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ABSTRACT

The research programs detailed in this thesis focus on the load/displacement and 

energy absorption performances and improvements o f structural members under tensile 

and compressive loading conditions.

A theoretical model for the prediction of energy absorption capabilities of 

aluminum foam filled braided stainless steel tubes under tensile loading conditions has 

been developed based upon the unit cell concept. Comparisons between the energy 

absorption predictions of the analytical model and experimental observations were found 

to be in good agreement for assembly lengths o f approximately 400 mm.

Experimental investigations were also completed for energy absorbers which 

function under axial compressive loading conditions. The crush characteristics and 

energy absorption capacity o f AA6061-T6 extrusions with centrally located through-hole 

discontinuities were investigated and analyzed. Three different types o f geometrical 

discontinuities, namely, circular, slotted and elliptical holes were fabricated into 

AA6061-T6 extrusions which had a length of 200 mm, nominal side width o f 38.1 mm 

and wall thickness o f 3.15 mm. It was found that by introducing crush initiators into the 

structural members, a splitting and cutting deformation mode was generated rather than 

global bending deformation. The peak crush load was reduced and total energy 

absorption was increased by incorporating the through-hole crush initiators.

Also investigated in this research for the improvement o f energy absorption 

capacity was a new cutting deformation mode of extrusions. The four comers o f square 

cross section AA6061-T6 extrusions were cut by a specially designed cutting tool. Tube 

lengths o f 200 mm and 300 mm with a wall thickness o f 3.15 mm and nominal side width 

of 38.1 mm were used in this research. Results from the experimental tests showed that 

the cutting deformation mode had high cmsh force efficiency and energy absorption 

capacity. An almost constant force/displacement response was observed for the tubes in 

the cutting deformation mode and two energy absorbing mechanisms were identified for 

this deformation process.
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NOMENCLATURE

C Side width o f a square tube extrusion

D  Perpendicular distance between the tows

E  Young’s modulus

Eabsorbed Energy absorbed

Efoam Energy absorbed by aluminum foam

E total Total energy absorbed by the structure

Etube Energy absorbed by braided tube

F  Radial force acting on the surfaces o f the aluminum foam core

Fz Force in z-axis direction

i Index for the i data point

ki Empty braided tube stiffness in Region 1

k2 Empty braided tube stiffness in Region 2

L  Length o f energy absorber

L 0 Initial length of braided tube

Lcrit Intersection point o f the assumed linear force/displacement relationship
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1. INTRODUCTION

During the past decade, passenger vehicle occupant safety features have become a 

leading marketing characteristic o f motor vehicles. Vehicle crashworthiness rating as 

provided by testing organizations, such as NHTSA (National Highway Traffic Safety 

Administration) and IIHS (Insurance Institute for Highway Safety), is currently ranked at 

a level comparable to quality, styling, ride and handling, and fuel economy [1], 

Automotive manufacturers, government agencies, insurance underwriters, and the news 

media provide consumers with significant amounts o f safety information about each 

model o f new cars. Vehicle engineers design safety features such as energy absorbing 

front and side structures, air bags, seats with integrated seat belts, and various crash 

avoidance devices, such as anti-lock braking systems, traction control devices and 

daytime running lamps, to satisfy a number of regulatory requirements and consumer 

information programs. The research on vehicle safety, meaning structural 

crashworthiness and reduction in occupant fatalities and harm, will undoubtedly continue 

to increase during the next decades in response to consumer demands, increasing 

government regulation and globalization of the industry.

The contents o f this research focused on component structural crashworthiness, 

deformation mode and energy absorption improvements. During a crash event, the 

majority of vehicle’s kinetic energy is absorbed through the plastic deformation of the 

side walls o f the main energy absorbing structural members. The frontal rails in the 

automotive supporting frame generally act as the main structural members for absorbing 

crash energy in a frontal impact, and the crushable length o f these components defines 

the distance over which the crash energy can be absorbed. Bumpers are designed to 

protect car bodies from damage in low-speed collisions (8 km/h). Bumper-to-frame rail 

attachments are designed to transfer the impact force directly to the front rails.

Progressive buckling is the most preferred mode o f collapse during front and rear 

end crashes as it results in a more stable and predictable energy absorption behaviour. 

Researchers are trying to control the deformation mode and energy absorption capacity o f 

a structure to achieve a uniform deceleration, for example 20-25 g’s when measured in a 

fixed barrier, frontal crash at 48 km/h.

1
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To achieve the goal of high structure crashworthiness, material selection is critical. 

The basic requirements for automobile structure materials include good formability, 

corrosion resistance, and recyclability. Structural materials should also possess sufficient 

strength and controlled deformations under load to absorb crash energy, yet maintain 

sufficient survivable space for adequate occupant protection should a crash occur. 

Furthermore, the structure should be lightweight to reduce fuel consumption. Carbon 

steel and advanced high strength steels (AASS), such as dual phase (DP) and 

transformational induced plasticity (TRIP) steels have been extensively used in the 

automotive industry [2]. In the meantime, light weight materials especially aluminum 

has been increasingly used in automobiles. Since 1990, the use o f aluminum has doubled 

in cars and has tripled in SUVs and pick-ups [3]. The use o f aluminum material for car 

structures can provide the following advantages:

• The high strength-to-weight ratio o f aluminum allows strong, yet lightweight body 

structures to be built.

• Aluminum structural members can be engineered to collapse in a predictable manner 

in severe impacts and, as a result, can be readily designed to provide the desired 

amount o f crash energy absorption.

• The superior corrosion resistance of aluminum minimizes deterioration o f the crash 

energy absorption capabilities over the life o f the vehicle.

• Aluminum absorbs twice as much crash energy as typical automotive steel so that as 

vehicle weight reduction becomes inevitable, substituting aluminum for steel will 

provide simultaneous improvement in fuel economy, performance and safety; a truly 

compelling combination for vehicle manufacturers and their customers [3].

Figure 1.1 (a) and (b) indicate that during frontal impact and side impact, vehicle 

structure would deform under compressive and tensile loading conditions separately. 

Requirements exist for passenger vehicles to absorb crash energy and protect occupant 

compartment under both conditions. The research done for this thesis involves the study 

of energy absorbing structural components under different loading conditions. The 

objective o f this research is to examine the effect o f different geometrical imperfections, 

in the form o f circular, elliptical, and slotted holes, and deformation modes on the

2
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crashworthiness characteristics o f axially loaded extruded aluminum tubes. Experimental 

quasi-static crush tests will be used to determine the collapse mode, load/displacement 

characteristics, and energy absorption ability o f aluminum extrusions. Aluminum foam 

filled braided stainless steel tube as a new energy absorbing device under tensile loading 

conditions was experimentally investigated by Altenhof et al. as reported in reference [5]. 

A theoretical mode will be developed in this research to predict its energy absorption 

capacity according to experimental observations and analysis o f deformation process.

(a) (b)
Figure 1.1. Passenger vehicles deformed under both compressive and tensile loading 

conditions, (a) Compressive loading condition, (b) Tensile loading condition [4].

3
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2. LITERATURE REVIEW

With the establishment o f the National Highway Traffic Safety Administration 

(NHTSA) in 1970, many mandatory safety standards, known as Federal Motor Vehicle 

Safety Standards (FMVSS) were introduced [1]. These standards regulate many aspects 

of vehicle crashworthiness and crash avoidance performance. As a consequence o f these 

regulations and consumer requirements, researchers in different areas have published a 

large number o f papers to address structural crashworthiness, restraint systems, and 

injury biomechanics. As related to the research o f this thesis, the literature review 

discusses the experimental testing, theoretical analysis and numerical simulation of 

tubular structural collapse behaviour and crash energy absorption under quasi-static and 

dynamic axial loading conditions. Section 2.1 discusses the collapse modes o f axially 

loaded tubes under quasi-static and dynamic loading conditions. Experimental testing and 

results from other researchers are discussed in this part. Section 2.2 discusses factors that 

influence the collapse mode of axially loaded square tubes. These factors include 

material properties, cross section shapes and geometrical dimensions. Section 2.3 details 

some o f the research done with crush initiators, which include inherent imperfections 

introduced by the manufacturing process and intentionally created geometrical 

discontinuities for the purpose o f altering energy absorption characteristics. Section 2.4 

discusses the theoretical analyses regarding the prediction o f peak buckling load and 

mean crush load for square tubes developed by various researchers. Section 2.5 discusses 

the use o f finite element methods in the analysis o f the axial crushing process.

4
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2.1 Deformation Modes of Axially Loaded Tubular Structures

The majority o f research dealing with impact energy absorption has focused on 

the behaviour o f metal structures and components for which the main energy absorbing 

mechanisms are plastic deformation and fracture [6]. Reid [6] investigated three primary 

axial deformation modes o f metal components proposed as impact energy absorbers. 

Seamless mild steel tubes, o f 50.8 mm outside diameter and 1.6 mm wall thickness, were 

used in the experimental tests. The deformation modes investigated included axial 

buckling, inversion and axial splitting. The first deformation mode was achieved 

through compression o f steel tube between two parallel plates. The last two deformation 

modes required the use o f a profiled die onto which the tubes were compressed. The 

three deformation modes and different tools used in the crashing process are illustrated in 

Figure 2.1.

Die Die Stopper
plate

(a) axial buckling (b) external inversion (c) splitting

Figure 2.1. Various deformation modes of circular tubes as energy absorbers [6].

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A summary o f the principal features o f the test results is provided in Table 2.1. 

The first two modes which did not involve fracture possessed a high mean load reflecting 

the efficient mechanisms consisting principally o f circumferential stretching and axial 

bending about circumferential hinges. The stroke or effective crushing length is o f the 

order o f 70% of the tube length. For the splitting mechanism, the lower mean loads were 

offset by the increased stroke o f 95%, resulting in comparable energy absorbing 

capacities. Particular benefits for external inversion mode and axial splitting mode were 

the almost constant force in the deformation processes.

Table 2.1. Summary of the axial compression tests [6].

Deformation mode
Mean load 

(kN)

Compression 

(=stroke %)

Energy absorption 

(J/mm)

Axial buckling 80.0 70 56.0

Inversion 

(Radium of Die = 4  mm)
85.0 66 56.1

Inversion 

(Radium of Die - 6 mm)
80.0 70 56.0

Splitting 

(Radium of Die = 4 mm)
60.0 95 57.0

Splitting 

(Radium of Die = 6  mm)
42.5 95 40.4

Splitting 

(Radium of Die = 1 0  mm)
30.0 95 28.5

For each of the above mentioned three primary deformation modes, there exist 

different deformation patterns, which will be discuss further in the following paragraphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1.1 Axial Buckling

Axial buckling deformation mode occurs when thin walled tubes are compressed 

between two parallel flat plates. For a circular tube, depending on geometrical parameters 

such as the ratios o f D/t (diameter/thickness) and L/D (length/diameter) and also on 

material properties, there are a variety o f possible patterns o f collapse. Generally, 

deformation pattern includes progressive buckling, the formation o f progressive folds 

whether axi-symmetrically or non-symmetrically, and global bending. In progressive 

buckling mode, the formation o f folds causes the characteristic fluctuation in the axial 

force shown in Figure 2.2 [7].

F MAX - m axim um  or peak  load - 1 s tfo ldso r

50
T E ST  24A D=97mm, L=196mm, t= 1.0mm

6060-T5 A lum inium

F av ,-av erag e  p o st b u d d in g  load30

20

10

100 120

DISPLACEMENT (mm)

Figure 2.2. Axial force versus displacement curve for progressive buckling of circular tube under
compression load [7].

Guillow et al. [7] have experimentally investigated the axial compression o f thin- 

walled circular tubes. A total of 70 quasi-static tests were conducted on circular 6060 

aluminum tubes in the T5 temper. The range o f D/t was between 10 to 450 and L/D <10

7
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in the testing. The following modes o f collapse have been identified and Figure 2.3 shows 

some typical examples: (i) axi-symmetric concertina buckling, (ii) non-symmetric 

buckling (also known as diamond or Yoshimura mode), with a variable number of 

circumferential lobes or comers (refer to Figure 2.3), (iii) mixed mode (combination of 

the two previous modes), (iv) Euler or global buckling; and (v) other (simple 

compression, single folds, etc.).

■
, ...... “VL AM

:s t

Figure 2.3. Examples of various collapse modes for thin-walled circular 6060-T5 aluminium tubes 
under axial loading, (a) axi-symmetric mode (D = 97.9 mm; t = 1.9 mm; L = 196 mm); (b) non- 

symmetric mode (D = 96.5 mm; t = 0.54 mm; L = 386 mm); (c) mixed mode (D = 97.5 mm; t = 1.5
mm; L= 350 mm) [7].

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abramowicz and Jones [8-10] have done extensive experimental crush testing and 

theoretical analyses on tubular structures under quasi-static and dynamic loading 

conditions. Tubes with a wide range of lengths, widths and wall thickness have been 

considered in their research. In reference [8], quasi-static crush tests were performed on 

a DARTEC 250 kN hydraulic testing machine at a crushing rate in the range of 0.1-1.0 

mm/s. The crushing load was applied using two steel plates, a moving crosshead plate 

and a stationary base plate. The collapse modes observed in this experimental study were 

the global bending mode, the progressive symmetric mode, and the progressive 

extensional mode.

Langseth and Hopperstad [11] experimentally investigated the crush behaviour of 

axially loaded aluminum extrusions with square cross-sections. Tubes made o f the 

aluminum alloy AA6060 with the T6 and T4 heat treatments, as well as a modified T4 

heat treatment were studied. The stress-strain curves for these materials are illustrated in 

Figure 2.4. All tubes had a length o f 310 mm and a width of 80 mm, while wall thickness 

values o f 1.8, 2.0, and 2.5 mm were considered. The tests were conducted at a constant 

crosshead speed o f 0.15 mm/s using a DARTEC 500 kN testing machine.

£ 2 0 0 ~r------- T4*Sl T4

b 150 t  v

100

50 -

0 ....i... .. i .....  i ... i
C 5 10 15 20

e[%]

Figure2.4. Stress versus strain curves of extrusion materials considered by Langseth et al [11].

9
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It was reported in reference [11] that material hardening properties and tube 

geometry had important influences on the mean crushing load and energy absorption o f 

square aluminum tube extrusions subjected to axial crushing. Even though all tubes 

collapsed in the symmetric mode regardless o f heat treatment or wall thickness, the 

number o f lobes formed was found to be dependant solely on heat treatment. Six lobes 

were formed in the tubes with T4 heat treatment, between 6 and 7 were formed in the 

tubes with the modified T4 treatment, and 7 were formed in the tubes with the T6 heat 

treatment.

The mean crushing load and energy absorption were higher for the tubes with the 

T6 heat treatment than for the tubes with the T4 heat treatment, due to the differences in 

yield strength o f the materials. However, the ratio o f the mean load o f the tubes treated 

with the T6 heat treatment to that o f the tubes treated with the T4 heat treatment 

decreased with increasing wall thickness. Langseth and Hopperstad [11] attributed this to 

the difference in hardening properties between the two heat treatment conditions. 

Increasing the wall thickness causes an increase in strains yielding a significant increase 

in plastic flow stress for the T4 condition. Due to the lower hardening modulus for the 

T6 condition, no flow stress increase occurs for the tubes with the T6 heat treatment 

condition.

For thin walled square tubes, Arnold and Altenhof [12,13] have experimentally 

and numerically investigated the deformation patterns o f AA6061 T4 and T6 square 

tubes. In this research, specimens with length of 200 mm and 300 mm, wall thickness of 

3.15 mm, and nominal side width of 38.1 mm have been axially crushed to observe 

deformation patterns and energy absorption behaviour. Specimen geometry was chosen 

to have a predicted global bending collapse pattern based on the research work o f 

Abramowicz and Jones [14]. Centrally located circular holes, with diameters o f 7.1 mm 

and 14.2 mm machined into the two opposing walls o f the tubes, were used as crush 

initiators to commence the plastic buckling process. For specimens o f T4 temper without 

discontinuity, the deformation patterns observed were illustrated in Figure 2.5. Specimen 

#1 deformed in the global bending pattern. Specimen #2 collapsed in the progressive- 

symmetric pattern. Specimen #3 collapsed in the progressive-asymmetric mode as shown 

by the non-uniform folding pattern. Specimen #4 initially collapsed in the progressive-

10
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asymmetric mode, which led to a severe global bending. It can be observed that tubes 

with assumed same geometry and material properties can exhibit different deformation 

modes. This difference could be caused by the inherent imperfections o f the structure 

induced during the manufacture and heat treatment process.

Figure 2.5. Deformation patterns of AA6061-T4 Aluminum extrusions with length of 200 mm, wall 
thickness of 3.15 mm, and nominal side width of 38.1 mm [12].

Another two deformation patterns, namely SMI and SMII, were reported for 

specimens o f T6 temper with circular hole discontinuities o f diameter 14.2 mm and 7.1 

mm as illustrated in Figure 2.6 and Figure 2.7. A lateral shift o f the top half of the 

absorber relative to the bottom half was observed for mode SMI. As the lateral shift 

continued, the top half o f the absorber was only supported by a small cross-section of the 

bottom half. This resulted in a large stress concentration that ultimately led to a splitting 

mode in which the top half o f the absorber acted as a cutter that split the bottom half. In 

mode SMII, the top portion o f the absorber was driven down inside the bottom portion, 

causing the sidewalls to split at the comers.

11
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(e) (f) (g) <h)

Figure 2.6. Experimentally obtained deformation pattern of AA6061-T6 Aluminum extrusion with 
circular hole discontinuity of 14.2 mm in diameter (L=200 mm, D=14.2 mm, t=3.15 mm) [12].

Figure 2.7. Experimentally obtained deformation pattern of AA6061-T6 Aluminum extrusion with 
circular hole discontinuity of 7.1 mm in diameter (L=200 mm, D=14.2 mm, t=3.15 mm) [12].

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1.2 External Inversion

External inversion deformation is a process in which a tube, when subjected to axial 

compression, will undergo inside-out inversion to form a double walled part [6]. Inversion 

of tube for energy absorbers was pioneered by General Motors as indicated in reference 

[15]. Recently, however, this process has also been steered toward practical and industrial 

application, particularly in the metal-forming area [15]. The large plastic strains involved 

in tube inversion limit its occurrence to ductile materials, such as steels and aluminium 

alloys.

The external inversion o f a tube using a die is characterized by the axial 

compression o f a tube over a die with an appropriate radius as shown in Figure 2.8 [16]. 

The plastic deformation of the tube is the result o f three different mechanisms: bending, 

stretching and friction [17].

Tube

Inversion

Ole

before forming after forming

Figure 2.8. Schematic representation of the external inversion of tubes using a die [16].

Information regarding theoretical and experimental fundamentals o f the external 

inversion o f tubes using a die can be found in references [6, 15-17]. These publications 

investigated issues related to the prediction of load, to the identification o f the main 

parameters that govern the process, and to the classification o f the typical patterns of 

deformation that may occur during the process (successful inversion, local buckling and 

fracture) and to the influence o f interface friction on material, material damage and 

fracture.

13
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Miscow and Al-Qureshi [15] have performed an experimental and theoretical 

analysis o f tube inversion under quasi-static and dynamic loading conditions. At the start 

of each test, the tube (outside diameter o f 50.8 mm, wall thickness o f 1.58 mm, and 

height o f 88.9 mm) was placed over a lubricated die. Then, the operation was performed 

simply by subjecting the ends o f the tube to an increasing axial (quasi-static or dynamic) 

load. In the case o f quasi-static testing, the die assembly was attached to the lower platen 

of the hydraulic testing machine (capacity of 200 kN, velocity o f 20 mm/min). Whereas, 

the punch was fixed to the movable upper ram. A typical load versus displacement curve 

for copper tube using die radius of 4.76 mm is shown in Figure 2.9, submitted to quasi

static axial compressive loading. It can be seen that from the initial flaring outwards of 

the material covering the die radius, until the final steady-state inversion, the tube passed 

through many stages. Typical samples o f the tubes at various stages o f external inversion 

were shown in Figure 2.10.

70130 BRASS TUBE

COPPER TUBE

' DIE RADIUS ■4.78 mm

0.0 10J) 20.0 30,0 40.0 «M> 00.0 70,0
SHORTENING {m m )

Figure 2.9. Load versus displacement curves for copper tubes under quasi-static inversion process.
Letters refer to Figure 2.10 [15].
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Figure 2.10. Various stages of the inversion of a copper tube in quasi-static method [15].

2.1.3 Axial Splitting

A splitting deformation mode was seen as a failure mode for tube inversion, but 

has been developed as an energy absorbing mechanism [6]. From the viewpoint of 

energy absorption, this collapse mode has a long stroke of over 90 per cent o f the total 

tube length. Stronge et al. [18] conducted experiments with square tubes split against a 

radius/flat die. Huang et al. [19, 20] studied the splitting and curling behaviour of 

circular and square tubes axially compressed between a plate and a pyramidal die. Lu et 

al. [21] investigated the tearing energy involved in splitting square metal tubes. Tearing 

energy in thin metal sheets was studied by Lu et al. [21], Yu et al. [22] and Fan et al. 

[23], among others. Reddy and Reid [24] studied the splitting behaviour o f circular tubes 

compressed axially between a plate and a radius die.

The splitting deformation mechanism has advantages for energy absorption in that 

it has a long stroke while steady crush force. During the splitting process, cracks were 

observed to propagate along the axial direction. Strips rolled up into curls with an almost 

constant radius after splitting. The crush force became steady after some initial 

fluctuations. Three energy dissipation mechanisms were involved: (1) Splitting and 

tearing o f the tube; (2) plastic bending and stretching; (3) the friction as the tube 

interacted with the die [19].

Huang et al. [19] have investigated the axial splitting and curling behaviour of 

circular metal tubes. Mild steel and aluminum circular tubes (with yield stress 

Qy -  450 MPa for mild steel, and ay = 180 MPa for aluminum) were pressed axially onto a

15
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series o f conical dies each with different semi-angles. By pre-cutting eight 5 mm slits 

which were distributed evenly at the lower end of each tube, the tube split axially and the 

strips curled outward. The experimental set-up is sketched in Figure 2.11. A cone- 

shaped die was fixed to the bottom bed o f the testing machine. A short cylindrical 

mandrel was used inside the tube to prevent the tube from tilting. The axes o f the die, 

tube and testing machine were carefully aligned. The cross-head o f the testing machine 

then pressed the tube onto the conical die at a constant rate o f 0.0333 mm/s. Three 

different semi-angles o f 45, 60 and75 were selected for the conical die. All dies were 

made from mild steel and heat-treated to increase their surface hardness. All the 

specimens tested were commercially available circular tubes with length o f 200 mm long. 

The ratio o f the diameter to the thickness ranges from 15 to 50. Typical force- 

compression curves for mild steel tubes (D = 76.0 mm and t = 2.0 mm) with three 

different dies are shown in Figure 2.12 and the corresponding specimen photographs after 

tests are shown in Figure 2.13 with side and end views.

Cross-head of machine

,  Specimen (circular tube)

Inside mandrel

^  5mm sawcut 

^  Concial die

Base o f machine

Figure 2.11. Sketch of the experimental set-up, with 8 evenly spaced5 mm initial saw-cuts around
lower circumference [19].
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Figure 2.12. Typical force-displacement curves for mild steel tubes with D=74.0 mm; t=1.8 mm 
against dies with semi-angle a  = 45°, 60°, and 75° respectively [19].

(a) (b) (c)

Figure 2.13. Photographs of typical mild steel specimens (D=74.0 mm; t=1.8 mm) after tests: from
left to right o=45°, o=60°, o=75° [19].
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Figure 2.14 shows typical force-compression curves for the aluminum tubes 

pressed onto three different semi-angled dies. Corresponding specimen photographs after 

tests are shown in Figure 2.15.
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Figure 2.14. Typical force-displacement curves for aluminum tubes with D=77.9 mm; t=1.9 mm 
against dies with semi-angle 0!=45°, a=60°, cr=75°, respectively [19].
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Figure 2.15. Photographs of typical aluminum specimens (with D =77.9 mm; t =1.9 mm) after tests:
from left to right o=45°, a=60° and a=75° [19].

Huang et al. [20] also investigated the energy absorbing behaviour o f axially 

splitting square metal tubes. Tubes of 50 mm square with a variable thickness were 

pushed slowly against rigid pyramid shaped dies, which had various semi-angles. By 

pre-cutting 5 mm long slits at the four comers, the tube splits along the comers and curls 

outward with a certain radius at a constant force. Typical force-displacement plots for 

three different cases are shown in Figure 2.16. The corresponding specimens after testing 

are shown in Figure 2.17.
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Figure 2.16. Typical force-displacement traces for mild steel square tubes with t = 2.5 mm against 
dies with semi-angle a = 45°, 60° and 75°, respectively [20].

I S ®

Figure 2.17. Photographs of typical specimens after tests [20].
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2.1.4 Interactive Modes of Deformation

A significant amount o f work has been done in the investigation o f interactive 

modes o f deformation. Reid et al. [25], Abramowicz and Wierzbicki [26], Reddy and 

Wall [27], have investigated foam-filled circular or square tubes under axial crushing. 

Reddy and Al-Hassani [28] have investigated axial crushing o f wood-filled square metal 

tubes. Reid [29] presented load-displacement curves for central transverse loading of 

tubes filled with sand.

Hanssen, Hopperstad and Langseth [30] investigated the crash performances of 

aluminum foam filled circular and square cross-section tubes in axial compression. 

Quasi-static and dynamic experimental test showed that the aluminum foam had the 

effect o f increasing the stiffness of the tube wall, resulting in an increased buckling load 

and higher energy absorption o f the structure. As shown in Figure 2.18, foam filled tube 

had a higher number o f sidewall lobes than the tube without foam. The increased number 

o f lobes means higher efficiency in energy absorption. The foam filler provides internal 

support to the wall that reduces the buckling length o f the sidewall resulting in an 

increased buckling load compared to the tube without foam filler. [30-32]

Figure 2.18. Non-filled and filled square tubes under quasi-static compression [30].

The summation of individual energies o f crushing the foam and the tube alone 

does not equal that o f the foam-tube assembly [30]. The difference between the two is 

known as the ‘interaction effect’. The addition o f the foam to the tube results in
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additional energy absorbing ability due to the deformation o f the tube wall interacting 

with the foam core and is illustrated in Figure 2.19.

150

120

0 40 SO 120 160

tS(mm)

Figure 2.19. Force versus displacement curve for compression of tube and foam [30].

Langseth, Hopperstad and Hanssen [33] reported that the energy absorbing 

capacity o f aluminum foam was related to the foam density under axial compression. 

Through experimental quasi-static compression testing o f square cross-section tubes, they 

found that as foam density increased the specific force required to crush the test 

specimens increased and the force versus displacement curve tended to be more stable.

2.1.5 Deformation Mode of Aluminum Foam Filled Braided Tube under Tensile 
Loading Conditions

This part o f literature review is related to energy absorption structural members 

which function under tensile loading conditions. Energy absorbing devices are needed in 

tensile loading conditions as in automobile side impact and in space frame structures, 

where a structure is subjected to tensile loading. Under a tensile loading condition, 

traditional metallic structures tend to deform locally, which results in very low efficiency 

energy absorption. The application o f metallic or polymeric foam to enhance the energy
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absorption capabilities o f a new class o f braided tubes under tensile loading results in a 

very efficient energy absorption device [5]. Harte et al. [34] have researched the energy 

absorption o f polymeric foam filled circular braided composite tubes both experimentally 

and theoretically. In Harte’s research, it was found that foam-filled braided circular tubes 

exhibited promising energy absorbing characteristics due to a combination o f energy 

absorption by the polymeric foam core and by the composite braided tube. The energy 

absorbing process included two distinct phases. In the first phase, scissoring o f the 

braided tube tows under tensile loading caused the epoxy matrix to crack resulting in 

energy absorption. The delocalized cracking of the matrix was dependent on the correct 

selection of matrix material and tow fiber material. Crushing o f the foam core, caused by 

the decrease in the diameter o f the braided tube as it elongated, resulted in further energy 

absorption and was defined as the second phase. The energy absorption after tow lock-up 

was not investigated in Harte’s research. Geometry of braided tube is shown in Figure 

2.20, while testing results in terms o f stress strain curve is shown in Figure 2.21.

a

£

Figure 2.20. Geometry of a braided tube in reference [34].
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Figure 2.21. Tensile stress versus strain curve for three braids with polyurethane foam cores in
reference [34].

Unlike Harte’s treatment o f assuming the braided tube as a rigid-ideally plastic 

solid, Cox et al. [35, 36] have investigated the influence o f steel chain geometry and 

matrix materials (including an aluminum/magnesium alloy, epoxy, polycarbonate, and a 

lead/tin alloy) on the energy absorption capacity o f knitted chain composites. Chain 

composites were geometrically configured to delocalized damage under tensile loading. 

The chains and fiber tows were positioned in the manufacturing process to ensure that 

they were not in direct contact with each other. Only after cracking of the matrix 

material, did individual chains or tows come into contact with each other. Energy 

absorption capacity, for the knitted chain composites, per unit volume and per unit mass 

were experimentally observed to be approximately 55 MJ/m3 or 14 J/g respectively and is 

significantly dependent upon the matrix material. Geometry o f chain composite is shown 

in Figure 2.22. A stress/strain relationship o f the chain composite under tensile loading is 

shown in Figure 2.23.
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Figure 2.22. (a) Geometry of a standard chain link (a racetrack link), (b) Contracted chain
configuration used in composites [35].
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Figure 2.23. Stress strain record for small-link chain-polycarbonate composite [36].

Altenhof et al. [5] has experimentally investigated the deformation behaviour of 

metallic foam filled braided tubes and has observed three distinct regions o f deformation 

which have been related to the kinematic displacement constraints o f the braided tube and 

the material properties o f the aluminum foam and the stainless steel braided tube.
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Experimental observations from reference [5] have indicated that the mechanical 

response o f the foam filled braided tube is dependent upon the density and geometry of 

the aluminum foam core and the geometry of the braided stainless steel tube. An 

aluminum foam filled braided stainless steel tube is shown in Figure 2.24.

Direction of 
ciosshe ad travel

Figure 2.24. Aluminum foam filled braided tube secured into the tensile testing machine prior to
loading [5].
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2.2 Factors That Influence Collapse Mode

2.2.1 Cross Section Geometry

It is recognized that the number of “angle” elements on a tube’s cross-section 

decides, to a large extent, on the efficiency o f the energy absorption [37, 38]. It is 

therefore desirable to design thin walled sheet metal profiles or extrusion with internal 

webs for weight-efficient energy absorption.

Kim [39] has proposed two new multi-cell cross sections as shown in Figure 2.25. 

The columns were made o f an aluminum extrusion AA 6063-T7 with the mechanical 

properties o f Young’s modulus E= 69 GPa, initial yield stress ay= 86.94 MPa, and 

Poisson’s ratio v= 0.3.

L b  j

Figure 2.25. Proposed cross-sections in reference [39].

Numerical simulations o f both cross-sections in Figure 2.26 were made for b = 40 

mm, C = 20 mm and r = 10 mm cases. The uniform thickness over the entire cross- 

section, t = 2 mm is used. The deformed shapes are shown in Figure 2.26, and the 

crushing forces are compared in Figure 2.27. The deformation mode is governed by the 

square or circular element on the comer part, so that the very short folding wavelength is 

observed for both cases and the side flanges act as the stabilizer between each comer 

element.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Square corner Circular comer

Figure 2.26. Deformed shapes in reference [39].
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Figure 2.27. Crushing forces displacement curve in reference [39].
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2.2.2 Extrusion Materials

Axial collapse behaviours o f tubular structures have been investigated with 

respect to many types o f materials. Studies have been performed on circular/square tubes 

o f aluminum alloys, stainless steel, mild steel, low and high strength steel [40], Dipaolo 

[40] has experimentally investigated the quasi-static, symmetric axial crush response 

mode of commercially produced, welded AISI 304 stainless steel square box components 

by using control techniques such as tube end constraints and collapse initiators. He also 

investigated the effect o f alloy composition and microstructure on the axial crush 

configuration response. The test specimens used in the investigation were fabricated 

from AISI 304 austenitic stainless steel. The cross-sections o f the tubes had square box- 

type geometry with rounded comers. Dimensions included nominal 50 mm by 50 mm 

outside dimensions, a 1.6 mm wall thickness, and an average comer inside radius o f 

3.6 mm. The material yield stress was 330 MPa, and the ultimate tensile strength was 

570 MPa.

It was found by Dipaolo [40] that the stmctural response can be restricted to a 

specific axial cmsh configuration mode and therefore, a controlled and repeatable energy 

absorption process can be obtained and that higher concentration o f carbon and smaller 

grain size resulted in an 18% increase in energy absorption.

Experimental set up, tube end side constraints and crash initiator geometry are 

illustrated in Figure 2.28. Photograph illustrating a deformed specimen and load 

displacement curve are shown in Figure 2.29.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Groove dimensions;
Upper s e t- "set 1" Lower set - "set 2'

SV S3 si S3
width (mm) wj 6.4 6.4 W2 6.4 6.4
depth (mm) d j 0.23 0.25 dz 0.18 0.20

distance from top end
(b) of tube (mm) h  21.6 21.6 h 44.5 44.5

Qu a si-static t e s t i n g

MTS universal fearing machine 
-1350 kff capacity 
* cross-head speed =2,5 mm/min 
- displacement control 

(a) Temperature - 2(PC

Figure 2.28. Experimental test set-up and controls: (a) test machine set-up; (b) collapse initiator 
geometry and (c) grooved end cap set for tube end constraints [40].
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Figure 2.29. Experimental tests results: (a) fold formations and (b) load-displacement curves [40].

Advanced High-Strength Steels (AHSS) have been recently developed by steel 

companies to meet the requirements o f automotive company to reduce the vehicle weight 

while maintaining its strength [2]. AHSS is relatively new to the materials world, but its 

application in automotive structures has been increasing recently since the steel industry's 

U ltralight Steel Auto Body (ULSAB), U ltralight Steel Auto Closures (ULSAC) and 

ULSAB-AVC (U ltralight Steel Auto Body - Advanced Vehicle Concepts) programs 

have successfully demonstrated its weight-saving and performance improvement 

qualities. Based on mechanical properties, High- Strength Steels (HSS) are defined as 

those steels with tensile strengths from 270-700 MPa. Ultra-High-Strength Steels 

(UHSS) are defined as steels with tensile strengths greater than 700 MPa. Four types of 

AHSS steels currently in worldwide production are: Dual Phase (DP), Transformation
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Induced Plasticity (TRIP), Complex Phase (CP), and Martensite (Mart). Figure 2.30 

shows the Strength-Elongation relationships for low strength, conventional HSS, and 

advanced HSS steels.

p  com m m m m

Tensile Strength (MPa)

Figure 2.30. Strength-Elongation relationships for low strength, conventional HSS, and Advanced
HSS steels [2].

ULSAB-AVC vehicle concepts were subjected to and successfully passed the 

most severe crash simulations, encompassing seven different events that represented the 

New Car Assessment Program (NCAP) requirements anticipated by the year 2004. Two 

steel longitudinal rails are the backbone of the entire under body and integral crash load- 

carrying structures for frontal crash energy management. These structures are

hydroformed, tailored tubes made of Dual Phase (DP) steel. Figure 2.31 shows a 

Mercedes A-Class body structure. The proportion o f high-strength and advanced high- 

strength steel alloys comprised 67 per cent o f its total material usage [2].
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Figure 2.31. Mercedes A-Class body structure [2],

Link and Grimm [41] have experimentally studied crash energy absorption 

characteristics o f steel tubes with different strengths and thicknesses. Figure 2.32 shows 

the force displacement curve of steel tube made from TRIP 590 Steel with a diameter of 

70mm and a wall thickness o f 1.61 mm during a drop tower crash tests. Figure 2.33 

shows the comparison o f force displacement curves o f steel tube specimens made from 

different materials.

T3ffiO

200
Peak Load TRIP 590-GA (LW)

150
Average Crush Load

100

50

0
0 10 155

Displacement (cm)
Figure 2.32. Force displacement relationship of TRIP 590 Steel tube during drop tower crash test: 

diameter: 70 mm, wall thickness t= 1.61 mm [41],
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Figure 2.33. Force displacement curve of specimens made from different materials [41].

2.2.3 Geometrical Dimensions

Geometrical dimensions o f length, width/diameter, and thickness of the tubular 

structure and its relationship between each other play a very important role in 

determining deformation pattern o f axial buckling mode. Abramowicz and Jones [14] 

have studied the role o f geometric parameters o f mild steel square/circular cross section 

tubes in determining whether a tube will collapse in the global bending mode or in the 

progressive buckling mode. A total o f 128 thin-walled mild steel columns with a wide 

range of lengths, widths, and wall thickness were quasi-statically crushed in order to 

determine their collapse modes. There are six different cross sections (5.5 < C/t <38) for 

square tubes and five different cross sections (9.6 < 2R/t < 48) for circular tubes.

The experimental results are summarized in Figure 2.34 in terms of the 

dimensionless parameters L/C  and C/t, where L is the length o f the tube, C is the width of 

the sides, and t is the wall thickness. The solid line in the figure approximately separates 

the experimentally determined progressive buckling and global bending regions (i.e. 

regions above the line represent geometries o f tubes that collapse in the global bending
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mode and regions below the line represent geometries of tubes that collapse in the 

progressive buckling mode).

20

Bending
15 0

0

S -

5

□ °  Progressive folding
l - 1 i •

0 10 20 30 
C/t

Figure 2.34. Experimental results from Abramowicz and Jones [14],

It was also noted in reference [14] that an accurate description o f the transition 

process was difficult since it required a detailed knowledge on the formation o f a plastic 

mechanism as well as a precise distribution of the stresses in a column cross section. 

Although a complete solution to this problem was not available, a simplified model of a 

collapsing column was used to develop the following theoretical relation for the transition 

boundary between the global bending mode and the progressive collapse mode for plastic 

buckling o f square tubes as a function o f C/t:

v C /cr
=  2 -

1 - 2 .8 8 1 -

(2 .1)
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Equation (2.1) is plotted in Figure 2.35 along with equation (2.2), which is an 

empirical equation describing the transition boundary between the global bending mode 

and the progressive collapse mode for plastic buckling o f square tubes as a function of 

C/t. Equation (2.2) was obtained by a curve fit method.

C
= 2.482 • exp 0 .0 4 0 9 -

V t ,

(2 .2)

Langseth and Hanssen [42], who have done extensive research on the axial 

crushing of aluminum extrusions, suggest a critical length to width ratio o f 3 for a stable 

(progressive buckling) collapse mode. For small width-to-thickness ratios, this value is 

in reasonable agreement with the experimental and theoretical results illustrated in Figure 

2.36.

Experiment

Theory

&

C/t

Figure 2.35. Empirical and theoretical transition lines found by Abramowicz et al [14].

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 Crush Initiators

Crush initiators, sometimes called triggers, stress concentrators, imperfections, or 

geometrical discontinuities by different authors in different literatures, is a deformation 

control technology which can be used to initiate a specific axial collapse mode, stabilize 

the collapse process and minimize variations in crash mode due to imperfections in 

materials, part geometry, manufacturing, and assembly processes etc. For axial crush 

deformation, the use o f crush initiator can reduce the peak buckling load, improve crush 

characteristic parameters and trigger deformation at a specific location. Initiators can be 

obtained by either material properties changes or geometric modifications to the 

structure. Examples o f material property changed initiators are locally heat treated 

regions at desired locations. Geometric initiators can be obtained by mechanical methods 

o f stmctural additions or deletions on the component. Geometric initiators can be easily 

controlled by the change o f location, shape, dimension and quantity.

The naturally-formed initiators involve pre-buckling o f the component past the 

peak load. Quasi-static pre-buckling or pre-crushing o f a specimen has been performed 

to eliminate initial peak load on honeycomb specimens and to control behavior o f square 

tubes as mentioned in reference [40]. More commonly used mechanically-induced 

initiators such as local transverse indentations, circular holes, or crimping have been used 

on tubes for collapse mode control and peak load reduction. Circular comer cut-outs on 

square tube specimens have been employed by Abah et al. [43] to initiate collapse and 

reduce the peak load. Abah et al. considered tubes with a length o f 200 mm, width of 48 

mm and a thickness o f 1 mm. A diameter range o f 2 mm to 12 mm of initiators was 

considered in the research. It was found by Abah et al. that the hole initiators caused a 

peak buckling load decrease proportional to increasing initiator size, while the mean 

cmshing load remained relatively constant.

Holes in circular cylindrical tubes have been drilled to set the collapse initiation 

site, reduce the peak load, and alter the deformation mode by Gupta et al. [44]. 

Combinations o f transverse sidewall indentations and holes in square tube specimens 

without end constraints have been studied to control the peak load magnitude and 

stability o f the collapse mode by Marshall and Nurick [45].
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Rrauss [46] studied the effect o f different geometric discontinuities on reducing 

peak buckling loads and promoting a stable collapse mode. Krauss introduced circular 

and diamond shaped holes in square steel tubes subjected to dynamic axial loading. The 

geometry o f the initiators is illustrated in Figure 2.36.

Figure 2.36. Initiator geometry configurations studied by Krauss [46].

It was found by Krauss that each type o f initiator effectively reduced the peak 

buckling load. The numerically obtained load versus displacement curves for each size of 

circular hole initiator as well as the specimen with no initiator are shown in Figure 2.37. 

For the circular and diamond shaped notches, the peak buckling load decreased as the 

size of the initiator increased.
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Figure 2.37. Numerically calculated force versus deflection curves for specimens with each size of 
circular crush initiator studied by Krauss [46].

Lee [47] has also studied the effect o f crash initiators on the energy absorption of 

axially loaded square tubes. Lee introduced rows o f grooves into dynamically loaded 

aluminum tube extrusions. The energy absorption performance o f the tubes was then 

evaluated by conducting quasi-static crashing tests on a 10-ton Instron compressive 

testing machine using a crosshead speed of 20mm/min. FE simulations were also 

conducted using the FE simulation program PAM-CRASH. The groove geometries 

considered are illustrated in Figure 2.38. Two types o f grooves, referred to as the full 

dent and the half dent, were used as initiators in the study. As illustrated in Figure 2.38, 

the grooves are 1mm deep and 2mm wide and extend across either the full side width of 

the tube or half the side width.
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Figure 2.38. Geometry and configurations of dents considered by Lee [47]. Ail dimensions are in
millimeters.

The configurations o f the grooves considered by Lee are also illustrated in 

Figure 2.38. Six dent configurations are considered, plus one baseline tube with no dents. 

The dent configurations o f models B, C, E and F are based on the predicted or pre

estimated folding sites and the dent configurations o f models D and G are spaced at even 

intervals at locations that do not correspond to the natural folding sites. The results 

showed that the tubes with dent configurations corresponding to the pre-estimated folding 

sites collapsed in the same mode as the baseline model (symmetric), while decreasing the 

peak buckling load and the subsequent peak loads corresponding to each fold formed. 

However, the models with dent locations not corresponding to pre-estimated folding sites 

exhibited a non-uniform crushing mode accompanied by global bending.

Bjomeklett and Myhr [48] studied the application of localized heat treatment of 

energy absorption components. The heat treatment method enabled local modification of 

yield strength and ductility in order to guide plastic deformation. Figure 2.39 shows the 

locally heat treated specimen. Figure 2.40 shows the changed yield stress of specimen 

and Figure 2.41 shows the test results.
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Figure 2.39. The initial box is to the left. The drawn line indicates the location of the thermal trigger. 
On the right side the box is shown after approximately 130 mm of axial compression [48]. Reprinted 
with permission from SAE paper number 2003-01-2794 (c) 2003 Society of Automotive Engineers,

Inc.
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Figure 2.40. Yield stress values across a thermal trigger. The base m aterial yield stress is about 220 
MPa while yield stress within the 20 mm wide region representing the trigger is reduced to about 

100-125 M Pa [48]. Reprinted with permission from SAE paper number 2003-01-2794 (c) 2003
Society of Automotive Engineers, Inc.
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Figure 2.41. Fat line shows force displacement from a box having therm al triggers while thin lines 
show results from three boxes without triggers. The absorbed energy i.e. the integral under the 
curves is about the same in both experiments [48]. Reprinted with permission from SAE paper 

number 2003-01-2794 (c) 2003 Society of Automotive Engineers, Inc.

Chen et al. [49] have experimentally and numerically investigated trigger hole 

shape and size sensitivity using a production vehicle front ra i l , while lab produced crash 

columns using thinner gauge dual phase (DP) steel with a minimum ultimate tensile 

strength o f 600 MPa (DP600) were utilized to study the trigger hole location sensitivity. 

As shown in Figure 2.42, the total rail tip length is 480 mm, five rectangular trigger holes 

with dimension o f 8 x 13 mm were located at every comer o f the rail assembly. The 

distance from the front end to the first hole and between the holes in the middle were 43 

mm, 51 mm, 75 mm, 47 mm, and 43 mm, respectively. In addition to the rectangular 

trigger holes, five other shapes o f the holes shown in Figure 2.43 were applied at the 

same locations. The material used for the front rail tip is 3.90 mm High Strength Low 

Alloy (HSLA) steel with minimum yield strength o f 280 MPa.
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Figure 2.42. Front rail tip with rectangular trigger holes at the corners [49]. Reprinted with 
permission from SAE paper number 2005-01-0355 (c) 2005 Society of Automotive Engineers, Inc.
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Circle - 16 mm Circle -  21 mm
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S quare  -  21 mm Diamond-2 1  mm

Figure 2.43. Trigger hole shapes and size [49]. Reprinted with permission from SAE paper number 
2005-01-0355 (c) 2005 Society of Automotive Engineers, Inc.
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Experimental tests showed that the crash characteristics in terms o f average crash 

forces and peak buckling loads were not sensitive to the trigger shapes. At the same 

trigger hole size, the crash results, for example, from 16 mm square and circle or 21 mm 

square, circle and diamond, are at the similar level. However, when the trigger size 

increases, the rail becomes softer which results in greater crash distance, lower average 

crash force and lower first peak load. It is also shown in Figure 2.44 that the first peak 

load is relatively more sensitive to the trigger hole size. DP600 is less sensitive to the 

trigger size than HSLA steel.

Figure 2.44. Peak buckling load [49]. Reprinted with permission from SAE paper number 2005-01- 
0355 (c) 2005 Society of Automotive Engineers, Inc.

Trigger hole location sensitivity was studied by using lab produced crash columns 

with 1.70 mm DP600 steel, as shown in Figure 2.45. The 300 mm long columns were 

longitudinally symmetric with rectangular cross-sections made of two U-channels 

continuously welded together. Rectangular trigger holes were placed at the comers o f the 

columns at the locations specified in the table in Figure 2.45. Two hole sizes were tested, 

i.e. big hole at 12 x 8 mm and small hole at 6 x8 mm, respectively. Part P24-78 has two 

rows of big holes, while part 24-78-120 has three rows of big holes with one more row 

added at 120 mm away from the second row. Part S33-50-60 has three rows o f small 

holes, and part S27-37-35-60-60 has five rows o f small holes.

Test results showed that the right combination o f size, location, and the number of 

trigger holes was critical to have a controllable, stable and predictable crash mode.
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Smaller or fewer trigger holes may produce more variations in real crash and the crash 

process was less controllable, stable and predictable.

87.6“ 1

101.6 Side View
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—  30

T h 876^

126.7

Part ID# S T U V W L H Amount

P24-78 24 78 none none none 12 8 3

P24-78-120 24 78 120 nona none 12 8 3

S33-50-60 33 50 60 none none 6 8 3

S27-37-35-60-60 27 37 35 60 60 6 8 3

Figure 2.45. Crash column geometry and trigger hole locations [49]. Reprinted with permission from 
SAE paper num ber 2005-01-0355 (c) 2005 Society of Automotive Engineers, Inc.

Arnold and Altenhof [12, 13] have experimentally and numerically investigated 

the deformation mode and energy absorption of AA6061 temper T4 and T6 with and 

without the presence o f circular discontinuities. Under compressive axial loading, the 

structures under consideration had LIC and C/t ratios that resulted in a prediction of 

global bending collapse, according to theoretical and empirical predictions o f reference 

[14]. In order to change the collapse mode of the structures from global bending to a 

mode that promotes greater energy absorption, centrally located circular holes were 

placed at two opposite side walls at the midpoint o f the extrusion structures. It was 

expected that these circular hole discontinuities would act as crush initiators and have the 

effect o f decreasing the peak buckling load and increasing energy absorption.

It has been found that collapse mode and energy absorption o f the structure is 

sensitive to both material properties and the presence of geometrical discontinuities. The 

difference in material behaviour between AA6061 T4 and AA6061T6 determined the 

collapse modes o f progressive buckling for tubes with a T4 heat treatment and cracking 

or splitting mode for tube with a T6 heat treatment. For AA6061 T4 tubes o f the same
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dimensions, with the presence o f a centrally located circular discontinuity, the energy 

absorption capacity has been increase by 22 %. Test specimen configuration and test 

results are shown in Figure 2.46 and Figure 2.47.

Figure 2.46. Test specimens used in reference [12].

AA 6061-T4 AA 6061-T6

TiTTTTI

D E F G
Specimen Group

S3 L=200mm, No discontinuity ED L=200mm, D=14.3mm 
■ L=200mm, D=7.15mm El L=300mm, No discontinuity
SL=300mm, D=14.3mm

Figure 2.47. Mean total energy absorption for each crush test specimen group in reference [12],
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2.4 Analytical Developments on the Axial Crushing of Square Tubes

Wierzbicki and Abramowicz [37] developed an analytical solution for the axial 

progressive crushing o f a thin-walled square column using their super folding element 

method. The expression for the average or mean crush load was derived from the energy 

balance by equating the external work done by the crush load with energies dissipated in 

different types o f deformation mechanisms as they occurred in a folding process.

The mean crushing force Pm can be calculated by

Where Go denotes the flow stress o f the sectional width; t is the wall thickness; b 

is the sectional width.

The half wavelength H for the folding deformation can be calculated by

The flow stress Gq for material with power law hardening can be approximated by 

an energy equivalent stress [50]

where oy and nu denote the yield strength and the ultimate strength o f the material, 

respectively; n is the exponent o f the power law.

Magee and Thornton [51] have experimentally developed an analytical model for 

the calculation of mean crushing force. A relationship between structural effectiveness r\ 

o f the section and relative density 0  was established by using data from crush tests of 

columns (steels ranging in tensile strength from 40 to 190 ksi, aluminum alloys and 

composites) o f several different section geometries. The structural effectiveness r\ is 

defined as the ratio o f specific energy (maximum energy that can be dissipated, divided 

by specimen weight) to the specific ultimate strength (ultimate tensile strength divided by 

material density). Also, the relative density 0  is defined as the ratio o f material volume 

to the volume enclosed by the structural section. They then derived, by way o f curve 

fitting, a relationship between these two parameters. Table 2.2 taken from reference [51]

Pm =l3.06cj0bm t 513 (2.3)

H  = 1.27662/V /3 (2.4)

(2.5)
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shows the relationship for some basic structure configurations, where t is wall thickness, 

D outside diameter, S length o f side, pf foam density and pm matrix density.

The expression for mean crush load is obtained from the expression for specific 

energy (Es=Pm/ p0Ao) and is o f the form:

(2-6)

p being the density and A q the overall area o f the section as defined by its outer 

circumference. For a square section r|= 1.4 0 0 8 and the mean crush load becomes:

Pm = \7 thSb02a u (2.7)

where b is the width o f the side and t is the wall thickness.

Table 2.2. Empirical relationship between r| and 0  for the collapse o f various structures

[51]-

Structure =(4>) <l>

Cylindrical Tubes 2(J)0'7 4t/D

Square and Rectangular Tubes 1.4<|)0'8 4t/S

Honeycomb 5([>0'9 8t/3S

Foam 0.7<|> - 4<j> Pf/pm

One o f the drawbacks o f the formulations given by equation 2.3 and equation 2.7 

is that the elasticity o f the material has not been considered [1]. Thus, for the same 

ultimate strength, materials like steel and aluminum would exhibit the same mean crush 

strength (Pm). This has been shown by Mahmood and Paluszny [52] to be contrary to test 

findings, which do show a considerable difference in the crush characteristics for these 

two materials.

Mahmood and Paluszny [53] developed an analytical approach that overcomes 

some of these drawbacks. They start with a premise that thin walled box columns, 

composed o f plate elements and subjected to axial compression, will buckle locally when 

critical stress is reached. Local buckling initiates the processes that lead to the eventual
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collapse o f the section and a subsequent folding o f the column. The collapse strength of 

the section is related to its thickness/width (t/b) ratio and material properties. For very 

small t/b ratios (t/b=0.0085-0.016), representing the so called “non-compact” sections, 

the mode o f collapse o f a section will be influenced predominantly by the geometry, 

since its local buckling strength is considerably below the material yield strength. As 

shown in Figure 2.48, the mode o f collapse o f “non-compact” sections is characterized by 

large irregular folds, which give rise to a bending type (global buckling) instability that is 

induced by fold irregularities. For larger t/b ratios, typifying the “compact” sections in 

which the elastic buckling strength exceeds material yield strength, the material strength 

properties are expected to govern the mode o f collapse and, consequently, the post- 

buckling stability. The collapse mode in this case, as shown in Figure 2.49, will appear 

very stable even in the presence o f considerable geometry or loading imperfections. 

Since the “compactness” o f an axially compressed column affects the stability o f 

collapse, it is important to define when a section becomes “non-compact” and fails in a 

crumbling mode. According to Mahmood and Paluszny [54] the threshold (t/b) ratio is 

given as:

o f restraint o f its longitudinal edges. The plate with a smaller (t/b) ratio is regarded as a 

buckling plate and the other as the restraining plate.

In reference [52], for a square steel column, the maximum buckling load and 

mean crush load were given by equation 2.11 and 2.12

(2 .8)

where E is the Young’s modulus o f elasticity and v the Poisson’s ratio. 

The elastic critical local buckling stress is

a cr = k x 2E ( t /b )2 /1 2 (1 -v 2) 

k = (b/ A,)2 + p  + q (A /b )2 2 .10)

(2.9)

where X is the elastic half wave length and p and q are factors that depend on the degree

pmax = 9430f1-8V 14/Ta43o-/-57 

Pm =  3270, 18V 14/ r a43o-/'57

(2 .11)

2 .12)
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Where, t is the wall thickness, b is the tube width, /5 is the material strain hardening 

factor, Oy is the material yielding stress.

Figure 2.48. Folding pattern  of thin-walled box with very small thickness/width ratio [53]. Reprinted 
with permission from SAE paper number 811302 (c) 1981 Society of Automotive Engineers, Inc.

Figure 2.49. Folding pattern of thin-walled box with large thickness/width ratios [53]. Reprinted 
with permission from SAE paper number 811302 (c) 1981 Society of Automotive Engineers, Inc.
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2.5 Finite Element Modeling of the Axial Crushing of Square Tubes

Analytical approaches as discussed in section 2.5 for axial collapse are valuable 

for quick calculations to get an approximate figure during the creative design stages o f a 

column. However, these techniques do not lead themselves to the detailed design and 

analysis stages when specifics such as crush-controlling mechanisms are designed. On 

the other hand, numerical simulation is well-suited for detailed design analysis.

Numerical simulation for thin-walled column collapse has concentrated on both 

beam modelling and shell/plate theory. Beam modelling has been effective for low cost 

simulations (i.e. reduced modelling time and computer requirements). Shell/plate theory 

is generally regarded as the foundation o f nonlinear, large deformation finite element 

analysis (FEA). The shell element that has been the basis o f all crashworthiness 

simulations is the 4-noded Belytschko and Tsay shell [55]. For crashworthiness 

application, nonlinear FEA can be used to simulate component, subsystem and integrated 

system including occupant, restraint system and detailed vehicle structure [56, 57].

Langseth, Hopperstad, and Berstad [58] have numerically simulated the axial 

crash o f aluminum extrusions by using explicit non-linear code LS-DYNA. The 

simulation results were validated by the experimental testing results reported in reference 

[11]. As mentioned in reference [58], an essential ingredient in the development and use 

of numerical simulation is the validation o f the codes by comparison with precision tests. 

This is o f vital importance when introducing new materials, such as aluminium alloys, 

which compared to commonly used steel qualities have different material characteristics.

In the finite element model, as shown in Figure 2.50, the free length o f the 

specimens was 310 mm. At the lower end all degrees o f freedom were fixed, while at the 

upper end the rotational degrees o f freedom were fixed to avoid unrealistic deformation 

modes. Since the symmetric collapse mode was observed in experimental testing, only 

one quarter o f the tube was modeled in order to save computation time. The tubes were 

modeled using Belytschko-Lin-Tsay shell elements. A material model developed by 

Berstad, Hopperstad, and Langseth [59] was applied to the tube models (material 103 in 

LS-DYNA). This material model uses isotropic elasticity, the von-Mises yield criterion 

and non-linear isotropic hardening. The hardening o f the material at strains beyond those
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where diffuse necking takes place is extrapolated using an equation based on the stress 

strain data used as input. The contact between the rigid block and the specimen was 

modelled using a nodes-to-surface contact algorithm with a friction coefficient o f 0.25 to 

avoid lateral movements. To account for the contact between the lobes during 

deformation, a single surface contact algorithm without friction was used. Furthermore, 

several simulations were carried out to determine the proper mesh density and an element 

size of 3x3 mm was found to be sufficient, giving a total o f 2500 elements in the quarter 

model. As shown in Figure 2.50, a trigger was created by moving a group o f nodes 2 

mm out o f the plane o f the side wall.

Rigid body

L 2x3mm

T4 , U=130mm

T6 - 1.8 l_o=2Q5mm 
T6 - 2 .0 - , 1-0=190mm
T6 - 2,5 -,L0=165mm

Detail of trigger 

S=8^cosf-x

Clamped support

Figure 2.50. One quarter "finite element model including trigger position in reference [58].

The results o f the simulations o f these models correlated well with the 

experimental results o f reference [11], As with the experimental results, the numerical 

results showed that six lobes were formed in the model with the T4 heat treatment while
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seven lobes were formed in the model with the T6 heat treatment. Furthermore, the 

numerically calculated peak buckling and mean crushing loads were found to be within 

10% of their experimentally obtained counterparts.

Yamazaki and Han [60, 61] used LS-DYNA to study the dynamic axial crushing 

of square tubes. In their study, crash triggers were added to the tube models by moving 

one node out o f its side-wall plane by a magnitude o f 1% o f the wall thickness to 

simulate the inherent geometrical or material imperfections. Shell and brick elements 

were used in the simulation based on the wall thickness o f specimens.

Arnold and Altenhof [13] have numerically investigated the influence o f circular 

discontinuities and material properties on energy absorption characteristics o f aluminum 

extrusions. Due to the symmetry observed in the experimental quasi-static crushing 

process o f these specimens [12], only one quarter o f the absorber specimen was 

modelled. Solid elements were used for the model development. As shown in Figure 

2.51, the mesh density was finer in the region o f the structure surrounding the circular 

hole discontinuity. This was necessary in order to ensure an accurate calculation o f the 

stress distribution resulting from the stress concentration caused by the circular hole 

discontinuity. Four layers o f elements through the thickness o f the tubes were utilized to 

accurately calculate the stress and strain distribution. Surface to surface contact 

algorithm available in LS-DYNA was used to model the contact between rigid plate and 

the tubes. Single-surface contact algorithm was used to model the contact between the 

lobes during tube deformation.
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Y

Figure 2.51. Discretization of group B, G, and L specimens (L=200 mm, D=14.2 mm, t=3.15 mm) 
[13]. Reprinted with permission from SAE paper number 2005-01-0703 (c) 2005 Society of

Automotive Engineers, Inc.

Material model 105 in LS-DYNA was used to model the extrusion absorber 

materials considered in this research. This material allows the direct input o f the true 

stress versus true plastic strain data in the form of a piecewise linear curve. During the 

simulation, LS-DYNA performs a curve fit o f the data and determines the strain 

hardening properties. This material model also allows the implementation of failure 

mechanism. An iterative calibration process was capable to determine the material 

failure parameters Dc and S.

A good correlation was observed between the results o f FE simulations and the 

results o f quasi-static crush testing o f extrusion absorber structures. FE simulations 

successfully predicted the cracking and complex splitting collapse modes that were 

observed in experimental testing o f the AA6061-T6 and AA6063-T5 tube specimens as 

show in Figure 2.52 and Figure 2.53.
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Exper im enta l :

a) ah9mm b) cN19mm d) d=55mm
N u m e r i c a l ; ______________________

e) d=9mm f) cM9mm (h) d  = 54mm

Figure 2.52. Experimental and numerical crushing process for T6 specimen [13]. Reprinted with 
permission from SAE paper number 2005-01-0703 (c) 2005 Society of Automotive Engineers, Inc.

Experimental:

a) d= 14.0mm b) cN35.0mm c) d=47.0mm
Numerical:

e) d= 14.0mm f) d=35.0mm g) <#=47.0mm

Figure 2.53. Experimental and numerical crushing process for T5 specimen [13]. Reprinted with 
permission from SAE paper number 2005-01-0703 (c) 2005 Society of Automotive Engineers, Inc.
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3. FOCUS OF RESEARCH

The research documented in this thesis focuses on the investigation of 

deformation behaviour and energy absorption capacity improvements o f structural 

members made from braided stainless steel tube and aluminum extrusions. Braided 

stainless steel tubes as a prospective energy absorbing component is intended to be used 

under tensile loading conditions. Deformation behaviour and energy absorption capacity 

of aluminum foam filled braided stainless steel tubes were experimentally and 

analytically investigated. For energy absorbing devices under compressive loading 

conditions, deformation modes and influence o f crush initiators were experimentally 

investigated. An experimental investigation was conducted to compare the crush 

characteristics and energy absorption capacity o f AA6061-T6 aluminum alloy extrusions 

with centrally located circular, slotted, and elliptical through-hole discontinuities. 

Another experimental investigation was completed to investigate the load/displacement 

and energy absorption characteristics o f aluminum extrusions under a cutting deformation 

mode by the use o f a specially designed cutting tool. In summary, the following research 

was completed were taken to investigate deformation process and to explore energy 

absorption improvement methods of structural members:

1) Analytical investigations of the deformation process and energy absorption of 

aluminum foam filled braided stainless steel tubes under quasi-static tensile 

loading conditions.

2) Experimental investigations on the axial crush behaviour o f AA6061-T6 

aluminum square tubes with different types o f through-hole discontinuities. 

Three different types o f geometrical discontinuities, namely, circular, slotted and 

elliptical holes were fabricated into AA6061-T6 structural members.

3) Load displacement and energy absorption performances o f AA6061-T6 tubes 

under a cutting deformation mode were investigated. A specially designed cutting 

tool was used to cut the four comers o f the aluminum tubular extrusions under 

compressive loads.
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4. EXPERIMENTAL TESTING METHOD

The experimental testing involved in this research included the quasi-static axial 

compressive crushing o f AA6061-T6 extrusions with different geometrical 

discontinuities and quasi-static axial compressive cutting o f AA6061-T6 extrusions. 

Aluminum extrusions considered in this research had a nominal side width of 38.1 mm, 

wall thickness o f 3.15 mm and tube lengths o f 200 mm and 300 mm. For the 

development o f an analytical model to predict energy absorption o f aluminum foam filled 

braided stainless steel tube, an overview o f the experimental work completed by Powell 

and Altenhof [5] is given in this section for the quasi-static tensile testing o f both braided 

stainless steel tube and aluminum foam filled braided stainless steel tube. An overview is 

also given for the tensile testing o f dog-bone shaped specimens extracted from the as- 

received AA6061-T6 aluminum alloy extrusion as accomplished by Arnold [12].

4.1 Overview of Tensile Testing of Empty Braided Stainless Steel Tubes

The braided tube was woven with AISI 304 stainless steel wires with a diameter 

o f 0.51 mm. The mechanical characteristics o f AISI 304 stainless steel is presented in 

Table 4.1 [62]. Eight strands o f wire formed a tow and 48 tows were interlaced together 

around the circumference o f the tube. The nominal tube diameter o f the braid that was 

selected for this study was 64.5 mm. A standard weave o f the tows was used in this 

research, which consists o f a “2 over, 2 under” pattern as illustrated in Figure 4.1.

Table 4.1. Mechanical characteristics o f the AISI 304 stainless steel braid wire [62].

Young’s modulus Yield strength Tensile strength Elongation Density

(GPa) (MPa) (MPa) (%) (kg/m3)

193 241 586 55 8027
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Figure 4.1. Stainless steel braided tube geometry and tow profile.

Tensile testing for unfilled braided tubes was carried out to assess the mechanical 

characteristics o f the tube. Experimental testing was completed on a hydraulic 150 kN 

Tinius Olsen tension/compression testing machine. A 150 mm range linear voltage 

differential transformer (LVDT) was used to measure the displacement of the translating 

platform on the testing machine. Data acquisition, which obtained load and displacement 

from the Tinius Olsen testing machine, was performed using a personal computer at a 

sampling rate o f 10 Hz.

Through a trial and error process it was determined that a circular clamping 

device, as illustrated in Figure 4.2, best constrained the motion of the ends o f the braided 

tube to the testing machine. The two clamp housings, one for each end o f the tube, were 

fastened to the translating and stationary crossheads o f the Tinius Olsen testing machine. 

After insertion o f the tube in the clamp housing the conical wedge was pressed into the 

housing with a load o f approximately 27 kN. This procedure was conducted to minimize 

any slipping which may occur between the braided tube and the wedge/clamp housing. 

Tensile testing was completed at a nominal crosshead speed o f 30 mm/min. Braided tube 

specimens with lengths o f 185 mm and 330 mm, measured between clamp points, were 

tested. Tensile testing was deemed completed when either failure o f the tube occurred or 

when maximum crosshead stroke was reached.
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Fastening holes (2)

Wedge Clamp housing

* n r i i i V „ ;

«  ■ ■ *

Braided Tube
SECTION A - A

Figure 4.2. Circular clamping device.

4.2 Overview of Tensile Tests of Aluminum Foam Filled Braided Tubes

Prior to assembly o f the aluminum foam cores and the braided tubing, preparation 

o f both materials was completed. Braided tube lengths o f 610 mm, which had a mass of 

approximately 713 g, were cut from an 8 m length o f braided tube using sheet metal
• • • • 3 3cutters. Four aluminum foam specimens, with densities o f 248 kg/m , 288 kg/m ,

298.2 kg/m3, and 373 kg/m3, were cut into rectangular prisms with approximate 

dimensions o f 305 mm length, 74 mm height, and 50 mm width, using a conventional 

band saw. The assembly process o f the aluminum foam filled braided stainless steel tube 

involved considerable human effort and did not encompass the use o f any machinery. 

Figure 4.3(a) shows the unfilled tube in its undeformed configuration. The braided tube 

was compressed, as illustrated in Figure 4.3(b), to an extent such that the aluminum foam 

core, when inserted, slid into the compressed tube with minimal effort or guidance, as
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shown in Figure 4.3(c). Compression of the tube increased the angle between the tows 

resulting in an increase in the diameter o f the tube. No permanent deformation o f the 

tube was resulted due to the compression and great efforts were taken to ensure that 

snagging o f the foam core edges on the wires o f the braided tube did not occur. To 

complete the preparation o f the test specimen, the tube was released from its compressed 

state and the braided tows were carefully massaged to ensure that the foam core was 

centered within the length of the tube as illustrated in Figure 4.3(d). Figure 4.3(e) depicts 

the aluminum foam core within the braided tube as viewed from the tube opening. After 

assembly, the angle between tows was measured to be 53° and the length of the foam 

filled braided tube was approximately 525 mm.

(e)
Figure 4.3. Assembly process of the aluminum foam filled braided tubes.
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The circular wedge clamps, which were fastened to the fixed and translating 

crossheads o f the tension/compression testing machine, were used to secure the upper and 

lower ends o f the foam filled braided tube. Prior to the tensile testing, the length of each 

aluminum foam filled braided tube was verified to be 405 mm measured between the 

clamp points. The position along the direction o f crosshead displacement, the z-axis 

direction, o f each tube was set such that the foam core was centered in between the 

translating and fixed crossheads. An approximate spacing of 50 mm from the top and 

bottom of the foam core to the fixed and translating crossheads existed prior to tensile 

testing as illustrated in Figure 4.4. A 27 kN load was applied to each circular wedge to 

ensure that slipping between the braided tube and the wedge/clamp housing was 

minimized.

Direction of 
crosshead travel

50 mm

50 mm

405 mm

Figure 4.4. Aluminum foam filled braided tube secured into the tensile testing machine
prior to loading.

Tensile tests for all specimens were completed at a nominal crosshead speed of 

75 mm/min. Due to crosshead travel restrictions o f the tension/compression testing 

machine, which was limited to approximately 150 mm, the complete test for each 

specimen was divided into three distinct stages. In the first stage of tensile loading

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(referred to as “stage 1”), both o f the circular clamp housings were fastened to the fixed 

and translating crossheads and testing was completed after approximately 150 mm of 

crosshead travel. The load was removed from the specimen and the clamping housing on 

the upper, translating crosshead was unfastened from the crosshead. Prior to the second 

stage of loading, a 171 mm spacer was placed in between the upper translating crosshead 

and the support flange o f the clamp housing. The position o f the translating crosshead 

was reset to the starting position. Tensile loading was repeated and referred as “stage 2” 

o f the complete testing procedure for the specimen. After approximately 150 mm of 

crosshead travel, the load was removed from the specimen. A second 108 mm length 

spacer was placed in between the 171 mm spacer and the clamp housing. Tensile loading 

was repeated a third time and referred as “stage 3” of the complete tensile testing 

procedure. Use o f the spacers and repeated loading permitted approximately 420 mm of 

axial elongation o f the foam filled braided tubes.

4.3 Overview of Tensile Testing of Aluminum Extrusion Material Properties

Tensile tests were performed to acquire material properties o f the commercially 

obtained AA6061-T6 aluminum extrusions. Eight tension test specimens were extracted 

from the sides o f the tube stock in the direction o f extrusion. The testing was completed 

in accordance to ASTM standard E8M [63] on an INSTRON tensile testing machine 

equipped with a 100 kN load cell. The elongation in the specimen was measured using 

an extensometer with a gauge length of 25.4 mm. Data from the load cell and 

extensometer was acquired using a personal computer data acquisition system. Load and 

extension measurements were recorded at a sampling rate o f 5 Hz. The tests were 

conducted using a constant crosshead speed o f 5 mm/min.

4.4 Quasi-static Axial Crush Testing

The aluminum extrusions used in this testing were square cross section AA6061- 

T6 tubes with a nominal side width (Q  o f 38.1 mm, wall thickness (t) o f 3.15 mm and 

length (L) o f 200 mm. Under compressive axial loading, the structures under 

consideration had L/C  and Clt ratios that resulted in a prediction o f global bending
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collapse, according to theoretical and empirical predictions reported by Abramowicz and 

Jones [14]. In order to change the collapse mode o f the structures from global bending to 

a mode that promotes greater energy absorption, centrally located geometrical 

discontinuities were placed at two opposite side walls at the midpoint o f the extrusion 

structures. It was expected that these discontinuities would act as crush initiators and 

have the effect o f decreasing the peak buckling load and increasing energy absorption.

Circular, slotted and elliptical holes with different major axis lengths and aspect 

ratios were selected as the geometrical discontinuities to be investigated in this research. 

The major axis o f a discontinuity refers to the longer axis o f the discontinuity which is 

perpendicular to the direction o f compression. The minor axis is perpendicular to the 

major axis. The major and minor axes for a circular discontinuity are equal to the 

diameter o f the circular hole. The aspect ratio is defined as the ratio o f the length of 

major axis to the length of the minor axis and is equal to unity for circular discontinuities. 

Specimens with circular holes and slotted holes were fabricated using a Cincinnati 

BridgePort milling machine with a digital readout. Specimens with elliptical holes were 

fabricated using a 1 mm diameter endmill on a vertical CNC milling machine. No de- 

burring treatment was needed by use of these machining methods. The location and the 

geometry shape o f the discontinuities and the aluminum extrusion are illustrated in 

Figure 4.5.

Specimens were organized into four groups. Group 1 contained specimens 

without any discontinuity. For the remaining groups, each group had a different major 

axis length and included specimens with circular, slotted and elliptical discontinuities. 

Specimens were further classified into sub-groups within Groups 2, 3, and 4 according to 

the geometry o f the discontinuity fabricated into the specimen. The detailed geometries 

and dimensions are presented in Table 4.2, Table 4.3 and Table 4.4 for specimens within 

Group 2, Group 3 and Group 4 respectively.
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c
shape o f  

discontinuity

circular - 

elliptical - O  

slotted - C D

location o f  
discontinuity

L

Figure 4.5. Geometries of the aluminum extrusion and discontinuities under consideration. L is the 
tube length, C is the width of the sidewalls and t  is the wall thickness of the tube specimens.
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Table 4.2. Specimen geometries in Group 2

Group 2

Specimen #
Discontinuity

description

Discontinuity Shape 

Major .
Sub-group
identifier

Shape of 
discontinuity

Axis
(mm) ratio

C2 o T6-5, T6-6 
T6-7,T6-8

circular
discontinuity 14.29 1.0

S2-3 ( ) T6S-1, T6S-2 
T6S-3, T6S-4

slot shape 
discontinuity 14.29 3.0

S2-2 CD T6S-5, T6S-6 
T6S-7, T6S-8

slot shape 
discontinuity 14.29 2.0

S2-1 o
T6S-9, T6S-10 

T6S-11, T6S-12
slot shape 

discontinuity 14.29 1.33

E2-3 T6E-1, T6E-2 
T6E-3, T6E-4

elliptical shape 
discontinuity 14.29 3.0

E2-2 o T6E-5, T6E-6 
T6E-7, T6E-8

elliptical shape 
discontinuity 14.29 2.0

E2-1 O T6E-9, T6E-10 
T6E-11, T6E-12

elliptical shape 
discontinuity 14.29 1.33

Table 4.3. Specimen geometries in Group 3

Group 3

Sub-group Shape of 
identifier discontinuity

Specimen #
Discontinuity

description

Discontinuity Size

Major .. . Aspect Axis, . ratio (mm)

C3 O T6-9, T6-10 
T6-11,T6-12

circular
discontinuity 10.72 1

S3-3 CZD T6S-13, T6S-14 
T6S-15, T6S-16

slot shape 
discontinuity 10.72 3.0

S3-2 CD T6S-17, T6S-18 
T6S-19, T6S-20

slot shape 
discontinuity 10.72 2.0

S3-1 O T6S-21, T6S-22 
T6S-23, T6S-24

slot shape 
discontinuity 10.72 1.33

E3-3 T6E-13, T6E-14 
T6E-15, T6E-16

elliptical shape 
discontinuity 10.72 3.0

E3-2 o T6E-17, T6E-18 
T6E-19, T6E-20

elliptical shape 
discontinuity 10.72 2.0

E3-1 O T6E-21, T6E-22 
T6E-23, T6E-24

elliptical shape 
discontinuity 10.72 1.33
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Table 4.4. Specimen geometries in Group 4

Group 4

Sub-group
identifier Shape

Specimen #
Discontinuity

description

Discontinuity Shape

Major .. . Aspect Axis ,., . ratio (mm)

C4 o T6-13, T6-14 
T6-15,T6-16

circular
discontinuity 7.14 1.0

S4-3 d D
T6S-25, T6S-26 
T6S-27, T6S-28

slot shape 
discontinuity 7.14 3.0

S4-2 o T6S-29, T6S-30 
T6S-31, T6S-32

slot shape 
discontinuity 7.14 2.0

S4-1 o T6S-33, T6S-34 
T6S-35, T6S-36

slot shape 
discontinuity 7.14 1.33

E4-3 T6E-25, T6E-26 
T6E-27, T6E-28

elliptical shape 
discontinuity 7.14 3.0

E4-2 cz> T6E-29, T6E-30 
T6E-31, T6E-32

elliptical shape 
discontinuity 7.14 2.0

E4-1 o T6E-33, T6E-34 
T6E-35, T6E-36

elliptical shape 
discontinuity 7.14 1.33

4.4.1 Quasi-static axial crush testing method

Compressive tests were completed on a hydraulic Tinius-Olsen testing machine. 

Specimens were placed on the centre of a translating crosshead o f the compression 

testing machine such that the axial direction o f the test specimen was parallel to the 

direction o f translation o f the moving crosshead. A fixed crosshead was located above 

the test specimen. The load cell used to measure the compressive force had a range of 

150 kN. Displacement was measured using a linear voltage differential transformer 

(LVDT) with a range o f 150 mm. A personal computer equipped with data acquisition 

software was used to record the measurements from the load cell and the LVDT at a 

sampling rate o f 60 Hz. The specimens were crushed at a nominal crosshead speed of 

120 mm/min. At this testing speed, it was considered acceptable to evaluate the crush 

behaviour as quasi-static deformation [64]. All tests were performed at room 

temperature.
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4.5 Quasi-static Axial Cutting Testing

The aluminum extrusions considered in this testing were square AA6061-T6 tubes 

with a nominal side width (Q  of 38.1 mm, wall thickness (?) o f 3.15 mm, and lengths (L) 

of 200 mm and 300 mm as illustrated in Figure 4.6. Under compressive axial loading, 

the tubular members in consideration had L/C  and C/t ratios that resulted in a prediction 

o f global bending collapse, according to theoretical and empirical predictions reported by 

Abramowicz and Jones [14]. These tubular geometries were selected to see if  the cutting 

mode o f deformation suppressed the global bending deformation mode. Furthermore, to 

investigate the stability o f the cutting deformation process a longer tube length (300 mm) 

was also considered in this investigation.

L

ir

Figure 4.6. Geometry of aluminum extrusion considered in this research. L is the 
tube length, C is the width of side walls and t is the nominal wall thickness.
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4.5.1 Cutting Tool Design and Manufacturing

In an effort to generate a cutting mode o f deformation within the tubular members 

a cutting tool was designed with four thin cutting blades with widths that should initiate 

stresses in the tubular member which should exceed the ultimate stress o f the AA6061-T6 

alloy without deformation or failure o f the cutting blades.

The shape and dimensions o f the cutting tool are shown in Figure 4.7. Four 

tapered cutting blades, 7 mm in length, were CNC machined from AISI 4140 round bar 

stock. The geometry o f the cutter was designed to slit the aluminum extrusion in each of 

the four comers o f the tube. The outside diameter o f the cutter and thickness were 101.6 

mm and 20 mm respectively. The cutting edge had a width o f 3 mm with a taper at both 

edges to 1.2 mm.

After machining, the cutting tool was heat treated in a two stage process as 

detailed in reference [65]. The cutter was heated to 843 °C and held at this temperature 

for one hour to ensure the completeness o f the austenitic transformation. The second 

stage involved oil quenching to room temperature. Oil quenching provided a fast cooling 

rate to produce a martensitic stmcture. After hardening, tempering was completed at a 

temperature o f 225°C for one hour to reduce residual stresses induced during quenching. 

The hardness o f both sides o f the cutter after heat treatment was determined and is listed 

in Table 4.5.

After manufacturing and heat treatment the width of the tips o f the cutting blades 

were measured using a Vernier calliper. The measured values o f the widths for each 

blade are listed in Table 4.6 and the corresponding location o f each blade on the cutter is 

presented in Figure 4.8. It was found that the thinner blades on side A corresponded to 

thicker blades on side B. The average blade tip thickness of side A was 1.12 mm, and the 

average blade tip thickness o f side B was 1.09 mm. Also illustrated in Figure 4.8 is the 

hub of the cutter which supported the blades and was the location of force application to 

the cutter from the testing machine.
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Section A-A

Figure 4.7. Cutting tool shape and dimensions (all dimensions are in mm)

Table 4.5. Hardness measurements o f the cutter after heat treatment.

Side A Side B
Surface hardness Surface hardness 

(Rockwell ‘C’ scale) (Rockwell ‘C’ scale) 
Rim Centre Rim Centre
54.0 52.7 54.0 56.6
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Cutter
hub

(sitfilff;
Figure 4.8. Cutting blade positions after manufacturing and heat treatm ent (side B facing upwards).

Table 4.6. Blade tip width dimensions (in mm) of cutter on sides A and B.

 Blade 1________ Blade_2_________Blade_3_________ Blade 4
Side A 1.21 1.03 1.26 0.97
SideB 0.93 1.25 0.93 1.23

4.5.2 Quasi-Static Axial Cutting Testing Method

Twenty quasi-static axial cutting tests were performed to evaluate the design of 

the cutter and the energy absorption and load/displacement behaviour o f the aluminum 

extrusions under the cutting deformation mode. Six quasi-static axial buckling tests,
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without the presence o f the cutter, were also completed to compare the deformation 

modes of both types o f loading conditions. It is acceptable practice to evaluate energy 

absorbing structures quasi-statically as many dynamic impact events that energy 

absorbing structures are subjected to occur at velocities that may be considered quasi

static. It is generally accepted, and noted in reference [64], that dynamic loads applied at 

velocities on the order o f 10 m/s or lower may be considered quasi-static. Furthermore, 

strain rate effects for the extrusions under consideration may be neglected since 

aluminum alloys are considered strain rate insensitive [12].

Test specimens were organized into six groups. Each group for the cutting tests 

had five specimens. For the axial buckling tests (testing without the use o f the cutter), 

each group had three specimens. Specimens in group 1 and group 2 had a tube length of 

200 mm and were tested using side A and side B of the cutter, respectively. Specimens 

in group 3 and group 4 had a length o f 300 mm and were tested using side A and side B 

of the cutter, respectively. Specimens in group 5, with a tube length o f 300 mm, and 

specimens in group 6, with a tube length of 200 mm, were tested under crush loading 

without the use o f the cutter. Detailed specimen grouping information and geometry 

dimensions are listed in Table 4.7.

Axial compressive testing was performed using a hydraulic 150 kN loading 

capacity Tinius-Olsen testing machine. The specimen was placed vertically on the centre 

o f the fixture o f the testing machine. The cutter was placed on the top end of the 

extrusion with careful alignment to make sure the cutting blades were in the proximity of 

the four comers o f the tube. A lubricating liquid, with a trade name “Pump-Spray PS-8”, 

was sprayed on the four cutting blades o f the cutter. For the last two completed cutting 

tests, namely specimens LB4 and LB5, no lubrication was used to check the role o f 

lubrication fluid on the cutting force. A round steel bar with a diameter o f 25.4 mm was 

inserted between the cutter and the translating crosshead. The setup o f the test prior to 

and during the initial cutting o f the extmsion is illustrated in Figure 4.9.

The load cell used to measure the compressive load had a range of 150 kN. 

Displacement was measured using a linear voltage differential transformer (LVDT) with 

a range o f 150 mm. A personal computer equipped with data acquisition software was 

used to record the measurements from the load cell and the LVDT at a sampling rate of
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60 Hz. The specimens were cut/crushed at a crosshead speed o f approximately 

120 mm/min. At this testing speed, it is considered acceptable to evaluate the behaviour 

as quasi-static deformation [64]. All tests were performed at room temperature.

Table 4.7. Specimen grouping information and geometry.

Group Specimens
, Tube 

V ”1* ?  width 
(mm) (mm)

Tube
thickness

(mm)

Cutter
side

SA1 200 38.1 3.15 A
SA2 200 38.1 3.15 A

1 SA3 200 38.1 3.15 A
SA4 200 38.1 3.15 A
SA5 200 38.1 3.15 A

SB1 200 38.1 3.15 B
SB2 200 38.1 3.15 B

2 SB3 200 38.1 3.15 B
SB4 200 38.1 3.15 B
SB5 200 38.1 3.15 B

LAI 300 38.1 3.15 A
LA2 300 38.1 3.15 A

3 LA3 300 38.1 3.15 A
LA4 300 38.1 3.15 A
LA4 300 38.1 3.15 A

LB1 300 38.1 3.15 B
LB2 300 38.1 3.15 B

4 LB3 300 38.1 3.15 B
LB4 300 38.1 3.15 B
LB 5 300 38.1 3.15 B

LG1 300 38.1 3.15 N/A
5 LG2 300 38.1 3.15 N/A

LG3 300 38.1 3.15 N/A

SGI 200 38.1 3.15 N/A
6 SG2 200 38.1 3.15 N/A

SG3 200 38.1 3.15 N/A

N/A -  tubes in groups 5 and 6 were axially crushed without the use of the cutter.
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(C)

Figure 4.9. Cutting test setup, (a) Setup of the test prior to axial crushing, (b) penetration of blades of cutter 
into aluminum extrusion commencing on specimen SA2, (c) cutting in progression.
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5. PARAMETERS USED IN EVALUATING ENERGY ABSORPTION

STRUCTURES

Force/displacement performance parameters and energy absorption capacity 

measurements have been developed by a number o f researchers. Magee and Thornton 

[51] used the peak buckling load and mean crush load to characterize the energy 

absorption o f axially loaded square tubes that collapse in the symmetric mode. Mahmood 

and Paluszny [53] developed the concept o f the crush force efficiency to compare the 

performance of energy absorbers of different shapes, sizes, and strengths. Different crush 

performance parameters are described in this section and will be used in the subsequent 

sections to characterize the force/displacement and energy absorption performances of 

the testing specimens.

5.1 Peak Buckling Load

The peak buckling load, Pmax, is the maximum load experienced by the structure. 

The peak load transmitted through an energy absorbing structure should be minimized in 

order to minimize the peak deceleration occurring during crash situations.

5.2 Total Energy Absorption

The total energy absorbed by an extrusions is calculated as the work done by the 

crush force as described in equation (5.1).

Eabsorbed = \ P  ' dS  (5.1)

Where P  is the crushing force and 5  is the crosshead displacement both in the 

axial direction. During testing, data from the load cell along with the LVDT is used to 

develop the load versus crosshead displacement curve. For a finite number of data 

points, collected during the experimental process, the integration in equation (5.1) is 

replaced by the summation in equation (5.2)
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F
absorbed (5.2)

There are many different numerical integration schemes which can be used to 

evaluate equation (5.1). The scheme presented in equation (5.2) is the rectangular rule. 

Other schemes, such as trapezoidal rule or Simpson rules can also be used. In this 

research, equation (5.2) was used to calculate the energy absorbed.

5.3 Mean Crush Force

Based on the total energy absorption determined in equation (5.2), the mean crush 

force is defined as dividing equation (5.2) by the total crushing distance ( S t ) in the axial 

direction experienced by the specimen.

5.4 Crush Force Efficiency

The crush force efficiency (CFE) is defined as the ratio o f the average crushing 

force to the peak buckling load as shown in equation (5.4).

The most desirable situation would be a value o f unity, corresponding to a square 

load versus crosshead displacement curve.

5.5 Specific Energy Absorption

The specific energy absorption (SEA) is defined as the energy absorbed by a 

structure divided by its mass as presented in equation (5.5). This is a useful quantitative

(5.3)

max
(5.4)
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parameter, especially when comparing performances o f energy absorbers with different 

mass and geometries.

E
SEA =  absorbed

m (5.5)
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6. ANALYTICAL MODEL DEVELOPMENT AND COMPARISON WITH 

EXPERIMENTAL FINDINGS FOR ALUMINUM FOAM FILLED BRAIDED

STAINLESS STEEL TUBE

A theoretical model which considers material properties (of both the braided tube 

and aluminum foam), tubular geometry, and deformation characteristics o f the braided 

tube has been developed and is presented. Experimental observations by Altenhof and 

Powell [5], as reviewed in the appendix section, have indicated that the mechanical 

response o f the foam filled braided tube is dependent upon the density and geometry of 

the aluminum foam core and the geometry o f the braided stainless steel tube. The 

lightweight and corrosion resistance characteristics o f both the aluminum foam and the 

braided stainless steel tubing as well as the deformation characteristics o f the braided 

tube have been integrated to develop an energy absorbing device, which can be 

configured for specific applications where environmental and physical requirements may 

arise.

6.1 Braided Tube Kinematic Relationship between Elongation and Diameter

Experimental observations have illustrated that an important characteristic of 

energy absorption for the foam filled braided tube is related to the kinematic relationship 

between elongation and tube diameter. Elongation o f the tube ends and the resulting 

change in diameter was observed not to cause any significant deformation of individual 

tows of the tube in the first stage of deformation, which included the radial crushing of 

aluminum foam core. The theoretical model used to express these characteristics is based 

on the unit cell concept. In a unit cell the diameter and the length are related to the angle 

between each crossing tow. Figure 6.1 illustrates the assumed unit cell superimposed 

onto a photograph of the braided tube. The local x-y coordinate system shown in Figure

6.1 originates on the face o f the tube. The angle 6 represents the angle between the 

assumed tows in the unit cell. In Figure 6.1 the x-axis direction is collinear to the axial 

direction of the tube and the y-axis is in the circumferential direction. The relationship
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between tube radius and braid angle, considering the length o f the unit cell along the 

circumference, is defined as:

/y = 2 -/-s in (% ) (6.1)

where / is the length o f the unit cell measured along the tows. The number o f unit cells 

on the circumference o f the tube will remain constant, with the radius and angle between 

the tows changing as the tube elongates. The relationship between the initial (Ro) and 

current (R) tube radii and initial (do) and current ( 9 ) braid angles is given as:

R sin(% )
D

sin
(6 .2)

Along the length o f the tube, in the x-axis direction, the distance along the unit 

cell can be determined from equation (6.3).

/ ,= 2 / - c o s ( % )  (6.3)

The relationship between the initial (L0) and current (L) lengths o f the braided 

tube and the initial (9o) and current ( 9 )  braid angles is given as:

L «>s(% )

COS
9n

(6.4)

Initial variables that are known include the initial radius, the initial length o f the 

tube, and the initial braid angle. From equations (6.1) through (6.4), changes to the 

radius and tube length can be calculated for any braid angle.
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Figure 6.1. Unit cell geometry for theoretical model

In order to identify when the tows of the braided tube lock up, which is important 

in determining the contribution o f energy absorbed by crushing o f the interior foam core 

and by plastic deformation of the braided tube, the perpendicular distance (D) between 

the tows can be determined from equation (6.5).

D = l - s m { e ) - W  (6.5)

In equation (6.5) W is the width of the tows which is the product o f the number of 

wires within a tow and the wire diameter. Equation (6.5) can be rearranged to determine 

the locking angle 6l from the constants I and W when the distance between the tows is 

zero.

f w \
9 r sm -i

J
(6 .6)
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For the braided tube that was used in the experiments, equation (6.6) was 

evaluated to determine the braid lockup angle under extension and compression which 

were calculated to be 38.35° and 141.65° respectively. Within the lockup angles (38.35° 

to 141.65°), different volumes o f aluminum foam can be inserted within the tube. The 

volume of aluminum foam inserted in the tube can be dictated by the energy absorption 

requirements for a specific application.

6.2 Energy Absorbed by the Aluminum Foam Filled Braided Tube

In the proposed theoretical model the work done to deform the braided tube is 

equated to the energy absorbed by the structure. Experimental observations indicate that 

the energy absorbed by the aluminum foam filled braided tube consists o f contributions 

from the crushing o f the foam core and the elastic and plastic deformation of the braided 

tube, with the elastic component being recovered. In the proposed theoretical model, 

energy is absorbed as a result o f foam crushing up to tube elongations which correspond 

to tow lockup. After tow lockup has occurred the energy absorbed by the structure is due 

to the elastic/plastic deformation o f the braided tube only. It is assumed that the energy 

absorbed by the tow o f braided tube while scissoring during foam core crushing (prior to 

tow lockup) is negligible. From these assumptions the total energy absorbed by the tube 

can be expressed as:

E total = E  foam + ̂ tube (6-7)

A discussion on the theoretical modeling for determining the energy absorbed by the 

aluminum foam core and the braided tube is completed in the following sections.

6.3 Energy Absorbed by the Aluminum Foam Core

The energy absorbed by the aluminum foam core was a result o f radial 

compression by the braided tube during elongation prior to tow lockup. The contact area 

between the tube and the foam was assumed to be equal to the area o f the lateral faces of 

the foam core. Experimental observations have illustrated that during crushing o f the 

foam the braided tube conforms to the geometry o f the prismatic foam core. It was also
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observed that the foam core maintained a rectangular cross-section shape during crushing 

(prior to tow lockup). From these observations it was assumed in the theoretical model 

that the rectangular cross sectional shape of the core was maintained during crush and up 

to tow lockup. As well, the braided tube conforming to the cross sectional shape of the 

core implied that loading occurred on all lateral faces o f the core.

Figure 6.2(a) and 6.2(b) illustrates assumed cross-section geometries o f the foam 

filled braided tube prior to tube elongation and at tow lockup respectively. Figure 6.2(c) 

illustrates sections o f length x  and y  which experience infinitesimal deformations dy and 

dx respectively, during foam crushing. Symmetry about the X  and Y  axes was applied to 

simplify the modeling process. The work, dU, associated with infinitesimal displacement 

dx under the action o f a force acting on the lateral face o f the foam core, F, can be 

expressed as:

dU foam= F -d x  (6.8)

The force acting upon the lateral faces o f the foam core during radial crushing is the 

product o f the foam plateau stress api and the contact area being (Lf0am'y + Lfoam'x). To 

determine the total work required for the deformation process, from the initial tube 

geometry up to tow lockup, integration o f equation (6.8) is completed as presented in 

equation (6.9).

U f0am ~ ^ ^  pi ' Lfoam
2

Jx-dy  + Jy-dx (6.9)

V 2 2

In the above equation, the total work done to crush the foam core was expressed

as four times the work necessary to crush one quarter o f the foam section. Based on the

assumed square cross sectional shape, symmetry requires:

Wo Wo.
2 2

\ x - d y =  | y - d x  (6.10)
W Wlockup rr lockup

2 2

In the case o f non-square, rectangular cross-sectional shapes, integration for each surface 

needs to be performed to determine the work done. Upon substituting equation (6.10)
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into equation (6.9), the total work necessary to crush the foam core from its initial 

configuration up to tow lockup can be expressed as:

2

u foam = 8 -orpi-Lfoam • \ x - d y  (6.11)
^ lockup  

2

Simplification of equation (6.11) gives:

u * .  = cr„  ■ i /M„ . f r 0! -  Wlxht;  ) (6.12)

It is useful to express the work done to crush the foam as a function o f instantaneous 

width, thus equation (6.13) presents the work done to crush the foam core as a function o f 

foam width W.

UMm= °-« -L lb.m-{K 2- W 1) where W , < W  Z W kchip (6.13)

Equating the work done to crush the foam core to the energy absorbed by the foam finally 

gives the energy absorbed as a function of core width as expressed in equation (6.14).

Ef m  = <V • V .  • K 2 -  w 2) where W, < W  £  (6.14)
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braided tube initial cross-section

foam core initial cross-section h  braided tube cross-section at lockup

H = >
”► Tube Elongation 
X  (up to tow lockup)

foam core cross-section at lockup

•lockup |

T lockup

(c)

Figure 6.2. (a) assumed initial cross sectional shape of the foam filled tube, (b) assumed cross 
sectional shape of the foam filled tube at tow lockup, and (c) theoretical model illustrating 

deformation of one quarter of the foam core.

6.4 Energy Absorbed by the Braided Tube

The braided tube will not contribute to energy absorption until tow lockup. After 

lockup occurs, tows o f braided tube will undergo plastic deformation due to extension. 

According to experimental observations, the force/displacement behaviour o f the braided 

tube can be divided into two distinct regions as presented in Figure 6.3. A linear 

approximation in both regions was used to simplify the calculation o f the energy 

absorption capabilities o f the braided tube. In each region, a different stiffness was used 

to represent the force/displacement relationship. The energy absorption for Region 1 can 

be determined from the product o f the stiffness o f the tube, hi, and the change in length of
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the tube (z) as presented in equation (6.15). In equation (6.15) L/oc%> is the tube length at 

lockup which can be calculated through application of equation (6.4).

E,(Z) =!.*:, .(2- W J (6-15)

The stiffness in Region 1 was evaluated from a least squares regression o f the 

force/displacement relationship o f an empty tube under tensile loading up the end of 

Region 1. The corresponding force/displacement relationship is presented in equation 

(6.16).

F!(z) = M z - - W  with *, = 3.2—  (6.16)
mm

A linear regression was also completed for the force/displacement relationship in 

Region 2 based upon the experimental findings from the 185 mm length tube. The force 

displacement relation is expressed in equation (6.17).

F 2(z) = k2 . ( z - L lockup) + f 2 (6.17)

with k2 = 0.194 • ■—  f 2 = 34.442 • kN
mm

Experimental observations have illustrated that tube length had no significant 

influence on the stiffness o f Region 1. For region 2, however, an inverse relationship 

between tube length and stiffness was observed as presented in equation (6.18). In 

equation (6.18), k2 and L represent the stiffness in Region 2 for the tube with length o f the 

185 mm and k2 ’ and L ' represent the stiffness in Region 2 for any tube o f length other 

length than 185 mm.

—  = —  (6.18)
k2 L

The length o f the braided tube prior to assembly was 610 mm. The stiffness in 

Region 2 o f this tube was calculated to be 58.8 N/mm, hence the force displacement 

relationship in Region 2 for the aluminum foam filled tube of length equal to 406 mm is:

F2' = k2' - ( z - L lockup) + f 2 (6.19)

with k2' = 58.8-—  / 2 =34.442-kN
mm
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The abscissa value corresponding to the intersection point o f the linear 

force/displacement relationships for Region 1 and Region 2 can be easily obtained 

through equation (6.20).

Z — Lcrit— , + LlockuP (6.20)
*1 _  2

The energy absorbed in Region 1 due to tube deformation can be expressed as 

presented in equation (6.21).

= with L!ockup < z<  Lait (6.21)

The energy absorbed due to tube deformation in Region 2 is expressed in equation

(6 .22).

-  £ , , . ( 4 . , ) + (622)

with Lcrit< z

Total energy absorption of aluminum foam filled braided tube is then determine 

through equation (6.7).
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185 mm length tube
Linear approximation - Region 1
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Figure 6.3. Force/displacement behaviour of an empty braided tube with linear 
approximations in Region 1 and Region 2.

6.5 Results and Discussion

The energy absorption prediction using the theoretical model and the observed 

experimental energy absorption is illustrated in Figure 6.4. Good predictive capabilities 

of the theoretical model are observed with a stronger correlation observed in the initial 

stages o f tube deformation. For all displacement values the theoretical model over 

predicts the energy absorption capabilities of the foam filled braided tube. Prior to tow 

lockup, at approximately 230 mm crosshead displacement, experimental and theoretical 

values o f the energy absorbed are within 25% error. Possible reasons for higher energy 

absorption in the theoretical model could be attributed to the lack o f consideration of 

braid slippage, and tensile foam fracture which was observed experimentally.
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Figure 6.4. Energy/displacement behaviour of from experimental observations and the
theoretical model.

After tow lockup the theoretical model predicts a rapid increase in energy 

absorption while experimental observations indicate that the increase in energy 

absorption after tow lockup is less severe. Experimental observations showed that a 

transition region for the force/displacement (and hence energy absorbed/displacement) 

behaviour o f the foam filled tube (stage 2 in Figure A.2 through Figure A.5 as presented 

in Appendix A) occurred over a finite crosshead displacement during tow lockup. The 

theoretical model assumes that the energy absorption o f the foam filled tube immediately 

switches from a “foam crushing stage” to a “braided tube plastic deformation stage”; in 

the theoretical model no form of transition is taken into consideration for the energy 

response o f the structure. A maximum value o f the percentage error after tow lockup was 

found to be approximately 23%.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7. EXPERIMENTAL RESULTS AND DISCUSSION FOR QUASI-STATIC 

AXIAL COMPRESSIVE CRUSHING AND CUTTING TESTS

The results o f the experimental testing conducted for this research are presented in 

different sections o f this chapter. An overview is given in the first section for the results 

of the tensile tests which were conducted by Arnold [12] to obtain material properties for 

the aluminum extrusions. The second section details the results o f the quasi-static crush 

testing o f the extrusion specimens. The third section compares the results o f the crush 

test between specimens.

7.1 Extrusion Material Property Tensile Testing Results

The engineering stress/strain curve o f one representative AA6061-T6 tensile 

specimen is illustrated in Figure 7.1. Material properties o f the AA6061-T6 are 

summarized in Table 7.1.

Table 7.1. Material properties from extrusion tensile tests [12]

Properties AA6061-T6
E (GPa) 
<jy (MPa) 
<7U (MPa)

68.1
277.5
320.2
14.1% elongation
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Figure 7.1. Engineering stress-strain curve of AA6061-T6 obtained from tensile testing [12],
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7.2 Quasi-Static Axial Compressive Crush Testing Results and Discussion

Although four tests were completed for each sub-group the load/displacement 

observations for all specimens within a sub-group were fairly consistent with a scatter o f 

less than ±4%. For this reason, and for greater clarity, only the mean values of the crush 

parameters are presented for each sub-group and are used for comparison and 

discussions. The calculated mean results o f the crush parameters for each sub-group are 

presented in Table 7.2. For each specimen, a qualitative and quantitative examination of 

the crush testing observations was completed through analysis o f photographs and the 

load/displacement results for crosshead displacements up to 100 mm.

7.2.1 Crush Test Results for Specimens in Group 1 and Group 2

Load/displacement observations from representative specimens containing the 

circular discontinuities (C2, C3, and C4) and Group 1 are illustrated in Figure 7.2. Figure 

7.3 and Figure 7.4 illustrate the load/displacement relationships observed for Group 2 

containing the slotted and elliptical discontinuities respectively. For comparison 

purposes the testing observations from Group 1 are also presented in Figure 7.3 and 

Figure 7.4. An examination o f the observed load/displacement profiles in these figures 

clearly illustrates that specimen WO, without any discontinuity, obtained the highest peak 

buckling load of 124.7 kN. After reaching the peak buckling load, the resistance force 

exerted by the structure decreased rapidly as a result o f the formation o f a single plastic 

hinge and material cracking, which resulted in low energy absorption. For specimens in 

Group 2 the influence o f geometrical discontinuity was significant. Relative to 

experimental observations from Group 1, lower peak buckling loads, higher total energy 

absorption, higher post-buckling resistance force and a splitting/tearing deformation 

mode were observed for specimens in Group 2. It was also observed that with the 

presence o f a circular discontinuity, the linear portion o f the load/displacement profiles 

decreased, in the displacement domain, as the major axis length increased for circular 

discontinuities. For slotted and elliptical geometrical discontinuities a similar decrease 

was observed, however, there was no dependency on aspect ratio for each sub-group.
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Furthermore, the transition region between initiation o f plastic buckling and the onset of 

local collapse was shorter for specimens which contained discontinuities. The transition 

region appeared to be dependent upon the aspect ratio associated with each sub-group for 

the same geometrical discontinuity.

Specimen C2, which had a circular discontinuity of diameter 14.29 mm, had the 

lowest peak buckling load o f 101.3 kN amongst all specimens in this investigation. 

Specimens with slotted and elliptical geometrical discontinuities illustrated a direct 

relationship between aspect ratio and energy absorption. Specifically, a higher post- 

buckling resistance force, and hence greater energy absorption, was observed for 

specimens with these geometries which possessed large aspect ratios. A comparison of 

the energy absorption performances for specimens in Group 2 indicates that the slotted 

discontinuity is most favourable, followed by the elliptical and circular holes.

As noted by Arnold and Altenhof [12], splitting and tearing deformation modes 

referred as mode SMI and mode SMII existed for as-received AA6061-T6 aluminum 

extrusions under axial compression loading conditions. In mode SMI after initial plastic 

deformation in the vicinity o f the discontinuity, material cracking initiated on either side 

o f the hole, followed by a lateral shift of the top half o f the tube relative to the bottom 

half. As the crushing process continued, the top half portion o f the specimen cut through 

the bottom portion. In deformation mode SMII plastic deformation around the 

discontinuity area caused material cracking to occur at the edge of the sidewalls rather 

than at the hole boundary as in SMI. In splitting mode SMII the top half was driven 

through the bottom portion without any significant form of lateral shift causing material 

cracking in the comer o f both the top and bottom portions with a minor extent of 

progressive folding observed for the sidewalls. Deformation modes SMI, SMII and 

global bending were observed in this investigation as presented in Table 7.2. 

Photographs illustrating the deformation modes o f specimens in Group 1 and Group 2 are 

illustrated in Figure 7.5.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 7.2. Experimental testing results

Group
#

Sub
group

identifier
Shape Eabsorbed

(kJ)
Pmax
(kN)

Pm
Force(kN)

CFE

(%)
SEA

(kJ/kg)
Deformation

mode

1 WO w/o 3.35 124.7 33.21 26.6 14.11 Global
bending

C2 o 4.36 101.3 43.12 42.6 18.53 SMI

S2-3 ( ) 5.73 108.9 56.72 52.1 24.20 SMII
S2-2 o 4.44 102.1 43.98 43.1 18.80 SMI

2 S2-1 o 4.31 102.1 42.63 41.8 18.27 SMI

E2-3 5.30 108.7 52.51 48.3 22.65 SMII

E2-2 O 4.27 102.3 42.31 41.4 18.39 SMI

E2-1 o 4.24 102.3 42.02 41.1 18.48 SMI

C3 O 4.36 109.4 43.16 39.5 18.45 SMII

S3-3 5.27 112.6 52.05 46.2 22.16 SMII
S3-2 C D 5.85 111.3 57.92 52.0 24.69 SMII

3 S3-1 o 4.66 109.6 46.10 42.1 19.68 SMII
E3-3 5.78 113.7 57.27 50.4 24.53 SMII
E3-2 O 4.61 109.5 45.67 41.7 19.65 SMII

E3-1 O 4.58 108.1 45.37 42.0 19.65 SMII

C4 O 5.56 117.1 55.00 47.0 23.43 SMII
S4-3 <zz> 5.13 118.2 50.80 43.0 21.60 SMII
S4-2 CD 5.23 116.8 51.80 44.3 22.01 SMII
S4-1 o 4.89 117.7 48.43 41.1 20.62 SMII

4 E4-3 <IZ> 4.39 116.3 43.48 37.4 18.54 SMII
E4-2 O 5.30 115.6 52.50 45.4 22.41 SMII
E4-1 o 4.94 114.5 48.88 42.7 20.94 SMII
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without discontinuity (WO) 
large circular (C2) 
medium circular (C3) 
small circular (C4)

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.2. Experimental obtained load/displacement profiles for specimens with circular discontinuities
and specimen without discontinuity.

without discontinuity (W0) 
large slotted, aspect ratio 3 (S2-3) 
large slotted, aspect ratio 2 (S2-2) 
large slotted, aspect ratio 1.33 (S2-1)

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.3. Experimental obtained load/displacement profiles for specimens with large slotted 
discontinuities and specimen without discontinuity.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



without discontinuity (WO) 
large elliptical, aspect ratio 3 (E2-3) 
large elliptical, aspect ratio 2 (E2-2) 
large elliptical, aspect ratio 1.33 (E2-1)

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.4. Experimental obtained load/displacement profiles for specimens with large elliptical 
discontinuities and specimen without discontinuity.

S2-1 E2-3 E2-2 E2-1

Figure 7.5. Deformation modes observed for specimens in Group 1 and Group 2, W0 in global bending, 
C2, S2-2, S2-1, E2-2 and E2-1 in SMI, S2-3 and E2-3 in SMII.
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7.2.2 Crush Test Results for Specimens in Group 3

Observed load/displacement relationships for specimens in Group 3 are illustrated 

in Figure 7.6 and Figure 7.7 for medium slotted and elliptical discontinuities respectively 

with observations from specimen WO also presented. Photographs illustrating the 

deformation from representative specimens in Group 3 are presented in Figure 7.8. All 

specimens in Group 3 collapsed in SMII mode. Specimen C3, with a circular 

discontinuity, and S3-1, with a slotted discontinuity o f aspect ratio 1.33, displayed more 

cracking along the edge of the sidewalls. The remaining specimens in this group 

displayed a more stable deformation process with the continuous folding of split 

sidewalls. Specimen S3-2, which had a slotted discontinuity o f aspect ratio 2, 

experienced the highest energy absorption o f 5.85 kJ amongst all specimens. Specimen 

C3, which has a circular discontinuity, experienced the lowest energy absorption of 

4.36 kJ in Group 3. The stability o f the crush process and the accompanying energy 

absorption was observed to be higher for specimens within Group 3 which had larger 

aspect ratios.

without discontinuity (WO) 
medium slotted, aspect ratio 3 (S3-3) 
medium slotted, aspect ratio 2 (S3-2) 
medium slotted, aspect ratio 1.33 (S3-1)

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.6. Experimental obtained load/displacement profiles for specimens with medium slotted 
discontinuities and specimen without discontinuity.
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without discontinuity (WO) 
medium elliptical, aspect ratio 3 (E3-3) 
medium elliptical, aspect ratio 2 (E3-2) 
medium elliptical, aspect ratio 1.33 (E3-1)

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.7. Experimental obtained load/displacement profiles for specimens with medium elliptical 
discontinuities and specimen without discontinuity.

C3 S3-3 S3-2 S3-1

E3-3 E3-2 E3-1

Figure 7.8. Deformation modes of specimens in Group 3. All specimens deformed in SMII mode.
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7.2.3 Crush Test Results for Specimens in Group 4

Load/displacement observations for specimens in Group 4 are illustrated in 

Figure 7.9 and Figure 7.10 for small slotted and elliptical discontinuities respectively 

with observations from specimen WO also presented. The crush deformation associated 

with representative specimens from this group are presented in Figure 7.11. Specimen 

C4, which had a circular discontinuity, exhibited the largest energy absorption at 5.56 kJ. 

Specimen E4-3, which had an elliptical discontinuity o f aspect ratio 3, exhibited some 

variations in its deformation behaviour. Two specimens of this geometry deformed in the 

global bending mode, and the other two specimens deformed in the splitting and cutting 

mode SMII. It can be seen from Figure 7.9 and 7.10 that specimens with circular, slotted 

and elliptical discontinuities with small major axis lengths displayed highly similar 

force/displacement relationships.

140
without discontinuity (WO) 
small slotted, aspect ratio 3 (S4-3) 
small slotted, aspect ratio 2 (S4-2) 
small slotted, aspect ratio 1.33 (S4-1)

120

100

< ; ^1

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.9. Experimental obtained load/displacement profiles for specimens with small slotted 
discontinuities and specimen without discontinuity.
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without discontinuity (WO) 
small elliptical, aspect ratio 3 (E4-3) 
small elliptical, aspect ratio 2 (E4-2) 
small elliptical, aspect ratio 1.33 (E4-1)

T3 80

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.10. Experimental obtained load/displacement profiles for specimens with small elliptical 
discontinuities and specimen without discontinuity.

E4-3 E4-2 E4-1

Figure 7.11. Deformation modes of specimens in Group 4. All specimens deformed in SMII mode.
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7.2.4 Relationships Between Force/Displacement Profiles and Deformation

A qualitative comparison of the force/displacement profiles and the corresponding 

deformation modes for a limited number o f representative specimens from groups and 

sub-groups are presented. Slotted and elliptical specimens with a major axis length of

10.72 mm and an aspect ratio o f 2 were selected for comparison. In addition to these 

specimens, extrusions with no discontinuities and a circular through hole with a diameter 

o f 10.72 mm were also compared. The selected specimens for comparison were chosen 

due to the common major axis length and aspect ratio which are the average of the 

smallest and largest major axes lengths considered.

7.2.4.1 Specimens without Any Discontinuities (Group 1)

All specimens in this group collapsed in the same global bending mode and had 

similar load versus displacement relationships. A force/displacement profile from a 

representative specimen from Group 1 is shown in Figure 7.12 annotated with labels 

corresponding to the photographs illustrating the deformation process presented in 

Figure 7.13.

Due to the lower strain hardening and reduced ductility associated with the T6 

heat treatment, cracking occurred at the comers and along the edges o f the side walls of 

the tube during the crushing process. As the bending of the specimen progressed, the 

plastic strain at the edges o f the sidewalls in the kinked region o f the tube exceeded the 

failure strain o f the material.

Point (a) in Figure 7.12 and the deformation presented in Figure 7.13(a) 

correspond to the peak buckling load and the initiation o f collapse o f the specimen. Point 

(b) in Figure 7.12 (corresponding to the deformation presented in Figure 7.13(b)) 

illustrates the instant at which cracking was observed to begin at the comer o f the tube. 

As showed in Figure 7.12, the occurrence o f cracking coincided with a significant drop of 

the load bearing capacity o f the extrusion at approximately 20 mm crosshead 

displacement. The load bearing capacity of the specimen continued to decrease until
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contact occurred between the top and bottom sides o f the extrusion measured at the 

plastic hinge, which occurred at a crosshead displacement of approximately 50 mm.

140

120

.!....100

 [...

0 10 20 30 40 50 60 70 80 90 100
Crosshead displacement (mm)

Figure 7.12. Experimentally obtained load versus displacement profile for a specimen without any
discontinuity.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e f  g h
Figure 7.13. Photographs illustrating the crushing process for a specimen without any discontinuity.

7.2.4.2 Specimens in Sub-group C3

Specimens in this sub-group had circular discontinuities with a diameter of

10.72 mm and all deformed in SMII mode. The observed load/displacement profile for a 

representative specimen from this sub-group is presented in Figure 7.14 with annotations 

referring to the deformation photographs presented in Figure 7.15. Point (a) in Figure 

7.14 (corresponding to the deformation presented in Figure 7.15(a)) marked the peak 

buckling load, in which significant deformation was visually observed on the perimeter 

of the discontinuity. As the crushing process continued, the material deformation became 

larger in the vicinity o f the hole. The discontinuities on either side o f the specimen 

collapsed (Figure 7.15(b)) followed by the formation o f a fold on both side walls (Figures 

7.15(c) and 7.15(d)) which did not contain the discontinuities. Following the formation 

o f the folds, cracking and tearing along the comers o f the extrusion initiated (Figure 

7.15(d)) and progressed through the specimen in the vicinity o f the comers o f the tube
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(Figures 7.15(e) through 7.15(h)). The load/displacement profile became constant at the 

approximate instant when cracking initiated at the comers o f the extrusions (Figure 

7.15(d)).

140

1 20 “

100

-}....
V""H

0 10 20 30 40 50 60 70 80 90 100

Crosshead displacement (mm)
Figure 7.14. Experimentally obtained load versus displacement profile for a representative specimen

from sub-group C3.
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e f  g
Figure 7.15. Photographs illustrating the crushing process for a representative specimen from sub-group C3.

7.2.4.3 Specimens in Sub-group S3-2

Specimens in this sub-group had slotted discontinuities with a major axis length 

of 10.72 mm and an aspect ratio o f 2. All specimens in this sub-group collapse under 

SMII mode with a noticeably greater translation o f the upper half o f the extrusion, 

relative to the lower portion, than was observed for specimen C3. In addition, a greater 

amount o f sidewall folding and a lower degree o f material splitting was observed for 

specimens in sub-group S3-2 than specimen C3. An annotated load/displacement profile 

for a representative specimen from sub-group S3-2 and the corresponding photographs 

illustrating the deformation process are presented in Figure 7.16 and Figure 7.17 

respectively. Point (a) in Figure 7.16 (corresponding to the deformation presented in 

Figure 7.17(a)) marked the peak buckling load o f 111.3 kN. Point (e) corresponded to 

the force and displacement after the formation o f a single fold. After point (e) no 

observable formation o f sidewall folding was noted, however, significant material
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splitting and cracking was observed which corresponded to a load/displacement profile 

with no significant oscillations.

140

120

100 -

Cj

0 10 20 30 40 50 60 70 80 90 100

Crosshead displacement (mm)

Figure 7.16. Experimentally obtained load versus displacement profile for a representative specimen from
sub-group S3-2.
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Figure 7.17. Photographs illustrating the crushing process for a representative specimen from sub

group S3-2.

7.2.4.4 Specimens in Sub-group E3-3

Specimens in this sub-group had elliptical discontinuities with a major axis length 

o f 10.72 mm and an aspect ratio of 3.0. The deformation process o f specimens from 

sub-group E3-3 was observed to be very similar to specimens from sub-group S3-2. 

Annotated load/displacement profiles and corresponding photographs illustrating the 

crushing process are presented in Figure 7.18 and Figure 7.19 respectively. During the 

deformation process a single lobe was formed after a crosshead displacement of 

approximately 48 mm for a representative specimen in sub-group E3-3. For comparison 

purposes, the formation of a single lobe for a representative specimen in sub-group S3-2, 

occurred after a crosshead displacement o f approximately 42 mm.
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Figure 7.18. Experimentally obtained load versus displacement profile for a representative specimen from
sub-group E3-3.

Figure 7.19. Photographs illustrating the crushing process for a representative specimen from sub
group E3-3.
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7.2.5 Energy Absorption Performance Comparison Between Specimens

This section compares the energy absorption and crush performance parameters of 

each sub-group considered. The crush performance parameters are calculated from the 

experimental load/displacement observations as indicated in equation (5.1) through 

equation (5.5).

7.2.5.1 Total Energy Absorption and Crush Force Efficiency

The total energy absorbed during the deformation process and the CFE for 

specimens in Group 2, Group 3 and Group 4 are presented in Figure 7.20, Figure 7.21 

and Figure 7.22 respectively. For comparison purposes the energy absorbed and the 

CFE are also presented in Figures 7.20 through 7.21 for a representative specimen in 

Group 1. As expected, both the total energy absorbed and the CFE were larger for 

specimens with geometrical discontinuities than that o f specimens which collapsed in the 

global bending mode. Specimens in sub-group S3-2 had the largest energy absorption of 

5.85 kJ amongst all the specimens in this investigation. This magnitude o f energy 

absorption represented an increase o f approximately 75% over the specimens in Group 1 

which had no discontinuity.

Specimen S2-3 from Group 2 exhibited the highest total energy absorption of 

5.73 kJ in this group and the highest CFE of 52.1% amongst specimens from all groups 

as indicated in Figure 7.20. These values represent a 71% increase in total energy 

absorption and a 96% increase in the CFE compared with specimens in Group 1. 

Specimen E2-3, also within Group 2 possessing an elliptical discontinuity, exhibited the 

second highest total energy absorption and crush force efficiency. Other specimens in 

Group 2 with the same major axis length of 14.29 mm illustrated a direct relationship 

between aspect ratio and both the total energy absorbed and the CFE. For example, 

specimens with slotted discontinuities, with aspect ratios o f 2.0 and 3.0 illustrated 

respective total energy absorption values which were 3% and 33% greater than the 

energy absorption values observed for specimens with slotted discontinuities with an 

aspect ratio o f 1.33. Specimens with elliptical discontinuities with aspect ratios o f 2.0
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and 3.0 exhibited increases in the total energy absorbed by 0.7% and 25% respectively 

compared with specimens with elliptical discontinuities having an aspect ratio o f 1.33. 

Experimental observations illustrated that specimens S2-3 and E2-3 collapsed in SMII 

mode. All other specimens within Group 2 collapsed in SMI mode.

Specimens in Group 3, independent o f discontinuity geometry, with an aspect 

ratio o f 1 and 1.33 illustrated very similar observations for the total energy absorbed and 

CFE as presented in Figure 7.21. Specimen S3-2 exhibited the highest value o f total 

energy absorption and the second largest value o f the CFE amongst all specimens 

considered in this research. Although all specimens in Group 3 deformed in SMII mode, 

specimens with larger aspect ratios formed the first plastic hinge at lower crosshead 

displacements compared with specimens in this group with aspect ratios near unity. This 

should be expected as the formation of the first plastic hinge typically forms after the 

discontinuity has collapsed and specimens with small aspects ratios exhibit larger minor 

axis dimensions and thus requiring larger crosshead displacements for complete collapse 

of the discontinuity. Specimens with large aspect ratios typically involve the formation 

o f a greater number o f folds, due to the small minor axis length, which results in higher 

energy absorption, mean crushing force, and the CFE. This finding was especially 

noticed in Group 2 and Group 3 and not significantly evident in Group 4.

Specimens within Group 4 illustrated more consistent values o f the total energy 

absorption and CFE compared with observations from specimens within Group 2 and 

Group 3. The consistency o f the total energy absorbed and CFE for specimens within 

Group 4, as presented in Figure 7.22, indicate that these crush performance parameters 

appear to be somewhat independent of aspect ratio and discontinuity geometry. Two 

specimens within the sub-group E4-3 illustrated global bending deformation behaviour 

with total energy absorption and CFE values very similar to specimen WO. The presence 

o f a discontinuity with this geometry (small major axis length and large aspect ratio) did 

not function as an effective triggering mechanism to initiate a SMI or SMII buckling 

mode.
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total energy absorbed
crush force efficiency
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10 S3

WO C2 S2-3 S2-2 S2-1 E2-3 E2-2 E2-1

Specimen identifier
Figure 7.20. Total energy absorption and CFE for specimens in Group 2 (observations from specimen in

Group 1 are included for comparison).

total energy absorbed 
crush force efficiency

40 <P

WO C3 S3-3 S3-2 S3-1 E3-3 E3-2 E3-1

Specimen identifier

Figure 7.21. Total energy absorption and CFE for specimens in Group 3 (observations from specimen in
Group 1 are included for comparison).
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Figure 7.22. Total energy absorption and CFE for specimens in Group 4 (observations from specimen in

Group 1 are included for comparison).

1.2.5.2 Peak Crush Load and Mean Crush Load

Figure 7.23, Figure 7.24 and Figure 7.25 present the peak and mean crush loads 

for Group 2, Group 3 and Group 4 respectively. Results from Group 1 are also presented 

in these figures from comparison purposes. From Figure 7.23, it can be noted that for 

specimen WO, which deformed in the global bending deformation mode, the largest peak 

crush load (124.7 kN) and the smallest mean crush load (33.2 kN) were observed. As 

expected an indirect relationship between peak crush load and major axis length was 

observed.

A direct relationship between aspect ratio and both the peak and mean crush loads 

for specimens with slotted and elliptical discontinuity geometries within Group 2 was 

somewhat evident. However, only a minor variation in the peak and mean crush loads 

was observed for specimens with aspect ratios o f 1.33 and 2. Specimens with any
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geometry o f discontinuity with aspect ratios near unity illustrated very similar peak and 

mean crush loads.

No obvious relationship between geometry o f discontinuity and peak and mean 

crush loads is apparent from the observations presented in Figure 7.24 for specimens in 

Group 3.

An analysis o f the observations for specimens in Group 4, as presented in 

Figure 7.25, clearly indicate that there is no discernible relationship between the 

geometry o f discontinuity and the peak and mean crush loads.

peak crush load 
mean crush load

120 —

WO C2 S2-3 S2-2 S2-1 E2-3 E2-2 E2-1

Specimen identifier

Figure 7.23. Peak and mean crush loads for specimens in Group 2 (observations from specimen
in Group 1 are included for comparison).
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Figure 7.24. Peak and mean crush loads for specimens in Group 3 (observations from specimen
in Group 1 are included for comparison).

peak crush load 
mean crush load

WO C4 S4-3 S4-2 S4-1 E4-3 E4-2 E4-1

Specimen identifier

Figure 7.25. Peak and mean crush loads for specimens in Group 4 (observations from specimen
in Group 1 are included for comparison).

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2.53 Specific Energy Absorption

Figure 7.26 through Figure 7.28 graphically illustrate and compare the SEA for all 

specimens considered in this investigation. Figure 7.26 clearly indicates that for 

discontinuities with an aspect ratio less than 2 the SEA is generally independent of 

discontinuity geometry and approximately equal to 18.5 kJ/kg. However, for both slotted 

and elliptical discontinuity geometries with aspect ratio equal to 3 a significant increase 

in the SEA within this group of specimens was observed. Specimen S2-3 exhibited the 

largest SEA with a magnitude o f 24.2 kJ/kg.

A comparison o f Figure 7.26 through Figure 7.28 illustrate that for specimens 

with smaller major axis lengths a decrease in the influence o f aspect ratio on the SEA is 

observed. Furthermore, a slight increase in the SEA was observed for specimens with 

small major axis lengths.

I
WO C2 S2-3 S2-2 S2-1 E2-3 E2-2 E2-1

Specimen identifier
Figure 7.26. Specific energy absorption for specimens in Group 2 (observations from specimen

in Group 1 are included for comparison).

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



w o C3 S3-3 S3-2 S3-1 E3-3 E3-2 E3-1

Specimen identifier
Figure 7.27. Specific energy absorption for specimens in Group 3 (observations from specimen

in Group 1 are included for comparison).

WO C4 S4-3 S4-2 S4-1 E4-3 E4-2 E4-1

Specimen identifier
Figure 7.28. Specific energy absorption for specimens in Group 4 (observations from specimen

in Group 1 are included for comparison).
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7.3 Quasi-Static Axial Compressive Cut Testing Results and Discussion

For each specimen tested, the cutting force and crosshead displacement were 

recorded. Post-testing data analysis was completed to determine the peak load, mean 

crush force, CFE, total energy absorption, and the SEA. Values for each specimen are 

presented in Table 7.3.

Table 7.3. Experimental testing results.

Group Specimens Pmax
(kN)

Pm
(kN)

CFE Eabsorbed
(kJ)

SEA
(kJ/kg)

SA1 38.71 26.98 0.700 3.77 15.87
SA2 37.92 30.64 0.810 4.26 17.91

1 SA3 36.66 30.44 0.830 4.25 17.89
SA4 36.54 29.06 0.795 3.97 16.71
SA5 37.22 29.40 0.790 4.12 17.32

SB1 35.84 28.70 0.800 4.02 16.91
SB2 35.52 28.75 0.810 4.02 16.91

2 SB3 34.05 25.21 0.740 3.56 14.96
SB4 38.48 28.00 0.728 3.91 16.46
SB5 33.64 27.95 0.831 3.91 16.42

LAI 31.94 26.13 0.820 3.67 10.30
LA2 34.99 28.01 0.800 3.91 10.97

3 LA3 34.34 26.69 0.780 3.71 11.28
LA4 35.19 30.18 0.858 4.23 11.85
LA5 42.29 30.85 0.729 4.37 12.26

LB1 41.14 31.76 0.772 4.49 12.57
LB2 37.57 28.60 0.761 3.99 11.18
LB3 35.58 29.20 0.821 4.15 11.62
LB4

(no lubrication) 41.44 29.36 0.708 4.07 11.42

LB 5
(no lubrication) 37.27 29.67 0.796 4.17 11.69

LG1 115.82 21.05 0.182 2.91 8.15
5 LG2 115.97 21.23 0.183 2.94 8.25

LG3 114.80 20.10 0.175 2.79 7.81

SGI 125.28 32.34 0.258 3.72 15.65
6 SG2 123.81 30.84 0.249 3.39 14.24

SG3 124.69 31.63 0.254 3.71 15.59
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7.3.1 Cutting Test Results for Specimens in group 1

Specimens in group 1 were axially crushed using side A o f the cutter. 

Photographs o f the cutting process for a typical specimen (specimen SA1) are shown in 

Figure 7.29. The observed force versus displacement curves for all specimens in group 1 

are presented in Figure 7.30. The points at which photographs were taken of specimen 

SA1 were marked on the corresponding force versus displacement curve o f Figure 7.30. 

Photographs o f the cutting deformation illustrate that the cutter can penetrate through the 

four comers o f the specimens and develop highly localized plastic deformation in the 

vicinity o f the cutting blades. Cutting chips were observed to be formed during the 

cutting process as shown in Figure 7.31, which also illustrates the localized plastic 

deformation accompanying the cutting process for specimen SA4 (Figure 7.31(a)). No 

crack propagation was observed in all testing. As the cutting progressed, petalled side 

walls bent outward due to the pushing force developed from the interaction between the 

side walls o f the cutter blades and tube material which were oriented at an angle of 

approximately 45 degrees to each other. The increasing width o f the blades at the 

transitional region to the cutter hub also contributed to the bending force when split side 

walls came into contact with the hub as illustrated in Figure 7.29(f) and Figure 7.31(c). It 

is evident from the force versus displacement curves that the cutting test results were 

similar to each other. Load/displacement profiles for specimens SA2, SA3, SA4, and 

SA5 were almost coincident. At the initial cutting stage, after half o f the blades o f the 

cutter penetrated through the extrusions (at an approximate displacement o f 10 mm), the 

cutting force was approximately 24 kN for all test specimens. This cutting force was 

maintained constant until a crosshead displacement o f approximately 50 mm. After that 

displacement, the petalled side walls began bending outwards. The bending phenomenon 

increased the cutting force to approximately 35 kN. As bending o f the petalled side walls 

continued, the cutting force was observed to be somewhat constant at a value o f 35 kN. 

For each specimen, the petalled side walls were bended with different radii. For 

specimen SA4, one o f the four petalled walls was observed to have contact with the hub 

of the cutter as shown in Figure 7.31 (c), which caused a higher degree o f bending within 

the side walls o f the extrusion. This finding was also observed for specimens SA2, SA3,
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and SA5. It was observed for all specimens, except SA1, that an increase in force from 

approximately 24 kN to 35 kN occurred during cutter displacements from 50 mm to 

80 mm. Specimen SA1 illustrated an increase in cutting force from 24 kN to 35 kN 

during cutter displacements o f 50 mm to 130 mm. The lower rate o f  increase in the 

cutting force for specimen SA1 was attributed to the lack o f contact between the side 

walls o f the tube and the cutter hub after the blades split the extrusion, as presented in 

Figure 7.29(f). It was estimated from the force/displacement relationships that the 

bending o f the side walls o f the extrusion increased the cutting force by approximately 

40% (from 24 kN to 35 kN). An estimated 25% increase o f total energy absorption 

would be expected from the bending mechanism.

(a) (b)

Figure 7.29. Photographs of the cutting process for specimen SA1. (a) Cutting setup using side A of 
the cutter, (b) splitting of the four corners of the specimen, (c) petalled side wall bending outwards, 

(d) and (e) progression of cutting, and (f) specimen after testing.
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Figure 7.30. Experimentally obtained load versus displacement curves for specimens in group 1 
positions b, c, d and e correspond to photographs in Figure 7.29.
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Formed chips
Petalled side wall in 

contact with hub

Figure 7.31. Chip formation and petalled side wall bending for specimen SA4. (a) During cutting 
(side view), (b) after testing (rear view), (c) after testing (front view).

7.3.2 Cutting Test Results For Specimens in Group 2

Specimens in group 2 were cut using side B o f the cutter. As listed in Table 4.7, 

there was a small variation in the width o f each blade between cutting edges on side A 

and side B. The force versus displacement curves for the specimens o f group 2 are 

shown in Figure 7.32. No significant difference in the load/displacement profiles was 

observed between group 2 and group 1, except that the displacement at which the cutting 

load began to increase due to side wall petalling and contact between the extrusion side 

walls and cutter hub occurred at approximately 60 mm for group 2 rather than 50 mm as 

was observed for group 1. A stable cutting process was observed for all specimens in 

group 2, similar to group 1. Specimen SB3 was observed to have a relatively lower 

increase in cutting force through cutter travel due to the lack o f contact occurring 

between the side walls o f the extrusion and the cutter hub, similar to specimen SA1 in 

group 1.
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Figure 7.32. Experimentally obtained load versus displacement curves for specimens in group 2.

7.3.3 Cutting Test Results For Specimens Group 3 and Group 4

Specimens in group 3 and group 4 had the same tube length o f 300 mm. Side A 

and side B o f the cutter were used to cut specimens in group 3 and group 4 respectively. 

The force versus displacement curves for the specimens o f group 3 and group 4 are 

shown in Figure 7.33 and Figure 7.34 respectively. The stability o f the cutting process 

and the force/displacement profiles for the 300 mm length specimens in groups 3 and 4 

appeared to be very similar to the qualitative and quantitative observations from the 

200 mm length specimens in groups 1 and 2. No significant differences in the 

force/displacement profiles for group 3 and group 4 were observed, except that the 

specimens in group 3 illustrated a greater variation in the crosshead displacement location
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where the cutting force increased due to contact between the extrusion side walls and the 

hub of the cutter.

Specimens LB4 and LB 5 which were cut without the use o f lubrication had very 

similar force/displacement profiles as all other specimens in group 4. This was attributed 

to the minimal contact area occurring between the sides o f the cutting blades and the 

petalled side walls.

LAI
LA2
LA3

^3
ao

0 20 40 60 80 100 120 140

Displacement (mm)

Figure 7.33. Experimentally obtained load versus displacement curves for specimens in group 3.
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Figure 7.34. Experimentally obtained load versus displacement curves for specimens in group 4.

7.3.4 Crush Test Results For Specimens Group 5 and Group 6

Axial compressive crushing tests without the presence of the cutter were 

performed for the three specimens in group 5, which had a length o f 300 mm, and the 

three specimens in group 6, which had a length o f 200 mm. Specimens in these two 

groups all collapsed in the global bending mode as expected and had similar load versus 

displacement curves as shown in Figure 7.35 and Figure 7.36 for group 5 and group 6 

respectively. As the bending o f the specimen progressed, the plastic strain at the edges of 

the sidewalls in the kinked region of the tube exceeded the failure strain o f the material. 

Cracking occurred at the comers o f the tube within the region o f the kink near the 

mid-span o f the absorber. Global bending and cracking caused the force displacement
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profiles to have a large negative slope after the peak buckling load. An average peak 

buckling load o f 115.53 kN was observed for specimens in group 5, while an average 

peak buckling load o f 124.59 kN for specimens in group 6. After the development o f a 

mid-span kink, which occurred after approximately 30 mm crosshead displacement, 

crushing loads with magnitudes o f 7 kN and 10 kN for group 5 and group 6 respectively 

were observed.

120

100
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LG2
LG3

0 20 40 60 80 100 120 140

Displacement (mm)

Figure 7.35. Experimentally obtained load versus displacement curves for specimens in group 5.
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Figure 7.36. Experimentally obtained load versus displacement curves for specimens in group 6.

7.3.5 Comparison of Testing Results amongst All Specimens

Due to the load/displacement similarities observed for all specimens within a 

specific group, a sample was selected which represented the average load/displacement 

behaviour for the group. Figure 7.37 illustrates the load/displacement characteristics 

from the representative sample of each group. From this comparison, it is obvious that 

the cutting force response o f specimens with different lengths and cutting edges are very 

similar, while it is quite different than that o f global buckling deformation. For all 

specimens which underwent deformation due to splitting, the cutting force was kept at a 

nearly constant magnitude during the entire deformation process.
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Figure 7.37. Force/displacement profile comparisons for representative specimens from each group.

7.3.6 Crush Performance Parameter Comparison amongst All Specimens

The experimental results in terms of the energy absorption and crush performance 

parameters for each group o f specimens are compared in this section. Crush performance 

parameters including the peak load, mean crush force, CFE, total energy absorption, and 

the SEA were calculated from the experimental data.

7.3.6.1 Peak Load and Mean Crush Force

The peak load and the mean crush force for specimens with 200 mm and 300 mm 

lengths are presented in Figure 7.38 and Figure 7.39 respectively. Comparisons of the
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peak load and mean crush force from representative specimens from each group are 

presented in Figure 7.40. It is apparent from these figures that there were only minor 

variations in the peak load and mean crush force from specimens within each group. 

Furthermore, Figure 7.40 clearly illustrates that the difference between the peak load and 

mean crush force for specimens which underwent cutting modes o f deformation were 

very small compared to the specimens which experienced global bending deformation. 

The ranges for peak load and mean crush force for the 200 mm length specimens were 34 

kN to 39 kN and 25 kN to 31 kN respectively. The ranges for peak load and mean crush 

force for the 300 mm length specimens were 32 kN to 42 kN and 26 kN to 32 kN 

respectively. This comparison also indicates that there is very little variation in the peak 

load and mean crush force for specimens with varying length.

The small variation in the widths of the cutting blades on side A and side B had 

no significant influence on the cutting force responses o f specimens in different groups. 

Minor cutting force variations within a group were most likely the result o f differences in 

manual alignment o f the cutter to the extrusions prior to the crush test. This minor 

variation in alignment would result in differences in the location o f cutting within an 

extrusion. Geometrical and material differences between each specimen could also result 

in force/displacement variations amongst specimens within a group.
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Figure 7.38. Peak load and mean crush force comparison for specimens in groups 1 and 2.
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Figure 7.39. Peak load and mean crush force comparison for specimens in groups 3 and 4.
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Figure 7.40. Peak load and mean crush force comparison amongst representative specimens from each
group.

7.3.6.2 Crush Force Efficiency and Total Energy Absorption

The total energy absorption and CFE for specimens with lengths o f 200 mm and 

300 mm are presented in Figure 7.41 and Figure 7.42 respectively. Figure 7.43 illustrates 

the CFE and total energy absorption comparison between representative specimens 

selected from each group. For specimens in group 1 and group 2 the average CFE was 

calculated to be 78.5% and 78.2% respectively. For specimens in group 3 and group 4 

the average CFE was calculated to be 79.7% and 77.1% respectively. These values 

illustrate a very minor variation in the CFE for specimens with different lengths and 

application o f different cutting sides. For extrusions which experienced the global 

bending mode of deformation the average CFE was calculated to be 18.0% and 25.4% for 

specimens in group 5 and group 6 respectively. It is apparent from this research that a 

four fold value of the CFE has been achieved with the cutting mode o f deformation
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compared to the global bending mode of deformation for the tubular geometries and 

material considered in this investigation.

For specimens that underwent global bending the average total energy absorption 

was calculated to be 3.24 kJ. The average total energy absorption o f all specimens which 

experienced the cutting mode o f deformation was calculated to be 4.03 kJ, which is an 

increase o f approximately 24% o f the average total energy absorption o f specimens 

which experienced global bending.

A variation o f only 2.4% in the average total energy absorption was found for 

specimens that experienced the cutting mode of deformation with 200 mm and 300 mm 

lengths. However, a significant reduction of the average total energy absorption, 

approximately 20%, was calculated for the 300 mm length extrusions compared to the 

200 mm length tubular structures under global bending deformation.
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Figure 7.41. Crush force efficiency and total energy absorption comparison for specimens in

groups 1 and 2.
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Figure 7.42. Crush force efficiency and total energy absorption comparison for specimens in

groups 3 and 4.
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Figure 7.43. Crush force efficiency and total energy absorption comparison amongst 
representative specimens from each group.
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8. CRUSH PERFORMANCE PARAMETERS COMPARISON BETWEEN 

DIFFERENT ENERGY ABSORBERS

Three energy absorption performances and improvements have been investigated 

in this research. The first situation was related to aluminum foam filled braided stainless 

steel tube under tensile loading condition. The second and third energy absorption 

improvements were both related to AA6061-T6 extrusions under compressive loading 

conditions. An energy absorption performance comparison between extrusions with a 

geometrical initiator and extrusions which experienced a cutting deformation have been 

completed to present the advantage and disadvantage o f both improvement methods.

Experimental cutting test performance measures were recalculated based on a 

displacement up to 100 mm and are presented in Table 8.1. Crush test results for 

specimens with geometrical discontinuities were obtained based on the same 

displacement as listed in Table 7.2.

As mentioned in section 7.3.5, the cutting force response o f specimens with 

different lengths and cutting edges are very similar. Based on this observation and the 

average results listed in Table 8.1, Specimen SA4 is picked to represent cutting 

deformation and will be used to compare with representative specimens listed in section 

7.2.4, which are specimen WO, C3, S3-2, and E3-3. Specimen LG2 which had a tube 

length o f 300 mm as tested in global bending mode has also been compared in this 

section. Detailed information about representative specimens is presented in Table 8.2.

Force/displacement profiles for the above mentioned specimens are illustrated in 

Figure 8.1. From Figure 8.1, it can be seen that specimen SA4 had an almost constant 

force/displacement response during the cutting deformation process, while all other 

specimens had large response force fluctuation during the deformation process.

Peak crush load and mean crush load comparison are illustrated in Figure 8.2. For 

cutting deformation mode, peak crush load and mean crush load are almost the same, 

while for global bending and SMII deformation mode, the differences between these two 

forces are significant.

Total energy absorption and crush force efficiency comparison are presented in 

Figure 8.3. Crush force efficiency of specimen SA4 which had cutting deformation has
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been improved by a factor o f 2.96 compared to specimen WO which had global bending 

deformation. Compared to specimens with geometrical initiator, CFE o f specimen SA4 

has been improved by 56%. Total energy absorption o f specimen SA4 is almost the same 

as that o f specimen LG2 and 46.6 % of average total energy absorption o f specimens S3- 

2andE3-3.

8.1. Experimental cutting test results for displacement up to 100 mm.

Group Specimens
P1 max
(kN)

Pm
(kN)

CFE Pabsorbed
(kJ)

SA1 28.84 24.44 0.85 2.44
SA2 37.1 28.45 0.77 2.85

1 SA3 35.52 28.52 0.80 2.85
SA4 33.29 27.04 0.81 2.70
SA5 34.49 27.16 0.79 2.72

SB1 34.34 26.38 0.77 2.64
SB2 34.55 26.65 0.77 2.67

2 SB3 25.82 23.69 0.92 2.37
SB4 33.73 24.93 0.74 2.49
SB5 33.64 26.06 0.77 2.61

LAI 27.93 24.62 0.88 2.46
LA2 32.47 25.80 0.80 2.58

3 LA3 28.78 24.72 0.86 2.47
LA4 34.9 28.61 0.82 2.86
LA5 36.01 28.02 0.78 2.80

LB1 38.74 28.96 0.75 2.90
LB2 33.64 26.37 0.78 2.64
LB3 33.76 27.14 0.80 2.71

4 LB4
(no lubrication) 35.87 26.49 0.74 2.65

LB 5 
(no lubrication) 35.66 27.10 0.76 2.71

Average__________________33.45 26.56 0.80 2.66

5 LG2 115.97 26.77 0.23 2.68

6 SGI 124.69 33.21 0.27 3.35
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Table 8.2. Representative specimens for the performance measures comparison.

Group identifier Eabsorbed
(kJ)

Pmax
(kN) P m Force(kN) CFE

(%)
Deformation mode

WO 3.35 124.7 33.21 26.6 Global
bending

C3 4.36 109.4 43.16 39.5 SMII
S3-2 5.85 111.3 57.92 52.0 SMII
E3-3 5.78 113.7 57.27 50.4 SMII

SA4 2.70 33.29 27.04 0.81 cutting
LG2 2.68 115.97 26.77 23.0 Global bending
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Figure 8.1. Experimentally obtained load/displacement profiles comparison.
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Figure 8.2. Peak crush load and mean crush load comparison.
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Figure 8.3. Total energy absorption and crush force efficiency comparison.
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9. CONCLUSIONS

The theoretical analysis for the energy absorption capacity o f aluminum foam 

filled braided stainless steel tube, the experimental crush testing of AA 6061-T6 

extrusions with three different geometrical discontinuities, and the experimental testing 

of cutting deformation o f square cross section aluminum extrusions initiated by a newly 

designed cutting tool as conducted in this research have provided a significant amount o f 

information regarding the energy absorption abilities o f structure members under tensile 

and compressive loading conditions. The following conclusions can be made based upon 

the observations and analysis o f observed research testing:

9.1 Conclusions for Aluminum Foam Filled Braided Stainless Steel Tube

1) The total energy absorption for the tubular structures, with different aluminum 

foam densities, tested in this investigation, which incorporated tube 

elongations o f approximately 400 mm, ranged from approximately 5.2 kJ to 

7.9 kJ.

2) It was experimentally observed that significant variations in the 

force/displacement and energy/displacement behaviour o f the foam filled 

braided tubes occurred in the first and second stages o f loading for different 

aluminum foam densities.

3) The experimentally observed response o f the braided tube in the third stage of 

loading illustrated no significant differences for the foam densities considered 

in this investigation.

4) A theoretical model was developed which assumed structural deformation was 

a result o f radial foam crushing and inelastic tensile deformations o f the 

braided tube. Agreement between the predictions o f the theoretical model and 

experimental findings were found to exist with a maximum percentage error 

o f approximately 25%.

5) The response o f the aluminum foam filled braided tube can be adjusted based 

upon aluminum foam density and the preload applied to the energy absorbing
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structure. This finding allows the structure to be tailored for specific 

load/displacement requirements.

9.2 Conclusions for Geometrical Imperfections Incorporated Extrusions

6) The three different geometrical discontinuities, namely circular, elliptical, and 

slotted through holes, initiated a splitting and cutting mode o f deformation for 

the square AA6061-T6 extrusions. This mode o f deformation resulted in 

higher values o f the CFE and the SEA while generating a lower value o f the 

maximum crushing force compared to specimens without any geometrical 

discontinuities. All specimens which did not contain a geometrical 

discontinuity deformed in a global bending mode.

7) Specimen S2-3, which contained a slotted hole discontinuity with a major axis 

length o f 14.29 mm and an aspect ratio o f 3, had the highest CFE o f 0.52. 

Relative to all specimens without any type o f discontinuity, the CFE of this 

specimen increased by 96%.

8) Specimen S3-2, which contained a slotted hole discontinuity with a major 

axis length o f 10.72 mm and an aspect ratio o f 2, had the highest total energy 

absorption o f 5.85 kJ. Relative to all specimens without any type of 

discontinuity, the total energy absorption of this specimen increased by 

74.6%.

9) The influence o f aspect ratio was dependent upon major axis length in the 

crush performance measures of the extrusions. Specimens with major axis 

lengths o f 14.29 mm and 10.72 mm with a large aspect ratio (3) illustrated 

better total energy absorption and CFE measures. However, for specimens 

with these major axis lengths with aspect ratios less than 2 a notable decrease 

in the crush performance was observed.

10) The aspect ratio and the geometric shape o f the discontinuity had no 

measurable influence on the crush performance parameters for specimens with 

a major axis length of 7.14 mm.
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9.3 Conclusions for Extrusions under Cutting Deformation Mode

11) The cutting deformation mode initiated within the extrusions by use o f the 

cutter appeared to be stable and repeatable. A constant force/displacement 

relationship was observed after a stroke o f half the cutter thickness (10 mm) 

was achieved.

12) For the slight variation in blade geometries on side A and side B o f the cutter 

no significant influence on the force/displacement response under axial 

crushing was observed. In addition, the absence o f lubrication fluid had no 

identifiable influence on the force/displacement behaviour o f extrusions 

subjected to the cutting mode o f deformation.

13) Tube length appeared to have no significant influence on the 

force/displacement response of the extrusions which experienced the cutting 

mode o f deformation.

14) The average crush force efficiency for extrusions which experienced the 

cutting mode o f deformation was approximately 0.80 independent o f tube 

length. Tube length had a noteworthy influence on the average crush force 

efficiency for specimens which underwent global bending. In this research 

programme, the average CFE of specimens which experienced a global 

bending deformation mode was 0.18 and 0.254 for specimens with tube 

lengths o f 200 mm and 300 mm respectively.

15) The average energy absorption for extrusions which experienced the cutting 

mode o f deformation was 4.03 kJ. The energy absorption capacity o f the 200 

mm and 300 mm length specimens, under a cutting deformation mode, was 

limited due to the stroke restrictions o f the compressive testing machine used 

in this investigation. The average energy absorption for tubular members 

which experienced global bending was 3.61 kJ and 2.88 kJ for test specimens 

o f length 200 mm and 300 mm respectively.

16) For the extrusions which experienced the cutting deformation mode two 

energy dissipating mechanisms were observed, namely, a cutting deformation 

mechanism and petalled side wall outward bending mechanism. The bending
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energy absorption mechanism appeared to initiate after approximately 50 mm 

crosshead displacement and accounted for approximately 25% of the total 

energy absorption.

17) Specimen crush force efficiency o f cutting deformation mode has been 

improved by 2.96 times compared to the global bending deformation mode. 

Compared to the highest CFE which can be obtained by incorporating 

geometrical initiators into specimens as investigated in this research, CFE of 

cutting deformation has been improved by 56%. Total energy absorption of 

cutting deformation specimen is almost the same as that o f specimen LG2 and 

approximately 46.6 % of average total energy absorption of specimens S3-2 

and E3-3 for a displacement of 100 mm.

9.4 Future Work

Future work in this area may include the experimental crush testing o f circular 

tubes with centrally located geometric discontinuities and cutting deformation mode. 

Furthermore, numerical simulations and theoretical investigations o f cutting deformation 

mode may be helpful in this search.
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APPENDIX A

Experimental Testing Results of Tensile Testing of Empty Braided Stainless Steel 
Tubes and Tensile Tests of Aluminum Foam Filled Braided Tubes

A.I. Tensile Testing of Empty Braided Stainless Steel Tubes

Figure A .l illustrates the experimentally observed force versus crosshead 

displacement relationship for both the 185 mm and 330 mm length empty braided 

stainless steel tubes. A comparison o f the force/displacement response o f the two 

different length tubes indicated that in the first 15 mm of crosshead displacement the 

force/displacement responses were similar. Although different force/displacement 

relationships in the first 15 mm of crosshead displacement may have been expected, it is 

hypothesized that the collection of wires to form the braided tube, which deviates from a 

solid tubular structure, and the kinematic behaviour o f the tows during elongation 

(scissoring) o f the braided tubes outweighed the role o f tube length on the influence of 

structure stiffness.

After the first 15 mm of crosshead displacement, the force/displacement 

relationships for the braided tubes with different lengths vary significantly. The 

deformation phenomena satisfied the inverse relationship between structure length and 

stiffness; the longer braided tube illustrated a lower load capacity than the shorter tube for 

a given crosshead displacement beyond 15 mm.

For the braided tube with length o f 185 mm failure was observed to occur at a 

load of approximately 51.9 kN. Failure, which is defined as the point when the tube can 

no longer support any increase in applied load, did not occur catastrophically, rather a 

progressive failure o f the individual strands o f the tows was observed. Ultimate failure of 

the tube, which is defined as the point when the tube can not longer support any applied 

load, occurred after an additional crosshead displacement o f approximately 28 mm. The 

experimentally observed load at failure for the shorter tube agreed well with a calculated 

failure force o f 46 kN based on the tensile strength o f the AISI 304 stainless steel 

material and the tube geometry. The total elongation o f the 185 mm braided tube was 

observed to be approximately 55%.
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The braided tube o f length 330 mm did not experience ultimate failure for the 

crosshead displacements considered in this research. A failure load for the 330 mm 

length tube was observed to be 52.4 kN; similar to the braided tube o f length 185 mm. 

The failure load for the 330 mm tube was reached at approximately 124 mm of crosshead 

displacement after which the load carry capacity o f the tube decreased.

o
!-h
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Displacement (mm)

60
185 mm length tube 
330 mm length tube

50

40
Tube Failure Begins 
(185 mm length tube)

30

20

10

0
800 40 120 160

Figure A .I. Force versus displacement characteristics for the empty braided tubes of 185
mm and 330 mm lengths.

A.2. Tensile Tests of Aluminum Foam Filled Braided Tubes

Load versus displacement results for the tensile testing o f the aluminum foam 

filled braided tubes are presented in Figure A.2 through Figure A.5 for aluminum foam 

densities considered in this research. As previously indicated in the testing procedure, 

the tensile tests were completed in three stages o f loading due to the stroke limitation of 

the testing machine. For each specimen, plots o f force versus displacement for all three 

loading stages were juxtaposed to illustrate the structural response o f the tube for
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crosshead displacements up to approximately 400 mm. In addition, energy versus 

displacement curves were also plotted with the corresponding load versus displacement 

curve for each specimen. The energy absorbed by the tube was equated to the work done 

by the crosshead, which was obtained through integration o f the force/displacement 

relationship, as indicated in equation (A.l).

(A .l)

E  = J f z • dz At the beginning of the second and third stages o f loading, it was 

assumed that the energy absorbed by the tube included the energy absorbed in the 

previous loading stage.

From examination o f Figure A.2 through Figure A.5, it can be observed that 

during the first stage o f loading the tensile force fluctuated about a constant value. In this 

stage, the structure deformation was due to crushing and fracture o f the aluminum foam 

core. The scissoring o f the tube tows pulverized the foam edges and a small number of 

protruding portions o f the aluminum foam core which were trapped between the tows. 

Local tensile fracture within the foam core caused the loading profile to have an 

oscillatory response. During the first stage o f loading, load/displacement results were 

found to be dependent upon foam core density.

An examination o f the mechanical behaviour o f the aluminum foam core has been 

completed and the stress/strain response for foam densities ranging from 200 kg/m to 

400 kg/m is illustrated in Figure A.6. Compressive testing was completed on a 100 kN 

servo hydraulic compression testing machine on foam cubes with dimensions o f 66 mm 

by 66 mm by 66 mm. The nominal speed o f the actuator was 2.5 mm/min. Observations 

from the experimental tests, as shown in Figure A.6, illustrated that the plateau stress o f 

the foam is strongly dependent upon the foam density. The majority o f foam crushing 

(for engineering strains ranging from 1% to 60%) occurred at the constant plateau stress. 

Results from the first stage o f loading in Figure A.2 through Figure A.5 and the 

dependence o f plateau stress o f foam density, as presented in Figure A.6, clearly illustrate 

and verify that a direct relationship between foam density and tensile load in the first 

stage o f loading exists.
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In the second stage of loading, the deformation was a combination o f radial 

crushing of the inner foam core and axial deformation o f the braided tube. As the 

crosshead displacement occurred, the angle between the braided tube tows decreased and 

eventually reached a lockup condition. After tow lockup occurred the radial 

displacements o f the braided tube decreased significantly, and hence the foam core no 

longer experienced crushing in the radial direction. The majority o f deformation, 

following lockup, occurred within the braided tube in the axial direction.

Further tensile loading, subsequent to the second stage, resulted in plastic 

deformation o f the braided tube with little or no observed deformation occurring within 

the foam core. The load/displacement relationship in the third stage of loading was very 

comparable to the load/displacement behaviour o f an unfilled braided tube. This finding 

indicates that the mechanical behaviour of the foam filled braided tube is independent of 

foam core density during the third stage o f loading.

The energy absorbed in each stage o f loading for the four tensile specimens is 

summarized in table A .l. Foam core density is responsible for energy absorption in the 

first and second stages o f loading with a dependence o f tube mechanical behaviour also 

occurring in the second stage. A tailored application o f these devices for energy 

absorption is possible with the selection o f the appropriate foam density according to 

specified force/displacement requirements.

Table A .l. Energy absorption of the foam filled braided tubes.

Specimen # Estage I (kJ) £** 1 K
j § Estagei (kJ) Etotal (kJ)

1 0.279 0.673 4.221 5.172
2 0.340 1.510 3.908 5.759
3 0.428 1.888 4.135 6.451
4 0.666 2.137 5.130 7.933
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Figure A.2. Force/displacement and energy/displacement curves of the foam filled braided tube for

specimen 1 with pf= 248.2 kg/m3.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

En
er

gy
 

(k
J)



0  5 0  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0  3 5 0  4 0 0  4 5 0

age 3Stage 1 Stage 2

0
0 50 100 150 200 250 300 350 400 450

Displacement (mm)
Figure A.3. Force/displacement and energy/displacement curves of the foam filled braided tube for

specimen 3 with pf = 288.2 kg/m3.
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Figure A.4. Force/displacement and energy/displacement curves of the foam filled braided tube for

specimen 4 with pf = 298.2 kg/m3.
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Figure A.5. Force/displacement and energy/displacement curves of the foam filled braided tube for
specimen 5 with pf = 373.4 kg/m3.
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Dear Sir or Madam,

I have been writing my thesis for my Master of Applied Science degree in Mechanical 
Engineering at the University o f Windsor. Within the Literature Review chapter o f my 
thesis I would like to use the following attached figures published by your company to 
illustrate research and/or experimental testing done by other researches in my research 
area. I am requesting your permission to reprint these figures in my literature review part. 
Would you please respond to this as soon as possible?

Thank you very much!

Best regards,

Qingwu Cheng

Figures:

(1). Figure 5, Figure7, Figure! 8.2, Figure 13.2, Figure 14.2, and Figure 16 from: Arnold 
B, Altenhof W. Experimental observation on the crush characteristics o f AA6061 T4 and 
T6 structural square tubes with and without circular discontinuities. IJCrash 2004, Vol.9, 
No. 1 pp.73-87.

(2) Figure 5 from: Altenhof W, Powell C, Harte AM, Gaspar R. An experimental 
investigation into theenergy absorption and force/displacement characteristics of 
aluminum foam filled braided stainless stell tubes under quasi-static tensile loading 
conditions. IJCrash 2005, Vol. 10, No. 1, pp. 21-31.

(3) Two Figures (please see attached Word file) from: Hassen, A.G., O.S. Hopperstad 
and M. Langseth. Design! o f Aluminium Foam-Filled Crash Boxes with Square and 
Circular Cross Section. IJCrash 2001, 6(2), pp. 177-188.
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B.3 Copyright Permission from SAE

Dear Mr. Chen:

Permission to include the figures (noted below) in a thesis for your Master o f Applied 
Science degree in Mechanical Engineering at the University o f Windsor, Ontario, 
Canada, is hereby granted, and we request that the following credit statement appear 
directly below each figure:

"Reprinted with permission from SAE paper num ber * (c) 200_** Society of
Automotive Engineers, Inc."

(*please insert the appropriate paper number and **year o f publication)

I understand that you will produce 5 printed copies o f your thesis for distribution to the 
university library, your supervisor and for yourself.

Thank you for contacting SAE for this permission.

Sincerely,
Terri Kelly 
SAE Publishing

From: Cheng Q [mailto:chenglt@uwindsor.ca]
Sent: Tuesday, October 11, 2005 12:49 PM 
To: copyright
Subject: copyright permission request 

Dear Sir or Madam,

I have been writing my thesis for my Master of Applied Science degree in Mechanical 
Engineering at the University o f Windsor, Ontario, Canada. Within the Literature Review 
chapter o f my thesis I would like to use the following figures published by SAE to 
illustrate research and/or experimental testing done by other researches in my research 
area. I am requesting your permission to use these figures in my literature review part. 
Would you please respond to this as soon as possible?

Thank you very much!

Best regards,

Qingwu Cheng
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Figures:

(1) Figure 5, Figure 6, and Figure 7 from: Borge Iver Bjomeklett, Ole Runar Myhr. 
Material Design and Thermally Induced Triggers in Crash Management. SAE 2003-01- 
2794.

(2) Figure 3, Figure 4, Figure 5, and Figure 10 from: Guofei Chen, Xiao Ming Chen 
and Ming F. Shi, Wayne Li and Tau Tyan. Experimental and Numerical Studies of Crash 
Trigger Sensitivity in Frontal Impact. SAE Paper, 2005-01-0355.

(3) Figure 3, Figure 18, and Figure 20 from: Arnold B, Altenhof W. Finite element 
modeling o f the axial crushing of AA6061 T4 and T6 and AA6063 T5 structural square 
tubes with circular discontinuities. SAE SP71937 Safety Test Methodology and 
Structural Crashworthiness, SAE International, 2005-01-0703.
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B.4 Copyright Permission from IIHS

Dear Qingwu Cheng,

Thank you for your email. The Institute is pleased to give you permission to use the 
image you downloaded from our website in your thesis. We requested that you list the 
Institute as the source o f the image.

Stephen Oesch

From: Cheng Q [mailto:chenglt@uwindsor.ca] 
Sent: Friday, October 07, 2005 2:55 PM 
To: Steve Oesch
Subject: request for copyright permission

Dear Mr. Oesch,

I have been writing my thesis for my Master o f Applied Science degree in Mechanical 
Engineering at the University o f Windsor. Within the Literature Review chapter of my 
thesis I would like to use the attached image downloaded from your website 
(http://www.hwysafety.org/ratings/rating.aspx?id=5) to illustrate research and/or 
experimental testing done by other researchers/organizations in my research area. I am 
requesting your permission to use this image in my literature review part to show the 
effect o f good structural des! ign on improving vehicle crashworthiness. Would you 
please respond to this as soon as possible?

Thank you very much!

Best regards,

Qingwu Cheng
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