University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations

2000

Software library for reuse-oriented program
development.

Sheng. Zhong
University of Windsor

Follow this and additional works at: http://scholaruwindsor.ca/etd

Recommended Citation
Zhong, Sheng., "Software library for reuse-oriented program development.” (2000). Electronic Theses and Dissertations. Paper 3509.

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at $19-253-3000ext. 3208.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F3509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F3509&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/3509?utm_source=scholar.uwindsor.ca%2Fetd%2F3509&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smali overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learing
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

SOFTWARE LIBRARY FOR REUSE-ORIENTED PROGRAM

DEVELOPMENT

By

Sheng Zhong

A Thesis
Submitted to the College of Graduate Studies and Research
Through the School of Computer Science
In Partial Fulfiliment of the Requirements for
The Degree of Master of Science at the
University of Windsor

Windsor, Ontario
Canada
2000

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wallington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fie Votre rélécence
Our Ne Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 3 la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62310-6

Canadi

Sheng Zhong, 2000
© All Rights Reserved

i

Abstract

Distributed system or reuse-oriented program development system may call for
software reuse library (SRL, repository) to serve as a resource provider by the usage of
reusable software components. We are trying to solve the problems of storing and
classifying, locating/retrieving, and delivering the large number of software components
through the SRL in an effective way.

In this thesis we report on the design and construction of a prototype software
system, DORLM (Distributed Object-based Software Reuse Library Module), used to
investigate the integration of DBMS (database management system), [RS (information
retrieval system), NLP (natural language process) and CORBA (Common Object Request
Broker Architecture) for software reuse and reuse-oriented program development in a
distributed computing context. The DORLM provides an effective way to store, retrieve,
and deliver reusable software components as an aid of reuse-oriented program

development in the distributed environment.

iv

To my parents,
my brother,
my teachers,

and my wife Lijun,

For their love and support

Acknowledgements

I would like to acknowledge the support and guidance provided by Dr. R. Kent,
whose time, dedication and effort has contributed in guiding me through my study and
thesis work. Without his patience and guidance it would have been impossible to
complete this thesis in this time frame.

I am deeply appreciative of Dr. Chen for being my internal reader and her
invaluable suggestions and comments.

[would specially like to thank for the important comments and advice given by
Dr. Schlesinger who is my external reader.

Special thanks to Dr. Walid Saba for being willing to serve as the chair of the
committee.

Finally, a big thank-you to my wife Lijun, for her patience, encouragement,

support and understanding.

TABLE OF CONTENTS

Abstract
Acknowledgements
List of Figures
List of Tables
1 Introduction
1.1 Overview of Software Reuse
1.2 Reuse-oriented Software Development Process
1.3 Current Problems and Limitations of Software Reuse
1.4 Major Component Classification and Retrieval Approaches
1.4.1 Descriptive Classification Methods
1.4.2 Behavior-based Retrieval Methods
1.4.3 Denotational Semantics Methods
1.4.4 Formal Specification Methods
1.5 Code Generator for Software Reuse
1.6 Overview of This Thesis
1.6.1 Motivation
1.6.2 The Objective of This Thesis
1.6.3 Overview of the Proposed Approaches
1.7 Organization of This Thesis
2. Approaches to Classify, Retrieve, and Deliver Software Components
2.1 The Component Specification Acquisition

2.1.1 Component Structure

vii

iv

vi

xii

10

13

13

13

14

17

19

19

19

2.1.2 Component Classification
2.2 Automatic Indexing Process

2.2.1 Semantic Case System

2.2.2 A Process for Lexical, Syntactic and Semantic Analysis

2.2.3 Lexicon

2.3 The Retrieval Approach

2.4 An Approach to Deliver Reusable Component for Reuse

2.4.1 Requirements Phases and Methodology

2.4.2 Code Generator Process
3. Prototype Design and Implementation: DORLM
3.1 System Overview
3.2 System Structure
3.3 Development Environment
3.4 System Design Specification
4. Using Prototype System and User Interfaces
4.1 System Setup
4.2 Server Interface
4.2.1 Log on the System
4.2.2 Server Operation Interface
4.2.3 Insertion of Components
4.2.4 Server User Query Components
4.2.5 Server User Modify Components

4.3 Client Interface

viii

21

22

22

30

30

32

32

3

35

35

37

39

41

53

53

55

56

57

59

60

62

63

4.3.1 Browse the Library
4.3.2 Client User Retrieval of Components
4.3.3 Code Generation
4.4 System Testing and Limitations
4.4.1 Overview of Testing
4.4.2 Limitations of the DORLM
S. Conclusion and Future Work
S.1 Conclusion
5.1.1 Innovation
5.1.2 Achievements
S.2 Future Work
APPENDIX A: The DORLM Code Definition
BIBLIOGRAPHY

VITA AUCTORIS

63

64

65

68

68

n

13

73

73

74

74

76

84

90

Figure 1
Figure 2
Figure 3
Figure 4
Figure §
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Figure 22

List of Figures

Reuse-oriented software development process

The semantic case system

Partial Natural Language-based Retrieval System Process

Forms-based Code Generator Process

Architecture of the DORLM

DORLM Use Case Diagram

Server User Use Case Diagram

Client User Use Case Diagram

Main DORLM Class Diagram

User Register Sequence Diagram

Client User Query Library Sequence Diagram

Server User Insert the Component Sequence Diagram
Server User Update the Component Sequence Diagram
Server User Delete the Component Sequence Diagram
DORLM setup package in Windows 98/NT

The server user interface

The server user register interface

The server user login dialog

The server operation interface

Insert class component interface 1

Insert class component interface 2

The result of a sample class query

23

31

34

36

42

42

43

46

47

48

49

50

51

54

55

56

57

58

59

60

61

Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

Figure 30

The result of a sample method query

A sample modify process

The main client user interface

The result of the library browsing

A sample query and query result interface
A sample code generator process |

A sample code generator process 2

The result of a sample generated code

61

62

63

64

65

66

67

67

Table 1

Table 2

Table 3

List of Tables

Main semantic cases describing software components
Case triggers in the case system

Parsing grammar of case parsing process

Xii

25

25

28

CHAPTER 1.

Introduction

In this thesis we report on the design and construction of a prototype software
system, DORLM (Distributed Object-based Software Reuse Library Module), used to
investigate the integration of DBMS (database management system), IRS (information
retrieval system), NLP (natural language process), and CORBA (Common Object
Request Broker Architecture) for software reuse and reuse-oriented program

development in a distributed computing context.

1.1 Overview of Software Reuse

Software reuse is defined as the “process of using existing software components
rather than building them from scratch” [KRUEG92]. Reusable software components
include not only the generic source code, but also other aspect of the software lifecycle
including design structure, specifications, and documentation. However, this thesis work
focuses mainly on developing a software reuse library system to reuse object-oriented
source code, so called reuse-oriented software development.

Software reuse library (SRL, software repository, software base, etc.) is a set of
software components that use specialized methods for reusable components
classification, storage, retrieval, and delivering [LIAO93] [AMILI98] [ARABA9S]
[LUO99].

Software reuse has been recognized as one of most the realistic and promising
ways to improve software productivity, quality and reliability, reduce maintenance costs

and shorten the time required to release software for client use.

While software reuse has been under investigation for about two decades, it still
remains an active area of research field [AMILI98]. This can be explained by the
observation that new technologies, such as distributed computing, World Wide Web, new
programming languages (e.g. Java) and paradigms (e.g. distributed objects), keep

opening new opportunities for posing new technical challenges.

1.2 Reuse-oriented Software Development Process

Reuse-oriented software development is a kind of sofiware reuse approaches :
that makes use of a software reuse library from which reusable components may be
extracted. Figure | shows this general idea. It involves development-for-reuse when
reusable components are created and brought together into a software reuse library; and
development-with-reuse when reusable components are selected from the library on the
basis of specific requirements and reused in the construction of a new software
component.

Also noted in Figure 1, the reuse-oriented software development process is
composed of three distinct phases: the construction/storage phase, the location/retrieval
phase and the adaptation/generation phase.

The first phase deals with the construction and storage of components in the SRL

in a way enabling their later retrieval. Before we can put components into the library, we

1 Literawre often makes a distinction between two general approaches for sofiware reuse: the
generative approach [AMILI95], and the building blocks approach [KRUEG92). The generative approach
consists of reusing the process of developing software, as embodied in things such as program generators,
fourth generation’s tools, executable specification language interpreters, and transformational systems. The
building blocks approach consists of reusing the products of software development. The reuse-oriented
development process proposed in this thesis work focuses mainly on the building blocks approach.

must first have the components. Such reusable components could either be constructed
from the scratch or be found from existing software. Techniques for structuring, storing
and classifying the components in an efficient way enabling their later retrieval are
required.

The second phase focuses on the location/retrieval aspect for finding the
components. The library users try to find the desired component(s) from the SRL by
applying their query. If the exact match can’t be achieved, a potentially reusable relaxed
match may be found. Mechanism for efficient retrieval is required.

The final phase deals with the adaptation of the components and application
generation. After possible minor adaptations on the retrieval result, the user can reuse it
in his/her own application. Techniques for automating the integration and transformation
of reusable components are desired.

This thesis work is to explore practical methods to present a prototype of software
reuse library system based on the requirements of this reuse-oriented software

development process.

Scratch/Existing Domain Software New
component analvsis reauirements component
Adaptation/Generation
Phase
Construction/Storage *
Phase Location/Retrieval Phase
Development for reuse Development with reuse
'Ql_ 4’)|
Software reuse library)

Figure 1: Reuse-oriented software development process

1.3 Current Problems and Limitations of Software Reuse

Two main technical problems currently limit the practice of software reuse: a lack
of mechanisms to produce robust, adaptive reusable software components, and a lack of
mechanisms to retrieve, adapt and compose software components effectively according to
user requirements.

Surveys of software reuse [JBELL92) [AMILI98], conducted to discover user
needs and attitudes toward reuse, show that users consider reuse worthwhile; but, most of
them (especially those without object-oriented experience) expect more from code
generators or from tools for automatic programming than from reuse systems like
browsers. This situation is caused by the lack of tools promoting the reuse of software.
Often the effort required to create, find, adapt and integrate a generic component into a
specific application is greater than the effort needed to create the required software

component from scratch [JBELL92].

Cost-effectiveness of Component Classification

Software components must be organized in a software reuse library in a way
enabling their later retrieval. Most mechanisms for cataloguing software components are
based on a classification scheme. One of most used classifications schemes is based on a
set of keywords, but it is difficult (because users have to select manually appropriate
terms) and expensive (because usually keywords have to be constructed, describing
software components specifically and exhaustively). Mechanisms for automatic indexing

of software components are required to make a software retrieval system cost-effective.

Effectiveness of Software Retrieval

Localizing components in small software libraries may be straightforward. Users
can learn quickly where the available components are and can select them by name or by
browsing the library. Finding reusable components in large distributed libraries is not as
simple. Browsing the library can be laborious. Data transaction across the network and
response time are also the big issues. Thus, mechanisms allowing faster searching are
needed to retrieve a component through the specification of its main features.

From the re-user point of view, it is desired to retrieve software through the use of
queries in natural language. The surveys introduced in [JBELL92] [FALOU9S5]
[AMILI98] also show that most of the interviewed users prefer natural language
interfaces to retrieval systems over keyword-based interfaces or semantic-based
interfaces. It seems more intuitive for users to specify their requirements through a
sentence in natural language than to select appropriate keywords, terms for facets in

classification schemes or boolean combinations of keywords.

Effectiveness of components adaptation and generation

After component candidate(s) is found, it is desired to have a code generator tool
to generate automatically computer code or another program through a component
adaptation and integration process based on the user requirements. A code generator is
desired in the final phrase of reuse-oriented program development process. However,
building code generator is great challenge due to the difficulties in recognizing

appropriate cases, defining the requirements as well as validating the output. Few reuse

papers resolve this problem, although code generators are highly demanded in software

reuse [AMILI95].

1.4 Major Component Classification and Retrieval Approaches
Classification and retrieval methods for the software reuse library play key roles

in software reuse. This section describes some major recent approaches for software
classification and retrieval with some reviews. We classifies those approaches into four
catalogues:

v' Descriptive classification methods

v' Behavior-based retrieval methods

v' Denotational semantics methods

v" Formal specification methods

1.4.1 Descriptive Classification Methods

Descriptive classification methods propose a classification scheme depending on
a textual description of the software components. The schemes specify some attributes to
be used as keywords or descriptors of a software component, mostly focusing on the
action that component performs and on the objects manipulated by the component. Both
classification and retrieval are performed by specifying (controlled, structured) a list of
descriptive keywords for each attribute in the scheme.

Some researchers [PRIET91] [MATSU93] [KARLS95] [ARABA98] propose
faceted classification schemes for classifying software components. The approach, which

uses facets as descriptors of software, traces its roots to library science. It extends the

simple keyword based approach insofar as a component is no longer described by an
unstructured set of keywords; rather, a multi-dimensional search space is defined with
each dimension referred to as facet. Examples of such facets include: function;
object/item type; medium; and system-type. The classification of the ASSET [ASSET00]
software components consists of the facets component specific data, distribution,
component type, collection, domain, function and object. Due to the relative the
simplicity of its concepts and the convenience of putting it in operation, this family of
methods is commonly used at the present time.

The primary disadvantage of these methods is that users must have a knowledge
base of the reuse sources and keyword set. These approaches are based on a controlled
vocabulary, usually derived from domain analysis, which establishes a limited set of
terms or phrases that the user or indexer has to select manually for classification or
retrieval activities. Retrieval under a controlled vocabulary normally requires a
significant effort from librarian and untrained users of the library.

Most recent research efforts aim to overcome the limitations of the traditional
descriptive methods. Free-text indexing approaches [MAHAJ99] [KULYU99]
[FELIC99] [EIKHO99] classify the components by a free vocabulary index; Automatic
indexing approaches [LEELI97] [CHEN98] build indices by extracting automatically the
document describing the component functionality; Some knowledge-based approaches
were proposed through the natural language analysis [GIRAR93] [AMBRO9%4]
[LANGE97] [FELIC99] ([LIHUIO0], the frame-based classification [SCOTT96]
[HECKE98], the neural network [MERKL98], and the formal concept analysis

[LIND0O).

1.4.2 Behavior-based Retrieval Methods

Behavior-based retrieval methods, [PODGU93] [HALL93] [PBAI95]
[QIANG99] recognize that in the context of information retrieval, software components
have a discriminating feature that sets them apart from other retrievable components,
namely, they are executable. These methods use the executability of software
components as a basis for the selection of candidate components from a software library.
Retrieval is performed by executing software components in the library according to the
input provided by the user and comparing the resulting output with the one supplied by
the user. These approaches can be effective if users have a pre-established set of test
cases when submitting their queries, which, unfortunately, is not always the case.

Also these methods are difficult to use. In order to use a behavior-based library, a
re-user must produce a query under the form of a sample of inputs and their
corresponding outputs, or a set of inputs and an assertion that outputs must satisfy. They
are expensive retrieval methods due to the real execution on every related component.
However, with the advent of new methods of behavioral modeling and understanding to

offset the cost factors of code test execution, these approaches still have appeal

[AMILI9S].

1.4.3 Denotational Semantics Methods

Denotational semantics methods depend on the denotational partial semantic
definition of software components. These methods proceed by checking a semantic
relation between the user query and a surrogate of the candidate component. The

surrogate of the software component may be a partial functional description, or a

signature of the component. The type-based approach [FISCH98] [QIUAN9S8] and
semantics-properties [ZAREM96] [KFTAM97] [LUQ99] approach both belong to this
catalog.

Type-based retrieval uses the component type as a search key to query the library.
There may be many components in the library sharing the same type, so the retrieval
accuracy is very low. This approach may just give a big cut. Also this approach is limited
within the functional-based component (e.g. Miranda programs, C programs) retrieval.

The semantics-properties methods are based on using a variety of semantic
properties of functional based components, such as signature, demand property of
arguments, transmission property of arguments and length property on list arguments.

Similar to type-based retrieval, it provides limited accuracy for retrieval.

1.4.4 Formal Specification Methods

Some approaches for using formal specifications in software retrieval have been
developed [CHENG92][WINGJ95] [ATKIN96] [PENIX99]. In these approaches, queries
are formal requirement specifications and the system retrieves relevant software from a
library of formally specified components by invoking a theorem prover (e.g. first-order
predicate logic, formal specification language, etc.) to determine if component
specifications satisfy the requirements. These approaches are free from ambiguity and
provide better precision than informal methods. They can also be applied to non-
executable components.

The disadvantage of these methods is that they are difficult to implement. The

processing time for the search algorithms may be excessive depending on the approach

taken. The curmrent state of theorem-proving technology suggests most of these
approaches are impractical [PODGU93]. Also the methods are difficult to use because
the re-user must be familiar with the appropriate representation of the query (signature,
formal functional specification, partially elaborated specification, etc). It is easier and

cheaper to use textual descriptions for queries than formal specifications.

Research on more intuitive and effective software retrieval system is ongoing.
The goal of exploring the highly specialized methods of software classification and
retrieval is to build software retrieval systems based on use of user friendly interfaces and
retrieval effectiveness to support software reuse or to improve the productivity of

software development and maintenance.

1.5 Code Generator for Software Reuse

A code generator is defined as “a tool or a set of integrated tools that inputs a set of
specifications and generates the codes of an application” [AMILI9S). It generates
computer code or another program from one object description and information acquired
from a software library. Viewed as a translator, a code generator may be applied in the
final phase of reuse-oriented program development process.

In code generators, algorithms and data structures are automatically selected so
the software developer can concentrate on what the reuse system should do rather than
how it is done. That is, code generators clearly separate the component specification from
its implementation. It is possible for even non-programmers familiar with concepts in an

application domain to create software applications from software reuse library.

10

Code generators are appropriate in application domains where

Many similar software programs are written,

One software component is modified or rewritten many times from a software

library, or

Many prototypes of a system are necessary to converge on a usable product.

[KRUEG92].

In all of these cases, significant duplication and overlap results if the software

systems are built from scratch. Code generators generalize and embody the

commonalities, so they are implemented once when the code generator is built and then

reused each time a software system is built using the generator.

The abstractions presented to the user of a code generator typically come directly

from the corresponding application domain. Different applications need different models

of data and computation in the generated programs, and these different models are

amenable to different exposition techniques. Examples include,

<« < < X

Textual specification languages, Application-oriented languages, fourth-
generation languages, etc.

Templates

Graphical diagrams

Interactive menu-driven dialogs

Structure-oriented interfaces [CLEAV88] [KRUEG92] [AMILI95]

11

Martin [MARTI8S] enumerated a number of mostly behavioral properties that

code generator should exhibit, including

v' User-friendliness,

v' Usable by nonprofessional programmers,

v Support for fast-prototyping,

v' Applications take an order of magnitude less time to develop than with

traditional development, etc.

There are many different kinds of code generators today, including stack based
code generator, accumulator based code generator, rule based code generator (allowing
the integration of legacy or user-specific code by specification rule), web based code
generator, pattern-based code generator (approach to generate domain specific
application code using patterns, e.g.), forms-based code generator, template-driven code
generator to name but a few.

It is impossible to give a more precise operational definition of what constitutes a
code generator without excluding known classes of code generators. This is due to the
fact that the specification language used, and hence the generation technique depends
very heavily on the application domain. For the same reasons, it is difficult to design a
development methodology for code generators that is appropriate for all code generators.
Although the development of code generators in general has received little attention in
the literature, by contrast, developing with code generators has received a fair amount of

attention [AMILI9S].

12

1.6 Overview of This Thesis

1.6.1 Motivation

Distributed SRL & software reuse are required as one primary conceptual domain
of Virtual Prototyping, Modeling & Simulation (VPMS). VPMS is a research project
conducted by Dr. R. Kent at the University of Windsor.

Distributed system like VPMS or reuse-oriented program development system
may call for software reuse library (SRL, repository) to serve as a resource provider by
the usage of reusable software components. We are trying to solve the problems of
building such SRL in an effective way to store, classify, retrieve, and deliver the large
number of components in order to share and reuse resources across the network.

So far most SRLs have been designed and built to reuse pure functional-based
software components, such as Miranda programs or imperative software, such as C
programs [PBAI9S] [ZAREM96] [KFTAM97] [FISCH98] [QIANG99] [EIKHO99]
[LUQI99]. Little work has been done to effectively reuse object-based software

components, such as object-oriented programs [ARABA98].

1.6.2 The Objective of This Thesis

This thesis presents the design and implementation of a distributed object-based
software reuse library system called DORLM. The DORLM serves as an object code
class resource provider to provide an effective way of storing, retrieving, and delivering
reusable software components, as an aid of reuse-oriented program development in the

distributed environment. The goals of the DORLM aims to:

13

1.6.3

Present the approaches to implement all three stages of reuse-oriented program
development.

Build mechanisms for the automatic indexing of the object-based software
component in order to provide an effective approach to component classification.
Create a friendlier user interface for component retrieval through the use of
queries in natural language.

Build a simple forms-based code generator to deliver an executable code fragment
for re-user.

Build a distributed object-oriented system under CORBA-based architecture.

The basic approaches proposed in this thesis, are described in section 1.6.3.

Overview of the Proposed Approaches

Software Classification and Retrieval:

Through the analysis of the four current major approaches of software

classification and retrieval in section 1.4, we think that the behavior-based approaches

and the denotational semantics approaches are not suitable for classifying and retrieving

object-based component, they are more appropriate for functional-based component

retrieval; the formal specification-based methods are difficult to implement; the

advantage techniques of the descriptive classification methods are suitable for object-

based component retrieval.

14

This thesis proposes an approach combining main advantages of descriptive
classification methods for component classification and retrieval (facet classification,
automatic indexing and knowledge-based system) in order to improve retrieval
effectiveness and provide a friendlier user interface through the use of classification and
queries in natural language.

We have already pointed out in section 1.4.1, the major drawbacks of the
traditional descriptive classification schemes for software components:

v They are based on a controlled vocabulary that must be constructed manually

for each application domain;

v Both classification and retrieval require important human effort because users

must select appropriate terms for each facet in the classification scheme from

usually a long list of terms in the controlled vocabulary;

These drawbacks can be dealt with:

v Building mechanisms for the automatic indexing of software components in
order to provide a more cost-effective approach to software classification;

v Allowing a free vocabulary in both classification and retrieval activities,
instead of having to select appropriate terms from a controlled one;

v' Using semantic relationships between terms from a lexicon in order to

compute the similarities between terms to improve retrieval precision.

The central idea of the proposed approach is to allow the automatic classification

and retrieval of object-based software in SRL through sentences describing the software

15

functionality and to take advantage of the lexical, syntactic and semantic information that
can be extracted from these sentences to construct queries and indexing units more useful
and precise than traditional keyword or facet descriptors.

A classification scheme is proposed to classify object-based components in a
software reuse library according to the comment sentences embedded in the component
describing the component functionality. A semantic case system is applied to translate the
indexing sentences and query sentence into a frame-based internal representation. The
components are retrieved according to the similarity between the internal representations

of the query and component classification.

Component Adaptation/Generation:

Most current software reuse projects and papers are limited in retrieval
exploration [AMILI95]. The DORLM tries to explore a simple forms-based code
generator for the adaptation and generation of the candidate components from the
software reuse library. Once the re-user finds the candidate component(s) he/she want to
reuse for his/her programming development need, the DORLM provides a forms-based
code generator to deliver an executable code fragment for re-user. Through a user-
friendly graphic interface, what the re-user needs to do is just to input several essential
parameters value, which will be used to initialize the specific classes and methods of the

components he/she is interested.

16

Architecture based on CORBA Interoperability Components

The Common Object request Architecture (CORBA) provides the software
infrastructure to develop distributed object-oriented system. DORLM uses the CORBA-
based architecture enables the distributed library access objects communicate and
interoperate with the distributed SRL across the network. Interoperability is supported by
Object Request Brokers (ORBs) which communicate through the Internet Inter-ORB
Protocol (IIOP). This architecture increases use of and reliance on SRL transaction in the

distributed collaboration context.

1.7 Organization of This Thesis

This thesis is organized into six chapters.

Chapter | gives a brief overview of background knowledge involved in the thesis
work. It includes overview of software reuse, reuse-oriented program development
process, current major software classification and retrieval approaches, code generator for
software reuse, and an overview of this thesis.

Chapter 2 discusses the details of our approaches to classify, retrieve, and deliver
object-based software components through the software reuse library.

Chapter 3 gives the details of the design and implementation of the prototype
system. Major modules of the system and functionalities of the system are explained.

Chapter 4 describes the DORLM interfaces and gives some examples on how to
use the DORLM. A number of screen shots are made to illustrate the procedure of
performing the component insertion, updating, deleting, retrieval and code generation

step by step. Also the system testing and the limitations of the DORLM are introduced.

17

work.

Chapter 5 highlights the conclusions along with some recommendations for future

18

CHAPTER 2

Approaches to Classify, Retrieve, and Deliver Software Components

In this chapter, we describe our approaches to classify and retrieve object-based
software components in a software reuse library through the use of classification and
queries in natural language and to deliver reusable code fragment through a forms-based
code generator. Other supports of our reuse system are discussed elsewhere.

The chapter is organized into four sections:

Section 2.1 discusses the component structure and classification scheme.

Section 2.2 describes an automatic indexing process to interpret sentences in the
component classification.

Section 2.3 discusses query in natural language.

Section 2.4 describes our approach to code generation.

2.1. The Component Specification Acquisition

The design of the component structure and classification in a SRL plays the key
role in the storage phase of reuse-oriented program development in order to promote the
retrieval effectiveness. This section discusses the component structure and classification

scheme proposed in this thesis.

2.1.1 Component Structure
Since the object-based components (like Java classes) in the SRL may have

arbitrary variabies and functions, and the structure of the components have various

19

patterns, a complete component structure (CS) is defined with a list of the segments. The
component structure representing the complete component data model is extracted when
a component is inserted. It is used to build the library database.
Definition 1: Component structure

A first order definition of the component structure (CS) is defined as

CS=<CF, IL, CH, IP, VL, CP, FF, FP>, where

v CF (class features): describe the general features of this class in natural language
to be obtained from the class comments.

v IL (import list): include number of import items and their names.

v CH (class head): include name of the class, class attribute, its parent class, and
class package. CH= < CN, CA, PC, PN>, where CN is name of the class, CA is
the class attribute, PC is name of the parent class, and PN is the name of the class
package.

v IP (implement part): include the list of the interface names implemented by this
class.

v VL (variable list): include number of the variables, their names and attributes.

v CP (constructor part): include the constructor head, number of arguments passed
in with their corresponding types, and the constructor content definition.

v FF (function functionalities): describe the function’s functionalities in natural
language to be obtained from each function’s comment.

v FP (function part): include number of the functions. For each function, function
head, number of the arguments passed in with their corresponding types, and

function content definition are also included.

20

A component structure encapsulates all component information to be used as a
single data record stored into a distributed database constructed using the DBMS (e.g.

Oracle, PostgreSQL).

2.1.2 Component Classification

We are interested in some criteria for obtaining the component classification from
the component structure to index the component for retrieval purpose. For the simplicity
in our approach, the classification scheme proposed in this thesis describes each
component in the software reuse library through four attributes: the class name, its parent

class, general features of the class, and functionality of each class function.

Definition 2: Component Classification
The component classification (CC) is defined as CC= < CN, PC, CF, FF>, where
v CN is name of the class
v PC is name of the parent class
v CF (class features): describe the general features of this class in natural language
v FF (function functionalities): describe the function’s functionalities in natural

language

The component classification classifies the components in the SRL to be used for
building automatic indices through an automatic indexing processing. The automatic
indexing process will automatically translate CF and FF in natural language into a frame-

based representation by applying partial natural language analysis. After the automatic

21

indexing process, the component classification representing the component index is used
to locate the components in SRL effectively since the index capture some semantic

information associated with the functionality of the software component.

2.2. Automatic Indexing Process

The automatic indexing process proposed in this thesis is used to automatically
translate natural language sentence into a frame-based intemal representation to capture
the semantic information of the component classification. A similar process is used to
create the same internal representation of a user’s query in natural language. The main
purpose of this process is to find out whether the indexing sentence and the query
sentence are semantic equivalent or similar for the future retrieval by comparing the
frame-based internal representations of the sentences rather than the whole sentences or a
set of simple keywords created manually. The basic constituents of this process include a
semantic case system for the interpretation of sentences describing component
functionality, a process for lexical, syntactic and semantic analysis of these sentences into

a frame-based internal representation, and a lexicon.

2.2.1 Semantic Case System

A partial solution to define two sentences’ semantic equivalent or similar, is to
find a representation language allowing reduction of the expression to a canonical form.
A canonical form requires that every expression equivalent to a given one can be reduced
to a single form by means of an effective procedure, so that the test of equivalence

between descriptions can be reduced to the test of identity of the canonical forms.

22

Although some authors consider that it is unlikely that there could be a canonical form
for English, there have been some proposals of canonical representation languages for
English, like the Conceptual Dependency Theory [MAULD91], which have limited its
application to very restricted domains.

The semantic case system proposed in this work provides a partially canonical
form to represent an indexing sentence. The representation is not completely canonical
because it simplifies the semantic case and allows for some ambiguities, but captures the
core knowledge of an indexing sentence and is sufficient for retrieval.

The semantic case system for an English sentence describing software
functionality consists of a sequence of one or more semantic cases. It consists of semantic
cases, case triggers, and noun phrase cases. The constituents of the case system along
with the syntactic elements in a sentence from which they are extracted are illustrated in

Figure 2. Constituents appear in italic. Constituents between parentheses are optional.

(Subject: Agent semantic case)

+
(Main verb: Action semantic case)
+
Direct object: Object semantic case | Noun phrase
+
(Prepositional or case trigger
‘Marked’ phrases) {0 + (Modifiers)
ther case Noun phrase: noun phrase case +
{s Or Head
entence: ~ verb +
+ (Qualifier)
(Direct object)
+
(Prepositional phrase)

Figure 2: The semantic case system

23

A sentence consists of a subject (making reference to the component itself and
possibly omitted), maybe followed by a verb (representing an action), followed by a noun
phrase (representing the direct object of the action) and perhaps some embedded
prepositional phrases or phrases marked through particular terms (representing entities or
actions related to the main action or object). Note that most adverb terms, most adjective
terms, and stop words are not considered in this semantic case system.

Adverb or adjective terms can be embedded in a sentence. Considering that these
terms do not contain significant information for retrieval purposes, most of them are
discarded by this semantic case system.

Stop words basically refer to prepositions and determiners, for example, articles
(the, a, an), demonstrative pronouns (this, that, these, those), and quantifiers (all, half,
every, each, some, any, most, many, few, little, no...). They are also discarded by this
semantic case system since they also do not contain substantial information for retrieval

purposes.

Semantic case: represents either the semantic role that a particular syntactic compound in
an indexing sentence plays as a descriptor of the functionality of a component or other
descriptive associated with the component.

v’ Agent -> component identifier+ (alias)+description

v Action -> verb (Action semantic case)

v Object -> Direct Object (Object semantic case)

v" Noun or verbal phrase proceeded by a case trigger ->(case triggers) + Noun

phrase | verbal phrase.

24

The description of the semantic cases currently considered in this work is shown in

tablel.

Semantic case

Description

Action A function performed by the component

Agent The component identifier, alias, description, etc.

Direct Object The object, target or result of an action.

Other Case Other objects other than direct object, maybe describing purpose,

location, manner, etc.

Table 1: Main semantic cases describing software components

Case trigger: is a term or groups of terms suggesting the presence of a particular

semantic case in a sentence. Case triggers are mainly prepositions or verbs followed by a

particle. Case triggers determined by analyzing various software comment sentences are

listed in table 2.

Semantic case Semantic case trigger
Direct Object for, to, at in, into, on, onto, over, within
Other Case to (destination)

during, for (Duration)
for, to (Object)

by, by-using, through, using, with, via (Instrument/Manner)
at, in, in, into, on, onto, over, within (Location/Time)

designed_for, designed_to, implemented_for, for, in, that, thus,

25

to, which, while (Purpose)

Table 2: Case triggers in the case system

Noun phrase case: A noun phrase consists of a sequence of zero, one, or more cases
representing modifiers of a head noun and one case representing the head noun in the
noun phrase, or these same cases with an additional case that represents a qualifier of the
main noun phrase. The constituents of a noun phrase are: (constituents between
parenthesis are optional).

v" A noun phrase: (Modifiers) + Head + (Qualifier)

v' Modifier: (adverb Modifier) + (adjective Modifier) + (noun Modifier)

v" Head: head noun

v' Qualifier: Qualifier trigger + noun phrase

v' Qualifier trigger: mainly prepositions or verbs followed by a particle (e.g. of,

about, composed_of, consisting_of, etc)

2.2.2 A Process for Lexical, Syntactic and Semantic Analysis

Lexical, syntactic and semantic analysis of both user’s queries and indexing
sentences of components is a process performed to map the indexing sentence into a
frame-based internal representation, according to a semantic case system described in

section 2.2.1.

The analysis is performed in two main phrases:

26

v Lexical analysis

v' Case parsing

Lexical analysis: Lexical analysis is to identify the grammatical classes of the individual
words in a sentence with their categories (verb, noun, adjective, adverb, and stop words)
by looking up a lexicon database that we built.
Considering the limitation of the lexicon database in this work, a very simple
strategy has been used for processing unknown words in a sentence:
v" A special grammatical category unknown is defined that is not present in the
lexicon, and is assigned to this category;
v’ Case parsing accepts the presence of a word under the unknown category either as

a modifier or head noun.

Case parsing:

After lexical analysis, both syntactic and semantic analyses of queries or indexing
sentences of component are performed, using a parsing grammar supporting the semantic
case system.

The parsing grammar implements a subset of the grammar rules for English
sentences by applying the semantic case system. Table 3 shows this parsing grammar
supporting this semantic case system. Terms between parentheses are optional.

The translation mechanism uses the parsing grammar to parse either sentences

describing software components or user’s queries. It maps indexing sentences into a

27

frame-based internal representation of sentences. Most adverb, adjective terms, and stop

words are removed from the sentences during the parsing process.

Sentence Dectarative_sentence | imperative_sentence | Nominal_clause

Declarative_sentence Agent Action (Direct_object_case) (Other_case)
Imperative_sentence Action (Direct_object_case) (Other_case)
Nominal_sentence Direct_object_case (Other case)
Direct_object_case Direct_object

Other_case Other_case | Sentence

Agent Noun_phrase

Action verb (adverb)

Direct_object Noun_phrase | Direct_object_trigger Noun_phrase
Other_case Other_case_trigger Noun_phrase

Direct_object_trigger FOR | TO | AT | IN | INTO | ON | ONTO | OVER | WITHIN

Other_case_trigger TO | DURING | FOR | BY | BY_USING | THROUGH | USING |
WITH | VIA | AT |IN | INTO | ON | ONTO | WITHIN | FOR |
THAT | THUS | WHICH | WHICH | DESIGNED_FOR |
DESIGNED_TO | IMPLEMENTED_FOR

Noun_phrase (Modifiers) Head (Qualifier)

Qualifier Prepositional_qualifier | Other_qualifier
Prepositional_ qualifier_trigger Noun_phrase

qualifier

Qualifier_trigger OF | ABOUT | CONSISTING OF

Table 3: Parsing grammar of case parsing process

Frame Building: Through the case parsing process, CF and FF of the component
classification are translated into a set of facets with their semantic roles. Then a whole
component classification is mapped into a frame-based internal representation indexing a

componcat.

28

An example of this frame-based internal representation of a component classification is
shown in the following:
Consider the component of the Cal class, expressed in Java:

/ * This class is used to perform some simple mathematics calculation */
Class Cal extends Cal_Parent {

/ * The method calculates the sum of two integers */
int add (int opl, int op2);

/ * Return the difference of two integers */
int minus (int opl, int op2);

A frame-based index of this component is obtained through the following steps:
The classification CC is obtained when the component is inserted:

CC=<CN, PC, CF, FF>

CN= “Cal

PC = “Cal_parent “

CF = “This class is used to perform simple mathematics calculation”

FF = “The method calculates the sum of two integers” +
“Return the difference of two integers “

After an automatic indexing process for interpretation of CF and FF, a frame-

based representation of this component is obtained and displayed in the following:

PC: Cal_parent

CN: Cal
CF:

Case Value

Agent Cal

Action perform

Direct Object mathematics calculation
FFI:

Case Value

Agent Cul: add

29

Action calculate

Direct Object sum

Other case integer
FF2:

Case Value

Agent Cal: minus

Action return

Direct Object difference

Other Case integer

2.2.3 Lexicon

The lexicon is a dictionary database used for natural language process. The
lexicon has the terms database of five categories (nouns, verbs, adjective, and adverbs,
Stop words), and a thesaurus containing synonyms of partial terms.

For reasons of development time and code complexity the author decided to adopt
a “keep it simple” philosophy with regard to conceptual proof of this classification and

retrieval approach. The lexicon database built in this system is simple and contains partial

terms only.

2.3 The Retrieval Approach

An analysis mechanism similar to the one applied to component indexing
sentences is used in the DORLM to map a query in natural language to a frame-based
internal representation. The internal representation is then compared with the ones
associated with component classifications in the SRL and components having a partial or
complete match are selected.

Figure 3 shows the structure of this retrieval approach. The lexical, syntactic and
semantic analysis is performed on the query to translate it into a frame-based internal

representation based on the semantic case system and case parsing process described in

30

section 2.2. The matching and retrieval analysis is applied to match the internal

representation of the query against the one associated to the component classification.

The similarity analysis is based on the lexical, syntactic and semantic information

available on the internal representations of queries and component classification and

synonyms between terms in these structures.

Query based on natural
language

Lexical, syntactic and Lexicon (dictionary,
semantic analysis thesaurus)
Internal representation of
QIIPW
Components
Classification
Matching and Retrieval
analysis Partial natural language
based
Candidate(s)
Retrieval System
Code Generator Database Server

Figure 3: Partial Natural Language-based Retrieval System Process

31

2.4 An Approach to Deliver Reusable Component for Reuse

In this section, we will focus on another functionality of the DORLM for building
new reusable components, namely, the code generator. Once the user finds the candidate
class (s) he/she want to reuse for their programming need, the code generator generates
an executable code file from the component structure acquired from the SRL. An

approach for building such a code generator is discussed herein.

2.4.1 Requirements Phases and Methodology

Based on the component structure acquired from the specification acquisition
process in the DORLM and the distributed environment in which the DORLM run, a
forms-based code generator is built. The forms-based code generator combines the
retrieval approach that is discussed in section 2.3 with the component structure to
generate kinds of object-oriented programming code fragments, based on the information
of the component stored in the SRL. The general requirements phases and methodology
are described in the following.

To build the forms-based code generator, we have to define the variant and
invariant parts of a component, which can be acquired from the component structure,
define the specification input form, and define the products.

The invariant part of an application consists of the implementation details of the
application and all of the defaults assumed by the generator. The invariant part of this
application includes IL (Import List), CH (Class Head), IP (Implement part), VL
(Variable list) except their values, the main body of CP (Constructor Part), and the

main body of FP (Function Part).

32

The variant part consists of those aspects that the user has to specify including
input specifications. The variant part of this code includes the value of the Variable list,
the arguments value of the Constructor part, and the arguments value of the Function
part.

Based on the variant part we define, the interactive specification input forms,
which are represented as the graphical user interface, are generated for user to specify the
values of the variant part.

The product generated is a kind of object-oriented programming code fragment

based on the component stored in the SRL, such as Java programming code.

2.4.2 Code Generator Process

Figure 4 illustrates the component relationships of the forms-based code generator
process.

The user specifies the component candidate(s) upon which the code generator will
operate.

The variant and the invariant specification analyses are used to analyze the
component specification, define the variant specification and the invariant specification
and finally define the specification input forms.

The user specifies the specification input forms via an interactive user interface.
The user may be required to specify the arguments value of the component constructor or
the arguments value of the component function.

Code integration is a process applied to assemble the specification input and the

invariant specification to generate a new programming code.

33

Component Candidate(s)

Classification/Refrieval
Module

Variant and invariant

specification analyses

Forms-based Input \

Database Server
Code integration
Generated Code
Code Generator

Figure 4: Forms-based Code Generator Process

34

CHAPTER 3

Prototype Design and Implementation: DORLM

In keeping with the concept of the reuse-oriented software development process, a
prototype reusable software base system called Distributed Object-based Reusable
Library Model (DORLM) was designed and developed. It is a distributed software reuse
system that follows the three phases of reuse-oriented software development described in
Chapter 1.

3.1 System Overview

The DORLM provides two kinds of major services: server-side service and client-
side service across the network. Server-side service allows server-side users, who should
be skilled programmers and experts, to insert, update, delete, and query the components
(e.g. classes and functions) in the SRL. Client-side service includes components browse,
retrieval, and code generation based on client-side users requirement. Each category of
users who tries to access our service must register initially. Figure 5 shows the
architecture of the DORLM. The system is composed of three main parts:

v The middle part is the system server. It consists of a Database Server, a User
Register Module, and a Classification/Retrieval Module.

v" The left part is designed for the client-side users. Users can access the system
server to browse and retrieve the components of the SRL. Through the Code
Generator, users may attain the application code fragment, as they prefer.

v The right side is designed for the server-side users to insert, update, query, and
delete the components of the SRL. A Lexical Analyzer is offered to check user-

input and user-selected data.

35

9t

W THOJ 2 JO 2anpnyaay g dandiy

—l sowisusn

sazhjeuy

N

sppopy _..8395...,._35.39 |

o-a—..-m: P RETIT

RAQI] I5NIY IIEM}JOS apo) dunog

3Py A :
i
fa
198} JoAt38 m a95) WA
|
| !
m ;
H)
m s133y

"
[}
H
[}
.
[]
N
'
H
]

« Jqgar *

10MPD d8pINU] 43S
$INARS VIO ainpopy uonEnsiBay 19501 HIOMPIN JLpu] 338

3.2 System Structure

The overall system structure and functionalities are discussed below.

v’ Server Interface: Through server interface, server side users can insert, update, delete

and query the library.

v Client Interface: Through client interface, client side users can browse, query and get
the generated code through Network (Internet). Also the DORLM offers a dynamic

component index of “CLASS” and “FUNCTIONS”.

v’ User Registration Module: Provides registration form of the server-side user. Users
don’t allow using this system without registration. The registration information
includes name, password, address, phone and experience in the computer area. The
system will give each server-side user a different privilege to access this system. It is
an important security part in the system. The server-side users can access the system

only through their user name and password.

v Database Server: All of the component data, the component classification, and the
lexicon including dictionary and thesaurus, and user information are stored in a
distributed DBMS. In order to promote the automatic retrieval, the component
databases in the SRL were constructed by both the intra-library relation and inter-
library relation. Every component (class) in the library is handled as an object. All

data of a class is treated as a whole one. They connected each other through object

37

identifier. The system will generate the object identifiers automatically for each

component when the server-side users insert it to the library.

v Lexical Analyzer: 1t is used to perform the grammar and validation check for the

server-side user’s operation.

v Classification and Retrieval Module: This module is built based on the component
classification and retrieval methods discussed in Chapter 2. The
Classification/Retrieval Module can allow querying component in natural language,

and can offer online search and browsing mechanism.

v' Code Generator: A forms-based application generator discussed in the chapter 2 is

built. Based on the user input and retrieval result from SRL.

v' Naming Service: Serves as a directory for distributed CORBA objects in the system.
With naming services, either client or server modules across the network are treated
as the distributed objects, which can be bound and resolved in the DORLM. The
naming service allows associating a URL with this Naming Service object. Once the
URL is associated with this object, any client of the web server can access the object
reference through the URL. It is a critical module for the distributed system design

and implementation.

38

3.3 Development Environment

The DORLM is developed using the current advanced object-oriented and
distributed technologies. UML, Java, CORBA, Oracle, and PostgreSQL are used to
design and implement the concepts presented in this thesis.

Currently, development and execution environments of the DORLM are listed as

following:

v DBMS: Oracle 8 for Windows 98/NT, PostGreSQL6.5.3 for LINUX

v" Implement language: Java 2 (JDK1.2.2) for Windows 98/NT and LINUX

v" Middleware: ORBacus 3.2.2 (CORBA) for Windows 98/NT and LINUX

v’ Platform: Microsoft Windows 98 and LINUX

v" Execution environment: Windows 98/NT, UNIX, LINUX, JDK 1.2.2, ORBacus

3.2.2, and the web browsers (Netscape 4.x) with Java 1.2.2 plugin.

Java, as a language and platform, has a number of desirable features that would
serve to facilitate an implementation of the DORLM to prefer it to other general purpose
programming languages such as C/C++, Smalltalk etc. Some of Java features are: its
compiled form can be executed on virtually any existing computer; it is able to
interoperate with web browsers within a secure, easy to download environment for the
user; and it is object-oriented, support concrete and abstract classes, multiple inheritance
of interfaces, and class serialisation. These make Java satisfy code reuse in each platform

and perform tasks such as network socket I/O and concurrency.

39

Common Object Request Broker Architecture (CORBA) [CORBA99] is
increasingly accepted as a standard, cross-platform, cross-language distributed object-
computing framework. CORBA allows clients to invoke operations on distributed objects
without concern for object location, programming language, OS platform,
communication protocols and interconnects, or hardware. The CORBA object model
provides a standard middleware framework that enables CORBA objects to interoperate
with each other. CORBA defines a software bus that allows clients to invoke operations
on objects that can reside locally or remotely. Moreover, to provide higher-level reusable
components, the OMG [CORBA99] also specifies a set of CORBA Object Services that
define the standard interfaces to access common services, such as naming, trading, and
event notification. By using CORBA and its Object Services, programmers can integrate
and assemble large, complex distributed applications and systems by using features and
services from different providers. Thus, CORBA was selected as one of the major

implementation techniques.

Oracle is the world's most popular database for Internet computing. Oracle 8 has
brought the relational database world into the distributed object area. The new features of
the product make it possible to combine the newer distributed object-oriented structures
with the traditional relational constructs [ORACL99]. With Oracle 8, building and
maintaining systems will be faster, more easily and for lower cost. Meanwhile, Oracle 8
includes significant enhancement to keep pace with the technological requirements of

demanding Internet applications. Through integrated Java Virtual Machine, Oracle 8 has

40

improved performance to support for Java 2, and allow applications to efficiently

implement and manage robust security policies.

At the outside, the choice of support tools had to be made with the respect to the
Internet-based access to achieve the goal of distribution. It was decided to embrace the
Netscape as oppose to the Internet explorer due to the increased flexibility of the
Netscape in term of its multiple platforms support (UNIX, Windows 95/98/NT, and

Linux), and support for Java 2.

3.4 System Design Specification

The DORLM is designed using Unified Modeling Language (UML), a language
that unifies many of the industries’ best engineering practices for modeling system
[UML97]. Based on the object-oriented paradigm. UML is used here for specifying,
visualizing, constructing and documenting systems. This section will describe the use

cases, the class diagrams, and the sequence diagrams of the DORLM.

Use Cases:
There are two categories of users. The first kind of user is the server-side users
who can insert, update, delete, and query the SRL. The second kind of user is the client-

side users who can query, browse, and generate programming code fragment.

41

User Registration Module

Database Server

/

_ ~
- ~
o ———— | | Clasification/Retrieval // e \
Server User Module Client User
™~ Lexical Analyzer
Code Generator
DORLM System

Figure 6: DORLM Use Case Diagram

As shown in Figure 6, the DORLM use case diagram describes the functionality
of the system and users of the system. The DORLM has five main subsystems: User
Registration Module, Database Server, Classification/Retrieval Module, Lexical

Analyzer, and Code Generator.

Server User

Figure 7: Server User Use Case Diagram

a2

Figure 7 elaborates the server user use case by detailing the functionality a server
user actor expects of the system. The server user must register to the DORLM before
he/she can access the system. Then he/she can login to the system by specifying his/her
user identification and password. After the server user login to the system, he/she can

insert, update, query, and delete the components.

Figure 8 elaborates the client user use case by detailing the functionality a client
user actor expects of the system. The client user must register and login to the system
when he/she wants to access the DORLM. After the client user login to the system,

he/she can browse, query the components of the SRL, and use code generator to generate

program code.
Class Diagram:

The major class diagrams of the DORLM are described. Figure 9 shown in the

following describes the static structure of major abstract classes of the DORLM.

43

SystemServer is an abstract class to process the major functions of the DORLM

including:

v' Connect to the database servers including the UserDarabaseServer, the
ClassDatabaseServer, and the LexiconDatabaseServer (will describe in the
following).

v" Login on the DORLM.

v' Perform the various operations received from the server users and the client
users, communications with the CodeGenerator and LexicalAnalyzer, and
communications with the various database servers. The operations include the
component insertion, retrieval, updating, and deletion from the server user,
and the library browse, the component retrieval, and the code generation from

the client server.

UserDatabaseServer deals with the functionalities of the storing the new user
record and checking if the user record exists.

ClassdatabaseServer deals with the functionalities of the checking if the
component exists, storing the component, modifying the component, deleting the
component, getting the component record, and getting the component index record.

UserRecord is the database storing the user information.

ClassRecord is the database storing the component records and component index.

ServerUserlInterface is the server user interface class to deal with the various
operation requests by the server user. The operation requests include new user register,

login, the component insertion, modification, query, and deletion.

ClientUserInterface is the client user interface class to deal with the various
operation requests by the client user. The operations include the library browse, query,
and code generation.

LexicalAnalyser performs the grammar and validation check.

CodeGenerator performs the code generation process.

LexiconDatabaseServer is an abstract class, which is not shown in Figure 9. It

deals with the functionalities of the lexicon query and getting the synonyms of a term.

45

23qum N poy o ‘sangLie
LSRN IIRQGLII ‘23 AU
ugpngsug 3o qo we &) ojuseey)

asuquiEp s3%() Areaqr] SSVED
30 suoprsado Jo spupy e ot 30 swopezado 5o spupy v ot

T

SR

3 3
AR

‘sadundur) Jupuwweadosd
30 SpUP [I® 40) 2328 RUY jRRY]

N T8
ST ?.uwwsr

wesbeig sse|D WIN0Qa utey ¢ onbid

Ly

weibeiq 9suanbeg se)sibey o8N 0L 9.nGI4

&

Opaosayanng

wny

Quoprutiojuiias jaany

AN IV winpy

Opaomswn gaumnnsanyg)

<

wnpy

(Quopmussojapsaspusy

vL - 01 2G4 W umoys :swiesbeiq asuenbeg

.14 wwaSuiqg 2duanbag Livaqry Arand) s WD 1| Han3yyg

Oumsaygdnpdny]
03mngo j3091u0.)
<
Qapo, ypayrsauar)
>
Opanaaygsas)
Opansafip
¢
Opaosagemup ylsand) 14—
Quopruudgupssw))lsandy
:.:_..._..-5!.
(]
— 4
Ospeduuyadenduw feangny %*
¢
OQpansagssmy)
! Ly Opaosayrsep)1
| ANMUL wangay
AL winpy
AL wampy
ANMUY, wimpay
‘¢
Opsosngnsag)
g
Qadagapsgaaspyang)
¢
Opaomssm Jaunpnang)
-
Quogeuninjujsans) puay
¢
QuopwuLtojulsas; | puss

RI38() JUBNLD)

(4
wieaSeiq duanbag yusuodwio)) Iy 1IISUJ J35() JIAIIG :T| dandy

wingay
T > wnpay
P winpy
winpey winpy
¢ wmpy i
(ruyuweamny ——]
Opaosaparey 48
(]
Ouopwussngupeang yasns i—
Quazkpruy puagxa
S~
-~
. N ASIVA wngsy '
M,r.‘.e,... E._..:”A
) <
Opaosnppf) haupsgaummeysey ooy) Opimsspeg st
<
Opsarangssuy yrianu]
m =
' ANUL wmsy
m ANAL, wmay
' ANUL, Wiy
! AN, wmy
)
N "
Opaosnppongy
“ i
H U Odapapgaas sy)y
1]
-
| Optomssegaurenysang)
H ¢
[]
m Ouonmusiojugsas) puas
m 4
: Quonrusajupaas | puss
]
]
]
[)

$J98() JINIIS

./mm

UY

weaSeiq dyanbag yuauedwo)) ayy upd) 138() JIARE €| Jandy
wingy
> wmpay
winy
winay
wingy
e
Opaosapissup)Qipoiy
g
Quoneuuojuissuy ynepd g
Ouazipruyuaa|
] AN wmay
! ANUL wmay
i e
! Opeanppayg)] . . >y
O3upspx ;g swanysewy nsag) P .
Opansapsen) JApopN
ANMUY, wany
AU iy
AU nmpay
ANAL Wy
-
Opansaydag)
]
' <—
" m OQadagapgaan o0)
v
Optomsn aun\n2y)
<
Quopmmtingugsas | puds
<
Quogreustojup s puag

RAN() JIALIS

[§9

weaSujq 2duanbag yusuaduio)) ay))3 381 JIARG :p[N34

]

[}

[]

wanpy
V winyay
wnpay
wanpay
<
Opaosayseny yapapaq <
Oubgrwussogugene, yasagaq
Ay, wmoay
< AN, wsmay
—— ¢
Opiesamaat D3upepgasnycong psad) <
) puosaysseg pa1agq]
-
O paosaysswy yasagaql
AL Wy
AL wamay
AL wamay
AL wmay
v
H Opaosaygnsay)y
[]
' <
i OaBaAngaan Iy)
4
Opaomssn gaumgsay)
L
| Quogeustojugsas \puss
<
' Ouopeusiogugsas | puss

RIIN[) JIALDS

The five major sequence diagrams shown in Figure 10, Figure 11, Figure 12,
Figure 13, and Figure 14 are used to describe the procedures of the user register, client

user query,

Figure 10 shows the user register sequence diagram to describe the procedure of
the user register to the DORLM.

Figure 11 shows the client user query library sequence diagram to describe the
procedure of the client user query and code generation. The partial natural language-
based retrieval process described in Chapter 2, section 2.3 is performed here.

Figure 12 shows the server user insert a new component to the database. The
automatic indexing process, which is described in Chapter 2, section 2.2, including the
lexical analysis, case parsing, and the parsing grammar of the case parsing process shown
in Table 3 is performed here. The component data is stored in the component database
and a frame-based representation of this component is stored in the component
classification database.

Figure 13 shows the server user update an existing component.

Figure 14 describes the procedure of the server user delete an existing component.

52

CHAPTER 4

Using Prototype System and User Interfaces

This chapter describes how to use the DORLM and user interfaces. Some
captured software screens and examples are included to illustrate various operations

applied to the system. Also the system testing and some limitations of the DORLM are

introduced.

4.1 System Setup

Currently, the DORLM was installed and tested on the two kinds of platforms,

Windows 98/NT and LINUX.

Setup in Windows 98/NT environment:

Figure 15 shows the DORLM setup package with three executable program files
in Windows 98/NT. They are DORLM, WebServer, and Client. To run these three
programs, simply double-click the appropriate file icons.

v Run the server-side application: double-click DORLM icon, it will set up the

DORLM system server, then the server interface shown in Figure 16 will pop up.

Server user can register, login the system, insert, update, delete, and query

software components through this interface and server operation interface shown

in Figure 17.

v Run the client-side application: double-click WebServer icon to set up web

server. Then open the client interface by either double-click Client icon on the

53

server machine, or input the URL address through the Web browser to open the

DORLM web page across the Internet.

Figure 15: DORLM setup package in Windows 98/NT

Client DOBRLM Wehserver

fS'efupPackage

Selact an item tg view its
description.

Setup in Linux environment:

To run the DORLM in the Linux environment, open the three terminals and input
the following commands in the appropriate directory of each terminal:

Java com.ooc. CosNaming.Server -ORBconfig orb.cfg

Java ServerCLA. Bserver -ORBconfig orb.cfg
Java WebServer. WebServer

Note: orb.cfg is an ORB configuration file to specify the IIOP (Internet Inter-
ORB Protocol) address of CORBA services.

ORB configuration file

ooc.service. NamService = iioploc://hpc.uwindsor.ca:7721/NameService
ooc.service. EventService =

iioploc://hpc.uwindsor.ca: 7720/DefaultEventChannel

To open the server-side interface, just input java DORLM_SC -ORBconfig
orb.cfg in the appropriate directory of a new terminal or a machine installed the DORLM,

then the server interface shown in the figure 16 will pop up. To open the client-side

54

interface, just input the URL address through the Web browser to open the DORLM web

page across the Internet.

4.2 Server Interface

The server-side user interface shown in Figure 16 has four buttons. If you are new
user, you have to click User Register Button to fill out register form to get username and
password to access the system. If you already have the user name and password, you just
click Enter System button to login the system. You can click About button to get help

information, or click Exit button to exit program.

Figure 16: The server user interface

» . s
-.?".l!x trabistend VIoct $ntational Databas ¢ Kiewae "iystem Madael e reor

Distribirred Ghject-Relational Reuse Lileary Mode)

55

4.2.1 Log on the system

If you are new user of the DORLM, you have to click User Register button firstly
to fill out the register form to specify the user name and password to access the system.
Figure 17 shows the server-side user register interface.

Figure 17: The server user register interface:

I .
et e Baevpeter baeo

Serverlser Reqstas Forr

If you click Enter System button, a login dialog shown in Figure 18 will pop up.
After you enter your user name and password, click Submit button. When the user name
and password you input are matched with the user information database, the server
operation interface shown in Figure 19 will pop up. You can click Reset button to re-

input, or click Cancel button to return back to the server user interface.

56

Figure 18: The server user login dialog

Please Input Your Name and Password

|
Stibiogt Reset oot et

4.2.2 Server Operation Interface
Figure 19 shows the server-side operation interface. This interface consists of
class index panel, library index tree panel, class specification editor panel, display panel,

and operation control panel.

57

Figure 19: The server operation interface:

Llasy Jperditon Jonsole

Class Library
’CISSS Cat A s [N SN SR A
@ 3 class Draw S
@M class Son

chpn g

v' Class index panel displays the class names stored in the SRL.

v Library index tree panel displays the classes with their methods displayed using a
tree structure. The data of both class index and library index tree are obtained
dynamically through the Event Channel of the DORLM.

v" Class specification editor panel is used to insert, update class component to
acquire the component specification.

v Display panel is used to display the component user input.

v" Operation control panel has Insert, Query (C), Query (F), Modify, Delete,

Restore. Help. and Cancel buttons to execute various operations.

58

4.2.3 Insertion of Components
If the user clicks Insert button on the operation control panel, he/she can insert a
class component through the specification editor step by step. Figure 20 and Figure 21

together show a sample insertion process of inserting a Java class.

Figure 20: Insert class component interface 1

Jf bigs = Olpregettinm st

itciass Cal
Hclass Draw

class Sart ® class cal
o

D) tunction minus
D) tunction ada
® EJ class Draw
DY runction drawPont
D) tunction drawtine
A9 @ crass Son

DY tunction getmax

mportjava.awt.®,
mportiava.applet®,
mportjava.un!.”;

ublic Cal extends Applet implements ActionListener(

59

Figure 21: Insert class component interface 2

Cpeetattton b Giaghe

o AL A

T I Ve e LT AR
PR

X

Methad's Functionality:
his is class constructor

ublic Cal (intx, inty){

N -]

Maethad's Functionality:
this method nas add function

ublic int addint (inta, inth) (

Nopasihr

4.2.4 Server User Query Components

If server-side user click one class name in the class index panel, and click Query
(C) button, user can get this class information from the SRL. Figure 22 shows the result
of a sample class query. If server-side user click one method in the library index tree
panel, and click Query (F) button, user can get this method information from the SRL.
Figure 23 shows the result of a sample method query. The query results may be used to

operate update function.

60

Figure 22: The result of a sample class query

I .
4t foas thpresadnn Careeatle

SlUver attoog

249596 2159555 g 0 0L O NS0 000SE00 O A
o it

SIS st
SR S LI i?’({v"(v gl

R

s e

&R <
225252000000, it

Prgosor B Dl it
SRR
D function minus :
D function add
19 = class Draw
D) tunction drawPoint
DY tunction drawt.ine
P E8 ctass Sont
[tunction getmax

LAyt

erart:on (SRR SR

A R T I
R R R T
R
TR T 5 :

[Class Library
® P crass Cal
3 tunction minus
3 function ada
1@ £ class Draw
D) runction drawPaint

2 Sl - 2 A et
tiass Sont R i Ry "%W S
) runction getmax : AR S TR S

o

61

4.2.5 Server User Modify Components

Based on the result of class or method query, user can modify the component
information if he/she click Modify button. After user finish modifying data through the
class specification editor, just click Save button to store the modified component data

into the SRL. Figure 24 shows a sample modify process:

Figure 24: A sample modify process

Clagess, CHpreratan s on e

@ Eciass Cal
D runction minus
Y tunction aca
® X class Draw
£ functon drawPaint
D function drawline
3@ £ class Sont
g DY tunction getmax

62

4.3 Client Interface

After client application starts, a client-side user interface shown in Figure 25 will
pop up. The client-side user interface is a Java applet embedded in the DORLM home
page. So the client-side user interface can be downloaded via a Java enable web browser.
The client-side user interface consists of input panel, display panel, and operation panel.

Figure 25: The main client user interface

A AR A A AR A A A A A AAA A A2 A A AR AR AR AR A

hearthbngna : chass inas o o

DOBRLM Library

BT

4.3.1 Browse the Library
A browse function is used to obtain the whole component index information from

SRL. It is very useful when the SRL is small. A user just need choose a language from

63

the input panel, and click View All button, the query result will be displayed in the
display panel. Figure 26 shows the browse result:

Figure 26: The result of the library browsing

LONeteag

4

Seartntrg ne Par 4 Chass dnes

qsaccoes O Rt R LR e 220 E LTl £ 8Ll CELL OO LN

© C) DOBRLM Library

9 3 Class Library
¢ Bciass Cal
D function minus
D function add
@ 3 ciass Draw
£} tunctian grawPaint
D) tunction drawLine

4.3.2 Client User Retrieval of Components

If a user want to obtain a specific component based on his/her requirement, one
has to choose a language, and input query in natural language (free text), then click
Search button, the query result will be displayed in the display panel. Figure 27 shows a

sample query (“I want to find class for calculate.”), and the query resuit.

Figure 27: A sample query and query result interface

Nyetyi g

IR S
8:///Cl/z3/Caurses/737/Dobrim2/z2Search.
e R

PR

searsntng ne Pyt : Class inades 2ar

9 £ DOBRLM Library

¢ &) Class Library
9 B3 class Cat
[function minus
[tunction acd

b A

4.3.3 Code Generation

After the component candidates index are displayed in the display panel through
browsing or retrieval function. If a user find the specific class, method, or a set of classes
and methods he/she need, the code generator function can deliver an executable code
through these component specification from the SRL. What a user should do is specify a
generated class name through the input panel, click the specific classes or methods, and
click Submit button, follow the generation instruction to input the specific requirement,
finally click Generate Application button. The generated code will be displayed in a

pop-up frame.

65

An example of these processes is described in the following. Suppose a user find
a minus method he/she need from candidates. He/she wants to get this class code. He/she
just follows the following steps:
v' Specific the generated class name: Calculation
v Click function minus in the Class Index Part, and click Submit button. The
dialogs shown in Figure 28 and Figure 29 will pop up. Input the specific data.

v" Click Generate Application button to get the result. Figure 30 shows this result.

Figure 28: A sample code generator process 1

L1ass inas . YT

39) DOBRLM Litrary

¢ 8 Class Liorary
® B class Cal
[tunction
sonarpaA:

St

66

Figure 29: A sample code generator process 2

G b

Gease boput add Farameters

Elas s tade

Class Library
E3ciass Cal
) unction minus

virw Nt

Apphcation Dalculate save e 20 00

Tonypi Qe PGt Utrhep . o 500 Thie ce st

PUbEC It adkTiont %1, int Y1)
return x1ey1;

%

'p-c static vokt main(Stringl] asgsi

;cu cal_inmtance~nnw Calf12, 20%;
|

cal_instance.adi(S0, 100);

07+ write user code in the following****+**!

67

4.4 System Testing and Limitations

4.4.1 Overview of Testing

This section introduces experiences gained from the DORLM design,
implementation, and demonstration aiming to address some limitations of this prototype
system. A theoretical testing analysis didn’t be applied in detail in this thesis work due to
the limitation of time and resources.

The DORLM was developed from a variety of design documents. The documents
include the Design Scenario, the Software Requirements Document, and the Design
Specification Document. These practices provided the DORLM reasonable design,
design refinements, and task implementation.

The correct and reasonable operational behaviors of the system modules, classes,
and methods were obtained during the unit testing and debugging in the implementation
stage.

Some demonstrations, which are described in the following, were performed to
test the client and server connectivity and the various services of the DORLM in the
distributed environment. The results showed the DORLM had reasonable operational

behaviors of both the client-side and the server-side, except some bugs, which are

discussed in section 4.4.2.

v Simulation on the single PC: At first, The DORLM was developed and
stimulated testing on the single PC (the DORLM, Windows 98, ORBacus, and
Netscape 4.6 with Java 1.2.2 plug-in are installed). The operations, which include

the server-side user register and log on the system, insert, modify, query, and

68

delete the components, the client-side user browse, query, and generate code,

were performed successfully. (Note: TCP/IP in the single PC is 127.0.0.1)

Simulation on the HPC Server (hpc.uwindsor.ca) Machine: The operations,
which include the server-side user register and log on the system, insert, modify,
query, and delete the components, the client-side user browse, query, and generate

code, were performed successfully.

Simulation on the HPC server and the PC: The test was done on the HPC
server (hpc.uwindsor.ca) and the PC (the DORLM, Windows 98, ORBacus, and
Netscape 4.6 with Java 1.2.2 plug-in are installed). The test was executed in the
following steps:

¢ Connect to the Internet using the PC, and telnet to the HPC server.

e Run the system server of the DORLM on the HPC server: type the

following commands in the three terminals of the HPC.
Java com.ooc. CosNaming.Server -ORBconfig orb.cfg

Java ServerCLA. Bserver -ORBconfig orb.cfg
Java WebServer.WebServer

¢ Run the server-side user interface on the PC at home: type the command
on the DOS. The various operations, including the server-side user register
and log on the system, insert, modify, query, and delete the components,
were performed successfully.

Jjava DORLM_SC -ORBconfig orb.cfg

69

¢ Run the client-side user interface on the PC at home: open the Netscape, to
input the http address. The various operations, including the client-side
user browse, query, and generate code, were performed successfully.

http://hpc.uwindsor.ca/~azhong/zzSearch. html

v' Simulation on the two UNIX Workstations: The test was done on the two
workstations according to the following steps:
e Log on the HPC server in a workstation and log on the server
(137.207.16.120) in another workstation.
¢ Run the system server of the DORLM on the workstation, which log on
the HPC server: type the following commands in the three terminals of the
workstation.
Java com.ooc. CosNaming.Server -ORBconfig orb.cfg
Java ServerCLA. Bserver —ORBconfig orb.cfg
Java WebServer. WebServer
e Run the client-side user interface on the workstation, which log on the
server (137.207.16.120): open the Netscape (Java 1.2 Plug in is required),
to input the http address: http://hpc.uwindsor.ca/~azhong/zzSearch.html.
The various operations, including the client-side user browse, query, and

generate code, were performed successfully.

70

4.4.2 Limitations of the DORLM
Based on the observations of the above system testing, some major bugs and
limitations of the DORLM were reported in the following. The refinements of the

DORLM are the future work of this thesis.

v When the system server shut down, the client-side user interface, a Java applet
embedded in the HTML, still can be download to the client user machine, but no

notification was provided to the user.

v" The system server could not run without kill the previous processes after the

system server shut down.

v' The system could not insert the component with the same name of the other

components and the component with more than one constructor.

v" The limitation terms built in the Lexicon limited the query accuracy. Although the
strategy was applied to assign the unknown terms to a noun category during the
lexical analysis, the system could not tell whether it is a meaningful query input

from the user.

71

v" The classification scheme of the component and retrieval fully depended on the
indexing sentences describing the component functionalities obtained during the
component insertion. The meaningless indexing input could not provide a correct

classification enabling its later retrieval.

v Currently, the limitation of the code generator is that the code generator only
generates the code to deal with single function call, could not deal with the
interactive operations among the different functions, these work leaves behind the

re-user.

72

CHPATER S

Conclusion and Future Work

5.1 Conclusion

In this thesis we have investigated the problems of structuring the distributed
software reuse library to support reuse-oriented program development and developed a
prototype software system, DORLM. This system, although crude, is based on the
concept of maintaining a structured software reuse library with various tools to serve as a
reusable software components builder and provider allowing for effective insertion,
modification, deletion, retrieval, and delivery of object-based software components to

support reuse-oriented program development in a distributed environment.

S.1.1 Innovation

The most innovative feature presented in the DORLM is the integration of
DBMS, IRS, NLP, and CORBA for software reuse and reuse-oriented program
development in a distributed computing context.

Different from those SRL system prototypes [PBAI9S] [KFTAM97] [QIUAN]
[QIANG99] proposed at the University of Windsor to solve the problems of functional-
based components classification and retrieval, the DORLM not only tries to solve the
problems of object-based components classification and retrieval, but also tries to solve

the problems of components adaptation and generation.

73

§.1.2 Achievements

Based on the work carried out in this thesis we have achieved the following:

v' Provide a foundation for code (i.e. model) reuse, scalability and flexibility of
computation in distributed environments.

v" Using the DORLM with its structured object-based software library based on the
component structure we proposed provides a practical storage approach for reuse-
oriented program developments, especially for reuse in the large.

v' Classification and retrieval based on partial natural language processing

techniques provide a user-friendly query interface.

The DORLM is implemented by OOD and OOP. It is easy to modify, maintain,
reuse and port to other computing environment. All the interfaces in the DORLM are

graphic, user-friendly, and easy-to-use.

5.2 Future Work
Based on the achievement of this thesis, the following future research directions

are recommended:
v' Develop specialized database capabilities and functionality to promote sharing
and secure access to the repositories for data and process codes in distributed

systems, such as the proposed computational grids [CGRID00].

74

v' Further explore software retrieval based on natural language specification. In our
opinion, processing of natural language will contribute significantly to making
information more accurately accessible, although advances in that area are limited
by the current computer power and on-line availability of world and language
knowledge. Also following this general direction, a knowledge repository system
should be built for the VPMS system.

v' Using “GRID” [CGRID00] concept to extend the DORLM to support
heterogeneous Network protocols rather than only TCP/IP and also to support
High Performance Computing (HPC). The goal of the C3-Grid system is to
deliver to users a uniform interface to multiple, distributed HPC facilities.

v" Further explore the enhancement of network security. Network security
[BROWN99] is a fairly major concern in the current distributed systems;
however, the DORLM only deals with the basic security issue. The term network
security covers an incredible array of services, processes, and requirements for an
organization.

v' Apply a theoretical testing analysis and refinements of the DORLM.

75

APPENDIX A: The DORLM Code Definition

A.l. Overview

This appendix contains the CORBA IDL and configures classes, the Java
packages and classes for the DORLM code. The names of the packages and Java classes

are appeared in italic.

A.1.1. CORBA IDL: zzid!

This file contains the IDL interfaces of the DORLM.

module DORLM{
/luser register
boolean userRegister(in string name,
in string pass,in string email,in string phone,
in string address, in string exprience);

IR

/luser login
boolean userLogin(in string userName, in string password);

[**exxx%% modeling the component** ******/
typedef string classFeature;
typedef string package;

//import list
typedef string import;
typedef sequence<import™> import_list;

/lclass head

struct ClassHead{
string parent;
string attribute;
string name;

IR

/fimplement part
typedef string implement;

76

typedef sequence<implement™> implement_list;

/Ivariable list
struct variable{
string attribute;
string name;
b
typedef sequence<variable> variable_list;

/lconstructor part
struct constructor_para(
string attribute;
string name;
|8
typedef sequence< constructor_para > constructor_para _list;
struct constructor{
string attribute;
string name;
constructor_para _list para;
string body;
5

//function functionalities and function part
struct fun_para(

string attribute;

string name;
b

typedef sequence< fun_para > fun_para _list;

struct function
string functionality;
string attribute;
string name;
fun_para _list para;
string body;

%

typedef sequence< function > function _list;

//insert the component

boolean insert(in long lanID, in string classFeature, in string classPackage,
in import_list import, in Class_Head head, in implement_list implement, in
variable_list variables, in constructor con, in function_list fun);

77

//get class indices

typedef string class_fun;

typedef sequence<class_fun> class_funList;
class_funList getIndex (in long userID, in long lanID);

//delete the component
boolean delete(in string className, in string funName);

//query function

typedef string function;

ypedef sequence<function> funList;

funList getFun(in long lanID, in string className, in string funName),

/lquery class

typedef string className;

typedef sequence<className> classList;

classList getClassDB(in long lanID, in string className),

//modify fun
boolean modifyFun (in function, in long lanID);

//modify class

boolean modifyClass (in long lanID, in string classFeature, in string
classPackage, in import_list import, in Class_Head head, in implement_list
implement, in variable_list variables, in constructor con, in function_list fun);

/Iretrieval, browse, and generator
void getRetrieval (in string text);

typedef string index;

typedef sequence<index> index _list;
index_list query (in long lanID);
index_list browse (in long lanID);

void specify (in string name);
string generation (),

A.1.2. ORB configuration file: orb.cfg

ORB configuration file
ooc.service.NameService=iioploc.//hpc.uwindsor.ca:7721/NameService

ooc.service. EveniService=iioploc.// hpc.uwindsor.ca :7720/DefaultEventChannel

78

A.L.3. The server-side user class: DOBRLM _SC.java
This is the DORLM server-side user interface. Run this class, can open the server-

side main user interface.

A.1.4. Package: ServerREG

This package contains classes that deal with the user register and log in to the

DORLM.

A.1.4.1. Classes
v This class is defined to build the graphic user interface of the server-side user
main interface.

ServerGUI

v These classes are defined in hierarchy to build the graphic user interface of the
server user register
ServerUserReg
Top
Center
ButtonPanel
v" These classes are defined to perform the new user-registering request and connect

to the system server of the DORLM.

RegUser
CorbaProcess

79

A.LS. Package: ServerCLA

This package contains classes that have the major functionalities of the DORLM.
The functionalities include implementation of the IDL, getting the indices, inserting the
component, querying the class, querying the method, modifying the class, modifying the

method, deleting the class, and deleting the method.

A.LS.1. Classes
v’ These classes are defined in hierarchy to implement the zz idl interface to serve as
the system server.
Server_impl
Connect_ DB
Insert_User
Login
v This class is defined to bind the system server.

BServer

v This class is defined to deal with the user register and login to the DORLM in the
system server side.

ServerPass

v" These classes are defined in hierarchy to deal with the partial natural language
process of translating the component classification sentences and the user query
sentence to a frame-based internal representation, the component index storage,

and getting the synonyms.

80

GetlLexicon
GetTerm
Parse
GetSyn

v These classes are defined in hierarchy to build various graphic user interfaces for

the server-side user.

SCClass
SclientClass
SClnput
SCList
SplitPaneDemo
SCCTree
SCControl

DialogWindsow
DialogWindow2
App_Err_Window

v These classes are defined to perform various operations for the server-side user.

InsertClass
BuildTotalData
LexicalAnalysis
DeleteClass
GetListInit
GetUserID
ModifyFun
ModifyCla
QueryClass
QueryFun
WriteIDClass

A.L.6. Package: WebServer

This package contains classes that have the major functionalities of the web server

of the DORLM. The functionalities include client-side connection, system server

81

connection, database server connection, multithread handle, and various operations for

the client-side user requests.

A.1.6.1. Classes
v' These classes are defined to run the web server, handle multithread, and connect
to the database server.
WebServer
WebServerThread
Connect_DB

v" These classes are defined to perform various operations for the web client user

requests in the web server side.
GetClassIndex
GetConPar
GetFunPar
TrimTerm

LexicalAnalysis
AppGen

A.L.7. Package: ClientCLA
This package contains classes that define the graphics user interfaces for the

client-side user and perform various operation requests in the web client side.
A.L7.1. Classes

v" These classes are defined in hierarchy to build various graphic user interfaces for

the web client user.

82

ClientSearch

QuerySplit
CCTree

ClaWindow
ConWindow
FunWindow
Fun2Window

App_ErrWindow
v These classes are defined to perform various operation requests for the web client
user to browse the SRL, query the SRL, and code generation.
ConnectWebServer
Getlnit

Lexica
AppResult

A.1.8. HTML
v" This is a web page of the DORLM embedded with the Java applet, ClientSearch,

served as the client-side user interface.

2zSearch. html

83

BIBLIOGRAPHY

[AMILI9S]

[AMILI9S]

[AMICHO0]

[AMBRO94]

[ARABA9S]

[ATKIN96]

[ASSETO00]

[BROWN99]

Hafedh Mili, Fatma Mili, and Ali Mili, “Reusing Software: Issues and
research Directions,” [EEE Transactions on Software Engineering, Vol.
21, No. 6, 1995

AMili, RMili, and R.T.Mittermeir, “A survey of software reuse
libraries,” Annals of Software Engineering 5, 349-414, 1998

Amir Michail, “An Exploratory Approach to Software reuse,” PHD thesis,
University of Washington, 2000

A.P. Ambrosio, “Introducing Semantics in Conceptual Schema Reuse,”
CIKM'94, Proceeding of the 3™ Int. Conf On Info. & Know.
Management, PP 50-56, 1994

S. Araban, “A Two-level Matching Mechanism for Object-Oriented Class
Libraries,” Ada-Europe 1998: Uppsala, Sweden, PP. 188 — 200, 1998
Steven Atkinson, “A Formal Model for Integrated Retrieval from Software
Libraries,” Proc. Technology of Object-Oriented Languages and Systems:
TOOLS21, Prentice Hall, 1996

ASSET - Asset Source for Software Engineering Technology,

http://source.asset.com/information/home. htmi

Steven Brown, “Implementing Virtual Private Networks,” ISBN 0-07-

135185-X, McGraw-Hill, 1999

[COMPO00] COMPONENT-Component Source for Software Engineering Technology,

http://source.component.com/component. html

84

[CHENG92] Cheng, B. and Jeng, J., “Formal methods applied to reuse,” Proceedings of

[CORBA99]

[CHEN9S]

[CLEAVSS]

[CGRID0O]

[EIKHO99]

[FALOU9S)

[FELIC99]

[FISCH9S]

the Annual Workshop on Software Reuse, 1992

“Overview of the CORBA Component Model,” Object Management
Group, 1999

H. Chen, J. Martinez, A. Kirchhoff, etc, “Alleviating Search Uncertainty
through Concept Associations, Automatic Indexing, Co-occurrence
Analysis, and Parallel,” Computing, Journal of the American Society for
Information Science, 49, No. 3, pp. 206-216, 1998

C.T. Cleaveland, “Building application generators,” IEEE software, pp.
25-33, July 1988

“Building the C3-Grid, An Investment in Canadian Research and
Development Infrastructure,” C3-Grid Project Draft Document V5.0,
EI-Khouly, M.M; Far, B.H.; Koono, Z., “A new multi-level information
retrieval technique for reuse software components,” [EEE, Piscataway, NJ,
VOL 6, 1999

Christos Faloutsos, Douglas W. Qard, “A Survey of Information retrieval
and Filtering Methods, " University of Maryland, College Park, Technical
Report, CS-TR-3514, August, 1995

P. Di Felice, G. Fonzi, “An improved method for indexing of software,”
Information and Software Technology 41, 413-420, 1999

B. Fischer, “ A systematic approach to type-based software component

retrieval,” PhD thesis, TU Braunschweig, 1998

85

[GIRARS3]

[HALL93]

[HECKE9S]

[JBELL92]

[KFTAM97]

[KRUEG92]

[KULYU99]

[LANGE97]

M. R. Girardi and B. Ibrahim, “A Software Reuse System Based on
Natural Language Specifications”, Fifth International Conference on
Computing and Information, Sudbury, Ontario, Canada, May 27-29, 1993
Hall, R.J., “Generalized Behavior-Based Retrieval,” In Proceedings of the
15™ International Conference on Software Engineering, [EEE Computer
Society Press, Los Alamitos, CA, 1993

David Heckerman and Eric Horvite, “Inferring Informational Goals from
Automatic Queries: A Bayesian Approach,” Proceedings of the Fourteenth
Conference on Uncertianty in Artifical Intelligence, Madison, W1, July
1998, Morgan Kaufmann Publishers, pp. 230-237, 1998

J.L.Bell, “Reuse and Browsing: Survey of Program Developers,” Object
Frameworks, D.Tsichritzis (Ed.), Centre Universitaire d’Informatique,
University of Geneva, July 1992, pp. 197-213.

Kai Fai Tam, “A Semantic-based Approach to retrieving Imperative
programs,” Master Thesis, University of Windsor, 1997

W. Krueger, “Software Reuse,” ACM, June 1992

Kulyukin, V. “Application-embedded retrieval from distributed automatic
collections,” In Proceedings of the Sixteenth National Conference on
Artifical Intelligence, 1999

Stefan Langer, Marianne Hickey, “Automatic Message Indexing and Full
Text Retrieval for a Communication Aid,” Proceedings of the ACL/EACL

workshop on NLP for Communication Aids, Madrid, 1997

86

[LIHUI00]

[LIAO93]

[LUQI99]

[LINDIOO]

[LEELI97]

[MAULD91]

[MERKL9S]

[MARTISS]

[MAHAJ99]

Hui-Feng Li, geunbae, etc., “Lexical Transfer ambiguity resolution Using
automatically Extracted Concept Co-occurrence Information,” Computer
Processing of Oriental Languages, Vol. 3, pp.53-68, 2000

Liao, Hsian-chou, Wang Feng-jian, “Software Reuse Based on a Large
Object-Oriented Library,” Software Engineering Notes, pp74-80 voll8,
nol, Jan 1993

Luqi, Jiang Guo, “Toward Automated Retrieval for a Software
Component Repository,” [EEE, 0-7695-0028-5/99, 1999

Christian Lindig, “Fast Concept Analysis”,

http://www.gaertner.del~lindig/papers/indexing.html, January, 2000

Lillian Lee, “Similarity-Based Approaches to Natural Language
Processing,” PhD thesis, Harvard University, 1997

M.L. Mauldin, “Conceptal Information retrieval - A Case Study in
Adaptive Partial Parsing, ” Kluwer, Boston, 1991

Dieter Merkl, “Self-Organizing Maps and Software reuse,” Computational
Intelligence in Software Engineering, World Scientic, Singapore, 1998

J Martin, “Fourth Generation Languages - Volume I: Principles,”
Prentice-Hall 1985

M. Mahajan, D. Befferman, X.D. Huang, "Improved Topic-Dependent
Language Modeling Using Information Retrieval Techniques," in Proc.

ICASSP'99, Vol. 1, pp. 541-544, March 15-19, 1999.

87

[NIS94]

[ORACL99]

[PBAI9S]

[PODGU93]

[PRIET91]

[PENIX99]

[QIANG99]

[QINXL99]

[QIUAN9S]

National Institute of Standards and Technology, Glossary of Software
Reuse Terms, NIST Special Publication 500-222, Computer Systems
Laboratory, Gaithersburg, MD, December 1994

“Getting to Know Oracle 8i, " No. A08020-01, Feb. 1999,
http://www.oracle.com

Ping Bai, “Execution Based retrieval of Reusable Software Components,”
Master Thesis, University of Windsor, 1995

Pddgurski, A. and L. Pierce, “Retrieving Reusable Software by Sampling
Behavior,” ACM Transactions on Software Engineering and Methodology
2, 3, 286-303, 1993

Prieto-Diaz, R., “Implementing Faceted Classification for Software
Reuse,” Communications of the ACM 34, §, 88-97, 1991

John Penix, “Efficient Specification-Based Component Retrieval,”
Automated Software Engineering, vol 6, PP. 139-170, Khiwer Academic
Publishers, 1999

June Xuejun Qiang, “Organizing Imperative Programs For Execution-
Based Retrieval For Reuse”, Master Thesis, University of Windsor, 1999
Qin Xiaolin*; Lin Junhai, “An approach to C software reuse based on
database techniques,” Transactions of Nanjing University of Aeronautics
& Astronautics, vol.16, no.2 p.177-81, 1999

Qiuyan An, “Retrieving Function Components From a Reuse Library,”

Master Thesis, University of Windsor, 1998

88

[SALEE99]

[SCOTT96]

[UML97]

[WINGJ9S)

[ZAREMY6]

Sangdon Lee, Hansuk Choi, Youngjong Yang, “Storage and management
of object-oriented frameworks,” [EEE Piscataway, NJ, Vol 6, Page 1-20,
1999

Scott Henninger, *“Supporting the Construction and Evolution of
Component Repositories,” Proceedings of the International Conference on
Software Engineering, Berlin, FRG, 1996

“UML Summary,” Rational Software Corporation, 1997
http://www.rational.com

Zaramski, A. and Wing, J., “Specification Matching of Software
Components,” Proceeding of the ACM SIGSOFT Symposium on
Foundation of Software Engineering, 1995

Amy Moormann Zaremski, “Signature and Specification Matching,” CS-
CMU-96-103 School of Computer Science Carnegie Mellon University,

January 1996

89

VITA AUCTORIS

Sheng Zhong was born in 1968 in Beijing, China. He obtained a B.Sc. in Computer
Science from the Northeastern University, Shenyang, PRC in 1993. He is currently a
candidate for a Master’s degree in Computer Science at University of Windsor and

hopes to graduate in the summer of 2000.

90

	University of Windsor
	Scholarship at UWindsor
	2000

	Software library for reuse-oriented program development.
	Sheng. Zhong
	Recommended Citation

	tmp.1363975211.pdf.f2rLC

