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Abstract

The symbol interdependency hypothesis (Louwerse, 2007, 2008) posits that word mean-

ing is dependent upon two sources of information: embodied or grounded knowledge,

obtained from observation of and interaction with the physical world, and symbolic or

co-occurrence information, gleaned from experience with how words are used together

in written and spoken language. This theory assumes that embodied properties of ob-

jects influence the statistical structure of language to such an extent that the embodied

properties become partially encoded within the structure of language.

The work presented in this dissertation provides support for the symbol interdepen-

dency hypothesis by demonstrating that grounded knowledge (in the form of physical

and behavioural properties of living and non-living objects) can be identified by ana-

lyzing word usage in a large body of written text. An automated method of creating

high-dimensional vector-based semantic representations is presented. Several demon-

strations show that the representations capture word meaning in a way that aligns with

intuition and are able to reproduce non-intuitive results of experiments from the psy-

cholinguistic literature.

A feedforward neural network was trained to produce a list of physical and behav-

ioural properties of an object in response to the object’s high-dimensional vector repre-

sentation. The resulting network was able to identify features of the concepts on which

it was trained with near-perfect accuracy and was able to generalize this ability to novel

concepts and identify properties of concepts to which it was not previously exposed.

These results indicate that there is sufficient information in word usage to identify em-

bodied properties of concepts, a finding that is consistent with the symbol interdepen-

dency hypothesis.
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1 Introduction

How people are able to communicate through written and spoken language is an open

and difficult question. While much progress has been made, research in psycholinguis-

tics and cognitive science has revealed little about the biological bases of language in the

brain. Computer scientists in the field of natural language processing (NLP) have pro-

duced impressive results by applying formal language methods to natural languages,

but these results are typically domain specific and operate on only a restricted subset

of the language under consideration. Unfortunately, a general model of computational

natural language processing has failed to emerge.

Many difficulties in NLP arise as a result of the syntactic and semantic ambiguities

that are abundant in natural language. Contextual information and general semantic

knowledge (that is, knowledge about words, the world, and the connections between the

two) are essential to solving problems related to ambiguity. For example, the word sense

discrimination task, in which the correct meaning of a word with multiple meanings

must be selected (for example, determining the correct meaning of the written sentence

He could play the bass requires identifying the word bass to refer to a musical instrument

rather than a fish), can only be solved if contextual and semantic information are made

available. This raises a difficult question: how can semantic knowledge be acquired,

stored, and accessed by a computer? One approach to answering this question is to

identify the means by which humans perform these tasks and attempt to simulate these

means on a computer.

Quillian (1968; Collins & Quillian, 1969) proposed that semantic knowledge can be

efficiently stored in and retrieved from a hierarchical structure. An example of such a

hierarchy is shown in Figure 1.1. General concepts, such as LIVING-THING are stored

near the top of the hierarchy while more specific concepts are stored deeper in the tree.

For example, SPARROW is stored as a subordinate of the concept BIRD, which is in turn

stored as a subordinate of the concept ANIMAL, and so on. Properties of concepts are

attached at the shallowest possible level in the hierarchy and these properties are inher-

ited by all subordinate concepts1. For example, the property 〈breathes〉 can be stored at

the level of LIVING-THING, since all living things must breathe. Based on this theory

of semantic organization, Collins and Quillian (1969) were able to make many detailed

predictions about the amount of time it would take subjects to perform simple tasks,

such as verifying whether a concept possesses a particular property (e.g., “A bird can

1Unless, of course, a subordinate concept has a property that explicitly contradicts an inherited prop-

erty. For example, the property 〈an-�y〉 can be attached at the level of BIRD, and the concept PENGUIN

can negate this inherited property with the property 〈annot-�y〉.
1



fly”) and verifying that one concept is an instance of some other concept (e.g., “A bird

is an animal”). The amount of time required to perform such a task was posited to be

determined by the number of links that must be traversed in the hierarchy, under the

assumption that moving up or down a level in the hierarchy required a fixed amount of

time and that accessing the properties attributed to some concept also required a fixed

(but possibly different) amount of time. Based on these assumptions, this model was

able to account for many behavioural results, although it was unable to account for the

results of more complicated experiments (Rogers & McClelland, 2004, ch. 1).

Animal

Fish

Canary Ostrich

Bird

Shark Salmon

 Has skin

 Can move

 Eats

 Breathes

 Has wings

 Can fly

 Has feathers

 Has gills

 Can swim

 Lives underwater

 Is pink

 Is edible

 Swims upstream

 to lay eggs

 Is yellow

 Can sing

 Can’t fly

 Is tall

 Has long

 legs

 Is dangerous

 Can biteFigure 1.1: A semanti hierarhy of the type used to predit reation times inlinguisti tasks by Quillian (1968) and Collins and Quillian (1969).
Collins and Loftus (1975) extended this theory to accommodate results from several

then-recent behavioural experiments. These extensions to the model focused on the

mechanics of semantic processing within the model. The strict hierarchical organiza-

tion was abandoned in favour of a more general semantic network, in which concepts

are represented by nodes and knowledge about concepts is stored in various types of

relational links connecting the nodes. Some semblance of a hierarchy is still maintained

through the inclusion of IS-A links, used to describe the relationship where one con-

cept is an instance of some other concept (e.g., a sparrow IS-A bird). The most impor-

tant contribution of this revision of the model is the idea that semantic processing is

achieved through means of spreading activation. Under this theory, when a concept is

processed by an individual (i.e., when the individual engages in some task that requires

semantic knowledge about that concept) activation accumulates at the node represent-

ing that concept. This activation spreads to other related nodes via the relational links.

The amount of activation that spreads is proportional to the strength of the link but in-

versely proportional to the number of links. Access to the concept occurs when the ac-

cumulated activation surpasses some threshold level, at which time that concept’s node

becomes activated. Once the individual has completed the task and is no longer actively

2



processing the concept, activation attenuates until it reaches some resting level. Using

this simple mechanism of accumulation and attenuation of activation in a semantic net-

work, Collins and Loftus (1975) were able to account for the results of experiments that

could not be explained within the framework of the Collins and Quillian (1969) model.

IS A

Animal

Mammal
Bird

Living

Thing

Cat

Dog

Bat

is not a

Wings

Fur

Beak

Fly

Grow

Bark

Feathers

Move

Lays Eggs

Has Live

Young

Meow

IS A

IS A

IS A

IS A

IS A

can

can

can

can

can

can

can

has

can

has

has

has

has

has

has

Figure 1.2: A semanti network. Conepts are represented by nodes and therelationships between onepts are indiated by various types of links between theonepts. The latent semanti hierarhy aptured by the IS A links is drawn withheavier lines.
Although the model of Collins and Loftus (1975) is able to accommodate a large ar-

ray of behavioural results, there are many shortcomings. Rogers and McClelland (2004,

ch. 1) provide a survey of both the success and failures of the semantic network model.

For example, the category inclusion relationship necessitated by the hierarchical nature

of knowledge representation applies only to taxonomically organized categories, and

even then only for those exemplars that are most typical of the category (Rips, Shoben,

& Smith, 1973; Sloman, 1998; Steyvers & Tenenbaum, 2005). Additionally, there is no

proposed mechanism by which a semantic network or hierarchy can be constructed,

nor any way to determine where new knowledge should be placed in an existing net-

work (Rogers & McClelland, 2004, p. 13).

Methods for constructing simple semantic networks have emerged. Steyvers and

Tenenbaum (2005) analyzed the structure of semantic networks constructed from three

sources of knowledge: subject produced word association norms (Nelson, McEvoy, &

Schreiber, 1999), WordNet (Fellbaum, 1998), and Roget’s Thesaurus (Roget, 1911). The

resulting semantic networks each possessed both small-world and scale-free structures.

That is, the average length of the shortest path between any two nodes (words) in the

network was small, and the number of nodes with large degree (that is, nodes with a

3



large number of neighbours) is higher than expected when compared to random graphs.

That these properties are not found together in randomly generated graphs nor in the

graphs representing other scientific domains suggests that this combination of proper-

ties is an intrinsic feature of semantic organization.

Based on this observation, Steyvers and Tenenbaum (2005) developed an algorithm

that employs the process of semantic differentiation, where new concepts added to the

network are refinements of previously existing concepts, that could be used to construct

a semantic network with the same small-world and scale-free structures as the networks

constructed from linguistic resources. Their algorithm begins with a small complete

graph of order M . Newly added nodes in the network serve to differentiate complex

concepts, where complexity is measured by the degree of the node representing the

concept; more complex concepts are more likely to be differentiated by the new node

(this is referred to as preferential attachment). Once a node is selected for differentia-

tion, a subset of M of its neighbours (i.e., the nodes that the concept is adjacent to in

the network) are made neighbours of the new node by adding edges between the new

node and the M randomly selected neighbours. This process is repeated until the or-

der of the network reaches some predefined maximum. While the resulting networks do

exhibit the same structural characteristics as the semantic networks constructed from

linguistic resources, the networks produced using this algorithm were relatively small.

In their experiments, Steyvers and Tenenbaum fixed the maximum order of a network at

5,018 to match the number of words found in the Nelson et al. (1999) association norms.

However, Roget’s Thesaurus, with nearly 30,000 entries, and WordNet, with over 120,000

entries, both contain much larger vocabularies than the algorithmically–generated net-

works. In addition, the semantic differentiation process was purely probabilistic, with

nodes with higher degree more likely to become differentiated, and did not consider the

true complexity of the concepts stored in the network. Further, the nodes in the network

were arbitrary and did not correspond to words. This simplification allowed concepts to

be differentiated and new edges to be added between nodes arbitrarily without the need

for a mechanism to make decisions about whether or not these modifications to the net-

work were consistent with the meanings of the concepts stored in the network. Despite

these shortcomings, this early work was able to account for the effects of variables such

as age of acquisition and frequency on performance in semantic tasks.

Lemaire and Denhière (2004) also proposed an algorithm to construct semantic net-

works. Their algorithm takes a large corpus of written text as input and produces a se-

mantic network in which each concept is represented by a node and concepts are con-

nected by weighted relational links. In a manner similar to Hebbian learning (Hebb,

4



1949), the strength of the relationship between two words is increased when the words

occur together in text and is decreased when one of the words occurs without the other.

Specifically, the corpus is analyzed using a small window which is centred on each word

of the corpus in sequence. The window contains a few words preceding and a few words

following the word it is centred upon. In the semantic network, the weights of the edges

between the word at the centre of the window and each of the other words in the win-

dow are increased. In addition, the weights of the edges between the word at the centre

of the window and each neighbour of each of the other words in the window are also

increased. Finally, the weight of any edge between the word at the centre of the window

and any of its neighbours in the network that do not appear in the window is reduced; if

the weight of an edge falls below some threshold the edge is removed. When compared

to association norms produced by children, the networks were found to be a good match

to the behavioural data. It is unknown whether the networks produced by the algorithm

of Lemaire and Denhière (2004) have the same small-world and scale-free properties

observed in other semantic networks.

While these early models of semantic network construction have been able to ac-

count for some behavioural results and have been successful in constructing networks

that share many properties with human semantic knowledge, the complexity of these

networks does not approach that observed in human semantics. In addition, the net-

works work primarily at the level of the concept and give little attention to properties

and behaviours of concepts, which are well represented in the semantic networks of

Collins and Loftus (1975) and the hierarchies of Quillian (1968) and Collins and Quillian

(1969).

Both the semantic hierarchies and the semantic networks describe above use localist

representations to represent concepts. That is, each concept is represented by a single

dedicated node in a hierarchy or network and these nodes have no innate relationship

to the concepts which they represent; the nodes representing, say, BIRD and CAT are

the same at their core with the differences residing in their connections to properties

and other concepts.

An alternative method of representation is offered by distributed representations

(Hinton, McClelland, & Rumelhart, 1986), in which each concept is represented as a

unique pattern of activation across a common set of processing units. Empirical evi-

dence suggests that distributed representations are used to represent semantic knowl-

edge in the brain (see Saffran, 2000, for a review). For example, after damage to the

brain from stroke or as a result of dementia, some patients exhibit differential process-

ing of living and non-living concepts: living things may be processed with greater ease
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than non-living concepts or vice versa (see Gianotti, Silveri, Daniele, & Guistolisi, 1995;

Saffran & Schwartz, 1994; Saffran & Sholl, 1999, for reviews). These differences in per-

formance are thought to be a result of localized damage to areas of the brain that store

either perceptual knowledge, resulting in reduced capacity to process living objects, or

functional knowledge, resulting in reduced performance for non-living objects. On a

larger scale, distributed representation is an integral aspect of theories of grounded cog-

nition, which posit that all knowledge is represented across different modalities of the

brain and that language is closely tied to other cognitive systems, such as the perceptual,

motor, and introspective systems (see Barsalou, 2008, for a review).

Distributed representations are often employed in neural network or connectionist

models of cognition. These models aim to investigate the validity of theoretical explana-

tions of cognitive processes by creating computational realizations of the theories that

can then be tested and compared to human performance. With regards to the cognitive

processes underlying language processing, connectionist models have used distributed

representations for both phonological (i.e., aural) and orthographic (i.e., visual) knowl-

edge (Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989;

Sibley, Kello, Plaut, & Elman, 2008), as well as semantic knowledge (Harm & Seidenberg,

2004; Hinton & Shallice, 1991; Rogers & McClelland, 2004). Binary feature vectors are

the most commonly used method of representing semantic knowledge. In this form of

representation, each component of a high-dimensional vector corresponds to a partic-

ular feature that can be used to describe a concept, such as 〈is an animal〉 or 〈has legs〉.
A specific concept can be represented by activating all of the components of the vector

corresponding to features possessed by the concept and deactivating all other features.

McRae, Cree, Seidenberg, and McNorgan (2005) and Vinson and Vigliocco (2008)

provide feature production norms for a number of concepts. Unfortunately, obtaining

reliable feature production norms is a time-consuming task even for a small number of

concepts. The norms of McRae et al. (2005) provide data for only 541 living and non-

living objects, collected from approximately 725 participants. The norms provided by

Vinson and Vigliocco (2008) describe 456 concepts and were collected from 280 sub-

jects. The latter norms are unique in that they provide features produced for objects as

well as both nouns and verbs referring to events, while previous sets of norms had pro-

vided features only for objects. These norms provide a valuable resource for those in-

vestigating the role of perceptual properties of concepts on word recognition and other

linguistic tasks and are an excellent resource for creating distributed representations for

use in computational models. However, the time consuming process required to obtain

the norms poses a serious drawback. McRae et al., for example, began collecting their
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norms in 1990 and did not publish them until 15 years later. In addition, features pro-

duced by subjects are unlikely to reflect the true nature of semantic memory. As noted

by McRae et al. (2005, p. 549), when a participant is asked to provide a list of features de-

scribing a concept, they are accessing representations that are developed through expe-

rience and interactions with the concept in question; the representation of the concept

stored in the subject’s mind is not an explicit list of features.

The time-consuming norming process is often by-passed by researchers in favour of

a small set of hand-selected features that are assumed to accurately represent the se-

mantics of the concept (Hinton & Shallice, 1991; Plaut & Shallice, 1993). Others have

constructed distributed representations from previously existing resources. Harm and

Seidenberg (1999, 2001, 2004), for example, used feature vectors generated from the

WordNet database (Fellbaum, 1998) However, this approach does not avoid the exten-

sive time investment required to construct the norms, it merely exploits resources to

which this time has already been dedicated. Some researchers have relied on similar-

ity between randomly generated binary vectors (Plaut, 1995; Plaut & Booth, 2000; Rodd,

Gaskell, & Marslen-Wilson, 2004). This approach is the least satisfying as the compo-

nents of the randomly generated vectors do not correspond meaningfully to properties

of the underlying concepts.

Lexical co-occurrence models offer an alternative method of constructing rich dis-

tributed representations of semantic knowledge (M. Andrews, Vigliocco, & Vinson, 2005,

2007, 2009; Burgess & Lund, 2000; Griffiths, Steyvers, & Tenenbaum, 2007; Jones & Me-

whort, 2007; Landauer & Dumais, 1997; Lund & Burgess, 1996; Shaoul & Westbury, 2006).

These models construct high-dimensional vector representations of semantic knowl-

edge through the direct analysis of word usage in large bodies of written text. These

word-usage statistics are referred to as “distributional information”. A distinct advantage

of lexical co-occurrence models over feature-based models is that the semantic repre-

sentations are derived automatically from text. Once the corpus has been selected, the

method can be allowed to run to completion with little or no human intervention. This

stands in stark contrast to the extensive work required to obtain reliable results from

subject-collected norms. Once a set of representational vectors has been constructed,

similarity between word vectors can act as a surrogate measure of the similarity between

the meanings of two words. Any number of similarity measures can be used to mea-

sure word similarity, such as the cosine of the angle between two vectors or the correla-

tion between the components of two vectors. In addition, distance metrics such as Eu-

clidean distance or city-block distance can be used to provide a measure of dissimilarity.

In contrast to the feature-based vectors discussed above, the individual components of
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the vectors constructed by lexical co-occurrence models often do not correspond to fea-

tures or properties of the concepts they represent in any meaningful way: word meaning

is represented in a distributed manner over all components of the vector.

The Hyperspace Analogue to Language (HAL; Lund & Burgess, 1996) was among the

first co-occurrence models to be used to demonstrate that word meaning can be de-

rived from distributional information. In this model, the number of times that each pair

of words occur within five words of one another is counted. These counts are recorded

in a matrix with one row and one column corresponding to each unique word in the

corpus and only the columns of this matrix whose entries have the highest variance

are retained (typically 100 or 300 columns are kept). The rows of the resulting matrix

are used as the representations of the words. Latent Semantic Analysis (LSA; Landauer

& Dumais, 1997) is another early co-occurrence model that has been widely used to

simulate psycholinguistic tasks. In this model, the corpus is broken into small docu-

ments and the number of times that each word occurs in each document is recorded in

a matrix that has one row for each unique word and one column for each document.

This dimension of this matrix is reduced by using singular value decomposition (SVD)

and using the left-singular vectors resulting from this process as the word meaning rep-

resentations. The Bound Encoding of the Aggregate Language Environment (BEAGLE;

Jones & Mewhort, 2007) model incorporates both co-occurrence and order information

into its representations by using vector convolution methods. That is, this model in-

corporates information about the order in which words occur in text into its semantic

representations directly. Further, BEAGLE constructs representations through an itera-

tive algorithm and does not require any batch process to reduce the dimension of the

vectors, as is required in HAL and LSA. This allows the quality of the vectors to be easily

assessed at multiple times during the construction of the vectors, providing insight into

the manner in which the model acquires semantic knowledge. Jones, Kintsch, and Me-

whort (2006) compared the ability of HAL, LSA, and BEAGLE to simulate subject perfor-

mance in an array of psycholinguistic tasks and found that BEAGLE demonstrated the

strongest performance. Recent models have incorporated more sophisticated mathe-

matical techniques. Turney (2012), for example, describes a dual-space vector model

that represents domain similarity and functional similarity in separate spaces and com-

bines the two types of similarity into a single measure. This model was used to simulate

semantic relations and semantic compositions and showed strong performance. Van

de Cruys, Rimell, Poibeau, and Korhonen (2012) present a method of acquiring verb

sub-categorization frame and selectional preference information. The method employs

a tensor factorization (a generalization of matrix factorization) to produce representa-
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tions that are shown to contain syntactic, lexical, and semantic information. Shaoul and

Westbury (2010) examined the impact of several model parameters, including the size of

the window used to collect co-occurrence counts and the weight applied to each word

in the window, on the the performance of a HAL-like model. They found that a common

set of parameters produced the best performance in simulating both lexical decision

and semantic decision tasks. Razavi, Matwin, Inkpen, and Kouznetsov (2009) present a

model that weights co-occurrence counts according to the context in which two words

appear in a sentence. A corpus consisting of a set of documents was analyzed one sen-

tence at a time. Weighted co-occurrence counts are stored in a “closeness” matrix with

one row and one column for each unique word in the corpus. For each pair of words

that appear together in the same sentence, the corresponding entry in the closeness

matrix is incremented by a real-valued weight based on the relationship between the

two words in the sentence. For example, two words occurring adjacent to one another

were weighted most heavily, and two words separated by a semi-colon were weighted

much lower. The resulting co-occurrence matrix was transformed using the Dice co-

efficient (Dice, 1945). Second-order co-occurrence vectors were used to represent the

corpus at different conceptual levels. These vectors were constructed for the sentence

level by averaging the co-occurrence vectors representing each word in the sentence.

Similarly, document representations were created by averaging the vectors representing

each of the sentences in the document. A weighted combination of the word vectors and

higher-level vectors was used as the final semantic representation, where the weight was

adjusted according to the task being simulated. The resulting vectors were shown to be

effective at rating the positivity or negativity of descriptions of dreams and were used to

accurately classify abstracts of scientific papers.

Lexical co-occurrence models have been successful at modeling a number of em-

pirical results from the psycholinguistic literature and have proved useful in many tasks

in computational linguistics. Schütze (1992, 1998) used an early lexical co-occurrence

model together with clustering algorithms to identify the correct meaning of an ambigu-

ous word in a word sense discrimination task. Distributional information has proven

useful in several methods for measuring word ambiguity and automatic thesaurus gen-

eration (Lin, 1998; McDonald & Shillcock, 2001; Pantel & Lin, 2002; Pereira, Tishby,

& Lee, 1993). Durda, Buchanan, and Caron (2009) used representations from a co-

occurrence model together with graph clustering techniques and the entropy measure

(Shannon, 1948) to provide a measure of word ambiguity. The resulting process was an

automated version of the work done by Twilley, Dixon, Taylor, and Clark (1994), elimi-

nating the substantial time commitment required to collect judgments from subjects.
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Multidimensional scaling (MDS; a technique which reduces the dimension of a set

of points while retaining the pairwise distance between points as best as possible) was

used to show that the vectors produced by lexical co-occurrence models contain cat-

egorical and grammatical information (Lund & Burgess, 1996; Burgess & Lund, 2000,

1997a; Burgess, 1998). MDS was also used to show that lexical co-occurrence models

can differentiate between common and proper nouns, as well as differentiate female

names from male names and famous names from common names (Burgess & Conley,

1998a, 1998b). Louwerse, Cai, Hu, Ventura, and Jeuniaux (2006) used MDS to show that

representations from the Latent Semantic Analysis model (LSA; Landauer & Dumais,

1997) contain knowledge about the relative order of events that can be used to correctly

order the days of the week and the months of the year and contain knowledge about

the relative magnitude of units of times and the relative distances between geographical

locations.

The representations produced by lexical co-occurrence models have been able to

reproduce the differences between associative and semantic priming effects (Burgess &

Lund, 1997b; Jones et al., 2006; Lund & Burgess, 1996) and can account for the subtle

effects found in mediated priming experiments (Jones et al., 2006; Livesay & Burgess,

1997). These models also perform similarly to humans in synonym selection tasks, such

as those found on the TOEFL exam (Landauer & Dumais, 1997; Turney, 2001b).

Lexical co-occurrence has been shown to provide adequate information for children

to acquire word meaning (Li, Burgess, & Lund, 2000) and uses statistical techniques that

appear to be available to children at very early ages (see Kuhl, 2004). Further, the vector

representations produced by lexical co-occurrence models have been shown to be simi-

lar to those produced by simple recurrent neural networks (Elman, 1990), which develop

internal representations by exploiting information present in the temporal structure of

language. Elman (1990) trained a simple recurrent neural network to predict the up-

coming word in a stream of text. This network was trained using a small corpus contain-

ing 10,000 two– and three–word sentences following 15 different sentence forms with

a vocabulary of 29 words. The resulting internal representations (that is, the pattern of

activation on the network’s hidden units in response to an input pattern) differentiated

between verbs and nouns, and within each of these categories were able to differentiate

between different forms (for example, within the category of verbs, the network differ-

entiated between verbs that require a direct object, verbs that are intransitive, and verbs

for which a direct object is optional). Burgess and Lund (2000) trained the Hyperspace

Analogue to Language (HAL; Lund & Burgess, 1996) model on the same corpus as was

used by Elman and found that the representations developed by HAL demonstrated a
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similar pattern when hierarchical clustering was performed on the resulting representa-

tions. While these two approaches acquire semantic knowledge through vastly different

mechanisms, both methods use contextual information to guide the learning process

and the resulting representations appear to contain similar information. Burgess and

Lund (2000) suggest that one advantage of the lexical co-occurrence approach over sim-

ple recurrent networks is the ability for lexical co-occurrence models to scale easily to

much larger vocabularies; it is not uncommon for co-occurrence models to include rep-

resentations for 100,000 words or more.

Despite their successes, lexical co-occurrence models have been met with criticism.

Early criticisms often focused on the influence of word frequency on the vectors pro-

duced by these models. Word frequency has been shown to be a strong predictor of

performance in many language-related tasks (Taft & Russell, 1992; Forster & Chambers,

1973; Fredrickson & Kroll, 1976; Monsell, Doyle, & Haggard, 1989; Whaley, 1978) and

has been shown to mask the effects of other variables, such as variations in a word’s vi-

sual appearance, sound, or meaning (S. Andrews, 1982, 1992; Glushko, 1979; D. Jared

& Seidenberg, 1990; F. Jared, McRae, & Seidenberg, 1990; Peereman & Content, 1995;

Sears, Hino, & Lupker, 1995; Westbury & Buchanan, 2002). Shaoul and Westbury (2006)

showed that word frequency varies greatly between corpora, particularly among mid-

to low-frequency words, which make up the majority of the words in the English lex-

icon. Hence, it is important to remove these influences of frequency on the vectors

produced by a lexical co-occurrence model. HAL has been criticized for the presence

of frequency both within its representations and in the distances between word vectors

(Durda & Buchanan, 2008; Lowe, 2000; Shaoul & Westbury, 2006). Durda and Buchanan

(2008) showed that frequency effects also exist within the representations produced by

the Latent Semantic Analysis model (LSA; Landauer & Dumais, 1997; Landauer, Foltz,

& Laham, 1998). To demonstrate this, two lists of words were constructed. The first list

contained 40 target words with frequencies ranging between 0.63 and 64,356 per mil-

lion words. The second list contained 470 test words with frequencies ranging from 1

to 1,383 per million words. For each target word, the cosine similarity2 with each test

word was calculated. The correlation between these similarities and the logarithm of

the frequency of the test words was then calculated, resulting in a sample of 40 corre-

lations. These values ranged between 0.12 and 0.75 (M = 0.39,SD = 0.17). Typically,

higher frequency target words were associated with stronger correlations between fre-

quency and similarity. However, researchers have applied heuristic and statistical tech-

2Cosine similarities for the LSA model were calculated using the “general reading up to 1st year college”

corpus with 300 factors, using term-term space, available at http://lsa.olorado.edu.
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niques to produce co-occurrence models whose representations exhibit little sensitivity

to word frequency (see Durda and Buchanan (2008) and Shaoul and Westbury (2006) for

examples).

A much stronger criticism of lexical co-occurrence models focuses on the lack of

groundedness in the representations. Glenberg and Robertson (2000) claim that lexical

co-occurrence models are insufficient for representing human semantics and present

three experiments to support this claim. Their experiments demonstrate that the LSA

model (Landauer & Dumais, 1997) is unable to distinguish between sensible sentences

and non-sensible sentences, while subjects were easily able to differentiate between the

two. Glenberg and Robertson suggest that these deficits of the LSA model arise because

the representations constructed by the model are ungrounded. That is, there is no rela-

tionship between the representation of a concept produced by the model and its refer-

ent in the real world; the vector representing CAT, for example, has no innate property of

“catness”. French and Labiouse (2002) make similar criticisms of lexical co-occurrence

models, focusing on the absence of essential world knowledge in the vector represen-

tations. They posit that this knowledge is not available from word co-occurrence data

alone. They demonstrate that the PMI-IR model (Turney, 2001a, 2001b), which scored

well on the synonym section of the TOEFL and ESL (English as a Second Language)

exams, was unable to differentiate between the suitability of male and female proper

names for the name of a father. Similarly, despite an undeclared war between Israel and

Palestine at the time of Turney’s work, PMI-IR was unable to differentiate between the

suitability of traditional Jewish and traditional Arab names for Israeli or Palestinian min-

isters. Both of these inadequacies are attributed to the absence of grounded knowledge

in PMI-IR.

The studies cited above provide evidence indicating that lexical co-occurrence mod-

els fall victim to the symbol grounding problem (Harnad, 1990). This problem is well

illustrated by the Chinese Room thought experiment of Searle (1980). Consider Searle, a

non-speaker of Chinese, sitting in a room. Outside of the room, native speakers of Chi-

nese write questions on slips of paper and slide them under the door. Upon receiving a

slip of paper, Searle looks up the Chinese characters on the paper in a large book and,

following instructions written in English, transcribes other Chinese characters onto an-

other piece of paper and slides it under the door. If the answer produced in response

to each question is reasonable, then to the native speaker of Chinese it would appear

that the room understands Chinese. However, from the perspective of Searle, the pro-

cess of answering the question was merely a tedious exercise in symbol manipulation:

in response to a specific sequence of symbols that enter the room, a corresponding se-
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quence of symbols is transcribed and slipped back under the door. It is obvious that

Searle does not understand Chinese and, even after decades or centuries of perform-

ing this task, would remain ignorant of the meanings of the Chinese characters he is

manipulating. The goal of Searle’s thought experiment was to demonstrate that even

if a computer program can behave in a manner that simulates intelligent human con-

versation, (such as is required to pass the Turing Test; Turing, 1950), the program does

not understand the conversation it is having. Both Searle (1980) and Harnad (1990) ar-

gue that observing only the relationships between symbols (i.e., words) is insufficient

to acquire the meaning of the symbols; the knowledge contained in the relationships

between abstract symbols is only sufficient to produce more abstract symbols.

By dint of their construction, lexical co-occurrence models simply observe and record

the relationships between words (symbols) as they are used in language. Thus, lexical

co-occurrence models are subject to the symbol grounding problem and are unable to

acquire word meaning. It is worth noting, however, that these models are capable of an-

alyzing word usage on a scale that was unachievable before sufficient computing power

was available; a model can realistically process 10 billion words of text or more in only

a few hours. Regardless of the scale of the experience of symbolic models, and despite

the many demonstrations that the representations contain knowledge that is typically

considered to be semantic, the resulting representations are merely abstract (though

complex) symbols.

In addition to these direct criticisms of lexical co-occurrence models, a large number

of studies have shown that featural properties of concepts affect subjects’ performance

in a range of language related tasks, and are thought to play a role in the basic orga-

nization of semantic memory (Martin & Chao, 2001; McRae, Cree, Westmacott, & de

Sa, 1999; McRae, de Sa, & Seidenberg, 1997; Pexman, Holyk, & Monfils, 2003; Sitnikova,

West, Kuperberg, & Holcomb, 2006; Vigliocco et al., 2006). Research in grounded cogni-

tion has produced many results that demonstrate that embodied knowledge is strongly

linked to performance in many language-related tasks. For example, subjects are faster

at recognizing a word when the word is preceded by a related gesture (Krauss, 1998) and

subjects showed higher performance when the action required to respond was consis-

tent with the stimuli (e.g., if the response action was to pull a lever, subjects responded

more quickly to the word PULL than to PUSH; Glenberg & Kaschak, 2003). Appropriate

motor areas of the brain are activated when a subject reads action-related words (e.g.,

reading the word KICK causes activation in the leg areas of the motor system; Pulver-

müller, 2005). Thus, it appears that embodied knowledge is essential to the acquisition

of and later access to word meaning, and is represented in semantic memory.
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Burgess and colleagues (Burgess, 1998, 2000; Burgess & Lund, 2000) argue that some

co-occurrence models are, by nature of their construction, grounded. In HAL, each

component of a word’s semantic representation measures the relationship between that

word and some other word from the corpus. This produces a form of grounding in

the linguistic environment. In addition, because meaning of abstract concepts is ac-

quired and stored in the same way as for concrete concepts, abstract concepts are also

grounded. Unfortunately, this argument closely mirrors that used by Glenberg and Robert-

son (2000), as well as Searle (1980) and Harnad (1990), against symbolic cognition: that

relationships between abstract symbols cannot give rise to meaning, but only to more

abstract symbols. Burgess (2000) also rejects the criticisms of Glenberg and Robert-

son (2000) on the grounds that lexical co-occurrence models are purely representational

models, but the tasks in the experiments of Glenberg and Robertson largely depend on

linguistic processing. If research focuses primarily on representational issues, or if there

is a close relationship between representation and processing, as in semantic priming,

then lexical co-occurrence models provide a useful tool. However, in tasks that require

extensive processing by the cognitive system, lexical co-occurrence models fall short.

As Burgess states, “it is simply not reasonable to plop LSA or HAL vectors into a sim-

ilarity comparison and pretend that it is reflecting the active comprehension process”

(Burgess, 2000, p. 404). Regardless of whether one is able to look past the methodologi-

cal shortcomings of Glenberg and Robertson, it is clear that lexical co-occurrence mod-

els suffer from the symbol grounding problem as described by Harnad and exemplified

in Searle’s Chinese Room.

Other researchers have attempted to overcome these shortcomings of lexical co-

occurrence models by integrating both co-occurrence information and featural data ob-

tained through feature norms collected from subjects. M. Andrews et al. (2005, 2007,

2009) present a model that treats distributional and featural information as a joint dis-

tribution to be learned by a Bayesian model. They demonstrated that the representa-

tions produced by this model are better able to reproduce behavioural data than are

models that include only one of the two sources of information or those that treat the

two sources as independent distributions. Further, Andrews et al. posit that only some

concepts in their model become grounded and that treating distributional and featural

information as a single joint distribution allows for chains of inference, where embodied

knowledge about one concept is generalized to other concepts. Howell, Jankowicz, and

Becker (2005) trained a simple recurrent neural network, augmented with noun– and

verb–feature units, to predict the next word in a stream of language. When the model

was provided with correct featural data in addition to linguistic data during training, the
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resulting network was better able to predict the upcoming word than when randomized

featural data was provided. This demonstrates that sensorimotor data improves the net-

work’s ability to learn the statistical structure of language.

Riordan and Jones (2011) compared featural and co-occurrence-based representa-

tions in a variety of semantic clustering tasks. These experiments revealed that both

types of representation performed similarly on clustering tasks involving both concrete

nouns and action verbs, however, the type of semantic knowledge employed by each

model was often very different. This suggests that semantic knowledge is, to a large ex-

tent, encoded redundantly in both embodied and linguistic sources, and that these two

sources of information act to compliment one another.

Louwerse (2007, 2008) argues that language is both embodied and symbolic and that

the meaning of a word is reliant upon both that word’s embodied properties and its re-

lationships to other words. Louwerse (2007) calls this the symbol interdependency hy-

pothesis and proposes that, while symbols can always be grounded, language operates

largely upon symbolic representations and that the grounded representations of words

are not necessarily accessed during comprehension and communication (although they

may be partially activated). This theory is similar to the chains of inference in the joint

distributional model of M. Andrews et al. (2005, 2007, 2009). The symbol interdepen-

dency hypothesis also posits that symbolic representations of words are “built onto”

embodied representations and that a large amount of information about the meaning

of words is available in the distributional information present in language usage. Thus,

under this theory, grounded knowledge about words is still necessary to acquire true

meaning of words, but distributional information is adequate to provide a large portion

of meaning. Based on studies that examine iconicity and word frequency, Louwerse

(2008) proposes that embodied relationships have a strong influence over the statistical

structure of language. This influence is prevalent in language usage to the extent that

embodied properties of words actually become encoded in language usage.

The work in this dissertation provides support for the symbol interdependency hy-

pothesis of Louwerse (2007, 2008) by demonstrating that embodied information is at

least partially encoded in the statistical structure of language. Specifically, a lexical co-

occurrence model, described in the next chapter, is used to create vector-based seman-

tic representations for a large number of words. Chapter 3 contains simulations and

experiments that show that this model is able to reproduce a large number of empirical

results from behavioural experiments and that the representations contain information

that is typically semantic in nature. Chapter 4 contains experiments demonstrating that

these representations contain information that can be used to identify embodied prop-
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erties of the concepts that the vectors represent. This is achieved through the use of a

feedforward neural network that is trained using backpropagation. Data demonstrating

that the neural network is able to generalize this ability and identify embodied proper-

ties of novel concepts is provided. That is, given the vector representation constructed

from the co-occurrence data for a concept on which the network was not trained, the

network is able to correctly identify embodied properties of that concept with accuracy

greater than would be expected by chance. These results are interpreted to provide di-

rect support for Louwerse’s theory that embodied knowledge is embedded in the struc-

ture of language.
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2 Creating Co-occurrence Representations

This chapter describes the method used to derive word-meaning, or semantic repre-

sentations. A description of the corpus used in the experiments in Chapters 3 and 4 is

provided in Section 2.2. Section 2.3 describes two implementations of the method de-

scribed in this chapter.

2.1 Description of Model

The first step of developing semantic representations is to count the number of times

that each pair of words occur near one another in a large corpus of written text. These

are referred to as co-occurrence counts. To simplify this task, we first define a fixed set of

words, D, which we call the dictionary, as D =
�

w1,w2, . . . ,w |D|
	

, where | · | denotes set

cardinality. Each w i in D denotes a unique word and we will often refer to some word

from the dictionary as w ∈D or simply w . We only count co-occurrences between pairs

of words that are both in D. Let T ′ =
�

t ′
1
, t ′

2
, . . . , t ′|T ′ |

�

be an ordered list of words, called

the corpus, such that for every t ′i ∈ T
′ there is a w j ∈D with t ′i =w j . We can think of T ′

as the concatenation of a large number of documents, where each document is written

using words fromD. IfD contains every word from the English language, then we could

represent any written English work as a sequence of words from D. However, natural

language is fluid and new words are added to the dictionary of a language continuously.

If D is fixed today, it will quickly become outdated as new words enter common usage

and gain status as words. Further, different geographical regions often use different di-

alects of the same language and what is considered a word in one area of the world may

be gibberish in another. To avoid these problems, a fixed dictionary, which we still re-

fer to asD, that contains only a subset of English words is used and only co-occurrences

between pairs of words both found inD are counted. Thus,T ′may contain many words

that do not appear in the dictionary. To alleviate this, a special token denoted by w ⋆ is

added to D and any t ′i in T ′ that does not appear in D is replaced with w ⋆. This modi-

fied corpus is used as input to the model and is denoted T =
�

t1, t2, . . . , t |T |
�

. Note that

| T |=| T ′ | and that t i = t ′i if t ′i ∈ D; otherwise t i = w ⋆. Co-occurrences of other words

with w ⋆ are not counted. It will be shown later that, provided the most frequently used

words are included in the dictionary, nearly all tokens in the corpus will be found in even

a small dictionary3. That is, by excluding only low-frequency words from the dictionary,

we can drastically reduce its size (since English contains a very large number of infre-

3In this context, “small” means somewhere below 100,000 entries. There are at least a quarter-million

words in the English language, depending on how words are counted.
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quently used words) while still recognizing most of the words in the corpus as words in

the dictionary,D.

We define the frequency of a word w ∈D by

f (w ) = |{k : tk =w , tk ∈T }| .

That is, a word’s frequency is the number of times it appears in the corpus. We assume

that each word in the dictionary occurs at least once in the corpus, so f (w )≥ 1,∀w ∈D.

Given an ordered pair of words, (w i ,w ) ∈ D ×D, we define the n t h co-frequency of

w i given w by

f n (w i |w ) = |{k : tk =w and tk+n =w i }| .

The value of f n (w i | w ) is the number of times that w i occurs exactly −n words before

w if n < 0, or n words after w if n > 0. The word w can be considered a “target” word

and w i an “associate” word that occurs near the target word. To illustrate the above

definitions, consider the following sentence:

THE BIG BLACK BEETLE BIT THE BIG BLACK BUG.

The frequency of THE is f (T H E ) = 2. The word THE appears immediately before the

word BIG two times, so f −1(T H E | B I G ) = 2, and BLACK appears twice immediately

after the word BIG, so f 1(B LAC K | B I G ) = 2.

Given two integers, n 0 ≤ 0 and n 1 ≥ 0, with n 0 6= n 1, we can record the co-frequency

data for each pair of words and each n , n 0 ≤ n ≤ n 1,n 6= 0, in a three-dimensional array,

N, where N has order |D| × |D| × (n 1 −n 0) and is indexed by target word (w ), associate

word (w i ) and position (n). It is helpful to think of n 0 and n 1 as defining a small window

of the corpus containing the |n 0|words preceding and n 1 words following some instance

of w in the corpus:

�

t i+n 0
, t i+n 0+1, . . . , t i−1, t i =w , t i+1, . . . , t i+n 1−1, t i+n 1

�

.

This window is passed sequentially over each word inT , accumulating the co-frequency

values incrementally in the co-frequency array N. As the window is passed over each

word in T , the co-occurrence data is recorded in N. For example, if a particular window

centred on some instance of the word w i contains the word w j exactly three words after

t , then the value of N[i ][j ][3] is incremented to record to co-occurrence.

We define the co-occurrence frequency of w i given w as the sum of the co-frequencies

18



across all values of n ,n 0 ≤ n ≤ n 1,n 6= 0:

f (w i |w ) =
n 1
∑

n=n 0
n 6=0

f n (w i |w ).

The value of f (w i | w ) is the number of times that w i appeared |n 0| or fewer words

before w or n 1 or fewer words after w in the corpus. That is, f (w i | w ) is the number

of times that w i appeared in a window centred on an instance of w in the corpus4. The

co-occurrence frequencies can be stored in a |D| × |D| matrix, M, which is called the

co-occurrence matrix. If the co-frequency data has been stored in a three-dimensional

array N, as described above, then the co-occurrence matrix M can be calculated from N

by simply summing across all values of n ,n 0 ≤ n ≤ n 1
5. That is,

Mi ,j =

n 1
∑

n=n 0

n 6=0

Ni ,j ,n = f (w j |w i ).

Note that this method of constructing the co-occurrence matrix results in equal weight-

ing of each window position; no advantage is given to words that appear closer to the

target word within a window. Due to the distribution of words in language, both the co-

frequency array and the co-occurrence matrix are extremely sparse (that is, the matrices

have very few non-zero entries). Examples of this will be given in the next section.

The frequencies of w i and w have a strong influence on the value of f n (w i | w ),

with higher frequency words more likely to occur together merely by chance than low

frequency words. As a result of this, a co-occurrence of a word with a high-frequency

word is not as informative of the relationship between the words as is a co-occurrence

with a low-frequency word.

For example, in the one billion word corpus used in the experiments in Chapters 3

and 4 (see Section 2.2 for a description of the corpus) the word CAT appears 30,617 times.

4Note that unless n 0 = −n 1, w will not appear in the centre of the window. However, the term “cen-

tered” will be used to refer to the situation where a window contains n 0 words before and instance of w

and n 1 words following an instance of w , regardless of whether w actually appears at the true centre of

the window.
5The reason for making a distinction between co-frequency and co-occurrence values and their associ-

ated matrices, N and M is purely practical. Collecting the co-frequency and co-occurrence matrix is time

consuming and requires both a large amount of memory and a large amount of temporary disk space. To

make experimentation with different values of n 0 and n 1 feasible, the co-frequency data can be collected

by using a large window defined by two values, m0 and m1, defined analogously to n 0 and n 1. Once this

is complete, the values of n 0 and n 1 can be fixed, with m0 ≤n 0 ≤ 0 and 0≤ n 1 ≤m1, and the co-frequency

data can be summed across all values of n , n 0 ≤ n ≤ n 1, n 6= 0 to obtain the co-occurrence counts. This

allows for comparing results using different window sizes without the computational burden of collecting

new co-occurrence data for each different window size.
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Using a window that contains ten words preceding and five words following the word on

which it is centred, DOG occurs with CAT 1,040 times (that is, f (DOG | C AT ) = 1,040).

The word MEOW occurs with CAT only 37 times when the same size window is used

(that is, f (C AT |M EOW ) = 37). However, when no regard is given to context, DOG oc-

curs a total of 49,391 times in the corpus, while MEOW occurs only 308 times. Thus,

the proportion of occurrences of MEOW that occur in the presence of an instance of

CAT is higher than the proportion of occurrences of DOG that occur in the presence of

CAT. This seems to suggest that a co-occurrence of CAT with the lower-frequency word

MEOW is more informative of the meaning of CAT than is a co-occurrence of CAT with

the higher-frequency word DOG, and that the total number of co-occurrences between

two words must be weighted according to the frequencies of the words. Further, closed-

class words such as THE appear with high frequency near all other words and will thus

produce high co-occurrence counts with almost all words. The number of times that

THE occurs near CAT is 34,615 (that is, f (T H E | C AT ) = 34,615), which is greater than

the number of occurrences of CAT (this situation arises because THE sometimes ap-

pears more than once in a single window centred on an instance of CAT). However, given

that the total number of occurrences of THE in the corpus is 71,936,637, which is about

7.5% or one out of every 13 words in the corpus, it is hardly surprising that CAT and THE

occur together with such high frequency. It is clear that the word THE contributes little

to the meaning of any word, so it is important to weight the number of co-occurrences

with such words to account for their high frequency.

Word frequency has also been shown to be a strong predictor of performance on

many psycholinguistic tasks: subjects perform more quickly and more accurately in

tasks involving high frequency words than in the same task with low frequency words

(Taft & Russell, 1992; Forster & Chambers, 1973; Fredrickson & Kroll, 1976; Monsell et

al., 1989; Whaley, 1978). This frequency effect in psycholinguistic tasks can mask other,

more subtle effects, such as true semantic effects (S. Andrews, 1982, 1992; Glushko, 1979;

D. Jared & Seidenberg, 1990; F. Jared et al., 1990; Peereman & Content, 1995; Sears et al.,

1995; Westbury & Buchanan, 2002)

Finally, Shaoul and Westbury (2006) have shown that word frequency varies greatly

between corpora, particularly among low frequency words. Of course, because each

corpus acts as an analogue to an individual’s experience with language, they will each

produce different sets of semantic vectors. However, there should remain strong sim-

ilarities between the internal structures of semantic spaces constructed from different

corpora, regardless of differences in the frequencies of particular words. Thus, it is im-

portant to remove these influences of word frequency from the co-occurrence counts if
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we wish to capture the semantic characteristics of the words in the dictionary.

To reduce frequency effects, we use the log-relative frequency ratio (Damerau, 1993).

This measure was originally used to identify a vocabulary of words related to a particular

subject by comparing a word’s usage in a general corpus of text to that same word’s usage

in a subject-specific corpus. Here, we use the same technique to compare a word’s usage

in the presence of some other word to that same word’s usage without regard to context.

To calculate the log-relative frequency ratio, we define two probabilities. The probability

that some word in a window centred on an instance of w is w i is given by

Pw (w i ) =
f (w i |w )

(n 1−n 0) f (w )
. (2.1)

The denominator in Equation 2.1 is the total number of co-occurrences counted around

the word w . The probability that a word randomly selected from T is w i is given by

P(w i ) =
f (w i )

|T |
.

Since each word appears at least once in the corpus, P(w i )> 0 for all w i ∈ D. However,

since some words occur only infrequently, this probability may be very small for some

words. The log-relative frequency ratio is calculated as

R(w i |w ) = log

�

Pw (w i )

P(w i )

�

. (2.2)

If w i is more likely to appear in the presence of w than when context is ignored then

R(w i |w ) is positive. If w i occurs with smaller probability in the presence of w , then

R(w i |w ) is negative. Equation 2.2 is applied to each element of the matrix M to produce

a |D|× |D|matrix R= (ri j ), where ri j =R(w j |w i ).

Consider the examples given above as a demonstration of how the log-relative fre-

quency ratio can remove frequency effects. Recall that the corpus contained one billion

words (to be exact, there were 962,070,534 words) and co-occurrence counts were col-

lected using a window that contained ten words preceding the target (n 0 = −10) and

five words following the target (n 1 = 5). Substituting these values into (2.2), we ob-

tain R(DOG | C AT ) = 3.78669 and R(M EOW | C AT ) = 5.52806. Further, for the high-

frequency word THE, which should contribute little to the meaning of CAT, the log-

relative frequency ratio is R(T H E | C AT ) = 0.00798. Recall the co-frequencies given

earlier: f (DOG | C AT ) = 1,040, f (M EOW | C AT ) = 37, and f (T H E | C AT ) = 34,615.

In the co-frequency data, THE occurs most frequently with CAT, followed by DOG and
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MEOW with the fewest occurrences with CAT. After applying (2.2), this pattern reverses:

the word MEOW has the strongest association to CAT and the high-frequency word THE

shows little relationship to CAT. This example suggests that the log-relative frequency

ratio weights co-occurrence counts according to word frequency in an intuitively ap-

pealing way. One advantage of using this method to remove word frequency effects is

that the influence of function words on the semantic representations is drastically re-

duced without the need for any preprocessing of the input corpus to tag each word for

part-of-speech or to maintain a list of stop words. This allows the algorithm to be im-

plemented with relative ease without the need for any specialized techniques.

Finally, the dimension of the matrix R is reduced by using singular value decompo-

sition (SVD)6. We can write R as the product of three matrices,

R=UΣV
⊤, (2.3)

where U is a |D|× |D| orthogonal matrix whose columns are eigenvectors of RR⊤ (called

the left singular vectors of R), V is a |D|×|D| orthogonal matrix whose columns are eigen-

vectors of R⊤R (called the right singular vectors of R), and Σ is a |D| × |D| a diagonal

matrix whose diagonal elements are called the singular values of R and appear in de-

creasing order. An approximation to R can be obtained by fixing a positive integer k and

setting all but the k largest singular values to 0 and retaining only the first k columns of

both U and V. Thus, we have

R̃= ŨΣ̃Ṽ
⊤, (2.4)

where both Ũ and Ṽ have order |D|×k and orthogonal columns, and Σ̃ is diagonal with

order k × k . The matrix R̃ is the best approximation (in the least squares sense) to R

having rank k . The rows of Ũ are used as the representations of the words. That is,

the i t h word of the dictionary, w i ∈ D, is represented by the i t h row of Ũ. The word

“representation” in this context is used to mean an abstract symbol that is intended to

capture properties of the semantic content of a word. In the model presented above,

these representations take the form of k -dimensional vectors. In Sections 3 and 4 it will

be shown that the vectors produced using this method contain semantic information

that captures many properties of human semantic memory and that the vectors contain

information about embodied properties of objects.

Given two words, wa and wb , with corresponding vectors wa = (wa 1,wa 2, . . . ,wa k )

and

6The SVD was computed using Doug Rodhe’s SVDLIBC, available at http://tedlab.mit.edu/~dr/SVDLIBC/
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wb= (wb1,wb2, . . . ,wbk ), the similarity between wa and wb , denotedσ(wa ,wb ), is given

by the cosine of the angle between their vectors,

σ(wa ,wb ) =

∑k

i=0
wa i wbi

‖wa‖‖wb‖
, (2.5)

where ‖ · ‖ denotes the Euclidean norm of a vector7. Higher values of σ(w1,w2) corre-

spond to higher similarity between w1 and w2 and negative values are interpreted as

low similarity rather than opposition in meaning. Recall that the vectors wa and wb are

given by the a t h and b t h rows of Ũ, respectively.

2.2 Input Corpus

For the experiments in Chapters 3 and 4, representations were created from a corpus

containing all articles from Wikipedia that contain over 2,000 words, provided by Shaoul

and Westbury (2009). A dictionary of the 100,000 most frequent words was used. There

were over 962 million words in the corpus, of which over 931 million, or 96.8%, ap-

peared in the dictionary. The corpus contained 3,035,070 articles. A window containing

ten words preceding and five words following the word around which the window was

centred was used to collect co-occurrence data from the corpus (that is, n 0 = −10 and

n 1 = 5). This window size has been found to work well by other researchers (Shaoul &

Westbury, 2008). Shaoul and Westbury (2010) showed that a flat weighting of the win-

dow positions, as used in the current method, works well when simulating an array of

behavioural results. As the goal is not to provide the “best” co-occurrence model, but

rather to produce a model that captures semantic knowledge effectively, the space of

model parameters will not be explored further and the window size will be set based on

the prior work of Shaoul and Westbury.

The co-occurrence matrix produced from the corpus, M, was extremely sparse, with

only 4.09% of the entries non-zero. The dimension of this matrix was reduced to only

300 dimensions using SVD (k = 300, in the notation of the previous section). The ma-

trix R̃ resulting from the SVD is dense. Note that in all experiments in Chapter 3 where

a measure of similarity between pairs of words was required, the cosine between the

words’ vectors, given in Equation 2.5, was used.

7The Euclidean norm of a vector x= (x1,x2, . . . ,xn ) is given by ‖x‖=
p
∑n

i=1
x 2

i .
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2.3 Implementation Details

Two implementations of the above algorithm were written in C++. The first was de-

signed to run on a relatively modern desktop PC and the other to run on a computer

with a very large amount of memory (i.e., 30GB or more).

Both implementations analyzed the corpus in two stages. In the first stage, the fre-

quency of each unique token in the corpus was counted. From this data, a list of the

100,000 most common tokens was determined; this list served as the dictionary during

the second pass through the corpus. During this pass, the co-occurrence frequency of

each pair of words was calculated and saved to a file on disk. Finally, a SVD was per-

formed on the co-occurrence data to obtain the semantic representations.

Common to both implementations was the requirement to efficiently parse a large

corpus of text into words. This was accomplished via a lexer written in GNU flex (an al-

ternative to the Lex tool). This lexer was used to scan the corpus a single token at a time.

During the first pass through the corpus, the frequency of each token was counted and

the 100,000 most frequent words were identified. Each word in the 100,000 word dic-

tionary was assigned a unique integer between 0 and 99,999. These integers were used

as unique identifiers for each word. As each word was read from the corpus, its unique

identifier was determined and used in all further processing. As the corpora processed

by the program were on the order of one billion words, it was essential that this iden-

tifier look-up could be performed as efficiently as possible. Even a perfectly balanced

binary search tree would require, on average, 16.6 look-ups to find a word (although

some savings could be gained by storing words at non-leaf nodes). Further, the com-

parison required at each node during the search through the tree is a string comparison,

whose complexity is determined by the length of the string. A trie (Fredkin, 1960) is a

natural alternative to the binary search tree for string-based look-ups. This data struc-

ture can perform look-ups in O(ℓ) time, where ℓ is the length of the string. Further, the

comparison performed at each step of the search is a simple character comparison that

can be performed in constant time. In the particular corpus used in the experiments

in the following chapter, the average number of comparisons performed by the trie for

each look-up was 4.86. Given the size of the corpus, the use of the trie for dictionary

look-ups produced a substantial gain in efficiency.

Given the size of the dictionary and the number of unique word-pairs observed in

the corpus, the co-occurrence data consumed a large amount of memory and could

not be stored in its entirety in the RAM of a desktop PC. Thus, only a subset of the co-

occurrence matrix was stored in memory at any time. This subset contained entries

only for those word pairs and windows positions that were most recently observed in
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the corpus. This matrix was stored in an AVL tree whose nodes were ordered by target

word, associated word, and window position and contained the number of times that

the combination of words and window position were observed. Once this tree grew be-

yond a specified number of nodes, its contents were written to a file on disk and the

tree was emptied. This process was continued until the entire corpus was scanned. The

files on disk were then merged into a single file using merge sort. This merged file cor-

responds to the matrix N described above. Given a minimum and maximum window

position, a co-occurrence matrix M was extracted from this file and all non-zero entries

were saved to a file on disk.

This version of the program worked well for moderately large corpora, but was in-

efficient for very large corpora due to the requirement to write a large amount of data

to disk. However, the incremental nature of the construction of the co-occurrence ma-

trix allows a co-occurrence matrix to be constructed from a smaller corpus and later

updated in stages to include data from increasingly larger corpora. This property is

also convenient for examining how representations change with exposure to greater

amounts of text. A further drawback of this implementation was the large amount of

temporary disk space required to store the intermediate results of the algorithm.

The implementation of the algorithm intended for machines with a large amount of

memory was straightforward. The co-occurrence data was stored in a 100,000 by 100,000

two-dimensional array allocated in memory. As each word was read from the corpus,

the co-occurrence data could be updated directly in memory. One deviation from the

method described above was that the co-occurrence data was not split by distance from

the target; co-occurrences in all window positions were recorded in the same matrix.

That is, the matrix M was constructed directly, rather than constructing N and summing

across window positions to calculate M. This reduced the amount of memory required

to hold the co-occurrence matrix in memory. For example, when using a windows with

ten preceding words and five following words, as in the experiments in this dissertation,

the amount of memory required to store N is 15 times the amount of memory required

to store M. Constructing M directly allowed all operations to be performed in memory

without any caching of results to disk. Once the entire corpus was processed, any non-

zero entries in the co-occurrence matrix were written to a file on disk, using the same

file structure as the variation of the program intended for use on a desktop PC.

In both implementations, the SVD was performed using Doug Rodhe’s SVDLIBC li-

brary, available at http://tedlab.mit.edu/~dr/SVDLIBC/. This library is based on

SVDPACKC (Berry, Do, O’Brien, Krishna, & Varadhan, 1993), a library of methods for

calculating the SVD of large, sparse matrices.
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3 Demonstrations of Model

This chapter contains several demonstrations that the vectors produced by the model

above capture many characteristics of human semantic memory in a way that is inde-

pendent of the frequency of the words in the corpus.

3.1 Independence of Frequency

The preceding chapter described a technique that can be used to reduce the influence

of word frequency during the construction of semantic vectors. To demonstrate that

the resulting semantic vectors produce similarity measurements that are independent

of frequency, a random sample of 10,000 pairs of words with frequency ranging between

two and 78,457 per million words of written text was selected. The similarity between

each pair of words was calculated. No correlation was found between similarity and the

frequency of the first word in the pair8, r (9998) =−0.034), or between similarity and the

frequency of the second word, r (9998) =−0.031. Although both of these correlations are

significant (both p ’s < 0.01), this is a consequence of the large sample size rather than

any meaningful relationship between frequency and similarity. Indeed, Figure 3.1 shows

that there is little relationship between the two variables.

3.2 Multidimensional Scaling Results

In this section, multidimensional scaling (MDS) is used to demonstrate that the vector

representations capture categorical information. MDS is also used to show that the rep-

resentations capture information about the temporal order of events (i.e., the days of the

week or the months of the year) and the relative magnitude of units of time and mea-

surement. MDS reduces the dimension of a set of data points in a way that best retains

the pairwise distances between points (see Borg & Groenen, 2005, for example).

3.2.1 Categorical Information

Burgess and Lund (1997a) used MDS to demonstrate that representations produced by

a co-occurrence model latently encode categorical information. Exemplars from four

8The results of statistical tests are reported using notation that generally agrees with the APA standard.

Each statistic is reported with the degrees of freedom in parentheses and the significance of the statistic

following. For analysis of variance (ANOVA) analyses, the F -statistic is reported with two degrees of free-

dom (e.g., F (1, 23) = 12.2, p < 0.001). t -tests are reported similarly (e.g., t (12) = 8.21, p < 0.001), as are

correlations (e.g., r (99) = 0.34, p = 0.012. Generally, statistics are reported in line; however, means and

standard deviations are reported in parentheses using the format (M = 63.3, SD = 12.3).
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Figure 3.1: Satter plot of word similarity against word log-frequeny. The nearlyhorizontal best �t line demonstrates that there is little relationship between fre-queny and similarity.
categories (Animals, Body Parts, Geographical Locations, and Cities) were selected and

scaled to two dimensions using MDS. Concepts from a common category grouped to-

gether in the lower-

dimensional space, suggesting the representations capture knowledge about category

membership without explicit exposure to this information. The present model is able to

reproduce the results of Burgess and Lund (1997a). Several other experiments examin-

ing categorical information are also presented.

Figure 3.2 shows the results of an MDS performed on the same set of concepts as

were used by Burgess and Lund (1997a). Words from each category cluster together

in the two-dimensional space. While Burgess and Lund observed some overlap be-

tween similar categories (some Cities clustered with the Geographical Locations and

vice versa, and some Body Parts clustered with the Animals), this does not occur in the

current results.

To verify this clustering, within- and between-category similarities were analyzed in

a one-way ANOVA. For each category, all pairwise similarities between pairs of words in

the category were calculated (the within-category distances), and the similarity between

each word in the category and each word in each of the other categories was calculated

(the between-category distances). For example, for the category Animals, the similar-

ity between each pair of words from the category Animals was calculated to provide the
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Figure 3.2: Multidimensional saling of animals, body parts, geographial loa-tions, and ities. Conepts from a ommon ategory luster loser together thanonepts from di�erent ategories.
within-category similarities. In addition, the similarity between each animal and each

concept from the other categories (Body Parts, Geographical Locations, and Cities) was

calculated to provide the between-category similarities. Since the data are not inde-

pendent, a separate ANOVA was performed for each category. This analysis revealed

that the Animals were more similar to one another than to concepts from other cate-

gories, F (1,257) = 242.44,p < 0.001. The same pattern was observed for the category of

Body Parts, with higher within-category similarities than between-category similarities,

F (1,553) = 352.63,p < 0.001, as well as for Cities, F (1,220) = 138.26,p < 0.001, and Ge-

ographical Locations, F (1,331) = 305.35,p < 0.001. Since Cities and Geographical Loca-

tions are highly similar categories, an additional analysis was performed to compare the

within- and between-group similarities for only these two categories. Again, Cities were

differentiated from Geographical Locations, F (1,88) = 31.686,p < 0.001, and Geograph-

ical Locations were differentiated from Cities, F (1,133) = 51.413,p < 0.001. Note that all

of these analyses were performed on the vectors in the original high-dimensional space

and not on the results of the MDS9. Hence, this analysis suggests that the distinction be-

9This is true for all analyses presented in this section. Any statistics calculated on the similarity values

use similarities calculated in the original 300-dimensional space. The MDS results provide a projection of

the high-dimensional space to a lower-dimensional space for convenient visualization.
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tween categories observed in the results of the MDS exist in the high-dimensional space

and can not be dismissed as an artifact of the MDS procedure. Figure 3.3 illustrates the

higher similarity between concepts within the same category than between concepts

from different categories.
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Rosch (1975) provides category norms for concepts from ten categories. These norms

are used to provide stimuli for further exploration of the extent to which categorical in-

formation is captured by the vector representations. Note that Rosch’s norms contain

a range of category exemplars that includes exemplars that are both central to the cat-

egory (e.g., AUTOMOBILE as a member of the category Vehicles) and peripheral to the

category (e.g., ELEVATOR as a member of the category Vehicles). Thus, only the ex-

emplars from each category that were ranked by subjects to be representative of the

category are used. Specifically, the top ten exemplars from each category that do not

appear in any other category and also appear in the model’s dictionary are used as stim-

uli. These words are listed in Table A.1 in Appendix A. The results of an MDS performed

on these stimuli are shown in Figure 3.4. As seen in the previous MDS, concepts from

the same category tend to cluster together in the lower-dimensional space. While the

clusters are not as distinct as in the previous MDS, which contained concepts from only

four categories, given the number of concepts (100) and categories (10), and that the

representations are projected from 300 to only two dimensions, resulting in a large loss
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of information, the results are still quite good. The categories of tools, weapons, and

toys seem to be especially dispersed among the other concepts. The categories of birds,

sports, vehicles, fruits and vegetables produce particularly strong clustering. Some con-

cepts, while grouped closest to a different category, are still highly similar to the con-

cepts they clustered with. For example, WAGON is clustered with the Vehicles. While

WAGON is considered to be a member of the category Toys in Rosch’s norms, it seems

reasonable that it should cluster with the other members of the category Vehicles, as it

shares both properties and function with these items. The word KITE was categorized

as a toy in the Rosch norms but was clustered with the birds in the MDS. However, the

word KITE also refers to a family of birds of prey. This concept’s positioning in the MDS

results suggest that the bird meaning of KITE was better represented in the corpus from

which the representations were constructed than the children’s toy meaning.
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Figure 3.5 shows the mean similarity between concepts in each pair of categories.

Each square in this figure represents the similarity between two categories, with white

representing low similarity and darker colours representing higher similarity. The lower-

left square, for example, represents the similarity of the category Bird with itself. The

square to the right of this represents the similarity between the categories of Birds and

Clothing. Note that each category is most similar to itself, as indicated by the darkly-

shaded diagonal extending from the lower-left corner to the upper-right corner of Fig-

ure 3.5. Most categories have low similarity with all other categories, with the notable

exception of Fruits and Vegetables, which are very similar categories.
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Table 3.1 shows the mean similarity of items within each category and the mean

similarity between categories by category, as well as the results of ANOVAs performed

for each category, comparing within- and between-category distances. All results were

significant with p < 0.001, showing that items from the same category are more similar

than items from different categories. A separate analysis comparing only the highly-

similar categories of Fruits and Vegetables was performed. This revealed that Vegetables

were more similar to one another, M = 0.512, SD = 0.274, than to Fruits, M = 0.277,SD =

0.141, F (1,198) = 58.33,p < 0.001. In addition, Fruits were more similar to one another,
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M = 0.364,SD = 0.246, than to Vegetables, M = 0.277, SD = 0.141, F (1,198) = 9.41, p =

0.002. The category of Toys, whose items were the most dispersed in the MDS results,

has the lowest similarity with itself (M = 0.131), while the category of Vegetables has the

highest within-category similarity (M = 0.512).

Mean similarity

Category Between Within F-Test

BIRD 0.0093 0.3296 921.45

CLOTHING 0.0233 0.4141 1195.70

FRUIT 0.0321 0.3639 579.97

FURNITURE 0.0206 0.1965 204.12

SPORT 0.0062 0.3750 1204.40

TOOLS 0.0153 0.2036 250.00

TOY 0.0283 0.1311 65.69

VEGETABLE 0.0334 0.5121 1118.50

VEHICLE 0.0174 0.2868 573.32

WEAPON 0.0300 0.3371 580.47Table 3.1: Results of ANOVAs omparing within- and between-ategory distanesfor stimuli from Rosh (1975) norms. All tests were performed using (1, 998)degrees of freedom. All tests were signi�ant at the 0.001 level.
These results demonstrate quite strongly that the representations produced by the

model above have captured some notion of categorical information: concepts from the

same category have more similar vectors than concepts from different categories.

3.2.2 Proper Names

Burgess and Conley (1998a, 1998b) examined how proper names are represented in

HAL. They found differential representation of common and proper nouns (that is, com-

mon and proper nouns inhabited different areas of the high-dimensional semantic space)

and posit that a denser semantic space for proper nouns than common nouns is a source

of difficulty in proper noun retrieval (Cohen & Faulkner, 1986). In this section, the rep-

resentation of proper names in the new model is explored. Figure 3.6 shows the results

of an MDS performed on words that refer to common nouns and proper nouns that

are typically male, typically female, or a surname. Words from each category clustered

together in the plane. Further, within the common noun and surname categories, the

items are further grouped into subcategories. The surnames show a distinct cluster of

Spanish surnames. Within the category of common nouns most categories are concen-

trated in a small region in the plane. For example, fruits and vegetables are found in the

upper right of the plot, while clothes are found near the lower right.
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Figure 3.7 illustrates the mean similarity between each pair of noun categories. Each

category shows highest similarity to itself. Each proper noun category showed higher

similarity to the other proper noun categories than to common nouns. The category of

proper nouns showed the lowest similarity to itself. However, it should be noted that

items within this category came from a number of subcategories. As shown in Table 3.1,

common nouns from different subcategories show very low similarity to one another.

Since these intra-category comparisons were included in the means shown in Figure 3.7,

it is expected that the mean similarity between common nouns would be lower than be-

tween pairs of, say, surnames, which all fall under a natural superordinate category. To

further emphasize this point, consider whether a cucumber is more similar to a basket-

ball or a person named Larry.

Table 3.2 shows the mean similarity between items within the same category and
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between different categories, as well as the results of ANOVAs comparing these means

for each noun type. Note that due to the large number of degrees of freedom, a random

sample of 50 items from the same category and 50 items from a different category was

taken for each noun category and used in the ANOVAs. For example, for common nouns,

the similarity between 50 pairs of common nouns and the similarity between 50 pairs in

which one word is a common noun and the other word is a male, female, or surname

were analyzed using ANOVA. In all comparisons, the similarity between items in the

same category was higher than the similarity between items from different categories.

This pattern is less pronounced for common nouns due to the issue described in the

previous paragraph.

The data presented in this section suggest, as observed in HAL, that there is differ-

ential representation of common and proper nouns in the representations produced by

the model of Chapter 2.

3.2.3 Parts of Speech

Burgess and Lund (1997a) examined the extent to which grammatical knowledge was

encoded in the vectors produced by the HAL co-occurrence model by applying MDS to

35 words from four grammatical classes (nouns, verbs, determiners, and prepositions).
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Mean similarity

Noun Type Between Within F-Test

Common 0.0033 0.0609 4.56 *

Proper (Male) 0.0861 0.3911 147.55 **

Proper (Female) 0.0584 0.4186 60.31 **

Proper (Surname) 0.0539 0.2461 24.73 **Table 3.2: Results of ANOVAs omparing within- and between-ategory distanesfor ommon and proper nouns. All tests were performed using (1, 98) degrees offreedom. Tests marked with * were signi�ant at the 0.05 level; tests marked with** were signi�ant at the 0.001 level.
They found that the vectors contained sufficient knowledge to identify the grammati-

cal class of words and posit that the source of the knowledge is the substitutability of

words from the same grammatical class in different contexts. In this section, MDS is

used to explore whether the representations produced by the model encode grammat-

ical information by examining how words from different part-of-speech categories are

represented. The stimuli10 included 88 adjectives, 76 nouns, 64 verbs, and 40 adverbs,

and are listed in Tables B.1 through B.4 in Appendix B.

Although the results of the MDS, shown in Figure 3.8, are not as clear as those ob-

tained using stimuli from different semantic categories, the words still have a tendency

to cluster into groups based on part-of-speech. This is particularly evident for adverbs

and nouns and less obvious for adjectives. The verb stimuli seem to be distributed rel-

atively uniformly among the other items. An interesting observation is that one factor

contributing to the moderate quality of the clustering results appears to be the seman-

tic nature of the vectors. The goal of the model is to capture information related to the

meaning of words. While part-of-speech information is certainly central to a word’s

identity, it is not particularly informative of the words meaning. Consider any gram-

matical sentence and replace all nouns with different nouns; the resulting sentence

is still grammatical, though it may be non-sensical from a semantic perspective. As

demonstrated, the vectors produced by the model capture a large quantity of semantic

information. This information appears to interfere with any grammatical information

contained within the vectors, as can be seen in Figure 3.8. The lower-left contains a

large cluster of animals while the lower-right contains a small cluster of vehicles. In the

lower-centre of the plot, there is a cluster of words that are largely sports-related. The

verbs KICK, THROW, JUMP, and CATCH are clustered near the noun BALLS. The upper-

right portion of the figure contains a cluster of cardinal numbers ranging from TWO to

10Items used in this experiment were taken from http://www.k-3teaherresoures.om/voabulary_flashards.html
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Figure 3.8: Results of MDS performed on words from four part-of-speeh ate-gories.
NINE. Interestingly, ONE was placed in the lower-left corner, far from the other cardinal

numbers. Overall, it appears that there is some competition between the semantic and

grammatical information contained within the vectors. An interesting exercise, which is

delegated to the realm of future work, is to attempt to identify those components of the

vector representations that best capture grammatical information.

3.2.4 Temporal Information and Relative Magnitudes

Louwerse et al. (2006) used MDS to explore the extent to which LSA (Landauer & Du-

mais, 1997) was able to capture information about the relative magnitudes of measurement-

related words and time periods. By performing a one-dimensional MDS, a rank ordering

of concepts could be obtained from the LSA vectors. This rank ordering matched closely

with the natural orderings of the days of the week, the months, and words representing

periods of time: the rank ordering produced by the model correlated significantly with
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the natural ordering for the days of the week, the months, and time periods.

The same holds true for the model describe in Chapter 2. When weekday names are

projected into a single dimensional space, the model produces the ordering Tuesday,

Wednesday, Thursday, Monday, Friday, Saturday, and Sunday, a close match to the cor-

rect order of the days of the week. Only Monday is misplaced and placed near Friday, a

word that is a close associate due to the common phrase “Monday to Friday”. Spearman

correlation showed that the ordering produced by the model is similar to the natural

ordering, ρ(5) = 0.7568,p = 0.024. A similar analysis performed on the names of the

months showed a marginal relationship between the model’s ordering and the natural

ordering,ρ(10) = 0.4406,p = 0.076.

One-dimensional MDS was also used to determine if the model was able to capture

relevant information about the relative magnitudes of different units of time. The vector

representations of the modifiers AGO and LATER were combined with the vector rep-

resentations of each of the words YEAR, MONTH, WEEK, DAY, HOUR, MINUTE, and

SECOND by simply adding the two vectors together to produce 14 exemplars of time

periods either in the past or future. The ranking produced by the model was strongly re-

lated to the natural ordering of these time periods (from furthest in the past to furthest

in the future), ρ(12) = 0.7538,p < 0.001.

As an additional test of the model’s ability to glean information about relative mag-
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nitude from language usage, MDS was applied to metric units of distance (NANOME-

TERS, MICROMETERS, MILLIMETERS, CENTIMETERS, METERS, and KILOMETERS).

The model was able to very accurately reproduce the natural ordering of the units of

distance, as revealed using a Spearman correlation11, ρ(4) = −0.9429,p = 0.002. When

units of distance from the United States customary system, (INCHES, FEET, YARDS, and

MILES) were added, the MDS results remain very strong, ρ(8) =−0.8545,p < 0.001.

These experiments suggest that the model is able to successfully order concepts by

sequential or relative temporal information. In addition, the model was able to capture

information about the relative magnitude of units of distance, even when the units were

taken from different measurement systems.

3.3 Simulations of Behavioural Results

In this section, simulations of a number of psycholinguistic experiments are presented.

These experiments tested subjects’ performance in many language-related tasks and

their simulation using the model of the previous chapter serves as demonstration that

the representations produced by the model capture many characteristics of human se-

mantic memory. Many of these experiments were used by Jones et al. (2006) as a means

of comparing co-occurrence models.

3.3.1 Semantic and Associative Priming

Before the simulations are presented, a little background in necessary. Lexical decision

(Meyer & Schvaneveldt, 1971) is an experimental paradigm commonly used to measure

the effects of linguistic variables on performance in language-related tasks. In a typi-

cal lexical decision experiment, a subject is seated in front of a computer while a series

of letter strings are displayed on the screen, one string at a time. The series of strings

contains both English words and random strings of letters, called pseudo-words or non-

words. In response to each letter string, the subject is asked to indicate, as quickly and

accurately as possible, whether or not the letter string forms an English word by press-

ing an appropriate key on the keyboard. Both the accuracy of the response and the time

elapsed between presentation of the letter string and the subject’s response, referred to

as the reaction time (RT), are recorded. Lexical decision has been used to observe many

properties of language processing. For example, words that occur more frequently are

recognized more quickly than rarely encountered words (Taft & Russell, 1992; Forster &

11Note that the coordinate system used by MDS is arbitrary, so the magnitude of the correlation is what

is relevant, not the sign.
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Chambers, 1973; Fredrickson & Kroll, 1976; Monsell et al., 1989; Whaley, 1978). As an-

other example, words with multiple distinct meanings are recognized more slowly than

words with only a single meaning, while words with multiple related meanings (called

the senses of the word), are recognized more quickly than those with only a single unam-

biguous meaning (Klepousniotou, 2002; Rodd, 2004; Rodd, Gaskell, & Marslen-Wilson,

2002, 2004). This second example hints at the complex nature of the way word mean-

ing is stored and accessed in the brain. Durda (2006) and Durda, Caron, and Buchanan

(2010) showed that co-occurrence representations could be used to identify the various

senses of a word and that ambiguity measures calculated from co-occurrence models

predicted subjects’ reaction time in lexical decision experiments.

A variation of the lexical decision task is the priming task. In a priming task, a let-

ter string (called the “prime”) is presented to the subject only briefly, then replaced by a

second letter string (referred to as the “target”). The subject is asked to respond in the

same manner as in a lexical decision task, but must only respond to the second string

of letters. The relationship between the target and the prime modulates the subject’s

speed of response to the target. For example, if the prime and the target have similar vi-

sual forms, then subjects are faster to identify the target than if the prime is not visually

similar to the target (S. Andrews, 1992; Sears, Siakaluk, Chow, & Buchanan, 2008); this ef-

fect is called orthographic priming. In many experiments, the presentation of the prime

is so brief that the subject is unaware of its presence, yet the relationship between the

prime-target pair still affects the subject’s performance. A specific form of priming task

is the semantic priming task. In this experiment, the relationship between the prime

and the target is semantic in nature. That is, the relationship is based on word mean-

ing. The pair may refer to words whose meanings are related through association (e.g.,

CAR-STREET), or through shared properties (e.g., CAR-TRUCK). The latter relationship

is referred to as “semantic similarity.” Many experiments have shown that stronger re-

lationships between the prime and target lead to shorter reaction times from subjects

than are produced in response to unrelated prime-target pairs. This effect is called a

priming effect, and it’s magnitude is measured by subtracting the mean response time

for the related pairs from the mean response time for the unrelated pairs.

In the remainder of this section, simulations of several semantic priming experi-

ments are presented. In each simulation, the similarity between each prime-target pair

was calculated as the cosine between their corresponding vectors. An unrelated condi-

tion was simulated by using the same target words, but shuffling the primes so that no

prime appeared with its original target. The magnitude of priming can then be calcu-

lated as the difference between the related condition and the unrelated condition.
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Chiarello, Burgess, Richards and Pollok (1990) Chiarello et al. (1990) examined the

effects of different types of relatedness on reaction time in a priming experiment. Their

results demonstrated a priming effect for semantically related pairs and an increase in

this effect for pairs that were both semantically and associatively related. No priming ef-

fect was found for pairs that were only associated and not semantically related. A simu-

lation of this experiment produced similar, though not identical, results. The mean sim-

ilarity between word pairs in each condition is shown in Table 3.3 and depicted graphi-

cally in Figure 3.10.

Pair Type Related Unrelated

Associated 0.2142 (0.1735) 0.0545 (0.1109)

Similar 0.2617 (0.0616) 0.0133 (0.0595)

Both 0.3518 (0.2147) 0.0196 (0.0778)Table 3.3: Means and standard deviations (in parenthesis) from simulation ofChiarello et al. (1990)
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Figure 3.10: Results of simulation of Chiarello, et al. 1990. The results obtainedby the model losely math the behavioural data.
The data were analyzed in a 2× 3 between-subjects ANOVA. There was a main ef-

fect of prime type [related or unrelated], F (1,282) = 212.41,p < 0.001, and pair type

[associated, similar, or both], F (2,282) = 3.85,p = 0.022, as well as an interaction be-

tween the two, F (2,282) = 8.64, p < 0.001. Priming was found in each condition of

the simulation. For the associated only pairs, the mean difference in similarity was
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0.1598, t (47) = 5.66,p < 0.001. The mean difference in the semantic only condition

was 0.2484, t (47) = 9.85,p < 0.001, and in the combined condition the difference was

0.3321, t (47) = 11.39,p < 0.001. Although Chiarello et al. (1990) found no priming in the

associative only condition, several other experiments have found a robust priming ef-

fect between associated pairs (see, for example, Ferrand and New (2003) in the next sec-

tion). Thus, it seems reasonable that the model produces a priming effect for associated

only pairs, despite the absence of this effect in the behavioural data. Post-hoc analysis

with a Bonferroni correction revealed the source of the interaction: In the related con-

dition, there was a difference between the mean similarity of associated only pairs and

the combined pairs, p < 0.001, as well as between the semantically similar pairs and the

combined pairs, p = 0.035. There was no difference between the associated only pairs

and semantic pairs, and no differences were found between any of the pair types in the

unrelated condition, all p ’s > 0.05. The general pattern of results found are similar to

those found by Chiarello et al. (1990). Although there are some inconsistencies between

the simulation and the behavioural data, these may be a result of the quality of stimuli

used in the behavioural experiment.

Ferrand and New (2003) Ferrand and New (2003) performed a similar experiment;

however, the combined condition was omitted and only associated and semantic pairs

were used. Further, Ferrand and New were much more careful to control for association

and semantic similarity. To select stimuli for the associated condition, pairs of words

that were strongly associated in the Ferrand and Alario (1998) French association norms

were rated for semantic similarity by subjects, and those with the lowest average simi-

larity were retained as stimuli. For the semantic condition, pairs with low association in

the Ferrand and Alario (1998) association norms were rated by subjects and those with

the highest average similarity were used as stimuli. Although Ferrand and New (2003)

used French stimuli, English translations were used in the simulation.

Ferrand and New observed a robust priming effect among both associated and se-

mantic pairs. Semantic pairs produced a greater priming effect than associated pairs,

but these conditions were not directly compared so there is no way to know if this dif-

ference was significant. Mean similarity and standard deviations for each condition in

the simulation are given in Table 3.4 and are depicted graphically in Figure 3.11.

Analysis in a between-subjects ANOVA revealed main effects of pair type [related

or unrelated], F (1,158) = 73.68,p < 0.001, and prime type [associated or semantic],

F (1,158) = 21.16, p < 0.001, and a significant interaction, F (1,158) = 14.06, p < 0.001.

Priming was found in both conditions. In the associated condition, the difference in

41



Pair Type Related Unrelated

Associated 0.1089 (0.1491) 0.0012 (0.0700)

Similar 0.2899 (0.2107) 0.0196 (0.0778)Table 3.4: Means and standard deviations (in parenthesis) from simulation ofFerrand and New (2003)
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Figure 3.11: Results of simulation of Ferrand and New, 2003. The results obtainedby the model losely math the behavioural data.
mean similarity between the related and unrelated pairs was 0.1077, t (41) = 4.35, p < 0.001.

The difference between related and unrelated pairs in the semantic condition was 0.2703,

t (38) = 7.30, p < 0.001. There was a difference in mean similarity between associated

and semantic pairs in the unrelated condition, p < 0.001. No difference between pair

types was found in the unrelated condition, p > 0.05. The simulation results match

those found in the experimental results and suggest that the model has captured the

subtle differences between associative relationships and semantic relationships.

Williams (1996) Williams (1996) compared the priming effects produced by four types

of prime-target relationships: (1) semantically similar pairs (e.g., CAR-TRUCK), (2) cate-

gory coordinates, which are words that are from the same category (e.g., BOWL-PLATE),

(3) collocates, which are words that commonly occur together in conjunctive phrases

(e.g., MILK-SUGAR, NIGHT-DAY), and (4) associates, which are pairs with high associ-

ation strength but that do not appear in common phrases (e.g., CAR-STREET). Stimuli

were presented both intact as black text against a white background, and in a visually
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degraded condition where the stimuli were superimposed over a rectangle of random

dots. The simulation performed here was only compared with the intact condition.

Williams found shorter response times for related pairs than for unrelated pairs for all

prime types. Pairs of collocates produced a greater priming effect than the other three

types of pairs, among which there was no difference in effect size. Williams analyzed the

collocate and associates data in a separate ANOVA and found an effect of relatedness but

no significant interaction between relatedness and type of relationship. He concludes

that, while there is no significant difference, the data are “certainly suggestive” (pp. 133).

The mean similarities and standard deviations from a simulation of the Williams

(1996) experiment are provided in Table 3.5.

Pair Type Related Unrelated

Semantic 0.2463 (0.1456) 0.0222 (0.0797)

Category Coordinate 0.2812 (0.1739) 0.0076 (0.0569)

Collocates 0.4704 (0.2353) 0.0383 (0.1131)

Associates 0.2905 (0.2320) 0.0422 (0.0641)Table 3.5: Means and standard deviations (in parenthesis) from simulation ofWilliams (1996)
Analysis of the data in a between-subjects ANOVA showed a main effect of pair type

[related or unrelated], F (1,132) = 129.41,p < 0.001, and prime type [semantic, cate-

gory coordinate, collocate, associative], F (3,132) = 4.51,p < 0.01, and an interaction,

F (3,132) = 3.33,p = 0.02. Priming was found in each condition in the simulation. For

the semantic pairs, the mean difference in similarity between related and unrelated

pairs was 0.2483, t (15) = 4.09, p < 0.001. In the category coordinate condition, the

mean difference between related and unrelated was 0.2242, t (21) = 5.85,p < 0.001. In

the collocate condition, this difference was 0.4321, t (15) = 7.13,p < 0.001, and in the

associated condition the difference was 0.2736, t (15) = 6.53,p < 0.001. Post-hoc anal-

ysis with a Bonferroni correction revealed that, within the related condition, there was

a difference between mean similarity for collocates and associates, p = 0.026, between

collocates and category coordinates, p = 0.014, and between collocates and semantic

pairs, p < 0.001. No differences were found between associated pairs, category coor-

dinates, and semantically similar pairs in the related condition, all p ’s > 0.1. No dif-

ferences were found among the different prime types in the unrelated condition, all p ’s

> 0.1. An independent comparison of similarity between collocates and associated pairs

was performed using an independent samples t -test. This analysis revealed a difference

between the two conditions, t (30) =−2.18,p = 0.037, with collocates having higher av-

erage similarity than associated pairs that were not collocates.
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The results of this simulation are consistent with the findings of Williams (1996) and

suggest that the model is capturing the different types of similarity that may appear be-

tween pairs of words in natural language. It is particularly interesting to note that the

behavioural data demonstrated a larger priming effect for pairs of words that frequently

appear together as part of a phrase. By dint of its construction, the vector-based model

used in the simulation captures relationships between words that are often used to-

gether in written (and presumably spoken) text. A successful simulation of Williams’s

experiment suggests that analyzing co-occurrence data collected from written text is a

reasonable way to capture natural semantic information.

Moss, Ostrin, Tyler, and Marslen-Wilson (1995) Moss et al. (1995) explored the types

of semantic information that are automatically retrieved when hearing a word in an

auditory priming task (in their Experiment 1). Prime target pairs were chosen to have

categorical or functional relationships. Type of semantic relationship was crossed with

association strength (high or low association strength). Within the categorically related

pairs, words were selected from both natural and artificial categories. Within the func-

tionally related stimuli, pairs were selected to have instrument relations or script rela-

tions. This produced eight types of prime-target pairs, which are shown with examples

in Table 3.6. Moss et al. observed priming for both categorical and functional relation-

ships in both the presence and absence of an associative relationship. In addition, an as-

sociative boost was found, with associated pairs producing shorter reaction times than

non-associated pairs.

Associated Non-associated

Category Coordinates

Natural THUNDER-LIGHTNING COW-GOAT

Artifact BAT-BALL KITE-BALLOON

Functional Relations

Script BEACH-SAND CASTLE-DUNGEON

Instrumental BELT-TROUSERS BROOM-FLOORTable 3.6: Examples of prime-target pairs for eah ondition in Experiment 1 ofMoss et al. (1995).
The results of a simulation of this experiment are shown in Table 3.7. Priming was

found for both category coordinates, t (109) = 11.284,p < 0.001, and functional rela-

tions, t (109) = 5.485, p < 0.001. For category coordinates, the mean similarity between

pairs in natural categories, M = 0.4619,SD = 0.2063, was higher than the mean simi-

larity between pairs from artificial categories, M = 0.2763, SD = 0.1680, t (53) = 3.651,
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p < 0.001. In the functional relation condition, there was no difference between pairs

with a script relation, M = 0.2070,SD = 0.1604, and those with an instrumental relation,

M = 0.1670,SD = 0.1466, t (54) = 0.9733,p = 0.33. Although similarity between associ-

ated pairs is slightly higher than similarity between non-associated pairs, this difference

was not significant for either category coordinates, t (53) = 1.276, p = 0.21, or functional

relations, t (54) = 0.5843,p = 0.56. In summary, the model was able to simulate priming

in all conditions, but did not reproduce the associative boost observed in the behav-

ioural data (the model did, however, demonstrate an associative boost in the simulation

of Chiarello et al. (1990), presented earlier in this section).

Category coordinates Functional Relation

Natural Artifact Script Instrumental

Assoc. Rel. 0.5169 (0.22) 0.2889 (0.17) 0.2198 (0.13) 0.1783 (0.16)

Unrel. 0.0083 (0.09) 0.0549 (0.03) 0.0489 (0.10) 0.0973 (0.12)

Non-assoc. Rel. 0.4068 (0.18) 0.2645 (0.17) 0.1942 (0.19) 0.1558 (0.13)

Unrel. 0.0280 (0.10) 0.0219 (0.06) 0.0531 (0.11) 0.0004 (0.04)Table 3.7: Means and standard deviations (in parenthesis) from simulation ofBalota and Lorh (1986).
3.3.2 Mediated Priming

In a mediated priming task, the prime and target pair are not directly related, but are in-

stead related through a third concept to which both are related. For example, the prime-

target pair STRIPES-LION are related through the concept TIGER. The effects of medi-

ated relationships on subjects’ performance are more subtle than the effects of direct

semantic and associative relationships.

Balota and Lorch (1986) Balota and Lorch (1986) compared the priming effects pro-

duced by pairs of words that are directly related to those produced by pairs of words that

are related indirectly through some other concept. Stimuli consisted of word triads in

which the first and second word were directly related, the second and third word were

directly related, but the first and third words were related only through their common re-

lationship to the second word (e.g., COAL-BLACK-WHITE). An unrelated condition was

also included, in which the the targets were paired with primes from a different triad.

Rather than make a lexical decision, subjects were asked to read the target word aloud

as quickly as possible. Balota and Lorch found an advantage for mediated pairs over

unrelated pairs, and for related pairs over mediated pairs.
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The mean and standard deviations from a simulation of this experiment are shown

in Table 3.8. A one-way between-subjects ANOVA showed a main effect of pair type,

F (2,141) = 11.79, p < 0.001. Post-hoc analysis using a Bonferroni correction revealed

higher similarity between related pairs than unrelated pairs, p < 0.001, and higher sim-

ilarity between mediated pairs than unrelated pairs, p = 0.039. Further, related pairs

were more similar than mediated pairs, p = 0.062. The results of this simulation mirror

those found in the behavioural data.

Pair Type Similarity

Related 0.1591 (0.1654)

Mediated 0.0972 (0.1315)

Unrelated 0.0307 (0.0756)Table 3.8: Means and standard deviations (in parenthesis) from simulation ofBalota and Lorh (1986).
McNamara and Altariba (1988) McNamara and Altarriba (1988) explored mediated

priming effects using stimuli derived from the Balota and Lorch (1986) stimuli set. The

mediator from each stimulus item in the Balota and Lorch data set was used as the tar-

get word, and a new word that was related only to the original prime but not to the

mediator or the original target was used as the prime. For example, for the triad LION-

TIGER-STRIPES, TIGER was taken as the new target and MANE, which is related to LION

but not to TIGER or STRIPES, was used as the prime. Subjects were presented with the

prime and target simultaneously and asked to make a lexical decision to the pair, pro-

ducing a positive response only if both the prime and target were English words. The

results obtained were consistent with those of Balota and Lorch’s naming experiment:

mediated pairs produced shorter response times than unrelated pairs.

In a simulation of this experiment, the mean similarity between mediated pairs was

0.1040 (SD = 0.1373); the mean similarity for unrelated pairs was 0.0026 (SD = 0.0615).

A paired-samples t -test showed a difference between conditions, t (32) = 4.24,p < 0.001.

These results agree with those observed by McNamara and Altarriba (1988).

McNamara (1992) McNamara (1992) examined long-distance mediated priming ef-

fects. Subjects made lexical decisions in response to sequentially presented prime-target

pairs in which the prime and target were related by a chain of two concepts. The prime-

target pairs were based on the McNamara and Altarriba (1988) stimuli, which in turn

were based on the stimuli from Balota and Lorch (1986). The original targets used by
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Balota and Lorch served as the target words in this experiment, and the primes were pro-

vided by the additional words added for the McNamara and Altarriba (1988) experiment.

For example, from the four-word sequence MANE-LION-TIGER-STRIPES, the prime-

target pair MANE-STRIPES was used. Although the relationship between the prime and

the target appears to be weak, McNamara observed a reliable 10 ms advantage for me-

diated pairs over unrelated pairs.

The results of this experiment were reproduced by the simulation: the similarity be-

tween mediated pairs (M = 0.0662,SD = 0.1047) was higher than between unrelated

pairs (M = 0.0181, SD = 0.0830), and a paired-sampled t -test confirmed that there was

a true difference between similarity in the two conditions, t (32) = 2.54,p = 0.016. Given

the weak relationships between the primes and targets, and the subtlety of the effect in

the subject data, it is surprising that the model is able to accurately reproduce the re-

sults of this experiment. A successful simulation demonstrates that the model is able to

capture finely-grained differences in word similarity.

de Groot (1983) In an experiment similar to that of Balota and Lorch (1986), de Groot

(1983) examined priming effects for prime-target pairs mediated by a single concept in

a naming experiment. The prime-target pairs were constructed from Dutch association

norms (de Groot, 1980). Priming was found for both related and mediated pairs. Related

pairs produced shorter response times than mediated pairs, which, in turn, produced

shorter response times than unrelated pairs. de Groot’s stimuli were presented in Dutch;

English translations are used in the simulation.

The means and standard deviations from the simulation are shown in Table 3.9. The

data were analyzed using a one-way ANOVA, which showed a main effect of pair-type,

F (2,81) = 24.25, p < 0.001. The mean difference between similarity for related pairs and

unrelated pairs was 0.2350, t (55) = 6.44,p < 0.001, and the difference between medi-

ated and unrelated pairs was 0.0882, t (52) = 3.48,p = 0.001. Similarity between related

pairs was also higher than similarity between mediated pairs, with a mean difference of

0.1468, t (55) = 3.75,p < 0.001. Again, the results of the simulation agree with the results

observed in the subject data.

Pair Type Similarity

Related 0.2525 (0.1761)

Mediated 0.0882 (0.1092)

Unrelated 0.0175 (0.0734)Table 3.9: Means and standard deviations (in parenthesis) from simulation of deGroot (1983).
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McKoon and Ratcliff (1992) In contrast to the spreading activation theory advanced

by Collins and Loftus (1975), McKoon and Ratcliff (1992) argue that semantic priming ef-

fects occur not because of the spread of activation through mediating links between the

prime and the target, but because the prime and the target form a compound cue that

arises from the simultaneous presence of both the prime and target in short-term mem-

ory. The magnitude of the priming effect is mediated by the familiarity of the particular

compound formed by the prime and target. In their Experiment 3, McKoon and Rat-

cliff used co-occurrence frequency within a six-word window in the six-million word As-

sociated Press news-wire corpus to estimate the familiarity of prime-target compound

cues. Each target word was matched with four primes. Two primes were selected based

on the familiarity estimates: one prime was selected to have a high probability of co-

occurrence with the target (called the high-t condition), and the other was selected to

have a low, but higher than chance, probability of occurring with the target (called the

low-t condition). In addition, a third prime known to have a strong association with

the target was selected from published free-association norms. Finally, each target word

was paired with an unrelated prime to produce a total of four prime-target pairs for each

target word. The behavioural data revealed an effect of prime type, with free-association

primes producing the shortest response times, followed by high-t primes, low-t primes,

and unrelated primes producing the longest response times. Both free-association and

high-t primes produced shorter response times than the unrelated condition. No differ-

ence was found between response times in the low-t and unrelated conditions.

Table 3.10 shows the means and standard deviations of the prime-target similar-

ities in each condition produced by a simulation of the McKoon and Ratcliff (1992)

experiment. Analysis in a one-way ANOVA showed an effect of prime type on mean

similarity, F (3,132) = 17.283, p < 0.001. Post-hoc analysis using a Bonferroni correc-

tion showed a difference between similarity for free-association primes and for unre-

lated primes, p < 0.001, as well as both high-t primes, p < 0.001 and low-t primes,

p < 0.001. There was a reliable difference between similarity for high-t primes and un-

related primes, p = 0.079, but no difference was found between the high-t and low-t

conditions, p = 1.00. No difference was found between low-t and unrelated primes,

p = 0.254. Once again, the results of the simulation replicate those found in the behav-

ioural data.

3.3.3 Category Norms

The last test of the model’s ability to obtain semantic knowledge from text uses the cat-

egory norms of Rosch (1975), which were previously used in the MDS experiments in
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Prime Type Similarity

Associated 0.3056 (0.2078)

High-t 0.1405 (0.1657)

Low-t 0.1273 (0.1777)

Unrelated 0.0414 (0.0928)Table 3.10: Means and standard deviations (in parenthesis) from simulation ofMKoon and Ratli� (1992), Experiment 3.
Section 3.2. Here, the norms are used to measure how well the model is able to identify

the typicality of a category exemplar. As mentioned before, the Rosch norms include

both prototypical exemplars of a category, such as CHAIR as an exemplar of the category

FURNITURE, and those that are more peripheral to the category, such as TELEPHONE

as FURNITURE. Rosch provides rankings of several exemplars for each of ten categories,

as ranked by subjects.

To determine how well the model captured the graded nature of typicality, the sim-

ilarity between each exemplar in Rosch’s norms and the name of the category was cal-

culated. These were then ranked from highest similarity to lowest. Table 3.11 shows the

correlations between the rankings in Rosch’s norms and those produced by the model.

Category Correlation df p

BIRD -0.2900 44 0.025 **

CLOTHING -0.4502 48 < 0.001 **

FRUIT -0.6719 38 < 0.001 **

FURNITURE 0.0040 45 0.489

SPORT -0.5147 48 < 0.001 **

TOOLS -0.1832 52 0.090 *

TOY -0.1508 43 0.161

VEGETABLE -0.3556 40 0.010 **

VEHICLE -0.4934 44 < 0.001 **

WEAPON -0.6895 55 < 0.001 **Table 3.11: Spearman orrelations between vetor similarity and subjet rankingof exemplar typiality. Marginal orrelations are marked with * and signi�antorrelations are marked with **.
Correlations between subject rankings and similarity between the exemplars and

their category were found in all categories except for Toys and Furniture. This echoes the

results observed in Figure 3.4 on page 30. In the MDS results based on the Rosch norms,

concepts from the category Toys were dispersed through the plane and did not form

a cohesive group as the concepts from the other categories did. As mentioned there,

members of the category Toys can be exemplars of nearly any category (for example, a

49



KITE is also a Bird and a WAGON is also a Vehicle). The absence of a relationship be-

tween the model’s ranking and the Rosch norms for the category Furniture may be due

to the binary nature of inclusion in this category. The categories of Weapons and Fruit

produced the strongest relationship with the subject norms. This is consistent with the

results shown in Figure 3.4, where items from both of these categories grouped together

closely in the plot.

3.4 Discussion

The experiments above demonstrate that the representations produced by the model

described in Chapter 2 can simulate many aspects of human semantic memory. Through

MDS, categorical information was revealed to exist in the vectors. This technique also

showed that the vectors contain part-of-speech information, although there is interfer-

ence from the semantic information contained in the vectors. Categorical information

was also revealed through comparison with subjects’ typicality ratings of category ex-

emplars: similarity between a category and its exemplars moderately correlated with

typicality ratings produced by subjects. The results of several priming experiments were

reliably reproduced by the model.

Note that the goal of the demonstrations provided in this chapter is not to show that

the model described in Chapter 2 is superior to existing models, but rather to show that

the vectors produced by the model capture properties of human semantic memory and

are not strongly influenced by the frequency of the words in the input corpus. Jones

et al. (2006) provides a comparison of HAL, LSA, and BEAGLE on a battery of tests that

overlaps with the experiments simulated above and found that BEAGLE was best able to

reproduce the pattern of performance shown by subjects in language-related tasks. The

performance of the model presented in this dissertation is similar to that of BEAGLE.
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4 Identifying Features in Co-occurrence Representations

This chapter describes a neural network model that is trained to produce a list of the

physical and behavioural properties that describe an object in response to an abstract

semantic vector representing the concept. The network contained three layers of pro-

cessing units with one layer of ℓ= 300 input units, one layer of n = 824 output units, and

one layer of m hidden units. The number of hidden units was determined experimen-

tally using a process that is described later in this chapter. Each output unit denoted a

single “feature primitive” that a concept may or may not posses. These feature primitives

described physical and behavioural properties, such as 〈has 4 legs〉 and 〈made of metal〉,
of both living and non-living things and were taken from the feature-production norms

of McRae et al. (2005). The inputs to the network were a set of semantic vectors derived

from the co-occurrence vectors described in Chapter 2. The network was trained to ac-

tivate the correct combination of features on the output units in response to a semantic

representation presented on the input units. This was achieved using the backpropaga-

tion learning algorithm (Rumelhart, Hinton, & Williams, 1986). The remainder of this

chapter provides further detail about the structure of the network, the input and output

patterns that were used for training the network, results demonstrating that the network

was able to produce the desired mapping from input to output vectors, and the results

of experiments demonstrating the ability of the network to generalize this mapping to

novel inputs.

4.1 Network Structure

The network contained three layers of processing units: one layer of ℓ= 300 input units,

one layer of m hidden units12, and one layer of n = 824 output units. The layers of pro-

cessing units were fully interconnected; each input unit sent its output to every hidden

unit, and each hidden unit sent its output to every output unit. An additional “bias”

input was included in the network. This unit’s activation was always set to +1 and was

passed to every processing unit in the hidden and output layers. Figure 4.1 below shows

the structure of the network.

12The number of hidden units, as well as the learning rate and momentum parameters of the network,

were determined experimentally as described in Section 4.6.
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Figure 4.1: The neural network used in the simulations in Chapter 4. The biasunits are shown as shaded squares. The network ontained 300 input units, 4000hidden units (as desribed in Setion 4.6), and 824 output units, eah orrespondingto a feature or property that a onept may possess.
4.2 Training and Testing Data

The inputs provided to the network were 300-component bipolar vectors (i.e., each com-

ponent was either−1 or+1). These vectors were derived from the co-occurrence vectors

described in Chapter 2 by setting each component of the bipolar vector to +1 (active)

if the corresponding component of the co-occurrence vector is positive and setting all

other components of the bipolar vector to −1 (inactive). The average number of units

active for a concept was 151.11 (SD = 8.29), or 50.37%. The minimum number of units

active for a concept was 127 for the concept CHURCH and the maximum was 180 for

the concept ANT.

The output patterns to be learned by the network were binary vectors constructed

from the feature-production norms of McRae et al. (2005). McRae et al. provided sub-

jects with lists of words and instructed the subjects to produce lists of properties de-

scribing each concept. These responses were then used to determine the probability

that a subject would produce each property in response to a particular concept. From

the complete list of 2,526 features, the resulting norms contained 824 features that were

produced by subjects for two or more concepts13. For each of these features, an output

13Note that the each feature included in the network was produced in response to two or more of the
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unit representing the feature was included in the network. While the McRae et al. norms

provide probabilities that a feature is produced in response to a concept, the output pat-

terns were simple binary vectors. To create the output patterns, each output unit that

corresponded to a feature produced by one or more subjects was set to +1 (active). All

other output units were set to 0 (inactive). On average, only 10.71 (SD = 3.42), or 1.30%,

of the features were active. In comparison to the input vectors, in which 50% of the units

were active on average, the output vectors are very sparse representations. The highest

number of features was 23 for the concept LION, and there were 20 concepts with only 5

features. Although there is a correlation between the number of active input and output

units (r (463) =−0.10,p = 0.013), the number of active input units accounts for less than

1.1% (r 2 = 0.0107) of the variance in the number of active output units. Figure 4.2 shows

that there is no clear linear relationship between the two variables, indicating that the

significance of the correlation is due to the large number of degrees of freedom.
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Figure 4.2: A satter plot showing the relationship between number of ativeinput units and number of ative output units. Marginal distributions are shownalong the axes.
From the McRae et al. norms, only those concepts that possessed five or more of

the 824 features included in the network and that also appeared in the dictionary of the

co-occurrence model of Chapter 2 were used in the experiments of this chapter. In to-

tal, 465 such words were found. To allow sufficient training data while allowing a large

concepts in the full set of norms; when the data set is restricted to only those concepts that appear in both

the feature production norms and the vocabulary of the model developed in Chapter 2, some features are

associated with only a single concept.
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number of the available words to be used to test the network’s performance, these words

were split into ten training/testing pairs. Each training data set contained 445 words and

the remaining 20 words were set aside for testing the network’s ability to generalize. For

the network to produce the best results on the testing items, the distribution of features

between the testing and training data must be as similar as possible. Because many fea-

tures occurred with few concepts, the 20 items used for testing in each data set needed

to be chosen carefully. A genetic algorithm (Holland, 1992) was used to select a set of

20 items so that the distribution of features in this set most closely matched that found

on the 445 training items14. The quality of the fit was measured by Kulback-Leibler di-

vergence (Kullback & Leibler, 1951; a measure of the distance between two probability

distributions). This process was then repeated to select a second set of 20 items, with

the further restriction that no item that appeared in the first set could also appear in

the second. This process was repeated until ten training/testing pairs were created with

each test set excluding the words from all prior test sets. This resulted in a total test set

containing 200 items spread across 10 testing sets.

In addition to the training and testing sets, an additional set of testing items was cre-

ated. These items are referred to as randomized test items. For each training-testing set

pair, the randomized items were the same as those used for testing. However, the com-

ponents of the input patterns were shuffled randomly (a different random ordering was

used to create each vector). The input vectors in these randomized patterns follow the

same distribution of values as the original input vectors, but any relationship between

specific components of the vectors has been removed, removing any regularities exist-

ing in the vectors. Thus, a failure of the network to be able to reliably produce features

from these randomized patterns suggests that the network is exploiting regularities in

the structure of the input vectors to identify features.

14A genetic algorithm is a heuristic search method that seeks a near-optimal solution to an optimiza-

tion problem using methods inspired by the processes of natural selection and evolution. Initially, a large

population of potential solutions to the problem are randomly generated and the quality of each of these

solutions is assessed by a fitness function (for example, if the problem is to minimize some positive-valued

multivariate function, the fitness function could simply be the value of the function evaluated at the po-

tential solution). New solutions are generated by randomly selecting two parent solutions and combining

their parameters (for example, by taking linear combinations of the parent solutions’ parameters). The

parameters of the newly generated solution may be changed by a small random amount. This process is

repeated until the algorithm terminates after some specified number of solutions have been generated,

or until no further increase in the quality of the solutions is observed.
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4.3 Network Dynamics

Upon presentation of an input vector to the network, activation flowed from the input

units (including the bias unit) through the weighted connections to the hidden units,

where these weighted inputs were summed to produce the net input to each of the hid-

den units. The activation of each hidden unit was then calculated using the bipolar

sigmoid function, given in (4.2). Before stating this more precisely, some notation is in-

troduced. Let x∈Rℓ be the input vector presented to the network, ηh ∈Rm be the vector

of net inputs to the hidden units, and y ∈ Rm be the vector of activations of the hidden

units. Let W1 =
�

w 1
j i

�

be the m × ℓmatrix of weights connecting the input units to the

hidden units, where w 1
j i is the weight of the connection from the i t h input unit to the j t h

hidden unit, and let βh ∈Rm be the vector of weights from the bias unit to each hidden

unit, where β h
j is the weight of the connection from the bias unit to the j t h hidden unit.

Then the net input to the hidden units, denoted ηh ∈Rm , is given by

ηh =W1x+βh . (4.1)

The activation of each output unit is calculated by applying the bipolar sigmoid func-

tion,

g :R→ [−1,1], given by

g (η) =
2

1+ exp (−η)
−1, (4.2)

to its net input, η. That is, yi = g (ηh
i ) for i = 1,2, . . . ,m . For convenience, the notation

y= g
�

ηh
�

=
�

g
�

ηh
1

�

, g
�

ηh
2

�

, . . . , g
�

ηh
m

��⊤

is used.

The activation of the output units was calculated similarly. Let ηo ∈Rn be the net in-

put to the output units and z ∈Rn be the activation of the output units. Let W2 =
�

w 2
k j

�

be the n ×m matrix of weights connecting the hidden units to the output units, where

w 2
k j is the weight of the connection from the j t h hidden unit to the k t h output unit, and

let βo ∈ Rn be the vector of weights from the bias unit to the hidden units, where βo
k is

the weight on the connection from the bias unit to the k t h output unit. Analogous to

(4.1), the net input to the output units is given by

ηo =W2y+βo . (4.3)

The activation of each output unit is calculated using the binary sigmoid function,
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f :R→ [0,1], defined by

f (η) =
1

1+ exp(−η)
, (4.4)

where η is the net input to the unit. Again, the notation

z = f (ηo) =
�

f
�

ηo
1

�

, f
�

ηo
2

�

, . . . , f
�

ηo
m

��⊤
(4.5)

is used for convenience. The vector z is the network’s output in response to the input

vector x.

Note that the output of the network can be written as a single equation:

z = f
�

W2

�

g
�

W1x+βh
��

+βo
�

. (4.6)

The notation z = N(x) is used to denote the output, z, produced by the network in

response to the input vector x.

Error on the output units was calculated using the cross-entropy error function. This

error function is suitable for use with binary representations and produces larger error

signals during training, potentially reducing the number of iterations required for the

network to learn the training items. Let t be the binary output pattern to be learned

in response to some bipolar input vector x and let z be the binary output actually pro-

duced by the network in response to x. That is, z =N(x). Then the cross-entropy error

for the pattern is given by

E (t,z) =−
n
∑

i=1

t i logz i +(1− t i ) log(1− z i ). (4.7)

Let T = {(s1,t1), (s2,t2), . . . , (sτ,tτ)}, where τ is the number of observations, be the set of

all pairs of input and output observations used for training the network. The total error

over the set of all input patterns is given by

E (T ) =
∑

(s,t)∈T

E (t,N(s)) .

This is the quantity to be minimized during the network training process.
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4.4 The Backpropagation Algorithm

The backpropagation algorithm (Rumelhart et al., 1986) is an iterative algorithm that

minimizes E (T ) by using a gradient descent15 procedure to adjust the parameters W1,

W2, βh , and βo . This is achieved by taking a small step in the direction of the negative of

the gradient of the error with respect to the parameters W1,W2,βh , and βo . The size of

the step is controlled by the learning rate parameter of the backpropagation algorithm,

denoted α. Consider a single training observation, (s,t) ∈ T , and let z =N(s) be the

output of the network in response to input vector s. The value of E (t,z) depends on

some element w 2
k j of W2 only through the value of y j . We have

∂E

∂w 2
k j

=

n
∑

ξ=1

∂E

∂ ηo
ξ

∂ ηo
ξ

∂w 2
k j

=
∂E

∂ ηo
k

∂ ηo
k

∂w 2
k j

(4.8)

since ∂ ηo
ξ/∂ w 2

k j = 0 for any ξ 6= k . Let

δo
k
=
∂E

∂ ηo
k

. (4.9)

Then (4.8) can be written as
∂E

∂ w 2
k j

=δo
k

∂ ηo
k

∂ w 2
k j

. (4.10)

Now, δo
k can be written as

δo
k
=
∂E

∂ z k

∂ z k

∂ ηo
k

. (4.11)

15Gradient descent is an algorithm for minimizing the value of a function f : Rn → R. At the point

x i ∈ Ri , the value of f (x0) increases most rapidly in the direction of the gradient of f , denoted ∇ f (xi ).

Gradient descent searches for a point x i+1 by moving a small distance from x i in the direction of the

negative gradient. That is, xi+1 = xi −α∇ f (xi ), where α ∈ (0, 1] is called the step size. For small enough

α, f (xi+1) ≤ f (xi ). Gradient descent produces a sequence {xi } such that f (xi ) is non-increasing and

converges to a local minimum, f (x⋆).
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The first term in (4.11) is the partial derivative of the cross-entropy error function with

respect to the k t h output unit:

∂E

∂ z k

=
∂ E (t,z)

∂ z k

(4.12)

=
∂

∂ z k



−
824
∑

i=1

t i log z i +(1− t i ) log(1− z i )





=−
�

tk

z k

−
1− tk

1− z k

�

=−
�

tk − z k

z k (1− z k )

�

. (4.13)

The second term of (4.11) can be written as

∂ z k

∂ ηo
k

=
∂

∂ ηo
k

f (ηo
k
) = f ′(ηo

k
). (4.14)

Substituting the binary sigmoid function given in (4.4) into the previous equation, we

have

∂ z k

∂ ηo
k

=
exp(−ηo

k )
�

1+ exp(−ηo
k )
�2

= z k

�

1+ exp(−ηo
k )− exp(−ηo

k )

1+ exp(−ηo
k )

�

= z k (1− z k ) . (4.15)

Thus,

δo
k
=−

�

tk − z k

z k (1− z k )

�

(z k (1− z k )) =− (tk − z k ) . (4.16)

These values can be arranged in the vector

δo =
�

δo
1
,δo

2
, . . . ,δo

k

�⊤
=− (t−z) .

This notation will become useful for writing the parameter update equations in a com-

pact notation.

Finally, the second term of (4.11) is

∂ ηo
k

∂ wk j

=
∂

∂ wk j

m
∑

ξ=1

w 2
kξ

yξ = y j (4.17)
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Substituting (4.16) and (4.17) into (4.11), we have

∂E

∂ w 2
k j

=δo
k j

y j =−(tk − z k )y j . (4.18)

The partial derivatives of the error function with respect to the elements of W2 can be

arranged in a matrix. Let α ∈ R with 0 < α ≤ 1 be the learning rate parameter of the

backpropagation algorithm, analogous to the step size parameter in the gradient de-

scent method. The n ×m matrix of weight updates, denoted∆W2, is given by

∆W2 =

 

−α
∂E

∂ w 2
k j

!

=−αδoz⊤. (4.19)

Similarly, the weight updates for the connections from the bias unit to the output units

can be arranged in a vector, denoted∆βh , given by

∆βo =−αδo, (4.20)

since the activation of the bias unit is always +1.

Update equations for the weights connecting the input and hidden units and the

weights from the bias unit to the hidden units were calculated similarly. Note that when

calculating δh
j = ∂E/∂ ηh

j , the multivariate chain rule must be used:

δh
j
=
∂E

∂ ηh
j

=

n
∑

ξ=1

∂E

∂ ηo
ξ

∂ ηo
ξ

∂ ηh
j

=

n
∑

ξ=1

δo
ξ

∂ ηo
ξ

∂ ηh
j

. (4.21)

The second term in the product can be written as

∂ ηo
ξ

∂ ηh
j

=
∂

∂ ηh
j

k
∑

ϕ=1

w 2
ξϕ

yϕ

=
∂

∂ ηh
j

k
∑

ϕ=1

w 2
ξϕ

g (ηh
ϕ
)

=w 2
ξj

g ′(ηh
j
).

Thus,

δh
j
=

n
∑

ξ=1

δo
ξ

∂ ηo
ξ

∂ ηh
j

= g ′(ηh
j
)

n
∑

ξ=1

w 2
ξj
δo
ξ

. (4.22)
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This can be written in matrix form as

δh = diag
�

g ′(ηh)
�

W
⊤
2
δo , (4.23)

where g ′(ηh) =
�

g ′(ηh
1 ), g ′(ηh

2 ), . . . , g ′(ηh
m
)
�⊤

and diag (g ′
�

ηh)
�

is the diagonal matrix with

the elements of g ′
�

ηh
�

along the diagonal. For the bipolar sigmoid function, we have

g ′(η) =
2e−η

(1+ e−η)2

=
1

2

�

2

1+ e−η

��

2e−η

1+ e−η

�

=
1

2
g (η)

�

1− g (η)
�

.

The m × ℓ matrix of weight updates for the weights connecting the input and hidden

units is

∆W1 =

 

−α
∂E

∂w 1
j i

!

=−αδhy⊤, (4.24)

and the vector of weight updates for the weights from the bias unit to the hidden units

is

∆βh =−αδh . (4.25)

The weights of the network are updated using the equations

W1 =W1+∆W1 (4.26)

βh =βh +∆βh (4.27)

W2 =W2+∆W2 (4.28)

βo =βo +∆βo . (4.29)

Note that the above equations can only be applied after the full set of weight updates

has been calculated. Once all elements of W1, βh , W2, and βo have been calculated, all

weights in the network can be updated in any order or simultaneously using the above

equations.

An alternative weight update procedure that produces shorter learning times is called

backpropagation with momentum. Let γ ∈Rwith 0<γ≤ 1 be the momentum parame-

ter. The matrix of weight updates in the n t h epoch,∆W
[n ]

1
, is calculated as

∆W
[n ]

1
=αδhy⊤+γ∆W

[n−1]

1
. (4.30)

60



With similar adjustments made to the calculations of ∆W2, ∆βh , and ∆βh , equations

(4.26) through (4.29) can be used to calculate the new weights at each epoch.

4.5 Measuring Network Performance

The performance of the network was measured by the average precision and recall over

all training and testing items. Let T+ be the number of true positives, that is, the number

features that were correctly activated by the model. Let T − be the number of true neg-

atives, that is, the number of features that were correctly set to inactive by the network.

Let F+ be the number of false positives, the number of features activated by the network

which were incorrect, and let F− be the number of false negatives, features which were

set to inactive by the network but should have been activated.

Precision measures the number of correctly activated features from the set of all fea-

tures activated by the network. This is given by

P =
T+

T++ F+
.

Recall measures the proportion of features correctly activated by the network from the

set of all features associated with a concept. Recall is given by

R =
T +

T ++ F−
.

These two measures can be combined into a single measure, termed the F -measure.

This is given by

Fβ =
(1+β )2 ·P ·R
β 2 ·P + ·R

,

where β is a non-negative real number. Values of β in the interval [0,1) weight recall

more heavily than precision. Values of β greater than 1 weight precision more heavily

than recall. When β = 1, precision and recall are equally weighted. Regardless of the

value of β , the value of Fβ lies in the range (0,1], with higher values indicating higher

precision and recall. The maximum value of Fβ is obtained when both precision and

recall are perfect (i.e., both P = 1 and R = 1); Fβ approaches 0 as either P or R approach

0. In the following analyses, the F1-measure is used, and we denote F = F1.

The accuracy of the network is defined as the portion of features correctly set by the

network, whether active or not. This is given by

A =
T++T−

T++T−+ F++ F−
.
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Accuracy is not an appropriate measure of network performance due to the sparse na-

ture of the output representations. Simply setting all output units to inactive produces

an average accuracy of 98.70% because on average only 1.3% of the features are active

for each concept.

4.6 Determining Network Parameters

The learning rate (α) and momentum (γ) parameters and the number of hidden units

were selected to maximize the network’s performance on novel concepts. To determine

these parameters, several combinations of values of these parameters were tested. The

values tested are shown in Table 4.1. Note that all combinations of parameters were

tested, resulting in a total of 252 different parameter sets. The ten best parameter combi-

nations were then used to train five additional networks each (resulting in an additional

50 runs). The ten parameter combinations that produced the best performance on the

testing data are shown in Table 4.2 below. Note that all parameter sets in this table used

a value of 0.001 for the learning rate parameter.

Parameter Values

Hidden Units 150, 250, 500, 750, 1000, 1500, 2000, 3000,

4000, 5000, 6000, 7500, 8500, 10000

Learning Rate 0.001, 0.0001, 0.00001

Momentum 0.0, 0.1, 0.25, 0.5, 0.75, 0.9Table 4.1: Values tested for learning rate, momentum, and number of hiddenunits. Eah ombination of parameters was tested, resulting in a total of 252di�erent parameter sets.
Table 4.3 shows the mean value of F on the training data and the mean number of

epochs until total error on the training data falls below one for each parameter combi-

nation shown in Table 4.2. Standard deviations are given in parentheses. From this, the

parameter set that best maximized performance (e.g., the value of F ) on the testing data

set was chosen; these parameters are shown in Table 4.4.

4.7 Experiments

Each of the ten training/testing data sets was used to train ten networks, resulting in a

total of 100 trained networks. Each of these networks was trained for 500 epochs. The

average error on the training sets at the end of training was 0.0001 (SD = 0.00); the initial

error was 1352.74 (SD = 3.07). Table 4.5 shows the average precision, recall, F -measure,
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Parameters Testing Training

Mom. Hidden Epochs Prec. Recall F Prec. Recall F

0.50 5000 110 0.4530 0.4674 0.4601 1.0000 1.0000 1.0000

0.90 5000 160 0.4675 0.4226 0.4439 0.9995 1.0000 0.9998

0.90 6000 220 0.3955 0.5014 0.4422 1.0000 1.0000 1.0000

0.50 7500 140 0.4470 0.4303 0.4385 1.0000 1.0000 1.0000

0.50 8500 130 0.4161 0.4189 0.4175 1.0000 1.0000 1.0000

0.50 10000 150 0.3673 0.4806 0.4164 1.0000 1.0000 1.0000

0.90 4000 150 0.3958 0.4357 0.4148 0.9998 1.0000 0.9999

0.20 6000 130 0.3895 0.4355 0.4112 1.0000 1.0000 1.0000

0.50 6000 120 0.3743 0.4560 0.4111 1.0000 1.0000 1.0000

0.90 8500 160 0.3321 0.5239 0.4065 0.9997 1.0000 0.9998Table 4.2: The ten parameters ombinations produing best performane whengeneralizing to novel onepts. In eah parameter ombination, a learning rate of0.001 was used.
and cross-entropy error for training, testing, and randomized input vectors at the start

of training, and Table 4.6 shows these values collected at the end of training. These

data are summarized in Figure 4.3. Average precision, recall, and F throughout training

are shown for training, testing, and randomized test items in Figures 4.4, 4.5, and 4.6,

respectively. Figure 4.7 shows the average error on the training, testing, and randomized

test sets throughout the 500 epochs of training16. The randomized test items produced a

qualitatively different pattern for all measures of performance throughout training. This

is discussed further below. Note that although each network was trained for 500 epochs,

the following figures only show data for the first 200 epochs of training. By this time, the

backpropagation algorithm had reduced total error across the training items to nearly

zero, and the network showed only slight changes in performance after 200 epochs.

Precision, recall, F , and cross-entropy error were each analyzed using two-way anal-

ysis of variance with three levels of item type (training, testing, randomized) and two

levels of training epoch (start, end). Data in the start training epoch condition were col-

lected after the weights were randomly initialized but before any changes were made to

the weights; data in the end training epoch condition were collected after 500 epochs

of training were performed. Analyses revealed a main effect of item type on precision,

F (2,54) = 1659,p < 0.001, recall, F (2,54) = 508.7, p < 0.001, F -measure, F (2,54) = 4747,

p < 0.001, and error, F (2,54) = 387.5,p < 0.001. A main effect of training epoch was

found for precision, F (1,54) = 4917,p < 0.001, recall, F (1,54) = 877.8, p < 0.001, F -

measure, F (1,54) = 12,783,p < 0.001, and error F (1,54) = 101.7,p < 0.001. An inter-

16Note that precision, recall, F , and error were only calculated every five epochs during training.
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Mom. Hidden F-measure Epochs

0.9 4000 0.4094 (0.02) 162 (31.14)

0.5 10000 0.4021 (0.03) 162 (21.68)

0.9 5000 0.3990 (0.01) 152 (16.43)

0.9 6000 0.3963 (0.01) 176 (11.40)

0.5 6000 0.3784 (0.03) 122 (34.21)

0.5 7500 0.3778 (0.03) 130 (15.81)

0.9 8500 0.3747 (0.05) 182 (13.04)

0.5 5000 0.3671 (0.02) 112 (23.87)

0.5 8500 0.367o (0.04) 144 (21.91)

0.2 6000 0.3656 (0.03) 96 (15.17)Table 4.3: Mean F and mean epohs to train for eah ombination of parametersshown in Table 4.2. Averages were taken over value obtained from training �venetworks with eah ombination of parameters.
Parameter Value

Hidden Units 4000

Learning Rate 0.001

Momentum 0.9Table 4.4: The optimal (in that sense that performane on novel stimuli is maxi-mized) parameters set.
Type Precision Recall F Error

Training 0.0071 (0.0037) 0.3544 (0.1543) 0.0140 (0.0072) 1352.74 (61.94)

Testing 0.0081 (0.0039) 0.3543 (0.1434) 0.0158 (0.0075) 1352.29 (61.10)

Random 0.0080 (0.0037) 0.3519 (0.1427) 0.0156 (0.0072) 1353.46 (60.45)Table 4.5: Preision, reall, F , and error at the onset of training.
Type Precision Recall F Error

Training 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 0.00 (0.00)

Testing 0.4330 (0.2367) 0.4020 (0.1970) 0.3760 (0.1712) 830.62 (585.70)

Random 0.0350 (0.0764) 0.4287 (0.3715) 0.0440 (0.0548) 2228.14 (1257.13)Table 4.6: Preision, reall, F , and error at the ompletion of training.
action between item type and training epoch was found for precision, F (2,54) = 1665,

p < 0.001, recall, F (2,54) = 504.5,p < 0.001, F -measure, F (2,54) = 4783,p < 0.001, and

error, F (2,54) = 386.9,p < 0.001.

Post-hoc analyses using a Bonferroni correction were used to investigate the nature

of the interaction between item type and training epoch. There was no difference in pre-

cision by item type at the start of training (all p ’s > 0.95). Upon the completion of train-
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Figure 4.3: Preision, reall, F , and ross-entropy error by item type at the startand end of training. Training items show a redution in error and an inrease inpreision, reall, and F during training. Testing items show a redution in errorand an inrease in preision and F . Randomized items show an inrease in error,and no or little improvement in preision, reall, and F .
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Figure 4.4: Preision, reall, and F for training items. Preision and F inreasethroughout training. Reall dereases during the earliest epohs of training, theninreases.
ing, precision was higher for training items than test items, t (9) = 28.34, p < 0.001, and

randomized test items, t (9) = 196.4,p < 0.001, and precision for test items was higher
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Figure 4.5: Preision, reall, and F for testing items. Although the performaneon testing items is lower than that for training items, the pattern of performanethroughout training is similar.
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Figure 4.6: Preision, reall, and F for randomized test items. The pattern ofperformane throughout training is di�erent from that observed for training andtesting items.
than for randomized test items, t (9) = 19.32, p < 0.001. Precision for training items was

higher at the completion of training than at the beginning, t (9) = 44318,p < 0.001, and

precision for testing items was higher at the completion of training than at the onset,

t (9) = 21.24, p < 0.001. No difference between precision at the start and end of training

was found for the randomized test items, p = 0.41.

In the recall data, no difference was found between training, testing, and random-

ized test items at the start of training (all p ’s > 0.95). At the end of training, recall was

higher for training items than testing items, t (9) = 66.99,p < 0.001, and randomized

test items, t (9) = 23.88, p < 0.001. No difference was found between testing and ran-
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Figure 4.7: Cross-entropy error by item type. Training and testing items produesimilar patterns of performane throughout training, with higher error on testingitems than the training items at the end of training. Performane on randomizedtest items dereased throughout training.
domized testing patterns at the end of training, p = 1.00. Note, however, that the lack

of difference between recall on testing and randomized items in the presence of higher

precision for testing than randomized items suggests that the recall observed for ran-

domized items is simply a result of activating a large number of output units. Indeed,

the number of output units activated differed between randomized test items and test

items, t (9) = 14.44,p < 0.001, with more output units activated in response to random-

ized test items (M = 316.76,SD = 67.67) than test items (M = 15.30,SD = 4.39). Further,

testing and randomized test items showed qualitatively different patterns of recall dur-

ing training, as shown in Figures 4.5 and 4.6. At the onset of training, recall for both

item types is similar. Recall for randomized items varied little during training. Recall for

testing items, however, drops to zero in the earliest epochs of training, then increases

quickly before stabilizing. Recall was higher at the completion of training than at the

onset of training items, t (9) = 583.48,p < 0.001, and testing items, t (9) = 5.02,p = 0.037.

For randomized testing items, no difference was found between recall at the start of

training and at the end of training, t (9) = 3.31,p = 0.137.

Post-hoc analysis of F -measure showed no difference between training, testing, and

randomized test items at the start of training (all p ’s > 0.95). At the end of training, F -

measure was higher for training items than testing items, t (9) = 55.13,p < 0.001, and

randomized test items, t (9) = 214.78,p < 0.001, and F -measure for testing items was

higher than for randomized test items, t (9) = 27.29,p < 0.001. Higher F -measures were

observed at the end of training than the start for training, t (9) = 22553, p < 0.001, testing,
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t (9) = 31.91,p < 0.001, and randomized test items, t (9) = 6.78,p = 0.003.

There was no difference between mean error for the training, testing, and random-

ized test items at the beginning of training (all p ’s > 0.95). At the completion of train-

ing, error was lower for training items than testing items, t (9) = 15.94,p < 0.001, and

randomized test items, t (9) = 26.44, p < 0.001. Error for testing items was lower than

for randomized items, t (9) = 13.51, p < 0.001. Error decreased from the start and end

of training for training items, t (9) = 1303.10, p < 0.001, and testing items, t (9) = 10.06,

p < 0.001. For randomized test items, error increased throughout training, t (9) = 10.37,

p < 0.001. Note that, as shown in Figure 4.7, the randomized testing items showed a

qualitatively different pattern of error from the training and testing items throughout

training. Error on training and testing items decreased during the first few epochs of

training then increased to level higher than the initial error produced on these items,

followed by a rapid decrease in error. Error on the randomized test items, however, in-

creased throughout training, particularly during the first few epochs of training.

Examination of the order that features were learned by the network provides insight

into what information the network exploited to learn the complex interaction between

the semantic vectors and the feature-based vectors. The optimal parameters used to

train the networks were selected to produce the strongest performance on the testing

items. As shown above, the training items were learned perfectly after only 500 epochs

of training, with near perfect accuracy after only 200 epochs. This leaves a narrow win-

dow in which to examine the order in which features were learned. To emphasize the

time-course of the network’s learning 100 additional networks were trained using a lower

learning rate of 0.00001; all other parameters were identical to those shown in Table 4.4.

In this analysis, a feature was assumed to be familiar to the network when it’s average

F -measure across training sets was above 0.5. This threshold was selected to indicate

that the network had gained familiarity with a particular feature rather than to suggest

that the feature had been mastered by the network. Table 4.7 shows the first 30 features

learned by the network, the average number of epochs taken for the F -measure to reach

a level of 0.5, the standard deviation of the number of epochs, and the frequency of the

feature in the list of 465 concepts (that is, the number of concepts that exhibited the

feature).

The features listed in Table 4.7 fall into two general categories: those that divide the

concepts into broad categories (e.g., 〈an animal〉, 〈a vegetable〉, and 〈lothing〉), and those

that are strongly associated with these categories (e.g., 〈has feathers〉, 〈beh - �ies〉, 〈haswings〉, and 〈has a beak〉 are all learned within 20 epochs of 〈a bird〉). After learning the

feature 〈an animal〉 after 43 epochs of training, the network quickly learns subcategories
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Epochs Until F = 0.5

Feature Mean St. Dev. Frequency

an animal 43.13 5.65 91

a vegetable 61.97 8.65 28

clothing 64.80 8.60 28

a fruit 73.54 10.01 33

a bird 75.10 9.82 31

has feathers 76.87 9.30 30

a musical instrument 78.33 10.38 16

beh - flies 84.60 12.57 36

has wings 87.88 11.70 35

a mammal 92.88 17.34 41

has a beak 93.79 13.46 30

is edible 93.79 17.82 76

lives in water 99.80 14.36 29

tastes sweet 123.28 31.52 21

an insect 125.40 19.92 11

grows in gardens 126.62 28.92 18

made of metal 130.45 21.06 114

found in kitchens 130.56 21.44 29

a weapon 135.35 19.14 28

used for transportation 145.05 23.42 31

a fish 145.71 37.23 28

has 4 legs 146.87 22.34 46

a tree 148.23 28.12 5

has wheels 150.05 25.06 20

inbeh - produces music 151.46 35.89 12

beh - swims 152.93 25.32 30

used in bands 155.86 38.89 9

lives on farms 158.94 29.63 12

used for killing 170.05 27.65 19

grows in forests 170.10 34.08 5Table 4.7: The �rst thirty features learned. These features either group oneptsinto broad ategories (e.g., 〈an animal〉, 〈a vegetable〉), or are strongly assoiatedwith a small number of ategories (e.g., 〈has a beak〉 is strongly assoiated withthe ategory Birds).
of this general category: 〈a bird〉 is learned after 75 epochs, a mammal is learned after 93

epochs, 〈an inset〉 is learned after 125 epochs, and 〈a �sh〉 is learned after 146 epochs.

The network coarsely divides the category of plants via the features 〈a vegetable〉 learned

at epoch 62, 〈a fruit〉 learned at epoch 74, and 〈a tree〉 learned after 148 epochs. Man-

made objects are differentiated only into broad categories by the features 〈a musialinstrument〉, 〈found in kithens〉, 〈a weapon〉, and 〈used for transportation〉. Exemplars of
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each of these categories may possess the feature 〈made of metal〉. Table 4.8 shows the

501st to 520th features that are learned by the network. Note that these features are very

specific to a small number of concepts (e.g., 〈used for hopping〉) or are general features

that do not tie to any specific category of concepts (e.g, 〈is red〉). Table 4.9 shows the

first 40 concepts learned by the network. The earliest concepts learned are those that

exhibit the earliest features learned. For example, eight of the first ten concepts learned

are birds, a category that is well represented among the features shown in Table 4.7.

The remaining concepts listed in the table fall into the categories identified in Table 4.7:

fruits, vegetables, mammals, fish, musical instruments, and weapons.

Order Feature Epochs Order Feature Epochs

501 has pulp 372.98 511 beh - makes noises 376.87

502 found in cupboards 373.08 512 has teeth 376.92

503 used for serving food 373.08 513 used by pushing 377.17

504 lives in a nest 374.70 514 is red 377.73

505 beh - eats flies 374.75 515 is damp 377.83

506 used for washing 374.95 516 is white 378.08

507 is bright 375.15 517 used for chopping 378.23

508 is luxurious 375.20 518 is uncomfortable 379.65

509 is ugly 375.71 519 found on tables 379.70

510 is grey 376.67 520 lives in forests 380.05Table 4.8: The 501s t to 520t h features learned. These are features that are oftenassoiated with a large number of diverse ategories (e.g., 〈is ugly〉, 〈is grey〉), orare spei� to only a few onepts (e.g., 〈has pulp〉).
4.8 Effect of Number of Input and Output Units

In this section, the effect of the number of input and output units on the network’s abil-

ity to identify features of novel concepts is examined. Due to the high number of pa-

rameters calibrated by the backpropagation algorithm and the small number of training

patterns available, it is possible that the network’s parameters were overfit to the train-

ing data. Reducing the number of input units reduces the total number of parameters in

the network and reduces the likelihood over overfitting the network’s parameters to the

training patters. This would result in an increase in the network’s performance on the

testing patterns.

This possibility was examined by reducing the number of inputs to the network to 50,

100, or 200 and training the network following the same procedure as used previously,

but with lower-dimensional input vectors. That is, for each of the ten pairs of training
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Order Concept Epochs Order Concept Epochs

1 SPARROW 78.33 21 TROMBONE 153.52

2 PHEASANT 78.86 22 STORK 154.09

3 STARLING 99.20 23 WOODPECKER 161.02

4 PELICAN 101.63 24 SWORD 163.41

5 GOOSE 108.07 25 RAVEN 164.20

6 PARTRIDGE 110.23 26 RIFLE 165.00

7 FALCON 121.25 27 RAT 166.70

8 MACHETE 122.16 28 SAXOPHONE 169.69

9 SPINACH 125.80 29 CARIBOU 172.50

10 DOVE 126.63 30 NIGHTINGALE 172.86

11 PIGEON 136.84 31 CABBAGE 172.95

12 DAGGER 143.64 32 DOG 173.30

13 SALMON 146.59 33 NIGHTGOWN 173.98

14 PERCH 146.70 34 GUN 174.89

15 FINCH 146.93 35 HAWK 178.52

16 ELK 150.00 36 FREEZER 179.66

17 TANGERINE 151.48 37 BISON 181.25

18 HARPSICHORD 152.24 38 MACKEREL 181.48

19 VULTURE 152.76 39 SWAN 184.80

20 OWL 153.27 40 FOX 185.00Table 4.9: The �rst forty onepts learned by the network. The onepts learnedearliest by the network are those that exhibit a high number of the �rst featureslearned.
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and testing data sets, ten networks were trained, resulting in 100 networks trained on

each set of lower-dimensional input vectors. Since the SVD retains only the columns of

the matrices U and V that correspond to the largest singular values, in decreasing order

by singular value, creating input vectors with fewer components could be achieved by

simply truncating the 300-dimensional input vectors to the required number of compo-

nents.

Table 4.10 shows the network’s performance on training, testing, and randomized

testing patterns when using input patterns consisting of 50, 100, or 200 components.

The network’s performance when using the original 300-dimensional input vectors, from

Table 4.6, is included as well. When using 100- and 200-dimensional input vectors, the

network was able to perfectly learn all training items. When the dimension of the in-

put vectors was reduced to only 50, the network continued to produce errors after 500

epochs of training. However, the average number of errors per concept was low for both

false positives (M = 0.023, SD = 0.382) and false negatives (M = 0.023, SD = 0.380).

Precision Recall F-Measure Error

300 In Training 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

Testing 0.43 (0.24) 0.40 (0.20) 0.38 (0.17) 830.62 (585.70)

Random 0.04 (0.08) 0.43 (0.37) 0.04 (0.05) 2228.14 (1257.13)

50 In Training 0.99 (0.03) 0.99 (0.03) 0.99 (0.03) 0.04 (0.60)

Testing 0.36 (0.24) 0.27 (0.19) 0.27 (0.18) 986.19 (738.07)

Random 0.05 (0.12) 0.36 (0.39) 0.04 (0.06) 2100.59 (1394.23)

100 In Training 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

Testing 0.42 (0.25) 0.31 (0.20) 0.32 (0.18) 965.46 (726.27)

Random 0.05 (0.11) 0.36 (0.39) 0.04 (0.06) 2214.68 (1268.72)

200 In Training 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

Testing 0.44 (0.23) 0.37 (0.19) 0.37 (0.17) 858.97 (621.29)

Random 0.05 (0.13) 0.35 (0.38) 0.05 (0.06) 2282.87 (1183.85)Table 4.10: Preision, reall, and F for varying numbers of input units. Perfor-mane was similar when 200 or 300 input units were inluded in the network andthe network had a redued ability to generalize to novel onepts when only 100or 50 input units were inluded.
An improvement in the network’s ability to identify properties of novel concepts

would manifest as in increase in the network’s performance, as measured by precision,

recall, and F , on the testing items. When only 200 input units were included in the net-

work, there was no difference in precision, t (199) = 1.38, p = 0.168, the F -measure,

t (199) = 1.13, p = 0.260, or error, t (199) = 1.43, p = 0.137. Recall was lower when only

200 input units were used than when 300 input units were used, t (199) = 5.34, p < 0.001.

When the network was trained using 100-dimensional input vectors, there was no
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change in precision, t (199) = .92, p = 0.359. Recall was lower when using 100 input

units than when using 300 input units, t (199) = 8.47, p < 0.001, as was the F -measure,

t (199) = 6.86, p < 0.001. Total error at the end of training was higher for 100-dimensional

inputs than for 300-dimensional inputs, t (199) = 4.20, p < 0.001.

When only 50 input units were included in the network, there was a decrease in

precision, t (199) = 4.76, p < 0.001, recall, t (199) = 10.14, p < 0.001, and F -measure,

t (199) = 9.36, p < 0.001. Error was higher when 50 inputs were used than when 300

inputs were used, t (199) = 4.18, p < 0.001.

These results support the choice of using 300-dimensional input vectors. Although

the network’s performance was similar when the number of input units was reduced to

200, using 100 or fewer inputs resulted in a degradation in performance.

When constructing the output representations, any feature that was associated with

two or more concepts was included, resulting in a total of 824 features. However, the

distribution of feature frequencies (that is, the number of concepts that possess a par-

ticular feature) is heavily skewed toward low frequencies. The average frequency of the

features is 6.45 (SD = 11.92), and the most common feature frequency is only 2. It is

likely that the network’s performance on the testing items is impaired by these low fre-

quency features. For example, if a feature with a frequency of two appears in the set of

test items, there is only one instance of this feature in the training data. Thus, the net-

work may overfit its parameters to this single example, reducing its ability to identify the

feature for novel inputs. To investigate this possibility, the number of output units in the

network was reduced and the network was trained using the same procedure as earlier

in this chapter.

The number of outputs used in these experiments was determined by the number of

features whose frequency is greater than or equal to some cutoff frequency. In the initial

experiments performed in Section 4.7, this cutoff was set to 2, resulting in 824 output

units in the network. Two additional training and testing data sets were created. The

first used a cutoff frequency of five, resulting in a total of 270 output units included in

the network, and the second set used a cutoff of ten, reducing the total number of output

units to only 120. The results of training the network using these data sets are shown in

Table 4.11. The results from the initial experiments are included for reference.

When the number of output units was reduced to 270, there was an increase in pre-

cision, t (199) = 4.50, p < 0.001, an increase in recall, t (199) = 3.80, p < 0.001, and no

difference in F , p = 0.48, on the testing items. This result may seem counter-intuitive,

as F is calculated from precision and recall and always falls between the two. However,

F is low when either precision is low or recall is low (and, of course, when both are low).

73



Precision Recall F-Measure Error

824 Out Training 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

Testing 0.43 (0.24) 0.40 (0.20) 0.38 (0.17) 830.62 (585.70)

Random 0.04 (0.08) 0.43 (0.37) 0.04 (0.05) 2228.14 (1257.13)

270 Out Training 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

Testing 0.48 (0.31) 0.45 (0.29) 0.37 (0.21) 771.06 (655.85)

Random 0.05 (0.11) 0.39 (0.40) 0.05 (0.05) 1115.02 (1147.75)

120 Out Training 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

Testing 0.59 (0.30) 0.43 (0.25) 0.45 (0.22) 595.24 (520.67)

Random 0.07 (0.11) 0.40 (0.38) 0.09 (0.08) 1086.24 (952.73)Table 4.11: Preision, reall, and F for di�erent numbers of output units. Asmore low-frequeny features are removed from the network, performane inreases.
When averages are taken over several data points, it is possible that the average value of

F falls below both the average precision and average recall.

When the network contains only 120 output units, there was an increase in precision,

t (199) = 13.24, p < 0.001, an increase in recall, t (199) = 2.49, p = 0.014, and an increase

in F , t (199) = 9.61, p < 0.001, when compared to the results of the original experiments.

When compared to the results obtained using 270 output units, the network contain-

ing only 120 output units demonstrated higher precision, t (199) = 7.71, p < 0.001, and

higher F , t (199) = 8.41, p < 0.001, but no difference in recall, p = 0.164.

These results are as expected and indicate that the network’s performance is poorest

on the lowest frequency features. A direct consequence of this observation is that the

network’s ability to generalize could be strengthened by increasing the number of items

in the training set, providing the network with more data from which to generalize to

novel concepts. However, this avenue provides only limited potential, as adding addi-

tional concepts requires a significant time commitment to collect the additional data.
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5 Summary and Conclusions

5.1 Discussion

Chapter 2 described a method that can be used to create abstract representations of the

meanings of words by analyzing a large body of written text (a resource that is seem-

ingly inexhaustible in the on-line world). These representations take the form of high-

dimensional vectors. The axes of the high-dimensional space in which these vectors

exist are abstract. That is, the axes do not correspond to any particular features or prop-

erties of word meaning. The vectors can only be interpreted relative to one another and

must be taken to be atomic; no individual component of any representational vector

can be interpreted in isolation. Rather, word meaning is stored in a distributed fashion

across all components of the vector. While no component of a vector acts to measure,

for example, size, with larger values of that component corresponding to larger objects,

such properties are represented in the vectors in a distributed manner, that is, via com-

binations of values across subsets of the components.

Chapter 3 provided several demonstrations that these vectors capture meaning that

maps on to our intuitions and that the representations are able to reproduce a vari-

ety of less obvious results from the psycholinguistic literature. MDS applied to the co-

occurrence representations produces sensible groupings of concepts into categories,

both when the categories were vastly different from one another and when the cate-

gories were specializations of a common superordinate category. For example, MDS

was used to categorize animals, body parts, cities, and geographical locations, demon-

strating that the representations differ between categories that share little in common

(animals, body parts, and places) and subcategories of a common category (cities and

geographical locations, in the category places). MDS was also used to categorize com-

mon nouns and proper nouns that were either male, female, or surnames and to cat-

egorize words by part of speech. In all cases the representations contained sufficient

information to categorize concepts into both coarse and more precise categories and

also to identify an appropriate set of properties by which to classify concepts.

The results in Chapter 3 demonstrated that when MDS is applied to the semantic

vectors, concepts are grouped into natural categories rather than classified according to

some specific properties that do not produce intuitive groups, such as size, colour, or

deformability. MDS was also used to show that the representations contain, to some ex-

tent, syntactic knowledge as well: when semantic categories cannot be identified, words

can be grouped by part of speech. While the MDS results show less distinct groupings

between part-of-speech categories than between semantic categories, words from each
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part of speech category are centred around a distinct region of the plane. Each of the

results in Section 3.2 show that classification was performed at a natural, intuitive level

appropriate for the given set of words.

Further, when the cosine between two co-occurrence vectors is used as a surrogate

measure of the priming effect in semantic-priming lexical decision experiments, the co-

occurrence representations can be used to reproduce many behavioural results. The

subtle differences in word similarity and association that subjects are sensitive to are

captured in the co-occurrence vectors. When strength and type of semantic or asso-

ciative relationship between words was varied, mean similarity between co-occurrence

vectors exhibited the same pattern of results that was observed in subjects’ performance

on language-related tasks. The co-occurrence representations were able to reproduce

behavioural results when the relationship between words was either direct or mediated

through some other word.

Collectively, the MDS results and the successful behavioural simulations in Chap-

ter 3 suggest that the method described in Chapter 2 was effective at capturing seman-

tic knowledge about words solely from experience with how words are used together

in language. Using simple scaling techniques, concepts could be accurately classified

into both concrete and abstract categories, and category membership could be imputed

both when all categories fell under a common superordinate category and when there

was no shared superordinate category. The model was able to simulate tasks in a way

that both mimics our intuition and agrees with less intuitive observations from psy-

cholinguistic studies. This suggests that the high-dimensional space occupied by the

co-occurrence vectors shares, in some sense, the same organizational structure as se-

mantic memory in the brain, at least to the extent that similarity between vectors in the

high-dimensional space is correlated with the increase in speed with which subjects can

recognize a word when it is preceded by a related word over when it is preceded by an

unrelated word. This structure is obviously greatly simplified in the high-dimensional

space.

That the above results were produced by a model that was trained with only linguistic

input supports the hypothesis that language acquisition can be achieved from symbolic

input alone. The representations produced by the model are symbolic, as their compo-

nents do not correspond to any particular property of the words or their referents and

are not grounded in any way to the physical world. The criticism of symbolic models

of cognition made by Harnad (1990) and Searle (1980), and directed specifically toward

co-occurrence models by Glenberg and Robertson (2000), is predicated on this trait: the

symbolic representations produced by co-occurrence models are not suitable for use
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in tasks, such as sensicality judgments, that require grounded knowledge of concepts.

The defence that co-occurrence based representations are grounded in the linguistic

environment (Burgess, 1998, 2000; Burgess & Lund, 2000) is not applicable to the model

described in Chapter 2. The components of the co-occurrence vectors produced by this

model do not measure association to other words, as in HAL. Rather, the components

of the vectors position a concept in a high-dimensional space in which the axes have no

interpretable meaning. However, this does not preclude the possibility that the repre-

sentations contain grounded knowledge.

Chapter 4 described a neural network model that can be used to produce a list of

physical and behavioural properties of a concept from its semantic vector. The net-

work was able to generalize this ability to novel concepts to identify properties of con-

cepts with accuracy higher than chance when the network was not explicitly trained on

the concept. Qualitatively, the performance on training and testing items was similar

throughout training and differed from the pattern of performance shown by random-

ized test items used as a baseline for performance. That the network’s performance

on the testing data was qualitatively similar to that observed on the training data and

that the network’s performance on the testing items was higher than would be observed

by chance suggests that there is some regularity to the vectors constructed from co-

occurrence data that can be accessed using available techniques.

The order that features are learned by the model is qualitatively similar to the way in

which semantic knowledge is acquired by children. The earliest features learned by the

network are those that best separate concepts into broad categories and those that are

strongly associated with these categories. The network learned, for example, the prop-

erty 〈a bird〉 early in training and learned the associated features 〈has feathers〉, 〈beh -�ies〉, 〈has wings〉, and 〈has a beak〉 shortly after. This cluster of four features is strongly

associated with the property of being a bird. With only a few exceptions, these prop-

erties are true of all birds and, again with only few exceptions, these properties are not

possessed by other objects. Features learned later in training are those that are more

broadly applicable across a range of unrelated categories. For example, the features 〈isugly〉, 〈is grey〉, and 〈beh - makes noises〉 were learned after approximately 375 epochs

of training. These features do not act to separate the concepts into coherent, natural

categories. Features learned during the earliest stages of training, such as 〈an animal〉
and 〈a vegetable〉 are associated with clearly defined categories with little or no shared

membership. These results agree with those of Rogers and McClelland (2004), who used

a network trained using backpropagation to explore the time-course of knowledge ac-

quisition in a parallel distributed processing model of semantic memory. In their ex-
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periments, Rogers and McClelland used a small, artificial corpus of concepts whose fea-

tures were hand-selected by the researchers and used localist representations for input.

That is, each concept was represented by a single input unit in the network. In the cur-

rent work, rich distributed representations derived from natural written language were

used as input and subject-produced feature-production norms were used as output. Al-

though significant work remains to match the myriad results shown by Rogers and Mc-

Clelland, the initial results shown in Chapter 4 are promising and demonstrate that at

least some of their findings hold in a more complex environment.

It should be noted that, while performance was higher on the training items than

on the testing items, this result is common to all machine learning methods and is un-

surprising. The items reserved for testing in each training set were carefully selected to

produce the best match between the distribution of features across the training items

and testing items. The results in Chapter 3 show that the semantic vectors of words with

similar meaning are similar. Just as neural networks are able to recognize a novel in-

stance of a handwritten letter “A” by generalizing knowledge acquired through previous

experience with the same letter, the network in the current research was able to general-

ize to novel semantic vectors and, based on regularities in the input vectors, produce a

similar pattern of activation across the output units. To see how these regularities in the

input vectors arise, consider, as an example, the words CAT and DOG. Both words refer

to relatively small domesticated mammals that are often kept as pets. Their interactions

with our environment are similar: both sit on people’s laps, eat food out of bowls, get

pet, and may or may not be allowed on the furniture. These similarities are reflected in

the linguistic habitats in which the two words are found. The contexts in which both

CAT and DOG occur in written language describe the physical and behavioural prop-

erties and the ways in which each animal interacts with its environment, other objects,

and humans. This is done both directly, through sentences such as she pet the cat/dog,

the cat/dog bit the man, and the cat/dog chased its tail), and indirectly. For example, the

size of an object can be inferred from the way in which that object interacts with other

objects of known size. The sentence the cat/dog slept on the couch suggests an upper

bound on the size of a cat or dog. The model described in Chapter 2 attempts to capture

these regularities in language through analysis of word co-occurrence. By using SVD to

reduce the dimension of the co-occurrence matrix, the model attempts to capture the

higher-order co-occurrence information that supports language acquisition in humans,

that is, the indirect relationships between words that contribute to their meanings. The

results in Chapter 3 showed that the semantic vectors produced by the method rate ob-

ject similarity in a way that agrees with our intuitive judgment and that the structure of
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the high-dimensional space in which these vector exist mirrors, in a very coarse approx-

imation, the structure of human semantic memory. More succinctly, words that refer to

similar objects are used in similar linguistic contexts and this is reflected in the semantic

vectors in a way that agrees with our intuition about similarity.

In addition, the referents of the words CAT and DOG share many common traits:

both are animals, are mammals, have four legs, have tails, and have fur. These similar-

ities suggest that the two words would share many features in the feature-production

norms of McRae et al. (2005). This was observed in the data: of the 824 features in-

cluded in the network, CAT possess 15 and DOG possess 13, with seven features shared

between the two (CAT shares 46.7% of its features with DOG and DOG shares 53.8% of

its features with CAT). Thus, similar concepts have similar feature-based output vectors

as well. The network is faced with the task of translating similar vectors in the space

of input vectors to similar vectors in the space of output vectors. If certain conditions

on the number of hidden units in the network are met, a two-layer neural network with

non-linear activation functions trained using backpropagation is capable of learning, to

within a specified accuracy, any arbitrary mapping between a set of input and a set of

output vectors (Cybenko, 1989). Thus, while it is no great surprise that the network was

able to learn the correct mapping for the training items, it is interesting (but not wholly

unexpected) that the network was able to generalize this result to novel items that were

not observed during training. However, this work, reported earlier in Durda et al. (2009),

is the first attempt to do so.

Louwerse (2008) argues that both semantic features and word co-occurrence are

necessary sources of information to enable language acquisition. His symbol interde-

pendency hypothesis proposes that many concepts are grounded in the perceptual, mo-

tor, and introspective systems of the brain. Other concepts are not directly grounded,

but are partially grounded indirectly through their association with other words. While

performing a language-related task, the grounded representations are partially, but not

fully, activated. Further, it is argued that grounded knowledge is so important to lan-

guage acquisition and processing that the physical properties of concepts have become

encoded within the statistical structure of language. That is, the physical properties of,

say, cats and dogs inform the way in which we speak about them. Riordan and Jones

(2011) showed that there is significant redundancy between the symbolic and featural

inputs available during language acquisition, but that the two sources are also comple-

mentary to one another, concluding that symbolic and grounded theories should not

stand in conflict with one another and that research should focus on the mechanisms

through which the two sources of information are integrated during language acquisi-
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tion. The results of Chapter 4 complement the work of Riordan and Jones by demon-

strating the there is sufficient knowledge of perceptual properties of words stored in

the symbolic relationships between words to extract the former through analysis of the

latter. Further, these results provide evidence supporting the symbol interdependency

hypothesis of Louwerse. The input representations of concepts were derived entirely

from word usage, but the network was nonetheless able to identify reliable cues about

the features of the concepts, even when it had not been explicitly trained on a concept.

5.2 Shortcomings and Future Work

One shortcoming of the work presented in Chapter 4 is the simple network architecture

used. In the two-layer feedforward network, activation flows in only one direction: from

the input units to the output units. Ideally, the network should be able to operate in the

reverse direction. Given a set of features that a concept possesses, the network should

be able to access the correct abstract semantic representation of that concept, roughly

simulating the act of recognizing an object. This is not possible with a feedforward net-

work. A recurrent network trained using backpropagation through time (BPTT; Werbos,

1990) would allow the network to associate co-occurrence representations with feature-

based representations in both directions. Using a recurrent network has the potential

to improve the network’s performance when generalizing to novel concepts as well. Re-

current networks operate by incrementally updating the activations of units until the

units “settle” into a stable pattern of activation. During this process, the activations of

all units in the network are able to influence the input to other units. Further, the BPTT

training algorithm can produce networks with an attractor basin structure. That is, once

the network arrives at a pattern that is sufficiently similar to a pattern on which the net-

work was trained, the weights between the units push the activations closer toward the

learned pattern. Thus, the learned patterns act as “basins” where activation in the net-

work collects. This principle would apply equally well to subsets of the feature units.

Thus, through recurrent connections, the network could identify the pattern that, for

example, 〈a bird〉, 〈has feathers〉, 〈beh - �ies〉, 〈has wings〉, and 〈has a beak〉 nearly always

occur together and this could be encoded in the network’s recurrent connections during

learning. When the network encounters a novel concept which it identifies as having

wings and having a beak, it can generalized based on knowledge about the relationships

between features to impute the concept with the features 〈a bird〉, 〈has feathers〉, and

〈beh - �ies〉. This could potentially improve the network’s performance on novel con-

cepts as features could be activated based on information in both the input vector and
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information about feature correlation encoded in the network’s connections. If a fea-

ture is only weakly represented in the input pattern, feature correlation could provide

the additional information required to correctly activate a common cluster of features.

Indeed, it has been shown that feature correlation plays an important role in semantic

acquisition and later recall of acquired knowledge (McRae et al., 1999, 1997; Rogers &

McClelland, 2004).

A further difficulty with the network described in Chapter 4 concerns how features

will be generalized to novel concepts. The network is able to identify features of novel

concepts based on similarities between the novel input and learned representations. As

shown by the simulation of the results of Chiarello et al. (1990) and Ferrand and New

(2003), the co-occurrence representations used as input to the network capture associa-

tive relationships between concepts: cosine similarity between words that are associa-

tively related is higher than between words that are unrelated. It is reasonable to expect

that, in the same way the network may correctly generalize the feature 〈has 4 legs〉 from

the representation for CAT to the semantically similar representation for DOG, the net-

work may also incorrectly generalize this feature to MEOW, a word that is only related to

CAT through association. This is similar to the criticism that co-occurrence models are

unable to distinguish between sensical and non-sensical sentences (Glenberg & Robert-

son, 2000). In this case, the co-occurrence representations do not contain sufficient

information to distinguish between the sensical generalization of the property 〈has 4legs〉 from CAT to DOG and the non-sensical generalization from CAT to the associated

word MEOW.

Additional future research directions concern the representations used for featural

information. The feature units in the network used in Chapter 4 were simple localist

representations: each output unit corresponded to a single feature and each unit’s bi-

nary activation indicated the presence or absence of that particular feature. Unlike the

corpus used to construct the co-occurrence representations, which occurs naturally as

a by-product of written communication, the data upon which the output representa-

tions are based were collected by asking subjects to perform an artificial task, namely,

to exhaustively list properties that describe different living and non-living things. In

light of this, a tremendous amount of effort would be required to expand the number

of items for which output representations are available, whereas producing additional

input representations requires only a marginal increase in computational effort for each

additional item. An ideal solution to this issue is to eliminate the human effort all to-

gether and design a network so that it can identify featural primitives from the input

corpus. However, it is not clear how this task could be accomplished.
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More practical considerations are related to the implementation of the algorithm

described in Chapter 2. During the first pass through the corpus to collect the indi-

vidual word frequency counts, a trie was used to store the dictionary of all tokens so

far encountered as well as their frequency. This data structure is inefficient in terms of

memory usage. The trie is a tree-based data structure in which each node has an out-

going branch for each character in the alphabet over which the words are defined. In

this work, all words were converted to uppercase, and the apostrophe and dash were

considered to be part of a word. Thus, each node in the structure contained an array

of 28 pointers to the next character. While the trie allows for simple implementation

and fast look-up of words, it requires a large amount of memory and is particularly poor

when many of the words in the trie contain long, unique suffixes. Consider, for exam-

ple, a trie containing the words MISCELLANEOUS and MISSISSIPPI. When retrieving

one of these strings from the trie, the correct string can be determined when the fourth

character is examined. Due to the structure of a trie, however, the entire word must be

examined. Further, each of the unique suffixed, CELLANEOUS and SISSIPPI, are stored

separately and require one node in the trie per character. This results in a structure that

more closely resembles a linked list than a tree, and requires a large amount of memory

to store and can be searched in below optimal time. Further, the trie requires O(n 2) time

to construct, where n is the total length of all strings in the trie.

The suffix tree is an alternative to the trie that can be used to provide fast look-up

of strings without the high memory requirements of a trie (Bieganski, Riedl, Cartis, &

Retzel, 1994; Weiner, 1973). A suffix tree can be viewed as an optimal trie in which every

node has at least two children. This eliminates the linked list structure that emerged

in the trie in the example above. In a suffix tree, the correct word would be identified

at the fourth character and the remainder of the word could be skipped. In addition

to lower memory requirements and more efficient string look-up, a suffix tree can be

constructed in time that is linear in the total length of all strings in the tree (Farach,

1997). This provides a significant advantage when constructing a large dictionary, as is

required during the initial frequency counts.

The backpropagation algorithm used to train the network in Chapter 4 often requires

a high number of iterations to converge on a set of weights that minimizes the error over

the training items. This slow convergence often leads to high training times and lim-

its the size of the networks that can be used in practice. An alternative algorithm that

can be used to train feed-forward neural networks with one layer of hidden units is the

Extreme Learning Machine (Huang, Zhu, & Siew, 2004). This algorithm randomly as-

signs weights to the connections from the input units to the hidden units. The weights
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on the connections between the hidden and output units are then determined analyt-

ically, eliminating the need for a time-consuming iterative training process. Networks

trained using this algorithm demonstrate similar performance to those trained using

backpropagation with a significant savings in training time. Using this algorithm would

allow for larger networks to be used in the current work and would reduce the time re-

quired to perform additional experiments analyzing the network’s performance. The

Extreme Learning Machine algorithm would be particularly useful when integrating the

semantic representations produced in Chapter 2 into more comprehensive neural net-

work models of language processing, such as the “triangle” model used by Seidenberg

and McClelland (1989) and Harm and Seidenberg (2004), which integrates semantic, or-

thographic, and phonological processing.

5.3 Summary of Contributions

The results shown in this dissertation demonstrated that it is possible to identify percep-

tual information from (symbolic) co-occurrence-based representations. This is a step

toward addressing a common and difficult problem for co-occurrence models of seman-

tic memory: representations produced from word co-occurrence are not grounded. This

criticism arose from work in the field of grounded (or embodied) cognition, in which the

symbol grounding problem was introduced as a problem for most models of memory.

In the theory of grounded cognition, knowledge is acquired by integrating multimodal

representations of experience with the world, body, and mind into a common represen-

tational memory system. Later recall of this knowledge occurs via a simulation process

in which the brain reproduces the multimodal representations that were captured dur-

ing knowledge acquisition. Simulation is assumed to be a core method of computation

in the brain, operating on a representational system that is shared between processing

systems. In this theory, cognition is closely tied to the perceptual and motor systems, as

well as to introspective and emotional states. Taken as a definition of semantic memory,

the common memory system of grounded cognition is more intricate than the view of

semantic memory as a general storehouse of knowledge – essentially a dictionary, the-

saurus, and encyclopedia rolled into one (McNamara & Holbrook, 2003).

A problem closely related to the symbol grounding problem is that the richness of

human experience cannot be used to inform a computational model of semantic knowl-

edge. Our experience with the world occurs in a variety of media, such as visual and

other forms of perceptual input, but computational models of semantic memory are

limited to purely linguistic input. Due to this inability to integrate non-linguistic input,
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representations constructed solely from co-occurrence data are necessarily impover-

ished and, thus, are unable to represent the full complexity of human semantics.

These problems have been used to suggest that co-occurrence models exist in op-

position to grounded cognition. However, the results in this dissertation suggest quite

the opposite. Consistent with the theory of grounded cognition, linguistic input forms

only a single component of the input to the semantic system. Burgess (1998, 2000) ar-

gued that the co-occurrence representations created by the HAL model are grounded

because each component of a word’s semantic vector measures the strength of asso-

ciation between that word and some other word from the corpus. Here, it was shown

that information about feature characteristics can be represented in a latent manner

throughout a vector representations and can be used to identify features of a concept

from co-occurrence representations in which the axes are arbitrary and have no clear

interpretation. This offers a more direct form of symbol grounding. The representa-

tions produced by the method described in Chapter 2 contain sufficient information to

identify grounded properties of objects, suggesting that the representations themselves

are, to some extent, grounded. Unfortunately, such simple computational models lack

the large array of processing mechanisms that exist in the brain and that are posited to

participate in the computational mechanism of simulation that is central to grounded

cognition. In this model, each localist feature node can be interpreted as a great simpli-

fication of the multimodal representations on which the simulation process operates.

Under this interpretation, co-occurrence is consistent with the principles of grounded

cognition and the co-occurrence representations serve as impoverished substitutes for

the rich multimodal representations that exist in the brain.

This is not to say that the model presented in Chapter 2 is fully grounded. A truly

grounded model must be able to represent the features themselves in a distributed and

multimodal manner across various ersatz processing systems analogous to those found

in the brain. In this dissertation, it was shown that the representations derived from

language usage contain information related to the features of concepts and that this in-

formation can be exploited in a simple neural network architecture. These results sup-

port the work of Louwerse (2008) by showing that language partially encodes informa-

tion about embodied properties of objects. While co-occurrence-based models do not

produce representations that are truly grounded to the physical world, the representa-

tions produced by such methods are at least partially grounded and provide a practical

and psychologically valid alternative to representations derived from feature norms col-

lected from human subjects.
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Appendices

Appendix A Subset of Rosch (1975) Norms

Furniture Fruit Vehicle Weapon Vegetable

chair apple automobile gun pea

sofa banana truck pistol carrot

couch peach car revolver spinach

table pear bus machine-gun broccoli

dresser apricot taxi rifle asparagus

coffee-table tangerine jeep switchblade corn

desk plum ambulance knife cauliflower

bed grapes motorcycle dagger lettuce

davenport strawberry streetcar shotgun celery

bookcase grapefruit van sword cucumber

Tools Bird Sport Toy Clothing

hammer robin football doll pants

screwdriver sparrow baseball yo-yo shirt

drill bluebird basketball marbles dress

sandpaper canary tennis rattle skirt

sander blackbird softball teddy-bear blouse

toolbox dove canoeing dollhouse suit

T-square lark handball ball slacks

chisel parakeet rugby jacks jacket

rasp mockingbird hockey wagon coat

hacksaw wren swimming kite sweaterTable A.1: Ten highly ranked exemplars from eah ategory of the Rosh (1975)ategory norms. These stimuli are the highest ranked exemplars that did not appearin any other ategory and that appeared in the voabulary of the o-ourrenemodel.
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Appendix B Part-of-speech Stimuli

Adjectives

yummy delicious tasty sweet bitter

sour salty slippery slimy spiky

prickly smooth rough sticky soft

hard wet dry furry sad

happy funny boring nasty naughty

angry mean nice beautiful pretty

lovely friendly grumpy scary lonely

loud noisy quiet slow fast

poor rich strong weak old

new young lazy sleepy tired

furry tall short round fat

long skinny thin thick smelly

big little tiny small huge

enormous gigantic large yellow red

orange blue purple brown black

white green pink one two

three four five six seven

eight nine tenTable B.1: Adjetives used in part-of-speeh MDS.
Adverbs

quickly slowly quietly loudly gently

softly gracefully carefully neatly easily

truthfully kindly bravely scarily sleepily

excitedly energetically safely loosely cheerfully

happily angrily lightly silently sweetly

brightly rudely nervously anxiously cleverly

healthily naturally deeply heavily correctly

colourfully colorfully playfully fiercely lazilyTable B.2: Adverbs used in part-of-speeh MDS.
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Nouns

apples babies balls beds bears

boys bells birds brothers boats

giants dinosaurs cakes cars cats

children corn chairs chickens cows

dogs wind dolls frogs ducks

eggs eyes snails waves lizards

feet clouds fish trains flowers

pets books girls snakes grass

pies hands pizzas oranges bikes

horses houses kittens legs letters

ants men tomatoes money teeth

mice friends spiders pigs rabbits

rain rings clocks fairies planes

songs sheep shoes sisters trees

plants trucks sticks sun toys

things Table B.3: Nouns used in part-of-speeh MDS.
Verbs

creep crawl walk run jump

skip hop slither climb dig

squirm fly sit stalk stomp

tiptoe gallop blow dance glide

swim wash play throw drink

eat chew sing shout growl

bark buzz laugh smile cry

go moo quack talk yell

scream screech squawk squeal glow

listen paint look read knit

sleep draw shine watch kick

dive find build work explore

shop clean catch shakeTable B.4: Verbs used in part-of-speeh MDS.
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