers to how close a simulation software’s interpretation of position and 

orientation of teach points, trajectory creation and cycle time calculation is to the one 

of a real robot controller.

•  Supported languages -  number of robot languages that can be verified and off-line 

programmed in a software package.

•  Automatic path -  refers to the ability of the software package to automatically create 

teach points using geometric features of CAD parts.

The other criteria are quite straightforward and do not need additional explanations.

The inputs in Table 3.1 (below) are based on the facts provided in previously
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mentioned technical articles, product related technical documentation and personal 

experience formed by intensive analysis of four major robotics simulation packages (first 

four rows in Table 3.1) over the course of the last two years. The term “HIGH” that 

appears in the value section of the table is based on the benchmark set by the simulation 

package with superior performance based on a certain criterion. The terms “MEDIUM” 

and “LOW” denote gradually lower performances. This rating system is based on the 

personal experience and may possibly be subjective. The author has not been able to find 

any other, more objective simulation and off-line programming software package 

comparison in the literature.

According to the comparison shown in the Tables 3.1a and 3.1b, one can conclude 

that Workspace has better performance than the other Personal Computer based 

packages, but it still legs behind the most renown packages in robot simulation domain. 

However, Workspace has the highest performance/price ratio among all the packages in 

this analysis. (Nof, 1999)

Compatibility Customizability Accuracy
Supported

languages
Automatic path Easy to use

IGRIP HIGH MEDIUM HIGH MANY YES NO

ROBCAD HIGH MEDIUM HIGH MANY YES NO

SILMA HIGH MEDIUM HIGH MANY YES NO

WS5 MEDIUM HIGH HIGH MANY YES ' MEDIUM

ROBOSIM MEDIUM LOW MEDIUM A FEW NO YES

TOYSIM LOW LOW HIGH ONE YES YES

SMAR HIGH LOW MEDIUM N/A NO YES

SPOTS LOW LOW LOW MANY NO YES

SIMRO LOW LOW MEDIUM A FEW NO YES

Table 3.1. a. Comparative analysis of the basic features and characteristics offered in the 

examined simulation and off-line programming software packages.
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Dynamics

Module

Statistical

analysis
Robot models Rendering Price Platform

IGRIP YES YES MANY HIGH QUALITY HIGH Work Station

ROBCAD YES YES MANY HIGH QUALITY HIGH Work Station

SILMA YES YES MANY HIGH QUALITY HIGH Work Station

WS5 NO YES MANY HIGH QUALITY MEDIUM PC

ROBOSIM NO NO A FEW LOW QUALITY N/A PC

TOYSIM NO NO A FEW LOW QUALITY MEDIUM PC

SMAR NO NO A FEW LOW QUALITY LOW PC

SPOTS NO NO A FEW LOW QUALITY LOW PC

SIMRO YES YES A FEW LOW QUALITY LOW PC

Table 3.1. b. Comparative analysis of the basic features and characteristics offered in the 

examined simulation and off-line programming software packages.

Among all the criteria presented above, accuracy certainly determines whether a 

software package can be acceptable for robotics industrial applications. Off-line 

generated robot programs generally show considerable differences between the desired 

and the real motion after having been converted into robot controller’s binary forms. 

Individual deviations include those from the nominal position and orientation of the end 

effector, from the nominal path and the path velocity, as well as from the nominal cycle 

time.

Investigations have been carried out in the last few years into increasing the 

simulation accuracy (Nof, 1999). With that respect, one of the conclusions is that if a 

robot’s kinematics chain is more exactly modeled, position and orientation accuracy will 

be improved. Simulation packages that have accurate robot kinematics modeling ability 

enable more consideration to be given to manufacturing and assembly errors of the 

industrial robot axes and links, as well as, additional elasticity and the associated 

curvature.
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In some other robot simulation packages, the transformation (inverse kinematics) 

and motion interpolation of the original robot controller software are integrated into the 

off-line programming system. It is thus possible to achieve improved path accuracy and 

other more realistic time-dependent characteristics, such as path accuracy, path velocity 

or cycle time. This accuracy issue is what distinguishes Workspace from the other 

Personal Computer based robotics simulation packages analyzed in this study. Workspace 

has a motion planner developed according to Realistic Robot Simulation specification, 

which can offer much more accurate simulation and therefore off-line programming to 

the user (This area is very important part of the dissertation. Detailed explanations are 

provided in sections 5.2.2.1 and 5.3).

3.3. INTRODUCTORY AND GENERAL PURPOSE ARTICLES

Articles written by Owen (1995), Owens (1991), and Weisel (1996) are very good 

starting point to acquire the basic concept of robotic simulation and off-line 

programming. They emphasize:

• The importance of simulation and off-line programming.

• Present the benefits for automation industry.

• Address the current problems and weak points.

• Foresee the future development in this area.

Because the first three points are fully elaborated in the dissertation, the next 

several paragraphs will introduce the expected near-future development in industrial 

robotics’ simulation and off-line programming area, as presented in the articles above.

Best estimates suggest the size of the North American simulation market today is 

between $30 and $35 million (Nof, 1999). It is expected that in the next couple of years, 

the market will have surged to over $100 million, and some authors expect even 

exponential increase in the years to follow.

Within the next two to five years, the widespread entry of Personal Computer-based 

open architecture controllers will be in demand. They will replace today's specialized 

controllers that require specialized interfaces. The leading Personal Computer simulation
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software packages will be compatible with most, if not all, of those Personal Computer 

controllers. Personal Computer-based, resident simulation in engineering at vendor 

facilities, builder’s shops and at production facilities will be mandatory.

Simulation will be neutral to the robot and specific to the application. Systems 

integrators and robot users will demand objective analyses of the entire range of robot 

manufacturing, and robot manufacturers therefore will not be in the field of objective 

simulation analysis of robotic systems.

Factories with robots from different manufacturers will increasingly rely on 

simulation and demand services from companies that do not have ties to robot or supplier 

companies. Users will insist on an objective evaluation of robot function and system 

performance for a wide range of manufacturers' products.

New techniques of simulation and off-line programming will be developed. Virtual 

reality and knowledge-based systems will be used to facilitate the interactions between a 

robot and a user, and also to make the process faster, more “natural” and more precise. 

The next section presents the theoretical outline for those two techniques.

3.4. NEW TECHNIQUES IN SIMULATION AND OFF-LINE 

PROGRAMMING OF INDUSTRIAL ROBOTS

3.4.1. Virtual Reality Approach in Simulation and Off-line 

Programming of Industrial Robots. (Boud and Steiner. 1999)

This technical article discusses the development of a new method for the off-line 

programming of robotic devices, and also indicates some of the potential applications.

In comparison with Workspace (off-line programming software package used as a 

software tool in this thesis), off-line programming within a virtual environment could 

reduce the required skill levels of a programmer, reduce the programming times, allow 

the operator a “natural” interface with which the operator would conduct the task in the 

real world, and reduce the monotony.
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The use of Virtual Reality as an off-line programming technique is a natural

evolution of simulation packages already available for the robotics, including Workspace.

The major areas where Virtual Reality technology can be applied to the robotic

applications can be listed as follows:

•  Simulation o f manufacturing plants, and planning o f robotic workcells. This can give 

the operator a sense of “being there”, interacting with the virtual environment. By 

using shuttering glasses, the user can obtain a perception of depth, which would not 

otherwise be available in a two-dimensional format. It is as close to three-dimensional 

perception as possible.

•  Off-line robot programming from manipulations carried out by the “natural” 

movements o f the operator. This follows on from a similar principle previously 

known as a “robot training arm”. This required the robot to be stopped during 

production in order to be programmed on-line. However, using for example an 

instrumented glove as part of a Virtual Reality system, the operator's gestures are 

fully captured and hence the user's movements are deemed to be more “natural”.

•  Teleoperation o f robots in remote places. Applications in this area include the control 

of robots in hazardous environments or in distant locations (such as space 

exploration) where operations are extremely expensive both to plan and to execute.

Advantages of using Virtual Reality based systems over Workspace are as follows:

•  Immersibility. The presentation of pictures in a three-dimensional view. An operator 

visualizes a three-dimensional world with the viewpoint changing interactively when 

the user moves his head. An illusion of the operator being inside is therefore obtained. 

Workspace has dynamic zoom and dynamic orbit functions that cannot achieve such a 

high level of three-dimensional representation.

•  Interactivity. Advanced input devices such as DataGloves and six degree of freedom

Joysticks enable the operator to manipulate interactively within the virtual

environment. Workspace uses standard input devices - mouse and keyboard, which 

are not that convenient.

•  Dynamics. Virtual Reality systems are characterized by a high arithmetic and

graphical performance. Immersibility and interactivity need a system that can react
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rapidly to the inputs of the operator. This guarantees a continuous simulation of 

dynamic processes. Workspace has simulation engine under development, still 

suffering of some functional errors. Also, Workspace still cannot play real-time 

simulations, although the real time/simulated ratio is mostly acceptable (between 1:2 

and 1:3).

An initial Virtual Reality system is proposed by the authors (Figure 3.1.), and is 

under consideration for development at the University of Birmingham by the Intelligent 

Systems and Robotics research Group.

Head Mounted Display

Operator

Voice Recognition 

System

3D Sound

CyberGlove

Haptic Device

Silicon Graphics Workstation

 ± ________________________________
Robot Task Programming Software

• Task Planning

• Collision Detection

• Calibration

I
Robot Workcell

Figure 3.1. Initial proposal of the off-line robot programming facility being developed at

the University of Birmingham.
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3.4.2. Knowledge Based Simulation and Off-line Programming

Approach. (Bernhard. Schahn. and Schreck. 1999)

The knowledge based programming procedure is composed of two phases (Figure

INPUTS

PHASE 1 PHASE 2

PROGRAM
INFORMATION

PRODUCTION
KNOWLEDGE

JOBFRAMES 
AND 

PARAMETER 
^  SPACE .

DEFINITION
PARAMETER

SPACE

DEFINITION
PARAMETER

VALUES

USER DIALOG

Figure 3.2. Principal knowledge based approach proposed by the authors.

In the first phase the required production task specific parameter space is 

determined. In the second phase the parameter values are defined.

Based on the geometric task information described by the jobframes and the actual 

state of the production cell, the program information can be in principle derived from the 

rules representing detailed production knowledge.

The principal system architecture is shown (Figure 3.3.) which is prototypically 

realized. The main elements of this architecture are:

1. Production cell components,

2. Static cell model,

3. Dynamic cell model,

4. Production knowledge, and

5. Control strategies.
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All the elements are described subsequently.

P r o g r a m -
In fo rm atio n

C o n t f o l - S t r a t e g y
( d o m » l n - l n d * p » n d « n t )

P rogram m ing
D ialog

P r o d u c t io n  T a s k  K nowledg* 
( d o m a l n - s p s c i t i c )

E xtension /
Modification

D ynam ic  Cell Modell Set-up

C ell C o m p o n e n ts

Figure 3.3. Prototypically realized system architecture

The production cell components (such as: robots, robot controllers, workpieces, and 

tools) are the basis for cell modeling. According to the authors, frames seem to be the 

most appropriate solution for modeling the components. Frames are comparable with 

named entities consisting of slot-value pairs. Thereby the entities characterize objects and 

the slots their attributes, which may have values. The frames may be structured in classes, 

sub-classes and instances of classes. Figure 3.4. presents the frame representation of a 

welding gun.
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S lo t inherit from 
F r a m e  F ro< *uctio r>  
M ean
S lo t inherit from 
F ra m e  T o d

HI

S lot inherit from 
F ra m e  P ro te c tio n  
M ean
S lo t inherit from 
F ra m e  Tool

Slot inherit from 
F ram e  WoKJw^g Gun

m pedftc eiot only 
for G 17 3 0

W elding G u n

G eneralization of: C1730 
Specialization: Tool

C om pany:

Weight:

W elding Perform ance: 
Nominal Power: 
E lectrode Force 
Maximum Lift:
Suitable for:
{Value in C lass Robot) 
W elding

ts-a

C l  7 3 0

G eneralization of: / 
Specialization; W elding Gun

C o m p a n y :  A rco

W e ig h t: 4 2 ,5  Kg

W elding Perform ance: 1.5 mm 
Nominal Power: 17 kVA 
Electrode Force: 250 dAN 
Maximum Lift: 25 mm 
Suitable for: 1R 160 
(Value in C lass Robot) 
W elding;

Arm D istance: 75 mm

Figure 3.4. Frame representation of welding guns.

The static production cell model is represented by the fixed configuration of 

selected cell components. Similar to components, each production cell is described by a 

frame, which can be associated with the cell components by the relation “contains”, 

defined as a slot in the frame.

The dynamic cell model reflects the states of the components and their 

interrelations within a configured cell. The interactions with other components are 

represented by special relations, determined in the static cell model. In dynamic cell 

model methods and rules are added in order to change the states with regard to the 

connections among the components.

The next important area for the realization of the system is related to the acquisition 

and representation of the production knowledge, required to infer the program
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information. It can be subdivided into acquisition and representation of general valid 

facts, e.g. material constants and specific, mostly incomplete facts especially regarding 

jobframes, the cell model and general facts related to the program information. The first 

area of production knowledge is mainly represented by frames, while for the latter one, a 

rule representation was used.

To get the system working, additional procedures are required. They are realized by 

introducing the control strategies, which define the actions of the system independent of 

the production specific knowledge and the modeled cell.

To derive the parameter values the system tries to infer a value by examining every 

possible rule chain without asking the user. If a complete chain to infer the parameter 

value cannot be found, the system asks the user to provide the value.

The main similarity between presented system and Workspace is that the Program 

Information in the proposed system and geometric points in Workspace are virtually the 

same. Program Information is composed of Jobframes, Motion Information, Sequence 

Information, Process Parameter and Cell Information. The same items, just named 

differently, are contained in GP Properties dialog box in Workspace.

The main difference is related to user interaction. While in Workspace user needs to 

completely define all the parameters important to the application that will be simulated, 

the presented system does that automatically. The system tries to infer a parameter value 

by examining every possible rule chain without asking the user. If a complete chain to 

infer the parameter value cannot be found, the system then asks for the user’s input. The 

system has a knowledge base, so the process parameters are chosen to optimize the work 

path, thus eliminating user’s input errors. The corresponding benefit is that the user does 

not need to know a lot about the process that he wants to simulate, the system will do 

most of the “thinking”. On the other hand, Workspace, in case of undefined parameters, 

uses default values that may or may not be appropriate for a simulated process.
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CHAPTER IV

ROBOT MODELING AND 

KINEMATICS

This chapter contains the following sub-topics:

• The architecture of mechanical manipulators.

• The major tasks of robot kinematics.

• The review of the CAD based graphic simulators for robotic systems.

• The list of software modules that comprises a typical robotics simulator.

• The description of the workpiece and the 5-axis gantry robot CAD and kinematics

design techniques used in this work.

4.1. ABOUT ROBOT MODELING AND FUNDAMENTAL 

QUESTIONS OF ROBOT KINEMATICS

A mechanical manipulator can be modeled as an open-loop articulated chain with 

several rigid bodies (links) connected in series by either revolute or prismatic joints 

driven by actuators. One end of the chain is attached to a supporting base while the other 

end is free and attached with a tool (the end-effector) to manipulate objects or perform 

assembly tasks. The relative motion of the joints results in the motion of the links that 

positions the hand in a desired orientation. In most robotic applications, one is interested 

in the spatial description of the end-effector of the manipulator with respect to a fixed 

reference coordinate system.

Robot arm kinematics deals with the analytical study of the geometry of motion of 

a robot arm with respect to a fixed reference coordinate system as a function of time 

disregarding forces and moments that cause the motion. Thus, it deals with the analytical 

description of the spatial displacement of the robot as a function of time, in particular, the 

relations between the joint-variable space and the position and orientation of the end- 

effector of a robot arm. This section addresses two fundamental questions of both 

theoretical and practical interest in robot arm kinematics:
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1. For a given manipulator, given the joint angle vector q(t) = (qi (t), q2 (t), . . . qn(t) )T 

and the geometric link parameters, where n is the number of degrees of freedom, what 

is the position and orientation of the end-effector of the manipulator with respect to a 

reference coordinate system?

2. Given a desired position and orientation of the end-effector of the manipulator and the 

geometric link parameters with respect to a reference coordinate system, can the 

manipulator reach the desired prescribed manipulator hand position and orientation? 

And if it can, how many different manipulator configurations will satisfy the same 

condition?

The first question is usually referred to as the direct (or forward) kinematics 

problem, while the second question is the inverse kinematics (or arm solution) problem.

Since the independent variables in a robot arm are the joint variables and a task is 

usually stated in terms of the reference coordinate frame, the inverse kinematics problem 

is used more frequently.

Since the links of a robot arm may rotate and/or translate with respect to a reference 

coordinate frame, the total spatial displacement of the end-effector is due to the angular 

rotations and linear translations of the links. Denavit and Hartenberg (1965) proposed a 

systematic and generalized approach of utilizing matrix algebra to describe and represent 

the spatial geometry of the links of a robot arm with respect to a fixed reference frame. 

This method uses a 4 x 4 (four rows and four columns) homogeneous transformation 

matrix to describe the spatial relationship between two adjacent rigid mechanical links 

and reduces the direct kinematics problem to finding an equivalent matrix that relates the 

spatial displacement of the "hand coordinate frame" to the reference coordinate frame. 

These homogeneous transformation matrices are also useful in deriving the dynamic 

equations of motion of a robot arm.

In general, the inverse kinematics problem can be solved by several techniques. 

Most commonly used methods are the matrix algebraic, iterative, or geometric 

approaches.
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4.1.1. CAD based graphic simulators for robotic systems

CAD-based graphic simulators for robotic systems allow CAD modeling of robot 

manipulators and facilitate the solutions for forward and inverse kinematics problems. 

Cell design, robot selection, and verification of the robot reach and of the correct 

placement of the cell elements, can all be done in a virtual CAD and simulation 

environment.

The main elements of a CAD based graphic simulation system are (Nof, 1999):

• A CAD solid modeler, which allows the user to build a database with a valid and 

complete geometric description of the robot and its environment. This CAD database 

includes the models of the robot links and all the objects in the cell environment: 

machines, fixtures, feeders, grippers, parts, etc.

• Built-in libraries of commercially available industrial robots, common production 

equipment, and application-specific options that include tooling, such as a variety of 

commercially available grippers, spot weld guns, and arc weld guns. The libraries are 

an integrated part of the system and can be expanded by inclusion of elements from 

the CAD database created by the user.

• Data translators for standard data-exchange formats such as IGES, DXF, and STEP. 

These translators allow the importing of models of products, tools, and parts from 

other corporate CAD systems and support the rapid development of accurate 

simulation models. They also allow the exporting of model data to be used by other 

systems.

• Kinematics module, which allows the modeling of the robots and other mechanisms. 

This module includes direct and inverse kinematics algorithms, which are necessary 

to calculate the robot envelope, its reach, and the motion in space during simulation 

of the robot’s movements.

The various commercially available robotic simulation packages provide the basic 

tools needed for robotic cells and system design. These basic tools are essential in order 

to rapidly design and deploy automated manufacturing systems. A software package 

called Workspace has been developed as a visualization tool for engineers and managers
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involved in the process of designing or debugging new or existing robot installations. In 

this dissertation Workspace5 software package has been used as a CAD graphics and 

robot kinematics modeling platform.

4.2. THE DESCRIPTION OF ROBOTIC CELL DESIGN 

PROCEDURE USED IN THE DISSERTATION

The following step-by-step procedure has been used to completely define all the 

elements of the robotic cell, designed for simulation and off-line programming testing: 

the manipulator, the workpiece and the cutting tool. The manipulator has beem modelled 

according to the technical specification of an AF-Series 5-Axis Three Dimensional 

Shapecutting Machine, manufactured by Flow Robotics Company. Similarly, the CAD 

model of a cutting tool has been created based on PASER3 waterjet cutting tool 

specification. The tool has been manufactured by Flow Automation Company.

The procedure is as follows:

• Create a CAD solid model of the robot.

• Rename the robot CAD components to have the Workspace required names. For the 

robot base use the robot model’s name, and for the robot links the following names 

should be used: Linkl, Link2, Link3, Link4, Link5 (Figure 4.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59



Figure 4.1. CAD structure of the manipulator composed of 5 links connected at joints.

• The next construction stage is to join the links into a robot structure. For this 

operation co-ordinate frames must be placed at the joint centres and oriented 

correctly.

• Select the base of the robot and use the menu options to create the robot.

• Each joint must be in the correct position. To change their positions, use appropriate 

menu options.

• Define the matching kinematics template by entering the values of kinematics 

parameters in Denavit-Hartenberg matrix template and associate it with the CAD 

object of the manipulator (Figure 4.2).
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K inem atics T em plate m l

Template: |3T2RfCNC "3

Template
Param eters

Jorit _ | Thetaj . d; A1 A i _ L .Aipna
1 -90 X X 90
2 90 X X 90
3 0 X X 0
4 l l | | | | s ^ X 0 30
5 ^ S i t 0 0 -30

Current
Parameters:

Jpw. ,____Theta, ...........D: . A Alphaj
1 -90 00 -1384.00 0.00 90.00
2 9000 •4334.43 0.00 90 00
3 0.00 1573.18 462.59 -0.00
4 -0.00 -928.19 000 30.00
5 0.00 0.00 0.00 -30.00

Twist Angle: JoTE

OK |

Numerical O ptions..

Cancel

Figure 4.2. Inverse and forward kinematics template that shows the parameters of the

Denavit-Hartenberg’s matrix

• Add the World Coordinate Frame to the robot.

• Add the Tool Coordinate Frame to the robot (Figure 4.3).
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aW ord

\

Figure 4.3. Position and orientation of the Tool and World coordinate frames attached to

the CAD model of the manipulator

Enter the robot limits for each joint (Figure 4.4).

Enter the robot Velocity and Acceleration values (Figure 4.4).
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Figure 4.4. Robot joint properties dialog box that defines joint positions, joint limits, 

joint velocities and accelerations, and joint connections within a kinematic chain.

• Check the robot joint motions for all the possible robot link collisions. If a collision is 

detected, modify the model so that the robot is not allowed to collide with itself. 

Robot’s collisions with the simulation environment entities (other robots, 

mechanisms, turntables, conveyors, etc.) Workspace detects automatically during the 

simulation run time.

• Define the Home position of the robot.

• Define the Zero position of the robot.

• When the robot model is complete, define robot general properties (See Figure 4.5).

3
ID |Options) Lratj | Khemabct j

Mantiacturo |FIowRotalic«lnc.

Robot ID. |F10W

Robot Batch Numb* jo 

Control* :■ ■■■ [Alen-Btadey 3/260 

Act/*, Tod jWATERJET

R obot P roperties

Cancat [ |  Hell

Figure 4.5. Robot properties dialog box that provides general information about the

manipulator and its controller.
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• Check the robot-working envelope. The working envelope is important to show the 

limits of robot’s operational space and also for safety considerations (Figure 4.6).

Figure 4.6. Robot’s working envelope created separately for axes 1 and 2.

• Design the CAD model of the workpiece that will be complex enough to require 5- 

axis machining. Designing a workpiece that would require 3 or 4-axis machining is 

possible of course, but the complex 5-axis robot kinematics wouldn’t be fully tested 

in that case. Therefore, a wheel-shaped workpiece has been modeled, with the inner 

contour that requires synchronous cutting motion of all five robot axes (Figure 4.7).

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.7. CAD model of the test workpiece that requires 5-axis machining (four 

symmetrically located inner contours require 5-axis cutting motion, for the other 

contours, 2-axis machining is sufficient).

• Design the CAD model of a waterjet cutting tool. According to the technical 

specification (Flow Automation Company), PASER3® waterjet cutting head has 

been modeled and attached to the robot’s flange (end of joint five).
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Figure 4.7. The CAD model of PASER3® waterjet cutting head attached to robot flange

(end of Joint 5).

At the end of the presented procedure, the modeled robotic cell will contain all the 

information required by the simulation package:

• The Denavit-Hartenberg matrix defining the relationship between the robot joints.

• The name of the inverse kinematics template used by the robot.

• The total number of joints.

• The type of each joint (rotational or translational).

• Joint limits.

• Joint maximum velocities.

• Joint maximum accelerations.

• Robot zero position.

• Robot home position.

• CAD model of the workpiece that will be used for testing.

• CAD model of the waterjet cutting tool.
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C H A PTER  V

SIMULATION MODULE 

DEVELOPMENT

5.1. CREATON OF A ROBOT LANGUAGE TRANSLATOR

Language translators are software programs intended to take input files written in 

one language and to format the output files in different, destination language. Their area 

of application is wide, ranging from interpretation of natural languages to translation of 

computer programming languages into industry based machine specific programming 

languages.

In parallel with the improvements of the algorithms, methods, and techniques for 

defining and realization of translators, the appropriate software tools have been 

developed for automatic generation of their particular parts, the so-called compiler- 

compilers. The use of these programs intended for compiler generation facilitates the 

work on the translator construction, and frees the programmers from thinking about 

techniques and computer limitations with respect to translator implementation.

5.1.1. Language translators created by compiler-compilers

Compiler-compilers are used to generate language processors (such as compilers, 

translators, or interpreters) from high-level descriptions. After specifying the grammar of 

the language to be translated, the compiler-compiler creates a program that processes 

input text written in that language. This program hierarchically decomposes the input text 

into phrases. For each phrase the semantic actions can attached to grammar rules, which 

are elaborated when the corresponding phrase is processed. Semantic actions contain the 

code that matches the syntax of a language to be translated with the appropriate syntax of 

a destination language, and print out the destination language syntax in the output file.

Technology from classical compiler construction becomes more and more 

important in the fields of domain specific languages, document processing, and automatic
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software generation. Authors working in these areas are experts in their field, but not 

necessary experts in the field of parsing technology. Whereas most programmers are 

familiar with the notion of grammar scripts, it requires special education to write a 

grammar script in such a way that it fulfills the requirements of a specific parsing 

approach.

Compiler-compilers are based on interaction between a lexer and a parser. Section 

2.4 describes the basic concepts of lexing and parsing. Also, Appendix A presents 

language syntax for parser generation, and Appendix B defines the most important 

parsing and lexing terms. Thorough understanding of sections mentioned is absolutely 

necessary in order to follow the work presented in this chapter.

The structure of a parser is composed of three sections, the definition section, the 

rule section, and the subroutine section.

The first section defines all the tokens expected to be received from the lexical 

analyzer. Also, this section is often used as a header section for local and global 

variables, functions and subroutines.

The rules section describes the actual grammar as a set of production rules or 

simply rules. Each rule consists of a single name on the left-hand side of the assignment 

operator (“=”)> a list of symbols and action code on the right-hand side, and a special 

symbol indicating the end of the rule. By default, the first rule is the highest-level rule. 

That is, the parser attempts to find a list of tokens, which match this initial rule, or more 

commonly, rules found from the initial rule. The expression on the right-hand side of the 

rule is a list of zero or more names. The symbol on the left-hand side of the rule can be 

used like a token in other rules. From this, the complex grammars can be built. Every rule 

is followed by the action code.

The action part of a rule consists of a blocks of code that can be written in one of 

the programming languages, depending on the compiler-compiler software utility used. 

Also, different compiler-compiler software packages execute action code at different 

times with respect to parsing phase. Thus, a parser can execute an action at the end of a 

rule immediately after that rule gets matched, or can completely execute the action code 

after the recognition of all the grammar rules.

The third and final section, is the user subroutine section. This section can contain

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



any programming code written in appropriate programming language and is completely 

copied into the resulting parser. The minimal set of functions has to be provided in this 

section necessary for a parser and a lexer to compile: main( ) and error( ). The main 

routine keeps calling the parser until it reaches the end of the input file. The error routine 

handles the input that cannot be parsed.

When a lexer and a parser are used together, the parser is the higher level routine. It 

calls the lexer whenever it needs a token from the input. The lexer then scans through the 

input recognizing tokens. As soon as it finds a token of interest to the parser, it returns to 

the parser, returning the token’s value.

Not all tokens are of interest to the parser. In most programming languages the 

parser doesn't want to receive comments and whitespace for example. For these ignored 

tokens, the lexer doesn't return so that it can continue on to the next token without 

interacting with the parser.

5.1.2. Creation of G-code language translator

The purpose of the G-code language translation is to use the input file written in G- 

code language and automatically generate the matching code in Workspace Simulation 

Language. That custom-made simulation language then communicates with default 

motion planner and simulation engine in order to display the simulation of the G-code 

input file.

For the creation of the G-code language translator compiler-compiler software 

packages PRECCX and Flex were used. Therefore, the compilers were coded in C 

language, but not by hand. The source code for a C language compiler was automatically 

generated by Flex and PRECCX.

PRECCX, the "PREttier Compiler-Compiler" is very similar to much better-known 

compiler-compiler software YACC. Unlike YACC, PRECCX creates top-down parsers 

with infinite lookahead capability, parameters, arbitrarily complex compound expressions 

and synthesized attributes. Refer to Appendix A for more information about using 

PRECCX.

Flex is a popular tool for developing lexical analyzers. It takes an input robot
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program file and tokenizes it, that is, it identifies different strings as being keywords, 

numbers, identifiers, etc. These tokens are then passed on to the grammar parser, where 

they are used to match the semantic rules.

5.1.2.1. The translation process

Flex and PRECCX together form a compiler-compiler. Each takes an input file 

conforming to a special format, and outputs C source code. The output code of these 

programs is then compiled and linked to create an executable. That executable performs 

the translation from a native robot language into a Workspace Simulation Language 

module.

Figure 5.1 depicts the language translation process used. Language description 

represents the set of grammar rules that describe G-code language syntax. Compiler- 

compiler (designated with C-C symbol) software is a combination of Flex lexer and 

PRECCX parser generators. Source program is generated in ANSI C language. Compiler 

is the standard Visual C++ compiler for Windows® environment. Data identifier on the 

same figure is a general term for input file, which in this case is a G-code language part 

program. Program output is a translated file written in Workspace Simulation Language.

INPUT P R O C E S S  O UTPUT

CompilerLanguage.
Description

Executable
ProgramSource

Program

Program
OutputData EXECUTABLE

PROGRAM

C-C

COMPILER

Figure 5.1. The flowchart that represents all the stages of language translation procedure,

designating the inputs, processes and outputs.
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The next three sub-sections will describe the major stages in language translator 

creation, focusing on the grammar coding and the solutions for the parser action 

execution and lexer ambiguities.

5.1.2.2. Writing the grammar rules to describe the syntax of G-code language

Describing the grammar of G-code language was not very difficult task from the 

programming perspective, but it required considerable amount of time to be completed.

Relative simplicity of the task was determined by moderately complex G-code 

language syntax. The language is composed of keywords mainly, with just a few variable 

data types. Also, the language functions and subroutines cannot accept any parameters, 

i.e. only void arguments can be passed, which makes the whole issue much simpler. 

However, the language is very extensive, with more than two hundred keywords and 

structures, each containing several arguments. The language abundance combined with 

relatively old-fashioned PRECCX debugger (the debugger works in DOS environment 

and its error locating accuracy is very low), made the whole task very time consuming 

and prone to errors. But, if the grammar was hand-coded in C programming language, the 

coding performance would have been definitely worse (more time, much more code, very 

prone to errors). G-code grammar written using PRECCX syntax rules is presented in 

Appendix E.

5.1.2.3. Solution for the PRECCX action execution problem

Parser actions represent blocks of code written in a programming language (in this 

case in C language) that are executed after particular grammar rule (or rules) has been 

matched. In this dissertation, the C action statements were primarily used to print into the 

output file Workspace Simulation Language function calls. With respect to that, section 

5.2.1 was written to describe the main characteristics of simulation languages in general, 

while section 5.2.2 explains Workspace Simulation Language embedment into the action 

portion of the language translator.
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This section presents how PRECCX parser generator was customized for G-code 

language translation. PRECCX must be customized because of its characteristic that the 

parsing is done first, and then the actions are performed. This means that all of the 

variables, which a developer has come to rely on in YACC to pass variable values to the 

action statements (yytext), may have been overwritten numerous times since the parse 

phase.

One may be thinking that he could just store a list of what tokens were read in 

which order, then when PRECCX worked through the actions, the next token in the list 

he could read off. The problem with this is that PRECCX goes backwards and forth 

through the parse checking out all possible grammar rules, before deciding on what it 

should do, so the actions may be repeated a large amount of times before doing anything 

useful. Additional set of C functions needed to be written in order to avoid incorrect 

output. The source code for those functions is presented in Appendix F.

The way around this is to make a list that always returns the right string. It can be 

done with the function:

Int ukey(int * String, int length )

All that needs to be done is to pass the token found at the beginning of a string and 

the length of a string. Then, the checking is performed to see if the string is already on the 

list. If so, a unique value is returned which can be, in turn, returned to PRECCX.

For instance,

@ integer = digiAx { digit *j\y (@ $y ? ukey((int *) $x, $ y -$ x ) : ukey((int *) $x, 1) @J 

@ digit = (isdigit) f@(int) pstr @}

In the above code a value pstr is passed back with every digit, pstr is an integer 

pointer which PRECCX uses to know where it is in the parse. When an integer has been 

matched, the value returned by { digit *} is checked (if there have been no occurrences, 

then it returns 0, otherwise it returns the value returned by the last occurrence). If the
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value in $y is non-zero, then the number’s length is going to be the difference between 

the two pointers, otherwise the length will be 1.

The ukey function looks to see if the string is in the list, if so then it returns the 

position, if not, then it adds a new string to the list and returns its position. To use the 

string stored, the char * getstring(int) function is used, to which the ukey position of the 

string wanted to be read has been passed, and it returns the string value. If the value 

passed is zero or the value is beyond the end of the list getstring just returns an empty 

list.

So, that’s how the terminals such as numbers, strings and comments are handled. 

Abstract syntax trees (AST) have to be done similarly, but not using the same functions. 

Instead of ukey, the ASTukey function is used, in much the same way, except it takes 

numerical values to point to the left and right branches. For example:

@ expr = numbeAx < ’+ ’> expr\y { @ ASTukey($x, “+ ”, $y) @}

@ | numbeAx {@ $x @}

@ number = integeAx { @ ASTukey(0, getstring($x), 0) @}

The simple expr expression always returns the output of an ASTukey. If the 

expression should be written into a file, then the output Jree  function is used for that:

@ assignment = <Hello> < ’= ’> expAx {: fprintfioutputJlle, “\nHello = %s", 

output_tree($x));:}

Only the functions that return int can be put in {@ @} brackets, as these brackets 

themselves contain the return value used in a function. Semi-colons shouldn’t be put after 

the statement, but there are mandatory after the statements contained within {::}.

The PRECCX actions are attached to grammar rules and presented in Appendix E.
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5.I.2.4. Solution for the Flex ambiguity problem

The disadvantage of the tradeoff made to gain PRECCX’s infinite lookahead is that 

it lacks the typing capability of YACC. The result is that it is not possible to pass union 

structures in PRECCX. This creates some difficulty in the passing of tokens from the 

lexer to the parser, to the extent that it is not possible to do all lexical analysis with Flex. 

The recognition of identifiers and data literals must be done in PRECCX, leaving FLEX 

to recognize keywords and pass on other symbols one character at a time.

All of this means that numbers, string literals, comments and identifiers have to be 

handled through PRECCX instead of Flex, and this brings up a couple of problems.

The first one can be easily depicted by the following case: Translating the language 

that has a keyword called “Print” and an identifier called “Printed”. If looking for 

identifiers using PRECCX, the Flex file will be something like:

Print {riTemp = Print; output(nTemp); return nTemp;}

{ nTemp -  yytext; output(nTemp); return nTemp;}

The problem arises, when Flex inputs the following:

Printed = True

The tokens it passes to PRECCX will be:

<Print> < ’e ’> < ’d ’> < ’= ’> ...

This will certainly cause problems, because the keyword “Print” will be recognized 

instead of indetifier “Printed”. What needs to be done is to tell Flex to match the word 

Print, only if it’s not followed by a character, which would make it an identifier. One way 

to deal with that is:

punct [V \n”()<>,]
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%%

Print/{ punct} {nTemp = Print; output(nTemp); return nTemp;}

{ nTemp = yytext; output(nTemp); return nTemp;}

The meaning of is that Flex will only match the rule, if it’s followed by any 

symbol after the

The second Flex problem is somewhat more complicated. Having the following 

identifier:

ImPrint

Flex would now match < 7 ’> < ’m ’> <Print>. The solution was found in using a 

feature called exclusive start states. That feature allows setting the rule in Flex that will 

always match a letter only as a letter, once it’s started matching an identifier. This is 

done as follows:

%x IDENT

%{

%}

punct [ \t\n  ”()<>,]

%%

<IDENT> [A-Za-zO-9]\J 

<IDENT>.

<IDENT> {eol}

75

{ nTemp = yytext; output(nTemp); return nTemp; }

{ BEGIN INITIAL; unput(yytext[0]); /* allow this to be 

checked by the initial state*/}

{ BEGIN INITIAL; unput(yytext[0]); /* allow this to be 

checked by the initial state*/}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Print\( pucnt} 

[a-zA-Z]

(nTemp = Print; output(nTemp); return nTemp;}

{ BEGIN IDENT; nTemp = yytext[OJ; output} nTemp); 

return nTemp; }

{ nTemp = yytext; output}nTemp); return nTemp;}

The %x IDENT part declares an exclusive start state called IDENT, and the 

<IDENT> specifiers are the rules which Flex will only check when it has been placed in 

the IDENT start state.

When Flex is in its INITIAL start state it matches a single character, returns that 

character, and then places the program into the IDENT start state. The IDENT start state 

then works through all of the stream, passing back the single characters, until it reaches a 

character which is not a valid character for an identifier. When it finds such a character it 

places it back on the stack (to allow it to be matched by the INITIAL start state) and then 

switches back to the INITIAL state before carrying on again.

5.2. ADDING SIMULATION LANGUAGE FUNCTION CALLS TO 

ACTION STATEMENTS OF THE LANGUAGE TRANSLATOR

A simulation language represents an interface between a programmer, at one side, 

and a motion planner and simulation engine of a simulation software package on the 

other side. A program written in a simulation language is interpreted by simulation 

software and significant parameters are then sent to the software’s motion planner to 

calculate the motion trajectory and motion parameters, as well as to the simulation engine 

to generate a list of simulation events. Simulation languages can be structured or object- 

oriented.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.2.1. Simulation languages in general

Structured simulation languages offer prespecified functionality produced in 

another language (assembly language, C, FORTRAN, etc.) and the user cannot access the 

internal mechanisms within the language. Instead, only the vendor can make 

modifications to the internal functionality. Reusing language features requires that the 

user code any new features as though they were a completely separate package. 

Therefore, full integration with the existing language is not possible.

Also, users have only limited opportunity to extend an existing language features. 

Some simulation languages allow for certain programming-like expressions or 

statements, which are inherently limited. Most languages allow the insertion of 

procedural routines written in other general-purpose programming languages. However, 

none of these procedures can, in any way, become an inherent part of the preexisting 

language.

Thus none of these approaches is fully satisfactory because, at best, any procedure 

written cannot use and change the behavior of a preexisting object class. Also, any new 

object classes defined by a user in a general programming language do not coexist 

directly with vendor code.

Object-oriented simulation deals directly with the limitation of extensibility by 

permitting full data abstraction as well as procedural abstraction. Data abstraction means 

that new data types with their own behavior can be added arbitrarily to the programming 

language (abstract data types). When a new data type is added, it can assume a role as 

important as any implicit data types. For example, a user-defined data type that manages 

complex numbers can be as fundamental to a user’s language as the implicitly defined 

integer data type. In the simulation language context, a new user-defined robot class can 

be added to a language that contains standard resources without compromising any aspect 

of the existing simulation (Banks et al., Discrete Event System Simulation, 1996).

The advent of Visual Basic, C++, Java, and other object oriented programming 

languages facilitate a fundamentally different approach to the design and implementation 

of simulation software that specifically addresses the shortcomings of existing tools. In 

particular, the combination of process-oriented simulation, an object-oriented
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programming language, and the Component Object Model (COM) software architecture 

will allow models to be packaged in a way that increases accessibility to the user without 

the compromises required by increased separation of the user from the underlying 

modeling language.

Despite common origins and the ideal suitability of object-oriented methods to the 

task of structuring process models, the simulation community has been slow to adopt 

object-oriented methods. A contributing factor has been a lack of commercial simulation 

software tools with coherent and accessible support for object-oriented process modeling. 

In fact, an appreciation for object-oriented methods and their attendant benefits requires 

only the understanding of a few simple concepts; namely, encapsulation, classes, 

messages, and inheritance.

Objects and their software implementation are patterned after real-world objects. 

They have data (attributes, characteristics, properties, etc.) that represent the state of the 

object and a set of behaviors that describe the ways in which they can be operated on. In 

an object-oriented approach, the association between the state of an object and its set of 

behaviors is made explicit via encapsulation whereby both are defined in an integral, self- 

contained unit called a class.

This collective definition serves as a template or blueprint for creating particular 

instances of the corresponding class. Each instance (of which there may be many) 

possesses its own unique copy of the state-related data defined by the class but shares the 

behaviors. Communication between objects is confined to a formalized system of 

messages. It is convenient to think of message generation and processing as just 

additional types of behaviors defined on the sending and receiving classes. Finally, 

inheritance is a mechanism by which new classes can be defined as extensions of existing 

ones. The derived class has all the characteristics and behaviors of the parent class (which 

may itself be derived from others) plus some added functionality in the form of new 

characteristics and/or behaviors.

It is easy to see in these concepts two particularly natural applications to process- 

oriented simulation modeling. One is the use of encapsulation to make explicit the 

association between the representation of an entity and its sequence of processing steps. 

Another is the encapsulation of extended sequences of low-level processing steps into

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sub-models whose behavior can be invoked as a single high-level processing step by 

instances of a desired entity class. These two notions are central to the design of 

Workspace Simulation Language (WSL) which implements an object-oriented, process- 

modeling capability within the framework of the Visual Basic for Applications (VBA) 

programming language.

5.2.2. The output from the language translator -  Workspace Simulation

Language (WSL)

At the internal level of Workspace, all robots are considered equal. That is, every 

robot model is controlled with the same simulation language, and every robot can 

perform the same operations. This contrasts sharply to real life, where each brand of 

robot uses a proprietary language, and may perform different operations than other 

manufacturer’s robots.

An end user of Workspace should be able to load a program written in a robot’s 

native language and see the Workspace model perform just as a real robot would, if 

executing that program. It is here that translation becomes necessary: before the robot's 

program can be simulated, it must be converted from the proprietary native language into 

the simulation language used by Workspace.

Workspace Simulation Language is the custom made simulation language built 

upon the foundations of Visual Basic for Applications language. In other words, highly 

customizable VBA language has been complemented with several robotics related 

classes.

The language translator, described in section 5.1, in its action statements contains 

the source code written in C programming language that prints out appropriate 

Workspace Simulation Language instructions (for each of the matching robot language 

instructions) into the output file. That output file is then used to control the overall 

behavior of the robot model in simulation.

Robotics related classes in Workspace Simulation Language were implemented 

according to the recommendations of Realistic Robot Simulation (Realistic Robot 

Simulation) specification, therefore the output statements from the language translator
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contain programming calls to Realistic Robot Simulation-based class members (variables 

and methods).

The Workspace Simulation Language functions are defined in the motion planner 

and therefore coded in C++ programming language. The communication between the 

Workspace Simulation Language and the motion planner is established through the 

Component Object Model interface.

Figure 5.2 depicts the robot language translation process, followed by the 

simulation of the translated program, showing the parts designed and implemented by the 

author.

Component Object Model 

interface -  maps Workspace 

Simulation Language 

functions with their C++ 

definitions in the motion 

planner

Language translator

Language

Grammar

execution

Action

code

G-code part 

program input 

file

Output file in 

Workspace 

Simulation 

Language

Workspace 

motion planner 

-  contains the 

C++ definition 

of Workspace 

Simulation 

Language 

functions

Figure 5.2. The relationship between the language translator and the Workspace motion 

planner established through the Component Object Model interface.

In the next two subsections (5.2.2.1 and 5.2.2.2) robotics-related instructions of 

Workspace Simulation Language will be described (based on the recommendations of 

Realistic Robot Simulation specification), as well as the Visual Basic for Applications
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language function library written to facilitate the embedment of Workspace Simulation 

Language into the action portion of the language translator.

5.2.2.I. Realistic Robot Simulation services as a part of Workspace Simulation 

Language

Realistic Robot Simulation interface specifies almost two hundred services, more 

than any one robot can actually use. Robot manufacturers who support Realistic Robot

Simulation provide a subset of the services, based on the capability of their robots.

Examples of services provided by Realistic Robot Simulation are the setting of a speed 

and acceleration, kinematics operations, (conversion between Cartesian and robot joint 

values) and motion execution.

The main Realistic Robot Simulation services used for robot language translation

are:

• GetlnverseKinematics -  used to compute inverse kinematics.

• GetForwardKinematics- used to compute forward kinematics.

• GetCellFrame- used to give information about specified cell frame.

• ModifyCellFrame - used to modify robot’s Tool and Base frames.

• SelectWork.Fram.es- used to select from the predefined frames (object and tool

frames).

• SelectTargetType- used to select one of the different types for the specification of 

targets.

• SetMotionType -  sets the motion type to be Linear, Circular or Joint.

• Set Joint Speeds- for each specified joint sets the joint speed.

• Set Joint Accelerations - used to set the accelerations of the individual joints.

• SetCartesianPositionSpeed- used to set the speed for the Cartesian motion.

• SetCartesianOrientationSpeed- used to set the orientation speed during Cartesian

motion.

• SetCartesianPositionAcceleration- used to set the acceleration for the Cartesian

motion.

• SetCartesianOrientationAcceleration- used to set the orientation acceleration during
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Cartesian motion.

• SelectFlybyMode- used to set flyby mode on or off.

• SelectPointAccuracy -  selects the motion tolerance level.

• StopMotion- used to stop the on-going motion toward the target.

• SetMotionTime- used to specify the motion time to the next target, instead of 

specifying the motion speed.

• SetRestParameter- used to set the dwell time between motions.

• SetNextNamedTarget -  used to specify the next motion target.

The following Realistic Robot Simulation services are performed automatically in 

Workspace:

• Initialize,

• Terminate, and

• GetNextStep.

Initialize and Terminate services are called automatically when the robot object is 

created or destroyed, while GetNextStep is called by the simulation engine after calling 

SetNextNamedTartget in order to perform the motion of the robot.

Due to the mismatch of data types of Realistic Robot Simulation specification and 

of Workspace Simulation Language, which is based on Visual Basic for Applications 

language, the following conversion table was used:
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RRS Specification VBA in Workspace

bitstring Integer

int Integer

string String

real Double

CartposType RCSCartPos

JoinPosType RCSJointPos

Table 5.1. Data type conversion table between Realistic Robot Simulation interface and 

Visual Basic for Applications language data types.

RCSJointPos and RCSCartPos are both objects and as such should be defined in 

Workspace Simulation Language by using New keyword.

5.2.2.2. Creation of the Visual Basic for Applications language library of supporting 

functions

Ultimately, the Workspace Simulation Language code output by the compiler must 

call the Workspace motion planner through the Component Object Model interface to 

perform the robot motion. Section 5.3.1 gives an insight in robot motion planning in 

general, whilst section 5.3.2 explains the principles of motion planning in Workspace and 

shows how the most important motion planning functions were created.

The alternative and obviously shorter way to connect the language translator with 

the motion planner is that the language translator calls functions of the Workspace motion 

planner directly, thus eliminating the need for the Component Object Model interface 

involvement. However, this solution requires a fair amount of C code to be added to the 

parser. Much of this code would be numeric/string conversions, and would require many 

global variables to be introduced to the parser. Such code would almost certainly be 

tedious to write, and it would detract from the readability of the parser code.
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Also, if the language translator were to output the Workspace Simulation Language 

statements only, the developer would, again, need a great deal of C code embedded in the 

parser.

Here is the related example for the robot linear motion command:

RMoveLinear RPosition

RPosition structure uses x, y, z coordinates and roll, pitch, yaw angles to store a 

robot position and orientation. Realistic Robot Simulation specification, however, defines 

Cartesian positions as parameters of a Denovitt-Hartenberg’s matrix stored in Realistic 

Robot Simulation RRSCartPos object. Therefore, RMoveLinear must covert the 6- 

variable RPosition into a 12-variable RRSCartPos, and then use that variable as the 

argument to RRS.SetNextTarget to perform the robot motion. To convert the values from 

one representation into the other, the following actions should be undertaken: declaration 

of the global variables for the RPosition, conversion of tokens into numbers, assignment 

of those numbers to the global variables, conversion of the position types, conversion of 

the resulting numbers back into strings, and output of the strings in form of Workspace 

Simulation Language function calls. In this method, the tasks are not split across 

subroutines. The resultant parser code will suffer symptoms of code bloat: it is less 

readable, less maintainable, and more prone to logic errors.

An easier, more modular way to code is to create a library of wrapping functions in 

Visual Basic for Applications language. Using Visual Basic for Applications language, 

these tasks are easily split across several subroutines, part of a library that can be easily 

read and maintained.

Workspace Simulation Language function calls, then, should always be wrapped in 

Visual Basic for Applications language subroutines with syntax as close to the original 

native robot language as possible. The products of this procedure are parser code that is 

more readable to developers, and translated Workspace Simulation Language code that is 

more readable to end-users.

The library of the Visual Basic for Applications language wrapping functions has 

been developed by the author of this dissertation and presented in Appendix G.
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The next section (5.3) defines motion planning in general and presents the part of 

the Workspace motion planner developed by the author.

5.3. IMPLEMENTATION OF THE WORKSPACE SIMULATION 

LANGUAGE FUNCTIONS IN WORKSPACE MOTION PLANNER

5.3.1. Robot Motion Planning in general

In any robot task the robot has to move from a given initial configuration to a 

desired final configuration. Except for some special cases, there are infinitely many 

motions for performing the task. Even in complex tasks, where the interactions of the 

robot with the environment may impose additional constraints on the motion, the set of 

all possible motions is still very large. Motion planning is the process of selecting a 

motion from the set of all possible motions while ensuring that all constraints are 

satisfied.

Motion planning can be viewed as a set of computations that provide sub-goals or 

set points for robot control. The computations and the resulting motion plans are based on 

a suitable model of the robot and its environment. The task of getting the robot to follow 

the planned motion is called control.

The motion of a robot system can be described in two different spaces. First, the 

task is specified in the so-called task space or Cartesian space. It is customary to use 

Cartesian X, Y, and Z coordinates to specify the position of a reference point on the end- 

effector of a robot with respect to some absolute coordinate system and some form of 

Euler angles to specify the orientation. However, for a multi-degree-of-freedom robot, 

specifying the position of the end-effector may not specify the position of all the robot 

links. For an n-degree-of-freedom robot, it may be necessary to specify the robot motion 

in the joint space by specifying the motion of n independent robot joints. The joint space 

is the Cartesian product of the intervals describing the allowable range of motion for each 

degree of freedom.

Based on this classification, it is easy to see that it is possible to define a motion 

planning problem in the task space or in the joint space. In order for a robot to perform
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the task of, say, welding, it may be sufficient to plan the end-effector trajectory. That 

requires a motion plan in the task space. Such a motion plan may be satisfactory if there 

are no obstacles in the environment and the dynamics of the robot do not play an 

important role. However, if there are obstacles or if the robot arm has more than six 

degrees of freedom, it may be necessary to plan the motion of the arm in the joint space. 

Such a motion plan would guide the robot around obstacles while guaranteeing the 

desired end-effector trajectory for the welding task. It is easy to see that motion planning 

in the joint space can take constraints in the task space into account, but not the other way 

around. In other words, given a motion plan in the task space, it is possible to solve for a 

compatible motion plan in the joint space that accommodates additional constraints, 

particularly for a kinematically redundant robot, where the number of robot’s degrees of 

freedom is greater than six (n > 6).

5.3.2. Motion Planning in Workspace

Motion planning focuses on the controlling a manipulator motion so that it follows 

a preplanned path (A path is a curve in three dimensional space that the manipulator hand 

moves along from the initial position and orientation to the final location).

Before moving a robot arm, it is of considerable interest to know whether there are 

any obstacles present (obstacle constraints) and whether the manipulator must follow a 

specified path (path constraints). These two constraints give rise to four possible control 

modes as described in the following table:
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Obstacle Constraint

Yes No

-4—» c/3U Collision-free path planning Path planning plus pathc >•<
2 4—>C/2co

plus path tracking tracking

u Positional control plusx:
OSOh

o
Z obstacle detection and Positional control

avoidance

Table 5.2. Four possible control strategies in motion planning depending on presence of

path and obstacle constraints.

Since one of the main features of Workspace is collision detection, then the 

obstacles are not considered in determining the motion of a robot arm. It should be noted 

that a large portion of robotics research currently focuses on the planning of paths with 

obstacle constraints.

In trajectory planning the input is in form of variables (such as: motion type, fly by, 

point accuracy, target position, the manipulator dynamic constraints, etc.), which specify 

the path constraints and the output represents a sequence of time-based intermediate 

manipulator configurations (expressed either in joint or Cartesian coordinates).

The Workspace motion planner discussed here is also called “Default Motion 

Planner”. The term “default” refers to the fact that Workspace relies on the user to have 

an Realistic Robot Simulation module from a specific robot manufacturer. Thus, if no 

Realistic Robot Simulation module is present, either if the user chose not to purchase one, 

or none was available from the manufacturer, then the default motion planner is used.

The default motion planner interacts with other building blocks of Workspace in the 

following way (Figure 5.3):
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Robot Program

1r

Workspace Simulation Language Program 

(This module contains pseudo RRS calls.)

f
Component Object Model Interface

Workspace Simulation Engine 

(This module decides how to handle the call, and makes calls to the real 

RRS module, if bought from the manufacturer, or if not, to the Default Motion

Planner.)

I  t
Default Motion Planner 

(Processes call and returns requested values. The default motion planner 

provides a subset of the functionality of the RRS, and is used in place of the 

manufacturers RRS where this is unavailable. The main function of the default 

motion planner is to calculate the path that robot will follow between the start and

end points of the robot track.)

I  t
Built-in Kinematics 

(Provides mathematical services, mainly for converting between Cartesian 

position and joint position representations.)

Figure 5.3. The default motion planner interactions with other software modules of

Workspace

The simulation engine calls the motion planner. This is done through so called 

Realistic Robot Simulation shell. The Realistic Robot Simulation shell is the parent 

abstract class from which various objects are derived. The reason to create the various 

objects is to call the same function in various Realistic Robot Simulation modules built
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by robot manufacturers or in a default motion planner, if the Realistic Robot Simulation

module is not available.

Overview of the general default motion planning algorithm is presented below in a

step-by step form as well as in a graphical form on Figure 5.4:

• A Realistic Robot Simulation shell (default shell) is created. It is a member of the 

Robot class.

• Then in the shell’s Initialize method a new CDefaultMotionPlanner object is made. 

The initial position of the robot with the Set_lnitial_Position function is specified.

• When one wishes to specify a target, then he sets up a Cartesian and Joint position, 

and passes them onto Set_Next_Target. Only one, Cartesian or Joint position is to be 

valid.

• Then during a simulation the Get_Next_Step function is called which determines 

where the robot is at a specific time. During the first simulation interval the time 

required to perform the move is calculated. Having calculated the travel distance and 

taking into account the robot’s acceleration and velocity, the travel time is 

determined. Then with any following call to Get_Next_Step the current time is 

compared with total travel time, and then the required position to move the robot to is 

determined.

• The motion type to be performed when traveling to a target is selected with the 

Select_Motion_Type service. The following types of motion are performed:

1. Linear: The trajectory of the Tool Center Point (TCP) follows a straight line from its 

current position to the required target position.

2. Joint: The joint values of both current and target positions have to be calculated (by 

using the inverse kinematics) and then interpolated, such that all the joints start and 

finish their motion at the same time.

3. Circular: To specify a circular trajectory three parameters need to be chosen from the 

following group: radius, centre point, start and end tangent, start, end and 

intermediate point on a circle. The three point circle representation (the start position, 

the target position, and a position, which is located somewhere on the circle and is 

between these two locations) has been chosen to be the default representation, and
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from that, all the other parameter combinations can be derived. Intermediate point is 

usually referred to as a “via point”.

The default motion planner source code is presented in Appendix H.

S e t  u p  th e  m o tio n  to  th e  
n e x t  t a r g e t  th ro u g h  
p a r a m e te r s :  s p e e d ,  
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t im e , ...

N o

Is th e  t a r g e r  
r e a c h e d
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A d d  th e  t a r g e t  to  
th e  m o tio n  p la n n e r  
( S e t_ N e x t_ T a r g e t )

L in e a r  M otion C irc u la r  M otion

M o v e  th e  ro b o t 
t h e  d i s ta n c e  
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o n e  s im u la tio n  
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t r a je c to ry  to  th e  

n e w  lo c a tio n , 
d e p e n d i n g  o n  a  

m o tio n  ty p e

T h e  s im u la t io n  
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G e t_ N e x t_ S te p  
s e r v c e  in th e  

m o tio n  p la n n e r

G e t  th e  ta r g e t  
from  th e  ta r g e t  
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Y e s
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m e s s a g e  th a t  th e  t a r g e t  h a s  I 

b e e n  r e a c h e d  /

Figure 5.4. The general default motion-planning algorithm developed by the author.
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• The velocity and acceleration of the robot are set through the functions:

-  Set_Cartesian_Position_Speed,

-  Set_Cartesian_Orientation_Speed,

-  Set_Joint_Speeds, Set_Joint_Accelerations,

-  Set_Cartesian_Position_Acceleration, and

-  Set_Cartesian_Orientation_Acceleration.

• Fly-by and point accuracy services are set by the following Realistic Robot 

Simulation services:

-  Select_Flyby_Mode,

-  Set_Flyby_Criteria_Parameter,

-  Select_Flyby_Criteria,

-  Cancel_Flyby_Criteria,

-  Select_Point_Accuracy, and

-  Set_Point_Accuracy_Parameter.

5.3.2.1. Trajectory velocities and accelerations

When in motion, a manipulator accelerates until it reaches programmed speed, then 

proceeds its motion at this speed, and finally decelerates until the speed of its tool center 

point (TCP) becomes zero. Both, robot and CNC controllers, define acceleration and 

deceleration phases to be equally long. Therefore, if the total distance between start and 

target points is greater than twice the distance required to reach the programmed velocity, 

the velocity profile will be of the following form (Figure 5.5.)
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Accel. Constant velocity phase Deceleration

v* COD

Figure 5.5. A manipulator’s velocity profile when the total distance between start and 

target points is greater than twice the distance required to reach the programmed velocity.

If the total distance between start and target points is less then or equal to twice the 

distance required to reach the programmed velocity, the velocity profile will be of the 

form shown in Figure 5.6. That usually happens when manipulator’s axial displacement 

is small and acceleration time significant, therefore constant velocity phase might not be 

achieved, so the speed profile would be composed of acceleration and deceleration phases 

only.

Increased acceleration 
time

V

Original 
acceleration 
time_______

 \const

max

Figure 5.5. A manipulator’s velocity profile when the total distance between start and 

target points is less then or equal to twice the distance required to reach the programmed

velocity.
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5.3.2.2. Trajectory calculation

Workspace supports three types of motion: joint, linear, and circular. The type of 

motion determines the tool center point from the current to the next specified target (and 

for any target thereafter until the motion type is changed) is set by the Realistic Robot 

Simulation function Select_Motion_Type.

Joint Motion

Joint motion (frequently called point-to-point or PTP for short) is the quickest way 

of moving the tip of the tool (Tool Center Point or TCP for short) from the current 

position to programmed destination position. To do this, the controller calculates the 

necessary angle differences for each axis. Joint motion simultaneously diminishes 

mechanical stress on the robot since the motor and the gear torque are reduced for all 

axes with shorter trajectories.

The movements of the axes are synchronized in such a way that all of the axes start 

and finish moving at the same time. This means that only the axis with the longest 

trajectory, the so-called leading axis, is actually moved with the programmed limit value 

for acceleration and velocity. All other axes move only with the velocity and acceleration 

rates necessary for them to reach the end point of the motion at the same moment.

The user can still specify the start and target positions in Cartesian coordinates, but 

they are converted into joint-variable space (using the inverse kinematics) when 

determining the path. Upon the first interpolation interval the amount that each axis 

needs to move and the amount of time it will take to perform its motion gets determined. 

In determining this: the distance, joint accelerations and joint velocities specified by: 

Set_Joint_Accelerations and Set_Joint_Speeds are used (Figure 5.6).
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Simulation
IntervalFirst

Return th e  final 
position

Joint Motion

Determ ine the 
am ount of time 
to m ove the  joint 
with th e  biggest 
angular change

Determ ine the 
new positions for 
all the  joints with 

the  new  velocities 
and  accelerations

Determ ine the 
joint ang les  for 
both start & end 
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using the  inverse 

kinematics)

Scale  all joint 
velocities and 

accelerations such 
that all joints start 

and  finish their 
motion a t the 

sam e  time

Figure 5.6. Joint interpolation algorithm (the first block, designated by “Joint Motion” is 

a part of the general default motion planning algorithm shown on Figure 5.4).

Linear Motion

Linear motion is the process of moving along a straight line that connects the start 

and target positions. Again the user can set the points in either Cartesian or joint 

coordinates, however the actual trajectory is determined in Cartesian coordinates. Upon 

the first simulation interval the distance between the teach points is calculated and if the
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motion speed is set, the time needed to perform the motion will be determined (Figure 

5.7). This is done by using the distance between the two points in Cartesian space 

equation, and by using the speeds and accelerations set by the Realistic Robot Simulation 

functions:

-  Set_Cartesian_Position_Speed,

-  Set_Cartesian_Orientation_Speed,

-  Set_Cartesian_Position_Acceleration, and

-  Set_Cartesian_Orientation_Acceleration, to find the motion time.

The trajectory is then, determined by:

• Finding a vector between the start and end points.

• Normalizing this vector (this determines the unit vector equation).

• Scaling this vector by the value of calculated distance that robot’s tool centre point

needs to be moved for each simulation interval during: acceleration, deceleration and

constant velocity phases.

The equations used for the procedure explained above were:

-  Linear distance between two points (New and Current) in Cartesian space

LinearDistance = ■*](New.x -  Current.x)2 + (New.y -  Current.y)2 + (New.z -  Current.z)2

-  Vector between the start and end point of the motion

Vector.x = New.x — Current.x 
Vector.y = New.y -  Current.y 
Vector.z = New.z — Current.z

-  Normalized vector (unit vector)

Norm = -Jvector.x2 + Vector.y2 + Vector.z2 
JJnitVector.x = Vector.x / Norm 
UnitVector.y = Vector.y / Norm 
UnitVector.z — Vector.z / Norm
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-  Acceleration time

AccelerationTime = ProgrammedVelocity/ProgrammedAcceleration

-  Distance to reach programmed velocity

_. ^ , ProgrammedVelocity2DistanceToAccelerate =
2 ■ ProgrammedAcceleration

-  Positional displacement for n-th simulation interval during the acceleration phase 

^  _ ProgrammedAcceleration-(n- SimulationlntervalDurationj2 ^
D ACn I  A C n-l

— Simulation interval number 

AccelerationTimen =max SimulationlntervalDuration

-  Positional displacement for each simulation interval during the constant velocity 

phase

Dcon = ——(LinearDistance -  2 • DistanceToAccelerate)
nmax

-  Positional displacement for n-th simulation interval during the deceleration phase

® D C n  D A C i n ^ - n )
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Figure 5.7. Linear interpolation algorithm (the first block, designated by “Linear 

Motion” is a part of the general default motion planning algorithm shown on Figure 5.4).
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Circular Motion

Circular motion is quite similar to linear motion but instead of being bounded to a 

straight-line path, an arc-shaped trajectory is calculated. Also the user can set the points 

in either Cartesian or joint coordinates, however the actual trajectory is determined in 

Cartesian coordinates. What distinguishes circular motion from other motion types is that 

an additional parameter is needed, beside the target point, to determine the trajectory. If 

no additional parameter such as radius, arc centre, tangent or another point on the arc 

were provided, then an infinite amount of arc-shaped paths would be possible to be 

constructed through two points. In the default motion planner, a third point on the arc, 

located somewhere in between the start and the target point (called the via point), is used 

to uniquely define the circular trajectory.

In order to find the position and orientation of the tool centre point during each 

simulation interval of circular motion, the three points on a circle need to be relocated (by 

one translation and three rotations) so that the start position overlaps with the origin, the 

via point is placed on the X axis, and the arc lays in the XY plane. Two-dimensional 

trigonometry is then used to find the centre and radius of the circle. At each interpolation 

interval the position reached on the arc is then transformed back to the original coordinate 

system by a reverse transformation process.

Once the target and via data have been specified, the arc centre, radius and central 

angle to interpolate over are determined. The total time needed to perform the motion 

along the arc distance (arc central angle multiplied by the arc radius) with the specified 

tool center point velocity and acceleration is then determined. Then for every simulation 

interval the portion of circular arc that should have been traversed for the specified time 

interval is calculated.

Circular motion gets differently interpreted in CNC and robot controllers. Because 

of that, particular point of difficulty lays in mapping one interpolation representation to 

the other. Refer to Appendix D for details.
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Object Motion

Object motion involves the positional displacement of CAD objects during a 

simulation. This feature allows a user to simulate objects on a conveyor and similar 

mechanisms.

Object motion proceeds as follows: first the CAD object to be moved during a 

simulation must be created. Then, a motion planner for the same object should be 

created. During the simulation, a series of events for each interpolation interval is 

generated until the object reaches the desired target position. In each event, the position, 

according to the current interpolation time, is calculated. At the end of the simulation, 

the simulation engine’s list of motion planners is deleted.

In more detailed manner, the whole process can be presented through following

steps:

• Through a Workspace Simulation Language program the user calls

SetObjectNextTarget (in the CadObject class). The object speed can be changed by

specifying the value parameter in SetObjectSpeed function.

• SetObjectNextTarget then makes a new simulation event called OnObjectMove and 

adds it to the simulation engine.

• OnObjectMove event first checks whether the target was reached (if so, a zero is 

returned). While moving to a target, a series of simulation events is generated for 

each simulation interval until the object reaches the target. Hence, it is checked 

whether the current simulation event is the first event in the list. If it is a new default 

motion planner is created. Then the initial position of the object is set to its current 

CAD position. The position of the target point is then added to the motion planner.

• The new position of the CAD object is determined with GetNextObjectStep (defined 

in OnObjectMove event). This is quite similar to the Realistic Robot Simulation 

specified GetNextStep. However, the only parameters that this function takes are the 

location and the elapsed time. If the desired target has been reached, a non-zero value 

is returned, otherwise the returned value will be zero.

• On the first interval the Cartesian distance, the total time and the amount of

orientation change are calculated (Figure 5.8). The motion of the object is just simple
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linear motion, that is, the object simply moves along a straight line from its start 

position. The time is determined from the distance and the specified velocity. The 

object is moved at a constant velocity. The change in orientation is determined by 

taking the difference of the start and end angles after they have both been converted 

to roll, pitch, and yaw angle form.

• On the first, and any interval after, the trajectory of the object along a linear path is 

calculated. The object’s base frame will follow the calculated trajectory. The position 

that object needs to reach at the end of the simulation interval is determined by:

-  Finding the vector to move along (between the target and start vectors).

-  Normalizing the new vector.

-  Scaling the unit vector to find the new position and orientation (for each of the 

orientation angles: roll, pitch and yaw) of the object while moving along the direction 

of the that vector:

, 7 „ . .  . _ . .  _ . SimulationlntervalDurationNewObjectPosition = OldObjecPosition + TotalDistance-------------------------------------
TotalMotionTime

NewObiectOrientation = OldObiectOrientation • TotalAneularChanee ■ ^im n̂ter^ ura^on
TotalMotionTime

• After that, the object starts its motion.

• If the target position has not been reached, a new simulation event will be generated.

In order to make the simulation more accurate, input values to the robot controller

must be taken into account. Therefore, the next section (5.4) describes the creation and

the main characteristics of the simulation preprocessor.
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Figure 5.8. Object motion algorithm (its implementation allows CAD objects to be

moved during the simulation).
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5.4. CREATION OF THE G-CODE LANGUAGE PREPROCESSOR

The process of CNC programming has three basic stages:

• Stage 1: Pre-processing.

• Stage 2: Uploading or creating a CNC program (in G-code language).

• Stage 3: Program execution.

In order to accurately simulate the work of a CNC controller, a user must be 

provided an interface to define all the machine specific parameters stored in a real 

controller. Having G-code part programs as the only input information is not enough for 

the simulation software to operate correctly, because some G-code instructions use the 

parameters that are defined and stored in a controller only, without any data exposure in 

the program listing. For instance, G55 is a G-code instruction that specifies a reference 

work coordinate frame, but the position and orientation of that frame is stored in a 

controller only, whilst part program contains just the reference to an address in 

controller’s memory.

The machine data preprocessing involves several activities, such as:

• Placing the tools into the tool turret (tool magazine).

• Machine table data input.

• Setting the system variables, etc.

Most of the contemporary CNC machines can store more than one tool into a tool 

turret. The tools are placed in the magazine slots manually by the CNC operator or 

automatically by manipulator arm. Each position in the magazine is defined by its unique 

ID, which is known to the machine controller. So, when a command addresses a specific 

tool, the controller activates the magazine, and brings the requested tool in the loading 

position.

The next step involves entering the tool offsets into a machine’s controller. This 

action has to be performed every time the tools in the magazine change. Therefore, the 

tool parameters have to be changed. The tool parameters depend on the machining
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processes -  turning, milling, drilling, grinding, etc. Some examples of machining 

operations and related tool parameters are as follows:

• Milling -  tool diameter and height.

• Drilling -  drill’s length and diameter.

• Grinding -  grinder’s diameter, width, etc.

The tool offset values are stored in table format (often referred to as a “machine 

table”). The data is stored into the controller’s memory and is called from the CNC 

program.

Tool offsets are not the only data stored in machine tables. Frame offsets, fixed 

points, reference points, variable declarations, command aliases, etc. are stored in 

machined tables as well. That statement imposes the existence of several machine tables 

dedicated to different parameters. It is important to know that all of the mentioned 

parameters are entered before the machining process begins. More detailed explanation of 

the mentioned parameters follows:

• Offset frames - Allen-Bradley 9 series controllers allow predefinition of up to 99 work 

coordinate frames. Work coordinate frame is the reference coordinate system that can 

be arbitrarily located within machine’s workspace depending on the nature and the 

complexity of the manufacturing task. To predefine a frame means that the position of 

a work coordinate frame’s origin, with respect to machine’s coordinate frame, can be 

saved to a machine table and retrieved during the program execution, if the 

appropriate G-code instruction was used.

• Tool offsets -  These offsets specify the diameters of waterjet or abrasivejet streams as 

well as tool lengths.

• Fixed positions, as well as Reference Points are the points within machine’s 

workspace that are significant for a certain manufacturing task. For example, security 

approach and depart positions located in such a way to ensure that machine will not 

collide with any obstacles during work, can be predefined and referenced during the 

program execution.

• Aliases -  G-code (or CNC code) is composed of “words”. A word usually consists of 

a letter and a number. For example: M30, G i l l ,  N10, etc. Each word represents a
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specific command, which moves the machine, or performs some other activity such as 

turning the waterjet on/off, abrasive on/off, rotating the spindle in clockwise or 

counter clockwise direction, etc. It is possible to set an alias for most of the 

commands, and later to uses aliases in the program. So, instead of M8, a command 

can be called as a WaterJetOn, for example. Aliases are stored in a machine table as 

well.

• Variables -  just like the aliases are stored in a machine table before the machining 

begins, the same principle applies to variables. They are declared and stored in a CNC 

controller and they can be referred to once the machining begins.

• Security Zones -  security zones represent a two-dimensional area or three- 

dimensional space that must not to be entered by a tool. Security zones are defined by 

specifying the lower and upper limits, i.e. Xmin, Xmax, Ymin, Ymax, Zmin, and 

Zmax.

• Working Zone -  somewhat similar to Security Zones. Working zone is the zone in 

which the tool center point moves. If the tool center point position is out of the 

Working Zone, the motion interruption occurs automatically.

• Home Positions -  besides the primary home position, secondary and tertiary home 

positions can be specified.

Visual Basic for Applications Language Preprocessing Form

The next section will describe the preprocessing form created in Visual Basic for 

Application language that takes into account all the machine data parameters explained 

above.

How to access the form

The form shows up after a user starts the simulation of a 5-axis CNC machine and 

if the chosen manufacturing operation is waterjet cutting. A message box pops up giving 

a user an option to fill in the controller parameters.
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The preprocessing form

The main purpose of this form is to provide a user with a simple, yet effective 

way of storing and editing machine data (Figure 5.9).

M a ch in e  D a ta m

Settable... I XCoordin... 1 YCoordin.. I Z CoorcSn... System j *

54 0 0 0 Metric
55 0 0 0 Metric
56 0 0 0 Metric —

57 0 0 0 Metric
505 0 0 0 Metric
506 0 0 0 Metric
507 0 0 0 Metric
508 0 0 0 Metric
509 0 0 0 Metric
510 0 0 0 Metric
511 0 0 0 Metric
512 0 0 0 Metric
513 0 0 0 Metric
514 0 0 0 Metric
515 0 0 0 Metric
516 0 0 0 Metric
517 0 0 0 Metric

d

l_ I  __dose~"  ]

1 Settable Offsets 

Open,..

Save...

Edit...

Reset

Reset A1

More Options,,,

Figure 5.9. Visual Basic for Applications language preprocessing form shows the list of 

settable offsets. The form appearance changes depending on the option chosen from the

drop down list.

Main drop-down list

A user can set the following data (Figure 5.10):

• Tool and frame offsets,

• Reference points,

• Home positions,

• Fixed positions,

• Variables and aliases.

Which parameters will be seen in the table depends on the item selected in the 

drop-down list.
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Fixed Positions 
Reference Points 
Home Positions

Close

Figure 5.10. Expanded drop-down list that shows possible machine data groups that can

be predefined.

It is quite convenient to store the offsets permanently and then to upload/save 

them onto a disk. This feature is provided with Open and Save buttons.

By clicking on Open button, a standard Windows open dialog box pops up, and a 

user can select a file to upload. The file is in plain ASCII format, therefore the extension 

is *.txt.

The file will contain the values of all the items in the drop list. The file format is 

the following:

• A file must have NCFILE keyword in the first line.

• The second line contains OFFSET.

• Data lines are described as follows:

Offset ID,

- White space(s)

- Offset in X direction,

White space(s)

- Offset in Y direction,

- White space(s)

- Offset in Z direction.

• The same applies for fixed positions as well.

Open
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• The file ends with ENDFILE.

For example:

NCFILE
OFFSET
54 200.0001
55 255
56 100
57 0

200.0002
255
200
0

300.001
0

200
255

FIXED
1 0
2 0

ENDFILE

0
0

0
0

Example 5.1. Sample data file containing three preset frame offsets all the default values

for all the other items.

After clicking on this button, the standard Windows Save dialog pops-up, and 

enables the user to save the data into a file. Format of the data saved is shown in the 

previous example, and the file extension is *.txt.

There are two ways to edit the data shown in the table:

• Double-click on the table,

• Select an item in the list, and click Edit button.

A new form pops up (Figure 5.11), enabling the user to change the data (X, Y, Z)

and the type of the measurement system in which the X, Y, Z are expressed.

Save

Edit
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Figure 5.11. Edit dialog box that shows how the parameter values can be changed. Edit 

dialog box changes its appearance depending on the machine data to be edited.

Reset

By selecting an item in the list and clicking on the Reset button, X, Y, and Z 

values are set to zero.

Reset All

By clicking on the Reset All button the values of all the items in the list are set to

zero.

More Options

This button has not been activated yet. In case that some additional features have 

to be customized, this button can be used to call another form, or to extend the height of 

the existing form, providing more data to be edited.
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CHAPTER VI

OFF-LINE PROGRAMMING 

MODULE DEVELOPMENT

6.1. OFF-LINE PROGRAMMING IN ROBOTICS

Present teach methods of programming industrial robots have proved to be 

satisfactory where the proportion of teaching time to production time is small, and also 

when the complexity of the application is not too demanding. They involve either driving 

a robot to required positions with a teach pendant or physically positioning the robot, 

usually by means of a teach arm. Teach methods as such necessitate the use of the actual 

robot for programming.

Off-line programming may be considered as the process by which robot programs 

are developed, partially or completely, without requiring the use of the robot itself. This 

includes generating point coordinate data, function data, and cycle logic. Developments 

in robot technology, both hardware and software, are making off-line programming tech­

niques more feasible. These developments include greater sophistication in robot con­

trollers, improved positional accuracy, and the adoption of sensor technology. There is 

currently considerable activity in off-line programming methods, and these techniques are 

employed in manufacturing industries (Nof, 1999).

6.1.1. Why Should Off-line Programming Be Used?

Robot on-line programming can be time-consuming. As the robot remains out of 

production, on-line programming can substantially reduce the utilization of the robot, 

sometimes to the extent that the economic viability of its introduction is questioned.

Many early robot applications involved mass production processes, such as spot 

welding in automobile manufacturing lines, where the reprogramming time required was 

either absent or minimal. However, for robot - manufacturing applications to be feasible 

in the field of small and medium batch production, where the programming times can be
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substantial, an off-line programming system is essential. The increasing complexity of 

robot applications, particularly with regard to assembly work, makes the advantages 

associated with off-line programming even more attractive. These advantages may be 

summarized as follows (Nof, 1999):

1. Reduction of robot downtime. The robot can still be in production while its next task 

is being programmed. This enables the flexibility of the robot to be utilized more 

effectively and therefore decreases the programming costs.

2. Removal of programmer from potentially hazardous environments. As more of the 

program development is done away from the robot this reduces the time during which 

the programmer is at risk from aberrant robot behavior.

3. Single programming system. The off-line system can be used to program a variety of

robots without the need to know the idiosyncrasies of each robot controller.

The main disadvantage of off-line programming systems is that they generally

show some differences between the desired and the real motion after having been 

uploaded to the robot controller. Individual deviations include those from the nominal 

position and orientation of the end-effector, from the nominal path and path velocity, as 

well as from the nominal cycle time (refer to section 1.1.).

6.1.2. Requirements of an Off-line programming system

Different off-line programming systems employ different approaches to the 

programming method. Yet, despite their differences, they contain certain common 

features essential for off-line programming. The following list gives the requirements that 

have been identified to be important for a successful off-line programming system (Nof, 

1999):

1. A three-dimensional world model, that is, data on the geometric descriptions of 

components and their relationships within the workplace.

2. Knowledge of the process or task to be programmed.
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3. Knowledge of robot geometry, kinematics (including joint constraints and velocity 

profiles), and dynamics.

4. A computer-based system or method for programming the robots, utilizing data from 

items 1, 2, and 3. Such a system could be graphically or textually based.

5. Verifications of programs produced by item 4. For example, checking for robot joint 

constraint violations and collision detection within the workplace.

6. Appropriate interfacing to allow communication of control data from the off-line 

system to various robot controllers. The choice of a robot with a suitable controller 

(i.e. one that is able to accept data generated off-line) will facilitate interfacing.

7. Effective man-machine interface. Implicit in off-line programming is the removal of 

the programmer from the robot. To allow the effective transfer of his skills to a 

computer-based off-line system, it is crucial that a user-friendly programming 

interface be incorporated.

To fulfil the fourth requirement of the above numbered list, a graphical computer-

based system for off-line programming of 5-axis waterjet cutting gantry robot has been

developed and will be presented in the next section.

6.2. CREATION OF OFF-LINE PROGRAMMING MODULE FOR 

FIVE-AXIS WATERJET CUTTING GANTRY ROBOT

In order to create the part programs from graphical path representations in

Workspace the following tasks have been done:

1. The CAD model of a test part has been designed (as explained in section 4.2).

2. The robot graphical path has been automatically created (using Workspace’s 

Automatic Path Generation module) and the path properties set.

3. The off-line programming software module has been written to convert the graphical 

path properties into G-code part programs.
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The terms: path, automatic path generation, and geometric points are important for 

understanding of following paragraphs, therefore short definitions of those terms are 

provided below.

A path is a list of all the geometric points (GPs) that a robot is to follow during a 

sequence of motions. It is displayed graphically as a series of lines linking together the 

geometric points with direction arrows showing the direction of the motion.

Automatic path generation allows the user to automatically generate a path on a 

CAD model of a workpiece. The automatic path takes into account the parameters set by 

the user, including boundaries, holes, material, thickness and speed, and generate a 

suitable path that the robot will follow.

Robot teach points are called geometric points in Workspace. Geometric points are 

robot endpoint target locations that may be saved with a model and which may be 

manipulated as though they were objects. They not only do represent the position and 

orientation of a robot target position, but also store attributes describing the nature of the 

motion to be used when travelling towards target geometric point from current geometric 

point on the same path, as well as attributes describing the actions to be performed when 

the GP is reached. Every GP along the path contains an editable set of attributes. For 

waterjet cutting application, GPs have the following properties (Figure 6.1):

• Motion Type (Rapid, Linear, Circular),

• Feedrate value,

• Acceleration value,

• Position parameters,

• Orientation parameters,

• Dwelling time,

• Waterjet stream activated (an action), and

• Wateijet stream deactivated (an action).
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Figure 6.1 Geometric point properties dialog box. This figure shows just one tab-window 

of the dialog box. Different tab-window contain different sets of geometric point

properties.

In order to send the programs developed off-line in Workspace to a robot, they 

must first be translated from the internal graphical representation (a path) into a robot 

program written in the selected robot language (a track). This process is called Path to 

Track translation. Figures 6.2 and 6.3 display an arbitrary created graphical path in 

Workspace and the corresponding G-code part program based on the captured path 

properties. When Write Program is selected from the context menu for a path, the Path to 

Track class for the robot language of the robot to which the path belongs is instantiated, 

and its WritePath method executed.
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Figure 6.2 A graphical path representation in Workspace. Series of geometric points are 

connected with line segments, while arrows show the direction of motion.

A root path may contain one or more sub-paths. Each path, including the root path, 

contains a list of one or more pathtarget pointers. (It’s logically possible for a path to 

contain zero pathtargets, but such a path is not relevant for off-line programming.). A 

pathtarget can be either a GPMove or another Path (as shown in example 6.1). The paths 

containing cycles, wherein one path contains a reference to one of its ancestors, are not 

considered well formed.
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Figure 6.3. The part program written in G-code language based on the graphical path

shown on the Figure 6.2.
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Example 6.1. Paths in Workspace are composed of series of targets (pathtarget pointers) 

that can be either geometric points or subpaths. Subpath nesting is allowed to be eight

levels deep.

In general, Path to Track translation requires less development effort than Track to 

Path translation (the process of reading a robot language track file and producing a 

graphical path during simulation). This is because Track to Path must process every valid 

program in a given robot language, including statements that aren’t currently supported 

by off-line programming module. Path to Track needs only to be concerned with emitting 

a robot language program (track) which captures the intent of a graphical path. This tends 

to be a small subset of the robot language. Only three actions need to be provided for:

• Motion. This includes definition of teachpoints, and specification of a path supported 

motion parameters (motion type, speed, acceleration, via point/centre for circular 

moves, dwelling (idle) time).

•  Sub-program calls. This entails creation of separate tracks for each sub-program.

• Tool actions which have a standard implementation in the target language (such as 

M08 and M09 in G-code language), and which have a standard representation in 

graphical paths (such as WaterjetOn and WaterjetOff).

G-code language does not separate the teach point data from the move commands.
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Instead, the move command will contain all the geometric data required to interpret the 

move. One consequence of this is that no initial tree search to enumerate the teach points 

is required. Another consequence is that a related process of updating the teach point 

locations, instead of completely rewriting the program file, when a user decides to change 

the position and orientation properties of teach points in the path, is not possible.

Also, G-code language provides for motion parameters, which haven’t changed 

from the previous move to be omitted from the program. Therefore, a solution has been 

found for the storage and retention of the relevant state data (this includes all motion 

parameters) from one move to the next. The state data must also be reset at the 

appropriate times (at least for each new root path; possibly more frequently).

Knowing all the previously mentioned path parameters and taking into account the 

grammar of the G-code programming language, the C++ source code has been written to 

recast all the path data into sequence of CNC machine instructions. The source code 

contains a super class named CPathToLanguage and a derived class CPathToGCode. The 

source code for the class CPathToGCode is presented in Appendix I. Three most 

important methods (member functions) of the derived class, which will be explained in 

the following paragraphs, are:

• WritePath,

• Write Function, and

• WriteMove.

All three of these functions have virtual prototypes in the CPathToLanguage class, 

which is the super class of CPathToGCode class. The way how these three methods 

communicate is depicted on the Figure 6.4.
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Figure 6.4. The function call flow among the three most important methods of the 

CPathToGCode class: WritePath, WriteFunction and WriteMove.
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The constructor of this class is used to set up the default values of any member 

variables needed for the language translation. For instance, m_strLanugage is a string 

variable set to the name of the language being produced.

The WritePath function is the main function of the translation class. This function 

is called by Workspace and carries out the translation by calling other class member 

functions. The first action that this function does is to open the output file for writing 

using the member m_strFileName for the file name. After this the WritePath function 

writes strings to the file, and calls other translation member functions.

The WriteFunction procedure performs two actions:

• Firstly, it determines how many sub paths are embedded in the main path by calling 

itself recursively, and

• Secondly, it loops through the counted paths, starting with the deepest embedded 

subpath and proceeding up, and writes out the formatted path properties into the 

output file based on the syntax of the target language.

The WriteMove function performs the task of writing out the movement, 

acceleration, velocity, frame, delay, and tool action commands. This is done by capturing 

the values of the various GPMove properties and by outputting the lines of code based on 

which properties have been set.

Emitted G-code part programs have been beta-tested directly on gantry robots in 

Flow Robotics Company, Jeffersonville, IN.

6.3. ON-LINE TESTING

The purpose of the on-line testing was to determine positional accuracy of the teach 

points written in a part program created by the off-line programming module and cycle 

time accuracy of the simulated manufacturing task.

The CNC machine used for testing was an “AF-series 5-Axis Three Dimensional 

Shapecutting Machine” equipped with Allen Bradley 9/260 controller and manufactured 

by Flow Robotics Company. The complete technical specification of the CNC machine is 

presented in Appendix C.
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The geometry of the testing part, the creation of its CAD model in Workspace and 

the reasons why that particular part has been chosen to be tested have been explained in 

section 4.2.

The testing procedure was organized in the following way:

1. The material used for cutting was a plate-shaped rubberized compressed foam. This 

material is very cheap and is used primarily for preliminary testing when the 

roughness of the surfaces to be cut is not of primary importance. Due to very high 

water jet pressure (up to 415 MPa) and very low rigidity of the material to cut 

through, the edges of the part after manufacturing were visibly rough (the material 

was bending under the force produced by water jet). If steel or aluminum had been 

used instead of compressed foam, the edges would have been much smoother and 

within the tolerances achievable by waterjet cutting process (0.075 mm).

2. The robotic cell has been set up in Workspace, as explained in Chapter IV.

3. The corresponding part program has been created off-line in Workspace (the listing of

that part program is presented in Appendix J), as explained in Chapter VI.

4. The personal computer has been interfaced with the robot controller via RS-232 serial

interface cable. The part program has been downloaded from the personal computer 

and uploaded to the robot controller using Allen-Bradley Off-line Development 

System (ODS) software, previously installed to the personal computer.

5. The part has been manufactured and the cycle time recorded from the controller’s 

display.

6. The manufacturing task has been simulated in Workspace.

The robot controller language accepts only axis values as parameters of teach point 

definitions (values of X, Y, Z, B, and C axes). Stated differently, teach points cannot be 

defined in Cartesian values (X, Y, Z, Roll (rotation about Z axis), Pitch (rotation about Y 

axis), and Yaw (rotation about X axis)) with respect to the machine coordinate frame. 

Therefore, due to the fact that the robot controller cannot perform inverse kinematics 

transformation, forward kinematics accuracy has been tested only. Workspace teach- 

pendant values (both Joint and Cartesian) of the teachpoints created during simulation of 

the task, have been compared with Joint and Cartesian values read from the robot
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controller. The notified difference between the Cartesian values read from the controller 

and Workspace has been within the range of 1 to 3 thousands of a millimeter. Taken into 

account that the machine accuracy is 0.127 mm the recorded difference was obviously 

satisfactory.

Simulation and real robot cycle time accuracy has been determined comparing the 

corresponding cycle time values recorded in Workspace and in the robot controller. The 

determined ratio was 126.9s (simulation) / 129.7s (real time), therefore the error margin 

of 2.16% has been identified. The cycle time accuracy has been assessed as satisfactory 

and acceptable, because the error value was below the acceptable upper limit of 3%, set 

by Realistic Robot Simulation standard. The possible sources that caused that error 

margin have been listed in section 1.1, while Realistic Robot Simulation concept has been 

explained in sections 2.3 and 5.2.2.1.
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CHAPTER VII 

CONCLUSION

This dissertation aims to prove that the use of Realistic Robot Simulation interface 

in conjunction with PRECCX parser generator in robotics simulation and off-line 

programming software packages can substantially improve the positional and cycle time 

accuracy of a 5-axes waterjet cutting gantry robot.

In order to verify and validate the quality of the written software modules, a 5-axes 

gantry robot manufactured by Flow Robotics Company and equipped with an Allen- 

Bradley 9 series controller has been used for testing. The mentioned simulation and off­

line programming software modules are not stand alone applications, therefore they are 

dependent on the software platform they are written for. In this case, Workspace 5® 

software package serves the purpose of being the platform for the written add-ins. g 

The dissertation is organized as follows:

•  CAD modeling o f the workpiece and the 5-axis gantry robot. Kinematics definitions 

of the CAD models.

•  Development o f the simulation module. This is the central and the most complex part 

of the dissertation. The first sub-task is the development of G-code (CNC controller 

programming language) language translator. Compiler-compiler software utilities 

Flex and PRECCX (Prettier Compiler-Compiler Extended) have been used for lexical 

analysis and parsing of the G-code language. Parser action statements have been 

written to emit Workspace Simulation Language (Visual Basic for Applications based 

simulation language, which contains calls to the functions of the motion planner via 

Component Object Model RRS interface) code. Also, all the Realistic Robot 

Simulation services called from the parser’s action statements have been designed and 

implemented in the motion planner module of the simulation platform software. The 

preprocessing graphical interface has been developed in order to capture the internally 

stored robot controller information that is not provided in the part programs, but 

presents a mandatory input for accurate simulation.

•  Development o f G-code off-line programming module. Knowing all the path 

parameters defined during simulation and taking into account the grammar of the G-
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code programming language, the C++ source code has been written to recast all the 

path data into sequence of CNC machine instructions.

The flow chart on Figure 7.1 shows the interactions among the modules written by 

the master’s candidate and the modules of the software package built-in the development 

platform. Different background colors represent different levels of participation (color 

mappings are contained within the figure caption).

PRECC

Robot
languages

VBA
simulation

module

CAD
objectsPREi

PRECC Y *

RobotsPath’s
GP’s

VBA 
3 t i j  aton 

model K inem aticsP ath2T rack

* Path2Track

Figure 7.1. Simulation and off-line programming modular concept of simulation 

platform software, where different colors represent different levels of author’s 

participation (white -  didn’t participate, light gray -  input modules, gray -  complete 

design and implementation, dark gray -  partial design and implementation)

Relevance of the issue of this thesis will be presented through the next three major 

points:

•  Highly accurate simulation due to implementation o f Realistic Robot Simulation 

services. Strictly following the standardization rules in the Realistic Robot Simulation 

specification default set of Realistic Robot Simulation services has been implemented 

in default motion planner of the simulation software. In other words, when robot 

languages which are developed by manufacturers who did not participate in Realistic
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Robot Simulation consortium (including the CNC languages) need to be simulated, 

the default set of Realistic Robot Simulation services will be called to provide the 

accurate motion of the simulated robot. The Realistic Robot Simulation interface has 

been tested on software and hardware platforms used for robotic simulation in the 

automotive industry and has demonstrated impressive results of accurate simulation 

of motion behavior, robot kinematics, and condition handling. It has been proven that 

the deviation between simulated and real joint values is less than 0.001 radians. The 

ideal case, of course, would be if there was not any difference between the simulated 

and real joint values. However, taking into account that non-RRS simulation software 

packages have on average approximately 10 times lower angular accuracy, Realistic 

Robot Simulation interface showed considerable improvement. Concerning task cycle 

times, a difference of less than 3% could be reached. Again, in comparison with the 

non-Realistic Robot Simulation systems where the cycle time difference is in range of 

5 to 10%, Realistic Robot Simulation systems are obviously better, but their cycle 

time accuracy can still be significantly improved (Realistic Robot Simulation II 

interface promises 99.5% cycle time accuracy and 99.9% joint accuracy, which 

remains to be proven).

•  The first industrial application o f currently the most efficient compiler-compiler 

utility - PRECCX. According to the conducted literature and Internet Web search, 

this will be the first industrial application of PRECCX software utility. Making a 

compiler by using some of the contemporary programming languages (mainly C and 

C++) is attainable, but it takes too much time. Alternatively, using PRECCX for the 

same purpose will be faster and less prone to errors and also, it will have some 

advantages over the most frequently used compiler-compiler utilities -YACC and 

Bison.

•  CNC controller simulation based on the customization o f the robotic simulator.

CNC machines can be considered gantry robots as far as their kinematics is 

concerned, but programming language that they use (often called G-code language) 

has its own characteristics that differ from the ones of the robot programming 

languages. Typical example for that is the definition of circular motion. Therefore, 

using Realistic Robot Simulation interface to simulate CNC programming language
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has required considerable amount of work, in depth knowledge of CNC controller 

software and Realistic Robot Simulation specification. Mapping CNC to default 

Realistic Robot Simulation instruction did not necessarily have one to one matching 

due to limited compatibility between the interface and the language.

This thesis had its practical verification in Flow International Corporation. The 

results of preliminary testing showed the following:

• When the position and orientation values (both Joint and Cartesian) of the teachpoints 

created during simulation of the task, have been compared with Joint and Cartesian 

values read from the robot controller, the notified difference has been within the 

range of 1 to 3 thousands of a millimeter. Taken into account that the machine 

accuracy is 0.127 mm the recorded value difference was satisfactory.

• Simulation and real robot cycle time accuracy has been determined comparing the 

corresponding cycle time values recorded in Workspace and in the robot controller. 

The error margin of 2.16% has been notified. The cycle time accuracy has been 

assessed as satisfactory and acceptable, because the error value was below the 

acceptable upper limit of 3%, set by Realistic Robot Simulation standard.

From the user point of view, very important feature is that the graphical user 

interfaces, for both simulation and off-line programming module, are user friendly and 

very intuitive. User time spent on setting the parameters for those two modules is short, 

robotics skill level required from is not high, however the output is still accurate and 

dependable.

Future work on this thesis should be based on the implementation of RRS II 

services in the motion planner (once they become available to developers), which will 

provide additional quality features to simulation software packages, such as: axis 

grouping, signaling (I/O), interrupt handling, et cetera. Also, robot path planning and 

optimization for waterjet cutting manufacturing application is the area that requires 

substantial engineering and programming knowledge, and that can significantly 

complement and upgrade the quality of the presented work.
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APPENDIX A: USING PRECCX

Basics

@ a -  b e d

@ | b e

The previous notation says that the language structure a can be specified by either 

structure b followed by structure c followed by structure d, or by structure b followed by 

structure c.

The ]’ character in PRECCX means ’OR’.

Every line of PRECCX code must start with an @ symbol, otherwise it gets written 

directly into the C code without PRECCX converting it.

There is, however a better way of specifying this construct in PRECCX:

@ a = b e  [d]

In this case the construct d is specified as being optional by enclosing it in square 

brackets.

Take the specification:

@ Boring= < ’z ’>*

The <> around the 'z' cause PRECCX to look for a C style literal token, in this 

case 'z'- The * after it, causes PRECCX to look for it 0 or more times.

Valid inputs are:

(nothing)

zzz

z

The + character is similar to the * except that it looks one or more times, eg.
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@ StillBoring= < ’z ’>+

Valid inputs are: 

z

zzzz

Take the following definition:

@ Identifier = alpha {alpha | numeric} *

This describes a basic form of identifier, the valid inputs would be:

A

A23jdas

In PRECCX, the {} construct is used for grouping, so the above definition would be 

read as:

An Identifier is an alpha followed by zero or more numbers or alphas.

In C the general format is that a semi-colon follows each line of code. This can be 

written in PRECCX as:

@ CLine= line_of_code ] < ’;'>[

The “J [ “ construct means that although a semi-colon is required, it will not be 

used for anything. This saves computation time and makes more efficient translators. 

Here’s an example of a C++ comment:

@ CppComment -  < ”/ / ”> ?*  $
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This will match anything between the “//” and the end of the line as a comment. 

The ’?’ character tells PRECCX to match anything except the End of Line character. The 

’$ ’character tells PRECCX to match the End of Line character.

Errors

@ WhileLoop = < "WHILE"> expression

@ line_of_code *

@ <"WEND">

@ | <"WH1LE"> expression

@ line_of_code * ! {: printf( "While without Wend Error");:}

If the translator can't find the "WEND" keyword, the “/ ” character causes PRECCX

to flag an error.

Actions

In the above example the version which caused the error had some C code attached. 

This C code is what is used to do the translation.

@ test— abc {: printl("d"); :}
@ a = < ’a ’> {: printfi"a"); :}
@ b= AV {: printfi "b "); :}

@ c = <'c'> {: printfi"c"); :}

If we pass the input " a b c  "to this test construct, we would get the output "a b c d" 

written to the output.

Attributes

PRECCX has the ability to synthesize attributes, e.g.
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@ Temp = < ’a ’> {@ 1 @}

@ | < ’b ’> { @ 2 @ }

This statement would return 1 if it was passed an a ’ or 2 if it was passed a ’b ’. The 

value passed back must always be of type long and is passed using the {@ @} construct.

long nTemp =0;

@ Test = {TestForA *J\x

@ TesForA = < ’a ’> {: nTemp++;:} {@ nTemp @}

The above example will return into the attribute x the number of as  matched. This 

is because PRECCX returns the value from the last occurrence of TestForA.

@ TestForNot = [< ”NOT"> {@ 1 @}]\x

This will return 1 if the word "NOT” is matched, otherwise it will return 0.

Using the values of attributes

@ Test = FurtherTestsx {: printf{ “The Value Returned was %d”, $x);: }

When using the value of an attribute you must always prefix it with a $.

Abstract Syntax Trees

Abstract Syntax Trees (AST’s) can represent most syntax. This is a method of 

representing language without being language specific.

Example: A simple expression:

X = A +  1;
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/ \

X +

/ \

A 1

A function can be represented as follows:

Function (a, b , ...);

/ \

Function A 

/ \

/ \ 

a / \

/ \ 

b ...

Abstract Syntax Tree's don't store the language specifics such as the braces around 

the parameters, the commas between parameters, and the semi-colon after the line of 

code. If we those specifiers are not stored, a tree can be used to translate into any 

language.
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APPENDIX B: GLOSSARY OF 

THE PARSING AND LEXICAL 
ANALYSIS KEY TERMS

Backus-Naur Form
A formal metasyntax (syntax used to describe syntax) used to express context-free 

grammars.

BNF is one of the most commonly used metasyntactic notations for specifying the 

syntax of programming languages, command sets, and the like. It is widely used for 

language descriptions but seldom documented anywhere.

Grammar
A formal definition of the syntactic structure of a language (syntax) normally given 

in terms of production rules which specify the order of constituents and their sub­

constituents in a sentence (a well-formed string in the language). Each rule has a left- 

hand side symbol naming a syntactic category and a right-hand side, which is a sequence 

of zero or more symbols. Each symbol may be either a terminal symbol or a non-terminal 

symbol. A terminal symbol corresponds to one "token" - a part of the sentence with no 

internal syntactic structure (e.g. an identifier or an operator in a computer language). A 

non-terminal symbol is the left-hand side of some rule.

One rule is normally designated as the top-level rule, which gives the structure for a 

whole sentence.

A grammar can be used either to parse a sentence or to generate one. Parsing 

assigns a terminal syntactic category to each input token and a non-terminal category to 

each appropriate group of tokens, up to the level of the whole sentence. Parsing is usually 

preceded by lexical analysis. Generation starts from the top-level rule and chooses one 

alternative production wherever there is a choice.

Lexical analysis
The first stage of processing a language. The stream of characters making up the 

source program or other input is read one at a time and grouped into tokens - word-like
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pieces such as keywords, identifiers, literals and punctuation. The tokens are then passed 

to the parser.

Parser
An algorithm or program to determine the syntactic structure of a sentence or string 

of symbols in some language. A parser normally takes as input a sequence of tokens 

output by a lexical analyzer. It may produce some kind of abstract syntax tree as output.

Parser generator
A program which takes a formal description of a grammar in Backus-Naur Form 

and outputs source code for a parser which will recognize valid strings obeying that 

grammar and perform associated actions.

Syntax
The structure of strings in some language. A language’s syntax is described by a 

grammar. For example, the syntax of a binary number could be expressed as 

b in a ry _ n u m b e r  = b i t  [ b in a ry _ n u m b e r  ]

b i t  = "0" | "1"

meaning that a binary number is a bit optionally followed by a binary number and a bit is 

a literal zero or one digit.

The meaning of the language is given by its semantics.

Token
A minimal lexical unit of a language. Lexical analysis converts strings in a 

language into a list of tokens. For a programming language these word-like pieces would 

include keywords, identifiers, literals and punctuation. The tokens are then passed to the 

parser for syntactic analysis.
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APPENDIX C: ALLEN-BRADLEY 

G -C O n i: SPECIFICATION

Product Name: AF-Series 5-Axis Three Dimensional Shapecutting Machine

Product Description:

The Shapecutting cell is a freestanding gantry unit with the working 

axes located between its vertical support legs and above the work 

area. The C & B Axis are mechanically arranged so that the cutting 

tip remains at a constant focal point, which is fixed while the axes 

are rotating around the fixed point.

Controller:
This machine is electric AC servo motor driven and micro 

processor controlled from a CNC based Allen-Bradley 9/260.

Base Axis Bridge Axis Vertical Axis

Work Envelope Sizes: 6 Ft Stroke 8 Ft Stroke 2 Ft Stroke

X/Y/Z Accuracy: 

Linear Positioning Accuracy +/- .005" +/- .005" +/- .005"

Linear Positioning Repeatability +/- .003" +/- .003" +/- .003"

Maximum Rapid Traverse Speed 1200IPM 1200 IPM 1200 IPM

Maximum Contour Speed 600 IPM 600 IPM 600 IPM

Acceleration/Deceleration •05 g •05 g •05 g

C/B Accuracy: C-Axis B-Axis

Rotary Axis Travel ±360° ±90°

Rotary Positioning Accuracy ±.50° ±.50°
Rotary Positioning Repeatability ±.25° ±.25°
Maximum Programmable Speed 90° /s 2 90° /s 2

Acceleration/Deceleration
20°/s 2 20° / s 2

Table C .l. The AF-Series 5-Axis Three Dimensional Shapecutting CNC Machine 

specification (Flow Robotics Company, 1999).
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Figure C .l. Flow Robotics AF-Series 5-Axis Three Dimensional Shapecutting Machine.

Figure C.2. The machine’s rotational axes (B and C).

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.l. Standard Wateriet Shapecutter G-codes

CODE PURPOSE
GOO Rapid point to point motion
G01 Linear interpolation
G02 Circular/helical, clockwise motion
G03 Circular/helical, counterclockwise motion
G04 Dwell time in seconds
G09 Exact stop
G14 Scaling (enable)
G14.1 Scaling (disable)
G15 Polar coordinate cancel
G16 Polar coordinate activate
G17 X, y plane selection
G18 X, z plane selection
G19 Y, z plane selection
G20 Inch mode active
G21 Metric mode active
G22 Programmable zone on
G23 Programmable zone off
G40 Reset cutter compensation
G41 Left cutter compensation
G42 Right cutter compensation
G52 Offset coordinate zero point
G53 Motion in machine coordinate system
G54 Preset work coordinate system 1
G55 Preset work coordinate system 2
G61 Exact stop mode
G64 Cutting mode
G90 Absolute dimensions
G91 Incremental dimensions
G92 Coordinate system offset
G92.1 Cancel coordinate system offset
G93 Inverse time feed mode
G94 Feed-per-minute mode
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C.2. CNC M Codes

CODE DESCRIPTION
MOO Program stop
M01 Conditional program stop
M02 Program end
M30 Program stop/tape rewind
M98 Sub-program call
M99 Sub-program end and return

C.3. I/O M Codes

CODE DESCRIPTION
M08 Dispense on (pressurized water on at nozzle)
M09 Dispense off (pressurized water off at nozzle)
M10 Abrasive on at nozzle
M il Abrasive off at nozzle
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APPENDIX I>: CIRCUl.AR 

INTERPOLATION MAPPING

Circular interpolation of Allen-Bradley CNC controller is defined in five different

ways:

• Case 1: Centre and end point parameters are known,

• Case 2: Radius and end point parameters are known,

• Case 3: Arc angle and centre point or end point parameters are known,

• Case 4: Polar coordinates are known,

• Case 5: CIP - start, intermediate and end point parameters are known.

It is because robot controllers can calculate a circular trajectory only if the start, 

intermediate, and end points are known, and because Workspace motion planner has been 

designed according to Realistic Robot Simulation specification (therefore not taking into 

account CNC controllers) the following mathematical transformations were performed to 

make CNC to robot circular motion mapping possible.
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Case 1 -  Centre and End Point

A
y

M • r * ! ’

B

t

A -  current point 

B -  end point 

C -  center point 

D -  via point

C

 ►

x

Figure D.l. Significant points used in calculation when centre and end point parameters

are known.

Following calculation steps have been performed: 

1 -  Find the medium point M:

2 -  Find the circle radius:
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3 -  Form the analytical equation of a circle, and the line that contains points M and

C:

The calculated x coordinate belongs to the intersection point, which position needs 

to be determined. There are two solutions for x. Depending on the type of circular 

interpolation (clockwise or counter-clockwise), a plus sign or a minus sign in the 

previous equation will be used respectively.

One solution is located on the arc between points A and B, therefore:

6 -When a start point, an end point and a via point are known, the motion planner 

can accept those parameters and calculate a circular trajectory.

= y c ( x - x c )
X  u  X rM

( x - x c )2 - ( y - y c )2 = R 2

4 -  Introduce a new variable C i:

c  _ y M ~ y c
xM - x c

y - y c = c l ( x - x c )

5 -  Put the above expression in the circle equation and solve it for x:

y A ^ y D ^  y B
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Special Cases:

There are two special cases:

• Points A and B are on the vertical line. In that case: xD = xc +R; yD = yc.

• Points A and B are on the horizontal line. Therefore: xD = xc; yD = yc + R-

Case 2 -  Radius and End Point

A -  current point 

B -  end point 

C -  centre point 

D -  via point

y

Figure D.2. Significant parameters used in calculation when circle radius and end point
are known.

The beginning calculation steps are the same as for the case 1.

1 -  Find the coordinates of point M.

2 -  Find the length of line MB.

3 — Calculate the position of point C:

xm = xc + Ri cos a CM xc = xM — cos ctCM
->

y M = y c + sm a CM y c = yM ~ R\ sin

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Plus and minus signs used in previous two equations are applicable only to the case

presented in Figure 2. The problem is that there is one more circle that can be created

through points A and B, and its centre is located opposite of point C with respect to line 

that goes through points A and B. In that case signs in the above equations will be 

changed.

4 -  Calculate the length of Ri:

/?, =  J r 2 - M B ~
5 -  Calculate cccm:

1 . 1 ,
t S & C M  ~  2  ~  f - ,  ^  ^ C M  ~~ Q f C t g ( )

Cj

Ci = tg a  (refer to Case 1)

6 -  Therefore, after performing the described calculations the following parameters 

are known: start point, end point, and centre point, and that is the case 1.

Special Cases:

Since the function arctg was used, there is a possibility of error generation for 

specific angle values (0 and 90 degrees). Those cases have to be programmed separately:

- Line AB is horizontal ( c x c m =  0 degrees)

X C =  X M

yc = y M ~ Ri
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M
R.

B

c

Figure D.3. Special case 1 ((X c m =  0  degrees), when circle radius and end point are
known.

Line AB is vertical ( c x c m  = 90 degrees)

X C X M  ^ 1

= y u

A

  ......................  # -  M
C ...........

# B

Figure D.4. Special case 1 ((X c m =  0 degrees), when circle radius and end point are

known.

Case 3 — Centre Point or End Point and Angle

There are two possible sub-cases within this case:
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Sub-case 1 -  Known parameters: Angle and Centre Point

•X)A - current point 

B -  end point 

C -  centre point 

D -  via point a A

xc

XB

Figure D.5. Significant parameters used in calculation when arc centre point and arc
central angle are known.

Following calculation steps have been performed:

1 -  Calculate the circle radius using points A and C

2 -  If the direction of revolution is clockwise then:

a A = a  + a B a B = a A- a

- If the direction of revolution is counter-clockwise then:

a B = a  + a A 
3 -  Calculate the target point coordinates:

x b  ~  x c  + R c o s a B

y B = yc +flsin a B
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4 -  after performing the calculations shown in previous steps, the following 

parameters are known: a start point, an end point, and a centre point -  which is the same 

as case 1 described above.

Sub-case 2 -  Known parameters: start point, end point and angle

Following calculation steps have been performed:

1 -  Find the medium point M between the points A and B

2 -  Find the radius:

. a  AM „ AM 
sin — = ------ => R = —

2 R sin

6/2

Figure D.6. Significant parameters used in calculation when start point, end point and the
central angle are known.

In order to find the distance between points A and M, refer to case 2.
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Case 4 -  Polar Coordinates

The next parameters are known:

• polar angle,

• polar radius, and

• current point.

Pole is located in the circle centre point. This case is exactly the same as the case

3.1.

Case 5 -  C1P -  Arc or Circle through Intermediate Point

This is the standard motion planner case, therefore it will not be discussed.
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APPENDIX E: G-CODE 

LANGUAGE GRAMMAR 
SCRIPT

# d e f in e  TOKEN i n t  

# d e f in e  VALUE i n t

/ *  R e d e f in in g  E r r o r  M a c ro s  * /

# d e f in e  BAD_ERROR(x) f p r i n t f ( s t d e r r , " % s( %d) : f a i l e d  p a r s e : \
p r o b a b le  e r r o r  n e a r  . . <%s> . . \ n S k ip p i n g

. . . \ n " , p _ i n f i l e , y y l i n e n o , y y t e x t ) ; \
i f ( n u m e r r s + +  > 1 0 0 ) { f p r i n t f ( s t d e r r , " \n T o o  m any e r r o r s  (1 0 1 )  . . .

e x i t i n g " ) ;  \
e x i t ( n u m e r r s ) ; } w h i l e ( y y t c h a r )  { i f ( y y t c h a r  < 1) e x i t ( - l ) ;

g e t l t o k e n ( ) ; } / * g e t l t o k e n ( ) ; * / \  
y y l lo c = N U L L ; / * g e t c h a r ()  *  /  ;

t d e f i n e  ZER_ERR0R( x ) f p r i n t f ( s t d e r r , " % s( %d) : in c o m p le t e  p a r s e : \
p o s s ib le  e r r o r  n e a r  . .  <%s> . . \ n S k ip p i n g

. . . \ n " , p _ i n f i l e , y y l i n e n o , y y t e x t ) ; \
i f ( n u m e r r s + +  > 1 0 0 ) { f p r i n t f ( s t d e r r , " \n T o o  m any e r r o r s  (1 0 1 )  . . .

e x i t i n g " ) ;  \
e x i t ( n u m e r r s ) ; } w h i l e ( y y t c h a r )  { i f ( y y t c h a r  < 1) e x i t ( - l ) ;

g e t l t o k e n ( ) ; } / * g e t l t o k e n (),-  * /  \  
y y l l o c = N U L L ; / * g e t c h a r ( ) * / ;

# d e f in e  BTK_ERROR(x ) i f  ( ! p _ e n t r y ) { \  
i f ( n u m e r r s + +  > 1 0 0 ) { f p r i n t f ( s t d e r r , " \n T o o  m any e r r o r s  (1 0 1 )  . . .  

e x i t i n g " ) ;  \
e x i t ( n u m e r r s ) ; } w h i l e ( y y t c h a r )  { i f ( y y t c h a r  < 1 ) e x i t ( - l ) ;

g e t l t o k e n ( ) ; } / * g e t l t o k e n ( ) ; * / \  
y y l lo c = N U L L ; \
f p r i n t f ( s t d e r r , " ( l i n e  %d) e r r o r :  p a r s e  b a c k t r a c k e d  a c r o s s  c u t  f r o m  

p o i n t  n e a r  . .  <%c> . . \ n " , y y l i n e n o , * ( c h a r * ) m a x p ) ; } \  
y y l lo c = N U L L ; \
lo n g jm p ( jm p b ,1 ) ;  / *  s h o u ld  b e  t o  th e  ! w e ' r e  b a c k t r a c k in g  a c r o s s  * / \  
/ * g e t c h a r ( ) * / ;

t d e f i n e  END { D e s t r o y A S T s ( ) ;  p r i n t f ( " X n T r a n s la t io n  C o m p le t e \ n \ n " ) ; }

# d e f in e  T O _ IN T  ( i n t )

t d e f i n e  TO_CP ( i n t  * )

t i n c l u d e  " G c o d e s .y .h "
# in c lu d e  " c c x . h "  
t i n c l u d e  "AST S t u f f . h "  
t i n c l u d e  < s t d io . h >  
t i n c l u d e  < c t y p e .h >

c h a r  * y y te m p ; 
e x t e r n  c h a r  * y y t e x t ;  
e x t e r n  F IL E  * y y i n ;
F IL E  * o u t p u t _ f i l e ;
i n t  n N u m b e rO f In i tF u n c s  = 0 ;
i n t  n N u m b e r O f In i t s  = 0 ;
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# d e f in e  VAR _TAB LE _S IZE  1024

i n t  n u m e r rs  = 0 ; 
i n t  ju s t O n e  = 0 ;

/ ‘ N u m e r ic  V a lu e s * /

© n u m _ v a lu e  = p o i n t \ x  i n t e g e r \ y
(@ u k e y (T 0 _ C P  $ x , ( $ y  -  $ x ) ) @}

© | f i r s t _ d i g i t \ x  [ i n t e g e r ]  p o i n t i n t e g e r \ y
{<? u k e y  (TO_CP $ x , ( $ y  -  $ x )  ) @}

© 1 f i r s t _ d i g i t \ x  [ i n t e g e r ]  p o i n t \ y
(@ u ke y (T O _ C P  $ x , ( $ y  -  $ x ) ) @)

© | f i r s t _ d i g i t \ x  i n t e g e r \ y
{© u ke y (T O _ C P  $ x , ( $ y  -  $ x ) ) ©}

© | f i r s t _ d i g i t \ x
{© u k e y (T 0 _ C P  $ x , 1) @)

@ | m s ig n \ x  p o i n t  i n t e g e r \ y
{© u ke y (T O _ C P  $ x , ( $ y  -  $ x ) ) @)

@ | m s ig n \ x  f i r s t _ d i g i t  [ i n t e g e r ] p o i n t  i n t e g e r \ y
{@ u ke y (T O _ C P  $ x , ($ y  -  $ x ) ) ©}

@ | m s ig n \ x  f i r s t _ d i g i t  [ i n t e g e r ] p o i n t \ y
{@ u k e y (T 0 _ C P  $ x , ($ y  -  $ x ) ) 0 }

@ | m s ig n \ x  f i r s t _ d i g i t  i n t e g e r \ y
{© u ke y (T O _ C P  $ x , ( $ y  -  $ x ) ) ©}

@ | m s ig n \ x  f i r s t _ d i g i t \ y
{© u ke y (T O _ C P  $ x , ($ y  -  $ x ) ) ©}

@ m s ig n = {@ T O _IN T  p s t r  ©}

@ p o i n t = [@ T O _ IN T  p s t r  ©}

© f i r s t _ d i g i t  = ( m y i s d ig i t )  {© T O _ IN T  p s t r  ©}

© i n t e g e r  = ( m y i s d i g i t ) *  {© T O _ IN T  p s t r  ©}

/ ‘ C o m m e n ts * /

© com m ent = b e h o ld \ x  { :  f p r i n t f ( o u t p u t _ f i l e ,  " \n \n R e m
%s" ,  g e t s t r i n g ( $ x ) ) ;  : }

© b e h o ld  = l e t t e r ( ' ( ' ) \ x  <SPACE>* t e x t  l e t t e r ( ' ) ' ) \ y  {©
uke y (T O _ C P  $ x , ($ y  -  $ x ) ) ©}

© t e x t  = c o n te n s +

© c o n te n s  = w o rd  s e p a r a t o r  w o rd

@ s e p a r a t o r  = <SPACE>

@ w o rd  = ( m y i s p r i n t ) *  {© T O _ IN T  p s t r  ©}

@ l e t t e r ( n )  = <n> {@ ( i n t )  p s t r  ©}

/ ‘ P ro g ra m  S t r u c t u r e * /

@ p r o g r a m _ f lo w  = [<PERC>] <SPACE>*
@ $ *  <SPACE>*
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© [c o m m e n t] [< S E M IC > ] <SPACE>*
© $ * <SPACE>*
© p ro g ra m _ n a m e  <SPACE>*
© $ *  <SPACE>*
© [c o m m e n t] [< S E M IC > ] <SPACE>*
© $ * <SPACE>*
© c o d e s

<SPACE>*
© $ * <SPACE>*
© [c o m m e n t] [<S E M IC > ] <SPACE>*
© $ *  <SPACE>*
© m a in e n d  <SPACE>*
© $ * <SPACE>*
© s u b p ro g ra m s *  [<S E M IC >] <SPACE>*
© <EOF>

© p ro g ra m _ n a m e  = < ' 0 ' >  [n u m _ v a lu e ] \p  [<S E M IC >] { :  s t a t i c  i n t  c o u n te r  
= 0 ;
©
i f ( c o u n t e r  = = 0 )  {

" \ n \ n P u b l i c Sub

f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n P u b l i c  Sub R eadyToG o ( ) " ) ;
©
©
{
©

f p r i n t f ( o u t p u t _ f i l e ,  
g e t s t r i n g ( $ p ) ) ;
©
©

c o u n t e r + + ;
©

ju s tO n e  = 0 ;

P rogram % s

}
e ls e  

0  " ,

}

: }
© m a in e n d  
©
©
" \ n \n E n d  S u b " ) ;  
©
©

© s u b p ro g ra m s  
©
©
©
©
©
©
©
©
©
©
©

= [<PERC>] {
i f ( j u s t O n e  == 0)

{ f p r i n t f ( o u t p u t _ f i l e .

} :}
ju s tO n e + +  ;

= [c o m m e n t] [< S E M IC > ] <SPACE>*
$ *  <SPACE>*

p ro g ra m _ n a m e  <SPACE>*
$ * <SPACE>*
[c o m m e n t] [< S E M IC > ] <SPACE>*
$ * <SPACE>*
c o d e s  <SPACE>*
$ *  <SPACE>*
[c o m m e n t] [<S E M IC >] <SPACE>*
$ * <SPACE>*
g o b a c k to m a in  <SPACE>*
$ *  <SPACE>*

© g o b a c k to m a in  = <M99> [< S E M IC > ] { :  f p r i n t f ( o u t p u t _ f i l e ,  " \ n \n E n d
S u b " ) ;  : }

© c o d e s  = s e n te n c e s -  $ *

© s e n te n c e  = [ <S LA LIN E > ] {$  | n _ w o rd  | g _ w o rd  | m _w ord  | t_ w o r d  |
s _ w o rd  | h _ w o rd  | d _ w o rd  | s e tO fA r g s  | co m m e n t}+  [< S E M IC > ] <SPACE>*
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© s e tO fA r g s  = { [a rg u m e n tx ]  [a rg u m e n ty ]  [a rg u m e n tz ]  [a rg u m e n tb ]
[a rg u m e n tc ]  ta r g u m e n t f ]  [ a r g u m e n t i ]  [ a r g u m e n t j ]  [a rg u m e n tk ]  [ a r g u m e n t r ] } 
t h e R e s t *  $
© { :  f p r i n t f ( o u t p u t _ f i l e ,
" \ n \ n P e r f o r m M o t io n " ) ;  : }

© th e R e s t  

© n _ w o rd  

© t_ w o r d  

© s _ w o rd  

© h _ w o rd  

© d  w o rd

= g _ w o rd  | m _w ord  

= < ' N ' >  n u xn _ va lu e  

= < ' T ' >  n u m _ v a lu e  

= < ' S ' >  n u m _ v a lu e  

= < ' H ' >  n u m _ v a lu e  

= < ' D ' >  num v a lu e

| t_ w o r d  

<SPACE>* 

<SPACE>* 

<SPACE>* 

<SPACE>* 

<SPACE>*

d  w o rd  I h  w o rd

0 g  w o rd  = g te m p ty
0 gtOO
© g t O l
© g t0 2
0 g t0 3
0 g t0 4
© g t0 9
0 g t l0 1 2
© g t l 4
0 g t l 4 l
© g t i s
0 g t l 6
© g t i 7
© g t l 8
0 g t l 9
© g t2 0
0 g t 2 i
© g t2 2
© g t2 3
© g t2 7
© g t2  8
© g t2 9
© g t3 0
© g t5 2
© g t5 3
© g t5 4
© g t5 5
© g t5 6
© g t5 7
© g t5 8
© g t5 9
© g t5 9 1
© g t5 9 2
© g t5 9 3
© g t 6 l
© g t9 0
© g t 9 i
© g t9 2
© g t 9 2 i
© g t9 3
© g t9 4
© g ts o
© g t7 4
© g t9 5
© g t3 1
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@ g tlO O
@ g t6 5
@ g t8 1
(3 g t7 6
@ g t4 1
@ g t4 3
@ g t4 3 1
@ g t l O l
@ g t l 0 3
(3 g t7 4 1
@ g t l 3
<3 g t l 0 2
(3 g t l 6 1
<3 g t2 4
@ g t2 5
(3 g t2 6
(3 g t3 7
(3 g t3 8
13 g t3 8 1
<3 g t4 6
<3 g t6 8

g t7 3
@ g t8 3
(3 g t8 8 1 1
@ g t8 8 1 2
@ g t8 8 1 3
@ g t8 8 1 4
(3 g t8 8 1 5
@ g t8 8 2 1
(3 g t8 8 2 2
@ g t8 8 2 3
@ g t8 8 2 4
@ g t8 8 3 1
@ g t8 8 3 2
13 g t8 8 4 1
@ g t8 8 4 2
@ g t8 8 5
@ g t8 8 6
@ g t8 9 1
(3 g t8 9 2

@ g te m p ty  = <G05> <SPACE>*
§ <G05 1> <SPACE>*
@ <G 05_2> <SPACE>*
(3 <G05 3> <SPACE>*
@ <G 05_4> <SPACE>*
@ <G 11> <SPACE>*
@ <G12 1> <SPACE>*
@ <G12 2> <SPACE>*
@ <G 12_3> <SPACE>*
@ <G 36> cSPACE>*
@ <G3 6_1>  <SPACE>*
@ <G39> <SPACE>*
@ <G 39_1> <SPACE>*
@ 1 <G40> <SPACE>*
@ <G45> <SPACE>*
@ <G 46_1> <SPACE>*
@ <G 49> <SPACE>*
e <G 62> <SPACE>*
@ <G 63> <SPACE>*
@ <G 64> <SPACE>*
@ <G 67> <SPACE>*
@ <G 69> <SPACE>*
@ <G 80> <SPACE>*
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©
©
©

<G 92_2> <SPACE>* 
<G98> <SPACE>*
<G99> <SPACE>*

© gtOO

© r a p id _ a x e s e q  
@
©
©

©
©

©
: }

\ " R a p i d \ " " ) ;

@ a rg u m e n tx  =
f p r i n t f ( o u t p u t _ f i l e ,

@ a rg u m e n ty  =
f p r i n t f ( o u t p u t _ f i l e ,

@ a rg u m e n tz  =
f p r i n t f ( o u t p u t _ f i l e ,

© a rg u m e n tb  =
f p r i n t f ( o u t p u t _ f i l e ,

© a rg u m e n tc  =
f p r i n t f ( o u t p u t _ f i l e ,

@ a r g u m e n t f  =
f p r i n t f ( o u t p u t _ f i l e ,

@ a r g u m e n t i  =
f p r i n t f ( o u t p u t _ f i l e ,

© a rg u m e n t j  
f p r i n t f ( o u t p u t _ f i l e ,

© a rg u m e n tk  =
f p r i n t f ( o u t p u t _ f i l e ,

@ a r g u m e n t r  =
f p r i n t f ( o u t p u t _ f i l e ,

= <G00> <SPACE>* r a p id _ a x e s e q  

[ a rg u m e n tx ]
[a rg u m e n ty ]
[ a rg u m e n tz ]  
[a rg u m e n tb ]  
[a rg u m e n tc ]
[ a r g u m e n t f ]

{ :  f p r i n t f ( o u t p u t _ f i l e .

f p r i n t f ( o u t p u t _ f i l e .

1\ n \ n A c t iv e M o t io n T y p e  

" \ n P e r f o r m M o t io n " ) ;

< ' X ' >  n u m _ v a lu e \x  <SPACE>* {© $ x  ©}
" \ n \ n D e f C o o r d .x  = %s” , g e t s t r i n g ( $ x ) ) ;  : }

< ' Y ' >  n u m _ v a lu e \y  <SPACE>* {@ $ y  ©}
" \ n \ n D e f C o o r d .y  = %s" ,  g e t s t r i n g ( $ y ) ) ;  : }

< ' Z ' >  n u m _ v a lu e \z  <SPACE>* {© $z ©}
" \ n \ n D e f C o o r d .z  = %s" ,  g e t s t r i n g ( $ z ) ) ;  : }

< ' B ' >  n u m _ v a lu e \b  <SPACE>* {© $b  ©}
" \ n \ n D e f C o o r d .b  = % s " , g e t s t r i n g ( $ b ) ) ;  : }

< ' C ' >  n u m _ v a lu e \c  <SPACE>* {© $c ©}
" \ n \ n D e f C o o r d .c  = %s" ,  g e t s t r i n g ( $ c ) ) ;  : }

< ' F ' >  n u m _ v a lu e \ f  <SPACE>* {© $ f  ©}
" \ n \ n F e e d r a t e  = %s" ,  g e t s t r i n g ( $ f ) ) ;  : }

< ' I ' >  n u m _ v a lu e \ i  <SPACE>* {© $ i  ©}
" \ n \ n C i r c P a r a m . i  = %s" ,  g e t s t r i n g ( $ i ) ) ;  : }

< ' J ' >  n u m _ v a lu e \ j  <SPACE>* {© $ j  ©}
" \ n \ n C i r c P a r a m . j  = %s" ,  g e t s t r i n g ( $ j ) ) ;  : }

< ' K ' >  n u m _ v a lu e \k  <SPACE>* {© $ k  ©}
" \ n \ n C i r c P a r a m . k  = %s" ,  g e t s t r i n g ( $ k ) ) ;  : }

< ' R ' >  n u m _ v a lu e \ r  <SPACE>* {© $ r  ©}
11 \n \n C ir c P a r a m .  r  = % s " , g e t s t r i n g  ( $ r )  ) ; : }

® g t O l  = <G01> <SPACE>* l in e a r _ a x e s e q

© l in e a r _ a x e s e q  = [a rg u m e n tx ]
® [a rg u m e n ty ]
® [ a rg u m e n tz ]
@ [a rg u m e n tb ]
® [a rg u m e n tc ]
@ [ a r g u m e n t f ]
® { :  f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n A c t iv e M o t io n T y p e
= \ " L i n e a r \ " " ) ;
® f p r i n t f ( o u t p u t _ f i l e ,  " \ n P e r f o rm M o t io n " ) ;
:}

® g t0 2  = <G02> <SPACE>* c i r c w _ a x e s e q
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@ c ir c w _ a x e s e q  
@
@
@
@
@
@
@
@

@
:}

\ " C i r c u l a r  C W\ " ” ) ;

[a rg u m e n tx ]
[a rg u m e n ty ]
[ a r g u m e n tz ] 
[a r g u m e n t r ]
[ a r g u m e n t i ] 
[ a r g u m e n t j ] 
[a rg u m e n tk ]  
[a rg u m e n tb ]  
[a rg u m e n tc ]
[ a r g u m e n t f ]

{ :  f p r i n t f ( o u t p u t _ f i l e ,

f p r i n t f ( o u t p u t _ f i l e .

' \ n \ n A c t iv e M o t io n T y p e  

" \ n P e r f o r m M o t io n " ) ;

@ g t0 3

@ c ir c c w _ a x e s e q  
@

@

@
@
@

@

@

@
@

= \ " C i r c u l a r  CCW\ " " ) ;  
@
: }
@ g t0 4

<G03> <SPACE>* c i r c c w _ a x e s e q

[a rg u m e n tx ]
[a rg u m e n ty ]
[ a rg u m e n tz ]  
[ a r g u m e n t r ]
[ a r g u m e n t i ] 
[ a r g u m e n t j  ] 
[a rg u m e n tk ]  
[a rg u m e n tb ]  
[a rg u m e n tc ]
[ a r g u m e n t f ] 

f p r i n t f ( o u t p u t _ f i l e ,

f p r i n t f ( o u t p u t _ f i l e ,  

<G04> <SPACE>* {p p a ra m

\n \n A c  t  iv e M o  t  i  o n T y p e  

" \ n P e r f o r m M o t io n " ) ;

x p a ra m u p a ra m }

@ p p a ra m  = < ' P ' >  n u m _ v a lu e \p  <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,
" \n \n C N C .D e la y  1000  * %s # " ,  g e t s t r i n g ( $ p ) ) ;  : }

@ x p a ra m  = < ' X ' >  n u m _ v a lu e \x  <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,
" \n \n C N C .D e la y  100 0  * %s # " ,  g e t s t r i n g ( $ x ) ) ;  : }

@ u p a ra m  = < ' U ' >  n u m _ v a lu e \u  <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,
" \n \n C N C .D e la y  1000  * %s # " ,  g e t s t r i n g ( $ u ) ) ;  : }

= <G09> <SPACE>*@ g t0 9  
" \n \n C N C .D e la y  1 " ) ;
@

f p r i n t f ( o u t p u t _ f i l e ,  " \n C N C .RRS. S t o p M o t io n " ) ;  : }

{ :  f p r i n t f ( o u t p u t _ f i l e ,

@ g t l 0 1 2  = <G 10L2> <SPACE>* < ' P ' > n u m _ v a lu e \p  <SPACE>*
o r i g i n x \ x  o r i g i n y \ y  o r i g i n z \ z
@ { : i f ($P
= = 1) f p r i n t f ( o u t p u t _ f i l e ,  " \n \n T a b le C S  = \ " G 5 4 \ " ’) ;
@ e ls e i f ($P
= = 2) f p r i n t f ( o u t p u t _ f i l e ,  " \n \n T a b le C S  = \ " G5 5 \  " ' ) ;
@ e ls e i f ($P
== 3) f p r i n t f ( o u t p u t _ f i l e ,  " \n \n T a b le C S  = \ " G 5 6 \ " ') ;
@ e ls e i f ($P
== 4) f p r i n t f ( o u t p u t _ f i l e ,  " \n \n T a b le C S  = \ " G 5 7 \ " ') ;
@ e ls e i f ($P
== 5) f p r i n t f ( o u t p u t _ f i l e ,  " \n \n T a b le C S  = \ " G 5 8 \ " ') ;
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© e ls e  i f  ( $p 

e ls e  i f  ($ p
== 6) f p r i n t f ( o u t p u t _ f i l e ,  " \ n \n T a b le C S  = \ " G 5 9 \ " " ) ;
@

= = 7)  f p r i n t f  ( o u t p u t _ f  i l e , " \ n \n T a b le C S  = \  "G 59 . 1 \ " 11) ;
@ e ls e  i f  ($ p
== 8) f p r i n t f ( o u t p u t _ f i l e ,  " \ n \n T a b le C S  = \ " G 5 9 . 2 \ " " )  ;
© e ls e  i f  ($ p
== 9) f p r i n t f ( o u t p u t _ f i l e ,  " \ n \n T a b le C S  = \ " G 5 9 . 3 \ " " ) ;

f p r i n t f  ( o u t p u t _ f  i l e ,  11 \ n \ n I s I t A c t i v e  %s, %s, %s" ,  g e t s t r i n g  ( $x )  ,
g e t s t r i n g ( $ y ) , g e t s t r i n g ( $ z ) ) ;
© :}

© o r i g i n x  

© o r i g i n y  

© o r i g i n z

= < ' X ' >  n u m _ v a lu e \x  <SPACE>* {© $ x  @}

= < ' Y ' >  n u m _ v a lu e \y  <SPACE>* {© $ y  ©}

= < ' Z ' >  n u m _ v a lu e \z  <SPACE>* {© $z @)

© g t l 4  = <G14>
" \ n \ n S c a le V a lu e  = 1 " ) ;  : }

<SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,

@ g t l 4 1 <G14 1> <SPACE>* s c a le v a lu e

© s c a le v a lu e  = < ' P ' >  n u m _ v a lu e \p  <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,
" \ n \ n S c a le V a lu e  = %s" ,  g e t s t r i n g ( $ p ) ) ;  : }

<G15> <SPACE> * { :  f p r i n t f ( o u t p u t _ f i l e ,© g t l 5  
" \ n \ n I s P o l a r  = F a l s e " ) ;
©
f p r i n t f ( o u t p u t _ f i l e ,  " X n R e s e tP o la r A n g le s " ) ; : }

@ g t l 6  = {<G 16>  <SPACE>* a rg u m e n tx  a rg u m e n ty )  {
f p r i n t f ( o u t p u t _ f i l e , " \ n \ n I s P o l a r  = T r u e X n P e r fo r m M o t io n " ) ;  : }

© | {<G 16> <SPACE>* a rg u m e n tz  a rg u m e n tx )  {
f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n I s P o l a r  = T r u e X n P e r fo r m M o t io n " ) ;  : }

© | {<G 16> <SPACE>* a rg u m e n ty  a rg u m e n tz )  {
f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n I s P o l a r  = T r u e \ n P e r f o r m M o t io n " ) ;  : }

© { [ a r g u m e n tb ] } { [ a r g u m e n tc ] ) { [ a r g u m e n t f ] )

© g t l 7  = <G17>
" \ n \ n P la n e  = 1 7 " ) ;  : }

© g t l 8  =
" \ n \ n P la n e  = 1 8 " ) ;  : )

© g t l 9  =
" \ n \ n P la n e  = 1 9 " ) ;  : )

© g t2 0  =
" \n \n M S V a lu e  = 2 5 . 4 " ) ;  : )

© g t2 1
” \n M S V a lu e  = 1 " )  ; : }

© g t2 2  =
u\n \n Z o n e O n  = T r u e " ) ;  : )
©
" \n \n Z o n e O n  = T r u e " ) ;  : }

<G18> 

<G19> 

<G2 0> 

<G21>

<SPACE>* { :  

<SPACE>* { :  

< SPACE>* { : 

<SPACE>* { : 

<SPACE>* { :

<G22> <SPACE>* { :

<G 22_1> <SPACE>* { :

f p r i n t f ( o u t p u t _ f i l e ,

f p r i n t f ( o u t p u t _ f i l e ,

f p r i n t f ( o u t p u t _ f i l e ,

f p r i n t f ( o u t p u t _ f i l e ,

f p r i n t f ( o u t p u t _ f i l e ,

f p r i n t f ( o u t p u t _ f i l e ,  

f p r i n t f ( o u t p u t _ f i l e ,

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



@ g t2 3  = <G23> <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,
" \n \n Z o n e O n  = F a l s e " ) ;  : }
@ | <G 23_1> <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,
" \n \n Z o n e O n  = F a l s e " ) ;  : }

@ g t2 7  = <G27> <SPACE>*
@ [a rg u m e n tx ]
@ [a rg u m e n ty ]
@ [a rg u m e n tz ]
@ [a rg u m e n tb ]
@ [a rg u m e n tc ]
@ [ a r g u m e n t f ]
@ { :  f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n G 2 7 " ) ;  ; }

@ g t2 8  = <G 28> <SPACE>*
@ [a rg u m e n tx ]
@ [a rg u m e n ty ]
@ [a rg u m e n tz ]
@ [a rg u m e n tb ]
@ [a rg u m e n tc ]
@ [ a r g u m e n t f ]
@ { :  f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n G 2 8 " ) ;  : }

@ g t2 9  = <G29> <SPACE>*
@ [a rg u m e n tx ]
@ [a rg u m e n ty ]
@ [a rg u m e n tz ]
@ [a rg u m e n tb ]
@ [a rg u m e n tc ]
@ [ a r g u m e n t f ]
@ { :  f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n G 2 9 " ) ;  : }

@ g t3 0  = <G30> <SPACE>*
@ [a rg u m e n tx ]
@ [a rg u m e n ty ]
@ [a rg u m e n tz ]
@ [a rg u m e n tb ]
@ [a r g i im e n tc ]
@ [ a r g u m e n t f ]
@ { :  f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n G 3 0 " ) ;  : }

@ g t5 2  = <G52> <SPACE>*
@ [ m a r k x ] \ x
@ [ m a r k y ] \ y
@ [m a r k z ] \ z
@ { :  f p r i n t f ( o u t p u t _ f i l e ,
" \ n \ n M o v e O r ig in  5 2 , %s, %s, %s" ,  g e t s t r i n g ( $ x ) , g e t s t r i n g ( $ y ) ,
g e t s t r i n g ( $ z ) ) ;  : }

@ g t5 3  = <G53> <SPACE>* { :
f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n A c t iv e C S  = \ " G 5 3 \ " " ) ;
@
f p r i n t f ( o u t p u t _ f i l e ,  "X n lsW C S = F a l s e " ) ;  : }

@ g t5 4  = <G54> <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e ,
" \ n \ n A c t iv e C S  = \ " G 5 4 \ " " ) ;
@

f p r i n t f ( o u t p u t _ f i l e ,  "Xn lsW C S = T r u e " ) ;  : }

@ g t5 5  = <G55> <SPACE>* { :
f p r i n t f ( o u t p u t _ f i l e ,  " X n X n A c tiv e C S  = \ " G 5 5 \ " " ) ;
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@
f p r i n t f ( o u t p u t _ f i l e ,  " \n Is W C S  = T r u e " ) ;  : }

@ g t5 6
f p r i n t f ( o u t p u t _ f i l e ,  

f p r i n t f ( o u t p u t _ f i l e ,  

@ g t5 7
f p r i n t f ( o u t p u t _ f i l e ,  

f p r i n t f ( o u t p u t _ f i l e ,  

@ g t5 8
f p r i n t f ( o u t p u t _ f i l e ,  
@

f p r i n t f ( o u t p u t _ f i l e ,  

@ g t5 9
f p r i n t f ( o u t p u t _ f i l e ,  

f p r i n t f ( o u t p u t _ f i l e ,  

@ g t5 9 1
f p r i n t f ( o u t p u t _ f i l e ,  
@
f p r i n t f ( o u t p u t _ f i l e ,  

@ g t5 9 2
f p r i n t f ( o u t p u t _ f i l e ,  
@

f p r i n t f ( o u t p u t _ f i l e ,  

@ g t5 9 3
f p r i n t f ( o u t p u t _ f i l e ,  
@
f p r i n t f ( o u t p u t _ f i l e ,

= <G56> <SPACE>*
" \ n \ n A c t iv e C S  = \ " G 5 6 \ " " )

"Xn lsW C S = T r u e " ) ;  : }

= <G57> <SPACE>*
" X n X n A c tiv e C S  = \ " G 5 7 \ ," , )

"X n lsW C S = T r u e " !

= <G58> <SPACE>*
"X n X n A c tiv e C S  = \ " G 5 8 \ " " ) ;

"X n lsW C S = T r u e " ) ;  : }

= <G59> <SPACE>*
"X n X n A c tiv e C S  = \ " G 5 9 \ " " ) ;

"X n lsW C S = T r u e " ) ;  : }

= <G 59_1> <SPACE>* 
"X n X n A c tiv e C S  = X " G 5 9 . I X " " ) ;

"Xn lsW C S = T r u e " ) ;  : }

= <G 59_2> <SPACE>* 
"X n X n A c tiv e C S  = X " G 5 9 . 2 \ " " ) ;

"X n lsW C S = T r u e " ) ;  : }

= <G 59_3> <SPACE>* 
"X n X n A c tiv e C S  = \ " G 5 9 . 3 \ " " ) ;

"X n lsW C S = T r u e " ) ;  : }

= <G61> <SPACE>* { :

{ :

{ :

{ :

@ g t6 1
" X n X n C N C .D e la y  1 " ) ;
@

f p r i n t f ( o u t p u t _ f i l e ,  " XnCNC.RRS. S t o p M o t io n " ) ;  : )

f p r i n t f ( o u t p u t _ f i l e .

@ g t9 0  = <G90> <SPACE>*
f p r i n t f ( o u t p u t _ f i l e ,  " X n X n ls R e la t iv e  = F a ls e " ) : }

@ g t9 1  = <G91> <SPACE>* { :
f p r i n t f ( o u t p u t _ f i l e ,  " X n X n ls R e la t iv e  = T r u e " ) ;  : }

@ g t9 2  = <G92> <SPACE>*
@ [ m a r k x ] \ x
@ [ m a r k y ] \ y
@ [ m a r k z ] \ z
@ { :  f p r i n t f ( o u t p u t _ f i l e ,
" X n X n M o v e O rig in  9 2 , %s, %s, %s" ,  g e t s t r i n g ( $ x ) , g e t s t r i n g ( $ y ) ,
g e t s t r i n g ( $ z ) ) ;  : }

@ m a rk x  

@ m a rk y

= < ' X ' >  n u m _ v a lu e \x  <SPACE>* {@ $ x  @} 

= < ' Y ' >  n u m _ v a lu e \y  <SPACE>* {@ $ y  @}
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@ m a rk z  = < ' Z ' >  n u m _ v a lu e \z  <SPACE>* {@ $z @}

@ g t9 2 1  = <G 92_1> <SPACE>* { :  f p r i n t f ( o u t p u t _ f i l e
" \ n \ n M o v e O r ig in  9 2 1 , 0 # , 0 # , 0 # " ) ;  : }

@ g t9 3  = <G93> <SPACE>* a r g u m e n t f  <SPACE>* {
f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n I s I n v e r s e T im e  = T r u e ” ) ;  : }

@ g t9 4  = <G94> <SPACE>* [ a r g u m e n t f ]  <SPACE>* {
f p r i n t f ( o u t p u t _ f i l e ,  " \ n \ n I s I n v e r s e T im e  = F a l s e " ) ;  : }
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APPENDIX F: C FUNCTION 

LIBRARY FOR PARSER 

CUSTOMIZATION

*  ©doc
*  © m o d u le  AST S t u f f . c  |
*
ie

*  C o p y r ig h t  ( c )  1999  R o b o t S im u la t io n s  L t d .
★
* F i le n a m e :  AST S t u f f . c
* C r e a te d :  0 9 / 0 2 / 9 9
* A u t h o r :  A le k s a n d a r  B o s k o v ic
*
*  C o m p i le r :  M ic r o s o f t  V i s u a l  C++ v 6 . 0
* OS: W in 32
ie

*  V e r s io n :  v l . 0
ie

*  D e s c r i p t i o n :  F u n c t io n s  t o  h e lp  c r e a t e  R o b o t L a n g u a g e  T r a n s la t o r s
ie

# in c lu d e  "AST S t u f f . h "

* © fu n c
* F u n c t io n :  n e w k e y
*

* A r g u m e n ts :
*  c h a r  * x ,
* lo n g  n*
★
* R e t u r n s :  s t a t i c  i n t
*•
* D a te :  0 9 / 0 2 / 9 9
* A u t h o r :  A le k s a n d a r  B o s k o v ic*
* D e s c r i p t i o n :  A d d s  a new  s t r i n g  c o n s ta n t  t o  t h e  l i s t★
i e ie ie -k ie ie ie ie ie ie ie ie ie ie ie 'k ie ie ie ie 'k ie ie ie ie ie ie ie ie ie ie ie -k 'k 'k ie ie ie ie ie ie ie ie ie ie 'k ie 'k 'k ie ie 'k ie i t-k ie ie ie 'k ie ie ie 'k ie it ie  j

s t a t i c  i n t  n e w k e y ( c h a r  * x ,  lo n g  n )
/ *  p u t  a new  s t r i n g  i n  t h e  s ta s h  a n d  g iv e  i t  a k e y  * /
/ *  n e g a t i v e  r e t u r n s  a r e  e r r o r s  * /
{

c h a r  * y ;
NODE * z ;
/ *  t h e  m in im u m  p o s i t i o n  i s  1 * /

i f  ( w o rd c o u n t  >= MAXWORDS -  1)
{

f p r i n t f ( s t d e r r ,  " \ n S t r i n g  l i s t  t o o  s h o r t . . .  E x i t i n g " ) ;  
e x i t ( - 1 ) ;

}
y  = m a l l o c ( ( u n s ig n e d ) n  + 1 ) ;  
i f  ( ! y )  / *  o u t  o f  m em ory  * /

r e t u r n  - 1 ;  
z = (NODE * ) m a l l o c ( s iz e o f ( N O D E ) ) ;
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i f  ( ! z ) / *  o u t  o f  m em ory * /
r e t u r n  - 1 ;  

s t r n c p y ( y , x , ( u n s ig n e d  i n t ) n ) ;  
y [ n ]  = 0 ;  
z - > w o r d  = y ;
n o d e l i s t [ + + w o r d c o u n t ]  = z ;  / *  s t o r e  t h e  p o i n t e r  f o r  c o m p a r is o n s  
r e t u r n  w o r d c o u n t ;

* @ func
* F u n c t io n :  lo o k u p*
* A rg u m e n ts :
* c h a r  * x ,
* lo n g  n*
★
* R e tu r n s :  s t a t i c  i n t★
* D a te :  0 9 / 0 2 / 9 9
* A u t h o r :  A le k s a n d a r  B o s k o v ic
*

* D e s c r i p t i o n :  C h e c k s  t o  s e e  i f  t h e  s t r i n g  p a s s e d  i s  a l r e a d y  i n
* i n  t h e  l i s t ,  i f  s o ,  i t  r e t u r n s  t h e  u n iq u e  i d e n t i f i e r
*

s t a t i c  i n t  lo o k u p ( c h a r  * x ,  lo n g  n )
/ *  f i n d  a name i n  t h e  l i s t  

* i f  n o t  t h e r e  r e t u r n  0 , e l s e  r e t u r n  i t s  in d e x  
* /

{
i n t  i ,  t e s t  = 0 ; 
c h a r  *w ;

f o r ( i  = w o r d c o u n t ;  i  ; i - - )
{

i f ( I n o d e l i s t [ i ] ) / / a v o i d  p ro b le m s  w i t h  n u l l  p o i n t e r s  
r e t u r n  0 ; / / s h o u l d n ' t  h a p p e n

w = n o d e l i s t [ i ] - > w o r d ;  
i f ( ! s t r c m p ( x , w ) )
{ / / T h e y ' r e  i d e n t i c a l

t e s t  = i ;  
b r e a k ;

}
}
r e t u r n  t e s t ;

}

/***-***************************************************************
* @ func
* F u n c t io n :  u k e y
*

* A rg u m e n ts :
* i n t  * x ,
* lo n g  n*
★
* R e t u r n s : i n t★
* D a te :  0 9 / 0 2 / 9 9
* A u t h o r :  A le k s a n d a r  B o s k o v ic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*  D e s c r i p t i o n :  C h e c k s  t o  se e  i f  a  s t r i n g  i s  i n  t h e  l i s t ,  i f  n o t
* th e n  i t  a d d s  i t  t o  th e  e n d
*

i n t  u k e y ( i n t  * x ,  lo n g  n )
/ *  l o o k  u p  s t r  i n  n o t i f i e d  w o rd  l i s t  a n d  r e t u r n  u n iq u e  k e y .

* A dd  new  k e y  i f  n e c e s s a r y  a n d  r e t u r n  t h a t .  I f  we c a n ' t ,  r e t u r n  - 1 .
* /

{
s t a t i c  c h a r  T e m p A rra y  [2  0 4 8 ] ;

i n t  i  = 0 ;
x - - ;  / / A lw a y s  o ne  l e t t e r  o f f !
n= ( n  + s i z e o f ( i n t ) ) /  s i z e o f ( i n t ) ;  / / c o n v e r t  t o  c h a r a c t e r  s t r i n g

do
{

i f ( i  > n )  / / c o n v e r t  t o  c h a r a c t e r  s t r i n g
b r e a k ;

* (T e m p A rra y  + i ) = * ( x  + i ) ,- 
i+ + ;

}
w h i l e ( * ( x  + i ) ) ;
* ( T e m p A rra y  + n ) = 0 ;

i  = lo o k u p ( T e m p A r r a y  , n ) ;  
i f  ( i  > 0)  / *  f o u n d  * /

r e t u r n  i ;
i  = n e w k e y (T e m p A r ra y , n ) ;  / *  new  k e y  * /
r e t u r n  i ;

}

* @ func
* F u n c t io n :  g e t s t r i n g*
* A r g u m e n ts :
* i n t  u k e y*
★
* R e t u r n s : c h a r  *★
* D a te :  0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r  B o s k o v ic
*

* D e s c r i p t i o n :  R e tu r n s  th e  s t r i n g  s t o r e d  i n  t h e  s p e c i f i e d  p o s i t i o n
( i f  a n y )★

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ • A ’ * * * *  j

c h a r  * g e t s t r i n g ( i n t  u k e y )
{

c h a r  * p s R v a l ;  / / i f  n o t h in g  j u s t  a d d  a s p a c e

i f ( ( u k e y  > 0)  && (u k e y  <= w o r d c o u n t ) )
{

i f ( n o d e l i s t [ u k e y ] )
p s R v a l = n o d e l i s t [ u k e y ] - > w o r d ;

e ls e
p s R v a l = E m p ty ;

}
e ls e

p s R v a l = E m p ty ;
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r e t u r n  p s R v a l ;
}

* @ func
* F u n c t io n :  m y is a lp h a
*

* A rg u m e n ts :
* TOKEN t e s t*
★
* R e t u r n s : BOOLEAN
★
* D a te :  0 9 / 0 2 / 9 9
* A u t h o r :  A le k s a n d a r  B o s k o v ic*
* D e s c r i p t i o n :  c h e c k s  i f  t h e  to k e n  i s  a n  a lp h a  c h a r a c t e r
★

BOOLEAN m y is a lp h a (T O K E N  t e s t )
{

r e t u r n  ( ( ( ( t e s t  >= ' a ' )  && ( t e s t  <= ' z ' ) )  | |  ( ( t e s t  >= ' A ' )  &&
( t e s t  <= ' Z ' ) ) )  ? 1 : 0 ) ;
}
/******************************************************************
* © fu n c
* F u n c t io n :  m y i s d i g i t
*
* A rg u m e n ts :
* TOKEN t e s t*
★
* R e t u r n s : BOOLEAN*
*  D a te :  0 9 / 0 2 / 9 9
*  A u t h o r :  A le k s a n d a r  B o s k o v ic•k
* D e s c r i p t i o n :  c h e c k s  i f  t h e  to k e n  i s  a  d i g i t*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j

BOOLEAN m y is d ig i t ( T O K E N  t e s t )
{

r e t u r n  ( ( ( t e s t  >= ' 0 ' )  && ( t e s t  <= ' 9 ' ) )  ? 1 : 0 ) ;
}

/ * * * * * * * * * ★ * ★ * * * * * * ★ * * * * * * * * * ★ * ★ * * * * * * * * ★ ★ * * * * * * * * * * ■ * * * * * * * * ★ * * * * * *
* © fu n c
* F u n c t io n :  m y is a ln u m*
* A rg u m e n ts :
* TOKEN t e s t*
*
* R e t u r n s : BOOLEAN
★
*  D a te :  0 9 / 0 2 / 9 9
* A u t h o r :  A le k s a n d a r  B o s k o v ic*
* D e s c r i p t i o n :  c h e c k s  i f  t h e  to k e n  i s  a d i g i t ,  a lp h a  o r★
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
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BOOLEAN m y is a ln u m (T O K E N  t e s t )
{

r e t u r n  ( m y i s d i g i t ( t e s t ) | | m y is a lp h a ( t e s t ) | | ( t e s t  ==
: 0 ;
}
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * • * * * * * * * * *

* @ func
*  F u n c t io n :  m y i s p r i n t
*
* A rg u m e n ts :
* TOKEN t e s t

*  R e t u r n s : BOOLEAN
★
*  D a te :  0 9 / 0 2 / 9 9
* A u t h o r :  A le k s a n d a r  B o s k o v ic*
* D e s c r i p t i o n :  c h e c k s  i f  t h e  to k e n  i s  a p r i n t a b l e  c h a r a c t e r★

BOOLEAN m y is p r in t ( T O K E N  t e s t )
{

r e t u r n  ( ( (  i s p r i n t  ( t e s t )  | |  ( t e s t  == ' ' ) )  && ( ( t e s t  ! = ' 
( t e s t  ! =  ' ) ' )  && ( t e s t  ! =  ' % ' ) ) )  ? 1 : 0 ) ;
}

) ) ? 1
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APPENDIX G : WORKSPACE 
SIMULATION LANGUAGE 

LIBRARY FILE

'D a ta  D e c la r a t i o n

'U s e r  T y p e  
T y p e  J o in t S e t  
x  As D o u b le  
y  As D o u b le  
z As D o u b le  
b  As D o u b le  
c  As D o u b le  
E nd  T y p e

T y p e  P o sA n dO r 
x  A s  D o u b le  
y  A s D o u b le  
z As D o u b le  
a  A s D o u b le  
b  As D o u b le  
c  As D o u b le  
E nd  T y p e

T y p e  C i r c I n t A r g  
r  A s  D o u b le  
i  A s  D o u b le  
j  A s  D o u b le  
k  As D o u b le  
E nd T y p e

T y p e  Zone  
X m in  As D o u b le  
Xmax As D o u b le  
Y m in  As D o u b le  
Ymax As D o u b le  
Z m in  As D o u b le  
Zmax A s D o u b le  
E nd T y p e

T y p e  T ra n s fo r m e d  
x  A s D o u b le  
y  A s  D o u b le  
z A s D o u b le  
E nd T y p e

T y p e  W o rk C o o rd S y s  
G code  As S t r i n g  
P ro p s  As P o sA n dO r 
E nd T y p e

' C o n s ta n ts
P u b l i c  C o n s t  P I  A s  D o u b le  = 3 .1 4 1 5 9 2 6 5  
P u b l i c  C o n s t MAXROTSPEED As D o u b le  = 5 400#  
P u b l i c  C o n s t RAPIDFEEDRATE As D o u b le  = 3 0 480#

'V a r i a b le s
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P u b l i c  I s P o l a r  A s  B o o le a n  
P u b l i c  ZoneO n A s B o o le a n  
P u b l i c  I s R e la t i v e  As B o o le a n  
P u b l i c  IsWCS As B o o le a n  
P u b l i c  I s I n v e r s e T im e  A s B o o le a n  
P u b l i c  F e e d r a te  As D o u b le  
P u b l i c  M S V a lu e  A s D o u b le  
P u b l i c  S c a le V a lu e  As D o u b le  
P u b l i c  R a d iu s  As D o u b le  
P u b l i c  C u t te rC o m p  A s D o u b le  
P u b l i c  T o o lL e n g h t  A s  D o u b le  
P u b l i c  P o lA n g l7  As D o u b le  
P u b l i c  P o lA n g l8  As D o u b le  
P u b l i c  P o lA n g l9  A s D o u b le  
P u b l i c  C u t t in g M o d e  As I n t e g e r  
P u b l i c  G P C o u n te r  As I n t e g e r  
P u b l i c  P la n e  As I n t e g e r  
P u b l i c  M o t io n V a lu e  As I n t e g e r  
P u b l i c  A c t iv e M o t io n T y p e  A s S t r i n g  
P u b l i c  A c t iv e C S  A s S t r i n g  
P u b l i c  T a b le C S  As S t r i n g  
P u b l i c  C o n f i g u r a t i o n  As S t r i n g

'T y p e  v a r i a b l e s  
P u b l i c  N ew Zone A s Z one  
P u b l i c  C ir c P a ra m  As C i r c I n t A r g  
P u b l i c  C e n te rR a d iu s  A s T ra n s fo r m e d  
P u b l i c  D e fC o o rd  A s J o in t S e t  
P u b l i c  P re v C o o rd  As J o in t S e t  
P u b l i c  N e w P rim a ryH o m e  As J o in t S e t  
P u b l i c  N ew S econdaryH om e  A s J o in t S e t  
P u b l i c  M em oC oord  As J o in t S e t  
P u b l i c  M C S T a rg e t As J o in t S e t  
P u b l i c  N e w T a rg e t A s J o in t S e t  
P u b l i c  W orkCS A s W o rk C o o rd S y s

'O b je c t s
P u b l i c  CNC As New R o b o t 
P u b l i c  J o in t P o s  As New R C S J o in tP o s  
P u b l i c  C a r tP o s  As New R C S C artP o s  
P u b l i c  N ew Fram e As New RCSFrame

P u b l i c  Sub J o in t V a lu e s ( t x  As D o u b le ,  t y  A s  D o u b le ,  t z  As 
D o u b le ,  t c  As D o u b le )

D im  A f t e r T r a n s  As T ra n s fo r m e d
D im  x  As D o u b le ,  y  As D o u b le ,  z As D o u b le ,  b  As D o u b le ,

t x  = T o M M (tx )  
t y  = T o M M (ty )  
t z  = T o M M (tz )

I f  I s P o l a r  T he n

I f  I s R e la t i v e  T he n

I f  P la n e  = 17 T he n
P o lA n g l7  = t y  + P o lA n g l7  
x  = t x  *  C d e g { P o lA n g l7 ) 
y  = t x  * S d e g < P o lA n g l7 )  
z = t z
E l s e l f  P la n e  = 19 T hen  
P o lA n g l9  = t z  + P o lA n g l9  
x  = t x
y  = t y  * C d e g ( P o lA n g l9 )

D o u b le ,  t b  As 

c A s  D o u b le
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z = t y  * S d e g ( P o lA n g l9 ) 
E l s e l f  P la n e  = 18 T hen  
P o lA n g l8  = t x  + P o lA n g l8  
x  = t z  * S d e g ( P o lA n g l8 ) 
y  = t y
z = t z  * C d e g ( P o lA n g l8 ) 

E nd I f  
E nd I f

I f  N o t I s R e la t i v e  T he n  
I f  P la n e  = 17 T he n

x  = t x  * C d e g ( ty )  
y  = t x  *  S d e g ( ty )  
z = t z  

E l s e l f  P la n e  = 19 T he n  
x  = t x
y  = t y  *  C d e g ( t z )  
z = t y  *  S d e g ( tz )

E l s e l f  P la n e  = 18 T he n  
x  = t z  * S d e g ( tx )  
y  = t y
z = t z  *  C d e g ( tx )

E nd I f  
E nd I f

E ls e
x  = t x  
y  = t y  
z = t z  
b  = t b  
c  = t c  

E nd I f

I f  I s R e la t i v e T he n
M C S T a rg e t .x  = X + M C S T a rg e t.x
M C S T a rg e t .y  = y + M C S T a rg e t.y
M C S T a rg e t .z = z + M C S T a rg e t. z
M C S T a rg e t.b  = b + M C S T a rg e t.b
M C S T a rg e t.c  = c + M C S T a rg e t. c

E ls e
M C S T a rg e t .x  = x  
M C S T a rg e t .y  = y  
M C S T a rg e t. z = z 
M C S T a rg e t. b  = b  
M C S T a rg e t. c  = c

E nd I f

N e w T a rg e t = M C S T a rg e t

I f  IsWCS T he n
I f  A c t iv e C S  L ik e  W o rkC S .G co de  T he n  
S e tF ra m e  W orkCS
A f t e r T r a n s  = T ra n s fo rm C o o rd s (N e w F ra m e , N e w T a r g e t . x ,  N e w T a r g e t . y ,  

N e w T a rg e t . z )
E nd I f

N e w T a r g e t .x  = A f t e r T r a n s . x  
N e w T a r g e t . y  = A f t e r T r a n s . y  
N e w T a r g e t .z  = A f t e r T r a n s . z

E nd I f

J o in t P o s . A x e s F o rm a t = 1
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J o in t P o s .A x e s F la g s  = 31

J o in t P o s . S e tA x e s V a lu e  0 , N e w T a r g e t .x  
J o in t P o s . S e tA x e s V a lu e  1 , N e w T a r g e t .y  
J o in t P o s . S e tA x e s V a lu e  2 , N e w T a rg e t . z 
J o in t P o s . S e tA x e s V a lu e  3 ,
J o in t P o s . S e tA x e s V a lu e  4 ,

D e g T o R a d (N e w T a rg e t. c ) 
D e g T o R a d (N e w T a r g e t . b )

C a r t P o s . f la g  = 0

I f  ZoneO n A n d  ( N e w T a rg e t .x  < N ew Z one .X m ax A n d  N e w T a r g e t .x  
N e w Z o n e . X m in  A n d  N e w T a r g e t .y  < N ew Z one .Y m ax A n d  N e w T a r g e t . y
N e w Z o n e . Y m in  A n d  N e w T a rg e t . z < N ew Z on e .Z m a x A n d  N e w T a r g e t . z
N e w Z o n e . Z m in ) T he n

CNC. RRS. S to p M o t io n  
E nd I f

E nd Sub

P u b l i c  Sub  D e f in e M o t io n T y p e ( m t  As I n t e g e r )  
M o t io n V a lu e  = m t 
End Sub

P u b l i c  F u n c t io n  R e tu r n M o t io n T y p e ()  As I n t e g e r  
R e tu r n M o t io n T y p e  = M o t io n V a lu e  
End F u n c t io n

P u b l i c  Sub S e t D e f a u l t s ()

IsWCS = F a ls e  
P la n e  = 17 
S c a le V a lu e  = 1 
M S V a lu e  = 1 
M o t io n V a lu e  = 2
C o n f i g u r a t i o n  = " R C S U n d e f in e d C o n f ig u r a t io n "  
A c t iv e M o t io n T y p e  = " R a p id "
A c t iv e C S  = " G 5 3 "
F e e d r a te  = RAPIDFEEDRATE 
R e s e tC ir c P a ra m

End Sub

P u b l i c  Sub J o in tH o m e V a lu e s ( i  As I n t e g e r )

J o in tP o s .A x e s F o r m a t  = 1 
J o in tP o s .A x e s F la g s  = 31

I f  ( i  = 1) T he n
J o in t P o s . S e tA x e s V a lu e  0, 
J o in t P o s . S e tA x e s V a lu e  1 , 
J o in t P o s . S e tA x e s V a lu e  2 , 
J o in t P o s . S e tA x e s V a lu e  3 , 
J o in t P o s . S e tA x e s V a lu e  4 ,

N e w P rim a ry H o m e . x  
N e w P rim a ry H o m e . y  
N e w P rim a ry H o m e . z 
D e g T o R a d (N e w P rim a ry H o m e . c ) 
D e g T o R a d (N e w P rim a ry H o m e . b )

E l s e l f  ( i  = 2 ) T h e n
J o in t P o s . S e tA x e s V a lu e  0 , 
J o in t P o s . S e tA x e s V a lu e  1 , 
J o in t P o s . S e tA x e s V a lu e  2 , 
J o in t P o s . S e tA x e s V a lu e  3 , 
J o in t P o s . S e tA x e s V a lu e  4 ,

N e w S e co n d a ryH o m e . x  
N e w S e co n d a ryH o m e . y  
N e w S e co n d a ryH o m e . z 
D e g T o R a d (N e w S e co n d a ryH o m e . c ) 
D e g T o R a d (N e w S e c o n d a ry H o m e . b )
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E l s e l f  ( i  = 3 )  T h e n
J o in t P o s . S e tA x e s V a lu e  0, 
J o in t P o s . S e tA x e s V a lu e  1, 
J o in t P o s . S e tA x e s V a lu e  2 , 
J o in t P o s . S e tA x e s V a lu e  3 , 
J o in t P o s . S e tA x e s V a lu e  4 ,

M e m o C o o rd .x  
M em oC o o rd . y  
M em oC o o rd . z 
D e g T o R a d (M em oC oord . c ) 
D eg T oR a d (M e m o C oo rd . b )

End I f

C a r t P o s . f la g  = 0

End  Sub

P u b l i c  S ub M e m o r iz e C o o r d in a te s ( x  As D o u b le ,  y  As D o u b le ,  z As D o u b le ,  b  
A s D o u b le ,  c As D o u b le )
M em oC oord . x  = x  
M e m o C o o rd .y  = y  
M e m o C o o rd .z  = z 
M e m o C o o rd .b  = b  
M e m o C o o rd .c  = c 
End Sub

P u b l i c  F u n c t io n  G e tA r c C e n te r ( i  As D o u b le ,  j  As D o u b le ,  k  A s D o u b le )  As 
R C S C artP o s
D im  A r c C e n te r  As New R C S C artP o s  
A r c C e n t e r . f l a g  = 3 
A r c C e n t e r . n x  = 0#
A r c C e n te r . n y  = 0#
A r c C e n t e r . n z  = 0#
A r c C e n t e r . a x  = 0#
A r c C e n te r . a y  = 0#
A r c C e n t e r . a z  = 0#
A r c C e n t e r . o x  = 0#
A r c C e n te r . o y  = 0#
A r c C e n t e r . o z  = 0#
A r c C e n t e r . p x  = C D b l( P r e v C o o r d .x  + i )
A r c C e n t e r . p y  = C D b l( P r e v C o o r d .y  + j )
A r c C e n t e r . p z  = C D b l( P r e v C o o r d . z + k )

S e t G e tA r c C e n te r  = A r c C e n te r

End F u n c t io n

P u b l i c  Sub  R u n T ra c k (R o b o tN a m e  As S t r i n g )
S e t CNC = T h is D o c u m e n t.G e tR o b o t(R o b o tN a m e )
In s te a d O fF o r m
S e t D e f a u l t s
R eadyToG o
End Sub

P u b l i c  F u n c t io n  T ra n s fo rm C o o rd s (F ra m e  As RCSFram e, o ld X  As D o u b le ,  o ld Y  
A s D o u b le ,  o ld Z  As D o u b le )  As T ra n s fo r m e d  
D im  M y T ra n s fo rm e d  A s  T ra n s fo r m e d

M y T r a n s fo r m e d .x  = F ra m e .n x  * o ld X  + F ra m e .o x  * o ld Y  + F ra m e .a x  * o ld Z  + 
F ra m e . p x
M y T r a n s fo r m e d .y  = F ra m e .n y  * o ld X  + F ra m e .o y  * o ld Y  + F ra m e .a y  * o ld Z  + 
F ra m e . p y
M y T ra n s fo rm e d .z  = F ra m e .n z  * o ld X  + F ra m e .o z  * o ld Y  + F ra m e .a z  * o ld Z  + 
F ra m e .p z
T ra n s fo rm C o o rd s  = M y T ra n s fo rm e d  
E nd F u n c t io n

P u b l i c  F u n c t io n  C d e g (a n g le  As D o u b le )  As D o u b le
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C deg = C o s ( a n g le  * P I  /  1 8 0 )
End F u n c t io n

P u b l i c  F u n c t io n  S d e g ( a n g le  As D o u b le )  A s  D o u b le  
S deg  = S in ( a n g le  *  P I  /  1 80 )
E nd F u n c t io n

P u b l i c  F u n c t io n  T o M M (c o o rd  A s D o u b le )  A s  D o u b le  
ToMM = M S V a lu e  * S c a le V a lu e  *  c o o r d  

E nd F u n c t io n

P u b l i c  Sub  I s I t A c t i v e t x  A s  D o u b le ,  y  A s  D o u b le ,  z A s  D o u b le )
I f  T a b le C S  L ik e  W o rkC S .G co d e  T h e n
N e w F ra m e .p x  = x
N e w F ra m e .p y  = y
N ew F ram e . p z  = z
End I f
End  Sub

P u b l i c  S ub S e t F e e d r a t e ( f  As D o u b le )
D im  C e n t r a lA n g le  A s D o u b le ,  L i n D i s t  A s  D o u b le ,  T im e ln M s  A s D o u b le  
I f  I s I n v e r s e T im e  T h e n

I f  M o t io n V a lu e  = 2 T h e n  
T im e ln M s  = ( 6 0 0 0 0  /  f )
CNC. RRS. S e tM o t io n T im e  T im e ln M s  
E l s e l f  M o t io n V a lu e  = 4 T he n  
C e n t r a lA n g le  = C a lc C e n t r a lA n g le ()
CNC. RRS. S e tM o t io n T im e  C e n t r a lA n g le  * 60 * 1000  /  f  
End I f

E ls e

CNC. RRS. S e tC a r te s ia n P o s i t io n S p e e d  f  /  60
CNC. RRS. S e t C a r t e s ia n O r ie n t a t io n S p e e d  2 , f  /  60

End I f

E nd Sub

P u b l i c  S ub M o v e O r ig in (n u m  As I n t e g e r ,  x  As D o u b le ,  y  A s D o u b le ,  z As 
D o u b le )
I f  num = 92 T he n  
IsWCS = T ru e  
A c t iv e C S  = " G 5 4 "
W o rkC S . P r o p s .x  = P r e v C o o r d .x  -  x
W o rkC S . P r o p s . y  = P r e v C o o r d .y  -  y
W o rkC S . P r o p s . z = P r e v C o o r d .z  -  z

E l s e l f  num = 52 T h e n
IsWCS = T ru e  
A c t iv e C S  = ” G54"
W o rkC S . P r o p s . x  = W o rkC S . P r o p s . x  + x
W o rkC S . P r o p s . y  = W o rkC S . P r o p s .y  + y
W o rkC S . P r o p s . z = W o rkC S . P r o p s . z + z

E l s e l f  num  = 921 T he n  
S e tW orkC S P a ra m  
E nd I f

E nd Sub

P u b l i c  F u n c t io n  C a l c 2 P o in t D i s t ( x l  As D o u b le ,  y l  As D o u b le ,  z l  As D o u b le ,  
x2  As D o u b le ,  y 2  As D o u b le ,  z2 A s D o u b le )  A s  D o u b le  
D im  N um ber A s D o u b le
N um ber = (x 2  -  x l )  A 2 + (y2  -  y l )  A 2 + (z2  -  z l )  A 2 
C a lc 2 P o in t D is t  = S q r(N u m b e r)
E nd  F u n c t io n
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P u b l i c  F u n c t io n  C o s R u le (a  A s D o u b le ,  b  A s D o u b le ,  c A s  D o u b le )  As D o u b le
D im  c o s a lp h a  A s D o u b le
I f  a  <> 0 A n d  b  <> 0 A n d  c  <> 0 T h e n
c o s a lp h a  = ( b A 2 + c A 2 - a A 2)  /  ( 2 * b * c )
C o s R u le  = A t n ( - c o s a lp h a  /  S g r ( - c o s a lp h a  *  c o s a lp h a  + 1 ) )  + 2 * A t n ( l )
End  I f
End  F u n c t io n

P u b l i c  F u n c t io n  C a lc C e n t e r P o in t ( i  A s  D o u b le ,  j  As D o u b le ,  k  As D o u b le )  
As T ra n s fo r m e d
C e n te r R a d iu s . x  = P r e v C o o r d .x  + i  
C e n t e r R a d iu s . y  = P r e v C o o r d .y  + j  
C e n te r R a d iu s . z = P r e v C o o r d .z  + k  
C a lc C e n t e r P o in t  = C e n te rR a d iu s  
E nd F u n c t io n

P u b l i c  F u n c t io n  C a lc C e n t r a lA n g le ()  As D o u b le  
D im  a d i s t  A s  D o u b le ,  a n g le  As D o u b le

C a lc C e n te r P o in t  C i r c P a r a m . i ,  C i r c P a r a m . j ,  C ir c P a r a m .k  
a d i s t  = C a lc 2 P o in t D is t ( P r e v C o o r d . x ,  P r e v C o o r d .y ,  P r e v C o o r d .z ,  

D e fC o o r d .x ,  D e fC o o r d .y ,  D e fC o o r d .z )
R a d iu s  = C a lc 2 P o in t D is t ( C e n t e r R a d iu s . x ,  C e n te r R a d iu s . y ,

C e n t e r R a d iu s . z ,  D e fC o o r d .x ,  D e fC o o r d .y ,  D e fC o o r d .z )  
a n g le  = C o s R u le ( a d is t , R a d iu s ,  R a d iu s )
C a lc C e n t r a lA n g le  = a n g le  

End F u n c t io n

P u b l i c  Sub S e tF ra m e (V a lu e s  As W o rk C o o rd S y s )

N e w F ra m e .n x  = C d e g ( V a lu e s . P r o p s . c )  * C d e g ( V a lu e s . P r o p s . a )
S d e g ( V a lu e s . P r o p s . c )  * C d e g ( V a lu e s . P r o p s .b )  * S d e g ( V a lu e s . P r o p s . a ) 
N e w F ra m e .n y  = S d e g ( V a lu e s . P r o p s . c )  * C d e g ( V a lu e s . P r o p s . a ) +
C d e g ( V a lu e s . P r o p s . c )  * C d e g ( V a lu e s . P r o p s . b )  * S d e g ( V a lu e s . P r o p s . a ) 
N e w F ra m e .n z  = S d e g ( V a lu e s . P r o p s .b )  + S d e g ( V a lu e s . P r o p s . a )
N ew F ram e . o x  = - C d e g ( V a lu e s . P r o p s . c )  * S d e g ( V a lu e s . P r o p s . a )
S d e g ( V a lu e s . P r o p s . c )  * C d e g ( V a lu e s . P r o p s . b ) *  C d e g ( V a lu e s . P r o p s . a ) 
N e w F ra m e .o y  = - S d e g ( V a lu e s . P r o p s . c )  * S d e g ( V a lu e s . P r o p s . a ) +
C d e g ( V a lu e s . P r o p s . c )  * C d e g ( V a lu e s . P r o p s . b ) *  C d e g ( V a lu e s . P r o p s . a ) 
N e w F ra m e .o z  = S d e g ( V a lu e s . P r o p s . b ) * C d e g ( V a lu e s . P r o p s . a )
N e w F ra m e .a x  = S d e g ( V a lu e s . P r o p s . c )  * S d e g ( V a lu e s . P r o p s . b )
N e w F ra m e .a y  = - C d e g ( V a lu e s . P r o p s . c )  * S d e g ( V a lu e s . P r o p s . b )
N e w F ra m e .a z  = C d e g ( V a lu e s . P r o p s . b )
N e w F ra m e .p x  = V a lu e s . P r o p s . x  
N ew F ram e . p y  = V a lu e s . P r o p s . y  
N ew F ram e . p z  = V a lu e s . P r o p s . z

End Sub

P u b l i c  Sub P e r fo r m M o t io n ()

I f  A c t iv e M o t io n T y p e  L ik e  " R a p id "  T he n  
CNC. RRS. S e le c tM o t io n T y p e  2 
D e f in e M o t io n T y p e  2
J o in t V a lu e s  D e fC o o r d .x ,  D e fC o o r d .y ,  D e fC o o r d .z ,  D e fC o o r d .b ,  D e fC o o r d .c
CNC. RRS. S e tC a r te s ia n P o s i t io n S p e e d  RAPIDFEEDRATE /  60
CNC. RRS. S e t C a r t e s ia n O r ie n t a t io n S p e e d  2 , MAXROTSPEED /  60
P re v C o o rd  = N e w T a rg e t
G P C o u n te r  = G P C o u n te r  + 1
CNC. RRS. S e tN e x tN a m e d T a rg e t 0 , 0 , C a r tP o s ,  J o in t P o s ,  C o n f i g u r a t i o n ,  0 ,
"G P" & C S tr (G P C o u n te r )

E l s e l f  A c t iv e M o t io n T y p e  L ik e  " L in e a r "  T he n  
D im  C r i t i c a l A n g l e  As D o u b le
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CNC. RRS. S e le c tM o t io n T y p e  2 
D e f in e M o t io n T y p e  2 
S e tF e e d r a te  F e e d r a te
J o in t V a lu e s  D e fC o o r d .x ,  D e fC o o r d .y ,  D e fC o o r d .z ,  D e fC o o r d .b ,  

D e fC o o r d .c
P re v C o o rd  = N e w T a rg e t 
G P C o u n te r  = G P C o u n te r  + 1
CNC. RRS. S e tN e x tN a m e d T a rg e t 0 , 0 , C a r tP o s ,  J o in t P o s ,  C o n f i g u r a t i o n ,

0 , "G P" & C S tr (G P C o u n te r )

E l s e l f  A c t iv e M o t io n T y p e  L ik e  " C i r c u l a r  CW" O r A c t iv e M o t io n T y p e  
L ik e  " C i r c u l a r  CCW" T he n

D e f in e M o t io n T y p e  4 
C i r c u la r M o t io n

End  I f  

End Sub

P u b l i c  Sub C i r c u la r M o t i o n ()
D im  A r c R a d iu s  A s D o u b le
D im  I n c l in e A n g le  A s D o u b le
D im  A r c E n d P o in tD is t a n c e  As D o u b le
D im  Y C o o rd  A s D o u b le
D im  X C o o rd  A s D o u b le
D im  A r c C e n te r  A s  R C S C artP o s

I f  P la n e  = 17 T he n
CNC. RRS. S e le c tM o t io n T y p e  R e tu r n M o t io n T y p e ()
J o in t V a lu e s  D e fC o o r d .x ,  D e fC o o r d .y ,  D e fC o o r d .z ,  D e fC o o r d .b ,  D e fC o o r d .c  
S e tF e e d r a te  F e e d r a te  
G P C o u n te r  = G P C o u n te r  + 1
CNC. RRS. S e tN e x tN a m e d T a rg e t 0 , 0 , C a r tP o s ,  J o in t P o s ,  C o n f i g u r a t i o n ,  0 ,
"GP" & C S tr (G P C o u n te r )

A r c E n d P o in tD is t a n c e  = S q r ( ( P r e v C o o r d . x  -  N e w T a r g e t .x )  A 2 + ( P r e v C o o r d .y  
-  N e w T a r g e t .y )  *  2 )
I n c l in e A n g le  = M a t h . A t n ( (N e w T a r g e t .y  -  P r e v C o o r d .y )  /  (N e w T a r g e t .x  -  
P r e v C o o r d . x ) )
X C o o rd  = A r c E n d P o in tD is t a n c e  /  2

I f  C i r c P a r a m . r  <> 0 T he n

I f  A c t iv e M o t io n T y p e  = " C i r c u l a r  CW" A n d  C i r c P a r a m . r  > 0 T he n  
Y C o o rd  = A b s ( C ir c P a r a m . r )  -  S q r ( C i r c P a r a m . r  A 2 -  X C o o rd  A 2)
E l s e l f  A c t iv e M o t io n T y p e  = " C i r c u l a r  CW" A n d  C i r c P a r a m . r  < 0 T he n
Y C o o rd  = A b s ( C ir c P a r a m . r )  + S q r ( C i r c P a r a m . r  A 2 -  X C o o rd  A 2) 
E l s e l f  A c t iv e M o t io n T y p e  = " C i r c u l a r  CCW" A n d  C i r c P a r a m . r  > 0

T he n
Y C o o rd  = - A b s ( C i r c P a r a m . r )  + S q r ( C i r c P a r a m . r  A 2 -  X C o o rd  A 2) 
E l s e l f  A c t iv e M o t io n T y p e  = " C i r c u l a r  CCW" A n d  C i r c P a r a m . r  < 0

T he n
Y C o o rd  = - A b s ( C i r c P a r a m . r )  -  S q r ( C i r c P a r a m . r  A 2 -  X C o o rd  A 2) 
End I f

E ls e
S e t A r c C e n te r  = G e t A r c C e n t e r ( C ir c P a r a m . i , C i r c P a r a m . j ,  C ir c P a r a m .k )  
A r c R a d iu s  = S q r ( ( P r e v C o o r d .x  -  A r c C e n t e r . p x )  *  2 + ( P r e v C o o r d .y  -  

A r c C e n t e r . p y )  A 2 )

I f  A c t iv e M o t io n T y p e  = " C i r c u l a r  CCW" T hen
Y C o o rd  = - S q r ( A r c R a d iu s  A 2 -  (X C o o rd  -  A r c C e n t e r . p x )  A 2 )

E l s e l f  A c t iv e M o t io n T y p e  = " C i r c u l a r  CW" T h e n
Y C o o rd  = S q r ( A r c R a d iu s  A 2 -  (X C o o rd  -  A r c C e n t e r . p x )  A 2)
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End I f  
End  I f

J o i n t P o s . A x e s F l a g s  = 0 
C a r t P o s . f l a g  = 3
C a r t P o s . p x  = S q r ( P r e v C o o r d . x  A 2 + P r e v C o o r d . y  A 2) * C o s ( I n c l i n e A n g l e )  
+ S q r ( X C o o r d  A 2 + Y C o o rd  A 2) * C o s ( M a t h . A t n ( Y C o o r d  /  X C o o rd )  +
I n c l i n e A n g l e )
C a r t P o s . p y  = S q r ( P r e v C o o r d . x  A 2 + P r e v C o o r d . y  A 2) * S i n ( I n c l i n e A n g l e )
+ S q r ( X C o o r d  A 2 + Y C o o rd  A 2) * S i n ( M a t h . A t n ( Y C o o r d  /  X C o o rd )  +
I n c l i n e A n g l e )
C a r t P o s . p z  = P r e v C o o r d . z
CNC. RRS. S e t N e x t T a r g e t  0 ,  0 , C a r t P o s ,  J o i n t P o s ,  C o n f i g u r a t i o n ,  0

P r e v C o o r d  = N e w T a r g e t  
R e s e t C i r c P a r a m

E ls e
M sgBox ( " C i r c u l a r  m o t i o n  i n  o t h e r  w o r k  p l a n e s ,  b u t  XY, i s  n o t
s u p p o r t e d " )
End  I f

End  Sub

P u b l i c  Sub R e s e t C i r c P a r a m ()
C i r c P a r a m . r  = 0 
C i r c P a r a m . i  = 0 
C i r c P a r a m . j  = 0 
C i r c P a r a m . k  = 0 
End Sub

P u b l i c  Sub  G 2 7 ( )
H o m e S ta r tS e q
J o i n t V a l u e s  D e f C o o r d . x ,  D e f C o o r d . y ,  D e f C o o r d . z ,  D e f C o o r d . b ,  D e f C o o r d . c
I f  ( N e w T a r g e t . x  <> P r e v C o o r d . x  O r  N e w T a r g e t . y  <> P r e v C o o r d . y  O r
N e w T a r g e t . z <> P r e v C o o r d . z  O r N e w T a r g e t . b  <> P r e v C o o r d . b  O r  N e w T a r g e t . c
<> P r e v C o o r d . c )  T he n
P r e v C o o r d  = N e w T a r g e t
C o u n tA n d M o v e
E l s e
GoHome
End I f
End Sub

P u b l i c  Sub  G 2 8 ( )
H o m e S ta r tS e q
J o i n t V a l u e s  D e f C o o r d . x ,  D e f C o o r d . y ,  D e f C o o r d . z ,  D e f C o o r d . b ,  D e f C o o r d . c  
I f  ( N e w T a r g e t . x  <> P r e v C o o r d . x  O r  N e w T a r g e t . y  <> P r e v C o o r d . y  O r 
N e w T a r g e t . z  <> P r e v C o o r d . z  O r N e w T a r g e t . b  <> P r e v C o o r d . b  O r  N e w T a r g e t . c  
<> P r e v C o o r d . c )  T h e n
M e m o r i z e C o o r d in a t e s  N e w T a r g e t . x ,  N e w T a r g e t . y ,  N e w T a r g e t . z ,  N e w T a r g e t . b ,
N e w T a r g e t . c
P r e v C o o r d  = N e w T a r g e t
C o u n  tA n d M o v e
E l s e
GoHome
End I f
End Sub

P u b l i c  Sub  G 2 9 ( )
H o m e S ta r tS e q  
J o in t H o m e V a lu e s  3 
C o u n tA n d M o v e
J o i n t V a l u e s  D e f C o o r d . x ,  D e f C o o r d . y ,  D e f C o o r d . z ,  D e f C o o r d . b ,  D e f C o o r d . c
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P r e v C o o r d  = N e w P r im a ry H o m e  
C o u n  tA n d M o v e  
End  Sub

P u b l i c  Sub  G 3 0 ( )
H o m e S ta r tS e q
J o i n t V a l u e s  D e f C o o r d . x ,  D e f C o o r d . y ,  D e f C o o r d . z ,  D e f C o o r d . b ,  D e f C o o r d . c
I f  ( N e w T a r g e t . x  <> P r e v C o o r d . x  O r  N e w T a r g e t . y  <> P r e v C o o r d . y  O r
N e w T a r g e t . z <> P r e v C o o r d . z  O r N e w T a r g e t . b  <> P r e v C o o r d . b  O r  N e w T a r g e t . c
<> P r e v C o o r d . c )  T h e n
P r e v C o o r d  = N e w P r im a ry H o m e
C o u n tA n d M o v e
End  I f
J o in t H o m e V a lu e s  2 
P r e v C o o r d  = N ew S e co nd aryH om e  
C o u n tA n d M o v e  
End  Sub

P u b l i c  Sub  H o m e S t a r t S e q ()
CNC. RRS. S e l e c t M o t i o n T y p e  2 
D e f i n e M o t i o n T y p e  2
CNC. RRS. S e t C a r t e s i a n P o s i t i o n S p e e d  RAPIDFEEDRATE /  60 
CNC. RRS. S e t C a r t e s i a n O r i e n t a t i o n S p e e d  2 ,  MAXROTSPEED /  60 
End  Sub

P u b l i c  Sub GoHome()
J o in t H o m e V a lu e s  1 
P r e v C o o r d  = N e w P r im a ry H o m e  
C o u n tA n d M o v e  
End  Sub

P u b l i c  Sub C o u n tA n d M o v e ()
G P C o u n te r  = G P C o u n te r  + 1
CNC. RRS. S e tN e x t N a m e d T a r g e t  0 , 0 ,  C a r t P o s ,  J o i n t P o s ,  C o n f i g u r a t i o n ,  0 ,
"GP" & C S t r ( G P C o u n t e r )
E nd  Sub

P u b l i c  Sub R e s e t P o l a r A n g l e s ()
P o lA n g l7  = 0 
P o lA n g l8  = 0 
P o lA n g l9  = 0 
End Sub

P u b l i c  F u n c t i o n  D e g T o R a d (D e g A n g le  As D o u b le )  A s  D o u b le  
D egToR ad = ( D e g A n g le  /  180 )  * P I  
End F u n c t i o n

P u b l i c  Sub S e tW o rk C S P a ra m ( )

W o rk C S . P r o p s . x  = 100 
W o r k C S . P r o p s . y  = 100 
W o rk C S . P r o p s . z = 100 
W o rk C S . P r o p s . a  = 0 
W o rk C S . P r o p s . b  = 0 
W o r k C S . P r o p s . c  = 0 
W o rk C S .G c o d e  = "G 54 "

End Sub
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APPENDIX H: DEFAULT 

MOTION PLANNER SOURCE 
CODE

/ / D e f a u l t M o t i o n . c p p  
# i n c l u d e  " s t d a f x . h "  
t t i n c l u d e  " D e f a u l t M o t i o n . h "  
t t i n c l u d e  " v e c t o r 3 . h "
# i n c l u d e  " r e s o u r c e . h "

t t i n c l u d e  "N u m R e c .h "  
t t i n c l u d e  " M a t r i x . h "

/ /  F o r  d e b u g g in g  p u r p o s e s  ( s p r i n t f ) . . .  
t t i n c l u d e  < s t d i o . h >

t t d e f i n e  MAX_OBJECT_VELOCITY 1 / / M e t e r ' s  p e r  s e c o n d
t t d e f i n e  MAX_OBJECT_ACCELERATION 1 0 0 0 0 0  / / M e t e r ' s  p e r  s e c o n d

d o u b l e  s q r (  d o u b l e  d V a lu e  )
{

d o u b l e  d R e t ;

d R e t  = d V a lu e  * d V a lu e ;

r e t u r n ( d R e t  ) ;
}

/ / H e l p e r  f u n c t i o n s

* F u n c t i o n :  C a l c u l a t e A c c e l e r a t i o n T i m e
*
* A r g u m e n t s :  RCS_CAR_POS v e c t o r O n e
* RCS_CAR_POS v e c t o r T w o•k
* R e t u r n s : D i s t a n c e  a s  a  RCS_REAL
*
* C r e a t e d :
* A u t h o r : A l e k s a n d a r  B o s k o v i c  
* /

/ *  !
* D e s c r i p t i o n :*
*
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ • A T * *  j

RCS_REAL C a l c u l a t e C a r t L i n e a r D i s t a n c e  (RCS_CART_POS v e c t o r O n e ,
RCS_CART_POS v e c t o r T w o )
{

RCS_REAL d D i s t a n c e ;
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d o u b l e  dX = s q r  ( v e c t o r T w o . p x  -  v e c t o r O n e . p x )
d o u b l e  dY = s q r  (v e c t o r T w o . p y  -  v e c t o r O n e . p y )
d o u b l e  dZ = s q r  ( v e c t o r T w o . p z  -  v e c t o r O n e . p z )

d D i s t a n c e  = s q r t  (dX  + dY + dZ )  ; 

r e t u r n  ( d D i s t a n c e ) ;
}

* F u n c t i o n :  C a l c u l a t e A c c e l e r a t i o n T i m e
★
* A r g u m e n t s :  RCS_REAL d M a x V e l o c i t y
* RCS_REAL d M a x A c c e le r a t i o n
•k
* R e t u r n s : T im e  a s  a  RCS_REAL*
* C r e a t e d :
* A u t h o r :  A l e k s a n d a r  B o s k o v i c  
* /

/ *  !
* D e s c r i p t i o n :
*
*

RCS_REAL C a l c u l a t e A c c e l e r a t i o n T i m e  (RCS_REAL d M a x V e l o c i t y ,
RCS_REAL

d M a x A c c e l e r a t i o n )
{

RCS_REAL d T im e ;

d T im e  = d M a x V e l o c i t y  /  d M a x A c c e l e r a t i o n ;  

r e t u r n  ( d T i m e ) ,-
}

* F u n c t i o n :  C a l c u l a t e D i s t a n c e T o M a x V e l o c i t y
*

* A r g u m e n t s :  RCS_REAL d M a x V e l o c i t y
* RCS_REAL d M a x A c c e le r a t i o n
*

* R e t u r n s :  The  d i s t a n c e  a s  a RCS_REAL
*

* C r e a t e d :
*  A u t h o r :  A l e k s a n d a r  B o s k o v i c  
* /

/ *  !
* D e s c r i p t i o n :  T he  d i s t a n c e  c a n  b e  f o u n d  b y  i n t e g r a t i n g  a v e l o c i t y ­

t i m e
* f u n c t i o n .  I f  we make q u i t e  a f e w  a s s u m p t i o n s

s u c h  a s  c o n s t a n t
* a c c e l e r a t i o n  a n d  an  i n i t i a l  v e l o c i t y  o f  z e r o ,

t h e n  b y  i n t e g r a t e
* v ( t )  = [ a * v ]  d t ,  f r o m  0 t o  t  a n d  t h e n  s u b s t i t u t e  

t  = v / a ,  we
* o b t a i n  t h e  e q u a t i o n  a s  l i s t e d  b e lo w .*
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RCS_REAL C a l c u l a t e D i s t a n c e T o M a x V e l o c i t y  (RCS_REAL d M a x V e l o c i t y ,  RCS_REAL 
d M a x A c c e l e r a t i o n )
{

RCS_REAL d D i s t a n c e ;

d D i s t a n c e  = s q r  ( d M a x V e l o c i t y )  /  2 /  d M a x A c c e l e r a t i o n ;  

r e t u r n  ( d D i s t a n c e ) ;
}

* F u n c t i o n :  C a l c u la t e T im e A t M a x i m u m V e l o c i t y
★
*  A r g u m e n t s :  RCS_REAL d T o t a l D i s t a n c e
* RCS_REAL d M a x V e l o c i t y
* RCS_REAL d M a x A c c e l e r a t i o n
*
* R e t u r n s : T im e  a s  a  RCS_REAL
★
* C r e a t e d :
* A u t h o r :  A l e k s a n d a r  B o s k o v i c  
* /

/ *  !
* D e s c r i p t i o n :  H e re  we s i m p l y  s u b t r a c t  t h e  a c c e l e r a t i o n  a n d
* d e c e l e r a t i o n  d i s t a n c e  f r o m  t o t a l  d i s t a n c e .  T hen
* t h e  r e m a i n i n g  d i s t a n c e  i s  t h e  p o r t i o n  a t  t h e  max
* v e l o c i t y .
*
★

RCS_REAL C a l c u la t e T im e A t M a x i m u m V e l o c i t y  (RCS_REAL d T o t a l D i s t a n c e ,
RC S_REAL

d M a x V e l o c i t y ,
RCS_REAL

d M a x A c c e l e r a t i o n )
{

RC S_REAL dD i  s t  ToM axVe1,
d T im e A t M a x V e l ;

d D is t T o M a x V e l  = C a l c u l a t e D i s t a n c e T o M a x V e l o c i t y  ( d M a x V e l o c i t y ,  
d M a x A c c e l e r a t i o n ) ;

d T im e A tM a x V e l  = ( d T o t a l D i s t a n c e  2 * d D is t T o M a x V e l )  /
d M a x V e l o c i t y ;

r e t u r n  ( d T im e A t M a x V e l ) ;
}

* F u n c t i o n :  C a l c u l a t e C h a n g e l n P o s i t i o n s★
* A r g u m e n t s : RCS_CART_POS P I
*  RC S_CART_POS P2
*  RCS_CART_POS &Change*
* R e t u r n s :  b o o l  ( a t  t h i s  p o i n t  i t s  a lw a y s  t r u e )★
*  C r e a t e d :
* A u t h o r :  A l e k s a n d a r  B o s k o v i c
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* /
/  *  !

* D e s c r i p t i o n :
*********************************************★*********★**★****★*/

b o o l  C a l c u l a t e C h a n g e l n P o s i t i o n s  ( RCS_CART_POS P I ,
RCS_CART_POS P 2 , 
RCS_CART_POS &C hange)

C h a n g e . C a r t P o s F l a g  = 0 ;

C h a n g e . a x = P i . a x  - P 2 . a x ;
C h a n g e . a y = P I . a y  - P 2 . a y ;
C h a n g e . az P l . a z  - P 2 . a z ;

C h a n g e . n x = P I . n x  - P 2 . n x ;
C h a n g e . n y = P i . n y  - P 2 . n y ;
C h a n g e .n z P l . n z  - P 2 . n z ;

C h a n g e . o x = P i . o x  - P 2 . o x ;
C h a n g e . o y = P i . o y  - P 2 . o y ;
C h a n g e . oz = P l . o z  - P 2 . o z ;

C h a n g e . p x = P l . p x  - P 2 . p x ;
C h a n g e . p y = P l . p y  - P 2 . p y ;
C h a n g e .p z = P l . p z  - P 2 . p z ;

r e t u r n  t r u e ;

* F u n c t i o n :  F in d B ig g e s t C h a n g e
• k

* A r g u m e n t s :

k
★
* R e t u r n s :
k

d o u b le
d o u b le
d o u b le

x
y

d o u b l e

2 1 - N o v - 99
A l e k s a n d a r  B o s k o v i c

* C r e a t e d :
* A u t h o r :
* /

/* !
* D e s c r i p t i o n :  F i r s t  we n e e d  t o  e x p l a i n  w h y  we c h o o s e  s u c h  a r g u m e n t s .
*  We p a s s  i n  a v e c t o r  b y  a n  a r r a y  o f  t h r e e

d o u b l e s .  We n e v e r*
s i n c e  we a r e  ★
No n e e d  t o  

w hen  i t  i s n ' t  

m uch  o v e r h e a d ,

r i g h t  n ow . 
★

f o r  t h e  l o n g e s t  *
a c c o r d i n g  t o  t h e

c h o o s e  a  C V e c t o r 3  ( o u r  c o d e )  o r  w h a t e v e r  i n  a c i s  

o n l y  i n t e r e s t e d  i n  t h e  p o s i t i o n s ,  a n d  t h a t s  i t .  

f o r  w o r k s p a c e  t o  c r e a t e  a n d  d e s t o r y  some o b j e c t s  

r e a l l y  a l l  t o  n e c e s s a r y .  T r u e  i t  d o e s n ' t  a d d  t o  

b u t  we a r e  n o t  g o i n g  t o  w o r r y  t o  m uch  a b o u t  t h a t

F i r s t  we n e e d  t o  f i n d  t h e  a m o u n t  o f  t i m e  n e e d e d  

p o s s i b l e  m ove .  T h e n  we f i n d  t h e  a m o u n t  o f  t i m e  

l o n g e s t  t i m e .
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d o u b l e  F in d B ig g e s t C h a n g e  ( d o u b le  x ,  d o u b l e  y ,  d o u b l e  z)
{

d o u b l e  l a r g e s t _ d i s t a n c e ;  

x  > y
? (z  > x  ? l a r g e s t _ d i s t a n c e  = z : l a r g e s t _ d i s t a n c e  = x )
: (z  > y  ? l a r g e s t _ d i s t a n c e  = z : l a r g e s t _ d i s t a n c e  = y ) ;

r e t u r n  l a r g e s t _ d i s t a n c e ;
}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / / / / / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / / / / / /
/ /  MOTION PLANNER CLASS
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / / / / / / / / / / / /

/ / C l a s s  m em ber f u n c t i o n s

* F u n c t i o n :  C D e f a u l t M o t i o n P l a n n e r : : C D e f a u l t M o t i o n P l a n n e r
*

* A r g u m e n t s :
* v o i d*
* C r e a t e d :  9 90 80 6
* A u t h o r :  A l e k s a n d a r  B o s k o v i c  
*/

/* !
* D e s c r i p t i o n :  S t a n d a r d  c o n s t r u c t o r*

C D e f a u l t M o t i o n P l a n n e r : : C D e f a u l t M o t i o n P l a n n e r ( i n t  p l a n n e r _ t y p e  )
{

m _ d A r c S t a r t A n g l e  = 0 . 0 ;

/ /  Assum e m o t i o n  p l a n n e r  i s  a t t a c h e d  t o  a n  o b j e c t  
/ /  K i n e m a t i c s  p o i n t e r  w i l l  b e  i n t i a l i s e d  l a t e r  
m _ p K in e m a t i c s  = NULL; 
m _ p f n G e t I n v e r s e K i n e m a t i c  = NULL; 
m _ p D e f a u l t S h e l l  = NULL;

m _ p S c a le d J o i n t M o t i o n  = NULL;

/ / S e t  u p  a  l i n k e d  l i s t  t o  s t o r e  t a r g e t s  s p e c i f  e d  b y  
S e t _ N e x t _ T a r g e t  c a l l s

m _ T a r g e t s L i s t . I n i t i a l i z e L i s t ( ) ;

/ / S e t  d e f a u l t  v a l u e s
m _nMot io n T y p e  = MOTION_LINEAR;

m _ n I n t e r p o l a t i o n T i m e  = DEFAULT_INTERPOLATION_TIME;

m _ n T r a je c t o r y M o d e  = 1 ;  / / t a r g e t s  b e l o n g  t o  same t r a j e c t o r y  ( n o t  
s u p p o r t e d )

m _ n F ly B y M o d e  = 0 ;  / / o f f
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m _ n C u r r e n t I n t e r v a l  = 0 ;  / / i n t e r n a l  m a r k e r  f o r  c a l l s  t o  
' G e t _ N e x t _ S t e p '

m _ n C u r r e n t T a r g e t  = 0 ;  / / I n d e x  i n t o  m _ T a r g e t s L i s t , s h o w in g  w h i c h  
t a r g e t  t h e

/ / r o b o t  i s  h e a d i n g  t o w a r d s  

m _ n R o b o t S t a t u s  = 0 ;  / / R o b o t  i s  s t a t i o n a r y  a n d  a w a i t i n g
t a r g e t

/ /  s e t  u p  f o r  d e f a u l t s  f o r  o r i e n t a t i o n  i n t e r p o l a t i o n  
m _ d M a x O r ie n t a t i o n A n g l e V e l  = 4 . 0  ; 
m _ d M a x O r ie n t a t i o n A n g le A c c  = 8 . 0  ; 
m _ n I n t e r p o l a t i o n M o d e  = 3 ;
m _ T x f o r m . S e t O r i e n t a t i o n T y p e ( o r ie n tW P R  ) ;
m _ D o O r i e n t a t i o n  = TRUE ;

m _ c a r t M o t i o n S t a r t _ P o s i t i o n . C a r t P o s F l a g  = 0 ; 
m _ j o i n t M o t i o n S t a r t _ P o s i t i o n . A x e s F l a g s  = 0 ;  
m _ j o i n t L a s t _ P o s i t i o n . A x e s F l a g s  = 0 ;

m _ p T e m p T a rg e t  = NULL;

i f  ( p l a n n e r _ t y p e  == DMP_OBJECT) 
m _ b O b je c t  = t r u e ;

e l s e
m _ b O b je c t  = f a l s e ;

/ /  T he  d e f a u l t  v e l o c i t y  o f  f o r  O b j e c t  M o t i o n  i s  1000  m m /sec  
m _ d M a x O b jV e l  = 1 0 0 ;

Z e ro M e m o ry f  m _ J o i n t M o t i o n ,  s i z e o f ( m _ J o i n t M o t i o n )  ) ;
Z e ro M e m o ry (  m _ J o i n t M o t i o n C u r r e n t , s i z e o f ( m _ J o i n t M o t i o n C u r r e n t )  ) ;

m _ d M a x L i n e a r V e l L im i t  = 0 . 0 ;  
m _ d M a x L in e a r A c c L im i t  = 0 . 0 ;  
m _ d M a x L in e a r V e lC u r r e n t  = 0 . 0 ;  
m _ d M a x L in e a r A c c C u r r e n t  = 0 . 0 ;  
m _ d M a x L in e a r V e l  = 0 . 0 ;  
m _ d M a x L in e a rA c c  = 0 . 0 ;

}

* F u n c t i o n :

* A r g u m e n t s :

* R e t u r n s :

C D e f a u l t M o t i o n P l a n n e r : : - C D e f a u l t M o t i o n P l a n n e r

* C r e a t e d :*
*  A u t h o r :
*/

/*'.
* D e s c r i p t i o n :

9 90713

A l e k s a n d a r  B o s k o v i c  

s t a n d a r d  d e s t r u c t o r

* C om m ents :
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C D e f a u l t M o t i o n P l a n n e r : : - C D e f a u l t M o t i o n P l a n n e r ()
{

/ /R e m o v e  a n y  p r o f i l e s  f o r  j o i n t  c o - o r d i n a t e d  m o ve m e n t 
i f f  NULL !=  m _ p S c a le d J o i n t M o t i o n  )
{

d e l e t e  [ ]  m _ p S c a le d J o i n t M o t i o n ;  
m _ p S c a le d J o i n t M o t i o n  = NULL;

}
/ /R e m o v e  a n y  t a r g e t s  f r o m  t h e  l i s t  
m _ T a r g e t s L i s t . D e I n i t i a l i z e L i s t ( ) ;

/ /  Remove a n y  m e s s a g e s  
R e s e t M e s s a g e s ( ) ;

}

RCS_INT C D e f a u l t M o t i o n P l a n n e r ; : S e l e c t _ F l y B y _ M o d e ( RCS_INT F ly B y O n  ) 
{

m _ n F ly B y M o d e  = F ly B y O n ;  

r e t u r n ( 0 ) ;  / / S u c c e s s
}

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e t _ I n t e r p o l a t i o n _ T i m e ( RCS_REAL
I n t e r p o l a t i o n T i m e  )
{

m _ n I n t e r p o l a t i o n T i m e  = I n t e r p o l a t i o n T i m e ;  

r e t u r n ( 0 ) ;  / / S u c c e s s
}

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ T r a j e c t o r y _ M o d e ( RCS_INT
T r a j e c t o r y O n  )
{

m _ n T r a je c t o r y M o d e  = T r a j e c t o r y O n ;  

r e t u r n ( 0 ) ;  / / S u c c e s s
}

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ D o m i n a n t _ I n t e r p o l a t i o n
(RCS_INT D o m i n a n t I n t T y p e ,

RCS_INT D o m in a n t I n t P a r a m )
{

/ /  R i g h t  now  we a r e  o n l y  g o i n g  t o  a l l o w  f o r  t h e  p o s i t i o n  t o  be  
m a s t e r  ( 1 ) ,  o r  t h e

/ /  o r i e n t a t i o n  t o  b e  m a s t e r  ( 2 ) ,  o r  a u t o m a t i c  ( 4 ) .  We a r e  b y  
d e f a u l t  u s i n g

/ /  a u t o m a t i c  mode w h i c h  t r i e s  t h e  p o s i t i o n  f i r s t  t h e n  t h e  
o r i e n t a t i o n .

s w i t c h  ( D o m in a n t I n t T y p e )
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{
c a s e  1 :  
c a s e  2 :
c a s e  4 :  m _ n D o m i n a n t I n t e r p o l a t i o n T y p e  = D o m i n a n t I n t T y p e ;  

r e t u r n  RRS_OK;
}
r e t u r n  RRS_INTERPOL_SPACE_NOT_SUPPORTED;

}

/******************************************************************
★
* F u n c t i o n :  C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ M o t i o n _ T y p e
★
* A r g u m e n t s :
* RCS_INT M o t io n T y p e
*
★
* R e t u r n s : RCS_INT★
★
* C r e a t e d :  9 90 62 4★
* A u t h o r :  A l e k s a n d a r  B o s k o v i c
*/

/ * !
* D e s c r i p t i o n :  S e t s  t h e  m o t i o n  t y p e  f o r  t h e  d e f a u l t  m o t i o n  p l a n n e r
*
*
* C om m en ts : A d d e d  e x t r a  t y p e s  t o  s u p p o r t  G -C od e  c i r c u l a r  m o t i o n
★

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ M o t i o n _ T y p e ( RCS_INT M o t io n T y p e  ) 
{

RCS_INT n R e t  = 0 ;

s w i t c h ( M o t io n T y p e  )
{

c a s e  M O TIO N _JO IN T :
c a s e  MOTION_LINEAR:
c a s e  MOTION_CIRCULAR:
c a s e  MOTION_CIRCULAR_CLOCKWISE:
c a s e  MOTION_CIRCULAR_ANTICLOCKWISE:
{

m _ n M o t io n T y p e  = M o t i o n T y p e ;
}
b r e a k ;

d e f a u l t :
{

n R e t  = RRS_MOTION_TYPE_NOT_SUPPORTED;
}
b r e a k ;

}

r e t u r n  n R e t ;
}
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APPENDIX I: G CODE OFF-LINE 

PROGRAMMING SOURCE 
CODE

/ /  P a th T o G C o d e . c p p : i m p l e m e n t a t i o n  o f  t h e  C P a thT oG C ode  c l a s s .
/ /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

# i n c l u d e  " s t d a f x . h "  
t t i n c l u d e  " w o r k s p a c e . h "  
t t i n c l u d e  " P a th T o G C o d e .h "  
t t i n c l u d e  " P a t h . h "  
t t i n c l u d e  " G P .h "  
t t i n c l u d e  " G P A c t i o n . h "  
t t i n c l u d e  " W o r k s p a c e D o c .h "  
t t i n c l u d e  " F i n d . h "  
t t i n c l u d e  " C A D U t i l s . h "  
t t i n c l u d e  " M a t h U t i l . h "
# i n c l u d e  " V e c  t o r 3 . h "
t t i n c l u d e  " c o n s t r c t / k e r n a p i / a p i / c s t r a p i . h x x "  
t t i n c l u d e  " k e r n e l / g e o m h u s k / g e o m _ u t l . h x x "  
t t i n c l u d e  " k e r n e l \ g e o m h u s k \ c u r v e q . h x x "
# i n c l u d e  " G C o d e P o in t A c c u r a c y . h " 
t t i n c l u d e  " A c i s M F C X a c i s d o c . h x x "  
t t i n c l u d e  " a c i s m f c \ a m f c _ u t l . h x x "  
t t i n c l u d e  " A c i s M F C \ T o o l s \ t o o l s . h x x "

t t i f d e f  _DEBUG 
t t u n d e f  T H IS _ F IL E  
s t a t i c  c h a r  T H I S _ F I L E [ ]  =_ 
t t d e f i n e  new  DEBUG_NEW 
t t e n d i f

F IL E

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ /  C o n s t r u c t i o n / D e s t r u c t i o n  
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

*
*  F u n c t i o n :  C P a th T o G C o d e : : C Pa thToG C ode★
* A r g u m e n t s :
* LPCTSTR I p s z P r o g r a m F i l e ,
* C R o b o t  * p R o b o t ,
* C P a th  * p P a t h*
*
★
* R e t u r n s :★
★
* C r e a t e d :  9 90718
it

* A u t h o r :  A l e k s a n d a r  B o s k o v i c  
*/

/*!

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



* D e s c r i p t i o n :
*
*
* C om m en ts :  C o n s t r u c t o r  f o r  c l a s s  w h i c h  c o n v e r t s  a  p a t h  i n t o
* t h e  GCode l a n g u a g e .
*
********************★*****★***•*■•*■**■*■***★*★********★★*★*■*****★*★★★*/ 

C P a th T o G C o d e : : C Pa thToG C ode(LPC TSTR  I p s z P r o g r a m F i l e ,
C R o b o t  * p R o b o t ,
C P a th  * p P a t h )

: C P a th T o L a n g u a g e ( I p s z P r o g r a m F i l e ,  p R o b o t ,  p P a t h  )
{

m _ s t r L a n g u a g e  = "GCODE"; 
m _ p H e a d P a th  = p P a t h ;  
m _ b V e r b o s e = f a l s e ;  
m _ b F e e d E m i t t e d = f a l s e ;  
m _ b X E m i t t e d = f a l s e ;  
m _ b Y E m i t t e d = f a l s e ;  
m _ b Z E m i t t e d = f a l s e ;  
m _ b B E m i t t e d = f a l s e ;  
m _ b C E m i t t e d = f a l s e ;  
m _ b O p C o d e E m i t t e d = f a l s e ;  
m _ b P l a n e E m i t t e d = f a l s e ;

★
*  F u n c t i o n :  C P a t h T o G C o d e : : W r i t e P a t h
★
* A r g u m e n t s :
★
*
* R e t u r n s :  C S t r i n g★
★
*  C r e a t e d :  9 90 71 8
★
* A u t h o r :  A l e k s a n d a r  B o s k o v i c
* /

/*!
* D e s c r i p t i o n :*
★
* C om m en ts :  W r i t e s  t h e  p a t h
*

C S t r i n g  C P a t h T o G C o d e : : W r i t e P a t h ( )
{

C S t d i o F i l e  P r o g r a m F i l e (
m _ s t r F i l e N a m e ,
C F i l e : :m o d e C r e a te  | C F i l e : : m o d e W r i t e  )

/ /  W r i t e  s u b - p a t h s
W r i t e F u n c t i o n ( m _ p P a th ,  P r o g r a m F i l e  ) ;  

r e t u r n  C P a t h T o L a n g u a g e : : W r i t e P a t h ( ) ;
}
v o i d  C P a th T o G C o d e : : S t a r t F u n c t i o n ( C P a t h  * p P a t h ,  C S t d i o F i l e  & r F i l e )
{

m _ b F e e d E m i t t e d = f a l s e ;
m _ b X E m i t t e d = f a l s e ;
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m_bYEmi 11 ed=  f  a 1 s e ;
m _ b Z E m i t t e d = f a l s e ;
m _ b B E m i t t e d = f a l s e ;
m _ b C E m i t t e d = f a l s e ;
m _ b O p C o d e E m i t t e d = f a l s e ;
m _ b P l a n e E m i t t e d = f a l s e ;

}

★
* F u n c t i o n :  C P a th T o G C o d e : : W r i t e F u n c t i o n
★
* A r g u m e n t s :
* C P a th  * p P a t h ,
* C S t d i o F i l e  & r F i l e*
★
* R e t u r n s : v o i d★
*
* C r e a t e d :  9 91 00 7*
* A u t h o r :  A l e k s a n d a r  B o s k o v i c
*/

/* !
* D e s c r i p t i o n :*
★
* C om m en ts :
★

v o i d  C P a th T o G C o d e : : W r i t e F u n c t i o n ( C P a th  * p P a t h ,  C S t d i o F i l e  & r F i l e  )
{

C W o rk s p a c e D o c  *p D o c  = G e t A c t i v e D o c ( ) ;
C S t r i n g  s t r L i n e ;

S t a r t F u n c t i o n ( p P a t h ,  r F i l e ) ; 
i f  ( ! p P a t h - > G e t P a t h P a r e n t ( ) )
{

/ /  W r i t e  p r o c e d u r e  t o  c a l l  s u b - p a t h s
s t r L i n e . F o r m a t ( " \n O % s" , F in d G C o d e N a m e (m _ p P a th -> G e tN a m e ( ) ) ) ;  

r F i l e . W r i t e S t r i n g ( s t r L i n e  ) ;

/ /  W r i t e  H e a d e r  i n f o r m a t i o n

s t r L i n e . F o r m a t ( " \n% s D1 H I " ,  m _ L in e N o . N e x t ( ) ) ;  
r F i l e . W r i t e S t r i n g ( s t r L i n e ) ;

s t r L i n e . F o r m a t ( " \n% s G 9 2 . 1 " ,  m _ L in e N o . N e x t ()  ) ;  
r F i l e . W r i t e S t r i n g ( s t r L i n e ) ;

s t r L i n e . F o r m a t  ( " \ n % s  GOO G17 G40 G80 G90 G54 G 9 4 " ,
m _ L in e N o . N e x t ( )  ) ;

r F i l e . W r i t e S t r i n g ( s t r L i n e ) ;

s t r L i n e . F o r m a t ( ” \n% s G92 XO.OOO Y 0 .0 0 0  Z 0 .0 0 0  B O .000 C O .000 
F 2 5 0 . 0 0 0 ” , m _ L in e N o . N e x t ()  ) ;

r F i l e . W r i t e S t r i n g !  s t r L i n e ) ;
}
e l s e
{

s t r L i n e . F o r m a t ( " \nO%s " , F in d G C o d e N a m e (p P a th -> G e tN a m e ( ) ) ) ;
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r F i l e . W r i t e S t r i n g ( s t r L i n e  ) ;

s t r L i n e . F o r m a t ( " \n% s F 2 5 0 " ,  m _ L in e N o . N e x t ( ) ) ;
}

/ /  L o o p  t h r o u g h  t a r g e t  l i s t  
C P t r L i s t  * p T a r g e t L i s t  = p P a t h - > G e t T a r g e t L i s t ( ) ;
PO SIT IO N  p o s L i s t  = p T a r g e t L i s t - > G e t H e a d P o s i t i o n ( ) ;

w h i l e ( p o s L i s t  )
{

/ /  G e t  t h e  name o f  t h e  n e x t  t a r g e t
C P a t h T a r g e t  *p P T  = ( C P a t h T a r g e t * ) p T a r g e t L i s t - > G e t N e x t (

p o s L i s t  ) ;

i f  ( p P T - > i s P a t h ( ) )
{

/ /  T h i s  t a r g e t  i s  a p a t h

/ /  S h o u ld  a l r e a d y  h a v e  w r i t t e n  t h e  p r o c e d u r e  f o r  
/ /  t h i s  s u b - p a t h ,  so  j u s t  make a c a l l  t o  i t  
s t r L i n e . F o r m a t ( " \n % s

M 98P % s", m _ L in e N o . N e x t ( ) , F in d G C o d e N a m e (p P T -> G e tN a m e ( ) ) ) ;
r F i l e . W r i t e S t r i n g ( s t r L i n e  ) ;

}
e l s e
{

i f  ( p P T - > is G P M o v e ( ) )
/ /  T h i s  t a r g e t  i s  a GPMove

W r i t e M o v e (  (C G PM ove*) pP T , r F i l e  ) ;
}

}
i f ( ! p P a t h - > G e t P a t h P a r e n t ( ) )

s t r L i n e . F o r m a t ( " \n % s  G 9 2 .1 \n % s  M02" , m _ L in e N o . N e x t ( ) ,
m _ L in e N o . N e x t () ) ;

e l s e
s t r L i n e . F o r m a t ( " \n % s  M 9 9 " ,  m _ L in e N o . N e x t { )  ) ;

r F i l e . W r i t e S t r i n g ( s t r L i n e  ) ;

/ /  L o o p  t h r o u g h  s u b - p a t h s
C P t r L i s t  * p P a t h L i s t  = p P a t h - > G e t T a r g e t L i s t ( ) ;  
p o s L i s t  = p P a t h L i s t - > G e t H e a d P o s i t i o n ( ) ;

w h i l e ( p o s L i s t  )
{

C P a t h T a r g e t  *p P T ;

pPT = ( C P a t h T a r g e t * ) p P a t h L i s t - > G e t N e x t ( p o s L i s t  ) ,- 
i f  ( p P T - > i s P a t h ( ) )
{

C S t r i n g  s t r S u b F u n c P a t h  = r F i l e . G e t F i l e P a t h ( ) ;
C S t r i n g  s t r M a s te r F u n c N a m e  = r F i l e . G e t F i l e N a m e ( ) ;  
s t r S u b F u n c P a t h . R e p l a c e ( s t r M a s t e r F u n c N a m e , m _ p H e a d P a th -  

> G e tN a m e ( ) + " _ 0 " +F in d G C o d e N a m e ( ( ( C P a t h * ) p P T ) - > G e tN a m e ( ) ) + " . p p g " ) ;
C S t d i o F i l e  s u b F i l e (

s t r S u b F u n c P a t h ,
C F i l e : :m o d e C r e a te  | C F i l e : :m o d e W r i t e  ) ;  

S t a r t F u n c t i o n ( p P a t h ,  s u b F i l e ) ;

W r i t e F u n c t i o n ( ( ( C P a t h * ) p P T ) , s u b F i l e  ) ;
}
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}
}

d o u b l e  P o s Z e r o ( d o u b le  d V a l )
{

i f  ( A l m o s t Z e r o ( d V a l ) ) 
r e t u r n  0 . 0 ;

e l s e
r e t u r n  d V a l ;

}

/*********■★***★***********************★****************************
★
*  F u n c t i o n :  C P a th T o G C o d e : : W r i t e M o v e
*

* A r g u m e n t s :
*  CGPMove* pGPMove,
* C S t d i o F i l e  k r F i l e
it

it

* R e t u r n s :  v o i d* 
it

*  C r e a t e d :  9 91007★
*  A u t h o r : A l e k s a n d a r  B o s k o v i c
*/

/*'.
* D e s c r i p t i o n :
* 
it

* C o m m e n ts :
it

v o i d  C P a th T o G C o d e : : W r i t e M o v e ( CGPMove* pGPMove, C S t d i o F i l e  & r F i l e  )
{

s t a t i c  b o o l  b C o n f J  = t r u e ;
s t a t i c  d o u b l e  d P r e v P o s [ 3 ] = { 0 . 0 , 0 . 0 , 0 . 0 } ;  / /  w o r l d  c o - o r d s  s e t  u p

a s  s t a r t  p o s
s t a t i c  d o u b l e  d P r e v B = 0 . 0 ;  
s t a t i c  d o u b l e  d P r e v C = 0 . 0 ;  
s t a t i c  d o u b l e  d P r e v F e e d = 2 5 0 . 0 ;  
s t a t i c  d o u b l e  d l = 0 . 0 ,  d J = 0 . 0 / d K = 0 .0 ;  
i n t  n A c t i o n s ;

C S t r i n g  s t r L o c P i c = " % . 3 f " ;  
s t a t i c  CCutDownGP * p P re v M in iG P = N U L L ;  
s t a t i c  C S t r i n g  s t r P r e v O p C o d e = " " ;  
s t a t i c  C S t r i n g  s t r P r e v P l a n e = " " ;  
s t a t i c  C S t r i n g  s t r P r e v C i r c D i r = " " ;
s t a t i c  C S t r i n g  s t r P r e v X = ” " ,  s t r P r e v Y = " " ,  s t r P r e v Z = " " ,  s t r P r e v B = " " ,  

s t r P r e v C = " 11 ;
s t a t i c  C S t r i n g  s t r P r e v F e e d ;
s t a t i c  C S t r i n g  s t r P r e v I = " " ,  s t r P r e v J = " 11, s t r P r e v K = " "  ; 
b o o l  b O p C o d e R e q d = t ru e ,

b P la n e R e q d =  t  r u e ,
b X R e q d = t r u e ,
b Y R e q d = t r u e ,
b Z R e q d = t r u e ,
b B R e q d = t r u e ,
b C R e q d = t r u e ,
b I R e q d = t r u e ,
b J R e q d = t r u e ,
b K R e q d = t r u e ,
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b F e e d R e q d = t r u e , 
b N o n O r t h o = f a l s e ;

C S t r i n g  s t r L i n e ;
/ / t r a n s f  t r a n s f o r m T P ;

/ / t r a n s f  pGPPos = p G P M o v e -> G e tG P ( ) - > G e t T r a n s f ( ) ;
RCS_JOINT_POS J o in t T e m p ;

CCutDownGP * p M in iG P  = G e tM in iG P F ro m M a p (p G P M o v e -> G e tG P ( ) -
> G e tN a m e ( ) ) ;

i f ( !  p M in iG P  )
{

A fx M e s s a g e B o x  ( " M in iG P  n o t  f o u n d '1) ;
}

J o in t T e m p  = p M i n i G P - > G e t J o i n t P o s ( ) ;
/ / t r a n s f o r m T P  = m _ p R o b o t - > C o n v e r tG P to T P ( pGPMove- >G etW CS( ) -

> t o _ m o d e l ( ) ) ;

/ /RCS_FRAME f rR C S ;

/ / C o n v e r t T r a n s f T o R C S F r a m e ( f rR C S ,  t r a n s f o r m T P  ) ;

i f  ( m _ b X E m i t te d  && A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 0 ] -
d P r e v P o s [ 0 ] ) )

bXR eqd = m _ b V e rb o s e ;
e l s e
{

s t r P r e v X . F o r m a t ( "  X " + s t r L o c P i c ,
P o s Z e r o ( J o in t T e m p . A x e s V a l u e s [ 0 ] ) ) ;

}
i f  ( m _ b Y E m it te d  && A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 1 ] -

d P r e v P o s [ 1 ] ) )
bYR eqd  = m _ b V e rb o s e ;

e l s e
{

s t r P r e v Y . F o r m a t ( "  Y " + s t r L o c P i c ,
P o s Z e r o ( J o in t T e m p . A x e s V a l u e s [ 1 ] ) ) ;

}
i f  ( m _ b Z E m i t te d  && A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 2 ] -

d P r e v P o s [ 2 ] ) )
bZ R e qd  = m _ b V e rb o s e ;

e l s e
{

s t r P r e v Z . F o r m a t ( "  Z " + s t r L o c P i c ,
P o s Z e r o ( J o in t T e m p . A x e s V a l u e s [ 2 ] ) ) ;

}
i f  ( m _ b B E m it te d  && A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 3 ] - d P r e v B ) ) 

bBR eqd  = m _ b V e rb o s e ;
e l s e
{

s t r P r e v B . F o r m a t ( "  B " + s t r L o c P i c ,
P o s Z e r o ( R a d T o D e g ( J o in t T e m p . A x e s V a lu e s ( 3 ] ) ) ) ;

}
i f  (m _ b C E m i t te d  && A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 4 ] - d P r e v C ) ) 

bCReqd = m _ b V e rb o s e ;
e l s e
{
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s t r P r e v C . F o r m a t ( "  C " + s t r L o c P i c ,
P o s Z e r o ( R a d T o D e g ( J o in t T e m p . A x e s V a lu e s [ 4 ] ) ) ) ;

}
i f  (p G P M o v e -> H a s P o s S p e e d ( ) )
{

i f  ( m _ b F e e d E m i t te d  && A lm o s t Z e r o ( p G P M o v e - > G e tP o s S p e e d ( ) -
d P r e v F e e d ) )

b F e e d R e q d  = m _ b V e rb o s e ;
e l s e
{

s t r P r e v F e e d . F o r m a t ( " F " + s t r L o c P i c ,  pGPM ove-
> G e tP o s S p e e d ( ) ) ;

}
}
e l s e
{

s t r P r e v F e e d . F o r m a t ( " F " + s t r L o c P i c ,  d P r e v F e e d ) ;  
b F e e d R e q d  = m _ b V e rb o s e  | | !m _ b F e e d E m i t t e d ;  / /  ??? r e p e a t

l a s t  f e e d  r a t e  i f  v e r b o s e ?
}

i f ( p G P M o v e - > G e tM o t io n T y p e ()  == " C i r c u l a r "  )
{

d o u b l e  d R a d iu s ;  
p o s i t i o n  p o s C e n t e r ;  
u n i t _ v e c t o r  v N o r m a l ;  
b o o l  b D i r ;

A S S E R T ( p P re v M in iG P ) ;
G e t C i r c l e P a r a m s ( p P r e v M i n i G P ,  pGPMove, b D i r ,  p o s C e n t e r ,  

v N o r m a l ,  d R a d i u s ) ;

i f  ( b D i r )
{

i f  ( s t r P r e v O p C o d e  == " G 0 2 " )
bO pC odeReqd = m _ b V e rb o s e  | |  !m _ b O p C o d e E m i t te d ;

e l s e
s t r P r e v O p C o d e = "  G 0 2 " ;

}
e l s e
{

i f  ( s t r P r e v O p C o d e  == " G 0 3 " )
bO pCodeReqd = m _ b V e rb o s e  | |  !m _ b O p C o d e E m i t te d ;

e l s e
{

s t r P r e v O p C o d e = " G 0 3 " ;
}

}
i f  ( A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 2 ] - d P r e v P o s [ 2 ] ) )
{

i f  ( s t r P r e v P l a n e  == " G 1 7 " )
b P la n e R e q d  = m _ b V e rb o s e  | |  m _ b P la n e E m i t t e d ;

e l s e
s t r P r e v P l a n e  = " G 1 7 " ;  

d l  = p o s C e n t e r . x ()  -  d P r e v P o s [ 0 ] ;  
d J  = p o s C e n t e r . y ( ) -  d P r e v P o s [ l ] ;  
s t r P r e v I . F o r m a t ( "  I " + s t r L o c P i c , d l ) ; 
s t r P r e v J . F o r m a t ( "  J " + s t r L o c P i c , d J ) ; 
b ZR eqd  = f a l s e ;  
bKReqd = f a l s e ;

}
e l s e
i f  ( A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 1 ] -  d P r e v P o s [ 1 ] ) )
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m_bP1a n e E m i 11 e d ;

{
i f  ( s t r P r e v P l a n e  == " G 1 8 " )

b P la n e R e q d  = m _ b V e rb o s e  
e l s e

s t r P r e v P l a n e  = " G 1 8 " ;  
bYR eqd  = f a l s e ;
d l  = p o s C e n t e r . x ()  -  d P r e v P o s [ 0 ] ;  
dK = p o s C e n t e r . z ()  -  d P r e v P o s [ 2 ] ;  
s t r P r e v I . F o r m a t ( "  I " + s t r L o c P i c , d l ) ; 
s t r P r e v K . F o r m a t ( "  K " + s t r L o c P i c , dK) ; 
b J R e q d  = f a l s e ;

}
e l s e
i f  ( A l m o s t Z e r o ( J o i n t T e m p . A x e s V a l u e s [ 0 ] - d P r e v P o s [ 0 ] ) )
{

i f  ( s t r P r e v P l a n e  == " G 1 9 " )
b P la n e R e q d  = m _ b V e rb o s e  | |  m _ b P la n e E m i t t e d ;

e l s e
s t r P r e v P l a n e  = " G 1 9 " ;  

bXR eqd  = f a l s e ;
d J  = p o s C e n t e r . y ( ) -  d P r e v P o s [ 1 ] ;  
dK = p o s C e n t e r . z ()  -  d P r e v P o s [ 2 ] ;  
s t r P r e v J . F o r m a t  ( 11 J "  + s t r L o c P i c , d J )  ; 
s t r P r e v K . F o r m a t ( "  K " + s t r L o c P i c ,  dK) ; 
b I R e q d  = f a l s e ;

)
e l s e  
{

b N o n O r th o t r u e ;
}
i f ( b N o n O r th o )

s t r L i n e . F o r m a t ( 1 \ n ( n o n - o r t h o c i r c u l a r m oves n o t
s u p p o r t e d  y e t ) ” ) ;

e l s e
{

s t r L i n e . F o r m a t ( 
m _ L in e N o . N e x t () 
b P la n e R e q d  ? 
bOpC odeReqd ?

' \n%s%s%s%s%s%s%s%s%s%s%s" ,

s t r P r e v P l a n e  : 11" ,
s t r P r e v O p C o d e  : " " ,

bXReqd ? s t r P r e v X
bYReqd s t r P r e v Y
bBReqd ■? s t r P r e v B
bCReqd ? s t r P r e v C
b IR e q d ? s t r P r e v I
b JR e q d ? s t r P r e v J
bKReqd •? s t r P r e v K
b F e e d R e q d  ?
) ;
m _ b X E m i t te d  = m. 
m _ b Y E m i t te d  = m. 
m _ b Z E m i t t e d  = m. 
m _ b B E m i t te d  = m_ 
m _ b C E m i t t e d  = m.

s t r P r e v F e e d

. b X E m i t t e d  bXR eqd

. b Y E m i t t e d  bYR eqd

. b Z E m i t t e d  bZR eqd

. b B E m i t t e d  bBR eqd
_ b C E m it te d  bCReqd

m _ b P la n e E m i t t e d  = m _ b P la n e E m i t t e d  | |  b P la n e R e q d ;  
m _ b O p C o d e E m i t te d  = m _ b O p C o d e E m i t te d  | |  bO pC odeR eqd ; 
m _ b F e e d E m i t te d  = m _ b F e e d E m i t t e d  I I b F e e d R e q d ;

}
e l s e  i f ( p G P M o v e - > G e tM o t io n T y p e ()  == " J o i n t "  ) 
{

i f  ( s t r P r e v O p C o d e  == " GOO")
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bOpCodeReqd = m_bVerbose || !m_bOpCodeEmitted
e l s e

S t rP re v O p C o d e  = " GOO"; 
s t r L i n e . F o r m a t ( " \n%s%s%s%s%s%s%s" ,  

m _ L in e N o . N e x t ( ) ,
S t rP re v O p C o d e  : " " ,
? s t r P r e v X

bOpC odeReqd 
bXR eqd 
bYR eqd  
bZ R e qd  
bBR eqd 
bCReqd 
)

s t r P r e v Y
s t r P r e v Z
s t r P r e v B
s t r P r e v C

m _ b O p C o d e E m i t te d  = m _ b O p C o d e E m i t te d  | |  bO pC odeR eqd ;
m _ b X E m i t t e d  = m. 
m _ b Y E m i t t e d  = m. 
m _ b Z E m i t t e d  = m. 
m _ b B E m i t t e d  = m. 
m b C E m i t t e d  = m.

. b X E m i t t e d
_ b Y E m i t te d
. b Z E m i t t e d
. b B E m i t t e d
b C E m i t t e d

bXReqd
bYReqd
bZR eqd
bBReqd
bCReqd

}
e l s e
{

i f ( p G P M o v e - > G e tM o t io n T y p e ()  == " L i n e a r "  )

m_bO pCodeEm i11 e d ;
i f  ( s t r P r e v O p C o d e  == " G 0 1 " )

bO pC odeReqd  = m _ b V e rb o s e
e l s e

s t r P r e v O p C o d e  = " G 0 1 " ;  
s t r L i n e . F o r m a t ( " \n%s%s%s%s%s%s%s%s" 

m _ L in e N o . N e x t () 
bOpC odeReqd ? 
bXR eqd 
bYR eqd 
bZR eqd  
bBR eqd  
bCReqd
b F e e d R e q d  ?
) ;

m _ b O p C o d e E m i t te d  = m _ b O p C o d e E m it te d  | |  bO pC odeR eqd ; 
m _ b X E m i t t e d  = m. 
m _ b Y E m i t t e d  = m. 
m _ b Z E m i t t e d  = m_ 
m _ b B E m i t t e d  = m. 
m b C E m i t t e d  = m.

s t r P r e v O p C o d e  
? s t r P r e v X
? s t r P r e v Y
? s t r P r e v Z
? s t r P r e v B
? s t r P r e v C
s t r P r e v F e e d

. b X E m i t t e d

. b Y E m i t t e d

. b Z E m i t t e d

. b B E m i t t e d

.b C E m i t t e d
m b F e e d E m i t t e d  = m b F e e d E m i t t e d

bXReqd
bYReqd
bZR eqd
bBReqd
bCReqd

b F e e d R e q d ;
}
r F i l e . W r i t e S t r i n g ( s t r L i n e  ) ;

/ /  W r i t e  t o o l  a c t i o n  as  GCODE com m ent
i f ( ( n A c t i o n s  = p G P M o v e -> G e tN u m G P A c t io n s ( ) ) )
{

f o r  ( i n t  i = 0 ; i c n A c t i o n s ; i + + )
{

C S t r i n g  s t r A c t i o n  = p G P M o v e -> G e tG P A c t io n ( i ) -
> G e t D e s c r i p t i o n ( ) ;

i f  ( s t r A c t i o n  == " W a t e r J e t O n " )
s t r L i n e  . F o r m a t  ( 11 \n% s M08 " ,  m _ L in e N o . N e x t  ( )  ) ; 

e l s e  i f  ( s t r A c t i o n  == " W a t e r J e t O f f " )
s t r L i n e . F o r m a t ( " \n% s M 0 9 " ,  m _ L in e N o . N e x t ( ) )  ; 

e l s e  i f  ( s t r A c t i o n  == " A b r a s i v e O n " )
s t r L i n e . F o r m a t ( " \n% s M 1 0 " ,  m _ L in e N o . N e x t ( ) ) ;  

e l s e  i f  ( s t r A c t i o n  == “ A b r a s i v e O f f " )
s t r L i n e . F o r m a t ( " \n% s M i l " ,  m _ L in e N o . N e x t ( ) ) ;

e l s e
s t r L i n e . F o r m a t ( " \ n ( -  % s ) ; " ,  s t r A c t i o n  ) ;
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}
r F i l e . W r i t e S t r i n g ( s t r L i n e  )

}
= p M in iG P ;
= J o i n t T e m p . A x e s V a l u e s [ 0 ]  
= J o i n t T e m p . A x e s V a l u e s [ 1 ]  
= J o i n t T e m p . A x e s V a l u e s [2 ]  

d P r e v B  = J o i n t T e m p . A x e s V a l u e s [ 3 ] ;  
d P re v C  = J o i n t T e m p . A x e s V a l u e s [ 4 ] ;

p P r e v M in iG P  
d P r e v P o s [ 0 ]  
d P r e v P o s [ 1 ]  
d P r e v P o s [ 2 ]

i f  (p G P M o v e -> H a s P o s S p e e d ( ) )
d P r e v F e e d  = p G P M o v e -> G e tP o s S p e e d  ()  ;

/**************************************************************
ie

*  F u n c t i o n :  C P a th T o G C o d e : : -C P a th T o G C o d e★
* A r g u m e n t s :
★
★
* R e t u r n s :
ie

*
*  C r e a t e d :  9 91007
ie

* A u t h o r :  A l e k s a n d a r  B o s k o v i c  
*/

/ *  !
* D e s c r i p t i o n :*
*
*  C om m en ts :★

C P a th T o G C o d e : : -C P a th T o G C o d e  <)
{

}

★
* F u n c t i o n :  C P a th T o G C o d e : : W r i teG C O D E F ram es*
* A r g u m e n t s :
* C S t d i o F i l e  & r F i l e ,
* C R o b o t  * p R o b o t
*
★
*  R e t u r n s : v o i d★
★
* C r e a t e d :  991007★
* A u t h o r :  A l e k s a n d a r  B o s k o v i c
*/

/ * !
* D e s c r i p t i o n :*
★
* C om m en ts :
ie
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v o i d  C P a th T o G C o d e : : W r i t e G C O D E F r a m e s ( C S t d io F i le  & r F i l e ,  C R o b o t  * p R o b o t )  
{

}

/****★*******************★★**★***★********★★*******★★**★★*■*■*****★★*
*

* F u n c t i o n :  C P a th T o G C o d e : : F indG C odeN am e
*

* A r g u m e n t s :
* C S t r i n g  sName*
★
* R e t u r n s :  C S t r i n g*
★
* C r e a t e d :  9 91007
*

* A u t h o r :  A l e k s a n d a r  B o s k o v i c
* /

/ *  !
* D e s c r i p t i o n :
*

★
* C om m en ts :
ir

C S t r i n g  C P a th T o G C o d e : : F in d G C o d e N a m e { C S t r in g  s P a th N a m e )
{

s t a t i c  C S t r i n g  r V a l ;

i f  ( !m _ P a th N a m e M a p .L o o k u p (s P a th N a m e ,  r V a l ) )
{

r V a l . F o r m a t ( " % 0 4 d " , m _P athN am eM ap . G e t C o u n t ( ) + 1 ) ;  
m _P athN am eM ap . S e t A t ( s P a th N a m e , r V a l ) ;

}

r e t u r n  r V a l ;
}
v o i d  C P a th T o G C o d e : : S e t S t a t e C i r c D i r ( b o o l  b C i r c D i r )
{

m _ b C i r c D i r  = b C i r c D i r ;
}

b o o l  C P a th T o G C o d e : : G e t S t a t e C i r c D i r ( v o i d )
{

r e t u r n  m _ b C i r c D i r ;
}
v o i d  C P a th T o G C o d e : : S e t S t a t e P o s ( d o u b l e  a P o s [ ] )
{

m _ a P o s [0 ]  = a P o s [ 0 ] ;  
m _ a P o s [ l ]  = a P o s f l j ;  
m _ a P o s [2 ]  = a P o s [ 2 ] ;

}
v o i d  C P a th T o G C o d e : : G e t S t a t e P o s ( d o u b le  a P o s [ ] )
{

a P o s [ 0 ]  = m _ a P o s [ 0 ] ;  
a P o s [ l ]  = m _ a P o s [ l j ;  
a P o s [ 2 ]  = m _ a P o s [ 2 ] ;
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}

v o i d  C P a th T o G C o d e : : S e t S t a t e O r i e n t ( d o u b l e  a O r i e n t [ ] )
{

m _ a O r i e n t [ 0 ]  = a O r i e n t [ 0 ] ;  
m _ a O r i e n t [ 1 ]  = a O r i e n t [ 1 ] ;

}

v o i d  C P a th T o G C o d e : : G e t S t a t e O r i e n t ( d o u b l e  a O r i e n t ( ] )
{

a O r i e n t [ 0 ]  = m _ a O r i e n t [ 0 ] ;  
a O r i e n t [ 1 ]  = m _ a O r i e n t [ 1 ]  ;

}

v o i d  C a l c M i d P o i n t ( p o s i t i o n  p S t a r t W C S , p o s i t i o n  p E n d W C S , p o s i t i o n  p M i d p t ) ;

b o o l  C P a th T o G C o d e : :G e tC i r c le P a ra m s ( C C u tD o w n G P  * p M i n i S t a r t G P , CGPMove* 
p E ndG P , b o o l  & b D i r ,  p o s i t i o n  & p o s C e n t e r ,  u n i t _ v e c t o r  k v N o r m a l ,  d o u b le  
ScdRadius)
{

CCutDownGP * p M in iE n d G P  = G e tM in iG P F ro m M a p (p E n d G P -> G e tG P ( ) -  
> G e tN a m e ( ) ) ;

i f ( !  p M in iE n d G P  )
{

A f x M e s s a g e B o x ( "M in iE n d G P  n o t  f o u n d " ) ;
}

CCutDownGP * p M in iV ia G P  = G e tM in iG P F ro m M a p (p E n d G P -> G e tV ia G P ( ) -  
> G e tN a m e ()  ) ;

i f ( !  p M in iV ia G P  )
{

A f x M e s s a g e B o x ( " M in iV ia G P  n o t  f o u n d " ) ;
}

/ /W C S * p W C S S t a r t , *pWCSEnd, *pW CSMid;
EDGE * p E d g e ; 
o u tc o m e  r e s u l t ;  
d o u b l e  d D i s t ,  d D i s t 2 ;
C V e c t o r 3  v e c E n d P o i n t ,  m _ A r c S t a r t P o i n t , p o s V i a ;
d o u b l e  m _ d A n g le A b o u tX ,  m _ d A n g le A b o u tY ,  m _ d A n g le A b o u tZ ; / /  

m _ d A r c T o t a l A n g l e ,  t h e t a ;
/ / d o u b l e  D i s F r o m A x is ;  
p o s i t i o n  m _ A r c C e n t r e ;  
b o o l  b N e g X A x is ;
RCS_JOINT_POS J o in t E n d = p M i n i E n d G P - > G e t J o in t P o s ( ) ;
RCS_JOINT_POS J o i n t S t a r t = p M i n i S t a r t G P - > G e t J o i n t P o s ( ) ;
RCS_JOINT_POS J o i n t M i d = p M i n i V i a G P - > G e t J o i n t P o s ( ) ;  
p o s i t i o n  p o s E n d ( J o i n t E n d . A x e s V a l u e s ) ; 
p o s i t i o n  p o s S t a r t (J o i n t S t a r t . A x e s V a l u e s ) ; 
p o s i t i o n  p o s M i d f J o i n t M i d . A x e s V a l u e s ) ;

i f  ( p E n d G P - > G e tM o t io n T y p e ()  !=  " C i r c u l a r " )
r e t u r n  f a l s e ;

/ / p W C S S t a r t  = p S ta r tG P - > G e tW C S ( ) ;
/ /pW CSM id  = p E n d G P -> G e tV ia G P ( ) -> G e tW C S ( ) ;
/ /pWCSEnd = pE ndG P -> G etW C S ( ) ;  
d D i s t  = d i s t a n c e _ t o _ p o i n t ( p o s S t a r t , p o s E n d ) ; 
d D i s t 2  = d i s t a n c e _ t o _ p o i n t ( p o s S t a r t , p o s M i d ) ; 
d D i s t 2  = d i s t a n c e _ t o _ p o i n t ( p o s E n d , p o s M i d ) ; 

i f  ( A l m o s t Z e r o ( d D i s t ) )
{

p o s i t i o n  p M i d p t ;
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C a l c M i d P o i n t ( p o s S t a r t , p o s M i d , p M i d p t ) ;

r e s u l t  = a p i _ c u r v e _ a r c _ c e n t e r _ e d g e  ( 
p M i d p t , 
p o s S t a r t , 
p o s M id ,
NULL, / /  & p W C S S t a r t - > z _ a x i s ( ) ,  
p E d g e ) ;

}
e l s e

r e s u l t  = a p i _ c u r v e _ a r c _ 3 p t ( 
p o s S t a r t ,  
p o s M id ,  
p o s E n d ,
FALSE, 
pE dg e  ) ;

C h e c k O u t c o m e ( r e s u l t ) ;

i f  ( r e s u l t . o k ( ) )
{

g e t _ c u r v e _ r a d i u s ( p E d g e , d R a d iu s  ) ;  
g e t _ c u r v e _ c e n t e r ( p E d g e ,  p o s C e n t e r  ) ;  
g e t _ c u r v e _ n o r m a l ( p E d g e ,  v N o r m a l  ) ;  
p E d g e - > l o s e ( ) ;

}
e l s e

r e t u r n  f a l s e ;
m _ d A n g le A b o u tX  = m _ d A n g le A b o u tY  = m _ d A n g le A b o u tZ  = 0 . 0 ;

v e c E n d P o i n t . S e t X ( p o s E n d . x ( ) ) ;  
v e c E n d P o i n t . S e t Y ( p o s E n d . y ( ) ) ;  
v e c E n d P o i n t . S e t Z ( p o s E n d . z ( ) ) ;

m _ A r c S t a r t P o i n t . S e t X ( p o s S t a r t . x ( ) ) ;  
m _ A r c S t a r t P o i n t . S e t Y ( p o s S t a r t . y ( ) ) ;  
m _ A r c S t a r t P o i n t . S e t Z ( p o s S t a r t . z ( )  ) ; 
p o s V i a . S e t X ( p o s M i d . x ( ) ) ;  
p o s V i a . S e t Y (p o s M i d . y ( ) ) ;  
p o s V i a . S e t Z ( p o s M i d . z ( ) ) ;

v e c E n d P o i n t  = v e c E n d P o in t  -  m _ A r c S t a r t P o i n t ; 
m _ A r c S t a r t P o i n t  = m _ A r c S t a r t P o i n t  -  v e c E n d P o i n t ;

i f  ( v e c E n d P o in t . G e t z  ( ) )
{

/ /  R o t a t e  t h e  END p o i n t  a b o u t  y  a x i s  t o  b r i n g  p o i n t  o n t o  x y
p l a n e

m _ d A n g le A b o u tY  = a t a n 2  ( - v e c E n d P o i n t . G e tz  ( ) ,
v e c E n d P o i n t . G e t X  ( ) ) ;

v e c E n d P o i n t . R o t a t e A b o u t Y  ( - m _ d A n g le A b o u t Y ) ; 
p o s V i a . R o t a t e A b o u t Y ( - m _ d A n g le A b o u t Y ) ;

}
i f  ( v e c E n d P o i n t . G e t X ()  < 0) 

b N e g X A x is  = t r u e ;
e l s e

b N e g X A x is  = f a l s e ;  
i f  ( v e c E n d P o in t . G e t Y  ( ) )
{

II  R o t a t e  a b o u t  z a x i s  t o  b r i n g  t h e  END p o i n t  o n t o  x  a x i s  
m _ d A n g le A b o u tZ  = a t a n 2  ( v e c E n d P o in t . G e t Y  ( ) ,

v e c E n d P o i n t . G e tX  ( ) ) ;
v e c E n d P o i n t . R o t a t e A b o u t Z  ( - m _ d A n g le A b o u t Z ) ;
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posVia.RotateAboutY(-m_dAngleAboutZ);
}

i f  ( p o s V i a . G e t Y ()  > 0)
b D i r  = ! b N e g X A x is ;

e l s e
b D i r  = b N e g X A x is ;  

r e t u r n  t r u e ;
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APPENDIX J: THE TEST G- 

CODEPARTPROGRAM 

GENERATED OFF-LINE

%

00001
N 00005  D1 H I  
N 00010  G 9 2 .1
N 00015  GOO G17 G40 G80 G90 G54 G94
N 00020  G92 X 0 .0 0 0  Y 0 .0 0 0  Z 0 .0 0 0  B O .000 C O .000 F 2 5 0 .0 0 0  
N 00025  M98P0002 
N 00030  M98P0003 
N 00035  M98P0004 
N 00045  G 9 2 .1  
N 00040  M02 
%

%

00002
N 00055  G01 X 5 0 0 .0 0 0  Y 2 8 4 .1 0 0  Z 5 2 .0 0 0  B - 1 8 0 . 0 0 0  C O .000 F 2 5 0 .0 0 0  
N0006Q M08
N 00065  G17 G02 Y 7 1 5 .9 0 0  1 0 .0 0 0  J 2 1 5 . 9 0 0  
N 00070  G17 X 4 9 3 .2 1 8  Y 2 8 4 .2 0 7  B 1 7 8 .2 0 0  1 0 .0 0 0  J - 2 1 5 . 9 0 0  
N 00075  G01 X 5 0 0 .0 0 0  Y 2 8 4 .1 0 0  B - 1 8 0 . 0 0 0  
N 00080  M09 
N 00085  M99 
%

0 0003
N 00095  G01 X 5 1 9 .0 5 0  Y 5 8 3 .5 6 4  Z 5 2 .0 0 0  B 1 3 4 .1 4 9  C 6 7 .7 6 4  F 2 5 0 . 0 0 0  
N 00100  M08
N 00105  Y 6 3 6 .8 5 9  B 1 3 9 .0 8 1  C 6 7 .5 1 1
N 00110  G02 X 5 4 0 .3 6 5  Y 6 4 6 .9 5 7  B 7 4 .6 4 1  C O .000 1 1 4 .8 0 7  J - 3 . 7 1 0  
N 00115  X 6 4 7 .0 6 7  Y 5 3 9 .9 6 2  B 1 5 .2 0 2  1 - 4 0 . 3 6 5  J - 1 4 6 . 9 5 7  
N 00120  G03 X 6 3 7 .1 5 6  Y 5 1 9 .0 5 0  B 3 2 .3 7 8  C 7 0 .9 6 6  1 - 1 2 . 2 2 6  J - 7 . 0 1 0  
N 00125  G01 X 5 8 4 .3 6 5  B - 3 2 0 . 1 6 7  C 6 8 .5 5 9
M00130 G03 X 5 6 9 .3 5 5  Y 5 3 1 .5 6 5  B 1 1 4 .4 7 2  C O .000 1 2 .9 3 8  J 1 8 . 7 8 3
N 00135  X 5 3 1 .7 1 4  Y 5 6 9 .2 8 7  B 1 5 5 .4 0 5  1 - 6 9 . 3 5 5  J - 3 1 . 5 6 5  
N 00140  X 5 1 9 .0 5 0  Y 5 8 3 .5 6 4  B 1 3 4 .1 4 9  C 6 7 .7 6 4  1 6 .3 4 3  J 1 8 . 3 8 2  
N 00145  M09
N 00150  G01 X 4 1 6 .4 3 6  Y 5 1 9 .0 5 0  B - 1 3 0 . 1 1 6  C 6 7 .5 4 2  
N 00155  M08
N 00160  X 3 6 3 .1 4 1  B - 1 3 4 . 1 8 2  C 6 7 .5 9 5
N 00165  G03 X 3 5 3 .0 4 3  Y 5 4 0 .3 6 5  B 1 6 4 .6 4 1  C O .000 1 3 .7 1 0  J 1 4 . 8 0 7
N 00170  G02 X 4 6 0 .0 3 8  Y 6 4 7 .0 6 7  B 1 0 5 .2 0 2  1 1 4 6 .9 5 7  J - 4 0 . 3 6 5
N 00175  X 4 8 0 .9 5 0  Y 6 3 6 .6 0 0  B 4 1 .7 2 7  C - 6 7 . 5 0 0  1 5 . 9 4 5  J - 1 4 . 2 4 7  
N 00180  G01 Y 5 8 4 .3 6 5
N 00185  G03 X 4 6 8 .4 3 5  Y 5 6 9 .3 5 5  B - 1 5 5 . 5 2 8  C O .000 1 - 1 9 . 0 2 3  J 3 . 1 3 8
N 00190  G02 X 4 3 0 .7 1 3  Y 5 3 1 .7 1 4  B - 1 1 4 . 5 9 5  1 3 1 .5 6 5  J - 6 9 . 3 5 5
N 00195  G03 X 4 1 6 .4 3 6  Y 5 1 9 .0 5 0  B - 1 3 0 .1 1 6  C 6 7 .5 4 2  1 - 1 6 . 3 0 5  J 4 . 0 0 2
N 00200  M09
N 00205  G01 X 4 8 0 .9 5 0  Y 4 1 2 .1 7 2  B 2 2 1 .7 2 7  C - 6 7 . 5 0 0  
N 00210  M08
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N 00215  Y 3 6 3 .1 4 1  B - 1 3 8 . 2 7 3
N 00 22 0  G03 X 4 5 9 .6 3 5  Y 3 5 3 .0 4 3  B - 1 0 5 . 3 5 9  C O .000 1 - 1 4 . 8 0 7  J 3 . 7 1 0  
N 00 22 5  X 3 5 2 .9 3 3  Y 4 6 0 .0 3 8  B - 1 6 4 . 7 9 8  1 4 0 .3 6 5  J 1 4 6 .9 5 7  
N 00 23 0  G02 X 3 6 3 .4 0 0  Y 4 8 0 .9 5 0  B 1 3 1 .7 2 7  C - 6 7 . 5 0 0  1 1 4 .0 6 8  J 6 . 0 3 5  
N 00235  G01 X 4 1 5 .6 3 5
N 00 24 0  G02 X 4 3 0 .6 4 5  Y 4 6 8 .4 3 5  B - 6 5 . 5 2 8  C O .000 1 - 3 . 1 3 8  J - 1 9 . 0 2 3  
N 00245  X 4 6 8 .2 8 6  Y 4 3 0 .7 1 3  B - 2 4 . 5 9 5  1 6 9 .3 5 5  J 3 1 . 5 6 5  
N 00250  X 4 8 0 .9 5 0  Y 4 1 2 .1 7 2  B 2 2 1 .7 2 7  C - 6 7 . 5 0 0  1 - 5 . 4 6 6  J - 1 7 . 3 2 9  
N 00 25 5  M09
N 00 26 0  G01 X 5 8 3 .5 6 4  Y 4 8 0 .9 5 0  B 4 8 .2 7 3  C 6 7 .5 0 0  
N 00265  M08 
N 00270  X 6 3 6 .8 5 9
N 00275  G02 X 6 4 6 .9 5 7  Y 4 5 9 .6 3 5  B - 1 5 . 3 5 9  C O .000 1 - 3 . 7 1 0  J - 1 4 . 8 0 7  
N 00 28 0  X 5 3 9 .9 6 2  Y 3 5 2 .9 3 3  B - 7 4 . 7 9 8  1 - 1 4 6 . 9 5 7  J 4 0 . 3 6 5  
N 00285  G03 X 5 1 9 .0 5 0  Y 3 6 2 .8 4 4  B 3 1 8 .2 7 3  C 6 7 .5 0 0  1 - 5 . 4 1 6  J 1 5 . 5 9 1  
N 00 29 0  G01 Y 4 1 5 .6 3 5  B - 4 1 . 7 2 7
N 00295  G02 X 5 3 1 .5 6 5  Y 4 3 0 .6 4 5  B 2 4 .4 7 2  C O .000 1 2 0 .3 6 3  J - 4 . 2 5 5  
N 00 30 0  X 5 6 9 .2 8 7  Y 4 6 8 .2 8 6  B 6 5 .4 0 5  1 - 3 1 . 5 6 5  J 6 9 . 3 5 5  
N 00 30 5  X 5 8 3 .5 6 4  Y 4 8 0 .9 5 0  B 4 8 .2 7 3  C 6 7 .5 0 0  1 1 8 .3 8 2  J - 6 . 3 4 3  
N 00310  M09 
N 00315  M99 
%

%

0 0 0 0 4
N 00325  G01 X 5 0 0 .0 0 0  Y 5 2 5 .4 0 0  Z 5 2 .0 0 0  B 1 8 0 .0 0 0  C O .000 F 2 5 0 .0 0 0  
N 00330  M08
N 00335  G02 Y 4 7 4 .6 0 0  B - 1 8 0 . 0 0 0  1 - 0 . 0 0 0  J - 2 5 . 4 0 0  
N 00340  X 5 0 2 .3 9 0  Y 5 2 5 .2 8 7  B 8 4 .6 0 0  1 0 .0 0 0  J 2 5 . 4 0 0  
N 00345  G01 X 5 0 0 .0 0 0  Y 5 2 5 .4 0 0  B 1 8 0 .0 0 0  
N 00350  M09 
N 00355  M99 
%
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