
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2001

Development of simulation and off-line programming software Development of simulation and off-line programming software

modules for 5-axis waterjet cutting gantry robot. modules for 5-axis waterjet cutting gantry robot.

Aleksandar Z. Boskovic
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Boskovic, Aleksandar Z., "Development of simulation and off-line programming software modules for
5-axis waterjet cutting gantry robot." (2001). Electronic Theses and Dissertations. 1720.
https://scholar.uwindsor.ca/etd/1720

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F1720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/1720?utm_source=scholar.uwindsor.ca%2Fetd%2F1720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEVELOPMENT OF SIMULATION AND OFF-LINE PROGRAMMING SOFTWARE

MODULES FOR 5-AXIS WATERJET CUTTING GANTRY ROBOT

by

Aleksandar Z. Boskovic

A Thesis

Submitted to the Faculty of Graduate Studies and Research

through Industrial and Manufacturing Systems Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2000

© 2000 Aleksandar Z. Boskovic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96403-5
Our file Notre reference
ISBN: 0-612-96403-5

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The topic of this dissertation is development of the software modules for simulation

and off-line programming of 5-axes waterjet cutting gantry robot. In order to verify and

validate the quality of the written software modules, a 5-axes gantry robot manufactured

by Flow Robotics Company and equipped with an Allen-Bradley 9 series controller has

been used for testing. The mentioned simulation and off-line programming software

modules are not stand alone applications, therefore they are dependent on the software

platform they are written for. In this case, Workspace 5® software package serves the

purpose of being the platform for the written add-ins.

In order to get a proper simulation, the robot controller programming language - G

code, has been translated to a common format to be used internally by the simulation

package. The robot native language has been translated first into C and then to

Workspace Simulation Language code, in order to call the motion planning routines

through the Component Object Model (COM) interface. Flex and PRECCX together

form a compiler-compiler tool used for translation. A supporting C file has been created

to add the flexibility to the way PRECCX compiler works.

A Realistic Robot Simulation (RRS) set of services has been implemented in the

default motion planner of the simulation software to execute the robot’s functions and

behaviors in the same way a robot controller does. Due to a fact that Realistic Robot

Simulation is primarily designed for 6-axes vertically articulated robots, several Realistic

Robot Simulation services must have been modified and a preprocessing graphical

interface made in order to reflect the kinematics differences from 5-axes gantry robots.

To make a powerful and effective simulation, a workpiece has been designed that is

complex enough to require 5-axes machining. Also, a CAD model of the gantry robot has

been designed and the appropriate kinematics template associated with it.

The reverse process - off-line programming, has also been developed. Having

known the robot’s trajectory and motion parameters, the off-line programming software

module has been developed to automatically emit G-code part programs into designated

output files. This module communicates with other modules of the simulation package

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

like default motion planner, simulation engine, and default kinematics in order to retrieve

the information needed for accurate formatting of the output code.

This thesis had its practical verification in Flow International Corporation. The

results of preliminary testing showed that the recorded value difference between the

position and orientation values (both Joint and Cartesian) of the teachpoints created

during simulation and the Joint and Cartesian values read from the robot controller was

satisfactory. Also, simulation and real robot cycle time accuracy has been determined

comparing the corresponding cycle time values recorded in Workspace and in the robot

controller. The cycle time accuracy has been assessed as satisfactory and acceptable,

because the error value was below the acceptable upper limit set by Realistic Robot

Simulation standard.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

I) K I> ICATI O N

DEDICATED TO MY FAMILY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ABBREVIATIONS

AGV - Automated Guided Vehicle

ASCII - American Standard Code for Information Interchange

AST - Abstract Syntax Tree

CAD - Computer Aided Design

CAM - Computer Aided Manufacturing

CAR - Computer Aided Robotics

CNC - Computer Numerical Control

COM - Component Object Model

FLOW - Flow International Corporation

GP - Geometric Point

IGES - Initial Graphics Exchange Specification

OLP - Off Line Programming

OOS - Object Oriented Simulation

PC - Personal Computer

PRECCX - Prettier Compiler-Compiler Extended

RRS - Realistic Robot Simulation

SAT - Save As Text graphics exchange format

VBA - Visual Basic for Applications

VR - Virtual Reality

VRC - Virtual Robot Controller

WS5 - Workspace5®

WSL - Workspace Simulation Language

YACC - Yet Another Compiler-Compiler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT.. iii

DEDICATION... v

LIST OF ABBREVIATIONS... vi

CHAPTER I. INTRODUCTION.. 1

1.1. THE THESIS OVERVIEW.. 1

1.2. THE THESIS RELEVANCE..7

1.3. APPLICATION IN AUTOMOTIVE INDUSTRY... 9

1.4. GENERAL LAYOUT OF THE THESIS..10

CHAPTER II. BACKGROUND...12

2.1. SIMULATION OVERVIEW..12

2.1.1. Object-Oriented Simulation.. 13

2.1.2. Advantages and disadvantages of simulation.. 14

2.1.3. Cost of Simulation..16

2.2. OFF-LINE PROGRAMMING CONCEPT...16

2.3. INTRODUCTION TO REALISTIC ROBOT SIMULATION... 18

2.3.1. Objectives of the Project "Realistic Robot Simulation"..19

2.3.2. Technical Aspects of the RRS Interface...20

2.3.3. Benefits and Disadvantages of the RRS Interface.. 21

2.3.4. Availability of the RRS Interface...22

2.4. LEXING AND PARSING OVERVIEW... 22

2.5. INTRODUCTION TO WATERJET CUTTING.. 23

2.5.1. Components of a waterjet cutting system.. 25

2.5.2. Advantages and disadvantages of waterjet cutting technology....................................... 32

2.6. INTRODUCTION TO CNC CONTROLLER PROGRAMMING LANGUAGE (G-

CODE).. 34

CHAPTER III. LITERATURE SURVEY...38

3.1 PARSER GENERATOR RELATED ARTICLES..38

3.2. SIMULATION AND OFF-LINE PROGRAMMING RELATED TECHNICAL

ARTICLES... 44

3.3. INTRODUCTORY AND GENERAL PURPOSE ARTICLES... 48

3.4. NEW TECHNIQUES IN SIMULATION AND OFF-LINE PROGRAMMING OF

INDUSTRIAL ROBOTS... 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.1. Virtual Reality Approach in Simulation and Off-line Programming of Industrial

Robots, (Boud and Steiner, 1999)... 49

3.4.2. Knowledge Based Simulation and Off-line Programming Approach, (Bernhard,

Schahn, and Schreck, 1999)... 52

CHAPTER IV. ROBOT MODELING AND KINEMATICS..56

4.1. ABOUT ROBOT MODELING AND FUNDAMENTAL QUESTIONS OF ROBOT

KINEMATICS...56

4.1.1. CAD based graphic simulators for robotic systems..58

4.2. THE DESCRIPTION OF ROBOTIC CELL DESIGN PROCEDURE USED IN THE

DISSERTATION.. 59

CHAPTER V. SIMULATION MODULE DEVELOPMENT...67

5.1. CREATON OF A ROBOT LANGUAGE TRANSLATOR... 67

5.1.1. Language translators created by compiler-compilers...67

5.1.2. Creation of G-code language translator..69

5.1.2.1. The translation process..70

5.1.2.2. Writing the grammar rules to describe the syntax of G-code language.................71

5.1.2.3. Solution for the PRECCX action execution problem...71

5.1.2.4. Solution for the Flex ambiguity problem..74

5.2. ADDING SIMULATION LANGUAGE FUNCTION CALLS TO ACTION

STATEMENTS OF THE LANGUAGE TRANSLATOR...76

5.2.1. Simulation languages in general.. 77

5.2.2. The output from the language translator - Workspace Simulation Language (WSL) 79

5.2.2.1. Realistic Robot Simulation services as a part of Workspace Simulation Language

 81

5.2.2.2. Creation of the Visual Basic for Applications language library of supporting

functions.. 83

5.3. IMPLEMENTATION OF THE WORKSPACE SIMULATION LANGUAGE

FUNCTIONS IN WORKSPACE MOTION PLANNER... 85

5.3.1. Robot Motion Planning in general...85

5.3.2. Motion Planning in Workspace.. 86

5.3.2.1. Trajectory velocities and accelerations... 91

5.3.2.2. Trajectory calculation..93

5.4. CREATION OF THE G-CODE LANGUAGE PREPROCESSOR..................................... 102

CHAPTER VI. OFF-LINE PROGRAMMING MODULE DEVELOPMENT..................... 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1. OFF-LINE PROGRAMMING IN ROBOTICS... 109
6.1.1. Why Should Off-line Programming Be Used?... 109
6.1.2. Requirements of an Off-line programming system..110

6.2. CREATION OF OFF-LINE PROGRAMMING MODULE FOR FIVE-AXIS WATERJET
CUTTING GANTRY ROBOT..111

6.3. ON-LINE TESTING.. 119
CHAPTER VII. CONCLUSION...122

APPENDIX A: USING PRECCX.. 126

APPENDIX B: GLOSSARY OF THE PARSING AND LEXICAL ANALYSIS

KEY TERM S... 131

APPENDIX C: ALLEN-BRADLEY G-CODE SPECIFICATION 133

APPENDIX D: CIRCULAR INTERPOLATION MAPPING... 137

APPENDIX E: G-CODE LANGUAGE GRAMMAR SCRIPT... 146

APPENDIX F: C FUNCTION LIBRARY FOR PARSER CUSTOMIZATION.................. 157

APPENDIX G: WORKSPACE SIMULATION LANGUAGE LIBRARY FILE.................162

APPENDIX H: DEFAULT MOTION PLANNER SOURCE CODE....................................... 172

APPENDIX I: G-CODE OFF-LINE PROGRAMMING SOURCE CODE...........................180

APPENDIX J: THE TEST G-CODE PART PROGRAM GENERATED OFF-LINE 194

REFERENCES... 196

VITA AUCTORIS..200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

1.1. THE THESIS OVERVIEW

The installation and operation of a robotic manufacturing system frequently proves

to be a much more expensive venture than initially planned or imagined. Robotic systems

are expensive to purchase, install, and operate. Unrealistic expectations based on

technical equipment specifications may lead to errors in the robotic cell and application

design. Such errors are very expensive and difficult to rectify once the robotic equipment

is selected, purchased, and installed.

The operation of robots is also frequently less efficient and effective than expected.

The main advantage of robots is their flexibility (the ability to easily change the

programmed tasks, regardless of how different and how complex they are) which allows

their implementation for manufacturing a variety of products in small and medium batch

sizes. Flexibility is essential in modem manufacturing to respond to short product life

cycles, varying demand, small production lots, and model changes. However,

productivity is much easier to achieve in a dedicated mass production system, and few

flexible systems are also highly productive. One of the key reasons for low productivity

in robotic systems is the fact that robot programming requires the allocation of a

considerable amount of robot production time, both for program development and for

testing.

CAD (Computer Aided Design)-based graphic emulators and simulators of robotic

systems can potentially help to avoid some of the roadblocks on the way to successful

robot system installation and operation. Cell design, robot selection, verification of robot

reach and of correct placement of the cell elements, off-line programming, and simulation

of the robot task can all be done in a virtual CAD and simulation environment.

Simulation models that accurately represent the proposed robot and cell geometry and the

robot kinematics and dynamics performance are valuable tools for evaluating design

alternatives, verifying feasibility, designing workcell layout, verifying robot programs,

and evaluating cell performance.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compared with the advantages during the optimization of robot cell layout or

during collision and reachability testing, there are difficulties in transferring user

programs that have been generated and simulated off-line to the real production. Different

sources of errors during simulation and off-line programming have been depicted on the

block diagram below (Figure 1.1.), followed by more detailed explanation of each error

source.

b e g in

e n d

system dynam ics
reg u la tin g c ircu its /

actuators...

t r a n s la to r

in te rp o la to r

lrans formation/
inverse kinematics

robot program

environm ent model

remarks;

m ade with an off-line programming
an d simulation system

incomplete translation of the robot program
into the IR programming language
(SRCL, IR L ,...), conversion errors

interpolation algorithms which differ from the
original robot control algorithms (slew, point to
point, linear and circular m ovem ent,...)

simplified robot m odels with an ideal geom etry
of links and ax es (parallel or rectangular arrange
ment, no elastic and therm al deformation)

system dynamics (link inertias, gravity,
coriolis- and centrifugal forces, joint friction,...)
are disregarded

inaccurate modelling of the production cell
(CAD data, process data)

Figure 1.1. Sources of errors during simulation and off-line programming (the flow

chart portion of this figure), followed by more detailed explanation of each error source

(the description section of this figure).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interpretation of the robot programming language

The first group of errors often occurs in the language processing of the system, the

so-called interpreter or translator. One reason for this is that the extent and semantics of

the language differ between off-line programming system and real robot controller. A

typical example for this is the description of fly-by records (distance or velocity

approximation records). Conversion or even simple syntax errors may seriously affect the

execution of a user program. A fundamental condition for the transfer of simulated user

programs is a post-processor, which is free of syntax errors.

Motion interpolation

Interpolation is used, for instance, in the motion modes: point-to-point, linear and

circular, as well as, in the transition between different motion modes (fly-by).

Interpolation can be described mathematically by numerous parameters (distance,

velocity, and time parameters) and again exhibits its own variations in interpolating

orientation. Even large industrially established off-line programming systems may not be

able to cope with this large number of different algorithms with their fundamental path

planning functions. Thus deviations cannot be avoided between simulation and real

application in terms of:

• Cycle time,

• Path accuracy,

• Path velocity, or

• Behavior near singularities.

Inverse kinematics

Calculation of the inverse kinematics is performed by ideal, simplified kinematics

models. Deviations in the lengths of the robot axes and assembly errors are disregarded.

The effector load, thermal influences or gear elasticity affect the static compliance and

decrease the absolute accuracy of the robot. Even small changes in the axis angles may

seriously affect the angular configuration and may cause collisions of the robot with

peripheral components.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System dynamics

A large number of parameters affect the controller systems behavior, such as mass,

inertia, coulombic and viscous friction as well as elasticity. The system dynamics is

generally disregarded in the simulation owing to the lack of dynamic data or because of

inflexible dynamic interfaces.

Environment model

Simulation errors, in this part of the error chain, are caused by inaccurate modeling

of the manufacturing environment. The following has to be taken into consideration:

• Modeling of the tools and workpieces.

• Arrangement of positioners, workpieces, tools, industrial robots, and other cell

components in relation to the world coordinate system.

• Process modeling (such as: coating, grinding, cutting, etc.).

Efficient off-line programming and simulation system does not aim to eliminate all

of the above-mentioned error sources. It would be very time-consuming and expensive to

reduce the errors in the kinematics chain by a reduction of manufacturing tolerances.

Practice-oriented off-line programming and simulation system requires at least:

1. An efficient post-processor, which is free of syntax errors.

2. A realistic motion interpolation for applications in which path accuracy or the

determination of cycle time plays an important role.

3. Suitable, user-friendly calibration algorithms to avoid costly teach-in corrections,

(Nof, 1999).

Taking into account the mentioned three requirements, the master thesis topic was

defined accordingly. The first two requirements have been fulfilled by developing off

line programming and simulation software modules (based on the new concepts

introduced in Realistic Robot Simulation specification, in order to significantly increase

the accuracy of simulation software packages) in form of add-ins to an existing

simulation and off-line programming software package. Workspace5® software package

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has been chosen to be the development platform, due to its modular architecture and its

calibration software module, therefore satisfying the third requirement.

Waterjet cutting manufacturing process will be used for on-setting validation and

verification of the developed software modules. The important reason for choosing such a

manufacturing process is that waterjet equipment is ideally suited to robotic applications

because it is lightweight, highly flexible, multidirectional and readily adaptable to

pedestal or gantry systems.

In more detail, technical advantages of waterjet cutting technology include:

• LightweightL A typical waterjet cutting assembly, including a nozzle, nozzle support

and associated high-pressure water delivery components, weights 4 kilograms and

reaction load is less than 5 kilograms. This is important, because the factor in

determining if particular robot can be adopted for waterjet cutting is the robot’s load

capacity. The abrasivejet cutting system has a typical reactive load of less than 15

kilograms, which many industrial robots can effectively handle.

• Adaptability. A wide array of swivels, fittings, tubing, and coils allows high-pressure

water to be delivered to the "wrist" of a robot without inhibiting or hampering its

useful range of movement. Equipment has been successfully integrated with 5-, 6-,

and even 7-axis robots.

• Multidirectional Cutting. A high-pressure jet of water can be moved in any direction

across the material being cut. It does not have to cut in a straight line. It can cut

extremely tight curves and inside comers and "starting holes" are generally not

required.

Therefore, the thesis (as an arguable statement) elaborated in this document is the

use o f Realistic Robot Simulation interface in conjunction with PRECCX parser

generator in robotics simulation and off-line programming software packages can

substantially improve the positional and cycle time accuracy o f a 5-axes waterjet cutting

gantry robot.

The dissertation is organized as follows:

1. CAD modeling o f the workpiece and the 5-axis gantry robot Kinematics definitions

of the CAD models.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Development o f the simulation module. This is the central and the most complex part

of the dissertation. The first sub-task is the development of G-code (CNC controller

programming language) language translator. Compiler-compiler software utilities

Flex and PRECCX (Prettier Compiler-Compiler Extended) have been used for lexical

analysis and parsing of the G-code language. Parser action statements have been

written to emit Workspace Simulation Language (Visual Basic for Applications based

simulation language, which contains calls to the functions of the motion planner via

Component Object Model RRS interface) code. Also, all the Realistic Robot

Simulation services called from the parser’s action statements have been designed and

implemented in the motion planner module of the simulation platform software. The

preprocessing graphical interface has been developed in order to capture the internally

stored robot controller information that is not provided in the part programs, but

presents a mandatory input for accurate simulation.

3. Development o f G-code off-line programming module. Knowing all the path

parameters defined during simulation and taking into account the grammar of the G-

code programming language, the C++ source code has been written to recast all the

path data into sequence of Computer Numerical Control machine instructions.

The next flow chart (Figure 1.2.) shows the interactions among the modules written

by the author and the modules of the software package built in the development platform.

Different background colors represent different levels of participation (color mappings

are contained within the figure caption).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Figure 1.2. Simulation and off-line programming modular concept of Workspace5,

where different colors represent different levels of author’s participation (white - no

participation, light gray - input modules, gray - complete design and implementation,

dark - partial design and implementation)

1.2. THE THESIS RELEVANCE

Relevance of the issue of this thesis will be presented through the next three major

points:

• Highly accurate simulation due to implementation o f Realistic Robot Simulation

services. One major problem in achieving exact simulation of the robotic cell is the

availability of a model of the robot controller. The algorithms defining the robot’s

motion behavior are not publicly available. To overcome this problem a consortium

of automotive companies, controller manufacturers, and simulation systems

manufacturers initiated the Realistic Robot Simulation project. It aimed at integrating

original controller software (black box) into simulation and off-line programming

systems via the specification of an adequate interface. The project goal was to

improve the simulation accuracy of industrial robot simulation systems in order to

achieve more realistic simulation of robot controllers. The goal was achieved by the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition of a common Realistic Robot Simulation interface for the integration of

controller simulating modules into simulation systems. Using original controller

software parts, controller manufacturers provide simulation modules for their latest

controller types. Strictly following the standardization rules in the Realistic Robot

Simulation specification default set of the RRS services has been implemented in

default motion planner of the simulation software. In other words, when the task

programs written in robot languages developed by manufacturers who did not

participate in the Realistic Robot Simulation consortium (including CNC

manufacturers) need to be simulated, the default set of Realistic Robot Simulation

services (implemented in the simulation software source code) will be called to

provide the accurate motion of the simulated robot. The Realistic Robot Simulation

interface has been tested on software and hardware platforms used for robotic

simulation in the automotive industry and has demonstrated impressive results of

accurate simulation of motion behavior, robot kinematics, and condition handling,

(Willnow et al., 1996). It has been proven that the deviation between simulated and

real joint values is less than 0.001 radians, (Willnow et al., 1996). The ideal case, of

course, would be if there was not any difference between the simulated and real joint

values. However, taking into account that non-Realistic Robot Simulation simulation

software packages have on average approximately 10 times lower angular accuracy

(Nof, 1999), Realistic Robot Simulation showed considerable improvement.

Concerning task cycle times, a difference of less than 3% could be reached, (Willnow

et al., 1996). Again, in comparison with the non-Realistic Robot Simulation systems

where the cycle time difference is in range of 5% to 10% (Nof, 1999), Realistic Robot

Simulation systems are obviously better, but in this field additional improvement can

still be made (Realistic Robot Simulation II interface promises 99.5% cycle time

accuracy and 99.9% joint accuracy, which still remains to be proven).

• The first industrial application o f currently the most efficient compiler-compiler

utility - PRECCX. The use of programs intended for compiler generation facilitates

the work on translator construction, so a programmer does not have to be concerned

about techniques and computer limitations during translator implementation.

According to the conducted literature and Internet Web search, this will be the first

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

industrial application of PRECCX software utility. Making a compiler by using some

of the contemporary programming languages (mainly C and C++) is attainable, but it

takes too much time. Alternatively, using PRECCX for the same purpose will be

faster and less prone to errors and also, it will have some advantages over the most

frequently used compiler-compiler utilities - YACC (Yet Another Compiler-

Compiler) and Bison (section 3.1.).

• CNC controller simulation based on the customization o f the robotic simulator.

Computer Numerical Control (CNC) machines can be considered gantry robots as far

as their kinematics is concerned, but programming language that they use (often

called G-code language) has its own characteristics that differ from the robot

programming languages. A typical example is the definition of circular interpolation.

Therefore, using Realistic Robot Simulation interface to simulate CNC programming

language has required considerable amount of work, in depth knowledge of CNC

controller software and Realistic Robot Simulation specification. Mapping CNC to

default Realistic Robot Simulation instructions did not necessarily have one to one

matching due to limited compatibility between the interface and the language.

1.3. APPLICATION IN AUTOMOTIVE INDUSTRY

This thesis had its practical verification in Flow International Corporation. The

results of preliminary testing are given in the Chapter VI.

Most of Flow’s gantry robots with waterjet equipment have Allen-Bradley 9-series

controllers. The company needed a simulation and off-line programming software

product, which would have been delivered together with their CNC and robot equipment

to the customers. That software package must be capable of simulating the pre-generated

part programs and comprehensive enough to use the CAD geometry of a workpiece to

automatically generate the robot path, which may be translated into CNC part programs.

The results of preliminary testing (which will be presented in Chapter VI) led to a

conclusion that the work presented in this thesis combined with the core functionality of

Workspace5 software package are able to fulfil the requirements of the Flow

International Corporation.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4. GENERAL LAYOUT OF THE THESIS

The thesis is organized as follows:

• Chapter I presents the thesis statement and explains how the dissertation is organized.

• Chapter II presents the background issues (concepts of: simulation, off-line

programming, Realistic Robot Simulation interface, lexing and parsing, waterjet

cutting technology, and G-code programming).

• Chapter III is the literature survey of different simulation and off-line programming

software packages and compiler-compiler techniques.

• Chapter IV describes creation of the workpiece and 5-axis gantry robot CAD models

and techniques for setting-up their kinematical properties.

• Chapter V encompases the robot language translator development, lexing and parsing

of the native robot language, Realistic Robot Simulation interface calls embedded in

Visual Basic for Applications programming language (i.e. creation of Workspace

Simulation Language source code modules), implementation of the most important

Realistic Robot Simulation services in the motion planner and the development of

preprocessing graphical user interface.

• Chapter VI presents the development of off-line programming software module and

the results of testing in the industrial environment.

• Chapter VII lists the conclusions of this research.

• Appendix A contains the survey of PRECCX basic features and programming

techniques with appropriate examples.

• Appendix B is the glossary of parsing and lexical analysis key terms.

• Appendix C shows the G-code language and the CNC machine specification used for

testing.

• Appendix D contains the mathematical equations used for mapping of CNC circular

interpolation to robot circular interpolation.

• Appendix E contains the G-code grammar description using PRECCX syntax, with

action code attached.

• Appendix F presents the set of C functions written for the parser customization.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Appendix G shows the library of Workspace Simulation Language support functions.

• Appendix H contains the motion planner’s C++ source code (Realistic Robot

Simulation services are implemented in the motion planner module).

• Appendix I shows the C++ source code of the created off-line programming class.

• Appendix J shows the listing of the G-code part program generated off-line, based on

the geometry of the testing part and robot path properties.

• List of references used and the Vita Auctoris are included at the end of the document.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

CHAPTER II

BACKGROUND

In order to get the full understanding of the issues presented in the next chapters,

basic concepts of simulation, off-line programming, lexing and parsing, Realistic Robot

Simulation interface, wateijet cutting technology, and G-code programming language

will be addressed in this chapter.

2.1. SIMULATION OVERVIEW

Simulation is the imitation of the operation of a real-world process or system over

time. It involves the generation of an artificial history of the system and the observation

of that artificial history to draw inferences concerning the operating characteristics of the

real system that is represented (Banks, 1998). Simulation is an indispensable problem

solving methodology for the solution of many real-world problems. It is used to describe

and analyze the behavior of a system, ask what-if questions about the real system, and aid

in the design of real systems. Both existing and conceptual systems can be modeled with

simulation.

The techniques of Computer Aided Design (CAD) have found extensive use in

improving or replacing the process of engineering drawing, architectural drawing, and

many other applications. However, an engineering process involving many moving parts

can only be understood fully through the process of simulation.

Early developments in this field have involved the simulation of computer

controlled machining centres using existing CAD systems. Additional software is used to

take the original CAD drawing of a machined part and analyze a path across its surface.

An animated simulation of the movements that a machining centre must go through to

create the part from a "raw" block is then displayed. As well as providing a visualization

of the process, a file can be created containing the required instructions to the machining

centre. The file can then be executed to create the part.

This extension of computer aided design to computer aided manufacturing is highly

applicable to industrial robotics. Simulation provides an efficient, interactive graphical

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environment which can improve the programming methods of industrial robots. Ever-

increasing numbers of robot installations are now being planned using computer

simulation. Only a few years ago the cost of the technology to achieve these requirements

was prohibitive for all, but the largest organizations. However, as with CAD before it,

simulation of industrial robots is possible even on standard, low-cost PC-compatible

computers.

2.1.1. Obiect-Oriented Simulation

An object-oriented simulation models the behavior of interacting objects over time.

Object collections, called classes, encapsulate the characteristics and functionality of

common objects. A set of object classes has to be written in an object-orientated

programming language (such as C++, Java, Smalltalk, etc.) by software developers,

which are then used to create simulation models and simulation packages. The

simulations built with these tools possess the benefits of an object-oriented design,

including the use of encapsulation, inheritance, polymorphism, run-time binding, and

parameterized typing. These concepts are illustrated by creating a set of objects to

describe various simulation requirements. Object interactions define the behavior of any

object-oriented simulation. In order to control the execution of the simulation, the

development of a simulation language is mandatory, which has several notable features

not available in other non-object-oriented simulation languages. Object-oriented

simulations provide full accessibility to the base language, faster executions, portable

models and executables, a multi-vendor implementation language, and a growing variety

of complementary development tools.

The idea of an object-oriented simulation has great intuitive appeal because it is

very easy to view the “real world” as being composed of objects. In a manufacturing cell,

the physical objects may include machines, workers, parts, tools, conveyors, etc.

However, part routings, schedules, work plans, and other information items could be also

viewed as objects. All these objects interact to produce system behavior. A simulation

engine manipulates these objects over the simulation run-time.

Since object-oriented simulations focus on objects, there is the possibility of

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dividing the simulation computation among objects. Objects provide a natural means of

organizing the simulation and offer the potential of delegating portions of the execution

to different processors, either parallel or distributed. Finally, since objects are often

themselves made up of other objects, it is natural to decompose a system by its objects

and view its behavior in terms of interacting objects (Banks, 1998).

2.1.2. Advantages and disadvantages of simulation

The benefits of simulation are mentioned in several technical references (Waterjet

Web Reference, 2000), (OMAX Abrasive Waterjets, 2000), (Flow International

Coorporation, 2000), and (Bo, 1994) which include the following:

1. Simulation lets one test every aspect of a proposed change or addition without

committing resources to their acquisition. This is critical, because once the hard

decisions have been made or the equipment has been installed, changes and

corrections can be extremely expensive. Simulation allows one to test his designs

without committing resources to acquisition.

2. By compressing or expanding time, simulation allows speed up or slow down

phenomena to happen, so that important events can be investigated more thoroughly,

while non important ones can be speeded up or skipped.

3. With simulation, one can determine the answer to the “why a certain phenomenon

occurs" questions by reconstructing the scene and taking a microscopic examination

of the system to find out the answers.

4. One of the greatest advantages of using simulation software is that once a valid

simulation model have been developed, one can explore new policies, operating

procedures, or methods without the expense and disruption of experimenting with the

real system.

5. Simulation allows better understanding of the interactions among the variables that

make up complex systems.

6. By using simulation to perform bottleneck analysis, one can discover the cause of the

delays in work in process, information, materials, or other processes.

7. Simulation studies aid in providing understanding about how a system really operates

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rather than indicating someone’s predictions about how a system will operate.

8. Taking the designs beyond CAD drawings by using the animation features offered by

many simulation packages the actual work of simulated facility or organization can be

monitored. Therefore, it is possible to detect design flaws that appear credible when

seen just on a two-dimensional CAD drawing.

9. The typical cost of a simulation study is substantially less than 1 % of the total

amount being expended for the implementation of a design or redesign (Weisel,

1996). Since the cost of a change or modification to a system after installation is so

great, simulation is in most cases a wise investment.

10. Simulation models can provide excellent training when designed for that purpose.

The team, and individual members of the team, can learn by their mistakes and learn

to operate better.

Conversely, simulation process is not ideal and flawless. According to Banks

(1996), Law and Kelton (1991), and Pegden, Shannon, and Sadowski (1995) the main

disadvantages of simulation include the following:

1. Model building requires special training. It is a skill that is learned over time and

through experience.

2. Simulation results may be difficult to interpret. Since most simulation outputs are

essentially random variables it may be hard to determine whether an observation is a

result of system interrelationships or randomness.

3. Simulation modeling and analysis can be time consuming and expensive. Skimping

on resources for modeling and analysis may result in a simulation model and/or

analysis that is not sufficient to the task.

4. Simulation may be used inappropriately. Simulation is used in some cases when an

analytical solution is possible, or even preferable.

5. Simulation is only as good as the model it is based on. Therefore, simulation cannot

eliminate the errors made during the model design phase.

Potential users of simulation software packages should compare very carefully the

benefits and the drawbacks of using the simulation to solve their industrial problems,

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because in some cases it might not be the most efficient engineering tool.

2.1.3. Cost of Simulation

An important fact that is often not considered is the cost to conduct computer

simulation. A simulation study can easily cost as much as $30,000 just in staff time,

(Owen, 1995). Average cost of a complete simulation that addresses all the user’s

concerns is estimated at $25,000-$100, 000, (Owen, 1995). The software itself runs from

$2000 to $50,000, (Owen, 1995). The big costs are also in time-polling the people who

know the system best and collecting the data the simulator needs.

2.2. OFF-LINE PROGRAMMING CONCEPT

Off-line or indirect programming refers to generating a robot program without

interacting with a robot controller or using a programming device, remote from the

industrial robot’s workplace.

In contrast to this, so-called teach-in or direct programming occurs at the industrial

robot’s workplace by directly moving the end effector to the command positions, either

with the help of a programming device or even manually, and then storing the positions

in the robot controller’s memory. The working positions of the robot are usually defined

with sample workpieces (for instance sample car bodies). The use of this programming

technique, which still dominates today, generally makes the halting of a production cell

or a production line unavoidable during the set-up time and is therefore an important cost

factor. The programming time in which the facility cannot be used productively may in

some cases last days or even weeks. Therefore the most important reason for employing

an off-line programming system is to reduce the set-up time.

A distinction has to be made between simple systems, for example textual pro

gramming systems, and costly off-line programming and simulation systems. The

formers allow existing robot programs to be edited or archived, and are used to develop

the program frame, usually without the determination of the individual positions and

orientations of the robot motion. In combination with certain robot controllers textual

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programming systems also enable the syntax of robot programs to be checked. The latter

costly off-line programming and simulation systems are interactively operated and allow

a description to be made of the nominal path in the base coordinate system of the

industrial robot. While textual programming systems are usually Personal Computer-

based products, powerful workstations are often required for the three-dimensional real

time graphics of the simulation systems.

Off-line programming systems still need to overcome several major problems to be

widely accepted in automation industry. The following paragraphs will present the most

important issues with respect to that.

The ideal case would be to load an off-line generated robot program down into the

robot controller and to execute it without any adaptation. However this would assume

good compatibility of the simulated and real manufacturing task. Even the leading

companies in the domain of robot simulation and off-line programming, Technomatics

and Deneb, do not claim that the simulation made by their software packages will

completely match the reality every time their product is used (Nof, 1999). Primarily the

reason for that is the discrepancy between the way a real robot controller and its virtual

representation work. A possible remedy for that problem has been recently introduced in

form of the Realistic Robot Simulation interface. The goal of the Realistic Robot

Simulation is to use parts of the original controller software for more accurate simulation.

The whole Realistic Robot Simulation concept is explained in detail in sections 2.3 and

5.2.2.1.

The development of postprocessors for translating from a simulation language to a

robot language is not a straightforward task. The postprocessor must translate not only

simple structures such as movement commands, but also more complex structures such as

condition handlers, branching and looping statements, subroutines, and variables. There

are very few established standards (Recommendations, rather than standards, have been

developed by several national robotics associations. VDI (Verein Deutscher Ingenieure)

robotics standard, developed in Germany, has had a certain success, but the problem was

that only German manufacturers used it). The Realistic Robot Simulation standard is

definitely the most accepted by robot manufacturers and certainly the most complete

(Nof, 1999), and (Willnow et al„ 1996).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Having carried out the translation, it is then necessary to transfer the program files

from the computer running the simulation to the robot controller, either by using a

communications link or else by copying the files onto a disk that is compatible with the

controller. Again, this is an area in which there are few standards. Even the "standard"

RS232 serial port poses problems of electrical wiring and protocol methods. However,

once a link is established it is even possible to preprocess a robot program from its

controller and translate into the language required by the simulation, allowing existing

robot programs to be evaluated and improved.

2.3. INTRODUCTION TO REALISTIC ROBOT SIMULATION

In recent years, interactive and graphics-based tools for the planning, simulation

and off-line programming of industrial robots have been introduced in industry.

Compared to conventional planning and programming, Computer Aided Robotics (CAR)

enables a better planning of robotic cells and reduces costly down-times of the

manufacturing equipment due to on-line programming.

In order to depict robot manipulators, robot controllers, and task programs these

Computer Aided Robotics software packages provide simulation models representing the

real world equipment. The user applies these models via the user interface of the

Computer Aided Robotics software package. Since different controller types possess

different task languages, motion generator and methods for inverse kinematics, special

controller models are required for an accurate simulation of each type.

Attempts to realistically model specific controller types have been undertaken by

robotics specialists from the automotive industry and Computer Aided Robotics software

suppliers. In general, these models showed a significant increase in simulation accuracy.

However, without detailed controller knowledge, the implementation of specific

controller models is very time-consuming. Furthermore, extensive measurement series are

needed for the verification of the simulation model; yet this approach cannot guarantee

the completeness and accuracy of the model. Whenever new controller type is introduced

on the shop floor and its precise simulation is required, a new controller model must be

implemented and verified.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As a consequence, these design flaws cause usually significant discrepancies

between a robot’s simulated and real behavior, generating the errors that are intolerable in

today’s high demanding industrial environment (RRS Maintenance Management, 1997).

Refer to section 1.1 for more details.

The need to simulate more precise specific controller behavior has lead to the

development of procedural interfaces within Computer Aided Robotics software

packages. Today several Computer Aided Robotics software packages provide specific

interfaces for the execution of controller models. By applying the interface

documentation, robotics specialists can implement simulation models for dedicated

controller or manipulators types. Depending on the Computer Aided Robotics software

package, these interfaces allow different functionality and different data passing

mechanisms. Therefore, a controller model provided for the interface a specific Computer

Aided Robotics software package cannot be integrated in another Computer Aided

Robotics software package without modification of the software.

To solve the above problems, the automotive industry has initiated the project

"Realistic Robot Simulation" in which suppliers of robot controllers and robotic

simulation systems cooperate. The project began on January 1, 1992 and was successfully

completed in December 1993, (RRS Maintenance Management, 1997).

2.3.1. Objectives of the Project "Realistic Robot Simulation*1

The project goal was to improve the simulation accuracy of industrial robot

simulation systems in order to achieve a more realistic simulation of robot controllers.

The goal was achieved by defining a common software interface (Realistic Robot

Simulation interface) that integrates the controller simulating modules into simulation

software systems. Using original controller software parts, controller manufacturers

provide simulation modules for their latest controller types. Simultaneously, simulation

system suppliers have implemented the Realistic Robot Simulation interface in their

software products (Figure 2.1).

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Robot
Controllers

Controller
Simulating
Modules

controller
software

parts

controller
software

parts

Robot Simulation
System

.controller
software

parts

Improved Simulation
Accuracy by Controller
Software Integration
into Robot Simulation
Systems

Figure 2.1. Realistic Robot Simulation integration chart that shows the method to

interface robot controllers and robot simulation software packages using Realistic Robot

Simulation software modules.

2.3.2. Technical Aspects of the RRS Interface

In order to assure simulation accuracy and efficient implementation of original

controller software, the Realistic Robot Simulation interface was derived from the robot

manufacturer’s controller software structures. The integrated controller software fulfils

the requirements of the automotive industry for an accurate simulation of robot’s:

• motion behavior,

• inverse and forward kinematics, and

• condition handling.

It has been proven that the deviation between simulated and real joint values is less

than 0.001 radians, (Willnow et al., 1996). Concerning cycle times a difference of less

than 3% could be reached (Willnow et al., 1996). The Realistic Robot Simulation

interface runs on software and hardware platforms used for robotic simulation in the

automotive industry.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.3. Benefits and Disadvantages of the RRS Interface

There are several benefits of this interface:

• Benefits o f Robot Controller Suppliers: By applying the Realistic Robot Simulation

interface, controller suppliers can provide simulation products, which assure a better

utilization of Computer Aided Robotics software packages at their customer’s site.

These simulation products can be used in all Computer Aided Robotics software

packages equipped with this interface. Hence, by using this interface, controller

suppliers do not need to implement n different simulation products for n Computer

Aided Robotics software packages. Furthermore, they can focus on the development

of dedicated products without reimplementing the general parts of Computer Aided

Robotics software packages. Consequently, this effort allows the controller supplier to

minimize implementation efforts.

• Benefits o f Computer Aided Robotics software suppliers: Suppliers of Computer

Aided Robotics software packages are no longer obliged to implement and verify

specific controller models for accurate simulation of their Computer Aided Robotics

software packages. Verification will become obsolete because the original controller

software is used.

• Benefits o f Computer Aided Robotics software users: By using original controller

software within Computer Aided Robotics software packages, the simulation

accuracy of the industrially applied Computer Aided Robotics software packages will

be improved. This reduces costly downtimes of the manufacturing equipment. Once a

new controller type is acquired, the automotive companies can also buy the

corresponding simulation product for a precise simulation. Without a long

implementation and verification phase, a precise simulation can be used during the

initial operation phase of a new controller type, (RRS Maintenance Management,

1997).

The main disadvantage of the RRS interface is its cost. RRS software modules must

be purchased directly from the robot manufacturers, and depending on the manufacturer,

the module prices are in range from $5000 to $10000 (Willnow, 1996).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.4. Availability of the RRS Interface

The Realistic Robot Simulation-Interface Specification has been available to the

public (though only the companies that participated in the Realistic Robot Simulation

project are entitled to obtain the Realistic Robot Simulation technical documentation)

since January 1994. It is distributed by the Fraunhofer Robotics Institute in Berlin,

Germany.

2.4. LEXING AND PARSING OVERVIEW

Lexers and parsers (definitions of these terms are provided below) help write

programs that transform structured input. This includes an enormous range of

applications; anything from a simple text search program that looks for patterns in its

input file to a C compiler that transforms a source program into optimized object code

(Levine, Mason, and Brown, 1995).

In programs with structured input, two tasks that occur repeatedly are dividing the

input into meaningful units, and then discovering the relationship among the units. For a

text search program, the units would probably be lines of text, with a distinction between

lines that contain a match of the target string and lines that do not. For a C program, the

units are variable names, constants, strings, operators, punctuation, and so forth. This

division into units (which are usually called tokens) is known as Lexical analysis, or

Lexing for short. Software programming utilities like Lex, or its dialect - Flex (so called

lexer generators) take a set of descriptions of possible tokens and produce a C routine,

which is called a Lexical analyzer, or a Lexer, or a scanner for short, that can identify

those tokens. The set of descriptions given to a lexer is called a Lex specification.

The token descriptions that a lexer generator uses are known as regular

expressions. A lexer generator turns these regular expressions into a form that the lexer

can use to scan the input text extremely fast, independent of the number of expressions

that it is trying to match. A lexer generated by a lexer generator is almost always faster

than a lexer that might be written in C by hand, (Levine, Mason, and Brown, 1995).

As the input is divided into tokens, a program often needs to establish the

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relationship among the tokens. A C compiler needs to find the expressions, statements,

declarations, blocks, and procedures in the program. This task is known as parsing and

the list of rules that define the relationships that the program understands is a grammar.

Software utilities such as PRECCX, YACC, Bison (so called parser generators) et

cetera, take a concise description of a grammar, and produce a C routine that can parse

that grammar - a parser. A parser automatically detects whenever a sequence of input

tokens matches one of the rules in the grammar and also detects a syntax error whenever

its input doesn’t match any of the rules. A parser written by parser generator is generally

not as fast as a parser that could be written by hand, but the ease in writing and modifying

the parser is invariably worth any speed loss. The amount of time a program spends in a

parser is rarely enough to be an issue, (Levine, Mason, and Brown, 1995).

2.5. INTRODUCTION TO WATERJET CUTTING

Waterjet cutting, also referred to as hydrodynamic machining, is an advanced

technology characterized by a cutting tool that uses a stream of ultrahigh-pressure water

forced through a sapphire nozzle. The waterjet removes workpiece material and produces

a narrow kerf (a cut in a workpiece made by a waterjet stream) by the cutting action of a

fine (.075 mm to .0.5 mm diameter), high velocity (more than twice the speed of the

sound), high pressure (170 to 415 MPa) stream of water or water-based fluid with

abrasives.

The first application of waterjet technology was in early 70s. Pressurized jet has

been used in the timber, lumber, and pulpwood industries for many years as a means of

quickly debarking logs from huge trees.

The concept of using an abrasive waterjet for machining metals was first developed

in 1974, but since the mid-1980s practical equipment has become available for use only

in precision machining. The principle was quite similar, the only difference was in the

use of abrasive. Abrasive mixes with waterjet after the water flows out of the orifice, thus

creating abrasive jet, which is much more efficient than the waterjet. Abrasivejet can cut

almost any known material. Manufacturers of equipment now claim that the process can

be used to cut "everything" from simple gray cast iron to 50 mm thick armor plate and

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

boron-reinforced aluminum, (Waterjet Web Reference, 2000). Table 2.1. shows how

cutting speed changes with respect to the type of material being cut (nominal thickness

for all the samples is 50 mm).

Material
Cutting speed

[in/min] [mm/min]

17-4PH Stainless steel 2.0 51

HY-80 High-strength steel 2.0 51

6A1-4V Titanium 2.0 51

Ni-Cr Superalloy 2.0 51

Aluminum 4.0 102

Lead 18.0 457

Glass 18.0 457

Table 2.1. The change of cutting speed with respect to the type of material being cut

(nominal thickness for all the samples is 50 mm), (Waterjet Web Reference, 2000)

Figure 2.2 shows a relation between a pump pressure and the jet velocity during

abrasive waterjet cutting.

400 500 600 700 800 900 1000
Jet Velocity [m/s]

Figure 2.2. Relation between a pump pressure and the jet velocity during abrasive

waterjet cutting, (Waterjet Web Reference, 2000).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.1. Components of a waterjet cutting system

Waterjet and abrasivejet systems are almost the same, except for a few features.

Main parts of both types of the systems are:

• filtering system,

• pump,

• manipulator,

• nozzle,

• control system, and

• catcher.

Abrasive jet has an additional abrasive recycling system, which collects the

abrasive from a catcher, filters the reusable abrasive, washes and dries it, preparing it for

the new cycle.

Filtering System

Water used in waterjet cutting has to be purified before entering the waterjet

system. Inner diameters of the pipes used in waterjet systems are relatively small, and

impurities can clog the system after long time of operation. Therefore the filtering system

is the absolute requirement.

Water filtering can be done in several ways - through filtration, softening, or

treatment by reverse osmosis.

Pumps

Wateijet and abrasivejet cutters use two types of pumps - intensifier pumps and

crank pumps. Both types of pumps apply the same principle - the piston moves inside a

cylinder, alternating directions, pressurizing, and pushing the water out of the cylinder

into the wateijet system. However, there are many differences between the pumps:

• The method o f moving the piston - crank pump moves the piston in exactly the same

manner like an internal combustion engine. Intensifier pump uses a hydraulic cylinder

to move the piston.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Energy conversion problem - fluids are compressible under high and ultra high

pressures. Under the pressure of 275 MPa, water is compressed for approximately

10%, (Waterjet Technology, 2000). The piston moves in one direction and raises the

pressure, thus compressing the water. Once the outlet valve opens, water rushes out of

the cylinder into the system. The pressure drops and the outlet valve closes. Water left

in the cylinder expands, pushing the piston in the opposite direction. Energy resulting

from water compressing and expanding is being treated differently:

1. Crank pump - converts this energy into the kinetic energy that moves the crank and

other rotating elements, the same as the internal combustion engine,

2. Intensifier pump - energy has to be taken away by heat exchangers in order to provide

the normal operation of the system. The result is different efficiency - crank pumps

have efficiency of 95% and higher, while intensifier pumps have efficiency of

approximately 70%, (Waterjet Technology, 2000).

• Pressure uniformity - intensifier pump usually pumps water in the system once or

twice per second. Although the time interval is relatively short, still the pressure value

jumps and drops enough to influence the cutting process significantly (uniform

pressure is of vital importance for the cutting process). To eliminate pressure changes,

an additional element in the pressure system is required - an accumulator. However,

the problem with the accumulator is that it has to be massive in order to cope with

ultra high pressures. Crank pump, on the other hand, makes around 30 strokes per

second, thus the pressure remains uniform. Furthermore, there is no need for

accumulator, (Waterjet Technology, 2000).

• Other differences

- Noise - crank pumps make less noise than intensifier pumps,

- Maintenance costs - crank pumps are easier to maintain, and parts are cheaper,

- Price - crank pumps are cheaper,

- Operating speed - operating speed relates to the piston speed. Crank pump moves the

piston at speeds of approximately 0.75 meters per second, while the intensifier pump

moves the piston at speed of approximately 0.15 meters per second, (Waterjet

Technology, 2000). To achieve the same water flow, the intensifier pump must have

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

larger capacity, i.e. it has to be of larger size. This reflects in the higher price for the

same water flow.

Selection of the optimal pump type is one of the most important tasks when it

comes to introduction of waterjet cutting systems into industrial production. If the energy

consumption represents a problematic issue, then a crank pump is a better solution. If the

manufacturing process requires a lot of interruptions and a lot of changes, again the crank

pump is the solution. However, for larger waterjet cutting systems, such as large gantry

waterjet/abrasivejet cutters that work for long time without interruptions, intensifier pump

is a better choice. Intensifier pump is a better solution for systems that use more than one

nozzle, as well as the systems where the period between the preventive maintenance

cycles must to be long.

Manipulators

The main purpose of the manipulators is to place a nozzle, i.e. a tool, in the desired

position and orientation. Since most of the waterjet/abrasive cutting is done in an XY

plane, manipulators are mostly of gantry type. The following pictures (Figures 2.3. and

2.4.) show some of the gantry type manipulators:

\ .
\ v-euus

\

Water Pum p,

Figure 2.3. The sketch of OMAX 2-axes waterjet cutter, (Omax Abrasive Waterjets,

2000).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4. The photograph of Flow Automation 2-axes waterjet cutter, (Flow

International Corporation, 2000).

Manipulators can be of different size and can be extremely large, such as Flow

Corporation custom-made gantry manipulator that performs three-dimensional machining

(Figure 2.5.). In this case, dimensions of the manipulator’s work envelope are 20ft x 50ft

x 5ft, {Flow International Corporation, 2000)

Figure 2.5. Two different views at Flow Automation 5-axes (3 translational and two

rotational) gantry robot.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Other types of manipulators are robotic arm manipulators. For example, ABB I-R

turnkey system represents a complete waterjet cutting cell system, which includes one or

two inverted, vertically articulated robotic arms.

Nozzle

There are two types of nozzles used:

- waterjet nozzle, and

- abrasivejet nozzle.

The pictures below (Figure 2.6.) show both types of nozzles:

Figure 2.6. The cross-sections of a waterjet nozzle (left) and an abrasivejet nozzle (right),

(OMAX Abrasive W aterjets, 2000).

Essentially, both types are the same, however the abrasivejet nozzle has an extra

inlet that provides the flow of abrasive into the mixing tube. Simply by replacing a

waterjet nozzle with an abrasive nozzle, the same machine becomes an abrasivejet cutter

Water
cham b*

Water
Intel

Needle

Orifice -
retainer

Mixing
Chamber

Orifice
m ount

Nozzle
Orifice
retainer

Abrasive
inlet

Waterjet
stream

Abrasive-waterjet
stream

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and vice versa. Replacement takes only several minutes, thus keeping the downtime to

minimum, (OMAX Abrasive Waterjets, 2000).

Nominal life of a nozzle varies, and depends on the orifice quality and the seals

inside the nozzle. The orifice is exposed to intense tearing, and seals are exposed to ultra

high pressures. Usually, nozzle’s life is approximately 40 - 75 hours, (Bo, 1994). Lately,

a new type of nozzles, “long-life” nozzles were introduced on the market, whose lifetime

ranges from 60 to 100 hours, (OMAX Abrasive Waterjets, 2000). Used nozzles do not

have to be thrown away, they still can be used for rough cutting.

A key part of the nozzle is called a “jewel” or an orifice. The orifice is usually

made out of sapphire, although other materials can be used instead. Diamond may be

used as well, however the problem is its hardness, and the production of such a small

orifice. Sapphire represents optimal solution, when it comes to quality, orifice life, and

the manufacturing {Flow International Corporation, 2000). Another important parameter

is the inner diameter and it ranges from 0.076 mm for soft materials up to 0.89 mm for

hard materials, {Waterjet Web Reference, 2000).

It is important to note that the position of the orifice is located at the exit of the

nozzle for the waterjet cutter, whereas for the abrasive cutter the orifice is located above

the abrasive inlet. The reason is very simple. Abrasivejet involves more intense tearing

than the waterjet, therefore the regular operational time of an orifice would be shorter if it

was positioned passed the abrasive inlet.

In the wateijet nozzle, its position does not make any difference, since there is no

abrasive in the water, and the abrasive effect is everywhere the same. Still, the orifice is

located at the very end of the nozzle. If it were located farther from the nozzle end, the

cutting efficiency would be partially lost due to the pressure distribution. Pressure

significantly drops farther from the nozzle end, and that is the main reason for keeping

the nozzle very close to the workpiece.

Control System

Control system represents the most important part of any waterjet/abrasivejet

system. Basically, there are two types of the control systems:

• Manual control systems, and

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• CNC control systems.

Before explaining the differences between the two types of control systems, the

cutting process will be described. It is important to understand the process itself, because

it will make the difference between the control systems more clear.

The most difficult problem of waterjet machining is the control of the cutting

process. Although the waterjet is a straight line “tool”, it tends to “bend” while cutting a

workpiece. Bending is used here to describe the shape of the jet. In case of two-

dimesional machining, the point where the jet enters the workpiece and the point where

the jet exits the workpiece should be on the same vertical line. This is not the case,

however. There is always a lag that depends on several factors such as the nozzle speed,

acceleration, material properties, and workpiece thickness.

The existence of the lag does not represent a problem if machining is performed

along a straight line. There is always enough time for the jet to catch up. However, small

radii and sharp changes in the direction are problematic. Since jet lags behind, it is not

quite known where the jet will exit the workpiece. The only way to solve this problem, or

at least to minimize its influence to acceptable level, is to decrease the speed every time

the direction changes.

Manual control is used exclusively for trial and error testing. This kind of testing

is used for determining the motion parameters that will provide the satisfactory cutting

results. The number of tests that have to be performed is large, time consuming, and

require highly skillful employees to conduct the tests.

On the other hand, each CNC controller manufacturer defines its own speed and

acceleration profiles, which might be or might not be suitable for specific waterjet cutting

operations. Still, the use of CNC controllers is a big step forward because of at least two

reasons:

• G-code language typical for CNC controllers is simple and powerful language, and

• CNC controllers offer a lot of easy programmable features.

What is usually done in order to solve the jet lagging problem is to divide into

segments all the lines and arcs of the cutter path, and then to set the motion parameters

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each individual segment. However, there are at least two problems related to this

solution. Firstly, the time required for segmentation, especially if the part geometry is

complex, may be very long. The other problem is that the amount of memory required to

store all the instructions can by far exceed con toller’s buffer capacity.

Recycling System

Abrasive usage makes the machining cost higher, since the abrasive is one of the

main components of the process. The costs of abrasive usage can built up to 50% of the

total cost, (OMAX Abrasive Waterjets, 2000). Therefore it is very important to recover as

much abrasive as possible in order to decrease the costs.

The way the recycling system is designed is very simple - sludge is pumped out

of the water tank (catcher) into the recycling machine. The water entering the recycling

system contains particles of abrasive and material the workpiece is made of. Water is

filtered through the screens of different mesh size. Particles of the material as well as the

abrasive of smaller size are deposited, while the rest of the abrasive is recovered.

Recovery involves washing and drying of abrasive, thus preparing it for a new cycle.

Between 50 and 70 percent of the abrasive can be recycled after the first use,

{OMAX Abrasive Waterjets, 2000). In turn, this decreases the waterjet cutting costs for up

to 40%.

2.5.2. Advantages and disadvantages of waterjet cutting technology

The major advantages of waterjet cutting over other cutting techniques are:

• Application to flexible manufacturing systems, since changeover of cutting patterns is

easily accomplished under computer control.

• The elimination of sharpening requirements.

• Increased production speeds.

• No heat-affected zone in the material being cut as with laser, electron beam and

plasma arc cutting. Even abrasive waterjet cutting produces no heat that can degrade

metallurgical properties, (Waterjet Web Reference, 2000). Because of the smooth

edges produced, often no post machining is required.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Maneuverability is also an excellent feature of this technology. Saws, for example,

are mainly limited to straight cuts or essentially small arcs of circular cuts, whereas

the jet can be easily directed to cut curves, holes, and complex shapes. In addition to

metals and glass, waterjet cutting can be used to cut through large sections of concrete

blocks.

• Material-savings through reduced kerf (a cut in a workpiece made by a water jet

stream) and closer part spacing.

• Improved product characteristics through precise, clean edge cuts that eliminate

crushing, hard edge, deformation, delamination, strings, burrs, or die slivers.

• Reduced dust, noise, heat, and sanitary problems.

Major disadvantage of waterjet cutting is its accuracy. Although accuracy has been

improved with the new types of motion control, still the waterjet cutters have lower

accuracy then EDM (Electro Discharge Machine) and laserjet cutting (two non-

conventional machining processes similar to waterjet cutting) machines.

Laser machining achieves tolerances up to 0.025 mm and represents the most

accurate of three methods, (Waterjet Web Reference, 2000).

Waterjet cutting achieves tolerance of up to 0.075 mm, (Waterjet Web Reference,

2000). The quality of the tolerances has improved significantly in last couple of years,

due to the improved motion control.

EDM achieves tolerances that are in between the laser and waterjet cutting

tolerances, (Waterjet Web Reference, 2000). Usually, waterjet cutting is used as first

operation, used for quick cuts and rough tolerances, while EDM comes as second

operation to bring the tolerances closer to the ones that were set.

This partially limits the application of waterjet cutting systems to areas where the

high accuracy is not required (Waterjet cutting machines still cannot replace highly

accurate milling and turning machining centers that can achieve machining tolerances of

up to 0.001 mm). Waterjet cutting systems are often installed in the following industries:

• Automotive Industry - waterjet cutters have two areas of application. The first is a

pre-processing role that involves the rough and quick cutting of a workpiece,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

followed by the fine cutting with EDM. The second area of application is important as

well - cutting of doors, carpets, instrument panels, console parts, etc.

• Aerospace Industry - uses a lot of composite materials and alloys that are often

difficult to be cut. Abrasivejet is the solution - it can cut almost any material with no

heat generated. Cutting and drilling can be done without delaminating the material.

• Food Industry - water entering the wateijet system is absolutely clean of any kind of

bacteria or microorganisms. Cutting is done in a very clean manner. There is no touch

between the food and the nozzle, unlike with the knife. Cutting is done with no heat

generated, so no potentially damaging processes can be started with waterjet cutting.

• Tile and Marble Industry - highly expensive diamond tools are replaced with the

waterjet cutters. A case study showed that cutting speed increased almost 10 times,

accuracy increased from 1.58 mm to 0.075 mm, and the control was significantly

simplified, (Bo, 1994).

2.6. INTRODUCTION TO CNC CONTROLLER PROGRAMMING

LANGUAGE (G-CODE)

A CNC controller performs machining operations by executing a series of

commands that make up a part program. These commands are interpreted by the

controller which then directs axis motion, spindle rotation, tool selection, and other CNC

functions.

Part programs can be executed from the controller's memory or from a CNC tape (a

memory device that can sequentially store CNC instructions) . Programs on tape can be

executed directly from the tape, or can be loaded into the controller and executed from its

memory.

Each machining operation performed by the controller is determined by the

controller's interpretation of a group of words (commands) called "blocks" Individual

blocks in a part program define each machining process. Part programs consist of a

number of blocks that together define a complete operation on a part.

Part program blocks are made up of:

• Characters - A character is a number, a letter, or a symbol that has a specific

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

meaning for the controller. For example, “1”, “G”, and are characters that

controller recognizes as meaningful information

• Addresses - An address is a letter that defines the instruction for the controller. The

complete list of addresses for Allen-Bradley controllers is shown in the next table

(Table 2.2.).

Function Address
Rotary axis about X A
Rotary axis about Y B
Rotary axis about Z C
Tool radius compensation number D
Thread lead E
Feedrate function (F word) F
Preparatory function (G-code) G
Tool length offset number H
X arc centre in circular interpolation I
Y arc centre in circular interpolation J
Z arc centre in circular interpolation K
Number of repetitions L
Miscellaneous function M
Sequence number N
Program name O
Subprogram name f P
Arc radius R
Spindle rpm function S
Tool selection function T
Incremental axis name U
Incremental axis name V
Incremental axis name W
Main axis X
Main axis Y
Main axis Z

Table 2.2. List of programming addresses for Allen - Bradley 9 - series controllers

• Words - A word consists of an address followed by a numeric value. Examples of

words are: G01, X I5, F50, M2. For each word used in a part program, there is a

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

format that designates the number of digits allowed as a numeric value for that word.

The format for an M-code, which is a word, for example, is normally M2, which

indicates that an M-address can be followed by only two digits.

• Codes - Represent CNC instructions that can be executed by CNC controllers. They

are usually composed of words followed by parameters (in some cases a word alone

can be a code. For example G17, which is a word, represents XY work plane

selection, which is a CNC code at the same time). There are several groups of CNC

codes: G-codes, which are motion and controller set-up instructions, M-codes which

define program control and manufacturing application related instructions, T-codes

which are tool related instructions, etc.

• Parameters - The controller has a number of fixed cycles that are initiated by a

specific CNC code. When other words appear in those code blocks, they are referred

to as "parameters", because their values are relevant only to that CNC code. For

example, a Z word generally refers to a Z axis move, but when it appears in a block

with a G83 peck drilling cycle, its value refers to the depth of the hole to be drilled. In

that case, it is a "parameter" of the G83 fixed cycle.

A block is a set of codes that define the operations of the controller. For example:

/N 3 G00X10Z10M 3;

is a block composed of:

/ - optional block delete character,

N3 - sequence number word,

GOO - preparatory function word (rapid positioning mode),

X10 Z10 - axis movement words (parameters of GOO),

M3 - miscellaneous function word (spindle on forward in clockwise direction), and

; - end o f block character.

The controller sequentially executes blocks in a part program to conduct the

required machining operation.

A part program has three logical sections:

• Beginning - setting up the controller and the machine to perform the operations

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

wanted.

• Middle - performing the machining operations.

• End - returning the machine to a safe stop position, and preparing the controller for

the next part program.

The blocks programmed vary for each section of the program. For example, the

following simple program consists of the three mentioned logical sections.

G91G21; -beginning

G00X28;
G33Z-46E4; -middle
G00X5;

Z2; -end
M02;

Example 2.1. Simple G-code part program divided into three logical sections

Furthermore, a complete part program may consist of a main program and

subprograms, which can be called from the main program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

CHAPTER III

LITERATURE SURVEY

This chapter is divided in two subsections. The first subsection points out

similarities and differences between the world’s most utilized compiler-compiler (parser

generator) software utilities YACC® and Bison®, and the one used in this study -

PRECCX®, taking into account authors’ opinions expressed in several technical articles

and books in domain of parser generation. The aim is to show that PRECCX was chosen

with solid reason, due to its indisputable advantages over YACC and Bison.

The second subsection presents the different simulation and off-line programming

techniques introduced in score of technical articles. Those articles are divided into three

different groups: the articles realated to development of language translators and off-line

programming modules in robotics simulation software packages, the several general and

introductory robotics simulation articles that have been mainly used to complement the

simulation and off-line programming background sections of this dissertation, and finally

the technical articles that describe the new techniques in simulation and off-line

programming of industrial robots. The goal of this subsection is to present the work that

has been done in the field of robotics simulation and off-line programming and to show

how much this thesis is unique and in which aspects.

3.1 PARSER GENERATOR RELATED ARTICLES

Development of the robot language translator is one of the key parts of this thesis

work. Compiler-compilers or parser generators are software utilities used to create

various types of language translators (including translation of: one human-spoken

language into another, a human-spoken language into a machine language, or a machine

language into another machine language). Creation of fast, small (in memory size), and

flexible (multi-purpose) translator primarily depends on the selection of a parser

generator. Therefore, a considerable amount of literature research should be conducted

before deciding which parser generator should be the most suitable for a translation task.

Contemporary software market offers a variety of parser generators, but for majority of

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computer applications YACC® and Bison® parser generators are used. The reasons for

the aforementioned are YACC and Bison’s long-time availability on the market (since

early eighties), several improved versions since the first release date, satisfactory amount

of supporting documentation (insufficient or incomplete documentation is considered to

be one of the major obstacles for less known parser generators to become more popular),

and, of course, the variety of parsing options and techniques that these products offer.

Recently, a new parser generator has been introduced, named PRECCX (Prettier

Compiler-Compiler Extended) offering several new features (such as: grammar contexts,

synthesized attributes, infinite lookahead, complex expressions and macros) that can

significantly shorten translation process, make the process of translation easier and more

intuitive for developers, and generate parsers more modular and flexible.

This subsection presents the author’s reasons for selecting PRECCX parser

generator to be used in this dissertation, by pointing out PRECCX advantages and

disadvantages over YACC and Bison. The technical articles written by Costagliola

(1997), Rackovic (1996), Levine, Mason, and Brown (1995), and Breuer and Bowen

(1992 - 1995) have been used as a knowledge base that has contained relevant

information to justify the PRECCX parser generator selection. Thus, the next paragraphs

sublimate the conclusions drawn after reading the mentioned articles. The definitions of

the key terms required for good understanding of this section are presented in Appendix

B.

PRECCX is intended to extend the Unix YACC and Bison utility. However, the

technology is entirely different, which leads to some fundamental differences in the way

that definition scripts have to be written. One can convert YACC or Bison scripts to

PRECCX script quite easily, but PRECCX scripts cannot be converted to YACC or Bison

scripts because of the extra expressiveness of the semantics involved. But the

fundamental differences mean that sub-expressions cannot be converted independently of

their context (YACC and Bison scripts are heavily context dependent), and some special

features of YACC or Bison do not covert easily, such as precedence declarations, because

they depend vitally on YACC or Bison semantics (Breuer and Bowen, PRECCX User

Manual, 1999).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As far as possible, the PRECCX scripting language has been designed to look like

an extension of YACC's and Bison’s, with the result that PRECCX can be thought of as

YACC or Bison with parameters, arbitrarily complex compound expressions, infinite

lookahead and a better way of dealing with attributes.

The main advantages of PRECCX over YACC and Bison are presented below:

• Contexts

Each grammar definition may be parameterized with contexts. For example, n is the

context in the following definition:

@ decl(n) = space(n) expression < \n ’> decl(n+1)*

This definition uses a grammar term decl(n), which expresses the idea that a new line

starts n spaces in from the left-hand margin. The right-hand side of the expression

contains a term decl(n+l), which designates that each following line will have one

character longer indentation than the previous one. Some languages determine whether a

declaration is local (and to what) or global in scope by relative indentation, and this is

how to express this kind of constraint. It will be necessary to cast parameters to the type

PARAM (long) if they are not of the same size (as long) under the model of C.

E.g.

@ decll = decl((PARAM)l)

This is rarely necessary.

• Synthesized Attributes

PRECCX can synthesize attributes immediately after matching a rule. An attribute is built

by following the clause for which it is the attribute by an @, followed by the expression

for the attribute, followed by a final @. The expression must not be side effecting,

because PRECCX may execute the expression more than once if it backtracks. E.g.

@ foo = bar gum {@ 1 @}

@ | nay {@ 2 @}

attaches the attribute 1 to the first clause and 2 to the second. Attributes already attached

to the terms of the clause may be referenced and then dereferenced as follows:

@ arfarf= arj\x arf\y {@ $x+$y @J

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The dereferencing $ in front of the x in $x is only necessary to ensure proper casting of

types from (PARAM to VALUE) in all circumstances. It will usually not be required, but it

is safer to use it. The x can and should always be used as a parameter without the $. E.g.

@ bowwow = bow\x wow(x)

This is where the real power of synthesized attributes comes in. An attribute synthesized

during the parse can be used as a parameter in the remainder of the parse. This makes it

possible, for example, to identify a single token:

@ foo = 7\x what(x)

whereas otherwise a construction like

@ foo = <’a ’> what('a ’)

@ | <’b ’> what(’b ’)

@ | ...

would have been necessary. The attributes can be passed into actions too:

@ foo = ?\k {:printf("%c",(int)$x);:}

but the actions are not executed until the end of the parse phase. In particular, it is no use

expecting an action to alter an attribute value.

• Infinite Lookahead

PRECCX has infinite lookahead and backtracking in place of the YACC 1-token

lookahead, This means that PRECCX parsers distinguish correctly between sentences of

the form foo bah gum and foo bah NAY on a single pass. If one cannot imagine why he

should want to decide between the two, a good example is to think about if... then and if

... then ... else. One can write the grammar definition down straight away in PRECCX as

@ statement 1 = < ’/ ’> < f’> boolexpr

@ <’t ’> <’h ’> <’e ’> < ’n ’> statement

@ [< ’e ’> <’l ’> < ’s ’> <’e ’> statement]

but this is much harder to do for YACC-style.

• Complex Expressions

Complex compound expressions like

explain {{this | that} {several \ no} times}+

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are legal almost anywhere within PRECCX definition scripts. The definition can be

substituted for the definee anywhere in a script except in the parameter list of a higher-

order parser application. Grouping parentheses may be required.

• Macros

PRECCX Macros may be defined in a script, simply by defining one parser as a context

for another. For example,

@ optional(parser) = parser | {}

may be defined (this particular example is an equivalent for the built-in [parser]

construct). Then the construct

@ ice_cream(flavour) = tub(flavour) optional(sauce)

may be used. The macros are really ordinary grammar definitions, which just happen to

take other grammars as parameters. It may be necessary to cast these parameters to be the

same length as all the others, if the model of C uses different sized pointers for function

addresses than long. The cast is only required when one introduces a grammar name as a

constant:

@ ice_cream(flavour) = tub(flavour) optional((PARAM)sauce)

and he may also find that he has to declare

extern PARSER sauce;

somewhere above the line, just to let C know what is going on.

The main disadvantages of PRECCX in comparison with YACC and Bison and

how important they are, are listed below:

• Speed

PRECCX compilation time is somewhat longer then in case of YACC and Bison.

However, the compilation time is still short enough to be considered problematic.

Therefore, PRECCX is moderately fast, typically taking two to five seconds to compile

scripts of several hundred lines.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Action Execution

There is a difference in PRECCX between the time at which the parse occurs and the

time at which actions are executed. The parse occurs first and the actions are “built”

during this phase, and executed either at the end of the parse, or at an explicit “!”

command in the parse definition. This is in contrast to YACC and Bison where parse and

the execution of actions are interleaved - but then PRECCX has to be able to backtrack

across actions, and therefore cannot execute them immediately they are encountered. But,

the complication of having to remember that the two phases are distinct is more than

compensated for by the infinite lookahead that it allows.

• Precedence

There is at present no equivalent for the declaration of YACC or Bison precedences and

associativity. Instead, these have to be coded explicitly for PRECCX using the preferred

ordering.

It is obvious that PRECCX features marked as disadvantages are not even remotely

as important for the parser to be generated as the features that are considered to be

advantages over YACC and Bison. Therefore, according to conducted literature search,

PRECCX has been considered to be the most appropriate solution for the task of robot

language translation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

3.2. SIMULATION AND OFF-LINE PROGRAMMING RELATED

TECHNICAL ARTICLES

The next several technical articles (below) have been reviewed in order to compare

language translation process proposed by their authors with the translation process used

in this thesis work.

Rackovic (1996) describes a method for construction and implementation of a robot

language translator using compiler-compilers. Starting from the academic robot

programming language PASRO, a new robot language is formed, as well as the translator

for the newly formed language into the symbolic robot language of the robot control

system EDUC-NET, using the compiler-compiler COCO-2. This paper presents very

similar language translation methodology to the one applied in the dissertation. The major

difference is that COCO-2 compiler-compiler lacks a lot of features that PRECCX has

and therefore requires additional development of several supporting C files (very time

consuming), and very long and sometimes trivial grammar rules (Trivial rules assign just

a single token to the left hand side of the rule. They are mandatory in the grammars that

can only accept symbols (left hand side of the rule) as parameters, but not single tokens.).

Kamisetty and McDermott (1992) concentrated their research on the design and

development of the robot language translator for IBM SCARA (Selective Compliance

Assembly Robotic Arm) configured robots. The translator converts simulation data from

McDonnell Douglas’ PLACE system into AML (A Manufacturing Language) robot

language. This translator has been coded in C language. According to authors, the code

maintenance is not straightforward, due to many function and variable dependencies.

Also, grammar rules are coded in a programming language instead of scripting language,

thus every rule change requires considerable changes in the source code.

All the developed software modules, which are the integral part of the thesis work,

are written for the Workspace simulation platform. Also, if the software modules are

analyzed separately, neglecting the interactions with other modules, the chances are that

the wrong conclusions may be drawn. Therefore, to find out how efficient and accurate

the concepts introduced in this dissertation are, the characteristics of whole platform

along with added modules should be taken into consideration. The following literature

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

survey has been conducted to compare such upgraded software platform with simulation

and offline packages described in several technical articles. It is important to note that in

this study Workspace has been compared to the software packages running on powerful

workstations like IGRIP®, ROBCAD®, and SILMA®, which can offer considerably

more to a user, but the price of those packages is more than ten times the price of

Workspace. On the other hand, it will be proven that when compared to the other peer

software packages presented in technical articles written by: Fujiuchi, et al. (1992),

Danni, et al. (1996), Lee and ElMaraghy (1990), Rooks (1997), Krishnavrasad and

McDermott (1992), Wozniak and Warczvnski (1989), Fukuda, Murakami and Kojima

(1992), and, Zeghloul, Blanchard, and Ayrault (1997), Workspace has some strong

advantages.

Due to the fact that there is no standard procedure that would define which criteria

are the most significant for the simulation and off-line software package comparison, the

twelve most common features that have been pointed out in almost every technical article

regarding robot simulation, have been chosen to be comparison criteria (refer to the

header row of Table 3.1). Some of the criteria are explained in more detail below:

• Compatibility - the ability of a software package to manipulate (export and import)

different graphical file formats.

• Customizability - the ability of a software package to allow users an option to change

the existing and to add new software features based on complexity of a simulated

task.

• Accuracy - refers to how close a simulation software’s interpretation of position and

orientation of teach points, trajectory creation and cycle time calculation is to the one

of a real robot controller.

• Supported languages - number of robot languages that can be verified and off-line

programmed in a software package.

• Automatic path - refers to the ability of the software package to automatically create

teach points using geometric features of CAD parts.

The other criteria are quite straightforward and do not need additional explanations.

The inputs in Table 3.1 (below) are based on the facts provided in previously

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mentioned technical articles, product related technical documentation and personal

experience formed by intensive analysis of four major robotics simulation packages (first

four rows in Table 3.1) over the course of the last two years. The term “HIGH” that

appears in the value section of the table is based on the benchmark set by the simulation

package with superior performance based on a certain criterion. The terms “MEDIUM”

and “LOW” denote gradually lower performances. This rating system is based on the

personal experience and may possibly be subjective. The author has not been able to find

any other, more objective simulation and off-line programming software package

comparison in the literature.

According to the comparison shown in the Tables 3.1a and 3.1b, one can conclude

that Workspace has better performance than the other Personal Computer based

packages, but it still legs behind the most renown packages in robot simulation domain.

However, Workspace has the highest performance/price ratio among all the packages in

this analysis. (Nof, 1999)

Compatibility Customizability Accuracy
Supported

languages
Automatic path Easy to use

IGRIP HIGH MEDIUM HIGH MANY YES NO

ROBCAD HIGH MEDIUM HIGH MANY YES NO

SILMA HIGH MEDIUM HIGH MANY YES NO

WS5 MEDIUM HIGH HIGH MANY YES ' MEDIUM

ROBOSIM MEDIUM LOW MEDIUM A FEW NO YES

TOYSIM LOW LOW HIGH ONE YES YES

SMAR HIGH LOW MEDIUM N/A NO YES

SPOTS LOW LOW LOW MANY NO YES

SIMRO LOW LOW MEDIUM A FEW NO YES

Table 3.1. a. Comparative analysis of the basic features and characteristics offered in the

examined simulation and off-line programming software packages.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dynamics

Module

Statistical

analysis
Robot models Rendering Price Platform

IGRIP YES YES MANY HIGH QUALITY HIGH Work Station

ROBCAD YES YES MANY HIGH QUALITY HIGH Work Station

SILMA YES YES MANY HIGH QUALITY HIGH Work Station

WS5 NO YES MANY HIGH QUALITY MEDIUM PC

ROBOSIM NO NO A FEW LOW QUALITY N/A PC

TOYSIM NO NO A FEW LOW QUALITY MEDIUM PC

SMAR NO NO A FEW LOW QUALITY LOW PC

SPOTS NO NO A FEW LOW QUALITY LOW PC

SIMRO YES YES A FEW LOW QUALITY LOW PC

Table 3.1. b. Comparative analysis of the basic features and characteristics offered in the

examined simulation and off-line programming software packages.

Among all the criteria presented above, accuracy certainly determines whether a

software package can be acceptable for robotics industrial applications. Off-line

generated robot programs generally show considerable differences between the desired

and the real motion after having been converted into robot controller’s binary forms.

Individual deviations include those from the nominal position and orientation of the end

effector, from the nominal path and the path velocity, as well as from the nominal cycle

time.

Investigations have been carried out in the last few years into increasing the

simulation accuracy (Nof, 1999). With that respect, one of the conclusions is that if a

robot’s kinematics chain is more exactly modeled, position and orientation accuracy will

be improved. Simulation packages that have accurate robot kinematics modeling ability

enable more consideration to be given to manufacturing and assembly errors of the

industrial robot axes and links, as well as, additional elasticity and the associated

curvature.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In some other robot simulation packages, the transformation (inverse kinematics)

and motion interpolation of the original robot controller software are integrated into the

off-line programming system. It is thus possible to achieve improved path accuracy and

other more realistic time-dependent characteristics, such as path accuracy, path velocity

or cycle time. This accuracy issue is what distinguishes Workspace from the other

Personal Computer based robotics simulation packages analyzed in this study. Workspace

has a motion planner developed according to Realistic Robot Simulation specification,

which can offer much more accurate simulation and therefore off-line programming to

the user (This area is very important part of the dissertation. Detailed explanations are

provided in sections 5.2.2.1 and 5.3).

3.3. INTRODUCTORY AND GENERAL PURPOSE ARTICLES

Articles written by Owen (1995), Owens (1991), and Weisel (1996) are very good

starting point to acquire the basic concept of robotic simulation and off-line

programming. They emphasize:

• The importance of simulation and off-line programming.

• Present the benefits for automation industry.

• Address the current problems and weak points.

• Foresee the future development in this area.

Because the first three points are fully elaborated in the dissertation, the next

several paragraphs will introduce the expected near-future development in industrial

robotics’ simulation and off-line programming area, as presented in the articles above.

Best estimates suggest the size of the North American simulation market today is

between $30 and $35 million (Nof, 1999). It is expected that in the next couple of years,

the market will have surged to over $100 million, and some authors expect even

exponential increase in the years to follow.

Within the next two to five years, the widespread entry of Personal Computer-based

open architecture controllers will be in demand. They will replace today's specialized

controllers that require specialized interfaces. The leading Personal Computer simulation

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software packages will be compatible with most, if not all, of those Personal Computer

controllers. Personal Computer-based, resident simulation in engineering at vendor

facilities, builder’s shops and at production facilities will be mandatory.

Simulation will be neutral to the robot and specific to the application. Systems

integrators and robot users will demand objective analyses of the entire range of robot

manufacturing, and robot manufacturers therefore will not be in the field of objective

simulation analysis of robotic systems.

Factories with robots from different manufacturers will increasingly rely on

simulation and demand services from companies that do not have ties to robot or supplier

companies. Users will insist on an objective evaluation of robot function and system

performance for a wide range of manufacturers' products.

New techniques of simulation and off-line programming will be developed. Virtual

reality and knowledge-based systems will be used to facilitate the interactions between a

robot and a user, and also to make the process faster, more “natural” and more precise.

The next section presents the theoretical outline for those two techniques.

3.4. NEW TECHNIQUES IN SIMULATION AND OFF-LINE

PROGRAMMING OF INDUSTRIAL ROBOTS

3.4.1. Virtual Reality Approach in Simulation and Off-line

Programming of Industrial Robots. (Boud and Steiner. 1999)

This technical article discusses the development of a new method for the off-line

programming of robotic devices, and also indicates some of the potential applications.

In comparison with Workspace (off-line programming software package used as a

software tool in this thesis), off-line programming within a virtual environment could

reduce the required skill levels of a programmer, reduce the programming times, allow

the operator a “natural” interface with which the operator would conduct the task in the

real world, and reduce the monotony.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The use of Virtual Reality as an off-line programming technique is a natural

evolution of simulation packages already available for the robotics, including Workspace.

The major areas where Virtual Reality technology can be applied to the robotic

applications can be listed as follows:

• Simulation o f manufacturing plants, and planning o f robotic workcells. This can give

the operator a sense of “being there”, interacting with the virtual environment. By

using shuttering glasses, the user can obtain a perception of depth, which would not

otherwise be available in a two-dimensional format. It is as close to three-dimensional

perception as possible.

• Off-line robot programming from manipulations carried out by the “natural”

movements o f the operator. This follows on from a similar principle previously

known as a “robot training arm”. This required the robot to be stopped during

production in order to be programmed on-line. However, using for example an

instrumented glove as part of a Virtual Reality system, the operator's gestures are

fully captured and hence the user's movements are deemed to be more “natural”.

• Teleoperation o f robots in remote places. Applications in this area include the control

of robots in hazardous environments or in distant locations (such as space

exploration) where operations are extremely expensive both to plan and to execute.

Advantages of using Virtual Reality based systems over Workspace are as follows:

• Immersibility. The presentation of pictures in a three-dimensional view. An operator

visualizes a three-dimensional world with the viewpoint changing interactively when

the user moves his head. An illusion of the operator being inside is therefore obtained.

Workspace has dynamic zoom and dynamic orbit functions that cannot achieve such a

high level of three-dimensional representation.

• Interactivity. Advanced input devices such as DataGloves and six degree of freedom

Joysticks enable the operator to manipulate interactively within the virtual

environment. Workspace uses standard input devices - mouse and keyboard, which

are not that convenient.

• Dynamics. Virtual Reality systems are characterized by a high arithmetic and

graphical performance. Immersibility and interactivity need a system that can react

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rapidly to the inputs of the operator. This guarantees a continuous simulation of

dynamic processes. Workspace has simulation engine under development, still

suffering of some functional errors. Also, Workspace still cannot play real-time

simulations, although the real time/simulated ratio is mostly acceptable (between 1:2

and 1:3).

An initial Virtual Reality system is proposed by the authors (Figure 3.1.), and is

under consideration for development at the University of Birmingham by the Intelligent

Systems and Robotics research Group.

Head Mounted Display

Operator

Voice Recognition

System

3D Sound

CyberGlove

Haptic Device

Silicon Graphics Workstation

 ± ________________________________
Robot Task Programming Software

• Task Planning

• Collision Detection

• Calibration

I
Robot Workcell

Figure 3.1. Initial proposal of the off-line robot programming facility being developed at

the University of Birmingham.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.2. Knowledge Based Simulation and Off-line Programming

Approach. (Bernhard. Schahn. and Schreck. 1999)

The knowledge based programming procedure is composed of two phases (Figure

INPUTS

PHASE 1 PHASE 2

PROGRAM
INFORMATION

PRODUCTION
KNOWLEDGE

JOBFRAMES
AND

PARAMETER
^ SPACE .

DEFINITION
PARAMETER

SPACE

DEFINITION
PARAMETER

VALUES

USER DIALOG

Figure 3.2. Principal knowledge based approach proposed by the authors.

In the first phase the required production task specific parameter space is

determined. In the second phase the parameter values are defined.

Based on the geometric task information described by the jobframes and the actual

state of the production cell, the program information can be in principle derived from the

rules representing detailed production knowledge.

The principal system architecture is shown (Figure 3.3.) which is prototypically

realized. The main elements of this architecture are:

1. Production cell components,

2. Static cell model,

3. Dynamic cell model,

4. Production knowledge, and

5. Control strategies.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All the elements are described subsequently.

P r o g r a m -
In fo rm atio n

C o n t f o l - S t r a t e g y
(d o m » l n - l n d * p » n d « n t)

P rogram m ing
D ialog

P r o d u c t io n T a s k K nowledg*
(d o m a l n - s p s c i t i c)

E xtension /
Modification

D ynam ic Cell Modell Set-up

C ell C o m p o n e n ts

Figure 3.3. Prototypically realized system architecture

The production cell components (such as: robots, robot controllers, workpieces, and

tools) are the basis for cell modeling. According to the authors, frames seem to be the

most appropriate solution for modeling the components. Frames are comparable with

named entities consisting of slot-value pairs. Thereby the entities characterize objects and

the slots their attributes, which may have values. The frames may be structured in classes,

sub-classes and instances of classes. Figure 3.4. presents the frame representation of a

welding gun.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S lo t inherit from
F r a m e F ro< *uctio r>
M ean
S lo t inherit from
F ra m e T o d

HI

S lot inherit from
F ra m e P ro te c tio n
M ean
S lo t inherit from
F ra m e Tool

Slot inherit from
F ram e WoKJw^g Gun

m pedftc eiot only
for G 17 3 0

W elding G u n

G eneralization of: C1730
Specialization: Tool

C om pany:

Weight:

W elding Perform ance:
Nominal Power:
E lectrode Force
Maximum Lift:
Suitable for:
{Value in C lass Robot)
W elding

ts-a

C l 7 3 0

G eneralization of: /
Specialization; W elding Gun

C o m p a n y : A rco

W e ig h t: 4 2 ,5 Kg

W elding Perform ance: 1.5 mm
Nominal Power: 17 kVA
Electrode Force: 250 dAN
Maximum Lift: 25 mm
Suitable for: 1R 160
(Value in C lass Robot)
W elding;

Arm D istance: 75 mm

Figure 3.4. Frame representation of welding guns.

The static production cell model is represented by the fixed configuration of

selected cell components. Similar to components, each production cell is described by a

frame, which can be associated with the cell components by the relation “contains”,

defined as a slot in the frame.

The dynamic cell model reflects the states of the components and their

interrelations within a configured cell. The interactions with other components are

represented by special relations, determined in the static cell model. In dynamic cell

model methods and rules are added in order to change the states with regard to the

connections among the components.

The next important area for the realization of the system is related to the acquisition

and representation of the production knowledge, required to infer the program

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information. It can be subdivided into acquisition and representation of general valid

facts, e.g. material constants and specific, mostly incomplete facts especially regarding

jobframes, the cell model and general facts related to the program information. The first

area of production knowledge is mainly represented by frames, while for the latter one, a

rule representation was used.

To get the system working, additional procedures are required. They are realized by

introducing the control strategies, which define the actions of the system independent of

the production specific knowledge and the modeled cell.

To derive the parameter values the system tries to infer a value by examining every

possible rule chain without asking the user. If a complete chain to infer the parameter

value cannot be found, the system asks the user to provide the value.

The main similarity between presented system and Workspace is that the Program

Information in the proposed system and geometric points in Workspace are virtually the

same. Program Information is composed of Jobframes, Motion Information, Sequence

Information, Process Parameter and Cell Information. The same items, just named

differently, are contained in GP Properties dialog box in Workspace.

The main difference is related to user interaction. While in Workspace user needs to

completely define all the parameters important to the application that will be simulated,

the presented system does that automatically. The system tries to infer a parameter value

by examining every possible rule chain without asking the user. If a complete chain to

infer the parameter value cannot be found, the system then asks for the user’s input. The

system has a knowledge base, so the process parameters are chosen to optimize the work

path, thus eliminating user’s input errors. The corresponding benefit is that the user does

not need to know a lot about the process that he wants to simulate, the system will do

most of the “thinking”. On the other hand, Workspace, in case of undefined parameters,

uses default values that may or may not be appropriate for a simulated process.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

ROBOT MODELING AND

KINEMATICS

This chapter contains the following sub-topics:

• The architecture of mechanical manipulators.

• The major tasks of robot kinematics.

• The review of the CAD based graphic simulators for robotic systems.

• The list of software modules that comprises a typical robotics simulator.

• The description of the workpiece and the 5-axis gantry robot CAD and kinematics

design techniques used in this work.

4.1. ABOUT ROBOT MODELING AND FUNDAMENTAL

QUESTIONS OF ROBOT KINEMATICS

A mechanical manipulator can be modeled as an open-loop articulated chain with

several rigid bodies (links) connected in series by either revolute or prismatic joints

driven by actuators. One end of the chain is attached to a supporting base while the other

end is free and attached with a tool (the end-effector) to manipulate objects or perform

assembly tasks. The relative motion of the joints results in the motion of the links that

positions the hand in a desired orientation. In most robotic applications, one is interested

in the spatial description of the end-effector of the manipulator with respect to a fixed

reference coordinate system.

Robot arm kinematics deals with the analytical study of the geometry of motion of

a robot arm with respect to a fixed reference coordinate system as a function of time

disregarding forces and moments that cause the motion. Thus, it deals with the analytical

description of the spatial displacement of the robot as a function of time, in particular, the

relations between the joint-variable space and the position and orientation of the end-

effector of a robot arm. This section addresses two fundamental questions of both

theoretical and practical interest in robot arm kinematics:

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. For a given manipulator, given the joint angle vector q(t) = (qi (t), q2 (t), . . . qn(t))T

and the geometric link parameters, where n is the number of degrees of freedom, what

is the position and orientation of the end-effector of the manipulator with respect to a

reference coordinate system?

2. Given a desired position and orientation of the end-effector of the manipulator and the

geometric link parameters with respect to a reference coordinate system, can the

manipulator reach the desired prescribed manipulator hand position and orientation?

And if it can, how many different manipulator configurations will satisfy the same

condition?

The first question is usually referred to as the direct (or forward) kinematics

problem, while the second question is the inverse kinematics (or arm solution) problem.

Since the independent variables in a robot arm are the joint variables and a task is

usually stated in terms of the reference coordinate frame, the inverse kinematics problem

is used more frequently.

Since the links of a robot arm may rotate and/or translate with respect to a reference

coordinate frame, the total spatial displacement of the end-effector is due to the angular

rotations and linear translations of the links. Denavit and Hartenberg (1965) proposed a

systematic and generalized approach of utilizing matrix algebra to describe and represent

the spatial geometry of the links of a robot arm with respect to a fixed reference frame.

This method uses a 4 x 4 (four rows and four columns) homogeneous transformation

matrix to describe the spatial relationship between two adjacent rigid mechanical links

and reduces the direct kinematics problem to finding an equivalent matrix that relates the

spatial displacement of the "hand coordinate frame" to the reference coordinate frame.

These homogeneous transformation matrices are also useful in deriving the dynamic

equations of motion of a robot arm.

In general, the inverse kinematics problem can be solved by several techniques.

Most commonly used methods are the matrix algebraic, iterative, or geometric

approaches.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1. CAD based graphic simulators for robotic systems

CAD-based graphic simulators for robotic systems allow CAD modeling of robot

manipulators and facilitate the solutions for forward and inverse kinematics problems.

Cell design, robot selection, and verification of the robot reach and of the correct

placement of the cell elements, can all be done in a virtual CAD and simulation

environment.

The main elements of a CAD based graphic simulation system are (Nof, 1999):

• A CAD solid modeler, which allows the user to build a database with a valid and

complete geometric description of the robot and its environment. This CAD database

includes the models of the robot links and all the objects in the cell environment:

machines, fixtures, feeders, grippers, parts, etc.

• Built-in libraries of commercially available industrial robots, common production

equipment, and application-specific options that include tooling, such as a variety of

commercially available grippers, spot weld guns, and arc weld guns. The libraries are

an integrated part of the system and can be expanded by inclusion of elements from

the CAD database created by the user.

• Data translators for standard data-exchange formats such as IGES, DXF, and STEP.

These translators allow the importing of models of products, tools, and parts from

other corporate CAD systems and support the rapid development of accurate

simulation models. They also allow the exporting of model data to be used by other

systems.

• Kinematics module, which allows the modeling of the robots and other mechanisms.

This module includes direct and inverse kinematics algorithms, which are necessary

to calculate the robot envelope, its reach, and the motion in space during simulation

of the robot’s movements.

The various commercially available robotic simulation packages provide the basic

tools needed for robotic cells and system design. These basic tools are essential in order

to rapidly design and deploy automated manufacturing systems. A software package

called Workspace has been developed as a visualization tool for engineers and managers

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involved in the process of designing or debugging new or existing robot installations. In

this dissertation Workspace5 software package has been used as a CAD graphics and

robot kinematics modeling platform.

4.2. THE DESCRIPTION OF ROBOTIC CELL DESIGN

PROCEDURE USED IN THE DISSERTATION

The following step-by-step procedure has been used to completely define all the

elements of the robotic cell, designed for simulation and off-line programming testing:

the manipulator, the workpiece and the cutting tool. The manipulator has beem modelled

according to the technical specification of an AF-Series 5-Axis Three Dimensional

Shapecutting Machine, manufactured by Flow Robotics Company. Similarly, the CAD

model of a cutting tool has been created based on PASER3 waterjet cutting tool

specification. The tool has been manufactured by Flow Automation Company.

The procedure is as follows:

• Create a CAD solid model of the robot.

• Rename the robot CAD components to have the Workspace required names. For the

robot base use the robot model’s name, and for the robot links the following names

should be used: Linkl, Link2, Link3, Link4, Link5 (Figure 4.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Figure 4.1. CAD structure of the manipulator composed of 5 links connected at joints.

• The next construction stage is to join the links into a robot structure. For this

operation co-ordinate frames must be placed at the joint centres and oriented

correctly.

• Select the base of the robot and use the menu options to create the robot.

• Each joint must be in the correct position. To change their positions, use appropriate

menu options.

• Define the matching kinematics template by entering the values of kinematics

parameters in Denavit-Hartenberg matrix template and associate it with the CAD

object of the manipulator (Figure 4.2).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K inem atics T em plate m l

Template: |3T2RfCNC "3

Template
Param eters

Jorit _ | Thetaj . d; A1 A i _ L .Aipna
1 -90 X X 90
2 90 X X 90
3 0 X X 0
4 l l | | | | s ^ X 0 30
5 ^ S i t 0 0 -30

Current
Parameters:

Jpw. ,____Theta,D: . A Alphaj
1 -90 00 -1384.00 0.00 90.00
2 9000 •4334.43 0.00 90 00
3 0.00 1573.18 462.59 -0.00
4 -0.00 -928.19 000 30.00
5 0.00 0.00 0.00 -30.00

Twist Angle: JoTE

OK |

Numerical O ptions..

Cancel

Figure 4.2. Inverse and forward kinematics template that shows the parameters of the

Denavit-Hartenberg’s matrix

• Add the World Coordinate Frame to the robot.

• Add the Tool Coordinate Frame to the robot (Figure 4.3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

aW ord

\

Figure 4.3. Position and orientation of the Tool and World coordinate frames attached to

the CAD model of the manipulator

Enter the robot limits for each joint (Figure 4.4).

Enter the robot Velocity and Acceleration values (Figure 4.4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

J o in t P io p erlie s - FLOW E l

Nm [airiBMBIIH

Type [Translational "

1 Parent (FLOW

~3 O dd IUNK1 ■3 ^ (!

- - Jont Eupmnon
x(S ir-r}noifSm -^J VlMir | Robot (77-r
Y |4334 43-jJpteh|aO O -M

Z [-646.99 j-jY aw [-9000 - j j

"3
. I i Value j Functor jjo H _ F L O W U N K 1 3I

--------------------: -Acbons - - ■ —

Joint Mnmum |*^ ̂ MaMmum Velocity Monitor P

Joint M am um |^300 5 Max. Acceleration j0 4905

M o n taL m tt P
I AlJorts..

j

OK Cancel

Figure 4.4. Robot joint properties dialog box that defines joint positions, joint limits,

joint velocities and accelerations, and joint connections within a kinematic chain.

• Check the robot joint motions for all the possible robot link collisions. If a collision is

detected, modify the model so that the robot is not allowed to collide with itself.

Robot’s collisions with the simulation environment entities (other robots,

mechanisms, turntables, conveyors, etc.) Workspace detects automatically during the

simulation run time.

• Define the Home position of the robot.

• Define the Zero position of the robot.

• When the robot model is complete, define robot general properties (See Figure 4.5).

3
ID |Options) Lratj | Khemabct j

Mantiacturo |FIowRotalic«lnc.

Robot ID. |F10W

Robot Batch Numb* jo

Control* :■ ■■■ [Alen-Btadey 3/260

Act/*, Tod jWATERJET

R obot P roperties

Cancat [| Hell

Figure 4.5. Robot properties dialog box that provides general information about the

manipulator and its controller.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Check the robot-working envelope. The working envelope is important to show the

limits of robot’s operational space and also for safety considerations (Figure 4.6).

Figure 4.6. Robot’s working envelope created separately for axes 1 and 2.

• Design the CAD model of the workpiece that will be complex enough to require 5-

axis machining. Designing a workpiece that would require 3 or 4-axis machining is

possible of course, but the complex 5-axis robot kinematics wouldn’t be fully tested

in that case. Therefore, a wheel-shaped workpiece has been modeled, with the inner

contour that requires synchronous cutting motion of all five robot axes (Figure 4.7).

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7. CAD model of the test workpiece that requires 5-axis machining (four

symmetrically located inner contours require 5-axis cutting motion, for the other

contours, 2-axis machining is sufficient).

• Design the CAD model of a waterjet cutting tool. According to the technical

specification (Flow Automation Company), PASER3® waterjet cutting head has

been modeled and attached to the robot’s flange (end of joint five).

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7. The CAD model of PASER3® waterjet cutting head attached to robot flange

(end of Joint 5).

At the end of the presented procedure, the modeled robotic cell will contain all the

information required by the simulation package:

• The Denavit-Hartenberg matrix defining the relationship between the robot joints.

• The name of the inverse kinematics template used by the robot.

• The total number of joints.

• The type of each joint (rotational or translational).

• Joint limits.

• Joint maximum velocities.

• Joint maximum accelerations.

• Robot zero position.

• Robot home position.

• CAD model of the workpiece that will be used for testing.

• CAD model of the waterjet cutting tool.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER V

SIMULATION MODULE

DEVELOPMENT

5.1. CREATON OF A ROBOT LANGUAGE TRANSLATOR

Language translators are software programs intended to take input files written in

one language and to format the output files in different, destination language. Their area

of application is wide, ranging from interpretation of natural languages to translation of

computer programming languages into industry based machine specific programming

languages.

In parallel with the improvements of the algorithms, methods, and techniques for

defining and realization of translators, the appropriate software tools have been

developed for automatic generation of their particular parts, the so-called compiler-

compilers. The use of these programs intended for compiler generation facilitates the

work on the translator construction, and frees the programmers from thinking about

techniques and computer limitations with respect to translator implementation.

5.1.1. Language translators created by compiler-compilers

Compiler-compilers are used to generate language processors (such as compilers,

translators, or interpreters) from high-level descriptions. After specifying the grammar of

the language to be translated, the compiler-compiler creates a program that processes

input text written in that language. This program hierarchically decomposes the input text

into phrases. For each phrase the semantic actions can attached to grammar rules, which

are elaborated when the corresponding phrase is processed. Semantic actions contain the

code that matches the syntax of a language to be translated with the appropriate syntax of

a destination language, and print out the destination language syntax in the output file.

Technology from classical compiler construction becomes more and more

important in the fields of domain specific languages, document processing, and automatic

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software generation. Authors working in these areas are experts in their field, but not

necessary experts in the field of parsing technology. Whereas most programmers are

familiar with the notion of grammar scripts, it requires special education to write a

grammar script in such a way that it fulfills the requirements of a specific parsing

approach.

Compiler-compilers are based on interaction between a lexer and a parser. Section

2.4 describes the basic concepts of lexing and parsing. Also, Appendix A presents

language syntax for parser generation, and Appendix B defines the most important

parsing and lexing terms. Thorough understanding of sections mentioned is absolutely

necessary in order to follow the work presented in this chapter.

The structure of a parser is composed of three sections, the definition section, the

rule section, and the subroutine section.

The first section defines all the tokens expected to be received from the lexical

analyzer. Also, this section is often used as a header section for local and global

variables, functions and subroutines.

The rules section describes the actual grammar as a set of production rules or

simply rules. Each rule consists of a single name on the left-hand side of the assignment

operator (“=”)> a list of symbols and action code on the right-hand side, and a special

symbol indicating the end of the rule. By default, the first rule is the highest-level rule.

That is, the parser attempts to find a list of tokens, which match this initial rule, or more

commonly, rules found from the initial rule. The expression on the right-hand side of the

rule is a list of zero or more names. The symbol on the left-hand side of the rule can be

used like a token in other rules. From this, the complex grammars can be built. Every rule

is followed by the action code.

The action part of a rule consists of a blocks of code that can be written in one of

the programming languages, depending on the compiler-compiler software utility used.

Also, different compiler-compiler software packages execute action code at different

times with respect to parsing phase. Thus, a parser can execute an action at the end of a

rule immediately after that rule gets matched, or can completely execute the action code

after the recognition of all the grammar rules.

The third and final section, is the user subroutine section. This section can contain

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any programming code written in appropriate programming language and is completely

copied into the resulting parser. The minimal set of functions has to be provided in this

section necessary for a parser and a lexer to compile: main() and error(). The main

routine keeps calling the parser until it reaches the end of the input file. The error routine

handles the input that cannot be parsed.

When a lexer and a parser are used together, the parser is the higher level routine. It

calls the lexer whenever it needs a token from the input. The lexer then scans through the

input recognizing tokens. As soon as it finds a token of interest to the parser, it returns to

the parser, returning the token’s value.

Not all tokens are of interest to the parser. In most programming languages the

parser doesn't want to receive comments and whitespace for example. For these ignored

tokens, the lexer doesn't return so that it can continue on to the next token without

interacting with the parser.

5.1.2. Creation of G-code language translator

The purpose of the G-code language translation is to use the input file written in G-

code language and automatically generate the matching code in Workspace Simulation

Language. That custom-made simulation language then communicates with default

motion planner and simulation engine in order to display the simulation of the G-code

input file.

For the creation of the G-code language translator compiler-compiler software

packages PRECCX and Flex were used. Therefore, the compilers were coded in C

language, but not by hand. The source code for a C language compiler was automatically

generated by Flex and PRECCX.

PRECCX, the "PREttier Compiler-Compiler" is very similar to much better-known

compiler-compiler software YACC. Unlike YACC, PRECCX creates top-down parsers

with infinite lookahead capability, parameters, arbitrarily complex compound expressions

and synthesized attributes. Refer to Appendix A for more information about using

PRECCX.

Flex is a popular tool for developing lexical analyzers. It takes an input robot

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program file and tokenizes it, that is, it identifies different strings as being keywords,

numbers, identifiers, etc. These tokens are then passed on to the grammar parser, where

they are used to match the semantic rules.

5.1.2.1. The translation process

Flex and PRECCX together form a compiler-compiler. Each takes an input file

conforming to a special format, and outputs C source code. The output code of these

programs is then compiled and linked to create an executable. That executable performs

the translation from a native robot language into a Workspace Simulation Language

module.

Figure 5.1 depicts the language translation process used. Language description

represents the set of grammar rules that describe G-code language syntax. Compiler-

compiler (designated with C-C symbol) software is a combination of Flex lexer and

PRECCX parser generators. Source program is generated in ANSI C language. Compiler

is the standard Visual C++ compiler for Windows® environment. Data identifier on the

same figure is a general term for input file, which in this case is a G-code language part

program. Program output is a translated file written in Workspace Simulation Language.

INPUT P R O C E S S O UTPUT

CompilerLanguage.
Description

Executable
ProgramSource

Program

Program
OutputData EXECUTABLE

PROGRAM

C-C

COMPILER

Figure 5.1. The flowchart that represents all the stages of language translation procedure,

designating the inputs, processes and outputs.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next three sub-sections will describe the major stages in language translator

creation, focusing on the grammar coding and the solutions for the parser action

execution and lexer ambiguities.

5.1.2.2. Writing the grammar rules to describe the syntax of G-code language

Describing the grammar of G-code language was not very difficult task from the

programming perspective, but it required considerable amount of time to be completed.

Relative simplicity of the task was determined by moderately complex G-code

language syntax. The language is composed of keywords mainly, with just a few variable

data types. Also, the language functions and subroutines cannot accept any parameters,

i.e. only void arguments can be passed, which makes the whole issue much simpler.

However, the language is very extensive, with more than two hundred keywords and

structures, each containing several arguments. The language abundance combined with

relatively old-fashioned PRECCX debugger (the debugger works in DOS environment

and its error locating accuracy is very low), made the whole task very time consuming

and prone to errors. But, if the grammar was hand-coded in C programming language, the

coding performance would have been definitely worse (more time, much more code, very

prone to errors). G-code grammar written using PRECCX syntax rules is presented in

Appendix E.

5.1.2.3. Solution for the PRECCX action execution problem

Parser actions represent blocks of code written in a programming language (in this

case in C language) that are executed after particular grammar rule (or rules) has been

matched. In this dissertation, the C action statements were primarily used to print into the

output file Workspace Simulation Language function calls. With respect to that, section

5.2.1 was written to describe the main characteristics of simulation languages in general,

while section 5.2.2 explains Workspace Simulation Language embedment into the action

portion of the language translator.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This section presents how PRECCX parser generator was customized for G-code

language translation. PRECCX must be customized because of its characteristic that the

parsing is done first, and then the actions are performed. This means that all of the

variables, which a developer has come to rely on in YACC to pass variable values to the

action statements (yytext), may have been overwritten numerous times since the parse

phase.

One may be thinking that he could just store a list of what tokens were read in

which order, then when PRECCX worked through the actions, the next token in the list

he could read off. The problem with this is that PRECCX goes backwards and forth

through the parse checking out all possible grammar rules, before deciding on what it

should do, so the actions may be repeated a large amount of times before doing anything

useful. Additional set of C functions needed to be written in order to avoid incorrect

output. The source code for those functions is presented in Appendix F.

The way around this is to make a list that always returns the right string. It can be

done with the function:

Int ukey(int * String, int length)

All that needs to be done is to pass the token found at the beginning of a string and

the length of a string. Then, the checking is performed to see if the string is already on the

list. If so, a unique value is returned which can be, in turn, returned to PRECCX.

For instance,

@ integer = digiAx { digit *j\y (@ $y ? ukey((int *) $x, $ y -$ x) : ukey((int *) $x, 1) @J

@ digit = (isdigit) f@(int) pstr @}

In the above code a value pstr is passed back with every digit, pstr is an integer

pointer which PRECCX uses to know where it is in the parse. When an integer has been

matched, the value returned by { digit *} is checked (if there have been no occurrences,

then it returns 0, otherwise it returns the value returned by the last occurrence). If the

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value in $y is non-zero, then the number’s length is going to be the difference between

the two pointers, otherwise the length will be 1.

The ukey function looks to see if the string is in the list, if so then it returns the

position, if not, then it adds a new string to the list and returns its position. To use the

string stored, the char * getstring(int) function is used, to which the ukey position of the

string wanted to be read has been passed, and it returns the string value. If the value

passed is zero or the value is beyond the end of the list getstring just returns an empty

list.

So, that’s how the terminals such as numbers, strings and comments are handled.

Abstract syntax trees (AST) have to be done similarly, but not using the same functions.

Instead of ukey, the ASTukey function is used, in much the same way, except it takes

numerical values to point to the left and right branches. For example:

@ expr = numbeAx < ’+ ’> expr\y { @ ASTukey($x, “+ ”, $y) @}

@ | numbeAx {@ $x @}

@ number = integeAx { @ ASTukey(0, getstring($x), 0) @}

The simple expr expression always returns the output of an ASTukey. If the

expression should be written into a file, then the output Jree function is used for that:

@ assignment = <Hello> < ’= ’> expAx {: fprintfioutputJlle, “\nHello = %s",

output_tree($x));:}

Only the functions that return int can be put in {@ @} brackets, as these brackets

themselves contain the return value used in a function. Semi-colons shouldn’t be put after

the statement, but there are mandatory after the statements contained within {::}.

The PRECCX actions are attached to grammar rules and presented in Appendix E.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.I.2.4. Solution for the Flex ambiguity problem

The disadvantage of the tradeoff made to gain PRECCX’s infinite lookahead is that

it lacks the typing capability of YACC. The result is that it is not possible to pass union

structures in PRECCX. This creates some difficulty in the passing of tokens from the

lexer to the parser, to the extent that it is not possible to do all lexical analysis with Flex.

The recognition of identifiers and data literals must be done in PRECCX, leaving FLEX

to recognize keywords and pass on other symbols one character at a time.

All of this means that numbers, string literals, comments and identifiers have to be

handled through PRECCX instead of Flex, and this brings up a couple of problems.

The first one can be easily depicted by the following case: Translating the language

that has a keyword called “Print” and an identifier called “Printed”. If looking for

identifiers using PRECCX, the Flex file will be something like:

Print {riTemp = Print; output(nTemp); return nTemp;}

{ nTemp - yytext; output(nTemp); return nTemp;}

The problem arises, when Flex inputs the following:

Printed = True

The tokens it passes to PRECCX will be:

<Print> < ’e ’> < ’d ’> < ’= ’> ...

This will certainly cause problems, because the keyword “Print” will be recognized

instead of indetifier “Printed”. What needs to be done is to tell Flex to match the word

Print, only if it’s not followed by a character, which would make it an identifier. One way

to deal with that is:

punct [V \n”()<>,]

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

%%

Print/{ punct} {nTemp = Print; output(nTemp); return nTemp;}

{ nTemp = yytext; output(nTemp); return nTemp;}

The meaning of is that Flex will only match the rule, if it’s followed by any

symbol after the

The second Flex problem is somewhat more complicated. Having the following

identifier:

ImPrint

Flex would now match < 7 ’> < ’m ’> <Print>. The solution was found in using a

feature called exclusive start states. That feature allows setting the rule in Flex that will

always match a letter only as a letter, once it’s started matching an identifier. This is

done as follows:

%x IDENT

%{

%}

punct [\t\n ”()<>,]

%%

<IDENT> [A-Za-zO-9]\J

<IDENT>.

<IDENT> {eol}

75

{ nTemp = yytext; output(nTemp); return nTemp; }

{ BEGIN INITIAL; unput(yytext[0]); /* allow this to be

checked by the initial state*/}

{ BEGIN INITIAL; unput(yytext[0]); /* allow this to be

checked by the initial state*/}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Print\(pucnt}

[a-zA-Z]

(nTemp = Print; output(nTemp); return nTemp;}

{ BEGIN IDENT; nTemp = yytext[OJ; output} nTemp);

return nTemp; }

{ nTemp = yytext; output}nTemp); return nTemp;}

The %x IDENT part declares an exclusive start state called IDENT, and the

<IDENT> specifiers are the rules which Flex will only check when it has been placed in

the IDENT start state.

When Flex is in its INITIAL start state it matches a single character, returns that

character, and then places the program into the IDENT start state. The IDENT start state

then works through all of the stream, passing back the single characters, until it reaches a

character which is not a valid character for an identifier. When it finds such a character it

places it back on the stack (to allow it to be matched by the INITIAL start state) and then

switches back to the INITIAL state before carrying on again.

5.2. ADDING SIMULATION LANGUAGE FUNCTION CALLS TO

ACTION STATEMENTS OF THE LANGUAGE TRANSLATOR

A simulation language represents an interface between a programmer, at one side,

and a motion planner and simulation engine of a simulation software package on the

other side. A program written in a simulation language is interpreted by simulation

software and significant parameters are then sent to the software’s motion planner to

calculate the motion trajectory and motion parameters, as well as to the simulation engine

to generate a list of simulation events. Simulation languages can be structured or object-

oriented.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.1. Simulation languages in general

Structured simulation languages offer prespecified functionality produced in

another language (assembly language, C, FORTRAN, etc.) and the user cannot access the

internal mechanisms within the language. Instead, only the vendor can make

modifications to the internal functionality. Reusing language features requires that the

user code any new features as though they were a completely separate package.

Therefore, full integration with the existing language is not possible.

Also, users have only limited opportunity to extend an existing language features.

Some simulation languages allow for certain programming-like expressions or

statements, which are inherently limited. Most languages allow the insertion of

procedural routines written in other general-purpose programming languages. However,

none of these procedures can, in any way, become an inherent part of the preexisting

language.

Thus none of these approaches is fully satisfactory because, at best, any procedure

written cannot use and change the behavior of a preexisting object class. Also, any new

object classes defined by a user in a general programming language do not coexist

directly with vendor code.

Object-oriented simulation deals directly with the limitation of extensibility by

permitting full data abstraction as well as procedural abstraction. Data abstraction means

that new data types with their own behavior can be added arbitrarily to the programming

language (abstract data types). When a new data type is added, it can assume a role as

important as any implicit data types. For example, a user-defined data type that manages

complex numbers can be as fundamental to a user’s language as the implicitly defined

integer data type. In the simulation language context, a new user-defined robot class can

be added to a language that contains standard resources without compromising any aspect

of the existing simulation (Banks et al., Discrete Event System Simulation, 1996).

The advent of Visual Basic, C++, Java, and other object oriented programming

languages facilitate a fundamentally different approach to the design and implementation

of simulation software that specifically addresses the shortcomings of existing tools. In

particular, the combination of process-oriented simulation, an object-oriented

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programming language, and the Component Object Model (COM) software architecture

will allow models to be packaged in a way that increases accessibility to the user without

the compromises required by increased separation of the user from the underlying

modeling language.

Despite common origins and the ideal suitability of object-oriented methods to the

task of structuring process models, the simulation community has been slow to adopt

object-oriented methods. A contributing factor has been a lack of commercial simulation

software tools with coherent and accessible support for object-oriented process modeling.

In fact, an appreciation for object-oriented methods and their attendant benefits requires

only the understanding of a few simple concepts; namely, encapsulation, classes,

messages, and inheritance.

Objects and their software implementation are patterned after real-world objects.

They have data (attributes, characteristics, properties, etc.) that represent the state of the

object and a set of behaviors that describe the ways in which they can be operated on. In

an object-oriented approach, the association between the state of an object and its set of

behaviors is made explicit via encapsulation whereby both are defined in an integral, self-

contained unit called a class.

This collective definition serves as a template or blueprint for creating particular

instances of the corresponding class. Each instance (of which there may be many)

possesses its own unique copy of the state-related data defined by the class but shares the

behaviors. Communication between objects is confined to a formalized system of

messages. It is convenient to think of message generation and processing as just

additional types of behaviors defined on the sending and receiving classes. Finally,

inheritance is a mechanism by which new classes can be defined as extensions of existing

ones. The derived class has all the characteristics and behaviors of the parent class (which

may itself be derived from others) plus some added functionality in the form of new

characteristics and/or behaviors.

It is easy to see in these concepts two particularly natural applications to process-

oriented simulation modeling. One is the use of encapsulation to make explicit the

association between the representation of an entity and its sequence of processing steps.

Another is the encapsulation of extended sequences of low-level processing steps into

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sub-models whose behavior can be invoked as a single high-level processing step by

instances of a desired entity class. These two notions are central to the design of

Workspace Simulation Language (WSL) which implements an object-oriented, process-

modeling capability within the framework of the Visual Basic for Applications (VBA)

programming language.

5.2.2. The output from the language translator - Workspace Simulation

Language (WSL)

At the internal level of Workspace, all robots are considered equal. That is, every

robot model is controlled with the same simulation language, and every robot can

perform the same operations. This contrasts sharply to real life, where each brand of

robot uses a proprietary language, and may perform different operations than other

manufacturer’s robots.

An end user of Workspace should be able to load a program written in a robot’s

native language and see the Workspace model perform just as a real robot would, if

executing that program. It is here that translation becomes necessary: before the robot's

program can be simulated, it must be converted from the proprietary native language into

the simulation language used by Workspace.

Workspace Simulation Language is the custom made simulation language built

upon the foundations of Visual Basic for Applications language. In other words, highly

customizable VBA language has been complemented with several robotics related

classes.

The language translator, described in section 5.1, in its action statements contains

the source code written in C programming language that prints out appropriate

Workspace Simulation Language instructions (for each of the matching robot language

instructions) into the output file. That output file is then used to control the overall

behavior of the robot model in simulation.

Robotics related classes in Workspace Simulation Language were implemented

according to the recommendations of Realistic Robot Simulation (Realistic Robot

Simulation) specification, therefore the output statements from the language translator

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contain programming calls to Realistic Robot Simulation-based class members (variables

and methods).

The Workspace Simulation Language functions are defined in the motion planner

and therefore coded in C++ programming language. The communication between the

Workspace Simulation Language and the motion planner is established through the

Component Object Model interface.

Figure 5.2 depicts the robot language translation process, followed by the

simulation of the translated program, showing the parts designed and implemented by the

author.

Component Object Model

interface - maps Workspace

Simulation Language

functions with their C++

definitions in the motion

planner

Language translator

Language

Grammar

execution

Action

code

G-code part

program input

file

Output file in

Workspace

Simulation

Language

Workspace

motion planner

- contains the

C++ definition

of Workspace

Simulation

Language

functions

Figure 5.2. The relationship between the language translator and the Workspace motion

planner established through the Component Object Model interface.

In the next two subsections (5.2.2.1 and 5.2.2.2) robotics-related instructions of

Workspace Simulation Language will be described (based on the recommendations of

Realistic Robot Simulation specification), as well as the Visual Basic for Applications

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

language function library written to facilitate the embedment of Workspace Simulation

Language into the action portion of the language translator.

5.2.2.I. Realistic Robot Simulation services as a part of Workspace Simulation

Language

Realistic Robot Simulation interface specifies almost two hundred services, more

than any one robot can actually use. Robot manufacturers who support Realistic Robot

Simulation provide a subset of the services, based on the capability of their robots.

Examples of services provided by Realistic Robot Simulation are the setting of a speed

and acceleration, kinematics operations, (conversion between Cartesian and robot joint

values) and motion execution.

The main Realistic Robot Simulation services used for robot language translation

are:

• GetlnverseKinematics - used to compute inverse kinematics.

• GetForwardKinematics- used to compute forward kinematics.

• GetCellFrame- used to give information about specified cell frame.

• ModifyCellFrame - used to modify robot’s Tool and Base frames.

• SelectWork.Fram.es- used to select from the predefined frames (object and tool

frames).

• SelectTargetType- used to select one of the different types for the specification of

targets.

• SetMotionType - sets the motion type to be Linear, Circular or Joint.

• Set Joint Speeds- for each specified joint sets the joint speed.

• Set Joint Accelerations - used to set the accelerations of the individual joints.

• SetCartesianPositionSpeed- used to set the speed for the Cartesian motion.

• SetCartesianOrientationSpeed- used to set the orientation speed during Cartesian

motion.

• SetCartesianPositionAcceleration- used to set the acceleration for the Cartesian

motion.

• SetCartesianOrientationAcceleration- used to set the orientation acceleration during

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cartesian motion.

• SelectFlybyMode- used to set flyby mode on or off.

• SelectPointAccuracy - selects the motion tolerance level.

• StopMotion- used to stop the on-going motion toward the target.

• SetMotionTime- used to specify the motion time to the next target, instead of

specifying the motion speed.

• SetRestParameter- used to set the dwell time between motions.

• SetNextNamedTarget - used to specify the next motion target.

The following Realistic Robot Simulation services are performed automatically in

Workspace:

• Initialize,

• Terminate, and

• GetNextStep.

Initialize and Terminate services are called automatically when the robot object is

created or destroyed, while GetNextStep is called by the simulation engine after calling

SetNextNamedTartget in order to perform the motion of the robot.

Due to the mismatch of data types of Realistic Robot Simulation specification and

of Workspace Simulation Language, which is based on Visual Basic for Applications

language, the following conversion table was used:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

RRS Specification VBA in Workspace

bitstring Integer

int Integer

string String

real Double

CartposType RCSCartPos

JoinPosType RCSJointPos

Table 5.1. Data type conversion table between Realistic Robot Simulation interface and

Visual Basic for Applications language data types.

RCSJointPos and RCSCartPos are both objects and as such should be defined in

Workspace Simulation Language by using New keyword.

5.2.2.2. Creation of the Visual Basic for Applications language library of supporting

functions

Ultimately, the Workspace Simulation Language code output by the compiler must

call the Workspace motion planner through the Component Object Model interface to

perform the robot motion. Section 5.3.1 gives an insight in robot motion planning in

general, whilst section 5.3.2 explains the principles of motion planning in Workspace and

shows how the most important motion planning functions were created.

The alternative and obviously shorter way to connect the language translator with

the motion planner is that the language translator calls functions of the Workspace motion

planner directly, thus eliminating the need for the Component Object Model interface

involvement. However, this solution requires a fair amount of C code to be added to the

parser. Much of this code would be numeric/string conversions, and would require many

global variables to be introduced to the parser. Such code would almost certainly be

tedious to write, and it would detract from the readability of the parser code.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Also, if the language translator were to output the Workspace Simulation Language

statements only, the developer would, again, need a great deal of C code embedded in the

parser.

Here is the related example for the robot linear motion command:

RMoveLinear RPosition

RPosition structure uses x, y, z coordinates and roll, pitch, yaw angles to store a

robot position and orientation. Realistic Robot Simulation specification, however, defines

Cartesian positions as parameters of a Denovitt-Hartenberg’s matrix stored in Realistic

Robot Simulation RRSCartPos object. Therefore, RMoveLinear must covert the 6-

variable RPosition into a 12-variable RRSCartPos, and then use that variable as the

argument to RRS.SetNextTarget to perform the robot motion. To convert the values from

one representation into the other, the following actions should be undertaken: declaration

of the global variables for the RPosition, conversion of tokens into numbers, assignment

of those numbers to the global variables, conversion of the position types, conversion of

the resulting numbers back into strings, and output of the strings in form of Workspace

Simulation Language function calls. In this method, the tasks are not split across

subroutines. The resultant parser code will suffer symptoms of code bloat: it is less

readable, less maintainable, and more prone to logic errors.

An easier, more modular way to code is to create a library of wrapping functions in

Visual Basic for Applications language. Using Visual Basic for Applications language,

these tasks are easily split across several subroutines, part of a library that can be easily

read and maintained.

Workspace Simulation Language function calls, then, should always be wrapped in

Visual Basic for Applications language subroutines with syntax as close to the original

native robot language as possible. The products of this procedure are parser code that is

more readable to developers, and translated Workspace Simulation Language code that is

more readable to end-users.

The library of the Visual Basic for Applications language wrapping functions has

been developed by the author of this dissertation and presented in Appendix G.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next section (5.3) defines motion planning in general and presents the part of

the Workspace motion planner developed by the author.

5.3. IMPLEMENTATION OF THE WORKSPACE SIMULATION

LANGUAGE FUNCTIONS IN WORKSPACE MOTION PLANNER

5.3.1. Robot Motion Planning in general

In any robot task the robot has to move from a given initial configuration to a

desired final configuration. Except for some special cases, there are infinitely many

motions for performing the task. Even in complex tasks, where the interactions of the

robot with the environment may impose additional constraints on the motion, the set of

all possible motions is still very large. Motion planning is the process of selecting a

motion from the set of all possible motions while ensuring that all constraints are

satisfied.

Motion planning can be viewed as a set of computations that provide sub-goals or

set points for robot control. The computations and the resulting motion plans are based on

a suitable model of the robot and its environment. The task of getting the robot to follow

the planned motion is called control.

The motion of a robot system can be described in two different spaces. First, the

task is specified in the so-called task space or Cartesian space. It is customary to use

Cartesian X, Y, and Z coordinates to specify the position of a reference point on the end-

effector of a robot with respect to some absolute coordinate system and some form of

Euler angles to specify the orientation. However, for a multi-degree-of-freedom robot,

specifying the position of the end-effector may not specify the position of all the robot

links. For an n-degree-of-freedom robot, it may be necessary to specify the robot motion

in the joint space by specifying the motion of n independent robot joints. The joint space

is the Cartesian product of the intervals describing the allowable range of motion for each

degree of freedom.

Based on this classification, it is easy to see that it is possible to define a motion

planning problem in the task space or in the joint space. In order for a robot to perform

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the task of, say, welding, it may be sufficient to plan the end-effector trajectory. That

requires a motion plan in the task space. Such a motion plan may be satisfactory if there

are no obstacles in the environment and the dynamics of the robot do not play an

important role. However, if there are obstacles or if the robot arm has more than six

degrees of freedom, it may be necessary to plan the motion of the arm in the joint space.

Such a motion plan would guide the robot around obstacles while guaranteeing the

desired end-effector trajectory for the welding task. It is easy to see that motion planning

in the joint space can take constraints in the task space into account, but not the other way

around. In other words, given a motion plan in the task space, it is possible to solve for a

compatible motion plan in the joint space that accommodates additional constraints,

particularly for a kinematically redundant robot, where the number of robot’s degrees of

freedom is greater than six (n > 6).

5.3.2. Motion Planning in Workspace

Motion planning focuses on the controlling a manipulator motion so that it follows

a preplanned path (A path is a curve in three dimensional space that the manipulator hand

moves along from the initial position and orientation to the final location).

Before moving a robot arm, it is of considerable interest to know whether there are

any obstacles present (obstacle constraints) and whether the manipulator must follow a

specified path (path constraints). These two constraints give rise to four possible control

modes as described in the following table:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Obstacle Constraint

Yes No

-4—» c/3U Collision-free path planning Path planning plus pathc >•<
2 4—>C/2co

plus path tracking tracking

u Positional control plusx:
OSOh

o
Z obstacle detection and Positional control

avoidance

Table 5.2. Four possible control strategies in motion planning depending on presence of

path and obstacle constraints.

Since one of the main features of Workspace is collision detection, then the

obstacles are not considered in determining the motion of a robot arm. It should be noted

that a large portion of robotics research currently focuses on the planning of paths with

obstacle constraints.

In trajectory planning the input is in form of variables (such as: motion type, fly by,

point accuracy, target position, the manipulator dynamic constraints, etc.), which specify

the path constraints and the output represents a sequence of time-based intermediate

manipulator configurations (expressed either in joint or Cartesian coordinates).

The Workspace motion planner discussed here is also called “Default Motion

Planner”. The term “default” refers to the fact that Workspace relies on the user to have

an Realistic Robot Simulation module from a specific robot manufacturer. Thus, if no

Realistic Robot Simulation module is present, either if the user chose not to purchase one,

or none was available from the manufacturer, then the default motion planner is used.

The default motion planner interacts with other building blocks of Workspace in the

following way (Figure 5.3):

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Robot Program

1r

Workspace Simulation Language Program

(This module contains pseudo RRS calls.)

f
Component Object Model Interface

Workspace Simulation Engine

(This module decides how to handle the call, and makes calls to the real

RRS module, if bought from the manufacturer, or if not, to the Default Motion

Planner.)

I t
Default Motion Planner

(Processes call and returns requested values. The default motion planner

provides a subset of the functionality of the RRS, and is used in place of the

manufacturers RRS where this is unavailable. The main function of the default

motion planner is to calculate the path that robot will follow between the start and

end points of the robot track.)

I t
Built-in Kinematics

(Provides mathematical services, mainly for converting between Cartesian

position and joint position representations.)

Figure 5.3. The default motion planner interactions with other software modules of

Workspace

The simulation engine calls the motion planner. This is done through so called

Realistic Robot Simulation shell. The Realistic Robot Simulation shell is the parent

abstract class from which various objects are derived. The reason to create the various

objects is to call the same function in various Realistic Robot Simulation modules built

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by robot manufacturers or in a default motion planner, if the Realistic Robot Simulation

module is not available.

Overview of the general default motion planning algorithm is presented below in a

step-by step form as well as in a graphical form on Figure 5.4:

• A Realistic Robot Simulation shell (default shell) is created. It is a member of the

Robot class.

• Then in the shell’s Initialize method a new CDefaultMotionPlanner object is made.

The initial position of the robot with the Set_lnitial_Position function is specified.

• When one wishes to specify a target, then he sets up a Cartesian and Joint position,

and passes them onto Set_Next_Target. Only one, Cartesian or Joint position is to be

valid.

• Then during a simulation the Get_Next_Step function is called which determines

where the robot is at a specific time. During the first simulation interval the time

required to perform the move is calculated. Having calculated the travel distance and

taking into account the robot’s acceleration and velocity, the travel time is

determined. Then with any following call to Get_Next_Step the current time is

compared with total travel time, and then the required position to move the robot to is

determined.

• The motion type to be performed when traveling to a target is selected with the

Select_Motion_Type service. The following types of motion are performed:

1. Linear: The trajectory of the Tool Center Point (TCP) follows a straight line from its

current position to the required target position.

2. Joint: The joint values of both current and target positions have to be calculated (by

using the inverse kinematics) and then interpolated, such that all the joints start and

finish their motion at the same time.

3. Circular: To specify a circular trajectory three parameters need to be chosen from the

following group: radius, centre point, start and end tangent, start, end and

intermediate point on a circle. The three point circle representation (the start position,

the target position, and a position, which is located somewhere on the circle and is

between these two locations) has been chosen to be the default representation, and

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from that, all the other parameter combinations can be derived. Intermediate point is

usually referred to as a “via point”.

The default motion planner source code is presented in Appendix H.

S e t u p th e m o tio n to th e
n e x t t a r g e t th ro u g h
p a r a m e te r s : s p e e d ,

a c c e le r a t io n , m o tio n ty p e ,
flyby, p o in t a c c u r a c y , r e s t

t im e , ...

N o

Is th e t a r g e r
r e a c h e d

J o in t M otion

A d d th e t a r g e t to
th e m o tio n p la n n e r
(S e t_ N e x t_ T a r g e t)

L in e a r M otion C irc u la r M otion

M o v e th e ro b o t
t h e d i s ta n c e

c a l c u la te d fo r
o n e s im u la tio n

in te rv a l

C a lc u la te th e
t r a je c to ry to th e

n e w lo c a tio n ,
d e p e n d i n g o n a

m o tio n ty p e

T h e s im u la t io n
e n g in e c a l ls

G e t_ N e x t_ S te p
s e r v c e in th e

m o tio n p la n n e r

G e t th e ta r g e t
from th e ta r g e t

list. C o n v e r t it to
b o th c a r te s ia n

a n d jo in t
c o o r d in a te s

Y e s

' 'C le a n o u t th e t a r g e t lis t a n d \
re tu rn th e c a llin g fu n c tio n th e \
m e s s a g e th a t th e t a r g e t h a s I

b e e n r e a c h e d /

Figure 5.4. The general default motion-planning algorithm developed by the author.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The velocity and acceleration of the robot are set through the functions:

- Set_Cartesian_Position_Speed,

- Set_Cartesian_Orientation_Speed,

- Set_Joint_Speeds, Set_Joint_Accelerations,

- Set_Cartesian_Position_Acceleration, and

- Set_Cartesian_Orientation_Acceleration.

• Fly-by and point accuracy services are set by the following Realistic Robot

Simulation services:

- Select_Flyby_Mode,

- Set_Flyby_Criteria_Parameter,

- Select_Flyby_Criteria,

- Cancel_Flyby_Criteria,

- Select_Point_Accuracy, and

- Set_Point_Accuracy_Parameter.

5.3.2.1. Trajectory velocities and accelerations

When in motion, a manipulator accelerates until it reaches programmed speed, then

proceeds its motion at this speed, and finally decelerates until the speed of its tool center

point (TCP) becomes zero. Both, robot and CNC controllers, define acceleration and

deceleration phases to be equally long. Therefore, if the total distance between start and

target points is greater than twice the distance required to reach the programmed velocity,

the velocity profile will be of the following form (Figure 5.5.)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Accel. Constant velocity phase Deceleration

v* COD

Figure 5.5. A manipulator’s velocity profile when the total distance between start and

target points is greater than twice the distance required to reach the programmed velocity.

If the total distance between start and target points is less then or equal to twice the

distance required to reach the programmed velocity, the velocity profile will be of the

form shown in Figure 5.6. That usually happens when manipulator’s axial displacement

is small and acceleration time significant, therefore constant velocity phase might not be

achieved, so the speed profile would be composed of acceleration and deceleration phases

only.

Increased acceleration
time

V

Original
acceleration
time_______

 \const

max

Figure 5.5. A manipulator’s velocity profile when the total distance between start and

target points is less then or equal to twice the distance required to reach the programmed

velocity.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2.2. Trajectory calculation

Workspace supports three types of motion: joint, linear, and circular. The type of

motion determines the tool center point from the current to the next specified target (and

for any target thereafter until the motion type is changed) is set by the Realistic Robot

Simulation function Select_Motion_Type.

Joint Motion

Joint motion (frequently called point-to-point or PTP for short) is the quickest way

of moving the tip of the tool (Tool Center Point or TCP for short) from the current

position to programmed destination position. To do this, the controller calculates the

necessary angle differences for each axis. Joint motion simultaneously diminishes

mechanical stress on the robot since the motor and the gear torque are reduced for all

axes with shorter trajectories.

The movements of the axes are synchronized in such a way that all of the axes start

and finish moving at the same time. This means that only the axis with the longest

trajectory, the so-called leading axis, is actually moved with the programmed limit value

for acceleration and velocity. All other axes move only with the velocity and acceleration

rates necessary for them to reach the end point of the motion at the same moment.

The user can still specify the start and target positions in Cartesian coordinates, but

they are converted into joint-variable space (using the inverse kinematics) when

determining the path. Upon the first interpolation interval the amount that each axis

needs to move and the amount of time it will take to perform its motion gets determined.

In determining this: the distance, joint accelerations and joint velocities specified by:

Set_Joint_Accelerations and Set_Joint_Speeds are used (Figure 5.6).

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulation
IntervalFirst

Return th e final
position

Joint Motion

Determ ine the
am ount of time
to m ove the joint
with th e biggest
angular change

Determ ine the
new positions for
all the joints with

the new velocities
and accelerations

Determ ine the
joint ang les for
both start & end

positions (by
using the inverse

kinematics)

Scale all joint
velocities and

accelerations such
that all joints start

and finish their
motion a t the

sam e time

Figure 5.6. Joint interpolation algorithm (the first block, designated by “Joint Motion” is

a part of the general default motion planning algorithm shown on Figure 5.4).

Linear Motion

Linear motion is the process of moving along a straight line that connects the start

and target positions. Again the user can set the points in either Cartesian or joint

coordinates, however the actual trajectory is determined in Cartesian coordinates. Upon

the first simulation interval the distance between the teach points is calculated and if the

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

motion speed is set, the time needed to perform the motion will be determined (Figure

5.7). This is done by using the distance between the two points in Cartesian space

equation, and by using the speeds and accelerations set by the Realistic Robot Simulation

functions:

- Set_Cartesian_Position_Speed,

- Set_Cartesian_Orientation_Speed,

- Set_Cartesian_Position_Acceleration, and

- Set_Cartesian_Orientation_Acceleration, to find the motion time.

The trajectory is then, determined by:

• Finding a vector between the start and end points.

• Normalizing this vector (this determines the unit vector equation).

• Scaling this vector by the value of calculated distance that robot’s tool centre point

needs to be moved for each simulation interval during: acceleration, deceleration and

constant velocity phases.

The equations used for the procedure explained above were:

- Linear distance between two points (New and Current) in Cartesian space

LinearDistance = ■*](New.x - Current.x)2 + (New.y - Current.y)2 + (New.z - Current.z)2

- Vector between the start and end point of the motion

Vector.x = New.x — Current.x
Vector.y = New.y - Current.y
Vector.z = New.z — Current.z

- Normalized vector (unit vector)

Norm = -Jvector.x2 + Vector.y2 + Vector.z2
JJnitVector.x = Vector.x / Norm
UnitVector.y = Vector.y / Norm
UnitVector.z — Vector.z / Norm

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- Acceleration time

AccelerationTime = ProgrammedVelocity/ProgrammedAcceleration

- Distance to reach programmed velocity

_. ^ , ProgrammedVelocity2DistanceToAccelerate =
2 ■ ProgrammedAcceleration

- Positional displacement for n-th simulation interval during the acceleration phase

^ _ ProgrammedAcceleration-(n- SimulationlntervalDurationj2 ^
D ACn I A C n-l

— Simulation interval number

AccelerationTimen =max SimulationlntervalDuration

- Positional displacement for each simulation interval during the constant velocity

phase

Dcon = ——(LinearDistance - 2 • DistanceToAccelerate)
nmax

- Positional displacement for n-th simulation interval during the deceleration phase

® D C n D A C i n ^ - n)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S i m u l a t i o n
I n t e r v a lF i r s t

R e t u r n t h e f in a l

p o s i t i o n

L i n e a r M o t i o n

E n s u r e t h a t b o t h

s t a r t & e n d
p o s i t i o n s a r e in

C a r t e s i a n

c o o r d i n a t e s

D e t e r m i n e t h e

a m o u n t o f m o t i o n
t i m e a n d d i s t a n c e

F i n d t h e v e c t o r
b e t w e e n t h e t w o

p o i n t s a n d

n o r m a l i z e it.

T h e n e w p o s i t i o n
i s f o u n d a f t e r

s c a l i n g t h e u n i t
v e c t o r b y t h e

v a l u e r e t u r n e d

f r o m t h e
d e s i g n a t e d

f u n c t i o n (r e f e r to

t h e e q u a t i o n s
 a b o v e) _______

Figure 5.7. Linear interpolation algorithm (the first block, designated by “Linear

Motion” is a part of the general default motion planning algorithm shown on Figure 5.4).

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Circular Motion

Circular motion is quite similar to linear motion but instead of being bounded to a

straight-line path, an arc-shaped trajectory is calculated. Also the user can set the points

in either Cartesian or joint coordinates, however the actual trajectory is determined in

Cartesian coordinates. What distinguishes circular motion from other motion types is that

an additional parameter is needed, beside the target point, to determine the trajectory. If

no additional parameter such as radius, arc centre, tangent or another point on the arc

were provided, then an infinite amount of arc-shaped paths would be possible to be

constructed through two points. In the default motion planner, a third point on the arc,

located somewhere in between the start and the target point (called the via point), is used

to uniquely define the circular trajectory.

In order to find the position and orientation of the tool centre point during each

simulation interval of circular motion, the three points on a circle need to be relocated (by

one translation and three rotations) so that the start position overlaps with the origin, the

via point is placed on the X axis, and the arc lays in the XY plane. Two-dimensional

trigonometry is then used to find the centre and radius of the circle. At each interpolation

interval the position reached on the arc is then transformed back to the original coordinate

system by a reverse transformation process.

Once the target and via data have been specified, the arc centre, radius and central

angle to interpolate over are determined. The total time needed to perform the motion

along the arc distance (arc central angle multiplied by the arc radius) with the specified

tool center point velocity and acceleration is then determined. Then for every simulation

interval the portion of circular arc that should have been traversed for the specified time

interval is calculated.

Circular motion gets differently interpreted in CNC and robot controllers. Because

of that, particular point of difficulty lays in mapping one interpolation representation to

the other. Refer to Appendix D for details.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Object Motion

Object motion involves the positional displacement of CAD objects during a

simulation. This feature allows a user to simulate objects on a conveyor and similar

mechanisms.

Object motion proceeds as follows: first the CAD object to be moved during a

simulation must be created. Then, a motion planner for the same object should be

created. During the simulation, a series of events for each interpolation interval is

generated until the object reaches the desired target position. In each event, the position,

according to the current interpolation time, is calculated. At the end of the simulation,

the simulation engine’s list of motion planners is deleted.

In more detailed manner, the whole process can be presented through following

steps:

• Through a Workspace Simulation Language program the user calls

SetObjectNextTarget (in the CadObject class). The object speed can be changed by

specifying the value parameter in SetObjectSpeed function.

• SetObjectNextTarget then makes a new simulation event called OnObjectMove and

adds it to the simulation engine.

• OnObjectMove event first checks whether the target was reached (if so, a zero is

returned). While moving to a target, a series of simulation events is generated for

each simulation interval until the object reaches the target. Hence, it is checked

whether the current simulation event is the first event in the list. If it is a new default

motion planner is created. Then the initial position of the object is set to its current

CAD position. The position of the target point is then added to the motion planner.

• The new position of the CAD object is determined with GetNextObjectStep (defined

in OnObjectMove event). This is quite similar to the Realistic Robot Simulation

specified GetNextStep. However, the only parameters that this function takes are the

location and the elapsed time. If the desired target has been reached, a non-zero value

is returned, otherwise the returned value will be zero.

• On the first interval the Cartesian distance, the total time and the amount of

orientation change are calculated (Figure 5.8). The motion of the object is just simple

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

linear motion, that is, the object simply moves along a straight line from its start

position. The time is determined from the distance and the specified velocity. The

object is moved at a constant velocity. The change in orientation is determined by

taking the difference of the start and end angles after they have both been converted

to roll, pitch, and yaw angle form.

• On the first, and any interval after, the trajectory of the object along a linear path is

calculated. The object’s base frame will follow the calculated trajectory. The position

that object needs to reach at the end of the simulation interval is determined by:

- Finding the vector to move along (between the target and start vectors).

- Normalizing the new vector.

- Scaling the unit vector to find the new position and orientation (for each of the

orientation angles: roll, pitch and yaw) of the object while moving along the direction

of the that vector:

, 7 „ . . . _ . . _ . SimulationlntervalDurationNewObjectPosition = OldObjecPosition + TotalDistance-------------------------------------
TotalMotionTime

NewObiectOrientation = OldObiectOrientation • TotalAneularChanee ■ ^im n̂ter^ ura^on
TotalMotionTime

• After that, the object starts its motion.

• If the target position has not been reached, a new simulation event will be generated.

In order to make the simulation more accurate, input values to the robot controller

must be taken into account. Therefore, the next section (5.4) describes the creation and

the main characteristics of the simulation preprocessor.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F u n c t i o n ca ll to
" S e t O b j e c t N e x t T a r g e t "

t h r o u g h W S L

1 r

A d d a s i m u l a t i o n e v e n t
fo r th i s m o v i n g o b j e c t

' ’
I n c r a s e t h e
s i m u l a t i o n

e v e n t
n u m b e r

P r o c e s s th i s
e v e n t

N e w O b j e c t
M o t io n E v e n t

S i m u l a t i o n
v e n t n u m b e

A n y o t h e r
e x c e p t t h e first

e v e n t

If t h e fina l p o s i t i o n
h a v e n o t b e e n r e a c h e d

g e n e r a t e a n o t h e r
O n O b j e c t M o v e e v e n t .

M a k e a n e w D M P
a n d a d d s e t t h e

c u r r e n t o b j e c t
p o s i t i o n a s t h e
initial p o s i t i o n .
T h e n a d d t h e
t a r g e t p o s i t i o n

+

F in d t h e n e w l o c a t i o n of
t h e o b j e c t t h r o u g h

G e t _ N e x t _ O b j e c t _ S t e p .
T h e n m o v e t h e o b j e c t .

G e t _ N e x t _ O b j e c t _ S t e p

S im u l a t i o n
in te rva l

F in d t h e a m o u n t
o f t i m e a n d

d i s t a n c e n e e d e d
to p e r f o r m t h e

m o v e

Is t h e t a r g e t
r e a c h e d ?

Any
in te rv a l
e x c e p t
t h e f irs t

f R e t u r n t h e fina l o b j e c t
p o s i t i o n

A t t h e E n d of t h e N
S i m u l a t i o n , d e l e t e all
t h e m o t i o n p l a n n e r s /

F o r t h e g i v e n t i m e
f ind t h e n e w

l o c a t i o n of t h e
o b j e c t

R e t u r n t h e o b j e c t ’s p o s i t i o n

Figure 5.8. Object motion algorithm (its implementation allows CAD objects to be

moved during the simulation).

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4. CREATION OF THE G-CODE LANGUAGE PREPROCESSOR

The process of CNC programming has three basic stages:

• Stage 1: Pre-processing.

• Stage 2: Uploading or creating a CNC program (in G-code language).

• Stage 3: Program execution.

In order to accurately simulate the work of a CNC controller, a user must be

provided an interface to define all the machine specific parameters stored in a real

controller. Having G-code part programs as the only input information is not enough for

the simulation software to operate correctly, because some G-code instructions use the

parameters that are defined and stored in a controller only, without any data exposure in

the program listing. For instance, G55 is a G-code instruction that specifies a reference

work coordinate frame, but the position and orientation of that frame is stored in a

controller only, whilst part program contains just the reference to an address in

controller’s memory.

The machine data preprocessing involves several activities, such as:

• Placing the tools into the tool turret (tool magazine).

• Machine table data input.

• Setting the system variables, etc.

Most of the contemporary CNC machines can store more than one tool into a tool

turret. The tools are placed in the magazine slots manually by the CNC operator or

automatically by manipulator arm. Each position in the magazine is defined by its unique

ID, which is known to the machine controller. So, when a command addresses a specific

tool, the controller activates the magazine, and brings the requested tool in the loading

position.

The next step involves entering the tool offsets into a machine’s controller. This

action has to be performed every time the tools in the magazine change. Therefore, the

tool parameters have to be changed. The tool parameters depend on the machining

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processes - turning, milling, drilling, grinding, etc. Some examples of machining

operations and related tool parameters are as follows:

• Milling - tool diameter and height.

• Drilling - drill’s length and diameter.

• Grinding - grinder’s diameter, width, etc.

The tool offset values are stored in table format (often referred to as a “machine

table”). The data is stored into the controller’s memory and is called from the CNC

program.

Tool offsets are not the only data stored in machine tables. Frame offsets, fixed

points, reference points, variable declarations, command aliases, etc. are stored in

machined tables as well. That statement imposes the existence of several machine tables

dedicated to different parameters. It is important to know that all of the mentioned

parameters are entered before the machining process begins. More detailed explanation of

the mentioned parameters follows:

• Offset frames - Allen-Bradley 9 series controllers allow predefinition of up to 99 work

coordinate frames. Work coordinate frame is the reference coordinate system that can

be arbitrarily located within machine’s workspace depending on the nature and the

complexity of the manufacturing task. To predefine a frame means that the position of

a work coordinate frame’s origin, with respect to machine’s coordinate frame, can be

saved to a machine table and retrieved during the program execution, if the

appropriate G-code instruction was used.

• Tool offsets - These offsets specify the diameters of waterjet or abrasivejet streams as

well as tool lengths.

• Fixed positions, as well as Reference Points are the points within machine’s

workspace that are significant for a certain manufacturing task. For example, security

approach and depart positions located in such a way to ensure that machine will not

collide with any obstacles during work, can be predefined and referenced during the

program execution.

• Aliases - G-code (or CNC code) is composed of “words”. A word usually consists of

a letter and a number. For example: M30, G i l l , N10, etc. Each word represents a

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specific command, which moves the machine, or performs some other activity such as

turning the waterjet on/off, abrasive on/off, rotating the spindle in clockwise or

counter clockwise direction, etc. It is possible to set an alias for most of the

commands, and later to uses aliases in the program. So, instead of M8, a command

can be called as a WaterJetOn, for example. Aliases are stored in a machine table as

well.

• Variables - just like the aliases are stored in a machine table before the machining

begins, the same principle applies to variables. They are declared and stored in a CNC

controller and they can be referred to once the machining begins.

• Security Zones - security zones represent a two-dimensional area or three-

dimensional space that must not to be entered by a tool. Security zones are defined by

specifying the lower and upper limits, i.e. Xmin, Xmax, Ymin, Ymax, Zmin, and

Zmax.

• Working Zone - somewhat similar to Security Zones. Working zone is the zone in

which the tool center point moves. If the tool center point position is out of the

Working Zone, the motion interruption occurs automatically.

• Home Positions - besides the primary home position, secondary and tertiary home

positions can be specified.

Visual Basic for Applications Language Preprocessing Form

The next section will describe the preprocessing form created in Visual Basic for

Application language that takes into account all the machine data parameters explained

above.

How to access the form

The form shows up after a user starts the simulation of a 5-axis CNC machine and

if the chosen manufacturing operation is waterjet cutting. A message box pops up giving

a user an option to fill in the controller parameters.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The preprocessing form

The main purpose of this form is to provide a user with a simple, yet effective

way of storing and editing machine data (Figure 5.9).

M a ch in e D a ta m

Settable... I XCoordin... 1 YCoordin.. I Z CoorcSn... System j *

54 0 0 0 Metric
55 0 0 0 Metric
56 0 0 0 Metric —

57 0 0 0 Metric
505 0 0 0 Metric
506 0 0 0 Metric
507 0 0 0 Metric
508 0 0 0 Metric
509 0 0 0 Metric
510 0 0 0 Metric
511 0 0 0 Metric
512 0 0 0 Metric
513 0 0 0 Metric
514 0 0 0 Metric
515 0 0 0 Metric
516 0 0 0 Metric
517 0 0 0 Metric

d

l_ I __dose~"]

1 Settable Offsets

Open,..

Save...

Edit...

Reset

Reset A1

More Options,,,

Figure 5.9. Visual Basic for Applications language preprocessing form shows the list of

settable offsets. The form appearance changes depending on the option chosen from the

drop down list.

Main drop-down list

A user can set the following data (Figure 5.10):

• Tool and frame offsets,

• Reference points,

• Home positions,

• Fixed positions,

• Variables and aliases.

Which parameters will be seen in the table depends on the item selected in the

drop-down list.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fixed Positions
Reference Points
Home Positions

Close

Figure 5.10. Expanded drop-down list that shows possible machine data groups that can

be predefined.

It is quite convenient to store the offsets permanently and then to upload/save

them onto a disk. This feature is provided with Open and Save buttons.

By clicking on Open button, a standard Windows open dialog box pops up, and a

user can select a file to upload. The file is in plain ASCII format, therefore the extension

is *.txt.

The file will contain the values of all the items in the drop list. The file format is

the following:

• A file must have NCFILE keyword in the first line.

• The second line contains OFFSET.

• Data lines are described as follows:

Offset ID,

- White space(s)

- Offset in X direction,

White space(s)

- Offset in Y direction,

- White space(s)

- Offset in Z direction.

• The same applies for fixed positions as well.

Open

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The file ends with ENDFILE.

For example:

NCFILE
OFFSET
54 200.0001
55 255
56 100
57 0

200.0002
255
200
0

300.001
0

200
255

FIXED
1 0
2 0

ENDFILE

0
0

0
0

Example 5.1. Sample data file containing three preset frame offsets all the default values

for all the other items.

After clicking on this button, the standard Windows Save dialog pops-up, and

enables the user to save the data into a file. Format of the data saved is shown in the

previous example, and the file extension is *.txt.

There are two ways to edit the data shown in the table:

• Double-click on the table,

• Select an item in the list, and click Edit button.

A new form pops up (Figure 5.11), enabling the user to change the data (X, Y, Z)

and the type of the measurement system in which the X, Y, Z are expressed.

Save

Edit

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-L S -5 X "-•-J «.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

ettable Offsets 508

Coordinate X J

Metric
Metric

OK

Coordinate Y | 0

Coordinate Z] 0

System 1 Metric

Cancel

0
0
0

0
0
0

Metric
Metric
Metric

p m m m

Oc

1 Sc1
5

R

Re

Figure 5.11. Edit dialog box that shows how the parameter values can be changed. Edit

dialog box changes its appearance depending on the machine data to be edited.

Reset

By selecting an item in the list and clicking on the Reset button, X, Y, and Z

values are set to zero.

Reset All

By clicking on the Reset All button the values of all the items in the list are set to

zero.

More Options

This button has not been activated yet. In case that some additional features have

to be customized, this button can be used to call another form, or to extend the height of

the existing form, providing more data to be edited.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

OFF-LINE PROGRAMMING

MODULE DEVELOPMENT

6.1. OFF-LINE PROGRAMMING IN ROBOTICS

Present teach methods of programming industrial robots have proved to be

satisfactory where the proportion of teaching time to production time is small, and also

when the complexity of the application is not too demanding. They involve either driving

a robot to required positions with a teach pendant or physically positioning the robot,

usually by means of a teach arm. Teach methods as such necessitate the use of the actual

robot for programming.

Off-line programming may be considered as the process by which robot programs

are developed, partially or completely, without requiring the use of the robot itself. This

includes generating point coordinate data, function data, and cycle logic. Developments

in robot technology, both hardware and software, are making off-line programming tech

niques more feasible. These developments include greater sophistication in robot con

trollers, improved positional accuracy, and the adoption of sensor technology. There is

currently considerable activity in off-line programming methods, and these techniques are

employed in manufacturing industries (Nof, 1999).

6.1.1. Why Should Off-line Programming Be Used?

Robot on-line programming can be time-consuming. As the robot remains out of

production, on-line programming can substantially reduce the utilization of the robot,

sometimes to the extent that the economic viability of its introduction is questioned.

Many early robot applications involved mass production processes, such as spot

welding in automobile manufacturing lines, where the reprogramming time required was

either absent or minimal. However, for robot - manufacturing applications to be feasible

in the field of small and medium batch production, where the programming times can be

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

substantial, an off-line programming system is essential. The increasing complexity of

robot applications, particularly with regard to assembly work, makes the advantages

associated with off-line programming even more attractive. These advantages may be

summarized as follows (Nof, 1999):

1. Reduction of robot downtime. The robot can still be in production while its next task

is being programmed. This enables the flexibility of the robot to be utilized more

effectively and therefore decreases the programming costs.

2. Removal of programmer from potentially hazardous environments. As more of the

program development is done away from the robot this reduces the time during which

the programmer is at risk from aberrant robot behavior.

3. Single programming system. The off-line system can be used to program a variety of

robots without the need to know the idiosyncrasies of each robot controller.

The main disadvantage of off-line programming systems is that they generally

show some differences between the desired and the real motion after having been

uploaded to the robot controller. Individual deviations include those from the nominal

position and orientation of the end-effector, from the nominal path and path velocity, as

well as from the nominal cycle time (refer to section 1.1.).

6.1.2. Requirements of an Off-line programming system

Different off-line programming systems employ different approaches to the

programming method. Yet, despite their differences, they contain certain common

features essential for off-line programming. The following list gives the requirements that

have been identified to be important for a successful off-line programming system (Nof,

1999):

1. A three-dimensional world model, that is, data on the geometric descriptions of

components and their relationships within the workplace.

2. Knowledge of the process or task to be programmed.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Knowledge of robot geometry, kinematics (including joint constraints and velocity

profiles), and dynamics.

4. A computer-based system or method for programming the robots, utilizing data from

items 1, 2, and 3. Such a system could be graphically or textually based.

5. Verifications of programs produced by item 4. For example, checking for robot joint

constraint violations and collision detection within the workplace.

6. Appropriate interfacing to allow communication of control data from the off-line

system to various robot controllers. The choice of a robot with a suitable controller

(i.e. one that is able to accept data generated off-line) will facilitate interfacing.

7. Effective man-machine interface. Implicit in off-line programming is the removal of

the programmer from the robot. To allow the effective transfer of his skills to a

computer-based off-line system, it is crucial that a user-friendly programming

interface be incorporated.

To fulfil the fourth requirement of the above numbered list, a graphical computer-

based system for off-line programming of 5-axis waterjet cutting gantry robot has been

developed and will be presented in the next section.

6.2. CREATION OF OFF-LINE PROGRAMMING MODULE FOR

FIVE-AXIS WATERJET CUTTING GANTRY ROBOT

In order to create the part programs from graphical path representations in

Workspace the following tasks have been done:

1. The CAD model of a test part has been designed (as explained in section 4.2).

2. The robot graphical path has been automatically created (using Workspace’s

Automatic Path Generation module) and the path properties set.

3. The off-line programming software module has been written to convert the graphical

path properties into G-code part programs.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The terms: path, automatic path generation, and geometric points are important for

understanding of following paragraphs, therefore short definitions of those terms are

provided below.

A path is a list of all the geometric points (GPs) that a robot is to follow during a

sequence of motions. It is displayed graphically as a series of lines linking together the

geometric points with direction arrows showing the direction of the motion.

Automatic path generation allows the user to automatically generate a path on a

CAD model of a workpiece. The automatic path takes into account the parameters set by

the user, including boundaries, holes, material, thickness and speed, and generate a

suitable path that the robot will follow.

Robot teach points are called geometric points in Workspace. Geometric points are

robot endpoint target locations that may be saved with a model and which may be

manipulated as though they were objects. They not only do represent the position and

orientation of a robot target position, but also store attributes describing the nature of the

motion to be used when travelling towards target geometric point from current geometric

point on the same path, as well as attributes describing the actions to be performed when

the GP is reached. Every GP along the path contains an editable set of attributes. For

waterjet cutting application, GPs have the following properties (Figure 6.1):

• Motion Type (Rapid, Linear, Circular),

• Feedrate value,

• Acceleration value,

• Position parameters,

• Orientation parameters,

• Dwelling time,

• Waterjet stream activated (an action), and

• Wateijet stream deactivated (an action).

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G P P iu p m lies - N « » f iP

OK

Figure 6.1 Geometric point properties dialog box. This figure shows just one tab-window

of the dialog box. Different tab-window contain different sets of geometric point

properties.

In order to send the programs developed off-line in Workspace to a robot, they

must first be translated from the internal graphical representation (a path) into a robot

program written in the selected robot language (a track). This process is called Path to

Track translation. Figures 6.2 and 6.3 display an arbitrary created graphical path in

Workspace and the corresponding G-code part program based on the captured path

properties. When Write Program is selected from the context menu for a path, the Path to

Track class for the robot language of the robot to which the path belongs is instantiated,

and its WritePath method executed.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

View the model in isometnp front left j 'Hold the Left button and dug the view.

iJ8 SUrt | t»W atapw - MmowftV a ,„ [gJVedi Jaw FiwB82,iWI •... | j^»Woricipsc« • |Fkm 5-... ig.twcranitiiip • P a r t

I23217S. 199.210. 110.8J3 '

■ S^Tia?iSr

Figure 6.2 A graphical path representation in Workspace. Series of geometric points are

connected with line segments, while arrows show the direction of motion.

A root path may contain one or more sub-paths. Each path, including the root path,

contains a list of one or more pathtarget pointers. (It’s logically possible for a path to

contain zero pathtargets, but such a path is not relevant for off-line programming.). A

pathtarget can be either a GPMove or another Path (as shown in example 6.1). The paths

containing cycles, wherein one path contains a reference to one of its ancestors, are not

considered well formed.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m m m

, p Simulation
Robots
_ J FLOW

Track Has
•5 test

; f TeachpontWes
• i_J Frame fites

H j_J Paths
-J ^ test

i* NewGP
NewGPOOl

t - NewGP002
- I t . NewGP003
in NewGP005
■U. NewGPQQS
in NewGP007
in NewGP008
■at NewGPOOd

• h . NewGPOlO
m Q j GPs

~i>‘ NewGP
■j-- NewGPOOl
~ici NewGPOOZ

: NewGP003
. -i^ NewGP004

. : -in NewGP005
NewGPOOS

: ^ N©*GPQ07
NewGPGOS

U NewGP009
j.-- NewGPQIO

Si Tool Frames
■ • J E T
■ • Nil

S C J Base Frames

V * -■ • l a a a

* S m J a to t l T CAD|

d

d *d
OOOOl
N000Q5 D1 H1
N00010 G92.1
N00015 GOO G17 G40 G80 G90 G54 G94
N00020 G92 XQ.000 V0.000 ZO.OOO B0.000 CO.000 F2S0.000
N00025 GOO X0.000 Y0.000 Z36.000 B0.000 CO.OOO
N00030Z136.000
N00035M08
N00040 G01 X200.000 F122.000
N00045 GOO Y200.000
NOOOSO G19 G02 Y700.000 J250.000 K100.000 FI 33.000
N0005S GOO X600.000 Y600.00D Z436.000
N00060 C20.000
N0006S G01 Z536.000 B20.000 FI 20.000
N00070 X700.000 FI 00.000
N0007S M09
N00080 GOO X0.000 Y0.000 Z36.000 B0.000 CO.OOO
N00090 G92.1
N0Q085 M02
X

Lil v ■ ' j / 1

Start| (BWQiktpM^inoBHtVn-.| g]VertdanaFrec632.na-... ||'jt»Wwk»p»c«-[P:\PraTI S » 0 Q 12:25 PM

Figure 6.3. The part program written in G-code language based on the graphical path

shown on the Figure 6.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

MainPath SubPath 1

GP1

GP2

GP3 ViaPointl

SubPath 1 » GP4

GP7 GP5

GP8 GP6

GP9

Example 6.1. Paths in Workspace are composed of series of targets (pathtarget pointers)

that can be either geometric points or subpaths. Subpath nesting is allowed to be eight

levels deep.

In general, Path to Track translation requires less development effort than Track to

Path translation (the process of reading a robot language track file and producing a

graphical path during simulation). This is because Track to Path must process every valid

program in a given robot language, including statements that aren’t currently supported

by off-line programming module. Path to Track needs only to be concerned with emitting

a robot language program (track) which captures the intent of a graphical path. This tends

to be a small subset of the robot language. Only three actions need to be provided for:

• Motion. This includes definition of teachpoints, and specification of a path supported

motion parameters (motion type, speed, acceleration, via point/centre for circular

moves, dwelling (idle) time).

• Sub-program calls. This entails creation of separate tracks for each sub-program.

• Tool actions which have a standard implementation in the target language (such as

M08 and M09 in G-code language), and which have a standard representation in

graphical paths (such as WaterjetOn and WaterjetOff).

G-code language does not separate the teach point data from the move commands.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Instead, the move command will contain all the geometric data required to interpret the

move. One consequence of this is that no initial tree search to enumerate the teach points

is required. Another consequence is that a related process of updating the teach point

locations, instead of completely rewriting the program file, when a user decides to change

the position and orientation properties of teach points in the path, is not possible.

Also, G-code language provides for motion parameters, which haven’t changed

from the previous move to be omitted from the program. Therefore, a solution has been

found for the storage and retention of the relevant state data (this includes all motion

parameters) from one move to the next. The state data must also be reset at the

appropriate times (at least for each new root path; possibly more frequently).

Knowing all the previously mentioned path parameters and taking into account the

grammar of the G-code programming language, the C++ source code has been written to

recast all the path data into sequence of CNC machine instructions. The source code

contains a super class named CPathToLanguage and a derived class CPathToGCode. The

source code for the class CPathToGCode is presented in Appendix I. Three most

important methods (member functions) of the derived class, which will be explained in

the following paragraphs, are:

• WritePath,

• Write Function, and

• WriteMove.

All three of these functions have virtual prototypes in the CPathToLanguage class,

which is the super class of CPathToGCode class. The way how these three methods

communicate is depicted on the Figure 6.4.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W r i t e P a l h
O p e n File, W r i te

H e a d e r

W r i te T e a c h p o i n t s
If N e s s e c a r y

W r i t e F u n c t io n
G e t F ir s t P a t h

T a r g e t

►< Is th is a P a t h ?

G e t N e x t T a r g e t

a s t h e l a s t t a r g e
b e e n r e a c h e d ?

Y e s

W r i te O p e n i n g
S t a t e m e n t s F o r

P r o c e d u r e
G e t F ir s t T a r g e t

o
W r i te C lo s in g

S t a t e m e n t s F o r
P r o c e d u r e

E n d W r i t e F u n c t io n)

1 r

W ri te T e a c h p o i n t s
If N e s s e c a r y

t

E n d W r i t e P a t h j

I
E n d P r o c e s s

W r i t e M o v e
W r i te F r a m e s If

C h a n g e d

W ri te V e loc i ty A n d
A c c e l e r a t i o n If S e t

T u r n O n /O f f F ly by /
P o i n t A c c u r a c y If

S e t

P e r f o r m M o v e

W ri te D e la y If S e t

W rite T o o l A ction
C o m m a n d s

E n d W r i t e M o v e

W ri te S u b
P r o c e d u r e Cal l

G e t N e x t T a r g e t

a s t h e l a s t t a r g e
b e e n r e a c h e d ?

Figure 6.4. The function call flow among the three most important methods of the

CPathToGCode class: WritePath, WriteFunction and WriteMove.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The constructor of this class is used to set up the default values of any member

variables needed for the language translation. For instance, m_strLanugage is a string

variable set to the name of the language being produced.

The WritePath function is the main function of the translation class. This function

is called by Workspace and carries out the translation by calling other class member

functions. The first action that this function does is to open the output file for writing

using the member m_strFileName for the file name. After this the WritePath function

writes strings to the file, and calls other translation member functions.

The WriteFunction procedure performs two actions:

• Firstly, it determines how many sub paths are embedded in the main path by calling

itself recursively, and

• Secondly, it loops through the counted paths, starting with the deepest embedded

subpath and proceeding up, and writes out the formatted path properties into the

output file based on the syntax of the target language.

The WriteMove function performs the task of writing out the movement,

acceleration, velocity, frame, delay, and tool action commands. This is done by capturing

the values of the various GPMove properties and by outputting the lines of code based on

which properties have been set.

Emitted G-code part programs have been beta-tested directly on gantry robots in

Flow Robotics Company, Jeffersonville, IN.

6.3. ON-LINE TESTING

The purpose of the on-line testing was to determine positional accuracy of the teach

points written in a part program created by the off-line programming module and cycle

time accuracy of the simulated manufacturing task.

The CNC machine used for testing was an “AF-series 5-Axis Three Dimensional

Shapecutting Machine” equipped with Allen Bradley 9/260 controller and manufactured

by Flow Robotics Company. The complete technical specification of the CNC machine is

presented in Appendix C.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The geometry of the testing part, the creation of its CAD model in Workspace and

the reasons why that particular part has been chosen to be tested have been explained in

section 4.2.

The testing procedure was organized in the following way:

1. The material used for cutting was a plate-shaped rubberized compressed foam. This

material is very cheap and is used primarily for preliminary testing when the

roughness of the surfaces to be cut is not of primary importance. Due to very high

water jet pressure (up to 415 MPa) and very low rigidity of the material to cut

through, the edges of the part after manufacturing were visibly rough (the material

was bending under the force produced by water jet). If steel or aluminum had been

used instead of compressed foam, the edges would have been much smoother and

within the tolerances achievable by waterjet cutting process (0.075 mm).

2. The robotic cell has been set up in Workspace, as explained in Chapter IV.

3. The corresponding part program has been created off-line in Workspace (the listing of

that part program is presented in Appendix J), as explained in Chapter VI.

4. The personal computer has been interfaced with the robot controller via RS-232 serial

interface cable. The part program has been downloaded from the personal computer

and uploaded to the robot controller using Allen-Bradley Off-line Development

System (ODS) software, previously installed to the personal computer.

5. The part has been manufactured and the cycle time recorded from the controller’s

display.

6. The manufacturing task has been simulated in Workspace.

The robot controller language accepts only axis values as parameters of teach point

definitions (values of X, Y, Z, B, and C axes). Stated differently, teach points cannot be

defined in Cartesian values (X, Y, Z, Roll (rotation about Z axis), Pitch (rotation about Y

axis), and Yaw (rotation about X axis)) with respect to the machine coordinate frame.

Therefore, due to the fact that the robot controller cannot perform inverse kinematics

transformation, forward kinematics accuracy has been tested only. Workspace teach-

pendant values (both Joint and Cartesian) of the teachpoints created during simulation of

the task, have been compared with Joint and Cartesian values read from the robot

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

controller. The notified difference between the Cartesian values read from the controller

and Workspace has been within the range of 1 to 3 thousands of a millimeter. Taken into

account that the machine accuracy is 0.127 mm the recorded difference was obviously

satisfactory.

Simulation and real robot cycle time accuracy has been determined comparing the

corresponding cycle time values recorded in Workspace and in the robot controller. The

determined ratio was 126.9s (simulation) / 129.7s (real time), therefore the error margin

of 2.16% has been identified. The cycle time accuracy has been assessed as satisfactory

and acceptable, because the error value was below the acceptable upper limit of 3%, set

by Realistic Robot Simulation standard. The possible sources that caused that error

margin have been listed in section 1.1, while Realistic Robot Simulation concept has been

explained in sections 2.3 and 5.2.2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

CHAPTER VII

CONCLUSION

This dissertation aims to prove that the use of Realistic Robot Simulation interface

in conjunction with PRECCX parser generator in robotics simulation and off-line

programming software packages can substantially improve the positional and cycle time

accuracy of a 5-axes waterjet cutting gantry robot.

In order to verify and validate the quality of the written software modules, a 5-axes

gantry robot manufactured by Flow Robotics Company and equipped with an Allen-

Bradley 9 series controller has been used for testing. The mentioned simulation and off

line programming software modules are not stand alone applications, therefore they are

dependent on the software platform they are written for. In this case, Workspace 5®

software package serves the purpose of being the platform for the written add-ins. g

The dissertation is organized as follows:

• CAD modeling o f the workpiece and the 5-axis gantry robot. Kinematics definitions

of the CAD models.

• Development o f the simulation module. This is the central and the most complex part

of the dissertation. The first sub-task is the development of G-code (CNC controller

programming language) language translator. Compiler-compiler software utilities

Flex and PRECCX (Prettier Compiler-Compiler Extended) have been used for lexical

analysis and parsing of the G-code language. Parser action statements have been

written to emit Workspace Simulation Language (Visual Basic for Applications based

simulation language, which contains calls to the functions of the motion planner via

Component Object Model RRS interface) code. Also, all the Realistic Robot

Simulation services called from the parser’s action statements have been designed and

implemented in the motion planner module of the simulation platform software. The

preprocessing graphical interface has been developed in order to capture the internally

stored robot controller information that is not provided in the part programs, but

presents a mandatory input for accurate simulation.

• Development o f G-code off-line programming module. Knowing all the path

parameters defined during simulation and taking into account the grammar of the G-

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

code programming language, the C++ source code has been written to recast all the

path data into sequence of CNC machine instructions.

The flow chart on Figure 7.1 shows the interactions among the modules written by

the master’s candidate and the modules of the software package built-in the development

platform. Different background colors represent different levels of participation (color

mappings are contained within the figure caption).

PRECC

Robot
languages

VBA
simulation

module

CAD
objectsPREi

PRECC Y *

RobotsPath’s
GP’s

VBA
3 t i j aton

model K inem aticsP ath2T rack

* Path2Track

Figure 7.1. Simulation and off-line programming modular concept of simulation

platform software, where different colors represent different levels of author’s

participation (white - didn’t participate, light gray - input modules, gray - complete

design and implementation, dark gray - partial design and implementation)

Relevance of the issue of this thesis will be presented through the next three major

points:

• Highly accurate simulation due to implementation o f Realistic Robot Simulation

services. Strictly following the standardization rules in the Realistic Robot Simulation

specification default set of Realistic Robot Simulation services has been implemented

in default motion planner of the simulation software. In other words, when robot

languages which are developed by manufacturers who did not participate in Realistic

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Robot Simulation consortium (including the CNC languages) need to be simulated,

the default set of Realistic Robot Simulation services will be called to provide the

accurate motion of the simulated robot. The Realistic Robot Simulation interface has

been tested on software and hardware platforms used for robotic simulation in the

automotive industry and has demonstrated impressive results of accurate simulation

of motion behavior, robot kinematics, and condition handling. It has been proven that

the deviation between simulated and real joint values is less than 0.001 radians. The

ideal case, of course, would be if there was not any difference between the simulated

and real joint values. However, taking into account that non-RRS simulation software

packages have on average approximately 10 times lower angular accuracy, Realistic

Robot Simulation interface showed considerable improvement. Concerning task cycle

times, a difference of less than 3% could be reached. Again, in comparison with the

non-Realistic Robot Simulation systems where the cycle time difference is in range of

5 to 10%, Realistic Robot Simulation systems are obviously better, but their cycle

time accuracy can still be significantly improved (Realistic Robot Simulation II

interface promises 99.5% cycle time accuracy and 99.9% joint accuracy, which

remains to be proven).

• The first industrial application o f currently the most efficient compiler-compiler

utility - PRECCX. According to the conducted literature and Internet Web search,

this will be the first industrial application of PRECCX software utility. Making a

compiler by using some of the contemporary programming languages (mainly C and

C++) is attainable, but it takes too much time. Alternatively, using PRECCX for the

same purpose will be faster and less prone to errors and also, it will have some

advantages over the most frequently used compiler-compiler utilities -YACC and

Bison.

• CNC controller simulation based on the customization o f the robotic simulator.

CNC machines can be considered gantry robots as far as their kinematics is

concerned, but programming language that they use (often called G-code language)

has its own characteristics that differ from the ones of the robot programming

languages. Typical example for that is the definition of circular motion. Therefore,

using Realistic Robot Simulation interface to simulate CNC programming language

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has required considerable amount of work, in depth knowledge of CNC controller

software and Realistic Robot Simulation specification. Mapping CNC to default

Realistic Robot Simulation instruction did not necessarily have one to one matching

due to limited compatibility between the interface and the language.

This thesis had its practical verification in Flow International Corporation. The

results of preliminary testing showed the following:

• When the position and orientation values (both Joint and Cartesian) of the teachpoints

created during simulation of the task, have been compared with Joint and Cartesian

values read from the robot controller, the notified difference has been within the

range of 1 to 3 thousands of a millimeter. Taken into account that the machine

accuracy is 0.127 mm the recorded value difference was satisfactory.

• Simulation and real robot cycle time accuracy has been determined comparing the

corresponding cycle time values recorded in Workspace and in the robot controller.

The error margin of 2.16% has been notified. The cycle time accuracy has been

assessed as satisfactory and acceptable, because the error value was below the

acceptable upper limit of 3%, set by Realistic Robot Simulation standard.

From the user point of view, very important feature is that the graphical user

interfaces, for both simulation and off-line programming module, are user friendly and

very intuitive. User time spent on setting the parameters for those two modules is short,

robotics skill level required from is not high, however the output is still accurate and

dependable.

Future work on this thesis should be based on the implementation of RRS II

services in the motion planner (once they become available to developers), which will

provide additional quality features to simulation software packages, such as: axis

grouping, signaling (I/O), interrupt handling, et cetera. Also, robot path planning and

optimization for waterjet cutting manufacturing application is the area that requires

substantial engineering and programming knowledge, and that can significantly

complement and upgrade the quality of the presented work.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A: USING PRECCX

Basics

@ a - b e d

@ | b e

The previous notation says that the language structure a can be specified by either

structure b followed by structure c followed by structure d, or by structure b followed by

structure c.

The]’ character in PRECCX means ’OR’.

Every line of PRECCX code must start with an @ symbol, otherwise it gets written

directly into the C code without PRECCX converting it.

There is, however a better way of specifying this construct in PRECCX:

@ a = b e [d]

In this case the construct d is specified as being optional by enclosing it in square

brackets.

Take the specification:

@ Boring= < ’z ’>*

The <> around the 'z' cause PRECCX to look for a C style literal token, in this

case 'z'- The * after it, causes PRECCX to look for it 0 or more times.

Valid inputs are:

(nothing)

zzz

z

The + character is similar to the * except that it looks one or more times, eg.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ StillBoring= < ’z ’>+

Valid inputs are:

z

zzzz

Take the following definition:

@ Identifier = alpha {alpha | numeric} *

This describes a basic form of identifier, the valid inputs would be:

A

A23jdas

In PRECCX, the {} construct is used for grouping, so the above definition would be

read as:

An Identifier is an alpha followed by zero or more numbers or alphas.

In C the general format is that a semi-colon follows each line of code. This can be

written in PRECCX as:

@ CLine= line_of_code] < ’;'>[

The “J [“ construct means that although a semi-colon is required, it will not be

used for anything. This saves computation time and makes more efficient translators.

Here’s an example of a C++ comment:

@ CppComment - < ”/ / ”> ?* $

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This will match anything between the “//” and the end of the line as a comment.

The ’?’ character tells PRECCX to match anything except the End of Line character. The

’$ ’character tells PRECCX to match the End of Line character.

Errors

@ WhileLoop = < "WHILE"> expression

@ line_of_code *

@ <"WEND">

@ | <"WH1LE"> expression

@ line_of_code * ! {: printf("While without Wend Error");:}

If the translator can't find the "WEND" keyword, the “/ ” character causes PRECCX

to flag an error.

Actions

In the above example the version which caused the error had some C code attached.

This C code is what is used to do the translation.

@ test— abc {: printl("d"); :}
@ a = < ’a ’> {: printfi"a"); :}
@ b= AV {: printfi "b "); :}

@ c = <'c'> {: printfi"c"); :}

If we pass the input " a b c "to this test construct, we would get the output "a b c d"

written to the output.

Attributes

PRECCX has the ability to synthesize attributes, e.g.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ Temp = < ’a ’> {@ 1 @}

@ | < ’b ’> { @ 2 @ }

This statement would return 1 if it was passed an a ’ or 2 if it was passed a ’b ’. The

value passed back must always be of type long and is passed using the {@ @} construct.

long nTemp =0;

@ Test = {TestForA *J\x

@ TesForA = < ’a ’> {: nTemp++;:} {@ nTemp @}

The above example will return into the attribute x the number of as matched. This

is because PRECCX returns the value from the last occurrence of TestForA.

@ TestForNot = [< ”NOT"> {@ 1 @}]\x

This will return 1 if the word "NOT” is matched, otherwise it will return 0.

Using the values of attributes

@ Test = FurtherTestsx {: printf{ “The Value Returned was %d”, $x);: }

When using the value of an attribute you must always prefix it with a $.

Abstract Syntax Trees

Abstract Syntax Trees (AST’s) can represent most syntax. This is a method of

representing language without being language specific.

Example: A simple expression:

X = A + 1;

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ \

X +

/ \

A 1

A function can be represented as follows:

Function (a, b , ...);

/ \

Function A

/ \

/ \

a / \

/ \

b ...

Abstract Syntax Tree's don't store the language specifics such as the braces around

the parameters, the commas between parameters, and the semi-colon after the line of

code. If we those specifiers are not stored, a tree can be used to translate into any

language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

APPENDIX B: GLOSSARY OF

THE PARSING AND LEXICAL
ANALYSIS KEY TERMS

Backus-Naur Form
A formal metasyntax (syntax used to describe syntax) used to express context-free

grammars.

BNF is one of the most commonly used metasyntactic notations for specifying the

syntax of programming languages, command sets, and the like. It is widely used for

language descriptions but seldom documented anywhere.

Grammar
A formal definition of the syntactic structure of a language (syntax) normally given

in terms of production rules which specify the order of constituents and their sub

constituents in a sentence (a well-formed string in the language). Each rule has a left-

hand side symbol naming a syntactic category and a right-hand side, which is a sequence

of zero or more symbols. Each symbol may be either a terminal symbol or a non-terminal

symbol. A terminal symbol corresponds to one "token" - a part of the sentence with no

internal syntactic structure (e.g. an identifier or an operator in a computer language). A

non-terminal symbol is the left-hand side of some rule.

One rule is normally designated as the top-level rule, which gives the structure for a

whole sentence.

A grammar can be used either to parse a sentence or to generate one. Parsing

assigns a terminal syntactic category to each input token and a non-terminal category to

each appropriate group of tokens, up to the level of the whole sentence. Parsing is usually

preceded by lexical analysis. Generation starts from the top-level rule and chooses one

alternative production wherever there is a choice.

Lexical analysis
The first stage of processing a language. The stream of characters making up the

source program or other input is read one at a time and grouped into tokens - word-like

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pieces such as keywords, identifiers, literals and punctuation. The tokens are then passed

to the parser.

Parser
An algorithm or program to determine the syntactic structure of a sentence or string

of symbols in some language. A parser normally takes as input a sequence of tokens

output by a lexical analyzer. It may produce some kind of abstract syntax tree as output.

Parser generator
A program which takes a formal description of a grammar in Backus-Naur Form

and outputs source code for a parser which will recognize valid strings obeying that

grammar and perform associated actions.

Syntax
The structure of strings in some language. A language’s syntax is described by a

grammar. For example, the syntax of a binary number could be expressed as

b in a ry _ n u m b e r = b i t [b in a ry _ n u m b e r]

b i t = "0" | "1"

meaning that a binary number is a bit optionally followed by a binary number and a bit is

a literal zero or one digit.

The meaning of the language is given by its semantics.

Token
A minimal lexical unit of a language. Lexical analysis converts strings in a

language into a list of tokens. For a programming language these word-like pieces would

include keywords, identifiers, literals and punctuation. The tokens are then passed to the

parser for syntactic analysis.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C: ALLEN-BRADLEY

G -C O n i: SPECIFICATION

Product Name: AF-Series 5-Axis Three Dimensional Shapecutting Machine

Product Description:

The Shapecutting cell is a freestanding gantry unit with the working

axes located between its vertical support legs and above the work

area. The C & B Axis are mechanically arranged so that the cutting

tip remains at a constant focal point, which is fixed while the axes

are rotating around the fixed point.

Controller:
This machine is electric AC servo motor driven and micro

processor controlled from a CNC based Allen-Bradley 9/260.

Base Axis Bridge Axis Vertical Axis

Work Envelope Sizes: 6 Ft Stroke 8 Ft Stroke 2 Ft Stroke

X/Y/Z Accuracy:

Linear Positioning Accuracy +/- .005" +/- .005" +/- .005"

Linear Positioning Repeatability +/- .003" +/- .003" +/- .003"

Maximum Rapid Traverse Speed 1200IPM 1200 IPM 1200 IPM

Maximum Contour Speed 600 IPM 600 IPM 600 IPM

Acceleration/Deceleration •05 g •05 g •05 g

C/B Accuracy: C-Axis B-Axis

Rotary Axis Travel ±360° ±90°

Rotary Positioning Accuracy ±.50° ±.50°
Rotary Positioning Repeatability ±.25° ±.25°
Maximum Programmable Speed 90° /s 2 90° /s 2

Acceleration/Deceleration
20°/s 2 20° / s 2

Table C .l. The AF-Series 5-Axis Three Dimensional Shapecutting CNC Machine

specification (Flow Robotics Company, 1999).

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure C .l. Flow Robotics AF-Series 5-Axis Three Dimensional Shapecutting Machine.

Figure C.2. The machine’s rotational axes (B and C).

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.l. Standard Wateriet Shapecutter G-codes

CODE PURPOSE
GOO Rapid point to point motion
G01 Linear interpolation
G02 Circular/helical, clockwise motion
G03 Circular/helical, counterclockwise motion
G04 Dwell time in seconds
G09 Exact stop
G14 Scaling (enable)
G14.1 Scaling (disable)
G15 Polar coordinate cancel
G16 Polar coordinate activate
G17 X, y plane selection
G18 X, z plane selection
G19 Y, z plane selection
G20 Inch mode active
G21 Metric mode active
G22 Programmable zone on
G23 Programmable zone off
G40 Reset cutter compensation
G41 Left cutter compensation
G42 Right cutter compensation
G52 Offset coordinate zero point
G53 Motion in machine coordinate system
G54 Preset work coordinate system 1
G55 Preset work coordinate system 2
G61 Exact stop mode
G64 Cutting mode
G90 Absolute dimensions
G91 Incremental dimensions
G92 Coordinate system offset
G92.1 Cancel coordinate system offset
G93 Inverse time feed mode
G94 Feed-per-minute mode

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C.2. CNC M Codes

CODE DESCRIPTION
MOO Program stop
M01 Conditional program stop
M02 Program end
M30 Program stop/tape rewind
M98 Sub-program call
M99 Sub-program end and return

C.3. I/O M Codes

CODE DESCRIPTION
M08 Dispense on (pressurized water on at nozzle)
M09 Dispense off (pressurized water off at nozzle)
M10 Abrasive on at nozzle
M il Abrasive off at nozzle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

APPENDIX I>: CIRCUl.AR

INTERPOLATION MAPPING

Circular interpolation of Allen-Bradley CNC controller is defined in five different

ways:

• Case 1: Centre and end point parameters are known,

• Case 2: Radius and end point parameters are known,

• Case 3: Arc angle and centre point or end point parameters are known,

• Case 4: Polar coordinates are known,

• Case 5: CIP - start, intermediate and end point parameters are known.

It is because robot controllers can calculate a circular trajectory only if the start,

intermediate, and end points are known, and because Workspace motion planner has been

designed according to Realistic Robot Simulation specification (therefore not taking into

account CNC controllers) the following mathematical transformations were performed to

make CNC to robot circular motion mapping possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

Case 1 - Centre and End Point

A
y

M • r * ! ’

B

t

A - current point

B - end point

C - center point

D - via point

C

 ►

x

Figure D.l. Significant points used in calculation when centre and end point parameters

are known.

Following calculation steps have been performed:

1 - Find the medium point M:

2 - Find the circle radius:

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 - Form the analytical equation of a circle, and the line that contains points M and

C:

The calculated x coordinate belongs to the intersection point, which position needs

to be determined. There are two solutions for x. Depending on the type of circular

interpolation (clockwise or counter-clockwise), a plus sign or a minus sign in the

previous equation will be used respectively.

One solution is located on the arc between points A and B, therefore:

6 -When a start point, an end point and a via point are known, the motion planner

can accept those parameters and calculate a circular trajectory.

= y c (x - x c)
X u X rM

(x - x c)2 - (y - y c)2 = R 2

4 - Introduce a new variable C i:

c _ y M ~ y c
xM - x c

y - y c = c l (x - x c)

5 - Put the above expression in the circle equation and solve it for x:

y A ^ y D ^ y B

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Special Cases:

There are two special cases:

• Points A and B are on the vertical line. In that case: xD = xc +R; yD = yc.

• Points A and B are on the horizontal line. Therefore: xD = xc; yD = yc + R-

Case 2 - Radius and End Point

A - current point

B - end point

C - centre point

D - via point

y

Figure D.2. Significant parameters used in calculation when circle radius and end point
are known.

The beginning calculation steps are the same as for the case 1.

1 - Find the coordinates of point M.

2 - Find the length of line MB.

3 — Calculate the position of point C:

xm = xc + Ri cos a CM xc = xM — cos ctCM
->

y M = y c + sm a CM y c = yM ~ R\ sin

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Plus and minus signs used in previous two equations are applicable only to the case

presented in Figure 2. The problem is that there is one more circle that can be created

through points A and B, and its centre is located opposite of point C with respect to line

that goes through points A and B. In that case signs in the above equations will be

changed.

4 - Calculate the length of Ri:

/?, = J r 2 - M B ~
5 - Calculate cccm:

1 . 1 ,
t S & C M ~ 2 ~ f - , ^ ^ C M ~~ Q f C t g ()

Cj

Ci = tg a (refer to Case 1)

6 - Therefore, after performing the described calculations the following parameters

are known: start point, end point, and centre point, and that is the case 1.

Special Cases:

Since the function arctg was used, there is a possibility of error generation for

specific angle values (0 and 90 degrees). Those cases have to be programmed separately:

- Line AB is horizontal (c x c m = 0 degrees)

X C = X M

yc = y M ~ Ri

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M
R.

B

c

Figure D.3. Special case 1 ((X c m = 0 degrees), when circle radius and end point are
known.

Line AB is vertical (c x c m = 90 degrees)

X C X M ^ 1

= y u

A

 # - M
C

B

Figure D.4. Special case 1 ((X c m = 0 degrees), when circle radius and end point are

known.

Case 3 — Centre Point or End Point and Angle

There are two possible sub-cases within this case:

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sub-case 1 - Known parameters: Angle and Centre Point

•X)A - current point

B - end point

C - centre point

D - via point a A

xc

XB

Figure D.5. Significant parameters used in calculation when arc centre point and arc
central angle are known.

Following calculation steps have been performed:

1 - Calculate the circle radius using points A and C

2 - If the direction of revolution is clockwise then:

a A = a + a B a B = a A- a

- If the direction of revolution is counter-clockwise then:

a B = a + a A
3 - Calculate the target point coordinates:

x b ~ x c + R c o s a B

y B = yc +flsin a B

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 - after performing the calculations shown in previous steps, the following

parameters are known: a start point, an end point, and a centre point - which is the same

as case 1 described above.

Sub-case 2 - Known parameters: start point, end point and angle

Following calculation steps have been performed:

1 - Find the medium point M between the points A and B

2 - Find the radius:

. a AM „ AM
sin — = ------ => R = —

2 R sin

6/2

Figure D.6. Significant parameters used in calculation when start point, end point and the
central angle are known.

In order to find the distance between points A and M, refer to case 2.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 4 - Polar Coordinates

The next parameters are known:

• polar angle,

• polar radius, and

• current point.

Pole is located in the circle centre point. This case is exactly the same as the case

3.1.

Case 5 - C1P - Arc or Circle through Intermediate Point

This is the standard motion planner case, therefore it will not be discussed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

APPENDIX E: G-CODE

LANGUAGE GRAMMAR
SCRIPT

d e f in e TOKEN i n t

d e f in e VALUE i n t

/ * R e d e f in in g E r r o r M a c ro s * /

d e f in e BAD_ERROR(x) f p r i n t f (s t d e r r , " % s(%d) : f a i l e d p a r s e : \
p r o b a b le e r r o r n e a r . . <%s> . . \ n S k ip p i n g

. . . \ n " , p _ i n f i l e , y y l i n e n o , y y t e x t) ; \
i f (n u m e r r s + + > 1 0 0) { f p r i n t f (s t d e r r , " \n T o o m any e r r o r s (1 0 1) . . .

e x i t i n g ") ; \
e x i t (n u m e r r s) ; } w h i l e (y y t c h a r) { i f (y y t c h a r < 1) e x i t (- l) ;

g e t l t o k e n () ; } / * g e t l t o k e n () ; * / \
y y l lo c = N U L L ; / * g e t c h a r () * / ;

t d e f i n e ZER_ERR0R(x) f p r i n t f (s t d e r r , " % s(%d) : in c o m p le t e p a r s e : \
p o s s ib le e r r o r n e a r . . <%s> . . \ n S k ip p i n g

. . . \ n " , p _ i n f i l e , y y l i n e n o , y y t e x t) ; \
i f (n u m e r r s + + > 1 0 0) { f p r i n t f (s t d e r r , " \n T o o m any e r r o r s (1 0 1) . . .

e x i t i n g ") ; \
e x i t (n u m e r r s) ; } w h i l e (y y t c h a r) { i f (y y t c h a r < 1) e x i t (- l) ;

g e t l t o k e n () ; } / * g e t l t o k e n (),- * / \
y y l l o c = N U L L ; / * g e t c h a r () * / ;

d e f in e BTK_ERROR(x) i f (! p _ e n t r y) { \
i f (n u m e r r s + + > 1 0 0) { f p r i n t f (s t d e r r , " \n T o o m any e r r o r s (1 0 1) . . .

e x i t i n g ") ; \
e x i t (n u m e r r s) ; } w h i l e (y y t c h a r) { i f (y y t c h a r < 1) e x i t (- l) ;

g e t l t o k e n () ; } / * g e t l t o k e n () ; * / \
y y l lo c = N U L L ; \
f p r i n t f (s t d e r r , " (l i n e %d) e r r o r : p a r s e b a c k t r a c k e d a c r o s s c u t f r o m

p o i n t n e a r . . <%c> . . \ n " , y y l i n e n o , * (c h a r *) m a x p) ; } \
y y l lo c = N U L L ; \
lo n g jm p (jm p b ,1) ; / * s h o u ld b e t o th e ! w e ' r e b a c k t r a c k in g a c r o s s * / \
/ * g e t c h a r () * / ;

t d e f i n e END { D e s t r o y A S T s () ; p r i n t f (" X n T r a n s la t io n C o m p le t e \ n \ n ") ; }

d e f in e T O _ IN T (i n t)

t d e f i n e TO_CP (i n t *)

t i n c l u d e " G c o d e s .y .h "
in c lu d e " c c x . h "
t i n c l u d e "AST S t u f f . h "
t i n c l u d e < s t d io . h >
t i n c l u d e < c t y p e .h >

c h a r * y y te m p ;
e x t e r n c h a r * y y t e x t ;
e x t e r n F IL E * y y i n ;
F IL E * o u t p u t _ f i l e ;
i n t n N u m b e rO f In i tF u n c s = 0 ;
i n t n N u m b e r O f In i t s = 0 ;

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d e f in e VAR _TAB LE _S IZE 1024

i n t n u m e r rs = 0 ;
i n t ju s t O n e = 0 ;

/ ‘ N u m e r ic V a lu e s * /

© n u m _ v a lu e = p o i n t \ x i n t e g e r \ y
(@ u k e y (T 0 _ C P $ x , ($ y - $ x)) @}

© | f i r s t _ d i g i t \ x [i n t e g e r] p o i n t i n t e g e r \ y
{<? u k e y (TO_CP $ x , ($ y - $ x)) @}

© 1 f i r s t _ d i g i t \ x [i n t e g e r] p o i n t \ y
(@ u ke y (T O _ C P $ x , ($ y - $ x)) @)

© | f i r s t _ d i g i t \ x i n t e g e r \ y
{© u ke y (T O _ C P $ x , ($ y - $ x)) ©}

© | f i r s t _ d i g i t \ x
{© u k e y (T 0 _ C P $ x , 1) @)

@ | m s ig n \ x p o i n t i n t e g e r \ y
{© u ke y (T O _ C P $ x , ($ y - $ x)) @)

@ | m s ig n \ x f i r s t _ d i g i t [i n t e g e r] p o i n t i n t e g e r \ y
{@ u ke y (T O _ C P $ x , ($ y - $ x)) ©}

@ | m s ig n \ x f i r s t _ d i g i t [i n t e g e r] p o i n t \ y
{@ u k e y (T 0 _ C P $ x , ($ y - $ x)) 0 }

@ | m s ig n \ x f i r s t _ d i g i t i n t e g e r \ y
{© u ke y (T O _ C P $ x , ($ y - $ x)) ©}

@ | m s ig n \ x f i r s t _ d i g i t \ y
{© u ke y (T O _ C P $ x , ($ y - $ x)) ©}

@ m s ig n = {@ T O _IN T p s t r ©}

@ p o i n t = [@ T O _ IN T p s t r ©}

© f i r s t _ d i g i t = (m y i s d ig i t) {© T O _ IN T p s t r ©}

© i n t e g e r = (m y i s d i g i t) * {© T O _ IN T p s t r ©}

/ ‘ C o m m e n ts * /

© com m ent = b e h o ld \ x { : f p r i n t f (o u t p u t _ f i l e , " \n \n R e m
%s" , g e t s t r i n g ($ x)) ; : }

© b e h o ld = l e t t e r (' (') \ x <SPACE>* t e x t l e t t e r (') ') \ y {©
uke y (T O _ C P $ x , ($ y - $ x)) ©}

© t e x t = c o n te n s +

© c o n te n s = w o rd s e p a r a t o r w o rd

@ s e p a r a t o r = <SPACE>

@ w o rd = (m y i s p r i n t) * {© T O _ IN T p s t r ©}

@ l e t t e r (n) = <n> {@ (i n t) p s t r ©}

/ ‘ P ro g ra m S t r u c t u r e * /

@ p r o g r a m _ f lo w = [<PERC>] <SPACE>*
@ $ * <SPACE>*

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© [c o m m e n t] [< S E M IC >] <SPACE>*
© $ * <SPACE>*
© p ro g ra m _ n a m e <SPACE>*
© $ * <SPACE>*
© [c o m m e n t] [< S E M IC >] <SPACE>*
© $ * <SPACE>*
© c o d e s

<SPACE>*
© $ * <SPACE>*
© [c o m m e n t] [<S E M IC >] <SPACE>*
© $ * <SPACE>*
© m a in e n d <SPACE>*
© $ * <SPACE>*
© s u b p ro g ra m s * [<S E M IC >] <SPACE>*
© <EOF>

© p ro g ra m _ n a m e = < ' 0 ' > [n u m _ v a lu e] \p [<S E M IC >] { : s t a t i c i n t c o u n te r
= 0 ;
©
i f (c o u n t e r = = 0) {

" \ n \ n P u b l i c Sub

f p r i n t f (o u t p u t _ f i l e , " \ n \ n P u b l i c Sub R eadyToG o () ") ;
©
©
{
©

f p r i n t f (o u t p u t _ f i l e ,
g e t s t r i n g ($ p)) ;
©
©

c o u n t e r + + ;
©

ju s tO n e = 0 ;

P rogram % s

}
e ls e

0 " ,

}

: }
© m a in e n d
©
©
" \ n \n E n d S u b ") ;
©
©

© s u b p ro g ra m s
©
©
©
©
©
©
©
©
©
©
©

= [<PERC>] {
i f (j u s t O n e == 0)

{ f p r i n t f (o u t p u t _ f i l e .

} :}
ju s tO n e + + ;

= [c o m m e n t] [< S E M IC >] <SPACE>*
$ * <SPACE>*

p ro g ra m _ n a m e <SPACE>*
$ * <SPACE>*
[c o m m e n t] [< S E M IC >] <SPACE>*
$ * <SPACE>*
c o d e s <SPACE>*
$ * <SPACE>*
[c o m m e n t] [<S E M IC >] <SPACE>*
$ * <SPACE>*
g o b a c k to m a in <SPACE>*
$ * <SPACE>*

© g o b a c k to m a in = <M99> [< S E M IC >] { : f p r i n t f (o u t p u t _ f i l e , " \ n \n E n d
S u b ") ; : }

© c o d e s = s e n te n c e s - $ *

© s e n te n c e = [<S LA LIN E >] {$ | n _ w o rd | g _ w o rd | m _w ord | t_ w o r d |
s _ w o rd | h _ w o rd | d _ w o rd | s e tO fA r g s | co m m e n t}+ [< S E M IC >] <SPACE>*

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© s e tO fA r g s = { [a rg u m e n tx] [a rg u m e n ty] [a rg u m e n tz] [a rg u m e n tb]
[a rg u m e n tc] ta r g u m e n t f] [a r g u m e n t i] [a r g u m e n t j] [a rg u m e n tk] [a r g u m e n t r] }
t h e R e s t * $
© { : f p r i n t f (o u t p u t _ f i l e ,
" \ n \ n P e r f o r m M o t io n ") ; : }

© th e R e s t

© n _ w o rd

© t_ w o r d

© s _ w o rd

© h _ w o rd

© d w o rd

= g _ w o rd | m _w ord

= < ' N ' > n u xn _ va lu e

= < ' T ' > n u m _ v a lu e

= < ' S ' > n u m _ v a lu e

= < ' H ' > n u m _ v a lu e

= < ' D ' > num v a lu e

| t_ w o r d

<SPACE>*

<SPACE>*

<SPACE>*

<SPACE>*

<SPACE>*

d w o rd I h w o rd

0 g w o rd = g te m p ty
0 gtOO
© g t O l
© g t0 2
0 g t0 3
0 g t0 4
© g t0 9
0 g t l0 1 2
© g t l 4
0 g t l 4 l
© g t i s
0 g t l 6
© g t i 7
© g t l 8
0 g t l 9
© g t2 0
0 g t 2 i
© g t2 2
© g t2 3
© g t2 7
© g t2 8
© g t2 9
© g t3 0
© g t5 2
© g t5 3
© g t5 4
© g t5 5
© g t5 6
© g t5 7
© g t5 8
© g t5 9
© g t5 9 1
© g t5 9 2
© g t5 9 3
© g t 6 l
© g t9 0
© g t 9 i
© g t9 2
© g t 9 2 i
© g t9 3
© g t9 4
© g ts o
© g t7 4
© g t9 5
© g t3 1

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ g tlO O
@ g t6 5
@ g t8 1
(3 g t7 6
@ g t4 1
@ g t4 3
@ g t4 3 1
@ g t l O l
@ g t l 0 3
(3 g t7 4 1
@ g t l 3
<3 g t l 0 2
(3 g t l 6 1
<3 g t2 4
@ g t2 5
(3 g t2 6
(3 g t3 7
(3 g t3 8
13 g t3 8 1
<3 g t4 6
<3 g t6 8

g t7 3
@ g t8 3
(3 g t8 8 1 1
@ g t8 8 1 2
@ g t8 8 1 3
@ g t8 8 1 4
(3 g t8 8 1 5
@ g t8 8 2 1
(3 g t8 8 2 2
@ g t8 8 2 3
@ g t8 8 2 4
@ g t8 8 3 1
@ g t8 8 3 2
13 g t8 8 4 1
@ g t8 8 4 2
@ g t8 8 5
@ g t8 8 6
@ g t8 9 1
(3 g t8 9 2

@ g te m p ty = <G05> <SPACE>*
§ <G05 1> <SPACE>*
@ <G 05_2> <SPACE>*
(3 <G05 3> <SPACE>*
@ <G 05_4> <SPACE>*
@ <G 11> <SPACE>*
@ <G12 1> <SPACE>*
@ <G12 2> <SPACE>*
@ <G 12_3> <SPACE>*
@ <G 36> cSPACE>*
@ <G3 6_1> <SPACE>*
@ <G39> <SPACE>*
@ <G 39_1> <SPACE>*
@ 1 <G40> <SPACE>*
@ <G45> <SPACE>*
@ <G 46_1> <SPACE>*
@ <G 49> <SPACE>*
e <G 62> <SPACE>*
@ <G 63> <SPACE>*
@ <G 64> <SPACE>*
@ <G 67> <SPACE>*
@ <G 69> <SPACE>*
@ <G 80> <SPACE>*

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©
©
©

<G 92_2> <SPACE>*
<G98> <SPACE>*
<G99> <SPACE>*

© gtOO

© r a p id _ a x e s e q
@
©
©

©
©

©
: }

\ " R a p i d \ " ") ;

@ a rg u m e n tx =
f p r i n t f (o u t p u t _ f i l e ,

@ a rg u m e n ty =
f p r i n t f (o u t p u t _ f i l e ,

@ a rg u m e n tz =
f p r i n t f (o u t p u t _ f i l e ,

© a rg u m e n tb =
f p r i n t f (o u t p u t _ f i l e ,

© a rg u m e n tc =
f p r i n t f (o u t p u t _ f i l e ,

@ a r g u m e n t f =
f p r i n t f (o u t p u t _ f i l e ,

@ a r g u m e n t i =
f p r i n t f (o u t p u t _ f i l e ,

© a rg u m e n t j
f p r i n t f (o u t p u t _ f i l e ,

© a rg u m e n tk =
f p r i n t f (o u t p u t _ f i l e ,

@ a r g u m e n t r =
f p r i n t f (o u t p u t _ f i l e ,

= <G00> <SPACE>* r a p id _ a x e s e q

[a rg u m e n tx]
[a rg u m e n ty]
[a rg u m e n tz]
[a rg u m e n tb]
[a rg u m e n tc]
[a r g u m e n t f]

{ : f p r i n t f (o u t p u t _ f i l e .

f p r i n t f (o u t p u t _ f i l e .

1\ n \ n A c t iv e M o t io n T y p e

" \ n P e r f o r m M o t io n ") ;

< ' X ' > n u m _ v a lu e \x <SPACE>* {© $ x ©}
" \ n \ n D e f C o o r d .x = %s” , g e t s t r i n g ($ x)) ; : }

< ' Y ' > n u m _ v a lu e \y <SPACE>* {@ $ y ©}
" \ n \ n D e f C o o r d .y = %s" , g e t s t r i n g ($ y)) ; : }

< ' Z ' > n u m _ v a lu e \z <SPACE>* {© $z ©}
" \ n \ n D e f C o o r d .z = %s" , g e t s t r i n g ($ z)) ; : }

< ' B ' > n u m _ v a lu e \b <SPACE>* {© $b ©}
" \ n \ n D e f C o o r d .b = % s " , g e t s t r i n g ($ b)) ; : }

< ' C ' > n u m _ v a lu e \c <SPACE>* {© $c ©}
" \ n \ n D e f C o o r d .c = %s" , g e t s t r i n g ($ c)) ; : }

< ' F ' > n u m _ v a lu e \ f <SPACE>* {© $ f ©}
" \ n \ n F e e d r a t e = %s" , g e t s t r i n g ($ f)) ; : }

< ' I ' > n u m _ v a lu e \ i <SPACE>* {© $ i ©}
" \ n \ n C i r c P a r a m . i = %s" , g e t s t r i n g ($ i)) ; : }

< ' J ' > n u m _ v a lu e \ j <SPACE>* {© $ j ©}
" \ n \ n C i r c P a r a m . j = %s" , g e t s t r i n g ($ j)) ; : }

< ' K ' > n u m _ v a lu e \k <SPACE>* {© $ k ©}
" \ n \ n C i r c P a r a m . k = %s" , g e t s t r i n g ($ k)) ; : }

< ' R ' > n u m _ v a lu e \ r <SPACE>* {© $ r ©}
11 \n \n C ir c P a r a m . r = % s " , g e t s t r i n g ($ r)) ; : }

® g t O l = <G01> <SPACE>* l in e a r _ a x e s e q

© l in e a r _ a x e s e q = [a rg u m e n tx]
® [a rg u m e n ty]
® [a rg u m e n tz]
@ [a rg u m e n tb]
® [a rg u m e n tc]
@ [a r g u m e n t f]
® { : f p r i n t f (o u t p u t _ f i l e , " \ n \ n A c t iv e M o t io n T y p e
= \ " L i n e a r \ " ") ;
® f p r i n t f (o u t p u t _ f i l e , " \ n P e r f o rm M o t io n ") ;
:}

® g t0 2 = <G02> <SPACE>* c i r c w _ a x e s e q

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ c ir c w _ a x e s e q
@
@
@
@
@
@
@
@

@
:}

\ " C i r c u l a r C W\ " ”) ;

[a rg u m e n tx]
[a rg u m e n ty]
[a r g u m e n tz]
[a r g u m e n t r]
[a r g u m e n t i]
[a r g u m e n t j]
[a rg u m e n tk]
[a rg u m e n tb]
[a rg u m e n tc]
[a r g u m e n t f]

{ : f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e .

' \ n \ n A c t iv e M o t io n T y p e

" \ n P e r f o r m M o t io n ") ;

@ g t0 3

@ c ir c c w _ a x e s e q
@

@

@
@
@

@

@

@
@

= \ " C i r c u l a r CCW\ " ") ;
@
: }
@ g t0 4

<G03> <SPACE>* c i r c c w _ a x e s e q

[a rg u m e n tx]
[a rg u m e n ty]
[a rg u m e n tz]
[a r g u m e n t r]
[a r g u m e n t i]
[a r g u m e n t j]
[a rg u m e n tk]
[a rg u m e n tb]
[a rg u m e n tc]
[a r g u m e n t f]

f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

<G04> <SPACE>* {p p a ra m

\n \n A c t iv e M o t i o n T y p e

" \ n P e r f o r m M o t io n ") ;

x p a ra m u p a ra m }

@ p p a ra m = < ' P ' > n u m _ v a lu e \p <SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,
" \n \n C N C .D e la y 1000 * %s # " , g e t s t r i n g ($ p)) ; : }

@ x p a ra m = < ' X ' > n u m _ v a lu e \x <SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,
" \n \n C N C .D e la y 100 0 * %s # " , g e t s t r i n g ($ x)) ; : }

@ u p a ra m = < ' U ' > n u m _ v a lu e \u <SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,
" \n \n C N C .D e la y 1000 * %s # " , g e t s t r i n g ($ u)) ; : }

= <G09> <SPACE>*@ g t0 9
" \n \n C N C .D e la y 1 ") ;
@

f p r i n t f (o u t p u t _ f i l e , " \n C N C .RRS. S t o p M o t io n ") ; : }

{ : f p r i n t f (o u t p u t _ f i l e ,

@ g t l 0 1 2 = <G 10L2> <SPACE>* < ' P ' > n u m _ v a lu e \p <SPACE>*
o r i g i n x \ x o r i g i n y \ y o r i g i n z \ z
@ { : i f ($P
= = 1) f p r i n t f (o u t p u t _ f i l e , " \n \n T a b le C S = \ " G 5 4 \ " ’) ;
@ e ls e i f ($P
= = 2) f p r i n t f (o u t p u t _ f i l e , " \n \n T a b le C S = \ " G5 5 \ " ') ;
@ e ls e i f ($P
== 3) f p r i n t f (o u t p u t _ f i l e , " \n \n T a b le C S = \ " G 5 6 \ " ') ;
@ e ls e i f ($P
== 4) f p r i n t f (o u t p u t _ f i l e , " \n \n T a b le C S = \ " G 5 7 \ " ') ;
@ e ls e i f ($P
== 5) f p r i n t f (o u t p u t _ f i l e , " \n \n T a b le C S = \ " G 5 8 \ " ') ;

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© e ls e i f ($p

e ls e i f ($ p
== 6) f p r i n t f (o u t p u t _ f i l e , " \ n \n T a b le C S = \ " G 5 9 \ " ") ;
@

= = 7) f p r i n t f (o u t p u t _ f i l e , " \ n \n T a b le C S = \ "G 59 . 1 \ " 11) ;
@ e ls e i f ($ p
== 8) f p r i n t f (o u t p u t _ f i l e , " \ n \n T a b le C S = \ " G 5 9 . 2 \ " ") ;
© e ls e i f ($ p
== 9) f p r i n t f (o u t p u t _ f i l e , " \ n \n T a b le C S = \ " G 5 9 . 3 \ " ") ;

f p r i n t f (o u t p u t _ f i l e , 11 \ n \ n I s I t A c t i v e %s, %s, %s" , g e t s t r i n g ($x) ,
g e t s t r i n g ($ y) , g e t s t r i n g ($ z)) ;
© :}

© o r i g i n x

© o r i g i n y

© o r i g i n z

= < ' X ' > n u m _ v a lu e \x <SPACE>* {© $ x @}

= < ' Y ' > n u m _ v a lu e \y <SPACE>* {© $ y ©}

= < ' Z ' > n u m _ v a lu e \z <SPACE>* {© $z @)

© g t l 4 = <G14>
" \ n \ n S c a le V a lu e = 1 ") ; : }

<SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,

@ g t l 4 1 <G14 1> <SPACE>* s c a le v a lu e

© s c a le v a lu e = < ' P ' > n u m _ v a lu e \p <SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,
" \ n \ n S c a le V a lu e = %s" , g e t s t r i n g ($ p)) ; : }

<G15> <SPACE> * { : f p r i n t f (o u t p u t _ f i l e ,© g t l 5
" \ n \ n I s P o l a r = F a l s e ") ;
©
f p r i n t f (o u t p u t _ f i l e , " X n R e s e tP o la r A n g le s ") ; : }

@ g t l 6 = {<G 16> <SPACE>* a rg u m e n tx a rg u m e n ty) {
f p r i n t f (o u t p u t _ f i l e , " \ n \ n I s P o l a r = T r u e X n P e r fo r m M o t io n ") ; : }

© | {<G 16> <SPACE>* a rg u m e n tz a rg u m e n tx) {
f p r i n t f (o u t p u t _ f i l e , " \ n \ n I s P o l a r = T r u e X n P e r fo r m M o t io n ") ; : }

© | {<G 16> <SPACE>* a rg u m e n ty a rg u m e n tz) {
f p r i n t f (o u t p u t _ f i l e , " \ n \ n I s P o l a r = T r u e \ n P e r f o r m M o t io n ") ; : }

© { [a r g u m e n tb] } { [a r g u m e n tc]) { [a r g u m e n t f])

© g t l 7 = <G17>
" \ n \ n P la n e = 1 7 ") ; : }

© g t l 8 =
" \ n \ n P la n e = 1 8 ") ; :)

© g t l 9 =
" \ n \ n P la n e = 1 9 ") ; :)

© g t2 0 =
" \n \n M S V a lu e = 2 5 . 4 ") ; :)

© g t2 1
” \n M S V a lu e = 1 ") ; : }

© g t2 2 =
u\n \n Z o n e O n = T r u e ") ; :)
©
" \n \n Z o n e O n = T r u e ") ; : }

<G18>

<G19>

<G2 0>

<G21>

<SPACE>* { :

<SPACE>* { :

< SPACE>* { :

<SPACE>* { :

<SPACE>* { :

<G22> <SPACE>* { :

<G 22_1> <SPACE>* { :

f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ g t2 3 = <G23> <SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,
" \n \n Z o n e O n = F a l s e ") ; : }
@ | <G 23_1> <SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,
" \n \n Z o n e O n = F a l s e ") ; : }

@ g t2 7 = <G27> <SPACE>*
@ [a rg u m e n tx]
@ [a rg u m e n ty]
@ [a rg u m e n tz]
@ [a rg u m e n tb]
@ [a rg u m e n tc]
@ [a r g u m e n t f]
@ { : f p r i n t f (o u t p u t _ f i l e , " \ n \ n G 2 7 ") ; ; }

@ g t2 8 = <G 28> <SPACE>*
@ [a rg u m e n tx]
@ [a rg u m e n ty]
@ [a rg u m e n tz]
@ [a rg u m e n tb]
@ [a rg u m e n tc]
@ [a r g u m e n t f]
@ { : f p r i n t f (o u t p u t _ f i l e , " \ n \ n G 2 8 ") ; : }

@ g t2 9 = <G29> <SPACE>*
@ [a rg u m e n tx]
@ [a rg u m e n ty]
@ [a rg u m e n tz]
@ [a rg u m e n tb]
@ [a rg u m e n tc]
@ [a r g u m e n t f]
@ { : f p r i n t f (o u t p u t _ f i l e , " \ n \ n G 2 9 ") ; : }

@ g t3 0 = <G30> <SPACE>*
@ [a rg u m e n tx]
@ [a rg u m e n ty]
@ [a rg u m e n tz]
@ [a rg u m e n tb]
@ [a r g i im e n tc]
@ [a r g u m e n t f]
@ { : f p r i n t f (o u t p u t _ f i l e , " \ n \ n G 3 0 ") ; : }

@ g t5 2 = <G52> <SPACE>*
@ [m a r k x] \ x
@ [m a r k y] \ y
@ [m a r k z] \ z
@ { : f p r i n t f (o u t p u t _ f i l e ,
" \ n \ n M o v e O r ig in 5 2 , %s, %s, %s" , g e t s t r i n g ($ x) , g e t s t r i n g ($ y) ,
g e t s t r i n g ($ z)) ; : }

@ g t5 3 = <G53> <SPACE>* { :
f p r i n t f (o u t p u t _ f i l e , " \ n \ n A c t iv e C S = \ " G 5 3 \ " ") ;
@
f p r i n t f (o u t p u t _ f i l e , "X n lsW C S = F a l s e ") ; : }

@ g t5 4 = <G54> <SPACE>* { : f p r i n t f (o u t p u t _ f i l e ,
" \ n \ n A c t iv e C S = \ " G 5 4 \ " ") ;
@

f p r i n t f (o u t p u t _ f i l e , "Xn lsW C S = T r u e ") ; : }

@ g t5 5 = <G55> <SPACE>* { :
f p r i n t f (o u t p u t _ f i l e , " X n X n A c tiv e C S = \ " G 5 5 \ " ") ;

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@
f p r i n t f (o u t p u t _ f i l e , " \n Is W C S = T r u e ") ; : }

@ g t5 6
f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

@ g t5 7
f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

@ g t5 8
f p r i n t f (o u t p u t _ f i l e ,
@

f p r i n t f (o u t p u t _ f i l e ,

@ g t5 9
f p r i n t f (o u t p u t _ f i l e ,

f p r i n t f (o u t p u t _ f i l e ,

@ g t5 9 1
f p r i n t f (o u t p u t _ f i l e ,
@
f p r i n t f (o u t p u t _ f i l e ,

@ g t5 9 2
f p r i n t f (o u t p u t _ f i l e ,
@

f p r i n t f (o u t p u t _ f i l e ,

@ g t5 9 3
f p r i n t f (o u t p u t _ f i l e ,
@
f p r i n t f (o u t p u t _ f i l e ,

= <G56> <SPACE>*
" \ n \ n A c t iv e C S = \ " G 5 6 \ " ")

"Xn lsW C S = T r u e ") ; : }

= <G57> <SPACE>*
" X n X n A c tiv e C S = \ " G 5 7 \ ," ,)

"X n lsW C S = T r u e " !

= <G58> <SPACE>*
"X n X n A c tiv e C S = \ " G 5 8 \ " ") ;

"X n lsW C S = T r u e ") ; : }

= <G59> <SPACE>*
"X n X n A c tiv e C S = \ " G 5 9 \ " ") ;

"X n lsW C S = T r u e ") ; : }

= <G 59_1> <SPACE>*
"X n X n A c tiv e C S = X " G 5 9 . I X " ") ;

"Xn lsW C S = T r u e ") ; : }

= <G 59_2> <SPACE>*
"X n X n A c tiv e C S = X " G 5 9 . 2 \ " ") ;

"X n lsW C S = T r u e ") ; : }

= <G 59_3> <SPACE>*
"X n X n A c tiv e C S = \ " G 5 9 . 3 \ " ") ;

"X n lsW C S = T r u e ") ; : }

= <G61> <SPACE>* { :

{ :

{ :

{ :

@ g t6 1
" X n X n C N C .D e la y 1 ") ;
@

f p r i n t f (o u t p u t _ f i l e , " XnCNC.RRS. S t o p M o t io n ") ; :)

f p r i n t f (o u t p u t _ f i l e .

@ g t9 0 = <G90> <SPACE>*
f p r i n t f (o u t p u t _ f i l e , " X n X n ls R e la t iv e = F a ls e ") : }

@ g t9 1 = <G91> <SPACE>* { :
f p r i n t f (o u t p u t _ f i l e , " X n X n ls R e la t iv e = T r u e ") ; : }

@ g t9 2 = <G92> <SPACE>*
@ [m a r k x] \ x
@ [m a r k y] \ y
@ [m a r k z] \ z
@ { : f p r i n t f (o u t p u t _ f i l e ,
" X n X n M o v e O rig in 9 2 , %s, %s, %s" , g e t s t r i n g ($ x) , g e t s t r i n g ($ y) ,
g e t s t r i n g ($ z)) ; : }

@ m a rk x

@ m a rk y

= < ' X ' > n u m _ v a lu e \x <SPACE>* {@ $ x @}

= < ' Y ' > n u m _ v a lu e \y <SPACE>* {@ $ y @}

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ m a rk z = < ' Z ' > n u m _ v a lu e \z <SPACE>* {@ $z @}

@ g t9 2 1 = <G 92_1> <SPACE>* { : f p r i n t f (o u t p u t _ f i l e
" \ n \ n M o v e O r ig in 9 2 1 , 0 # , 0 # , 0 # ") ; : }

@ g t9 3 = <G93> <SPACE>* a r g u m e n t f <SPACE>* {
f p r i n t f (o u t p u t _ f i l e , " \ n \ n I s I n v e r s e T im e = T r u e ”) ; : }

@ g t9 4 = <G94> <SPACE>* [a r g u m e n t f] <SPACE>* {
f p r i n t f (o u t p u t _ f i l e , " \ n \ n I s I n v e r s e T im e = F a l s e ") ; : }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

APPENDIX F: C FUNCTION

LIBRARY FOR PARSER

CUSTOMIZATION

* ©doc
* © m o d u le AST S t u f f . c |
*
ie

* C o p y r ig h t (c) 1999 R o b o t S im u la t io n s L t d .
★
* F i le n a m e : AST S t u f f . c
* C r e a te d : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic
*
* C o m p i le r : M ic r o s o f t V i s u a l C++ v 6 . 0
* OS: W in 32
ie

* V e r s io n : v l . 0
ie

* D e s c r i p t i o n : F u n c t io n s t o h e lp c r e a t e R o b o t L a n g u a g e T r a n s la t o r s
ie

in c lu d e "AST S t u f f . h "

* © fu n c
* F u n c t io n : n e w k e y
*

* A r g u m e n ts :
* c h a r * x ,
* lo n g n*
★
* R e t u r n s : s t a t i c i n t
*•
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic*
* D e s c r i p t i o n : A d d s a new s t r i n g c o n s ta n t t o t h e l i s t★
i e ie ie -k ie ie ie ie ie ie ie ie ie ie ie 'k ie ie ie ie 'k ie ie ie ie ie ie ie ie ie ie ie -k 'k 'k ie ie ie ie ie ie ie ie ie ie 'k ie 'k 'k ie ie 'k ie i t-k ie ie ie 'k ie ie ie 'k ie it ie j

s t a t i c i n t n e w k e y (c h a r * x , lo n g n)
/ * p u t a new s t r i n g i n t h e s ta s h a n d g iv e i t a k e y * /
/ * n e g a t i v e r e t u r n s a r e e r r o r s * /
{

c h a r * y ;
NODE * z ;
/ * t h e m in im u m p o s i t i o n i s 1 * /

i f (w o rd c o u n t >= MAXWORDS - 1)
{

f p r i n t f (s t d e r r , " \ n S t r i n g l i s t t o o s h o r t . . . E x i t i n g ") ;
e x i t (- 1) ;

}
y = m a l l o c ((u n s ig n e d) n + 1) ;
i f (! y) / * o u t o f m em ory * /

r e t u r n - 1 ;
z = (NODE *) m a l l o c (s iz e o f (N O D E)) ;

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i f (! z) / * o u t o f m em ory * /
r e t u r n - 1 ;

s t r n c p y (y , x , (u n s ig n e d i n t) n) ;
y [n] = 0 ;
z - > w o r d = y ;
n o d e l i s t [+ + w o r d c o u n t] = z ; / * s t o r e t h e p o i n t e r f o r c o m p a r is o n s
r e t u r n w o r d c o u n t ;

* @ func
* F u n c t io n : lo o k u p*
* A rg u m e n ts :
* c h a r * x ,
* lo n g n*
★
* R e tu r n s : s t a t i c i n t★
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic
*

* D e s c r i p t i o n : C h e c k s t o s e e i f t h e s t r i n g p a s s e d i s a l r e a d y i n
* i n t h e l i s t , i f s o , i t r e t u r n s t h e u n iq u e i d e n t i f i e r
*

s t a t i c i n t lo o k u p (c h a r * x , lo n g n)
/ * f i n d a name i n t h e l i s t

* i f n o t t h e r e r e t u r n 0 , e l s e r e t u r n i t s in d e x
* /

{
i n t i , t e s t = 0 ;
c h a r *w ;

f o r (i = w o r d c o u n t ; i ; i - -)
{

i f (I n o d e l i s t [i]) / / a v o i d p ro b le m s w i t h n u l l p o i n t e r s
r e t u r n 0 ; / / s h o u l d n ' t h a p p e n

w = n o d e l i s t [i] - > w o r d ;
i f (! s t r c m p (x , w))
{ / / T h e y ' r e i d e n t i c a l

t e s t = i ;
b r e a k ;

}
}
r e t u r n t e s t ;

}

/***-***
* @ func
* F u n c t io n : u k e y
*

* A rg u m e n ts :
* i n t * x ,
* lo n g n*
★
* R e t u r n s : i n t★
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* D e s c r i p t i o n : C h e c k s t o se e i f a s t r i n g i s i n t h e l i s t , i f n o t
* th e n i t a d d s i t t o th e e n d
*

i n t u k e y (i n t * x , lo n g n)
/ * l o o k u p s t r i n n o t i f i e d w o rd l i s t a n d r e t u r n u n iq u e k e y .

* A dd new k e y i f n e c e s s a r y a n d r e t u r n t h a t . I f we c a n ' t , r e t u r n - 1 .
* /

{
s t a t i c c h a r T e m p A rra y [2 0 4 8] ;

i n t i = 0 ;
x - - ; / / A lw a y s o ne l e t t e r o f f !
n= (n + s i z e o f (i n t)) / s i z e o f (i n t) ; / / c o n v e r t t o c h a r a c t e r s t r i n g

do
{

i f (i > n) / / c o n v e r t t o c h a r a c t e r s t r i n g
b r e a k ;

* (T e m p A rra y + i) = * (x + i) ,-
i+ + ;

}
w h i l e (* (x + i)) ;
* (T e m p A rra y + n) = 0 ;

i = lo o k u p (T e m p A r r a y , n) ;
i f (i > 0) / * f o u n d * /

r e t u r n i ;
i = n e w k e y (T e m p A r ra y , n) ; / * new k e y * /
r e t u r n i ;

}

* @ func
* F u n c t io n : g e t s t r i n g*
* A r g u m e n ts :
* i n t u k e y*
★
* R e t u r n s : c h a r *★
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic
*

* D e s c r i p t i o n : R e tu r n s th e s t r i n g s t o r e d i n t h e s p e c i f i e d p o s i t i o n
(i f a n y)★

★ • A ’ * * * * j

c h a r * g e t s t r i n g (i n t u k e y)
{

c h a r * p s R v a l ; / / i f n o t h in g j u s t a d d a s p a c e

i f ((u k e y > 0) && (u k e y <= w o r d c o u n t))
{

i f (n o d e l i s t [u k e y])
p s R v a l = n o d e l i s t [u k e y] - > w o r d ;

e ls e
p s R v a l = E m p ty ;

}
e ls e

p s R v a l = E m p ty ;

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r e t u r n p s R v a l ;
}

* @ func
* F u n c t io n : m y is a lp h a
*

* A rg u m e n ts :
* TOKEN t e s t*
★
* R e t u r n s : BOOLEAN
★
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic*
* D e s c r i p t i o n : c h e c k s i f t h e to k e n i s a n a lp h a c h a r a c t e r
★

BOOLEAN m y is a lp h a (T O K E N t e s t)
{

r e t u r n ((((t e s t >= ' a ') && (t e s t <= ' z ')) | | ((t e s t >= ' A ') &&
(t e s t <= ' Z '))) ? 1 : 0) ;
}
/**
* © fu n c
* F u n c t io n : m y i s d i g i t
*
* A rg u m e n ts :
* TOKEN t e s t*
★
* R e t u r n s : BOOLEAN*
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic•k
* D e s c r i p t i o n : c h e c k s i f t h e to k e n i s a d i g i t*
* j

BOOLEAN m y is d ig i t (T O K E N t e s t)
{

r e t u r n (((t e s t >= ' 0 ') && (t e s t <= ' 9 ')) ? 1 : 0) ;
}

/ * * * * * * * * * ★ * ★ * * * * * * ★ * * * * * * * * * ★ * ★ * * * * * * * * ★ ★ * * * * * * * * * * ■ * * * * * * * * ★ * * * * * *
* © fu n c
* F u n c t io n : m y is a ln u m*
* A rg u m e n ts :
* TOKEN t e s t*
*
* R e t u r n s : BOOLEAN
★
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic*
* D e s c r i p t i o n : c h e c k s i f t h e to k e n i s a d i g i t , a lp h a o r★
* /

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BOOLEAN m y is a ln u m (T O K E N t e s t)
{

r e t u r n (m y i s d i g i t (t e s t) | | m y is a lp h a (t e s t) | | (t e s t ==
: 0 ;
}
/ * • * * * * * * * * *

* @ func
* F u n c t io n : m y i s p r i n t
*
* A rg u m e n ts :
* TOKEN t e s t

* R e t u r n s : BOOLEAN
★
* D a te : 0 9 / 0 2 / 9 9
* A u t h o r : A le k s a n d a r B o s k o v ic*
* D e s c r i p t i o n : c h e c k s i f t h e to k e n i s a p r i n t a b l e c h a r a c t e r★

BOOLEAN m y is p r in t (T O K E N t e s t)
{

r e t u r n (((i s p r i n t (t e s t) | | (t e s t == ' ')) && ((t e s t ! = '
(t e s t ! = ') ') && (t e s t ! = ' % '))) ? 1 : 0) ;
}

)) ? 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

APPENDIX G : WORKSPACE
SIMULATION LANGUAGE

LIBRARY FILE

'D a ta D e c la r a t i o n

'U s e r T y p e
T y p e J o in t S e t
x As D o u b le
y As D o u b le
z As D o u b le
b As D o u b le
c As D o u b le
E nd T y p e

T y p e P o sA n dO r
x A s D o u b le
y A s D o u b le
z As D o u b le
a A s D o u b le
b As D o u b le
c As D o u b le
E nd T y p e

T y p e C i r c I n t A r g
r A s D o u b le
i A s D o u b le
j A s D o u b le
k As D o u b le
E nd T y p e

T y p e Zone
X m in As D o u b le
Xmax As D o u b le
Y m in As D o u b le
Ymax As D o u b le
Z m in As D o u b le
Zmax A s D o u b le
E nd T y p e

T y p e T ra n s fo r m e d
x A s D o u b le
y A s D o u b le
z A s D o u b le
E nd T y p e

T y p e W o rk C o o rd S y s
G code As S t r i n g
P ro p s As P o sA n dO r
E nd T y p e

' C o n s ta n ts
P u b l i c C o n s t P I A s D o u b le = 3 .1 4 1 5 9 2 6 5
P u b l i c C o n s t MAXROTSPEED As D o u b le = 5 400#
P u b l i c C o n s t RAPIDFEEDRATE As D o u b le = 3 0 480#

'V a r i a b le s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P u b l i c I s P o l a r A s B o o le a n
P u b l i c ZoneO n A s B o o le a n
P u b l i c I s R e la t i v e As B o o le a n
P u b l i c IsWCS As B o o le a n
P u b l i c I s I n v e r s e T im e A s B o o le a n
P u b l i c F e e d r a te As D o u b le
P u b l i c M S V a lu e A s D o u b le
P u b l i c S c a le V a lu e As D o u b le
P u b l i c R a d iu s As D o u b le
P u b l i c C u t te rC o m p A s D o u b le
P u b l i c T o o lL e n g h t A s D o u b le
P u b l i c P o lA n g l7 As D o u b le
P u b l i c P o lA n g l8 As D o u b le
P u b l i c P o lA n g l9 A s D o u b le
P u b l i c C u t t in g M o d e As I n t e g e r
P u b l i c G P C o u n te r As I n t e g e r
P u b l i c P la n e As I n t e g e r
P u b l i c M o t io n V a lu e As I n t e g e r
P u b l i c A c t iv e M o t io n T y p e A s S t r i n g
P u b l i c A c t iv e C S A s S t r i n g
P u b l i c T a b le C S As S t r i n g
P u b l i c C o n f i g u r a t i o n As S t r i n g

'T y p e v a r i a b l e s
P u b l i c N ew Zone A s Z one
P u b l i c C ir c P a ra m As C i r c I n t A r g
P u b l i c C e n te rR a d iu s A s T ra n s fo r m e d
P u b l i c D e fC o o rd A s J o in t S e t
P u b l i c P re v C o o rd As J o in t S e t
P u b l i c N e w P rim a ryH o m e As J o in t S e t
P u b l i c N ew S econdaryH om e A s J o in t S e t
P u b l i c M em oC oord As J o in t S e t
P u b l i c M C S T a rg e t As J o in t S e t
P u b l i c N e w T a rg e t A s J o in t S e t
P u b l i c W orkCS A s W o rk C o o rd S y s

'O b je c t s
P u b l i c CNC As New R o b o t
P u b l i c J o in t P o s As New R C S J o in tP o s
P u b l i c C a r tP o s As New R C S C artP o s
P u b l i c N ew Fram e As New RCSFrame

P u b l i c Sub J o in t V a lu e s (t x As D o u b le , t y A s D o u b le , t z As
D o u b le , t c As D o u b le)

D im A f t e r T r a n s As T ra n s fo r m e d
D im x As D o u b le , y As D o u b le , z As D o u b le , b As D o u b le ,

t x = T o M M (tx)
t y = T o M M (ty)
t z = T o M M (tz)

I f I s P o l a r T he n

I f I s R e la t i v e T he n

I f P la n e = 17 T he n
P o lA n g l7 = t y + P o lA n g l7
x = t x * C d e g { P o lA n g l7)
y = t x * S d e g < P o lA n g l7)
z = t z
E l s e l f P la n e = 19 T hen
P o lA n g l9 = t z + P o lA n g l9
x = t x
y = t y * C d e g (P o lA n g l9)

D o u b le , t b As

c A s D o u b le

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

z = t y * S d e g (P o lA n g l9)
E l s e l f P la n e = 18 T hen
P o lA n g l8 = t x + P o lA n g l8
x = t z * S d e g (P o lA n g l8)
y = t y
z = t z * C d e g (P o lA n g l8)

E nd I f
E nd I f

I f N o t I s R e la t i v e T he n
I f P la n e = 17 T he n

x = t x * C d e g (ty)
y = t x * S d e g (ty)
z = t z

E l s e l f P la n e = 19 T he n
x = t x
y = t y * C d e g (t z)
z = t y * S d e g (tz)

E l s e l f P la n e = 18 T he n
x = t z * S d e g (tx)
y = t y
z = t z * C d e g (tx)

E nd I f
E nd I f

E ls e
x = t x
y = t y
z = t z
b = t b
c = t c

E nd I f

I f I s R e la t i v e T he n
M C S T a rg e t .x = X + M C S T a rg e t.x
M C S T a rg e t .y = y + M C S T a rg e t.y
M C S T a rg e t .z = z + M C S T a rg e t. z
M C S T a rg e t.b = b + M C S T a rg e t.b
M C S T a rg e t.c = c + M C S T a rg e t. c

E ls e
M C S T a rg e t .x = x
M C S T a rg e t .y = y
M C S T a rg e t. z = z
M C S T a rg e t. b = b
M C S T a rg e t. c = c

E nd I f

N e w T a rg e t = M C S T a rg e t

I f IsWCS T he n
I f A c t iv e C S L ik e W o rkC S .G co de T he n
S e tF ra m e W orkCS
A f t e r T r a n s = T ra n s fo rm C o o rd s (N e w F ra m e , N e w T a r g e t . x , N e w T a r g e t . y ,

N e w T a rg e t . z)
E nd I f

N e w T a r g e t .x = A f t e r T r a n s . x
N e w T a r g e t . y = A f t e r T r a n s . y
N e w T a r g e t .z = A f t e r T r a n s . z

E nd I f

J o in t P o s . A x e s F o rm a t = 1

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J o in t P o s .A x e s F la g s = 31

J o in t P o s . S e tA x e s V a lu e 0 , N e w T a r g e t .x
J o in t P o s . S e tA x e s V a lu e 1 , N e w T a r g e t .y
J o in t P o s . S e tA x e s V a lu e 2 , N e w T a rg e t . z
J o in t P o s . S e tA x e s V a lu e 3 ,
J o in t P o s . S e tA x e s V a lu e 4 ,

D e g T o R a d (N e w T a rg e t. c)
D e g T o R a d (N e w T a r g e t . b)

C a r t P o s . f la g = 0

I f ZoneO n A n d (N e w T a rg e t .x < N ew Z one .X m ax A n d N e w T a r g e t .x
N e w Z o n e . X m in A n d N e w T a r g e t .y < N ew Z one .Y m ax A n d N e w T a r g e t . y
N e w Z o n e . Y m in A n d N e w T a rg e t . z < N ew Z on e .Z m a x A n d N e w T a r g e t . z
N e w Z o n e . Z m in) T he n

CNC. RRS. S to p M o t io n
E nd I f

E nd Sub

P u b l i c Sub D e f in e M o t io n T y p e (m t As I n t e g e r)
M o t io n V a lu e = m t
End Sub

P u b l i c F u n c t io n R e tu r n M o t io n T y p e () As I n t e g e r
R e tu r n M o t io n T y p e = M o t io n V a lu e
End F u n c t io n

P u b l i c Sub S e t D e f a u l t s ()

IsWCS = F a ls e
P la n e = 17
S c a le V a lu e = 1
M S V a lu e = 1
M o t io n V a lu e = 2
C o n f i g u r a t i o n = " R C S U n d e f in e d C o n f ig u r a t io n "
A c t iv e M o t io n T y p e = " R a p id "
A c t iv e C S = " G 5 3 "
F e e d r a te = RAPIDFEEDRATE
R e s e tC ir c P a ra m

End Sub

P u b l i c Sub J o in tH o m e V a lu e s (i As I n t e g e r)

J o in tP o s .A x e s F o r m a t = 1
J o in tP o s .A x e s F la g s = 31

I f (i = 1) T he n
J o in t P o s . S e tA x e s V a lu e 0,
J o in t P o s . S e tA x e s V a lu e 1 ,
J o in t P o s . S e tA x e s V a lu e 2 ,
J o in t P o s . S e tA x e s V a lu e 3 ,
J o in t P o s . S e tA x e s V a lu e 4 ,

N e w P rim a ry H o m e . x
N e w P rim a ry H o m e . y
N e w P rim a ry H o m e . z
D e g T o R a d (N e w P rim a ry H o m e . c)
D e g T o R a d (N e w P rim a ry H o m e . b)

E l s e l f (i = 2) T h e n
J o in t P o s . S e tA x e s V a lu e 0 ,
J o in t P o s . S e tA x e s V a lu e 1 ,
J o in t P o s . S e tA x e s V a lu e 2 ,
J o in t P o s . S e tA x e s V a lu e 3 ,
J o in t P o s . S e tA x e s V a lu e 4 ,

N e w S e co n d a ryH o m e . x
N e w S e co n d a ryH o m e . y
N e w S e co n d a ryH o m e . z
D e g T o R a d (N e w S e co n d a ryH o m e . c)
D e g T o R a d (N e w S e c o n d a ry H o m e . b)

1 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E l s e l f (i = 3) T h e n
J o in t P o s . S e tA x e s V a lu e 0,
J o in t P o s . S e tA x e s V a lu e 1,
J o in t P o s . S e tA x e s V a lu e 2 ,
J o in t P o s . S e tA x e s V a lu e 3 ,
J o in t P o s . S e tA x e s V a lu e 4 ,

M e m o C o o rd .x
M em oC o o rd . y
M em oC o o rd . z
D e g T o R a d (M em oC oord . c)
D eg T oR a d (M e m o C oo rd . b)

End I f

C a r t P o s . f la g = 0

End Sub

P u b l i c S ub M e m o r iz e C o o r d in a te s (x As D o u b le , y As D o u b le , z As D o u b le , b
A s D o u b le , c As D o u b le)
M em oC oord . x = x
M e m o C o o rd .y = y
M e m o C o o rd .z = z
M e m o C o o rd .b = b
M e m o C o o rd .c = c
End Sub

P u b l i c F u n c t io n G e tA r c C e n te r (i As D o u b le , j As D o u b le , k A s D o u b le) As
R C S C artP o s
D im A r c C e n te r As New R C S C artP o s
A r c C e n t e r . f l a g = 3
A r c C e n t e r . n x = 0#
A r c C e n te r . n y = 0#
A r c C e n t e r . n z = 0#
A r c C e n t e r . a x = 0#
A r c C e n te r . a y = 0#
A r c C e n t e r . a z = 0#
A r c C e n t e r . o x = 0#
A r c C e n te r . o y = 0#
A r c C e n t e r . o z = 0#
A r c C e n t e r . p x = C D b l(P r e v C o o r d .x + i)
A r c C e n t e r . p y = C D b l(P r e v C o o r d .y + j)
A r c C e n t e r . p z = C D b l(P r e v C o o r d . z + k)

S e t G e tA r c C e n te r = A r c C e n te r

End F u n c t io n

P u b l i c Sub R u n T ra c k (R o b o tN a m e As S t r i n g)
S e t CNC = T h is D o c u m e n t.G e tR o b o t(R o b o tN a m e)
In s te a d O fF o r m
S e t D e f a u l t s
R eadyToG o
End Sub

P u b l i c F u n c t io n T ra n s fo rm C o o rd s (F ra m e As RCSFram e, o ld X As D o u b le , o ld Y
A s D o u b le , o ld Z As D o u b le) As T ra n s fo r m e d
D im M y T ra n s fo rm e d A s T ra n s fo r m e d

M y T r a n s fo r m e d .x = F ra m e .n x * o ld X + F ra m e .o x * o ld Y + F ra m e .a x * o ld Z +
F ra m e . p x
M y T r a n s fo r m e d .y = F ra m e .n y * o ld X + F ra m e .o y * o ld Y + F ra m e .a y * o ld Z +
F ra m e . p y
M y T ra n s fo rm e d .z = F ra m e .n z * o ld X + F ra m e .o z * o ld Y + F ra m e .a z * o ld Z +
F ra m e .p z
T ra n s fo rm C o o rd s = M y T ra n s fo rm e d
E nd F u n c t io n

P u b l i c F u n c t io n C d e g (a n g le As D o u b le) As D o u b le

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C deg = C o s (a n g le * P I / 1 8 0)
End F u n c t io n

P u b l i c F u n c t io n S d e g (a n g le As D o u b le) A s D o u b le
S deg = S in (a n g le * P I / 1 80)
E nd F u n c t io n

P u b l i c F u n c t io n T o M M (c o o rd A s D o u b le) A s D o u b le
ToMM = M S V a lu e * S c a le V a lu e * c o o r d

E nd F u n c t io n

P u b l i c Sub I s I t A c t i v e t x A s D o u b le , y A s D o u b le , z A s D o u b le)
I f T a b le C S L ik e W o rkC S .G co d e T h e n
N e w F ra m e .p x = x
N e w F ra m e .p y = y
N ew F ram e . p z = z
End I f
End Sub

P u b l i c S ub S e t F e e d r a t e (f As D o u b le)
D im C e n t r a lA n g le A s D o u b le , L i n D i s t A s D o u b le , T im e ln M s A s D o u b le
I f I s I n v e r s e T im e T h e n

I f M o t io n V a lu e = 2 T h e n
T im e ln M s = (6 0 0 0 0 / f)
CNC. RRS. S e tM o t io n T im e T im e ln M s
E l s e l f M o t io n V a lu e = 4 T he n
C e n t r a lA n g le = C a lc C e n t r a lA n g le ()
CNC. RRS. S e tM o t io n T im e C e n t r a lA n g le * 60 * 1000 / f
End I f

E ls e

CNC. RRS. S e tC a r te s ia n P o s i t io n S p e e d f / 60
CNC. RRS. S e t C a r t e s ia n O r ie n t a t io n S p e e d 2 , f / 60

End I f

E nd Sub

P u b l i c S ub M o v e O r ig in (n u m As I n t e g e r , x As D o u b le , y A s D o u b le , z As
D o u b le)
I f num = 92 T he n
IsWCS = T ru e
A c t iv e C S = " G 5 4 "
W o rkC S . P r o p s .x = P r e v C o o r d .x - x
W o rkC S . P r o p s . y = P r e v C o o r d .y - y
W o rkC S . P r o p s . z = P r e v C o o r d .z - z

E l s e l f num = 52 T h e n
IsWCS = T ru e
A c t iv e C S = ” G54"
W o rkC S . P r o p s . x = W o rkC S . P r o p s . x + x
W o rkC S . P r o p s . y = W o rkC S . P r o p s .y + y
W o rkC S . P r o p s . z = W o rkC S . P r o p s . z + z

E l s e l f num = 921 T he n
S e tW orkC S P a ra m
E nd I f

E nd Sub

P u b l i c F u n c t io n C a l c 2 P o in t D i s t (x l As D o u b le , y l As D o u b le , z l As D o u b le ,
x2 As D o u b le , y 2 As D o u b le , z2 A s D o u b le) A s D o u b le
D im N um ber A s D o u b le
N um ber = (x 2 - x l) A 2 + (y2 - y l) A 2 + (z2 - z l) A 2
C a lc 2 P o in t D is t = S q r(N u m b e r)
E nd F u n c t io n

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P u b l i c F u n c t io n C o s R u le (a A s D o u b le , b A s D o u b le , c A s D o u b le) As D o u b le
D im c o s a lp h a A s D o u b le
I f a <> 0 A n d b <> 0 A n d c <> 0 T h e n
c o s a lp h a = (b A 2 + c A 2 - a A 2) / (2 * b * c)
C o s R u le = A t n (- c o s a lp h a / S g r (- c o s a lp h a * c o s a lp h a + 1)) + 2 * A t n (l)
End I f
End F u n c t io n

P u b l i c F u n c t io n C a lc C e n t e r P o in t (i A s D o u b le , j As D o u b le , k As D o u b le)
As T ra n s fo r m e d
C e n te r R a d iu s . x = P r e v C o o r d .x + i
C e n t e r R a d iu s . y = P r e v C o o r d .y + j
C e n te r R a d iu s . z = P r e v C o o r d .z + k
C a lc C e n t e r P o in t = C e n te rR a d iu s
E nd F u n c t io n

P u b l i c F u n c t io n C a lc C e n t r a lA n g le () As D o u b le
D im a d i s t A s D o u b le , a n g le As D o u b le

C a lc C e n te r P o in t C i r c P a r a m . i , C i r c P a r a m . j , C ir c P a r a m .k
a d i s t = C a lc 2 P o in t D is t (P r e v C o o r d . x , P r e v C o o r d .y , P r e v C o o r d .z ,

D e fC o o r d .x , D e fC o o r d .y , D e fC o o r d .z)
R a d iu s = C a lc 2 P o in t D is t (C e n t e r R a d iu s . x , C e n te r R a d iu s . y ,

C e n t e r R a d iu s . z , D e fC o o r d .x , D e fC o o r d .y , D e fC o o r d .z)
a n g le = C o s R u le (a d is t , R a d iu s , R a d iu s)
C a lc C e n t r a lA n g le = a n g le

End F u n c t io n

P u b l i c Sub S e tF ra m e (V a lu e s As W o rk C o o rd S y s)

N e w F ra m e .n x = C d e g (V a lu e s . P r o p s . c) * C d e g (V a lu e s . P r o p s . a)
S d e g (V a lu e s . P r o p s . c) * C d e g (V a lu e s . P r o p s .b) * S d e g (V a lu e s . P r o p s . a)
N e w F ra m e .n y = S d e g (V a lu e s . P r o p s . c) * C d e g (V a lu e s . P r o p s . a) +
C d e g (V a lu e s . P r o p s . c) * C d e g (V a lu e s . P r o p s . b) * S d e g (V a lu e s . P r o p s . a)
N e w F ra m e .n z = S d e g (V a lu e s . P r o p s .b) + S d e g (V a lu e s . P r o p s . a)
N ew F ram e . o x = - C d e g (V a lu e s . P r o p s . c) * S d e g (V a lu e s . P r o p s . a)
S d e g (V a lu e s . P r o p s . c) * C d e g (V a lu e s . P r o p s . b) * C d e g (V a lu e s . P r o p s . a)
N e w F ra m e .o y = - S d e g (V a lu e s . P r o p s . c) * S d e g (V a lu e s . P r o p s . a) +
C d e g (V a lu e s . P r o p s . c) * C d e g (V a lu e s . P r o p s . b) * C d e g (V a lu e s . P r o p s . a)
N e w F ra m e .o z = S d e g (V a lu e s . P r o p s . b) * C d e g (V a lu e s . P r o p s . a)
N e w F ra m e .a x = S d e g (V a lu e s . P r o p s . c) * S d e g (V a lu e s . P r o p s . b)
N e w F ra m e .a y = - C d e g (V a lu e s . P r o p s . c) * S d e g (V a lu e s . P r o p s . b)
N e w F ra m e .a z = C d e g (V a lu e s . P r o p s . b)
N e w F ra m e .p x = V a lu e s . P r o p s . x
N ew F ram e . p y = V a lu e s . P r o p s . y
N ew F ram e . p z = V a lu e s . P r o p s . z

End Sub

P u b l i c Sub P e r fo r m M o t io n ()

I f A c t iv e M o t io n T y p e L ik e " R a p id " T he n
CNC. RRS. S e le c tM o t io n T y p e 2
D e f in e M o t io n T y p e 2
J o in t V a lu e s D e fC o o r d .x , D e fC o o r d .y , D e fC o o r d .z , D e fC o o r d .b , D e fC o o r d .c
CNC. RRS. S e tC a r te s ia n P o s i t io n S p e e d RAPIDFEEDRATE / 60
CNC. RRS. S e t C a r t e s ia n O r ie n t a t io n S p e e d 2 , MAXROTSPEED / 60
P re v C o o rd = N e w T a rg e t
G P C o u n te r = G P C o u n te r + 1
CNC. RRS. S e tN e x tN a m e d T a rg e t 0 , 0 , C a r tP o s , J o in t P o s , C o n f i g u r a t i o n , 0 ,
"G P" & C S tr (G P C o u n te r)

E l s e l f A c t iv e M o t io n T y p e L ik e " L in e a r " T he n
D im C r i t i c a l A n g l e As D o u b le

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CNC. RRS. S e le c tM o t io n T y p e 2
D e f in e M o t io n T y p e 2
S e tF e e d r a te F e e d r a te
J o in t V a lu e s D e fC o o r d .x , D e fC o o r d .y , D e fC o o r d .z , D e fC o o r d .b ,

D e fC o o r d .c
P re v C o o rd = N e w T a rg e t
G P C o u n te r = G P C o u n te r + 1
CNC. RRS. S e tN e x tN a m e d T a rg e t 0 , 0 , C a r tP o s , J o in t P o s , C o n f i g u r a t i o n ,

0 , "G P" & C S tr (G P C o u n te r)

E l s e l f A c t iv e M o t io n T y p e L ik e " C i r c u l a r CW" O r A c t iv e M o t io n T y p e
L ik e " C i r c u l a r CCW" T he n

D e f in e M o t io n T y p e 4
C i r c u la r M o t io n

End I f

End Sub

P u b l i c Sub C i r c u la r M o t i o n ()
D im A r c R a d iu s A s D o u b le
D im I n c l in e A n g le A s D o u b le
D im A r c E n d P o in tD is t a n c e As D o u b le
D im Y C o o rd A s D o u b le
D im X C o o rd A s D o u b le
D im A r c C e n te r A s R C S C artP o s

I f P la n e = 17 T he n
CNC. RRS. S e le c tM o t io n T y p e R e tu r n M o t io n T y p e ()
J o in t V a lu e s D e fC o o r d .x , D e fC o o r d .y , D e fC o o r d .z , D e fC o o r d .b , D e fC o o r d .c
S e tF e e d r a te F e e d r a te
G P C o u n te r = G P C o u n te r + 1
CNC. RRS. S e tN e x tN a m e d T a rg e t 0 , 0 , C a r tP o s , J o in t P o s , C o n f i g u r a t i o n , 0 ,
"GP" & C S tr (G P C o u n te r)

A r c E n d P o in tD is t a n c e = S q r ((P r e v C o o r d . x - N e w T a r g e t .x) A 2 + (P r e v C o o r d .y
- N e w T a r g e t .y) * 2)
I n c l in e A n g le = M a t h . A t n ((N e w T a r g e t .y - P r e v C o o r d .y) / (N e w T a r g e t .x -
P r e v C o o r d . x))
X C o o rd = A r c E n d P o in tD is t a n c e / 2

I f C i r c P a r a m . r <> 0 T he n

I f A c t iv e M o t io n T y p e = " C i r c u l a r CW" A n d C i r c P a r a m . r > 0 T he n
Y C o o rd = A b s (C ir c P a r a m . r) - S q r (C i r c P a r a m . r A 2 - X C o o rd A 2)
E l s e l f A c t iv e M o t io n T y p e = " C i r c u l a r CW" A n d C i r c P a r a m . r < 0 T he n
Y C o o rd = A b s (C ir c P a r a m . r) + S q r (C i r c P a r a m . r A 2 - X C o o rd A 2)
E l s e l f A c t iv e M o t io n T y p e = " C i r c u l a r CCW" A n d C i r c P a r a m . r > 0

T he n
Y C o o rd = - A b s (C i r c P a r a m . r) + S q r (C i r c P a r a m . r A 2 - X C o o rd A 2)
E l s e l f A c t iv e M o t io n T y p e = " C i r c u l a r CCW" A n d C i r c P a r a m . r < 0

T he n
Y C o o rd = - A b s (C i r c P a r a m . r) - S q r (C i r c P a r a m . r A 2 - X C o o rd A 2)
End I f

E ls e
S e t A r c C e n te r = G e t A r c C e n t e r (C ir c P a r a m . i , C i r c P a r a m . j , C ir c P a r a m .k)
A r c R a d iu s = S q r ((P r e v C o o r d .x - A r c C e n t e r . p x) * 2 + (P r e v C o o r d .y -

A r c C e n t e r . p y) A 2)

I f A c t iv e M o t io n T y p e = " C i r c u l a r CCW" T hen
Y C o o rd = - S q r (A r c R a d iu s A 2 - (X C o o rd - A r c C e n t e r . p x) A 2)

E l s e l f A c t iv e M o t io n T y p e = " C i r c u l a r CW" T h e n
Y C o o rd = S q r (A r c R a d iu s A 2 - (X C o o rd - A r c C e n t e r . p x) A 2)

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End I f
End I f

J o i n t P o s . A x e s F l a g s = 0
C a r t P o s . f l a g = 3
C a r t P o s . p x = S q r (P r e v C o o r d . x A 2 + P r e v C o o r d . y A 2) * C o s (I n c l i n e A n g l e)
+ S q r (X C o o r d A 2 + Y C o o rd A 2) * C o s (M a t h . A t n (Y C o o r d / X C o o rd) +
I n c l i n e A n g l e)
C a r t P o s . p y = S q r (P r e v C o o r d . x A 2 + P r e v C o o r d . y A 2) * S i n (I n c l i n e A n g l e)
+ S q r (X C o o r d A 2 + Y C o o rd A 2) * S i n (M a t h . A t n (Y C o o r d / X C o o rd) +
I n c l i n e A n g l e)
C a r t P o s . p z = P r e v C o o r d . z
CNC. RRS. S e t N e x t T a r g e t 0 , 0 , C a r t P o s , J o i n t P o s , C o n f i g u r a t i o n , 0

P r e v C o o r d = N e w T a r g e t
R e s e t C i r c P a r a m

E ls e
M sgBox (" C i r c u l a r m o t i o n i n o t h e r w o r k p l a n e s , b u t XY, i s n o t
s u p p o r t e d ")
End I f

End Sub

P u b l i c Sub R e s e t C i r c P a r a m ()
C i r c P a r a m . r = 0
C i r c P a r a m . i = 0
C i r c P a r a m . j = 0
C i r c P a r a m . k = 0
End Sub

P u b l i c Sub G 2 7 ()
H o m e S ta r tS e q
J o i n t V a l u e s D e f C o o r d . x , D e f C o o r d . y , D e f C o o r d . z , D e f C o o r d . b , D e f C o o r d . c
I f (N e w T a r g e t . x <> P r e v C o o r d . x O r N e w T a r g e t . y <> P r e v C o o r d . y O r
N e w T a r g e t . z <> P r e v C o o r d . z O r N e w T a r g e t . b <> P r e v C o o r d . b O r N e w T a r g e t . c
<> P r e v C o o r d . c) T he n
P r e v C o o r d = N e w T a r g e t
C o u n tA n d M o v e
E l s e
GoHome
End I f
End Sub

P u b l i c Sub G 2 8 ()
H o m e S ta r tS e q
J o i n t V a l u e s D e f C o o r d . x , D e f C o o r d . y , D e f C o o r d . z , D e f C o o r d . b , D e f C o o r d . c
I f (N e w T a r g e t . x <> P r e v C o o r d . x O r N e w T a r g e t . y <> P r e v C o o r d . y O r
N e w T a r g e t . z <> P r e v C o o r d . z O r N e w T a r g e t . b <> P r e v C o o r d . b O r N e w T a r g e t . c
<> P r e v C o o r d . c) T h e n
M e m o r i z e C o o r d in a t e s N e w T a r g e t . x , N e w T a r g e t . y , N e w T a r g e t . z , N e w T a r g e t . b ,
N e w T a r g e t . c
P r e v C o o r d = N e w T a r g e t
C o u n tA n d M o v e
E l s e
GoHome
End I f
End Sub

P u b l i c Sub G 2 9 ()
H o m e S ta r tS e q
J o in t H o m e V a lu e s 3
C o u n tA n d M o v e
J o i n t V a l u e s D e f C o o r d . x , D e f C o o r d . y , D e f C o o r d . z , D e f C o o r d . b , D e f C o o r d . c

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P r e v C o o r d = N e w P r im a ry H o m e
C o u n tA n d M o v e
End Sub

P u b l i c Sub G 3 0 ()
H o m e S ta r tS e q
J o i n t V a l u e s D e f C o o r d . x , D e f C o o r d . y , D e f C o o r d . z , D e f C o o r d . b , D e f C o o r d . c
I f (N e w T a r g e t . x <> P r e v C o o r d . x O r N e w T a r g e t . y <> P r e v C o o r d . y O r
N e w T a r g e t . z <> P r e v C o o r d . z O r N e w T a r g e t . b <> P r e v C o o r d . b O r N e w T a r g e t . c
<> P r e v C o o r d . c) T h e n
P r e v C o o r d = N e w P r im a ry H o m e
C o u n tA n d M o v e
End I f
J o in t H o m e V a lu e s 2
P r e v C o o r d = N ew S e co nd aryH om e
C o u n tA n d M o v e
End Sub

P u b l i c Sub H o m e S t a r t S e q ()
CNC. RRS. S e l e c t M o t i o n T y p e 2
D e f i n e M o t i o n T y p e 2
CNC. RRS. S e t C a r t e s i a n P o s i t i o n S p e e d RAPIDFEEDRATE / 60
CNC. RRS. S e t C a r t e s i a n O r i e n t a t i o n S p e e d 2 , MAXROTSPEED / 60
End Sub

P u b l i c Sub GoHome()
J o in t H o m e V a lu e s 1
P r e v C o o r d = N e w P r im a ry H o m e
C o u n tA n d M o v e
End Sub

P u b l i c Sub C o u n tA n d M o v e ()
G P C o u n te r = G P C o u n te r + 1
CNC. RRS. S e tN e x t N a m e d T a r g e t 0 , 0 , C a r t P o s , J o i n t P o s , C o n f i g u r a t i o n , 0 ,
"GP" & C S t r (G P C o u n t e r)
E nd Sub

P u b l i c Sub R e s e t P o l a r A n g l e s ()
P o lA n g l7 = 0
P o lA n g l8 = 0
P o lA n g l9 = 0
End Sub

P u b l i c F u n c t i o n D e g T o R a d (D e g A n g le As D o u b le) A s D o u b le
D egToR ad = (D e g A n g le / 180) * P I
End F u n c t i o n

P u b l i c Sub S e tW o rk C S P a ra m ()

W o rk C S . P r o p s . x = 100
W o r k C S . P r o p s . y = 100
W o rk C S . P r o p s . z = 100
W o rk C S . P r o p s . a = 0
W o rk C S . P r o p s . b = 0
W o r k C S . P r o p s . c = 0
W o rk C S .G c o d e = "G 54 "

End Sub

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX H: DEFAULT

MOTION PLANNER SOURCE
CODE

/ / D e f a u l t M o t i o n . c p p
i n c l u d e " s t d a f x . h "
t t i n c l u d e " D e f a u l t M o t i o n . h "
t t i n c l u d e " v e c t o r 3 . h "
i n c l u d e " r e s o u r c e . h "

t t i n c l u d e "N u m R e c .h "
t t i n c l u d e " M a t r i x . h "

/ / F o r d e b u g g in g p u r p o s e s (s p r i n t f) . . .
t t i n c l u d e < s t d i o . h >

t t d e f i n e MAX_OBJECT_VELOCITY 1 / / M e t e r ' s p e r s e c o n d
t t d e f i n e MAX_OBJECT_ACCELERATION 1 0 0 0 0 0 / / M e t e r ' s p e r s e c o n d

d o u b l e s q r (d o u b l e d V a lu e)
{

d o u b l e d R e t ;

d R e t = d V a lu e * d V a lu e ;

r e t u r n (d R e t) ;
}

/ / H e l p e r f u n c t i o n s

* F u n c t i o n : C a l c u l a t e A c c e l e r a t i o n T i m e
*
* A r g u m e n t s : RCS_CAR_POS v e c t o r O n e
* RCS_CAR_POS v e c t o r T w o•k
* R e t u r n s : D i s t a n c e a s a RCS_REAL
*
* C r e a t e d :
* A u t h o r : A l e k s a n d a r B o s k o v i c
* /

/ * !
* D e s c r i p t i o n :*
*
★ • A T * * j

RCS_REAL C a l c u l a t e C a r t L i n e a r D i s t a n c e (RCS_CART_POS v e c t o r O n e ,
RCS_CART_POS v e c t o r T w o)
{

RCS_REAL d D i s t a n c e ;

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d o u b l e dX = s q r (v e c t o r T w o . p x - v e c t o r O n e . p x)
d o u b l e dY = s q r (v e c t o r T w o . p y - v e c t o r O n e . p y)
d o u b l e dZ = s q r (v e c t o r T w o . p z - v e c t o r O n e . p z)

d D i s t a n c e = s q r t (dX + dY + dZ) ;

r e t u r n (d D i s t a n c e) ;
}

* F u n c t i o n : C a l c u l a t e A c c e l e r a t i o n T i m e
★
* A r g u m e n t s : RCS_REAL d M a x V e l o c i t y
* RCS_REAL d M a x A c c e le r a t i o n
•k
* R e t u r n s : T im e a s a RCS_REAL*
* C r e a t e d :
* A u t h o r : A l e k s a n d a r B o s k o v i c
* /

/ * !
* D e s c r i p t i o n :
*
*

RCS_REAL C a l c u l a t e A c c e l e r a t i o n T i m e (RCS_REAL d M a x V e l o c i t y ,
RCS_REAL

d M a x A c c e l e r a t i o n)
{

RCS_REAL d T im e ;

d T im e = d M a x V e l o c i t y / d M a x A c c e l e r a t i o n ;

r e t u r n (d T i m e) ,-
}

* F u n c t i o n : C a l c u l a t e D i s t a n c e T o M a x V e l o c i t y
*

* A r g u m e n t s : RCS_REAL d M a x V e l o c i t y
* RCS_REAL d M a x A c c e le r a t i o n
*

* R e t u r n s : The d i s t a n c e a s a RCS_REAL
*

* C r e a t e d :
* A u t h o r : A l e k s a n d a r B o s k o v i c
* /

/ * !
* D e s c r i p t i o n : T he d i s t a n c e c a n b e f o u n d b y i n t e g r a t i n g a v e l o c i t y

t i m e
* f u n c t i o n . I f we make q u i t e a f e w a s s u m p t i o n s

s u c h a s c o n s t a n t
* a c c e l e r a t i o n a n d an i n i t i a l v e l o c i t y o f z e r o ,

t h e n b y i n t e g r a t e
* v (t) = [a * v] d t , f r o m 0 t o t a n d t h e n s u b s t i t u t e

t = v / a , we
* o b t a i n t h e e q u a t i o n a s l i s t e d b e lo w .*

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RCS_REAL C a l c u l a t e D i s t a n c e T o M a x V e l o c i t y (RCS_REAL d M a x V e l o c i t y , RCS_REAL
d M a x A c c e l e r a t i o n)
{

RCS_REAL d D i s t a n c e ;

d D i s t a n c e = s q r (d M a x V e l o c i t y) / 2 / d M a x A c c e l e r a t i o n ;

r e t u r n (d D i s t a n c e) ;
}

* F u n c t i o n : C a l c u la t e T im e A t M a x i m u m V e l o c i t y
★
* A r g u m e n t s : RCS_REAL d T o t a l D i s t a n c e
* RCS_REAL d M a x V e l o c i t y
* RCS_REAL d M a x A c c e l e r a t i o n
*
* R e t u r n s : T im e a s a RCS_REAL
★
* C r e a t e d :
* A u t h o r : A l e k s a n d a r B o s k o v i c
* /

/ * !
* D e s c r i p t i o n : H e re we s i m p l y s u b t r a c t t h e a c c e l e r a t i o n a n d
* d e c e l e r a t i o n d i s t a n c e f r o m t o t a l d i s t a n c e . T hen
* t h e r e m a i n i n g d i s t a n c e i s t h e p o r t i o n a t t h e max
* v e l o c i t y .
*
★

RCS_REAL C a l c u la t e T im e A t M a x i m u m V e l o c i t y (RCS_REAL d T o t a l D i s t a n c e ,
RC S_REAL

d M a x V e l o c i t y ,
RCS_REAL

d M a x A c c e l e r a t i o n)
{

RC S_REAL dD i s t ToM axVe1,
d T im e A t M a x V e l ;

d D is t T o M a x V e l = C a l c u l a t e D i s t a n c e T o M a x V e l o c i t y (d M a x V e l o c i t y ,
d M a x A c c e l e r a t i o n) ;

d T im e A tM a x V e l = (d T o t a l D i s t a n c e 2 * d D is t T o M a x V e l) /
d M a x V e l o c i t y ;

r e t u r n (d T im e A t M a x V e l) ;
}

* F u n c t i o n : C a l c u l a t e C h a n g e l n P o s i t i o n s★
* A r g u m e n t s : RCS_CART_POS P I
* RC S_CART_POS P2
* RCS_CART_POS &Change*
* R e t u r n s : b o o l (a t t h i s p o i n t i t s a lw a y s t r u e)★
* C r e a t e d :
* A u t h o r : A l e k s a n d a r B o s k o v i c

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* /
/ * !

* D e s c r i p t i o n :
★******★**★****★*/

b o o l C a l c u l a t e C h a n g e l n P o s i t i o n s (RCS_CART_POS P I ,
RCS_CART_POS P 2 ,
RCS_CART_POS &C hange)

C h a n g e . C a r t P o s F l a g = 0 ;

C h a n g e . a x = P i . a x - P 2 . a x ;
C h a n g e . a y = P I . a y - P 2 . a y ;
C h a n g e . az P l . a z - P 2 . a z ;

C h a n g e . n x = P I . n x - P 2 . n x ;
C h a n g e . n y = P i . n y - P 2 . n y ;
C h a n g e .n z P l . n z - P 2 . n z ;

C h a n g e . o x = P i . o x - P 2 . o x ;
C h a n g e . o y = P i . o y - P 2 . o y ;
C h a n g e . oz = P l . o z - P 2 . o z ;

C h a n g e . p x = P l . p x - P 2 . p x ;
C h a n g e . p y = P l . p y - P 2 . p y ;
C h a n g e .p z = P l . p z - P 2 . p z ;

r e t u r n t r u e ;

* F u n c t i o n : F in d B ig g e s t C h a n g e
• k

* A r g u m e n t s :

k
★
* R e t u r n s :
k

d o u b le
d o u b le
d o u b le

x
y

d o u b l e

2 1 - N o v - 99
A l e k s a n d a r B o s k o v i c

* C r e a t e d :
* A u t h o r :
* /

/* !
* D e s c r i p t i o n : F i r s t we n e e d t o e x p l a i n w h y we c h o o s e s u c h a r g u m e n t s .
* We p a s s i n a v e c t o r b y a n a r r a y o f t h r e e

d o u b l e s . We n e v e r*
s i n c e we a r e ★
No n e e d t o

w hen i t i s n ' t

m uch o v e r h e a d ,

r i g h t n ow .
★

f o r t h e l o n g e s t *
a c c o r d i n g t o t h e

c h o o s e a C V e c t o r 3 (o u r c o d e) o r w h a t e v e r i n a c i s

o n l y i n t e r e s t e d i n t h e p o s i t i o n s , a n d t h a t s i t .

f o r w o r k s p a c e t o c r e a t e a n d d e s t o r y some o b j e c t s

r e a l l y a l l t o n e c e s s a r y . T r u e i t d o e s n ' t a d d t o

b u t we a r e n o t g o i n g t o w o r r y t o m uch a b o u t t h a t

F i r s t we n e e d t o f i n d t h e a m o u n t o f t i m e n e e d e d

p o s s i b l e m ove . T h e n we f i n d t h e a m o u n t o f t i m e

l o n g e s t t i m e .

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d o u b l e F in d B ig g e s t C h a n g e (d o u b le x , d o u b l e y , d o u b l e z)
{

d o u b l e l a r g e s t _ d i s t a n c e ;

x > y
? (z > x ? l a r g e s t _ d i s t a n c e = z : l a r g e s t _ d i s t a n c e = x)
: (z > y ? l a r g e s t _ d i s t a n c e = z : l a r g e s t _ d i s t a n c e = y) ;

r e t u r n l a r g e s t _ d i s t a n c e ;
}

/ /
/ / / / / / / / / / / / /
/ /
/ / / / / / / / / / / / /
/ / MOTION PLANNER CLASS
/ /
/ / / / / / / / / / / / /

/ / C l a s s m em ber f u n c t i o n s

* F u n c t i o n : C D e f a u l t M o t i o n P l a n n e r : : C D e f a u l t M o t i o n P l a n n e r
*

* A r g u m e n t s :
* v o i d*
* C r e a t e d : 9 90 80 6
* A u t h o r : A l e k s a n d a r B o s k o v i c
*/

/* !
* D e s c r i p t i o n : S t a n d a r d c o n s t r u c t o r*

C D e f a u l t M o t i o n P l a n n e r : : C D e f a u l t M o t i o n P l a n n e r (i n t p l a n n e r _ t y p e)
{

m _ d A r c S t a r t A n g l e = 0 . 0 ;

/ / Assum e m o t i o n p l a n n e r i s a t t a c h e d t o a n o b j e c t
/ / K i n e m a t i c s p o i n t e r w i l l b e i n t i a l i s e d l a t e r
m _ p K in e m a t i c s = NULL;
m _ p f n G e t I n v e r s e K i n e m a t i c = NULL;
m _ p D e f a u l t S h e l l = NULL;

m _ p S c a le d J o i n t M o t i o n = NULL;

/ / S e t u p a l i n k e d l i s t t o s t o r e t a r g e t s s p e c i f e d b y
S e t _ N e x t _ T a r g e t c a l l s

m _ T a r g e t s L i s t . I n i t i a l i z e L i s t () ;

/ / S e t d e f a u l t v a l u e s
m _nMot io n T y p e = MOTION_LINEAR;

m _ n I n t e r p o l a t i o n T i m e = DEFAULT_INTERPOLATION_TIME;

m _ n T r a je c t o r y M o d e = 1 ; / / t a r g e t s b e l o n g t o same t r a j e c t o r y (n o t
s u p p o r t e d)

m _ n F ly B y M o d e = 0 ; / / o f f

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m _ n C u r r e n t I n t e r v a l = 0 ; / / i n t e r n a l m a r k e r f o r c a l l s t o
' G e t _ N e x t _ S t e p '

m _ n C u r r e n t T a r g e t = 0 ; / / I n d e x i n t o m _ T a r g e t s L i s t , s h o w in g w h i c h
t a r g e t t h e

/ / r o b o t i s h e a d i n g t o w a r d s

m _ n R o b o t S t a t u s = 0 ; / / R o b o t i s s t a t i o n a r y a n d a w a i t i n g
t a r g e t

/ / s e t u p f o r d e f a u l t s f o r o r i e n t a t i o n i n t e r p o l a t i o n
m _ d M a x O r ie n t a t i o n A n g l e V e l = 4 . 0 ;
m _ d M a x O r ie n t a t i o n A n g le A c c = 8 . 0 ;
m _ n I n t e r p o l a t i o n M o d e = 3 ;
m _ T x f o r m . S e t O r i e n t a t i o n T y p e (o r ie n tW P R) ;
m _ D o O r i e n t a t i o n = TRUE ;

m _ c a r t M o t i o n S t a r t _ P o s i t i o n . C a r t P o s F l a g = 0 ;
m _ j o i n t M o t i o n S t a r t _ P o s i t i o n . A x e s F l a g s = 0 ;
m _ j o i n t L a s t _ P o s i t i o n . A x e s F l a g s = 0 ;

m _ p T e m p T a rg e t = NULL;

i f (p l a n n e r _ t y p e == DMP_OBJECT)
m _ b O b je c t = t r u e ;

e l s e
m _ b O b je c t = f a l s e ;

/ / T he d e f a u l t v e l o c i t y o f f o r O b j e c t M o t i o n i s 1000 m m /sec
m _ d M a x O b jV e l = 1 0 0 ;

Z e ro M e m o ry f m _ J o i n t M o t i o n , s i z e o f (m _ J o i n t M o t i o n)) ;
Z e ro M e m o ry (m _ J o i n t M o t i o n C u r r e n t , s i z e o f (m _ J o i n t M o t i o n C u r r e n t)) ;

m _ d M a x L i n e a r V e l L im i t = 0 . 0 ;
m _ d M a x L in e a r A c c L im i t = 0 . 0 ;
m _ d M a x L in e a r V e lC u r r e n t = 0 . 0 ;
m _ d M a x L in e a r A c c C u r r e n t = 0 . 0 ;
m _ d M a x L in e a r V e l = 0 . 0 ;
m _ d M a x L in e a rA c c = 0 . 0 ;

}

* F u n c t i o n :

* A r g u m e n t s :

* R e t u r n s :

C D e f a u l t M o t i o n P l a n n e r : : - C D e f a u l t M o t i o n P l a n n e r

* C r e a t e d :*
* A u t h o r :
*/

/*'.
* D e s c r i p t i o n :

9 90713

A l e k s a n d a r B o s k o v i c

s t a n d a r d d e s t r u c t o r

* C om m ents :

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C D e f a u l t M o t i o n P l a n n e r : : - C D e f a u l t M o t i o n P l a n n e r ()
{

/ /R e m o v e a n y p r o f i l e s f o r j o i n t c o - o r d i n a t e d m o ve m e n t
i f f NULL != m _ p S c a le d J o i n t M o t i o n)
{

d e l e t e [] m _ p S c a le d J o i n t M o t i o n ;
m _ p S c a le d J o i n t M o t i o n = NULL;

}
/ /R e m o v e a n y t a r g e t s f r o m t h e l i s t
m _ T a r g e t s L i s t . D e I n i t i a l i z e L i s t () ;

/ / Remove a n y m e s s a g e s
R e s e t M e s s a g e s () ;

}

RCS_INT C D e f a u l t M o t i o n P l a n n e r ; : S e l e c t _ F l y B y _ M o d e (RCS_INT F ly B y O n)
{

m _ n F ly B y M o d e = F ly B y O n ;

r e t u r n (0) ; / / S u c c e s s
}

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e t _ I n t e r p o l a t i o n _ T i m e (RCS_REAL
I n t e r p o l a t i o n T i m e)
{

m _ n I n t e r p o l a t i o n T i m e = I n t e r p o l a t i o n T i m e ;

r e t u r n (0) ; / / S u c c e s s
}

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ T r a j e c t o r y _ M o d e (RCS_INT
T r a j e c t o r y O n)
{

m _ n T r a je c t o r y M o d e = T r a j e c t o r y O n ;

r e t u r n (0) ; / / S u c c e s s
}

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ D o m i n a n t _ I n t e r p o l a t i o n
(RCS_INT D o m i n a n t I n t T y p e ,

RCS_INT D o m in a n t I n t P a r a m)
{

/ / R i g h t now we a r e o n l y g o i n g t o a l l o w f o r t h e p o s i t i o n t o be
m a s t e r (1) , o r t h e

/ / o r i e n t a t i o n t o b e m a s t e r (2) , o r a u t o m a t i c (4) . We a r e b y
d e f a u l t u s i n g

/ / a u t o m a t i c mode w h i c h t r i e s t h e p o s i t i o n f i r s t t h e n t h e
o r i e n t a t i o n .

s w i t c h (D o m in a n t I n t T y p e)

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
c a s e 1 :
c a s e 2 :
c a s e 4 : m _ n D o m i n a n t I n t e r p o l a t i o n T y p e = D o m i n a n t I n t T y p e ;

r e t u r n RRS_OK;
}
r e t u r n RRS_INTERPOL_SPACE_NOT_SUPPORTED;

}

/**
★
* F u n c t i o n : C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ M o t i o n _ T y p e
★
* A r g u m e n t s :
* RCS_INT M o t io n T y p e
*
★
* R e t u r n s : RCS_INT★
★
* C r e a t e d : 9 90 62 4★
* A u t h o r : A l e k s a n d a r B o s k o v i c
*/

/ * !
* D e s c r i p t i o n : S e t s t h e m o t i o n t y p e f o r t h e d e f a u l t m o t i o n p l a n n e r
*
*
* C om m en ts : A d d e d e x t r a t y p e s t o s u p p o r t G -C od e c i r c u l a r m o t i o n
★

RCS_INT C D e f a u l t M o t i o n P l a n n e r : : S e l e c t _ M o t i o n _ T y p e (RCS_INT M o t io n T y p e)
{

RCS_INT n R e t = 0 ;

s w i t c h (M o t io n T y p e)
{

c a s e M O TIO N _JO IN T :
c a s e MOTION_LINEAR:
c a s e MOTION_CIRCULAR:
c a s e MOTION_CIRCULAR_CLOCKWISE:
c a s e MOTION_CIRCULAR_ANTICLOCKWISE:
{

m _ n M o t io n T y p e = M o t i o n T y p e ;
}
b r e a k ;

d e f a u l t :
{

n R e t = RRS_MOTION_TYPE_NOT_SUPPORTED;
}
b r e a k ;

}

r e t u r n n R e t ;
}

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX I: G CODE OFF-LINE

PROGRAMMING SOURCE
CODE

/ / P a th T o G C o d e . c p p : i m p l e m e n t a t i o n o f t h e C P a thT oG C ode c l a s s .
/ /
/ /

i n c l u d e " s t d a f x . h "
t t i n c l u d e " w o r k s p a c e . h "
t t i n c l u d e " P a th T o G C o d e .h "
t t i n c l u d e " P a t h . h "
t t i n c l u d e " G P .h "
t t i n c l u d e " G P A c t i o n . h "
t t i n c l u d e " W o r k s p a c e D o c .h "
t t i n c l u d e " F i n d . h "
t t i n c l u d e " C A D U t i l s . h "
t t i n c l u d e " M a t h U t i l . h "
i n c l u d e " V e c t o r 3 . h "
t t i n c l u d e " c o n s t r c t / k e r n a p i / a p i / c s t r a p i . h x x "
t t i n c l u d e " k e r n e l / g e o m h u s k / g e o m _ u t l . h x x "
t t i n c l u d e " k e r n e l \ g e o m h u s k \ c u r v e q . h x x "
i n c l u d e " G C o d e P o in t A c c u r a c y . h "
t t i n c l u d e " A c i s M F C X a c i s d o c . h x x "
t t i n c l u d e " a c i s m f c \ a m f c _ u t l . h x x "
t t i n c l u d e " A c i s M F C \ T o o l s \ t o o l s . h x x "

t t i f d e f _DEBUG
t t u n d e f T H IS _ F IL E
s t a t i c c h a r T H I S _ F I L E [] =_
t t d e f i n e new DEBUG_NEW
t t e n d i f

F IL E

/
/ / C o n s t r u c t i o n / D e s t r u c t i o n
/ /

*
* F u n c t i o n : C P a th T o G C o d e : : C Pa thToG C ode★
* A r g u m e n t s :
* LPCTSTR I p s z P r o g r a m F i l e ,
* C R o b o t * p R o b o t ,
* C P a th * p P a t h*
*
★
* R e t u r n s :★
★
* C r e a t e d : 9 90718
it

* A u t h o r : A l e k s a n d a r B o s k o v i c
*/

/*!

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* D e s c r i p t i o n :
*
*
* C om m en ts : C o n s t r u c t o r f o r c l a s s w h i c h c o n v e r t s a p a t h i n t o
* t h e GCode l a n g u a g e .
*
********************★*****★***•*■•*■**■*■***★*★********★★*★*■*****★*★★★*/

C P a th T o G C o d e : : C Pa thToG C ode(LPC TSTR I p s z P r o g r a m F i l e ,
C R o b o t * p R o b o t ,
C P a th * p P a t h)

: C P a th T o L a n g u a g e (I p s z P r o g r a m F i l e , p R o b o t , p P a t h)
{

m _ s t r L a n g u a g e = "GCODE";
m _ p H e a d P a th = p P a t h ;
m _ b V e r b o s e = f a l s e ;
m _ b F e e d E m i t t e d = f a l s e ;
m _ b X E m i t t e d = f a l s e ;
m _ b Y E m i t t e d = f a l s e ;
m _ b Z E m i t t e d = f a l s e ;
m _ b B E m i t t e d = f a l s e ;
m _ b C E m i t t e d = f a l s e ;
m _ b O p C o d e E m i t t e d = f a l s e ;
m _ b P l a n e E m i t t e d = f a l s e ;

★
* F u n c t i o n : C P a t h T o G C o d e : : W r i t e P a t h
★
* A r g u m e n t s :
★
*
* R e t u r n s : C S t r i n g★
★
* C r e a t e d : 9 90 71 8
★
* A u t h o r : A l e k s a n d a r B o s k o v i c
* /

/*!
* D e s c r i p t i o n :*
★
* C om m en ts : W r i t e s t h e p a t h
*

C S t r i n g C P a t h T o G C o d e : : W r i t e P a t h ()
{

C S t d i o F i l e P r o g r a m F i l e (
m _ s t r F i l e N a m e ,
C F i l e : :m o d e C r e a te | C F i l e : : m o d e W r i t e)

/ / W r i t e s u b - p a t h s
W r i t e F u n c t i o n (m _ p P a th , P r o g r a m F i l e) ;

r e t u r n C P a t h T o L a n g u a g e : : W r i t e P a t h () ;
}
v o i d C P a th T o G C o d e : : S t a r t F u n c t i o n (C P a t h * p P a t h , C S t d i o F i l e & r F i l e)
{

m _ b F e e d E m i t t e d = f a l s e ;
m _ b X E m i t t e d = f a l s e ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_bYEmi 11 ed= f a 1 s e ;
m _ b Z E m i t t e d = f a l s e ;
m _ b B E m i t t e d = f a l s e ;
m _ b C E m i t t e d = f a l s e ;
m _ b O p C o d e E m i t t e d = f a l s e ;
m _ b P l a n e E m i t t e d = f a l s e ;

}

★
* F u n c t i o n : C P a th T o G C o d e : : W r i t e F u n c t i o n
★
* A r g u m e n t s :
* C P a th * p P a t h ,
* C S t d i o F i l e & r F i l e*
★
* R e t u r n s : v o i d★
*
* C r e a t e d : 9 91 00 7*
* A u t h o r : A l e k s a n d a r B o s k o v i c
*/

/* !
* D e s c r i p t i o n :*
★
* C om m en ts :
★

v o i d C P a th T o G C o d e : : W r i t e F u n c t i o n (C P a th * p P a t h , C S t d i o F i l e & r F i l e)
{

C W o rk s p a c e D o c *p D o c = G e t A c t i v e D o c () ;
C S t r i n g s t r L i n e ;

S t a r t F u n c t i o n (p P a t h , r F i l e) ;
i f (! p P a t h - > G e t P a t h P a r e n t ())
{

/ / W r i t e p r o c e d u r e t o c a l l s u b - p a t h s
s t r L i n e . F o r m a t (" \n O % s" , F in d G C o d e N a m e (m _ p P a th -> G e tN a m e ())) ;

r F i l e . W r i t e S t r i n g (s t r L i n e) ;

/ / W r i t e H e a d e r i n f o r m a t i o n

s t r L i n e . F o r m a t (" \n% s D1 H I " , m _ L in e N o . N e x t ()) ;
r F i l e . W r i t e S t r i n g (s t r L i n e) ;

s t r L i n e . F o r m a t (" \n% s G 9 2 . 1 " , m _ L in e N o . N e x t ()) ;
r F i l e . W r i t e S t r i n g (s t r L i n e) ;

s t r L i n e . F o r m a t (" \ n % s GOO G17 G40 G80 G90 G54 G 9 4 " ,
m _ L in e N o . N e x t ()) ;

r F i l e . W r i t e S t r i n g (s t r L i n e) ;

s t r L i n e . F o r m a t (” \n% s G92 XO.OOO Y 0 .0 0 0 Z 0 .0 0 0 B O .000 C O .000
F 2 5 0 . 0 0 0 ” , m _ L in e N o . N e x t ()) ;

r F i l e . W r i t e S t r i n g ! s t r L i n e) ;
}
e l s e
{

s t r L i n e . F o r m a t (" \nO%s " , F in d G C o d e N a m e (p P a th -> G e tN a m e ())) ;

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r F i l e . W r i t e S t r i n g (s t r L i n e) ;

s t r L i n e . F o r m a t (" \n% s F 2 5 0 " , m _ L in e N o . N e x t ()) ;
}

/ / L o o p t h r o u g h t a r g e t l i s t
C P t r L i s t * p T a r g e t L i s t = p P a t h - > G e t T a r g e t L i s t () ;
PO SIT IO N p o s L i s t = p T a r g e t L i s t - > G e t H e a d P o s i t i o n () ;

w h i l e (p o s L i s t)
{

/ / G e t t h e name o f t h e n e x t t a r g e t
C P a t h T a r g e t *p P T = (C P a t h T a r g e t *) p T a r g e t L i s t - > G e t N e x t (

p o s L i s t) ;

i f (p P T - > i s P a t h ())
{

/ / T h i s t a r g e t i s a p a t h

/ / S h o u ld a l r e a d y h a v e w r i t t e n t h e p r o c e d u r e f o r
/ / t h i s s u b - p a t h , so j u s t make a c a l l t o i t
s t r L i n e . F o r m a t (" \n % s

M 98P % s", m _ L in e N o . N e x t () , F in d G C o d e N a m e (p P T -> G e tN a m e ())) ;
r F i l e . W r i t e S t r i n g (s t r L i n e) ;

}
e l s e
{

i f (p P T - > is G P M o v e ())
/ / T h i s t a r g e t i s a GPMove

W r i t e M o v e ((C G PM ove*) pP T , r F i l e) ;
}

}
i f (! p P a t h - > G e t P a t h P a r e n t ())

s t r L i n e . F o r m a t (" \n % s G 9 2 .1 \n % s M02" , m _ L in e N o . N e x t () ,
m _ L in e N o . N e x t ()) ;

e l s e
s t r L i n e . F o r m a t (" \n % s M 9 9 " , m _ L in e N o . N e x t {)) ;

r F i l e . W r i t e S t r i n g (s t r L i n e) ;

/ / L o o p t h r o u g h s u b - p a t h s
C P t r L i s t * p P a t h L i s t = p P a t h - > G e t T a r g e t L i s t () ;
p o s L i s t = p P a t h L i s t - > G e t H e a d P o s i t i o n () ;

w h i l e (p o s L i s t)
{

C P a t h T a r g e t *p P T ;

pPT = (C P a t h T a r g e t *) p P a t h L i s t - > G e t N e x t (p o s L i s t) ,-
i f (p P T - > i s P a t h ())
{

C S t r i n g s t r S u b F u n c P a t h = r F i l e . G e t F i l e P a t h () ;
C S t r i n g s t r M a s te r F u n c N a m e = r F i l e . G e t F i l e N a m e () ;
s t r S u b F u n c P a t h . R e p l a c e (s t r M a s t e r F u n c N a m e , m _ p H e a d P a th -

> G e tN a m e () + " _ 0 " +F in d G C o d e N a m e (((C P a t h *) p P T) - > G e tN a m e ()) + " . p p g ") ;
C S t d i o F i l e s u b F i l e (

s t r S u b F u n c P a t h ,
C F i l e : :m o d e C r e a te | C F i l e : :m o d e W r i t e) ;

S t a r t F u n c t i o n (p P a t h , s u b F i l e) ;

W r i t e F u n c t i o n (((C P a t h *) p P T) , s u b F i l e) ;
}

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
}

d o u b l e P o s Z e r o (d o u b le d V a l)
{

i f (A l m o s t Z e r o (d V a l))
r e t u r n 0 . 0 ;

e l s e
r e t u r n d V a l ;

}

/*********■★***★***********************★****************************
★
* F u n c t i o n : C P a th T o G C o d e : : W r i t e M o v e
*

* A r g u m e n t s :
* CGPMove* pGPMove,
* C S t d i o F i l e k r F i l e
it

it

* R e t u r n s : v o i d*
it

* C r e a t e d : 9 91007★
* A u t h o r : A l e k s a n d a r B o s k o v i c
*/

/*'.
* D e s c r i p t i o n :
*
it

* C o m m e n ts :
it

v o i d C P a th T o G C o d e : : W r i t e M o v e (CGPMove* pGPMove, C S t d i o F i l e & r F i l e)
{

s t a t i c b o o l b C o n f J = t r u e ;
s t a t i c d o u b l e d P r e v P o s [3] = { 0 . 0 , 0 . 0 , 0 . 0 } ; / / w o r l d c o - o r d s s e t u p

a s s t a r t p o s
s t a t i c d o u b l e d P r e v B = 0 . 0 ;
s t a t i c d o u b l e d P r e v C = 0 . 0 ;
s t a t i c d o u b l e d P r e v F e e d = 2 5 0 . 0 ;
s t a t i c d o u b l e d l = 0 . 0 , d J = 0 . 0 / d K = 0 .0 ;
i n t n A c t i o n s ;

C S t r i n g s t r L o c P i c = " % . 3 f " ;
s t a t i c CCutDownGP * p P re v M in iG P = N U L L ;
s t a t i c C S t r i n g s t r P r e v O p C o d e = " " ;
s t a t i c C S t r i n g s t r P r e v P l a n e = " " ;
s t a t i c C S t r i n g s t r P r e v C i r c D i r = " " ;
s t a t i c C S t r i n g s t r P r e v X = ” " , s t r P r e v Y = " " , s t r P r e v Z = " " , s t r P r e v B = " " ,

s t r P r e v C = " 11 ;
s t a t i c C S t r i n g s t r P r e v F e e d ;
s t a t i c C S t r i n g s t r P r e v I = " " , s t r P r e v J = " 11, s t r P r e v K = " " ;
b o o l b O p C o d e R e q d = t ru e ,

b P la n e R e q d = t r u e ,
b X R e q d = t r u e ,
b Y R e q d = t r u e ,
b Z R e q d = t r u e ,
b B R e q d = t r u e ,
b C R e q d = t r u e ,
b I R e q d = t r u e ,
b J R e q d = t r u e ,
b K R e q d = t r u e ,

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b F e e d R e q d = t r u e ,
b N o n O r t h o = f a l s e ;

C S t r i n g s t r L i n e ;
/ / t r a n s f t r a n s f o r m T P ;

/ / t r a n s f pGPPos = p G P M o v e -> G e tG P () - > G e t T r a n s f () ;
RCS_JOINT_POS J o in t T e m p ;

CCutDownGP * p M in iG P = G e tM in iG P F ro m M a p (p G P M o v e -> G e tG P () -
> G e tN a m e ()) ;

i f (! p M in iG P)
{

A fx M e s s a g e B o x (" M in iG P n o t f o u n d '1) ;
}

J o in t T e m p = p M i n i G P - > G e t J o i n t P o s () ;
/ / t r a n s f o r m T P = m _ p R o b o t - > C o n v e r tG P to T P (pGPMove- >G etW CS() -

> t o _ m o d e l ()) ;

/ /RCS_FRAME f rR C S ;

/ / C o n v e r t T r a n s f T o R C S F r a m e (f rR C S , t r a n s f o r m T P) ;

i f (m _ b X E m i t te d && A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [0] -
d P r e v P o s [0]))

bXR eqd = m _ b V e rb o s e ;
e l s e
{

s t r P r e v X . F o r m a t (" X " + s t r L o c P i c ,
P o s Z e r o (J o in t T e m p . A x e s V a l u e s [0])) ;

}
i f (m _ b Y E m it te d && A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [1] -

d P r e v P o s [1]))
bYR eqd = m _ b V e rb o s e ;

e l s e
{

s t r P r e v Y . F o r m a t (" Y " + s t r L o c P i c ,
P o s Z e r o (J o in t T e m p . A x e s V a l u e s [1])) ;

}
i f (m _ b Z E m i t te d && A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [2] -

d P r e v P o s [2]))
bZ R e qd = m _ b V e rb o s e ;

e l s e
{

s t r P r e v Z . F o r m a t (" Z " + s t r L o c P i c ,
P o s Z e r o (J o in t T e m p . A x e s V a l u e s [2])) ;

}
i f (m _ b B E m it te d && A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [3] - d P r e v B))

bBR eqd = m _ b V e rb o s e ;
e l s e
{

s t r P r e v B . F o r m a t (" B " + s t r L o c P i c ,
P o s Z e r o (R a d T o D e g (J o in t T e m p . A x e s V a lu e s (3]))) ;

}
i f (m _ b C E m i t te d && A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [4] - d P r e v C))

bCReqd = m _ b V e rb o s e ;
e l s e
{

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s t r P r e v C . F o r m a t (" C " + s t r L o c P i c ,
P o s Z e r o (R a d T o D e g (J o in t T e m p . A x e s V a lu e s [4]))) ;

}
i f (p G P M o v e -> H a s P o s S p e e d ())
{

i f (m _ b F e e d E m i t te d && A lm o s t Z e r o (p G P M o v e - > G e tP o s S p e e d () -
d P r e v F e e d))

b F e e d R e q d = m _ b V e rb o s e ;
e l s e
{

s t r P r e v F e e d . F o r m a t (" F " + s t r L o c P i c , pGPM ove-
> G e tP o s S p e e d ()) ;

}
}
e l s e
{

s t r P r e v F e e d . F o r m a t (" F " + s t r L o c P i c , d P r e v F e e d) ;
b F e e d R e q d = m _ b V e rb o s e | | !m _ b F e e d E m i t t e d ; / / ??? r e p e a t

l a s t f e e d r a t e i f v e r b o s e ?
}

i f (p G P M o v e - > G e tM o t io n T y p e () == " C i r c u l a r ")
{

d o u b l e d R a d iu s ;
p o s i t i o n p o s C e n t e r ;
u n i t _ v e c t o r v N o r m a l ;
b o o l b D i r ;

A S S E R T (p P re v M in iG P) ;
G e t C i r c l e P a r a m s (p P r e v M i n i G P , pGPMove, b D i r , p o s C e n t e r ,

v N o r m a l , d R a d i u s) ;

i f (b D i r)
{

i f (s t r P r e v O p C o d e == " G 0 2 ")
bO pC odeReqd = m _ b V e rb o s e | | !m _ b O p C o d e E m i t te d ;

e l s e
s t r P r e v O p C o d e = " G 0 2 " ;

}
e l s e
{

i f (s t r P r e v O p C o d e == " G 0 3 ")
bO pCodeReqd = m _ b V e rb o s e | | !m _ b O p C o d e E m i t te d ;

e l s e
{

s t r P r e v O p C o d e = " G 0 3 " ;
}

}
i f (A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [2] - d P r e v P o s [2]))
{

i f (s t r P r e v P l a n e == " G 1 7 ")
b P la n e R e q d = m _ b V e rb o s e | | m _ b P la n e E m i t t e d ;

e l s e
s t r P r e v P l a n e = " G 1 7 " ;

d l = p o s C e n t e r . x () - d P r e v P o s [0] ;
d J = p o s C e n t e r . y () - d P r e v P o s [l] ;
s t r P r e v I . F o r m a t (" I " + s t r L o c P i c , d l) ;
s t r P r e v J . F o r m a t (" J " + s t r L o c P i c , d J) ;
b ZR eqd = f a l s e ;
bKReqd = f a l s e ;

}
e l s e
i f (A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [1] - d P r e v P o s [1]))

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m_bP1a n e E m i 11 e d ;

{
i f (s t r P r e v P l a n e == " G 1 8 ")

b P la n e R e q d = m _ b V e rb o s e
e l s e

s t r P r e v P l a n e = " G 1 8 " ;
bYR eqd = f a l s e ;
d l = p o s C e n t e r . x () - d P r e v P o s [0] ;
dK = p o s C e n t e r . z () - d P r e v P o s [2] ;
s t r P r e v I . F o r m a t (" I " + s t r L o c P i c , d l) ;
s t r P r e v K . F o r m a t (" K " + s t r L o c P i c , dK) ;
b J R e q d = f a l s e ;

}
e l s e
i f (A l m o s t Z e r o (J o i n t T e m p . A x e s V a l u e s [0] - d P r e v P o s [0]))
{

i f (s t r P r e v P l a n e == " G 1 9 ")
b P la n e R e q d = m _ b V e rb o s e | | m _ b P la n e E m i t t e d ;

e l s e
s t r P r e v P l a n e = " G 1 9 " ;

bXR eqd = f a l s e ;
d J = p o s C e n t e r . y () - d P r e v P o s [1] ;
dK = p o s C e n t e r . z () - d P r e v P o s [2] ;
s t r P r e v J . F o r m a t (11 J " + s t r L o c P i c , d J) ;
s t r P r e v K . F o r m a t (" K " + s t r L o c P i c , dK) ;
b I R e q d = f a l s e ;

)
e l s e
{

b N o n O r th o t r u e ;
}
i f (b N o n O r th o)

s t r L i n e . F o r m a t (1 \ n (n o n - o r t h o c i r c u l a r m oves n o t
s u p p o r t e d y e t) ”) ;

e l s e
{

s t r L i n e . F o r m a t (
m _ L in e N o . N e x t ()
b P la n e R e q d ?
bOpC odeReqd ?

' \n%s%s%s%s%s%s%s%s%s%s%s" ,

s t r P r e v P l a n e : 11" ,
s t r P r e v O p C o d e : " " ,

bXReqd ? s t r P r e v X
bYReqd s t r P r e v Y
bBReqd ■? s t r P r e v B
bCReqd ? s t r P r e v C
b IR e q d ? s t r P r e v I
b JR e q d ? s t r P r e v J
bKReqd •? s t r P r e v K
b F e e d R e q d ?
) ;
m _ b X E m i t te d = m.
m _ b Y E m i t te d = m.
m _ b Z E m i t t e d = m.
m _ b B E m i t te d = m_
m _ b C E m i t t e d = m.

s t r P r e v F e e d

. b X E m i t t e d bXR eqd

. b Y E m i t t e d bYR eqd

. b Z E m i t t e d bZR eqd

. b B E m i t t e d bBR eqd
_ b C E m it te d bCReqd

m _ b P la n e E m i t t e d = m _ b P la n e E m i t t e d | | b P la n e R e q d ;
m _ b O p C o d e E m i t te d = m _ b O p C o d e E m i t te d | | bO pC odeR eqd ;
m _ b F e e d E m i t te d = m _ b F e e d E m i t t e d I I b F e e d R e q d ;

}
e l s e i f (p G P M o v e - > G e tM o t io n T y p e () == " J o i n t ")
{

i f (s t r P r e v O p C o d e == " GOO")

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bOpCodeReqd = m_bVerbose || !m_bOpCodeEmitted
e l s e

S t rP re v O p C o d e = " GOO";
s t r L i n e . F o r m a t (" \n%s%s%s%s%s%s%s" ,

m _ L in e N o . N e x t () ,
S t rP re v O p C o d e : " " ,
? s t r P r e v X

bOpC odeReqd
bXR eqd
bYR eqd
bZ R e qd
bBR eqd
bCReqd
)

s t r P r e v Y
s t r P r e v Z
s t r P r e v B
s t r P r e v C

m _ b O p C o d e E m i t te d = m _ b O p C o d e E m i t te d | | bO pC odeR eqd ;
m _ b X E m i t t e d = m.
m _ b Y E m i t t e d = m.
m _ b Z E m i t t e d = m.
m _ b B E m i t t e d = m.
m b C E m i t t e d = m.

. b X E m i t t e d
_ b Y E m i t te d
. b Z E m i t t e d
. b B E m i t t e d
b C E m i t t e d

bXReqd
bYReqd
bZR eqd
bBReqd
bCReqd

}
e l s e
{

i f (p G P M o v e - > G e tM o t io n T y p e () == " L i n e a r ")

m_bO pCodeEm i11 e d ;
i f (s t r P r e v O p C o d e == " G 0 1 ")

bO pC odeReqd = m _ b V e rb o s e
e l s e

s t r P r e v O p C o d e = " G 0 1 " ;
s t r L i n e . F o r m a t (" \n%s%s%s%s%s%s%s%s"

m _ L in e N o . N e x t ()
bOpC odeReqd ?
bXR eqd
bYR eqd
bZR eqd
bBR eqd
bCReqd
b F e e d R e q d ?
) ;

m _ b O p C o d e E m i t te d = m _ b O p C o d e E m it te d | | bO pC odeR eqd ;
m _ b X E m i t t e d = m.
m _ b Y E m i t t e d = m.
m _ b Z E m i t t e d = m_
m _ b B E m i t t e d = m.
m b C E m i t t e d = m.

s t r P r e v O p C o d e
? s t r P r e v X
? s t r P r e v Y
? s t r P r e v Z
? s t r P r e v B
? s t r P r e v C
s t r P r e v F e e d

. b X E m i t t e d

. b Y E m i t t e d

. b Z E m i t t e d

. b B E m i t t e d

.b C E m i t t e d
m b F e e d E m i t t e d = m b F e e d E m i t t e d

bXReqd
bYReqd
bZR eqd
bBReqd
bCReqd

b F e e d R e q d ;
}
r F i l e . W r i t e S t r i n g (s t r L i n e) ;

/ / W r i t e t o o l a c t i o n as GCODE com m ent
i f ((n A c t i o n s = p G P M o v e -> G e tN u m G P A c t io n s ()))
{

f o r (i n t i = 0 ; i c n A c t i o n s ; i + +)
{

C S t r i n g s t r A c t i o n = p G P M o v e -> G e tG P A c t io n (i) -
> G e t D e s c r i p t i o n () ;

i f (s t r A c t i o n == " W a t e r J e t O n ")
s t r L i n e . F o r m a t (11 \n% s M08 " , m _ L in e N o . N e x t ()) ;

e l s e i f (s t r A c t i o n == " W a t e r J e t O f f ")
s t r L i n e . F o r m a t (" \n% s M 0 9 " , m _ L in e N o . N e x t ()) ;

e l s e i f (s t r A c t i o n == " A b r a s i v e O n ")
s t r L i n e . F o r m a t (" \n% s M 1 0 " , m _ L in e N o . N e x t ()) ;

e l s e i f (s t r A c t i o n == “ A b r a s i v e O f f ")
s t r L i n e . F o r m a t (" \n% s M i l " , m _ L in e N o . N e x t ()) ;

e l s e
s t r L i n e . F o r m a t (" \ n (- % s) ; " , s t r A c t i o n) ;

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
r F i l e . W r i t e S t r i n g (s t r L i n e)

}
= p M in iG P ;
= J o i n t T e m p . A x e s V a l u e s [0]
= J o i n t T e m p . A x e s V a l u e s [1]
= J o i n t T e m p . A x e s V a l u e s [2]

d P r e v B = J o i n t T e m p . A x e s V a l u e s [3] ;
d P re v C = J o i n t T e m p . A x e s V a l u e s [4] ;

p P r e v M in iG P
d P r e v P o s [0]
d P r e v P o s [1]
d P r e v P o s [2]

i f (p G P M o v e -> H a s P o s S p e e d ())
d P r e v F e e d = p G P M o v e -> G e tP o s S p e e d () ;

/**
ie

* F u n c t i o n : C P a th T o G C o d e : : -C P a th T o G C o d e★
* A r g u m e n t s :
★
★
* R e t u r n s :
ie

*
* C r e a t e d : 9 91007
ie

* A u t h o r : A l e k s a n d a r B o s k o v i c
*/

/ * !
* D e s c r i p t i o n :*
*
* C om m en ts :★

C P a th T o G C o d e : : -C P a th T o G C o d e <)
{

}

★
* F u n c t i o n : C P a th T o G C o d e : : W r i teG C O D E F ram es*
* A r g u m e n t s :
* C S t d i o F i l e & r F i l e ,
* C R o b o t * p R o b o t
*
★
* R e t u r n s : v o i d★
★
* C r e a t e d : 991007★
* A u t h o r : A l e k s a n d a r B o s k o v i c
*/

/ * !
* D e s c r i p t i o n :*
★
* C om m en ts :
ie

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v o i d C P a th T o G C o d e : : W r i t e G C O D E F r a m e s (C S t d io F i le & r F i l e , C R o b o t * p R o b o t)
{

}

/****★*******************★★**★***★********★★*******★★**★★*■*■*****★★*
*

* F u n c t i o n : C P a th T o G C o d e : : F indG C odeN am e
*

* A r g u m e n t s :
* C S t r i n g sName*
★
* R e t u r n s : C S t r i n g*
★
* C r e a t e d : 9 91007
*

* A u t h o r : A l e k s a n d a r B o s k o v i c
* /

/ * !
* D e s c r i p t i o n :
*

★
* C om m en ts :
ir

C S t r i n g C P a th T o G C o d e : : F in d G C o d e N a m e { C S t r in g s P a th N a m e)
{

s t a t i c C S t r i n g r V a l ;

i f (!m _ P a th N a m e M a p .L o o k u p (s P a th N a m e , r V a l))
{

r V a l . F o r m a t (" % 0 4 d " , m _P athN am eM ap . G e t C o u n t () + 1) ;
m _P athN am eM ap . S e t A t (s P a th N a m e , r V a l) ;

}

r e t u r n r V a l ;
}
v o i d C P a th T o G C o d e : : S e t S t a t e C i r c D i r (b o o l b C i r c D i r)
{

m _ b C i r c D i r = b C i r c D i r ;
}

b o o l C P a th T o G C o d e : : G e t S t a t e C i r c D i r (v o i d)
{

r e t u r n m _ b C i r c D i r ;
}
v o i d C P a th T o G C o d e : : S e t S t a t e P o s (d o u b l e a P o s [])
{

m _ a P o s [0] = a P o s [0] ;
m _ a P o s [l] = a P o s f l j ;
m _ a P o s [2] = a P o s [2] ;

}
v o i d C P a th T o G C o d e : : G e t S t a t e P o s (d o u b le a P o s [])
{

a P o s [0] = m _ a P o s [0] ;
a P o s [l] = m _ a P o s [l j ;
a P o s [2] = m _ a P o s [2] ;

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

v o i d C P a th T o G C o d e : : S e t S t a t e O r i e n t (d o u b l e a O r i e n t [])
{

m _ a O r i e n t [0] = a O r i e n t [0] ;
m _ a O r i e n t [1] = a O r i e n t [1] ;

}

v o i d C P a th T o G C o d e : : G e t S t a t e O r i e n t (d o u b l e a O r i e n t (])
{

a O r i e n t [0] = m _ a O r i e n t [0] ;
a O r i e n t [1] = m _ a O r i e n t [1] ;

}

v o i d C a l c M i d P o i n t (p o s i t i o n p S t a r t W C S , p o s i t i o n p E n d W C S , p o s i t i o n p M i d p t) ;

b o o l C P a th T o G C o d e : :G e tC i r c le P a ra m s (C C u tD o w n G P * p M i n i S t a r t G P , CGPMove*
p E ndG P , b o o l & b D i r , p o s i t i o n & p o s C e n t e r , u n i t _ v e c t o r k v N o r m a l , d o u b le
ScdRadius)
{

CCutDownGP * p M in iE n d G P = G e tM in iG P F ro m M a p (p E n d G P -> G e tG P () -
> G e tN a m e ()) ;

i f (! p M in iE n d G P)
{

A f x M e s s a g e B o x ("M in iE n d G P n o t f o u n d ") ;
}

CCutDownGP * p M in iV ia G P = G e tM in iG P F ro m M a p (p E n d G P -> G e tV ia G P () -
> G e tN a m e ()) ;

i f (! p M in iV ia G P)
{

A f x M e s s a g e B o x (" M in iV ia G P n o t f o u n d ") ;
}

/ /W C S * p W C S S t a r t , *pWCSEnd, *pW CSMid;
EDGE * p E d g e ;
o u tc o m e r e s u l t ;
d o u b l e d D i s t , d D i s t 2 ;
C V e c t o r 3 v e c E n d P o i n t , m _ A r c S t a r t P o i n t , p o s V i a ;
d o u b l e m _ d A n g le A b o u tX , m _ d A n g le A b o u tY , m _ d A n g le A b o u tZ ; / /

m _ d A r c T o t a l A n g l e , t h e t a ;
/ / d o u b l e D i s F r o m A x is ;
p o s i t i o n m _ A r c C e n t r e ;
b o o l b N e g X A x is ;
RCS_JOINT_POS J o in t E n d = p M i n i E n d G P - > G e t J o in t P o s () ;
RCS_JOINT_POS J o i n t S t a r t = p M i n i S t a r t G P - > G e t J o i n t P o s () ;
RCS_JOINT_POS J o i n t M i d = p M i n i V i a G P - > G e t J o i n t P o s () ;
p o s i t i o n p o s E n d (J o i n t E n d . A x e s V a l u e s) ;
p o s i t i o n p o s S t a r t (J o i n t S t a r t . A x e s V a l u e s) ;
p o s i t i o n p o s M i d f J o i n t M i d . A x e s V a l u e s) ;

i f (p E n d G P - > G e tM o t io n T y p e () != " C i r c u l a r ")
r e t u r n f a l s e ;

/ / p W C S S t a r t = p S ta r tG P - > G e tW C S () ;
/ /pW CSM id = p E n d G P -> G e tV ia G P () -> G e tW C S () ;
/ /pWCSEnd = pE ndG P -> G etW C S () ;
d D i s t = d i s t a n c e _ t o _ p o i n t (p o s S t a r t , p o s E n d) ;
d D i s t 2 = d i s t a n c e _ t o _ p o i n t (p o s S t a r t , p o s M i d) ;
d D i s t 2 = d i s t a n c e _ t o _ p o i n t (p o s E n d , p o s M i d) ;

i f (A l m o s t Z e r o (d D i s t))
{

p o s i t i o n p M i d p t ;

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C a l c M i d P o i n t (p o s S t a r t , p o s M i d , p M i d p t) ;

r e s u l t = a p i _ c u r v e _ a r c _ c e n t e r _ e d g e (
p M i d p t ,
p o s S t a r t ,
p o s M id ,
NULL, / / & p W C S S t a r t - > z _ a x i s () ,
p E d g e) ;

}
e l s e

r e s u l t = a p i _ c u r v e _ a r c _ 3 p t (
p o s S t a r t ,
p o s M id ,
p o s E n d ,
FALSE,
pE dg e) ;

C h e c k O u t c o m e (r e s u l t) ;

i f (r e s u l t . o k ())
{

g e t _ c u r v e _ r a d i u s (p E d g e , d R a d iu s) ;
g e t _ c u r v e _ c e n t e r (p E d g e , p o s C e n t e r) ;
g e t _ c u r v e _ n o r m a l (p E d g e , v N o r m a l) ;
p E d g e - > l o s e () ;

}
e l s e

r e t u r n f a l s e ;
m _ d A n g le A b o u tX = m _ d A n g le A b o u tY = m _ d A n g le A b o u tZ = 0 . 0 ;

v e c E n d P o i n t . S e t X (p o s E n d . x ()) ;
v e c E n d P o i n t . S e t Y (p o s E n d . y ()) ;
v e c E n d P o i n t . S e t Z (p o s E n d . z ()) ;

m _ A r c S t a r t P o i n t . S e t X (p o s S t a r t . x ()) ;
m _ A r c S t a r t P o i n t . S e t Y (p o s S t a r t . y ()) ;
m _ A r c S t a r t P o i n t . S e t Z (p o s S t a r t . z ()) ;
p o s V i a . S e t X (p o s M i d . x ()) ;
p o s V i a . S e t Y (p o s M i d . y ()) ;
p o s V i a . S e t Z (p o s M i d . z ()) ;

v e c E n d P o i n t = v e c E n d P o in t - m _ A r c S t a r t P o i n t ;
m _ A r c S t a r t P o i n t = m _ A r c S t a r t P o i n t - v e c E n d P o i n t ;

i f (v e c E n d P o in t . G e t z ())
{

/ / R o t a t e t h e END p o i n t a b o u t y a x i s t o b r i n g p o i n t o n t o x y
p l a n e

m _ d A n g le A b o u tY = a t a n 2 (- v e c E n d P o i n t . G e tz () ,
v e c E n d P o i n t . G e t X ()) ;

v e c E n d P o i n t . R o t a t e A b o u t Y (- m _ d A n g le A b o u t Y) ;
p o s V i a . R o t a t e A b o u t Y (- m _ d A n g le A b o u t Y) ;

}
i f (v e c E n d P o i n t . G e t X () < 0)

b N e g X A x is = t r u e ;
e l s e

b N e g X A x is = f a l s e ;
i f (v e c E n d P o in t . G e t Y ())
{

II R o t a t e a b o u t z a x i s t o b r i n g t h e END p o i n t o n t o x a x i s
m _ d A n g le A b o u tZ = a t a n 2 (v e c E n d P o in t . G e t Y () ,

v e c E n d P o i n t . G e tX ()) ;
v e c E n d P o i n t . R o t a t e A b o u t Z (- m _ d A n g le A b o u t Z) ;

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

posVia.RotateAboutY(-m_dAngleAboutZ);
}

i f (p o s V i a . G e t Y () > 0)
b D i r = ! b N e g X A x is ;

e l s e
b D i r = b N e g X A x is ;

r e t u r n t r u e ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX J: THE TEST G-

CODEPARTPROGRAM

GENERATED OFF-LINE

%

00001
N 00005 D1 H I
N 00010 G 9 2 .1
N 00015 GOO G17 G40 G80 G90 G54 G94
N 00020 G92 X 0 .0 0 0 Y 0 .0 0 0 Z 0 .0 0 0 B O .000 C O .000 F 2 5 0 .0 0 0
N 00025 M98P0002
N 00030 M98P0003
N 00035 M98P0004
N 00045 G 9 2 .1
N 00040 M02
%

%

00002
N 00055 G01 X 5 0 0 .0 0 0 Y 2 8 4 .1 0 0 Z 5 2 .0 0 0 B - 1 8 0 . 0 0 0 C O .000 F 2 5 0 .0 0 0
N0006Q M08
N 00065 G17 G02 Y 7 1 5 .9 0 0 1 0 .0 0 0 J 2 1 5 . 9 0 0
N 00070 G17 X 4 9 3 .2 1 8 Y 2 8 4 .2 0 7 B 1 7 8 .2 0 0 1 0 .0 0 0 J - 2 1 5 . 9 0 0
N 00075 G01 X 5 0 0 .0 0 0 Y 2 8 4 .1 0 0 B - 1 8 0 . 0 0 0
N 00080 M09
N 00085 M99
%

0 0003
N 00095 G01 X 5 1 9 .0 5 0 Y 5 8 3 .5 6 4 Z 5 2 .0 0 0 B 1 3 4 .1 4 9 C 6 7 .7 6 4 F 2 5 0 . 0 0 0
N 00100 M08
N 00105 Y 6 3 6 .8 5 9 B 1 3 9 .0 8 1 C 6 7 .5 1 1
N 00110 G02 X 5 4 0 .3 6 5 Y 6 4 6 .9 5 7 B 7 4 .6 4 1 C O .000 1 1 4 .8 0 7 J - 3 . 7 1 0
N 00115 X 6 4 7 .0 6 7 Y 5 3 9 .9 6 2 B 1 5 .2 0 2 1 - 4 0 . 3 6 5 J - 1 4 6 . 9 5 7
N 00120 G03 X 6 3 7 .1 5 6 Y 5 1 9 .0 5 0 B 3 2 .3 7 8 C 7 0 .9 6 6 1 - 1 2 . 2 2 6 J - 7 . 0 1 0
N 00125 G01 X 5 8 4 .3 6 5 B - 3 2 0 . 1 6 7 C 6 8 .5 5 9
M00130 G03 X 5 6 9 .3 5 5 Y 5 3 1 .5 6 5 B 1 1 4 .4 7 2 C O .000 1 2 .9 3 8 J 1 8 . 7 8 3
N 00135 X 5 3 1 .7 1 4 Y 5 6 9 .2 8 7 B 1 5 5 .4 0 5 1 - 6 9 . 3 5 5 J - 3 1 . 5 6 5
N 00140 X 5 1 9 .0 5 0 Y 5 8 3 .5 6 4 B 1 3 4 .1 4 9 C 6 7 .7 6 4 1 6 .3 4 3 J 1 8 . 3 8 2
N 00145 M09
N 00150 G01 X 4 1 6 .4 3 6 Y 5 1 9 .0 5 0 B - 1 3 0 . 1 1 6 C 6 7 .5 4 2
N 00155 M08
N 00160 X 3 6 3 .1 4 1 B - 1 3 4 . 1 8 2 C 6 7 .5 9 5
N 00165 G03 X 3 5 3 .0 4 3 Y 5 4 0 .3 6 5 B 1 6 4 .6 4 1 C O .000 1 3 .7 1 0 J 1 4 . 8 0 7
N 00170 G02 X 4 6 0 .0 3 8 Y 6 4 7 .0 6 7 B 1 0 5 .2 0 2 1 1 4 6 .9 5 7 J - 4 0 . 3 6 5
N 00175 X 4 8 0 .9 5 0 Y 6 3 6 .6 0 0 B 4 1 .7 2 7 C - 6 7 . 5 0 0 1 5 . 9 4 5 J - 1 4 . 2 4 7
N 00180 G01 Y 5 8 4 .3 6 5
N 00185 G03 X 4 6 8 .4 3 5 Y 5 6 9 .3 5 5 B - 1 5 5 . 5 2 8 C O .000 1 - 1 9 . 0 2 3 J 3 . 1 3 8
N 00190 G02 X 4 3 0 .7 1 3 Y 5 3 1 .7 1 4 B - 1 1 4 . 5 9 5 1 3 1 .5 6 5 J - 6 9 . 3 5 5
N 00195 G03 X 4 1 6 .4 3 6 Y 5 1 9 .0 5 0 B - 1 3 0 .1 1 6 C 6 7 .5 4 2 1 - 1 6 . 3 0 5 J 4 . 0 0 2
N 00200 M09
N 00205 G01 X 4 8 0 .9 5 0 Y 4 1 2 .1 7 2 B 2 2 1 .7 2 7 C - 6 7 . 5 0 0
N 00210 M08

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N 00215 Y 3 6 3 .1 4 1 B - 1 3 8 . 2 7 3
N 00 22 0 G03 X 4 5 9 .6 3 5 Y 3 5 3 .0 4 3 B - 1 0 5 . 3 5 9 C O .000 1 - 1 4 . 8 0 7 J 3 . 7 1 0
N 00 22 5 X 3 5 2 .9 3 3 Y 4 6 0 .0 3 8 B - 1 6 4 . 7 9 8 1 4 0 .3 6 5 J 1 4 6 .9 5 7
N 00 23 0 G02 X 3 6 3 .4 0 0 Y 4 8 0 .9 5 0 B 1 3 1 .7 2 7 C - 6 7 . 5 0 0 1 1 4 .0 6 8 J 6 . 0 3 5
N 00235 G01 X 4 1 5 .6 3 5
N 00 24 0 G02 X 4 3 0 .6 4 5 Y 4 6 8 .4 3 5 B - 6 5 . 5 2 8 C O .000 1 - 3 . 1 3 8 J - 1 9 . 0 2 3
N 00245 X 4 6 8 .2 8 6 Y 4 3 0 .7 1 3 B - 2 4 . 5 9 5 1 6 9 .3 5 5 J 3 1 . 5 6 5
N 00250 X 4 8 0 .9 5 0 Y 4 1 2 .1 7 2 B 2 2 1 .7 2 7 C - 6 7 . 5 0 0 1 - 5 . 4 6 6 J - 1 7 . 3 2 9
N 00 25 5 M09
N 00 26 0 G01 X 5 8 3 .5 6 4 Y 4 8 0 .9 5 0 B 4 8 .2 7 3 C 6 7 .5 0 0
N 00265 M08
N 00270 X 6 3 6 .8 5 9
N 00275 G02 X 6 4 6 .9 5 7 Y 4 5 9 .6 3 5 B - 1 5 . 3 5 9 C O .000 1 - 3 . 7 1 0 J - 1 4 . 8 0 7
N 00 28 0 X 5 3 9 .9 6 2 Y 3 5 2 .9 3 3 B - 7 4 . 7 9 8 1 - 1 4 6 . 9 5 7 J 4 0 . 3 6 5
N 00285 G03 X 5 1 9 .0 5 0 Y 3 6 2 .8 4 4 B 3 1 8 .2 7 3 C 6 7 .5 0 0 1 - 5 . 4 1 6 J 1 5 . 5 9 1
N 00 29 0 G01 Y 4 1 5 .6 3 5 B - 4 1 . 7 2 7
N 00295 G02 X 5 3 1 .5 6 5 Y 4 3 0 .6 4 5 B 2 4 .4 7 2 C O .000 1 2 0 .3 6 3 J - 4 . 2 5 5
N 00 30 0 X 5 6 9 .2 8 7 Y 4 6 8 .2 8 6 B 6 5 .4 0 5 1 - 3 1 . 5 6 5 J 6 9 . 3 5 5
N 00 30 5 X 5 8 3 .5 6 4 Y 4 8 0 .9 5 0 B 4 8 .2 7 3 C 6 7 .5 0 0 1 1 8 .3 8 2 J - 6 . 3 4 3
N 00310 M09
N 00315 M99
%

%

0 0 0 0 4
N 00325 G01 X 5 0 0 .0 0 0 Y 5 2 5 .4 0 0 Z 5 2 .0 0 0 B 1 8 0 .0 0 0 C O .000 F 2 5 0 .0 0 0
N 00330 M08
N 00335 G02 Y 4 7 4 .6 0 0 B - 1 8 0 . 0 0 0 1 - 0 . 0 0 0 J - 2 5 . 4 0 0
N 00340 X 5 0 2 .3 9 0 Y 5 2 5 .2 8 7 B 8 4 .6 0 0 1 0 .0 0 0 J 2 5 . 4 0 0
N 00345 G01 X 5 0 0 .0 0 0 Y 5 2 5 .4 0 0 B 1 8 0 .0 0 0
N 00350 M09
N 00355 M99
%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

Owen, Jean V. “Simulation: Art and Science.” Manufacturing Engineering 114, (1995):

61-63.

Owens, John. “Robot Simulation - Seeing the Whole Picture.” Industrial Robot 18.4

(Winter, 1991): 10-12.

Weisel, W. K. “Simulation Packages Change the Face of Robotics.” Robotics World 14.1

(Spring, 1996): 40-41.

Roos, Eberhard and Amo Behrens. “Off-line Programming of Industrial Robots -

Adaptation of Simulated User Programs to the Real Environment.” Computer in

Industry 33.1 (Summer, 1997): 139-150.

Boud, A.C, and S. J. Steiner. “New Method for Off-line Robot Programming:

Applications and Limitations Using a Virtual Environment.” IEE Conference

Publication 435 (1997): 450-455.

Bernhardt, R., M. Schahn, and G. Schreck. “Knowledge Based Off-line Programming of

Industrial Robots.” IFAC Proceedings Series 10 (1999): 443-451.

Fujiuchi, Makoto, et al. “Development of a Robot Simulation and Off-line Programming

System.” SAE Technical Paper (Sep. 1992): 69-77.

Danni, L., et al. “ Off-line Programming of Flexible Welding Manufacturing Cells.”

Proceedings of the International Offshore and Polar Engineering Conference (May

1996): 172-176.

Lee, D.M.A., and W.H. ElMaraghy. “ROBSIM a CAD-based Off-line Programming and

Analysis System for Robotic Manipulators.” Computer-Aided Engineering Journal

7.5 (Oct. 1990): 141-148.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rooks, Brian. “Off-line Programming: A Success for the Automotive Industry.”

Industrial robot 24.1, (Winter, 1997): 30-34.

Kamisetty, Krishnavrasad V., and Kevin J. McDermott. “Development of a CAD/CAM

Robotic Translator for Programming the IBM 7535 SCAR A Robot Off-line.”

Computers in Industry 20.2 (Aug. 1992): 219-228.

Wozniak A., and J. Warczvnski. “Robot Simulation and Programming System.” IFAC

Proceedings 10 (Oct. 1989): 437- 442.

Fukuda, Hideaki, Tsudoi Murakami, and Tateo Kojima. “Off-line Robot Programming

System with Personal Computer.” KOBELCO Technology Journal 13 (Apr. 1992):

39-41.

Zeghloul, S., B. Blanchard, and M. Ayrault. “SMAR: a Robot Modeling and Simulation

System.” Robotica 15.1 (Jan. 1997): 63-73.

Costagliola, G., et al. “Framework of Syntactic Models for the Implementation of Visual

Languages.” IEEE Symposium Proceedings on Visual Languages (Sep. 1997): 58-

65.

Rackovic, M. “Construction of a Translator for Robot Programming Languages.” Journal

of Intelligent and Robotic Systems 15 (Feb. 1996): 209-232.

Levine, John, Tony Mason, and Doug Brown. Lex & YACC. Cambridge: O’Reilly &

Associates, 1995.

Breuer, Peter, and Jonathan Bowen. “A PREttier Compiler-Compiler: Generating Higher

Order Parsers in C.” Software - Practice and Experience 25.1 (Nov. 1995): 1263-

1297.

Breuer, Peter, and Jonathan Bowen. “A PREttier Compiler-Compiler: Higher Order

Programming in C.” Fifth International Conference on Software Engineering and

its Applications. Toulouse, France, 7-11 Dec. 1992.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Breuer, Peter, and Jonathan Bowen. “The Cutting Edge of Parser Technology.” Fifth

International Conference on Software Engineering and its Applications. Toulouse,

France, 7-11 Dec. 1992.

Breuer, Peter, and Jonathan Bowen. “The PRECC Compiler-Compiler.”

UKUUG/SUKUG Joint New Year 1993 Conference. Oxford, UK, 6-8 Jan. 1993.

Breuer, Peter, and Jonathan Bowen. “A Concrete Grammar for Z.” Oxford University

Computing Laboratory Technical Report. Oxford, UK, 15 Sep. 1995.

Banks, Jerry. Handbook of Simulation New York: John Wiley & Sons, 1998.

RRS Maintenance Management. RRS Interface Specification Version 1.3. Berlin:

Frauenhoffer Press, (1997).

Flow Software Technologies. Workspace 5.0 User Guide. Newcastle Upon Tyne: Wex

Tech Publishing, 1999.

Allen-Bradley Automation. 9 Series CNC Operation and Programming Manual. A-B

Press, 1997.

Breuer, Peter, and Jonathan Bowen “PRECCX User Manual.” PRECC - A PREttier

Compiler - Compiler. 11 January 1999

<http://archive.comlab.ox.ac.uk/redo/precc.html>.

Flow Robotics Company. Various G-code part programs, and machine specifications.

Jan. 1999 - Sep. 2000.

Nof, Shimon. Handbook of Industrial Robotics. 2nd ed. New York: John Willey & Sons,

1999.

Willnow, Cornelius, et al. Proceedings from RRS conferences. 2nd ed. Berlin: Fraunhoffer

Institute of Robotics, 1996.

Assarsson, Bo. “Robotized Waterjet Cutting.” Industrial Robot. 21.1 (1994): 12-17.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://archive.comlab.ox.ac.uk/redo/precc.html

Waterjet Web Reference. Home Page. 5 June 2000 <http://www.waterjets.org>.

OMAX Abrasive Waterjets - Precision computer-controlled abrasive waterjets, high-

pressure pumps. Home Page. 6 June 2000 <http://www.omax.com>.

Flow International Corporation - waterjet cutting and cleaning, abrasive waterjet

cutting system. Home Page. 10 January 2000 <http://www.flowcorp.com>.

Waterjet Technology. Home Page. 15 May 2000 <http://www.wateriet-tech.com>.

Banks, J., et al. Discrete-Event System Simulation. 2nd ed. New Jersey: Prentice Hall,

1996.

Law, A. M., and W. D. Kelton. Simulation Modeling and Analysis. 2nd ed. New York:

McGraw-Hill, 1991.

Pegden, C.D., R. E. Shannon, and R. P. Sadowski. Introduction to Simulation Using

SIMAN. 2nd ed. New York: McGraw-Hill, 1995.

Denavit, J., and R.S. Hartemberg. “A Kinematic Notation for Low-Pair Mechanisms

Based on Matrices.” ASME Journal of Applied Mechanics. (June 1965): 215-221.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

http://www.waterjets.org
http://www.omax.com
http://www.flowcorp.com
http://www.wateriet-tech.com

VITA AUCTORIS

NAME: Aleksandar Z. Boskovic

PLACE OF BIRTH: Belgrade, Yugoslavia

YEAR OF BIRTH: 1970

EDUCATION: IV Beogradska Gimnazija, Belgrade 1985-1989

Belgrade University, Belgrade, Yugoslavia 1990-1997 B.Sc.

University of Windsor, Windsor, Ontario 1998-2000 M.A.Sc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

	Development of simulation and off-line programming software modules for 5-axis waterjet cutting gantry robot.
	Recommended Citation

	tmp.1614804147.pdf.ZmKoj

