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ABSTRACT

Although the term “agility” is still controversial in the literature of manufacturing 

systems, a consensus can be drawn in terms of how it is related to responsive and cost 

effective manufacturing in response to turbulent market. This dissertation proves that 

dynamic (rather than static) manufacturing planning and control (MPC) systems play an 

important role in realizing agility in manufacturing systems through linking management 

level with production level.

The objective of this research is to develop a dynamic MPC system which has the 

ability to accomplish rapid and feasible dynamic switching between the adoption of 

different policies, mainly inventory based and capacity based policies, in order to adhere 

to management strategies.

This objective is accomplished by developing an approach that integrates control 

theoretic approaches with classical MPC knowledge to model and analyze the proposed 

MPC system. The model incorporates different controllers for capacity, WIP and 

inventory and the whole system is controlled by a decision logic unit (DLU). Various 

dynamic analyses were conducted for the developed system including transient time, 

stability and steady state error.

A multi-layer architecture for the DLU was developed. The first layer contained 

the switching protocol between different controllers (policies) based on market demand. 

The second layer was responsible for deciding on optimal values for the controllers’ gains 

in each policy by manipulating a multi-objective optimization algorithm. The last layer 

was responsible for online production control to meet required demand.

The system proposed was demonstrated with an industrial case and its efficiency 

was validated using comparative cost analysis with classical MPC polices. Also 

numerical simulation experiments were conducted to show the ability of the proposed 

system to deal with turbulent environment.

Results showed that dynamic analysis gives an insight about tradeoffs between 

competing agility requirement and the role of MPC parameters to decide on optimal MPC 

policy. Furthermore, dynamic models provide a clearer picture about the behavior of 

manufacturing systems against turbulent demand patterns. Finally, the proposed approach 

closes the gap between management and operational levels and thus gears the enterprise 

towards agility. This research provides an innovative approach to the design and analysis 
of agile MPC systems.

iii
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OR: Expected order rate (parts/h)

SR: Shipment rate (parts/h)

T s r : Shipment time (h)

Gi: Inventory-based control gain (1/h)

PCB: Printed Circuit Board

SMT: Surface Mount Technology

RAM: Random Access Memory 

EOQ: Economic order quantity 

m/c: machine
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NOMENCLATURE

etc: Weight of the objective function in the capacity based MPC policy

ai: Weight of the objective function in the inventory based MPC policy

E: Accepted error in the regression analysis

Pr: Actual price of single RAM module

Ps: Selling price of single RAM module

Pb: Penalty for backlog

C lgw: Cost for loss of good will

Q h : Holding inventory quantity

Ch: Holding Cost

Q b : Backlog quantity

Cb: Backlog quantity

K: Order setup cost
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Chapter One

Agile Manufacturing Planning and Control Systems

1.1 Introduction

Manufacturing is the economic term of making goods and services available to 

satisfy human wants. Manufacturing implies creating value by applying useful mental or 

physical labour. The collection and arrangement of processes and material handling 

equipments defines the basic design of manufacturing systems. The manufacturing 

system takes inputs and produces products for the customers as its output (Black 2002).

The manufacturing system includes the actual equipment composing the 

processes and the arrangement of those processes and/or people. Figure 1.1 explains this 

definition. A Manufacturing System is a complex arrangement of physical elements 

characterized by measurable parameters.

Inputs Disturbances Outputs

M aterial

Energy ^ A manufacturing system is a Good products & parts

Dem and complex arrangement of Information------------------------
Social physical elements characterized Service to customer

Political Info. by measurable parameters D efective  & scrap ”

<Dao
3
O

13
a
x
w

Figure 1.1: Definition of Manufacturing System (Black 1991)
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Salzmann (2002) derived the following definition of manufacturing systems: “A 

manufacturing system is an objective oriented network of people, entities, and processes 

that transform inputs into desired products and other outputs; all managed under an 

operating policy”. Where objective is defined as the ultimate objective of the 

manufacturing system that should be able to help satisfy corporate goals, entities as 

machines, tools, floor space, software, transport equipment, suppliers, etc., inputs as raw 

materials, energy, and information, outputs: Desired products, wasted materials, wasted 

energy, and knowledge and finally operating policy as a set of rules that determine how 

people, system entities, and the processes are interconnected, added, removed, used and 

controlled.

The history of manufacturing systems shows how these systems evolved over 

time from classical paradigms starting from mass production to the modern paradigms of 

agile manufacturing. This evolution over the years was in response to an increasingly 

dynamic and global market with greater need for globalization and competitiveness. The 

nature of manufacturing system and its paradigms will also evolve in response to changes 

in the technological, political, and economic climate. Figure 1.2 describes the evolution 

of manufacturing systems in terms of manufacturing goals and enabling technologies.

In this thesis agile manufacturing systems are of interest. Manufacturing planning 

and control (MPC) systems in this new manufacturing paradigm are the main focus of 

this research, and in the following sections a brief introduction about both agile 

manufacturing systems and their MPC systems will be offered.

2
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Figure 1.2: Evolution of Manufacturing System (ElMaraghy 2002)

1.2 Agile Manufacturing Systems

The first question that arises when attempting to describe an agile manufacturing 

system is a definition for the term agile manufacturing. There are currently many 

definitions of agile manufacturing. Many people seem to define agile manufacturing in 

terms of the “ buzzword” programs they have implemented (Tracy 1994). This quote 

sums up the haphazard convention of defining agility rather well. Below are various 

definitions given to the term agile manufacturing.

Agility. The measure of a manufacturer’s ability to react fast to sudden, 

unpredictable change in customer demand for its products and services and make a profit 

(Noaker.1994).
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The National Science Foundation defines agility as “the ability to rapidly alter any 

aspect of the manufacturing enterprise in response to changing market demands”. Thus, 

agility introduces a notion of speed in the pace of changes driven by the enterprise 

(Gottlieb 1994).

In the business world, to be 'agile’ is to master change and uncertainty, and to 

integrate the business’ employees and information tools in all aspects of production 

(Gunaskeran 1998)

For the customer, agility translates into customer enrichment. The goal of an agile 

manufacturer is to present a solution to its customer’s needs and not just a product. A 

producer does this by learning what a consumer needs now and will need in the future.

For businesses, agility translates into co-operation that enhances competitiveness. 

An agile partnership crosses company borders and works together. A company that can 

best perform a particular business function shares that knowledge with other companies 

in the industry.

Moreover, agility is a comprehensive, strategic response to fundamental and 

irreversible structural changes that are undermining the economic foundations of mass 

production-based competition (Goldman et al. 1995).

Agile manufacturing: This term refers to the ability to produce so called custom- 

engineered or custom-specific parts usually in short production runs or one-of-a-kind 

batches. The concept of agile manufacturing was propounded in 1991 at the end of a 

government-sponsored research effort at Lehigh University (Gunaskeran 1998).

Terrence Schmoyer, executive director of the Agile Manufacturing Enterprise 

Forum, wrote: Agile manufacturing provides the ability to thrive and prosper in a 

competitive environment of continuous and unanticipated change and to respond rapidly 

to changing markets (O’Connor 1994).

4
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In addition to economic justification, customer satisfaction can also be a driving 

factor. Automotive Engineering uses the following definition for agile manufacturing: 

The agile manufacturer is the fastest to market, with the lowest total cost and the greatest 

ability to meet varied customer requirements. The final measure is the ability to 

“ delight” the customer (Tracy 1994).

Agile Manufacturing System: a system that can fabricate different objects 

simultaneously, without having to be shutdown for retooling (Kaplan 1993). Agile 

manufacturing assimilates the full range of flexible production technologies, along with 

the lessons learned from total quality management, “just-in-time” production and 

“ lean” production (Goldman and Nagel 1993).

Agile manufacturing systems are new systems of commercial competition, a 

successor to the still dominant systems that were developed around mass production 

based competition once they were coupled to the modem industrial corporation. Like the 

latter, agile manufacturing systems were made possible by the synthesis of innovations in 

manufacturing like reconfigurable manufacturing systems (RMS), information, and 

communication technologies with radical organizational redesign and new marketing 

strategies.

Agile Manufacturing Enterprise: They can be defined along four dimensions: (i) 

value-based pricing strategies that enrich customers; (ii) co-operation that enhances 

competitiveness; (iii) organizational mastery of change and uncertainty; and (iv) 

investments that leverage the impact of people and information (Gunaskeran 1998). That 

is, agility has four underlying principles: delivering value to the customers; being ready 

for change; valuing human knowledge and skills; and forming virtual partnerships.

Agility in action represents a paradox to enterprises, because firms compete and 

co-operate simultaneously. Agility, as the conventional meaning, denotes a fast-moving, 

agile actor. As described by the proponents of the agility concept, agile corporations are 

able to rapidly re-organize and even reconfigure themselves in order to capitalize on

5
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immediate, and perhaps only temporary, market opportunities. It is readily 

acknowledged, however, that no one firm will have all the necessary resources to meet 

every such opportunity. Core competencies of organizations can be pooled to reduce the 

time to market. Virtual corporations, enterprise re-engineering and adaptive/agile 

manufacturing are all new concepts based on the accomplishments of integrated 

manufacturing of the past decade. The new manufacturing enterprises are characterized 

by ability to effect flexible reconfiguration of resources, shorter cycle times and quick 

responses to customer demands. Information is a key factor in transcending physical 

barriers and imparting the enterprise-oriented agility and adaptiveness to organizations 

(Pantetal. 1994).

For many, “Lean manufacturing” and “Agile manufacturing” sound similar, but 

they are different. Table 1.1 compares both systems in some selected aspects.

Aspect Lean Manufacturing Agile Manufacturing

Definition describe efficient, un-wasteful, 

less costly manufacturing

said of a manufacturing system’s 

speed in reconfiguring itself to meet 

changing demands

Market Driver Response to competitive 

pressure

Complexity brought by constant 

change

Strategy Collection of operational 

techniques focused on 

productive use of resources

Overall strategy focused on thriving 

in an unpredictable environment

Manufacturing

Enablers

JIT, TQM...etc. RMS

MPC Pull systems Agile MPC systems

Table 1.1 Comparing Lean and Agile Manufacturing

In a similar sense, some researchers contrast flexible manufacturing systems 

(FMS) and agile manufacturing systems (AMS). Although agile manufacturing is more
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comprehensive in the sense of including the technical aspect and the business aspect 

while FMS is more a technical paradigm rather than a business one, however they both 

share the dedication to cope with variety of products with short life cycle within a 

minimum changeover time and cost. A significant difference among both systems can be 

viewed according to the type of adaptation: FMS provides generalized flexibility 

designed for the anticipated variations and built-in a priori (ElMaraghy, H. 2006) while 

AMS provides customized flexibility. Other differences can be also realized through 

comparing the cost of both systems where AMS are designed to be more feasible than 

FMS. Finally, from a volume perspective, FMS can deal with part families with limited 

volumes while AMS can be extended to more products with higher volumes. Based on 

the last perspective it can be said that reconfigurable manufacturing systems (RMS) are 

the best candidate systems to suite agile manufacturing paradigm together with other 

enterprise-level enablers.

1.3 Agile Manufacturing Planning and Control (MPC) Systems

Amongst a number of sub-systems of manufacturing, the manufacturing planning 

and control (MPC) system is recognized as one of the pivotal infrastructures that firmly 

supports the organization’s manufacturing to align with its higher level market strategy 

(Wacker and Hanson 1997). It is well established that manufacturing planning and 

control (MPC) systems are fundamental to the successful operations of a manufacturing 

organization. MPC systems are designed to ensure that production meets the demand 

specified by marketing (Berry and Klompmaker 1999). The MPC systems are diverse and 

extensive, however, from an operational standpoint they can be defined as the functioning 

or operating policies of the manufacturing system that ensure meeting the changing 

market demand.

Agile manufacturing system is not simply concerned with being flexible and 

responsive to current demands, though that is an obvious requirement. It also requires an 

adaptive capability to be able to respond to future changes. This has two elements: (i) 

development of internal capability. For example, a lead-time reduction target may be

7

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



achieved through product redesign or the improvement of an MRP system, leading to 

capabilities in design, factory-floor organization; (ii) ability to configure the company’s 

assets (human and capital) to take advantage of future short-lived opportunities. This may 

depend on the use of technology, flexible organization, or the reliance on shifting 

alliances, created and dissolved according to market needs (Gunaskeran 1998). Based on 

the previous analysis, Agile MPC systems should be dynamically designed so that they 

are able to internally adapt to different market trends and strategies and at the same time 

their parameters and components can be reconfigured to implement any required 

manufacturing strategy adopted by the higher level management. The proposed agile 

MPC system in this dissertation fulfills both requirements.

Traditionally, MPC systems were categorized into two main categories, push and 

pull systems (sometimes referred to as level scheduling and chase strategies) where each 

has its various enabling tools (Venkatesh et al. 1996). The development of new 

technology such as modular design and open control architecture and the evolution of 

modem reconfigurable manufacturing systems (where exact capacity and functionality 

can be supplied to the system when needed) gave the previous two general MPC systems 

new dimensions. One can perceive the push and pull MPC systems in today’s modem 

manufacturing context as inventory based MPC system and capacity based MPC system 

respectively.

As stated before, Agile MPC should be adaptable and reconfigurable. In other 

words, an agile MPC system is supposed to operate in capacity based modes to be 

responsive and cost effective when mass customization is the marketing competitive 

strategy and in the case of variety of products with short life cycle. It also can operate in 

inventory based modes in cases where market is stable for a long period or the demand 

forecast is of high degree of certainty or if the organization is currently focusing on cost 

as the only market competitive strategy or finally if the customer service level is based on 

the availability of the products at any time. In addition, a mix between these two modes is 

sometimes required (hybrid mode) as in the case of seasonal products.
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Chan and Bums (2002) showed that the general consensus based on various 

comparative studies is that the existing MPC systems are complementary rather than 

competitive. There is no single perfect MPC system suited for all types of manufacturing 

conditions and marketing trends. Thus, agile MPC system will be subject to continuous 

reconfiguration over time in response to changing demand environments. Agile MPC 

should intend to integrate conflicting objectives of the manufacturing strategy and at the 

same time reflect the strategic enterprise demand management strategy.

In this dissertation, agile MPC system is defined as:

The ability to accomplish rapid and feasible dynamic changeover between the 

adoption of different manufacturing policies, mainly inventory based and capacity based 

policies, (utilizing essentially a reconfigurable manufacturing system) in order to adhere 

to the higher level management strategies dictated by market needs or trends.

1.4 Agile MPC Systems Modeling

1.4.1 What is MPC system modeling?

A model is a description of a system and is generally regarded as a representation 

of reality. Details that are unnecessary are not included. MPC systems are usually 

modeled for the following purposes (which are the motives for the developed agile MPC 

system in this dissertation):

• Understanding

• Learning

• improving/optimizing

• decision making

1.4.2 Types of MPC systems models

Manufacturing planning and control (MPC) system models can be classified into 

several categories as explained below:
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From the objective stand point they can be classified into:

-  Prescriptive: The model determines how to set the decision variables to optimize 

the MPC system’s performance

-  Descriptive: Given a set of values for the decision variables, the MPC model 

estimates the system’s performance

From the approach stand point they can be classified into:

-  Physical: They are models which manifest themselves in physical terms (real 

component)

-  Mathematical: They are a set of mathematical equations and/or logical 

relationships used to describe the MPC system

From the time dimension stand point they can be classified into:

-  Static

-  Dynamic

Since agility is highly related to fast response and quick adaptation, thus the time 

is a very important factor in modeling agile MPC. Below is a detailed explanation of both 

static and dynamic system models.

Static models

Static models attempt to provide a static representation of dynamic systems. Static 

models generally portray the possible flow paths of objects through a system. This 

information is very helpful in determining what items participate in the process and the 

functions performed by the system. Although static representations can indicate the 

allowable system behaviours, they cannot depict the range of time-variant behaviour 

generated as a result of resource availability or the number of items flowing through the 

process. To adequately predict the performance characteristics of dynamic systems, the 

time-variant behaviours of the system must be defined and represented (Whitman et al. 

1998).
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Dynamic models:

Dynamic representations of systems attempt to capture and describe the behavior 

of the system over time under different operating conditions. Although the static system 

representations are capable of providing the vast majority of the information needed to 

construct a dynamic systems model, they do not possess the mechanisms needed to enact 

the process behaviour constraints defined in their representations. Dynamic models in 

contrast, are capable of executing sets of system behaviour roles and tracking the 

system’s transition through a series of states. In this manner, a dynamic model can 

provide information about the state of the system at a given instance in time or can 

generate performance measures of the system over a given period of time. This range of 

potential behaviours is very difficult to represent with a static system model. Dynamic 

models are typically used to aid analyst in a predictive manner. These models are 

frequently used to provide answers to "what-if' scenarios (Whitman et al. 1998). 

Dynamic models can be used iteratively to study MPC system behaviour under different 

operating conditions. Subtle changes in resource availability or system loading (example 

sudden change in demand) can have dramatic effects on the performance of the MPC 

system.

The modeling approach for the developed agile MPC system in this dissertation 

can be classified as a descriptive mathematical dynamic one. This can be justified since 

MPC systems aims towards planning and predicating the system performance under 

different scenarios in order to control the system so it is descriptive, also it is more 

feasible especially for control purposes to have a mathematical model and finally no 

doubt that working in an agile environment needs high sensitivity to time-variant events 

and quick responses and thus the model should be dynamic.

1.5 Problem Statement

In today’s agile environment, decisions related to various areas become more 

dynamic and interrelated. Firms need to couple their manufacturing strategy to their 

market strategy to remain responsive and competitive. Agile manufacturing planning and
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control (MPC) systems play the major role in satisfying this requirement and they should 

be capable of quickly reconfiguring to adhere to different market strategies adopted by 

the enterprise.

Traditional static view of MPC systems is not a realistic way to represent agile 

systems. Therefore, there is a need to have a comprehensive dynamic model for today’s 

agile MPC systems that can manage to synchronize and control the continuous 

reconfiguration of these systems.

1.6 Research Objectives

The objective of this research is to study how agility can be enhanced in 

manufacturing systems through dynamic analysis of agile manufacturing planning and 

control (MPC) systems. This is achieved through dynamic modeling and analysis of a 

reconfigurable MPC system and coupling it to the high level business strategy. Such 

coupling is achieved by developing an intelligent decision making unit that optimally 

decide the best MPC configuration (policies) and its parameters settings so that it can 

meets the business strategic goals.

The thesis statement can be as follows:

“Enhancing agility in modem enterprises can be achieved through linking 

business strategy with manufacturing strategy via an agile MPC system. An approach to 

achieve this goal is through developing an intelligent dynamic decision logic architecture 

that intakes the high-level business strategy and subsequently delivers an optimal 

manufacturing strategy to a reconfigurable MPC system”
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1.7 Research Approach

The objective of this research work was achieved through the following approach:

• Developing a comprehensive agile MPC model: The model incorporates, for the 

first time, different distributed controllers to be able to adopt different MPC 

policies according to the market strategy. These controllers represent the system 

major parameters as WIP (work in progress), inventory and capacity levels as 

being dynamic and adaptable The modeling approach is based on control theory 

were the transfer function of each policy is derived to be further analyzed. The 

model also includes a supervisory controller referred to as the decision logic unit 

(DLU). The DLU intakes the high level strategic market decisions and constraints 

together with a feedback of the current manufacturing system state and optimally 

adapt the manufacturing system to the required operation policy at these 

conditions. This centralized control unit is also be responsible for reacting to all 

unpredicted internal disturbances

• Analysis o f the developed agile MPC Model: The proposed MPC model is 

dynamically analyzed. The analysis includes different time response measures, 

steady state error and stability analysis for every MPC system configuration. In 

addition, a sensitivity analysis is conducted to examine the effect of different 

system time parameters on the system performance. Some control-based solutions 

to improve the performance (or agility) of the developed MPC system is 

suggested. The objective of these analyses is to better understand the dynamic 

behaviour of the agile MPC system and in turn design the DLU for optimal 

performance of the system.

• Design o f the decision logic unit: A multi-layer architecture for the decision unit 

logic unit or the supervisory controller is designed. The architecture of the DLU is 

composed of three layers where the first layer is responsible for dynamically 

managing the selection of the different MPC policies that suits the market strategy 

(the switching protocol). The second layer describes an algorithm for the optimal 

settings of the distributed controllers in each of the MPC policies. A multi-
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objective optimization technique is implemented to decide on the trade-off 

between the competing agility targets (responsiveness and cost) when determining 

the values of the different controllers’ gains. A sensitivity analysis for the 

different controllers’ gains (optimization variables) is also conducted. Finally the 

third layer of the architecture is responsible for the automatic on-line control of 

manufacturing system to maintain required production, work-in-process and 

inventory levels that meets the market demand.

• Validation o f the developed agile MPC system: The validation of the proposed 

approach is carried out through various attempts. A case study for an automatic 

PCB assembly line is used to highlight the applicability of the approach. In 

addition, a comparative cost analysis between the proposed agile MPC system and 

classical MPC systems is carried out to show the superiority of the developed 

approach in dealing with different demand patterns. A comparison between the 

classical inventory-based MPC policy and the inventory-based policy in the 

developed MPC system is also conducted to show the efficiency of the developed 

approach in dealing with imperfect demand anticipation scenario. Finally 

numerical simulation experiments are made to test the ability of the capacity- 

based policy in the developed agile MPC system to deal with external 

disturbances such as rush orders as well as internal ones such as machine failure. 

The simulation compares this policy with the classical capacity-based MPC policy 

to highlight the efficiency of the developed agile MPC system under these 

conditions.

1.8 Structure of the Dissertation

The remainder of this dissertation is composed of six chapters.

1. Chapter 2 presents a review of the existing approaches to the dynamic analysis of 

manufacturing systems is carried out. The review will briefly address discrete 

event simulation, system dynamics and nonlinear analysis applied to 

manufacturing systems. The detailed review will be on the application of control
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theoretic approaches to the dynamic analysis of different manufacturing aspects 

including MPC systems.

2. Chapter 3 describes the proposed agile MPC system. The modeling approach is 

described together with the different MPC parameters and time variables. The 

different MPC policies or configurations are also presented with the detailed 

mathematical formulation of the characteristic equation for each configuration.

3. Chapter 4 includes the proposed MPC model is analyzed. The analysis includes 

different time response measures, steady state error and stability analysis for 

every MPC system configuration. In addition, a sensitivity analysis is conducted 

for the different system time parameters in the system.

4. Chapter 5 describes in detail the design of the decision unit logic unit or the 

supervisory controller. The algorithm for each layer of the designed DLU 

architecture is explained. In addition, some sensitivity analysis for different 

controllers’ gains involved in the multi-objective optimization in the second layer 

is conducted.

5. Chapter 6 outlines the validation of the proposed approach. The validation 

consists of a case study for an automatic PCB assembly line, a comparative cost 

analysis between the proposed agile MPC system and classical MPC, comparison 

between the classical inventory-based MPC policy and the inventory-based policy 

in the developed MPC system and finally simulation experiments are made to test 

the ability of the capacity-based policy in the developed agile MPC system to deal 

with disturbances.

6 . Chapter 7 summarizes the work performed and identifies future research areas 

and the natural extension of the work.
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Chapter Two

Dynamic Analysis of Manufacturing Systems 

Literature Review

2.1 Introduction

The application of dynamics theories and approaches to manufacturing systems is 

not quite recent; however, there are many areas in manufacturing systems research that 

still need to be viewed from a dynamical point of view. Dynamics theories and 

approaches provide different tools to understand, model and control the behaviour of 

manufacturing systems.

The dynamical approach consists mainly of modeling manufacturing systems by 

means of its functional structure and also its dynamical control via adjustment of the 

systems’ parameters as in discreet event simulation approaches. The dynamical approach 

also provides analytical tools to understand the complexity of manufacturing systems 

such as chaos theory and non-linear dynamic analysis. This analysis should be very 

useful in understanding and controlling the manufacturing systems variations (which are 

the major source for its complexity) that occur due to various stochastic and 

unpredictable reasons in the system such as demand variation, process variation, machine 

breakdowns and other sources of systems variation.

This chapter will start by briefly exploring three of the main approaches to the 

dynamic analysis of manufacturing systems. The first approach is the discrete event 

simulation (DES) which has been extensively used to study the dynamic behaviour of 

manufacturing systems. The second approach is systems dynamics (SD) methods and 

their application to the field of manufacturing while the third approach is the application 

of different nonlinear dynamic analysis techniques to study manufacturing systems. Some 

research examples for each approach will be discussed.
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This brief review will be followed by a detailed review for the fourth dynamic 

approach in studying manufacturing systems which is the control theoretic approach and 

its application to different manufacturing systems aspects. Control theoretic approaches 

and methods are used in this dissertation to model, analyze and control the proposed agile 

MPC system. Finally a summary of the review is presented outlining the research needs 

and which of these needs will be addressed in this dissertation. Figure 2.1 summarizes the 

different dynamic approaches adopted to analyze manufacturing systems.

Figure 2.1: Summary of Dynamic Analysis Approaches of Manufacturing Systems

2.2 Dynamic Analysis of Manufacturing Systems Using Discreet Event 

Simulation

Simulation is concerned with modeling the behaviour of a system as a whole, by 

defining in detail how various components interact with each other. Garrido (2001) 

defines simulation as “ ...larger and more complete model built from conceptual model, 

for studying the behaviour of a real system”. This model mimics the behaviour of the 

system under certain constraints. Discrete event simulation (DES) concerns the modeling 

of a system as it evolves over time by representation in which the stated variables change 

instantaneously at separate points in time (Roth 1987) when an event occurs.

Examples of dynamic analysis of manufacturing systems using DES include the 

approach by Hillon and Porth (1989) where they used the time event graph theory with

Dynamic Analysis Approaches of 
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DES to model and analyze job-shop systems and to evaluate the steady state performance 

of the manufacturing system under deterministic and cyclic production process.

Cohen et al. (1989) have presented algebraic models for discrete event 

manufacturing systems. The systems are modeled as timed event graphs, which are 

special case of timed Petri nets. The discrete event manufacturing system’s behaviour 

represented by state evolution equations using min-max algebra is shown to be linear for 

the deterministic case. Hence, the discrete event manufacturing system can be modeled as 

linear, time-invariant, finite-dimensional system. This linear algebraic formulation allows 

extension of certain results of manufacturing dynamic analysis from conventional linear 

systems theory to the discrete event case.

Queuing theory is a natural candidate for DES modeling. Baccelli and Makowski 

(1989) have used classical queuing theory along with stochastic ordering theory to model 

and analyze queuing manufacturing systems with synchronization techniques.

Mervin and Suh (2002) integrated DES and axiomatic design approach to analyze 

the complexity of manufacturing system design process. The advantage of using 

axiomatic design for a simulation model is the answer to the essential question: what to 

model? This is always a difficult and a major question that should be tackled before any 

simulation of a manufacturing process. Failing to answer that question in a good manner 

leads to the failure of the whole simulation experiment even if it was without any errors. 

They succeeded in the development of a computer-based tool that converts the problem 

of manufacturing system design to an axiomatic representation and then into a flow 

diagram that is automatically simulated based on the given design data.

Herrmann et al. (2002), presented adaptable simulation models for manufacturing 

systems. They developed what they called “adaptability index” to measure the ease of 

changing a simulation model. The types of changes include: changes to the real system 

that the model must incorporate, more detailed specification of the model, and changes to 

the questions being answered. The justification of the approach was based on the fact that
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new responsive manufacturing systems need a very responsive simulation tool to cope 

with these continues unexpected changes.

Relating DES to manufacturing planning and control systems which are the focus 

of this dissertation, Boughton and Love (1997) introduced an approach to the simulation 

of MPC systems and one which provides the necessary functionality to address control 

system design issues. They designed and developed an extensible class library called 

WBS/Control. The types of classes which populate the library are part sets, stock sets, 

shop calendar and suggested orders and work and purchase orders. The functionality, 

both current and future, offered by WBS/Control means that different planning and 

control systems can be modeled: standard and non-standard implementations, hybrid 

systems and new designs. The combination of WBS/Control and a shop-floor simulator 

(DES) provided an opportunity to understand how new or modified planning and control 

systems will perform in the context of the complete system prior to implementation. The 

MPC approach was geared towards lower operational level activities rather than higher 

level managerial decision making activities.

2.3 Dynamic Analysis of Manufacturing Systems Using System 

Dynamics (SD) Approaches

System Dynamics SD is a method for studying the world around us. It deals with 

understanding how complex systems change over time. Internal feedback loops within 

the structure of the system influence the entire system behaviour; it began in the 1960s by 

Jay Forrester at MIT in his book Industrial Dynamics. It has since grown to include 

practitioners in many fields including the physical and social sciences, mathematics, law, 

medicine, and education. It is a well formulated methodology for analyzing the 

components of a system including cause-effect relationships and their underlying 

mathematics and logic, time delays, and feedback loops. It began in the business and 

industry world, but is now affecting education and many other disciplines. More and 

more people are beginning to appreciate the ability of the system dynamics methodology 

to bring order to complex systems and to help people learn and understand such systems.
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System dynamics has been defined as “a method of analyzing problems in which time is 

an important factor, and which involve study of how the system can be defended against, 

or made benefit from, the shocks which fall upon it from outside world” (Coyle 1996).

System dynamics can be considered to be a method of system enquiry, and as 

such occupies a position between the sciences of operations research (OR) and ‘systems 

thinking’ (a philosophical approach) (Wolstenholme 1990). In considering how SD could 

be related to these ‘hard’ and ‘soft’ sciences, Keys (1988) concluded that the exact 

position of SD remained unresolved, but maintained that it is possible for scientists in 

both fields to relate to it. SD may also be considered in the sense of servomechanisms 

(the control systems view) and cybernetics (organizational/human systems structuring for 

problem solving) (Pidd 1992). Two examples of the application of systems dynamics to 

the modeling and analysis of manufacturing systems are presented here.

Sterman (1989) proposed that the operation systems (including manufacturing 

systems) in the operation management field are subject to natural laws of dynamics and 

under certain circumstances may therefore be capable of complex and even 

counterintuitive behaviour. Hence for controllability, the number of control processes 

available should match the number of existing system variables. Such is the challenge 

which confronts the operations management dynamicist who wishes to understand the 

full systemic implications of this constellation of resources, processes and deliverables, 

with a mission to control. He applied this to manufacturing supply chain management 

using causal loops and stock flow diagrams.

Sterman (2000) derived various reasons why supply chains exhibit oscillations, 

amplifications and phase lag. The summary of the conclusions derived was that the main 

reason for this undesirable phenomenon was that every actor in the supply chain is 

working in isolation from the other actors. Even if each actor manages his decision rules 

to generate stable and smooth responses to unanticipated shocks due to market dynamics, 

the overall performance is not satisfactory.
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Fowler (1999) proposed a design of production control systems as an example of 

how system dynamics approaches may be applied to improve fundamental understanding 

and evaluate “high-level” designs. The design integrated the core concepts of feedback 

and feedforward system dynamics to improve the responsiveness of the production 

system within the whole supply chain while maintaining a good level of system’s 

stability. The proposed system is shown in figure 2.2. Simulation results of the dynamic 

behaviour of the system to a step disturbance of the sales emphasized the point that in 

systems which inherently possess large inertial lags and time delays, simultaneous 

achievement of sensitivity and stability, although problematic, is nonetheless potentially 

attainable, through judicious design informed by systemic understanding.
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completion rate
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controller 
(start rate)

Demand related production rate policyrelated production
(feedforward)

Figure 2.2: Combined feedback and feedforward control model (Fowler 1999)

Semere (2005) argued that on the aggregate level of manufacturing system 

modeling, system dynamics has the advantage over the analytical models in capturing its 

complexity. He applied system dynamics to model different manufacturing aspects; 

namely quality, capacity, reliability, cost and flexibility shown in figure 2.3. These 

models where used together with AHP and ANP approaches to develop a multi objective
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optimization approach to asses and select different configurations for any system. The 

approach was referred to as House of Assessment.
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Figure 2.3: A Causal Loop Diagram for a Manufacturing Flow Dynamics, (Semere 2005)

2.4 Dynamic Analysis of Manufacturing Systems Using Non-Linear 

Approaches

2.4.1 Application of chaos theory to manufacturing systems

relatively recent. Chaotic phenomena in a customary sense can be found in different 

aspects of manufacturing systems.

Wiendahl, H and Scheffczyk, H., (1999) introduced an approach for simulation 

based analysis to understand the complexity of manufacturing systems using nonlinear 

dynamic theory. The approach started by using simulation modeling techniques to gather 

different data of the system and different operating conditions in order to analyze the 

system behaviour. The simulation data of the behaviour of some of the manufacturing 

system parameters after some statistical evaluation could seem chaotic and thus

The application of chaos theory to manufacturing systems can be considered
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traditional linear analytical methods fail to give good understanding and prediction of the 

manufacturing system performance.

They presented a phase-space diagram as one of the nonlinear dynamic analytical 

tools to interpret these data and give a better understanding of the system behaviour. The 

long term behaviour of dynamic systems is described by geometrical structure in the 

phase space. System behaviour with determined or determined-chaotic components will 

always present an attractor during any period of observation whereas in long-term 

observation period random behaviour fills the phase space evenly with points. These 

attractors can be reconstructed from a single measured signal. The original manufacturing 

system behaviour is thus reconstructed by time delayed data. The new state space is 

diffeomorphically equivalent to the generally unknown original state space of the 

simulated manufacturing system. Such analysis gives a higher dimensional understanding 

of manufacturing systems and their dynamic behaviour.

Related to the research focus of this dissertation, Scholz-Reiter et al. (2001) 

applied nonlinear dynamic analysis to better understand the manufacturing planning and 

control (MPC) problem in modem flexible systems that show chaotic behaviour. They 

stated that it is possible to influence and control the state and the evolution of a 

production system by manipulation of the system trajectory. A dynamical system can be 

controlled either by forcing the system variables on defined trajectories or by variation of 

the system parameters. The usual method in MPC was the control of variables such as 

inventory levels or work-in-process. But the idea behind their approach was to control of 

the intrinsic dynamics of a production system. This can be done by control of the system 

parameters which are considered to be flexible and capable of being influenced.

They also combined the different parameters of a production system into 

functional groups that enable the system to work. These functional groups generate the 

dynamics of a production system and enable and influence the product flow through the 

system. They are at first a framework for modeling the production system and provide 

finally possibilities to control the production process by a controller or by the system
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itself. The latter case is a step towards self-control, which is a fundamental idea in the 

dynamical approach. The idea of control is the adjustment of these functional groups to 

meet the current requirements on the production system. They showed that the 

manufacturing system shows chaotic behaviour due to the coupling that exists between its 

different parameters and thus the nonlinear analysis of this chaotic behaviour could lead 

to better control over the influential parameters.

Schmitz et al (2002) conducted a good survey on the application of chaos theory 

to manufacturing systems and they stated that the complexity of manufacturing systems is 

basically due to variability in the system. In their research they proposed chaos theory to 

prove the complexity of manufacturing systems and used chaos theory tools to 

understand it. Their work focused on discrete production systems and mainly the simplest 

discrete system (BMMS) formed of a buffer (B), 2 parallel machines (MM) and a switch 

(S) to maintain recycling in the system. Their modeling approach was based on 

simulation. Nonlinear methods and sensitivity analysis were applied to analyze the 

simulation results. They claimed that sensitivity analysis is much better tool to examine 

and express the chaotic behaviour of the discrete manufacturing system than nonlinear 

analysis. The reason for that is that time-series analysis (using simulation) produces no 

meaningful results with nonlinear methods like phase space reconstruction due to the fact 

that the elements of the time series take a limited number of recurring values. As for 

sensitivity analysis they managed to adjust the work content machine (in terms of time) 

as a number that can take a value slightly less (or more) than one, although the system is 

discrete, and showed the effect of the perturbation of this variable. By this they proved 

that discrete manufacturing systems are sensitive to initial values and thus they exhibit 

chaotic behaviour which leads to system complexity.

Chryssolouris et al (2004) presented a chaos theory approach to study the 

dynamicity of scheduling problem in manufacturing systems based on the analysis of the 

phase space representation of the system. They presented a new dispatching rule in 

manufacturing systems based on the study of phase portrait (space) diagrams of already 

existing dispatching rules. The new rule was called phase portrait rule PPR.
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Massotte (1996) considered a chaotic map to be a model of production cell. He 

defined X„ as the quantity of parts present in the cell which is also referred as the WIP 

(work in process). After some intermediate formulas the behaviour of the system was 

derived to be: X„+j = X„ + Xn (R - Xn /X) where X is the desired WIP level and R is a 

control constant. The previous equation is a logistic map which exhibits a chaotic 

behaviour with some parameters setting. He showed that the understanding of such 

settings will help managing the performance of the production cells.

2.4.2 Application of traffic dynamics to manufacturing systems

Concepts of traffic dynamics that are based on statistical physics and nonlinear 

dynamics have been applied to manufacturing systems. Helbing (2005) used these 

concepts to model and optimize the production processes. The manufacturing system was 

modeled as a one dimensional traffic flow with consumption and delivery rates that vary 

at each production station. The effect of demand changes over the stability of the 

manufacturing system was examined and simulated and he arrived to the following 

suggested strategies to stabilize the production:

1) Reduction of the adaptation time to demand variation

2) Anticipation of the temporal evolution of the inventories

3) Taking into account the WIP

4) Modification and adjustment of the management strategy.

Lefeber (2005) applied the traffic flow theory, namely the nonlinear versions of 

the LWR model, to use the analytical relation describing the flow of cars form one point 

to another to describe the flow of products in production lines and the homogenous 

highway to resemble the production line. The analogy continues where he described the 

manufacturing line using the same traffic model parameters; flow measured in unit lots 

per unit time, density measured in unit lots per unit machine and speed measured in unit 

machines per unit time. The three equations in the LWR model that relate these 

parameters were manipulated to arrive to his developed partial differential equations that

25

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



describe the dynamics of manufacturing flow. A major advantage of the developed model 

over similar queuing theory models is the ability to incorporate the stochasticity and 

nonlinearity as experienced in manufacturing lines. Similar approach was also adopted to 

model the re-entrant manufacturing lines with different nonlinearities involved by 

Armbruster et al (2005).

2.4.3 Application of the notion of “Periodicity” in manufacturing systems

Nam Suh (2003) introduced the concept of periodicity (which is the other side of 

the chaotic approach) as an approach to decrease time-dependent combinatorial 

complexity in manufacturing systems. The time-dependent combinatorial complexity 

occurs when the system range changes as a function of time. This phenomenon will lead 

to having the design range outside this system range and thus increase the information 

content of the system leading to the increase of the complexity. To deal with such 

complexity Suh proposed to have functional periodicity that can be built into the 

manufacturing system during the design stage to make the system more stable and 

reliable. To convert the system from combinatorial complexity to periodic complexity the 

following steps should be done:

1) Determine a set of functions that repeat on a periodic basis

2) Identify the design parameters (DP) of a system that may make the system range 

of the functional requirements (FR) undergo a combinatorial process.

3) Transform the combinatorial complexity to a periodic complexity by introducing 

functional periods.

4) Set the beginning of the cycle of the set of the FRs as t=0.

5) Stop the process momentarily.

6 ) Reinitialize the system by establishing the state of each function at the instant of 

re-initialization.

7) Allow the initiation of the next cycle
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An application of this theory to decrease the manufacturing system’s complexity was 

presented through a case study that involved an integrated system of two subsystems one 

of them involves a robot and multiple machines and there is a need to have an optimal 

scheduling plan. Different scenarios were explored and the introduction of periodicity to 

each scenario lead to decreasing the complexity of the scheduling task and thus to better 

productivity of the system.

2.5 Dynamic Analysis of Manufacturing Systems Using Control System 

Theoretic Approaches:

The application of control theory in manufacturing has been extensively 

researched. However, its application on the system-level is not as much as on the 

machine and component’s level. The control theory gives a powerful insight to 

understand the dynamics of manufacturing systems and thus the ability to manage its 

complexity. In this section different publications were reviewed to illustrate the 

application of control theory to understand the dynamicity of different manufacturing 

systems aspects on the system-level, these include production, quality, inventory, supply 

chain, aggregate planning, scheduling and capacity.

The first approach to apply control theory to manufacturing systems was by 

Simon in 1952 where he applied the servomechanism theory to control production rate 

based on an optimum inventory level. The aim of the control system developed was to 

minimize the cost by minimizing inventory. Customer orders per unit time where the 

loads of the system and the variables were the actual production rate and the planned 

production rate. The model was then expanded to account for production lag as shown in 

figure 2.4. Finally cost analysis was carried out based on a constant and an oscillating 

function to reflect the fluctuation of production and inventory of the manufacturing 

system.

The controllers design (inventory controller K2 and production lag controller K3) 

was proposed based on the objective of minimizing the cost. The approach and its
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analysis were quite appropriate for that time, however a lot of the assumptions which the 

model was based on need to be relaxed. These assumptions include having single product 

and continuous production.
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Figure 2.4: Inventory Control Systems with Production Lag (Simon 1952)

Where: 0i is the reference inventory level

® l  is the system load (customer orders)

® o  is the finished inventory level

e is the inventory error

r) is the planned production rate

p. is the actual production rate

Kj is an integrator

K2  and K3 are controllers

K4  is production lag operator

John et al. (1994) presented a generic model of an automatic pipeline feedback 

compensated and order based production control systems (APIOBPCS) shown in figure 

2.5. The model is a natural extension of the work of Towill (1982) where he examined 

the application of control theory to model a production control system (ordering system) 

based on inventory level requirement. They showed that when information about the 

production lead time, which was based on modeling the manufacturing system as a 

pipeline, is added into the production decision rule the dynamic behaviour of the 

manufacturing system is improved. This addition was achieved through adopting work in 

process (WIP) compensation based on comparing the current WIP to the desired WIP
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level based on the estimated production lead time times the demand. The work presented 

was based on the assumption that the pipeline lead time is fixed and known. Results 

showed that the response of the manufacturing system to the change in demand when 

compensating for WIP based on a WIP target that varies with demand is much better than 

when the target WIP is fixed. They also suggested some optimal parameters setting for 

the developed design. The settings are having the Tw (inverse of WIP based production 

control law gain) equals Ta (consumption averaging time) and both values equal double 

Tp (estimate of the production lead-time) and finally 77 (inverse of inventory based 

production control law gain) should equal Tp.

VCONDemand Policy

AVCON

EINV ORATE

m
RpeSneRolcy

CMP „

a

Inventory Pofcy

Figure 2.5: The Structure of APIOBPCS (John et al. 1994)

Where: AINV Actual INVentory, 

a = 1 / (T+a),

AVCON: average virtual consumption,

COMRATE: completion rate,

CONS: consumption or market demand,

DINV: distributors inventory holding,

DWIP: desired Work In Progress,
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EINV: error in Inventory Holding,

EWIP: error in Work In Progress,

FINV: factory inventory,

ORATE: production order rate,

Ta: consumption averaging time constant,

Tp: estimate of the production lead-time,

77: inverse of inventory based production control law gain,

TINV: target system inventory holding,

Tp: the production lead-time in units of sampling intervals,

Tw: inverse of WIP based production control law gain,

VCON: virtual consumption

To will et al. (1997) developed a master production scheduling decision support 

system (MPS DSS) within a multi product medical supplies market. The model was 

based on the same APIOPBCS model where the previous assumption of known and fixed 

lead time was relaxed and assuming the lead time to be adaptive. The total system input 

is based on the inventory and production levels required. The system contained multiple 

feedback control loops to adjust the inventory (based on customer service level) and 

production level together with an adaptation of the current lead time of the system. The 

structure of the system is shown in figure 2 .6 .

As for the dynamic analysis of the system, the lead time Tp was estimated once by 

exponential lag and another time with a cubic lag. In addition, different system 

parameters settings were investigated in terms of their effect on the system performance 

and customer service level. Different simulation results of various settings combinations 

showed the importance of lead time adaptation (achieved through feedback loop) and the 

use of integral controller for controlling the inventory level in achieving the required 

customer service level of this market
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Figure 2.6: The Structure of MPS DSS with Adaptive Pipeline Feedback Loop 

Structure (Towill et al. 1997)

The same APIOPBCS model was used by Disney and Towill (2002) in the 

analysis of supply chain management. Their focus was on a vendor managed inventory 

(VMI) systems where they integrated it with the production and inventory algorithm 

APIOBPCS as shown in figure 2.7. They described this system using z-transforms 

technique. The transform functions developed for the system were used to study its 

behavior in the time domain. The focus of the analysis was mainly on the stability 

conditions of the VMI-APIOBPCS system against the variation of different parameters 

and a procedure for determining general stability conditions for the investigated system.

The results showed different parameters settings of the controllers that will 

stabilize the system and showed the effect of different system parameters on each other. 

The most important result was that when the WIP controller Tw value is equal to the 

inventory controller Ti value, the system will always be stable (much more robust) 

whatever the other settings are and with different production delays calculations. Also if
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both values cannot be practically equal, limiting conditions were presented to guarantee 

stability of the whole supply chain system.
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Figure 2.7: The VMI- APIOBPCS System’s Structure (Disney and Towill 2002)

Where: P = 1 / (T+q),

COMRATE completion rate,

CONS consumption or market demand,

DES dispatches,

DINV distributors inventory holding,

dSS incremental change in the re-order point, R,

G gain (distributors re-order point/average consumption),

R re-order point,

T transport quantity,

Tq exponential smoothing constant used at the distributor to set R,
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The APIOPBCS model was further modified by Disney and Towill (2005) to 

study the effect of the variation of lead time on the inventory drift. They explained the 

reason why the Final Value of the inventory levels of APIOPBCS experience an offset is 

because the desired WIP level is based on the “ perception” of the production lead-time 

Tp and the actual WIP is based on the “ actual”  production lead-time. They also verified 

this observation by the Final Value Theorem. To over come this problem, the structure of 

the system was modified. The modification, shown in figure 2.8, aimed at avoiding this 

effect by replacing the “ actual”  WIP signal with a WIP signal that would have been 

generated if the previous T p’ (rather than Tp) is added to the ORATE signals.

Results showed that the production offset was solved even if the estimated lead 

time was different than the actual lead time. However, the stability of the system to 

various parameters settings was questionable and they declared that further research 

should be carried to investigate the stability boundaries of the modified model.
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Figure 2.8: (a) Original APIOBPCS WIP Estimation,

(b) Modified APVIOBPCS WIP Estimation (Disney and Towill 2005)

Wikner (2003) explored the problem of variable lead time in models like the 

APIOBPCS using continuous time dynamic modeling. Based on the correspondence
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between the nth order delay and the Erlang-k distribution, he proved that the interpretation 

of the deterministic delays can be extended also to involve probabilistic properties. The 

analysis suggested that the point of departure for modeling a lead time using linear 

control theory could be to estimate which Erlang-k distribution best fits the historical data 

and then set the order of the delay and the time-constant according to the analysis. A 

model of the expected dynamic behaviour was obtained.

Modeling manufacturing systems using the pipeline approach developed by john 

et al. (1994) gave the dynamic analysis of manufacturing systems in the previous 

researches a significant thrust. Although most of the applications were geared towards 

supply chain management, there is still a great potential for the application of this model 

to represent agile manufacturing systems. One of the enhancement opportunities for the 

APIOBPCS model in the agile paradigm is to include a capacity scalability component 

that can be also controlled and related to the demand inputs. This is justified because in 

real practice production disturbances are expected and WIP adjustment can not 

accommodate large disturbance. Thus capacity increase via a capacity controller can 

handle this in a more efficient manner. Also other modem control design approaches can 

be implemented not only to increase the responsiveness and robustness of this model but 

to synchronize the work of the different controllers involved in the systems. Examples of 

this can be switching and supervisory controllers.

Pritschow and Wiendahl (1995) presented an approach to apply control theory for 

production logistics. They tried to propose the idea of having a planning controller as 

well as a process controller as shown in figure 2.9. However, in the work presented the 

planning controller just used the logistic curve to indicate the operating points of the 

system. As for the process controller, a proportional controller was used to control WIP 

level. WIP as the control variable was corrected by adding more capacity to the system as 

shown in figure 2.10. A dead band in the controller was suggested to allow for some WIP 

deviation from the planned level so that the capacity is added in a more realistic manner. 

Loading curves were presented to quantify the influence of several parameters known
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from practice to the system’s performance. The dynamic response of the system through 

quantized capacity was tested.
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Figure 2.9: Structure of Closed Loop Production Control (Pritschow and Wiendahl 1995)

capac ity  correction value = gain (actual WIP - W IP re ference  value)
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Figure 2.10: Closed Loop WIP Controller (Pritschow and Wiendahl 1995)

The approach can be considered a tentative approach to use control theory in a 

WIP based controlled systems. The model does not include other important system 

parameters such as backlog and inventory
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Wiendahl and Breithaupt (1999) studied the dynamics of manufacturing systems 

based on the discrete funnel model shown in figure 2.11 developed by Kettner and 

Bechte (1981) and the logistic operating curves developed by Nyhuis (1991) shown in 

figure 2.12. They developed what they called the automatic production control system 

APC. The model describes the dynamical reaction of production systems based on 

structural data (mean values, estimations, etc.) and not on discrete data (single orders). 

The goal of this method was to reach a self-controlled process achieved by a closed-loop 

control with appropriate reference and correcting variables. To achieve that goal the 

discrete model was modified to a continuous model shown in figure 2.13 to reflect the 

dynamics of the system over long time horizon for the purpose of planning.
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Figure 2.11: Discrete Funnel Model (Kettner and Bechte 1981)

The logistic curves were used to determine the input parameters of the system 

(mean WIP, mean Lead time and mean performance) based on the system’s capacity and 

the order structure. Based on previous assumption, only two controllers can be proposed; 

one for the capacity (backlog) and the other for the WIP. The backlog controller uses 

capacity as a correcting variable based on the backlog determined by the amount of 

deviation between the planned performance and the actual performance of the production.

36

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



capacity (cap) ideal

mean performance
o>o
C realisticCO
I
'XZCDQ.
Ceo<D
E

realistic

i ideal

idealised minimum 
of lead time

practical minimum 
of lead time§
mean wip [h]

idealised mean 
wip minimum 
mwiPrrtn

practical mean wip minimum scd ; shop calender days

Figure 2.12: Interdependency between Output, Lead Time and Work-in-Process [WIP]

(Nyhuis 1991).

ftow-ln 
(Input rate)

->r f'-v wyf * - -|
mean work 
in processinputfln)

mean 
lead time

. t *» rTi?
m m m mean 

performance
M 11

order 
structure
capacity I SSL

•"31
•'Hrsra . .tzL- !-!■ t rlltLU

j ' f 1!.- M ;i.U flow-out 
(output rate)

mean 
order time

- - It - r:
 i i  J—i u s - -*  U i - b f ^ w A i ^ w l

Figure 2.13: Continuous Model of a Work System (Wiendahl and Breithaupt 1999)

The capacity required is found using flexibility curves shown in figure 2.14 which 

indicates the time delay of each capacity scaling step. The controller is to choose the best 

capacity scaling decision based on the backlog value and delay acceptable. As for the
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WIP controller, the mean WIP is the control variable and based on the difference between 

the planned and the actual WIP the WIP controller adjust the input rate. The integrated 

capacity and WIP controllers are shown in figure 2.15. Simulation of rush order scenario 

showed how both controllers can be synchronized automatically to react to the 

disturbance and decrease any surplus in the capacity by adjusting the input rate.
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Figure 2.14: Capacity Flexibility Curves (Wiendahl and Breithaupt 1999)

A more detailed manipulation of the logistic curves to determine the relation 

between the capacity and the performance within the APC model was presented by 

Wiendahl and Breithaupt (2000).

Wiendahl and Breithaupt (2001) showed that the developed automatic production 

control system APC decreased the backlog for a special drilling machine factory by 80% 

and the WIP by 56.9% in case of varying demand. They also showed that, for another 

factory, automotive components’ supplier, APC had the potential to decrease the backlog 

by 90.9%.
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Figure 2.15: Integrated Capacity and WIP Controllers (Wiendahl and Breithaupt 1999)

The previous of works Wiendahl and Breithaupt are considered good approaches 

to MPC systems that are based on capacity utilization and WIP level as the main planning 

parameters. An extension of this work would be to include the system inventory level as 

another MPC parameter. The inclusion of the inventory level will give the system more 

alternative MPC policies to be adopted. Also the MPC model depended on the logistic 

curves (which are basically experimental) to indicate the reference points and the 

different parameters settings. However, a deeper dynamic analysis of the system 

performance would help more in the optimal selection of theses settings. In addition 

managing the work of the different controllers involved and relating the operational 

actions to the desired management strategy can be improved by adopting a supervisory 

controller to perform that task.
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Duffie and Falu (2002) developed a closed loop production planning and control 

PPC system shown in fig 2.16. The developed model is used to control the backlog and 

work in process WIP under normal conditions and under uncertainties in capacity and 

work input that result from equipment failure, rush orders and other sources. The 

dynamic analysis based on the developed transfer functions, examined the relationships 

between system inputs which are the planned capacity, planned WIP level, capacity 

disturbance and WIP disturbance and the system variables such as backlog and actual 

WIP. In their work they assumed that the operating point of the system is the area of the 

logistic function where increasing the level of inventory in the system does not 

appreciably increase the system’s performance. The developed system was a multi-rate 

discrete control system as to sample the WIP level with higher rate than the capacity 

level. The work presented was focused on the case of high WIP and suitable gain values 

for the capacity and WIP controllers. Also a dynamic illustration of the system’s 

parameters response was shown for the case of no delay while adjusting the capacity and 

in the case of capacity adjusting delay.
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Figure 2.16: Closed Loop Production Planning and Control System (Duffie and

Falu 2002)
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Ratering and Duffie (2003) extended the previous single station system dynamic 

analysis to account for both high and low WIP cases. The characteristic equation for each 

case was developed. In the case of high WIP, they found that the dynamics of the systems 

depend on the backlog controller gain and its delay and thus the best design value for that 

gain was found. In case of low WIP, they showed the dynamics of the system was 

dependent on the WIP control gain and they also found its best range of design. The 

performance of the system was basically evaluated based on it being non-oscillatory. The 

same analysis as the previous work for the system’s parameters response to disturbances 

was also carried out but for both WIP cases.

Kim and Duffie (2004) found that the slow response of the system for the 

elimination of the backlog in the previous work was due to the limitation of the control 

algorithm used. Thus, they proposed different control designs, proportional P and 

proportional plus derivative PD controllers, together with a different system structure 

shown in figure 2.17. The actual WIP was assumed to be almost equal to the planned 

WIP and thus the work output was dependent on capacity and capacity disturbances. The 

new characteristic dynamic equations of the system were derived together with the 

different control designs. The analysis showed that for capacity disturbances due to rush 

orders; the PD controllers showed faster response in eliminating the backlog in the 

system than the P controller.

However, the effect of the delay of capacity adjustment on the responsiveness of 

the system and the effect of periodic capacity disturbances were only examined using P 

controllers. For the first case of the capacity adjustment delay; results indicated the best 

value for the capacity backlog gain control after which the system starts to oscillate and 

also the maximum capacity adjustment time delay the system can have. As for the case of 

periodic capacity disturbances; they showed that without having certain values for the 

backlog controllers and time delay, the system will oscillate leading to undesirable 

performance of the system.
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Figure 2.17: Single Workstation PPC with Closed Loop WIP and Backlog Control

(Kim and Duffie 2004)

Kim and Duffie (2005) also applied the same approach to multi workstations 

instead of single workstation (shown in figure 2.19). Results showed again that properly 

chosen control gains produce a robust system even when there are delays in making 

capacity adjustments. However, considerable time can be required to completely 

eliminate backlog. They suggested based on their analysis that system performance can 

be improved through reduction of delay in capacity adjustment. There is also potential for 

improvement by feeding information forward from upstream workstations to downstream 

workstations to anticipate capacity adjustments that will be required, and generally by 

applying more complex control policies
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Figure 2.18: Multiple Workstations PPC with Closed Loop Backlog Control (Kim

and Duffie 2005)
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The multi-workstation production systems was further developed in Kim and 

Duffie (2006) in which capacity controls for regulating WIP in individual workstations 

were coupled by adding predictive control, making capacity adjustments a combination 

of compensation for local disturbances and anticipation of downstream effects of capacity 

adjustments made upstream in the system. The added coupling at the control level 

combined with intrinsic coupling at the order-flow level effectively integrates planning 

and control as shown in figure 2.19. Control-theoretic methods were used to make 

dynamic analysis tractable and improve decrease system complexity. The approach was 

illustrated using data from an industrial production system with two different delay times.
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Figure 2.19 Closed-loop and Coupled Capacity Control of the Kth Workstation (Kim and

Duffie 2006).

In general the PPC structure developed in the previous research work is of a good 

representation to the relation between the capacity and the WIP of the system as well as it 

is reflective to the dynamics incurred in such systems. However the existence of a 

relation for the system finished inventory with these two basic parameters would give the 

system a more comprehensive PPC approach. Their work is considered the most detailed 

from a dynamic standpoint but more system characteristics can be extracted other than 

system response to disturbances which will give a better picture of system dynamics. 

Such characteristics include the natural frequency and the damping ratio of the system 

which affect all the system transient time parameters. More quantified or physical 

description for the meanings of the WIP and capacity controllers’ gains is also required.
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In another research direction that dealt with the dynamics in the scheduling 

problem in manufacturing systems, Duffie et al. (2002) used the control theory to tackle 

the problem of distributed controls in a heterarchical manufacturing systems based on the 

model developed by Prablu and Duffie (1999). The complexity of the problem stems 

from the combinatorial explosion in the number of states the discrete system can have. To 

solve that, a continuous model made of linear and nonlinear differential equations for 

control of arrival times of the product entities was presented and used for dynamic 

analysis of the system. The control algorithm used feedback to expect completion time of 

the entity and based on the difference between the expected completion time and the due 

date of the product a decision is made to decide for the scheduling of the products in the 

system. The control approach is shown in figure 2.20.

In their work they presented a system where the dynamics of autonomous 

controllers (embedded in entities distributed throughout a heterarchical manufacturing 

systems) and the physical interactions between entities in the system combine to create 

system behaviour that is seemingly chaotic, but favourable. Their results of the physical 

implementation, simulation and control-theoretic analysis showed that the system is 

deterministic and converges to decisions in real time with known performance. The 

developed control system showed to be responsive to real-time disturbances.
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Figure 2.20: Closed Loop Approach for Real Time Manufacturing Control

(Duffie et al. 2002)
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The approach can be considered efficient for controlling the input rate of the 

system and the analysis of the dynamic characteristics of such nonlinear system. 

However; other system parameters, like WIP, should be considered in tackling the 

scheduling problem in manufacturing systems.

Fong et al. (2004) gave an insight about some of the manufacturing system 

dynamics characteristics. The systems investigated in their research included a single 

stage system that is based on inventory control and a double stage system that is based on 

both inventory and WIP control. Both systems were represented using causal loops and 

block diagrams and then transfer functions were generated for system analysis. Figure 

2.21 shows the two stage production control system Where FI is finished Inventory, PSR 

is production start rate, PCR is production completion rate, LT is production lead-time, 

SR is shipment rate, ST is shipment time, WIP* is the desired work-in-process WAT is 

work-in-process adjustment time, AWIP is the adjustment for work-in-process, AFI is 

adjustment for finished inventory, DI* is the desired inventory, FAT is finished inventory 

adjustment time, ESR is expected shipment rate, DPR is desired production rate, DPCR is 

the desired production completion rate and ELT is the expected lead time.
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Figure 2.21: Block Diagram of Two Stage Production Control System (Fong et al.

2004).
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Analysis of the system was focused on system response and how this relates to 

real manufacturing system responsiveness. The effect of the different parameters of the 

system on the dynamic characteristics as the damping ratio, undamped natural frequency, 

time constant rise time and settling time was also investigated. System parameters 

included inventory adjustment time, WIP adjustment time, lead time and shipment time. 

The approach presented an understanding of basic dynamical characteristics of single and 

double stage systems however; further work in terms of stability analysis and control 

design is required. In addition, other MPC system components besides WIP and 

inventory, such as capacity, should also be considered.

Asl and Ulsoy (2002) presented an approach to capacity scalability in 

reconfigurable manufacturing systems based on the use of feedback control theory to 

manage the capacity scalability problem. The approach is shown in figure 2.22. They 

showed that feedback provides suboptimal solutions for the capacity management 

problem which are more robust under system uncertainties and disturbances in the 

forecasts of market demand relative to the existing capacity management methods. Their 

approach proposed a formula for the capacity management via a control design without 

any quantified design or analysis values for that controller. Further research is required to 

relate the control design together with the capacity scalability requirements qualitatively 

and quantitatively.

Reconfigurable systemMarket
Demand Policy Capacity

Controller
Input (u)

Figure 2.22: Capacity Scalability in Reconfigurable Manufacturing Systems 

Based on the Use of Feedback Control (Asl and Ulsoy 2002)

Ma and Koren (2004), proposed a control policy for manufacturing system 

operation based on modeling an m-machine line as an m-order state-space system and
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applying optimal control theory to adjust the WIP while keeping the production demand. 

For a serial line with random machine failures, the policy divides the stochastic system 

into multiple deterministic sub-lines, each operating optimally for the duration in which 

the machine state combination does not change. Their simulation results demonstrated 

that the proposed policy successfully generates low WIP while the demand is still 

fulfilled. The policy shown is capable of being easily applied to large manufacturing 

systems. The control policy is shown in figure 2.23.
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Figure 2.23: Schematic of the Control Policy for WIP and Production (Ma and

Koren 2004)

Ding et al. (2000), modeled multi stage manufacturing processes using control 

theory. The modeling was based on the analogy between the station index (in the 

production line) and the time index. Such analogy enabled them to have a state space 

model which was used to analyze and diagnose the variation in an assembly process. The 

diagnoses lead to the proposal of a methodology to control the system variation 

propagation and hence improve the quality of manufacturing systems’ production. The 

approach is limited to quality and cannot be extended to PPC models.

Fuzzy controllers have been used for manufacturing systems scheduling dynamic 

analysis by Tsourveloudis et al. (2003). A set of fuzzy controllers has been derived to 

reduce the WIP and synchronize the production system’s operation. Their work
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considered multiple-part-type production networks, and it views the overall production- 

control system as a surplus-based system. Also as an extension to their previous work, 

they developed a two-level control architecture with a supervisory controller at the higher 

level of production used to tune the operation of the lower level distributed fuzzy 

controllers in Ioannidis et al. (2004). The overall control objective was to keep the WIP 

and cycle time as low as possible and, at the same time, maintain quality of service by 

keeping backlog at acceptable levels. The production rate in each production stage was 

controlled in a way that demand was satisfied, overloading of the production system was 

avoided, and the production system operation was synchronized to eliminate machine 

starvation or blocking.

Simulation results for a series of production systems with stochastic demand have 

shown noticeable improvement of performance and production-related costs, in most 

cases. However the above work didn’t study the dynamics of the system when 

disturbances occur to test for its stability. Also the manufacturing system structure 

assumed needs enhancement to include other parameters like inventory. Finally the whole 

work is focused on the operational level where the link with the higher strategic planning 

level is not recognized in the control mechanism.

Dynamic analysis using transfer functions and the filter theory was applied by 

Dejonckheere et al. (2003) to aggregate planning in manufacturing systems. Their aim 

was to achieve a self-adaptive production level scheme triggered by appropriate sales 

function. The approach was based on using the filters and the frequency domain analysis 

to represent the volatility of the market into demand and noise. Analysis is then carried 

out to study the response of the aggregate plan components such as inventory, production 

orders and workforce level. A comparison of different aggregate planning was carried 

out. Results showed that practical good design of filters with the right settings of the 

system parameters by the designer, will lead to more practical and robust aggregate 

planning than classical operation research optimization techniques.
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2.6 Summery of the Literature Review

Based on the previous literature review one can draw the following conclusions:

• Dynamic analysis of manufacturing systems can be classified into four main 

approaches; discrete event simulation, system dynamics, nonlinear analysis 

approaches and the control theoretic approaches.

• Dynamic modeling and understanding of manufacturing systems have been a 

huge research area for a long period. However, the dynamic analysis of 

manufacturing production and control (MPC) system is generally a new trend in 

the field of manufacturing systems dynamics research (started to develop at the 

early 90’s). Therefore, there is a great potential for enhancements and research in 

that area and there are a lot of gaps to be filled.

• In the dynamic analysis of manufacturing production and control systems, most 

analysis was based on control theory. Control theory has a great potential of 

application in manufacturing systems as it can fill the gap between the system 

design level and the operation level through the feedback mechanism.

• More detailed dynamic analysis is required to give a complete understanding of 

manufacturing planning and control systems dynamics in today’s agile 

manufacturing. All presented analysis focused on investigating the best 

parameters settings of the manufacturing planning and control systems. Examples 

of the required analysis include; deeper analysis in the frequency domain and 

sensitivity analysis to observe the effect of different system’s parameters on the 

performance to better design the system.

• Work in process (WIP), backlog (or capacity level) and inventory control are the 

major manufacturing process and control parameters that have been subjected to 

dynamic analysis. However, there is no existing dynamic model that includes 

these three parameters together. A comprehensive model of the three parameter, 

WIP, capacity and inventory will give a more realistic and applicable 

understanding of the dynamics of manufacturing planning and control systems in 

an agile environment.
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• In agile environment, there should be smooth and complete integration between 

the higher management level and the operational or manufacturing level. 

Maintaining this link will lead to an agile manufacturing system. In the previous 

research work there was no explicit realization of such link.

The previous analysis shows that there is a need to develop a comprehensive 

manufacturing planning and control model. The model should include work in process 

(WIP), capacity and inventory and how they are related together so that the MPC can 

adopt different policies based on the market strategies and trends.

There is another need also to conduct various dynamic analyses for the developed 

model to study the responsiveness, the stability and the steady state level performance of 

the manufacturing planning and control system. In addition, optimal parametric settings 

of the system need to be based on some sensitivity analysis for the different parameters of 

the system and how they affect the performance of the manufacturing system.

Finally, there should be an approach to develop an agile decision making unit that 

link the higher strategic market level of the enterprise with its manufacturing operational 

level to decide for the best MPC parameters setting and policy (or configuration) for the 

current market trend. The development of such a unit will gear the enterprise towards 

realization of agility.

The outlined needs are the objectives of this research work as will be discussed in the 

coming chapters of the dissertation.
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Chapter Three

Dynamic Modeling of Agile MPC System

3.1 Introduction

The dynamical approach is appropriate when a system is known to include, and be 

greatly influenced by, core variables that are known to adjust over time and when 

dynamic feedback is known to occur (van Ackere et al. 1997). Agile manufacturing 

production planning and control systems have variables that are continuously changing 

over time due to the nature of today’s global market. In addition, the continuous need of 

responsive and stable manufacturing systems dictated having feedback loops in the 

structure of manufacturing production and control systems. Thus it is obvious that a 

dynamic modeling approach is an appropriate one for modeling the agile MPC system of 

interest in this dissertation.

Classical manufacturing systems modeling approaches are based on concepts that 

do not consider the manufacturing system as a dynamical system. Usually, heuristic 

approaches are preferred in order to simulate the production process and its scheduling 

and control. But optimization methods do not provide the controller with good results if 

there are some changes during the optimization period.

Dynamic complexity is not related to number of nodes or actors concerned, but 

the behaviour they create when acting together (Davis and O’Donnell 1997). Similarly, 

the complexity of the dynamic modeling the MPC systems is a function of the interaction 

between different MPC system’s parameter. The modeling approach in this chapter aims 

at understanding the dynamicity of agile MPC systems and at the same time decreasing 

the complexity of the system.
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3.2 Model Description

3.2.1 Definitions of System’s Parameters and Variables:

Work-In-Process (WIP): The inventory between the start and end points of a product 

routing. Since routings begin and end at stock points, WIP is all products in between, but 

not including, the ending stock point (Hopp and Spearman 2002). Thus WIP is the 

product in various stages of completion throughout the plant, from raw material to 

completed product.

Production Lead Time: The lead time of a given routing or line is the time allotted for 

production of a part on that routing or line (Hopp and Spearman 2002). In other words 

span of time required to perform a process (or series of operations). The production lead 

time is composed of four different time elements for each step in a part routing: Queue 

time Setup time Run time Move time. With this detailed information, one can generate an 

accurate total manufacturing lead time.

Production Rate: Sometimes called throughput: is the average output of a production 

process (machine, workstation...etc.) or system (line, plant...etc.). It can also be defined 

as the average quantity of good (non-defective) parts produced per unit time (Hopp and 

Spearman 2002).

Capacity: An upper limit on the throughput or production rate (Hopp and Spearman 

2002). It can be defined as the maximum rate of production and the ability to yield 

production (Farshid et al., 2002). Releasing work into the system at or above the capacity 

causes the WIP to build without bound.

Finished Good Inventory: It is the stock point at the end of the production routing 

(Hopp and Spearman 2002). In some manufacturing systems, it can also be defined as the 

accumulation between the production rate and the shipment rate.
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Shipment Rate: The shipment rate is calculated from dividing the inventory level by the 

average shipment time (Fong et al. 2004). In supply chain literature the shipment rate is 

calculated through different consideration of the consumption rate of the different 

echelons of the supply chain.

3.2.2 Agile MPC System Notations:

WIP*: Desired WIP level (parts)

WIP: Actual WIP level (parts)

DPR: Desired production rate (parts/h)

PR: Actual production rate (parts/h)

T lt*: Expected lead time (h)

Tlt: Lead time (h)

Gw: WIP-based control gain (1/h)

Cap*: Desired capacity rate (parts/h)

Gc: Capacity-based control gain (parts/h)

Tq: Capacity installation delay time (h)

I*: Desired inventory level (parts)

I: Actual inventory level (parts)

OR: Expected order rate (parts/h)

SR: Shipment rate (parts/h)

Tsr: Shipment time (h)

Gi: Inventory-based control gain (1/h)

3.2.3 Agile MPC System:

The agile MPC modeling aims at constructing a model in which different 

planning and control strategies (configurations) can be realized as the system’s dynamic 

variables are continuously changing with respect to time. The changes expected in an 

agile MPC system’ variables are due to the normal production rate together with internal 

and external disturbances. Examples of internal disturbances are sudden breakdowns,
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resources unavailability, stochastic processes...etc. As for the external disturbances they 

are usually related to demand disturbances and rush orders. Internal disturbances are 

reflected in the Lead Time system parameter and external disturbances are reflected in the 

Shipment Time parameter as will be discussed. Agile MPC model should also be able to 

reconfigure based on the current market strategy which in agile competitive environment 

is always subjected to changes.

The system is composed of the three main parameters of manufacturing systems 

that work individually or two of them can work simultaneously together (based on the 

decision of the decision logic unit) to determine the desired production rate DPR. The 

parameters are the work in process WIP, the capacity rate of the system and the finished 

inventory. Logically in any system with three parameters, only two parameters can be 

controlled simultaneously. This is why all previous attempts for the planning and control 

of manufacturing systems were concerned only with two of these three main parameters. 

The selection of the parameters to be controlled was usually based on the application or 

the market strategy of interest. However, in today’s agile environment were multiple 

products are required and different strategies can be adopted based on the market 

dynamics, agile MPC systems should be able to adopt different policies through the 

ability to control all parameters based on the current market need. This problem is 

addressed in the developed model.

The novelty of the developed agile MPC system’s model can be summarized in 

two main aspects. First the model structure which encompasses the three main parameters 

of the manufacturing system and thus it has the ability to adopt different planning and 

control strategies (or modes). This will happen by reconfiguring its MPC system’s 

structure through the decision logic unit. Second, maintaining real agility of 

manufacturing systems via linking the operational level with the high market level 

through the decision logic unit.

The decision logic unit, in general, is responsible for collecting external and 

internal data and the different disturbances and then deciding on the optimal MPC system
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configuration. The details of the decision logic unit design and the switching 

(reconfiguration) protocol are explained in chapter five. Also the algorithms for using 

different types of controllers are discussed in chapter five. However, the description of 

each of the agile MPC system configuration is presented in the following sections.

The modeling approach and its analysis are based on the application of the control 

theory and feedback analysis where continuous time domain is implemented to model the 

system states. Although discrete time domain gives a better image of the manufacturing 

systems, the continuous Laplace models are favoured in this research since the interesting 

parameters (production rate, WIP level, lead time...etc.) show a more continuous 

character from a planning standpoint (Wiendahl and Breithaupt 1999, Wiendahl and 

Breithaupt 2000). Also similar results can be obtained using discrete models (John et al. 

1994). Block diagrams for each system configuration are developed and then the dynamic 

transfer functions for each configuration are derived.

The main time parameters of the system are the production lead time, capacity 

installation/un-installation delay time and the shipment time. An insight about each one 

of them is presented in the following paragraphs.

The determination of the production lead time depends on the production system 

itself. The production system or process here is modeled as a pipeline where the outflow 

is simply lagged by the average delay time (Sterman 2000). Thus the lead time is found 

by analogy with a pipeline of a known length into which material is fed and from which it 

flows once the material has passed through the pipe. Determining the exact value of 

pipeline lead time is a complex task (Hoyt 1980) and beyond the scope of this research. 

However exponential lag model is used in the developed model which can be considered 

representative of different manufacture systems (Towill et al. 1997). Simulation results of 

such assumption showed exponential pipeline lag to be appropriate compromise between 

complexity and accuracy (Winker 1994).
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The capacity installation/un-installation (or scalability) delay time is important to 

consider when capacity controllers are involved. For simplicity it can be assumed to be 

zero, however, in reality it is impossible to adjust the capacity immediately (Peterman 

1996). Therefore, a reaction time between the request for capacity and the following 

allocation was introduced in the model. The capacity scalability delay time is usually 

functional in the capacity size and thus it varies based on the required capacity correction. 

This delay can be used to measure the flexibility of the manufacturing system (Wiendahl 

and Breithaupt 2001)

As for the shipment time (which is used to express the shipment rate), it is 

indicated based on the market strategy adopted by high level of the corporation and sales. 

It is subject to changes based on the market dynamics and sudden disturbances in demand 

such as rush orders. The function or the relation that can express these changes is 

normally used to relate the shipment rate to the order rate.

The general structure of the agile MPC system proposed, shown in figure 3.1, can 

be expressed in words as being composed of two main operational layers plus a decision 

logic unit that links these two layers with the higher corporation management layer. The 

first operation layer is the default (or servo control layer) where the control is only based 

on the WIP level. The other layer (intelligent control layer) involves two controllers, an 

inventory controller and a capacity controller. The engagement of either controller to the 

servo control layer or to work by itself, creating different MPC configuration, is the 

responsibility of the decision logic unit as discussed previously. Also the decision logic 

unit provides the system with the reference control points and the updates of the order 

rate OR and shipment time and at the same time collects all the data of the current system 

to help in deciding for the next optimal MPC configuration.
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Figure 3.1 Agile MPC System

The main purpose of any manufacturing planning and control system is to set 

plans and group of control actions to adjust the desired production rate (DPR) to meet the 

demand patterns specified by marketing (Gangneux 1989).. Since DPR is the main 

decision rule in agile MPC system thus it is important to state the equations guiding this 

decision. The first equation (3.1) states that DPR is the sum of the expected losses (which 

in the manufacturing case are the expected order rates OR) plus adjustments in the 

production rate level APR. The adjustments can be in the WIP level, in the actual 

production rate PR level, in the finished inventory level, or any combination of the 

previous parameters based on the MPC policy selected by the decision logic unit. 

Another important equation is the one which ensures DPR to be nonnegative (since 

production can’t be negative). A MAX function is introduced for this purpose when 

determining the DPR as shown in equation (3.2)

DPR = OR +  APR (3.1)
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DPR = MAX (0, DPR) (3.2)

The developed agile MPC model can be viewed as an extension of the known 

supply chain model by Sterman (1989) and the automatic pipeline inventory and order 

based production control system APIOBPCS model by John et al. (1994) where the 

model structure, control algorithm and its analysis were modified and enhanced. The new 

analysis approach is presented in details in chapter four and in Deif and ElMaraghy 

(2006-c). As for the structure; three major modifications were introduced to the model 

(Deif and ElMaraghy 2006-a). The first modification was considering capacity rate as a 

parameter and capacity rate as a correcting variable in the systems. This is valid in 

today’s modem manufacturing systems like reconfigurable manufacturing system (RMS) 

and their enabling technologies such as modular designs and open control architectures. 

The use of the capacity rate controller was to overcome the problem of having high 

production rate (which can be unrealistic) when WIP is the correcting variable of the 

manufacturing system that aims to maintain a certain level of finished inventory. Also the 

assumption of the unlimited WIP values in the APIOBPCS model needs to be relaxed as 

each system in reality has a maximum limit of WIP to hold based on the system’s 

configuration. Increasing capacity will alter that limit of WIP and thus the WIP controller 

can be reactivated. The second difference was in considering the shipment rate to be 

calculated through dividing the finished inventory level by average shipment time and 

establishing a relation between the order rate and the shipment rate. Third and major 

modification was the introduction of the decision logic unit as a supervisory controller 

where the real agility comes into the scene as will be explained in chapter five.

3.2.3.1 WIP Based MPC System

This configuration or policy is the default configuration in the agile MPC system 

and shown in figure 3.2. The WIP controller is connected while the other two controllers 

are disconnected. WIP is an important control parameter as it ties up capital and costs 

interest (Looding et al. 2003) and has direct relation with the production rate and 

production lead time. As mentioned before, production lead time is difficult to measure
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while WIP is easy to measure and therefore WIP can be and indicative and easy 

parameter to use for normal control of manufacturing system.

External 
Disturbance

V V

Market
Strategy

Intelligent control lavei

Servo control layer

Figure 3.2 WIP based MPC System

This MPC system configuration observes the WIP level and compares it to a 

reference WIP level. Based on the error between the two levels the WIP controller adjusts 

the WIP level through a gain (Gw) and adds this amount together with the order rate OR 

to the desired production rate DPR level. WIP level is calculated as the difference 

between the desired production rate DPR and the actual production rate PR and the latter 

is due to an exponential time delay of the DPR based on the system’s production lead 

time TLi(John et al. 1994). This relation is presented in equations 3.3.

WIP = INTEGRAL (DPR -  PR, WIPt=0) (3.3)
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The desired WIP level is calculated as a product of multiplying the order rate OR 

with the estimated (ideal) lead time of the production system TLt* as indicated by Little’s 

law (Sterman 1989, Hopp and Spearman 2000). The control gain (Gw) can be physically 

described as increasing or decreasing the input rate of work to the production system 

(Duffie 2002) since stocks, as in the case of WIP, are altered only by changes in their 

inflow and outflow rates (Sterman 2000). Exact WIP gain (Gw) values and the analysis of 

its effect on the system’s performance will be discussed in chapter four.

3.2.3.2 Capacity Based MPC System

This configuration shown in figure 3.3 is achieved by only engaging the capacity 

controller into the system. Capacity based policy is very important in the cases when 

there is a highly varying input of orders caused by pre-fabrication or a frequently 

changing order situation (Pritschow and Wiendahl 1995). This configuration also suits 

the cases where exact capacity is needed and the capacity should match the demand 

without any backlog. This is also found when the value and carrying costs of inventory 

are very high as in the airplane manufacturing industries (Streman 2000). Ideally this 

configuration suits the make to order MPC strategy. Today’s modem technology based 

on modularity and open architecture control enabled manufacturing systems to adjust 

their capacity much easier. A typical example of a manufacturing system adopting this 

MPC configuration is the reconfigurable manufacturing systems RMS.

Ideally in this MPC strategy, the production capacity should be adjusted to the 

demand in a continuous fashion, so as to always be in a profitable state. However, this 

type of policy is undesirable or impossible due to the fact that rate of demand variations 

is usually much higher than the rate at which capacity can be changed. So the desire of 

following the demand has to be balanced by the risk of losses due to over frequent 

changes in capacity (Farshid and Ulsoy 2004).

This MPC system configuration observes the production rate PR and compares it 

to a reference capacity rate. Based on the error between the two rates the capacity
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controller adjusts the capacity rate through a gain (Gc) and adds this amount to the 

desired production rate DPR level. The reference capacity rate is set to be equal to the 

order rate OR. A formula that can be used to calculate the reference capacity is shown in 

equation 3.4 (other formulas can also be used)

Cap =
Demands (parts)

Due dates (days) * working hours (hours/day )
(3.4)

External 
Disturbance

V V

Market
Strategy

Intelligent control layer

DPR

Servo control layer

Figure 3.3 Capacity based MPC System

The data for the capacity reference are supplied by the decision logic unit. Sudden 

rush orders or any demand disturbance will immediately be reflected on the value of Cap* 

and thus it’s a dynamic parameter. The control gain (Gc) in a physical sense is for 

example adding or removing machines, adding or removing machines tools or 

components and adding or removing shifts (ElMaraghy 2006). Exact capacity gain (Gc)
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values and the analysis of its effect on the system’s performance will be discussed in 

chapter four.

3.2.33 Finished Inventory Based MPC System

The third policy of the Agile MPC model is based on controlling the finished 

inventory level. This is achieved in the model by engaging the inventory controller and 

disconnecting other controllers as shown in figure 3.4. One of the principle reasons used 

to justify investments in finished inventory is its role as a buffer to absorb demand 

variability (Baganha and Cohen 1998). In other words, finished good inventory is usually 

important for corporation which locates its market competitiveness position based on the 

high customer service level. Example of this case is the medical supplies market (Towill 

et al 1997). This configuration is typically suitable for companies adopting a push 

marketing strategy and a make to stock MPC approach where the fill rate is the major 

performance measure of the manufacturing system.

This MPC system configuration observes the finished inventory level I and 

compares it to a reference finished inventory level I*. Based on the error between the two 

levels the inventory controller adjusts the inventory level through a gain (Gi) and adds 

this amount together with the order rate OR to the desired production rate DPR level. 

DPR level cannot be calculated based only on the gap between the desired inventory and 

the actual inventory. This will lead to a steady state error in the finished inventory level 

when the firm is in equilibrium i.e. production equals shipment rate (Sterman 2000). The 

finished inventory level is determined by having the difference between the production 

rate PR and the shipment rate SR as shown in equation 3.5.

I  = INTEGRAL (PR -  SR, I,=0)  (3.5)

The shipment rate SR is calculated through dividing the previous finished 

inventory level by average shipment time and the later is determined by the higher 

management level based on the market strategy and shipments data. The control gain (Gi)
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can be physically described as increasing or decreasing the input rate of work to the 

production system. Exact inventory gain (Gi) values and the analysis of its effect on the 

system’s performance will be discussed in chapter four.

External 
Disturbance

V V

Market
Strategy

Intelligent control layer

Ia

Servo control layer

Figure 3.4 Inventory based MPC System

3.2.3.4 Capacity and WIP Based MPC System

The fourth policy of the Agile MPC model is based on controlling both the WIP 

level and the capacity rate. This is achieved in the model by engaging the WIP controller 

in the servo control layer together with capacity rate controller in the intelligent control 

layer and disconnecting the inventory controller as shown in figure 3.5. Accounting for 

WIP is very important as it decreases the oscillation of the system and affect the damping 

ratio of the system especially in the case of unanticipated shocks (rush orders). Further
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dynamic analysis of this configuration is discussed in chapter four. However, in reality 

any manufacturing system has a WIP increase limit which is the upper capacity limit of 

that system’s configuration (Hopp and Spearman 2000). This limit is the maximum WIP 

point. To overcome this problem and keeping the advantage of having a WIP based MPC 

system, the system’s capacity should be reconfigured (scaled). This is achieved through a 

capacity controller engaged in this configuration.

The WIP controller is appropriate for the normal production control below the 

maximum WIP point. If the lead time keeps growing due to any internal disturbances or 

if there is a rush order, the queue of waiting orders in front of the system (WIP level) can 

be diminished by decreasing the system’s input rate through the WIP controller. 

However, if there is a due date limit (which is a typical case in agile manufacturing) then 

the input rate can’t be reduced. The capacity controller only functions when the 

maximum WIP level of the system is reached and input rate cannot be decreased, as 

otherwise backlog does not arise. This point is indicated by the decision logic unit based 

on the current system’s configuration limitation and the required utilization level.

On the other hand, if the capacity is increased by the capacity controller to 

compensate for the undesirable WIP increase and then the system is back into the stable 

state, the system can be in a state of unutilized capacity. The WIP controller will not 

detect this problem. Thus the capacity controller will also be used to resolve this 

undesired situation by observing production rate PR and comparing it to the capacity 

reference point. The capacity reference point is indicated based on a planned utilization 

level decided by the higher management level. For example, reconfigurable 

manufacturing systems aim (although this is very difficult) at having a utilization of 

almost 100 %. The automatic synchronization between the two controllers is the job of 

the decision logic unit.

This MPC system policy observes the WIP level and compares it to a reference 

WIP level. Based on the error between the two levels the WIP controller adjusts the WIP 

level through a gain (Gw) and adds this amount to the desired production rate DPR level.
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Once the system reaches the maximum WIP point no more WIP gain can be added by the 

WIP controller and thus the capacity controller is activated to eliminate the backlog by 

reconfiguring the system to scale up the capacity. The new system configuration will 

introduce a new WIP maximum point and the system will be automatically set back to the 

WIP based control mode.

External 
Disturbance

Market
Strategy

aIntelligent control layei

Servo control layer

Figure 3.5 Capacity and WIP based MPC System 

3.2.3.S Finished Inventory and WIP Based MPC System

The fifth policy of the Agile MPC model is based on controlling both the WIP 

level and the inventory level. This is achieved in the model by engaging the WIP 

controller in the servo control layer together with inventory level controller in the 

intelligent control layer and disconnecting the capacity rate controller as shown in figure 

3.6. This structure is usually used to have an optimal trade-off balance between the cost
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of inventory and production adaptation cost when considering the whole supply chain 

management problem.

If a perfectly leveled production rate is used then large inventory deviations are 

found and thus increasing the inventory cost or decreasing the service level. Conversely, 

if inventory deviations are minimized then high production variation (especially in terms 

of scheduling) will be realized leading to higher production cost. This trade-off problem 

has been illustrated using control theory by Simon (1952), Vassian (1955), Dezeil and 

Elion (1967), Towill (1982) and Disney and Towill (2003). This problem form a 

manufacturing planning and control perspective is approached in this agile MPC system 

through the implementation of the decision logic unit that optimizes between these two 

competing objectives based on the input data from the market and higher management 

level strategy.
Market
Strategy

External
Disturbance

Intelligent control layer

Servo control layei

Figure 3.6 Inventory and WIP based MPC System

This MPC system configuration observes the finished inventory level I and 

compares it to a reference finished inventory level I*. Based on the error between the two 

levels the inventory controller adjusts the inventory level through a gain (Gi) and adds
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this amount to the desired production rate DPR level. At the same time the system

observes the WIP level and compares it to a reference WIP level. Based on the error

between the two levels the WIP controller adjusts the WIP level through a gain (Gw) and 

adds this amount to the desired production rate DPR level. The addition of both gains to 

the production system is controlled by the decision logic unit.

3.3 Mathematical Formulation of Agile MPC Transfer Function

3.3.1 Model Assumptions:

•  T lt =  5 T lt* where 0 < S < 1 (Linear relation).

• SR = a  OR where 0 < a  < 1 (Linear relation).

Without loosing the generality of the model, for simplicity 8  and a are assumed to be 

equal to one. These assumptions are made only for better understanding the problem and 

the proposed model does not have any limitations considering the case of any other 

values. Relaxation of these assumptions is discussed in chapter four.

The assumption of having SR = OR will make configuration 5 (Inventory and WIP 

based MPC system) very close to the model proposed by Sterman (2002). If a  is set so 

that it can reflect the average order rate the same configuration will be equivalent to the 

APIOBPCS model presented by John et al. (1994). The difference between both 

assumptions is in determining the value of the desired work in process WIP*. John et al. 

showed that setting the order rate equals to average order rate (based on market study) 

will eliminate the inventory offset problem. However, this will lead to production 

overshoot (John et al. 1994). The trade off decision (or deciding on the value of a) will be 

the task of the decision logic unit based on the data coming form the high management 

level and the market strategy.

The assumption of having the actual pipeline lead time T lt equal to the expected lead 

time T lt* requires an accurate visibility of the pipeline. As indicated before this is not
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really practical but yet reflective to the basic dynamic behaviour of the MPC system. The 

exact value of 8  is beyond the scope of this research.

Other assumptions to complete the whole picture are mentioned as follows. The 

model does not include scrap rates; if it did, production rate PR would have to exceed 

shipment rate by the scrap rate to achieve a balanced equilibrium. Also it is assumed that 

there is no raw materials inventory i.e. materials are always ample. This is assumed in 

order to have desired production start time equal to the production start time.

3.3.2 WIP Based MPC System:

This system is considered the first configuration of the developed agile MPC 

system. The configuration is shown in figure 3.2.

WIP =  {DPR -  PR)

PR = DPR
1

1 + TltS'

WIP = DPR 1

1 + Tl t S

(3.6)

(3.7)

(3.8)

DPR = {WIP -W IP)Gw +OR  

WIP = {{WIP* -  WIP)Gw +  OR)

WIP = {WIP* -  WIP){ Gw Tlt 
\ \  + Tl t S _

1 — 1

1 + tlts

OR T,LT

(3.9)

(3.10)

(3.11)
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0R  =
WIP

1L T

T l t  ~  t l t

WIP

WIP

( ( (i t ^
( J W 1 L T1 +

\ )  + Tl t S j j
= WIP

TW

\1  + Tl t S J
+ WIP

y\ + TLTS j

/ (  n  \ \ (
1 +

Cj w
=  WIP*

V J  +  t l t s  JJ V

Gwtlt + 1  

(} + TltS)'

(3 .12)

(3 .13)

(3 .14)

(3 .15)

WIP
WIP*

WIP

WIP*

GwTlt + 1

\1 + Tlt S + GwTltj

f i \
G \v  + t l t

kS + Gw +Tlt 1

3.3.3 Capacity Based MPC System:

(3,16)

(3-17)

This system is considered the second configuration of the developed agile MPC 

system. The configuration is shown in figure 3.3.

PR =  DPR
1 +  Tl t S

(3.18)

DPR = (Cap -  PR)GC
'  1 N 

\ }  + Td S j
(3.19)

PR =  {Cap -  PR)GC f 1 1 f 1 1
1.1 + w k\ + Tl t S J

(3.20)

PR
f f

1 +
v .  v

Gc 
1 + Tl t S

v  1 ^
1 +  T d S j j

■ Cap
Gf

V1 + Tl t S j
1

1 + Td S /
(3 .21)
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PR

Cap* S (TltTd ) + 1 + (Tlt +Td )S + Gc
(3 .22 )

P R

C a p *

G rri —1 rp —1
C l L T  l D

S 2  + S { T l t ~ x + T d - 1 )  +  ( \  +  G c ) T l t - % - x j
(3 .23)

3.3.4 Finished Inventory Based MPC System:

This system is considered the third configuration of the developed agile MPC 

system. The configuration is shown in figure 3.4.

I  =  ( P R -  S R )

1
(3 .24 )

From equation 3 .7

1 =
r /  

D P R

\  VI + TLtS

\  \
- S R  

J  j

(3 .25 )

I  =  -s(i + rLTs) ( D P R  -  S R (  1  +  T l t S ) ) (3 .26 )

D P R  =  ( I  - I ) G j + O R

S R  =  -

l S R

(3 .27 )

(3 .28 )

Substitute equations (3.27) and (3.28) into equation (3.26) and recall the assumption that 

SR = OR
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/  1 -  « / '  -  n o ,  ~ ( tit s ))
SQ + TltS ) l S R

(3.29)

/  =  ^  / * - /
S{\ + TltS)

r GjTSR+TLTS N 
^ ( 1  + ̂ 5 )

(3.30)

rl + GjTSR+TLTS '
STsR(̂  + TltS)

G i  . / *

S(1 + TltS)
(3.31)

i j s r

I (1 + TltS)(TsrS) + G,Tsr + Tl t S
(3.32)

GrTiI 1 L T

T  S 2 +S(Tl t ~'+Tsr -')  + G,Tl t -'
(3.33)

3.3.5 Capacity and WIP Based MPC System:

This system is considered the fourth configuration of the developed agile MPC 

system. The configuration is shown in figure 3.5.

P R = D P R

V 1 + T l t S  j

(3.34)

D P R  =  ( I W I P  -  W I P ) G w  +  ( I C a p  -  P R ) G C (3.35)

W I P  =  C a p  T l t

Tlt ~ Tlt

(3.36)

(3.37)

From eqaution 3.3

W I P  =  D P R \ ------
V  1  +  T l t S j

(3.38)
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Substituteequations(3.36)and(3.38)in eqautiom(3.35)

DPR = CapTL f -D P R 1 —
1

j s j

Gpy + {Cop — PR)Gq
'  i A
yl + ToSy

Substitute(3.39)in  (3 .3 4 )

f

PR = Cap Tl j ,* -  DPR 1 — 1

v v
\ + TltS,J S J

C*w (Cop — PR)GC
'  i ^
K\+TDS;j

1

1 + ^ S ,

PR(l + TLTS) = Cap TltGw +
1 + W

-P R
V1 +  Td S j

DPR Gw 1 — 1
\ \

1 + Tl t S

From{3.32) 

DPR=PR(\ + TltS)

PR(  1 +  TltS)  =  Cap
Tl t Gw +Tl t G w Td S  + Gc 

1 + t d s
- P R

yl + TDS  j
-  (PRGw Tlt )

PR(  1 +  Tl tS)  =  Cap
f t l t g w  + Tl t Gw Td S  + Gc  N 

i + r D5
Pi? G w t l t  +

r r  
Gc

y\ + TDS j

PR 1 +  Tl t S  + g w t lt +
f r  w  Gc

1 + Td S
= Cap

/ Tl t Gw +Tl t Gw Td S + g c ^ 

1 + TDs

PR
1 + TpS + Tl t S  + Tl t Td S 2 + G w Tlt + G w Tl t Td S + g c

1 + t d s

Cap / Tl t G w + Tl t G w Td S  + Gc

1 + t d s

7 2
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(3 .39 )

(3 .40 )

(3 .41 )

(3 .42 )

(3 .43)

(3 .44)

(3 .45)

(3 .46)



PR

Cap

TltGw + TltGwTd S + Gc

V1+ TdS + Tl t S + TltTdS2 + GwTlt + GwTltTd S + Gc j
(3.47)

P R

Cap
Tlt^ w 0  + TqS) + Gc

S TltTd + S(Td + Tlt + GwTltTd ) + (GwTlt + Gc  +1)
(3.48)

PR
Cap

Gw(Td 1 +S) + GcTlt ]Td 1

SA +S(Td 1 +Tlt 1 +Gw) + (GwTlt +Gc +1)Tlt 'td- 1  r p  - 1
(3.49)

3.3.6 Finished Inventory and WIP Based MPC System:

This system is considered the fifth configuration of the developed agile MPC 

system. The configuration is shown in figure 3.6.

From equation 3.25

/  = - 1

S { \  +  T l t S )

{DPR -  SR{ 1 +  Tl tS )) (3 .50)

DPR = (1WIP -  WIP)Gw +  ( /  -  I )G j  +  OR

WIP =  OR Tl j .

(3 .51)

(3 .52)

Tl t - = T*  

OR = —
1 SR

(3 .53)

(3 .54)

From eqaution 3.3

WIP = DPR 1 - -

\  +  T l t S  j

(3 .55)

Substitute equations (3 .52 ), (3 .54 ) and (3 .55) in (3 .51)
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D P R  =  ( I T s r - ' t l t  ) G w  -  D P R
Gw 1 - -

1 + Tl t S
+  /  G ;  -  I G j  +  I T \

-l
SR

I T S R ~ l  ( 1  +  T l t G w  )  +  V G j  -  I G j

D PR = f (*• f 
i + &

5
1 - 1

\ \

v  1  +  T L T S j )

DPR =
ITs^jl + T ^ G ^  + r G j - I G ,  

1  +  T l t S  +  T l t G w  

1  +  T l t S

Substitute(3.58)in (3.50)

/  = - 1

S(1 + Tl t S)
( ITs r (l + rLTGw) + l ’Gj - IG , ) | i  +  TltS)

1 +  Tl t S +  TltG]
-SR(1 + Tl t S)

w

~ \ r

1 =
I Gj -I(Gj +Tsr~1Tl t S) 

•S’O  +  TltS  +  Tl t Gw)

I [ GI +Tsr % TS  ̂
SQ + Tl t S + TltGw)

=  1
SQ- + TltS + TLtGw )

I S(\ + TLt S +  TLt G w  ) + Gj + T sr 1TLtS

G j

I S +  Tl t S +  TjtGwS +  Gj  +  Trr Tt t Sl L T KJW I ~ r l S R  1 L T ‘~

G,T,l L L T

I S 2 + S(GW +TLt  1 +Tsr 1) + (G1TLt  ! )
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(3.59)
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(3.61)
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(3.63)
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3.3.7 Summary of the dynamic models for the developed agile MPC system 

configurations:

Equations (3.65) - (3.69) list the dynamic models for the developed agile MPC 

system configurations (transfer functions). The analysis of these models is presented in 

the following chapter.

1. WIP Based MPC System

W IP _  (G w + T lt j ) 

W IP* S + (G W + T l t ~x)

2. Capacity Based MPC System

PR C c Tlt Td

Cap S 2 + S (T lt 1 + T d 1) +  (1 + Gc )Tlt 1Td

In
(3.66)

3. Finished Inventory Based MPC System

I  ___________ GjTlt_____________

I  S 2 + S (T lt + T sr ) + GjTlt

4. Capacity and WIP Based MPC System

PR  _______________G w (Td 1 + S )  + Gc Tlt 1Td_________________

Cap S 2 + S (T d  1 + T lt 1 + G w ) + {Gw Tlt + G c +Y)Tlt 1Td

5. Finished Inventory and WIP Based MPC System

G iT lt~X (3.69)
I  S 2 + S ( G w + T lt 1 + T sr 1) + (G i Tlt *)
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3.4 Chapter Summary

The chapter introduced a dynamic model of an agile manufacturing planning and 

control MPC system. The architecture of the dynamic model is composed of two control 

layers. The first layer is a servo control layer which is responsible for keeping a desired 

WIP level for the manufacturing system via WIP controller. The second layer is an 

intelligent control layer that switches between two controllers based on the higher level 

strategies, external disturbances and finally the internal disturbances. The two controllers 

in this level are the inventory controller and the capacity rate controller. The reference 

points for each controller and the switching protocols between controllers are all executed 

through a decision logic unit which is directly linked to the higher management level.

Based on the developed architecture, it was shown that the system can have five 

MPC policies (WIP based, capacity based, inventory based, capacity/WIP based and 

inventory/WIP based) where each mode has its own structure. The description of each 

MPC policy and when it is used together with its block diagram and dynamic transfer 

function were presented.

The analysis of the developed agile MPC model and investigating the best 

parameters’ setting are to follow in chapter four. As for the design of the decision logic 

unit and the reconfiguration (switching) protocol are to be discussed in chapter five.
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Chapter Four

Agile MPC Dynamic Model Analysis

4.1 Introduction

Realistically, manufacturing planning and control is dynamic, non-linear, and a 

function of multiple interactions among manufacturing system parameters. Consequently, 

in order to understand MPC systems functionality, various dynamic analyses should be 

conducted. This chapter takes the initial steps of investigating MPC system performance 

in a changing demand environment (utilizing an RMS), by relating the factors that affect 

system responsiveness and stability performance to the different settings of both 

controllers’ gains and system’s time parameters.

First, the responsiveness of the system is examined as responsiveness is the major 

characteristic of agile manufacturing systems. The relationships between both the 

controllers gain values and the time variables and the different responsiveness measures 

from a dynamic perspective are explored. These measures include measuring step 

responses, rise time, settling time and time constants. In addition, a new approach to look 

to responsiveness is introduced by evaluating the effect of the previously mentioned 

parameters on the natural frequency and the damping ratio of the manufacturing system.

Second, the steady state error is also monitored while evaluating responsiveness 

as it plays a major role in realizing agility in terms of customer service level and on time 

delivery of products. This problem was significant in capacity based MPC policies and a 

control design approach was introduced to solve the problem

Third, the stability of the MPC systems’ parameters is examined. It is essential to 

know when the MPC system is stable and when it is unstable. It is particularly important
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to understand system instability, as in such cases the system response to any change in 

input will result in uncontrollable oscillations of increasing amplitude and apparent chaos 

ensuing in manufacturing system. In our analysis we will aim to determine the limiting 

conditions for stability in terms of the different control gains values and the effect of the 

MPC system’s time variables in increasing or decreasing these limits.

Finally, the utility of these analyses results will be demonstrated and used in the 

design and implementation of the supervisory controller which will act as the decision 

logic unit. This chapter generates a dynamical MPC system prescriptive which guides the 

decision logic unit to the optimal MPC policy required to satisfy higher level agile 

requirements.

4.2 Transient Response

Since time is used as a major variable in MPC systems to examine the 

responsiveness of the system, it is interesting to evaluate the state and the output 

responses with respect to time. Transient response is defined as the part of the time 

response that goes to zero as time goes to infinity (Kuo and Golnaraghi 2004). Thus in 

agile MPC systems, the transient response (time to respond to demand changes) of the 

manufacturing system will play an important role in placing the enterprise in a better 

competitive market position. In this section the transient time response of the different 

MPC configurations will be analyzed by first examining the step response of the system 

and the effect of the different controllers’ gains on that response and second by exploring 

the effect of MPC system’s time variables on the responsiveness of the system.

4.2.1 Step Response:

As is customary a deterministic step input is used to evaluate the system ability to 

cope with a sudden change in demand since this is a repeated scenario in an agile 

environment. The response to a step change in demand is of importance not only because 

it gives a shock to the system but additionally it is an input that is easily visualized and 

interpreted. It also determines the basic dynamic characteristics of the system (Coyle
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1996). Figure 4.1 compares between the responses of the different MPC system 

configurations to a step change in demand with the given parameters setting. The data are 

arbitrarily selected without loosing the generality of the test (Deif and ElMaraghy 2006- 

c).

Input Demand 
Capacity/WIP Based MPC 
Inventory Based MPC 
Capacity Based MPC 

WIP Based MPC 

Inventory/WIP Based MPC

10 15
T im e (p rod u ction  d a y s )

(a )

I
- 0.2

- 0 . 4

- 0.6

- 0.8

25

Input Demand 
Inventory/WIP Based MPC 

Capacity/WIP Based MPC 
Inventory Based MPC 

Capacity Based MPC

1 0  1 5
Time (production d ays)

(b)

Figure 4.1: Response of the Different MPC Configurations for a Step Change in Demand 
(a) for Positive Step and (b) for Negative Step.

(T lt =5 days, TD=3 days, T Sr = 3 days, Gw= l, Gi=l and Gc =7)
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Looking at figure 4.1 it is clear that the initial response to demand sudden change 

(whether it was an increase or decrease in this demand) is a production overshoot in all 

configurations except the default configuration (the WIP based MPC system). The 

overshoot in the WIP/Inventory based MPC system is not clearly seen due to the over

damping of the system with this setting of the WIP gain Gw- This is more explained later. 

This dynamic characteristic is very important when considering the level of the stability 

and cost a firm would like to have for its production.

This overshoot in production can be explained based on the MPC policy adopted. 

In the capacity based configurations (with or without WIP compensation), this overshoot 

reflects the increase (or decrease) of production level to chase the demand since this is 

the market objective of that policy. In the inventory based configurations (with or without 

WIP compensation), this overshoot reflects the desire to compensate for the loss (or gain) 

in the inventory level due to this demand change and keeping the target service level 

since this is the market philosophy of that policy.

4.2.1.1 The Effect o f  the Inventory Controller Gain

As mentioned earlier it is important to examine the effect of different controllers 

to guide the supervisory controller to the optimal settings of the MPC parameters. The 

first controller to be examined is the inventory controller which contributes to the system 

by increasing or decreasing the input rate. Figure 4.2 (a and b) shows the effect of 

different values of the inventory controller gain when the MPC system (whether it is 

inventory or inventory/WIP based) is subjected to a step change in demand. Analysis of 

the results shows that there are various competing objectives that need trade-off decisions 

(which are one of the tasks the supervisory controller based on the higher level market 

strategy). An insight about these trades-offs is as follows (Deif and ElMaraghy 2006-c):
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Figure 4.2: Response of a) Inventory Based MPC Configuration b) Inventory/WIP Based 

MPC Configuration for a Step Change in Demand with Different Inventory Gain Values

(T lt =5 days, T sr  =3 days and Gw =0.25)
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First, in both MPC policies, as the inventory control gain increases, the system is 

more responsive. However, this is at the expense of having a production overshoot which 

conforms to what was stated earlier in terms of the trade-off between decreasing costs of 

production and maintaining an acceptable customer service level. The production over 

shoot from a manufacturing point of view was explained earlier as the response of the 

system to compensate for the inventory level fall and reach the new demand level. From a 

dynamic analysis stand point, this can be also related to the structure of the MPC system 

model. The adjustment of inventory is actually a stock flow problem and thus there will 

always be amplification (overshoot) in the stock adjustment process (Sterman 2000). The 

only way for this structure to respond to changes is by having the production exceeds the 

demand change which means that the overshoot is inevitable. However, this amplification 

is related to the demand change in what is known as the amplification ratio which is the 

peak of the production overshoot divided by the demand change. This ratio depends on 

the adjustment time of the MPC system and at the same time reflects the production cost. 

Thus the trade off decision that should be taken by the supervisory controller is to decide 

on the amount of the controller gain value within the accepted amplification ratio set by 

the high level management and the required responsiveness level.

Second, at the same value of the inventory controller gain, the inventory based 

MPC policy has a lower rise time than inventory/WIP based MPC policy indicating more 

responsiveness. This is because in the later policy the production rate has to compensate 

for the required WIP level before matching the demand and thus takes longer time. 

However, the overshoot is less when WIP compensation is included due to its damping 

effect. Also the settling time of the inventory/WIP based MPC policy is longer than the 

inventory based one. Thus the same competing objectives (responsiveness versus 

reducing amplification or production cost) will also guide the decision of the supervisory 

controller whether or not to compensate for WIP when adopting an inventory based MPC 

policy.
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4.2.1.2 The effect o f the capacity scalability controller gain

The value of the capacity gain controller is varied and the response of both 

capacity based MPC systems against a step change in demand is tested. The results for 

both systems are shown in figure 4.3 (a and b). Analyzing the results points to the 

following observations:

First, in both capacity-based MPC policies, no matter how much you increase the 

capacity controller gain, there will always be a production offset. This problem violates 

one of the main objectives of implementing a capacity based policy which is supplying 

exact capacity to match the demand. The solution for this problem is through redesigning 

the capacity scalability controller to include together with proportional component an 

integral parameter to account for all soft and hard activities associated with scaling the 

capacity and thus eliminating this offset. Details of these activities and the new design of 

the capacity controller were published in (Deif and ElMaraghy 2006-b) and will be 

explained in section 4.3.

Second, as the controller gain increases, the production offset decreases. This is 

obvious since this gain actually compensates for the difference between the production 

rate and the demand. However, the production overshoot increases with the increase of 

the gain leaving the trade-off decision for the supervisory controller to decide how to 

balance between supplying required capacity while maintaining an acceptable level of 

amplification or production cost.

Third, it is clear that the offset error with the capacity/WIP MPC policy is less 

than that with the capacity based policy. This is due to the contribution of the WIP 

controller to increase the production rate. The significant thing here when comparing 

both policies is that with capacity/WIP the overshooting is much less than that with 

capacity based while the level of responsiveness is almost the same (same rise time and 

even better settling time for the capacity/WIP MPC policy). This can lead to the
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conclusion that contrary to the case of inventory based policies, the capacity/WIP based 

policy is always superior over the capacity based MPC policy.
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Figure 4 .3 : Response of (a) Capacity Based MPC and (b) Capacity Based MPC 

Configurations for a Step Change in Demand with Different Capacity Gain Values 

(T lt= 5  days and T D=3 days and G w = 0 .2 5 )
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4.2.1.3 The effect o f the WIP controller gain

In this section we examine the effect of the WIP controller gain on the two 

general MPC policies, the inventory based and the capacity based policies. The same 

approach of varying the value of the WIP controller gain and testing the response of both 

policies against a step change in demand at different gain values is implemented. Figures

4.4 and 4.5 show the results for both systems. Analyzing the results of both MPC systems 

reveals the following points:

First, the damping effect of the WIP controller gain is very clear since production 

overshooting decreases as the value of that gain increases in both MPC systems. This can 

be also explained since WIP will keep production rate at a good level (in order not to 

stop) while adjusting the capacity rate (in case of capacity based MPC) or the input rate 

(in case of the inventory based MPC). From a dynamic stand point this can be explained 

by examining the damping ratio in the characteristic equation of two MPC models. As 

shown in equation (4.1) for the capacity/WIP MPC system and (4.2) for inventory/WIP 

MPC system that the major controllable factor that can increase the damping ratio C, and 

thus decreasing the overshooting, is the WIP control gain Gw. Other controllers’ gains 

can share in this through affecting the natural frequency, (on, of the manufacturing 

system. However they are assumed to be fixed in order to highlight the effect of the WIP 

controller gain. Further analysis of the natural frequency and the damping ratio of the 

developed MPC system will be discussed in the next section.

2  g j „

2 (On
1 + ^ - + G w

u I^W^LT 1 / a i\where r»n = ' ------------  C4-1)
V 1 L T 1 D

\ J l t  Tsr
where con = (4.2)

l L T

Second, the reduction of the production overshooting in inventory/WIP MPC 

system was at the expense of the rise time (i.e. system’s responsiveness) while it was the
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opposite in the case of capacity/WIP MPC system. This can be explained through 

examining the rise time in equation (4.3) and realizing that the WIP control gain Gw 

positively affects the natural frequency of the capacity/WIP MPC system while it has no 

effect on the natural frequency of the inventory/WIP MPC system. This is why, in case of 

capacity/WIP MPC systems, when Gw increases; it damps the production overshooting 

and at the same time increases the system’s natural frequency which in turns increases its 

responsiveness.

'r,10,90S = a 8 'fZ 5 j: ° < £ < 1  ( « )(On

Third, observing the settling time for both MPC systems again emphasizes the 

fact that generally capacity based MPC systems are much more responsive than inventory 

based MPC systems.
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Figure 4.4: Response of the Inventory/WIP Based MPC Configuration for a Step Change 

in Demand with Different Inventory Gain Values (T l t= 5  days, T s r = 3  days and Gi=l)
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Figure 4.5: Response of the Capacity/WIP Based MPC Configuration for a Step Change 

in Demand with Different Capacity Gain Values (T lt= 5 days, T d = 3  days and G c = 7 )

4.2.2 Agile MPC System Responsiveness Measures

In this section the time variables of the developed agile MPC system and their 

relation to the transient time (or responsiveness) measures are analyzed. The analysis 

covers the natural frequency and the damping ratio of MPC system which can be 

considered an imitative in this field. In addition, different response time measures like 

rise time, settling time and time constant are explored. Results of this analysis can be 

used to evaluate the agility of the MPC system in terms of responsiveness to fluctuating 

demand from a dynamical stand point.

The analysis will start by describing the different system’s transient response 

measures and how they can be defined in terms of the MPC parameters. This will be 

followed by a simple sensitivity analysis to examine the effect of the different MPC 

system’s time variables over these measures and in turn giving a clearer picture about 

MPC systems and the different parameters that affect these systems.
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4.2.2.1 Natural Frequency

Natural frequency is the frequency of oscillation of the system without damping 

(Nise 2000). From a manufacturing stand point, the natural frequency of the system can 

be viewed as the mode (policy) of manufacturing or the parameters settings that lead to 

maximum productivity with the least effort. The term “manufacturing system’s natural 

frequency” can be used also to measure the responsiveness of the system to external 

excitation (demand). The higher the natural frequency the more responsive the system is. 

This can be explained by examining the units of the manufacturing system’s natural 

frequency which is production cycles/production time (time can be hours, days or shift). 

Thus the higher the manufacturing system’s natural frequency means the less time a 

production cycle needs to be completed or in other words one production cycle gets 

completed more frequently and therefore higher system’s responsiveness.

Equations (4.4) to (4.7) describe the natural frequency of each configuration or 

policy of the agile MPC system. Investigating these equations reveals that manufacturing 

system’s natural frequency is basically determined by the inherited system’s time 

variables, namely the production lead time and the capacity scalability delay time (in 

capacity based policies) and the shipment time (in inventory based policies). However it 

is also clear that the value of the manufacturing system’s natural frequency can be altered 

and controlled via adjusting the values of the agile MPC system controllers. The previous 

observation is crucial in highlighting the importance of the supervisory controller (or the 

decision logic unit) which is responsible for selecting the optimal MPC policy and setting 

the values for the different controllers of the system.

Capacity based MPC system

(4.4)

Inventory based MPC system

(4.5)
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Capacity/WIP based MPC system

(4.6)

Inventory/WIP based MPC system

n (4.7)

4.2.2.2 Damping Ratio

The damping ratio is used to describe the exponential decay frequency compared 

to the natural frequency (Nise 2000). From a manufacturing perspective, the damping 

ratio of the manufacturing system reflects the different system parameters that damp the 

production oscillation and can act as absorbers to sudden changes in demand or various 

internal disturbances (Deif and ElMaraghy 2005). In section 4.2.1.3 the analysis of the 

effect of the WIP controller gain highlighted the damping effect of the WIP in 

manufacturing systems and the major role of WIP controller to hedge for sudden demand 

changes in the developed agile MPC system. Also the damping ratio can provide a way to 

determine whether the production has been made over or under the desired production 

goal during the transient period (Fong 2004).

Equations (4.8) to (4.11) describe the damping ratio of each configuration or 

policy of the agile MPC system. In the next section we will examine the effect of the 

systems’ time variables in determining the damping ratio of the manufacturing systems. 

This will also give a better picture about their role in maintaining a good level of 

production stability against different disturbances encountered in today’s turbulent 

manufacturing environment.

Capacity based MPC system

'̂ con\jLT  7"D j
+ ---- (4.8)
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Inventory based MPC system
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(4.9)

(4.10)

(4.11)

4.2.2.3 Rise Time

In control theory, it is known that it is difficult to have an exact analytical 

expression of the rise time. However the rise time can be approximately calculated using 

equation 4.12. By definition, the rise time is the time it takes the system to rise from 10% 

to 90% of its target value (Nise 2000). This responsiveness measure can be used as an 

indicator of how fast the manufacturing system can respond to 90% of the required 

demand and therefore the degree of its responsiveness.

Form figure 4.1, the rise time for the capacity based MPC configurations is much 

less than that for the inventory based MPC configurations indicating more responsiveness 

in adopting the first policy. This is because in the capacity based policies, the production 

directly follow the demand (exact capacity when needed and where needed). However in 

the inventory based policies, the production first has to fill the inventory gap due to the 

demand change and then match the demand level which leads to a phase lag that is 

reflected in the rise time.

Equations (4.13) to (4.16) describe the rise time of each configuration or policy of 

the agile MPC system. It is important to notice that rise time as well as the other response 

measures is dependent on the natural frequency and damping ratio of the system which 

gives both parameters a great importance in the dynamic analysis of MPC systems. From
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equation 4.12 the rise time is directly proportional to the damping ratio while it is 

inversely proportional to the natural frequency. This confirms the fact stated previously 

that increasing the natural frequency of the manufacturing system will increase the 

responsiveness (by decreasing the rise time required to meet the demand).

VlO,90S 08  + 2 ^  0S<fSl  (412)<D„

Capacity based MPC system

0.8 + 1.25

t
r , 1 0 , 9 0 s

1 +  0 ,c TLT TD j
T'ltTd

l 1 + GC
V tl t Td

(4.13)

Inventory based MPC system

0.8 + 1.25

1 0 , 9 0  s

1 1 + ----
lLT *SR J

1LT
(4.14)

lLT

Capacity/WIP based MPC system
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GW^LT + 1+ GC
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Inventory/WIP based MPC system

^ , 1 0 , 9 0 =

0.8 + 1.25
/

(4.16)

4.2.2.4 Time Constant

Time constant is also another reflection of how the system can respond to a given 

input. Therefore, it can be used to measure how the production can respond to a given 

demand i.e. how long does it take the manufacturing system to totally ( 1 0 0 %) meet the 

required demand.. The time constant can be found using equation (4.17). Equations

(4.18) to (4.21) describe the time constant of each configuration or policy of the agile 

MPC system.

Capacity based MPC system

2
(4.18)

+ —

Inventory based MPC system 

2
1

(4.19)
+
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Capacity/WIP based MPC system

2
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Inventory/WIP based MPC system 
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(4.20)

(4.21)

4.2.2.S Settling Time (2% criteria)

Settling time is the time required for the transient’s damped oscillations to reach 

and stay within 2% of the required target (Nise 2000). Investigating equation (4.22) 

which calculates the settling time show that it is a multiple of the time constant response 

parameter and thus it reflects the same aspect of system’s responsiveness. However, the 

settling time gives the exact time by which the system will reach the target input within a 

certain percentage.

From a manufacturing stand point the settling time reflects the time required by 

the production to reach the target demand within the required service level (acceptable 

limit of deviation from the required demand level). Thus in inventory based MPC 

systems this percentage is determined based on the service level designated by the higher 

management level. As for capacity based MPC systems the settling time will reflect the 

acceptable degree (the % criteria) that the enterprise is willing to have for the production 

to chase the demand exactly. This will be reflected on the capacity scalability plans and 

schedules.

Kuo and Golnaraghi (2003) summarized the numerical relation between the 

settling time and both the damping ratio and the natural frequency of the system by 

indicating a value for the damping ratio C, that controls that relation. If L, < 0.69 (in 5 %
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criteria), the settling time will be inversely proportional to both the damping ratio and the 

natural frequency of the system. If £ > 0.69, the settling time will be proportional to the 

damping ratio and inversely proportional to the natural frequency of the system.

The previous observation opens the door to an interesting dynamic analysis 

approach to calculate that critical point for each manufacturing system based on its own 

parameters and thus control the settling time (and other response measures). This control 

will be through altering the natural frequency of the manufacturing system or basically 

increasing the natural frequency to reduce the settling time and thus increase the system’s 

responsiveness.

The analysis of section 4.2.3 will show that this point in capacity based MPC 

policy is when the manufacturing lead time equals the capacity scalability delay time, 

while in inventory based MPC policy it is when the manufacturing lead time equals the 

shipment time

Equations (4.23) to (4.26) describe the settling time of each configuration or 

policy of the agile MPC system.

» , = 4 r = - i -  (4.22)

Capacity based MPC system

h  =  ̂ t 8 )  ̂ (4.23)
- +  -

t l t  Td j

Inventory based MPC system

ts = ~ l 8  1 A (4-24)

\ J l t  t s r  j

94

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Capacity/WIP based MPC system
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4.2.2.6 Maximum Overshoot

The maximum overshoot or sometimes called the percent overshoot is the amount 

that the waveform overshoots the steady-state or final, value of the time required to reach 

maximum peak, expressed as a percentage of the steady-state value (Nise 2000). This 

response measure directly describes the maximum amount of excess production the 

system will encounter to respond to sudden change in demand.

The maximum overshoot should be determined by the manufacturing production 

planner based on the accepted level of excess production the enterprise can accept or the 

degree of deviation from the target production level since this is translated into 

production cost. It can be also considered as a measure for the relative stability of the 

manufacturing system against sudden market changes. Equation (4.27) calculates the 

percentage overshoot of dynamic systems

%OS =  * 1 0 o  ( 4 .2 7 )

Equations (4.28) to (4.31) describe the percentage overshoot of production in each 

configuration or policy of the agile MPC system.
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4.2.3 Exploring the Effect of the MPC System’s Time Parameters on Agility 

Objectives:

In section 4.2.1, the effect of manipulating the values of the different controllers’ 

gains in the developed MPC system was demonstrated. In this section, the effect of the 

developed MPC system’s time variables on the responsiveness (and in turn the agility) of 

manufacturing systems will be explored. This will be conducted using the different 

responsiveness measures and equations listed in section 4.2.2.

Although manufacturing system’s time parameters in this dissertation are 

assumed to be constant, however, they can be changed based on higher level decisions. 

For example the production lead time can be changed by investing in the manufacturing 

systems in terms of machines or components. Also the shipment time can be altered by 

increasing or decreasing the market power or the sales rate. The objective of the analysis 

in this section is to give a better picture about the effect of each of the MPC system’s 

time parameters and thus how the enterprise can strategically plan for improvement.

In the following analysis and simulation the systems controllers’ gains and time 

parameters are set arbitrarily with certain constant values and then each time parameter 

explored will have different values to test for its effect on the different systems’ response 

measures. The analysis will be conducted for each MPC system configuration.

Tables 4.1 through 4.8 display the values of the different responsiveness measure 

in each configuration or policy when the time variables of the MPC system at these 

configurations are changed. These results are plotted and discussed in the following sub

sections (Deif and ElMaraghy 2006-a).
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1) Capacity Based MPC System:

Gw Tlt Gc Td Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 1 4 2 1.581139 0.474342 1.255964 1.3333333 5.333333 18.417259
1 2 4 2 1.118034 0.447214 1.715542 2 8 20.804518
1 3 4 2 0.912871 0.456435 2.126356 2.4 9.6 19.973056
1 4 4 2 0.790569 0.474342 2.511929 2.6666667 10.66667 18.417259
1 5 4 2 0.707107 0.494975 2.881371 2.8571429 11.42857 16.717618
1 6 4 2 0.645497 0.516398 3.239355 3 12 15.05453
1 7 4 2 0.597614 0.537853 3.588656 3.1111111 12.44444 13.488964

Table 4.1: The Effect of Manufacturing Lead Time (T lt) on Response Time Measures for Capacity Based MPC System

Gw T lt Gc Td Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 3 4 1 1.290994 0.516398 1.619677 1.5 6 15.05453
1 3 4 2 0.912871 0.456435 2.126356 2.4 9.6 19.973056
1 3 4 3 0.745356 0.447214 2.573313 3 12 20.804518
1 3 4 4 0.645497 0.451848 2.989355 3.4285714 13.71429 20.38406
1 3 4 5 0.57735 0.46188 3.385641 3.75 15 19.49187
1 3 4 6 0.527046 0.474342 3.767893 4 16 18.417259
1 3 4 7 0.48795 0.48795 4.139512 4.2 16.8 17.285307

Table 4.2: The Effect of Capacity Scalability Delay Time ( T d)  on Response Time Measures for Capacity Based MPC System
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2) Inventory Based MPC System:

G w Tlt G i T st Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 1 4 3 2 0.333333 0.816667 1.5 6 32.95070114
1 2 4 3 1.414214 0.294628 1.086519 2.4 9.6 37.98026615
1 3 4 3 1.154701 0.288675 1.31782 3 12 38.80016751
1 4 4 3 1 0.291667 1.529167 3.42857143 13.71429 38.38651966
1 5 4 3 0.894427 0.298142 1.727761 3.75 15 37.50217613
1 6 4 3 0.816497 0.306186 1.917296 4 16 36.42444729
1 7 4 3 0.755929 0.31497 2.099967 4.2 16.8 35.27323943

Table 4.3: The Effect of Manufacturing Lead Time (T lt)  on Response Time Measures for Inventory Based MPC System

Gw T lt Gi Tst Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 3 4 1 1.154701 0.57735 1.94282 1.5 6 10.85748705
1 3 4 2 1.154701 0.360844 1.47407 2.4 9.6 29.67389523
1 3 4 3 1.154701 0.288675 1.31782 3 12 38.80016751
1 3 4 4 1.154701 0.252591 1.239695 3.42857143 13.71429 44.05568956
1 3 4 5 1.154701 0.23094 1.19282 3.75 15 47.45924319
1 3 4 6 1.154701 0.216506 1.16157 4 16 49.84029277
1 3 4 7 1.154701 0.206197 1.139249 4.2 16.8 51.59857601

Table 4.4: The Effect o f Shipment Time ( T s t )  on Response Time Measures for Inventory Based MPC System
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3) Capacity/WIP Based MPC System:

G\y Tl t Gc Td Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 1 4 2 1.732051 0.721688 1.503547 0.8 3.2 3.7866961
1 2 4 2 1.322876 0.755929 2.033315 1 4 2.662886
1 3 4 2 1.154701 0.793857 2.41157 1.0909091 4.363636 1.658687
1 4 4 2 1.06066 0.824958 2.698692 1.1428571 4.571429 1.0222677
1 5 4 2 1 0.85 2.925 1.1764706 4.705882 0.6303783
1 6 4 2 0.957427 0.870388 3.1083 1.2 4.8 0.3884394
1 7 4 2 0.92582 0.887244 3.259932 1.2173913 4.869565 0.2383132

Table 4.5: The Effect of Manufacturing Lead Time (T lt) on Response Time Measures for Capacity Based MPC System

Gw H r H Gc Td Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 3 4 1 1.632993 0.714435 1.583648 0.8571429 3.428571 4.0513804
1 3 4 2 1.154701 0.793857 2.41157 1.0909091 4.363636 1.658687
1 3 4 3 0.942809 0.883883 3.192278 1.2 4.8 0.2647757
1 3 4 4 0.816497 0.96959 3.948546 1.2631579 5.052632 0.0003957
1 3 4 5 0.730297 1.049802 4.689195 1.3043478 5.217391 Over Damped
1 3 4 6 0.666667 1.125 5.41875 1.3333333 5.333333 Over Damped
1 3 4 7 0.617213 1.195851 6.139898 1.3548387 5.419355 Over Damped

Table 4.6: The Effect o f Capacity Scalability Delay Time (TD) on Response Time Measures for Capacity/WIP Based MPC System
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4) Inventory/WIP Based MPC System:

Gw Tlt Gi T st Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 1 4 3 2 0.583333 1.129167 0.85714286 3.428571 10.48630131
1 2 4 3 1.414214 0.648181 1.711519 1.09090909 4.363636 6.905959544
1 3 4 3 1.154701 0.721688 2.25532 1.2 4.8 3.786696054

4 4 3 1 0.791667 2.779167 1.26315789 5.052632 1.709826591
1 5 4 3 0.894427 0.857159 3.290261 1.30434783 5.217391 0.537683268
1 6 4 3 0.816497 0.918559 3.792296 1.33333333 5.333333 0.067777131
1 7 4 3 0.755929 0.976408 4.287467 1.35483871 5.419355 6.81821E-05

Table 4.7 : The Effect o f Manufacturing Lead Time (T lt) on Response Time Measures for Inventory/WIP Based MPC System

Gw T lt Gi Ts t Natural Frequency Damping Ratio Rise Time Time Constant Settling Time %OS
1 3 4 1 1.154701 1.010363 2.88032 0.85714286 3.428571 Over Damped
1 3 4 2 1.154701 0.793857 2.41157 1.09090909 4.363636 1.658687022
1 3 4 3 1.154701 0.721688 2.25532 1.2 4.8 3.786696054
1 3 4 4 1.154701 0.685603 2.177195 1.26315789 5.052632 5.196232157
1 3 4 5 1.154701 0.663953 2.13032 1.30434783 5.217391 6.154281441
1 3 4 6 1.154701 0.649519 2.09907 1.33333333 5.333333 6.840423808
1 3 4 7 1.154701 0.639209 2.076749 1.35483871 5.419355 7.354016978

Table 4.8: The Effect of Shipment Time ( T s t )  on Response Time Measures for Inventory/WIP Based MPC System
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4.2.3.1 Production Lead Time

As defined in chapter three, production lead time is the time of a given routing or 

line is the time allotted for production of a part on that routing or line (Hopp and 

Spearman 2002). In other words it is the span of time required to perform a process (or 

series of operations). The production lead time is composed of four different time 

elements for each step in a part routing: Queue time Setup time Run time Move time. 

With this detailed information, one can generate an accurate total lead time.

Lead time is an essential concept in studying the agility of manufacturing systems 

due to its impact on both costs, e.g. reduced lead times often lead to lower levels of in- 

process stock, and revenues, e.g. reduced lead times increase the competitive advantage 

due to increased flexibility. Also lead time is directly related to responsiveness as will be 

shown later. It is important to mention here that lead time in the developed MPC system 

is calculated using exponential delay as stated in chapter three; however, the exact 

calculation of lead time can be done using various techniques like using gamma 

distribution or Erlang-& distribution (Wikner 2003). The exact calculation of 

manufacturing lead time is beyond the scope of this dissertation and can be conducted in 

further research.

Figure 4.6 displays the effect of manufacturing lead time on the natural frequency 

of the different MPC system configurations. It is clear that as the lead time increases the 

natural frequency of the system decreases indicating a lower responsiveness level. As 

explained earlier in section 4.2.2.1, the natural frequency of the manufacturing system 

can be used to reflect the number of production cycles per unit time of manufacturing and 

this is why a large value of that metric indicates that less effort is required to produce 

more products.

Based on the previous analysis, it is obvious that increasing the manufacturing 

lead time will increase the duration of the production cycle leading to a decrease in the 

natural frequency of the system as shown by figure 4.6 (Deif and ElMaraghy 2006-a).
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Effect of Lead Time on the Manufacturing Natural
Frequency

■*— Capacity/WIP Config.

Inventory/WIP Config. 

■ * -  Capacity Config. 

Inventory

L ead  Tim e (d a y s)

Figure 4.6: Effect of Manufacturing Lead Time on Different MPC Systems’ Natural

Frequency

The effect of manufacturing lead time on different MPC system’s damping ratio is 

shown in figure 4.7. Investigating these results reveals three observations (Deif and 

ElMaraghy 2006-a):

First, the general trend is that as the manufacturing lead time increases the 

damping ratio also increases in all MPC system configurations. This can be explained by 

realizing that the damping ratio reflects the manufacturing system ability to hedge sudden 

changes in demand and damp production oscillation during this process. Thus the longer 

the lead time the manufacturing system encounters, the more time it has to compensate 

for the sudden change in demand i.e. damp this change. However, the increase trend is 

more significant with the MPC configurations (or policies) accounting for WIP. This was 

explained earlier while discussing the damping effect of WIP in manufacturing systems 

in section 4.2.1.3.

Second, in capacity based MPC configuration the damping ratio of the system 

decreases as the lead time increases when the lead time values are less than the capacity
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scalability delay time. The same observation applies for inventory based MPC system 

when manufacturing lead times are less than the shipment time. In both policies the 

damping ratio maintains its minimum when the manufacturing lead time is equal to the 

capacity scalability delay time (in case of capacity based MPC) or is equal to the 

shipment time (in case of inventory based MPC policy). This observation is important 

when designing the manufacturing system to have a certain lead time while considering 

the level of the stability (reflected by damping ratio) and cost (reflected by production 

overshooting) a firm would like to have for its production.

Third, in the inventory based MPC the minimum value of the damping ratio of the 

manufacturing system is maintained when the lead time equals the shipment time. This is 

the case of lean manufacturing since in this case the production rate is equal to the order 

rate and thus the just-in-time policy is adopted and no inventory or WIP are accumulated.

1.2
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0
'■» 0 . 8  
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i* 0.6
‘q.
1  0.4(BQ
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Effect of Lead Time on Manufacturing Damping 
Ratio

■— ■

2 4 6

Lead Time (days)

■ Capacity/WIP Config.

Inventory/WIP Config. 

-B — Capacity Config. 

Inventory Config.

Figure 4.7: Effect of Manufacturing Lead Time on Different MPC Systems’ Damping

Ratio

Figure 4.8 shows the relation between the manufacturing lead time and the rise 

time of different MPC system configurations. As expected, the rise time increases as the 

lead time increases which in turns decreases the system’s responsiveness. This confirms

104

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



the known fact that agile MPC systems should work to decrease the lead times to 

maintain a good level of responsiveness to market demand in terms of how many days 

required to respond to that demand.

Effect of Lead Time on Manufacturing Rise Time

5  1

(0 4 ->ra
3 -0)

E
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d)(0
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0 -

-Capacity/W IP Config. 

-Inventory/WIP Config. 

-Capacity Config.

- Inventory

2 4 6

Lead Tim e (days)

Figure 4.8: Effect of Manufacturing Lead Time on Different MPC Systems’ Rise Time

Effect of Lead Time on Manufacturing Time 
Constant and SettlingTime
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Figure 4.9: Effect of Manufacturing Lead Time on Different MPC Systems’ Time

Constant and Settling Time
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Since manufacturing time constant and settling time are both multiples of each 

other they are plotted together versus the manufacturing lead time in figure 4.9. The 

result show that both time response measures increase when the lead time increase. This 

highlights the same conclusion reached before concerning the inverse relation between 

manufacturing lead time and manufacturing system responsiveness for all MPC system 

configurations (or policies). However, both response time measures increase with lead 

time increase more significantly in the policies with no WIP consideration due to the role 

that WIP plays in making manufacturing systems more stable in cases of sudden change 

in demand.

Figure 4.10 shows the relation between manufacturing lead time and production 

overshooting (Deif and ElMaraghy 2006-a). As explained in section 4.2.2 . 6  this response 

measure directly describes the maximum amount of excess production the system will 

encounter to respond to sudden change in demand. Therefore it relates to the production 

cost. It also can give an insight about the system stability (since it is function in the 

damping ratio).

Effect of Lead Time on Percentage Overshoot of 
Production
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Figure 4.10: Effect of Manufacturing Lead Time on Different MPC Systems’ Production

Overshoot
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Analysis of the figure reveals that generally as the manufacturing lead time 

increases the production overshoot percentage decreases. This is because longer lead 

times give more time to damp sudden oscillation due to market change. This allows us 

say that long lead time although they reduce responsiveness but they have the advantage 

of stabilizing the manufacturing system against sudden changes. A trade off decision 

between the costs of both market advantages is required in agile MPC systems.

Another observation is that the percentage overshoot in MPC policies that have no 

WIP compensation are much higher than those compensating for WIP due to the damping 

effect of the WIP as explained earlier.

Finally, similar to the damping ratio, the same relation between manufacturing 

lead time and capacity scalability delay time (in case of capacity based MPC policy) and 

shipment time (in case of inventory based MPC policy) exists. Thus the percentage 

overshoot in production can increase or decrease based on the value of the manufacturing 

lead time relative to the other time variables based on the adopted MPC policy. This 

conclusion has its impact on the system’s design and parameters settings.

4.2.3.2 Shipment Time

The shipment time is used to express the shipment rate which is assumed (in this 

model) to be equal to the order rate. It is indicated based on the market strategy adopted 

by high level of the corporation and its sales power. It is subject to changes based on the 

market dynamics and sudden disturbances in demand such as rush orders. The function or 

the relation that can express these changes is normally used to relate the shipment rate to 

the order rate.

It is important to state that the exact or instantaneous shipment (or order) rate 

cannot be measured (Sterman 2000). Thus MPC systems measure average shipment rates 

or accumulated inventory over some finite interval which is called the shipment time. The 

actual shipment rate throughout the interval can vary. The shipment time can be days,
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weeks or even months, however in our model it is assumed to be days which is a relevant 

assumption for agile MPC systems.

The first observation to be stated concerning the shipment time in inventory based 

MPC policies is that it does not affect the natural frequency of the manufacturing system. 

This is because inventory based MPC systems are used when the enterprise is adopting a 

push market strategy and thus it is the company that decides on the amount to be pushed 

to the market and in turns the required production rate which reflects the natural 

frequency of the manufacturing system.

Figure 4.11 displays the effect of shipment time on the manufacturing system 

damping ratio (Deif and ElMaraghy 2006-a).

Effect ofShipment Time on Manufacturing 
Damping Ratio
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Figure 4.11: Effect of Shipment Time on Inventory Based MPC Systems’ Damping Ratio

It is clear that as the shipment time increases, the damping ratio of the 

manufacturing system decreases indicating less effort to respond to market changes. The 

reason for this is that the longer the shipment time is the less the rate of goods or products 

to be pushed to market and this means that the system does not need high damping effort 

to market changes since there is enough time span for that.
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Also it is shown that the decrease in damping ratio (in both MPC policies) is 

much higher when the shipment time is less than the manufacturing lead time (it is 3 days 

in this case). This observation help in designing the system parameters based on the 

required damping level.

Figure 4.12 shows the effect of shipment time on the manufacturing system’s rise 

time. It can be easily seen that the trend in figure 4.12 is close to the trend in figure 4.11. 

This is because the rise time is basically function in both the natural frequency and the 

damping ratio, and since the shipment time does not affect the natural frequency of the 

manufacturing system, the rise time will follow a similar trend to the damping ratio in its 

relation with the shipment time.

Effect of Shipment Time on Manufacturing Rise 
Time (Responsiveness)
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Figure 4.12: Effect of Shipment Time on Inventory Based MPC Systems’ Rise Time

The rise time decreases as the shipment time increases due to the same fact that 

the system in a push policy does not need to have high rise times when the shipment rate 

is low as in the case of high shipment time.

Figures 4.13 and 4.14 outline the relation between the shipment time and both the 

manufacturing time constant and the manufacturing settling time respectively.
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Effect o f Shipment Time on Manufacturing Time
Constant
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Figure 4.13: Effect of Shipment Time on Inventory Based MPC Systems’ Time Constant

Effect o f Shipment Time on Manufacturing 
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Figure 4.14: Effect of Shipment Time on Inventory Based MPC Systems’ Settling Time

Since both time response measures are multiple of each others they reflect the 

same property and encounter the same analysis. Both measures indicate that the 

manufacturing system needs longer settling and constant times as the shipment time
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increases. This is because both measures describe the time required for the system to 

reach stability level in production and since the production can’t be idle (production 

equals zero) even at low shipment rates, thus it will take longer time as the shipment time 

becomes longer.

Figure 4.15 shows the effect of shipment time on the manufacturing system’s 

percentage overshoot of production. Increasing the shipment time leads to increasing the 

production overshooting since the damping ratio decreased as explained earlier.
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Figure 4.15: Effect of Shipment Time on Inventory Based MPC Systems’ Percentage

Overshoot of Production

The figure also shows how much the damping effect of WIP compensation is 

clearly recognized in MPC systems with inventory based policies. This is very obvious 

especially at large values of shipment time. For example at shipment time of 7 days the % 

OS of the inventory/WIP based MPC policy is less than 10% while it is 50% for the 

inventory based MPC policy. This leads to the conclusion that as the shipment time 

increases it is very important to account for WIP in the manufacturing system.
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4.2.3.3 Capacity Scalability Delay Time

Ideally, in capacity based MPC policies, manufacturing systems aim to scale the 

capacity exactly when needed and thus theoretically there is no delay incurred in this 

scalability process. However, practically speaking, this is very difficult to achieve due to 

the different hard and soft activities associated with the scalability process. The effect of 

capacity scalability delay on manufacturing system’s dynamics can be illustrated by 

comparing the response of two manufacturing systems; one with no capacity scalability 

delay (limit case) and the other incurs some delay while scaling the capacity (Deif and 

ElMaraghy 2006-b). To achieve this comparison, the characteristic equation of the 

developed capacity/WIP MPC system model expressed in equation (3.60) will be 

modified to eliminate the capacity delay component after the capacity scalability 

controller. The new characteristic equation of the no-delay MPC configuration is shown 

in equation (4.32):

PR _ Gw + Gc TLT 1______ 32)
Cap S  +  (Gw +  GcTlt  1 +  Tlt  ! )

The responses of both systems to a sudden change in the demand are shown in 

figure 4.16. The system parameters were assumed arbitrarily to be as follows: the lead 

time = 5 days, the capacity scalability delay time = 3 days, the WIP control gain = 1 and 

the capacity scalability control gain = 7. The result shown in figure 4.16 shows that the 

manufacturing system with no capacity scalability delay has a shorter rise time indicating 

that it is more responsive to demand change. This can be easily understood due to the 

time difference between the two systems caused by the capacity scalability delay.

Another important fact shown by the figure is the presence of an overshoot in 

production only in the system with capacity scalability delay. This can be explained using 

control theory by realizing that the system with no capacity scalability delay is a first 

order system while the system with capacity scalability delay is a second order system. 

Also it can be related to the fact that any delay in the causal link of the negative feedback
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loop will lead to overshoot and oscillation. From a manufacturing stand point, the 

overshoot happens due to the desire of responding quickly to the sudden demand change.
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Figure 4.16: Capacity/WIP MPC System Responses with and without Capacity

Scalability Delay

Figure 4.17 shows the effect of capacity scalability delay time on manufacturing 

system’s natural frequency. It is clear that as the capacity scalability delay time increases 

the natural frequency of the manufacturing system decreases indicating more time to 

finish the production cycle. This is obvious since the capacity scalability time will 

increase the overall production time by its value and thus decreasing the system’s 

responsiveness.

This confirms the known fact that to have successful implementation of capacity 

based MPC systems, as in the case of reconfigurable manufacturing systems, a lot of 

work should be done to decrease this delay and improve the ramp up time of new 

configurations.
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Effect of Capacity Scalability Delay on 
Manufacturing Natural Frequency
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Figure 4.17: Effect of Capacity Scalability Delay Time on Capacity Based MPC

Systems’ Natural Frequency

Figure 4.18 shows the positive effect of increasing the capacity scalability delay 

time on increasing the damping ratio. From a manufacturing stand point this indicates 

that the system will have more relative stability because there will be enough time to 

adjust production to accommodate the sudden demand change. However, this will be at 

the expense of the manufacturing system’s responsiveness.

The effect of capacity scalability delay time on the damping ratio is very 

significant in capacity/WIP based MPC systems rather than capacity based MPC system. 

This is due to of the damping effect of the WIP in the system.

Also it is shown again (as discussed in section 4.2.3.1) that in capacity based 

MPC system, this relation of the capacity scalability delay time with the damping ratio is 

reversed as long as this scalability delay time is less than the manufacturing lead time. 

This is because when the capacity scalability delay time is less than manufacturing lead 

time, the system will encounter to two feedbacks with delay and thus more oscillation
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will occur (Sterman 2000) leading to a decrease in the damping ratio. Once the delay of 

the capacity scalability feedback loop exceeds that of the manufacturing lead time, the 

system will practically face one dominant delay time of the production rate feedback 

loop.

Effect of Capacity Scalability Delay on 
Manufacturing Damping Ratio
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Figure 4.18: Effect of Capacity Scalability Delay Time on Capacity Based MPC

Systems’ Damping Ratio

Figures 4.19 and 4.20 displays different time response measures versus capacity 

scalability delay time in capacity based MPC system and capacity/WIP based MPC 

system respectively. The time response measures are rise time, time constant and settling 

time.

The first observation is that there is a general increase trend in all three time 

response measures as the capacity scalability delay time increases. This indicates that the 

responsiveness of the manufacturing system is negatively affected by the capacity 

scalability delay time.

115

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Effect o f Capacity Scalability Delay on 
Manufacturing Responsiveness (Capacity 

Config.)

20 

15 H
w
£ 10

-♦— Rise Time 

-■— Time Constant 

-♦— Settling Time

2 4 6

C apacity Scalab ility  D elay (days)

Figure 4.19: Effect of Capacity Scalability Delay Time on Different Time Response 

Measures in Capacity Based MPC System
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Figure 4.20: Effect of Capacity Scalability Delay Time on Different Time Response 

Measures in Capacity/WIP Based MPC System
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Second, the rise time in capacity/WIP based MPC policy is more affected by the 

capacity scalability delay time than capacity based MPC policy. This is because when the 

capacity scalability controller action is delayed (due to capacity scalability delay time) 

the WIP controller will increase the WIP into the system via the WIP controller gain 

value which will lead to increasing the damping of the system and in turn increasing the 

rise time.

Third, both constant time and settling time are more affected in capacity based 

MPC policy by the capacity scalability delay time than capacity/WIP based MPC policy. 

This is due to the higher relative stability that capacity/WIP based MPC system has 

because of the WIP compensation process in these systems.

Figure 4.21 shows the effect of capacity scalability delay time on manufacturing 

percentage overshoot of production.

Effect o f Capacity Scalability Delay on Percentage 
Overshoot of Production

25

20
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10

5

0

1 2 3 5 6 74

Capacity/WIP Config 

Capacity Config.

C apacity Scalab ility  D elay (days)

Figure 4.21: Effect of Capacity Scalability Delay Time on Capacity Based MPC 

Systems’ Percentage Overshoot of Production
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In capacity/WIP MPC system, as the capacity scalability delay time increases the 

production overshooting percentage decreases till the system reaches a point where it is 

over-damped and thus there is no production overshooting that will occur in response to 

any change in demand. Although this is a desirable output, however this will happen at 

the expense of the manufacturing system’s responsiveness to these changes in demand. A 

trade-off decision should be made by the decision logic unit (supervisory controller) to 

decide on the best parametric settings for the damping ratio of the system.

As for capacity based MPC system, the overshoot in production is inversely 

proportional to the increase of capacity scalability delay time beyond the manufacturing 

lead time value and then the relation is reversed once the capacity scalability delay time 

value exceeds that of the manufacturing lead time. The reason for this was explained in 

the discussion about the effect of capacity scalability delay time on the capacity based 

MPC system’s damping ratio.

Finally, the damping effect of WIP in manufacturing systems is very significant in 

figure 4.21 as it can be seen that the difference in production overshooting percentage 

between capacity/WIP and capacity MPC systems is very high. For example the 

production overshooting in capacity MPC system is almost 20% more than that of 

capacity/WIP MPC system at capacity scalability delay time of 3 days.

A conclusion that can be derived form the previous analysis is that capacity 

scalability delay plays an important role in the MPC system dynamics by causing an 

overshoot in the production of these systems when they are exposed to market 

disturbances. To overcome the production overshooting problem, a new capacity 

scalability controller design is suggested by Deif and ElMaraghy (2006-b).

The new design includes a derivative component to change the controller type 

from proportional controller P to a proportional and derivative controller PD. The new 

control gain law of the capacity scalability controller will be Gc = Gc(l+6 S), where b is 

the derivative controller gain. From a manufacturing point of view, the derivative part
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encounter for the extra time required for installing the extra capacity (which is indicated 

by the proportional gain) and the time for new system configuration to ramp up. The new 

characteristic equation for the capacity/WIP based MPC model after augmenting this 

ideal derivative compensator to the capacity scalability controller is shown in equation 

(4.33).

PR _________ S(Gw +Gc bTLf ' T D-') + (.GwTLT+Gc )TLT-'TD-'__________

Cap’ Sz + S(Td ~' + TLf '  +Gw + Gc bTLf lTD- 1) + (GwTlt + Gc  + X)TLf ' T DA

(4.33)

To examine the effect of the new controller design on the transient response of the 

manufacturing system (production overshoot), the response of both systems (with P and 

PD capacity scalability controller) with different scalability delay values will be plotted 

against a step change in the market demand. The same system parameters used in the 

previous simulation will be used except for setting b = 1 and varying the delay time. The 

results are shown in figure 4.22 (a) and (b).

The analysis of both figures reveals that the transient response measures of the 

manufacturing system with PD controller are much more improved than those of the 

system with the P controller indicating also a decrease in the production overshooting 

problem when demand is suddenly altered.

Similar to figure 4.21, figure 4.22 (a) shows that as the scalability delay time 

increases the amount of production overshoot decreases. This again highlights the trade 

off decision that should be made to balance between the responsiveness of the system and 

the production overshooting problem. This decision will be reflected in the values of the 

parameters settings especially the derivative controller gain, b.
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Figure 4.22: Capacity/WIP based MPC System Responses with (a) a P Capacity 

Scalability Controller and (b) a PD Capacity Scalability Controller ( T l t = 5  days, T o  =3

days, Gw=l order/day, Gc=7 order/day)
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4.3 Steady-State Response or Steady-State Error

Steady-state error is defined as the discrepancy between the output and the 

reference input when the steady state is reached (Kuo and Golnaraghi 2003). From a 

manufacturing stand point, it is considered one of the dynamic analysis elements that can 

be used to measure the offset of the production from the required level in case of capacity 

based MPC policies or level of the inventory drift in the inventory based MPC policies.

Steady-state errors in dynamic systems are usually caused by the combination of 

the control laws applied, the type of the system (especially, the presence of integrals) and 

the nonlinearities due to imperfections in the system’s components. In addition, the 

system configuration itself and the applied input share in this error. Manufacturing 

systems are indeed nonlinear due to the many imperfect components in them and 

therefore drifts and offsets in inventories and production are expected. Examples of 

sources of imperfections (nonlinearities) in manufacturing systems are the different delay 

times and the soft activities associated with the decision making process in the enterprise. 

Also the sources manufacturing systems variability lead to nonlinear and even chaotic 

behaviour of these systems. Examples of causes of variability include random outages, 

setups, operator variability, recycles and natural variability due differences in machines 

and materials (Scmitz et al. 2002).

In the developed agile MPC model, some nonlinearities are accounted for through 

the exponential modeling of the lead time of both the manufacturing system and the 

capacity scalability delay time. However, it is beyond the scope of this thesis to 

investigate or account for all nonlinearities in manufacturing systems. Such approach can 

be a natural extension of this research work.

4.3.1 Inventory Based Agile MPC Policies

From figure 4.1, it is clear that there is no steady state error in inventory based 

MPC policies indicating that both inventory based MPC policies will maintain the
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required service level of inventories independent of the inventory controller gain value. 

This is given the previously considered assumption that the expected production lead 

time is equal to the actual lead time.

This can be explained by realizing that in the inventory based MPC policies, the 

desired production rate DPR is based on the adjusted error between the two levels of the 

inventory (through a gain Gi) together with the order rate OR. If the DPR level would 

have been calculated only based on the gap between the desired inventory and the actual 

inventory a steady state error in the finished inventory level would have occurred 

(Sterman 2000). The order rate here reflects the expected loss rate by the market demand 

which is the main source for the inventory drift (error) and therefore accounting for that 

loss in the dynamic structure of the MPC model prevents this error to occur.

Another reason that can lead to an inventory drift in inventory based MPC 

policies will be having a difference between the expected lead time T l t * and the actual 

lead time Tlt- This was proved by Disney and Towill (2005) through applying the final 

value theorem to their dynamic model that also expressed the production process using 

pipeline delay. The reason for the offset in that case is because the desired WIP level is 

based on the perception of the production lead time and the actual WIP is based on the 

actual production lead time.

4.3.2 Capacity Based Agile MPC Policies

It is clear from figure 4.1 that there is a production offset in the capacity based 

MPC policies. To explain this phenomenon, we should recall that the objective of this 

policy is to have the production exactly equal the demand. This implies that we aim to 

reach the state described in equation (4.34)

PR = Cap* (since Cap* directly reflects the demand) (4.34)
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However, in the capacity based MPC configurations, if we eliminate the WIP controller, 

then the desired production rate DPR will be equal to:

DPR = (Cap* - PR)GC (4.35)

PR = Cap* - DPRJGc (4.36)

From equations (4.34) and (4.36) (in steady state manufacturing)

PR =  PR- DPR/Gc (4.37)

It is clear from equation (4.36) that when exact chasing of demand in any capacity 

based MPC policy is targeted and if there is no WIP compensation involved in the 

system, there will be a production offset or drifts in state of equilibrium equals DPR/Gc- 

Thus, in case of capacity/WIP MPC policy, the WIP control gain value must be adjusted 

so that it does not only compensate for the difference between the target WIP level and 

the actual WIP level, but also to compensate for this production offset. However, this 

optimal solution for the design of the WIP gain Gw can not always be feasible due to the 

limitation on the values of the WIP gain.

Deif and ElMaraghy (2006-b) proposed a solution for this problem through 

redesigning the capacity scalability controller to include an integral gain to eliminate the 

production offset. The new control gain law of the capacity scalability controller will be 

Gc = Gc(l+a/S), where a is the integral controller gain. The role of this integral gain is to 

provide the system with a better ability to follow the target production level (tracking 

ability). This happens through the “accumulating” action of such component in dynamic 

systems. In the manufacturing context, this means that the controller will increase the 

scaled capacity beyond the error between the current production rate and the target 

capacity rate with an amount that accommodates the nonlinearities involved in the 

scalability process as explained before.
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The new characteristic equation of the capacity/WIP MPC model after 

augmenting this ideal integral compensator to the capacity scalability controller is shown 

in equation (4.38). The new equation is of higher order which indicates that a greater 

effort is to be made to control the new system and in turn to eliminate the offset.

PR _ __________S2Gw +S(GwTd 1 +GcTlt %  l) + GcaTLT lTD 1__________  (4.38)

Cap S3 +S2(Td 1+Tlt 1 +Gw)+S(GwTlt +Gc +1)Tlt 1Td 1 +(GcaTLT XTD ')

To examine the effect of the new controller on eliminating the production offset 

problem, the responses of both systems (with P and PI capacity scalability controller) at 

different capacity scalability and WIP gains values (Gc and Gw) will be plotted against a 

step change in the market demand. The same parameters settings will be used and the 

integral gain a = 2. The results are shown in figure 4.23 (a) and (b).

The analysis of figure 4.23 (a) shows that even if both controllers’ gains are 

raised, the production offset problem will still exist. This problem disappeared in figure 

4.23 (b) due to the existence of the new PI capacity controller design. Figure 4.23 (b) 

shows also the inherent destabilization effect of using integral control that appears in the 

overshooting and oscillation of the system before reaching the desired production rate. 

This problem is managed by the proportional controllers and it decreases as the values of 

both gains Gc and Gw increases. It should be noted, based on control theory, that the time 

required to reach the target state is determined by the ratio of the proportional to the 

integral time which highlights the importance of studying the optimal parameters settings 

for the developed model.

It is important to note that there is always a penalty in adding an integral 

component to a controller. The penalty is actually an increase in the overshoot of the 

system response. From a manufacturing perspective the trade-off of increasing the 

responsiveness of the system and eliminating its steady state error should be balanced 

with the extra cost that system designer will pay to that extra capacity (representing the 

integral component) to have that required performance.
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Figure 4.23: Production offset in dynamic RMS model (a) with a P controller and (b) 

with a PI controller (T lt = 5  days, T o =3 days, Gw=l order/day, Gc=7 order/day)
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4.4 Stability Analysis

Among the different performance specifications in the design of the dynamic 

systems, the most important requirement is that the system must be stable. An unstable 

system is generally considered to be useless. For analysis and design purposes we can 

classify stability as absolute stability and relative stability. Absolute stability refers to the 

condition whether the system is stable or unstable; it is a yes or no answer. Once the 

system is found to be stable, it is of interest to determine how stable it is and this degree 

of stability is a measure of relative stability (Kuo and Golnaraghi 2003).

One of the advantages of dynamic modeling of manufacturing systems using 

transfer functions is the ability to conduct a stability test for the system. It is essential to 

know when the MPC system is stable and when it is unstable. It is particularly important 

to understand system instability, as in such cases the system response to any change in 

demand will result in uncontrollable oscillations of increasing amplitude and apparent 

chaos ensuing in manufacturing system.

Stability can be calculated graphically by looking to the poles of the characteristic 

equation of each of the MPC system configuration or policy. If the poles are in the left 

half-plane of the S plane then the system is stable. This is because when the poles are 

located at that half-plane, the response of the system will have either pure exponential 

decay or damped sinusoidal natural responses and in these cases the bounded input will 

lead to a bounded output and the system is stable. The location of the poles can be found 

using equation (4.39) and equations (4.40) to (4.44) express the location of each of the 

MPC system configuration. The location of these poles can be altered (relative stability) 

by changing the values of the different controllers’ gains in the MPC model.

Su = - Z a > „ ± j a J (4.39)
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In our analysis for the stability we will aim to determine the limiting conditions 

for stability in terms of the different control gains values. However, we will adopt the 

Routh-Hurwitz algebraic method. This method will provide information about the 

absolute stability and how this stability condition can be through the different MPC 

controllers’ gains.

Stability Analysis Using Routh-Hurwitz Method

The general Routh-Hurwitz method for 2nd order systems can be explained using 

equation (4.45) and table 4.9 as follows (Nise 2000):

0 (4.45) [
a 2  S +£Z|iS, + £7q

The signs o f the second column should 

always be the same

s 2 a 2 a o

s 1 a i 0

s° ( a 0 * a x ) - ( a 2  * 0 )

0a o

a \

Table 4.9: The General Routh-Hurwitz Method

Results of applying the Routh-Hurwitz method for the different MPC 

configurations or policies are displayed in tables 4.10 through 4.13. It is important here to 

remember that the manufacturing system’s time variables ( T lt , T sr  and To) are always 

positive.

Capacity Based MPC

S2 1
1+ GC 

t l t t d

s 1
1 1

t l t  Td
0

s°
\ + Gc  

t l t t d
0

Table 4.10: Routh-Hurwitz Method for Capacity Based MPC
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Based on the Routh-Hurwitz method the system is stable. However, to keep the 

stability in an absolute condition the capacity scalability controller’s gain should not be 

less than -1 {G q > -1). The practical meaning of this limitation is that in case of down 

scaling the capacity rate, the value of capacity rate reduction must be greater than - 1  

goods/production time unit.

Inventory Based MPC

s2 1 G i

t l t

s1
1 1

t l t  t sr
0

s° G i

tl t
0

Table 4.11: Routh-Hurwitz Method for Inventory Based MPC

Based on the Routh-Hurwitz method the system is stable. However, to keep the 

stability in an absolute condition the inventory controller’s gain should not be less than 0  

( Gj >0).  Practically, this means that the MPC system when adopting inventory based 

policy cannot down rate the input rate to the system.

Capacity/WIP Based MPC

S2 1
1+ GC +G wTlt

TltTd

s1 1 1Gjy + +
tlt td

0

s° 1 + Gq + g w tlt 

tlttd
0

Table 4.12: Routh-Hurwitz Method for Capacity/WIP Based MPC
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Based on the Routh-Hurwitz method the system is stable. However, to keep the 

stability in an absolute condition the following limitation on the WIP controller’s gain 

and the capacity scalability controller’s gain should be satisfied

Gw  >
1 1

• +  -

\ J l t  Td j

Gc > -
f  T  T  A1LT1D

g w t l t  + 1 y

(4.46)

(4.47)

The limit for the WIP controller gain means that when down rating the input to 

the system value of this down rate should satisfy equation (4.46). The reduction of the 

WIP controller gain is function in the manufacturing system’s lead time and capacity 

scalability delay time. As for the capacity scalability controller gain, the practical 

meaning of this limitation is that there is a limit to how much the system can reduce its 

capacity rate based on the lead time and delay time. It is important to note that the value 

for this limit can be decreased or increased using the WIP control gain which should be 

taken into consideration by the supervisory controller while optimally setting the MPC 

system’s parameters

Inventory/WIP Based MPC

s2 1 Gi

t l t

s1 Gw +  +rri rj-t
*LT £SR

0

s° Gi

t l t
0

Table 4.13: Routh-Hurwitz Method for Inventory/WIP Based MPC
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Based on the Routh-Hurwitz method the system is stable. However, to keep the 

stability in an absolute condition the following limitation on the WIP controller’s gain 

and the inventory controller’s gain should not be satisfied

G1 >0 (4.48)

(4.49)

The same analysis as in the inventory based MPC policy and capacity/WIP policy 

applies for the meaning of the input rate reduction for both controllers’ gains.

Overall Stability Concerns

Before ending the stability analysis, a very important principle should be noted. 

The developed agile MPC system includes distributed controllers that work and 

collaborate together, and thus two problems can be raised in a typical supervisory control 

system that affects the stability.

The first problem is that if a supervisory controller switches between two stable 

controllers in one policy, the resulting switched system can be unstable. However, this 

concern is not valid in the case of the developed MPC systems since polices that include 

more than one controller are expressed in one mathematical description (the transfer 

function) and thus the stability limit is calculated based on both controllers together.

The previous concern is clear examples of how important, when it comes to the 

application of control theoretic approaches in the system-level manufacturing design, a 

balance between pure control theory analysis and how this makes sense in the 

manufacturing domain at that level.

131

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.5 Chapter Summary

Dynamic analysis of the developed agile MPC system leads to a number of important 

points in realizing agility in manufacturing systems similar in design to the proposed 

MPC system:

• Any MPC policy needs a reaction time to respond to market changes. This time 

can be controlled through designing the suitable MPC system controllers’ gains.

• Setting the optimal MPC system controllers’ gains values involves multiple 

trade-off decisions. Results showed that achieving quick reaction time in both 

inventory based MPC systems via increasing the value of the inventory controller 

gain was always on the expense of production cost. In addition, reducing the 

production offset problem in both capacity based MPC systems through 

increasing the capacity controller gain was also on the expense of production 

overshooting. Finally the value of the WIP controller gain in inventory/WIP 

MPC system should be balanced with its effect of decreasing the responsiveness 

of the manufacturing system.

• Capacity based MPC systems (in the cases studied) showed more responsiveness 

to demand changes than inventory based MPC systems. This observation leads us 

to say that in agile manufacturing when delivery performance is an essential 

competitive component, it is better to adopt capacity based MPC policies.

• Accounting for WIP in MPC systems is very important. In inventory based MPC 

system the damping effect of the WIP controller gain was very significant and 

helped in decreasing production offset. However, as mentioned earlier this was at 

the expense of system’s responsiveness. As for capacity based MPC system, the 

role of WIP controller gain is more significant. It does not only damp production 

overshooting, but also increases the system’s responsiveness.

• Based on the previous result one can say that (in the cases studied) capacity/WIP 

based MPC policy is better than only capacity based MPC policy if the higher 

management level would like to adopt a capacity based MPC policy.
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• The concept of the “natural frequency” of manufacturing systems was introduced 

as an approach to understand the dynamics of agile MPC systems. It can be used 

to give an insight about the agility of the system in terms of how fast it can 

respond to changes in market demand.

• The natural frequency of the developed agile MPC system is affected by different 

time variables of the system and the different gains of the controllers in the 

system. Optimal design of these parameters and variables can lead to the increase 

of the natural frequency of the system and in turn decrease the effort required to 

increase its productivity.

• The term damping ratio of manufacturing system was also discussed. It can be 

used to measure the relative stability of different MPC policies (configurations) 

when subjected to sudden demand change. It was obvious that MPC policies that 

compensate for WIP changes showed higher levels of stability.

• It is important to notice that rise time as well as the other response measures is 

dependent on the natural frequency and damping ratio of the system which gives 

both parameters a great importance in the dynamic analysis of MPC systems. A 

new manufacturing system design dynamic approach can be based on the 

manipulation of both these two system’s parameters.

• Dynamic analysis of the effect of different time variables (in the cases studied) of 

the developed agile MPC system showed that generally as these variables 

increase in their values, the different response time measures indicate a decrease 

in the level of responsiveness of the system. This highlights the importance of 

working on reducing the different sources of time delays in agile manufacturing 

systems.

• The previous analysis also showed that there is always a trade-off between rise 

time (which is an indicative measure of system’s responsiveness to demand 

changes) and production overshooting percentage (which is a measure of the 

excess production the system encounters to respond to demand change). In other 

words, a clear challenge facing agile MPC systems is how to balance between 

responsiveness and manufacturing cost.
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• Same trade-off was shown from another perspective through observing that the 

natural frequency of the system is increased when the settling time of the 

manufacturing system is decreased.

• In inventory based MPC configuration (or policy) of the cases studied, it was 

shown that lean manufacturing policy can be realized when setting the shipment 

time (reflecting the order rate) equal to the manufacturing lead time of the 

system. This is considered a lean manufacturing since it’s a typical just in time 

(JIT) policy where the production is exactly equal to the shipment rate and thus 

no inventory or WIP is accumulated.

• The dynamic analysis exploring the relation between the different agile MPC 

time variables in the cases studied, showed that when the lead time is greater than 

capacity scalability delay time the damping ratio of capacity based MPC system 

is decreased and the production overshooting percentage is increased. However, 

when the lead time is less than capacity scalability delay time this relation is 

reversed. Same observation was also realized in the relation between the lead 

time and the shipment time in inventory based MPC systems.

• An approach to decrease the capacity scalability delay time suggested in this 

chapter was by implementing a proportional plus a derivative PD controller when 

designing the capacity scalability controller to account for both the required 

capacity and the extra delay time. Results of comparing the two capacity 

scalability controllers (P and PD), showed a higher responsiveness to market 

changes when implementing the PD design in the capacity scalability controller. 

Also the PD controller improved the overshooting of production resulted form 

this capacity scalability delay time.

• Inventory based MPC systems (with the previous stated assumptions) does not 

suffer form production offset when reacting to demand changes like capacity 

based MPC systems. This means that if high service level is the competitive 

component in the agile manufacturing, it is better to adopt an inventory based 

MPC policy to hedge against demand changes.

• Initial investigations (in the cases studied) to examine how exact capacity 

scalability can be achieved showed that this is possible through eliminating
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production offset or drift in its dynamic response to demand changes and 

accounting for different decisions associated with the capacity scalability 

process. In this chapter a proportional plus integral PI capacity scalability 

controller design was proposed to compensate for this production offset. To 

prove the preference of using this controller over the original proportional P 

controller of their model, their dynamic response to market change was 

compared. Results showed that even if the proportional gains of the model 

controllers were raised, only the integral component in the PI capacity scalability 

controller can eliminate the production offset. This result is very important when 

speaking about maintaining a high customer service level through adopting 

capacity based MPC policies.

• All MPC systems’ policies (based on the stated time variables assumptions) 

showed a good level of stability.

• Caution should be taken when reducing the capacity scalability and WIP 

controllers’ gains as not to go over the stability limit. As for the inventory gain, 

stability analysis showed that it can be reduced, i.e. no down rate for the input to 

the system via this gain. The stability limits of the capacity based MPC systems 

can be altered through manipulating the value of the WIP gain controller.

The analysis of the studied cases of the developed agile MPC model in this chapter 

showed that in order to manage the different MPC systems’ configurations and to decide 

on the optimal parameters settings while adhering to the higher level market strategies 

and responding to external disturbances, there should be an overall control and decision 

making unit or a supervisory control. The good design of such supervisory control unit is 

an effective way to link high-level management to operational-level and thus maintaining 

real agility in manufacturing system. The design of this supervisory controller and the 

decision logic algorithm is addressed in chapter five.
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Chapter Five

Design of the Decision Logic Unit for the Agile MPC System

5.1 Introduction

The underlying philosophy behind dynamical systems is that the behavior of a 

system is principally caused by factors endogenous to the system structure. That system 

structure not only includes the physical aspects of the system, but also the policies that 

govern the decision-making within the system. A policy within a system is a general 

statement of how the available information is used to generate a decision. Four concepts 

must be found within any policy statement:

1) A goal.

2) An observed condition of the system.

3) A method to express any discrepancy between the goal evaluation, prediction, and 

control of the procurement, and the observed condition.

4) Guidelines of which actions to take based on the discrepancy

Applying the previous facts to the developed agile MPC system, the main 

endogenous factors are the market demand and sudden changes in that demand. The 

decision to adopt a specific MPC policy (whether inventory based or capacity based) is 

governed by the higher market strategy or goal. This goal can be based on responsiveness 

and/or cost effectiveness as a market competitiveness strategy. Also that decision should 

take into account the physical aspects or parameters of the manufacturing system (lead 

time, scalability delay time and shipment time) and observe its current conditions 

(inventory level, WIP level and production rate). Based on the discrepancy between the 

observed conditions of the manufacturing system and required levels that achieve the 

specified marketing goals manufacturing control actions should be taken. The previous

136

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



observation, evaluation and decision making guidelines in the developed agile MPC 

system are carried out by the decision logic unit (DLU). This decision unit acts as a 

supervisory controller that monitors and controls the whole manufacturing planning and 

control activities.

While dynamical modeling of systems is a powerful tool for predicting and 

evaluating the system to select the “right” system structure, it falls short of optimizing the 

system. To optimize the system, an optimization heuristic must be added to the system 

dynamics framework. By including optimization within system dynamics, it is possible 

not only to have the power to evaluate system behaviour, but also to select policies that 

will ensure that the system is operating at its optimum.

The various decisions conducted by the decision logic unit in the developed MPC 

system are based on various logical activities among them is how to optimally balance 

between competing objectives while deciding on the different controllers’ gains in a 

specific MPC policy. This inclusion of optimization technique within the dynamical 

approach adopted in the analysis of agile MPC systems gives the approach proposed in 

this dissertation a distinctive ability to plan and control manufacturing systems in an agile 

environment.

This chapter describes the proposed design of the decision logic unit or the 

supervisory controller in the developed agile MPC system. The description will include 

the different logical activities associated with the planning and control decisions in each 

of the available MPC policies.
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5.2 MPC System Decision Logic Unit (DLU) Design (Deif and ElMaraghy, 

2006-c andJ):

Figure 5.1 shows the architecture of the proposed decision logic unit (DLU) of the 

agile MPC system.

Anticipated Demand

Decision
Logic
Unit

MPC Policy
(inventory/WIP, capacity/WIP..)

J  System's 
Parameters 

(^lp Tq, Tsr)I \  Cap*, WIP Off-line

On-line
I , PR, WIP

MPC Policy

MPC Policy Selection Unit 
(Switching Protocol)

Demand Satisfaction Check Unit 
(Production/Inventory Control)

MPC System Controllers’ 
Gains Optimal Setting Unit

efMana!

Operational Level (Manufacturing System)

Figure 5.1: Architecture of the Proposed Decision Logic Unit (DLU)
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The figure shows how the DLU unit links the higher management level with the 

operational level (manufacturing system) which is a basic requirement to realize agility in 

any manufacturing corporation. Such a detailed link, as stated previously, was always 

missing in previous MPC research work

The architecture of the DLU is composed of three hierarchal layers and thus it’s a 

multi-layer unit. The first two layers function offline and the third layer is an online 

control layer. The first layer or unit is called MPC policy selection unit. This unit is 

responsible for analyzing the anticipated demand profile by the higher management level 

and its marketing expectation. Based on the analysis of the demand profile, the unit 

decides on which policy (or MPC configuration) to be adopted over which interval of 

time of that expected demand. In other words, the output would be a plan that indicates 

which MPC policy (inventory/WIP, capacity/WIP, or inventory) to be applied during 

which months of the year (if the demand profile was anticipated monthly). It is important 

to note that this unit can deal with sudden changes in the anticipated demand. Such ability 

is very important in agile manufacturing environments.

From a control perspective, this selection process can be considered the switching 

protocol that governs the engagement and disengagement of the different controllers 

involved in the developed agile MPC system as explained earlier in chapter three. The 

details of the analysis of the demand profile and how the selection process is carried out 

will be explained in the next section.

The second layer is called MPC system controllers’ gains optimal setting unit. 

This can be considered the heart of the developed DLU. This unit is responsible for 

deciding on the optimal values of the different controllers’ gains in the developed agile 

MPC system. By optimal, we mean the value of the gains that will satisfy the competing 

agility objectives of responsiveness and cost effectiveness. Based on the analysis of 

chapter four, it was clear that various trade offs should be carried out on deciding the 

settings of the controllers’ gains. This unit is responsible for that task.
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The optimization process is a function of the manufacturing systems parameters 

(lead time, scalability delay time and shipment time) and thus it can be altered (or 

changed) based on strategic decisions from higher level management to invest in the 

manufacturing systems or change market policy in order to change these parameters and 

in turn change the values of the optimal controllers’ gains.

The MPC system controllers’ gains optimal setting unit receives from the MPC 

policy selection unit the plan with the selected MPC policies and based on each policy (or 

configuration) it calls the model (or the transfer function) of that configuration as 

described in chapter three and manipulate it in the optimization process. The output of 

that unit is the optimal controllers’ gain for each configuration based on the given 

manufacturing system’s parameters. The details of the optimization process with its 

objective function and constraints will be discussed in section 5.4.

The last layer is called MPC demand satisfaction check unit. This layer is actually 

responsible for checking that the current production or inventory level satisfies the 

required demand and this is why it takes place online. The check is based on comparing 

the current production level with the required capacity rate, the current WIP level with 

the ideal WIP level and the current inventory level with the target inventory level 

(depending on which MPC policy is being adopted). These reference levels are actually 

calculated based on the anticipated demand as explained in chapter three and thus 

meeting these levels means satisfying the market demand.

Based on the discrepancy between the compared levels, a decision is made to 

compensate for that discrepancy through the previously calculated optimal control gains 

values. The decision indicates which gain is to be implemented and for how long in order 

to meet the required level. This process is carried out in an interactive manner with the 

operational level i.e. the manufacturing system updates this unit in the DLU with the 

current status of the system and based on the previously fed data of the demand, a control 

action is decided. Thus this unit is mainly responsible for what is known in the literature
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of MPC systems as production control. The details of this control process is explained in 

section 5.5

5.3 MPC Policy Selection Unit

The selection of the MPC policy is based on the demand profile. From a classical 

point of view the demand in the early manufacturing paradigms (mass production for 

example) used to be very well anticipated and thus the MPC policies were geared towards 

inventory based policies. As for modem market, demand is usually fluctuating and 

exposed to a lot of variation and thus MPC policies that are capacity based are rather 

preferred in these environments. In agile manufacturing, as explained earlier, both market 

profile trends are expected and thus the question becomes which is better to hedge for 

demand variations; capacity or inventory? The proposal in this dissertation is that real 

agility of manufacturing system stems from the flexibility and the ability to adopt both 

policies optimally when needed.

Based on the previous analysis, inventory based MPC policies are best when the 

demand profile experiences a period of a steady or quasi-steady trend. This trend can be 

increasing, decreasing or constant. On the other hand, capacity based MPC policies are a 

better candidate when the demand profile experiences a significant fluctuating trend.

The first challenge that faces the DLU is how to understand the anticipated 

demand and select the best MPC policy based on that. This challenge is addressed by the 

first layer of the DLU which is responsible for selecting the required MPC policy over 

different demand periods. From the developed agile MPC system perspective, this is the 

unit assigned for switching between the different controllers engaged in the system 

(capacity scalability, inventory and WIP controllers) and thus its algorithm is the 

switching protocol of these controllers.

The MPC selection unit’s algorithm is based mainly on what is called moving 

regression analysis. Regression analysis is a method that fits a straight line to a set of
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data. The algorithm receives the set of anticipated demand data from the higher 

management level and starts with first three points (or months) and tests the absolute 

error of these points with their calculated regression line. If the error is relatively small 

this means that the demand within this range is of a steady trend and thus an inventory 

based policy is selected. On the other hand if this error shows high values this means that 

the demand experiences great variations and thus a capacity based policy is better to 

hedge against these variations in this demand period.

After the decision was taken for the first three demand data points, the algorithm 

will check the next two data points with the last point of the previously tested three points 

and the same regression analysis is carried out. The analysis will keep on exploring the 

demand data till the whole planning period (all anticipated demand) is covered and 

divided into different regions where a specific MPC policy is applied to each grouped 

demand points or regions. The output of this unit will be a plan that indicates which 

policy will be adopted by the manufacturing system over which demand period from the 

anticipated demand profile given by the higher management level.

It is important to note two things here. First, the value of the error limit of the 

regression analysis explained earlier (on which the switching decision is based) is 

function in the degree to which the enterprise would like to be sensitive to variation. This 

degree is usually relative form one business to another depending on the market 

competitiveness strategy. Thus the DLU expects to receive this value from the higher 

management level and this is another form of linking the operational level with the higher 

management level to maintain agility in manufacturing systems. In this dissertation the 

error is arbitrarily selected to have the value of 1 0  % as an average accepted value.

Second, the algorithm selected to analyze the demand profile can be replaced by 

any other data recognition algorithms found in the literature which gives the approach a 

wider opportunity for improvement. Also it is possible for the higher management level 

to decide to skip this analysis step and dictate directly the MPC policy that it feels better
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for the market now and goes directly to the second layer of the developed DLU. Figure

5.2 shows the flow chart of the MPC selection unit’s algorithm.
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ry

Capacit 
y Based

Output:
MPC

Figure 5.2: Flow Chart of the MPC Selection Unit’s Algorithm
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5.4 MPC System Controllers’ Gains Optimal Setting Unit

As described earlier in this chapter, this unit is responsible for deciding on the 

optimal values of the different controllers’ gains in the developed agile MPC system. The 

decision is made through a multi objective optimization approach that tends to make a 

trade off between responsiveness and cost effectiveness. No doubt that both agility goals 

are important to any enterprise, however, the importance degree of each of these goals is 

relative form one business to another. This relativity is indicated by the higher level 

management and is described in the multi objective function of the optimization approach 

in the DLU through the weighting variable “a”.

From the dynamic analysis of chapter four the responsiveness of the developed 

MPC system can be expressed by the rise time of the system, while the cost of deviating 

from the target production level can be reflected in the value of the production overshoot 

measure as explained earlier. The objective function thus will aim to minimize the rise 

time (to increase responsiveness) and at the same time minimize the production overshoot 

(to decrease that cost) and each objective will take a specific weight “a” based on the 

policy adopted and the strategy of the higher level management.

It is important to recall here that all the previous measures are expressed in terms 

of the natural frequency and damping ration of the MPC system. Thus there will be four 

different objective functions for each MPC policy (or configuration). Also it is important 

to realize that both measures (natural frequency and damping ratio) are composed of the 

system’s parameters (lead time, scalability delay time and shipment time) and the 

controllers’ gains. Since the system’s parameters are assumed to be fixed for each 

configuration, thus the optimization decision variable will be the controllers’ gains of 

each policy.
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5.4.1 Optimization Algorithm:

Consideration of more than one objective function in an optimization problem 

introduces additional degrees of freedom. Unless these degrees of freedom are 

constrained, mathematical theory indicates a set of solution points rather than a single, 

optimal point. In the case of the DLU, preferences dictated by the higher management 

level together with the stability and system constraints provide enough constraints to find 

a single optimal value for each controller gain in the developed agile MPC system. The 

most common approach to imposing such constraints is to develop a utility function 

which includes the different competing objectives.

The selection of the multi objective optimization (MOO) technique or method to 

be adopted is very important. Coello (2003) lists different methods for multi-objective 

optimization. The most commonly used method is the Weighted Sum Method where all 

the objective functions are added together using different weights and the utility function 

(U) is given as follows:

U =  I  WjFi(x) (5.1)
/ = 1

k
where w is the weight for each objective function F(x) ( I  Wj = 1) and k is the number of

/ = 1

the objective functions.

The main advantage of this method is that if all the weights are positive (as in the 

case of the DLU), the minimum of equation (5.1) is Pareto optimal (Zadeh 1963); i.e., 

minimizing equation (5.1), as in the case for the DLU objective, is sufficient for Pareto 

optimality. The general objective function is shown in equation (5.2).

Min  : a
/ 0 .8  + 2 . 5 ^  N 

CD„
+ (1 100 (5.2)

Equations (5.3) -  (5.6) display the objective function for each MPC policy or 

configuration.
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Inventory Based MPC:
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Capacity/WIP Based MPC:
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As for the constraints of the optimization process that constrain the different 

controllers gains (decision variables), they are mainly three constraints. First, the stability 

constraints described earlier in the stability analysis of the developed agile MPC system 

in chapter four for each MPC policy.

Second, the damping ratio is always constrained between 0 and 1 in order to have 

an under-damped system since an over damped MPC system (where the damping ratio is 

greater than 1 ) will decrease the system responsiveness dramatically while a negatively 

damped MPC system (where the damping ration is less than 0) will make the system 

unstable.

The final constrain is in the case of capacity based MPC systems where the upper 

limit for the capacity scalability controller gain is limited by the max capacity that can be 

supplied to the system since the capacity is assumed not to be infinite. The units of the 

calculated optimal gains values are daily rates

In any multi objective optimization (MOO) process, attention should be paid to 

two critical issues. The first issue is the determination of the weights in the objective 

function. Misinterpretation of the theoretical and practical meaning of the weights can 

make the process of intuitively selecting non-arbitrary weights an inefficient chore. There 

are different methods to calculate the value of these weights (see Yoon 1981 for a survey
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on these methods). In this dissertation, the weights will be determined by the higher 

management level depending on the adopted market strategy. This is another 

manifestation of how this agile MPC system links the operational level with the higher 

management level.

The second issue in MOO is the problem of the difference in the order of 

magnitude between the different objectives. A solution proposed to that is normalization 

where all objectives are transformed to have values from 0 to 1. This is especially true 

with secularization methods that involve a priori articulation of references as the one 

adopted in this layer of the DLU. In this unit, the most robust approach to normalize the 

objective functions regardless of their original range is used and it is given in the 

following equation (Koski 1984, Koski and Silvennoinen 1987, Rao and Freiheit 1991):

f M z f i  ( 5 7 )

F,max -  Ft

where Fi is the objective function, i is the number of objective functions, F* is the 

optimal objective function at the utopia point (optimal point) and Fmax is value of the 

objective function at the maximum point of the range (in the cases of a minimization 

problems as in our case).

Figure 5.3 shows the flow chart of the optimization algorithm in this MPC System 

controllers’ gains optimal setting unit. A MATLAB code is used to implement this 

algorithm and plot the decision variables to indicate the optimal points.
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5.4.2 Simple Sensitivity Analysis of the Competing Objectives and Optimization 

Variables:

It is important to study the sensitivity degree of each of the optimization 

objectives (rise time and production overshoot) with the decision variables (controllers’ 

gains). Such study will give a better understanding of the nature of the problem and 

which are the real effective objectives with each MPC policy and the same for the 

decision variables.

To carry out this study the previous developed optimization algorithm is 

implemented with different values for the weights and the time parameters are arbitrarily 

to be as follows: T l t =  1 day, To = 2 days and T s r  = 4 days. The maximum capacity rate 

constraint is 10 orders/day while the maximum feasible input rate is 5 orders/day. In 

addition, to better visualize the problem, the objective function is plotted against the 

decision variables.

5.4.2.1 Inventory Based MPC Policy

Figures 5.4 to 5.6 show the objective function versus the inventory controller gain 

“Gi” at different values of “a”. The feasible calculated range of Gi is [0.4-1.4] K 

RAM/day. Analysis of these figures leads to the following conclusions (Deif and 

ElMaraghy 2006-e):

• When both objectives have equal weights (figure 5.4), the competitiveness 

between both objectives is obvious. The rise time minimization objective is trying 

to increase the value of Gi while the minimization of the overshooting objective is 

trying to do the opposite.

• However, the same figure shows that the change in the overshooting objective 

with the change in the Gi values is higher than that of the time rise objective 

across the Gi domain. This leads to the conclusion that minimization of the
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overshooting (or partial cost) objective is more sensitive to the inventory 

controller gain Gi than minimization of the rise time objective ( 1 /responsiveness).

• The weights of the objective function play a significant role in determining the 

optimal value of the inventory controller gain Gi as shown in figures 5.5 and 5.6. 

When the responsiveness objective is of higher importance (a= 0.7), the optimal 

value tends to fall near the upper boundary of the inventory controller gain range, 

while when the cost objective is of higher priority (a= 0.3), the optimal value 

tends to fall near the lower boundary of that range. This is obvious since the 

weights acts in the favorite of one of the objectives and each of these objectives 

tries to push the value of Gi to one of the limits.

• Based on the previous observation, it is clear that the higher management strategy 

plays an important role on determining the policy of inventory control in the 

operational level. This again highlights how important the link between these two 

levels is in order to improve the enterprise performance.
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Figure 5.4: The Objective Function versus the Inventory Controller’s Gain at a = 0.5
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5.4.2.2 Capacity Based MPC Policy

The same analysis is carried out for the capacity based MPC system with the same 

variety in the values of the weights. The feasible range of Gc is [0-7]. Results are shown 

in figures 5.7 to 5.9 and can be analyzed as follows:

• From figure 5.6, the competitiveness between both objectives is obvious at a= 0.5 

in the same fashion as for the previous inventory based MPC system.

• Also the same figure shows that the minimization of the overshooting (or the cost) 

objective is more sensitive to the capacity scalability controller gain G c than the 

minimization of the rise time objective ( 1 /responsiveness).

• The weights of the objective function play similar role in determining the optimal 

value of the capacity scalability controller gain G c as shown in figures 5.7 and 

5.8. When the responsiveness objective is of higher importance (a= 0.7), the 

optimal value tends to fall near the upper boundary of G c, while when 

minimization of partial cost objective is of higher priority (a= 0.3), the optimal 

value tends to fall near the lower boundary of the same range as explained earlier.
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5.4.2.3 Inventory/WIP Based MPC Policy

The analysis of this policy is different from the previous two policies since two 

decision variables are considered (the inventory controller gain Gi and WIP controller 

gain Gw). The feasible range for Gi is calculated to be [1.3-5] K RAM/day and for Gw is 

[0-1] K RAM/day.

In order to sense the degree of competition of both objectives with each of the 

decision variables, the first analytical approach will consider one of the decision variables 

constant while the other will change along its feasible range. Figure 5.10 (a and b) shows 

the objective function versus different values of Gi while Gw varies in a very small range 

at its average value. Same results were obtained when Gw has different values (see table

5.1). The results in the figure emphasize the competition of both objectives without 

dominance of Gw over Gi.

Figure 5.11 (a and b) shows the objective function versus different values of Gw 

while Gi varies in a very small range at its minimum value. The results in the figure again 

emphasize the competition of both objectives. However, only at low values of Gi, Gw 

showed that behaviour. When Gi has higher values, Gw is always at its maximum range 

showing the dominance of Gi over Gw in this MPC configuration or policy (see table

5.2).

Furthermore, when both variables are considered simultaneously with equal 

weights (a = 0.5), the optimal value for WIP controller’s gains is found to be at the upper 

boundary as shown in figure 5.12 (a and b). Meanwhile the optimization process is 

carried out to decide on the optimal value of the inventory controller gain. The general 

insensitivity of the WIP controller gain is mainly due to damping limits or constraints.
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Figure 5.10: The Objective Function in Inventory/WIP Based MPC System versus the 

Inventory Controller’s Gain at Gw = (0.5 to 0.58)
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Value for Gw Corresponding Optimal Value for Gi Objective Function

0 1 . 6 0.44922

0.3 2 0.36192

0.7 2.7 0.27456

0.9 3 0.24275

1 3.3 0.22391

Table 5.1: Some Results for Sensitivity Analysis for Optimal Values of Gw

Value for Gi Corresponding Optimal Value for Gw Objective Function

1.5 0 . 6 0.367176

2 0.9 0.288936

3 1 0.225935

4 1 0.230974

5 1 0.254253

Table 5.2: Some Results for Sensitivity Analysis for Optimal Values of Gi

The effect of the weights is highlighted by choosing the weight “a” to be equal to 

0.7 and 0.3 as shown in figures 5.13 (a and b) and 5.14 (a and b) respectively. It is clear 

that when responsiveness is of higher importance, Gi will always tend to be at its upper 

boundary (figure 5.13) while Gw gets a bit sensitive to the optimal solution. The case is 

reversed when the partial cost is of higher importance where Gi will tend to go to its 

minimum limit while Gw is again insensitive to the optimal solution (figure 5.14). This 

can be explained since the weights gear the problem to one of the two objectives and in 

the responsiveness case the system will always try to have maximum Gi and decrease the 

damping effect of Gw while in the case of partial cost the system will always try to have 

maximum Gw to decrease overshooting and decrease the instability effect of Gi.
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5.4.2.4 Capacity/WIP Based MPC Policy

A similar analysis to the previous inventory/WIP based MPC policy is carried out 

since both have two decision variables (where the capacity scalability controller Gc will 

replace Gi). The feasible range for Gw is calculated to be [-1.4 - 2.3] K RAM/day and for 

Gc is [5-10] K RAM/day. Figures 5.15 to 5.19 revealed the following points:

• The competitiveness of both agility objectives with each of the decision variables 

(controllers’ gains) is clearly shown in figures 5.14 and 5.15 where one of the 

decision variables is changed across the feasible range while the other is slightly 

changing.

• However, figure 5.16 show that when both decision variables are considered, the 

system decision logic unit tends to optimize only the WIP controller gain while 

the capacity scalability controller gain is always at its upper boundary. This 

declares the dominance of the WIP controller gain as a decision variable over the 

other variable in the multi objective optimization for this configuration. This can 

be explained by realizing that as the capacity rate increases, the limit of the 

maximum WIP increases as well (due to the increase in the production limit) and 

thus problem becomes (unless capacity is restricted at each stage) to find the 

optimal WIP gain value across all available WIP levels. A practical solution for 

this problem is to have this layer in the DLU displays the optimal Gw at each 

capacity scalability increment (or limit) across the Gc range.

• The previous observation is still valid even when the weights were altered 

towards both objectives as shown in figures 5.17 and 5.18. For example, when the 

responsiveness (or minimization of rise time) is given a higher weight, the 

optimization process tends to minimize the value of Gw to decrease its damping 

effect while Gc is at its maximum limit. In the case of cost being of higher 

priority, the optimization process tends to push Gw to its maximum value to 

decrease overshooting while Gc is also kept at it upper boundary.
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Capacity Controller’s Gain and WIP Controller’s Gain at a  = 0.5

165

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



p

0.5

-0.5

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Capacity Scalability Controller Gain (orders/day)

(a )

0.7

0.6

0.5

0.4

0.3

0.2

WIP Controller Gain (orders/day)
■2 5  Capacity Scalability Controller Gain (orders/day)

(b)
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Capacity Controller’s Gain and WIP Controller’s Gain at a  = 0.7
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5.5 MPC Demand Satisfaction Check Unit

After deciding on the optimal controllers’ gains values the system will observe the 

current status of the manufacturing system, specifically the production rate, WIP level 

and inventory level. The observation process is interactive with the operational level or 

the manufacturing system, i.e. the DLU is updated with these levels on a monthly basis 

and the reference levels are also updated on a monthly basis based on the anticipated 

demand. The update is followed by a checking process (production control process) 

where the measured levels are compared with their respective target levels to check for 

demand satisfaction as will be explained next.

The production rate is compared to the desired capacity rate in any of the capacity 

based MPC policies. The reference capacity rate is set to be equal to the order rate OR 

which reflects the monthly demands that are anticipated by the higher management level. 

It is important to note that both rates are monthly rates. Based on the discrepancy 

between the two levels, the demand satisfaction check unit will decide on the required 

capacity scalability decision (increase or decrease) through scaling the capacity by the 

previously determined optimal capacity scalability controller’s gain.

Since the optimal capacity scalability gain is a daily rate value, this unit will also 

determine the duration for the application of the scalability decision. In other words the 

output from this unit to the operational level will be to scale the capacity by this amount 

(optimal capacity scalability gain) and through this duration (number of days in the next 

month).

As for the inventory level in inventory based policies, it is compared to the 

reference inventory level which can be determined by one of two ways. The first way is a 

preset service level that is determined by the higher management level where a minimum 

level of finished inventory should always be available in the warehouse.

168

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The second way is to calculate the average demand in the months where the 

inventory policy is implemented and setting this average value as the reference inventory 

level. Based on the discrepancy between the two levels the same process as in 

determining the capacity scalability decision is applied to determine the amount of 

inventory gain (input rate) and for how long.

Finally, the WIP level in the MPC policies accounting for WIP is compared to the 

ideal WIP level. The ideal WIP level is calculated as a product of multiplying the order 

rate OR with the estimated (ideal) lead time of the production system T Lt * as indicated by 

Little’s law (Sterman 1989, Hopp and Spearman 2000). The discrepancy between the two 

levels is compensated by the demand satisfaction check unit using the previously 

calculated optimal WIP controller’s gain (input rate) and in the same manner as in the 

cases of production rate and inventory.

Figure 5.20 shows the flow chart of the algorithm in this MPC system demand 

satisfaction check unit.

The final outcome of the whole decision logic unit (DLU) after its three 

hierarchical units have processed their functions as discussed earlier is what is called 

agile MPC plan. The operational level (manufacturing system) receives a yearly plan 

indicating which MPC policies will be applied during which periods and also a 

continuously updated monthly production control decisions to increase or decrease the 

production levels, WIP levels and/or inventory levels for a specific period of time in 

order to satisfy the demand anticipated by the higher level management.

The full switching protocol, optimization and control algorithms of the developed 

decision logic unit are being developed using MATLAB programming tool.
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5.6 Chapter Summary

The design of the decision logic unit or the supervisory controller was conducted 

in this chapter. The following points summarize the main observations and conclusions 

that were realized during the design and the numerical analysis process:

• The design of the decision logic unit (DLU) was achieved through the

development of a hierarchical architecture composed of three layers each layer

resembles a unit that carry out a certain task.

• The decision logic unit succeeded in linking the higher management level with the 

operational level. This linkage was mainly through aligning the marketing 

strategy with the manufacturing strategy via the generated MPC plan. This 

alignment appears in the selection of various decision parameters like the weights 

for the optimization process that balances between responsiveness and cost 

effectiveness (based on the market strategy) and also in the selection of the 

regression error that reflects the sensitivity degree accepted by the company to 

demand variation based again on its market strategy. Such linkage and alignment 

is the proposed research approach to realize agility in today’s manufacturing 

systems.

• The first layer in the DLU was the MPC policy selection unit. This unit is 

responsible for analyzing the anticipated demand profile and based on regression 

analysis the unit decides which MPC policy to be applied during which demand 

period.

• The second layer of the DLU is the MPC system controllers’ gains optimal setting

unit. This unit receives the selected MPC polices and based on the previously

developed models for each MPC policy or configuration it optimally select the 

controllers’ gains values for that policy or configuration. The optimization is 

basically a trade off decision between the two competing objectives of agility, 

responsiveness and cost effectiveness and thus a multi objective optimization 

approach was adopted.
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• The adopted multi objective optimization technique was the weighted sum as a 

Pareto optimal value is guaranteed. To avoid a problem in the order of magnitude, 

a normalization approach was implemented and as for the weights of the objective 

function, their selection was guided by the market strategy.

• The optimization process is constrained by the stability constraints investigated 

earlier in chapter four as well as the manufacturing system’s constraints and the 

damping ratio constraints. These constraints determined the range of the decision 

variables (controllers’ gains).

• A sensitivity analysis was carried out to better understand the nature of the 

competing objectives and their relation with the decision variables. A number of 

observations were found for the studied cases. In the non-WIP compensation 

MPC systems, the minimization of the overshooting objective is more sensitive to 

the values of the controllers’ gains than the minimization of the rise time 

objective. Also the values of optimal controllers’ gains were highly affected by 

the weights of the objective function.

• In WIP compensation MPC systems, although the competitiveness of both agility 

objectives was clear with each of the decisions variables individually, when both 

variables are considered simultaneously the results showed a degree of dominance 

of inventory gain over the WIP gain and WIP gain over capacity scalability gain.

• In case of Inventory/WIP based MPC systems, when both objectives are given 

equal weights, the optimal decision is sensitive to the value of the inventory 

controller gain while the WIP controller gain tends to be at the upper boundary. 

However, when the responsiveness objective is given a high weight, the inventory 

controller gain is at its maximum limit while the WIP controller gain is being 

optimized and the case is reversed between these variables when the cost 

objective is given a higher weight.

• In the case of capacity/WIP the WIP controller gain is always dominating over the 

capacity scalability controller gain in the optimization process.

• The previous sensitivity analysis results are very important when considering 

which MPC policy to adopt and which decision variables are of importance to 

better control the manufacturing system.
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• After deciding on the optimal controllers’ settings, the third layer which is called 

the demand satisfaction check unit takes the responsibility of production control. 

This control process is based on comparing the current capacity, inventory and 

WIP levels of the manufacturing system with the reference values of these levels 

that are continuously calculated based on the demand data. Based on the 

discrepancy between the compared levels this unit decides on which of the 

previously calculated optimal gains of each policy to be used and for how long in 

order to compensate for that discrepancy.

• The output of the DLU is an MPC plan that indicates on a yearly basis which 

MPC policy to be applied during which demand period of that year and on a 

monthly basis (interactively with the manufacturing system) which controller gain 

to be used and for how many days in that month

• The developed agile MPC system approach considers the planning on a monthly 

level (since it is in the mid managerial level), however the developed model and 

DLU can be extended with some modification to a daily MPC systems.

• The DLU updates the higher management level with the performance of the 

manufacturing system and the developed MPC plan. An approach to improve the 

performance of the agile MPC system in case that the optimal controllers’ gains 

fails to satisfy the market strategy and needs, is by the higher management level 

to decide to change the MPC system’s parameters (lead time, capacity scalability 

time and shipment time). These decisions involve investments to alter these time 

variables and also changing market strategies. A natural extension of this research 

is to study the inclusion of changing these parameters in the optimization process 

in the DLU.

• The algorithm of the developed DLU was coded using MATLAB computer 

package. The algorithm efficiency can be improved using other approaches in 

both pattern recognition adopted in the first layer (to analyze demand pattern) and 

other optimization techniques than that adopted in the second layer. The 

comparison of the efficiency of different approaches in the design of the DLU can 

be carried out in future research.
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Chapter Six

Agile MPC Dynamic Model Application and Validation

6.1 Application of the Developed Agile MPC System to Automatic PCB 

Assembly Industry:

The developed agile MPC system with its decision logic unit (supervisory 

controller) is illustrated using a real industrial case study in an automatic PCB assembly 

factory. The objective of this case study is to highlight the applicability of the developed 

approach in a very turbulent market that can resemble the agile environment which is the 

electronics market and in a manufacturing system that is an ideal candidate for agile 

manufacturing which is the automatic PCB assembly line (Deif and ElMaraghy 2006 a 

and d).

6.1.1 Automatic PCB Assembly Line

Traditional printed circuit board (PCB) automatic assembly line (sometimes 

called surface mount technology SMT), consists of a loader/unloader magazine for 

loading the PCB into and from the line, a screen printing machine for printing the solder 

paste over the PCB to hold the electronic components, automatic pick and place machines 

to place or assemble the components over the PCB (this is the heart of the line) through 

different types and sizes of feeders and nozzles, reflow oven for solidifying the solder 

paste to maintain robust connectivity for the components over the PCB (this is achieved 

through providing a pre-designed thermal profile) and finally some inspection devices 

like the ICT (in-circuit tester) inline or at the end of the line.

The automatic assembly process (which constitutes the lead time of the system 

T lt)  simply starts by printing the solder paste (highly conductive martial) over the PCB
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in the designated solder pads for the of the components, then followed by placing the 

different components over these pads through the automatic pick and place machines and 

finally solidifying the viscous paste under the components through the oven to firmly fix 

the components over the PCB. Inspection and quality checks are carried out in the line 

and after the assembly process through microscopic or any vision tool to check for the 

shape and quality of the paste and an in-circuit tester ICT is also used to check for the 

electronic circuit functionality (open and closed circuits) and the conditions of the 

assembled components of the assembled PCB. Figure 6.1 is a typical PCB assembly line.

Loading
magazine

Reflow oven

Figure 6.1: PCB Automatic Assembly Line

In a reconfigurable PCB automatic assembly line (which is typical for an agile 

manufacturing enterprise), the previous components of the line are designed to be 

reconfigurable. PCB automatic assembly line has great potential for modular design 

especially for some of its critical parts that will enable the scalability of the line’s 

capacity and functionality. This is why such a system, on the contrary to mass production 

system, can produce different PCB cards with different volumes.
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On the system level, the reconfiguration of these assembly systems would be 

through the addition or removal of machines. Practically speaking the machines that are 

added or removed are the automatic pick and place machines as they are the bottle neck 

of any automatic PCB assembly line. Other types of machines could be added based on 

the capacity needed. To have a smooth reconfiguration of these lines on the system level, 

the infra-structure of the line should be also designed to accommodate these changes in 

terms of the pneumatic and electrical facilities. The ramp up time (which is a major 

component of the capacity scalability delay time Tp) of the changes of these assembly 

systems is mainly consumed in aligning the conveyors and the cameras of the installed 

machines.

On the machine level, the automatic pick and place machines are designed to 

assemble different types of electronic components and IC chips by its modular design 

that can accommodate different types of cameras, according to the size of the components 

and chips and different types and sizes of nozzles to pick these components and chips. 

Also these machines are designed to assemble different volumes of PCB through adding 

and removing different numbers and kinds of components feeders. This is assisted by a 

reconfigurable open control system of those machines that can compensate for these 

different parts.

The printing machine is also modularly designed to be reconfigured to act as 

screen printing machine for the solder paste or as a glue dispenser (in case of double PCB 

side assembly) according to the application by just adding the required dispensing 

modules.

The reconfiguration of the reflow oven is done through reprogramming the 

settings of the thermal profile according to the type of the paste and product (logic or soft 

reconfiguration). For the ICT machine it is reconfigured through modular design of the 

jigs and testing probes. Finally the material handling devices (loaders, unloaders and 

conveyors) are sizeable according to the product in the line.
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The input for this system is mainly the bare PCB and the surface mount electronic 

devices SMD together with solder paste required to solder the SMD over the bare PCB. 

Also some sub-assemblies (partially assembled PCB) can be delivered to the system to 

complete the assembly process of the PCB. This is important to understand what is meant 

by increasing the input rate when talking about both inventory and WIP controllers’ gain 

in the developed agile MPC system.

6.1.2 Agile MPC System Applied to an Automatic PCB Assembly Line

The line considered for the application of the developed Agile MPC system is 

dedicated to assembly of RAM (random access memory) modules; however other 

computer peripherals can be easily assembled on the same line by some reconfiguration 

as explained earlier. The RAM module is selected as a product to highlight the 

application of the agile MPC system in an agile environment since RAM chips are known 

to be having a very dynamic and unstable market.

The data listed below are real data gathered from an automatic PCB assembly 

line. The factory considered works for 2 shifts (16 hours) for 20 days per month and the 

maximum nominal capacity for the existing line is 26K RAM modules per day. However 

the actual production rate of the current line is 20K RAM modules per day. The products 

are in the form of panels each panel includes 10 RAM modules. Figure 6.2 shows a 

sample of the produced RAM modules.

Figure 6.2: Sample of the Produced RAM Modules
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6.1.2.1 Input Data fo r the DLU o f the Developed Agile MPC System:

Time Parameters

Lead time (Tlt): The assembly line produces the RAM modules in batches of 

40K per batch as this is the best scheduling policy with the suppliers in terms of kitting 

especially the TSOP micro chips of the RAM. Thus the lead time for that line is 2 days.

Capacity scalability delay time (To): The main capacity scalability mechanism in 

this line is the addition of an extra pick and place machine. The average time for 

installing the machine in the line and calibrating its camera and conveyor with the line’s 

conveyor plus the ramp up time is 3 days (without stopping the line).

Shipment time ( T Sr): The marketing plan dictates that the factory should ship 

100K of RAM modules at least every week. Thus the shipment time is 5 days.

System Limits

Input rate: The maximum input rate that the systems can handle is the difference 

between the maximum available capacity (26K/day) and the current production rate 

(20K/day), i.e. 6 K/day of RAM modules’ raw materials, PCB and SMD components.

Capacity rate: The shop-floor of the factory is composed of 2 lines. Each line 

contains 4 pick and place machines. The pick and place machines are of two types (2 of 

each per line); one type is a chip shooter (high capacity) with average production rate of 

3.2K/day and another type (medium capacity) with average production rate of 1.8K/day. 

The factory works 2 shifts/day. Due to space limitations of the shop floor, only one pick 

and place machine of the medium capacity type can be added for each of the assembly 

lines. Thus the maximum capacity rate that can be added to the factory is 3.6K/day. The 

monthly production rate is 400K of RAM (20K/day * 20 days).
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WIP: The WIP in the PCB assembly line is mainly bare PCBs ready to be 

assembled or partially assembled PCBs. These PCB are normally stacked in trays offline 

ready to feed any starving pick and place machine or waiting for any blocked machine to 

be empty. The maximum WIP that can be stacked in the trays of the considered PCB 

assembly line is 2K. Since the lead time of the batch is 2 days, thus the max WIP rate is 

lk/day. Also WIP can refer to the assembled RAMs before they are stocked as finished 

inventory.

Market Strategy

The market strategy reflects the competitive advantage that the enterprise would 

like to have over a certain period and while adopting a certain MPC policy. The weights 

of the multi objective optimization function in the second layer of the DLU represent that 

strategy. In this case study the weight ac is the weight when capacity based MPC policies 

are implemented while ai is the weight when inventory based MPC policies are 

implemented. Table 6.1 displays the different weights for the two agility objectives with 

the different MPC policies

MPC Policy Responsiveness Objective Cost Objective

Inventory/WIP (ai) 0.3 0.7

Capacity/WIP (ac) 0.7 0.3

Table 6.1: Weights of the Multi-objective Optimization Function for each MPC Policy

Another market strategy input required for the implementation of the agile MPC 

system is the degree of sensitivity to market demand fluctuation. This degree is used by 

the first layer of the DLU to switch between capacity based MPC policies and inventory 

based MPC policies through regression analysis of the demand data. In this case study the 

only capacity/WIP and Inventory/WIP policies are considered (since WIP is important to 

account for in this type of industry). The maximum accepted regression error that will 

keep the MPC policy inventory/WIP based policy is 10 % since this reflects a sort of
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stable market trend. If the error exceeds that limit, the policy is switched to capacity/WIP 

policy.

Demand Forecast

The higher management layer feeds the DLU with the anticipated yearly demand 

whether this demand was anticipated by stochastic or deterministic techniques. In this 

case study the yearly demand similar to a previous year is anticipated as shown in table 

6.2. It is important to recall that the developed MPC system is agile enough to respond to 

any disturbances in these demand values via the different controllers engaged in the agile 

MPC system.

Month 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Demand 

(in 1000)
400 425 390 410 460 380 300 410 470 400 420 430

Table 6.2: Anticipated Market Demand for the RAM Modules

6.1.2.2 DLU Results (Offline):

The previous input data were given to the DLU (or the supervisory controller) of 

the developed agile MPC system. The output of the different layers of the DLU, as 

explained earlier, can be classified into results that are calculated offline and ahead of the 

production plan while other results are calculated online i.e. during production. The 

offline results are the outputs from the first two layers indicating which policy to adopt 

during which months and the optimal controllers’ gains values for each MPC policy.

Table 6.3 indicates the MPC policy to be adopted in each month based on the 

regression analysis of the anticipated demand with the sensitivity to market turbulence 

indicated by the higher managerial level.
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Month 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Demand 

(in 1 0 0 0 )
400 425 390 380 460 380 300 410 470 400 420 430

MPC

Policy
Inventory/WIP Capacity/WIP Inventory/WIP

Table 6.3: The Output of the First Layer of the DLU Indicating which MPC Policy to be

Adopted each Month

As for the optimal controllers’ gains values, the second layer of the DLU 

calculated the feasible range for these values that satisfy the stability, damping and 

system’s constraints. This was followed by a multi-objective optimization that was 

carried out to have a value that balanced between the two competing agility objectives 

with the weights designated for each objective at each MPC policy by the higher 

management level as explained earlier. The results for each MPC policy are shown in 

table 6.4.

MPC Policy Optimal Controllers’ Gains Values

Inventory/WIP
Gi = 5 K RAM/day

Gw = 1 K RAM/day

Capacity/WIP
Gc = 3.6 K RAM/day

Gw = 0.8 K RAM/day

Table 6.4: Optimal Controllers’ Gains Values for each MPC Policy as Obtained by the

Second DLU Layer

6.1.2.3 Manufacturing System Control (Online):

After determining the policies to be adopted with optimal controllers’ gains for 

each policy, it is the role of the DLU as a supervisory controller to use these results to
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control the production based on the continuous feedback of the status of the system’s 

parameters. Based on the developed MPC system model, these parameters are mainly the 

WIP level, inventory level and the production rate. According to the discrepancy in the 

levels or the backlog from the target levels which are also calculated by the same layer 

from the demand data, the DLU takes a monthly action to correct or compensate for these 

discrepancies or backlog. The action is taken each month based on the status of these 

parameters form the previous month using the previously calculated optimal gains of 

each policy.

In the considered case study of the RAM assembly lines the production results of 

a previous year were taken as if they were currently occurring to demonstrate the online 

action of this layer in the DLU. Results are shown in table 6.5. It is important to notice 

that there is some rounding off in terms of the compensation for the discrepancy of the 

different levels in order to stick to the exact optimal value of the controllers’ gains as in 

the case of the last three columns of row six in the table in the inventory/WIP policy (e.g. 

2.5 days was rounded to 3 days).

Table 6.5 is considered a summary of all the deliverables of the designed DLU or 

the supervisory control which is the heart of the developed agile MPC system proposed in 

this dissertation.
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Month 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Demand 

(in 1000)
400 425 390 380 460 380 300 410 470 400 420 430

MPC Policy Inventory/WIP Capacity/WIP Inventory/WIP

(offline) Gi = 5 and Gw = 1 Gc = 3.7 and Gw = 0 . 8 Gi = 5 and Gw = 1

l’=405 Cap’=460 Cap’=380 Cap*=300 Cap’=410 Cap*=470 I*=417

WIP*=40.5 WIP*=46 WIP*=38 WIP*=30 WIP*=41 WIP *=47

* ii <
1

Current Current Current Current Current Current Current Current Current Current Current Current

1 = 400 1 = 400 1 = 400 1 = 400 PR = 400 PR = 380 PR = 300 PR = 400 PR = 400 1 = 400 1 = 400 1 = 400

MPC Action 

(online)

Action:

Gi

(ldays)

Action:

Gi

(ldays)

Action:

Gi

(ldays)

Action:

Gi

(ldays)

Action:

Gc

(13days)

Action: 

Gc (Odays)

Action: 

Gc (Odays)

Action: 

Gc (3days)

Action:

Gc

(19days)

Action:

Gi

(3days)

Action:

Gi

(4days)

Action:

Gi

(3days)

Current Current Current Current Current Current Current Current Current Current Current Current

WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP WIP

= 40 = 40 = 39 = 38 = 42 = 39 = 27 = 40 = 42 = 39 = 40 = 41

Action: Action: Action: Action: Action: Action: Action: Action: Action: Action: Action: Action:

Gw Gw Gw Gw Gw Gw Gw Gw Gw Gw Gw Gw
(ldays) (Odays) (2 days) (2 days) (5days) (Odays) (2 days) (2 days) (6 days) (3days) (ldays) (Odays)

Table 6.5: The Output of the DLU Unit.
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6.2 Verification of Agile MPC Policy Using a Comparative Cost 

Analysis Approach:

In this section we conduct a cost analysis comparison between different policies 

to show how each policy, including the agile MPC developed, can handle different 

demand scenarios for the same discussed industrial case (Deif and ElMaraghy 2006-d). 

The objective of this comparison is to highlight the efficiency of the developed agile 

MPC approach and its superiority especially in mixed demand patterns.

The policies considered are inventory based MPC policy, capacity based MPC 

policy and finally the agile MPC policy (that can adopt both policies when needed). The 

demand patterns investigated are quasi or semi stable demand (demand with small 

fluctuations), fluctuating demand and demand patterns that are mix between previous two 

demands.

6.2.1 Capacity Based MPC Case Cost Calculations

As stated earlier in section 6.1, the normal productivity of the automatic PCB 

assembly line is 400K of RAM per month using 2 shifts. The available capacity 

scalability (physical and logical) options are shown in table 6 .6 :

Capacity Scalability Option Production Rate (1000 RAM)

Normal (2 lines) with 2 shifts/day 400

1 m/c with productivity of 1. 8  K in one line 472

2 m/c with productivity of 1. 8  K in each line 544

3 shifts with normal production 600

3 shifts with 1 m/c with productivity of 1.8 K in one line 708

3 shifts with 2 m/c with productivity of 1.8 K in each line 816

Table 6 .6 : Capacity Scalability Options for the Automatic PCB Assembly Line
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The monthly cost for each capacity scalability option will be calculated using 

Capital Recovery analysis [Fraser et al. 2006]. The input data for this analysis are as 

follows:

• The capital cost (P) for the smaller m/c (1.8 K capacity) is $100,000.

• The interest rate (i) is 1% accumulated monthly.

• Depreciation period (N) is 8  years

• Salvage value (D) will be equal to 10% of the capital cost and the declining

balance method will be used to calculate the salvage value.

The monthly cost (A) for having the smaller pick and place (1.8K capacity) 

machine will be calculated through adding the capital recovery cost minus the sinking 

fund factor as shown in equation (6 .1 ):

A =
i( 1 + i), jV

(! + ( ) * - 1

P ( \ - D ) N

(1 + 0 * -1
(6 .1)

From the previous data and using equation (6.1), the monthly cost of this machine 

will be A = $1300

The cost of each other machine in the line is calculated in the same manner with 

the same data except for the capital cost for each machine which is as follows:

• Reflow Oven m/c capital cost (P) = $50,000 and A = $650.

• Solder Paste Printing m/c capital cost (P) = $50,000 and A = $650.

• Pick and Place Chip Shooter m/c capital cost (P) = $150,000 and A = $2000.

As for the labour cost, it is $3000/shift each month (1 worker for every line each 

shift with $ 1500/month as salary).

The overall monthly cost of normal production for the two PCB automatic lines to 

produce the 400K monthly based on the previous analysis will be:

$6000 (labor for 2 shifts) + $1300 (2 printing m/c) + $1300 (2 reflow m/c) + $2600 (2 

small pick and place m/c) + $4000 (2 chip shooters pick and place m/c) = $15200
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Table 6.7 shows the capacity scalability options with the cost of each option based 

on the previous calculations. It should be mentioned here that these monthly costs reflect 

the cost of the physical unit only. However a more comprehensive calculation would be 

through considering the reconfiguration costs (Deif and ElMaraghy 2006(b) and 2007) 

and the share of each scalability option on the monthly overhead cost of the facility. 

These considerations are omitted for simplicity and also because they are beyond the 

scope of this calculation and will not affect the validity of the approach.

Capacity Scalability Option
Production Rate 

(1000 RAM)
Cost ($)

Normal (2 lines) with 2 shifts/day 400 15200

1 m/c with productivity of 1.8 K in one line 472 15200+1300

2 m/c with productivity of 1. 8  K in each line 544 15200+2600

3 shifts with normal production 600 15200+3000

3 shifts & 1 m/c with productivity of 1.8 K/line 708 15200+4300

3 shifts & 2 m/c with productivity of 1.8 K/line 816 15200+5600

Table 6.7: Monthly Costs for Capacity Scalability Options for the Automatic PCB

Assembly Line

The last cost parameter that should be considered in capacity scalability cost 

analysis is the under-utilized capacity cost or sometimes referred to as capacity loss cost. 

Although there is no well accredited or standard formula for that cost, however an 

accepted assumption would be treating the underutilized capacity cost as a holding cost 

where you pay for the unused capacity portion as function of the overall cost of the 

capacity unit. For example, in this case, if the monthly capacity scalability cost of adding 

a pick and place machine is $1300 and the utilized capacity of this machine is only 7 5 % 

of the overall capacity, then the monthly cost of underutilized capacity would be: 

(1300/4) = $325.
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6.2.2 Inventory Based MPC Case Cost Calculations

In any inventory cost analysis there are three important cost parameters that 

should be considered. First, is the holding cost which reflects the interest charge for the 

unsold goods (incorporating costs of capital, taxes, insurance, storage and breakage). 

Stock out cost or backlog cost is the second cost and it reflects the penalty the 

manufacturer pay for late delivery to the customer (incorporate the cost of the customer 

service level) and also the loss of good will cost (reflects the customer dissatisfaction 

cost). The last cost is the setup cost which is the cost for putting a production order 

(incorporating management activities, paper work...etc). In this section each cost 

parameter will be calculated for the purpose of this analysis and further validation 

analysis using the following data:

• Monthly interest rate for held inventory items (i) is 0.2% (typical value in low 

interest inventory cases, Nahmias 2001). It is important to note here that this 

interest value plays a very important role in such cost analysis. Thus the analysis 

results can be highly altered if this value changes. However, the effect of interest 

rate variation is a wide research area in the field of economics and beyond the 

scope of this research.

• Actual cost of the RAM (Pr) is equal to the manufacturing cost + the 

components’ costs (SMD, chips and solder paste). The manufacturing cost can be 

calculated by dividing the monthly production with monthly cost (from table 6.7): 

Mfg. Cost = 400000/15200 = $26/RAM.

The components cost based on the priced bill of material (BOM) is 

approximately $4/ RAM. Thus the cost of the RAM = $30.

• The average selling price (Ps) of the considered RAM module is $100

• Based on the market strategy and customers contracts, the penalty for 

instantaneous unmet demand or backlog (Pb) for each RAM module is 0.01% of 

the selling price.

• Based on the market competitiveness estimations, the estimated cost for loss of 

good will ( C lgw )  for instantaneous unmet demand is also 0 .0 1 %  of the selling 

price.
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• The monthly production order set up cost (K) = $ 10/order ($ 120 yearly).

• The reference inventory level will be calculated using the classical approach of

summing all the anticipated demand over the year and then dividing the total by 

1 2  to have the monthly inventory level as shown in equation (6 .2 )

* I  Demand
1 = -------------------- (p .z )

12

6.2.3 Comparative Cost Analysis Calculations

Based on the previous data for both policies the following cost parameters are 

calculated to be used later in the analysis of each policy with different demands:

For capacity based MPC policy:

• The cost for capacity scalability each month will be calculated using table 6.7.

• The cost of underutilized capacity will be calculated as stated previously

For inventory based MPC policy

• The holding cost ( C h )  will be calculated by first calculating the quantity of un

sold RAM/month ( Q h)  and then multiplying this quantity by the holding cost 

using the following equations:

Q h  =  Production -  Demand (6.3)

• The backlog cost ( C b )  will be calculated for each month first by calculating the 

backlog quantity ( Q b )  and then multiplying this quantity by the backlog penalty 

(P b )  and the cost of loss of good will (C lgw )  as shown in the following equations:

Ch =  QH*i*Pr

In this example: Ch = Qh*0.002*30

(6.4)

(6.5)

Q b = Demand -  (Production + Qh)

C b =  Q b  * (Pb + C lg w )  * Ps

In this example: Cb = Qb* (0.0001+0.0001)* 1 0 0

(6.6)

(6.7)

(6 .8)
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For Agile MPC policy

As stated earlier, the main philosophy behind the developed agile MPC approach 

was the ability to deal with all demand patterns through combining the previous two 

policies and applying the most suitable one to any demand pattern. Thus in this analysis 

in quasi-stable demand patterns the agile MPC policy will adopt the inventory based 

MPC policy with all its calculations. In the fluctuating demand the capacity based MPC 

policy will be adopted. Finally in the mixed demand a mix between the two policies 

(hybrid policy) will be used in accordance to demand segmentation approach stated 

earlier. The previous activities are carried out by switching between different controllers 

in the agile MPC model and being supervised by the first layer in the DLU of the 

developed approach as explained in details in chapter 5.

The demands patterns considered in this analysis and their values are shown in 

figures 6.3 to 6.5. Based on the previous cost calculations for each policy and the three 

considered demand patterns, tables 6 . 8  -  6 . 1 0  were developed to calculate the cost details 

for adopting each of the previous MPC policies to the different demand patterns.

It is important to note that the mixed demand patterns in figure 6.5 will be divided 

by the DLU in the agile MPC policy into three zones. The first zone from month 1 to 3 

and will adopt inventory based policy since it has a semi-stable trend, the second zone 

from months 4 to 9 will adopt a capacity based policy due to the clear demand 

fluctuations and finally the last zone from months 1 0  to 1 2  will again adopt an inventory 

based policy for the same reasons as the first zone. Analysis of these figures leads to the 

following observations (for the studied and similar cases):
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Figure 6.3:Quasi Stable Demand Pattern

Fluctuating Demand Pattern
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Figure 6.4: Fluctuating Demand Pattern

Mixed Demand Profile
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Figure 6.5: Mixed Demand Pattern
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Month 1 2 3 4 5 6 7 8 9 10 11 12 Sub-Total Cost Total
Policy Demand (in 1000) 400 430 380 420 370 400 390 400 410 380 400 420

In
ve

nt
or

y-
B

as
ed

O
nl

y Production Rate 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 400 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0

Backlog Qty 0 30 10 30 0 0 0 0 0 0 0 0 1400

Holding Qty 0 0 0 0 0 0 10 10 0 20 20 0 36 0 0 5 0 0 0

C
ap

ac
ity

-
B

as
ed

O
nl

y Production Rate 4 0 0 4 3 0 380 4 2 0 370 4 0 0 4 1 0 4 0 0 3 9 0 4 2 0 4 0 0 380

Scaling Cost 0 1300 0 1300 0 0 1300 0 0 1300 0 0 5 2 0 0

Under-utilization Cost 0 800 0 1000 0 0 1200 0 0 1000 0 0 4 0 0 0 9 2 0 0

Ag
ile

 
M

PC Production Rate 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 400

Backlog Qty 0 30 10 30 0 0 0 0 0 0 0 0 1400

Holding Qty 0 0 0 0 0 0 10 10 0 20 20 0 3 6 0 0 5 0 0 0
Table 6 .8 : Cost Calculation for each MPC Policy with Quasi Stable Demand Pattern

Month 1 2 3 4 5 6 7 8 9 10 11 12 Sub-Total Cost Total
Policy Demand 400 340 470 460 330 400 450 400 350 470 400 330

In
ve

nt
or

y-
B

as
ed

O
nl

y Production Rate 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 400 4 0 0 400

Backlog Qty 0 0 10 70 0 0 50 50 0 70 70 0 78 0 0

Holding Qty 0 60 0 0 0 0 0 0 0 0 0 0 3 6 0 0 1 1 400

C
ap

ac
ity

-
B

as
ed

O
nl

y Production Rate 4 0 0 4 7 0 340 4 6 0 330 4 0 0 4 5 0 4 0 0 3 5 0 4 7 0 4 0 0 330

Scaling Cost 0 1300 0 1300 0 0 1300 0 0 1300 0 0 5 2 0 0

Under-utilization Cost 0 0 0 2 0 0 0 0 4 0 0 0 0 0 0 0 6 0 0 58 0 0

A
gi

le
M

PC

Production Rate 4 0 0 4 7 0 340 4 6 0 330 4 0 0 4 5 0 4 0 0 3 5 0 4 7 0 4 0 0 330

Scaling Cost 0 1300 0 1300 0 0 1300 0 0 1300 0 0 52 0 0

Under-utilization Cost 0 0 0 2 0 0 0 0 4 0 0 0 0 0 0 0 6 0 0 58 0 0
Table 6.9: Cost Calculation for each Iv PC Policy with Fluctuating Demand Pattern
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Month 1 2 3 4 5 6 7 8 9 10 11 12 Sub-Total Total
Policy Demand 420 400 380 460 400 470 400 335 335 430 400 370

In
ve

nt
or

y-
B

as
ed

O
nl

y Production Rate 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0

Backlog Qty 20 20 0 60 60 130 130 65 0 30 30 0 109 0 0

Holding Qty 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 900

C
ap

ac
ity

-
B

as
ed

O
nl

y Production Rate 4 2 0 4 0 0 380 4 6 0 4 0 0 4 7 0 4 0 0 335 335 43 0 4 0 0 3 7 0

Scaling Cost 1300 0 0 1300 0 1300 0 0 0 1300 0 0 5 2 0 0

Under-utilization cost 1000 0 0 2 0 0 0 0 0 0 0 800 0 0 2 0 0 0 72 0 0

Ag
ile

 
M

PC

Production Rate 4 0 0 4 0 0 4 0 0 4 6 0 4 0 0 4 7 0 4 0 0 335 335 4 0 0 4 0 0 4 0 0

Backlog Qty 20 20 0 0 0 0 0 0 0 30 30 0 2 0 0 0

Holding Qty 0 0 0 0 0 0 0 0 0 0 0 0 0

Scaling Cost 0 0 0 1300 0 1300 0 0 0 0 0 0 2 6 0 0

Under-utilization cost 0 0 0 200 0 0 0 0 0 0 0 0 2 0 0 4 8 0 0

Table 6.10: Cost Calculation for each MPC olicy with Mixed Demand Pattern

Note:

As mentioned earlier, the calculations can be altered with the variation of the interest rate value for the holding cost. A simple 

sensitivity analysis was conducted for the results of the previous comparison if  the interest rate is changed. Analysis showed that the 

same results are obtained if the interest rate varies up to 0.5%/monthly and if the rate is over this value then the holding cost becomes 

very high and capacity based policies would always be better. This analysis however does not affect the conclusion of the ability of 

agile MPC systems to efficiently handle different demand patterns through adopting different policies.
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Figures 6 . 6  to 6 . 8  plot the overall costs of each MPC policy with the three 

considered demands.

Scneario  I: Quasi Stable Dem and Pattern

10000 ]

C o st
4000

Inventory- Capacity- 
Based Only Based Only

MPC P olicy

Agile MPC

Figure 6 .6 : Cost of Different MPC Policies with Quasi Stable Demand Pattern

Scenario  II: Fluctuating Dem and Scenario

12000 
10000 

8000  
C o st  6000  

4000  
2000 

0

Inventory- Capacity- Agile MPC 
Based Only Based Only

M PC P olicy

Figure 6.7: Cost of Different MPC Policies with Fluctuating Demand Pattern

S cenario  III: Mixed Dem and Pattern

12000 
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8000 

Cost 6000 
4000 

2000 
0

In v e n to ry -B a s e c C a p a c ity -B a s e d  A g ile  M P C  
O n ly  O nly

MPC Policy

Figure 6 .8 : Cost of Different MPC Policies with Mixed Demand Pattern
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• With quasi-stable demand, inventory based MPC policy shows a better performance 

in terms of cost since the variations of demand from the target inventory level is 

limited and thus both the holding cost as well as the backlog cost is minimal. As for 

the capacity based policy, the cost to handle that demand pattern is quite higher since 

capacity is usually scaled to high values that need high demand variation to avoid 

paying for underutilized capacity or capacity loss as in this case.

• With Fluctuating demand, the opposite scenario was found where capacity based 

MPC policy showed a better cost performance in handling this kind of demand. The 

reason for that is the huge variation in demand (around 30%) values which justifies 

the usage of extra capacity (capacity scalability) in cases of demand increase. At the 

same time, these demand variations lead to high levels of accumulated inventory 

(holding cost) and sometimes shortage in the level of available inventory (backlog 

cost) leading to higher cost for inventory based policy.

• The developed agile MPC approach showed the best performance all over the three 

considered demand patterns. In quasi stable demand pattern the agile MPC approach 

adopted an inventory based policy by engaging the inventory controller and this is 

why it was as cost efficient as the classical inventory based policy. In fluctuating 

demand, the DLU of the agile MPC approach disengaged the inventory control and 

switched to the capacity controller to have the same cost effective performance as the 

typical capacity based MPC policy. However, in the mixed demand pattern, the agile 

MPC approach was far superior to the other two policies due to its ability to handle 

each period in the demand pattern with the suitable policy manipulating its switching 

ability between different controllers as explained in chapter 5 while talking about the 

first layer of the designed DLU.

The cost analysis conducted in this section verified the fundamental philosophy of 

agile MPC system proposed in this dissertation by showing that in a typical dynamic 

market environment, MPC system should maintain its agility by the ability to efficiently 

react to different demand patterns. Also the analysis validated the ability of the algorithm 

of the first layer in the developed DLU of the model to handle different demand patterns 

and to switch between different controllers (switching protocol).
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6.3 Validation of Inventory Based Policy in the Developed Agile MPC 

System through Comparison with Traditional EOQ Approach:

The previous section verified in a general sense the use of the developed agile 

MPC approach. In this section the validation process will take more in depth approach 

where the performance of the inventory based MPC policies in the agile MPC approach 

will be compared with the most famous inventory based policy known as Economic 

Order Quantity (EOQ) approach [Hanssmann 1961, Wagner 1962 and Scarf et al. 1963].

6.3.1 Comparison Data

The data considered for this analysis will depend mostly on the same data of the 

previous section for the automatic PCB assembly line. The data are as follows:

• Annual interest rate (i) = 10% (0.85 % monthly)

• Cost of the RAM module (Pr) = $30

• Selling price (Ps) = $ 100

• Setup cost (K) = $ 120/year ($ 10/month)

• Penalty for backlog ( P b )  = 0.25% of the RAM selling price/RAM

• Cost of loss of good will ( C lgw )  = 0.25% of the RAM selling price/RAM

• Demand over the year in 1000 RAM [D] = [400, 380, 360, 400, 380, 380, 360,

360, 380, 400, 380, 350]. ZD = A -  45\0k

6.3.2 Comparison Calculations 

The EOQ Model:

The EOQ model is the simplest and the most fundamental of all inventory models. 

It describes the trade off between fixed order costs and holding costs and it is usually 

used to calculate the quantity of inventory which the company should always order to 

maintain the required service level. In MPC field, the EOQ model is usually used to
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indicate the target inventory level and sometimes applied to calculate the desired 

production rate.

In this analysis the EOQ model will determine the required inventory level (I*) 

based on the previous data and then two scenarios will be considered. The first scenario 

adopts inventory based policy to satisfy the required demand and the second scenario will 

adopt inventory based policy using the developed agile MPC system (incorporating 

inventory controller). The analysis will show the difference in the overall cost efficiency 

between adopting the EOQ model only and when this model is adopted through the agile 

MPC system to show the superiority of the developed agile MPC policy over the classical 

inventory approach.

The economical order quantity (or the target inventory level in our case) is 

determined using equation (6.9):

EOQ = /* = , where h = (i* Pr) (6.9)
V h

Using the available data:

* 12*120*4510000
I = J   ---------- « \9k RAM (6.10)

The above values are calculated based on the annual data. To calculate the

required monthly inventory levels, we need first to determine the cycle time over the year

using equation (6 . 1 1 )
#

T = —  = 1 9  K  =0.0045 year (6.11)
X 4510£ 3 y ’

No. of production days = 20 days/month * 12 =240 days/year (6.12)

Multiplying equations (6.11) and (6.12) it is found that the daily required

inventory level is 19K RAM and thus the average monthly inventory level required will

be equal:

I m o n th ly  = 19 * 2 0  = 380 ̂  RAM (6.13)
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The EOQ augmented with the Agile MPC Model (Agile EOQ):

The previous EOQ model will be augmented with the developed agile inventory 

based MPC policy. This means that the EOQ model will be used to calculate the required 

inventory level and the inventory controller will account for the positive deviation or 

backlog between the demand and the calculated inventory level through the gain Gi (note 

that in this analysis, Gi can’t take negative values due to stability constraints).

The optimal value for Gi will be calculated by the second layer in the DLU of the 

Agile MPC system. The management policy in the inventory based MPC system (as 

stated in chapter 5) will give cost a higher weight than responsiveness in the multi

objective optimization process ( a  = 0.3). The value of the optimal inventory gain 

delivered by the DLU based on all previous data and utilizing the developed multi

objective optimization algorithm is Gi=0.8K RAM/day. The calculation of the monthly 

holding and backlog costs are based on the equations listed in section 6.2.3 as follows:

CH = 0^*0 .0085*30  (6.14)

Cb = Q b * (0.0025 + 0.0025) * 1 0 0  (6.15)

The analysis will consider the previous models with two market scenarios. The 

first scenario will assume the anticipated demand information was perfect, and the second 

scenario will assume that there was an error in this information (imperfect anticipation) 

with a value of 5% extra than the original data. The second scenario is very likely to 

happen in an agile environment and this is why it will give a good indication of the 

efficiency of both models in dealing with such environment.

6.3.3 Comparison’s Results and Analysis

Tables 6.11 to 6.14 display the cost calculations for each scenario. Figures 6.9 and 

6 . 1 0  show the costs of the inventory policy of each model.
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Demand 400 380 360 400 380 380 360 360 380 400 380 350 Total Sub-total Cost Total Cost
EOQ 380 380 380 380 380 380 380 380 380 380 380 380

Holding Qty 0 0 0 0 0 0 0 20 20 0 0 30 70 17500
Backlog Qty 20 20 0 20 20 20 0 0 0 0 0 0 100 50000 67500

Table 6.11: Cost Calculations for EOQ Model with Perfect Anticipated Demand Information

Demand 400 380 360 400 380 380 360 360 380 400 380 350 Total Sub-total Cost Total Cost
EOQ 380 380 380 380 380 380 380 380 380 380 380 380

Holding Qty 0 0 20 0 0 0 20 40 40 20 20 50 210 52500
Backlog Qty 4 0 0 0 0 0 0 0 0 0 0 0 4 2000 54500

No. of Days for G| 20 5 0 0 0 0 0 0 0 0 0 0
Table 6.12: Cost Calculations for Agile EOQ Model with Perfect Anticipated Demand Information

Demand 420 400 378 420 400 400 378 378 400 420 400 368 Total Sub-total Cost Total Cost
EOQ 380 380 380 380 380 380 380 380 380 380 380 380

Holding Qty 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Backlog Qty 40 60 76 116 136 156 154 152 172 212 232 220 1726 863000 863000

Table 6.13: Cost Calculations for EOQ Model with Imperfect Anticipated Demand Information (5% Demand ncrease)

Demand 420 400 378 420 400 400 378 378 400 420 400 368 Total Sub-total Cost Total Cost
EOQ 380 380 380 380 380 380 380 380 380 380 380 380

Holding Qty 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Backlog Qty 24 28 10 34 38 42 24 6 10 34 38 26 314 157000 157000

No. of Days for Gi 20 20 20 20 20 20 20 20 20 20 20 20
Table 6.14: Cost Calculations for Agile EOQ Model with Imperfect Anticipated Demand Information (5% Demand Increase)
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Analysis of the previous figures reveals the following observations (for the 

studied and similar cases):

• The EOQ with the Agile MPC model (Agile EOQ) is more cost effective due to 

the ability to decrease the backlog quantity using the inventory controller.

• The EOQ model was significantly in-efficient in dealing with imperfect demand 

anticipation information. The extra costs that the EOQ model showed when 

subjected to 5% increase in demand was over 12 times more than the original 

cost. This is due to the high cost of the backlog penalty. In market environment 

where backlog is accepted or has a low penalty, this extra cost would have been 

much less.

• The Agile EOQ model showed a clear ability to handle imperfect demand 

anticipation and sudden increase in demand in an acceptable cost effective way. 

In the previous example the increase in cost was 3 times less than that of the 

original cost.

• The conducted comparison revealed that the inventory based policy in the 

developed agile MPC system is better than the classical EOQ inventory based 

policy which validates the efficiency proposed approach.

Before ending this section, it is important to note that the results of the previous 

analysis can be altered when considering different parameters especially the interest 

rate value and both the costs of backlog penalty and loss of good will cost. However, 

this does not affect the objective of this analysis which was to show the efficiency of 

the developed approach compared with classical approaches.
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6.4 Validation of Capacity Based Policies in the Agile MPC System 

using Numerical Simulation of Exogenous and Endogenous Disturbance 

Scenarios:

In the previous section, the efficiency of the inventory based policy in the 

developed agile MPC system was validated. To complete the validation of the efficiency 

of the developed agile MPC, the capacity based policies should also be investigated. In 

this section, numerical simulation experiments are conducted to examine the efficiency of 

these policies in different exogenous and endogenous disturbances (Deif and ElMaraghy 

2007 a and b).

It is important to note that numerical simulation is favoured to classical discrete 

event simulation (DES) in this analysis due to the level of abstraction of the model which 

is oriented to the tactical level. The tactical and strategic levels of MPC systems are 

rather simulated with continuous approaches because they offer a better understanding of 

the complex dynamic behaviour and show the impact of decisions on the enterprise level. 

The DES systems would have been a better option if the proposed agile MPC model 

deals with the operational level since DES systems require various detailed data about the 

machines and other equipments.

The use the commercial PPC package “SAP AG” in this simulation analysis was 

explored, however, it was disregarded due to the fact that “SAP AG” is suitable only for 

the workflow analysis on the shop floor level not on the aggregate level of the proposed 

approach.

For the purpose of this analysis and in the considered case study, a typical 

exogenous disturbance would be a “rush order” scenario while the endogenous 

disturbance would be represented by a machine failure scenario. The manufacturing 

system will be subjected to a sudden change in demand due to rush order or a sudden 

drop in capacity rate due to machine failure and it is required to respond to these changes. 

A simulation comparison will be held between systems with no controlled capacity
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scalability and system implementing the agile capacity based MPC policy. This 

comparison will be carried out for both agile MPC capacity based policies that account 

and does not account for WIP.

6.4.1 Numerical Simulation Data

The data used in this experiment is mainly based on the same case study 

conducted in this chapter for the automatic PCB assembly factory. However, we will 

consider different time variables for each agile capacity based MPC policy to test for 

different cases. The data are as follows:

• Normal capacity (or production rate PR): 20K RAM/day

• Demand rate: 19K RAM/day.

• Capacity utilization level (based on demand) is 95%.

• Capacity scalability delay time (To) for capacity based MPC policy = 2 days and 

for capacity/WIP = 3 days.

• Production lead time ( T lt)  for capacity based MPC policy = 1 day and for 

capacity/WIP = 2 days.

• Target WIP level = PR * Tlt = 20*2 =40K RAM

• The market strategy gives responsiveness and cost equal weights, thus a = 0.5

• The optimal capacity scalability gain (Gc) delivered by the second layer in the 

DLU of the agile MPC system was calculated to be 1.5K RAM/day for capacity 

based MPC policy and for capacity/WIP based MPC policy it was 3.6K RAM/day

6.4.2 Numerical Simulation Algorithm

The numerical simulation algorithm was developed and coded using VISUAL 

BASIC language. The flowcharts for the used algorithms for different scenarios are 

shown in figures 6.11 to 6.14.
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Figure 6.11: Flowchart for Uncontrolled Capacity Based MPC System Simulation
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Figure 6.12: Flowchart for Controlled Capacity Based MPC System Simulation

204

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Read Data:
H'DemandT lt, To  
Capacity, WIP, Gc 

Utilization Level

Plot Demand
1 f

Plot Capacity
r

Plot WIP

1r

Demand - Capacity

emand
atisfied

Utilize un-used
Capacity

Yes /Demand 
atisfied

Utilize Available 
WIP

emand
atisfied

Plot Backlog

IP Target 
Satisfied

Utilize un-used 
Capacity

IP Target 
Satisfied

Plot WIP

Figure 6.13: Flowchart for Uncontrolled Capacity/WIP Based MPC System Simulation
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Figure 6.14: Flowchart for Uncontrolled Capacity/WIP Based MPC System Simulation
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A sample of the GUI (graphical user interface) for the developed numerical 

simulation is shown in figure 6.15. The developed simulation gives the user flexibility to 

change any of the developed capacity based MPC system’s parameters. The results of the 

different scenarios were plotted in the following figures using EXCEL for clarity.

C apacity  B ased MPC P o licy

. Select Scenario ............................................. -..................

O Uncotrolled Capacity Backlog

| O Uncotrolled Capapcity BackLog W ip

O  Uncotrolled Capapcity Shortage BackLog Wip

it of Days
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Initial W IP 

Ideal Capacity

©  Cotrolled Capacity Backlog 

O Cotrolled Capapcity BackLog W ip 

O Cotrolled Capapcity Shortage BackLog Wip
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40 TLT 2

0.95 TD 3

2 0
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2 0
GW 0 .8

Days ! Capacity ! Demand 1 B e d
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2 12 0 .0 0 ! 40.00 2 0 .
3............. I 1900 19.
4 , 27.50 19.00 16.
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1 0  0 0 1 0  ^

Update

« 20

Id H u y  a  h id U Id Id Id Id W H U U U W W U U H Id Id B Id Id U U yat tt at at at tt at at at at tt a  at at tt & at & tt & tt at at at at
Days

Capacity •“  Demand ”  Backlog W IP

Figure 6.15: GUI of the Developed Simulation Algorithm using Visual Basic
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6.4.3 Numerical Simulation Results and Observations

The previous data and the developed simulation package were used to produce the 

simulation comparison results. Figures 6.16 and 6.17 compare between the cases of 

uncontrolled and controlled (agile MPC system) capacity policies when subjected to rush 

order. Analysis of the two figures reveals the following observations (for the studied and 

similar cases):

• The uncontrolled capacity based MPC system needed 19 days to balance the 

disturbance and eliminate the backlog caused by the rush order. The controlled 

capacity based MPC system needed 9 days to respond to the same rush order.

• The unplanned short term with high priority demand (rush order) is very likely to 

happen in an agile environment and thus it gives a very good indicative about the 

agility of the system. Based on this fact together with the previous observation, it 

is clear that developed controlled capacity based MPC system is more agile than 

normal capacity based MPC systems.

• The controlled capacity required the application of the controller gain Gc for 7 

days. This in a practical context requires the manufacturing system to be 

reconfigured to scale up the capacity with this amount by adding temporarily one 

small pick and place machine as indicated in table 6.5.

• The controlled capacity based MPC system reacted two days later after the rush 

order due to capacity scalability delay time. The responsiveness of the system can 

increase if this delay time decrease as stated in the analysis of chapter four and in 

Deif and ElMaraghy (2006-b)

• If the system was driven with higher utilization it would have taken the 

uncontrolled capacity based MPC system much more time to eliminate the 

backlog. This is important to note when enterprises are considering high 

utilization strategies versus slack capacity strategies in agile environment and also 

highlights the importance of adopting the developed agile capacity based MPC 

system with such strategies.
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Comparing the Developed Capacity Based Agile MPC Model with another PPC Model 

in a Similar Environment:

To validate the developed capacity based MPC policy and its simulation, they are 

compared with the simulation results of another PPC model developed by (Wiendahl and 

Breithaupt 2000) in a similar environment of sudden rush order.

Comparison Validity:

In order to judge on the comparison as a fair one we need to examine how similar 

both systems are in terms of their parameters and the approach for capacity scalability. 

Table 6.15 compares both systems:

Comparison

item

Developed agile capacity based 

MPC system

PPC system by (Wiendahl and 

Breithaupt 2000)

System

Structure

Based on feedback control theory. Based on feedback control theory.

System

Parameters

TLt= 1 day.

Td = 2  days. 

Utilization level: 87%.

TLt= 1 day.

Tq = 2  days. 

Utilization level: 87%.

Controlled

Parameters

Backlog: Difference between 

demand and capacity.

Backlog: Difference between demand 

(reflected in WIP level) and capacity.

Units of 

Capacity

Time (in days)/ Production units Time (in days)/ Production order

Capacity

Scalability

Approach

As discussed earlier, the capacity 

scalability controller gain is based 

on an optimal trade-off between 

responsiveness and cost of excess 

production. In this case Gc = 1.5 

orders/day.

In their approach they try to balance 

between responsiveness and cost of 

supplying excess capacity (cost of un

utilized capacity). In this case Gc = 2 

orders/day.

Table 6.15: Comparison between Capacity Based Agile MPC System and PPC System 

Developed by (Wiendahl and Breithaupt 2000)
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On the other side, the differences between both systems are mainly the following:

• The techniques for deciding on the value of Gc are different. In the developed 

agile MPC systems, multi objective optimization technique is conducted by the 

DLU to balance between responsiveness and partial cost. While for the PPC 

model by (Wiendahl and Breithaupt 2000), a backlog controller decides on the 

value of Gc based on flexibility curves that were discussed earlier in chapter two 

which indicates the capacity scalability level with its associated reaction and 

delay times.

• The general control strategy adopted in both systems is different. In the developed 

capacity based agile MPC system the DLU hold the demand data and compares 

the current production rate with the required demand and based on the difference 

a decision to scale the capacity is taken. In the PPC model by (Wiendahl and 

Breithaupt 2000) the demand is translated into a WIP level. The WIP controller 

decides on the release of the orders based on the WIP level and that level can be 

altered by scaling the capacity by a capacity controller. The previous strategy is 

explained in the funnel model by (Wiendahl and Breithaupt 1999) in chapter 2.

The simulation results of both systems in a rush order environment are shown in 

figure 6.18 for the uncontrolled case and in figure 6.19 for the controlled case. Analysis 

of both figures reveals two observations:

• The results in a holistic sense look similar. This can be considered a validation 

for the developed capacity based agile MPC model and the developed simulation.

• The developed agile MPC system in this scenario has a better performance than 

the PPC system by (Wiendahl and Breithaupt 2000) in terms of time required for 

eliminating backlog ( 6  days in case of the agile MPC and 10 days in the other 

PPC system). However, this can not be an absolute judgment due to the 

differences in the control strategy and system structure as discussed earlier.

211

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Uncontrolled Capacity with Rush Order

2ft

1 18 |  14
|  <2

*10

J •
i  «

4
2 +

2ft

unplanned urgent ottor 10h —  meaow|p|h]
 capacly(h&cd|
- -  backlog

uncontrolled

-M H
25 30 Oft 40 4!

BmsM

(a)

SO ss so

—  Capacity

—  Demand

—  Backlogs
<tt

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

P ro d u c tio n  Days

(b)

Figure 6.18: Backlog due to Rush Order in both (a) PPC system by (Wiendahl and 

Breithaupt 2000) and (b) Capacity based Agile MPC System with Uncontrolled Capacity

Scalability

Controlled Capacity with Rush Order

UftplflMttj urQArtl OttSW 10h

. M i n i  r t r r

• i \

oaMlod

W 35 30 *  40
time [sod]

( a )

45 50 55 60

2  12 -

—  Capacity
—  Demand
—  Backlog

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Production Days

( b )

Figure 6.19: Backlog due to Rush Order in both (a) PPC system by (Wiendahl and 

Breithaupt 2000) and (b) Capacity based Agile MPC System with Controlled Capacity

Scalability

212

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figures 6.20 and 6.21 compare between the cases of uncontrolled and controlled (agile 

MPC system) capacity/WIP policies when subjected to rush order. Analysis of the two 

figures reveals the following observations (for the studied and similar cases):

• The uncontrolled capacity/WIP based MPC system also needed 19 days to 

balance the disturbance and eliminate the backlog caused by the rush order. The 

controlled capacity/WIP based MPC system needed 9 days to respond to the same 

rush order. This validates again the agility of the developed agile MPC system.

• Although the rush order in this scenario was double the amount of the previous 

scenario, the backlog was eliminated in equal time. This is due to the existence of 

WIP in the system which absorbed an amount of the required demand. This 

conclusion confirms the damping effect of the WIP and highlights the importance 

of accounting for WIP in a turbulent demand environment when stability of the 

system is of concern.

• The uncontrolled capacity/WIP based MPC system needed 57 days to recover the 

WIP level to its target value. The controlled capacity/WIP based MPC system 

needed 50 days to get back to the same level. This time difference (due to WIP 

controller gain Gw contribution) validates again the agility of the developed agile 

MPC system and its ability to perform better in changing demand environment.

• The controlled capacity required the application of the controller gain Gc for 4 

days. This in a practical context requires the manufacturing system to be 

reconfigured to scale up the capacity with this amount by adding 2 small pick and 

place machines as indicated in table 6.5.

• Same observations in the previous scenario can be stated for the effect of 

utilization level and capacity scalability delay time on the responsiveness level of 

the manufacturing system.
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Figures 6.22 and 6.23 compare between the cases of uncontrolled and controlled 

(agile MPC system) capacity/WIP policies when subjected to machine failure for 1 week 

(5 days) with different lead time ( T l t  = 1 day). Analysis of the two figures reveals the 

following observations (for the studied and similar cases):

• The uncontrolled capacity/WIP based MPC system needed 30 days to balance the 

disturbance and eliminate the backlog caused by the machine failure. The 

controlled capacity/WIP based MPC system needed 19 days to respond to the 

same problem indicating higher level of agility.

• The role of WIP in damping such internal disturbances is very clear as it 

eliminated the backlog for the first two days. However, the backlog level was 

raised again due to the long time of the machine failure. Accounting for WIP is 

crucial for manufacturing stability.

• The uncontrolled capacity/WIP based MPC system needed 46 days to recover the 

WIP level to its target value. The controlled capacity/WIP based MPC system 

needed 25 days to get back to the same level. This time difference (due to WIP 

controller gain Gw contribution) validates again the agility of the developed MPC 

system and its ability to perform better in turbulent manufacturing environment.

• The controlled capacity required the application of the controller gain Gc for 3 

days. This in a practical context requires the manufacturing system to be 

reconfigured to scale up the capacity with this amount by adding 2 small pick and 

place machines as indicated in table 6.5.

• Capacity scalability delay time in cases of machine failure plays an important role 

in indicating the level of capacity backlog since failure times are usually short. If 

the delay time is long, the real effect of capacity scalability will not be realized.
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6.5 Chapter Summary

This chapter applied the developed agile MPC system to a case study and 

considered different approaches to validate and highlight the efficiency of the developed 

system. The approaches included cost analysis and comparison to classical approaches to 

validate the efficiency of the developed MPC system together with numerical simulation 

to some cases where the developed MPC system showed superior performance over other 

MPC approaches. Summary of the application and different validation approaches are 

listed as follows:

• The developed agile MPC system was applied to an automatic PCB assembly line 

producing RAM modules. The different manufacturing system characteristics and 

limitations together with the market strategy and the anticipated demand were 

delivered to DLU or the supervisory controller of the MPC system. The DLU in turn 

(offline) selected the MPC policy suitable for each demand period followed by 

computing the required optimal values of the controllers’ gains for each policy.

• The DLU also managed to control the production line and its selected parameters 

online i.e. on a monthly basis using the previous optimal values of the controllers of 

each of these parameters. A final MPC sheet was produced to summarize the MPC 

approach in the selected factory.

• The case study highlighted the applicability of the developed approach and at the 

same time the capability of the developed MPC system to switch between inventory 

based MPC policies and capacity based policies in an optimal manner based on 

market need. Also it highlighted how the DLU of the MPC system acts as a linkage 

between the higher managerial level and the operational level of the production 

system. Such capabilities will help the manufacturing enterprise to gear towards real 

agility.

• With quasi stable demand, inventory based MPC policy shows a better performance 

in terms of cost since the variations of demand from the target inventory level is 

limited and thus both the holding cost as well as the backlog cost is minimal. As for 

the capacity based policy, the cost to handle that demand pattern is quite higher since
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the capacity is usually scaled to high values that need high demand variation to avoid 

paying for underutilized capacity or capacity loss as in this case.

• With Fluctuating demand, the opposite scenario was found where capacity based 

MPC policy showed a better cost performance in handling this kind of demand. The 

reason for that is the huge variation in demand values which justifies the usage of 

extra capacity (capacity scalability) in cases of demand increase. At the same time, 

these demand variations leads to high levels of accumulated inventory (holding cost) 

and sometimes shortage in the level of available inventory (backlog cost) leading to 

higher cost for inventory based policy.

• The developed agile MPC approach showed the best performance all over the three 

considered demand patterns. In quasi-stable demand pattern the agile MPC approach 

adopted an inventory based policy by engaging the inventory controller and this is 

why it was as cost efficient as the classical inventory based policy. In fluctuating 

demand, the DLU of the agile MPC approach disengaged the inventory controller and 

switched to the capacity controller to have the same cost effective performance as the 

typical capacity based MPC policy. However, in the mixed demand pattern, the agile 

MPC approach was far superior to the other two policies due to its ability to handle 

each period in the demand pattern with the suitable policy manipulating its switching 

ability between different controllers as explained in chapter 5 while talking about the 

first layer of the designed DLU.

• When comparing the classical EOQ model with the same model augmented with the 

developed agile MPC system, the EOQ with the agile MPC model (Agile EOQ) is 

more cost effective due to the ability to decrease the backlog quantity using the 

inventory controller.

• The classical EOQ model was significantly in-efficient in dealing with imperfect 

demand anticipation (inaccurate). The extra costs that the EOQ model showed when 

subjected to 5% increase in demand was over 12 times more than the original cost.

• The Agile EOQ model showed a clear ability to handle imperfect demand anticipation 

and sudden increase in demand in an acceptable cost effective way. In the previous 

example the increase in cost was less than 3 times than that of the original cost.
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• The conducted comparison revealed that the inventory based policy developed agile

MPC system is better than the classical EOQ inventory based policy which validates

the efficiency of the proposed approach.

• Simulation experiments were conducted to compare uncontrolled and controlled

capacity based MPC policy in a rush order scenario. The simulation validated the

efficiency of the developed capacity based MPC systems through various 

observations.

• The uncontrolled capacity based MPC system needed 19 days to balance the 

disturbance and eliminate the backlog caused by the rush order. The controlled 

capacity based MPC system needed 9 days to respond to the same rush order.

• The unplanned short term with high priority demand (rush order) is very likely to 

happen in an agile environment and thus it gives a very good indication about the 

agility of the system. Based on this fact together with the previous observation, it is 

clear that developed controlled capacity based MPC system is more agile than normal 

capacity based MPC systems.

• The controlled capacity required the application of the controller gain Gc for 7 days. 

This in a practical context requires the manufacturing system to be reconfigured to 

scale up the capacity with this amount by adding 1 small pick and place machine as 

indicated in table 6.5.

• The controlled capacity based MPC system reacted two days later after the rush order 

due to capacity scalability delay time. The responsiveness of the system can increase 

if this delay time decreases as stated in the analysis of chapter four and in Deif and 

ElMaraghy (2006-b)

• If the system was driven with higher utilization it would have taken the uncontrolled 

capacity based MPC system much more time to eliminate the backlog since the 

available unused capacity would be much less. This is important to note when 

enterprises are considering high utilization strategies in agile environment and also 

highlights the importance of adopting the developed agile capacity based MPC 

system with such strategies.

• The uncontrolled capacity/WIP based MPC system also needed 19 days to balance 

the disturbance and eliminate the backlog caused by the rush order. The controlled
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capacity/WIP based MPC system needed 9 days to respond to the same rush order. 

This validates again the agility of the developed agile MPC system.

• Although the rush order in this scenario was double the amount of the previous 

scenario, the backlog was eliminated in equal time. This is due to the existence of 

WIP in the system which absorbed an amount of the required demand. This 

conclusion confirms the damping effect of the WIP and highlights the importance of 

accounting for WIP in a turbulent demand environment when stability of the system 

is of concern (Deif and ElMaraghy 2006-a and b).

• The uncontrolled capacity/WIP based MPC system needed 57 days to recover the 

WIP level to its target value. The controlled capacity/WIP based MPC system needed 

50 days to get back to the same. This time difference (due to WIP controller gain Gw 

contribution) validates again the agility of the developed agile MPC system and its 

ability to perform better in changing demand environment.

• The controlled capacity required the application of the controller gain Gc for 4 days. 

This in a practical context requires the manufacturing system to be reconfigured to 

scale up the capacity with this amount by adding 2 small pick and place machines as 

indicated in table 6.5.

• Same observations in the previous scenario can be stated for the effect of utilization 

level and capacity scalability delay time on the responsiveness level of the 

manufacturing system.

• The uncontrolled capacity/WIP based MPC system needed 30 days to balance the 

disturbance and eliminate the backlog caused by the machine failure. The controlled 

capacity/WIP based MPC system needed 19 days to respond to the same problem 

indicating higher level of agility.

• The role of WIP in damping such internal disturbances is very clear as it eliminated 

the backlog for the first two days. However, the backlog level was raised again due to 

the long time of the machine failure. Accounting for WIP is crucial for manufacturing 

stability.

• The uncontrolled capacity/WIP based MPC system needed 46 days to recover the 

WIP level to its target value. The controlled capacity/WIP based MPC system needed 

25 days to get back to the same level. This time difference (due to WIP controller
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gain Gw contribution) validates again the agility of the developed agile MPC system 

and its ability to perform better in turbulent manufacturing environment.

• The controlled capacity required the application of the controller gain Gc for 3 days. 

This in a practical context requires the manufacturing system to be reconfigured to 

scale up the capacity with this amount by adding 2 small pick and place machines as 

indicated in table 6.5.

• Capacity scalability delay time, in cases of machine failure, plays an important role in 

indicating the level of capacity backlog in cases where failure times are usually short. 

If the delay time is long, the real effect of capacity scalability will not be realized. 

This is because the unutilized capacity level will probably be able to compensate for 

the lost capacity due to the machine failure.
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Chapter Seven

Summary and Future Work

7.1 Research Summary

This work was concerned with the dynamic analysis of agile manufacturing 

planning and control (MPC) systems. After studying different definitions and 

explanations for agility and agile manufacturing, agile MPC system was defined as: “The 

ability to accomplish rapid and feasible dynamic changeover between the adoption of 

different manufacturing policies, mainly inventory based and capacity based policies, 

(utilizing essentially a reconfigurable manufacturing system) in order to adhere to the 

higher level management strategies dictated by market needs or trends.”

To study such dynamic systems a review for dynamic modeling and analysis of 

manufacturing systems was conducted. The review revealed the need to develop a 

comprehensive dynamic manufacturing planning and control model. The model required 

(in order to show real agility) should be able to adopt efficiently different MPC policies 

based on the market needs. In order to achieve that, the model should include work in 

process (WIP), capacity and inventory and how they are related together. Also the model 

should include a link to the higher management level.

To fulfill the previous needs, a dynamic model of an agile manufacturing 

planning and control MPC system using control theoretic approaches was developed. The 

architecture can have five operation policies (WIP based, capacity based, inventory 

based, capacity/WIP based and inventory/WIP based) where each policy has its own 

structure or configuration. The description of each planning and control policy and when 

it is best used were presented. The block diagram and dynamic transfer function for each 

MPC policy were also derived.
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After developing the dynamic agile MPC system’s model, the model was 

analyzed. The analysis included transient time response, stability, sensitivity and steady 

state error analysis. The analysis helped to understand various characteristics and 

behaviour of agile MPC systems from a dynamic perspective. The major observations of 

the previous analysis (for the studied cases) are listed as follows:

• The concept of the “natural frequency” of manufacturing systems was introduced as 

an approach to understand the dynamics of agile MPC systems. It can be used to 

indicate the agility of the system in terms of how fast it can respond to changes in 

market demand.

• The natural frequency of agile MPC system is affected by different time variables of 

the system and the different gains of the controllers in the system. Optimal design of 

these parameters and variables can lead to the increase of the natural frequency of the 

system and in turn decrease the effort required to increase its productivity.

• The term damping ratio of MPC system was also discussed. It can be used to measure 

the relative stability of different MPC policies (configurations) when subjected to 

sudden demand change. It was obvious that MPC policies compensating for WIP 

changes showed higher levels of stability.

• In inventory based MPC configuration (or policy), it was shown that lean 

manufacturing policy can be realized when setting the shipment time (reflecting the 

order rate) equal to the manufacturing lead time of the system.

• Various control theoretic approaches were suggested to improve the performance of 

the agile MPC system. A proportional plus a derivative PD controller was 

recommended to decrease the capacity scalability delay time. A proportional plus 

integral PI capacity scalability controller design was proposed to compensate for 

production offset.

• All MPC systems’ policies (based on the stated time variables assumptions) showed a 

good level of stability.
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Based on the analysis of the developed dynamic agile MPC system, the decision

logic unit or the supervisory controller of the system was designed. The main points

concerning the design of that unit and its performance are stated as follows:

• The design of the decision logic unit (DLU) was based on a hierarchical architecture 

composed of three layers. Each layer resembles a unit that carry out a certain task.

• The first layer in the DLU was the MPC policy selection unit. This unit is responsible 

for analyzing the anticipated demand profile and based on regression analysis, the 

unit decides which MPC policy to be applied during which demand period.

• The second layer of the DLU is the MPC system controllers’ gains optimal setting 

unit. This unit receives the selected MPC polices and based on the previously 

developed models for each MPC policy or configuration it optimally select the 

controllers’ gains values for that policy or configuration. The optimization is basically 

a trade off decision between the two competing objectives of agility, responsiveness 

and cost effectiveness and thus a multi objective optimization approach was adopted.

• A sensitivity analysis was carried out to better understand the nature of the competing 

objectives and their relation with the decision variables.

• After deciding on the optimal controllers’ settings, the third layer which is called the 

demand satisfaction check unit takes the responsibility of production control. This 

control process is based on comparing the current capacity, inventory and WIP levels 

of the manufacturing system with the reference values of these levels that are 

continuously calculated based on the demand data. Based on the discrepancy between 

the compared levels this unit decides on which gains (of the previously calculated 

optimal gains of each policy) to be used and for how long in order to compensate for 

that discrepancy.

• The output of the DLU is an MPC plan that indicates on a yearly basis which MPC 

policy should be applied during which demand period of that year and on a monthly 

basis which controller gain to be used and for how many days in that month

• The DLU updates the higher management level with the performance of the 

manufacturing system and the developed MPC plan.
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Different approaches were considered to demonstrate and validate the efficiency

of the developed agile MPC system. The approaches included:

• An application to an automatic PCB assembly line producing RAM modules. The

different manufacturing system characteristics and limitations together with the 

market strategy and the anticipated demand were delivered to DLU. The DLU in turn 

(offline) selected the MPC policy suitable for each demand period followed by 

computing the required optimal values of the controllers’ gains for each policy. The

DLU also managed to control the production line and its selected parameters (online).

• A comparative cost analysis between the developed agile MPC system and classical 

MPC systems. The comparison investigated the cost (holding cost and backlog cost) 

of implementing each MPC system in different demand patterns. The developed agile 

MPC system showed the best performance with all considered patterns.

• A comparative cost analysis between the classical EOQ model and the same model 

augmented with the developed agile MPC system (Agile EOQ system). The Agile 

EOQ system showed a far better ability to handle imperfect demand anticipation and 

sudden increase in demand in an acceptable cost effective way.

• Numerical simulation experiments using a developed simulation tool. The agile MPC 

system was first validated by comparing the simulation results to another similar PPC 

simulation by (Wiendahl and Breithaupt 2000) in the same environment. The 

numerical simulation experiments explored the performance of the different capacity 

based polices in the agile MPC system with uncontrolled capacity MPC systems. The 

performance measures were the time to eliminate backlog and time required for the 

WIP to reach its target level. The simulation scenarios included cases of rush orders 

and machines breakdown. Results showed a better performance for the developed 

agile MPC system in all considered scenarios.
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7.2 Research Conclusions:

The major conclusions that can be derived from the various modeling, analysis,

design and validation approaches in this dissertation can be stated as follows:

• Dynamic analysis using control theoretic approaches gives a better understanding of 

the behaviour of agile MPC systems in today’s turbulent market environment.

• Setting the optimal MPC system controllers’ gains values involves multiple trade-off 

decisions. Results (for the studied cases) showed that achieving quick reaction time 

and reducing production offset were always at the expense of partial production cost. 

Also, although accounting for WIP was important for manufacturing system stability, 

a balance between the damping effect of WIP and its effect on decreasing the 

responsiveness of the manufacturing system should be considered.

• Dynamic analysis of the effect of different time parameters of agile MPC system 

showed that generally as these parameters increase in their values, the different 

response time measures indicate a decrease in the level of responsiveness of the 

system. This highlights the importance of working on reducing the different sources 

of time delays in agile manufacturing systems.

• The decision logic unit succeeded in linking the higher management level with the 

operational level. This linkage was mainly through aligning the marketing strategy 

with the manufacturing strategy via the generated MPC plan. Such linkage and 

alignment is the core of the proposed approach to realize agility in today’s 

manufacturing systems.

• The case study highlighted the applicability of the developed approach and at the 

same time the capability of the developed MPC system to switch between inventory 

based MPC policies and capacity based policies in an optimal manner based on 

market need.

• The developed agile MPC approach showed a better performance over classical MPC 

inventory and capacity approaches (in the studied cases) in terms of cost and 

responsiveness. This conclusion was validated using both comparative cost analysis 

and numerical simulation results for different exogenous and indigenous disturbances.
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7.3 Agile MPC System’s Limitations

The developed approach was intended to maintain agility in manufacturing 

systems through a dynamic MPC system and at the same time understand the general 

dynamic behaviour of such systems. Although the approach succeeded in this objective, it 

has the following limitations:

• The first limitation is an abstract one that deals with the background of this 

research. This dissertation attempted to combine the field of manufacturing 

systems with the field of control engineering to understand the dynamic nature of 

manufacturing systems and thus drive it to be more agile. However, this 

combination cannot be considered a full combination due to the difference in the 

fundamentals of both disciplines. Consequently, it is important to state (at the end 

of this work) that not all dynamic analysis and results in control theoretic 

approaches would make sense from a manufacturing system stand point. Such a 

fact was a continuous challenge and limitation throughout the development of the 

agile MPC system and its analysis.

• Generally, any dynamic analysis is limited to the boundaries that maintain the 

stability of the dynamic model. In this approach the stability limits had a great 

impact in restricting the values of the parameters settings and thus limiting their 

ranges.

• The cost considered in the agility analysis and in the multi-objective optimization 

dealt exclusively with the cost of deviating from the target production level or 

extra production. This is a crucial cost parameter and it gives a fair idea about the 

cost profile, however, for such cost assessment to be complete a more detailed 

analysis is required.

• The dynamic analyses and behaviours presented in this dissertation are limited to 

the middle level in agile enterprises that links the higher management level with 

the production operational level. The results and conclusions derived cannot be 

directly applied beyond this level without further dynamic analysis.
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7.4 Future Work

There are many potential extensions to the proposed work in this dissertation.

Among the suggested future research are:

• Extending the developed agile MPC model to fully integrate with both the 

strategic and operational levels to have a complete model for MPC systems. A 

suggestion would be through modeling the strategic level using system dynamics 

and the operational level using discrete event simulation and having a DLU for 

each of these levels. Finally a general MPC supervisory unit would be responsible 

for these distributed DLUs to manage the overall system.

• Relaxing some of the modeling assumptions like investigating the effect of having 

a nonlinear relation between the ideal production lead time and the actual lead 

time. Also exploring the exact relation between the shipment rate and the order 

rate and how can this be related through the higher level management and its 

relation with the whole supply chain management.

• Extending the sensitivity analysis to include the effect of controllers’ gains on the 

different response and stability measures. Such analysis will help to give a better 

understanding of the effect of these control actions which will lead to better 

controllability of manufacturing systems.

• Examining the effect of involving the system’s time parameters as variables in the 

optimization process done by the DLU. Such involvement will reflect both 

production control actions (in terms of setting the optimal controllers’ gains as 

discussed in this dissertation) and also strategic manufacturing planning actions 

(in terms of where and how to invest in the manufacturing system to improve its 

efficiency and agility).

• The MPC system controls the manufacturing process based on responsiveness and 

cost effectiveness objectives from a dynamic stand point. A more comprehensive 

approach would be through involving other static control parameters or extending 

the existing ones to have better decisions. An example of that is to extend the cost
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as an optimization objective from not only being reflected in the production 

overshooting parameter to a more detailed cost structure expression.

• Other techniques can be used to design the DLU unit. An example of that is using 

a fuzzy control approach or an agent based approach to design the three layers of 

the developed DLU architecture.

• The existing design of the DLU unit can be enhanced by using other techniques 

for each layer in the unit. Other pattern recognition techniques can be used to 

better analyze the anticipated market demand profile better than the regression 

analysis adopted in this thesis. Also other optimization techniques can be used to 

reach better optimal values for the controllers’ gains other than that adopted in the 

second layer as shown previously.

• More industrial applications would illustrate more the use of the developed agile 

MPC system.

7.5 Summary of Contributions in this Research

In summary, the presented research provided enhancement and contributions to 

the existing knowledge about dynamic analysis of MPC systems on both theoretical and 

practical levels. The major contributions in this research can be summarized as follows:

• First comprehensive dynamic MPC model that can adopt different policies based 

on market strategy by integrating capacity rate, inventory level and WIP level in 

one model.

• A complete approach and a mathematical model to link higher management level 

with operational production level to realize agility in manufacturing enterprises 

using supervisory controller.

• Novel attempts to dynamically understand various manufacturing systems 

behaviours. The attempts included introducing new terms such as MPC natural 

frequency and damping ratio.

• Integrating dynamic analysis with optimization techniques to not only understand 

the MPC system behaviour but also to optimally design the system parameters 

based on that behaviour.
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