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Abstract 

In optical networks, non-bifurcated traffic grooming is known to be a difficult problem, 

intractable for large networks. One approach is to use the branch and price technique, 

using the Arc-Chain representation. In this approach the GUB decomposition and implicit 

column generation can be used to speed up the optimization process. Our objective is to 

further optimize this approach using Eta Factorization to avoid inverting the basis during 

each iteration of the revised simplex method. 
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Chapter 1: Introduction 

The vision of Information Technology is that data can be stored electronically in any 

electronic device but can be accessible from everywhere by any other electronic device. 

These electronic devices can be computers or any other devices that can generate or store 

data in an electronic form. A network is an interconnection of a group of computers or 

electronic devices connected for data transfer or data sharing. To achieve fast data 

transfer or data sharing, optical network is one of the key solutions to this increasing 

demand for bandwidth [12]. Optical networks are widely used because of its high 

bandwidth. The first generation of optical networks just replaced copper wires with 

optical fibers that connect electronic devices such as computers. Second generation 

optical networks take into account some important issues such as optimizing the use of 

optical network resources, using the same fiber for carrying multiple optical signals 

simultaneously, and handling the speed difference between optical signals and electronic 

circuits as the communication speed of optical signals is far greater than the processing 

speed of electronic circuits. 

 

Wavelength Division Multiplexing (WDM) is the technology of sending multiple optical 

signals having different carrier wavelengths through a single fiber. The physical topology 

of a WDM network shows the major physical components of the network with the 

connections that includes end-nodes (typically computers or any other devices that can 

generate or store data in an electronic form), routers that determine how the optical 

signals are sent to their respective destinations, and optical fiber links that connect the 

routers physically. A lightpath is an optical connection from one end-node to another in a 
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WDM network. A logical topology of a WDM network defines how the end-nodes are 

connected by the lightpaths in a network. A logical topology shows directed edges from 

one end-node to another. If there is a lightpath from end-node a to end-node b, it is 

denoted by a  b. 

 

The congestion of a WDM network is the load on the logical edge that carries the 

maximum amount of traffic as data. Minimizing congestion is a very common and 

popular objective for optimization. For example, if in a network there are three logical 

paths p1, p2 and p3 available to send user requests from source end-node a to destination 

end-node b, and the loads on p1, p2 and p3 are 0.3, 0.8 and 0.4 respectively then, in this 

network, the congestion is 0.8 which is the load on the logical path p2. If we can 

minimize this congestion, which is 0.8, taking into account and balancing the loads on the 

other logical paths p1 and p3, then this network can have more room to handle increases 

in the traffic from other requests. 

 

Linear programs (LP) are often used to solve this kind of optimization problems. An LP 

formulation includes a linear objective function which has to be either minimized or 

maximized. The fact that shared resources of the network are limited is expressed using a 

set of linear constraints in an LP. In our optimization problem, the linear objective 

function is minimizing the congestion. A frequently used method for solving a linear 

programming formulation is the revised simplex method. In the revised simplex method, 

in each iteration, one feasible solution is replaced by another “better” solution until an 

optimal solution is found. 
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Traffic grooming is a technique in WDM networks that combines a number of low-speed 

traffic streams, so that the high capacity of each lightpath can be used as efficiently as 

possible [DR2002, HM2004, ZM2002, ZZM2003]. The capability of handling large 

networks depends on improving the efficiency of traffic grooming. There are two traffic 

grooming models, the bifurcated traffic grooming model and the non-bifurcated traffic 

grooming model. In the bifurcated traffic grooming model, the traffic from a source to a 

destination may be divided into as many components as necessary to optimize the 

network performance and communicated using different logical paths. In the non-

bifurcated traffic grooming model, the entire traffic from source to destination must be 

routed on the same path and be communicated using a single logical path. For this reason, 

non-bifurcated traffic grooming is an ideal choice for real-time applications that require 

that their traffic be kept intact. 

 

In Operations Research, a representation called the arc-chain representation can be used 

efficiently to minimize the congestion. Solving the problem by the revised simplex 

method using the arc-chain representation involves a basis (matrix) of size (m+q)×(m+q) 

where m is the number of logical edges and q is the number of user requests. Here, for N 

end-nodes, the number of user requests or commodities is close to N(N-1), since most 

end-nodes communicate with each other. If there are, on average, 3 inbound and 

outbound edges to and from each end-node, then the number of logical edges m = 3×N 

and q = N(N–1). As q >> m, when the number of end-nodes increases, the value of q 

increases rapidly. 



4 

 

An arc-chain solver for bifurcated traffic grooming with GUB structure has implemented 

in our lab by Mr. Quazi Rahman a candidate for the Ph.D (CS) degree of this University. 

Then a technique called Branch and Price has been used to achieve non-bifurcated traffic 

grooming by repeatedly performing optimal bifurcated traffic grooming. During the 

process of branch and price technique, the arc-chain solver is executed again and again to 

get the optimal solution for the bifurcated traffic grooming. 

 

1.1 Objective of this Thesis 

In this thesis, our objective is to optimize the approach implemented by Mr. Quazi 

Rahman further by using the technique Eta Factorization [5] to improve the time 

required to determine the strategy for traffic grooming. We will discuss how to 

incorporate the eta factorization with the arc-chain solver implemented by Mr. Quazi 

Rahman to improve the performance of it and hence the cumulative performance of the 

approach will be improved. 

 

After implementing our approach, we will describe the experiments to evaluate our 

approach and compare it with the approach implemented by Mr. Quazi Rahman. We will 

describe some experiments with our approach to analyze different functionalities of our 

approach and to see how those functionalities can affect the performance of our approach.  
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1.2 Motivation 

The most expensive operation of revised simplex method is inverting a basis (matrix) in 

each iteration. So, in each iteration of the revised simplex method using arc-chain 

representation, the matrix inversion is done on the matrix of size (m+q)×(m+q). 

 

It is established that the constraints in the arc-chain representation satisfy a special 

structure called the Generalized Upper Bounding (GUB) structure [5]. In operations 

research, it is well known that if a LP satisfies the GUB structure, operations can be done 

on a matrix of size (m×m) instead of carrying out operations on the entire basis which is a 

matrix of size (m+q)×(m+q). So, in each iteration of the revised simplex method, with a 

GUB structure, the most expensive operation of inverting a matrix can be done on a 

matrix of size (m×m) instead of operations on a matrix of size (m+q)×(m+q). This 

improves the time it takes to perform an iteration of the revised simplex method 

significantly, as q >> m. 

 

In the each iteration of the revised simplex method using the arc-chain representation 

with the GUB structure, the expensive operation of matrix inversion still has to be done, 

although it is done on a smaller matrix size. If the matrix inversion can be avoided, the 

time to perform each iteration of revised simplex method can be improved further. Eta 

factorization is a technique by which matrix operations in the revised simplex method can 

be done without calculating the matrix from the scratch and without inverting the matrix. 

Using eta factorization with GUB structure can improve the performance of revised 
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simplex method further, since no matrix inversion is needed at all in eta factorization [5] 

[1]. 

 

The arc-chain solver implemented by Mr. Quazi can be extended by combining eta 

factorization with the GUB structure in it. So, in each iteration of the revised simplex 

method, the matrix operations can be done without calculating the matrix from scratch 

and without inverting the matrix at all. It improves the time to perform each iteration of 

the revised simplex method and, as a result, the cumulative time to execute the arc-chain 

solver is improved further. 

 

Using these approaches we have formulated our algorithm for non-bifurcated traffic 

grooming in WDM networks and have implemented our algorithm in C. We have tested 

our program on various network sizes with different traffic loads. 

 

1.3 Organization of Thesis 

This thesis is organized as follows. In Chapter 2, we have given a background review in 

the area of WDM network and optimization. In Chapter 3, we have outlined our 

formulation for the optimization using eta factorization combined with GUB structure. In 

Chapter 4, we have given the experimental results we have found after implementing our 

formulation. In Chapter 5, we have drawn some conclusions and have made some 

suggestions for future research in this area. 
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Chapter 2: Background Review 

2.1 Optical Networks 

The first generation of optical network just replaced copper wires with optical fibers that 

connect electronic devices such as computers. Optical fibers have become an essential for 

internet and data-networking infrastructure because of the fast transmission rate (50 

terabits per second), low signal attenuation, low signal distortion, low power requirement, 

low material usage, small space requirement and cost efficiency of such fibers [11]. 

 

The second generation optical network takes into account the following issues: 

• Optimization – optimizing the use of optical network resources because optical 

devices are more expensive than electronic devices. 

• Use of fibers – using same fiber for carrying multiple optical signals at different 

carrier wavelengths simultaneously. 

• Speed difference – handling the speed difference between optical signals and 

electronic circuits. Since the communication speed of optical signals is far greater 

than the processing speed of electronic circuits, this is an important issue. 

 

2.2 Optical Fiber 

An optical fiber is a very thin glass cylinder or filament that carries optical signals in the 

form of optical signals [1]. An optical fiber consists of: 

 

Core – cylinder made of silica (SiO2) with a refractive index µ1. 
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Cladding – cylinder made of silica (SiO2) with a lower refractive index µ2. 

Buffer – protects and isolates the fiber by encapsulating it surrounding the cladding. 

[1] [12] 

 

 

     Fiber Cable 

 

 

Cross-section of a Fiber 

Figure 2.1: Fiber Cable and cross-section of a fiber [1] 

 

Light can travel along a fiber with a relatively low attenuation because of the physical 

phenomenon of total internal reflection. The core and the cladding have different 

refractive indexes - µ1 and µ2 respectively. As µ2 is less than µ1, total internal reflection 

can occur at the core if the angle of incidence is properly chosen and data as a light signal 

can propagate through the fiber [12]. Light propagates in optical fibers due to a series of 
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total internal reflections that occur at the core-cladding interface. Figure 2.2 shows the 

different refractive indices of core and cladding. 

 

 

Figure 2.2: Light propagation through a fiber using total internal reflections [1] 

 

The differences between copper wires and fibers as communication media are: 

“1. optical devices are much more expensive compared to electronic devices. So it is 

important to optimize the use of optical network resources, 

2. a number of optical signals at different carrier wavelengths may be simultaneously 

carried by the same fiber, 

3. the speed at which optical signals may be communicated is far greater than the speed at 

which data can be processed by electronic circuits”. [1] 

 

2.3 Wavelength Division Multiplexing (WDM) 

Wavelength Division Multiplexing (WDM) is a technology that uses multiple optical 

signals on the same fiber [1]. There is a huge bandwidth mismatch between optical data 

rate and electronic data rate. WDM uses this mismatch to utilize the capability of a fiber 

as much as possible by dividing the huge bandwidth of a fiber into many channels (non-
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overlapping bands of wavelengths), each operating at a desirable speed, e.g., the peak 

electronic speed of a few Gb/s [11]. As a result, the transmission capacity of a fiber is 

improved by having multiple channels at different carrier wavelengths. 

 

2.3.1 Advantages of WDM 

The key advantage of optical technology is speed. Other advantages of WDM include [1]: 

1. Low signal attenuation: the strength of signal propagating through fibers goes 

down at a low rate. As a result, the number of optical amplifiers needed is 

relatively small. 

2. Low signal distortion. 

3. Low power requirement. 

4. Low material usage. 

5. Small space requirements. 

6. Low cost. 

 

2.3.2 WDM Network Architecture 

The architecture of a wavelength-routed WDM network has been discussed in several 

papers: [12], [13] [15], [4], [8]. Using the WDM network technology, end users can 

communicate via all-optical WDM channels that may span multiple fiber links. The 

WDM architecture consists of nodes interconnected by a pair of unidirectional fiber links. 

Each node has a set of transmitters and a set of receivers to send or receive optical signals 

at specified carrier wavelengths. Data at the source end-node, represented by an 

electronic signal, modulates an optical signal at the carrier wavelength corresponding to 
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the channel. The transmitter directs the modulated signal to the optical fiber connected to 

the transmitter. At the end-node, a receiver tuned to the same carrier wavelength extracts 

the data from the incoming optical signal. Router nodes are responsible to re-direct data 

to the appropriate output port. Figure 2.3 shows an overview of a WDM network. 

 

 

Figure 2.3: Wavelength Division Multiplexing (WDM) Architecture [1] 

 

2.3.3 Physical Topology 

A physical topology of a WDM network shows the major physical components of the 

network with the connections. This includes end-nodes and routers connected by optical 

fiber links [1]. 
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Figure 2.4: Physical Topology 

 

Figure 2.4 shows a physical topology with four end nodes and four routers connected 

with optical fibers. 

 

2.3.4 Lightpath 

A lightpath is an optical connection from one end-node to another. Once the lightpaths 

are set up, the physical topology is irrelevant for determining a strategy for data 

communication. A lightpath is defined by a path between end nodes and a wavelength on 

that path in a network. It provides a “pipe” between end nodes with a bandwidth equal to 

the bandwidth of the channel. Two lightpaths that share a path in the network must use 

different wavelengths [15]. 

End Node 

Optical Router 

Optical Fiber 
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Figure 2.5: Physical Topology with a lightpath 

 

Figure 2.5 shows the physical topology shown in Figure 2.4 with a lightpath. In this 

figure, the lightpath is established from end-node E1 to end-node E3. 

 

2.3.5 Logical Topology 

A logical topology defines how the end-nodes are connected by lightpaths in a network. 

A logical topology shows directed edges from one end-node to another. If there is a 

lightpath from node a to node b, it is denoted by a  b. The logical topology of a WDM 

network is represented as a directed graph GL = (VL, EL), where VL is a set of the end-

End Node 

Optical Router 

Optical Fiber 

Lightpath 
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nodes of the physical topology and EL is the set of the lightpaths. For routing data, the 

actual route of a lightpath through physical topology is irrelevant [12]. 

 

 

Figure 2.6: Logical Topology 

 

Figure 2.6 shows a logical topology with directed edges. In this logical topology, the 

directed arc E1E3 represents the light path shown in Figure 2.5. Figure 2.7 shows an 

alternate route of the lightpath from E1 to E3 shown in Figure 2.5. Use of the alternate 

route in Figure 2.7 instead of the route shown in Figure 2.5 does not affect the logical 

topology. 
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Figure 2.7 An alternate route of the lightpath from E1 to E3 shown in Figure 2.5. 

 

2.3.6 Routing in WDM Networks 

In the logical topology of a WDM network, the routing strategy is the policy of sending 

data from all source nodes to their respective destination nodes using appropriate 

lightpaths. Traffic is routed from a source node s to a destination node d using one or 

more sequences of lightpaths from s to d where each path consists of one or more 

lightpaths. 

 

 

 

End Node 

Optical Router 

Optical Fiber 

Lightpath 
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Figure 2.8: A 4-Node logical topology and its traffic matrix 

 

In Figure 2.8, 25 units of data needs to be sent from node E1 to E4. This amount of data 

can be sent using one or both of the following two paths: 

Path 1):  from node E1 to node E4 using logical link E1 E4, 

Path 2): from node E1 to node E3 using logical link E1 E3 and then from node E3 

to node E4 using the logical link E3  E4. 

We can use either one of the two paths or can distribute the traffic over both paths. For 

every pair of source destination nodes that has some traffic to route, every possible routes 

have to be considered in the logical topology. The objective is to route all the traffic in a 

way that minimize the congestion in the network and thus optimize the use of optical 

resources in the network. 

 

 

Nodes E1 E2 E3 E4 

E1 0 0 5 25 

E2 30 0 0 0 

E3 0 10 0 80 

E4 0 15 0 0 

E3 E2 

E1 E4 

Logical Topology 
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2.4 Linear Programming (LP) 

Linear programs are often used to solve optimization problems. A linear programming 

formulation includes a linear objective function which has to be either minimized or 

maximized, a set of linear constraints and a set of restrictions imposed for the underlying 

decision variables [5]. 

 

Following is an example of a linear programming formulation: 

Minimize c1x1 + c2x2 + …… + cnxn 

Subject to a11x1 + a12x2 + …… + a1nxn ≤  b1 

a21x1 + a22x2 + …… + a2nxn ≤  b2 

  ………………… 

am1x1 + am2x2 + …… + amnxn ≤  bm 

    x1, x2, ……, xn ≥  0 

 

In this example, 

 c1x1 + c2x2 + …… + cnxn is the objective function to be determined, 

 x represents the vector of decision variables that to be determined, 

 c and b are vectors of known coefficients, 

 m inequality constraints that can be represented as a constraints matrix A such 

that: 
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    a11 a12 … a1n  

A =   a21 a22 … a2n  

    … … … …  

    am1 am2 … amn  

 

 

The objective function is of the form: j

n

j

j xc
1

 

The constraints are of the form:  ij

j

ij bxa  

So, using the matrix and vector notations, the formulation can be written as: 

 Minimize cx 

Subject to Ax ≤ b 

 

Before solving any LP problem, the first step is to transform all the constraints into 

equality constraints. So, the constraints can be written into: 

 

a11x1 + a12x2 + …… + a1nxn + xs
1
  =  b1 

a21x1 + a22x2 + …… + a2nxn +      xs
2
  =  b2 

 ………………… 

am1x1 + am2x2 + …… + amnxn +  xs
m
 =  bm 

 

     x1, x2, ……, xn ≥  0 
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Here, to transform into equality constraints, non-negative slack variables xs
i
 are added 

where 1 ≤ i ≤ m. There are m constraints, so m slack variables were added one for each 

constraint. 

 

Now, we have an equation of form Ax=b. In this equation: 

A is a m×(n+m) matrix, 

b is a column vector of m known coefficients, and 

x is a vector consisting of the n decision variables x1, x2, … , xn followed by the m 

slack variables xs
1
, xs

2
 , … , xs

m
. 

 

In the equation Ax=b, the values for x1, x2, … , xn that satisfy all the constraints of the LP 

problem is called the feasible solution of the problem. A feasible solution that minimizes 

or maximizes the objective function is called an optimal solution and the corresponding 

value of the objective function is called the optimal value. Not every LP problem 

necessarily has a unique optimal solution. Some problems may have many different 

solution and some do not have any optimal solution at all [5]. 

 

2.5 Revised Simplex Method 

The simplex method is the first method for solving linear programming formulation 

introduced by G. B Dantzig in 1947 in which one basic feasible solution is replaced by an 

adjacent solution. In each iteration of the simplex method, one feasible solution is 

replaced by another solution. The column in the solution being replaced is called the 

leaving column and the column replacing it is called the entering column. The variable 



20 

 

corresponding to the leaving column is called the leaving variable and the variable 

corresponding to the entering column is called the entering variable. These resulting 

implementations of the simplex method are called the revised simplex method [5]. 

 

2.5.1 Steps in one iteration of the Revised Simplex Method 

Notation used: 

nc = number of constraints. 

nv = number of variables. 

A = a matrix of size nc×nv where each element in the matrix is a constant, used 

to specify the constraints. 

[AI] = a matrix of size nc×(nv+nc) where first nv columns of [AI] are taken from 

A and the remaining nc columns of [AI] are taken from identity matrix I. 

a = a column of [AI] 

b = a column vector of nc nonnegative constants. 

c = a row vector of nv constants. 

cB = a row vector of nc constants (cost vector). 

y = a row vector of nc variables. 

d = a column vector of nc variables. 

xB = a column vector of nc variables, called basic variables. 

B = a nonsingular matrix of size nc×nc. 

I = identity matrix of size nc×nc. 
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The following steps are done in each iteration of a revised simplex method: 

 

Step 1: Solve the equation y.B = cB. 

Step 2: Find, if possible, an entering column. The entering column may be any column a 

of [AI] such that y.a < c. If no entering column found, then the current solution 

is optimal. 

Step 3: Solve the equation B.d = a. 

Step 4: Find the largest t such that xB – td ≥ 0. If no t found, then the problem is 

unbounded, otherwise, at least one component of xB – td equals 0. That 

corresponds to the leaving variable and the corresponding column in B is the 

leaving column. 

Step 5: In the basis B, replace the leaving column by the entering column. Recalculate xB 

using the formula by xB = B
–1

b. Replace the cost of the leaving column in cB by 

the cost of the entering column. 

 

2.6 Congestion 

The congestion is the load Λmax on the logical edge that carries maximum amount of data 

[1]. Minimizing congestion is a very common and popular objective for optimization for 

the following reasons: 

 Higher value of Λmax means more data is transported by the lightpath carrying that 

traffic and to handle more data, more time and/or complex electronic hardware is 

needed. 
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 If Λmax is less than the capacity of the lightpath, all logical edges may be realized 

by one single lightpath which reduces the network cost, because each lightpath 

adds additional cost because of its optical and electronic hardware. 

 

 Lower value of Λmax allows greater possibility of scaling up the traffic without 

changing the routing strategy in the network [1]. 

 

2.7 Traffic Grooming in WDM 

Traffic Grooming is a technique in WDM networks that combines a number of low-speed 

traffic streams from users so that the high capacity of each lightpath may be used as 

efficiently as possible. Traffic grooming minimizes the network cost in terms of the 

number of transmitters, receivers, and optical switches [DR2002, HM2004, ZM2002, 

ZZM2003]. 

 

2.7.1 Optical Carrier Level Notation (OC-n) 

In traffic grooming, the data communication rate is specified using the Optical Carrier 

level notation (OC-n). OC-n means n×51.84 Mbps. If the capacity of a lightpath is 10 

Gbps or 2.5 Gbps, it is specified as OC-192 or OC-48. 

 

2.7.2 Traffic Grooming Example 

For this example, it is assumed that the data communication capacity of a lightpath is 2.5 

Gbps or OC-48. 
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Figure 2.9: A Physical Topology 

 

 E1 E2 E3 E4 

E1  OC-12 

OC-24 

OC-12 

OC-3 

OC-6 

OC-6 

OC-3 

OC-3 

E2 OC-6  OC-3 OC-6 

OC-3 

OC-3 

E3 OC-12 OC-3 

OC-6 

 OC-6 

E4 OC-3 OC-3   

 

Table 2.1: Traffic Requests 
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A possible logical topology to support all requests in Table 2.1 is shown in Figure 2.10. 

Here lightpath L1 may be selected to serve the requests: 

 

OC-12 from E1 to E3, 

OC-3 from E1 to E3, 

OC-6 from E1 to E3, 

OC-6 from E1 to E4, 

OC-3 from E1 to E4, 

OC-3 from E2 to E3, 

 

 

Figure 2.10: A Logical Topology 

 

In this example, the OC-6 request from E1 to E4 used the logical path E1 => E3 => E4. But 

there may be other choices for a valid logical path to handle this OC-6 request from E1 to 

E4. For instance, this request could be handled by using the logical path E1 => E2 => E4 

as well. 

E3 E2 

E1 E4 
L5 

L3 

L1 

L4 
L2 
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2.7.3 Bifurcated Traffic Grooming 

In the Bifurcated Traffic Grooming model, the traffic t(s, d) from end node Es to end 

node Ed may be divided into as many components as necessary to optimize the network 

performance [7]. That means, a part of the total traffic of an individual request may be 

split into a number of components and the different components of that request may be 

communicated using different logical paths. 

 

 

Figure 2.11: Bifurcated Traffic Grooming 

 

Bifurcated Traffic Grooming increases the complexity and the cost of traffic reassembly. 

It may also introduce delay jitter at the application layer, as many applications, especially 

real-time applications, require that their traffic be kept intact [10]. 

 

E3 

E2 

E1 

E4 

1 
3 

6 

2 

4 5 

r1 

0.4 
r1 

0.6 

0.4 

r1 
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2.7.4 Non-Bifurcated Traffic Grooming 

In the Non-Bifurcated Traffic Grooming model, the entire traffic t(s, d) from end node Es 

to end node Ed must be routed on the same path. That means, the total traffic of an 

individual request must be communicated using a single logical path. 

 

 

Figure 2.12: Non-Bifurcated Traffic Grooming 

 

Non-Bifurcated Traffic Grooming is also more complex and time consuming as it has to 

satisfy an additional requirement that each request has to be routed using a single logical 

path. That means, one additional formulation involving binary variables is needed [1]. 

Non-Bifurcated Traffic Grooming is an ideal choice for real-time applications that 

require their traffic be kept intact. 

 

E3 

E2 

E1 

E4 

1 
3 

6 

2 

4 5 

r1 
1.0 
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2.8 Formulations for Traffic Grooming  

In this section we will describe two possible formulations for traffic grooming – the 

Node-Arc formulation and the Arc-Chain formulation. 

 

2.8.1 Node-Arc Formulation 

A node-arc incidence matrix represents a network with Ne end-nodes and m arcs as a - 

Ne×m matrix, where the i
th

 row corresponds to the i
th

 end-node and the j
th

 column 

corresponds to the j
th

 arc.  The column corresponding to the arc i  j has  

 +1 in the row corresponding to node i 

 -1 in the row corresponding to node j 

 0 in all other rows 

Table 2.2 is the Node-Arc representation for the network shown in Figure 2.13 

 

 

Figure 2.13: A 4-End-Node Network 

E3 

E2 

E1 

E4 
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 (E1,E2) (E2,E1) (E1,E3) (E3,E1) (E1,E4) (E2,E3) (E4,E2) (E4,E3) 

E1 1 -1 1 -1 1 0 0 0 

E2 -1 1 0 0 0 1 -1 0 

E3 0 0 -1 1 0 -1 0 -1 

E4 0 0 0 0 -1 0 1 1 

 

Table 2.2: Node-Arc incidence matrix 

 

2.8.2 Arc-Chain Formulation 

Definition: “A chain [2] from a source s to a destination d is a sequence of logical edges 

[(s = i0  i1), (i1  i2),…, (ip-1  ip = d)]. The logical path described by the chain above 

is [(s = i0  i1  i2  …  ip-1  ip = d].” [1] 

 

In a network with m logical edges numbered 1, 2,…, m, a chain may be represented by a 

vector of m 1‟s and 0‟s so that, if the i
th

 element in the chain is 1, then the i
th

 logical edge 

appears in the chain, and if the i
th

 element in the chain is 0, then the i
th

 logical edge does 

not appear in the chain for all i, where 1 ≤ i ≤ m. 
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Figure 2.14: A 4-End-Node Network 

 

Figure 2.14 shows a simple logical topology with four end nodes and six logical edges. 

Each logical edge is assigned a number from 1 to 6 as shown. This network carries three 

commodities K1, K2, and K3. The source and destination for the commodities are shown 

in Table 2.3. 

 

Commodity Source Destination 

K1 E1 E3 

K2 E2 E3 

K3 E4 E3 

 

Table 2.3: Source and Destination for the Commodities in Figure 2.14 

E3 

E2 

E1 

E4 

1 
3 

6 

2 

4 5 
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There are three logical paths for K1, one logical path for K2, and two logical paths for K3. 

The logical paths and chains (vectors) are shown in the Table 2.4. 

 

Commodity Logical Paths Chains (Vectors) 

K1 

E1  E2  E3 

E1  E4  E3 

E1  E4  E2  E3 

[1, 0, 1, 0, 0, 0] 

[0, 0, 0, 1, 1, 0] 

[0, 1, 1, 1, 0, 0] 

K2 E2  E3 [0, 0, 1, 0, 0, 0] 

K3 

E4  E3 

E4  E2  E3 

[0, 0, 0, 0, 1, 0] 

[0, 1, 1, 0, 0, 0] 

 

Table 2.4: Logical Path and Chain (Vector) for the Commodities in Figure 2.14 

 

Arc-Chain Incidence Matrix: “A network having m edges and q commodities may be 

represented by an arc-chain incidence matrix AC. If there are n
k
 chains for the k

th
 

commodity K
k
, for all k, 1 ≤ k ≤ q, AC is an m × n matrix where n

1
 + n

2
 +  … + n

q
 is the 

total number of chains for all commodities. Each chain of a commodity corresponds to a 

column in matrix AC so that the first n
1
 columns of AC correspond to chains for 

commodity K
1
, the n

2
 columns correspond to chains for commodity K

2
, and so on.” [1] 

 

Figure 2.15 shows the arc-chain incidence matrix AC of the network shown in Figure 

2.14 for three commodities K1, K2, and K3. 
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    1 0 0 0 0 0  

    0 0 1 0 0 1  

AC =   1 0 1 1 0 1  

    0 1 1 0 0 0  

    0 1 0 0 1 0  

    0 0 0 0 0 0  

 

Figure 2.15: Arc-Chain Incidence Matrix 

 

In Figure 2.15, the rows of the arc-chain matrix AC corresponds to the edges 1, 2, 3, 4, 5, 

6 of the network shown in Figure 2.12. Columns 1, 2, and 3 correspond to the chain for 

commodity K1, column 4 corresponds to the chain for commodity K2, and the columns 5 

and 6 correspond to the chain for commodity K3. 

 

2.8.3 Implicit Column Generation 

In arc-chain formulation, for each commodity there are may be many possible chains 

available. So, storing all possible chains for all commodities is not feasible. This problem 

can be handled by adapting Tomlin‟s approach for solving a minimum cost multi-

commodity flow problem [16]. Instead of explicitly storing the constraints as done in an 

LP solver, Tomlin's approach implicitly keeps track of the constraints and generates a 

chain on the fly, only when it is established that the chain should be part of the column 

entering the basis. 
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2.9 LP Formulation using Arc-Chain Representation 

The linear programming problem using arc-chain representation is as follows [1]: 

 

Minimize Λmax        … (eq. 2.1) 

Subject to AC1x1 + AC2x2 + …… + ACqxq ≤ Λ 

e1x1     = Γ1  … (eq. 2.2) 

e2x2    = Γ2 

  ………………………………………… 

eqxq = Γq 

 

Here, the objective function is Λmax, the congestion, 

m = number of logical edges. 

q = number of commodities (requests). 

Kk = k
th

 commodity. 

n = total number of chains for all commodities. 

nk = number of chains for k
th

 commodity. 

AC = arc-chain incidence matrix of size (m+q)×n. 

ACk = sub-matrix of AC of size (m× nk) that corresponds to all the chains of 

commodity Kk. 

ack
ij
 = i

th
 element of j

th
 chain of commodity Kk where ack

ij
 = 1 if edge i appears 

in chain j of commodity Kk and ack
ij
 = 0 otherwise. 

Γk = traffic t(src(k), dest(k)) for commodity k, for all k, 1 ≤ k ≤ q. 

xk = column vector of variables containing nk elements. 
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xk
j
 = variable denoting the flow over j

th
 chain of Kk commodity, 

for all k, 0 ≤ xk
j
 ≤ Γk. 

ek = row vector of nk 1‟s, ([1, 1, …, 1]) . 

Λ = column vector with m occurrences of Λmax ([Λmax, Λmax, …, Λmax]). 

xs = column vector of m slack variables. 

xs
i
 = i

th
 slack variable. 

B = basis matrix for the revised simplex method of size (m+q)×(m+q). 

cB = vector of (m+q) cost coefficients. 

 

The first line of the equation (eq. 2.2) corresponds to the edges in the logical topology. 

The right hand side of the equation (eq. 2.2) represents the column vector of Λmax of size 

m which is [Λmax, Λmax, …, Λmax]. The left hand side is ∑
q

k=1
ACkxk. where ACk is a sub-

matrix of AC having size of (m× nk) and xk is a column vector of size m. For logical edge 

i, ∑
q

k=1
∑

n
k

j=1
 ack

ij
. xk

j
 ≤ Λmax, which is the sum of i

th
 elements of all the products ACkxk 

should be less than or equal to the congestion Λmax. 

 

Lines 2 to q+1 of the equation (eq. 2.2) correspond to the commodities (requests). So, the 

constraint for commodity k is ek.xk = Γk for all i where 1 ≤ k ≤ q. But ek is a row vector of 

nk 1‟s ([1, 1, …, 1]). So, the constraints become ∑
n
k

j=1
 xk

j
 = Γk, which is the sum of the 

flows for k
th

 commodity using all chains for k
th

 commodity must be equal to the 

requirement Γk. 
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2.9.1 Solving LP using Arc-Chain Representation 

In the revised simplex method, the first step to solve a LP problem is to remove the 

inequalities by adding slack variables. So, after adding slack variable to remove the 

inequality constraints in the first line of the equation (eq. 2.2), it becomes: 

 

AC1x1 + AC2x2 + …… + ACqxq    +  xs = Λ 

e1x1      = Γ1  … (eq. 2.3) 

e2x2     = Γ2 

  ………………………………………… 

eqxq  = Γq 

 

Considering the network shown in Figure 2.14 and the three commodities described in 

Table 2.4, let the traffic demand Γ1, Γ2, and Γ3 for commodities K1, K2, and K3 are 0.3, 

0.5, and 0.7 respectively. So, the constraints in the equation (eq. 2.3), in matrix form is: 

 

                x1
1
        

 1 0 0 0 0 0 1 0 0 0 0 0    x1
2
      Λmax  

 0 0 1 0 0 1 0 1 0 0 0 0    x1
3
      Λmax  

 1 0 1 1 0 1 0 0 1 0 0 0    x2
1
      Λmax  

 0 1 1 0 0 0 0 0 0 1 0 0    x3
1
      Λmax  

 0 1 0 0 1 0 0 0 0 0 1 0  .  x3
2
   =   Λmax  

 0 0 0 0 0 0 0 0 0 0 0 1    xs
1
      Λmax  

 1 1 1 0 0 0 0 0 0 0 0 0    xs
2
      0.3  

 0 0 0 1 0 0 0 0 0 0 0 0    xs
3
      0.5  

 0 0 0 0 1 1 0 0 0 0 0 0    xs
4
      0.7  

                xs
5
        

                xs
6
        

          … (eq. 2.4) 
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In this constraints matrix (eq. 2.4): 

o The first m rows correspond to the first line of the equation (eq. 2.3) that 

corresponds to 6 logical edges in this example. 

o The last q rows correspond to the remaining lines of the equation (eq. 2.3) 

that correspond to the 3 commodities in this example. 

o For commodity K1: 

 The columns 1, 2 and 3 correspond to the three chains of this 

commodity. 

 The variables x1
1
, x1

2
 and x1

3
 correspond to the flows for these 

three chains. 

o For commodity K2: 

 Column 4 corresponds to the one chain of this commodity. 

 Variable x2
1
 corresponds to the flows for this one chain. 

o For commodity K3: 

 Columns 5 and 6 correspond to the two chains of this commodity. 

 Variables x3
1
 and x3

2
 correspond to the flows for these two chains. 

o Variables xs
1
, xs

2
, xs

3
, xs

4
, xs

5
 and xs

6
 are the slack variables. 

o The identity matrix in rows 1 to 6 and columns 7 to 12 correspond to the 

slack variables. 
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After taking the variable Λ to the left hand side in the equation (eq. 2.3), the constraints 

become: 

 

–Λ + AC1x1 + AC2x2 + …… + ACqxq    +  xs = 0 

e1x1     = Γ1  … (eq. 2.5) 

e2x2    = Γ2 

  ………………………………………… 

eqxq  = Γq 

 

 

The matrix form of the equation (eq. 2.5) is as follows: 

 

                 Λmax        

                 x1
1
        

 –1 1 0 0 0 0 0 1 0 0 0 0 0    x1
2
      0.0  

 –1 0 0 1 0 0 1 0 1 0 0 0 0    x1
3
      0.0  

 –1 1 0 1 1 0 1 0 0 1 0 0 0    x2
1
      0.0  

 –1 0 1 1 0 0 0 0 0 0 1 0 0    x3
1
      0.0  

 –1 0 1 0 0 1 0 0 0 0 0 1 0  .  x3
2
   =   0.0  

 –1 0 0 0 0 0 0 0 0 0 0 0 1    xs
1
      0.0  

 0 1 1 1 0 0 0 0 0 0 0 0 0    xs
2
      0.3  

 0 0 0 0 1 0 0 0 0 0 0 0 0    xs
3
      0.5  

 0 0 0 0 0 1 1 0 0 0 0 0 0    xs
4
      0.7  

                 xs
5
        

                 xs
6
        

 

          … (eq. 2.6) 
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In this constraints matrix (eq. 2.6): 

o In each column, for the values in the first m positions corresponding to the 

flow variable xk
j
 is coming from the chain Ck

j
 in ACk. The values in the 

remaining q positions are all 0‟s except for the position m+k where the 

value is 1. 

o In the column for Λmax, the values in the first m positions are –1 and in the 

remaining q positions the values are 0. 

o In the column for slack variable xs
i
, the values are all 0‟s except for the 

position i where the value is 1. 

 

2.9.2 Finding an Initial Feasible Solution 

The total number of constraints in the equation (eq. 2.3) is m+q. So, the basis in the 

equation (eq. 2.6) should be a (m+q)×(m+q) matrix. But in (eq. 2.6), the basis is not a 

(m+q)×(m+q) matrix. A technique [1] can be used to create the basis B of size 

(m+q)×(m+q) and the xB denoting the vector corresponding to the basis variables. To 

find the initial feasible solution, the idea of the technique is to select only one chain from 

each commodity in the basis B and adjust the slack variables accordingly. 

 

For the network shown in Figure 2.14 with the six logical edges (1, 2, 3, 4, 5, 6) and three 

commodities (K1, K2, K3) having the traffic demands 0.3, 0.5 and 0.7 will have the basis 

of size (m+q)×(m+q) which is (6+3)×(6+3) = 9×9 matrix. The steps for finding the 

basis corresponding to the initial feasible solution are as follows: 
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Step 1: Choose any one chain from each commodity and send the entire traffic for the 

commodity through the selected chain. In this example, let‟s select the chains: 

E1  E2  E3 ([1, 0, 1, 0, 0, 0]) from commodity K1, 

E2  E3 ([0, 0, 1, 0, 0, 0]) from commodity K2 and  

E4  E2  E3 ([0, 1, 1, 0, 0, 0]) from commodity K3. 

 

Figure 2.16 shows the traffic flow on each logical edge. 

 

 

Figure 2.16: Network shown in Figure 2.14 with the traffic flows 

 

Step 2: Calculate the sum of the flows on each logical edge and find the logical edge 

carrying the maximum flow Λmax. In this example, the logical edge 3 is carrying the 

maximum flow of 1.5. So, the value of Λmax is 1.5. 

 

E3 

E2 

E1 

E4 

1 
3 

6 

2 

4 5 

0.3+0+0 0.3+0.5+0.7 

0+0+0 

0+0+0 

0+0+0 

0+0+0.7 
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Step 3: In the basis, create the columns for Λmax and the three chains selected from the 

three commodities K1, K2 and K3. The values for the corresponding basis variables are 

1.5, 0.3, 0.5 and 0.7 respectively. 

 

Step 4: The logical edge 3 is carrying the maximum flow Λmax = 1.5. So, no slack 

variable is needed for the logical edge 3. All the remaining logical edges need slack 

variables and the values of these slack variables need to be adjusted to satisfy the 

constraints in the first line of the equation (eq. 2.5). So, the values of the slack variables 

are calculated as follows: 

 

 Slack variable for the logical edge 1 

 –1×1.5 + 1×0.3 + 0×0.5 + 0×0.7 + 1× xs
1
  = 0 

 xs
1
 = 1.2 

 Slack variable for the logical edge 2 

 –1×1.5 + 0×0.3 + 0×0.5 + 1×0.7 + 1× xs
2
  = 0 

 xs
2
 = 0.8 

 Slack variable is not needed for the logical edge 3 

 Slack variable for the logical edge 4 

 –1×1.5 + 0×0.3 + 0×0.5 + 0×0.7 + 1× xs
4
  = 0 

 xs
4
 = 1.5 

 Slack variable for the logical edge 5 

 –1×1.5 + 0×0.3 + 0×0.5 + 0×0.7 + 1× xs
5
  = 0 

 xs
5
 = 1.5 
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 Slack variable for the logical edge 6 

 –1×1.5 + 0×0.3 + 0×0.5 + 0×0.7 + 1× xs
6
  = 0 

 xs
6
 = 1.5 

 

So, the resulting basis matrix for the initial feasible solution is as follows: 

 

 –1 1 0 0 1 0 0 0 0    1.5      0.0  

 –1 0 0 1 0 1 0 0 0    0.3      0.0  

 –1 1 1 1 0 0 0 0 0    0.5      0.0  

 –1 0 0 0 0 0 1 0 0    0.7      0.0  

 –1 0 0 0 0 0 0 1 0  .  1.2   =   0.0  

 –1 0 0 0 0 0 0 0 1    0.8      0.0  

 0 1 0 0 0 0 0 0 0    1.5      0.3  

 0 0 1 0 0 0 0 0 0    1.5      0.5  

 0 0 0 1 0 0 0 0 0    1.5      0.7  

 

          … (eq. 2.7) 

 

2.9.3 Finding the Entering Column 

In step 2, during each iteration of revised simplex method, we have to find, if possible, an 

entering column. It is done by first calculating the simplex multipliers in step 1. So, 

 

Step 1:  Calculate the simplex multipliers y by solving the equation y = cB B
-1

. 

Step 2: Find an entering column. The entering column may be any column a of the 

constraints matrix where ya is less than the corresponding component of cN 

where cN is the cost associated with the column a. 
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Since the number of possible chains for all commodities in a large network is very high, 

it is not feasible to store all the chains in the constraint matrix. Instead, Tomlin‟s implicit 

column generation approach can be used. This approach implicitly keeps track of the 

constraints and generates a chain on the fly only when it is established that the chain 

should be part of the column entering the basis [16]. The chain is then checked whether it 

satisfies the condition in step 2 to be part of the entering column. If it is satisfied, then the 

entering column is created using this chain. 

 

2.9.4 LP using Arc-Chain satisfies GUB Structure 

After analyzing the values in the columns of the constraints matrix (eq. 2.6) that 

corresponds to the equation (eq. 2.5), it is found that: 

 

 The column corresponds to Λmax – in this column, the last q rows have all 0‟s. 

 The columns correspond to chains – in these six columns, the last q rows have 1 

only in the position m+k. In the remaining position there are all 0‟s. 

 The columns correspond to slack variables – in the columns for slack variables, 

the last q rows have all 0‟s. 
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So, the basis matrix B in the arc-chain representation satisfies the GUB structure. Now, 

the matrix B can be re-arranged to form the structure:  

 

 

 

by applying a permutation on the columns of the matrix and re-arrange the variables 

vector accordingly. 

 

2.10 Generalized Upper Bounding (GUB) 

Generalized Upper Bounding (GUB) [5] is a technique that makes the revised simplex 

method more efficient for linear programming problems having a special structure in the 

basis. A (m+q)×(m+q) matrix exhibits a GUB structure, if  

 q is relatively large number compared to m, and  

 each column of the last q rows has at most one nonzero entry, the non-zero entry 

being equal to 1. 

 

Figure 2.17 shows a constraints matrix A with the GUB structure. 

 

    5 3 4 7 9 2 3 8 4 6 7 5 8 4  

    7 2 5 8 3 7 6 2 9 5 2 9 3 6  

A =   1 1 1             

       1 1 1 1         

           1 1 1      

              1 1    

 

Figure 2.17: A matrix with GUB structure 

B = 
 R S  

 T I  
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In the revised simplex method outlined in section 2.5, to get the vectors y and d, in each 

iteration in step 1 and step 3, we need to solve the equations: 

y = cBB
-1

 and 

d = B
-1

a 

 

To calculate these two equations, in each iteration, we have to invert the basis B which is 

a matrix of size (m+q)×(m+q). When the number of end-nodes increases, the value of q 

becomes a very large number as q = N(N–1) where N represents end-node. So, if the 

basis B can be arranged so that it will satisfy the GUB structure, the most expensive 

operation in each iteration – inverting a matrix, can be done on a smaller matrix of size 

m. In the case where q is much larger than m, the GUB technique can dramatically 

improve the time to calculate these two equations. 

 

If we have a non-singular basis B satisfying the GUB structure, we can always apply a 

permutation on the columns of the matrix so that the resulting matrix has an identity 

matrix of size q×q in its lower right corner: 
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     R    S    m rows 

B =               

                

                

     T    I    q rows 

                

                

    m columns q columns     

 

Figure 2.18: Basis satisfying GUB structure after permutation 

 

Figure 2.18 shows the structure of basis B after applying the column permutation. Here R, 

S, T, and I are matrices of size (m×m), (m×q), (q×m), and (q×q) respectively. As a result, 

the structure shows that the matrices R, S, T, and I are the four smaller sub-matrices of the 

basis B. 

 

In each iteration of revised simplex method, we need to solve the equations y = cBB
-1

 and 

d = B
-1

a for the basis B of size (m+q)×(m+q). Let Bk be the basis at iteration k. So, after 

k
th

 iteration, the basis Bk after applying permutation will be: 
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     Rk    Sk    m rows 

Bk =               

                

                

     Tk    I    q rows 

                

                

    m columns q columns     

 

Figure 2.19: Basis satisfying GUB structure after k
th

 iteration 

 

Let y′ be the vector of the first m elements and y′′ be the vector of the last q elements of 

the simplex multipliers y, and let cB′ be the first m elements and cB′′ be the last q elements 

of the cost vector cB. So, the equation y.Bk = cB can be rewritten as: 

 

       Rk  Sk        

 y′ , y′′  .      =  cB′ , cB′′  

       Tk  I        

 

This equation can be broken down into: 

y′Rk + y′′Tk = cB′    ……………………… (eq. 2.8) 

and 

y′Sk + y′′ = cB′′    ……………………… (eq. 2.9)  

=> y′′ = cB′′ – y′Sk     ……………………… (eq. 2.10) 
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After substituting the value for y′′ from the equation (eq. 2.10) into the equation (eq. 2.8), 

the obtained equation is: 

y′(Rk – SkTk) = cB′ – cB′′Tk   ……………………… (eq. 2.11) 

=> y′ = (cB′ – cB′′Tk).(Rk – SkTk)
-1

   ……………………… (eq. 2.12) 

 

So, the value of y′ can be found using the equation (eq. 2.12). 

 

Here, the size of matrix (Rk – SkTk) is (m×m). So, to calculate y′ the expensive operation 

of inverting a matrix can be done on the matrix of size (m×m) instead of the matrix of 

size (m+q)×(m+q). After calculating the value of y′, the value of y′′ can be found using 

the value of y′ in equation (eq. 2.10). 

 

Similarly, let d′ be the vector of the first m elements and d′′ be the vector of the last q 

elements of the d-vector d, and let a′ be the first m elements and a′′ be the last q elements 

of the entering column a. So, the equation Bk.d = a can be rewritten as: 

 

 Rk  Sk    d′    a′  

     .    =    

 Tk  I    d′′    a′′  
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This equation can be broken down into: 

Rkd′ + Skd′′ = a′    ……………………… (eq. 2.13) 

and 

Tkd′ + d′′ = a′′    ……………………… (eq. 2.14)  

=> d′′ = a′′ – Tkd′     ……………………… (eq. 2.15) 

 

After substituting the value for d′′ from the equation (eq. 2.15) into the equation (eq. 

2.13), the obtained equation is: 

(Rk – SkTk)d′ = a′ – Ska′′   ……………………… (eq. 2.16) 

=> d′ = (a′ – Ska′′).(Rk – SkTk)
-1

   ……………………… (eq. 2.17) 

 

So, the value of d′ can be found using the equation (eq. 2.17). 

 

Here, the matrix (Rk – SkTk) was already inverted in the equation (eq. 2.12) and readily 

available. After calculating the value of d′, the value of d′′ can be found using the value 

of d′ in equation (eq. 2.15). 

 

2.10.1 Updating the matrices R, S, T 

In each iteration of the revised simplex method, the basis B is updated by replacing the 

leaving column with the entering column. So, the matrices R, S, T and hence (R – ST) 

change after each iteration. Let Bk, Rk, Sk and Tk be the matrices at iteration K and Bk+1, 

Rk+1, Sk+1 and Tk+1 be the matrices at iteration k+1. To maintain the GUB structure after 



48 

 

each iteration, depending on the leaving column position, there are three cases should be 

considered [5]: 

 

Case 1 - The leaving column is one of the first m columns of Bk: 

In this case Sk and I will not be effected. The leaving column is simply replaced by the 

entering column and the new basis will still satisfy the GUB structure. So, the basis: 

 

 

 

will be updated into: 

 

 

 

Hence, the matrix (Rk – SkTk) will be updated into (Rk+1 – SkTk+1). 

 

The matrices Rk and Rk+1, and the matrices Tk and Tk+1, differ only in their p
th

 column. So, 

the matrix (Rk – SkTk) and the matrix (Rk+1 – SkTk+1), differ only in their p
th

 column. The 

p
th

 column of (Rk+1 – SkTk+1) is a′ – Ska′′ = (Rk – SkTk)d′ (eq. 2.16). 

 

So, after k+1 iteration: 

Rk+1 – Sk+1Tk+1 = (Rk – SkTk)Fk+1  ……………………… (eq. 2.18) 

where Fk+1 stands for a (m×m) eta matrix [5] whose eta column in the p
th

 position is d′. 

 

Bk = 
 Rk Sk  

 Tk I  

Bk+1 = 
 Rk+1 Sk  

 Tk+1 I  
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Case 2 - The leaving column f is one of the last q columns of Bk and some 

other column g of Bk satisfies g′′ = f′′: 

Here, g should be one of the first m columns of Bk. f′ and g′ denote vectors consisting of 

the first m elements and f′′ and g′′ denote vectors consisting of the last q elements of f and 

g. To get Bk+1, first f is replaced by g to preserve the (q×q) identity matrix in the lower 

right corner. Then the entering column a is inserted into the position formerly occupied 

by g. So, updating Bk into Bk+1 is done in two stages: 

 

Stage 1: A temporary matrix Bk_temp is generated by interchanging the two columns f and 

g in Bk: 

 

 

 

Updated into: 

 

 

 

 

 

 

 

 

 

Bk = 
 Rk Sk  

 Tk I  

Bk_temp = 
 Rk_temp Sk+1  

 Tk I  
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Stage 2: Bk+1 is generated by replacing f by the entering column a in Bk_temp: 

 

 

 

updated into: 

 

 

 

For stage 1: 

Let f is the (m+i)
th

 and g is the l
th

 column of Bk, and let r denote the i
th

 row of Tk and Jk+1 

denote the (m×m) identity matrix whose l
th

 row has been replaced by –r. So, 

Rk_temp – Sk+1Tk = (Rk – SkTk)Jk+1  ……………………… (eq. 2.19) 

 

For stage 2: 

a′ denotes a vector consisting of the first m elements and a′′ denotes a vector consisting of 

the last q elements of the entering column a. Let el denotes the l
th

 column of the (m×m) 

identity matrix. So, 

 

 

 

 

 

Bk_temp = 
 Rk_temp Sk+1  

 Tk I  

Bk+1 = 
 Rk+1 Sk+1  

 Tk+1 I  

Z = 
 Jk+1d′ If  a′′ ≠  f′′ 

 Jk+1d′+ el If  a′′ =  f′′ 
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Let Fk+1 stands for the (m×m) identity matrix whose l
th

 column has been replaced by z. 

So, 

Rk+1 – Sk+1Tk+1 = (Rk_temp – Sk+1Tk)Fk+1 ……………………… (eq. 2.20) 

 

So, combining (eq. 2.19) and (eq. 2.20): 

Rk+1 – Sk+1Tk+1 = (Rk – SkTk)Jk+1Fk+1  ……………………… (eq. 2.21) 

 

Case 3 - The leaving column f is one of the last q columns of Bk and no other 

column g of Bk satisfies g′′ = f′′: 

In this case, the leaving column is simply replaced by the entering column. So, after k+1 

iteration: 

Rk+1 – Sk+1Tk+1 = Rk – SkTk   ……………………… (eq. 2.22) 

 

In summary, after k iterations, Rk – SkTk may be represented as: 

Rk – SkTk = (R0 – S0T0) J1F1J2F2………JkFk ……………………… (eq. 2.23) 

possibly with some missing matrices Ji and Fi. 
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2.11 Eta Matrix 

An eta matrix is a matrix differs from the identity matrix in only one column, referred to 

as its eta column. Figure 2.20 shows an eta matrix where 5
th

 column is the eta column. 

 

 1 0 0 0 c1 0 0  

 0 1 0 0 c2 0 0  

 0 0 1 0 c3 0 0  

 0 0 0 1 c4 0 0  

 0 0 0 0 c5 0 0  

 0 0 0 0 c6 1 0  

 0 0 0 0 c7 0 1  

 

Figure 2.20: Eta Matrix 

 

2.12 Eta Factorization 

The most expensive operation of revised simplex method is inverting a basis which is 

done in step 1 and 3 in each iteration. So, the efficiency of the revised simplex method 

lies on the ease of implementing step 1 and 3. In each iteration, to calculate the value of 

the simplex multipliers (y) and the value of d-vector (d), two equations: y = cBB
-1

 and d = 

B
-1

a are solved, where the operation inverting a matrix involved. A technique eta 

factorization is used to solve these two equations without calculating the basis (matrix) 

from the scratch and without inverting the basis (matrix) [5]. 
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     l1    
     l2    
     l3    
     l4    
     l5    
     l6    
     l7    

         
 Bk–1  

 

Figure 2.21: Bk and Bk-1 differs only in one column which is the entering column a 

 

Let Bk-1 be the basis obtained after k-1 iterations and Bk be the basis obtained after k 

iterations of the revised simplex method. So, each Bk differs from the preceding Bk-1 in 

only one column (Figure 2.21). The rest of the basis will be same. Let that one column is 

the p
th

 column in which Bk differs from Bk-1. But the p
th

 column of Bk is the entering 

column a that was calculated in step 2 of k
th

 iteration. Again, this entering column a is 

used as the right-hand side in the equation Bk–1.d = a in step 3 of the same iteration (k
th

 

iteration). So, we can say that: 

Bk–1Ek = Bk 

where Ek stands for an identity matrix whose p
th

 column is replaced by d (Figure 2.22). 

 

 

 

     a1    
     a2    
     a3    
 Same a4 Same  
     a5    
     a6    
     a7    

         
 Bk  

Leaving Column Entering Column 
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     l1      1 0 0 0 d1 0 0          a1    
     l2      0 1 0 0 d2 0 0          a2    
     l3      0 0 1 0 d3 0 0          a3    
     l4    .  0 0 0 1 d4 0 0   =       a4    
     l5      0 0 0 0 d5 0 0          a5    
     l6      0 0 0 0 d6 1 0          a6    
     l7      0 0 0 0 d7 0 1          a7    

                               
 Bk–1    Ek      Bk  

 

Figure 2.22: Bk–1Ek = Bk 

 

When the initial basis consists of slack variables then the initial basis B0 is an identity 

matrix. In that case: 

 

B0 = I 

B1 = E1 

B2 = E1.E2 

B3 = E1.E2.E3 

. 

. 

. 

Bk = E1.E2.E3………Ek 

 

This is called eta factorization of Bk. This eta factorization gives a convenient way of 

solving two equations: yBk = cB and Bkd = a. 
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yBk = cB can be viewed as: 

((((yE1)E2)E3)……)Ek = cB 

and Bkd = a can be viewed as: 

E1(E2(E3(……(Ekd)))) = a 

 

So, the value of simplex multipliers (y) and d-vector (d) can be calculated by solving the 

equations iteratively. As E is an eta matrix, these two equations can be solved easily 

without inverting the matrices. 

 

So far the initial basis B0 was considered as an identity matrix. But if B0 is not an identity 

matrix then Bk can be written as: 

Bk = B0.E1.E2.E3………Ek    ……………… (eq. 2.24) 

 

So, the two equations: 

yBk = cB can be solved as: 

(((((yB0)E1)E2)E3)……)Ek = cB  ……………………… (eq. 2.25) 

 

and Bkd = a can be solved as: 

B0(E1(E2(E3(……(Ekd)))) = a   ……………………… (eq. 2.26) 
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Now a triangular factorization of the initial basis B0 can be done before the first iteration 

and then it can be used in conjunction with the growing sequence of E1,E2,E3,……Ek to 

solve the equations: 

LmPmLm–1Pm–1……L1P1B0 = U = UmUm–1……U1 ……………… (eq. 2.27) 

 

Here, 

L is lower triangular matrix, 

P is permutation matrix, 

U is upper triangular matrix, 

Uj is an eta matrix obtained by replacing j
th

 column of I by  j
th

 column of U. 

 

From (eq. 2.20), 

LmPmLm–1Pm–1……L1P1B0   = UmUm–1……U1  

=> LmPmLm–1Pm–1……L1P1B0E1E2……Ek  = UmUm–1……U1E1E2……Ek 

=> LmPmLm–1Pm–1……L1P1Bk   = UmUm–1……U1E1E2……Ek 

=> zLmPmLm–1Pm–1……L1P1Bk   = zUmUm–1……U1E1E2……Ek 

 

Let y = zLmPmLm–1Pm–1……L1P1  ……………… (eq. 2.28) 

So, yBk = zUmUm–1……U1E1E2……Ek…  ……………… (eq. 2.29) 

But yBk = cB 

 

So, we can say that 

zUmUm–1……U1E1E2……Ek = cB   ……………… (eq. 2.30) 
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In this way the equation yBk = cB can be solved by first solving the equation (eq. 2.30) 

and then calculating y from the equation (eq. 2.28). 

 

Similarly, for the equation Bkd = a: 

 

From (eq. 2.20), 

UmUm–1……U1    = LmPmLm–1Pm–1……L1P1B0 

=> UmUm–1……U1E1E2……Ek  = LmPmLm–1Pm–1……L1P1B0E1E2……Ek  

=> UmUm–1……U1E1E2……Ek  = LmPmLm–1Pm–1……L1P1Bk 

=> UmUm–1……U1E1E2……Ekd  = LmPmLm–1Pm–1……L1P1Bkd 

=> UmUm–1……U1E1E2……Ekd  = LmPmLm–1Pm–1……L1P1a 

 

Let h = UmUm–1……U1E1E2……Ekd  ……………… (eq. 2.31) 

So, h = LmPmLm–1Pm–1……L1P1a  ……………… (eq. 2.32) 

 

So, the equation Bkd= a can be solved by first solving (eq. 2.32) and then solving (eq. 

2.31). 

 

2.13 Refactorizations 

As the number of eta matrices grows with each iteration, solving the equations yBk=cB 

and Bkd=a become more laborious and may take longer time than to solve the two 

equations from the scratch. To avoid this, a fresh triangular factorization can be 
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computed from the basis treating Bk as B0 and start with a new sequence of 

E1,E2,E3,……Ek. This technique is called refactorizations of the basis. 

 

2.14 Branch and Price Technique 

The successful solution of large-scale mixed integer programming (MILP) problems 

requires formulations whose linear programming „LP‟ relaxations give a good 

approximation to the convex hull of feasible solutions. In our problem, the solution must 

have binary values only (i.e., 0 or 1). Here we are including a summary of branch and 

price technique from [17], [3] and [20], considering the techniques applicable to our 

problem. 

 

2.14.1 Branch and Bound 

When the integer values are binary, this algorithm uses a divide-and-conquer strategy to 

partition the solution space into two subproblems and then recursively solve each 

subproblem. Let S be the set of solutions to a given discrete optimization problems 

(DOP), and let c : S → R be a cost function on members of S. To determine a least-cost 

member of S, we start with a given s
scs

S, a “good” solution determined heuristically. In 

the bounding phase, we apply a LP relaxation giving a solution s
relaxed

 in a superset of the 

feasible set S. This gives a lower bound on the value of an optimal solution. If the 

solution to this relaxation is a member of S or has cost equal to that of s
scs

, then the 

optimization is done, since either the new solution or s
scs

, respectively, is the optimal 

value. Otherwise, we partition S into sets S0 and S1, using some appropriate branching 

rule. For instance, we may define the branching rule, so that S0 (S1) is the set of solutions 
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for xi = 0 (xi = 1) where xi is one of the binary variables of the MILP formulation. We 

will call S0, S1 the children of S. We replace S with the children of S on the list of 

candidate subproblems (those that await processing). This operation is called branching 

and the candidate list is often called the node queue. 

 

To continue the algorithm, we remove the “best” candidate subproblem from the node 

queue and process it, giving a value of s
scs

new S and we apply a LP relaxation to the 

candidate subproblem, giving a solution s
relaxed

new in a superset of the feasible set S. 

 

There are four possibilities to consider: 

1. If s
scs

new < s
scs

, then we replace s
scs

 by s
scs

new; apply branching again and add the 

children of this subproblem to the node queue. 

2. If the subproblem has no solutions, in which case we discard, or fathom it. 

3. If s
relaxed

new ≥ s
scs

, then we may again fathom the subproblem. 

4. Apply branching again and add the children of this subproblem to the node queue. 

 

The process continues until the list of candidate subproblems is empty, at which point our 

current best solution stored in s
scs

 is the optimal one. 

 

2.14.2 Branch and Price 

The process of dynamically generating variables whose values should be non-zero is 

called pricing and LP-based branch and bound algorithms in which the variables are 

generated dynamically are known as branch and price algorithms [3]. Branch and price 
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techniques are useful when the number of variables is very large compared to the number 

of constraints. In branch and price, each LP relaxation is solved initially with only a small 

subset of the variables present. These variables correspond to the columns in the initial 

feasible solution. To find an optimal solution the pricing problem is solved, to try to 

identify a column to enter the basis. Such a column and the corresponding variables are 

generated as needed using, for example, the implicit column generation technique. 
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Chapter 3: An Efficient Scheme for Non-Bifurcated 

Traffic Grooming 

In Chapter 2, we have described why minimizing congestion is a very common and 

popular objective for optimization in WDM network. An efficient technique to do this is, 

using arc-chain representation adapting with the implicit column generation [1]. In the 

arc-chain representation, the expensive operation of revised simplex method inverting a 

matrix can be done on the matrix of size (m+q)×(m+q) where m is the number of logical 

edges and q is the number of commodities. As the basis matrix in the arc-chain 

representation satisfies the GUB structure, inverting a matrix can be done on the matrix 

of size (m×m) instead of the matrix of size (m+q)×(m+q). 

 

An arc-chain solver for bifurcated traffic grooming with GUB structure has been 

described in Chapter 2 to calculate the optimal solution using the revised simplex 

method. The branch and price technique is used in this approach to make the bifurcated 

traffic grooming to non-bifurcated traffic grooming [22]. Using GUB structure in this 

arc-chain solver, improved the performance of the revised simplex method significantly. 

But still matrix inversion has to be done, although it is done on a smaller matrix size.  

 

In the section 2.12 we have shown that using eta factorization, the matrix calculation can 

be done without calculating the basis (matrix) from the scratch and without inverting the 

basis (matrix). 
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In this chapter we will show how to combine eta factorization with GUB structure in the 

arc-chain solver for the revised simplex method used in the branch and price technique 

[22]. This will allow calculating the simplex multipliers and the d-vector without 

inverting the basis and updating the basis without calculating it from the scratch, in each 

iteration of the revised simplex method. 

 

3.1 Eta Factorization with GUB Structure in Branch and Price 

The arc-chain solver using GUB structure improved the performance significantly since, 

as a result of using the GUB structure in the arc-chain solver, the expensive operation of 

inverting a matrix in each iteration can be done on a matrix of size (m×m) instead of a 

matrix of size (m+q)×(m+q). It is important to note that q = N(N–1) where N is the 

number of end-nodes, since most end-nodes communicate with each other and m is O(N). 

So, q >> m and this gives substantial savings. In section 2.12, we have shown that, by 

using eta factorization these operations can be done without calculating the basis (matrix) 

from the scratch and without inverting the basis (matrix). In this section we will show 

how to combine eta factorization with GUB structure to improve the performance further 

in revised simplex method. 

 

3.2 Revised Simplex Method without inverting (R–ST) 

In section 2.10, we have shown that, using GUB structure, the simplex multipliers (y) and 

d–vector (d) can be calculated by first breaking y into y′ and y′′ and d into d′ and d′′. 

Then calculate the following equations [5]: 
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For y: 

y′ = (cB′ – cB′′Tk).(Rk – SkTk)
-1

   ……………………… (eq. 2.12) 

y′′ = cB′′ – y′Sk     ……………………… (eq. 2.10) 

y = (y′, y′′) 

 

For d: 

d′ = (a′ – Ska′′).(Rk – SkTk)
-1

   ……………………… (eq. 2.17) 

d′′ = a′′ – Tkd′     ……………………… (eq. 2.15) 

d = (d′, d′′) 

 

To avoid inverting the matrix (Rk – SkTk) for equations (eq. 2.12) and (eq. 2.17) in each 

iteration of revised simplex method, eta factorization discussed in the section 2.12 can be 

combined with GUB structure as follows. 

 

If we compare the equations (eq. 2.24) and (eq. 2.23) [5], we observe the following: 

Bk = B0.E1.E2.E3………Ek    ……………… (eq. 2.24) 

Rk – SkTk = (R0 – S0T0) J1F1J2F2………JkFk  ……………… (eq. 2.23) 

 

We can see that the initial basis B0 for eta factorization is R0 – S0T0, and the eta matrices 

Jk and Fk can be calculated while updating the matrices in each iteration as shown in 

Section 2.10.1. 
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Now, as shown in equation (eq. 2.27) in Section 2.12, a triangular factorization can be 

done on the initial basis R0 – S0T0: 

LmPmLm–1Pm–1……L1P1(R0 – S0T0) = U = UmUm–1……U1  … (eq. 3.1) 

 

For equation (eq. 2.12), after k iterations, equations (eq. 2.28), (eq. 2.29) and (eq. 2.30) 

can be written as: 

y′  = zLmPmLm–1Pm–1……L1P1   … (eq. 3.2) 

y′(Rk – SkTk) = zUmUm–1……U1J1F1J2F2………JkFk   … (eq. 3.3) 

zUmUm–1……U1J1F1J2F2………JkFk = (cB′ – cB′′Tk)  … (eq. 3.4) 

 

So, the value of y′ can be calculated by first solving the equation (eq. 3.4) and then 

calculating y′ from the equation (eq. 3.2). In this way, y′ can be calculated without 

inverting the matrix as done in the equation (eq. 2.12). Once the value of y′ is found, the 

value of y′′ can be calculated using the equation (eq. 2.10), and y can be calculated by y = 

(y′, y′′). 

 

Similarly, for the equation (eq. 2.17), after k iteration, equations (eq. 2.31) and (eq. 2.32) 

can be written as: 

h = UmUm–1……U1J1F1J2F2………JkFkd′   … (eq. 3.5) 

h = LmPmLm–1Pm–1……L1P1(a′ – Ska′′)   … (eq. 3.6) 

 

So, the value of d′ can be calculated by first solving the equation (eq. 3.6) and then 

calculating d′ from the equation (eq. 3.5). In this way, d′ can be calculated without 
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inverting the matrix as done in the equation (eq. 2.17). Once the value of d′ is found, the 

value of d′′ can be calculated using the equation (eq. 2.15), and d can be calculated by d 

= (d′, d′′). 

 

Refactorizations can be done after every specific number of intervals by treating Rk – SkTk 

as (R0 – S0T0), by performing the triangular factorization again on the new initial basis Rk 

–SkTk and start the operations all over again. In our approach, we have done the 

refactorizations when the iteration number reaches the half of the number of edges. 

 

3.3 Calculating Li, Pi, Ui 

Before starting the revised simplex method, the lower triangular matrices (L1, L2, …, Lm), 

permutation matrices (P1,P2, …, Pm) and upper triangular matrices (U1, U2, …, Um) are 

calculated from the initial basis of the initial feasible solution to use those matrices in 

each iteration of the revised simplex method. Here, m is the number of edges in the 

network and R0–S0T0 is the initial basis of the initial feasible solution. So, Li, Pi and Ui 

will be calculated from the initial basis R0–S0T0. 

 

Let us consider the example described in the section 2.9.2. If we re-arrange the initial 

feasible solution in (eq. 2.7) as GUB structure, the equation will be as follows: 
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 –1 1 0 0 0 0 1 0 0    1.5      0.0  

 –1 0 1 0 0 0 0 0 1    1.2      0.0  

 –1 0 0 0 0 0 1 1 1    0.8      0.0  

 –1 0 0 1 0 0 1 0 0    1.5      0.0  

 –1 0 0 0 1 0 0 0 0  .  1.5   =   0.0  

 –1 0 0 0 0 1 0 0 0    1.5      0.0  

 0 0 0 0 0 0 1 0 0    0.3      0.3  

 0 0 0 0 0 0 0 1 0    0.5      0.5  

 0 0 0 0 0 0 0 0 1    0.7      0.7  

 

          … (eq. 3.7) 

 

 

Here, R0, S0 and T0 are as follows: 

 

 –1 1 0 0 0 0 1 0 0    1.5      0.0  

 –1 0 1 0 0 0 0 0 1    1.2      0.0  

 –1 0 0 0 0 0 1 1 1    0.8      0.0  

 –1 0 0 1 0 0 1 0 0    1.5      0.0  

 –1 0 0 0 1 0 0 0 0  .  1.5   =   0.0  

 –1 0 0 0 0 1 0 0 0    1.5      0.0  

 0 0 0 0 0 0 1 0 0    0.3      0.3  

 0 0 0 0 0 0 0 1 0    0.5      0.5  

 0 0 0 0 0 0 0 0 1    0.7      0.7  

 

 

 

 

 

R0 S0 

T0 I 
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   –1 1 0 0 0 0  

   –1 0 1 0 0 0  

R0 =  –1 0 0 0 0 0  

   –1 0 0 1 0 0  

   –1 0 0 0 1 0  

   –1 0 0 0 0 1  

 

 

 

 

 

 

 

 

 

 

 

So, the initial basis R0–S0T0 is: 

 

   –1 1 0 0 0 0  

   –1 0 1 0 0 0  

R0–S0T0 =  –1 0 0 0 0 0  

   –1 0 0 1 0 0  

   –1 0 0 0 1 0  

   –1 0 0 0 0 1  

 

 

   1 0 0  

   0 0 1  

S0 =  1 1 1  

   1 0 0  

   0 0 0  

   0 0 0  

   0 0 0 0 0 0  

T0 =  0 0 0 0 0 0  

   0 0 0 0 0 0  
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Now, as shown in the equation (eq. 3.1), first we can compute a triangular factorization 

of R0 – S0T0: 

LmPmLm–1Pm–1……L1P1(R0 – S0T0) = U   ……………… (eq. 3.8) 

and then from equation (eq. 3.8), we can get: 

U = UmUm–1……U1     ……………… (eq. 3.9) 

 

 

   1 0 0 0 0 0      1 0 0 0 0 0      –1 1 0 0 0 0  

   –1 1 0 0 0 0      0 1 0 0 0 0      –1 0 1 0 0 0  

L1 =  –1 0 1 0 0 0   P1 =  0 0 1 0 0 0   R0–S0T0 =  –1 0 0 0 0 0  

   –1 0 0 1 0 0      0 0 0 1 0 0      –1 0 0 1 0 0  

   –1 0 0 0 1 0      0 0 0 0 1 0      –1 0 0 0 1 0  

   –1 0 0 0 0 1      0 0 0 0 0 1      –1 0 0 0 0 1  

 

 

   –1 1 0 0 0 0  

   0 –1 1 0 0 0  

L1P1(R0–S0T0) =  0 –1 0 0 0 0  

   0 –1 0 1 0 0  

   0 –1 0 0 1 0  

   0 –1 0 0 0 1  

 

 

   1 0 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0  

L2 =  0 –1 1 0 0 0   P2 =  0 0 1 0 0 0  

   0 –1 0 1 0 0      0 0 0 1 0 0  

   0 –1 0 0 1 0      0 0 0 0 1 0  

   0 –1 0 0 0 1      0 0 0 0 0 1  
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   –1 1 0 0 0 0  

   0 1 1 0 0 0  

L2P2L1P1(R0–S0T0) =  0 0 –1 0 0 0  

   0 0 –1 1 0 0  

   0 0 –1 0 1 0  

   0 0 –1 0 0 1  

 

 

   1 0 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0  

L3 =  0 0 1 0 0 0   P3 =  0 0 1 0 0 0  

   0 0 –1 1 0 0      0 0 0 1 0 0  

   0 0 –1 0 1 0      0 0 0 0 1 0  

   0 0 –1 0 0 1      0 0 0 0 0 1  

 

 

   –1 1 0 0 0 0  

   0 1 1 0 0 0  

L3P3L2P2L1P1(R0–S0T0) =  0 0 –1 0 0 0  

   0 0 0 1 0 0  

   0 0 0 0 1 0  

   0 0 0 0 0 1  

 

 

   1 0 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0  

L4 =  0 0 1 0 0 0   P4 =  0 0 1 0 0 0  

   0 0 0 1 0 0      0 0 0 1 0 0  

   0 0 0 0 1 0      0 0 0 0 1 0  

   0 0 0 0 0 1      0 0 0 0 0 1  
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   –1 1 0 0 0 0  

   0 1 1 0 0 0  

L4P4L3P3L2P2L1P1(R0–S0T0) =  0 0 –1 0 0 0  

   0 0 0 1 0 0  

   0 0 0 0 1 0  

   0 0 0 0 0 1  

 

 

   1 0 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0  

L5 =  0 0 1 0 0 0   P5 =  0 0 1 0 0 0  

   0 0 0 1 0 0      0 0 0 1 0 0  

   0 0 0 0 1 0      0 0 0 0 1 0  

   0 0 0 0 0 1      0 0 0 0 0 1  

 

 

   –1 1 0 0 0 0  

   0 1 1 0 0 0  

L5P5L4P4L3P3L2P2L1P1(R0–S0T0) =  0 0 –1 0 0 0  

   0 0 0 1 0 0  

   0 0 0 0 1 0  

   0 0 0 0 0 1  

 

 

   1 0 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0  

L6 =  0 0 1 0 0 0   P6 =  0 0 1 0 0 0  

   0 0 0 1 0 0      0 0 0 1 0 0  

   0 0 0 0 1 0      0 0 0 0 1 0  

   0 0 0 0 0 1      0 0 0 0 0 1  
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   –1 1 0 0 0 0  

   0 1 1 0 0 0  

L6P6L5P5L4P4L3P3L2P2L1P1(R0–S0T0) =  0 0 –1 0 0 0  

   0 0 0 1 0 0  

   0 0 0 0 1 0  

   0 0 0 0 0 1  

 

So, 

   –1 1 0 0 0 0  

   0 1 1 0 0 0  

U =  0 0 –1 0 0 0  

   0 0 0 1 0 0  

   0 0 0 0 1 0  

   0 0 0 0 0 1  

 

 

Now, we can get  Ui by replacing the i
th

 column of an identity matrix by the i
th

 column of 

U: 

   –1 0 0 0 0 0      1 1 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0      0 1 1 0 0 0  

U1 =  0 0 1 0 0 0   U2 =  0 0 1 0 0 0   U3 =  0 0 –1 0 0 0  

   0 0 0 1 0 0      0 0 0 1 0 0      0 0 0 1 0 0  

   0 0 0 0 1 0      0 0 0 0 1 0      0 0 0 0 1 0  

   0 0 0 0 0 1      0 0 0 0 0 1      0 0 0 0 0 1  

 

   1 0 0 0 0 0      1 0 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0      0 1 0 0 0 0  

U4 =  0 0 1 0 0 0   U5 =  0 0 1 0 0 0   U6 =  0 0 1 0 0 0  

   0 0 0 1 0 0      0 0 0 1 0 0      0 0 0 1 0 0  

   0 0 0 0 1 0      0 0 0 0 1 0      0 0 0 0 1 0  

   0 0 0 0 0 1      0 0 0 0 0 1      0 0 0 0 0 1  
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3.4 Representation of Li, Pi, Ui 

After analyzing the matrices Li and Pi where i is the number of logical edges, it is found 

that: 

 Li = i
th

 lower triangular matrix. 

 Pi = i
th

 permutation matrix. 

 

Instead of storing the matrices L1, P1, L2, P2, …, Lm, Pm, we can store only the 

information: 

For Li : a vector of float of size m for the i
th

 column of Li. 

For Pi : an integer for the position of the row that swapped with i
th

 row in 

  Pi. 

 

So, L2 and P2 in the example in section 3.3 can be stored as: 

L_P_Matrix_Store[2]{float L_Vector[]; int Position_of_P} 

= {[0 1 –1 –1 –1 –1]; 2} 

instead of: 

 

   1 0 0 0 0 0      1 0 0 0 0 0  

   0 1 0 0 0 0      0 1 0 0 0 0  

L2 =  0 –1 1 0 0 0   P2 =  0 0 1 0 0 0  

   0 –1 0 1 0 0      0 0 0 1 0 0  

   0 –1 0 0 1 0      0 0 0 0 1 0  

   0 –1 0 0 0 1      0 0 0 0 0 1  
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By doing so, vector operations can be done, instead of matrix operations which will 

improve the performance substantially and at the same time memory locations can be 

saved. 

 

Ui is calculated from U which is the result of LmPmLm–1Pm–1……L1P1(R0 – S0T0). So, 

 Ui = Upper triangular matrix containing i
th

 column of U. 

 

Instead of storing the matrices U1, U2, …, Um, we can store only the information: 

For Ui : a vector of float of size m for the i
th

 column of U. 

 

So, U3 in the example in section 3.3 can be stored as: 

float U[3] = [0 1 –1 0 0 0] 

instead of: 

 

   1 0 0 0 0 0  

   0 1 1 0 0 0  

U3 =  0 0 –1 0 0 0  

   0 0 0 1 0 0  

   0 0 0 0 1 0  

   0 0 0 0 0 1  
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3.5 Calculating Jk, Fk 

Matrices Jk and Fk are calculated after getting entering column and leaving column 

number and before updating the basis in each iteration of the revised simplex method. 

Here, k is the iteration number of the revised simplex method. 

 

As described in Section 2.10.1, Jk and Fk can be calculated after getting the d′ and the 

leaving column number in each iteration. So, Jk and Fk will look like the matrices shown 

in the Figure 3.1. 

 

 

 

 

 

  Jk    Fk 

Figure 3.1: Matrices Jk and Fk 

 

3.6 Representation of Jk, Fk 

After analyzing the matrices Jk and Fk where k is the iteration number of the revised 

simplex method, it is found that: 

 Jk = Matrix differing from identity matrix in only one row, obtained 

after k iterations. 

 Fk = Eta matrix obtained after k iterations. 

 

 1 0 0 0 0 0    1 0 0 d′k1 0 0  
 0 1 0 0 0 0    0 1 0 d′k2 0 0  
 0 0 1 0 0 0    0 0 1 d′k3 0 0  
 0 0 0 1 0 0    0 0 0 d′k4 0 0  
 –rk1 –rk2 –rk3 –rk4 –rk5 –rk6    0 0 0 d′k5 1 0  
 0 0 0 0 0 1    0 0 0 d′k6 0 1  
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In each iteration, instead of storing the matrices J1, F1, J2, F2, …, Jk, Fk, we can store only 

the information: 

For Jk : an integer for the position of the row in Jk, 

a vector of float of size m for the row in Jk. 

 

For Fk : an integer for the position of the row in Fk, 

a vector of float of size m for the row in Fk. 

 

So, if the k = 4 in the Figure 3.1, then J4 and F4 can be stored as: 

J_F_Matrix_Store[4]{int Position_of_J; float J_Vector[] 

int Position_of_F; float F_Vector[]} 

= {5; [–r41 –r42 –r43 –r44 –r45 –r46]; 

4; [d′41 d′42 d′43 d′44 d′45 d′46} 

 

3.7 Solving Equations without inverting Matrices 

For any equation in the form of z.F = v 

where  z = unknown vector to be determined, 

   F = known eta matrix, 

   v = known vector. 

In this equation, z can be calculated without inverting the matrix F. 
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Let‟s consider the following vectors and matrix representing z, F and v where the vector z 

has to be determined and the matrix F and the vector v are known: 

 

          1 0 0 0 F1 0           

          0 1 0 0 F2 0           

 z1 z2 z3 z4 z5 z6  .  0 0 1 0 F3 0  =  v1 v2 v3 v4 v5 v6  

          0 0 0 1 F4 0           

          0 0 0 0 F5 0           

          0 0 0 0 F6 1           

 

 

After doing vector matrix multiplication, we get: 

 z1 = v1 

 z2 = v2 

 z3 = v3 

 z4 = v4 

 z6 = v6 

  

 

z1F1 + z2F2 + z3F3 + z4F4 + z5F5 + z6F6 = v5 

=> z5F5 = v5 – (z1F1 + z2F2 + z3F3 + z4F4 + z6F6) 

=> z5 = (v5 – (z1F1 + z2F2 + z3F3 + z4F4 + z6F6)) / F5 

 

For z5, after replacing the values of z1, z2, z3, z4 and z6: 

z5 = (v5 – (v1F1 + v2F2 + v3F3 + v4F4 + v6F6)) / F5 
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Similarly, for any equation in the form of z.J = v 

where  z = unknown vector to be determined, 

   J = known matrix differing from identity matrix in only 

one row, 

   v = known vector. 

In this equation, z can be calculated without inverting the matrix J. 

Let‟s consider the following vectors and matrix representing z, J and v where the vector z 

has to be determined and the matrix J and the vector v are known: 

 

          1 0 0 0 0 0           

          0 1 0 0 0 0           

 z1 z2 z3 z4 z5 z6  .  0 0 1 0 0 0  =  v1 v2 v3 v4 v5 v6  

          J1 J2 J3 J4 J5 J6           

          0 0 0 0 1 0           

          0 0 0 0 0 1           

 

After doing vector matrix multiplication, we get: 

 z1 + z4J1 = v1 => z1 = v1 – v4J1 / J4 

z2 + z4J2 = v2 => z2 = v2 – v4J2 / J4 

z3 + z4J3 = v3 => z3 = v3 – v4J3 / J4 

z4J4 = v4 => z4 = v4 / J4 

z5 + z4J5 = v5 => z5 = v5 – v4J5 / J4 

z6 + z4J6 = v6 => z6 = v6 – v4J6 / J4 

 

So, z = [z1  z2  z3  z4  z5  z6] can be determined without inverting the matrix F or J after 

calculating the values of z1, z2, z3, z4, z5 and z6. 
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3.8 Algorithm 

3.8.1 Algorithm for getting y′ 

Step 1:  i = 1 

z = (cB′ – cB′′Tk) 

Step 2:  while (i >= 1) 

   { 

    v = z 

    Replace z by the solution of zFi = v 

    v = z 

    Replace z by the solution of zJi = v 

    i = i – 1 

   } 

Step 3:  j = 1 

 

Step 4:  while (j =< m) 

   { 

    v = z 

    Replace z by the solution of zUj = v 

    j = j + 1 

   } 

Step 5:  j = m 

   y′ = z 

 

Step 6:  while (j >= 1) 

   { 

    y′ = y′LjPj 

    j = j – 1 

   } 
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3.8.2 Algorithm for getting d′ 

Step 1:  j = 1 

d′ = (a′ – Ska′′) 

Step 2:  while (j =< m) 

   { 

    d′ = LjPjd′ 

    j = j + 1 

   } 

Step 3:  j = m 

Step 4:  while (j >= 1) 

   { 

    v = d′ 

    Replace d′ by the solution of Ujd′ = v 

    j = j – 1 

   } 

Step 5:  i = 1 

Step 6:  while (i =< k) 

   { 

    v = d′ 

    Replace d′ by the solution of Jid′ = v 

    v = d′ 

    Replace d′ by the solution of Fid′ = v 

    i = i + 1 

   } 
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3.9 Use of Eta Factorization in the Algorithm 

In the algorithm for getting y′ (section 3.8.1), step 2 and step 4 are executed for the 

equation (eq. 3.4). At the beginning of the revised simplex method, matrices F and J are 

not available as they are calculated during updating the basis after getting the entering 

column and the leaving column in each iteration. So, to calculate the simplex multipliers 

(y) for the first time, step 2 has to be skipped. Step 4 will be executed to solve the 

equation: 

zUmUm–1……U1 = (cB′ – cB′′Tk)  ……………………… (eq. 3.10) 

 

In the example described in the section 2.9, the cost of the basis cB = [1 0 0 0 0 0 0 0 0] 

as we have to minimize the Λmax. So, (cB′ – cB′′Tk) = [1 0 0 0 0 0]. In this example, m is 6. 

So, the loop in the step 4 will be executed 6 times. 

 

In the first loop of step 4: 

v = z = [1 0 0 0 0 0] 

Solve the solution zU1 = v (assuming z = zU6U5U4U3U2) and get the value of z 

In the second loop of step 4: 

v = z (new value of z found in the previous loop) 

Solve the solution zU2 = v (assuming z = zU6U5U4U3) and get the value of z 

and so on. 

 

All the loops in the algorithm work like this using eta factorization without inverting any 

matrix. 
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Chapter 4: Experimental Results 

In Chapter 3, we extended the arc-chain solver developed by Mr. Quazi Rahman, by 

incorporating eta factorization in the solver. In this chapter, we will analyze and compare 

the results of the arc-chain solver before and after incorporating the eta factorization and 

see how much improvement in the speed we have accomplished. We have done our 

experiments on a number of networks with sizes varying from small to large and with 

requests for data communication also having various sizes. The experiments were done 

on a Sun Fire X2200 M2 Server [21]. 

 

We used two C programs Generate_edge_array.c and Generate_user_requests.c to 

generate logical edges and user requests respectively, based on the given number of end-

nodes. These two programs generated the logical edges and the user requests using a 

random number generator. We have omitted the details since these programs are quite 

straight-forward. 

 

We wrote a function arc_chain_solver_using_ETA in C and included it in the arc-chain 

solver implemented by Mr. Quazi Rahman. For comparison purposes, we defined a flag. 

When the flag is 1, the C program does use eta factorization using our function 

arc_chain_solver_using_ETA. When the flag is 0, we don‟t use eta factorization, so that 

the program gives the same results obtained using the function arc_chain_solver written 

by Mr. Rahman. 
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4.1 Comparison of Simplex Multipliers 

Use of eta factorization allows us to compute the simplex multipliers in a way different 

from traditional methods. Due to round-off errors, the values computed in the traditional 

way may be slightly different in the two techniques. In this section we will explore these 

differences. 

 

In the revised simplex method, the condition for termination is a failure to find an 

entering column. In each iteration, the entering column is calculated using the values of 

the simplex multipliers (y is a vector of all the simplex multipliers). So, if the values of 

the simplex multipliers, using eta factorization are slightly different from the values of 

the same simplex multipliers, without using eta factorization, the process of finding the 

entering column may lead to different iteration numbers. Our experiments indicate that 

the small differences owing to the round-off errors do have significant repercussions. 

 

We have done an experiment with a small network (6 end-nodes) and a small number of 

user requests (around 100 user requests) and compared the values of the simplex 

multipliers obtained using eta factorization and without eta factorization after each 

iteration. We have found that the some values of the simplex multipliers differ by a very 

small value (approximately 0.000000006) after a certain number of iterations 

(approximately 22 iterations). This affects the results when finding the entering column 

and hence the number of iterations and the times of executions change. But it does not 

make any difference to the value of the congestion which is the objective function. We 
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also have found that changes in the interval between refactorizations have an effect on the 

number of iterations and also the time of execution. 

 

When using eta factorization, in each iteration of the revised simplex method, the values 

of the simplex multipliers are calculated by matrix multiplication with a growing number 

of Jk and Fk matrices where k is the iteration number. This is the reason why the values of 

the simplex multipliers differ after a certain number of iterations. After a certain number 

of iterations, when the number of Jk and Fk matrices become large, then the calculations 

of the simplex multipliers are done with a large number of Jk and Fk matrices and that 

makes the values of the simplex multipliers somewhat different compared to the values of 

the simplex multipliers calculated without eta factorization, where we invert the matrix. 

This also makes a difference in the time of execution with the eta factorization. These 

differences vary with the interval of the refactorizations. 

 

4.2 Experiments with the different interval of Refactorizations 

We have carried out an experiment to find out the intervals between refactorizations that 

gives the best results for execution time when using eta factorization. In the arc-chain 

solver developed by Mr. Rahman, during the process of branch and price technique, the 

arc-chain solver is executed repeatedly to get the optimal solution for the bifurcated 

traffic grooming. We tested this experiment running the arc-chain solver only once where 

we did not use the branch and price technique. 
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We tested our experiments on ten networks having 14 end-nodes. For five networks, we 

used five different traffic loads of around 400 user requests and for other five networks, 

we used five different traffic loads of around 1000 user requests. For each size of traffic 

load, we generated 25 sets of data (combination of five networks and five different traffic 

loads). For each set, we executed the program 4 times, each having refactorizations at 

intervals of E/4, E/2, E, 2E iterations, where E is the number of edges. We have reported 

the average of each set of 25 with 400 (1000) user requests in the Table 4.1 (Table 4.2). 

Graphs from the Table 4.1 (Table 4.2) are shown in the Figure 4.1 (Figure 4.2). After 

analyzing the Figure 4.1 and Figure 4.2, we can see that, on an average, refactorizations 

at intervals of E/2 gives the best results for the time of execution. 

 

No. of 

Nodes 

No. of Edges(with 

Traffic Loads around 

400 user requests) 

Time to execute (in seconds) 

Without 

Eta 

With Eta 

(Refactorizations after % of No. of Edges) 

25% 50% 100% 200% 

14 

36 6.42 5.08 5.04 4.97 5.14 

35 3.59 2.48 2.46 2.58 2.59 

32 1.75 1.40 1.40 1.42 1.44 

33 0.94 0.74 0.73 0.74 0.74 

36 2.63 2.01 2.05 2.06 2.03 

 

Table 4.1: Comparison of Execution Times with different intervals between 

Refactorizations with around 400 user requests 
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Figure 4.1: Graph obtained from Table 4.1 
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No. of 

Nodes 

No. of Edges(with 

Traffic Loads around 

1000 user requests) 

Time to execute (in seconds) 

Without 

Eta 

With Eta 

(Refactorizations after % of No. of Edges) 

25% 50% 100% 200% 

14 

36 
19.30 16.63 16.69 16.70 16.92 

35 
15.97 13.82 13.53 13.94 14.03 

32 
6.14 5.50 5.59 5.58 5.54 

33 
3.72 3.28 3.27 3.26 3.32 

36 
10.74 9.32 9.31 9.50 9.37 

 

Table 4.2: Comparison of Execution Times with different intervals between 

Refactorizations with around 1000 user requests 
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Figure 4.2: Graph obtained from Table 4.2 

 

4.3 Comparison Experiments 

We tested our experiments on three networks having 10, 14 and 20 end-nodes. For each 

network, we used traffic loads of around 100, 200, 400 and 1000 user requests. For each 

size of traffic, we generated 10 sets of data. We executed the program for each traffic 

load and for each network size. We measured the execution time twice. In the first 

(second) run, we set the flag mentioned above to 0 (1). Then we divided the time,in 

seconds, it took to execute the program without eta factorization by the time (in seconds) 

it took to execute the program with eta factorization to see how much faster the algorithm 

runs when we use eta factorization. We have reported the average of these 10 ratios in the 

table below. In the section 4.2, we found that refactorization with intervals of E/2 gives 
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the best results for the time of execution. So, here we used the refactorizations after E/2 

iterations. 

 

Table 4.3 shows how much faster, on an average, the program runs with the eta 

factorization compared to the program running without the eta factorization. The table 

gives the ratio of the execution time using eta factorization to the corresponding time 

without using eta factorization so that 

 If the ratio = 1, then the execution time is same for both running without eta 

factorization and running with eta factorization. 

 If the ratio < 1, then running with eta factorization is slower than running without 

eta factorization. 

 If the ratio > 1, then running with eta factorization is faster than running without 

eta factorization. 

 

For example, the table shows that, for the network with 10 end-nodes with 100 user 

requests, running with eta factorization is 31% faster, on an average, than running 

without eta factorization. 
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Number of 

End–nodes 

Using Eta Factorization (average times faster) 

Number of User Requests 

100 200 400 1000 

10 1.31 2.55 2.28 1.35 

14 3.50 3.48 2.67 1.22 

20 1.96 2.03 2.20 1.50 

 

Table 4.3: Experimental results of two approaches 
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Chapter 5: Conclusions 

In this thesis we have combined eta factorization with GUB structure in arc-chain solver 

and studied how much improvement in performance can be accomplished for 

optimization problem. An arc-chain solver for bifurcated traffic grooming with GUB 

structure was done by Mr. Quazi Rahman. A branch and price technique was used in that 

arc-chain solver to convert the bifurcated traffic grooming into optimal non-bifurcated 

traffic grooming. The performance of the revised simplex method improved significantly 

after using GUB structure in this approach. 

 

We extended the approach done by Mr. Quazi by attaching eta factorization with it. We 

implemented an efficient scheme to improve the performance of the revised simplex 

method of the arc-chain solver by combining the eta factorization with the GUB 

structure. 

 

We have done various experiments with our approach and the approach done by Mr. 

Quazi Rahman. First, we have done an experiment to compare the values of the simplex 

multipliers calculated with eta factorization and without eta factorization. From this 

experiment we have found that after certain number of iterations, some values of the 

simplex multipliers differ by a very small value due to round-off errors which affects the 

results when finding the entering column and hence the number of iterations. But it does 

not affect the objective function - the congestion. 
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We have done another experiment to see which interval between refactorizations gives 

the best improvements in terms of the time of execution when using eta factorization. 

From this experiment we have found that, performing refactorizations at the interval of 

when iteration number of the revised simplex method reaches the half of the number of 

the logical edges in the network, gives the best results for the time of execution. We used 

this result as the optimum interval between refactorizations in the other experiment we 

have done. 

 

We have done our final experiment with our approach with the eta factorization and the 

approach without eta factorization. We analyzed the experimental results of both 

approaches and compared these two results to see how much improvement in 

performance we have accomplished using our approach. We have done this experiment 

on different size of networks with different traffic loads. We have found that in each case 

our approach with eta factorization is faster than the approach without eta factorization. 

 

Our approach of using eta factorization can be pluggable to any network flow problem 

that satisfies GUB structure. 

 

In our approach, using an appropriate compression algorithm for the vectors, it may be 

possible to reduce the space requirement and also avoid the explicit multiplications 

whenever possible. This may improve the performance further. It can be a good research 

for future. 
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