
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2010

An Efficient Scheme for Non-bifurcated Traffic
Grooming in WDM Networks
Syed Jabbar
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Jabbar, Syed, "An Efficient Scheme for Non-bifurcated Traffic Grooming in WDM Networks" (2010). Electronic Theses and
Dissertations. Paper 340.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/340?utm_source=scholar.uwindsor.ca%2Fetd%2F340&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

AN EFFICIENT SCHEME FOR NON-BIFURCATED

TRAFFIC GROOMING IN WDM NETWORKS

by

Syed Jabbar

A Thesis

Submitted to the Faculty of Graduate Studies

through School of Computer Science

in Partial Fulfillment of the Requirements for

The Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2010

© 2010 Syed Jabbar

ii

AN EFFICIENT SCHEME FOR NON-BIFURCATED

TRAFFIC GROOMING IN WDM NETWORKS

by

Syed Jabbar

APPROVED BY:

__

Dr. Jagdish Pathak

Odette School of Business

__

Dr. Dan Wu

School of Computer Science

__

Dr. Subir Bandyopadhyay, Advisor

School of Computer Science

__

Dr. Christie Ezeife, Chair of Defense

School of Computer Science

May 17, 2010

iii

Declaration of Co-Authorship

I hereby declare that this thesis incorporates material that is result of joint research, as

follow:

This thesis also incorporates the outcome of a joint research undertaken in collaboration

with Mr. Quazi Rahman under the supervision of Dr. Subir Bandyopadhyay. The

collaboration is covered in Chapter 3 of the thesis. The author was responsible for adding

eta factorization to the arc chain solver developed by Mr Quazi Rahman. In all cases, the

key ideas, primary contributions, experimental designs, data analysis and interpretation

for eta factorization were performed by the author and the contribution of co-authors was

primarily through the provision of constructive comments.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I

have properly acknowledged the contribution of other researchers to my thesis, and have

obtained written permission from the co-author to include the above material(s) in my

thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers,

is the product of my own work.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone‟s

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

iv

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

v

Abstract

In optical networks, non-bifurcated traffic grooming is known to be a difficult problem,

intractable for large networks. One approach is to use the branch and price technique,

using the Arc-Chain representation. In this approach the GUB decomposition and implicit

column generation can be used to speed up the optimization process. Our objective is to

further optimize this approach using Eta Factorization to avoid inverting the basis during

each iteration of the revised simplex method.

vi

Dedication

This thesis is dedicated to my parents, my father-in-law, my mother-in-law, my wife

Fahima, my son Inan and a special uncle Reaz Salim for their endless support. Also, it is

dedicated to my friends at work who support me all the time in every possible way.

vii

Acknowledgements

I would like to take this opportunity to thank my supervisor Dr. Subir Bandyopadhyay for

his help and guidance during my master‟s study. His encouragement and support enabled

me to complete this research and write the thesis.

I am grateful as well to my external reader Dr. Jagdish Pathak, my internal reader Dr.

Dan Wu and my thesis committee chair Dr. Christie Ezeife for their valuable time and

suggestions.

Also, I want to thank Mr. Quazi Rahman who helped me a lot during my thesis work.

Lastly, I would like to express my deep and sincere gratitude to my parents, my wife

Fahima and my son Inan who have always encouraged and supported me.

viii

Table of Contents

DECLARATION OF CO-AUTHORSHIP ... III

ABSTRACT .. V

DEDICATION... VI

ACKNOWLEDGEMENTS ... VII

CHAPTER 1: INTRODUCTION .. 1

1.1 OBJECTIVE OF THIS THESIS... 4

1.2 MOTIVATION .. 5

1.3 ORGANIZATION OF THESIS ... 6

CHAPTER 2: BACKGROUND REVIEW ... 7

2.1 OPTICAL NETWORKS .. 7

2.2 OPTICAL FIBER... 7

2.3 WAVELENGTH DIVISION MULTIPLEXING (WDM).. 9

2.3.1 Advantages of WDM ... 10

2.3.2 WDM Network Architecture ... 10

2.3.3 Physical Topology .. 11

2.3.4 Lightpath ... 12

2.3.5 Logical Topology ... 13

2.3.6 Routing in WDM Networks ... 15

2.4 LINEAR PROGRAMMING (LP) ... 17

2.5 REVISED SIMPLEX METHOD ... 19

2.5.1 Steps in one iteration of the Revised Simplex Method 20

2.6 CONGESTION .. 21

2.7 TRAFFIC GROOMING IN WDM ... 22

2.7.1 Optical Carrier Level Notation (OC-n) .. 22

2.7.2 Traffic Grooming Example .. 22

2.7.3 Bifurcated Traffic Grooming ... 25

2.7.4 Non-Bifurcated Traffic Grooming ... 26

2.8 FORMULATIONS FOR TRAFFIC GROOMING ... 27

2.8.1 Node-Arc Formulation ... 27

2.8.2 Arc-Chain Formulation .. 28

2.8.3 Implicit Column Generation .. 31

2.9 LP FORMULATION USING ARC-CHAIN REPRESENTATION... 32

2.9.1 Solving LP using Arc-Chain Representation ... 34

2.9.2 Finding an Initial Feasible Solution ... 37

2.9.3 Finding the Entering Column... 40

2.9.4 LP using Arc-Chain satisfies GUB Structure .. 41

2.10 GENERALIZED UPPER BOUNDING (GUB) ... 42

2.10.1 Updating the matrices R, S, T .. 47

2.11 ETA MATRIX .. 52

2.12 ETA FACTORIZATION ... 52

ix

2.13 REFACTORIZATIONS ... 57

2.14 BRANCH AND PRICE TECHNIQUE .. 58

2.14.1 Branch and Bound.. 58

2.14.2 Branch and Price .. 59

CHAPTER 3: AN EFFICIENT SCHEME FOR NON-BIFURCATED TRAFFIC

GROOMING ... 61

3.1 ETA FACTORIZATION WITH GUB STRUCTURE IN BRANCH AND PRICE 62

3.2 REVISED SIMPLEX METHOD WITHOUT INVERTING (R–ST)....................................... 62

3.3 CALCULATING LI, PI, UI .. 65

3.4 REPRESENTATION OF LI, PI, UI .. 72

3.5 CALCULATING JK, FK .. 74

3.6 REPRESENTATION OF JK, FK .. 74

3.7 SOLVING EQUATIONS WITHOUT INVERTING MATRICES .. 75

3.8 ALGORITHM ... 78

3.8.1 Algorithm for getting y′ ... 78

3.8.2 Algorithm for getting d′ ... 79

3.9 USE OF ETA FACTORIZATION IN THE ALGORITHM .. 80

CHAPTER 4: EXPERIMENTAL RESULTS .. 81

4.1 COMPARISON OF SIMPLEX MULTIPLIERS .. 82

4.2 EXPERIMENTS WITH THE DIFFERENT INTERVAL OF REFACTORIZATIONS 83

4.3 COMPARISON EXPERIMENTS .. 87

CHAPTER 5: CONCLUSIONS .. 90

BIBLIOGRAPHY ... 92

VITA AUCTORIS .. 95

x

List of Figures and Tables

FIGURE 2.1: FIBER CABLE AND CROSS-SECTION OF A FIBER [1] 8

FIGURE 2.2: LIGHT PROPAGATION THROUGH A FIBER USING TOTAL

INTERNAL REFLECTIONS [1] ... 9

FIGURE 2.3: WAVELENGTH DIVISION MULTIPLEXING (WDM)

ARCHITECTURE [1] .. 11

FIGURE 2.4: PHYSICAL TOPOLOGY .. 12

FIGURE 2.5: PHYSICAL TOPOLOGY WITH A LIGHTPATH 13

FIGURE 2.6: LOGICAL TOPOLOGY .. 14

FIGURE 2.7 AN ALTERNATE ROUTE OF THE LIGHTPATH FROM E1 TO E3

SHOWN IN FIGURE 2.5. .. 15

FIGURE 2.8: A 4-NODE LOGICAL TOPOLOGY AND ITS TRAFFIC MATRIX 16

FIGURE 2.9: A PHYSICAL TOPOLOGY .. 23

TABLE 2.1: TRAFFIC REQUESTS .. 23

FIGURE 2.10: A LOGICAL TOPOLOGY .. 24

FIGURE 2.11: BIFURCATED TRAFFIC GROOMING .. 25

FIGURE 2.12: NON-BIFURCATED TRAFFIC GROOMING 26

FIGURE 2.13: A 4-END-NODE NETWORK ... 27

TABLE 2.2: NODE-ARC INCIDENCE MATRIX.. 28

FIGURE 2.14: A 4-END-NODE NETWORK ... 29

TABLE 2.3: SOURCE AND DESTINATION FOR THE COMMODITIES IN FIGURE

2.14.. 29

TABLE 2.4: LOGICAL PATH AND CHAIN (VECTOR) FOR THE COMMODITIES

IN FIGURE 2.14 ... 30

FIGURE 2.15: ARC-CHAIN INCIDENCE MATRIX .. 31

FIGURE 2.16: NETWORK SHOWN IN FIGURE 2.14 WITH THE TRAFFIC FLOWS

... 38

FIGURE 2.17: A MATRIX WITH GUB STRUCTURE ... 42

FIGURE 2.18: BASIS SATISFYING GUB STRUCTURE AFTER PERMUTATION . 44

FIGURE 2.19: BASIS SATISFYING GUB STRUCTURE AFTER K
TH

 ITERATION . 45

FIGURE 2.20: ETA MATRIX ... 52

FIGURE 2.21: BK AND BK-1 DIFFERS ONLY IN ONE COLUMN WHICH IS THE

ENTERING COLUMN A .. 53

FIGURE 2.22: BK–1EK = BK ... 54

xi

FIGURE 3.1: MATRICES JK AND FK .. 74

TABLE 4.1: COMPARISON OF EXECUTION TIMES WITH DIFFERENT

INTERVALS BETWEEN REFACTORIZATIONS WITH AROUND 400 USER

REQUESTS .. 84

FIGURE 4.1: GRAPH OBTAINED FROM TABLE 4.1 ... 85

TABLE 4.2: COMPARISON OF EXECUTION TIMES WITH DIFFERENT

INTERVALS BETWEEN REFACTORIZATIONS WITH AROUND 1000 USER

REQUESTS .. 86

FIGURE 4.2: GRAPH OBTAINED FROM TABLE 4.2 ... 87

TABLE 4.3: EXPERIMENTAL RESULTS OF TWO APPROACHES 89

1

Chapter 1: Introduction

The vision of Information Technology is that data can be stored electronically in any

electronic device but can be accessible from everywhere by any other electronic device.

These electronic devices can be computers or any other devices that can generate or store

data in an electronic form. A network is an interconnection of a group of computers or

electronic devices connected for data transfer or data sharing. To achieve fast data

transfer or data sharing, optical network is one of the key solutions to this increasing

demand for bandwidth [12]. Optical networks are widely used because of its high

bandwidth. The first generation of optical networks just replaced copper wires with

optical fibers that connect electronic devices such as computers. Second generation

optical networks take into account some important issues such as optimizing the use of

optical network resources, using the same fiber for carrying multiple optical signals

simultaneously, and handling the speed difference between optical signals and electronic

circuits as the communication speed of optical signals is far greater than the processing

speed of electronic circuits.

Wavelength Division Multiplexing (WDM) is the technology of sending multiple optical

signals having different carrier wavelengths through a single fiber. The physical topology

of a WDM network shows the major physical components of the network with the

connections that includes end-nodes (typically computers or any other devices that can

generate or store data in an electronic form), routers that determine how the optical

signals are sent to their respective destinations, and optical fiber links that connect the

routers physically. A lightpath is an optical connection from one end-node to another in a

2

WDM network. A logical topology of a WDM network defines how the end-nodes are

connected by the lightpaths in a network. A logical topology shows directed edges from

one end-node to another. If there is a lightpath from end-node a to end-node b, it is

denoted by a b.

The congestion of a WDM network is the load on the logical edge that carries the

maximum amount of traffic as data. Minimizing congestion is a very common and

popular objective for optimization. For example, if in a network there are three logical

paths p1, p2 and p3 available to send user requests from source end-node a to destination

end-node b, and the loads on p1, p2 and p3 are 0.3, 0.8 and 0.4 respectively then, in this

network, the congestion is 0.8 which is the load on the logical path p2. If we can

minimize this congestion, which is 0.8, taking into account and balancing the loads on the

other logical paths p1 and p3, then this network can have more room to handle increases

in the traffic from other requests.

Linear programs (LP) are often used to solve this kind of optimization problems. An LP

formulation includes a linear objective function which has to be either minimized or

maximized. The fact that shared resources of the network are limited is expressed using a

set of linear constraints in an LP. In our optimization problem, the linear objective

function is minimizing the congestion. A frequently used method for solving a linear

programming formulation is the revised simplex method. In the revised simplex method,

in each iteration, one feasible solution is replaced by another “better” solution until an

optimal solution is found.

3

Traffic grooming is a technique in WDM networks that combines a number of low-speed

traffic streams, so that the high capacity of each lightpath can be used as efficiently as

possible [DR2002, HM2004, ZM2002, ZZM2003]. The capability of handling large

networks depends on improving the efficiency of traffic grooming. There are two traffic

grooming models, the bifurcated traffic grooming model and the non-bifurcated traffic

grooming model. In the bifurcated traffic grooming model, the traffic from a source to a

destination may be divided into as many components as necessary to optimize the

network performance and communicated using different logical paths. In the non-

bifurcated traffic grooming model, the entire traffic from source to destination must be

routed on the same path and be communicated using a single logical path. For this reason,

non-bifurcated traffic grooming is an ideal choice for real-time applications that require

that their traffic be kept intact.

In Operations Research, a representation called the arc-chain representation can be used

efficiently to minimize the congestion. Solving the problem by the revised simplex

method using the arc-chain representation involves a basis (matrix) of size (m+q)×(m+q)

where m is the number of logical edges and q is the number of user requests. Here, for N

end-nodes, the number of user requests or commodities is close to N(N-1), since most

end-nodes communicate with each other. If there are, on average, 3 inbound and

outbound edges to and from each end-node, then the number of logical edges m = 3×N

and q = N(N–1). As q >> m, when the number of end-nodes increases, the value of q

increases rapidly.

4

An arc-chain solver for bifurcated traffic grooming with GUB structure has implemented

in our lab by Mr. Quazi Rahman a candidate for the Ph.D (CS) degree of this University.

Then a technique called Branch and Price has been used to achieve non-bifurcated traffic

grooming by repeatedly performing optimal bifurcated traffic grooming. During the

process of branch and price technique, the arc-chain solver is executed again and again to

get the optimal solution for the bifurcated traffic grooming.

1.1 Objective of this Thesis

In this thesis, our objective is to optimize the approach implemented by Mr. Quazi

Rahman further by using the technique Eta Factorization [5] to improve the time

required to determine the strategy for traffic grooming. We will discuss how to

incorporate the eta factorization with the arc-chain solver implemented by Mr. Quazi

Rahman to improve the performance of it and hence the cumulative performance of the

approach will be improved.

After implementing our approach, we will describe the experiments to evaluate our

approach and compare it with the approach implemented by Mr. Quazi Rahman. We will

describe some experiments with our approach to analyze different functionalities of our

approach and to see how those functionalities can affect the performance of our approach.

5

1.2 Motivation

The most expensive operation of revised simplex method is inverting a basis (matrix) in

each iteration. So, in each iteration of the revised simplex method using arc-chain

representation, the matrix inversion is done on the matrix of size (m+q)×(m+q).

It is established that the constraints in the arc-chain representation satisfy a special

structure called the Generalized Upper Bounding (GUB) structure [5]. In operations

research, it is well known that if a LP satisfies the GUB structure, operations can be done

on a matrix of size (m×m) instead of carrying out operations on the entire basis which is a

matrix of size (m+q)×(m+q). So, in each iteration of the revised simplex method, with a

GUB structure, the most expensive operation of inverting a matrix can be done on a

matrix of size (m×m) instead of operations on a matrix of size (m+q)×(m+q). This

improves the time it takes to perform an iteration of the revised simplex method

significantly, as q >> m.

In the each iteration of the revised simplex method using the arc-chain representation

with the GUB structure, the expensive operation of matrix inversion still has to be done,

although it is done on a smaller matrix size. If the matrix inversion can be avoided, the

time to perform each iteration of revised simplex method can be improved further. Eta

factorization is a technique by which matrix operations in the revised simplex method can

be done without calculating the matrix from the scratch and without inverting the matrix.

Using eta factorization with GUB structure can improve the performance of revised

6

simplex method further, since no matrix inversion is needed at all in eta factorization [5]

[1].

The arc-chain solver implemented by Mr. Quazi can be extended by combining eta

factorization with the GUB structure in it. So, in each iteration of the revised simplex

method, the matrix operations can be done without calculating the matrix from scratch

and without inverting the matrix at all. It improves the time to perform each iteration of

the revised simplex method and, as a result, the cumulative time to execute the arc-chain

solver is improved further.

Using these approaches we have formulated our algorithm for non-bifurcated traffic

grooming in WDM networks and have implemented our algorithm in C. We have tested

our program on various network sizes with different traffic loads.

1.3 Organization of Thesis

This thesis is organized as follows. In Chapter 2, we have given a background review in

the area of WDM network and optimization. In Chapter 3, we have outlined our

formulation for the optimization using eta factorization combined with GUB structure. In

Chapter 4, we have given the experimental results we have found after implementing our

formulation. In Chapter 5, we have drawn some conclusions and have made some

suggestions for future research in this area.

7

Chapter 2: Background Review

2.1 Optical Networks

The first generation of optical network just replaced copper wires with optical fibers that

connect electronic devices such as computers. Optical fibers have become an essential for

internet and data-networking infrastructure because of the fast transmission rate (50

terabits per second), low signal attenuation, low signal distortion, low power requirement,

low material usage, small space requirement and cost efficiency of such fibers [11].

The second generation optical network takes into account the following issues:

• Optimization – optimizing the use of optical network resources because optical

devices are more expensive than electronic devices.

• Use of fibers – using same fiber for carrying multiple optical signals at different

carrier wavelengths simultaneously.

• Speed difference – handling the speed difference between optical signals and

electronic circuits. Since the communication speed of optical signals is far greater

than the processing speed of electronic circuits, this is an important issue.

2.2 Optical Fiber

An optical fiber is a very thin glass cylinder or filament that carries optical signals in the

form of optical signals [1]. An optical fiber consists of:

Core – cylinder made of silica (SiO2) with a refractive index µ1.

8

Cladding – cylinder made of silica (SiO2) with a lower refractive index µ2.

Buffer – protects and isolates the fiber by encapsulating it surrounding the cladding.

[1] [12]

 Fiber Cable

Cross-section of a Fiber

Figure 2.1: Fiber Cable and cross-section of a fiber [1]

Light can travel along a fiber with a relatively low attenuation because of the physical

phenomenon of total internal reflection. The core and the cladding have different

refractive indexes - µ1 and µ2 respectively. As µ2 is less than µ1, total internal reflection

can occur at the core if the angle of incidence is properly chosen and data as a light signal

can propagate through the fiber [12]. Light propagates in optical fibers due to a series of

9

total internal reflections that occur at the core-cladding interface. Figure 2.2 shows the

different refractive indices of core and cladding.

Figure 2.2: Light propagation through a fiber using total internal reflections [1]

The differences between copper wires and fibers as communication media are:

“1. optical devices are much more expensive compared to electronic devices. So it is

important to optimize the use of optical network resources,

2. a number of optical signals at different carrier wavelengths may be simultaneously

carried by the same fiber,

3. the speed at which optical signals may be communicated is far greater than the speed at

which data can be processed by electronic circuits”. [1]

2.3 Wavelength Division Multiplexing (WDM)

Wavelength Division Multiplexing (WDM) is a technology that uses multiple optical

signals on the same fiber [1]. There is a huge bandwidth mismatch between optical data

rate and electronic data rate. WDM uses this mismatch to utilize the capability of a fiber

as much as possible by dividing the huge bandwidth of a fiber into many channels (non-

10

overlapping bands of wavelengths), each operating at a desirable speed, e.g., the peak

electronic speed of a few Gb/s [11]. As a result, the transmission capacity of a fiber is

improved by having multiple channels at different carrier wavelengths.

2.3.1 Advantages of WDM

The key advantage of optical technology is speed. Other advantages of WDM include [1]:

1. Low signal attenuation: the strength of signal propagating through fibers goes

down at a low rate. As a result, the number of optical amplifiers needed is

relatively small.

2. Low signal distortion.

3. Low power requirement.

4. Low material usage.

5. Small space requirements.

6. Low cost.

2.3.2 WDM Network Architecture

The architecture of a wavelength-routed WDM network has been discussed in several

papers: [12], [13] [15], [4], [8]. Using the WDM network technology, end users can

communicate via all-optical WDM channels that may span multiple fiber links. The

WDM architecture consists of nodes interconnected by a pair of unidirectional fiber links.

Each node has a set of transmitters and a set of receivers to send or receive optical signals

at specified carrier wavelengths. Data at the source end-node, represented by an

electronic signal, modulates an optical signal at the carrier wavelength corresponding to

11

the channel. The transmitter directs the modulated signal to the optical fiber connected to

the transmitter. At the end-node, a receiver tuned to the same carrier wavelength extracts

the data from the incoming optical signal. Router nodes are responsible to re-direct data

to the appropriate output port. Figure 2.3 shows an overview of a WDM network.

Figure 2.3: Wavelength Division Multiplexing (WDM) Architecture [1]

2.3.3 Physical Topology

A physical topology of a WDM network shows the major physical components of the

network with the connections. This includes end-nodes and routers connected by optical

fiber links [1].

12

Figure 2.4: Physical Topology

Figure 2.4 shows a physical topology with four end nodes and four routers connected

with optical fibers.

2.3.4 Lightpath

A lightpath is an optical connection from one end-node to another. Once the lightpaths

are set up, the physical topology is irrelevant for determining a strategy for data

communication. A lightpath is defined by a path between end nodes and a wavelength on

that path in a network. It provides a “pipe” between end nodes with a bandwidth equal to

the bandwidth of the channel. Two lightpaths that share a path in the network must use

different wavelengths [15].

End Node

Optical Router

Optical Fiber

13

Figure 2.5: Physical Topology with a lightpath

Figure 2.5 shows the physical topology shown in Figure 2.4 with a lightpath. In this

figure, the lightpath is established from end-node E1 to end-node E3.

2.3.5 Logical Topology

A logical topology defines how the end-nodes are connected by lightpaths in a network.

A logical topology shows directed edges from one end-node to another. If there is a

lightpath from node a to node b, it is denoted by a b. The logical topology of a WDM

network is represented as a directed graph GL = (VL, EL), where VL is a set of the end-

End Node

Optical Router

Optical Fiber

Lightpath

14

nodes of the physical topology and EL is the set of the lightpaths. For routing data, the

actual route of a lightpath through physical topology is irrelevant [12].

Figure 2.6: Logical Topology

Figure 2.6 shows a logical topology with directed edges. In this logical topology, the

directed arc E1E3 represents the light path shown in Figure 2.5. Figure 2.7 shows an

alternate route of the lightpath from E1 to E3 shown in Figure 2.5. Use of the alternate

route in Figure 2.7 instead of the route shown in Figure 2.5 does not affect the logical

topology.

15

Figure 2.7 An alternate route of the lightpath from E1 to E3 shown in Figure 2.5.

2.3.6 Routing in WDM Networks

In the logical topology of a WDM network, the routing strategy is the policy of sending

data from all source nodes to their respective destination nodes using appropriate

lightpaths. Traffic is routed from a source node s to a destination node d using one or

more sequences of lightpaths from s to d where each path consists of one or more

lightpaths.

End Node

Optical Router

Optical Fiber

Lightpath

16

Figure 2.8: A 4-Node logical topology and its traffic matrix

In Figure 2.8, 25 units of data needs to be sent from node E1 to E4. This amount of data

can be sent using one or both of the following two paths:

Path 1): from node E1 to node E4 using logical link E1 E4,

Path 2): from node E1 to node E3 using logical link E1 E3 and then from node E3

to node E4 using the logical link E3 E4.

We can use either one of the two paths or can distribute the traffic over both paths. For

every pair of source destination nodes that has some traffic to route, every possible routes

have to be considered in the logical topology. The objective is to route all the traffic in a

way that minimize the congestion in the network and thus optimize the use of optical

resources in the network.

Nodes E1 E2 E3 E4

E1 0 0 5 25

E2 30 0 0 0

E3 0 10 0 80

E4 0 15 0 0

E3 E2

E1 E4

Logical Topology

17

2.4 Linear Programming (LP)

Linear programs are often used to solve optimization problems. A linear programming

formulation includes a linear objective function which has to be either minimized or

maximized, a set of linear constraints and a set of restrictions imposed for the underlying

decision variables [5].

Following is an example of a linear programming formulation:

Minimize c1x1 + c2x2 + …… + cnxn

Subject to a11x1 + a12x2 + …… + a1nxn ≤ b1

a21x1 + a22x2 + …… + a2nxn ≤ b2

 …………………

am1x1 + am2x2 + …… + amnxn ≤ bm

 x1, x2, ……, xn ≥ 0

In this example,

 c1x1 + c2x2 + …… + cnxn is the objective function to be determined,

 x represents the vector of decision variables that to be determined,

 c and b are vectors of known coefficients,

 m inequality constraints that can be represented as a constraints matrix A such

that:

18

 a11 a12 … a1n

A = a21 a22 … a2n

 … … … …

 am1 am2 … amn

The objective function is of the form: j

n

j

j xc
1

The constraints are of the form: ij

j

ij bxa

So, using the matrix and vector notations, the formulation can be written as:

 Minimize cx

Subject to Ax ≤ b

Before solving any LP problem, the first step is to transform all the constraints into

equality constraints. So, the constraints can be written into:

a11x1 + a12x2 + …… + a1nxn + xs
1
 = b1

a21x1 + a22x2 + …… + a2nxn + xs
2
 = b2

 …………………

am1x1 + am2x2 + …… + amnxn + xs
m
 = bm

 x1, x2, ……, xn ≥ 0

19

Here, to transform into equality constraints, non-negative slack variables xs
i
 are added

where 1 ≤ i ≤ m. There are m constraints, so m slack variables were added one for each

constraint.

Now, we have an equation of form Ax=b. In this equation:

A is a m×(n+m) matrix,

b is a column vector of m known coefficients, and

x is a vector consisting of the n decision variables x1, x2, … , xn followed by the m

slack variables xs
1
, xs

2
 , … , xs

m
.

In the equation Ax=b, the values for x1, x2, … , xn that satisfy all the constraints of the LP

problem is called the feasible solution of the problem. A feasible solution that minimizes

or maximizes the objective function is called an optimal solution and the corresponding

value of the objective function is called the optimal value. Not every LP problem

necessarily has a unique optimal solution. Some problems may have many different

solution and some do not have any optimal solution at all [5].

2.5 Revised Simplex Method

The simplex method is the first method for solving linear programming formulation

introduced by G. B Dantzig in 1947 in which one basic feasible solution is replaced by an

adjacent solution. In each iteration of the simplex method, one feasible solution is

replaced by another solution. The column in the solution being replaced is called the

leaving column and the column replacing it is called the entering column. The variable

20

corresponding to the leaving column is called the leaving variable and the variable

corresponding to the entering column is called the entering variable. These resulting

implementations of the simplex method are called the revised simplex method [5].

2.5.1 Steps in one iteration of the Revised Simplex Method

Notation used:

nc = number of constraints.

nv = number of variables.

A = a matrix of size nc×nv where each element in the matrix is a constant, used

to specify the constraints.

[AI] = a matrix of size nc×(nv+nc) where first nv columns of [AI] are taken from

A and the remaining nc columns of [AI] are taken from identity matrix I.

a = a column of [AI]

b = a column vector of nc nonnegative constants.

c = a row vector of nv constants.

cB = a row vector of nc constants (cost vector).

y = a row vector of nc variables.

d = a column vector of nc variables.

xB = a column vector of nc variables, called basic variables.

B = a nonsingular matrix of size nc×nc.

I = identity matrix of size nc×nc.

21

The following steps are done in each iteration of a revised simplex method:

Step 1: Solve the equation y.B = cB.

Step 2: Find, if possible, an entering column. The entering column may be any column a

of [AI] such that y.a < c. If no entering column found, then the current solution

is optimal.

Step 3: Solve the equation B.d = a.

Step 4: Find the largest t such that xB – td ≥ 0. If no t found, then the problem is

unbounded, otherwise, at least one component of xB – td equals 0. That

corresponds to the leaving variable and the corresponding column in B is the

leaving column.

Step 5: In the basis B, replace the leaving column by the entering column. Recalculate xB

using the formula by xB = B
–1

b. Replace the cost of the leaving column in cB by

the cost of the entering column.

2.6 Congestion

The congestion is the load Λmax on the logical edge that carries maximum amount of data

[1]. Minimizing congestion is a very common and popular objective for optimization for

the following reasons:

 Higher value of Λmax means more data is transported by the lightpath carrying that

traffic and to handle more data, more time and/or complex electronic hardware is

needed.

22

 If Λmax is less than the capacity of the lightpath, all logical edges may be realized

by one single lightpath which reduces the network cost, because each lightpath

adds additional cost because of its optical and electronic hardware.

 Lower value of Λmax allows greater possibility of scaling up the traffic without

changing the routing strategy in the network [1].

2.7 Traffic Grooming in WDM

Traffic Grooming is a technique in WDM networks that combines a number of low-speed

traffic streams from users so that the high capacity of each lightpath may be used as

efficiently as possible. Traffic grooming minimizes the network cost in terms of the

number of transmitters, receivers, and optical switches [DR2002, HM2004, ZM2002,

ZZM2003].

2.7.1 Optical Carrier Level Notation (OC-n)

In traffic grooming, the data communication rate is specified using the Optical Carrier

level notation (OC-n). OC-n means n×51.84 Mbps. If the capacity of a lightpath is 10

Gbps or 2.5 Gbps, it is specified as OC-192 or OC-48.

2.7.2 Traffic Grooming Example

For this example, it is assumed that the data communication capacity of a lightpath is 2.5

Gbps or OC-48.

23

Figure 2.9: A Physical Topology

 E1 E2 E3 E4

E1 OC-12

OC-24

OC-12

OC-3

OC-6

OC-6

OC-3

OC-3

E2 OC-6 OC-3 OC-6

OC-3

OC-3

E3 OC-12 OC-3

OC-6

 OC-6

E4 OC-3 OC-3

Table 2.1: Traffic Requests

24

A possible logical topology to support all requests in Table 2.1 is shown in Figure 2.10.

Here lightpath L1 may be selected to serve the requests:

OC-12 from E1 to E3,

OC-3 from E1 to E3,

OC-6 from E1 to E3,

OC-6 from E1 to E4,

OC-3 from E1 to E4,

OC-3 from E2 to E3,

Figure 2.10: A Logical Topology

In this example, the OC-6 request from E1 to E4 used the logical path E1 => E3 => E4. But

there may be other choices for a valid logical path to handle this OC-6 request from E1 to

E4. For instance, this request could be handled by using the logical path E1 => E2 => E4

as well.

E3 E2

E1 E4
L5

L3

L1

L4
L2

25

2.7.3 Bifurcated Traffic Grooming

In the Bifurcated Traffic Grooming model, the traffic t(s, d) from end node Es to end

node Ed may be divided into as many components as necessary to optimize the network

performance [7]. That means, a part of the total traffic of an individual request may be

split into a number of components and the different components of that request may be

communicated using different logical paths.

Figure 2.11: Bifurcated Traffic Grooming

Bifurcated Traffic Grooming increases the complexity and the cost of traffic reassembly.

It may also introduce delay jitter at the application layer, as many applications, especially

real-time applications, require that their traffic be kept intact [10].

E3

E2

E1

E4

1
3

6

2

4 5

r1

0.4
r1

0.6

0.4

r1

26

2.7.4 Non-Bifurcated Traffic Grooming

In the Non-Bifurcated Traffic Grooming model, the entire traffic t(s, d) from end node Es

to end node Ed must be routed on the same path. That means, the total traffic of an

individual request must be communicated using a single logical path.

Figure 2.12: Non-Bifurcated Traffic Grooming

Non-Bifurcated Traffic Grooming is also more complex and time consuming as it has to

satisfy an additional requirement that each request has to be routed using a single logical

path. That means, one additional formulation involving binary variables is needed [1].

Non-Bifurcated Traffic Grooming is an ideal choice for real-time applications that

require their traffic be kept intact.

E3

E2

E1

E4

1
3

6

2

4 5

r1
1.0

27

2.8 Formulations for Traffic Grooming

In this section we will describe two possible formulations for traffic grooming – the

Node-Arc formulation and the Arc-Chain formulation.

2.8.1 Node-Arc Formulation

A node-arc incidence matrix represents a network with Ne end-nodes and m arcs as a -

Ne×m matrix, where the i
th

 row corresponds to the i
th

 end-node and the j
th

 column

corresponds to the j
th

 arc. The column corresponding to the arc i j has

 +1 in the row corresponding to node i

 -1 in the row corresponding to node j

 0 in all other rows

Table 2.2 is the Node-Arc representation for the network shown in Figure 2.13

Figure 2.13: A 4-End-Node Network

E3

E2

E1

E4

28

 (E1,E2) (E2,E1) (E1,E3) (E3,E1) (E1,E4) (E2,E3) (E4,E2) (E4,E3)

E1 1 -1 1 -1 1 0 0 0

E2 -1 1 0 0 0 1 -1 0

E3 0 0 -1 1 0 -1 0 -1

E4 0 0 0 0 -1 0 1 1

Table 2.2: Node-Arc incidence matrix

2.8.2 Arc-Chain Formulation

Definition: “A chain [2] from a source s to a destination d is a sequence of logical edges

[(s = i0 i1), (i1 i2),…, (ip-1 ip = d)]. The logical path described by the chain above

is [(s = i0 i1 i2 … ip-1 ip = d].” [1]

In a network with m logical edges numbered 1, 2,…, m, a chain may be represented by a

vector of m 1‟s and 0‟s so that, if the i
th

 element in the chain is 1, then the i
th

 logical edge

appears in the chain, and if the i
th

 element in the chain is 0, then the i
th

 logical edge does

not appear in the chain for all i, where 1 ≤ i ≤ m.

29

Figure 2.14: A 4-End-Node Network

Figure 2.14 shows a simple logical topology with four end nodes and six logical edges.

Each logical edge is assigned a number from 1 to 6 as shown. This network carries three

commodities K1, K2, and K3. The source and destination for the commodities are shown

in Table 2.3.

Commodity Source Destination

K1 E1 E3

K2 E2 E3

K3 E4 E3

Table 2.3: Source and Destination for the Commodities in Figure 2.14

E3

E2

E1

E4

1
3

6

2

4 5

30

There are three logical paths for K1, one logical path for K2, and two logical paths for K3.

The logical paths and chains (vectors) are shown in the Table 2.4.

Commodity Logical Paths Chains (Vectors)

K1

E1 E2 E3

E1 E4 E3

E1 E4 E2 E3

[1, 0, 1, 0, 0, 0]

[0, 0, 0, 1, 1, 0]

[0, 1, 1, 1, 0, 0]

K2 E2 E3 [0, 0, 1, 0, 0, 0]

K3

E4 E3

E4 E2 E3

[0, 0, 0, 0, 1, 0]

[0, 1, 1, 0, 0, 0]

Table 2.4: Logical Path and Chain (Vector) for the Commodities in Figure 2.14

Arc-Chain Incidence Matrix: “A network having m edges and q commodities may be

represented by an arc-chain incidence matrix AC. If there are n
k
 chains for the k

th

commodity K
k
, for all k, 1 ≤ k ≤ q, AC is an m × n matrix where n

1
 + n

2
 + … + n

q
 is the

total number of chains for all commodities. Each chain of a commodity corresponds to a

column in matrix AC so that the first n
1
 columns of AC correspond to chains for

commodity K
1
, the n

2
 columns correspond to chains for commodity K

2
, and so on.” [1]

Figure 2.15 shows the arc-chain incidence matrix AC of the network shown in Figure

2.14 for three commodities K1, K2, and K3.

31

 1 0 0 0 0 0

 0 0 1 0 0 1

AC = 1 0 1 1 0 1

 0 1 1 0 0 0

 0 1 0 0 1 0

 0 0 0 0 0 0

Figure 2.15: Arc-Chain Incidence Matrix

In Figure 2.15, the rows of the arc-chain matrix AC corresponds to the edges 1, 2, 3, 4, 5,

6 of the network shown in Figure 2.12. Columns 1, 2, and 3 correspond to the chain for

commodity K1, column 4 corresponds to the chain for commodity K2, and the columns 5

and 6 correspond to the chain for commodity K3.

2.8.3 Implicit Column Generation

In arc-chain formulation, for each commodity there are may be many possible chains

available. So, storing all possible chains for all commodities is not feasible. This problem

can be handled by adapting Tomlin‟s approach for solving a minimum cost multi-

commodity flow problem [16]. Instead of explicitly storing the constraints as done in an

LP solver, Tomlin's approach implicitly keeps track of the constraints and generates a

chain on the fly, only when it is established that the chain should be part of the column

entering the basis.

32

2.9 LP Formulation using Arc-Chain Representation

The linear programming problem using arc-chain representation is as follows [1]:

Minimize Λmax … (eq. 2.1)

Subject to AC1x1 + AC2x2 + …… + ACqxq ≤ Λ

e1x1 = Γ1 … (eq. 2.2)

e2x2 = Γ2

 …………………………………………

eqxq = Γq

Here, the objective function is Λmax, the congestion,

m = number of logical edges.

q = number of commodities (requests).

Kk = k
th

 commodity.

n = total number of chains for all commodities.

nk = number of chains for k
th

 commodity.

AC = arc-chain incidence matrix of size (m+q)×n.

ACk = sub-matrix of AC of size (m× nk) that corresponds to all the chains of

commodity Kk.

ack
ij
 = i

th
 element of j

th
 chain of commodity Kk where ack

ij
 = 1 if edge i appears

in chain j of commodity Kk and ack
ij
 = 0 otherwise.

Γk = traffic t(src(k), dest(k)) for commodity k, for all k, 1 ≤ k ≤ q.

xk = column vector of variables containing nk elements.

33

xk
j
 = variable denoting the flow over j

th
 chain of Kk commodity,

for all k, 0 ≤ xk
j
 ≤ Γk.

ek = row vector of nk 1‟s, ([1, 1, …, 1]) .

Λ = column vector with m occurrences of Λmax ([Λmax, Λmax, …, Λmax]).

xs = column vector of m slack variables.

xs
i
 = i

th
 slack variable.

B = basis matrix for the revised simplex method of size (m+q)×(m+q).

cB = vector of (m+q) cost coefficients.

The first line of the equation (eq. 2.2) corresponds to the edges in the logical topology.

The right hand side of the equation (eq. 2.2) represents the column vector of Λmax of size

m which is [Λmax, Λmax, …, Λmax]. The left hand side is ∑
q

k=1
ACkxk. where ACk is a sub-

matrix of AC having size of (m× nk) and xk is a column vector of size m. For logical edge

i, ∑
q

k=1
∑

n
k

j=1
 ack

ij
. xk

j
 ≤ Λmax, which is the sum of i

th
 elements of all the products ACkxk

should be less than or equal to the congestion Λmax.

Lines 2 to q+1 of the equation (eq. 2.2) correspond to the commodities (requests). So, the

constraint for commodity k is ek.xk = Γk for all i where 1 ≤ k ≤ q. But ek is a row vector of

nk 1‟s ([1, 1, …, 1]). So, the constraints become ∑
n
k

j=1
 xk

j
 = Γk, which is the sum of the

flows for k
th

 commodity using all chains for k
th

 commodity must be equal to the

requirement Γk.

34

2.9.1 Solving LP using Arc-Chain Representation

In the revised simplex method, the first step to solve a LP problem is to remove the

inequalities by adding slack variables. So, after adding slack variable to remove the

inequality constraints in the first line of the equation (eq. 2.2), it becomes:

AC1x1 + AC2x2 + …… + ACqxq + xs = Λ

e1x1 = Γ1 … (eq. 2.3)

e2x2 = Γ2

 …………………………………………

eqxq = Γq

Considering the network shown in Figure 2.14 and the three commodities described in

Table 2.4, let the traffic demand Γ1, Γ2, and Γ3 for commodities K1, K2, and K3 are 0.3,

0.5, and 0.7 respectively. So, the constraints in the equation (eq. 2.3), in matrix form is:

 x1
1

 1 0 0 0 0 0 1 0 0 0 0 0 x1
2
 Λmax

 0 0 1 0 0 1 0 1 0 0 0 0 x1
3
 Λmax

 1 0 1 1 0 1 0 0 1 0 0 0 x2
1
 Λmax

 0 1 1 0 0 0 0 0 0 1 0 0 x3
1
 Λmax

 0 1 0 0 1 0 0 0 0 0 1 0 . x3
2
 = Λmax

 0 0 0 0 0 0 0 0 0 0 0 1 xs
1
 Λmax

 1 1 1 0 0 0 0 0 0 0 0 0 xs
2
 0.3

 0 0 0 1 0 0 0 0 0 0 0 0 xs
3
 0.5

 0 0 0 0 1 1 0 0 0 0 0 0 xs
4
 0.7

 xs
5

 xs
6

 … (eq. 2.4)

35

In this constraints matrix (eq. 2.4):

o The first m rows correspond to the first line of the equation (eq. 2.3) that

corresponds to 6 logical edges in this example.

o The last q rows correspond to the remaining lines of the equation (eq. 2.3)

that correspond to the 3 commodities in this example.

o For commodity K1:

 The columns 1, 2 and 3 correspond to the three chains of this

commodity.

 The variables x1
1
, x1

2
 and x1

3
 correspond to the flows for these

three chains.

o For commodity K2:

 Column 4 corresponds to the one chain of this commodity.

 Variable x2
1
 corresponds to the flows for this one chain.

o For commodity K3:

 Columns 5 and 6 correspond to the two chains of this commodity.

 Variables x3
1
 and x3

2
 correspond to the flows for these two chains.

o Variables xs
1
, xs

2
, xs

3
, xs

4
, xs

5
 and xs

6
 are the slack variables.

o The identity matrix in rows 1 to 6 and columns 7 to 12 correspond to the

slack variables.

36

After taking the variable Λ to the left hand side in the equation (eq. 2.3), the constraints

become:

–Λ + AC1x1 + AC2x2 + …… + ACqxq + xs = 0

e1x1 = Γ1 … (eq. 2.5)

e2x2 = Γ2

 …………………………………………

eqxq = Γq

The matrix form of the equation (eq. 2.5) is as follows:

 Λmax

 x1
1

 –1 1 0 0 0 0 0 1 0 0 0 0 0 x1
2
 0.0

 –1 0 0 1 0 0 1 0 1 0 0 0 0 x1
3
 0.0

 –1 1 0 1 1 0 1 0 0 1 0 0 0 x2
1
 0.0

 –1 0 1 1 0 0 0 0 0 0 1 0 0 x3
1
 0.0

 –1 0 1 0 0 1 0 0 0 0 0 1 0 . x3
2
 = 0.0

 –1 0 0 0 0 0 0 0 0 0 0 0 1 xs
1
 0.0

 0 1 1 1 0 0 0 0 0 0 0 0 0 xs
2
 0.3

 0 0 0 0 1 0 0 0 0 0 0 0 0 xs
3
 0.5

 0 0 0 0 0 1 1 0 0 0 0 0 0 xs
4
 0.7

 xs
5

 xs
6

 … (eq. 2.6)

37

In this constraints matrix (eq. 2.6):

o In each column, for the values in the first m positions corresponding to the

flow variable xk
j
 is coming from the chain Ck

j
 in ACk. The values in the

remaining q positions are all 0‟s except for the position m+k where the

value is 1.

o In the column for Λmax, the values in the first m positions are –1 and in the

remaining q positions the values are 0.

o In the column for slack variable xs
i
, the values are all 0‟s except for the

position i where the value is 1.

2.9.2 Finding an Initial Feasible Solution

The total number of constraints in the equation (eq. 2.3) is m+q. So, the basis in the

equation (eq. 2.6) should be a (m+q)×(m+q) matrix. But in (eq. 2.6), the basis is not a

(m+q)×(m+q) matrix. A technique [1] can be used to create the basis B of size

(m+q)×(m+q) and the xB denoting the vector corresponding to the basis variables. To

find the initial feasible solution, the idea of the technique is to select only one chain from

each commodity in the basis B and adjust the slack variables accordingly.

For the network shown in Figure 2.14 with the six logical edges (1, 2, 3, 4, 5, 6) and three

commodities (K1, K2, K3) having the traffic demands 0.3, 0.5 and 0.7 will have the basis

of size (m+q)×(m+q) which is (6+3)×(6+3) = 9×9 matrix. The steps for finding the

basis corresponding to the initial feasible solution are as follows:

38

Step 1: Choose any one chain from each commodity and send the entire traffic for the

commodity through the selected chain. In this example, let‟s select the chains:

E1 E2 E3 ([1, 0, 1, 0, 0, 0]) from commodity K1,

E2 E3 ([0, 0, 1, 0, 0, 0]) from commodity K2 and

E4 E2 E3 ([0, 1, 1, 0, 0, 0]) from commodity K3.

Figure 2.16 shows the traffic flow on each logical edge.

Figure 2.16: Network shown in Figure 2.14 with the traffic flows

Step 2: Calculate the sum of the flows on each logical edge and find the logical edge

carrying the maximum flow Λmax. In this example, the logical edge 3 is carrying the

maximum flow of 1.5. So, the value of Λmax is 1.5.

E3

E2

E1

E4

1
3

6

2

4 5

0.3+0+0 0.3+0.5+0.7

0+0+0

0+0+0

0+0+0

0+0+0.7

39

Step 3: In the basis, create the columns for Λmax and the three chains selected from the

three commodities K1, K2 and K3. The values for the corresponding basis variables are

1.5, 0.3, 0.5 and 0.7 respectively.

Step 4: The logical edge 3 is carrying the maximum flow Λmax = 1.5. So, no slack

variable is needed for the logical edge 3. All the remaining logical edges need slack

variables and the values of these slack variables need to be adjusted to satisfy the

constraints in the first line of the equation (eq. 2.5). So, the values of the slack variables

are calculated as follows:

 Slack variable for the logical edge 1

 –1×1.5 + 1×0.3 + 0×0.5 + 0×0.7 + 1× xs
1
 = 0

 xs
1
 = 1.2

 Slack variable for the logical edge 2

 –1×1.5 + 0×0.3 + 0×0.5 + 1×0.7 + 1× xs
2
 = 0

 xs
2
 = 0.8

 Slack variable is not needed for the logical edge 3

 Slack variable for the logical edge 4

 –1×1.5 + 0×0.3 + 0×0.5 + 0×0.7 + 1× xs
4
 = 0

 xs
4
 = 1.5

 Slack variable for the logical edge 5

 –1×1.5 + 0×0.3 + 0×0.5 + 0×0.7 + 1× xs
5
 = 0

 xs
5
 = 1.5

40

 Slack variable for the logical edge 6

 –1×1.5 + 0×0.3 + 0×0.5 + 0×0.7 + 1× xs
6
 = 0

 xs
6
 = 1.5

So, the resulting basis matrix for the initial feasible solution is as follows:

 –1 1 0 0 1 0 0 0 0 1.5 0.0

 –1 0 0 1 0 1 0 0 0 0.3 0.0

 –1 1 1 1 0 0 0 0 0 0.5 0.0

 –1 0 0 0 0 0 1 0 0 0.7 0.0

 –1 0 0 0 0 0 0 1 0 . 1.2 = 0.0

 –1 0 0 0 0 0 0 0 1 0.8 0.0

 0 1 0 0 0 0 0 0 0 1.5 0.3

 0 0 1 0 0 0 0 0 0 1.5 0.5

 0 0 0 1 0 0 0 0 0 1.5 0.7

 … (eq. 2.7)

2.9.3 Finding the Entering Column

In step 2, during each iteration of revised simplex method, we have to find, if possible, an

entering column. It is done by first calculating the simplex multipliers in step 1. So,

Step 1: Calculate the simplex multipliers y by solving the equation y = cB B
-1

.

Step 2: Find an entering column. The entering column may be any column a of the

constraints matrix where ya is less than the corresponding component of cN

where cN is the cost associated with the column a.

41

Since the number of possible chains for all commodities in a large network is very high,

it is not feasible to store all the chains in the constraint matrix. Instead, Tomlin‟s implicit

column generation approach can be used. This approach implicitly keeps track of the

constraints and generates a chain on the fly only when it is established that the chain

should be part of the column entering the basis [16]. The chain is then checked whether it

satisfies the condition in step 2 to be part of the entering column. If it is satisfied, then the

entering column is created using this chain.

2.9.4 LP using Arc-Chain satisfies GUB Structure

After analyzing the values in the columns of the constraints matrix (eq. 2.6) that

corresponds to the equation (eq. 2.5), it is found that:

 The column corresponds to Λmax – in this column, the last q rows have all 0‟s.

 The columns correspond to chains – in these six columns, the last q rows have 1

only in the position m+k. In the remaining position there are all 0‟s.

 The columns correspond to slack variables – in the columns for slack variables,

the last q rows have all 0‟s.

42

So, the basis matrix B in the arc-chain representation satisfies the GUB structure. Now,

the matrix B can be re-arranged to form the structure:

by applying a permutation on the columns of the matrix and re-arrange the variables

vector accordingly.

2.10 Generalized Upper Bounding (GUB)

Generalized Upper Bounding (GUB) [5] is a technique that makes the revised simplex

method more efficient for linear programming problems having a special structure in the

basis. A (m+q)×(m+q) matrix exhibits a GUB structure, if

 q is relatively large number compared to m, and

 each column of the last q rows has at most one nonzero entry, the non-zero entry

being equal to 1.

Figure 2.17 shows a constraints matrix A with the GUB structure.

 5 3 4 7 9 2 3 8 4 6 7 5 8 4

 7 2 5 8 3 7 6 2 9 5 2 9 3 6

A = 1 1 1

 1 1 1 1

 1 1 1

 1 1

Figure 2.17: A matrix with GUB structure

B =
 R S

 T I

43

In the revised simplex method outlined in section 2.5, to get the vectors y and d, in each

iteration in step 1 and step 3, we need to solve the equations:

y = cBB
-1

 and

d = B
-1

a

To calculate these two equations, in each iteration, we have to invert the basis B which is

a matrix of size (m+q)×(m+q). When the number of end-nodes increases, the value of q

becomes a very large number as q = N(N–1) where N represents end-node. So, if the

basis B can be arranged so that it will satisfy the GUB structure, the most expensive

operation in each iteration – inverting a matrix, can be done on a smaller matrix of size

m. In the case where q is much larger than m, the GUB technique can dramatically

improve the time to calculate these two equations.

If we have a non-singular basis B satisfying the GUB structure, we can always apply a

permutation on the columns of the matrix so that the resulting matrix has an identity

matrix of size q×q in its lower right corner:

44

 R S m rows

B =

 T I q rows

 m columns q columns

Figure 2.18: Basis satisfying GUB structure after permutation

Figure 2.18 shows the structure of basis B after applying the column permutation. Here R,

S, T, and I are matrices of size (m×m), (m×q), (q×m), and (q×q) respectively. As a result,

the structure shows that the matrices R, S, T, and I are the four smaller sub-matrices of the

basis B.

In each iteration of revised simplex method, we need to solve the equations y = cBB
-1

 and

d = B
-1

a for the basis B of size (m+q)×(m+q). Let Bk be the basis at iteration k. So, after

k
th

 iteration, the basis Bk after applying permutation will be:

45

 Rk Sk m rows

Bk =

 Tk I q rows

 m columns q columns

Figure 2.19: Basis satisfying GUB structure after k
th

 iteration

Let y′ be the vector of the first m elements and y′′ be the vector of the last q elements of

the simplex multipliers y, and let cB′ be the first m elements and cB′′ be the last q elements

of the cost vector cB. So, the equation y.Bk = cB can be rewritten as:

 Rk Sk

 y′ , y′′ . = cB′ , cB′′

 Tk I

This equation can be broken down into:

y′Rk + y′′Tk = cB′ ……………………… (eq. 2.8)

and

y′Sk + y′′ = cB′′ ……………………… (eq. 2.9)

=> y′′ = cB′′ – y′Sk ……………………… (eq. 2.10)

46

After substituting the value for y′′ from the equation (eq. 2.10) into the equation (eq. 2.8),

the obtained equation is:

y′(Rk – SkTk) = cB′ – cB′′Tk ……………………… (eq. 2.11)

=> y′ = (cB′ – cB′′Tk).(Rk – SkTk)
-1

 ……………………… (eq. 2.12)

So, the value of y′ can be found using the equation (eq. 2.12).

Here, the size of matrix (Rk – SkTk) is (m×m). So, to calculate y′ the expensive operation

of inverting a matrix can be done on the matrix of size (m×m) instead of the matrix of

size (m+q)×(m+q). After calculating the value of y′, the value of y′′ can be found using

the value of y′ in equation (eq. 2.10).

Similarly, let d′ be the vector of the first m elements and d′′ be the vector of the last q

elements of the d-vector d, and let a′ be the first m elements and a′′ be the last q elements

of the entering column a. So, the equation Bk.d = a can be rewritten as:

 Rk Sk d′ a′

 . =

 Tk I d′′ a′′

47

This equation can be broken down into:

Rkd′ + Skd′′ = a′ ……………………… (eq. 2.13)

and

Tkd′ + d′′ = a′′ ……………………… (eq. 2.14)

=> d′′ = a′′ – Tkd′ ……………………… (eq. 2.15)

After substituting the value for d′′ from the equation (eq. 2.15) into the equation (eq.

2.13), the obtained equation is:

(Rk – SkTk)d′ = a′ – Ska′′ ……………………… (eq. 2.16)

=> d′ = (a′ – Ska′′).(Rk – SkTk)
-1

 ……………………… (eq. 2.17)

So, the value of d′ can be found using the equation (eq. 2.17).

Here, the matrix (Rk – SkTk) was already inverted in the equation (eq. 2.12) and readily

available. After calculating the value of d′, the value of d′′ can be found using the value

of d′ in equation (eq. 2.15).

2.10.1 Updating the matrices R, S, T

In each iteration of the revised simplex method, the basis B is updated by replacing the

leaving column with the entering column. So, the matrices R, S, T and hence (R – ST)

change after each iteration. Let Bk, Rk, Sk and Tk be the matrices at iteration K and Bk+1,

Rk+1, Sk+1 and Tk+1 be the matrices at iteration k+1. To maintain the GUB structure after

48

each iteration, depending on the leaving column position, there are three cases should be

considered [5]:

Case 1 - The leaving column is one of the first m columns of Bk:

In this case Sk and I will not be effected. The leaving column is simply replaced by the

entering column and the new basis will still satisfy the GUB structure. So, the basis:

will be updated into:

Hence, the matrix (Rk – SkTk) will be updated into (Rk+1 – SkTk+1).

The matrices Rk and Rk+1, and the matrices Tk and Tk+1, differ only in their p
th

 column. So,

the matrix (Rk – SkTk) and the matrix (Rk+1 – SkTk+1), differ only in their p
th

 column. The

p
th

 column of (Rk+1 – SkTk+1) is a′ – Ska′′ = (Rk – SkTk)d′ (eq. 2.16).

So, after k+1 iteration:

Rk+1 – Sk+1Tk+1 = (Rk – SkTk)Fk+1 ……………………… (eq. 2.18)

where Fk+1 stands for a (m×m) eta matrix [5] whose eta column in the p
th

 position is d′.

Bk =
 Rk Sk

 Tk I

Bk+1 =
 Rk+1 Sk

 Tk+1 I

49

Case 2 - The leaving column f is one of the last q columns of Bk and some

other column g of Bk satisfies g′′ = f′′:

Here, g should be one of the first m columns of Bk. f′ and g′ denote vectors consisting of

the first m elements and f′′ and g′′ denote vectors consisting of the last q elements of f and

g. To get Bk+1, first f is replaced by g to preserve the (q×q) identity matrix in the lower

right corner. Then the entering column a is inserted into the position formerly occupied

by g. So, updating Bk into Bk+1 is done in two stages:

Stage 1: A temporary matrix Bk_temp is generated by interchanging the two columns f and

g in Bk:

Updated into:

Bk =
 Rk Sk

 Tk I

Bk_temp =
 Rk_temp Sk+1

 Tk I

50

Stage 2: Bk+1 is generated by replacing f by the entering column a in Bk_temp:

updated into:

For stage 1:

Let f is the (m+i)
th

 and g is the l
th

 column of Bk, and let r denote the i
th

 row of Tk and Jk+1

denote the (m×m) identity matrix whose l
th

 row has been replaced by –r. So,

Rk_temp – Sk+1Tk = (Rk – SkTk)Jk+1 ……………………… (eq. 2.19)

For stage 2:

a′ denotes a vector consisting of the first m elements and a′′ denotes a vector consisting of

the last q elements of the entering column a. Let el denotes the l
th

 column of the (m×m)

identity matrix. So,

Bk_temp =
 Rk_temp Sk+1

 Tk I

Bk+1 =
 Rk+1 Sk+1

 Tk+1 I

Z =
 Jk+1d′ If a′′ ≠ f′′

 Jk+1d′+ el If a′′ = f′′

51

Let Fk+1 stands for the (m×m) identity matrix whose l
th

 column has been replaced by z.

So,

Rk+1 – Sk+1Tk+1 = (Rk_temp – Sk+1Tk)Fk+1 ……………………… (eq. 2.20)

So, combining (eq. 2.19) and (eq. 2.20):

Rk+1 – Sk+1Tk+1 = (Rk – SkTk)Jk+1Fk+1 ……………………… (eq. 2.21)

Case 3 - The leaving column f is one of the last q columns of Bk and no other

column g of Bk satisfies g′′ = f′′:

In this case, the leaving column is simply replaced by the entering column. So, after k+1

iteration:

Rk+1 – Sk+1Tk+1 = Rk – SkTk ……………………… (eq. 2.22)

In summary, after k iterations, Rk – SkTk may be represented as:

Rk – SkTk = (R0 – S0T0) J1F1J2F2………JkFk ……………………… (eq. 2.23)

possibly with some missing matrices Ji and Fi.

52

2.11 Eta Matrix

An eta matrix is a matrix differs from the identity matrix in only one column, referred to

as its eta column. Figure 2.20 shows an eta matrix where 5
th

 column is the eta column.

 1 0 0 0 c1 0 0

 0 1 0 0 c2 0 0

 0 0 1 0 c3 0 0

 0 0 0 1 c4 0 0

 0 0 0 0 c5 0 0

 0 0 0 0 c6 1 0

 0 0 0 0 c7 0 1

Figure 2.20: Eta Matrix

2.12 Eta Factorization

The most expensive operation of revised simplex method is inverting a basis which is

done in step 1 and 3 in each iteration. So, the efficiency of the revised simplex method

lies on the ease of implementing step 1 and 3. In each iteration, to calculate the value of

the simplex multipliers (y) and the value of d-vector (d), two equations: y = cBB
-1

 and d =

B
-1

a are solved, where the operation inverting a matrix involved. A technique eta

factorization is used to solve these two equations without calculating the basis (matrix)

from the scratch and without inverting the basis (matrix) [5].

53

 l1
 l2
 l3
 l4
 l5
 l6
 l7

 Bk–1

Figure 2.21: Bk and Bk-1 differs only in one column which is the entering column a

Let Bk-1 be the basis obtained after k-1 iterations and Bk be the basis obtained after k

iterations of the revised simplex method. So, each Bk differs from the preceding Bk-1 in

only one column (Figure 2.21). The rest of the basis will be same. Let that one column is

the p
th

 column in which Bk differs from Bk-1. But the p
th

 column of Bk is the entering

column a that was calculated in step 2 of k
th

 iteration. Again, this entering column a is

used as the right-hand side in the equation Bk–1.d = a in step 3 of the same iteration (k
th

iteration). So, we can say that:

Bk–1Ek = Bk

where Ek stands for an identity matrix whose p
th

 column is replaced by d (Figure 2.22).

 a1
 a2
 a3
 Same a4 Same
 a5
 a6
 a7

 Bk

Leaving Column Entering Column

54

 l1 1 0 0 0 d1 0 0 a1
 l2 0 1 0 0 d2 0 0 a2
 l3 0 0 1 0 d3 0 0 a3
 l4 . 0 0 0 1 d4 0 0 = a4
 l5 0 0 0 0 d5 0 0 a5
 l6 0 0 0 0 d6 1 0 a6
 l7 0 0 0 0 d7 0 1 a7

 Bk–1 Ek Bk

Figure 2.22: Bk–1Ek = Bk

When the initial basis consists of slack variables then the initial basis B0 is an identity

matrix. In that case:

B0 = I

B1 = E1

B2 = E1.E2

B3 = E1.E2.E3

.

.

.

Bk = E1.E2.E3………Ek

This is called eta factorization of Bk. This eta factorization gives a convenient way of

solving two equations: yBk = cB and Bkd = a.

55

yBk = cB can be viewed as:

((((yE1)E2)E3)……)Ek = cB

and Bkd = a can be viewed as:

E1(E2(E3(……(Ekd)))) = a

So, the value of simplex multipliers (y) and d-vector (d) can be calculated by solving the

equations iteratively. As E is an eta matrix, these two equations can be solved easily

without inverting the matrices.

So far the initial basis B0 was considered as an identity matrix. But if B0 is not an identity

matrix then Bk can be written as:

Bk = B0.E1.E2.E3………Ek ……………… (eq. 2.24)

So, the two equations:

yBk = cB can be solved as:

(((((yB0)E1)E2)E3)……)Ek = cB ……………………… (eq. 2.25)

and Bkd = a can be solved as:

B0(E1(E2(E3(……(Ekd)))) = a ……………………… (eq. 2.26)

56

Now a triangular factorization of the initial basis B0 can be done before the first iteration

and then it can be used in conjunction with the growing sequence of E1,E2,E3,……Ek to

solve the equations:

LmPmLm–1Pm–1……L1P1B0 = U = UmUm–1……U1 ……………… (eq. 2.27)

Here,

L is lower triangular matrix,

P is permutation matrix,

U is upper triangular matrix,

Uj is an eta matrix obtained by replacing j
th

 column of I by j
th

 column of U.

From (eq. 2.20),

LmPmLm–1Pm–1……L1P1B0 = UmUm–1……U1

=> LmPmLm–1Pm–1……L1P1B0E1E2……Ek = UmUm–1……U1E1E2……Ek

=> LmPmLm–1Pm–1……L1P1Bk = UmUm–1……U1E1E2……Ek

=> zLmPmLm–1Pm–1……L1P1Bk = zUmUm–1……U1E1E2……Ek

Let y = zLmPmLm–1Pm–1……L1P1 ……………… (eq. 2.28)

So, yBk = zUmUm–1……U1E1E2……Ek… ……………… (eq. 2.29)

But yBk = cB

So, we can say that

zUmUm–1……U1E1E2……Ek = cB ……………… (eq. 2.30)

57

In this way the equation yBk = cB can be solved by first solving the equation (eq. 2.30)

and then calculating y from the equation (eq. 2.28).

Similarly, for the equation Bkd = a:

From (eq. 2.20),

UmUm–1……U1 = LmPmLm–1Pm–1……L1P1B0

=> UmUm–1……U1E1E2……Ek = LmPmLm–1Pm–1……L1P1B0E1E2……Ek

=> UmUm–1……U1E1E2……Ek = LmPmLm–1Pm–1……L1P1Bk

=> UmUm–1……U1E1E2……Ekd = LmPmLm–1Pm–1……L1P1Bkd

=> UmUm–1……U1E1E2……Ekd = LmPmLm–1Pm–1……L1P1a

Let h = UmUm–1……U1E1E2……Ekd ……………… (eq. 2.31)

So, h = LmPmLm–1Pm–1……L1P1a ……………… (eq. 2.32)

So, the equation Bkd= a can be solved by first solving (eq. 2.32) and then solving (eq.

2.31).

2.13 Refactorizations

As the number of eta matrices grows with each iteration, solving the equations yBk=cB

and Bkd=a become more laborious and may take longer time than to solve the two

equations from the scratch. To avoid this, a fresh triangular factorization can be

58

computed from the basis treating Bk as B0 and start with a new sequence of

E1,E2,E3,……Ek. This technique is called refactorizations of the basis.

2.14 Branch and Price Technique

The successful solution of large-scale mixed integer programming (MILP) problems

requires formulations whose linear programming „LP‟ relaxations give a good

approximation to the convex hull of feasible solutions. In our problem, the solution must

have binary values only (i.e., 0 or 1). Here we are including a summary of branch and

price technique from [17], [3] and [20], considering the techniques applicable to our

problem.

2.14.1 Branch and Bound

When the integer values are binary, this algorithm uses a divide-and-conquer strategy to

partition the solution space into two subproblems and then recursively solve each

subproblem. Let S be the set of solutions to a given discrete optimization problems

(DOP), and let c : S → R be a cost function on members of S. To determine a least-cost

member of S, we start with a given s
scs

S, a “good” solution determined heuristically. In

the bounding phase, we apply a LP relaxation giving a solution s
relaxed

 in a superset of the

feasible set S. This gives a lower bound on the value of an optimal solution. If the

solution to this relaxation is a member of S or has cost equal to that of s
scs

, then the

optimization is done, since either the new solution or s
scs

, respectively, is the optimal

value. Otherwise, we partition S into sets S0 and S1, using some appropriate branching

rule. For instance, we may define the branching rule, so that S0 (S1) is the set of solutions

59

for xi = 0 (xi = 1) where xi is one of the binary variables of the MILP formulation. We

will call S0, S1 the children of S. We replace S with the children of S on the list of

candidate subproblems (those that await processing). This operation is called branching

and the candidate list is often called the node queue.

To continue the algorithm, we remove the “best” candidate subproblem from the node

queue and process it, giving a value of s
scs

new S and we apply a LP relaxation to the

candidate subproblem, giving a solution s
relaxed

new in a superset of the feasible set S.

There are four possibilities to consider:

1. If s
scs

new < s
scs

, then we replace s
scs

 by s
scs

new; apply branching again and add the

children of this subproblem to the node queue.

2. If the subproblem has no solutions, in which case we discard, or fathom it.

3. If s
relaxed

new ≥ s
scs

, then we may again fathom the subproblem.

4. Apply branching again and add the children of this subproblem to the node queue.

The process continues until the list of candidate subproblems is empty, at which point our

current best solution stored in s
scs

 is the optimal one.

2.14.2 Branch and Price

The process of dynamically generating variables whose values should be non-zero is

called pricing and LP-based branch and bound algorithms in which the variables are

generated dynamically are known as branch and price algorithms [3]. Branch and price

60

techniques are useful when the number of variables is very large compared to the number

of constraints. In branch and price, each LP relaxation is solved initially with only a small

subset of the variables present. These variables correspond to the columns in the initial

feasible solution. To find an optimal solution the pricing problem is solved, to try to

identify a column to enter the basis. Such a column and the corresponding variables are

generated as needed using, for example, the implicit column generation technique.

61

Chapter 3: An Efficient Scheme for Non-Bifurcated

Traffic Grooming

In Chapter 2, we have described why minimizing congestion is a very common and

popular objective for optimization in WDM network. An efficient technique to do this is,

using arc-chain representation adapting with the implicit column generation [1]. In the

arc-chain representation, the expensive operation of revised simplex method inverting a

matrix can be done on the matrix of size (m+q)×(m+q) where m is the number of logical

edges and q is the number of commodities. As the basis matrix in the arc-chain

representation satisfies the GUB structure, inverting a matrix can be done on the matrix

of size (m×m) instead of the matrix of size (m+q)×(m+q).

An arc-chain solver for bifurcated traffic grooming with GUB structure has been

described in Chapter 2 to calculate the optimal solution using the revised simplex

method. The branch and price technique is used in this approach to make the bifurcated

traffic grooming to non-bifurcated traffic grooming [22]. Using GUB structure in this

arc-chain solver, improved the performance of the revised simplex method significantly.

But still matrix inversion has to be done, although it is done on a smaller matrix size.

In the section 2.12 we have shown that using eta factorization, the matrix calculation can

be done without calculating the basis (matrix) from the scratch and without inverting the

basis (matrix).

62

In this chapter we will show how to combine eta factorization with GUB structure in the

arc-chain solver for the revised simplex method used in the branch and price technique

[22]. This will allow calculating the simplex multipliers and the d-vector without

inverting the basis and updating the basis without calculating it from the scratch, in each

iteration of the revised simplex method.

3.1 Eta Factorization with GUB Structure in Branch and Price

The arc-chain solver using GUB structure improved the performance significantly since,

as a result of using the GUB structure in the arc-chain solver, the expensive operation of

inverting a matrix in each iteration can be done on a matrix of size (m×m) instead of a

matrix of size (m+q)×(m+q). It is important to note that q = N(N–1) where N is the

number of end-nodes, since most end-nodes communicate with each other and m is O(N).

So, q >> m and this gives substantial savings. In section 2.12, we have shown that, by

using eta factorization these operations can be done without calculating the basis (matrix)

from the scratch and without inverting the basis (matrix). In this section we will show

how to combine eta factorization with GUB structure to improve the performance further

in revised simplex method.

3.2 Revised Simplex Method without inverting (R–ST)

In section 2.10, we have shown that, using GUB structure, the simplex multipliers (y) and

d–vector (d) can be calculated by first breaking y into y′ and y′′ and d into d′ and d′′.

Then calculate the following equations [5]:

63

For y:

y′ = (cB′ – cB′′Tk).(Rk – SkTk)
-1

 ……………………… (eq. 2.12)

y′′ = cB′′ – y′Sk ……………………… (eq. 2.10)

y = (y′, y′′)

For d:

d′ = (a′ – Ska′′).(Rk – SkTk)
-1

 ……………………… (eq. 2.17)

d′′ = a′′ – Tkd′ ……………………… (eq. 2.15)

d = (d′, d′′)

To avoid inverting the matrix (Rk – SkTk) for equations (eq. 2.12) and (eq. 2.17) in each

iteration of revised simplex method, eta factorization discussed in the section 2.12 can be

combined with GUB structure as follows.

If we compare the equations (eq. 2.24) and (eq. 2.23) [5], we observe the following:

Bk = B0.E1.E2.E3………Ek ……………… (eq. 2.24)

Rk – SkTk = (R0 – S0T0) J1F1J2F2………JkFk ……………… (eq. 2.23)

We can see that the initial basis B0 for eta factorization is R0 – S0T0, and the eta matrices

Jk and Fk can be calculated while updating the matrices in each iteration as shown in

Section 2.10.1.

64

Now, as shown in equation (eq. 2.27) in Section 2.12, a triangular factorization can be

done on the initial basis R0 – S0T0:

LmPmLm–1Pm–1……L1P1(R0 – S0T0) = U = UmUm–1……U1 … (eq. 3.1)

For equation (eq. 2.12), after k iterations, equations (eq. 2.28), (eq. 2.29) and (eq. 2.30)

can be written as:

y′ = zLmPmLm–1Pm–1……L1P1 … (eq. 3.2)

y′(Rk – SkTk) = zUmUm–1……U1J1F1J2F2………JkFk … (eq. 3.3)

zUmUm–1……U1J1F1J2F2………JkFk = (cB′ – cB′′Tk) … (eq. 3.4)

So, the value of y′ can be calculated by first solving the equation (eq. 3.4) and then

calculating y′ from the equation (eq. 3.2). In this way, y′ can be calculated without

inverting the matrix as done in the equation (eq. 2.12). Once the value of y′ is found, the

value of y′′ can be calculated using the equation (eq. 2.10), and y can be calculated by y =

(y′, y′′).

Similarly, for the equation (eq. 2.17), after k iteration, equations (eq. 2.31) and (eq. 2.32)

can be written as:

h = UmUm–1……U1J1F1J2F2………JkFkd′ … (eq. 3.5)

h = LmPmLm–1Pm–1……L1P1(a′ – Ska′′) … (eq. 3.6)

So, the value of d′ can be calculated by first solving the equation (eq. 3.6) and then

calculating d′ from the equation (eq. 3.5). In this way, d′ can be calculated without

65

inverting the matrix as done in the equation (eq. 2.17). Once the value of d′ is found, the

value of d′′ can be calculated using the equation (eq. 2.15), and d can be calculated by d

= (d′, d′′).

Refactorizations can be done after every specific number of intervals by treating Rk – SkTk

as (R0 – S0T0), by performing the triangular factorization again on the new initial basis Rk

–SkTk and start the operations all over again. In our approach, we have done the

refactorizations when the iteration number reaches the half of the number of edges.

3.3 Calculating Li, Pi, Ui

Before starting the revised simplex method, the lower triangular matrices (L1, L2, …, Lm),

permutation matrices (P1,P2, …, Pm) and upper triangular matrices (U1, U2, …, Um) are

calculated from the initial basis of the initial feasible solution to use those matrices in

each iteration of the revised simplex method. Here, m is the number of edges in the

network and R0–S0T0 is the initial basis of the initial feasible solution. So, Li, Pi and Ui

will be calculated from the initial basis R0–S0T0.

Let us consider the example described in the section 2.9.2. If we re-arrange the initial

feasible solution in (eq. 2.7) as GUB structure, the equation will be as follows:

66

 –1 1 0 0 0 0 1 0 0 1.5 0.0

 –1 0 1 0 0 0 0 0 1 1.2 0.0

 –1 0 0 0 0 0 1 1 1 0.8 0.0

 –1 0 0 1 0 0 1 0 0 1.5 0.0

 –1 0 0 0 1 0 0 0 0 . 1.5 = 0.0

 –1 0 0 0 0 1 0 0 0 1.5 0.0

 0 0 0 0 0 0 1 0 0 0.3 0.3

 0 0 0 0 0 0 0 1 0 0.5 0.5

 0 0 0 0 0 0 0 0 1 0.7 0.7

 … (eq. 3.7)

Here, R0, S0 and T0 are as follows:

 –1 1 0 0 0 0 1 0 0 1.5 0.0

 –1 0 1 0 0 0 0 0 1 1.2 0.0

 –1 0 0 0 0 0 1 1 1 0.8 0.0

 –1 0 0 1 0 0 1 0 0 1.5 0.0

 –1 0 0 0 1 0 0 0 0 . 1.5 = 0.0

 –1 0 0 0 0 1 0 0 0 1.5 0.0

 0 0 0 0 0 0 1 0 0 0.3 0.3

 0 0 0 0 0 0 0 1 0 0.5 0.5

 0 0 0 0 0 0 0 0 1 0.7 0.7

R0 S0

T0 I

67

 –1 1 0 0 0 0

 –1 0 1 0 0 0

R0 = –1 0 0 0 0 0

 –1 0 0 1 0 0

 –1 0 0 0 1 0

 –1 0 0 0 0 1

So, the initial basis R0–S0T0 is:

 –1 1 0 0 0 0

 –1 0 1 0 0 0

R0–S0T0 = –1 0 0 0 0 0

 –1 0 0 1 0 0

 –1 0 0 0 1 0

 –1 0 0 0 0 1

 1 0 0

 0 0 1

S0 = 1 1 1

 1 0 0

 0 0 0

 0 0 0

 0 0 0 0 0 0

T0 = 0 0 0 0 0 0

 0 0 0 0 0 0

68

Now, as shown in the equation (eq. 3.1), first we can compute a triangular factorization

of R0 – S0T0:

LmPmLm–1Pm–1……L1P1(R0 – S0T0) = U ……………… (eq. 3.8)

and then from equation (eq. 3.8), we can get:

U = UmUm–1……U1 ……………… (eq. 3.9)

 1 0 0 0 0 0 1 0 0 0 0 0 –1 1 0 0 0 0

 –1 1 0 0 0 0 0 1 0 0 0 0 –1 0 1 0 0 0

L1 = –1 0 1 0 0 0 P1 = 0 0 1 0 0 0 R0–S0T0 = –1 0 0 0 0 0

 –1 0 0 1 0 0 0 0 0 1 0 0 –1 0 0 1 0 0

 –1 0 0 0 1 0 0 0 0 0 1 0 –1 0 0 0 1 0

 –1 0 0 0 0 1 0 0 0 0 0 1 –1 0 0 0 0 1

 –1 1 0 0 0 0

 0 –1 1 0 0 0

L1P1(R0–S0T0) = 0 –1 0 0 0 0

 0 –1 0 1 0 0

 0 –1 0 0 1 0

 0 –1 0 0 0 1

 1 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0

L2 = 0 –1 1 0 0 0 P2 = 0 0 1 0 0 0

 0 –1 0 1 0 0 0 0 0 1 0 0

 0 –1 0 0 1 0 0 0 0 0 1 0

 0 –1 0 0 0 1 0 0 0 0 0 1

69

 –1 1 0 0 0 0

 0 1 1 0 0 0

L2P2L1P1(R0–S0T0) = 0 0 –1 0 0 0

 0 0 –1 1 0 0

 0 0 –1 0 1 0

 0 0 –1 0 0 1

 1 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0

L3 = 0 0 1 0 0 0 P3 = 0 0 1 0 0 0

 0 0 –1 1 0 0 0 0 0 1 0 0

 0 0 –1 0 1 0 0 0 0 0 1 0

 0 0 –1 0 0 1 0 0 0 0 0 1

 –1 1 0 0 0 0

 0 1 1 0 0 0

L3P3L2P2L1P1(R0–S0T0) = 0 0 –1 0 0 0

 0 0 0 1 0 0

 0 0 0 0 1 0

 0 0 0 0 0 1

 1 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0

L4 = 0 0 1 0 0 0 P4 = 0 0 1 0 0 0

 0 0 0 1 0 0 0 0 0 1 0 0

 0 0 0 0 1 0 0 0 0 0 1 0

 0 0 0 0 0 1 0 0 0 0 0 1

70

 –1 1 0 0 0 0

 0 1 1 0 0 0

L4P4L3P3L2P2L1P1(R0–S0T0) = 0 0 –1 0 0 0

 0 0 0 1 0 0

 0 0 0 0 1 0

 0 0 0 0 0 1

 1 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0

L5 = 0 0 1 0 0 0 P5 = 0 0 1 0 0 0

 0 0 0 1 0 0 0 0 0 1 0 0

 0 0 0 0 1 0 0 0 0 0 1 0

 0 0 0 0 0 1 0 0 0 0 0 1

 –1 1 0 0 0 0

 0 1 1 0 0 0

L5P5L4P4L3P3L2P2L1P1(R0–S0T0) = 0 0 –1 0 0 0

 0 0 0 1 0 0

 0 0 0 0 1 0

 0 0 0 0 0 1

 1 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0

L6 = 0 0 1 0 0 0 P6 = 0 0 1 0 0 0

 0 0 0 1 0 0 0 0 0 1 0 0

 0 0 0 0 1 0 0 0 0 0 1 0

 0 0 0 0 0 1 0 0 0 0 0 1

71

 –1 1 0 0 0 0

 0 1 1 0 0 0

L6P6L5P5L4P4L3P3L2P2L1P1(R0–S0T0) = 0 0 –1 0 0 0

 0 0 0 1 0 0

 0 0 0 0 1 0

 0 0 0 0 0 1

So,

 –1 1 0 0 0 0

 0 1 1 0 0 0

U = 0 0 –1 0 0 0

 0 0 0 1 0 0

 0 0 0 0 1 0

 0 0 0 0 0 1

Now, we can get Ui by replacing the i
th

 column of an identity matrix by the i
th

 column of

U:

 –1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

U1 = 0 0 1 0 0 0 U2 = 0 0 1 0 0 0 U3 = 0 0 –1 0 0 0

 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

U4 = 0 0 1 0 0 0 U5 = 0 0 1 0 0 0 U6 = 0 0 1 0 0 0

 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

72

3.4 Representation of Li, Pi, Ui

After analyzing the matrices Li and Pi where i is the number of logical edges, it is found

that:

 Li = i
th

 lower triangular matrix.

 Pi = i
th

 permutation matrix.

Instead of storing the matrices L1, P1, L2, P2, …, Lm, Pm, we can store only the

information:

For Li : a vector of float of size m for the i
th

 column of Li.

For Pi : an integer for the position of the row that swapped with i
th

 row in

 Pi.

So, L2 and P2 in the example in section 3.3 can be stored as:

L_P_Matrix_Store[2]{float L_Vector[]; int Position_of_P}

= {[0 1 –1 –1 –1 –1]; 2}

instead of:

 1 0 0 0 0 0 1 0 0 0 0 0

 0 1 0 0 0 0 0 1 0 0 0 0

L2 = 0 –1 1 0 0 0 P2 = 0 0 1 0 0 0

 0 –1 0 1 0 0 0 0 0 1 0 0

 0 –1 0 0 1 0 0 0 0 0 1 0

 0 –1 0 0 0 1 0 0 0 0 0 1

73

By doing so, vector operations can be done, instead of matrix operations which will

improve the performance substantially and at the same time memory locations can be

saved.

Ui is calculated from U which is the result of LmPmLm–1Pm–1……L1P1(R0 – S0T0). So,

 Ui = Upper triangular matrix containing i
th

 column of U.

Instead of storing the matrices U1, U2, …, Um, we can store only the information:

For Ui : a vector of float of size m for the i
th

 column of U.

So, U3 in the example in section 3.3 can be stored as:

float U[3] = [0 1 –1 0 0 0]

instead of:

 1 0 0 0 0 0

 0 1 1 0 0 0

U3 = 0 0 –1 0 0 0

 0 0 0 1 0 0

 0 0 0 0 1 0

 0 0 0 0 0 1

74

3.5 Calculating Jk, Fk

Matrices Jk and Fk are calculated after getting entering column and leaving column

number and before updating the basis in each iteration of the revised simplex method.

Here, k is the iteration number of the revised simplex method.

As described in Section 2.10.1, Jk and Fk can be calculated after getting the d′ and the

leaving column number in each iteration. So, Jk and Fk will look like the matrices shown

in the Figure 3.1.

 Jk Fk

Figure 3.1: Matrices Jk and Fk

3.6 Representation of Jk, Fk

After analyzing the matrices Jk and Fk where k is the iteration number of the revised

simplex method, it is found that:

 Jk = Matrix differing from identity matrix in only one row, obtained

after k iterations.

 Fk = Eta matrix obtained after k iterations.

 1 0 0 0 0 0 1 0 0 d′k1 0 0
 0 1 0 0 0 0 0 1 0 d′k2 0 0
 0 0 1 0 0 0 0 0 1 d′k3 0 0
 0 0 0 1 0 0 0 0 0 d′k4 0 0
 –rk1 –rk2 –rk3 –rk4 –rk5 –rk6 0 0 0 d′k5 1 0
 0 0 0 0 0 1 0 0 0 d′k6 0 1

75

In each iteration, instead of storing the matrices J1, F1, J2, F2, …, Jk, Fk, we can store only

the information:

For Jk : an integer for the position of the row in Jk,

a vector of float of size m for the row in Jk.

For Fk : an integer for the position of the row in Fk,

a vector of float of size m for the row in Fk.

So, if the k = 4 in the Figure 3.1, then J4 and F4 can be stored as:

J_F_Matrix_Store[4]{int Position_of_J; float J_Vector[]

int Position_of_F; float F_Vector[]}

= {5; [–r41 –r42 –r43 –r44 –r45 –r46];

4; [d′41 d′42 d′43 d′44 d′45 d′46}

3.7 Solving Equations without inverting Matrices

For any equation in the form of z.F = v

where z = unknown vector to be determined,

 F = known eta matrix,

 v = known vector.

In this equation, z can be calculated without inverting the matrix F.

76

Let‟s consider the following vectors and matrix representing z, F and v where the vector z

has to be determined and the matrix F and the vector v are known:

 1 0 0 0 F1 0

 0 1 0 0 F2 0

 z1 z2 z3 z4 z5 z6 . 0 0 1 0 F3 0 = v1 v2 v3 v4 v5 v6

 0 0 0 1 F4 0

 0 0 0 0 F5 0

 0 0 0 0 F6 1

After doing vector matrix multiplication, we get:

 z1 = v1

 z2 = v2

 z3 = v3

 z4 = v4

 z6 = v6

z1F1 + z2F2 + z3F3 + z4F4 + z5F5 + z6F6 = v5

=> z5F5 = v5 – (z1F1 + z2F2 + z3F3 + z4F4 + z6F6)

=> z5 = (v5 – (z1F1 + z2F2 + z3F3 + z4F4 + z6F6)) / F5

For z5, after replacing the values of z1, z2, z3, z4 and z6:

z5 = (v5 – (v1F1 + v2F2 + v3F3 + v4F4 + v6F6)) / F5

77

Similarly, for any equation in the form of z.J = v

where z = unknown vector to be determined,

 J = known matrix differing from identity matrix in only

one row,

 v = known vector.

In this equation, z can be calculated without inverting the matrix J.

Let‟s consider the following vectors and matrix representing z, J and v where the vector z

has to be determined and the matrix J and the vector v are known:

 1 0 0 0 0 0

 0 1 0 0 0 0

 z1 z2 z3 z4 z5 z6 . 0 0 1 0 0 0 = v1 v2 v3 v4 v5 v6

 J1 J2 J3 J4 J5 J6

 0 0 0 0 1 0

 0 0 0 0 0 1

After doing vector matrix multiplication, we get:

 z1 + z4J1 = v1 => z1 = v1 – v4J1 / J4

z2 + z4J2 = v2 => z2 = v2 – v4J2 / J4

z3 + z4J3 = v3 => z3 = v3 – v4J3 / J4

z4J4 = v4 => z4 = v4 / J4

z5 + z4J5 = v5 => z5 = v5 – v4J5 / J4

z6 + z4J6 = v6 => z6 = v6 – v4J6 / J4

So, z = [z1 z2 z3 z4 z5 z6] can be determined without inverting the matrix F or J after

calculating the values of z1, z2, z3, z4, z5 and z6.

78

3.8 Algorithm

3.8.1 Algorithm for getting y′

Step 1: i = 1

z = (cB′ – cB′′Tk)

Step 2: while (i >= 1)

 {

 v = z

 Replace z by the solution of zFi = v

 v = z

 Replace z by the solution of zJi = v

 i = i – 1

 }

Step 3: j = 1

Step 4: while (j =< m)

 {

 v = z

 Replace z by the solution of zUj = v

 j = j + 1

 }

Step 5: j = m

 y′ = z

Step 6: while (j >= 1)

 {

 y′ = y′LjPj

 j = j – 1

 }

79

3.8.2 Algorithm for getting d′

Step 1: j = 1

d′ = (a′ – Ska′′)

Step 2: while (j =< m)

 {

 d′ = LjPjd′

 j = j + 1

 }

Step 3: j = m

Step 4: while (j >= 1)

 {

 v = d′

 Replace d′ by the solution of Ujd′ = v

 j = j – 1

 }

Step 5: i = 1

Step 6: while (i =< k)

 {

 v = d′

 Replace d′ by the solution of Jid′ = v

 v = d′

 Replace d′ by the solution of Fid′ = v

 i = i + 1

 }

80

3.9 Use of Eta Factorization in the Algorithm

In the algorithm for getting y′ (section 3.8.1), step 2 and step 4 are executed for the

equation (eq. 3.4). At the beginning of the revised simplex method, matrices F and J are

not available as they are calculated during updating the basis after getting the entering

column and the leaving column in each iteration. So, to calculate the simplex multipliers

(y) for the first time, step 2 has to be skipped. Step 4 will be executed to solve the

equation:

zUmUm–1……U1 = (cB′ – cB′′Tk) ……………………… (eq. 3.10)

In the example described in the section 2.9, the cost of the basis cB = [1 0 0 0 0 0 0 0 0]

as we have to minimize the Λmax. So, (cB′ – cB′′Tk) = [1 0 0 0 0 0]. In this example, m is 6.

So, the loop in the step 4 will be executed 6 times.

In the first loop of step 4:

v = z = [1 0 0 0 0 0]

Solve the solution zU1 = v (assuming z = zU6U5U4U3U2) and get the value of z

In the second loop of step 4:

v = z (new value of z found in the previous loop)

Solve the solution zU2 = v (assuming z = zU6U5U4U3) and get the value of z

and so on.

All the loops in the algorithm work like this using eta factorization without inverting any

matrix.

81

Chapter 4: Experimental Results

In Chapter 3, we extended the arc-chain solver developed by Mr. Quazi Rahman, by

incorporating eta factorization in the solver. In this chapter, we will analyze and compare

the results of the arc-chain solver before and after incorporating the eta factorization and

see how much improvement in the speed we have accomplished. We have done our

experiments on a number of networks with sizes varying from small to large and with

requests for data communication also having various sizes. The experiments were done

on a Sun Fire X2200 M2 Server [21].

We used two C programs Generate_edge_array.c and Generate_user_requests.c to

generate logical edges and user requests respectively, based on the given number of end-

nodes. These two programs generated the logical edges and the user requests using a

random number generator. We have omitted the details since these programs are quite

straight-forward.

We wrote a function arc_chain_solver_using_ETA in C and included it in the arc-chain

solver implemented by Mr. Quazi Rahman. For comparison purposes, we defined a flag.

When the flag is 1, the C program does use eta factorization using our function

arc_chain_solver_using_ETA. When the flag is 0, we don‟t use eta factorization, so that

the program gives the same results obtained using the function arc_chain_solver written

by Mr. Rahman.

82

4.1 Comparison of Simplex Multipliers

Use of eta factorization allows us to compute the simplex multipliers in a way different

from traditional methods. Due to round-off errors, the values computed in the traditional

way may be slightly different in the two techniques. In this section we will explore these

differences.

In the revised simplex method, the condition for termination is a failure to find an

entering column. In each iteration, the entering column is calculated using the values of

the simplex multipliers (y is a vector of all the simplex multipliers). So, if the values of

the simplex multipliers, using eta factorization are slightly different from the values of

the same simplex multipliers, without using eta factorization, the process of finding the

entering column may lead to different iteration numbers. Our experiments indicate that

the small differences owing to the round-off errors do have significant repercussions.

We have done an experiment with a small network (6 end-nodes) and a small number of

user requests (around 100 user requests) and compared the values of the simplex

multipliers obtained using eta factorization and without eta factorization after each

iteration. We have found that the some values of the simplex multipliers differ by a very

small value (approximately 0.000000006) after a certain number of iterations

(approximately 22 iterations). This affects the results when finding the entering column

and hence the number of iterations and the times of executions change. But it does not

make any difference to the value of the congestion which is the objective function. We

83

also have found that changes in the interval between refactorizations have an effect on the

number of iterations and also the time of execution.

When using eta factorization, in each iteration of the revised simplex method, the values

of the simplex multipliers are calculated by matrix multiplication with a growing number

of Jk and Fk matrices where k is the iteration number. This is the reason why the values of

the simplex multipliers differ after a certain number of iterations. After a certain number

of iterations, when the number of Jk and Fk matrices become large, then the calculations

of the simplex multipliers are done with a large number of Jk and Fk matrices and that

makes the values of the simplex multipliers somewhat different compared to the values of

the simplex multipliers calculated without eta factorization, where we invert the matrix.

This also makes a difference in the time of execution with the eta factorization. These

differences vary with the interval of the refactorizations.

4.2 Experiments with the different interval of Refactorizations

We have carried out an experiment to find out the intervals between refactorizations that

gives the best results for execution time when using eta factorization. In the arc-chain

solver developed by Mr. Rahman, during the process of branch and price technique, the

arc-chain solver is executed repeatedly to get the optimal solution for the bifurcated

traffic grooming. We tested this experiment running the arc-chain solver only once where

we did not use the branch and price technique.

84

We tested our experiments on ten networks having 14 end-nodes. For five networks, we

used five different traffic loads of around 400 user requests and for other five networks,

we used five different traffic loads of around 1000 user requests. For each size of traffic

load, we generated 25 sets of data (combination of five networks and five different traffic

loads). For each set, we executed the program 4 times, each having refactorizations at

intervals of E/4, E/2, E, 2E iterations, where E is the number of edges. We have reported

the average of each set of 25 with 400 (1000) user requests in the Table 4.1 (Table 4.2).

Graphs from the Table 4.1 (Table 4.2) are shown in the Figure 4.1 (Figure 4.2). After

analyzing the Figure 4.1 and Figure 4.2, we can see that, on an average, refactorizations

at intervals of E/2 gives the best results for the time of execution.

No. of

Nodes

No. of Edges(with

Traffic Loads around

400 user requests)

Time to execute (in seconds)

Without

Eta

With Eta

(Refactorizations after % of No. of Edges)

25% 50% 100% 200%

14

36 6.42 5.08 5.04 4.97 5.14

35 3.59 2.48 2.46 2.58 2.59

32 1.75 1.40 1.40 1.42 1.44

33 0.94 0.74 0.73 0.74 0.74

36 2.63 2.01 2.05 2.06 2.03

Table 4.1: Comparison of Execution Times with different intervals between

Refactorizations with around 400 user requests

85

Figure 4.1: Graph obtained from Table 4.1

86

No. of

Nodes

No. of Edges(with

Traffic Loads around

1000 user requests)

Time to execute (in seconds)

Without

Eta

With Eta

(Refactorizations after % of No. of Edges)

25% 50% 100% 200%

14

36
19.30 16.63 16.69 16.70 16.92

35
15.97 13.82 13.53 13.94 14.03

32
6.14 5.50 5.59 5.58 5.54

33
3.72 3.28 3.27 3.26 3.32

36
10.74 9.32 9.31 9.50 9.37

Table 4.2: Comparison of Execution Times with different intervals between

Refactorizations with around 1000 user requests

87

Figure 4.2: Graph obtained from Table 4.2

4.3 Comparison Experiments

We tested our experiments on three networks having 10, 14 and 20 end-nodes. For each

network, we used traffic loads of around 100, 200, 400 and 1000 user requests. For each

size of traffic, we generated 10 sets of data. We executed the program for each traffic

load and for each network size. We measured the execution time twice. In the first

(second) run, we set the flag mentioned above to 0 (1). Then we divided the time,in

seconds, it took to execute the program without eta factorization by the time (in seconds)

it took to execute the program with eta factorization to see how much faster the algorithm

runs when we use eta factorization. We have reported the average of these 10 ratios in the

table below. In the section 4.2, we found that refactorization with intervals of E/2 gives

88

the best results for the time of execution. So, here we used the refactorizations after E/2

iterations.

Table 4.3 shows how much faster, on an average, the program runs with the eta

factorization compared to the program running without the eta factorization. The table

gives the ratio of the execution time using eta factorization to the corresponding time

without using eta factorization so that

 If the ratio = 1, then the execution time is same for both running without eta

factorization and running with eta factorization.

 If the ratio < 1, then running with eta factorization is slower than running without

eta factorization.

 If the ratio > 1, then running with eta factorization is faster than running without

eta factorization.

For example, the table shows that, for the network with 10 end-nodes with 100 user

requests, running with eta factorization is 31% faster, on an average, than running

without eta factorization.

89

Number of

End–nodes

Using Eta Factorization (average times faster)

Number of User Requests

100 200 400 1000

10 1.31 2.55 2.28 1.35

14 3.50 3.48 2.67 1.22

20 1.96 2.03 2.20 1.50

Table 4.3: Experimental results of two approaches

90

Chapter 5: Conclusions

In this thesis we have combined eta factorization with GUB structure in arc-chain solver

and studied how much improvement in performance can be accomplished for

optimization problem. An arc-chain solver for bifurcated traffic grooming with GUB

structure was done by Mr. Quazi Rahman. A branch and price technique was used in that

arc-chain solver to convert the bifurcated traffic grooming into optimal non-bifurcated

traffic grooming. The performance of the revised simplex method improved significantly

after using GUB structure in this approach.

We extended the approach done by Mr. Quazi by attaching eta factorization with it. We

implemented an efficient scheme to improve the performance of the revised simplex

method of the arc-chain solver by combining the eta factorization with the GUB

structure.

We have done various experiments with our approach and the approach done by Mr.

Quazi Rahman. First, we have done an experiment to compare the values of the simplex

multipliers calculated with eta factorization and without eta factorization. From this

experiment we have found that after certain number of iterations, some values of the

simplex multipliers differ by a very small value due to round-off errors which affects the

results when finding the entering column and hence the number of iterations. But it does

not affect the objective function - the congestion.

91

We have done another experiment to see which interval between refactorizations gives

the best improvements in terms of the time of execution when using eta factorization.

From this experiment we have found that, performing refactorizations at the interval of

when iteration number of the revised simplex method reaches the half of the number of

the logical edges in the network, gives the best results for the time of execution. We used

this result as the optimum interval between refactorizations in the other experiment we

have done.

We have done our final experiment with our approach with the eta factorization and the

approach without eta factorization. We analyzed the experimental results of both

approaches and compared these two results to see how much improvement in

performance we have accomplished using our approach. We have done this experiment

on different size of networks with different traffic loads. We have found that in each case

our approach with eta factorization is faster than the approach without eta factorization.

Our approach of using eta factorization can be pluggable to any network flow problem

that satisfies GUB structure.

In our approach, using an appropriate compression algorithm for the vectors, it may be

possible to reduce the space requirement and also avoid the explicit multiplications

whenever possible. This may improve the performance further. It can be a good research

for future.

92

Bibliography

1. Subir Bandyopadhyay, “Dissemination of Information in Optical Networks”,

Springer-Verlag Berlin Heidelberg, 2008.

2. M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, “Linear Programming and Network

Flows”, Wiley, 1990.

3. C. Barnhart, E. D. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh and P. H.

Vance, “Branch and Price: Column Generation for Solving Huge Integer

Programs”, Operations Research, Vol. 46, No. 3, pp. 316-329, May–June 1998.

4. V. W. S Chan, K. L. Hall, E. Modiano and K. A. Rauschenbach, “Architecture

and Technologies for High-Speed Optical Data Networks”, IEEE Journals of

Lightwave Technology, Vol. 16, No. 12, December 1998.

5. V. Chvatal, “Linear Programming”, W. H. Freeman and Company, New York,

1983.

6. R. Dutta and G. N. Rouskas, “On Optimal Traffic Grooming in WDM Rings”,

IEEE Journal on Selected Areas in Communications, 20(1):110–121, January

2002.

7. R. Dutta and G. N. Rouskas, “Traffic Grooming in WDM Networks: Past and

Future”, IEEE Network, 16(6):46–56, November 2002.

8. P. Green, “Progress in Optical Networking”, IEEE Communications Magazine,

39(1):54–61, January 2001.

93

9. J. Q. Hu and E. Modiano, “Optical WDM Networks: Principles and Practice”,

Volume II, Chapter: Traffic Grooming in WDM Networks, Kluwer Academic

Publishers, 2004.

10. R. Ul-Mustafa and A. E. Kamal, “Design and Provisioning of WDM Networks

with Multicast Traffic Grooming”, IEEE Journal on Selected Areas in

Communications, 24(4):37–53, April 2006.

11. B. Mukherjee, “WDM Optical Communication Networks: Progress and

Challenges”, IEEE Journals on areas in communications, Vol. 18, Issue 10, pp.

1810-1824, October 2000.

12. B. Mukherjee, “Optical Communication Networks”, McGraw-Hill, New York,

1997.

13. S. Ramamurthy and B. Mukherjee, “Survivable WDM Mesh Networks”, Part I-

Protection, In IEEE International Conference on Computer Communications

(INFOCOM), volume 2, pages 744–751, March 1999.

14. R. Ramaswami and K. N. Sivaranjan, “Optical Networks – A Practical

Perspective”, Morgan Kaufman Publishers, Optical Network Magazine, Vol. 3,

May 2002.

15. R. Ramaswami and K. N. Sivarajan, “Design of Logical Topologies for

Wavelength-routed Optical Networks”, IEEE JSAC, Vol. 14, pp. 840-851, June

1996.

16. J. Tomlin, “Minimum-cost Multicommodity Network Flows”, Operations

Research, 14(1):45–51, January–February 1966.

94

17. L. A. Wolsey, “Integer Programming”, John Wiley, New York, 1998.

18. K. Zhu and B. Mukherjee, “Traffic Grooming in an Optical WDM Mesh

Network”, IEEE Journal on Selected Areas in Communications, 20(1):122–133,

January 2002.

19. K. Zhu, H. Zang, and B. Mukherjee, “A Comprehensive Study on Next-

generation Optical Grooming Switches”, IEEE Journal on Selected Areas in

Communications, 21(7):1173–1186, September 2003.

20. “Linear programming”, http://en.wikipedia.org/wiki/Linear_programming.

21. http://www.sun.com/servers/x64/x2200/.

22. Quazi Rahman, Subir Bandyopadhyay and Yash Aneja, “A Branch, Price and Cut

approach to optimal non-bifurcated traffic grooming in WDM networks”,

Technical Report 10-009, School of Computer Science, University of Windsor,

2010.

http://www.sun.com/servers/x64/x2200/

95

Vita Auctoris

Name: Syed Jabbar

Place of Birth: Chittagong, Bangladesh

Year of Birth: 1975

Education: Independent University, Bangladesh (IUB), Dhaka, Bangladesh

 1997 B.Sc.

 University of Windsor, Windsor, Ontario, Canada

 2010 M.Sc.

	University of Windsor
	Scholarship at UWindsor
	2010

	An Efficient Scheme for Non-bifurcated Traffic Grooming in WDM Networks
	Syed Jabbar
	Recommended Citation

	Introduction

