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Abstract

It has been recognized that software productivity and quality can be improved through software
reuse. Software reuse at all levels concemns about identifying and locating the potential reusable
components. Reusability is considered as one of the great promises of OO technology. OO
programming (OOP) especially supports software reuse via sub-classing through the forms of
class inheritance and inclusion polymorphism. Objects and classes are basic building blocks in

objected-oriented software development.

Having identified software components which are potentially reusable and described in such a
way that anyone wish to reuse them would be able to do so, the problem arises as to how to
organize the total collection of all such components and related descriptions. Such a reuse library
can be constructed by classifying the reusable components in many different ways. A good
system classification not only provides the basis for cataloging the components, but also provides
a means for finding a particular candidate held in the reuse library. This thesis describes a
methodology of classifying, structuring and retrieving object-oriented classes based on a
mathematical method for data analysis called Formal Concept Analysis (FCA). In this
methodology, a class is classified and retrieved using the type information plus variable access
behavior of methods (in short, composite type) available in the class, and a class library is then
viewed as a many-valued context. This many-valued context is transformed into a one-valued
context, incorporating behavior of methods into the context via conceptual scaling, and Ganter’s
concept-generation algorithm is applied to this context, which leads to a lattice structure of all

concepts.

Class retrieval is based on the concept lattice constructed from the class library. The concept-
based retrieval system (CBRS) is implemented as a distributed system using CORBA with
Java/Swing. User-friendly GUIs (Graphic User Interface) are provided for input, output,
browsing class library, building concept lattice, and server status control. Before the users can
retrieve anything from a class library, they need to specify what they need. The system organizes
the user’s specific requirements into a query. Choosing one or more composite types (the desired
behavior) available from the list will reduce the total numbers of available composite types. Each
chosen composite type refines the query. Repeating the above steps eventually narrows search

target to one or more concepts whose intents have all necessary composite types requested by the

it



user. The users can modify the query’s ingredients. Once the user satisfies with query, a vector
that holds all the information the user needs will be passed to the retrieve engine. The result is
passed back immediately to the client when the retrieve engine finishes processing the user
query. The query formulation is incredibly easy. The query constructed by the user in our CBRS
has clear semantics, thus the result is comprehensible to the user. The methodology combines of
the exact semantics of formal methods and interactive navigation possibilities of informal

methods.

An incremental selection from the list of available composite types guarded by the retrieval
system allows exact match and completely eliminates the data mismatch and time-consuming
deduction phase in a traditional non-concept-based retrieval schemes, and thus improves retrieval
reliability. The lattice structure not only improves the retrieval efficiency by searching only
relevant concept space but also allows more precise information to be retrieved from the library
because of the clear semantics of the user query. In other words, the concept lattice allows

retrieve engine to process queries more efficiently and provides optimal feedback to the user.

The concept-based retrieval scheme proposed in this thesis reduces retrieval complexity and cost
yet still maintain high precision and recall comparing with other approaches. The key is to
impose a structural order of all the classes in a class library. This can only be achieved through a
many-valued context to a single-valued context and then to a concept lattice representation of the
class library. Mixing type and behavior of methods of a class actually makes our concept-based
methodology a combination of type-based and behavior-based retrieval approaches. Furthermore,
our methodology is flexible enough to allows us to incorporate more class attributes in terms of

formal indices and informal descriptions into the context, so the potential is very promising.

The facility of browsing a class library is also provided in our CBRS system. The purpose of
browsing a class library is two folds: (1) the users are not familiar with the retrieval system and
have no concrete knowledge what they are looking for; (2) the users want to go through browsing
a class library to achieve the purpose of retrieval of partially-satisfied classes because there is not
always an exact match between the user’s requirements and available classes in the class library.

In both cases, the user wants to look around for a class that is close enough to be adapted to

iv



his/her needs. The hierarchy generated from the concept lattice of a class library can be used for

browsing and understanding the relationships between the classes.

Navigating directly on a concept lattice hierarchy of a class library actually plays the roles of
browsing and searching the library. The navigating is achieved through an applet called
ConceptLattice that is implemented in Java/Swing JTree data structure. The Swing JTree is a
perfect choice to display hierarchical data. The advantage of using concept lattice is that we can
incorporate more attributes to a class like sample behavior or a very good class description for
each node (concept) that will also present to the user, which greatly enhances the usefulness of
the hierarchy for browsing purpose.

It is the first time that the methodology of concept-based retrieval of object-oriented classes from
a class library and its full integrated implementation are provided as a distributed client/server
CORBA applications.



Dedication

This thesis is dedicated to my wife, Daihong and my son, Tony, for their love, understanding and
support.



Acknowledgments

First of all, I am greatly indebted to Dr. Park for his excellent instruction and advice on the
thesis-related research work. Many valuable discussions with him and his excellent suggestions
greatly stimulated my interest in component-based technology, which not only significantly
contribute the quality of this thesis, but also benefit my career-pursuing endeavor. Dr. Park’s
excellent teaching and advice on my courses certainly impressed me very much and shortened

the process of being a Master qualifying candidate, respectively.

Many thanks go to Dr. Chen, my internal reader, for providing innumerable suggestions and

comments for improvement.

Special thanks to my external reader, Dr. Kao who showed immense interest in my work,

provided many suggestions and comments which certainly improve the quality of this thesis.

Thanks also due to the support team of Visibroker for Java at Inprise Corporation, whose prompt

and useful feedback helped me set up the great ORB for running quickly.

Finally, I must thank my family members, Daihong and Tony, for the sacrifices that were made

while I was working on my thesis.

vii



Abstract

Dedication

TABLE OF CONTENTS

Acknowledgments

List of Figures

List of Tables

Chapter 1
1.1

Chapter 2

2.1

o
9

Chapter 3

Introduction

What is Software Reuse?

Software Reuse Techniques

Retrieval Approaches

Overview of the Thesis and Motivation of Concept-Based Retrieval

Organization of the Thesis

Formal Concept Analysis and Its Applications
Introduction

2.1.1 What is Formal Concept Analysis (FCA)?

2.1.2  Application Domains of Formal Concept Analysis
Application of FCA in Software Engineering

2.2.1 Software Engineering & Reengineering

222 Software Design

Mathematical Foundation of FCA

2.3.1 Basic Definitions and Theorems

2.3.2  Graphic Representation of Concept Lattice -- Line Diagram
2.3.3 Conceptual Scaling

2.3.4 Generating Concept Lattice of a Given Context

Methodology of Concept-Based Retrieval
3.1 Organizing a Class Library into a Formal Context

viil

1ii

36
36



Chapter 4

33

34

3.1.1 Class and Its Behavior

3.1.2 Using Variable Access Pattern of a Method as Class
3.1.3 A Class Library as a Multi-Valued Context

3.14 Converting into a One-Valued Context

Class Retrievals Based on Concept Lattice

3.2.1 Retrieving and Browsing a Class Library

3.2.2 Approach to Concept-Based Retrieval

3.2.3 Procedures for Exact and Approximate Retrievals
3.2.4 Retrieving Classes Regardless of Argument Order
An Example of Model Class Library

3.3.1 Representing the Class Library Using UML

3.3.2 Variable Access Patterns of Methods

3.3.3 Organizing a Single-Valued Context

3.3.4 Building Concept Lattice

3.3.5 Formulating Queries and Retrieving Classes

Two Small-Scale Class Libraries

3.4.1 A Real Class Library 1

3.4.2 Another Real Class Library 2

A Prototype System Based on FCA

4.1
4.2

4.3

4.4

Introduction

Analysis and Design of the CBRS

4.2.1 Some Aspects of CBRS Prototype System Design
4.2.2 The Distributed CORBA Client/Server Applications
GUIs of the CBRS System

4.3.1 The Big Picture

4.3.2 The Server Side

4.3.3 The Client Side

Building Concept Lattice

4.4.1 Construction of Class Libraries

4.4.2 Organization of Context and Calculation of Concepts
Retrieval Process

4.5.1 Formal Definitions of a Query and a Resuit

1X

65
65
66
66
67
69
69
70
74
78
79
79
80
80



Chapter 5

References

Vita Auctoris

4.6
4.7

4.5.2 Formulation of User Queries and Obtaining of Results
Class Library Browsing — Navigating Concept Lattice Directly
A Scenario of Concept-Based Retrieval

Evaluation and Conclusion

5.1

53
54
5.5

Evaluation of the Methodology and Implementation
5.1.1  General Purpose

5.1.2  Scale-Up

5.1.3  Retrieval Precision and Recall

5.1.4 Retrieval Efficiency

Comparison with Other Retrieval Approaches

5.2.1 Similarities

5.2.2 Differences

Advantages of Using Concept-Based Retrieval System
Conclusion

Future Work

88
93

96
96
96
97
98
99
99
100
101
102
103
107

108

115



List of Figures

Figure 2.1 The concept lattice of the geometric context represented in line diagram
Figure 2.2 A line diagram of the natural number context

Figure 3.1 Process of concept-based retrieval

Figure 3.2 A sample class library L

Figure 3.3 Concept lattice for L

Figure 3.4 Class diagram of the class library |

Figure 3.5 Concept lattice of the class library 1

Figure 3.6 Class diagram of class library 2

Figure 3.7 Concept lattice of class library 2

Figure 4.1 The three layer architecture of distributed system

Figure 4.2 The CBRS Client/Server system deployed on the Internet and Intranet
Figure 4.3 How CORBA Client/Server communicate

Figure 4.4 GUI of the MainServerWindow

Figure 4.5 Interface of Conlmp

Figure 4.6 Screen capture of Gatekeeper

Figure 4.7 The main interface of the prototype of the CBRS system

Figure 4.8 GUI of navigating (browsing) a concept lattice

Figure 4.9 The query formulation and retrieval interface

Figure 4.10 Exact retrieval of query QI performed on the model class library

Figure 4.11 Approximate retrieval of the query Q2 performed on the model class library

Figure 4.12 Exact retrieval of the query Q3 performed on the model class library

Figure 4.13 Another approximate retrieval of the Q2 performed on the model class library

Figure 4.14 Initial screen shot of browsing the model class library

Figure 4.15 The screen shot of browsing the model class library after expanding
Figure 4.16 Initial screen shot of browsing the class library 2

Figure 4.17 The screen shot of browsing the class library 2 after expanding
Figure 4.18 Screen capture of retrieving a class from class library 2

xi



List of Tables

Table 2.1 A geometric attribute cross table

Table 2.2 A natural number context

Table 3.1 Access bahavior of methods in the classes in L
Table 3.2 The many-valued context for L

Table 3.3 The one-valued context for L

Table 3.4 One-valued context of class library 1

Table 3.5 One-valued context of class library 2



Chapter 1 Introduction

1.1 What is Software Reuse?

Software reuse is the process of implementing or updating software systems using
existing software assets, or more broadly, software reuse is the application of reusable
(designed for reuse) software assets to more than one software system. It is a software
development strategy that attempts to reduce development costs and to improve software

quality by incorporating previously proven work products into a new software product.

Software reuse may occur within a software system, across similar software systems, or in
widely different software systems. Reuse refers to software components as well as other
engineering and development products. A reusable component can be a few line of code,
or a broader and high level entity such as an object, module, or encapsulated collection of
functionality, services, software specifications, designs, tests cases, data, prototypes,
plans, documentation, frameworks, and even templates. Software reuse has two sides: (1)
systematic development of reusable components (for example, a reuse-driven software
development process). (2) systematic reuse of these components as building blocks to
create new systems (for example, the beans of JavaBean can be building blocks to create
more complex component). Technically there are many types of reuse at different
productivity levels such as code reuse, inheritance reuse, template reuse, component
reuse, framework reuse, artifact reuse, pattern reuse and domain component reuse in the

second category.

The success of the software reuse process depends on many factors. But there are three

important ones from point view of technique according to Berzins and Lugqi (1991):



(1) Existence of a software repository containing many instances of each type of software
components, and availability of incremental procedure for updating the repository.

(2) Availability of efficient algorithms for describing and indexing the components, and
finding appropriate components from a possibly large software base.

(3) Reusability of existing components.

1.2 Software Reuse Techniques

Software development with reuse includes both business (organizational activities
including management of reusing a program, market place analysis, financing and
marketing forecast, and training) and engineering/technical (technical activities including
technologies or tools that support reuse, for example, CASE (computer-aid software
engineering) tools and common interfaces like CORBA (Common Object Request Broker
Architecture), DCOM (Distributed Component Object Model), and COTS (Commercial
Of The Shelf), software development with reuse processes or technical procedures like
domain modeling, product-line approach, common architecture, quality control, and best
development practice) activities. There are many factors that influence successful reuse,
among which management of an organization plays very important role. However, here
we will restrict ourselves to technical aspects of software development with reuse. The
reuse techniques encompass a wide range of activities during system development. Reuse

can be roughly classified into two categories from point of view of reuse approach:

(1) Model-based reuse: Application is constructed not by reusing objects directly but
using standardized basic model (frameworks and concepts). This is the highest level
reuse. Application developers can take advantage of the common (abstract) models and
derive from them the specific models or parts appropriate for their environment. The
examples of the technique are use of domain model, reference model, pattern and so on.
If we enlarge and apply this reuse technique not only to models but also to the way of
analyzing and designing, methodology and CASE tools could be parts of model-based
reuse. It is the advantage of this approach that the abstract level of the common model is

so high that those models are easy to understand and to be applied to a wide range of



applications (i.e., those model are designed for reuse, it is a part of reuse-driven software
development effort). On the contrary, this approach requires more workload to modify the
common models and apply them to the real environment.

(2) Component-based reuse: This technique is to construct application by using offered
parts without any change of them or with slightly modification. Developers search from
reuse library for suitable parts to compose the application. The examples of the technique
are use of class libraries or use of JavaBean bean repositories. By this technique, we use
parts directly , so we have advantage of less work in operation. On the other hand, the
ease of direct use of parts may depends on platform and its language. Object-oriented
(OO0) class libraries are generally designed for the component-based reuse or parts-based
reuse. When inheritance mechanism is considered, however, they may also be regarded as

a kind of model-based reuse.

1.3 Retrieval Approaches

It has been recognized that software productivity and quality can be improved through
software reuse. Software reuse at all levels concerns about identifying and locating the
potential reusable components. Reusability is considered as one of the great promises of
OO technology. OO programming (OOP) especially supports software reuse via sub-
classing through the forms of class inheritance and inclusion polymorphism. Objects and

classes are basic building blocks in objected-oriented software development.

Having identified software components which are potentially reusable and described in
such a way that anyone wish to reuse them would be able to do so, the problem arises as
to how to organize the total collection of all such components and related descriptions.
Such a reuse library can be constructed by classifying the reusable components in many
different ways. A good system classification not only provides the basis for cataloging the
components, but also provides a means for finding a particular candidate held in the reuse
library. Large collection of software present similar problems of classification to those of

information retrieval (Salton and McGill 1983). In the past decade, most efforts from



research community have concentrated on software classification, with emphasis upon
domain-specific aspects such as the signature of operations/functions, and determination
of static metrics that can be used when searching and retrieving. During this period many

researchers applied library classification methods to software component libraries.

There are several ways to retrieve reusable components from reuse library, such as type-

based, semantics-based, composition-based and execution-based retrievals. The retrieval

approaches proposed in the literature basically fall into three categories, based on the
techniques used to index the library components:

(1) External Indices (classification-based schemes): keyword, faceted, knowledge-based
and feature-oriented classification schemes (Hennigger 1994; Maarek, Berry and
Kaiser 1991; Prieto-Diaz 1987 and 1991; Yau and Tsai 1987; Borstler 1995) usually
use controlled vocabularies, properties, ontological features to extract relevant
components.

(2) Internal  Static Indices (structural schemes): those schemes use structural
characteristics such as signature matching, specification matching to seek relevant
components (Park and An 1998). The signature matching scheme allows both exact
and relaxed match, and can be operated in function matching (where signature = type)
and module matching (where signature = a multiset of user-defined types and a
multiset of function signatures ) models.

(3) Internal Dynamic Indices (behavioral schemes): behavior-based schemes compare
desired input and output with those of executing components to select relevant
components (Atkinson and Duke 1995; Niu and Park 1999). Another type of
behavior-based retrieval is to compute similarities between user-input query and
semantic networks both of which describe behaviors of relevant components (Chou,

Chen and Chung 1996).

Application of formal specification methods to software libraries has also been
investigated (Katz et al 1987; Perry 1987; Rollins and Wing 1991). In these

approaches, each component is indexed with a formal specification which captures its
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relevant behavior. Any desired relation between two components is expressed by a
logical formula composed from indices. An automated theorem prover is usually used
to validate the formula. If and only if the prover succeeds the relation is considered to
be established. These specification-based retrieval approaches (Fischer et al 1998;
Zaremski et al 1995; Pinix et al 1995; Mili et al 1997; Schumann and Fischer 1997)
allow arbitrary specifications as keys and retrieval all components from a library whose
indexes satisfy a given match relation with respect to the key. These strategies are all
based on a simple idea: reducing the search scope by matching the arbitrary
specifications to retrieve candidate classes. Unfortunately, their results are often a
partial match. Fischer et al called these strategies deduction-based retrieval techniques
(Fischer, Schumann and Snelting 1998), which are very time-consuming retrieval

approaches.

Much effort has been made in the area of finding appropriate classes for reuse. A
helper class for a class library allows user to specify key words to search the library for
a match (McManis 1996). Damiani et al reported a descriptor-based retrieval approach
(Damiani, Fugini, and Fusaschi, 1997). Liao and Wang attempted to improve
searching by reorganizing the OO library with facet classification scheme and thesaurus
(Liao and Wang 1993). Nelson and Poulis developed a CSRS system which employs the
OO DBMS to query the specific classes (Nelson and Poulis 1995). These strategies are
called deduction-based retrieval techniques and very time-consuming retrieval
approaches (Fischer, Schumann, and Snelting, 1998). Atkinson and Duke proposed an
abstract methodology for behavioral-based retrieval of class library (Atkinson and Duke
1995). In their methodology, class retrieval focuses on the specification of the
theoretical frameworks for behavioral retrieval, without any optimized algorithm for
practical implementation. Niu and Park has developed an execution-based retrieval of
class library in which the system organizes the user-input test data into a test program
and executes each test message on each class in a class library to find the relevant

classes based on the number of matched and unmatched methods (Niu and Park 1999).



This method actually executes all classes in the class library, therefore has some

potential problems.

Formal Concept Analysis (FCA) is a mathematical method for data analysis based on
the lattice theory of Garret Birkhoff (Birkhoff 1993). It takes unstructured data and
transforms into well structured units which are formal abstraction of concepts of human
thoughts. The clear representation of data allows investigation and meaningful,
comprehensible interpretation (Ganter and Wille 1999). Lindig was the first who
applied FCA to construct a component library which a concept-based method of
retrieving Unix system calls indexed by keywords was based on (Lindig 1995). An
overview of the concept analysis as a new framework and its application in software
engineering areas such as analysis of configuration spaces (Snelting 1996) and
modularization of legacy code (Lindig and Snelting 1997; Siff and Reps 1997) has been
reported (Snelting 1998). More recently, Fischer has applied FCA to construct a
specification-indexed software component library in which the user retrieves the
desired components by navigating the concept lattices directly (Fischer, Schumann and
Snelting 1998). Park described a method of retrieving software components using
samples based on FCA (Park 1999). A more detailed overview of FCA application in

software engineering area can be found in chapter 2.

1.4 Overview of the Thesis and Motivation of Concept-Based Retrieval

As mentioned above Niu (Niu 1999) has extended the methodology proposed by
Atkinson and Duke (Atkinson and Duke 1995) originally for retrieval of function
component to object-oriented class library. Niu’s methodology has improved the retrieval
precision because of execution of each test message on each class of the class library. His
retrieval schemes heavily rely upon executing each method of each class in the class
library on test data provided by the user to capture the class behaviors and compare these

captured behaviors with desired ones for match. It is first time that this methodology of



class retrieval by executing a class and its full implementation has been established.

However, there are some problems not dealt with in his methodology:

(1) Cost and Efficiency In order to retrieval desired candidate classes the system is
forced to execute each class in the class library, whose behaviors are closest to the
user-specified behaviors. For a small library containing up to a few hundred class
files the total time spent on executing each class maybe acceptable. However,
execution on each class is too expensive for a huge-volume class library which is
ordinary in most of software development organization although Niu has attempted
to type-check on both input and output to reduce number of classes the system has to
loop through. Based the above observation and lack of any data structures in the
class library, the efficiency of the retrieval system can’t be high.

(2) Arguments Order is Required When user constructs a test message, he or she
must specify the order of arguments within the test message same as the order of a
method of a class for a successful match. This requirement is not practical because
the user may not know the order of a method’s arguments or the relative order is not
important.

(3) Limited Input Types The user is responsible for constructing test message,
composed of a set of actual input and output values including associated type
information, which is to be sent to a class for execution. The types accepted in Niu’s
retrieval system are only primitive data types defined by Java language, the user-
defined data types are not allowed. This limitation certainly will narrows its usability.

(4) Uncaptureable Behavior A class’ behaviors are mainly defined by its methods.
Not all the behaviors of a class can be captured by Niu’s methodology. For example,
suppose a class has two methods: one method accepts user’s input, and only updates
the class’s hidden variables and returns nothing (similar to a non-empty arguments
class constructor), another method returns value. This kind of behavior of the class
can’t be captured by the retrieval system due to lack of inner relation between one
test message and another test message within one test program constructed by the

user, therefore there is no way to retrieve this class.



In this thesis, a new methodology is proposed which is based on the FCA. This is a
complete different approach than Niu’s methodology. The main points of our
methodology are summarized as following:

e The proposed methodology is based on formal concept analysis. This all-new data
analysis tool will be used to organize our class library. Previous work has shown that a
structured library will greatly improves retrieval efficiency, particularly execution-based
retrieval scheme. An organized class library using FCA mainly consists of a partially
ordered set of all the concepts of a given context that represents the class library.
Ordering classes in a class library will make retrieval more efficiently.

e In this methodology, each class in a class library is classified using the type information
plus variable access patterns of all the available variables/methods in the class, and then
the class library is viewed as a many-valued context. This many-valued context is
transformed into a one-valued context, incorporating behavior of methods into the
context via conceptual scaling, and Ganter’s concept-generation algorithm (Ganter
1986) is applied to this context, which leads to a lattice structure of all concepts.
Mixing type and behavior of methods of a class actually makes this methodology a
combination of type-based and behavior-based retrievals. Furthermore, this
methodology is flexible enough to allow us to incorporate more class attributes like
sample behavior into the context, so the potential is very promising.

e Class retrieval is based on the concept lattice using the type information plus variable
access behavior of available methods of a class in a class library. The methodology
provides a way to organize the user’s specification into a query. The users can modify
the query’s terms. Once the user satisfies with query, a vector that holds all the
information the user needs will be passed to the retrieve engine. The result is passed
back immediately to the client when the retrieve engine finishes processing the user
query. The query constructed by the user in this methodology has clear semantics, thus
the result is comprehensible to the user.

e This methodology also provides a way of an incremental selection from a list of
available composite types by user, which allows exact match and completely eliminates

the data mismatch and time-consuming deduction phase in a traditional non-concept-



based retrieval schemes, and thus improves retrieval reliability. The lattice structure not
only improves the retrieval efficiency by searching only relevant concept space but also
allows more precise information to be retrieved from the library because of the clear
semantics of the user query. In other words, the concept lattice allows retrieve engine to
process queries more efficiently and provides optimal feedback to the user.

e The facility of browsing a class library is also provided in our methodology. The
purpose of browsing a class library is two folds: (1) the users are not familiar with the
retrieval system and have no concrete knowledge what they are looking for; (2) the
users want to go through browsing a class library to achieve the purpose of retrieval of
partially-satisfied classes because there is not always an exact match between the user’s
requirements and available classes in the class library. In the late case, the user wants
to look around for a class that is close enough to be adapted to his/her needs. The
hierarchy generated from the concept lattice of a class library can be used for browsing
and understanding the relationships between the classes.

e Navigating directly on a concept lattice hierarchy of a class library actually plays the
roles of browsing and searching the library. The navigating is achieved through an
applet that can be implemented in Java/Swing JTree data structure. The Swing JTree
is a perfect choice to display hierarchical data. The advantage of using concept lattice is
that we can incorporate more attributes to a class such as a sample behavior, a very
good class description for each node (concept) that will also present to the user, which
greatly enhances the usefulness of the hierarchy for browsing purpose.

e A distributed CORBA client/server applications implemented using Java and
Java/Swing not only make its easy to put the whole system on the Intermet and
enterprise Intranet, which enable the user perform remote method calls, but also

provides professional graphic user interfaces.

The FCA provides a method for turning a traditional description-based class library into a
well defined class hierarchies. Each chain of concepts from the top of the lattice to the
bottom contains classes with minimal difference between neighbors. This produces

maximally deep class hierarchies which greatly facilitates retrieving desired candidate



classes. Many advantages (see part 5.3 of chapter $§ for a detailed summery) of this
methodology plus the unique way of extracting type and access behavior of methods from
a class allows us to use this methodology to solve the first three problems very well and
partially solve the last problem mentioned early in this part. The eventual goal of our
research is to specify a class-based software reuse repository by integrating a number of
retrieval approaches including typed-based, execution-based and attribute-based schemes
with other repository operation. This work is a part of above effort.

1.5 Organization of the Thesis

This thesis is organized into five chapters. The following is a brief description of each

chapter concerns about.

Chapter 1 provides a brief introduction of software reuse, reuse models, retrieval

techniques of various components, and overview of this thesis.

Chapter 2 presents an overview of formal concept analysis and its applications in
software engineering area. It also provides a short introduction of mathematical
foundation of the formal concept analysis with basic definitions, notations and theorems

to thoroughly understand our FCA-based methodology.

Chapter 3 discusses general ideas of concept-based retrieval. A methodology of
construction, organization, building concept lattice from a one-valued context scaled from
a many-valued one of a class library is presented. Retrieving classes based on concept
lattice through formulation of user queries from a model class library is demonstrated.
Two small scale class libraries are also presented to illustrate the procedure of

organization of contexts, construction of concept lattices and so forth.
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Chapter 4 describes a prototype of concept-based retrieval system (CBRS) implemented
using CORBA and Java/Swing. A distributed CORBA client/server application is
discussed. All the components of the distributed CBRS system are systematically
described in detail. The screen shots of important GUIs of both client and server sides are
provided. An incremental selection mechanism for formulating user query and retrieval
approaches are discussed. A class browsing tool based on navigation of concept lattice is

also introduced in this chapter.

Chapter 5 compares our methodology proposed in this thesis with former researches and
other retrieval tools. It also covers problems left in this thesis and possible future works in

this new area.
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Chapter 2 Formal Concept Analysis and Its Applications

2.1 Introduction

Formal concept analysis provides a conceptual tool for the analysis of data, and has
already had many successful applications (see the part 2.2 below for a review). One of the
main objectives of this method is to visualize the data in form of concept lattices and
thereby to make them more transparent and more easily discussible and criticizable.
Another important tool provided in connection with formal concept analysis is the
method of “interactive attribute exploration”, which allows knowledge acquisition from
(or by) an expert by putting very precise questions to him/her, which either have to be

confirmed or to be refuted by a counterexample.

Formal concept analysis transforms any binary relation constructed from a set of objects
and a set of attributes into a complete lattice. This concept lattice can be studied by
algebraic means and offers remarkable insight into properties and structure of the original
relation. As relations between “objects” and “attributes” occur all the time in software
technology, formal concept analysis is becoming an attractive foundation for a new

program analysis and design tools.

2.1.1 What is Formal Concept Analysis (FCA)?

FCA was founded by Wille (Wille 1982; Davey and Priestley 1990). It is basically a data
analyzing tools that can be used to calculate a concept lattice from a binary relation of

objects and attributes, called a formal context. FCA is a set-theoretical model for

12



concepts that reflects the philosophical understanding of a concept as a unit of thought
made up of two parts: the extension and the intention. The extension of a concept is the
collection of all entities (objects) belonging to the concept and the intention is all the

properties (attributes) common to all entities of the concept.

The concept lattices is a structure with strong mathematical properties which reveals the
hidden structural and hierarchical properties of original relation. It can be computed

automatically from any given binary relation.

2.1.2 Application Domains of Formal Concept Analysis

FCA provides a way to identify groupings of objects that have common attributes. The
mathematical foundation was laid by Birkhoff in 1940 (Birkhoff 1940). Later, Wille and
Ganter elaborated Birkhoff’s result and transformed it into a data analysis method (Wille
and Ganter 1999; and Wille 1982). Since then FCA has found a variety of applications.

The FCA is widely used in numerous application domains, e.g. in psychology where
repertory grids were analyzed using FCA; in information science where FCA was used to
construct a retrieval system; in software reengineering where FCA was used to locate
clusters of subroutines in 20 years old FORTRAN code; in software engineering where
FCA was used to help class hierarchy design; the FCA was also applied to reengineer,
represent and investigate knowledge bases created by ripple down rules in an iterative
manner (Richards and Compton 97); the FCA was also applied to the software reuse
where a concept lattice was constructed from a reuse library to help retrieve reusable
components; and in many other areas such as software engineering, musicology, politics,
linguistics, electronics, civil engineering, ecology, biology, and psychology. We will go
over some application areas such as software engineering, reengineering, class design and

software reuse in details in next part.

13



2.2 Application of FCA in Software Engineering

Software reengineering and reuse are concerned with maximizing software usage for any
given development effort. When a large and important family of software products gets
out of control, a major effort to restructure it is appropriate. The first step must be reduce
the size of the program family. One must examine the various versions to determine why
and how they differ (Parmas 1994). However, at that time there were very few even no
good method available for reengineering program families, let alone tool support for
restructuring. At the same time, Krone and Snelting reported a first step toward a theory
and tools for configuration restructuring, and they have shown how configuration
structure can be inferred from existing source code and how interference between
configurations can be detected based on FCA (Krone and Snelting 1994). Since then
FCA is quickly emerging as an important tool for software reengineering. In 1998 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tool and
Engineering, Snelting (Snelting 1998) presented a brief overview of the FCA as a new
framework and its application in software engineering areas including software
component retrieval (Lindig 1995), analysis of configuration spaces and modularization
of legacy code (Lindig and Snelting 1997; Siff and Reps 1997). In this part we will
review the applications of FCA in the software engineering (including reengineering), and

then software design.

2.2.1 Software Engineering & Reengineering

The practical application of using FCA has resulted in many developments of concerning
the visualization of the lattice using computer generated diagrams (Wille 1984), its
simplification through decomposition or pruning heuristics (Ganter and Wille 1999;
Godin and Mili 1993; Funk, Lewien, and Snelting 1995), its use in an interactive

knowledge acquisition process and the generation of rules from the lattice (Wille 1992)
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which can be used for knowledge discovery in databases (Godin and Missaoui 1994).
Recently applications of FCA to several software engineering areas have been reported
ever increasingly (Lindig 1995; Snelting 1996; Snelting 1998; Snelting and Tip 1998;
Lindig and Snelting 1997; Siff and Reps 1997; Krone and Snelting 1994; Godin,
Missaoui and April 1993; Godin, Mineau and Missaoui 1995; Fischer 1998; Park 1999;
Shen and Park 1999).

As early as 1986, Godin et al had studied lattice model as browsable data spaces in data
analysis (Godin, Sanders and Gecsei 1986). A structure very similar to the concept lattice
had also been proposed for retrieval of classes in a large repository based on class features
in 1992 (Oosthuizen, Bekker and Avenant 1992). In 1995, Lindig reported an application
of FCA to retrieve Unix system calls from a small library in which the Unix system calls
were individually indexed by carefully selected key words. A concept lattice was
constructed based on a table (i.e., context) consisting of the Unix system calls as a set of
objects and the key words as a set of corresponding attributes; He demonstrated clearly,
for the first time, the concept lattice allowed a fast, exact and incremental retrieval of the
Unix system calls; Queries could be easily constructed and have clear semantics, thus the

obtained results were comprehensible to the user (Lindig 1995).

At about same time, Godin et al also applied FCA to a database dictionary which was
considered as a standard reference for building database schemas and ensuring uniformity
and standardization within a large company’s applications. When a new application was
defined, the analyst started first by determining if existing data element satisfied the needs
of the application through retrieval of the data element. The retrieva! process was aided
by browsing the concept hierarchy generated by using FCA (Godin, Mineau and Missaoui
1995). In another paper, Godin et al also performed an experiments to compare
information retrieval using a Galois lattice structure with two more conventional retrieval
methods -- navigating in a manually built hierarchical classification and Boolean querying

with index terms. Their research results found no significant performance difference
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between the former and the laters. This finding suggested that retrieval using concept
lattice structure could be an attractive alternative for information retrieval (Godin,

Missaoui and April 1993).

Eklund’s research group at Griffith University have conducted a series of research using
FCA to aid information retrieval since 1996. Cole and Eklund reported that they used
SNOMED (Systematized Nomenclature of Medicine) to index a set of 9,000 patient
discharge summaries. A concept lattice is synthesized whose structure reflects both
specialization/generation information present in SNOMED and combinations in which
the SNOMED concepts appear in the documents. The concept lattice is synthesized using
format concept analysis, where documents are considered objects and the medical
concepts contained in SNOMED are considered the attributes (Cole and Eklund 1996a
and b). More recently the same authors also applied FCA to analyze an email collection.
They described the use of a suite of tools designed to allow an investigation of data
retrieved from email texts. The data is retrieved from the emails with aid of a hierarchy of
classifiers that extract useful terms and encode known implications. Further implications,
both complete and partial, are then investigated by means of a nested line diagram (Cole
and Eklund 1999).

Lindig and Snelting even applied FCA to modularize legacy code. By analyzing the
relation between procedures and global variables, a concept lattice is constructed. Module
candidates were identified and arranged in the concept lattice. They then explained how
hierarchical clustering of local modules or procedures showed up as sub-/superconcept
relation in the lattice, and how the lattice could be used to assess cohesion and coupling
between module candidates. Specific infima (so-called interferences) corresponded to
violations of modular structure, and proposals for interference resolution could be
automatically generated. Furthermore, certain algebraic decompositions of the lattice

could lead to automatic generation of modularization proposals. They also applied this
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approach to several examples written in Modula-2, FORTRAN, and COBOL; among
them a >100 kloc aerodynamics program was analyzed (Lindig and Snelting 1997).

In 1996, Snelting applied FCA to the problem of reengineering configuration. FCA
restructured a taxonomy of concepts from a relation between objects and attributes. He
used FCA to infer configuration structures from existing source code. They used a tool
called NORA/RECS which accepted source code, where configuration-specific code
pieces were controlled by preprocessor. The computed concept lattice was proved to
provide remarkable insight into the structure and properties of possible configurations.
The concept lattice not only displayed fine-grained dependencies between configurations,
but also visualized the overall quality of configuration structures according to software
engineering principles. Interferences between configurations could be analyzed in order to
restructure or simplify configurations. Interferences showing up in the concept lattice
indicated high coupling and low cohesion between configuration concepts. Sources files

could be then simplified according to the lattice structure (Snelting 1996).

More recently in 1998, Snelting presented a short overview of the FCA’s underlying
theory, as well as its applications for software component retrieval, analysis of
configuration spaces, and modularization of legacy code and other work done in his
group. He concluded that the concept lattice can be studied by algebraic means and offers
remarkable insight into properties and structure of the original relation. As relations
between "‘objects” and ‘attributes” occur all the time in software technology, concept
analysis is an attractive foundation for a new class of program analysis tools (Snelting

1998).

It is appropriate to mention that Lindig even applied FCA to another software
reengineering area -- analysis of software variants caused by diversity of computer
platforms existed in today’s reality. His research results shown that the variants generated

from a source have a rich structure which can be effectively analyzed by using FCA, and
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variant description may contained redundant expression which can be removed (Lindig
1998).

Another paper recently published by Snelting and Tip reported applications of FCA to
find design problems in a C++ class hierarchy by analyzing the usage of the hierarchy by
a set of applications. The concept lattice is constructed in which relationships between
variables and class members are made explicit, and where information that members and
variables have in common is “factored out”. They have shown that the FCA-based
technique be capable of finding design anomalies such as class members that are
redundant or that can be moved into a derived class. In addition, situations where it is
appropriate to split a class can be detected. They even suggested the FCA-based
techniques can be incorporated into interactive tools for maintaining and restructuring

class hierarchies (Snelting and Tip 1998).

Fischer has applied FCA to specification-based retrieval system in the software
component libraries. He has shown that match relations can be used to build appropriate
index which then will be used to index the library and the FCA can be used to turn this
index into a navigation structure. His experiments showed that its is feasible to calculate
an approximation of the index which is accurate enough for browsing purposes, using
current theorem provers and hardware. The concept lattice reveals the implicit structure
of a library as it follows from the index. It can even indicate situations where a finer
index is required and thus help understand and reengineer component library. Due to its
dual nature, the concept lattice allows two complementary navigation styles which are
based on either on attributes or on objects. Due to the lattice nature, both navigation styles
automatically have the single-focus property and refrain the user from dead ends (Fischer
1998).

Research of Park’s group the research is recently focused on component reuse through

retrieval from a class library aided by FCA tool. Park has presented a method of indexing,
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storing and retrieving potentially reusable class components. This method is based on
representing classes using type information, constructing concept lattice structure for the
library based on accessibility relation between classes and types using FCA, and
retrieving reusable classes using types of methods of the desired class by navigating the
concept lattice. The concept lattice structure certainly improves the search time
comparing with searching unorganized library. The system allows user to incrementally

select from a menu of available types guided by the retrieval system (Park 1999).

In another paper by Shen and Park, they proposed a methodology of classifying,
structuring and retrieving object classes based on a mathematical method for data analysis
i.e., FCA. In this methodology, a class is classified and retrieved using the type
information and variable access behavior of methods in the class and a class library is
then viewed as a many-valued context. This many-valued context is transformed into a
one-valued context via conceptual scaling and FCA is applied to this context, which leads
to a lattice structure of all concepts. Class retrieval is based on the concept lattice. The
lattice structure improves the retrieval efficiency by searching only relevant concept
space. The user can also select incrementally from a list of available type information
plus variable access pattern of methods dynamically updated by the retrieval system.
More other attributes of classes can be easily incorporated in the many-valued context for
the class library, it allows more precise information to be retrieved from the class library
(Shen and Park 1999). The methodology described in this paper forms the foundation of
this thesis.

2.2.2 Software Design

Building and maintaining class hierarchy has been recognized as one of the most
important and difficult activities on object-oriented software design (Booch 1994).
Transforming an imprecise, natural-language description of a client’s requirements into a

well defined class hierarchy model is difficult and demanding task. The problem of
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building an initial class hierarchy from a set of class specification or reengineering an
existing one following class updates, has received increased attention in the OO literature
in recent years. Class hierarchies start taking shape at the analysis level, where classes
that share application-significant data and application-meaningful external behavior are
grouped under more general classes. Rubin and Goldberg has proposed an object
behavior analysis method which involves a sub-step where identifying the objects, their
attributes and services, the class hierarchy is reorganized in order to represent relevant
abstractions based on common behaviors and attributes (Rubin and Goldberg 1992). At
the design level, such hierarchies are augmented and possibly reorganized in order to take
into account the solution objects along with the application domain objects (Monarchi
and Puhr 1992). Several guidelines have been proposed for the design of class
hierarchies. Among these, two characteristics emerge from the literature that are
particularly revenant the class design using FCA: (1) Minimizing redundancy -- There is
large consensus that keeping each thing in one place in the class hierarchy is a good
software engineering practice (Johnson and Foote 1988; Korson and Mcgregor 1992;
Lieberherr, Bergstein and Silva-Lepe 1991). Redundancy may also means that the right
abstractions have not been identified based on commonalties within the library. (2)
Subclasses as specialization -- Inheritance is sometimes used only for code reuse
purposes, which, as observed by Cox (Cox 1990), produces libraries that are difficult to
understand and reuse. Many people advocate that inheritance hierarchy be consistent as
possible with specialization to achieve better understandability and reusability (Johnson

and Foote 1988; Coleman et al 1994).

There are quite few literature in the area of application of FCA to the class design. This is
a quite new and uncharted territory in software engineering. Back to the old days, work in
the context of the Demeter System has addressed the automatic discovery of class
hierarchies from example objects (Lieberherr, Bergstein and Silva-Lepe 1991). Their
spirit is similar to using FCA to generate class hierarchy. They use a class dictionary
graph to represent the design. Their algorithm uses a metric which underlies an
optimization process. They propose a two-step learning algorithm where the first step
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does basic learning by generating a potentially non-optimal class dictionary graph. The
edges of the graph represent the inheritance (alternation edges) and part-of (construction
edges) relationships between classes. The second step optimizes the graph by trying to
minimize a weighted function of the edge where the weight of the construction edge is at
least twice the weight of the altenation edges. This function can be considered as a
complexity metric for the class hierarchy. They have shown that the exact optimization is
NP hard and proposed an approximate algorithm that brings down the complexity to
polynomial. They also present an incremental algorithm that produces the optimal
hierarchy when it is a tree (Bergstein and Lieberherr 1991). From today’s point of view,
the same goals can be easily achieved with FCA with an important advantage: the
resulting class structure is not dependent on any algorithm that produced it (either batch

or incremental algorithms will give the same structure of concept lattice!!).

Cook was more interested in critiquing and reorganizing existing class hierarchies to
bring class (implementation) hierarchies as close as possible, language permitting, to type
(interface) hierarchies (Cook 1992). In one experiment, he automatically extracted
interface specifications of the Smaltalk-80 Collection class library to build the
corresponding interface hierarchy, and examined the produced hierarchy to detect
problems with actual library and proposed some improvements which are feasible within

the context of Smalltalk’s single inheritance.

Based on an empirical study, Dvorak showed how class hierarchies tend to exhibit
conceptual entropy which is manifested by increasing conceptual inconsistency as we
travel down the hierarchy (Dvorak 1994). As a solution, he proposed a method and an
algorithm for building class hierarchies emphasizing conceptual simplicity and
consistency. The algorithm relies on manually-generated formal specifications of the

conceptual attribute for each class.
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Notice that the focus of these algorithms is how to put the initially provided classes into a
hierarchy. They do not address the restructuring of the basic objects and classes. There
might be better alternative designs of these initial classes based on splitting or combining
classes. Work on such behavior preserving transformation on class hierarchies have been
reported (Opdyke and Johnson 1989 & 1993). The behavior-preserving transformation
was called refactorings in their work. The goal of refactoring is to improve design and
enable reuse by “factoring out” common abstraction. This involves steps such as the
creation of new super classes, moving around methods and classes in a hierarchy, and a

number of similar steps.

A complimentary technique to the one of Opdyke and Johnson, based on FCA, has been
reported by Snelting’s group. Again Snelting and his research group have been pioneered
in reengineering C++ class hierarchies using FCA (Snelting and Tip 1998). In their
paper, they presented a method for finding design problems in a class hierarchy by
analyzing the usage of the hierarchy by a set of application. The concept lattice
constructed using FCA reveals explicit relationships between variables and class
members, where information that members and variables have in common is “factored
out”. Their results shown that the technique be capable of finding design anomalies such
as class members that are redundant or that can be moved into a derived class. They also
showed how a restructured class hierarchy can be generated from the concept lattice, and
how the concept lattice can server as a formal basis for interactive tools for redesigning

and restructuring class hierarchies.

Based on FCA, Davies presented an automated technique for constructing class
hierarchies as concept lattices (Davies 1997). He even suggested a software development
method using FCA in following steps: (1) Split systems into subsystem ... (2) For
subsystem at class hierarchy implementation level: (a) Identify classes of subsystem. (b)
Identify properties of these classes. (c) Create property cross table. (d) Generate class
hierarchy from property cross table. (3) Refine by repeating steps 1 and 2. (4) Implement
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public interfaces of the classes. At all times the concept lattice provides a visual
representation of the system and all subsystems. The higher level concepts which become
the abstract class and higher level classes of the implementation should be meaningful
within the context of the subsystem and perhaps within the framework of the project as a
whole. He also summarized the benefits of this technique which include automatic
elimination of no-essential complexity, creation of deep class inheritance structures and
visual representation of all classes within a project as one relational, mathematical

structure.

Finally, Godin et al recently presented concept lattice and related structures as framework
for dealing with design and maintenance of Smalltalk class hierarchies (Godin, Mili, et al
1998). They designed incremental algorithms that update existing concept lattices as the
result of adding, removing, or modifying class specification due to the nature of an
inherently iterative and incremental process in class design. They developed a prototype
tool that incorporates this and other algorithms as part of the IGLOO project, which is a
large object-oriented software engineering joint research project involving academic and
industrial partners. Their tool can generate either the concept lattice or several variant
structures incrementally by incorporating new classes one by one. The resulting

hierarchies can be interactively exploited and refined using a graphic browser.

In summary, initially proposed for knowledge acquisition and discovery in the artificial
intelligence field, FCA have recently found interesting applications in software
engineering area as mentioned above. Concept lattice and related structures have been
proposed as a framework for dealing with the construction and maintenance of class
hierarchies. Within this framework, hierarchies are guaranteed to have zero redundancy,
by factoring out commonalities, and to be consistent with specialization. Another
advantage of the FCA theory is that it provides a clear and simple definition of the nature

of generated hierarchy that does not depend on algorithm specifics or parameter tuning.
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2.3 Mathematical Foundation of FCA

In the following we try to explain the basic concepts of formal concept analysis, which is
a theory that has been developed since about 1980 by Wille ( Wille 1982) and members
of the Research Group on Formal Concept Analysis at the Technische Hochschuie
Darmstadt, and we shall do this with help of an example.

2.3.1 Basic Definitions and Theorems

Definition 1 A formal context is defined as a triple C = (O, A, R) where O and A are sets
of objects” and attributes”, respectively, and R < O X A is a binary (incidence) relation

between O and A.

A context is typically represented in a tabular form as a cross table, whose rows are
represented by the objects, whose columns are represented by attributes and whose cells
are marked if and only if the incidence relation holds for the corresponding pair of object
and attribute. Objects form a context share a set of common attributes and vice versa. As
an example we present a context of geometric objects from Davies (Davies 1997). The
different geometric shapes from a set O of objects, and some features of geometric shapes
are collected in a set A of attributes. The incidence relation R is given by the cross table

as shown in Table 2.1.

- Note: there are two total different meanings of object and attribute used in this thesis. In order to avoid confusion we
give the usage of meanings of them here. Object — (1) when used in FCA, it means any entity that has attributes
(properties) e.g., a person has artributes like height, weight, gender, etc. (2) When used in OOP, it is an instance of a
class. The amributes of an object are defined by the instant variables of the class. So an object in FCA can be a class in
OOP. Attribute - (1) when used in FCA it means a property of an entity. (2) when used in OOP it means an instant
variable defined in a class. So an attribute of a class in QOP is also an attribute of the class object in FCA, but a

method of a class in OOP that defines the class behavior is an attribute of a class object in FCA.
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Table 2.1. A geometric attribute cross table

Objects\Attributes location | length | area | volume | center | radius
Point X
Segment X X
Curve X
Circle X
Sphere X
Square X
Cube X
Polygon X

Pyramid X
Prism X
An example of a formal context : geometric shapes

Ll Bl B K
”

The cross table should be read in the following way: each x marks a pair being an element
of the incidence relation R, e.g. (Circle, center) is marked because the object Circle
carries the attribute center, where (Polygon, center) is not marked because normally
polygon does not have a well-defined center. Thus (0, a) € R should be interpreted as

“the object o carries the attribute a™.

The central notion of the FCA is the formal concept. In order to define formal concept

we need to present two derivation operators.

Definition 2 Let C = (O, A, R) be a formal context, O; — O and A;  A. The common
attributes of O; are defined by o(O;) (or O;’) = {a € A; | Vo € O;: (0, a) € R}, the
common objects of A; by i(A;) (or A;’) = {o e O;| Vae A;: (0, a) € R} wherei is index,

canbe 1,2, .....

We follow the notation used by Fischer in this thesis (Fischer 1998). The o(O;) (or O;’)
contains all attributes that are common to all objects in O;, and W(A;) (or A;’) is the set of

all objects that carry all the attributes of A;. A concept is a pair of objects and attributes,
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each synonymous with the other. The pair (O;, A;) is complete with respect to R if and
only if the above two conditions are met. Notice o) = A and wx(¢) = O.

It is easy to prove that these derivation operators satisfy the following simple rules (for all

01,0:,0icOandall A}, Ay, Aic Awherei=1,2, ... and {O;, A)) is a formal concept,

see below):
Lemma
()01 0: =20 Oy’ AiC A 2 A CAY
(2) Oi g Oin & Oi’ _ Oins; Ai = Ai” & Ai, =Ai’”

OicA’ @A O

Definition 3 The pair x; = (O;, A)) is called a formal concept if and only if 0(O;) (or O;’)
= Ajand o(A;) (or A;’) = 0. 1(x;) = O; is called x;’s extent and T, (x;) = A; is called x;’s
intent. The set of all concepts of the context C is denoted by G(C).

This property says that all objects of the concept carry all its attributes and that there is no
other object in O carrying all attribute of the concept. Concepts can be imagined as
maximal rectangles (modulo permutations of rows and columns) in the cross table. In
other words when looking at the cross table in Table 2.1 this property can be seen if
rectangles totally covered with crosses can be identified, e.g. the four cells associated
with Circle, Sphere, Center and Radius constitute such a rectangle. If we ignore the
sequence of the rows and columns we can identify even more concepts, e.g. ignoring the
row Sphere and column Volume (or moving them to another place) we achieve another
rectangle/concept, namely the cells associated with the objects Circle and Square, and the
attributes Area and Center. Generally, we can say that formal concepts correspond to
maximal rectangles of crosses in the formal context, after appropriate permutations of the

rows and columns.
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Frequently, formal concepts of the form ({0}, {0}’) or ({a}’, {a}”), where o and a are
any object and attribute, respectively, and 0 € O and a € A, are of special interest because
they are “generated” by a single object o from O or by a single attribute a from A,
respectively. In such a case of one-element sets, we usually omit the set brackets, and
write them as (0", 0°) and (a’, a”’), respectively. The former is called object concept and
the later is called attribute concept. The concept ({pyramid, prism}, {volume}) (node x4
in Figure 2.1 below) in Table 2.1 is an object concept generated by ({pyramid}”,

{pyramid}’).

Concepts are partially ordered. A concept’s extent includes the extents of its subconcepts

and the intent of a concept includes the intents of its superconcepts.

Definition 4 Let C be a formal context defined above, x; = (O, A}), X2 = (02, A>) where
X1, X2€ G(C) (or O, O, £ O & A, A; € A). x; and x; are ordered by the subconcept-

superconcept relation, x; < x; if and only if O; < O-.

The intent-part follows by duality, i.e. x; < x, if and only if A; € A;. A concept X, is a
subconcept of x; if and only if the set of its objects is a subset of the objects of x2 or
equivalent expression is if and only if the set of its attributes is a superset of the attributes
X2. Actually, the set of all formal concepts of a formal context forms a concept lattice.
Typically, given the formal context (O, A, R), the infimum (bottom) and supremum (top)
of the concept lattice are formed by (¢, A) and (O, ¢), respectively, but not always. As an
immediate consequence of the preceding definitions we get that the strict order
corresponds to strict inclusion of extents and intents, i.e. x; < x» if and only if O; < O»

and A> c A,.
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The following basic theorem of FCA states the structure induced by the concepts of a
formal context and their ordering is always a complete lattice and the infimum (or meet)
and supremum (or join) can also be expressed by the common attributes and objects. The
supremum of two concepts X; and X is denoted by x; v X, and for a set of concepts G as
vG. The infimum of the two concepts is denoted by x; A x> , and for a set of concepts G

as AnG.

Theorem 1 Let C = (O, A, R) be a formal context. Then G(C) is a complete lattice, the

concept lattice of C. Its infimum and supremum operations (for any set H < G(C) of
Concepts) arc given by: Aiel(oi: Ai) = (m el Ois OL(CD(U el Al))) and

Viel(Oi, Aj) = ((0(\J ; Oy)), Mt Aj).

This theorem says in order to compute the infimum (greatest common subconcept) of two
concepts, their extents must be intersected and their intents joined; the later set of
attributes, then must be enlarged in order to fit the object set of the infimum.
Analogously, the supremum (smallest common superconcept) of two concepts is

computed by intersecting the attributes and joining the objects.

The concept lattice can be considered as a graph, that is, a relation. What happens if we
again apply FCA to this derived relation? It turns out that the concept lattice reproduces
itself (Wille 1982). Thus concepts do not breed new concepts, there is no proliferation of
virtual information. The concept lattice is sometimes also referred to as the Galois lattice
because the couple of functions (o, ®) forms a Galois connection between O and A, and
the Galois lattice G for the binary relation is the set of all complete pairs (Barbut &
Monjartdet 1970). Hence, awo® and woo. are closure operators; In Theorem 1 their

application maintains the “maximal rectangle” property of the resulting concepts.
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Each attribute and object has a uniquely determined defining concept in the lattice which
allows a sparse labeling of the lattice. The defining concepts can directly be calculated
from the attribute or object, respectively, and need not to be searched in the lattice.

Definition 5 Let G(C) be a complete lattice. The defining concept of an attribute a € A
(object 0 € O) is the greatest (smallest) concept x such that a € ,(x) (0 € ®,(x)) holds. It
is denoted by u(a) (6(0)).

Theorem 2 In any concept lattice we have p(a) = (@({a}), a(cx{a}))) and o(0) = (®
(ou({0})), a({a})).

The proofs of both Theorem 1 and 2 can be found in the reference (Davery and Priestley
1990).

2.3.2 Graphic Representation of Concept Lattice -- Line Diagram

Because of the dualism between objects and attributes and the fact that data analysts or
any other users of FCA are interested in investigating structures and relationships we
need a representation of concepts that treats both objects and attributes alike. This
representation is realized in a line diagram (a lattice diagram with reduced labeling). A
line diagram (also called Hasse diagram, Wille 1984) is a graphic visualization of the
concept lattice which allows the investigation and interpretation of relationships between
concepts, objects and attributes. This includes object hierarchies, if they exist in the given
formal context. A line diagram contains the relationships between objects and attributes,
and thus is an equivalent representation of a formal context, i.e., it contains exactly the
same information as the cross table. Also dependencies and relationships between
attributes can be easily detected in a line diagram. The corresponding line diagram of
Table 2.1 is shown in Figure 2.1 for the above context of geometric objects (modified

from Davies 1997).
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x13
Figure 2.1 The concept lattice of the geometric context represented in line diagram

The graph consists of nodes that represent the concepts and edges connecting these nodes.
Two nodes x; and x> are connected iff x; < x, and there is no concept x; with x; < x3 < xa.
Although the concept lattice is a directed acyclic graph (DAG) the edges are not provided
with arrowheads, instead the convention holds that the superconcept always appears
above of all its subconcepts. For example, the line diagram shows that both node x¢ and
Xo are subconcepts of node x3. As a difference to usual lattice diagrams the labeling in
line diagram is reduced, i.e., each object and each attribute is the only entered once. So
the nodes are not annotated by their complete extents and intents. Rather, attributes and
objects propagate along the edges, as a kind of inheritance. Attributes propagate along
the edge to the bottom of the diagram and dually objects propagate to the top of the
diagram. Therefore the top element (the supremum of the context) is marked by (O, ¢) if
the O is the set of objects; the bottom element (infimum of the context) is marked by (¢,
A) if the A is the set of attributes. Attributes names are always displayed slightly above

the node and objects names are noted slightly below the respective node.
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To read a line diagram we start at the object, attribute or concept you are interested in.
Following all paths from this node to the top element, one visits all superconcepts of the
selected concept. Collecting the attributes displayed along the paths one finds all attribute
that the selected concept or object carries. Selecting a node and following all paths from
this node to the bottom element (infimum of the context) one finds all subconcepts. If the
selected node displays an attribute name all objects along these paths establish the set of
objects carrying this attributes. Namely, the intent a concept x consists of all attributes,
the names of which are attached to a circle (node x) which can be reached by an
ascending line path from the node x (possibly including node x), while extent of x
consists of all objects of x’s subconcepts including x (i.e., can be reached by a descending
line path from the node x). Thus line diagram displays relationships between objects,
attributes and concepts in an easily perceivable way. Figure 2.1 reveals that Pyramid and
Prism are equivalent objects. Of course one has to pay attention to the context.
Concerning the given formal context Pyramid and Prism are equal because they carry
exactly the same attribute, namely volume. Their equivalence can be seen in the line
diagram by their appearance at the same concept node. The line diagram also displays
object hierarchies and explicitly shows why some concepts are specialization of others.
For example the line diagram shows, Square (node xs) is a subconcept of Center (node

Xp_).

We will give another context and its corresponding line diagram to further illustrate how

to read a line diagram (see Table 2.2 and Figure 2.2).
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Table 2.2 a natural number context

Objects\Attributes even odd prime square cubic
1 X X X
2 X X
3 X X
4 X X
5 X X
6 X
7 X X
8 X X
9 X X

Definition: even — is divisible by 2; odd — not is divisible by 2 without remainder;
prime — is only divisible by 1 and itself; square — can be express as n x n = n’

for a natural number n; cubic -- can be express as n x n x n = n® for a natural number 7.

Figure 2.2 A line diagram of the natural number context

The above examples already demonstrate one possible interpretation of a concept lattice:
it can be seen as a hierarchical conceptual clustering of the objects. Objects are grouped
into sets, and the lattice structure imposes a taxonomy on these object sets. The original
cross table can always be reconstructed from the concept lattice. Hence, a context cross
table (i.e. relation) and its concept lattice are analogous to a function and its Fourier
transform (which can also be reconstructed from each other): concept lattice is similar in

spirit to a spectral analysis of continuous signals (Snelting 1996).
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Another thing one can !earn from line diagram is implication, e.g. any object that has a
radius also carries the attribute center. This is because all subconcepts of the concept
annotated with radius are also subconcepts of the node annotated with center. From
Figure 2.2 we can see that {cubic, odd} = {square} is true. In other words, the attributes
odd and even together implies all other attributes and thus the infimum of the two
corresponding attributes concepts is the smallest concept of the concept lattice. In dealing
with relations between the attributes in the present context one should be aware that the
implication may be true only in this context. As matter of fact, using some efficient
algorithms that generating concept lattice and rules from a binary relation or even a
database can help reveal implication and knowledge discovery (Godin, and Missaoui

1994).

2.3.3 Conceptual Scaling

Object-attribute-value relationships are frequently used data structure to code real-world
problems. In this case, we have to use a many-valued context instead of one-valued
context discussed above. A many-valued context is formally defined as a quadruple (O,
A, V. R), where O, A, and V are sets whose elements are called objects, (many-valued)
attributes and attributes values, respectively, and R is a ternary relation with R € O x A x
V such that (o, a, v) € R and (o, a, w) € R always implies v = w. An attribute of a many-
valued context (O, A, V, R) may be considered as a partial map of O to V which suggests
to write a(o) = w rather than (o, a, w) € R. The context (O, A, V, R) is called m-valued if
V has cardinality m. One-valued contexts correspond to the formal context defined in

previous section.

To construct concept lattice of a many-valued context (O, A, V, R) we need to transform
it into a single-valued context (O, N, I) with the same objects as (O, A, V, R) whose
extents can be thought of as the “meaningful” subsets of O. In general there is no
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immediate, automatic way to derive the conceptual structures of data context which are
based on object-attribute-value relationships. The first approach to transform these data
contexts into concept lattice is called conceptual scaling. The concept lattice of the
derived context is considered to be the conceptual structure of many-valued context.
“Meaningful” refers to the interpretation of data which can only be by an expert of the
field the data is from and never by the mathematician along (Prediger 97). This
interpretation must always be purpose-oriented and should be founded on theoretical

considerations.

The basic idea of conceptual scaling is to derive the context by conceptual scales. We
assign to each many-valued attribute a € A a conceptual scale S, = (O,, A,, R,) with a(O)
< O.. The choice of these scales is a matter of interpretation. The task is to select S, in
such way that it reflects the implicitly given structure of attribute values as well as the

issues of data analysis.

The second step of concept scaling is to decide how the different many-valued attributes
can be combined to describe concepts. The disjoint union of attribute sets often proves
sufficient and we can thus restrict ourselves to looking at this so called plain conceptual

scaling.

In other words, we can say the conceptual scaling yields a global view of the conceptual
patterns of data stored in many-valued contexts by applying expert knowledge about the
inherent structure of some or all attributes values. Sometimes, however, it is not the
global view that is desired result but the answer to more specific questions. In this case,
we already have a certain conception of relevant combinations of attributes, so it is not
necessary to scale all attributes. Instead, we use these relevant combination of attributes
to specify a limited terminology by which we can derive the context. This method is

called logical scaling (for more details, see Prediger 97).
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2.3.4 Generating Concept Lattice of a Given Context

There are several algorithms available to compute all the concepts from a given context,
for example, for one-valued (C*, T*, I*) representing our class library (see chapter 3) and
we construct a lattice of the concepts based on their sub-concept and super-concept
relations through the greatest lower bound (A) and the least upper bound (v) operations
(for more details see the author’s 60-510 survey report tilted “Formal Concept Analysis
and Its Application in Software Engineering/Reuse” 1999). Among which, Ganter’s
algorithm is most efficient one (Ganter 1986). The cross table of a given context provides
the input to the process of concept lattice formation. The resulting concept lattice is the
class hierarchy. Each node of the concept lattice is a class, the parent classes of which are
all concept nodes which are supeconcepts of the node. The top and bottom nodes of the
lattice usually have an empty intent and empty extent, respectively. A concept will be
labeled with attribute a if it is the largest concept having a in its intent. In other words all
the concepts below the concept labeled with the a contains a in their intent set of
attribute. Similarly, a concept is labeled with an object o if it is the smallest concept

having object o in its extent.

We build a concept lattice using the superconcept-subconcept relationship through a line
diagram in which each node is labeled with attributes of the set all concepts in the

context.
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Chapter 3 Methodology of Concept-Based Retrieval

3.1 Organizing a Class Library into a Formal Context

Large reuse libraries are valuable assets, however, the larger they grow, the harder it
becomes to effectively manage them for reuse purpose. One of the major problems is to
keep a high level overview of a library and extract appropriate components from the
library. This requires better and structured organization of libraries and efficient retrieval
algorithms than a flat file list of components. The concept-based approach is proposed to

solve this problem.

3.1.1 Class and Its Behavior

Before indexing a class using either type information alone or type attached with
information about ways of how methods access variables (updating variables, reading
variables, or combination of the both, or doing nothing on the variables), let’s first

discuss some basic concepts of class to avoid confusion.

A class in OO languages defines its instance variables and related instance methods for a
collection of objects having common attributes and behaviors (determined by its instance
methods). Of course, a class in Java and Smalltalk can also defines its class variables and
class methods (for example, the variables and methods with a key word: static in Java and
Smalltalk). Just like objects, the class can have state, represented by the values of its class
variables. Nevertheless, significant differences exist between classes and objects. Perhaps
the most important difference is the way in which instance and class methods are invoked

in Java: instance methods are (for the most part) dynamically bound, but class methods
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are statically bound. (In three special cases, instance methods are not dynamically bound:
invocation of private instance methods; invocation of init methods (constructors); and

invocations with the super keyword.).

Classes can be defined as subclass and superclass relationship hierarchically via class
inheritance. Both Java and Smalltalk support sharing data by all instances of a class and
its subclasses. The shared data are stored in class variables of the class. A class variable
can be used in any methods (including instance and class methods) defined in the class
and in its subclasses. Changing the values of a class variable in one method changes it for
all classes that share the variable. A class variable exists even when no instance of the
class has been created yet. In contrast to a class variable, each instance of a class has its
own copy of an instance variable defined by the class. The private memory of an instance
(i.e., an object) is composed of instance variables. A variable defined in a superclass
can’t be redefined in a subclass. Subclasses can inherit the instant methods and redefine
these instant methods from superclass if necessary, but can’t redefine class methods
although they can access these class methods. Similarly, subclass can access class
variables defined in the subclass and its superclasses, but subclass can’t access private
(instant) variables defined in its superclasses. Any instance methods can change the
values of class variables, therefore class variables are considered as global variables.
Therefore, both class variables and class methods are used in restricted situations like
defining utility methods and implementing special kinds of access policies for objects and
primitive types stored in class variables. We will restrict ourselves to instance variables
and instance methods in this thesis when we say class behavior (mainly defined by its
instant methods) and a variable access pattern unless explicitly specified. Given a class,
not only the instance methods defined in the class, but also the instance methods defined
in its superclass are accessible to the class provided that these methods have a public or

protected interface.
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A class behavior is mainly defined by how its instant methods access its instant variables.
The instant variables are used to store information and to transfer information within the
class. Due to the fact that a class defines its instance variables and related instance
methods for a collection of objects having common attributes and behaviors, a class

behavior also represents object behavior of the class’ instance.

3.1.2 Using Variable Access Pattern of a Method as Class Behavior

To get the information of a class behavior, one way used by Niu (Niu 1999) is that
sending a test program constructed by user to the class and executing these methods of
the class. As discussed in Chapter 1, there are many drawbacks of adopting this approach.
In this thesis, we use another approach: using variable access pattern (denoted as p) of a
method of a class to partially represent the class’ behavior. This approach does not mean
a complete coverage of the class’ behavior. It is an attempt to reduce retrieval complexity
and cost yet still maintain high recall and precision. However, we can always incorporate
more information for a better and complete coverage of a class’ behavior if there is such

an interest. So our methodology is open and flexible.

We define the variable access patterns of the methods of a class as follows:

e nRnW: A method neither reads nor writes any variables.

e nRaW: A method does not read any variables but always writes some variable.

e nRsW: A method does not read any variables but sometimes writes some
variable.

® aRnW: A method always reads some variable but does not write any variables.

® aRaW: A method always reads and writes some variable.

® aRsW: A method always reads some variable and sometimes writes some
variable.

® sRnW: A method sometimes reads some variable but does not write any

variables.
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e sRaW: A method sometimes reads some variable and always writes some
variable.

e sRsW: A method sometimes reads and writes some variable.

We characterize each class using the type information of variables/methods available in
the class and the variable access patterns of these methods. Then, each class is
represented as a multiset of the types of variables/methods and the access patterns of
methods that are available in the class. This is because a class can have generally more
than one variable or method of the same type and same access pattern. Let ¢ be a class

with n available variables/methods. Then,
Class ¢ = Multiset {ti:py, 12:D2, -y tniDn}

where ¢; is the type and p; is the access pattern of the i-th member in class c. Note that the

set is a multiset that allows repetitions of elements.

3.1.3 A Class Library as a Multi-Valued Context

As discussed early in last chapter, a quadruple (O, A, V, R) is a many—valued context
where O, A, and V are sets whose elements are objects, (many-valued) attributes and
attributes values of the context, respectively, and R is a ternary relation with R € O x A x
V such that (o, a, v) € R means that the attribute g has the value v for the object o, and (o,
a, v) € R and (0, a, w) € R always implies v = w. The context (O, A, V, R) is called m-
valued if V has cardinality m. A many-valued context can also be represented as a table

with rows of objects, columns of attributes and entries of attribute values.

Consider a class library L. Let

e C={c|cisaclassinL}
e T = {t|tis the type of a variable/method available in ¢ and c is a class in L}
U {t'| n variables/methods have the same type t and the same access pattern in a

class c in L, t'is i-th occurrence of t for i = 1,2,...,n}
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e P={s|s= {p]pis the variable access patterns of an available variable/method
of typetincand cis aclassin L} }. Note s is a set of access patterns of all
variable/method in L.

e I = The ternary relation with I ¢ C x T x P defined as follows:

(c. t, s) € I means that the class ¢ has a variable/method of type t

and the access pattern of the variable/method is p where p € s.

Then, the quadruple (C, T, P, I) forms a many-valued context. In general, we can view a
given class library as a many-valued context. However, in practice, a class libray can be

directly organized into a one-value context if each of all its attributes has just one value.

3.1.4 Converting into a One-Valued Context via Conceptual Scaling

In a many-valued context, if each attribute has only one value used for some property that
an object may or may not have, then the context is a one-valued context. So a triple (O,
A, R) is a one-valued context where O and A are sets whose elements are called objects
and attributes, respectively, and R is a binary relation with R £ O x A such that (o, a) €

R means that the object o has the attribute a.

A many-valued context can be transformed to a one-valued context via a process called
conceptual scaling discussed in the section 2.3.3 of the chapter 2, using scales for the

attributes of the many-valued context.

From the many-valued context (C, T, P, I) that represent a class library, we derive a one-

valued context (C*, T*, I*) using plain scaling with scales as follows:
e C*=C
e T*={tp| A variable/method of type t with the access pattern p is available in c
and cisaclassin L }
e [* = The binary relation with I* ¢ C* x T* defined as follows: (c, t:p) € I* if

and only if (c, t, s) € I and p es (which means that the class ¢ has an available
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variable/method of type t and the access pattern of the method is p. If it is a
variable then access pattern p is equal to v, which indicates that it is a variable

not a method)

3.2 Class Retrieval Based on the Concept Lattice

3.2.1 Browsing and Retrieving a Class Library

As we have seen above the class library can be eventually represented as a single-valued
context (i.e., a binary relation) after a plain conceptual scaling. From this context we then
constructed a concept lattice. Navigating the concept lattice of the class library actually
does the search. Intuitively, user only needs to visit those nodes (concepts) to search the
classes that meet his/her requirements. The user provides the composite types (type plus
access pattern) of the variables/methods of a class/classes that are desirable to him/her.
Library browsing and retrieval are closely related, but a clear distinction maybe made
according to Mili et al (Mili, Mili and Mittermeir 1998). Retrieval focuses on extracting
class components that satisfy a predefined matching criterion. Its main operation is thus
the satisfaction check or matching. The criterion is usually given by an arbitrary user-
defined search key or query which is matched against the candidates’ indices. Retrieval
supports a top-down design approach: the desired class component is first designed (or
specified or selected reusable class components ) and then looked up in the reuse library.
Its main concern is thus precision: class components should not be retrieved unless they

are absolutely relevant.

Browsing the library focuses on inspecting candidates for possible extraction, but without
a predefined criterion. Its main operation is thus navigation which determines in what
order the components are visited at all. Browsing supports a bottom-up design approach:
the library is first inspected and then the system is designed (i.e., composed ) to take the
maximal advantage of the library. Its main concem is thus recall: class components

should not be rejected unless they are absolutely irrelevant. Browsing usually works
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stepwise and we denote the set of all class components which can be visited in the next
step as the focus. In contrast to retrieval, it requires no search key but works on
preprocessed, usually hierarchical navigation structure. The obvious although may not
optimal way to compute such a structure is to order the class components (concepts from

a given context) by FCA approach.

In this thesis we don’t explicitly distinguish browsing and retrieving according to the

above definitions. We redefine the browsing and retrieval as follows instead:

Retrieving is a process of satisfying the user query by extracting class components from a
class library. The order of visiting a node (concept) is usually determined by the user’s

incremental selection of composite types, controlled the system not by the user.

Browsing is a process of looking around in a library without any user queries. The order

of visiting a node (concept) is totally controlled by the user not by the system.

3.2.2 Approach to Concept-based Retrieval

In a class library, if there is a class component whose behavior exactly matches the
desired behavior specified by the user through a query, then the retrieve engine will catch
this class. Otherwise, the retrieve engine should yield those classes whose behavior are
similar to the desired one, as these classes are more like to be easily tailored to behave as

desired, or they can be subclassed to yield the desired behavior.

The class retrieval process will be based on the concept lattice for the one-valued context
(C*, T*, I*) that represents a given class library. This process can be divided into

following five phases:
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¢ Construction of a class library. Reusable class components (maybe designed for reuse)
are first selected from available sources.

¢ Organizing the class library into a formal context. Characterizing each class in the class
library with type information plus variable access pattern (in short, composite types) of
each available method in the class, i.e., viewing all the classes in the library as multi-
sets of composite types. A context is organized in a tabular form as a cross table, whose
rows are represented by the classes of the library, whose columns are represented by
types and whose cells may have multi-values. If this is the case, we have to scale the
context to convert it into a single-valued context, whose rows are still represented by
the classes of the library, whose columns are represented by types plus variable access
patterns, whose cells are marked if and only if the incidence relation holds for the
corresponding pair of class and composite type. Classes form a context share a set of
common composite types and vice versa.

® Building the concept lattice based on the context. We build a concept lattice using

Ganter’s algorithm (Ganter 1986) by superconcept-subconcept relation through the
greatest low bound (A) and the least upper bound (V) operations.

e Formulating user query. In order to use the retrieve system a user must be responsible
for formulating a query that represents his/her need. The user formulates the query by
“walking through” hierarchy structure through help of the system by specifying the
concept he/she is interested in. Choosing one or more composite types (the desired
behavior) available from the list displayed by the system will reduce the total numbers
of available composite types. Each chosen composite type refines the query. Repeating
the above steps eventually narrows search target to one or more concepts whose intents
have all necessary composite types requested by the user. By formulating this query the
user is saying that he/she is interested in one class or more classes that have the
behavior like “int:aRnW™, “String:aRnW™”, “void:nRaW.

e Satisfying the user query (retrieval). The set of classes matching a query (called a result,
see chapter 4) can be retrieved by finding the meet of the greatest low bound of selected
concepts.

The whole process of concept-based retrieval is schematically shown in Figure 3.1 below.
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Figure 3.1 Process of concept-based retrieval
3.2.3 Procedures for Exact and Approximate Retrievals

The user searches for a class by providing the types plus the variable access patterns of
the variables/methods that are available to the desired class. The system designed to
handle concept lattice constructed from our class library context supports both browsing
and retrieval functionality. The class retrieval is achieved through comparing and
matching available composite types at one or more nodes with user’s specific

requirements (i.e. user query).



The user can also select this information incrementally from a list, displayed by the
system, of available types plus access patterns. The list M of available types plus access

patterns at a concept x is given as follows:

M = All attributes that label the concepts whose greatest lower bound with x is not the

bottom concept.

Based on this information, the retrieval system searches the class library by navigating the
concept lattice for the library. We can think of two kinds of retrievals: exact retrieval and
approximate retrieval. Exact retrieval finds those classes that have variables/methods
whose types plus their access patterns match exactly with the query, i.e., types plus access
patterns of the variables/methods of the desired class. If no exactly matched class is
found, classes that are not exactly matched but somewhat related to the desired class
could be useful for reuse purpose. Approximate retrieval finds those classes that partially

match with the query.

Let Q be a search query, then Q < T*, i.e., Q = {t;:p), t2:p2, --., t:Px} Where ti:p; € T* in
the one-valued context (C*, T*, I*) for a class library. Let (E, F) = Vgeq where
maximal(q) is the largest lattice concept. Then Q € F and o € E = {0}’ € F. The exact
retrieval process is done as follows:

1) Locate the concepts labeled with attributes t;:p;, t::pa, ..., and ti:px, respectively.

2) Locate the greatest lower bound of all those concepts by following the concept
hierarchy.

3) Retrieve those classes that have k accessible members from the extent of the resulting

concept.

Two types of approximate retrieval can be done as follows:
¢ In order to retrieve classes that have / fewer variables/methods than the desired

class but whose types and access patterns match the desired class: Construct all
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the subsets that have (k - 1) elements from the original query set Q. Using each
subset as a query, perform the exact retrieval process.

¢ In order to retrieve the classes that have m more variables/methods than the
desired class: Retrieve those classes that have (k + m) members from extent of the

resulting concept.

3.2.4 Retrieving Classes Regardless of Argument Order

The order of arguments of the methods in the desired class is often not important at the
stage of searching reusable classes. The user is likely to search regardless of the

arguments order of the methods.

Similar to Park’s previous work (Park 1999) we can also easily achieve retrieving classes
regardless of arguments order by again using the notion of set types. we define a set type
as an extended type that captures all the methods of the same type by ignoring the order
of arguments. The regular type of a method consists of a tuple of parameters’ type (t;, ta,
...) and the return type (t,). In set types, we represent a multiset of parameters’ types and
the return type.

For example, the set type {ti, t, t,} -> t. contains the regular types (t; X t; X t) -> t,, (t; X
t2 X t;) >t and (t2 X t; X t;) -> t,. We then represent a class component as multiset of set
types of the variables and methods that are accessible to the class. Suppose that the user
wants to retrieve a class that has a methods with two arguments (but the arguments order
1s not important) such that the type of the argument is t; and the other arguments types is
t2, and the return type is t,. The user provides {t;, t;} -> t, as the type information of the

desired method.
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In practice, of course we will achieve the above purpose differently in our retrieve
system. If we incorporate the parameter types of each method of each class in a class
library into the single-valued context, then the parameter types of the method will be
attached to its return type r. Then a composite type in the context will consist of three
parts: (return) type /, parameter types farg:/, .., larg:n, and variable access pattern p. In this
case, the system will display a list of all the three-part composite types that are available
for the user to choose in the class library. Since the user is not allowed to enter an
arbitrary composite type to the user query but choose an item from the list, the problem of

argument order of a method will be completely eliminated in our CBRS system.

3.3 An Example of Model Class Library
3.3.1 Representing the Class Library Using UML

Consider, for example, an “imaginary” class library L consisting of seven classes as

shown in Figure 3.2.

class cl
v010
mlztl
// : \\
L \\\
o
class c2 class ¢3 class c4
 ml2 T  vs1s
m313 m414 m616
___classc6 _ classcS _classc7
ml0x3 v71x7 vi3ztSs
mllx19 mS8:t8 ml4:110
ml2:13 m9:13 ml5xall

Figure 3.2 A sample class library L
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3.3.2 Variable Accessing Patterns of Methods

The class diagrams in the Figure 3.2 is depicted in UML notation. The method m, in class
c2 overrides the method m; in the class ¢, but c,’s subclass c> can access m;:t> but can
not directly access method m;:t, in class ¢; (c; may access m:t; through using keyword
super in SmallTalk and Java, for example if there is a such need). There are total 12
distinct types of variables/methods within all classes of the class library. Assume that the

accessing behaviors of all the methods in the class library L are as summarized in Table

3.1.
Methods Accessing Behaviors of Methods
m; in C, | never read & always write from/to a variable (nRaW)
m, in C; | never read & always write from/to a variable (nRaW)
ms3in C, | always read & never write from/to a variable (aRnW)
my4in C; | always read & never write from/to a variable (aRnW)
mg in C4 | always read & always write from/to a variable (aRaW)
mg in Cs | never read & never write from/to a variable (nRnW)
my in Cs | never read & always write from/to a variable (nRaW)
migin Ce | always read & always write from/to a variable (aRaW)
m,; in Cs¢ | never read & always write from/to a variable (nRaW)
m;> in Cs | sometimes read & always write from/to a variable (sRaW)
m4 in C; | always read & never write from/to a variable (aRnW)
m;s in C; | always read & always write from/to a variable (aRaW)

Table 3.1 Access bahavior of methods in the classes in L

3.3.3 Organizing a Single-Valued Context

Based on the information given in Figure 3.2 and Table 3.1, all the classes in the library

can be represented as multi-sets as follows:

¢ = {to:v, t;:nRaW}

c2 = {tg:v, t;:nRaW, t2:nRaW, t;:aRnW}
c; = {to:v, t;:nRaW, t4:aRnW}
cs = {to:v, t;:nRaW, ts:v, t:aRaW}

48




¢s = {to:v, t;:nRaW, t;:aRnW, t;:v, ts:nRnW, t;:nRaW}
Ce = {t;:aRaW, tg:nRaW, t;:sRaW }
c7 = {ts:v, tjg:aRnW, t;:aRaW}.

The class library L can be viewed as the following many-valued context (C, T, P, I) where

e C={cy,cy c3 Cs, Cs, C, €7}

o T= {to, ty, t2, t3, ty, t5, te, t7, tg, to, tio, ti1}
e P= {{nRnW}, {nRaW}, {aRnW}, {aRaW}, {sRaW}, {v}}
e [ = The temary relation with I ¢ C x T x P defined in Table 3.2:

I t t t ts ts ts
¢ | ) | inRaW)

C> v} {nRaW} | {nRaW} {aRnW}

C3 v} {nRaW} {aRnW}

C4 v} {nRaW} v}
Cs (v} {nRaW} (nRaW} [aRnW}

Ce {aRaW, sRaW"

C7 v}
[ ts t7 tg to tio th

Ci

C

C3

cy | {aRaW}

Cs v} {nRnW}

Ce {nRaW}

C7 {aRnW} {aRaW}

Note that the class ¢s’s two methods m;o and m,; have the same type t;, but with different

Table 3.2 The many-valued context for L

access patterns aRaW and sRaW, respectively.
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The one-valued context (C*, T*, I*) is derived form the many-valued context after plain

conceptual scaling with scales for the attributes where

e C*={cy, 2, C3,Cs, Cs, C¢, C7}
o T*= {tov, t;:nRaW, t;:nRaW, t;:aRnW, t;:nRaW, t;:aRaW, t;:sRaW, t;:aRnW,
ts:v, ts:aRaW, ty:v, ts:nRnW, tg:nRaW, tv,g:aRnW, t;;:aRnW}

e [*= The binary relation with [* < C* x T* defined in Table 3.3

[*

t;:-nRaW

t-:nRaW

t::aRnW

t;;nRaW

t;:aRaW

t::sRaW

Ci

C

C3

Cs

Cs

Lol Bl B E T |

el Lol Eal o ko

Ce

C7

I*

t;:;aRnW

ts:v tg:aRaW

tsv

tg:nRnW

ty: nRaW

ti0:2aRnW

!”:aRnW

Ci

Cy

<3

Cy4

Cs

Ce

C7

X

Table 3.3 The one-valued context for L

3.3.4 Building Concept Lattice

As discusses in chapter 2 we construct the concept lattice of the library based on sub-

concept and super-concept relationships through the greatest lower bound (A) and the

least upper bound (V) operations.
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All concepts and their subconcept-superconcept relations for this one-valued context (C*,

T*, I*) can be computed as follows:

Concept Top Xo = ({c1, €2, c3, €4, Cs, Cs, €7},{})

Concept X; = ({cy, c2, C3, C4, C5}, {to:V, t;:nRaW})

Concept X = ({c2}, {to:v, t;:nRaW, t2:nRaW, t;:aRnW})

Concept X; = ({c3, cs}, {to:v, t;:nRaW, t;:aRnW})

Concept X4 = ({ca}, {to:v, t;:nRaW, t5:v, ts:aRaW})

Concept X5 = ({cs}, {to:v, t;:nRaW, t;:nRaW, t4:aRnW, t7:v, ts:nRnW})

Concept X¢ = ({c¢}, {t3:aRaW, t3:sRaW, t:nRaW})

Concept X7 = ({c7}, {ts:v, tjp:aRnW, t;;:aRaW})

Concept Bottom X = ({},{to:v, t;:nRaW, t:nRaW, t;:aRnW, t;:nRaW, t;:aRaW,
t;:sRaW, t4:aRnW, ts:v, ts:aRaW, t7:v, ts:nRnW, t9:nRaW, t;o:aRnW, t;;:aRaW})

XivXo=X;vXy =Xl vX;=X;
XevX7;=Xi vXo=Xo

X;vXs =X;
XevXs=Xs,X7vXz=Xy

The resulting concept lattice is depicted as a line diagram in Figure 3.3.
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tS:v, 110:aRnW, t11:aRaW)

Figure 3.3 Concept lattice for library L

3.3.5 Formulating Queries and Retrieving Classes

[nitially, all the fifteen types plus access patterns (composite types) are available for user
to choose. In other words, all seven classes are available for retrieval at top concept Xo as
the system is default to the top concept. If the user wants to retrieve all the classes in the
class library, he/she must submit a blank query at this point. If the user decides to choose
anything from the available composite types, the system will be directed to appropriate
concept whose intent has the composite types the user wants. In contrast, no types plus

access patterns are available at concept X3 if the system is directed to the bottom concept.

Consider, for example, the available types plus access patterns to select at the concept X
after selecting ty:v and t;:nRaW are {to:v, t;:nRaW, t;:nRaW, t;:aRnW, t;:nRaW,
t5:aRnW, ts:v, ts:aRaW, t7:v, ts:nWnR }.

Suppose that user so far has selected to:v, t;:nRaW and t;:aRnW (the system is at the

concept X>) and wants to select third method (always retrieving values from variables &
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updating variables) of type t;. Since t;:aRaW is not available at this point, we can
conclude that there is no class that has methods of composite types to:v, t;:nRaW,
t;:aRnW and t;:aRaW.

Consider the query Q; = {to:v, t;:nRaW, ts:v, tszaRaW}. Obviously, Q; is a subset of T*
as defined above in the one-valued context. The exact retrieval system finds the concepts
X; and X4 that are labeled with {ty:v, t;:nRaW} and {ts:v, ts:aRaW}, respectively, and
finds the concept X; as the greatest lower bound between X, and Xy. It then retrieves

class c4 that is extent of the concept X, because the class ¢4 has all the required members

in the query Q;.

For the query Q. = {to:v, t;:nRaW, t4:aRnW, tg:nRnW}, the exact retrieval system finds
concept Xs as greatest low bound of the concepts labeled with {t;:nRaW, ty:aRnW, t7:v,
ts:nRnW} but there is no class with four required members in Xs. Class cs has six
accessible members. If the user wants to see any class with all the six members including

{to:v, t;:nRaW, t4:aRnW, tg:nRnW}, then retrieval system will retrieve class cs.

Consider the query Q; = {to:v, t;:nRaW, t2:nRaW, t;:aRnW, ts:v, ts:aRaW}. The retrieval
system finds the concepts X, X> and X that are labeled with {t;:v, t;:nRaW}, {t:nRaW,
t;:aRnW} and {ts5:v, tszaRaW}, respectively, and finds the concept bottom as the greatest
lower bound among X, X, and Xj. It then retrieves no class because the extent of the

concept bottom Xg has empty set.

Consider the query Q2 = {t;:v, t;:nRaW, t;:aRnW, tz:nRnW} again, suppose the user
wants to see any class with first three members from {ty:v, t;:nRaW, t3:aRnW, tg:nRnW}.
The approximate retrieval system will search using all possible subqueries, i.e. {to:v,

t;:nRaW, 4:aRnW}, {to:v, t;:nRaW, tg:nRnW}, {to:v, t3:aRnW, ts:nRnW} and {t;:nRaW,
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t;:aRnW, ts:nRnW}, and finally retrieve class c; containing members of composite types
{to:v, t;:nRaW and t4:aRnW}.

3.4 Two Small-Scale Class Libraries

The above “imaginary” class library is used to successfully demonstrate that we could use
principles of FCA to organize our library into a hierarchical structure, and precise class
retrieval could be made easily based on the lattice structure. In order to further prove that
our methodology works perfectly, we will present two real small-scale class libraries
which will be analyzed and treated by the FCA approach. All the classes in the libraries
are regular Java classes, they can be compiled and executed by Java compiler and Java

Virtual Machine (JVM), respectively.

3.4.1 A Real Class Library 1

The first class library consists of eight Java classes: Point, Circle, Sphere, Cube, Circle,
Employee, Boss, and CommissionWorker (CWorker for short in the context). All the
members (including fields and methods) of each class and the relationships among classes
are in details depicted by using UML, as shown in Figure 3.4 below (Cube and Sphere
are two direct subclasses of Point, respectively, which are not drawn due to space
limitation). The access modifiers “+”, “#”, and *“-” in front of a variable/method in UML

indicates that the variable/method are public, protected, and private, respectively.
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Point

#x, y: int

+setPoint(int a, int b): void <<Abstract>>

+getX(): mt Employee

+getY(): mt -

+toString(): String -firstName: String

-lastName: String
+getFrstName(): String
+getLastName(): String
+toString(): String
Circle +earnings(): double

#radius: double
+setRadius(double r): void
+getRadius: double
+area(): double
+toString(): String
Boss

? CommissionWorker
-salary, commission: double
Cylinder -weeklySalary: double -quantity: int
#height: double +setWeeklySalary(double s): void | | +setSalary(double s): void
+earnings(): double +setCommission(double c¢): void

+setHeight(double h): void +toString(): String +setQuantity(int q): void
+getHeight(): double +earnings(): double
+area(): double +toString(): String
+volume(): double
+toStrmg(): String

Figure 3.4 Class diagram of the class library 1

The corresponding one-valued context for this library is represented as a cross table as
shown in Table 3.4 below. Note that we have switched the positions of object set and
attribute set in this context to save space, i.e., in this single-valued context, its columns
are represented by the classes of the library, its rows are represented by types plus
variable access patterns (in short, composite types), whose cells are marked if and only if
the incidence relation holds for the corresponding pair of class and composite type. This

is also true to the class library 2 which will be discussed next.
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Another feature that is worthy of notice is that all the types of variables/methods in the
class library are primitive types of Java except void. This does not mean that this
methodology only allows primitive data type. As matter of fact, user defined type (class
type) is absolutely permitted during construction of single-valued context.

Point | Circle | Cylinder | Sphere | Cube | Employee Boss | CWorker

void' :nRaW X X

”
”

int':aRnW

int*:aRnW

A LA L
foll L ko
ol Ll LR L

String':aRnW

void":nRaW

double' :aRnW

double’:aRnW

Lol Lol to B Lo B BB B ko

String*:aRnW

void’:nRaW

double’:aRnW

double':aRnW

double’:aRnW

Ll Ll Ll L L LR R LR R A R L

String”:aRnW

void*:nRaW

double’:aRnW

double’:aRnW

double®:aRnW

Lol Lol Eal o Kol

Stn'%g‘:aRnW

void’:uRaW

double’:aRnW

double'’:aRnW

double'':aRnW

fall b3 KB A Lo

String>:aRaW

String®:aRnW

String:aRnW

String®:aRnW

tall Eo Bl Kol ko
bl A LBk

double'*:aRnW

void®:nRaW

double'’:aRnW

[all Lol Eolll Ea Bl Ko Kl Ko

String”:aRnW

void’:nRaW

void®:nRaW

void”:nRaW

double'*:aRnW

LB Ll R o

String'*:aRnW

Table 3.4 One-valued context of class library 1
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Based on the one-valued context in the Table 3.4, we use Ganter’s algorithm (Ganter
1986) to calculate all the concepts of the lattice. Its corresponding concept lattice is
schematically shown in Figure 3.5.

xlO
Figure 3.5 Concept lattice of the class library 1

To keep line diagram neat, we didn’t label each concept with class(es) (object set) and
composite types (attribute set). X; and X, are top and bottom concepts, respectively. If
we use C* and T* to denote the set of all the classes and the set of all the composite types
in the class library, respectively, then the concepts of X; and X;o can be expressed as (C*,
{}) and ({}, T*), respectively. The following is a list of labels for all the rests of the
concepts in Figure 3.5:

Object Sets Attribute Sets
X,: {Employee} {String®:aRnW, String”:aRnW, String®:aRnW, double'*:aRnW}
X;: {CWorker} {void:nRaW, void®*:nRaW, void’:nRaW, double'*:aRnW, String'®:aRnW}
X,: {Boss} {void®:nRaW, double'*:aRnW, String®:aRnW}
X;s: {Point} {void':nRaW, int':aRnW, int:aRnW, String':aRnW}
X4 {Cube} {void*:nRaW, double’:aRnW, double'®:aRnW, double'':aRnW, String’:aRnW}
X4: {Sphere} {void*:nRaW, double®:aRnW, double’:aRnW, double®:aRnW, String*:aRnW}
Xg: {Circle} {void:nRaW, double':aRnW, double’:aRnW, String*:aRnW}
Xeq: {Cylinder} {void’nRaW, double’:aRnW, double*:aRnW, double’:aRnW, String*:aRnW}
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Now we can list each concept with its extent and intent, respectively, as follows:

Concept X; = (C*, {}); Concept X0 =({}, T*)

Concept X, = ({Employee, CWorker, Boss}, {Stxing6:aRnW, String’:aRnW,
String®:aRnW, double'*:aRnW})

Concept X3 = ({CWorker}, {void:nRaW, void®:nRaW, void®>:nRaW, double'*:aRnW,
String'O:aRnW, StringG:aRnW, String7:aRnW, Stn'ngS:aRnW,
double'*:aRnW })

Concept X4 = ({Boss}, {void®:nRaW, double'*:aRnW, String’:aRnW, String®:aRnW,
String’:aRnW, String®:aRnW, double'*:aRnW })

Concept X5 = ({Point, Cube, Sphere, Circle, Cylinder}, {void':nRaW, int':aRnW,
int*:aRnW, String':aRnW?})

Concept Xg = ({Cube}, {void5 :nRaW, doublegzaRnW, double'’:aRnW, double'':aRnW,
String’:aRnW, void':nRaW, int':aRnW, int*:aRnW, String':aRnW})

Concept X7 = ({Sphere}, {void*:nRaW, double®:aRnW, double’:aRnW, double®:aRnW,
String*:aRnW, void':nRaW, int':aRnW, int>:aRnW, String':aRnW?})

Concept Xg = ({Circle, Cylinder}, {void*:nRaW, double':aRnW, double’:aRnW,
String*:aRnW, void':nRaW, int':aRnW, int’:aRnW, String':aRnW})

Concept Xy = ({Cylinder}, {void3 :nRaW, double®:aRnW, double*:aRnW,
double’ :aRnW, String3 :aRnW, voidZ:nRaW, double':aRnW,
doublezzaRnW, StringlzaRnW, voidl:nRaW, intl:aRnW, intZ:aRnW,
String':aRnW})

Following the standard procedures described in section 3.2.3, the user can retrieve any
classes he/she wants from this class library by simply formulating the query through a list
(a JList data structure in Java term is used for the prototype system) of available
composite types and satisfying the query to the retrieve system.
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3.4.2 Another Real Class Library 2

The second class library also consists of eight Java classes: CGrid, PrintCGrid,
BorderedPrintCGrid, Point, CGObject, CGPoint, CGText, and CGBox. The Point
class is different in this class library from the one in previous class library. All the
members (including fields and methods) of each class and the relationships among classes

are in details depicted by using UML, as shown in Figure 3.6 below.
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CGrid

#width, depth: it
#grd[][]: char

+blankGnid(): void
+fillGrid(char ch): void

+getCharFrom(Point p): char

+putCharAt(char ch, Point p): void

f

PrintCGrid

#displayList[]: CGObject
#maxObjects: int = 100
#numObjects: int

+-addCGObject(CGObject obj): void
-deleteCGObject(int index): void
~-deleteLastObject(): void
-getNumObjects(): int
-getObject(int mdex): CGObject
~clearGrid(): void

-drawGrid(): voud

=displayGrid(): void
~displayRow(int row): void

-show(): void

BorderedPrintCGrid

-useBorder: boolean
-borderCharacter: char
-horizEdge: String

-setBorderDefaulis(char ch): void
+enableBorder(boolean toggle): void
+setBorderCharacter(char ch): void
+displayGrid(): void

‘ -vertEdge: String |

Point

-x, y:int

+x(): mt

+y(); int

+xSet(): void
+ySet(): void
+add(Point p): Point
+add(int i,mt j): Point
+toString(): String

<<Abstract>>
CGObject

+location: Point
+drawCharacter: char

+addToGrd(PrintCGrid grid): void
+display(PrimtCGrid grid): void
+describe(): void

N

CGPoint

CGText

CGBox

+describe(): void

text: String

#lr: Point

+display( PrintCGrid grid): void
pl( grd) +display(PrintCGrid grid): void
+void describe(): void

+display( PrintCGrid grid): void
+void describe(): void

Figure 3.6 Class diagram of class library 2
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Point

CGObject

CGrid

PrintCGrid

BorderedPrintCGrid

CGPoint

CGText

CGBox

int' :aRnW

int":aRnW

void' :nRaW

void*:nRaW

Point':aRnW

Point*:aRnW

String:aRnW

Foll BB E B R LA |

Pomt’:v

char':v

void’:

i
voild™:

Y
vord™:

tell Kol tol o0 K

FoBl BB E B B

Lol ol Bl E B

AR IR [~ =

PR
mt v

int*:v

char’:v

void®:nRaW

void:nRaW

void®:nRaW

char’:aRnW

fal Lo Ll R LR LB L]

CGObject':v

int’:v

int®:v

void’:aRaW

void'’:aRaW

void'' :aRaW

int’:aRnW

CGObject":aRnW

void *:nRaW

void'>:aRaW

void'*:aRnW

void'>:aRnW

void'®:aRnW

Ll Ll L Ll L A LA LR L R LR L R LR LR LR LR LA R E R R R B

void' :nRaW

void'>:nRaW

void'”:aRaW

void*’:aRnW

Ll N R Ll LR LR L R L A R N LR L L A LR LA A A R R A R R

void>':aRaW

void=:aRnW

Point*:v

void=:aRaW

”

void=*:aRnW

X

Sm’ngzzv
void—’:aRaW

X

void->:aRnW

X

Black - Public (or Default)

Abstract

Blue - Protected

Red - Private

Table 3.5 One-valued context of class library 2
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The corresponding one-valued context for this library is represented as a cross table as
shown in Table 3.5 above. Again we have switched the positions of object set and
attribute set in this context to save space, i.e., in this single-valued context, its columns
are represented by the classes of the library, its rows are represented by types plus
variable access patterns (in short, composite types), whose cells are marked if and only if

the incidence relation holds for the corresponding pair of class and composite type.

Another prominent feature is that not only primitive types of Java but also user defined
type (class type) appeared in the context. This demonstrates our methodology can handle
both primitive data types and class types during construction of single-valued context and

retrieving of classes.

Based on the one-valued context in the Table 3.5, we again use Ganter’s algorithm to
calculate all the concepts of the lattice. Its corresponding concept lattice without labeling
i1s schematically shown in Figure 3.7 which is different from that of Figure 3.5.
Obviously, concept lattice structure heavily relies on the content of the context. The

different context results in different concept lattice.

Figure 3.7 Concept lattice of class library 2
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X1 and X are top and bottom concepts, respectively. If we use C* and T* to denote the
set of all the classes and the set of all the composite types in the class library,
respectively, then the concepts of X; and X0 can be expressed as (C*, {}) and ({}, T*),
respectively. The following is a list of labels for all the rests of the concepts in Figure 3.7.

Object SetsAttribute Sets
X, {CGrid} {inC:v. int*:v, char’:v. void®:nRaW. void’:nRaW, void®*:nRaW, char’:aRnW}
Xi: {PrintCGrid} {CGObject’:v. int’:v. int®:v ,void’:aRaW. void'%:aRaW. void'':aRaW,

int’:aRnW, CGObject’:aRnW, void'*:nRaW, void'*:aRaW, void'*:aRnW, void'*:aRnW, void'¢:aRnW}
Xs: {BorderedPrintCGrid} {void'’:nRaW. void'®:nRaW, void'®:aRaW, void*>:aRnW}

Xs: {CGObject} {Point’:v, char':v, void®:, void™:. void®:}

Xe: {CGText! {String”:v, void®™:aRaW, void**:aRnW}

Xs: {CGBox} {Point':v, void™:aRaW, void*:aRnW}

Xs: {CGPoint} {void*':aRaW, void*>:aRnW}

Xs: {Point} {int':aRnW, int*:aRnW, void':nRaW, void> :nRaW, Point':aRnW, Point*:aRnW,
String':aRnW}

Now we can list each concept with its extent and intent, respectively, as follows:

Concept X; = (C*, {}); Concept X0 = ({}, T*)

Concept X = ({CGrid, PrintCGrid, BorderedPrintCGrid}, {int3 -v, int*:v, char*:v.
void®:nRaW, void’:nRaW, void®:nRaW, char’:aRnW})

Concept X5 = ({PrintCGrid, BorderedPrintCGrid}, {CGObject':v. int>:v, int®:v
,voidg:aRaW, voidw:aRaW, void'':aRaW,
int7:aRnW,CGObject2:aRnW, void'*:nRaW, void"? :aRaW,
void”:aRnW, void'S:aRnW, void'®:aRnW, int® v, int*:v, char’:v,
void®:nRaW, void’:nRaW, void®:nRaW, char’ :aRnW})

Concept X3 = ({BorderedPrintCGrid} {void':nRaW. void'®:nRaW, void'’:aRaW,
voidzotaRnW, CGObject':v, int’:v, int®:v , void9:aRaW, void'%:aRaW,
void'!:aRaW, int’:aRnW,CGObject*:aRnW, void'>:nRaW,
void"? :aRaW, void”:aRnW, void'? :aRnW, void'6:aRnW, int’:v, int*:v,
char’:v, void®:nRaW, void”:nRaW, void®:nRaW, charJ:aRnW})
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Concept X5 = ({CGObject, CGText, CGBox, CGPoint}, {Point3 :v, char':v, void® 5
void*:. void™:})

Concept X¢ = ({CGText}, {Stringz:v, void®’:aRaW, void*%:aRnW, Point’v, char':v,
void>:, void*:, void®:})

Concept X7 = ({CGBox}, {Point*:v, void>:aRaW, void>*:aRnW, Point’:v, char':v,
void®:, void™:. void®:})

Concept Xs = ({CGPoint}, {void*':aRaW, void**:aRnW, Point’:v, char':v, void®:,
void®:, void®:})

Concept Xs = ({Point}, {int':aRnW, int>:aRnW, void':nRaW, void’:nRaW,
Point':aRnW, Point>:aRnW, String':aRnW})



Chapter 4 A Prototype System Based on FCA

4.1 Introduction

A prototype of concept-based retrieval system (CBRS) is implemented using Java and
CORBA, and one model class library and two small-scale class libraries are constructed
to test the effectiveness of the system. This is a completely distributed system, and is
enterprise Intranet ready and also the Internet ready if appropriate security measures are

taken.

The reasons of choosing CORBA as client/server computing model and implementing in
Java language are based on following considerations: portability, language independence,
and local/remote transparency. As we all know that CORBA is a cross-platform
technology, and Java is a multi-platform solution. CORBA thrives in a heterogeneous
environment, and Java aspires to be in a heterogeneous one. Java solves the portability
problem through the application of Java Virtual Machine (JVM) implementations, and
CORBA is adept at solving problems of integration. One of the many benefits of CORBA
is that it lets our objects communicate across languages and operating systems. A Java
client is able to talk to a C++ object server, and a C-—+ client is also able to chat with a
Java server object. Another wonderful feature of CORBA is local/remote transparency.
We write the client and server programs once and can run them either locally or remotely.
The clients can invoke objects on the same machine or across the intergalactic network.
We don’t have to rewrite a line of code. In our case, VisiBroker OSAgent will find our
objects where they are. It’s part of the ORB (object request broker) magic. With CORBA
ORBs clients do not connect to directly with servers as they do with an RPC (Remote
Procedure Call) or socket communication. Instead all requests are mediated by the ORB

which is the broker that redirects the request to the appropriate server. This server can be
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in the same process, across processes, or across network. The ORB makes it all

transparent to the client.

4.2 Analysis and Design of the CBRS
4.2.1 Some Aspects of CBRS Prototype System Design

A thorough and robust analysis is a prerequisite for any software project. Then CBRS is
no exception. CORBA does not minimize the system analysis and design. An exhaustive
analysis of the software retrieval domain is beyond the scope of this thesis, but we will try

to focus on the design part of this particular system.

Although CORBA does not impose any new constraints on the analysis phase of the
software development, it does limit our design. It must be pointed out that CORBA does
not specify things as reliability, fault tolerance, or any other such quality-of-service
criteria. These essentially up to the ORB vendors. Visibroker for Java 3.4 from Inprise
Corporation, used in our retrieval system, does provide tools that help achieve these goals
(for more details see the manuals of Visibroker for Java 3.4). So at least we can expect
a reasonable level of fault tolerance if we move our CBRS to the Internet/Intranet.

Nevertheless, there is no excuse for shoddy design.

The CBRS has a number of requirements and constraints. Constraint analysis is again
beyond the scope of this thesis. We will, nevertheless, mention here what we mean by
constraints. These are system attributes, something that is often confused with the system
functionality. By that we mean, the user friendliness of GUI, system response time, and so
forth. These are worthy goals in themselves, but they don’t have anything to do with the
CBRS’s goals. So in this section, we will ignore all such constraints and describe the
CBRS system only in term of what is required for interoperability and effectively

delivering the prototype within a reasonable time frame for this thesis. Therefore we have
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to leave out some system functionality or relax non-functional constraints such as

response speed and reliability. Prototyping is simply to demonstrate what is possible.

A number of requirements are considered during the system design. The design of the

CBRS mainly focuses on the following aspects:

e The CBRS should be easy to use, and a user-friendly GUIs of both client and server
should be provided to the user and system administrator. The client side GUI should
provide a way for the users to easily formulate queries the users are interested in.

e The CBRS should be available through both the Internet and enterprise Intranet,
particularly Intranet, which provides the user to interact with the remote retrieval
system or even remote class library. In other words, the CBRS should be a distributed
system that can work both at same machine and across different networked computers.

e Since the retrieved classes are ready to reuse, the class library should provide an utility
to view the source code of the classes if there is such a need to subclass them.

¢ The CBRS system should provide a tool to browse the classes in the class library in case
the users are not familiar or for general browsing.

e Since the CBRS system is a concept-based one, the server part of system should provide
a tool to construct a class library, to organize it into a single-valued context, and to
calculate all the concepts of the lattice structure based on the context.

e The CBRS system should support both exact and approximate retrievals of candidate
classes from the class library.

e The CBRS system should be multithreaded, which allows several users to connect to

the server concurrently.

4.2.2 The Distributed CORBA Client/Server Applications

A distributed application is an application whose processing is distributed across multiple
networked computers. Distributed applications are able to concurrently serve multiple

users and, depending on their design, make more optimal use of processing resources. In
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our prototype of CBRS system, a multi-threaded server will be implemented to achieve
this goal perfectly. However, in this prototype system, concurrency is not important. Our
main purpose is to implement such a system to demonstrate that our methodology is

feasible and effective in area of component retrievals for software reuse.

Distributed applications are typically implemented as client/server systems that are
organized according to the user interface, information processing, and information storage

layers (three-tier model), as shown in Figure 4.1.

User Interface Information Information
Layer Processing Layer Storage Layer

Figure 4.1 The three layer architecture of a distributed system

The applets that run with a web browser (usually Netscape Navigator) are our user-
interface layer of components of the distributed CBRS applications. The information
processing layer can be implemented as a client, an application or an application support
server. In the CBRS system, our retrieve engine is both information processor and storage
holder (i.e., the prototype of CBRS is implemented as a two-tier client/server model).
Because of security reason, we also need a web server that provided by Visibroker for
Java 3.4 (called gatekeeper) to serve file reading need of our client applets. The
client/server system deployed on the Internet and the Intranet is schematically shown in

Figure 4.2 below.
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Figure 4.2 The CBRS Client/Server system deployed on the Internet and Intranet

4.3 GUIs of the CBRS System

4.3.1 The Big Picture

CORBA makes use of objects that are accessible via Object Request Broker (ORB).
ORBs are used to connect objects to one another across a network. An object on one
computer (client object) invokes the remote methods of an object on another computer

(server object, also called servant in CORBA 3.0 term) via an ORB.

The core of the CORBA architecture is the ORB that acts as the object bus over which
objects transparently interact with other objects located locally or remotely. A CORBA
object is represented to the outside world by an interface with a set of methods
(operations in CORBA term, they are written in Interface Definition Language --- IDL). A
particular instance of an object is identified by an object reference. The client of a
CORBA object acquires its object reference (there are many ways for a client to obtain
object reference, however, in the prototype of our CBRS, we use URL Naming Service of
Visibroker for Java 3.4) and uses it as a handle to make remote method calls, as if the
object is located in the client's address space. The ORB is responsible for all the
mechanisms required to find the object's implementation, prepare it to receive the request,

communicate the request to it, and carry the reply (if any) back to the client. The object
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implementation interacts with the ORB through either an Object Adapter (OA) or through
the ORB interface. Underneath the ORB core is the Intemnet-Inter ORB Protocol (IIOP)
defined on TCP/IP wire protocol. The IIOP specifies how GIOP (General Inter-ORB
Protocol, which specifies a set of message format and common data representations for
communication between ORBs) messages are exchanged over a TCP/IP network. Figure

4.3 summarizes this process.

OperationQ
—__—
Reply
Object

Stub Adaptor Sk eleton

e ' ORB e

oP
TCPAP

Client Host Server Host

Figure 4.3 How CORBA Client/Server Communicate

4.3.2 The Server Side

The server side has many components that interact each other to provide all the services
requested by the client side. These components reside in a package called Server (or
module in CORBA term). The following is a list of these components with explanations

of their functionality.

¢ MzinServerWindow is a graphic interface of the server side. It controls the process of
hosting server (mainServer in prototype of the CBRS) such as starting the server,
stopping the server, and also allowing you to start another process to build context from
a class library and constructing corresponding concept lattice. This GUI has one
information-display-area and three buttons: “Start”, “Stop”, “Building Concept Lattice”.

The first two buttons start and stop the hosting server, respectively. Information will be
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displayed as text to indicate date of the server start (stop), status, identification and

persistence of object implementation. The last button will start another program called

Conlmp to build concept lattice based on the input context that represents a class

library. The information-display-area displays the date and time of server start (stop),

and server object ID and name as well as status of server object such as persistent or

transient. A screen capture of the MainServerWindow is shown in Figure 4.4.

(IRl

{SatFeb 05 17:09:37 EST 2000:
‘{Sat Feb 05 17:09:41 EST 2000:
‘[SatFeb 05 17:09:41 EST 2000:
1SatFeb 05 17:09:41 EST 2000:
SatFeb 05 17:10:33 EST 2000:
Sat Feb 05 17:10:38 EST 2000:
Sat Feb 05 17:10:38 EST 2000:
-[SatFeb 05 17:10:38 EST 2000:
iSatFeb 05 17:10:38 EST 2000:

Main Server Started. J .
Server.Retrievelmpi[Server,oid=Persistentid(r
Server.Retrievelmpl1[Server,oid=Persistentid(r :
Server.Retrieveimpl2[Server,oid=Persistentid[r .
Main Server Shut Down.
Main Server Started. .
Server.Retrievelmpl{Server,cid=Persistentidfre| -
Server.Retrievelmpl1[Server,oid=Persistentid[r] .
Server.Retrievelmpl2[Server,oid=Persistentid[r::

Figure 4.4 GUI of the MainServerWindow

e mainServer is a thread that implemented Runnable interface of Java. It ensures the

functionality of multithreading. It creates an instance of retrieval engine’s object

implementation (called Retrievelmpl), and then uses this instance through URL

Naming Service of Visibroker for Java 3.4 to create an interoperable object reference

(IOR). The client will obtain a handle of Retrievelmpl by specifying the URL as a

string instead of the object’s name through the URL Naming Service, too.

¢ Retrievelmpl is an object implementation (server object) of the retrieve engine of the

CBRS system. It is the core class of the server side application. It accepts the
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information passed by the client side, calls the appropriate functions to perform related
operations, and sends the results back to the client side through the ORB. All it’s
method definitions are defined through Server.idl interface.

e Server.idl is an interface definition of the object implementation (server cbject) of the
retrieve engine of the CBRS system. It defines the operations that the client can call on
the server object through object references.

¢ Conlmp is a program that is mainly used by system administrator. It is a console
application that accepts input of a set of objects, a set of attributes to organize a context.
It also performs operations of calculating each concept of the lattice structure and its
label consisting of an object set and an attribute set, as well as the concept’s super- and

sub- concepts. Its main menu of screen capture is shown in Figure 4.5.

Main meno: Lot 0 hoores
gt e at T o e
D ;l].‘n') o RN ARRNATEN BTN
ot e ot [ cor o bt ' 'I<'|I'4f‘ Aty -t
Keeoodd v e 0 et e -t fron o1y
Queat g o

Number of wuaanlable hogte o0 2990, Your  hopo e

S e o I

Figure 4.5 Interface of Conlmp

¢ ClassInfo is a class that accepts a class name and examines the class, and then returns
its class descriptor, superclass, fields and methods related information.

* Gatekeeper acts as a web server for our CBRS client/server applications. Since our
applets must be run within a web browser like Netscape Navigator, so we must

overcome the security restrictions on Java applets, imposed by the browser. Web
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browsers impose two types of security restrictions on Java applets (also called Java

sandbox security):

(1) They allow applets to only connect back to the host from which the applet was
downloaded.

(2) They allow applets to only accept incoming connections from the host from which
the applet was downloaded.

The Gatekeeper provides a way to work with these restrictions. In the first
restriction, for any server object that is not running on the applet host, the ORB in
the applet will try to communicate with the Gatekeeper. The Gatekeeper then
attempts to forward any calls from the applet to the server object. This process

occurs only for applets configured to talk with the Gatekeeper.

The second restriction is also handled by the Gatekeeper. When the applet creates
callback objects, the server object cannot bind to the applet due to the security
restrictions. The ORB sets up a special connection between the applet and the
Gatekeeper. The Gatekeeper uses the special connection to forward the callback from
the server object to the applet (for more details see the Gatekeeper Guide of

Visibroker for Java 3.4). Its screen capture is shown in Figure 4.6.
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Figure 4.6 Screen capture of Gatekeeper

4.3.3 The Client Side

The client side consists of many applets. These applets have user-friendly GUIs for the
users to navigate on the concept lattice, reset the CBRS system, display its subconcepts
and all the available composite types, formulate user query, submit the query to the
server, view retrieved candidate classes returned by the server and so on. The following is

a list of these components with explanations of their functionality.

¢ Mainlnterface is an applet that controls the whole user-related process, connects to
other interfaces for different operations. It displays a list of the class libraries for the
user to select, has four buttons: “Browse Class Library” — will lead the user to the
Browse interface; “Concept-based Retrieval” — will take the user to the Retrieve
interface; “Save Class Library” — will allow the user to save the class library into a file;
“Exit Retrieval System” — will lead the user to Exit interface. This applet is executed
within a web browser (for example, Netscape Navigator). A JavaScript will run within
the browser’s status bar to give new user a very brief introduction of what CBRS is and

its features. Its screen capture is shown in Figure 4.7.
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Welcome to the Concept-based Retrieval of Classes Using Behavior of Metheods. The class retsieval
process is based on the concept lattice constructed from the one-value context that represents a given
class library.
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Flgure 4.7 The main interface of the prototype of the CBRS system

* Browse interface will give the user a chance to look around in a class library. Class
library browsing is achieved by navigation of the corresponding concept lattice through
another applet called ConceptLattice. It can also be used for class library

understanding such as relationships between classes.

¢ ConceptLattice is an applet implemented in Java/Swing JTree data structure which
can be used to display hierarchical data. This applet has three components: a text area
that is used to Aisplay each node’s (concept’s) label consisting of class(es) and

composite types of all the available variables/methods at this particular node; a graphic
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representation of concept lattice as a line diagram; and an expandable tree-like
representation of concept lattice, in which if there is graphic icon next to the node, then
this node has child nodes. Otherwise, it is a leaf node that linking to the lattice bottom
(bottom concept). Clicking the icon will expand the node, and its child nodes will be
visible, clicking a node will display the concept’s labeling in the text area of the bottom

window. The screen dump of this applet is shown in Figure 4.8.

4 G E 2 I N DR i e I SRS
X9: Cylinder —-> void:nRaW, doubie:aRnW, doubie:aRnw, double:af &

Figure 4.8 GUI of navigating (browsing) a concept lattice

¢ Exit interface will allow the user to exit the CRBS system.

¢ Retrieve interface is most import interface for the client (user). It provides a way for the
user to formulate a query through an applet called Query.

* Query is the core applet for the client side. It has most complicated yet user-friendly
graphic interface to the client, has a lot of functionality. There are many components
inside this applet which can be run within a web browser like Netscape Navigator. On

the left side, the top is a pulldown menu (JCombobox) that allows the user to choose a
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concept when the user clicks on the dark solid triangle. When the user chosen a
concept, its direct subconcepts will be displayed as a list which is the middle position
component on the left side. Below the list is a button called “Back to Main” which will
take the user to the MainInterface discussed above (see Figure 4.7). On the right side
there are two panels: the left panel presents a list of all the available composite types of
the concept chosen by the user previously; the right panel displays the composite types
selected by double clicking on the items in the left panel. In other words, the right panel
holds the user’s query. If the user decides to modify the query before submitting the
query, he/she can highlight a composite type, by clicking it, that the user want to
remove, and then click button “Delete Item”. The button “Retrieve Classes” is used to
submit the user query to the retrieve engine of the server side application. The result
and feedback from the server side will be displayed as a list of the retrieved class in a
text area of the bottom of the window. The whole applet’s screen capture is shown in

Figure 4.9 to illustrate the interface.
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Figure 4.9 The query formulation and retrieval interface
4.4 Building Concept Lattice

In preparing classes for reuse, there are three main activities: choosing classes with high
reuse potential, describing these classes, and cataloging/retrieving the classes in a class

library. We basically following this procedure for constructing, organizing and building
concept lattice of the class library.
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4 .4.]1 Construction of Class Libraries

Two sample and one model class libraries are provided for test the CBRS system. Each
class library is constructed as a subfolder within ClassLib folder. The class libraries are
organized based on the following considerations:

e Each class is a standard Java class including abstract classes and interfaces, and can
only inherit classes from Java APIs or classes in the same class library, rather than from
third-party packages. The purpose is to ensure that if a super class is needed for
retrieving, the CBRS can find it.

e There is no restrictions on functionality of the classes we can select. They can perform
some mathematical calculations on geometric shapes, processing text, graphic drawing,
input/output, networking, and even have their own GUISs.

e The types of the variables/methods of a class are not restricted to primitive types, user

defined type (class type or object type) is allowed.

4.4.2 Organization of Context and Calculation of Concepts

Among the programs for the support of the FCA, Conlmp is the most widely used all
over the world (this program is available at the following URL address:
http:/Awww.mathematik.tu-darmstadi.de/ags/ag 1/Software/DOS-Programme/). The
concept calculation part of Conlmp is implemented based on Ganter’s batch algorithm
that is designed for yielding information of concept ordering. ConIlmp allows input and
manipulation of one-valued contexts and implications between attributes and calculations
of related data from these inputs. In particular, all the data needed for the drawing of

related concept lattice by geometric method are provided in ConImp.

A formal context is regarded as a mathematical model of table, which relates classes
(objects) and composite types (attributes) in a class library. The entries in the table
indicates by a letter “x™ that the class (object) has the composite type (attribute). An blank
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space (*“ ") character or a period (“.”) indicates that the class (object) does not have the
composite type (attribute). Once we finish all the required entries in the table, then we get
a one-valued context for the class library. Of course, before we can input one-valued
context, we need to extract the type plus variable access pattern of each available
variable/method in a class. This task is not difficult. If necessary we have to scale it
because Conlmp only accepts one-valued context. Conlmp can only handle contexts
with at most 98 attributes and at most 255 objects. Its main menu interface can be seen in

Figure 4.5.

Once we have a ready-to-use, one-valued context, we can calculate the concept list,
predecessor and successor lists of each concept, as well as assignment list for the concept
(including objects and attributes), and then we can draw the line diagram for the concept

lattice.

Concept lattice normally grows exponentially in the number of attributes and objects. The
complexity of computing all concepts from a given context is O¢2") in both time and
space, where n is the minimum among number of attributes and number of objects in the
class library (Ganter 1986). However, in practice the worst case rarely occurs and a
polynomial behavior is usually seen (Lindig 1995). If a class library is modified, for
example, deletion/addition of a class from/to the class library, its concept lattice needs to
be recalculated. This effort usually takes polynomial time as discussed above.

4.5 Retrieval Process
4.5.1 Formal Definition of a Query and a Result

What is a query? Informally, a query is a set of composite types selecting all classes that

have at least those composite types. Its formal definition is given below:
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Definition 6 (Query) A set Q < T* is a query to a concept lattice G(C*, T*, I*). A class ¢
€ C* satisfies a query, if and only if a(c) 2 Q (or c’2 Q) holds. The set of all classes
satisfying a query is called result and is denoted by [|Q]] = {c| c € C*, auc) 2 Q}.

Each composite type from a query is introduced by a concept. The extent of the infimum
(meet) of all these concepts constitutes the result of the query: all classes of concepts

smaller than the infimum are also part of the result.

Theorem 3 Let G(C*, T*, [*) be a concept lattice and let Q < T* be a query, then [|Q[] =

Trc(/\t:p €Q “‘(t:p))-

Proof: Te(Awp e H(EP)) = Te(Awp eq (aXt:p), A{&X:P)))) = M p e @XL:P) = M p eq{ce C* |
(c,ttp)e*}={ce C*|Vtpe Q:(c,ttp)e I*} ={ce C*|adc) 2Q } =[|Ql].

This theorem says that the result of a user query can be found as follows: extracting the
extent of the greatest concept of the selected concepts labeled with all the composite
types from the user query. Obviously, the intent of the greatest concept must match with
the user query. Once the concept lattice for a class library has been calculated, the retrieve
engine will use theorem 3 to calculate efficiently the result for any query formulated by
the user. Clearly, theorem 3 forms the foundation of our exact retrieval algorithms

discussed in section 3.2.3 of the chapter 3.

4.5.2 Formulation of User Queries and Obtaining of Results
The query formulation interface is already shown in Figure 4.9. The user formulates a

query by choosing available composite types (called terms in query language) from a list
displayed by the CBRS system. When the system is started, it’s default state is at the top
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concept of a concept lattice that represented a class library. As we discussed in chapter 3,
the available composite types at a concept (node) not only includes the intent of this
concept but also includes the intents of all its direct or indirect superconcepts following
the path upward. So initially, all the composite types of all the classes in the class library
are available for the users to choose when the system is just started. Choosing one or
more composite types (representing the desired behavior) available from the list will
reduce the total numbers of available composite types. Each chosen composite type
refines the query. Repeating the above steps eventually narrows search target to one or
more concepts whose intents have all necessary composite types requested by the user.
One of the important aspect of this process is that the user does not need to know what
are the “right” terms for the query in advance. He/she only needs to choose the suggested
terms by the system, which seem the most appropriate to catch the target concept. The
target concept is called focus of the system. Obviously, the system focus is represented by
the extent of the target concept. This kind of narrowing search scope of the target is a
downward movement in the concept lattice. More precisely, this process can be divided
into two steps: (1) The user selects an additional composite type. As a consequence of the
lattice structure, the system supports this selection by calculating all composite types
which actually narrow the focus but do not sweep it entirely. It thus can prevent
navigation into dead ends (for example, concept bottom). (2) The system calculates the
new focus in the lattice as the meet of the actual focus and the defining concept of

selected composite type.

The query formulated by the user is saved in Vector class. Once the user satisfies with
query, this vector that holds all the information the user needs will be passed to the
retrieve engine. The retrieve engine will calculate the target concept by processing the
user query using the theorem 3 discussed in the section 4.5.1 above. Once the target is
found, its extent will be save as a result. Then the result is passed back immediately to the

client.
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The Query applet is a core class of client side. It only provides the interface to interact
with the user, and lacks of power of processing the user query. It needs to pass the user
query to the server object, i.e. retrieve engine. Passing the user query by the query applet
is done through a remote method call to the server object (retrieve engine). The query
applet obtained the server object’s reference using URL Naming Service provided in
Visibroker for Java 3.4. The URL Naming Service provides a way to locate objects
without using the Smart Agent or a CORBA Naming Service. It enables clients to
locate objects provided by any vendor (for more details see Programmer Guide of

Visibroker for Java 3.4) .

An incremental selection from the list of available composite types guarded by the
retrieval system allows exact match and completely eliminates the data mismatch and
time-consuming deduction phase in a traditional non-concept-based retrieval schemes,
and thus improves retrieval reliability. It also allows more precise information to be

retrieved from the library.

We now consider a few queries discussed in section 3.3.5 of the chapter 3. The first query
Qi = {to:v, t;::nRaW, ts:v, ts:aRaW}. The exact retrieval system gives the result of class cs,
which is the extent of the target concept X;. The screen shot of this query is shown in

Figure 4. 10 below.
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Figure 4.10 Exact retrieval of query Q, performed on the model class library

The second query Q. = {to:v, t;:nRaW, t;:aRnW, tg:nRnW}. The exact retrieval system
will display a message ---- “No class(es) matches your query!”. For approximate
retrieval, the retrieval system will retrieve class cs which is extent of the target concept X
because the Q: is a subset of all the class members of cs, i.e., the intent of concept Xs,
which has six accessible members. In this case £ = 4 and / = 2, the system retrieves the
class that has (¢ + /) members from the target concept. The screen dump is shown in

Figure 4.11.
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The third query Q; = {to:v, t;:nRaW, t;:nRaW, t;:aRnW, ts:v, ts:aRaW}. The exact
retrieval system finds the concepts X, X> and Xj that are labeled with {ty:v, t;:nRaW},
{t2:nRaW, t;:aRnW} and {ts:v, tszaRaW}, respectively, and finds the concept bottom as
the greatest lower bound among X;, X> and X4. It then retrieves no class because the
extent of the concept bottom X has empty set. The exact retrieval system just displays a
message ---- “No class(es) matches your query!” as a feedback to the user. Its screen

capture is shown in Figure 4.12.
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The fourth query is again Q> = {to:v, t;:nRaW, t;:aRnW, t;:nRnW}. This time the user
wants to find a class that has / few members than the desired class, i.e., any class that has
first three members from Q> (kK = 4, / = 1 and (kK - ) members in this case). The
approximate retrieval system will perform the search using all possible subqueries, i.e.
{to:v, t;:nRaW, t;:aRnW}, {to:v, t;:nRaW, tz:nRnW}, {to:v, ts:aRnW, tz:nRnW} and
{ti:nRaW, t;:aRnW, t:nRnW}, and finally retrieve class c; because one of the subqueries
containing composite types {to:v, t;:nRaW and t;;aRnW} is a subset of the concept X3’s

intent. The screen dump is shown in Figure 4.13.
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Figure 4.13 Another approximate retrieval of the Q{ perfoﬁnéci on the model class hbrzify

As we can see from the above examples the query formulation by the user is incredibly

easy. It is well known that large-scale search engines for the WWW usually retrieve

documents quite effectively, but they can be considered imprecise because they do not

exploit and hence retrieve the semantic contents of Web documents. However, the query

constructed by the user in our CBRS has clear semantics, thus the retrieved result is

comprehensible to the user. In other words, the concept lattice allows retrieve engine to

process queries more efficiently and provides optimal feedback to the user.
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4.6 Class Library Browsing - Navigating Concept Lattice Directly

We already said enough about the difference between browsing and retrieving in last
chapter of section 3.2.1. The purpose of browsing a class library is two folds: (1) the users
are not familiar with the retrieval system and have no concrete knowledge what they are
looking for; (2) the users want to go through browsing a class library to achieve the
purpose of retrieval of partially-satisfied classes because there is not always an exact
match between the user’s requirements and available classes in the class library. In the
late case, the user wants to look around for a class that is close enough to be adapted to
his/her needs. The hierarchy generated from the concept lattice of a class library can be
used for browsing and understanding the relationships between the classes. The reason
that we need library understanding is that more benefits can be achieved only by
retrieving an suitable component, understanding it and adapting it to the new

environment.

Navigating directly on a concept lattice hierarchy of a class library actually plays the roles
of both browsing and searching the library. The navigation is achieved through an applet
called ConceptLattice that is implemented in Java/Swing JTree data structure. The
Swing JTree is a perfect choice to display hierarchical data. The screen capture of this
applet is already shown in Figure 4.8.

As mentioned early this applet has three components: (1) A text area that is used to
display each node’s (concept’s) label consisting of class(es) and composite types of all the
available variables/methods at this particular node. (2) A graphic representation of
concept lattice as a line diagram (a gif format image). (3) An expandable tree-like
representation of concept lattice; this is a very high-level view of a concept lattice in
which only the top concept and its direct subconcepts (child nodes) are displayed at the
starting stage of the system, which is very important for a very large of class library
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because otherwise the user will be flooded with so many choices that he/she gets lost; to
see the whole concept lattice we have to expand every node that is expandable (if there is
graphic icon next to the node, then this node is expandable and has child nodes.
Otherwise, it is a leaf node that is directly linking to the lattice bottom). Clicking an
iconized node will expand the node, and all its child nodes will be visible to the user, and
then clicking 2 node will show the corresponding concept’s labeling, in the text area of
the bottom window, including information of class and its available composite types. This
information is vital to user because the user relies on this information to make the

decision that if this is the right choice for reuse purpose.

A wonderful feature of JTree representation of a concept lattice constructed from a class
library is that the users can visit any node they want without any restrictions. In theory,
the JTree is a special graph. Therefore the users have two choices of visiting a particular
node: depth-first search (DFS) and breath-first search (BFS). In the DFS, the user wants
to go as far away from the starting point as quickly as possible. In the BFS, the user likes
to stay as close as the starting point, and visits all the nodes adjacent to the starting node,
and only goes further afield. Both methods will reach eventually all connected vertices
(nodes). A few screen shots of library browsing from the model class library and class

library2 are shown in Figures 4.14 - 4. 17.
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Applet started.

Figure 4.14 Initial screen shot of browsing the model class library
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Figure 4.15 The screen shot of browsing the model class library after expanding
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Figure 4.16 Initial screen shot of browsing the class library 2
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The advantage of using concept lattice is that we can incorporate more attributes to a
class such as a sample behavior, a very good class description for each node (concept)

that will also present to the user, which greatly enhances the usefulness of the hierarchy

for browsing purpose.

4.7 A Scenario of Concept-Based Retrieval

In this section, we will provide an example to show in details how the CBRS works, and

how a client talks to the server and how the client get the result from server.

Consider the class library 2 in chapter 3. In this class library there are total 8 classes. The
class members and relationships among all the classes are shown in Figure 3.6 through
UML notation. Its corresponding context and concept lattice are shown in Table 3.5 and

Figure 3.7, respectively.
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When the CBRS system is started, it will display all the 44 available composite types of
the classes in this class library due to the fact that the system begins its journey downward
from the top concept X, in Figure 3.7. For the beginner users, they only see the two
columns on the top panel of the Query applet (see Figure 4.18 below): the left column
that displays the 44 composite types available for the user to choose --- Available
Attributes, and the right column that displays the items chosen by the user --- Your Query.
For advanced users, they can drag the vertical divider bar to the right to see the current
status of the system, i.e., the current concept the system stays at and its direct
subconcepts. The user even can click on the “top-down triangle” icon within a combo box

on the upper left corner to see how many concepts in this library.

Suppose the user is looking for a class that has following 20 members in Q = {int’:v,
int*:v, char’:v, void®:nRaW, void":nRaW, void®:nRaW, char’:aRnW, CGObject':v, int>:v,
int>:v  ,void’:aRaW, void'%aRaW, void'':aRaW, int":aRnW, CGObject’:aRnW,
void'*:nRaW, void'*:aRaW, void'*:aRnW, void'*:aRnW, void'¢:aRnW}. All these items
can be found on the left column. If the user double-clicks any item from q = {int’:v,
int*:v, char’:v, void®:nRaWw, void':nRaW, void®:nRaW, char’:aRnW}on the left column,
and then this item will be put it into his/her query. They can only put one item into the
user query one time. The system will automatically reduce the total numbers of available
composite types from 44 to 24, which allow the user to choose on the left column, and
then automatically change to the concept X>. The system will stay at concept X until
these 7 items of the q go into the use query. Choosing any item further from the rest of Q
(i.e., Q - q) will bring the system to concept X; and again reduce the total numbers of
available composite types from 24 to 17. We can see that the incremental selection of
composite types rapidly narrows down the search space. Once the user fills the query on
the right column, then he/she can click “Retrieve Classes” button, and the query Q will be
sent to the retrieve engine on the server side. The retrieve engine will calculate the meet
of concept X> and X3 based the Q. From the Figure 3.7 we can see that the meet is the X;.
The result (PrintCGrid) is the extent of the concept X3, which will be passed back to the

client by the server. Figure 4.18 shows a complete picture of this scenario. When user
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finishes the above query and wants to start another query he/she can simply click on the

triangle icon on the upper left comer and then choose the concept X;, the system will be

reset to the default state.

Direct Subconcepts

X4

Backto Main -

Available Attrilutes
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Flgure 4.18 Screen capture of retrieving a class from the class library 2
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Chapter S Evaluation and Conclusion

5.1 Evaluation of the Methodology and Implementation

The value of a reuse library lies in being searched easily, and the fact that suitable
component can be effectively and precisely retrieved from the library. The criteria
mentioned in Niu Thesis (Niu 1999) is still applicable for evaluation of the methodology
proposed in this thesis. In the rest of this part, we do an evaluation of the methodology
and implementation based on similar criteria, i.e., general-purpose, scale-up, retrieval
precision and recall, and retrieval efficiency. Technically speaking, experiments should be
carried out to compare different retrieval techniques and build from scratch. In the
following we will try to give a qualitative evaluation of the methodology against the

above mentioned criteria.

5.1.1 General Purpose

General purpose means that the technique could be applied to multiple domains or

applicable in as many situations as possible.

The methodology is an attributed-based retrieval system which depends on the explicit
and incremental choice of functional properties and thus is very suitable for reuse
purpose. A very simple addition of object-based retrieval style would make the
methodology equally suitable for library understanding and reengineering domain because
the object-based retrieval style exposes implicit conceptual similarities of components:

the intent of the focus (target concept) contains all properties which are common to all
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selected component; its extent also contains all other components which share these

properties, even if they have not been selected explicitly (Fischer 1998).

The methodology only needs a class library and a user query to perform retrievals of class
components, regardless of OOP languages and development environment/operating
systems. For example, the methodology can be applied to a C++ class library where even
multiple-inheritance is a frequent phenomenon which has no significant impact on the
way of organizing context of the class library except changing some contents of the
incidence relations appeared in the context. Successful applications of a FCA-based
approach to class design and maintenance of both C++ and Smalltalk class hierarchies
(Godin et al 1998 ; Snelting and Tip 1998) also provide supporting evidence of language

and domain dependence of the methodology.

The CBRS is implemented using a distributed CORBA client/server architecture and
Java/Swing technology. The unique combination of Java/Swing and CORBA means
portability, language independence, and local/remote transparency. The implementation is
not only Internet ready but also enterprise intranet ready. A C++ client can make full use
of the services provided by retrieve engine without any code modification on the server
side. Similarly, in order to improve performance, we can re-implement retrieve engine
with C++ and still use the Java client with professional GUIs whose appearance (look &

feel) are independent of operating systems due to the nature of Java/Swing.

5.1.2 Scale-Up

Concept lattice normally grows exponentially in the number of attributes and objects that
appeared in the context. In practice, however, the worst case rarely occurs and a
polynomial behavior is usual in both time and space complexity. According to Lindig,
the computing time ranged from 0.1 to 1000 seconds for approximate 50 to 8000
concepts (which is far below the upper bound) on a SPARC station ELC (Lindig 1995).
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The computation time of the concept lattice for a class library is a preprocessing effort,
which can be regarded as an off-line phase and thus separated from class retrievals. The
end user only uses the preprocessed and prebuilt lattice structure to perform retrievals.
The semantic properties of all classes in the class library are reflected in the intents of all
the concepts. Therefore using the above techniques, a small to large libraries that contain
up to thousands of classes can be handled by the methodology because the off-line

computation time of the concept lattice is not critical to the retrieval process.

5.1.3 Retrieval Precision and Recall

Precision is the number of relevant components retrieved by a user query, over the
number of all the components retrieved by this query. Recall is the number of relevant
components retrieved by a user query, over the number of all relevant components in the
class library. Effectiveness means that the retrieval results should show high precision
and recall. Theoretically, maximum effectiveness means that all relevant components
should be retrieved (recall = 100%) and result of a user query should contains only
relevant components (precision = 100%). A study of typical reuse approaches reported in
the literature shows the numbers in the range of 40 -60 % for both values of precision and

recall (Biggerstaff and Perlis 1989).

The concept-based approach achieves class retrieval by traveling through the lattice
structure by following certain paths. It visits the necessary and relevant nodes only, no
more no less, to match the user query. The exact retrieval mechanism guarantees that the
number of relevant classes equals to the number of all the classes retrieved by the user
query in most cases. Both in theory and in practice, the exact retrieval produces almost
100% precision due to incremental selection of composite types in the concept-based
approach. This high precision can never be achieved in other comparable retrieval

techniques. Since the approximate retrieval is based on the exact one, it will retrieve all
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the classes whose members partially match with the user query. A very possible situation
is that the system retrieves all the superclasses or subclasses of a particular class that is an
extent of the target concept. The recall is also relatively high. The detailed value of the
recall depends on the user query.

5.1.4 Retrieval Efficiency

Retrieval efficiency in particular means that search time must be short.

The CBRS retrieves classes by traveling through the lattice structure by following the
paths calculated by the system. It visits the necessary and relevant nodes only, no more no
less, to match the user query. In other words, the retrieval system searches only relevant
concepts to perform the class retrieval, the rest of concepts is ignored by the system. So

the retrieval efficiency is high.

In practice, the implementation requires a lot of resource to perform normally. The CBRS
starts slow if all the required resource is not enough. The Gatekeeper, which acts as a
web server for the system, needs a lot of memory and runs slow. The vendor also needs to
improve its performance. Once the system is started and in a state of ready to retrieve, it
performs relatively fast. Of course, if the CBRS is deployed either on the Internet or
enterprise intranet, the system performance depends on many other factors such as

network traffics, the resource of the client computer and so forth.

5.2 Comparison with Other Retrieval Approaches

Part 1.3 of the chapter 1 already reviewed three traditional, major retrieval techniques

reported in the literature: external index, internal static index (structure-based scheme)
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and internal dynamic index (behavioral-based scheme). Strictly speaking, the
methodology proposed in this thesis does not belong to any category of three traditional
approaches. However, its surface features seem to belong to both category 2 and category
3 this is because the methodology is designed to take advantages of the two approaches
and discard their dross. Niu’s methodology (Niu 1999) is of category 2, too. Both
similarities and differences between our methodology and the three approaches can be

found through comparisons.

5.2.1 Similarities

There are some similarities between our concept-based methodology and the other three

retrieval approaches, which can be summarized as follows:

¢ The concept-based approach provides a way to represent a class as a multiset of types. It
adopts similar technique that used also in type-based schemes and execution-based
approaches for some C functions.

e The concept-based approach organizes class library into a context (relation) while type-
based approach also organizes the class library by grouping classes based on either the
number of methods or the types (including return type and argument type) of methods
of these classes. So it has very similar surface features with that of type-based and
some execution-based schemes.

e The concept-based retrieval approach follows the procedure of construction of user
query, sending it to the retrieve engine, and class retrieval by matching query. The spirit
of retrieval pattern is very similar to that of both type-based and execution-based as
well as classification-based schemes.

e The concept-based approach allows both exact and approximate retrievals. The type-
based, execution-based and classification-based schemes also provide similar retrieval
styles. This is because query matching can be roughly divided into two categories: exact
match and partial match.

e The concept-based approach explicitly uses variable access patterns of methods of a

class (component) as the class behavior. For classification-based retrieval, the behavior
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of the components is concentrated implicitly into terms used in each facet. The terms
are chosen from a vocabulary that is constructed from the specific domain, not from the
component itself. For signature-matching (type-based) retrieval, the behavior of the
components is very dilute, residing in the type signature of each function of a module.
Although the behavior is represented differently in all these three approaches, they all
catch the behavior of the components by some kind of indexing (extracting) either from

the specific domain or static properties of the components themselves.

5.2.2 Differences

There are significant differences between the three traditional approaches and the
concept-based approach. These differences mainly come from the ways of organizing
libraries and the mechanisms of query processing used by retrieve engine. They can be
summarized as follows:

¢ The concept-based approach organizes a class library into a context (relation) and then
further builds a corresponding concept structure which has strong mathematical
properties and can be processed and analyzed by very precise algebraic means. The
structure is a very rigid lattice, has very strict ordering of its nodes and has strong
formal and mathematical foundations. In contrast, the library structures of both type-
based and execution-based schemes are very loose one, at best a unbalanced tree-like
structure maybe obtained. In most cases, only some degree of arrangements of
components is achieved through grouping and linking. Most parts of the library
structures, like the one used in classification-based scheme are amorphous and random-
ordered or have only loose linking and grouping. The library structure lacks of formal
or mathematical foundation.

e The concept-based approach extracts class behavior from static properties of class
components. In contrast, execution-based scheme captures the component behavior by
executing test data on the methods of the class component; classification-based scheme
captures the component behavior by extracting terms from a specific domain not from

the component themselves.
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¢ The concept-based approach achieves class retrieval by traveling through the lattice
structure by following certain paths. It visits the necessary and relevant nodes only to
match the user query. So retrieval efficiency should be high. The retrieval precision is
also very high because of an incremental query construction and dynamic heading of the
system focus. The class retrieval of the execution-based approach heavily relies on
execution of every class in the library. The process of matching and selecting
components for retrieval are very expensive because the behavior of each component is

dynamically calculated using the program part of the query.

5.3 Advantages of Using Concept-Based Retrieval System

There are many advantages of the CBRS if we compare our concept-based retrieval
system with other major retrieval approaches. Major advantages are summarized as

follows:

e Efficient organization of classes indexed with type plus variable access behavior in the
reuse library saves disk space. The resulting concept lattice can be seen as a hierarchical
clustering of the classes. Classes in a class library are partitioned into sets, and the
lattice structure imposes a taxonomy on these class sets. The lattice structure improves

the retrieval efficiency by searching only relevant concept space.

* An incremental selection from a list of available composite types guarded by the
retrieval system allows exact match and completely eliminates the data mismatch and
time-consuming deduction phase in formal specification-based retrieval scheme, and

thus improves retrieval reliability.

¢ Query construction for retrieval of desired classes is very easy. The concept lattice also
allows retrieve engine to process queries more efficiently and provides optimal

feedback to the user.

® Non-primitive data types and user-defined data types are allowed to choose from the

list.
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¢ Methodology of concept-based retrieval is language independent. Although we
implemented the CBRS using Java, the methodology can handle programming
languages with multiple inheritance equally well.

e The methodology allows abstract classes and interfaces to be included in the context

that represents a class library.

¢ A multiset of set types representation of a class and incorporation of arguments of
methods into context eliminate the need of knowing arguments order of the class’

methods in advance.

¢ The context of a class library allows us to incorporate more attributes to a class,
including both formal and informal attributes such as a formally specified index term
that represents class behavior, a very good class description, that will also present to the
user, which greatly enhances the usefulness of the hierarchy for browsing purpose.
Incorporation of mixed informal and formal attributes of a class into the context also
allows us to overcomes the incompatible problems of formal and informal methods

(Boudriga, Mili and Mittermeir 1992).

5.4 Conclusion

The previous methodologies of type-based and execution-based rely on static properties
associated with a component and dynamic execution of test program on a class
component, respectively. In this thesis, we proposed a new methodology based on the
formal concept analysis. Our methodology tries to take advantages of the type-based and
execution-based schemes as well as the formal method while still keeps a balance of
simplicity and complexity. To reduce the complexity we use variable access patterns of
methods of classes in the class library as representations of class behavior. To keep the
simplicity of query construction we adopt an incremental selection mechanism instead of
arbitrary entries by the users. Retrieving classes is investigated by an incremental
selection mechanism to rapidly narrow down the search space. Based on the

methodology, a prototype system is designed and developed using latest Java technology
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and distributed CORBA architecture. Many tools are provided by our CBRS to allow
users to browse the class library, retrieve precisely the suitable components from the
library, organize the context for the library, build the corresponding concept lattice, and
even graphically control the server side applications. The core of concept-based retrieval
system is the lattice structure that represents a class library. The lattice structure can be
studied by algebraic means and offers remarkable insight into properties and structure of
the original class library. It is the ordered structure that improves both retrieval efficiency
and reliability.

The concept-based retrieval is divided into five major phases: constructing class library,
organizing the class library into a single-valued context via conceptual scaling if
necessary, building the concept lattice, formulating user queries, and satisfying the
queries. The CBRS is designed to handle exact and approximate retrievals with
sophisticated GUIs for the end users. An easy-to-use, simple yet still powerful browse
tool is designed to allow users to travel through the space of the concept lattice for
browse-based retrievals. The direct and as flexible as near free-style navigation of the

lattice structure is based on the new data structure of Java/Swing --- JTree.

Based on the work carried out in this thesis, we can draw the following conclusions:

¢ The CBRS provides a new, very useful and powerful tool for software developments
based on reusing object-oriented class components. The idea may also be effectively
applied to design new generation of search engines for the world wide web and other
similar environments.

¢ The concept-based retrieval scheme proposed in this thesis reduces retrieval complexity
and cost yet still maintain high recall and precision in terms of class behavior. The key
is to impose a structural order of all the classes in a class library. This can only be
achieved through a many-valued context to a single-valued context and then a concept

lattice representation for the class library.
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¢ Mixing type and behavior of methods of a class actually makes this methodology a
combination of type-based and behavior-based retrievals. Furthermore, this
methodology is flexible enough to allow us to incorporate more class attributes in terms
of formal and informal methods into the context, so the potential is very promising.

e The FCA-based methodology provides a way to organizes the user’s specification into a
query. The query formulation is incredibly easy. The query constructed by the user has
clear semantics, thus the result is very comprehensible to the user. The methodology
combines the exact semantics of formal methods and the interactive navigation
possibilities of informal methods.

e This methodology also provides a way of an incremental selection from a list of
available composite types by the user, which allows exact match and completely
eliminates the data mismatch and time-consuming deduction phase in a formal
specification-based retrieval scheme, and thus improves retrieval reliability. The
concept lattice allows retrieve engine to process queries more efficiently and provides
optimal feedback to the user.

e The CBRS system supports exact and approximate retrievals. The approximate retrieval
makes it useful for retrieving components with similar class behavior to the user query.
¢ Browsing a class library is made possible based on two reasons: (1) the users may not
be familiar with the retrieval system and have no concrete knowledge what they are
looking for; (2) the users want to go through browsing a class library to achieve the
purpose of retrieval of partially-satisfied classes because there is not always an exact
match between the user’s requirements and available classes in the class library. In
both cases, the user wants to look around for a class that is close enough to be adapted
to his/her needs. The hierarchy generated from the concept lattice of a class library can

be used for browsing and understanding the relationships between the classes.

¢ Navigating directly on a concept lattice hierarchy of a class library actually plays the
roles of both browsing and searching the library. The navigating is achieved through an
applet called ConceptLattice that is implemented in Java/Swing JTree data structure.
The Swing JTree is a perfect choice to display hierarchical data. The advantage of

using concept lattice is that we can incorporate more attributes to a class like sample
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behavior or a very good class description for each node (concept) that will also present
to the user, which greatly enhances the usefulness of the hierarchy for browsing
purpose.

e A distributed CORBA client/server applications implemented using Java and
Java/Swing not only make its easy to put the whole system on the Internet and
enterprise Intranet, which enable the user perform remote method calls, but also

provides professional graphic user interfaces.

There are a few things left both in the methodology and implementation. They can be

summarized as follows:

e As discussed early incremental selection of composite types from the list displayed by
the CBRS narrows the search space rapidly. Similarly, the search space should be
widened again by deselecting a composite type. Our methodology did not specify how
to handle this situation although the user may remove an item from the query any time.
To solve this problem, the system needs to calculate the new focus using a join
operation instead of a meet operation.

e The retrieval style of our CBRS is attribute-based system: the focus is essentially a
function of the selected attributes (composite types). Due to the its dual nature, concept
lattice also allows object-based (class-based) retrieval style although it is more
appropriate for library understanding and reengineering (Fischer 1998). Our
methodology and implementation only allow attribute-based retrieval style. The
solution is that the user selects or deselects a single class and system calculates the new
focus accordingly. However, selecting an additional class widens the focus and is thus
realized by a join operation.

e A tool of automatic line diagram generation is very useful for the system administrator.

It is not implemented in this thesis.
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5.5 Future Work

A number of ways exists in which the methodology and the implementation in our CBRS
can be further extended.

The class maintenance of our methodology needs improvements. Currently, we have to
modify the context, recalculate the concepts and rebuilt the concept lattice after an
addition of a new class into the class library or a deletion of a class from the class library.
This process is tedious and calculation-intensive. So adopting an incremental update
algorithm such as the algorithm mentioned by Godin et al (Godin, Missaoui and Alaoui
1995) instead of Ganter’s batch algorithm (Ganter 1986) would solve this problem. This
requires an implementation of the incremental batch algorithm and perhaps best

implemented with graphic user interface for the administrator to manage the CBRS.

Automatic drawing of line diagram is useful to the system administrator even for some
batch algorithms. Bordat’s algorithm (Bordat 1986) deals with building Hasse diagram
for a context. An implementation of this algorithm will update our CBRS to include the

automatic generation of concept lattices.

A simple extension of class-based retrieval style to the CBRS will make the system more
general purpose. It is not only suitable for reuse purpose through the composite-type-
based style, but also can be used for library understanding and reengineering through the
class-based style because object-based navigation exposes implicitly conceptual

similarities of classes (Fischer 1998).
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