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ABSTRACT

The aim of this dissertation is the integration of the governing equations of
motion for steady, two-dimensional potential gas flows. Although there has been an
ongoing search for the solutions of these equations for over one hundred and fifty
years, only a limited number of exact solutions in closed form exist prior to this
thesis. The methods or processes that were employed in the past inevitably required
dealing with a non-linear partial differential equation in the potential function with
unmanageable boundary conditions or pre-deciding the type of gas that flows along
a flow pattern. By adopting and pursuing a new approach, exact solutions in closed
form are obtained in this thesis. This approach specifies a priori the form of the
streamline pattern or a specific geometric pattern and determines the exact solution
and the permissible gas for each chosen pattern. This approach also obtains exact
solutions of the non-linear partial differential equation in the potential function even
though it does not deal directly with this equation.

This dissertation containe two parts. The first part treats and develops inves-
tigations when the forms for the flow patterns are considered. Following the clas-
sification of all permissible flows for the chosen forms, exact solutions for these
permissible flows are determined. The second part of this thesis is concerned with
specified streamline patterns defined by Re[f (z)li = constant or Im[f(z)] = constant
or a linear combination of Re[f(z)] and Im[f(z)] equal to any constant when f(z)
is a known analytic function of z.

This new approach involves transformations of independent variables only so

that systems of ordinary differential equations and linear partial differential are

iv



dealt with. New and existing exact solutions in closed form of these equations are
obtained. However, in some cases, the transformation employed yielded nonlinear
ordinary differential equations for which only particular solutions were obtained.
In addition, equations of state corresponding to these solutions are also determined
and analyzed. The exact solutions for incompressible, inviscid and irrotational flows

can also be easily obtained by this new approach.



To my wife Fotini

and my beloved parents

vi



ACKNOWLEDGEMENT

I would like to acknowledge the help I have received from many people throughout
my studies. First of all, I wish to express my most sincere thanks and appreciation
to my supervisor, Dr. O.P. Chandna for his many valuable ideas, capable guidance
and consideration throughout the course of this research. I would like to take this
opportunity to express my heartfelt gratitude to him for all his help and sincere
friendship in all my years here. I shall always be deeply indebted to him.

My heartfelt gratitude to my wife Fotini for all her help. Her patience, encour-
agement and support have been unfailing throughout my studies.

I am very grateful to my family for their support and encouragement all through
the years of my studies.

I wish to express my thanks to Dr. R.J. Caron, Chairman of the Department
of Mathematics and Statistics for his zssistance and support and also for providing
the computer facilities for the production of this dissertation.

This research was supported by Dr. O.P. Chandna’s NSERC grant, graduate
assistantships and several scholarships from the University of Windsor. I am deeply

indebted for this support.

Many thanks to my external examiner Dr. H. Rasmussen for taking the time to
examine this work and for all of his valuable suggestions.
I also would like to thank the members of the examining committee Drs. P.N.

Kaloni, K.L. Duggal, D. Pravica and K. Sridhar for all valuable criticisms and

suggestions.

vii



Last but not least, thanks are also extended to my friends Mr. 5. Venkatasubra-
maniam, Dr. B. Vellapulai, Mrs. R. Gignac and Mr. E. Oku-Ukpong for all their

help and encouragement.

viii



TABLE OF CONTENTS

ABSTRACT
DEDICATION
ACKNOWLEDGEMENTS
LIST OF FIGURES
NOMENCLATURE
CHAPTER 1. INTRODUCTION
1.1 Introduction
1.2 Qutline of present work
CHAPTER 2. PRELIMINARIES
2.1 Introduction
2.2 Equations of motion
2.3 Some results from differential geometry
2.4 A new formulation
2.5 Tangent gas
CHAPTER 3. STREAMLINE PATTERN y — f(z) =CONSTANT
3.1 Introduction
3.2 Flow equations in von Mises coordinates
3.3 Classification of flows
3.4 Non-straight flows with 4;(a) =0 a.nd () #0
3.5 Non-straight flows with I'"/()) # 0 and Ai(e) # 0
3.6 Non-straight flows with I''(¢/) =0
3.7 Straight flows with I'(¥) =0

ix

iv

vii

37
38
41
45
59
63
66



3.8 Boundary value problems 68
CHAPTER 4. STREAMLINE PATTERN L —CONSTANT

9(9)
4.1 Introduction T4
4.2 Flow equations and classification of flows 75
4,3 Circular flows with g(8) =constant 79
4.4 Straight flows with g(8)g"(9) — 2¢"(8) — g°(8) = 0 82
4.5 Flows satisfying ¢ = g(6) with ¢'(8) # 0 85

4.6 Flows satisfying ¢ = g{a) such that ¢'(e) # 0, %% # 0 and %! #0 88
CHAPTER 5. STREAMLINE PATTERN 6 — f(r) =CONSTANT

5.1 Introduction 105
5.2 Flow equations and classification of flows 106
5.3 Flows satisfying r* f'(r)f"(r) — 1 109
5.4 Flows satisfying ¢ = ¢(r) with ¢'(+} #0 113
5.5 Flows satisfying ¢ = ¢(@), ¢'(a) #0 116
CHAPTER 6. STREAMLINE PATTERN EE;—) =CONSTANT
6.1 Introduction 132
6.2 Equations of motion and classification of flows 133
6.3 Flows satisfying ¢ = g(a), ¢'(a) # 0 136

CEAPTER 7. STREAMLINE PATTERN 7(z,y) =CONSTANT

7.1 Introduction 150
7.2 Equations of motion 150
7.3 Streamline pattern n(z,y) =constant 153
7.4 Flows satisfying q # g(a) 186

CHAPTER 8. STREAMLINE PATTERN Cé(z,y) + Dn(z,y) =CONSTANT
8.1 Introduction 191

8.2 Equations of motion 191



8.3 Flows satisfying ¢ = ¢(a), ¢'(a) # 0 195

8.4 Flows satisfying q # q(a) 214
CHAPTER 9. CONCLUSIONS 220
REFERENCES 224

VITA AUCTORIS 228

xi



Figure 2.1.
Figure 2.2
Figure 3.1.
Figure 3.2.
Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.
Figure 3.8.
Figure 3.9.

Figure 3.10.

Figure 4.1.
Figure 4.2,
Figure 4.3.
Figure 4.4.

LIST OF FIGURES

The (¢,%) —curvilinear net.

Pressure versus specific volume for ideal gas.

von Mises coordinates.

Streamline Pattern for y — In(|sec{z + 1) |)=constant.
Pressure versus density fcr flow in Case 2 (Equation 3.64
with ¢; =2, ¢ca =1 and py = 10).

Pressure versus flow intensity for flow in Case 2

(p=10- 72m).

Curves of constant pressure for flow in Case 2 (Equation 3.63
withe; =4, c2=1,e3=05, =L, 5=l cs=1, =1
and po = 10).

Streamline pattern as given by equation (3.77) with A =2
and Bg = 1.

Direction of flow along a streamline.

Streamline pattern for y — Eyz — E; =constant (Ey = -2, E; =0).

Streamline pattern for flow between parallel plates.
Exponential channel flow.

Streamline pattern for vortex flow r =constant.
Streamline pattern for re~™% =constant.
Streamline pattern for re~? = constant.

Streamline pattern =constant, (a3 = 0).

T
cos (8 + ai3)

xil



Figure 4.5.

Figure 5.1.

Figure 5.2.
Figure 5.3.

Figure 5.4.
Figure 6.1.

Figure 6.2.
Figure 7.1.
Figure 7.2.

Figure 7.3.

Figure 7.4.
Figure 7.5.

Figure 7.6.
Figure 7.7.
Figure 7.8.
Figure 7.9.

Figure 7.10.
Figure 7.11.

Pressure versus 1/p as given by equation (4.95) with a3 =1,
ay = —3-
Streamline pattern & — V2eir? — 1 + arccos (
(¢; =1).

Streamline pattern § — r =constant.

201 T

Pressure versus density for the flow § — r =constant
(Equation (5.30) with d; = 1/V3, o =/4/5 po= 5).

Streamline pattern § — Inr =constant.

Streamline pattern — =constant
PRt tan (L [crz +c2))
(n=1, c2=0, dy =ds = 1).
) m
Streamline pattern yexp (——L_ z) =constant (m =k =1).

=constant.

Streamline pattern
P 22 + 2

Pressure versus density for the state equation (7.32)

with pp = 2.25, M = 0.5, C=1.

Streamline pattern - =const ant.

z2
\/v/z? + y* — T =constant.

Pressure versus density for the state equation (7.61)

Streamline pattern

with pp = 1, C = -2, K=1.

Streamline pattern 4/ m + z =constant.
Stfea.mline pattern zy =constant.

Streamline pattern z2 — y? =constant.

Pressure versus density for the state equation (7.121)
with pg =1, C = -2, E=1.

Streamline pattern tan (%) =constant.

Streamline pattern z? + y° =constant.

xiii

) =constant



Figure 8.1.

Figure 8.2.
Figure 8.3.

Figure 8.4.

Figure 8.5.

Figure 8.6.

Figure 8.7.

Streamline pattern Cln (z* + y°) + Darctan (%) =constant,
(C=D=1).

Streamline pattern sz * Dzy =constant (C =D =1).
Pressure versus density for the state equation (8.51)

with As =1, A7 =2, po=

Streamline pattern C\/ :c2 +y2+z+ D z? + y? — x =constant
(C=D=1).

Pressure versus density for the equation (8.65)

with dg = pp =1, A5 =-2.

Streamline pattern %C (z? — y*) + D=y =constant (C = D =1).

—_—
s CyVzi+yi += Dy/\/z2+yP -z
treamline pattern + == =constant
[2% +4° /22 + 32

(C=D=1).

xiv



Symbol

NOMENCLATURE

xv

Meaning

speed of sound

specific internal energy
Mach number

free-stream Mach number
pressure

flow speed

Bernoulli’s constant

radius, polar coordinates
specific entropy

time

temperature

cartesian components of velocity
velocity vector

free-stream speed

complex function

cartesian coordinates
complex variable

flow intensity

angle between K and z-axis

adiabatic constant



~3

< B O

xvi

angle between Ii" and r—axis
density

specific volume

curvilinear coordinate
velocity potential function

streamfunction



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION.

This dissertation treats and is concerned with the subject of gas dynamics. The
study of the motion of compressible fluids, namely gases, is known as gas dynamics
when the effects of density and temperature variations due to pressure changes
cannot be neglected. The knowledge attained in this subject over the last one
hundred and fifty years has been utilized in the developments of ballistics, gas
turbines, combustion, rockets, jet engines, ram jets and high speed flights. Heat
transfer at high speeds and blast-wave phenomena are also investigated using gas
dynamics.This field is of such significance and importance in the development of
sciences that applied mathematicians, theoretical physicists, chemical engineers,
mechanical engineers and aeronautical engineers have all contributed extensively to
its evolution and advancement.

The subject of gas dynamics includes and encompasses both theoretical and
experimental aspects of this science. Progress in this subject has relied on both
branches, each complementing the other. The theoretical branch of gas dynamics
rests on a foundation containing concepts, definitions and the statements of the
physical laws which have been verified by experiments. All theoretical investigations
of the motion of gases must begin with the statements of the four basic physical
laws governing such motions which are independent of the nature of the specific

gas. These laws are:



i) the first law of thermodynamics,

(i) the second law of thermodynamics,

(i) the principle of conservation of mass,

and

(iv) Newton’s principle of conservation of linear momentum.

Together with these fundamental laws, it is necessary in the analysis of the motion
of a gas to include some relationship that specifies the particular type of gas under
consideration. This relationship is between the thermodynamic properties of the

gas and is called the caloric equation of state or state equation for the gas.

The study of gas flows can be divided into one-, two- and three- dimensional
flows. Although one-dimensional flows have been extensively investigated, these
studies are inadequate in the analysis of many real problems that involve two- and
three-dimensional flows. On the other hand, the most general three-dimensional or
two-dimensional flows - including shocks, heat transfer, friction and a gas with a
complex equation of state - present mathematical difficulties that cannot be resolved
by present-day analytical methods. Therefore, it is necessary to make simplifying
assumptions on two- and three-dimensional flows in order to render them to avail-
able analytical techniques. Prandtl’s concept of the boundary layer considerably
simplifies the analysis of many physical flows since the flow is essentially inviscid
and adiabatic outside the boundary layer [1934]. According to this concept, shear-
ing stresses and heat transfer are significant only in a thin layer adjacent to solid
boundaries, usually called the boundary layer. Therefore, if the boundary of a fic-
titious body is formed by moving the boundary of the actual body by an amount
equal to the displacement thickness of the boundary layer at each point, then the
flow outside the fictitious body is essentially frictionless and adiabatic. It is also

known that such a flow which is initially uniform and parallel is irrotational outside
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the boundary layer in the absence of shocks. The flow within the boundary layer
can be handled separately by methods that are well-suited for dealing with features
in a boundary layer. An advantage of this approach is that the irrotational flow
outside the boundary layer is independent of the boundary layer flow as far as the
first order effects are concerned. The assumption of irrotationality results in sig-
nificant simplification in the study of gas flows. Circulation is defined as the line
integral of the velocity vector field along any closed curve in the motion of a fluid.
If the flow is two-dimensional in the (z,y)—plane, then circulation per unit area is
v

B2 % when the velocity field V(z,,t) = (w(z,¥,1), v(Z.¥,%))- A plane flow is
v Ou

said to be irrotational if 3 3y =  everywhere in the fiow region.
Mathematical modeling of physical problems requires idealizing assumptions. A
common assumption that the flow is steady is of considerable interest since it lends
itself to analytical treatment and provides valuable insight into real and more com-
plex flows. Steady flow is an idealizing assumption and we assume that one-, two-
and three-dimensional steady fluid flows exist. Steady fluid flow is defined as a fluid
motion in which the dynamic variables and the thermodynamic variables do not
vary in time at each point, that is, flow variables depend only on the spatial coor-
dinates and not on time. In such a flow, all the particles passing through a certain
point have the same value for the dependent variables at this point and follow the
same path, the streamline through that point. The flow is, therefore, covered by
streamlines which do not change in time.
For a gas in motion, we have
de = dq — pdr
dg="Tds
as our first and second laws of thermodynamics applied to a unit mass of gas when
e, g, p, 7, T and s are respectively the specific internal energy, the specific heat

gained, the pressure function, the specific volume, the temperature function and
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the specific entropy of the medium. A gas which obeys Charles’ law, pr = RT,
is called an ideal gas. Gases obeying any other relationship between p, T and 7
are called non-ideal gases. Van der Waal non-ideal gas, Clasius non-ideal gas, and
Beatty-Bridgeman non-ideal gas are some of the well known non-ideal gases. Joule
and Kelvin (1843) established experimentally that internal energy was a function of
temperature only for an ideal gas. This result was also analytically established in
later years and is well-documented in texts (c.f. Courant and Friedrichs[1948]). An
ideal gas is called a perfect or a polytropic gas if its internal energy is proportional
to temperature, a gas for which internal energy is not proportional to temperature,
the name semi-perfect gas or an imperfect gas or non-polytropic gas is used. The
assumption that a gas is a perfect gas facilitates and simplifies the mathematical
analysis of many flow problems.

Viscous flows are said to be diabatic if heat transfer cannot be neglected. If
viscosity is present but heat conduction or heat transfer is absent, then the flow
is termed adiabatic. Assumption of absence of viscosity and heat conduction is
tantamount to assuming that specific entropy is constant everywhere and corre-
sponding compressible fluid flows are called isentropic flows. For isentropic flows,

state equation for a gas has the form

p=flp) or p=g(r)

where f and g are single-valued known functions of p and T respectively. For every

compressible isentropic fluid flow, the following hold true:

. dp _df
2 v _ 9P _ 4
O Hp=F=5>0
dzp dzf
ii —_— >
(i) iy
cas dP__dg_ 2 2
(111) a—;—df—-—pc <0



and
d’p _ d’q
dr? = dr?

>0

(iv)
The principle of conservation of mass, Newton’s second law, irrotationality assump-
tion and the assumption that pressure is a single-valued function of density only,

yield a system of five equations for steady, continuous, frictionless, irrotational,

isentropic plane flow. This system is

opu} dpv)
dz 8y

du du Op _
p( e +Uay)+§£—0

v v dp _
p(‘ugz—:"f‘ 3y>+3y—0

=0 (Conservation of Mass)

(Linear Momentum)

S Ou . .
i 3_3; =0 (Irrotationality)
p=f(p) (State)

where K = (u(z,y), v(z,y)) is the velocity vector field, p(z,y) the pressure function
and p(z,y) the fluid density function.

Eliminating the derivatives of p from the conservation of mass equation by appli-
cation of the linear momentum equations, we find that ¢(z,y) satisfies (c.f. Courant

and Friedrichs [1948)):

8\’| 8¢ 043¢ & 3\’ | 8¢
["‘2‘(52)]@‘2%@6@ [ (ay)]asﬂ"“

where the potential function ¢(z,y) is defined by the irrotationality condition such

that V = grad¢. Since integration of the linear momentum equations after use of the
irrotationality equation yields the Bernoulli’s relation for a gwen pressure-densxty
relation that determines p as a function of u? + v? = (%) -+ (g‘yﬁ) , it follows
that the equation satisfied by ¢(z,y) is a second order non-linear partial differential

equation with unknown coefficients involving first order partial derivatives of ¢.
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Analysis of different flow phenomena by formulating and solving appropriate
boundary value problems for this differential equation is the direct approach. If we
wish to solve a real problem of flow around a body of known shape or a channel flow
along with appropriate boundary conditions then we must find a function ¢(z,y)
which satisfies this nonlinear partial differential equation in velocity potential and
the boundary conditions. This direct approach is a difficult task to accomplish
because there does not exist any process in the armoury of our presently devel-
oped mathematics that can be used to achieve this objective. Experience, intuition
and the capability to search without any process are the only tools available to

accomplish this mission.

In the absence of the preferred direct approach, a second approach is available.
This approach requires finding functions ¢(z,y) satisfying the velocity potential
equation. If the streamline pattern given by a solution function &(z,y) is such that
the shape of the body or the walls of the channel coincide with this pattern, then this
solution function is applicable; otherwise, it is not. However, since there does not
exist any method for finding solutions for the non-linear partial differential equation
we are dealing with, this process depends upon chance and is accidental. Researchers
realized and understood that obtaining solutions of the velocity potential equation
by direct or indirect approach was mathematically non-achievable. Iz-addition,
due to the nonlinearity of this velocity potential equation, it is not possible to
use superposition principles to construct desired solutions from any known simple
solutions. This appreciation of the difficulty directed researchers to search for and

develop other means.

Existence of profound mathematical and physical differences was noted between
subsonic and supersonic flows. A flow in a region is said to be supersonic, sonic or

subsonic according as the flow speed at every point in the region is greater than,
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equal to or less than the local speed of sound everywhere in the region. The velocity
potential equation is a hyperbolic partial differential equation for a supersonic flow
and is an elliptic equation for a subsonic flow. This understanding of the radical
change occuring in the properties of the differential equation resulted in separate
treatment and analysis of the two types of flows.
Prominent methods used are:

(a) Method of Small Perturbation

(b) Hodograph Method

(c) Rayleigh-Janzen Method

(d)  Prandtl-Glauert Method

(e)  Method of Characteristics.

(a) Method of Small Perturbation. This method is used to treat the case when

the disturbance of a rectilinear flow, due to the presence of a solid body, is small.
Application of this approach linearizes the differential equation for the velocity
potential. Due to this fact, the method is also called the linearized theory and
is applied to both supersonic and subsonic flows to determine simple approximate

solutions.

By the assumption of this method, the velocity vector field is

V = (44 Vo, v) = V® = V(¢ + Veoz)

when the perturbation velocity components are very small when compared to the

free-stream speed V..

Making further assumptions that

2
[L—Lﬁi‘_] [%—] <<1 and M [—J—] <<1
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where M, is the free-stream Mach number. it is found that ¢(z,y) satisfies

o
-

- —'_.,=0
-+ay..

32
Oz

<
o)
-

(1- M)

This linear partial diffferential equation is elliptic for subsonic flows and is very
similar to the potential function equation for incompressible fluids. For the case of

supersonic flow, this partial differential equation is hyperbolic and

dla.y) = fr (2 + VME ~1y) + o (2 - VME - 1y)

is its general solution where fi, f2 are two arbitrary functions of their arguments.
The solutions of linearized flows yield approximate solutions that predict many
important features of more complex flow patterns. Approximate solutions of simple
flows are useful as a first approximation for practical applications. Practical prob-
lems such as flow past thin airfoils with sharp leading and trailing edges and the
flow through turbines are studied using the method of small perturbation.
There are usually stagnation points either on the surface of the body or in the
flow field and the disturbance is not small. For this reason,
(i)  the application of the linear theory is questionable in the presence of
stagnation points, and
(ii)  this theory is valid and more appreciated for subsonic flows and not
for supersonic or transonic flows.
Some of the outstanding works that used this theory are that of Prandtl [1934],
Gothert [1946], Glauert [1927), Laitone [1951], Taylor [1932], Liepmann [1947] and
Sauer [1947].

(b) Hodograph Method. The hodograph method is a powerful mathematical

approach. Using the magnitude of velocity ¢ and the inclination 8 of velocity to

a chosen axis, polar coordinates in the hodograph plane, as independent variables,
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the equation of velocity potential reduces to a linear equation
bl 100 1 5%°9%
2 2_ {29, 2 =
Kz te ”(q o0 " F 392) ’
with
. 0P cosf 0P sin§ 0P 0%
z =sinf —

dq g 06’ y= qg 08 S Gq

as the transformation equations between the physical plane and the hodograph

plane. One great advantage of the obtained linear equation is that we can form
and generate complex solutions by superposition of elementary solutions. This does
not mean that we are able to solve exactly the flow problem for given boundary
conditions in the physical plane, but we obtain exact solutions in the hodograph
plane which can be transferred to the physical plane to provide certain exact flow
patterns. The main complication arises from the boundary conditions of a given
problem. Given a body shape in the physical plane, it is rather difficult to obtain
a solution of the equation in the transformed region in the hodograph plane having
transformed boundaries which are totally dissimilar and extremely complicated in
most cases.

Chaplygin [1944] approximated and simplified this equation to the Laplace equa-
tion. His assumption required that the ratio of specific heats of the gas be equal
to -1. Since all real gases have their ratio of specific heats between 1 and 2, the
value -1 seemed without practical significance. However, Demtchenko [1932], Buse-
mann [1933], Tsien [1939] and von Karman [1941] clarified the meaning and physical
relevance of this imaginary gas. This approximation is called the tangent gas ap-
proximation and it led to the Karman-Tsien method for subsonic flows.

The hodograph method is also applied without approximations for either sub-
sonic or mixed subsonic-supersonic flows. Some early investigators doubted whether
steady mixed flows could exist stably. The investigation of sfmple mixed flows to

illustrate general features of mixed flows is 2 major contribution of this method.
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Some other well known researchers who have employed this method are Bergman

(1945, Bers [1945], Cherry (1959] and Lighthill [1947].

(c) The Rayleigh-Janzen Method. Exact solutions are required for testing the

validity of approximate, experimental and numerical methods. The Rayleigh-Janzen
method is called a method for nearly exact solutions. This method has provided al-
most exact answers to some simple problems. However, these answers are important
since they are a useful guide for more compiex problems.

Assuming that the potential function ¢(z,y) may be expressed as

¢($s y) = ¢ol=, y) + Mgod’l(mvy) + M:o¢2(zsy) +oe

where ¢(z,y) is a solution of the potential equation

2
32¢+a=¢ 1 [(a¢) ¢+(a¢) 8¢ 06 99 aw]

8z*  Oy? 2 |\8z/) 022 By Byt + 9z Oy 8z Fy

where ¢? for a polytropic gas is given by the Bernoulli’s equation

8\* (645)2 22 .. 2
[(Bz) + 8y +7—1_V°°+7—1c°°’

one solves the following:

8? &
( ) ¢D ¢0 =0
with —2 a‘f’u = Vo, % =0 at z=y=ooandgrad¢o»n=00nthesolid
Oz Sy ~
boundary
) 62¢1 T4 _ (00 P 5470)2 &0 , , 040 Do Fdn
ay2 T\ Oz dz? Sy oy? Oz Oy Oz 0y
with — 3¢1 = -Qd)— =0 at z = y = oo and gradg -n = 0 on the solid boundary and
8z By ~
S0 on.

Using the assumed form in the potential equation, retaining terms up to the

order of M2, and solving the problem (a) and (b), one obtains

¢($,y) = ¢D(may) + M§°¢1($,y)
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Classical potential theory or powerful tool of analytic functions of complex variables
are used to find ¢o(z,y), and ¢1(z,y) is obtained by solving the Poisson equation.
This method is 2 method of successive approximations, applicable to subsonic flows.

This method was given by Rayleigh [1916] and the details of carrying out this
method were later improved by Kaplan {1939, 1942} and Imai [1941,1942]. Works of
Hasimoto [1943], Lamla [1943], and Tamatiko and Umemoto [1941] are also excellent

contributions.

(d) The Prandlt-Glauert Method. If there is a uniform parallel flow past a

thin body, this method assumes that

¢ = Voo + $1(z,y) + 3 d2(z,9) + - -

where 1 is a characteristic parameter of the shape of the body and V, is the flow

speed of uniform parallel flow away from the body. Using this assumed form in

7s, #s_1[(00)' 0 (2628 2000 24
dz®  9y? 8z ) Oz 8y /] Oy? 8z Oy 6z Oy

where ¢? for a polytropic gas is given by the Bernoulli’s equation

¢ : o¢ : 2¢? — V2 2 2
[(33) +(3_y) o1 Vet T

and knowing that our obtained equation is valid for all values of ¢, the coefficient

of each power of t is equated to zero to obtain the following equations satisfied by

¢1('-':,y), ¢z(-’c,y) etc: .
a 1 82 1
(1 _ ) ¢ ¢

=0
2
8¢y ¢ _ ML 8¢, 841 8¢, & 84, O°
(1-ML) ¢2 a;f:U [( +1)a"31 ad’z +(’y—1)a¢: a;1+2§az";;]

and equations satisfied by ¢3(z,%), $1(z,y) and so on.
Kaplan [1943, 1944, 1946) and others used this method to analyzed some flow

problems.
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(e) The Method of Characteristics. Linearized approximation theory is valu-

able for supersonic flow past thin profiles. However, if more accurate calculations
are necessary, the method of characteristics is used. Many problems involving super-
sonic flow past bodies have been solved with great success using this method. The
method of characteristics is developed by rigorous formal mathematical methods
which helps us appreciate the concept of characteristic curves.

A flow in a region in (z,y)—plane is a simple wave if its image in the (u,v)—plane
is an arc of a characteristic. These flows were discovered by Prandtl [1934] and their
theory was established by Meyer [1908]. Simple waves, flow around a bend or sharp
corner, flow along a bump, flow in a duct and gas jets are studied using the theory

of characteristics with numerical computations.

1.2 OUTLINE OF PRESENT WORK.

The purpose of this dissertation is the integration of Euler’s equations for the
motion of steady potential gas flow in two dimensions. Only a small number of
exact solutions in closed form existed prior to this work, even though there has
been an ongoing search for these solutions for the last one hundred and fifty years.
The solutions that existed prior to this work are that of radial flows, vortex flows,
spiral flows and Ringleb flows. The methods or processes that were used in the past
almost always required

{a) dealing with a non-linear partial differential equation in the potential function
or linear hodograph equations with unmanageable boundary conditions,

and

(b) pre-deciding the type of gas that flows along a flow pattern.

By adopting and pursuing a new approach, exact solutions in closed form are ob-
tained in this dissertation. This approach specifies ¢ priori the form of the stream-

line pattern or a specific streamline pattern only and determines the exact solution
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and the permissible gas for each chosen pattern. This approach also determines ex-
act solutions of the non-linear partial differential equation in the potential function
even though it does not deal directly with this equation. Previously obtained four
solutions are also obtained by using this new approach. These rediscovered flows

are a part of the chosen forms used for this approach.

This dissertation contains two parts. The first part treats and develops investi-
gations when the forms for flow patterns are considered. Following the classification
of all permissible flows for the chosen forms, exact solutions for these permissible
flows are determined. All flows having streamlines of the form y — f(z) =constant
are studied in Chapter III. Chapters IV to VI treat the forms 7, 6 — f(r) and

g—(l’z—) respectively where f and g are continuously differentiable functions.

The second part of this dissertation is organized in Chapters VII and VIIL. Chap-
ter VII is concerned with specific streamline patterns defined by Re[f(z)] = constant
or Im[f(z)] = constant when f(z) is a known analytic function of z. Chapter VIII
deals with flows when a linear combination of Re[f(z)] and Im[f(z)] equal to any

constant defines the streamlines.
A brief outline of this dissertation is as follows:

Chapter II contains some preliminary work. The governing equations are pre-
sented in section 2.2. In section 2.3, some results from differential geometry required
later are summarized. A new formulation is outlined in section 2.4. Section 2.5 dis-

cusses briefly the theory of tangent gas.

Chapter III deals with exact solutions for a class of flows whose streamlines
in the physical plane can be expressed in the form y — f(z) =constant, so that
y — f(z) = T(¥) when I'(#) is any function of the streamfunction such that
I'(3)) # 0. The flow equations are transformed into the von Mises coordinate

system in section 3.2. In section 3.3, we employ this system to classify all flows
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of this form. Each of these classified flows is studied in sections 3.4, 3.5, 3.6 and
3.7. All permissible streamline patterns and their exact solutions are determined
in these sections. The state equations of the gases that allow these flows are also
found. In section 3.8, we pose and solve some boundary value problems using the
exact solutions obtained. The possible flows in this chapter are:

1. flows with y — fgln|cssec {(caz - ¢s)| = constant as the streamline pattern

having

1
@(z,y) =C0—
Ca

arcsec
2C2

2Csx/ﬁexp(—cay)]

sin(c3z + ¢4)

as a solution of the potential equation for a tangent gas.

2. flows with y — f(z) = constant where
flz) = 1= ln (1 +1%)
2Bs A 1+ t2 ’

= (;B_ei) (1—:9) ( 2B i) arcten(t),  t=f(z)

as the streamlines having

Bs|Bo[' ™ A(z) [1 + A*(z))] 1(a-1)

@(z’y) == ABg By exp [z\BG (y - B(z))]

as a solution of the potential equation for a gas with the equation of state given by

po + Bsln [\/Eﬁ] . a=-1

P ABS":; Lid
- =X+ A ?é -

3. flows with y — f(z) = constant as the streamline pattern where f(z) is any

monotonic function, f'(z) > 0 or f'(z) < 0, and this flow corresponds to the solution

Dy [ f1() 1
¥(=v) =3, [If‘(z)ly * |f'(z)1""]

of the potential equation for a tangent gas.
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4. flows with y — Eyz — Es = constant as the streamline pattern and this flow

corresponds to the solution

|Es|

B(z,y) = — e
(z.3) E3\/1+ E?

of the potential equation for a tangent gas.

X(s)+ Es

Chapter IV is devoted to the study of all flows whose streamlines are of the form

g(r_g) =constant in polar coordinates. Here, the (#,%)—coordinates are employed to
obtain all permissible flow patterns of this form and their exact integrals. In section
4.2, the governing flow equations are expressed in (6,%)—coordinates and classified.
These classified flows are studied separately in sections 4.3, 4.4, 4.5 and 4.6. The

possible flows in this chapter are:

1. flows with r = constant as the streamlines having
&(r,0) = cs — L2 (g
CpC1
or
B(r,0) =ds — d10

as solutions of the potential equation for a tangent gas and a polytropic gas respec-
tively.

2. flows with rcos (8 + b;) = constant as the streamline pattern with the sclution
&(r,8) = by — b H{(s)

of the potential equation for a tangent gas.
3. flows with re—™° = constant as the streamlines having
|a1} asm ( 6 )
&(r,0) = ay — ———rexp| —
(r,0) = a4 VT me P m
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as a solution of the potential equation for a gas with the equation of state given by

V1
PO" ( +m _,) pm-]-l; m#l

|a1l (1—m)
Do — . In 1+ m? H m=1
° lai} V1 +m? la1| aszp

p=

4. flows with re—? = constant as the streamline pattern and this flow corresponds

to the solution

T THL
O

of the potential equation for a polytropic gas.

5. flows with rcos™! (8 + a13) = constant as the streamlines having

rcos {6 + a3} 40 — sin(f + aya) dr
0.126%1'2 + G.]_.;Sinz (0 + 0.13)

B(r,8) = as/arz [

as a solution of the potential equation for a gas with state equation given by

11
p= po————+—-lnp
azp 4z

6. flows with rexp (—b;8) = constant as the streamlines having

b e
a1oby b;l VIt
\/1 + b2 (1 — agbs) bz 1bs]

as a solution of the potential equation for a polytropic gas.

®(r,0) = rl=abaexp {agh; (by — 1) 6}

In Chapter V, the streamline pattern takes the form 8 — f(r) = constant in polar
coordinates. The (r,%)—net is chosen to analyze this class of flows. In section 5.2,
the flow equations are given in (r,3)—coordinates and all flows of the chosen form
are classified. In sections 5.3, 5.4 and 5.5, exact solutions of each of these classified
flows are determined and the state equations of the gases that permit these flows

are obtained. The possible flows in this chapter are:
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1

2C1T

1. flows with 8 — /2¢;7% — 1 + arccos (

with

) = constant as the streamlines

®(r,0) = '\C/"_'_H( )

as a solution of the potential equation for a tangent gas.

2. flows with § — r = constant as the streamline pattern having

B(r,0) = = (e - ;)

as a solution of the potential equation for a gas whose state equation is given by

_ 11 2 1
PERT g, TG

3. flows with § — f(r) = constant as the streamline pattern where f(r) is any

solution of equations (5.45) and (5.51) havirg

d(r e)z_._be\/”_T / — _ dr4rifrdd N
; V2 J Jbsbr (1 + r2F2(r)) + bobsr? [exp (2b7 [f(r) = 6 + bo] — 1)]

as a solution of the potential equation for a tangent gas.
4. flows with 8 — f(r) = constant as the streamline pattern where f(r)y=Ar+A2

or given implicitly by equation (5.71) with

B(r,0) = 22 |bml"'+1 f (1472 £2(r) ™

L e (b”"’ Do - f(r)]) (dr + £/()d0]

as a solution of the potential equation for a polytropic gas.
5. flows with § — f(r) = constant as streamlines where f(r) is any solution of

equations (5.87) and (5.89) having

=y [y 1 ™ mr_) — f(r ?'T:. d1'+1'2f'(‘r)d9
2,0) = bslt® [ 12| [ I exp (b 16 - 11 )])] [___JﬁTf?(_)]

as a solution of the potential equation for a polytropic gas.
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Chapter VI deals with exact solutions for a class of flows whose streamlines in

the (z,y)—plane can be expressed in the form Y —constant. Again the von

z
Mises coordinates are employed to obtain the exaft( sr))lutions of all possible flows of
this form. The equations of moticn are transformed into the von Mises plane and
the possible flows are classified in section 6.2. In section 6.3, the only permissible
non-uniform flows are investigated. The possible flows in this chapter are:

1. flows with y(diz + d2)~! = constant as the streamline pattern and this flow

corresponds to the sclution
-~ 14 ay =
&(z,y) = |4} 3 [df (2 +°) + 2adow + ] 7T

of the potential equation for a polytropic gas.

2. flows with ytan~? (dsy/ds [c1z + c2]) = constant as the sireamlines having

!
(z,y) = d?/ g(z)d=z + yg'(z)dy
g*(z) + didegi(z) + "% (z)y?
where g(z) = dyvdstan~* (ds\/ds [c1T + ¢2]) as a solution of the potential equation

for a tangent gas.

3. flows having yexp (—-’-",;m) = constant as the streamline pattern and this flow

corresponds to the solution

_1fl,.1[dE@
do) = [das o [ L5

of the potential equation for a tangent gas where g(z) = Azexp (R=).

Chapter VII deals with flows whose streamline pattern is given by £(z,y) =
Re [f(z)) =constaat or n(z,y) = Im [f(z)] =constant for some chosen analytic func-
tion f(z) where z = z+iy. The (§,%)—net is employed to obtain the exact solution
of these flows. In section 7.2, the flow equations are given in (§,1)—coordinates.
In section 7.3, several functions f(z) are chosen and the exact solutions of the

corresponding flows are obtained in some examples. The equation of state is also
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determined in each example. In section 7.4, the remaining possible flows for the
chosen form are studied for completeness. Some of the possible flows in this chapter
are:
1. flows with ori—y = constant as the streamline pattern having
8(z,1) = o2 Vi (& + y’-)]
VNoC VCz

as a solution of the potential equation for a gas with equation of state given by

P=Do o2 P C? o

2. flows with —=— = constant as the streamlines having

arctan [

zi4+y
®(z,y) = - \/Awd';z;arctan { \/N;\(;;; ¥) }

as a solution of the potential equation for a gas whose state equation is

P=Do 02 P Czp
3. flows having \/z? + y2 — = = constant as the streamline pattern with
\/L+C'z-i-C'\/:z:2—l-:l,r2 P
— z
VI + ¥ /\/zz Tz
K]y\/\/xz ¥ —z:\/7+Cz+C\/::2+y
2 .‘/32 +y

as a solution of the potential equation for a gas having state equation given by

KVC(1+ Kp)] 1 K%Cp

be,) = 5 [

J-Kp? | 2(1-K?%?
4. flows with /22 + y? + = = constant as the streamline pattern having
\/L1 —Ca:+C'\/:1:2 +y
@(3vy) = _/
Ve +y-\/\/::2 +y2 +=:

K1j\/\/ + y? +::\F Cz+C\/2:2+y
\/-"’_2:?

1
p=po+3C’Kln|:
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as a solution of the potential equation for a gas whose state equation is

p=po + %CKIIn [K1\/5(1 + KIP):‘ 1 KiCp

Vi-Kip | 20-Kip)

5. flows with Ty = constant as the streamlines with

B(z,y) = [ Cizdz — Cy1ydy
’ [4C; +2Cz%y® — Czt — C-'y"]%

as a solution of the potential equation for a gas having the state equation

1 ,/ 1
P \/a p2 1-— C1 p'Il P
6. flows with z2 — y® = constant as the streamlines with

Dyydz + Dyzdy
[4D, - 4C mzyz]':'

®(z,y) = -

as a solution of the potential equation for a gas whose state equation is

1 j 1
- d
P=Tc) A ficDipr ¥

Chapter VIII deals with a class of flows when the streamline patiern is of the form
Ct(,y) + Dn(w.y) =constant where £(z,y) = Re[f(2)}, n(z,y) = Im[F()], £(2)

is a chosen analytic function of z = z+iy and C # 0, D # 0 are arbitrary constants.

The (£,1%)—curvilinear coordinate net is used to analyze these flows. Flow equations

are recast in (£,%)—net in section 8.2. In section 8.3, several examples of one type

of possible flows of the assumed form are presented. The remaining possible flows

are investigated in section 8.4. Some of the possible flows in this chapter are:

1. flows with 1Cln (z? + y*) + Dtan™" (%) = constant as streamlines having

(Cy + Dz)dz +(Dy —Cz)dy

A: / 1-AA
Sz, =——=x | @ !
(z,7) /C? + D2 /2% +y2
as a solution of the potential equation for a polytropic gas.

20



2. flows with %—}?ﬂ = constant as the streamline pattern with

A D (z* - y*) —2Czy o
2o = e e {/[ (=% + %) ][[2+A4\/02+D£]_}dz

C (z? —y*) +2Dzy a
+/[ (z? + %) } [[2+A4V02+D2a]] dy}

as a solution of the potential equation for a gas having the state equation

2As 2
P=00— 5% {lﬂ(x‘lsp) + Zs_.t;]



CHAPTER 2

PRELIMINARIES

2.1 INTRODUCTION.

The starting point for the study of motion of a compressible medium in the
absence of discontinuities is the system of differential equations that expresses the
principle of conservation of mass, Newton's law of conservation of momentum and

the state equation expressing the condition that the flow is isentropic. This system

% + div (pK) =0

BV

N (V gra.d) V+- ! gra.dp =0

p = R(p)

of five differential equations in three dynamic variables V = (u(z,y,2,t), v(z,¥,2, t),
w(z,y,2,t)) and two thermodynamic variables p(z,y,2,t) and p(z,y,2,t) governs
the flow. These equations of gas dynamics admit an important integral, called

Bernoulli’s equation, given by

qu 1,

slv] +i=3

for an unsteady flow for which the circulation around every curve is zero where ¢,
which may depend upon time, is constant throughout the flow and ¢ is the velocity
potential. This flow, for which curlz vanishes identically, is called an irrotational
flow. Many flows start from rest and proceed such that one of the following holds

true:

i~
(3]



(i)  entropy remains unchanged,

(ii) energy of fluid e = ¢(7,s) is separable,

(iii) the flow is so symmetrical that 7 and s depend on a single
space coordinate,

where T = %. Under any one of the three conditions enumerated, circulation is
conserved and the flow remains irrotational once they start from rest.

The general differential equations governing a compressible fluid flow in a three-
dimensional space present insurmountable mathematical challenges which are be-
yond the present power of analysis. Fortunately, in many problems of great interest
simplifications arise when the dependent variables are dependent upon two inde-
pendent variables. Steady plane or two dimensional flow is one such case. Under
our assumption the flow is characterized by the two components u, v of the velocity
vector field K as functions of the rectangular coordinates z, y in the plane; similarly

p, p are functions of z and y alone.

2.2 EQUATIONS OF MOTION.
The steady two-dimensional irrotational isentropic flow of a compressible inviscid

fluid is governed by the following system of equations(c.f. von Mises [1958)):

d o) .
.é;(pu) + a_y(pv) =0 (contmulty) (2-1)
Su ou Op
plvs, + vb; + Bz
(linear momentum) (2.2,2.3)
(ugv— + 'v@) + i =
P oz Oy Oy
% 5!’. =0 (irrotationality) (24)
? = R(p) (state) (2.5)

where u(z,y) and v(z,y) are the horizontal and vertical components of velocity

respectively, p(z,y) is the density function, p(z,y) is the pressure function and
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R(p) is some function of p. Equations (2.1) to (2.5) form a system of five equations
in four unknown functions u(z.y), v(z.¥). p(z.y) and p(z.y) when R{p) is a known
function. However, if R(p) is not known or is not considered, then equations (2.1)
to (2.4) are a system of four equations in four unknowns.

We transform the above equations into a curvilinear coordinate system (¢,¥)
where the curves 1{z,y) =constant are the strecamlines of a flow and the curves
#(z,y) =constant are left arbitrary. Before proceeding any further, we present
some results from differential geometry for a general curvilinear net (¢,%) in the

next section which are required for the transformation.

2.3 SOME RESULTS FROM DIFFERENTIAL GEOMETRY.
Let

z=2z(¢¥), y=y(d¥), (2.6)
define a system of curvilinear coordinates (¢,%) in the physical plane such that
d(z,y)
O<|Jl=lg7—%| <
1=1a6.9)

and the squared element of arc length along any curve is
ds? = E(¢,$)d¢? + 2F(¢,$)dédep -+ G(4,%)dy’ (2.7)
where
_ [0z 2 oy \? _ Oz 0z  Oydy _ oz \*? &y \?
=(5) + (%) = oo " (3) +(z) oo

Equation (2.6) can be solved to determine ¢, as functions of z,y so that

Oz =J3'l.b Oz _Jafﬁ Oy Y Oy _J@

%5 WU % wle
and by (2.8),
= 3_::_3_y_ - Qﬁgy- = +VEG-F2=3xW (say) (2.10)
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Let the following conditions hold

i) P(z,y) is any point on a curve ¥(z.y) = c, where ¢ is a constant,

i) variable ¢ is increasing on ¥{z,y) = ¢ in the direction in which %, y are
increasing,

iii) B(z,y) or B(¢,¥) denotes the angle of inclination of the tangent to the

coordinate line 9(z,y) = c, directed in the sense of increasing ¢.

\

v

¥=C,
¢—increasing

B

R

Figure 2.1: The {¢,¥)—curvilinear net

The tangent vector to ¥(z,y) = cat P is (g—:, g%) or (z'(¢4), ¥'(¢)) and we
have
%
_ 9 92 o=
tang = oz or 5 sin@ = 36 cosf3, (2.11)
8¢
Using (2.11) in the first equation of (2.8), we get
Oz _ Oy _ . '
T E cosf, 6~ VE sin8, (2.12)
The first two equations in (2.8) can be rewritten in the form
0z 0z Oydy _

3636 T 3696 = T
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Oz 8z Oy Oy

9650 T 060p
Solving these two equations for %, we obtain
Oz dy dy
J=—= 3 E-az - Fa—-d),
or
Oy oz dy
E==J—-+F4+. 2.13
5 = o8 " 86 (2.13)

Similarly, we find that

E_'a_z=F3:: 3_;

50 E,’E 34’) (2.14)

Using (2.12) in (2.13) and (2.14), we get

g > \/_ cos@@ — \/_ —sinf
By J cosf3 + —F— sinf #19)
% - VE YT B

Differentiating (2.10) with respect to ¢, we have

0F aG oF
o _ G— ¢>+E6¢ -—_F%

i 57 (2.16)

: e . Pz Bz Py _ Oy
t = =
The integrability conditions 3650 ~ 5904 9% 5505 give

o 7 o8 1 9E _F OE
[—\/_—Esmﬁ-i- \[—6055] - VEsi ﬁ [ oVEOY 2EVE 0¢

+ TEag |0 [2E{fé%§ - T/IEZ_;] sinf

and

o8 _1 9B __F OF
[\/Ecosﬁ \/_sm] +\/Ecosﬁa¢ [_2\/Ea¢' 2EVE 59

+ -—I—?E—]sinﬁ - [-—-—J ?ig- - —1—-8—']] cosf?
VE 8¢ 2EVE 0¢ E 8¢
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Solving the above two equations for —— 36 3% and using (2.16), we obtain
98 _ 1 F_@_E EaF 8E]
8¢  2EJ 8¢ d¢ Y
a1 0E oG
5= 57 P 255
which can be written as
B _ Jo 98 _Joe
645 Ern’ a¢ EFIZ (2'17)
where OF oF OF
2 _ 1 |_po& ,p0f 08
Fn-?.Wz [ F3¢+~E6¢ Ea‘qb]
(2.18)
T, = _1_ Ea_G_ - F@E
127 9wz |~ 8¢ o
are the Christoffel’s symbols.
Fr hat th bili di il &6 lies th
2.17), that the int t ti ies that
om (2.17), we see that the integrability con 1ona¢a¢ 3¢3¢1mp s tha
é (J 8 (J
S)-SGm)- e

Equation (2.19) says that the Gaussian curvature

e[ () (3] -

and is referred to as the Gauss equation.

Conversely, if E, F and G are given as functions of ¢,% such that the Gauss
equation (2.19) is satisfied, then we show that the functions z(¢,%) and y(#,¥) can
be obtained in terms of E, F and G where E, F and G satisfy (2.7).

Equation (2.19) implies the existence of 8 = 8(#,%) such that



Therefore, 3 can be obtained from

8= / ( d¢+—d¢) f = (T1dg + TTdy) (2.20)

The functions z(¢, %) and y(¢,v) are given by

z = / {(\/Ecosﬂ) do + (% cosB — ——\‘/% sinﬁ) dz,b}
y = ] {(\/E sinﬁ) dé + (—\% sing + VJ‘E cosﬁ) d¢}

Introducing the complex variable z = z +1y, (2.21) can be written in a concise form

(2.21)

as

re [ Le®

.= j e (Edd + (F+iT)db) (2.22)
where 3 is given by (2.20).

Summing up, we have:

Theorem 2.1. Three functions E, F, G of ¢, ¥ serve as coefficients in the first

fundamental form

ds® = Ed¢® + 2Fd¢dy + Gdy?

for a plane with a curvilinear coordinate system

= :n(qb.,'l,[)), y= y(¢s¢)

if and only if they satisfy the Gauss equation

o (J 9 (J
% (7%) -5 (5%) =

If this condition is satisfied, then the functions z($,%) and y(¢,%) that define the

curvilinear coordinate system are given in terms of E, F and G by (2.22).

From the relation
=+ EG - F?
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we find that

b3 E 1 O0E E oG o 6F
% (zw=) = owe {'éa"r?v? [Esa”‘a?'”%]}

1
= 353 [FTH - BT (2.23)
0 E 1
89 2W2) = — [FT], - ET%)] (2.24)
d (F o (E 1

E— - 2F

1 [ 3G QH@g}
5 o9 96

(2.26)
2.4 A NEW FORMULATION.

In this section, we transform the flow equations into a curvilinear coordinate
system (¢,7) where the curves ¥(z,y) =constant are the streamlines of the flow
under consideration.

Equation of continuity implies the existence of a streamfunction P = P(z,y) such

that

& _ % _
=, = (227)

We take two families of curves ¢(z,y) = constant and ¥(z,y) = constant such
that a curvilinear net is defined in the physical plane when ¥ = %(z,y) is the
streamfunction and ¢ = ¢(z,y) is an arbitrary function.

Having recorded the results from differential geometry in the previous se. .on,
we transform the flow equations (2.1) to (2.4) into a new form.

Continuity equation

Employing (2.9) in (2.27), we have

g_z = Jpu, - (2.28)



Equations (2.28) in (¢.%) coordinates are equivalent to the continuity equation (2.1)

in (z,y) coordinates.

We introduce polar coordinates g, § in the hodograph plane by placing

u = g cosf, v = gsind, g=Vu®+v2 (2.29)

Here 6 is the direction of flow in the physical plane. Now equation (2.28) becomes
Oz oy

36 J pq cosb, 36 = Jpgsind (2.30)

When equations (2.30) are compared with (2.12) two possibilities arise, namely
i) 6=8, Jpg=VE, J>0

i) =p+m,  Jpg=-VE, J<0

In i) the fluid flows towards higher parameter values of ¢ and in ii) the fluid flows
towards lower parameter values of ¢. In either case, from (2.10), taking J = W for
6 =pand J=-W for § = 8 + 7, we have

pg = (2.31)

S

for fluid flowing in either direction.
Conversely, multiplying (2.31) by cosf and sinf and using (2.12), we have

Oz
3¢ Bq‘:

Taking 8 =8 and W = J or § = 6 — x and W = —J according as fluid flows along

= Wpg cosf, = Wpgsin8

a streamline in the direction of increasing ¢ or decreasing ¢, we get

18z Feeh @ %

1
75~ T8y TJoas T o

o F
Employing the integrability condition 32 ;’by ay;bx yields the continuity equation.

Therefore, the new equivalent form of the continuity equation (2.1) is given by
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(2.31). This equivalent form was originally derived by Martin (1971} in a study of

viscous incompressible flows.

Linear momentum equations

Taking ¢,¥ as independent variables and using (2.4), equations (2.2) and (2.3)
are

1 3q2 6¢ L9 3q2 31,b Lo 3p 345 8p 31,b
06 0z | ax d¢ Oz o 0z

3P + = =0

56 9y T 5% oy T 960y " 39 0y

where ¢? = u? + v2. Using the transformation equations (2.9), we obtain

1 [qu o¢ 29 oq* Oy , Op9d 8p &)

Ll wa) an B
56 3% 00 96| T 5609 0% 84
1 8¢ 0z  Oq° dz] Opbz  Op Iz _
§4awwewﬂ‘%%+ww

Multiplying these two equations by ?—, @ respectively and adding gives one equa-
d¢’ 0¢

tion; again, multiplying by —g%, % respectively and adding gives the second equa-

tion of the following set of new equivalent form of the linear momentum equations:

1 3q Op
a¢a+3¢r 0

1 8¢ &p

P3¢ "oy

Irrotationality Condition

Employing ¢,? as independent variables in (2.4) and using (2.9), we obtain
v dy 3v6y Ou bz Oulz

3650 9906 T 0400 0908

Using (2.29) in this equation, we get
S, 0y, ,0z) da[ Oy _ 0=
6¢[sn93¢ OGW} aﬂ’[ 6¢+C0593¢]

(2.32)

86 3y . .0z 6 ay Oz _
qa—¢ [cosﬂ 50 sind -3_"1’-] - qad’ [cosﬁ' 36 — sind 6_45] 0
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Equation (2.32) with the use of (2.12) and (2.15) takes the form

gi [(j'_ sin 8 + j%cosﬁ) sind + ( — cos I — %smﬁ) COSG]

gfb [\/_Esm,ﬁ sinf + VE cos 3 c059] +qgi [(j_ sinf3 + j_EcosB) cosf
- (%cosﬁ— -j_ESinﬁ) sinﬂ} —q—g% {\/Esinﬂcosﬂ-— \/EcosﬂsinG} =0

(2.33)
When Auid flows in the direction of increasing ¢ so that 8§ = 8 or when fluid

flows in the direction of decreasing ¢ so that § = 8 + m, (2.33) yields

04 3ﬂ
3¢> E 51# +Jg—==0 (2.34)
Using (2.17) in (2.34), we get
dq 8¢ | 9 (opdF _ 9E oE
Fa¢ E—a¢ +35 [_E—ad’ F—aqs Ea¢] =0 (2.35)

Dividing (2.35) by VE and simplifying, we get

8 (F
Ex (TE q) 5% (VEe) =
Summing up, we have

Theorem 2.2. If the streamlines ¥(z,y) =constant of a steady, plane, inviscid,
isentropic, irrotational compressible fluid flow are taken as a set of coordinate curves
in a curvilinear coordinate system ¢,% in the physical plane, the system of flow

equations (2.1) to (2.5) is replaced by the system

vE

)

1 9, , ,0p
. a¢( )+ 55 =0 (2.38)
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a% (_\%q) _ 9 VEp=0 (2.39)

o
o W a ,w
%(Eri) - ga(frfz) =0 (2.40)
p = R(p) (2.41]

of six equations in six unknowns E,F,G,p,q and p as functions of ¢,v.

Having determined a solution of this system, the (4, )-plane is mapped onto the

physical and the hodograph plane by
» eiﬁ . W 2 2
z+iy = 7_5 [Ede + (F + iW)dy], 8= E(I‘lldcﬁ + I'{,dy)
u+iv= ;\/g exp(if)

to achieve the complete solution for our flow given by

z=z(¢%), y=y($¥)

u=u(g,¥), v=v($¥), p=pd¥), p=pHY)

2.5 TANGENT GAS.
The motion of gas in this study is assumed to be such that the gas viscosity and
heat conduction are neglected. This assumption means that the changes of state

are isentropic at every fluid particle. The general isentropic equation is given by
p = f(p)
The most investigated isentropic equation has the form
p=4Ap*+B  (p20)
where A, A and B are constants and this equation for an ideal gas is

p=4p" (p20) (2.42)
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¢
where A and ¥ = = are constants, v is the ratio of the specific heat of the gas at
v

constant pressure to that at constant volume.

The complex phenomenon of gas flow due to the non-linearity of the flow equa-
tions receives additional complexity to its theory due to the non-linearity of the
state equation (2.42). This fact forced approximations of this state equation in
solving most problems. The isentrope of a gas having state equation

1
p=AT"+ B, 7= p (2.43)

is approximated and linearized. This curved isentrope in (p,7) —plane is approxi-
mated by the tangent line at some point (pa, Te = ;’l—n) on this ideal gas curve when
this point corresponds to suitably averaged thermodynamic flow condition.

It is postulated that there exists an imaginary gas which has this tangent as
its isentrope. The name for such an imaginary gas is Chaplygin-Karman-Tsien
tangent gas [1904,1939,1941] or just a tangent gas. The isentrope of this imaginary
gas, corresponding to an ideal gas, is shown in the Figure 2.2. A detailed discussion
of the properties of this gas and their applications in the theory of subsonic plane
flows have been given by Woods [1961].

The tangent gas will reasonably approximate an ideal gas provided either

1
(a) pand : do not vary markedly from p, and —, or
a

(b)  the point ( a pi) lies on the ideal gas curve at a point of

a

small curvature.

Linear perturbation theory results from (a) when variations of both pressure and
density are small. When (b) applies, we have either the case of high pressure and
density or the case of low pressure and density. When the tangency point is a point
of relatively high density, the tangent to the ideal gas curve or isentrope becomes
almost vertical and so the flow approximates incompressible flow when large varia-

tions in pressure but negligible variations in density occur. This approximation is
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L Incompressible gas

Range of linear

b
\ perturbation theory
Ps
Ideal gas
Imaginary gas
’
Figure 2.2 Pressure versus specific volume for ideal gas.

reasonably good provided low pressures are not attained in the flow. Therefore, the
theory of tangent gas includes incompressible flow theory and linear perturbation
theory.

1
The speed of sound c? at the tangency point (p.,, ; ) for the equation of state

a

(2.43) is
2 2
¢ = .4 d cz = E%
dp P & p

However, at the tangency point, the speed of sound for both the ideal gas and the

tangent gas is the same and, therefore, from (2.42), we get

2 _7TPa _ (dp)
Ca - = —
Pa dp at p,

1
The equation of the tangent line to the ideal gas curve at the point (p.,, p_) is
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Since

dp dp dp 2 1 22
—_ =|-— - =cC, A = —PaCa
dr/, dp dr/, TS

the isentropic equation for the tangent gas is

P—Pa = Pacq (Ta—7) (2.44)

Since
P=pa+pici(ta—7)20

it follows that

1
T < pao +Te =Ta [1+paTa] = [1+:] Ta
Y

— 2 2
PaCa Ca

Therefore, the minimum value of p for a tangent gas is

YPa
7+1

Pmin =

Integration of the two linear momentum equations (2.37) and (2.38) yield the

Bernoulli’s equation given by
1 d
-+ / 2P _ constant
2 p

For a tangent gas, this equation takes the form

where goo and co are the flow speed and Mach number at infinity. Some of the
other researchers who have contributed to the theory of tangent gas are Lin (1946],

Coburn [1944], Karpp [1984], Daripa [1986] and Sirovich [1986].
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CHAPTER 3

STREAMLINE
PATTERN 4 - 5z = CONSTANT

3.1 INTRODUCTION.

This chapter deals with exact solutions for a class of flows whose streamlines in
the (z,y)-plane can be expressed in the form y — f(z) =constant, where f(z) is a
continuously differentiable function. For these flows,y = f (z)+T(¢) is a function of
z, i along such streamlines, where I'() is some function of 9. We choose straight
lines = =constant for the coordinate lines ¢ =constant in theorem 2.2 having flow
equations in (¢, %)-coordinates. We employ von Mises coordinates (z,%) for our
study of this class of flows.

Having made the assumption that our streamline pattern has the chosen form, we
analyse the flow equations in von Mises coordinates and obtain further classification
for these flows. This classification guides us to study the four different possible flows.
We learn that there are three types of non-straight flows besides straight parallel
flows that have the chosen flow pattern. Function f(z) in y — f(z) =constant is
found to be

(a) a solution of [1 + f%(z)] f*(z) - 2f'(z)f"(z) = 0 in the first type of non-

straight flow,
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. A 2 1 . .
(b) a solution of ag,' [(1-:(11 JE,?(ZJ;) :(z)] = 0 in the second type of non-straight flow
where A is any constant with the restriction that A # 0 and A # 1,

(¢) any function f(z) such that f'(z) > 0 and f“(z) # 0 in the third type of

non-straight flow and

(d) a solution of f"(z) = 0 for straight parallel flows.

Fluid dynamics equations governing our flow patterns are studied in an e pri-
ori unknown system of non-orthogonal von Mises coordinates where one family of
coordinate lines is assumed to coincide with the sireamlines. Flow equations are
completely integrated in this coordinate system. Exact solutions are determined
and the state equations for the gas that permit these obtained solutions are found
for each flow. Tangent gas equation introduced by Chaplygin [1904] and further de-
veloped by von Karman [1941] and Tsien [1939] show up in some of these solutions.
It is found that the gas must be 2 tangent gas for two of the four non-straight flows
and the straight parallel flows. It is also found that two permissible solutions are

neither valid for any polytropic gas or its tangent approximation.

3.2 FLOW EQUATIONS IN VON MISES COORDINATES.

Steady, two-dimensional, irrotational, isentropic flow of a compressible inviscid
fluid is governed by equations (2.1) to (2.5) in (z,y)- coordinates.

Transforming these flow equations into a curvilinear coordinate system (é; ),
where ¢(z,y) = constant is an arbitrary family of curves and ¥(z,y) =constant are
the streamlines, our flow is governed by a system of six equations given in theorem
2.2,

To determine continously differentiable functions f(z) € C® so that our com-
pressible fluid flows along families of curves that can be expressed in the form

y — f(z) =constant, we choose the von Mises coordinates (z,%) and have

y—f(z)=T(%), T #0 (3.1)
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where I'(1} is an unknown function of .
Taking (z,)- coordinates so that the family of curves ¢(z.y) =constant are
the curves = = constant in theorem 2.2, as shown in Figure 3.1. we use (3.1} in

equations (2.8). (2.10) and have

E(z,%) =1+ f*(z), Glz,%)=T"(¥), F(z,%)=f(=)T'(¥)

I =[928 ). W) = VEG - FF = V) = D) >0
(32)

yt\

" A=4a

/ A

AW

d

Xec, xndy ey

Figure 3.1. von Mises coordinates.

From (3.2), it follows that J > 0 and, therefore, the fluid flows along a streamline
in the direction of increasing z when I'(3$) > 0. Also, J < 0 and, therefore, fluid
flows in the direction of decreasing z along a streamline when I'(3) < 0.

From (3.2), we also have

Fz,9)=+/(E-1)G, W

39

VG (3.3)



Writing equations of theorem 2.2 in von Mises coordinates to study flow along
the curves y—f(z) = constant, we use equations (3.2) and (3.3). Gauss equation

is identically satisfied and the fluid flowing along a streamline is governed by the

system
8¢  Op _
m + 5 = 0 (3.4)
dq  dp _
pq% + 5&; =0 (3.5)

8 | f'(=)I'(9) 9 ; _
R R

_VIEP®
7= (30

p= R(p) (255)
of five equations in five unknowns p(z, %), p(z, %), (=, %), I'(¥) and f(z).

In our search for all continuously differentiable functions f(z) so that for each
f(z), curves y — f(z) = constant define a streamline pattern for some compressible
flow, we do not specify the gas we study and, therefore, do not have a state equation.
Equations (3.4) to (3.7) are a system of four equations in five unknown functions
and we solve this under-determined system. Given a solution of this system, state
equation (2.5) is determined from p = p(z,¥), p=p(z,¥) for the gas that flows

along the obtained streamline pattern.

Using equation (3.7), we eliminate p from equations (3.4), (3.5) and have

VAR 0, 0 _

@) 0z T ds 8
V14 f2(z)dq  Ip _
O (39)

Employing the integrability condition %:%& to eliminate pressure p from (3.8)
and (3.9), we obtain

9 [\/—Hf”(z_)].aq 9 [\/1 +_f"=’-(==)] dq _

5| TN |8 % | TN % (3.10)
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Equations (3.6) and (3.10) are a system of two equations in three unknown functions

I'(¥), f(z) and ¢(z,%). Givena solution of this sytem, p(z, ) is determined by the

integration of equations (3.8), (3.9) and p(z,%) is determined by using (3.7).
Defining

g VITTG)
()|

system of equations (3.6), (3.10) is rewritten as

= afz,$) # 0, (3.11)

f'(z) 8 , _
oz [a(z m ] 3% [z, $)T' (¥)g] = O (3.12)
and
&e,q), _ Oa dg da g _
la(‘-'= '¢’)l Y (3.13)
where

da _ f(2)f"(z) Q_ _a(z,¥)I(¥)

5z a(z,9)T2(¥) 8 T'(¥)

(3.14)

3.3 CLASSIFICATION OF FLOWS.

Analysis of the system of equations (3.12) and (3.13) leads us to the classification
of all flows with a streamline pattern of the form y — f(z) =constant.

Equation (3.13) is identically satisfied only if any one of the following holds true:

(i)g = q(a). ¢'(a) # 0. This is the case when the curves of constant speed
and the curves of constant flow intensity coincide.

(n) 93 — 0. Thisis the case when the flow intensity is constant everywhere.

(iii) 2 e = w — 0. This is the case when the flow speed and the flow intensity
are constant on each individual parallel straight line z =constant.

(iv) 3 —1 -5-1 — (. This is the case when the flow speed is constant everywhere.

(v) 5 -—-9- a—"’- 0. This is the case when the streamlines are the curves of constant
flow speed and the curves of constant flow intensity.

We study these possibilities one by one.
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Possibility (1) ¢ = g(a). ¢'(a)#0 :

Taking ¢ = g(a) in equation (3.12) and expanding. we obtain
f”(z) 1 ' a) ) a i ! ' 6
@) gta)+ () |12 - L] T —agter ) - la(e) + g (@) P g =

Using (3.14), we eliminate 2 and %‘j from this equation and obtain

[q(a)

L &

+ (afl;i*;;,)) {aq'(e) - q(a)}] (@) + ¢ ()T ($) =0

Eliminating f"*(z) from this equation by using a*T"*()) =1 = f'*(z) given by (3.11)
and multiplying by o®I'?(%), we have

[g() = ag'(a) + &’ ¢ ()T ()] f'(z) + a®¢(a)T*($)T"(¥) = 0 (3.15)

This equation replaces (3.12) for the case when ¢ = g(a).

Since f"(z) = 01in (3.15) implies that I"'(4)=0 and equations (3.14) give oz, %) _

Oz

da(z, %) = 0if f"(z) = [''(¥) = 0, it follows that a(z,%)= constant when ¢ = q(a)

&
and f"{z) = 0. Using & = constant in ¢ = ¢(a) and pg=a given by equation (3.11),
we note that p =constant. Therefore, f"(z) # 0 in equation (3.15) when ¢ = g(a)

for our study of compressible flows and we have either

(a) non-straight flows (that is, f'(z) # 0) with
T"($)=0, qle)-ad(a)+a’q(e)["*(%) =0 (3.16)

or

(b) non-straight flows with I"(3) # 0 when g = g(a).

We now further analyse non-straight flows with I'(%)#£0.

Since g{a)—ag'(a)=0 implies that g is proportional to a and we know from
equation (3.11) that pg=a, it follows that g(e)—ag'(a)#0 in (3.15) for the study

of compressible flows and (3.15) may also be written as

2oy lag'(e) = g(e)] £(2)
r ("1’) - azq’(a)f"(z) + a5q’(a)I‘"(¢)
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when f'(z) # 0 and T'"'(¥) # 0.
Differentiating (3.17) with respect to z, using (3.14), dividing by f"(z) # 0 and

simplifying, we obtain

Ay(a)F(z)f"(z) + [Ax(@)D? (%) " (=) + As(@)f'(z)f"*(@)| T"(¥) =0 (3.18)

where
Ar(a) = 3q(a)g'() + ag(a)g" (o) = 3ag(a), (3.19)
Asa) = o [ag?(a) — g(a)qd'(e)] (3.20)
and
Ay(a) = o [aqla)q"(a) — Sag”a) + 5¢(a)q'()] (3.21)

Equation (3.18) requires that we classify further our non-straight flows with I (4)70.

We therefore investigate

(b') non-straight flows with T' (1)#0 such that
Ay(a) =0 and A (a)?(¥)f"(z) + Ax(@)f'(z)f"(z) =0

and

(") non-straight flows with I'"(4)#0, such that

" —Ar(@)f'(z)f" (=)
A = .
() #0 amd "0 = T e + A@PEFE
Possibility (ii) %Z- = %3 =0:
Using %% = g—% = 0 in equations (3.14), we note that f'(z) = T"(3) = 0 and,
therefore, we get
f(z) = Dyz + D2, (%) = D3 + Dy . (3.23)

where D130, Dy, D3 # 0 and Dy are arbitrary constants.

43



Using (3.23) in equation (3.12), g(z.%) satisfies

Jq Oq
D\D 1+ D} .
1Dam- ~ (1 + D)5y ) =0 (3.24)
This possibility gives straight parallel flows when the flow speed is given by (3.24).
Possibility (iii) ﬁ = g% = 0:

Using % 0 in the second of the two equations (3.14), we get I''(4) =0 and
therefore equation (3.11) gives

V14 iz
pg=a= '—“j{%"(_) I'(y) = Ky (3.25)
Using (3.25) and $2=0 in (3.12), we integrate and have
Kza
=t 3.26
q Kia® =1 (3.26)

where K,#0 is an arbitrary constant and K>20 according as there is = sign on the
right hand side of (3.26). Since (3.25) and (3.26) satisfy equations (3.16) in g(a)
and IV(9), it follows that this possibility is the first case of possibility (i) defined
by (3.16).

Possibility (iv) g—i =5 = 0:

. Og Og .
Using 3 " Bz =0 in (3.8), (3.9) , we get

? = cz(p).gf =0 (3.27)
@_ 2 dp
% c*(p )3¢ (3.28)

Equations (3.27), (3.28) and our possibility lead to uniform flow of constant density

whicb is of no interest to us.

Possibility (v) g‘; 0:
Using f’(z):consta.nt as implied by (3.14) and a—a=0, in (3.11) and (3.12), we

Oz
dq dq Bq
obtain A . Therefore, — =0 as in possibility (iv) and we get a uniform

flow of constant density which is of no interest to us.

Summing up, we have
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Theorem 3.1. If families of curves of the form y — f(z) = constant define stream-
line patterns for steady plane isentropic irrotational compressible fluid flow for vari-
ous continuously differentiable functions f(z) so that y — f(z) =I'(¥) for each f(z),
where ¥(z,y) is the flow streamfunction and I'(#) is a function of v with I'(4)20,
then all possible flows are classified as

(i) non-straight flows with I''(¢)7#0 and A;(a) =0.

(ii) non-straight flows with T"(¢) # 0, A1(a) # 0 and

. _ Ay(a)f'(2)F"(z)
') = L@ f(2) + As(@)F (2) (=)’

(44%) non-straight flows with I''(3)=0 and
g(a) — ad'(a) + ¢ ()T () =0

(iv) straight flows with T"()=0.
where A;(a), As2(a) and As(a) are given by equations (3.19) to (3.21).

Flows classified in this theorem are studied in the following sections.

3.4 NON-STRAIGHT FLOWS WITH A4,(c) =0 AND T"(¢) #0.

Functions g(a), [(#) and f{z) satisfy a system of three equations for these flows
where a(z,) is defined in (3.11). This system is comprised of equation (3.15) along
with

Ar(e) = 3g(a)q' (@) + ag(a)q"(a) — 3ag*(a) =0 (3.29)

and
Ax(@)D2 ()" (z) + As(@)f'(2)f () = o® [ag*(a) - g(e)q'(a)] T2 ()" (2)

+ a2 [ag(a)q” (@) + 5a(a)q' (@) — Sag?(a)] f'(z)f"*(z) =0
(3.30)

obtained from (3.18) by taking A;{a)=0.
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Dividing (3.29) by ag{a)q'(a) and integrating twice with respect to a, we get

b
-

¢(a) = ————clq;a). -

¢*(a) = (3.31)

where ¢; # 0 and ¢ # 0 are arbitrary constants. These restrictions on ¢ and
¢o are the restrictions due to our study of non-uniform compressible fluid flows.
Since g > 0, it follows that ¢; > 2cza” for every permissible value of a in the flow.
Therefore, c2 < Jif¢; <0, c2§0 if ¢; > 0 and ¢z cannot be positive if ¢; is negative.
Eliminating ¢'(e) from (3.29) by using (3.31) and solving for ¢"(a), we obtain

_ 3cig®(a) B 3c1¢%(a)
ab ot

q"(a) (3.32)

Using (3.31) and (3.32) in (3.30) and (3.15), we eliminate ¢'(a). ¢"{a) and obtain

[ (@) — a?] & T2(9) f(z) - 2 [a1d* (@) — o] f'(z)f"*(z) =0
and
[o? — c1¢%(a)] F'(z) + &1 [f"(2) + 7T (¥)] &’ T ()g*(a) = 0
Eliminating ¢?I"2(%) and ¢*(e) from these two equations respectively by using
(3.11), (3.31) and dividing the first equation by e1¢*(a) — a® # 0, we obtain the
system
[1+ 72(2)] () - 2f'(z)f"*(z)} =0 (3.33)
and
e () (%) + 1?3 (%) = 2¢2"(z) = 0 (3.34)
of two equations in two unknown functions f(z) and I'(%).
Dividing (3.33) by [L + F"*(z)] f"(z) # 0 and integrating the resulting equation
three times with respect to z, we obtain
P =all+ (=), fle)=ten(cz + i)
and (3.35)

f(z) = cl—sln|cssec(c3:|: + ¢4)|
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where ¢; # 0, ¢; and ¢s # 0 are arbitrary constants.

Employing (3.11} in the first of the three equations of (3.35), we have
fl(z) = e [1+ fF3(=)] = ez T () (3.36)
Using (3.36) in (3.34) and dividing by f"(z) = e3a?T'2(3h) # 0, we get
eI (@) + c3 [T () — 2¢2] =0

Since ¢; # 0 and I"(¥) # 0, it follows that e I"?(¥) — 2c2 # 0 and the above

equation can be written o~

IM(¥)

_-——r'z('dl) Y +e3 =0 (8.37)

Integration of (3.37) twice with respect to ¥ yields either

@)  D'(&) = ktan(kes — kea®) (3.38)
and
() = El--lnlcTcos(kcs = kegd)| (3.39)
3
when 2%:?- = —k2 < 0, ¢g and ¢z # 0 are arbitrary constants (¢; >0, ez < 0),
1
or
. oy 2cgmexp (—2mez)
(i) T@)=mtio (3.40)
and
1
TW)=my + c—alnlcg {1 — cgezp(—2mezph)} | (3.41)

2¢
when —c-g- =m? >0, cg # 0 and ¢y # 0 are arbitrary constants (c1, ¢ are both
1
positive or negative).

We, therefore, have:
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‘A family of curves y — clalnlcssec(caz: + ¢4)| =constant defines a streamline
pattern in a steady plane irrotational isentropic compressible fluid flow for

some gas such that
c3y — Inlessec(csz + c4)| = eal () (3.42)

0 et d
where L) is given by (3.39) or (3.41) according as "c—c‘ = —k* <0 whenc; >0
1

2e n . .
and ¢ < 0 or = m* > 0 when ¢, and ¢; are both positive or negative

¢
constants.’

The streamline pattern for this flow is shown in Figure 3.2. We now further

investigate these two cases in the following:

~

121

10+
y=hisecGedl =2 /7-M:ecu+-)l a5

q)

-2¥

Figure 3.2, Streamline Pattern for y — ln{jsec(z + 1) |}=constant,

Case 1: (2:1 = —k?®<0Owhene¢; >0,c; < 0)

In this case, using (3.35) and (3.39), (3.1) reads

cay — In|essec(caz + ¢4)| = In|crcos(keg — kes))| (3.43)
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Solving (3.43) for cos(kes — keyp) and ¥(z.y), we get

1
cos(keg — kesp) = :!:;TCXP(Csy)COS(Csz +¢1) (3.44)
5CT
and
1 1
P(z,y) = — — —cos™ [:i:—-—exp(csy)cos(caa: + c.;)] (3.45)
Lc;; C5Cy

where positive or negative sign is taken according as cscrsec(csT + c4)cos(kes —
kea1p)Z0 respectively.
Using (3.45) in (3.38), we obtain

ky/cicE - exp(2esy)ec #(czz + 64} \/2czexp(2¢:3y)cosz (e3T + c4) = 2coc2cE

I ) =
W)==* exp(cgy)cos(csz + cs) c1exp(2csy)cos?(eaz +¢q)
(3.46)
Employing (3.46), (3.35), (3.31), (3.36) and (3.11), we have
22 _ .2 _ ad _1+ (=) exp(2¢c3y) 4T
pFe=a =77 2co®  I2(9)  k?[c2c2 — exp(2csy)cos?(caz + ¢4)] (3.47)
Solving (3.47) for ¢(z, %), we get
_ « _ _ (3.48)
1 Vavl+k2a?  (/2cacos?(eaz +cy) — 2cac2ctexp(—2c3y) — 262 )

Equations (3.47) and (3.48) yield

2 =9 — 2
p= Javitiea? = Vadgdexp(-2cy) —acof(azta)ta (g4
Vet cZexp(— ‘7c3y) - cosz(c;;a: + cq)

Differentiating (3.1) with respect to y and = respectively and using (3.35) and (3.49),

we obtain
w(z,3) cos(¢csz + ¢4) (3.50)
\/ ‘7c2cosz(c;»,:|: +e4) = "CzCz c-,exp(—"cs'y) 2‘-'2
and
o(z,g) = sin(eaz + ¢4) (3.51)

\/_cgcos-(csz + ¢3) — 2¢cz¢2c cZexp(—2¢3y) — 2¢2
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Employing (3.47) and (3.48) in (3.4), (3.5) and integrating, we have

Jq dq / Ve
= dp = — _ _— = - ! = —_———
P ] P ] [pq 5292 T g, dy] ag'(@)de = po = o=

/a5 /) et a)
2¢2 \/cEcZexp(—2c3y) — cos?(caz + ¢5) + 1

where po is an arbitrary constant.

=Dl

(3.52)

From the solution obtained for the two thermodynamic variables in (3.49) and

(3.52), it follows that the state equation for this flow is

C1

P=po—3

e (3.53)

The speed of sound for this flow is given by

_ dp _ B 1
C_‘/dp_‘/ o (3.54)

The slope of the tangent gas represented by the straight curve given by (3.53) in

(p, -:;) -plane is positive and the speed of sound given by (3.54) is an imaginary

number. We, therefore, conclude that

'u(z,y), v(z,y), p(z,y) and p(z,y) given by (3.50), (3.51), (3.52) and (3.49)
determine @ mathematical solution set of (2.1) to (2.4) which, however, does not

correspond to any physically possible state equation or physically possible gas.'

2¢ . s
Case 2: (-——2 = m? > 0 when ¢;, ¢, are both negative or posmve)
c1

Using (3.35) in (3.1), we have

1
y— c—ln|cssec(C3a: +¢y)| =T(¥)
3
so that
+exp [c3y — csT(¥)] = cssec(eaz + €4)

and
cZexp [2¢3T(%)] = exp [2¢39) cos*(caT + ¢3) (3.55)
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Differentiating (3.40) with respect to 3 and rewriting (3.41), we get

—4m2egcgexp [—2mez ]
(1 — csexp [~2mesy])”

() =

and
co (1 — cgexp [—2mea9]) = Eexp [esT()] exp [-mcsy]

Using the second equation in the first and employing (3.55), we have

() = — 8cacacscs  _ _8czc3c§csc§sec2(c3z +cg) (3.56)
crexp [2¢3T ()] c1exp(2¢sy)
when m2 = == is used.
a
Using (3.56) in (3.37), we get
1
I?(3) = 2 _T(¢)
(] C3
_ 2 8cocsch _ 22 8cactegcisec? (caz + ¢4) (3.57)
[531 C1€Xp [263]?(1,[’)] C1 clexp(2C3y) ’

Using (3.57), (3.35) and I'(%) > 0 in the definition of « in (3.11), we obtain

2C2 Cco

pg = oz, ¥) = 1T (%) s2(csz + ¢4) + 8eactcsciexp(—2cay)

(3.58)
Employing (3.58) and (3.31), we have
g(z,y) = Z = .~
’ Ve, = 2202 /2cac0s?(csT +cq) + 8czc§c3c§exp(—_2_c3y) — 2,
. (3.59)

and

o(z,y) = o —3c02 = V/2¢1¢2c08%(c3T + c4) + 8crcackegczexp(—2esy) — 2e1c2

v/ 2coc08%(caz + c:_)_ + 8cac2egeiexp(—2cay)
(3.60)

Differentiating (3.55) with respect to y and z and using (2.27), (8.57) and (3.60),

we get

cos(es® +¢4) - (3.61)
V/2c2c08%(c3z +e4) + 8coc2cgciexp(—2csy) ~ 2¢2

1
) R

S1



and

tan(cyz + ¢4) sin{caz + c4)

v(z,y) = =& Sy
(=) o' (%) V/2czcos2(caz + ¢5) + Scacicscaexp(—2¢sy) — 2¢2
(3.62)
Applying (3.58) and (3.59) in (3.4) and (3.5), we obtain
8
= /dp = f— [pq—gdm +pq@dy] = —]aQ'(a)da
Oz By
and, therefore,
2
{ = - =
P(z,9) = po 2¢cav/e; — 2¢00®
D) 2 Z
— oo — N \fczcos (csz +c: )+862C56369€xp( 2cay) (3.63)

2¢2 \/—czcos-(cam +ey)+ 8c»c5csc9exp( 9¢:3y) — 2¢2

The state equation for our flow is obtained from the solutions for the two thermo-

dynamic variables given by (3.60), (3.63) and we have

51
2C2p

P=Po— (3.64)

Since ¢; cannot be negative for pressure to be a real valued function and ¢; > 0 if
¢1 > 0 in our case, it follows that ¢; and c; are both positive real numbers in our
solutions. Furthermore, choice of positive or negative sign in (3.58), (3.59), (3.61)
and (3.62) is made to keep pq and g as positive definite quantities.

Summing up, we have

Theorem 3.2. The family of curves cs3y — Inl|cssec(c3z + ¢q)| =constant is a per-
missible streamline pattern for steady plane irrotational isentropic fluid flow of a
tangent gas having state equation given by (3.64) and solutions for u(z,y), v(z,y),

p(z,y) and p(z,y) given by (3.61), (3.62), (3.60) and (3.63) respectively.

The streamfunction for this flow is implicitly given by

Veicay — v/ailnjessec(eaz + ¢1)| = V2e2¢a9(z,y) + Velnles

- crenp - 2\/er¢(z,y))f
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The potential function ®(z,y) and the Mach number are respectively given by

2c5\/c—sexp(—cay)]

sin(c3z + cs)

arcsec [

1
&{z,y) =c10 —

and

v 2c02p? 1
M(z,y) = Q¥ P =

2 = 21607 \Jfcos?(csz +ca) + 4cZcgclexp(—2¢ay)

This flow is sonic along the curve

1
y= ;‘:—1n|4c§csc§cosec2(C3z +¢es)l,
2c3

and is subsonic when

1
y < 3—-lnl4c§csc§cosecz(c3x + ¢4)l.

aCs

Also, for this flow, the pressure function p varies with the flow intensity pg = «

according as
€1

P=P0= 202\/61 - 26205

The variations of pressure with density, the changes of pressure with flow intensity

and the isobaric curves are respectively shown in Figures 3.3, 3.4, and 3.5.
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3.5 NON-STRAIGHT FLOWS WITH I"($) # 0 AND A(a) # 0.
In this case, we eliminate ') and ["?(3) from (3.15) by using (3.22) and (3.11)

respectively and have
{a*¢%(@) [ag'(e) = g(@)] [1 + £(2)] — @ (@) e (@) - (@’ } {1+ £2@)] F' (@) " (@)}
+ {o? [aq'(a) — gla)] [Bag?(a) — aq(a)g"(a) - Se(a)q ()] } {£'(=)f (=)}
— {20%¢"%(a) [ad' (@) — q(@)]} {[1 + F*(2)] F(2)f"* (=)} = O
Dividing this equation by @ [ag'(e) — g(a)] f(z} # 0 and writing in a suitable
form, we obtain

{aq?(a)f*(z) + o(e)a'(e)} {[1 + f*(=)] f"(=)}

+ {5a¢%(a) — ag(a)q"(a) - 5g{a)g'(a)} {F'(=)f"*(=)}

— {2a¢*(a)} {1 + F2()] f'(z)}f"*(z)} =0
Dividing by g(a)q'(a)f'(z)f"*(z), we have

{ L+ /@) (@) | ad@) fy gy f'(z)f"'(z)}

fl(z)f*(=) qle) - f"*(z)
Sag'(a)  aq'(e) } _ {2aq(a) 2] =
R N b s =0
Rewriting in a suitable form, this equation is

1+ 2@ [ ag(e) ag'(e) n 1| F@F"@) ) ([ ed(e)
F@F@ [5 FORIC) ‘5]+[1+f (”)][ i@ (% )=o
(3.65)

Differentiating (3.65) with respect to 3 and using -g% # 0, we get

chE [5“:(’2;) _ a;'(’{(:;)] + [1+f'2(z)] [f—'(;,—?j:#l - 2] % (%?('%‘)) =0 (3.66)

For this equation to hold true we study the following possible subcases:
. d aQ'(a)) d [ ag'(a) aQ"(a)]
a — | = 0 d - —|5 - 0
b @G = @ e
f'(=)f" (=)
b I 2 _2=0
b T

O

55



We now consider these subcases separately.

Subcase (a):
In this case dividing (3.66) by 3% (ff(-g;—)) # 0 and separating the variables.
we get
Lh-Te g (F) - oo
and
(1+ f3(z)) [f—'(%)ic(-g—“’) - 2] =B, (3.68)

where By 0 is an arbitrary constant.
Integrating (3.67) twice, we obtain

5+B 2 _9+28 5+ B
_ g° 5 () __ (54 B1) Big***®(a) B3B1g**t"\(a)
q'(a) - B3 ( ‘-_!B2 ) ) q”(a) = a'-‘B: — aBﬂ+1

(3.69)

where B, and Bj # 0 are arbitrary constants.

Eliminating ¢'(a) and ¢"(a) from (3.65) by using (3.69) and simplifying, we get

v ! 1 14 2 "
(BSQ-H-B (a)) {_Bl+(1+f,2(z)) [f(:n)f (z) _2]}=(5_Bz)_[ f (a:)]f (z)

= F72(z) F@rG)

(3.70)

Employing (3.62) in (3.70), we find that the function f(z) satisfies {3.68) and
g e @) (=) -
C-B) - papeE &7

Multiplying (3.68) by f’_"’l(;)- and adding to (3.71), we get
(3= B:) f*(z)—(B1+2)=0
B, +2

This equation is satisfied if either f'(z) = =constant and, therefore,

3-8,
f'(z) = 0orif B, = —2and B, = 3. Since f"(z) = 0 is contrary to the assumption
of this section, it follows that we only need to consider By = =2, By = 3 and have
3
o
¢(e) = BL
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and, therefore,
3Bi¢*(a) 3B:ig’(a)

ab at

¢'(a) =

as given by (3.69).
Employing these in (3.19), we obtain

A1(a) =0

for this case and this is also contrary to the assumption of this section. Therefore,
there does not exist any solution for this subcase.

Subcase (b):

For this case, (3.66) yields after one integration

Sag'(a) ag'(a) _
q(e) q'(a)

Employing this equation and our assumption f'(z) f"(z) = 2f"*(z) in (3.65), we

4

get f'(z)is a constant and, therefore, f(z) =0 which is contrary to the assumption
that f'(z) # 0.

Subcase (¢):

In this case, (3.66) yields

d fag'(e)) _ d [.ad(a)  ad'(a)] _
da(a(a))‘o =l 3 [5 () q'(a)] 0

The solution for these two equations is
g(e) = Bsa® (3.72)

where Bs # 0 and A # 0 or 1 are arbitrary constants. A # 1 or A # 0 so that g is
not proportional to « or a constant.

Using (3.72) in (3.65) and using (3.72) and o® = {1 + f?(2))/T"2(+) in (3.15),
we respectively get

[1+ 2@ (@)
F@E)

f(2)f"(z) _ 2] _o

+40 -1+ A1+ 7)) [ )
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I\H(,‘l )

1+ 277 £ + A L+ 126 gy =

Separating variables for the second equation, we have

[1+Af2(@)] £"(2) + BeA [1 + ) =0 (3.73)

which identically satisfies the first equation and

I‘H (,¢)

I"z(‘(,b) = B¢ (3.74)

where Bg # 0 is the separation constant.

Equation (3.73) is a non-linear ordinary differential equation with A as a param-
eter. We integrate it in two ways to get (a) f(z) as a function of ¢ = f'(z) and (b}
z as a function of f'(z) = 1.

First approach:

Equation (3.73) can be written as

F'(z) +Af'2(z)f" z) .
[L+f2=2) [+ =)

Multiplying by 2f'(z), we have

=0

2f'(2)f"(z) | 2 (2)f (= ) [1+ (=) -

] 2B A f(2) =
1+ 2 @) 1+ () +2BoAf(2)

Rewriting this equation, we get

~2f'(@)f"(@)] |, | [ @f"(=) N
“"”[[Hfﬂ(znz} e 1] +280rse) =0
Integrating the above equa.tion-..,. we got

(A-1)

ST [1+ f2(z)] + 2BsAf(z) = Bq (3.75)
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Second approach:

Taking f'(z) = t, equation (3.73) can be written as

1422 di

—T 2 1 BA=0
(1+e)de

Rewriting this equation as

A 1-2 <_1_t_+BA_' AL 1-2 { 1 1—t2}£l£
14+ 14+ d= ° —l1+t2 2 1+ (1+#2)?))dz

+ BgA =0

Integrating with respect to z, we get

Aarctan(t) + (%i) (a.rcta,n(t) + (1—%55) + BgAz = Bg (3.76)

Taking By = 0 and Bs = 0 without any loss of generality, equations (3.75) and
(3.76) yield

flz)= ('121;62) (1 -11-t2) - 211961n (1+%)

_fA-1 13 1+A (3.77)
= (235,\) (1 +t2) (236)\) arctan(t)
t=f(z)
2
Since dz = — —1—+—)£—2 from the second equation of (3.77), it follows that
ds B (1 +12)

g—f # 0 for any ¢ when A > 0 and %% = 0 only if t = £4/—3 when A < 0. Therefore,
the second equation in (3.77) defines z as a monotonic function of ¢ and also defines
¢ as a unique function of z when X is positive. However, this equation defines =
as & monotonic function of ¢ and defines ¢ as a unique function of z only when
t= :}:\/:g does not belong to the domain of our function for negative values of A.

Having solved the second equation of (3.77) so that t = Hz) = f'(=) is deter-
mined, we uce this solution in the first equation and determine f(z) giving us the

streamline pattern y — f(z) =constant. For this flow pattern, we have

y - f(z) =T(¥)
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such that
I'(¥) = Bgexp [BeI'(¥)] = Boexp [Bs (y — f(2))) (3.78)

given by (3.74) wherein By # 0 is an arbitrary constant. Also ByZ0 according as
fluid flows along the streamline in the direction of increasing or decreasing z.

The streamline pattern for this flow is shown in Figure 3.6.

y A /7-:}(:) LR-17
0 L
-0.5
14
-=1.5
=24
o1 0.5 0 0.5 " Y
Figure 3.6. Streamline paltern as given by equation (3.77) with A= 2 and Be = L.
Having solved (3.77) for ¢ = f'(z) and f(z) given by
t=f'(z) = A(z) (say)
and

1-A 1 1
f=)= (235A) [1 +A2(z)] -~ a1+ @] =B=) (),

and using (3.78), we obtain

VIt A%(z)

*2:9) = 15 iexp [Baly = B@)
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JIT 2@ ]A

= Bea® =
q(z,y) = Bsa Bs []Bglexp[Bs(y — B(z))]

1-2X
_ e 1 V1+ A%(z)
A9 = ey ~ B [|39|exp[36(y_ B(z))]] , (3.79)
_ 1 [BsiBelT] L+ A3V
-‘.J — f'(:ﬂ) _ leBgll-f\ A(ﬂ:)[l-l—Az(a:)]%('\—l)

and

( / 2
P0+len[ 11 A1) ]3 A=-1

lBglexp[Be(y — B(z))]

play) = = [ ag'(a)da = 4 ol Em T L

| PO TN | Bg|exp[Bs(y — B(z)
(3.82)
where po is an arbitrary constant and for A = -1, p, and v are given by (3.79),
(3.80) and (3.81) respectively where A(z) and B(z) are given by
1% /T—4(Bez)

Az) = 5(Boz)

and
1 1 1+ /1 - 4(Bez)?
= —_— - 21
B(z) 2Bsz1n(Bsz) + 5B, [\/1 4(Bsz)* — In ( 5(Bez)
obtained by integrating (3.73) twice.
The state equations for these flows are given by
po + Bsln [\/Bsp] S |
2
- =% A# -1
Do { 1+ A PR3 #

Summing up, we have
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Theorem 3.3. A family of curves y— f(z) =constant where f(z) is given by (3.77)
is a permissible streamline pattern in a steady plane isentropic compressible fluid
flow of a gas with the solutions p, u, v and p given by (3.79), (3.80), (3.81) and
(3.82) and the state equations given by (3.83).

The streamfunction, the potential function, pressure as a function of flow inten-

sity and the Mach number for this flow are respectively found to be

1

h{ — __ "~ _e—Bs(y=B(2))
iz,y) BoBa® ,
B(a.q) =  DolBel A A2 [1+ £22)] 7Y
Y ABsBy  [lexp (M Be(y — B(z))}] ’ (3.84)

Po + lena, A=-=1
P= '\B5 1+ L

Po — 1 + Aa ¥ A F -1

and
1
M=\1-3

Since Mach number is real when the flow is supersonic with A < 0 or when the
flow is subsonic with A > 1, it follows that X cannot be a real number such that
0 < XA < 1. For any value of the adiabatic constant v for monoatomic, diatomic or
polyatomic gas, 13 =y yields 0 < A = %—} < 1. Also, there does not exist any
value for «y such that -E% = —1. Therefore, the non-parallel flows studied in this
section are neither valid for the adiabatic relation of a polytropic gas or a tangent
gas associated with such a gas.

State equations given by (3.83) yield
dp _ {-‘:—g-; A==1
dp ﬁTB;JJpT@X; A#—1
Since %‘E = ¢? > 0, it follows that Bs > 0 when A = —1. However, %zp =¢ > 0 for

every permissible choice of A # —1. Since %ﬁ’- > 0 for all compressible real media
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and we have

T3 = . 2 31
dp —(.\_'\3) B_.:r-Tp =% ; AFE-1

dzp {-—2—115_;; A=—1

which is negative for A = —1 or A # —1, it follows that our solutions are valid for
an imaginary gas having (3.83) as the state equations giving p as a simple-valued

function of p for every permissible choice of By and A.

3.6 NON-STRAIGHT FLOWS WITH I'(¢) =0.

For these flows, (3.15) requires that g{c) must satisfy
g(a) - aq'(a) +Dia’¢(@) =0,  T'(¥)=Di (3.85)

where D, 20 according as fluid flows in the direction of increasing = or decreasing
z along a streamline and is an arbitrary constant as shown in Figure 3.7.

Rewriting (3.85) as

—d; [lnq(a) —Ina + -}jln (Die® - 1)] =0 (3.86)
wherein
o ___\ﬂg'lz(z) >0 (3.87)
1

we integrate and get

= ala) = _Pza _ Dz-\/1+f'2(.‘1:)
Q(z’y) - Q( ) - ’__—_Dfaz —1 - lDlllf’(z)I (3'88)

where D, > 0 is an arbitrary constant and |f'(z)] = /Dia? ~1> 0,
Employing (3.87) and (3.88) in (3.11), the density function is

plz,y) = ngj kg 'f:,gj)', (3.89)

Differentiating (3.1) with respect to z and y, and using (3.85) and (3.89), we obtain

velocity components given by

B - W ¥ O]
u(z,y) = o) Di|f' (=) (2.9) = pT'(¢) D ifi(z)]

(3.90)
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Figure 3.7. Direction of flow along a streamline.
Integrating (3.4), (3.5) after using (3.87) and (3.88), we have
Dza Dg 1
p(z,y) = —/aq' a)da = / —_—da=p - S (3.91
( (DZa2 - 1)} " D (=) )

The state equation, obtained from solutions for pressure and density functions, is
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given by

Summing up, we have

Theorem 3.4. Every family of monotonic curves of the form y — f(z) =constant,
so that f'(z) > 0 or f'(z) < 0, is a permissible streamline pattern in a steady
plane irrotational isentropic compressible fluid flow of a tangent gas having the
state equation given by (3.92) and the solutions u, v, p and p given by (3.90), (3.89)
and (3.91).

The streamfunction, the potential function, pressure as a function of flow inten-

sity and the Mach number for this flow are respectively given by

D
b(zy) = g;[y - f@) - 5

D, { f'(a) 1
¥=v) = p, (lf'(xn“f If'(m)ldz)
Dy 1

=p) - = ————
P=h Dz VD3a? -1

and

M =1+ f?z)

where Dy is arbitrary constants.

Since obtained potential function must satisfy
(‘I)fr - -2) &,, —28:2,%;, + ('I’i - ‘52) $yy =0

for a supersonic flow of a tangent gas, it follows that constants Dy and D; in our
solutions are related by D? = D2§?. Here ¢ is the Bernoulli’s constant in Bernoulli’s

equation ¢° — ¢ = ¢°.
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3.7 STRAIGHT FLOWS WITH I''(¢) = 0.

For these flows. we have

flz)=Eiz+ E;.  T(¥)=Es¥ + E;

where E; # 0, E;, B2 and Ej are arbitrary constants.

The streamline pattern for this flow is shown in Figure 3.8.

v

x

Figure 3.8, Streamline pattern for y — Eyz — Ez =constant (£, = =2, E; = 0).
Employing (3.93), equations (3.4) to (3.7) take the form

V1+ Ef 9q

AR o 5 = O
V1+E} E? Bq -0
|E:1| oy 3¢

dq
E1E3 (1+E1)a¢
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1+ E?

P1= "E,]

Integrating this system, we have

V1+ E? (3.94)

gz, y)=9a(s), plzy)=

IEslg(-’Y’
_ |Bslg(s) _ E1lEslg(s)
u(z,y) = ——-—'—Esm, v(z,y) = —_E::.\/T-l-—Ef’ (3.95)
and
3
p(z,y) = Po — ———VTE”:IEIg(s) (3.96)

where g(s) is an arbitrary positive valued function of s=z+ Eyy— E\E; — E\Es.

The state equation for this flow is

1+ E2\1
p=po— (—Ez 1) P (3.97)

where pp is an arbitrary constant.

Summing up, we have

Theorem 3.5. The family of curves y — Eyz — E; =constant is a permissible
streamline pattern for steady plane irrotational isentropic fluid flow of a tangent
gas having the equation of state given by (3.97) and the solutions p(z,y), u(2,y),
v(z,y) and p(z,y) given by (3.94), (3.95) and (3.96) respectively.

The variation of pressure with flow intensity is given by

p=po — g(s)x

The streamfunction and the potential function for this flow are respectively given
by

Yey) = 5= @)~ o = g = Boz = By~ B
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and

E
|Es| _X(s) + Es

E3\/1+E}

where X'(s) = g(s) and Es is an arbitrary constant. The Mach number for this

P(z.y) =

flow is given by

Therefore, this flow is sonic througout the flow domain.

3.8 BOUNDARY VALUE PROBLEMS.

There are two definitions of exact integrals in fluid dynamics. According to the
first definition, a set of known functions for dynamic and thermodynamic variables
is said to constitute an exact integral if the flow equations are identically satisfied by
these functions in the flow domain with no boundaries. In the second definition, a set
of '’known' functions for dynamic and thermodynamic variables constitutes an exact
integral if the set also gives the solution to a problem with boundaries arising from
a real physical problem or a physical problem that could be realistically imposed.

Knowledge of exact integrals or solutions determined according to the first defi-
nition mostly leads to some real problem that may correspond to the solution. An
exact solution which does not seem to correspond to any real problem now may one
day be applied to a real problem.

Sections 3.4 to 3.7 were devoted to exact integrals for the flow patterns of this
chapter according to the first definition. This section deals with simple boundary-
value problems for three of the four sets of exact integrals found in those sections

and are exact integrals according to the second definition.

FLOW BETWEEN PARALLEL PLATES
Steady potential isentropic compressible flow between two plates2z —y—-5=0

and 2z — y + 5 = 0 can be studied as a plane flow in the z, y plane when the
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Figure 3.9. Streamline pattern for flow between parallel plates.

flow is identical in all z =constant planes that is, the flow variables are functions
of z, y only. Considering the flow beanded by straight lines 2z —y -5 =10 and
2z — y + 5 = 0 as shown in Figure 3.9, with pressure function prescribed on these

bounding lines, we study the flow problem with flow streamlines
2z — y = ¢(constant); -5<e¢<5

We take the case when fluid flows along any streamline in the direction of increasing
z. It follows that the pressure function decreases in the direction of increasing z

and we prescribe one such pressure distribution on the wall 2z —y —§ = 0 given by
p(z,2z - 5) = Py — 2¢%; -L<z<lL (3.98)

Letting the bounding streamlines be %{z,y) = ¥1, ¥(z,y) = ¥ and using f(z) =
Eyz + Es, T(%) = Es + Ey in flow pattern y — f(z) = ['(%), we get

y—2.'c—5=y—Elz—Ez—E31,b1-—E4
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and

y—2::+5=y—E1:1:—Eg-E3¢2—E4

Rewriting, we get

(By —2)z+(Espy + B2+ By —5) =

and

(By = 2)z+ (B3t + E2+Es+5) =0

For these equations to hold true for every z, we get

E, =2, By +(E2+Ey)—-5=0 and Estpo +(Ea+ E4)+5=0

Therefore, we have

Sitds) __lo

E, =2, Es+ Ey = =
! 2T T T =ty b1 — P2

Using these constants in (3.94) to (3.97), we get

w(z,y) = fg(s), v(z,y)=%g(s), pay) =82 L (3.99)

205 9(s)

and

p(z,y) = po — (s - Wi )g( ) (3.100)

where g(s) is an arbitrary function of s = z+2y—10 ( w;ﬁ’) Using the boundary

condition {3.98), we obtain

Py—-2e"=pg — ('4’12\/11)2) ( 10[ :g:ii:]) on y=2z-95

This equation gives
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Employing (3.101) in (3.99) and (3.100), the exact integral for our boundary value

problem is

= g (52 ) o=t (552) )
p(z,y) = &l—zoigiexp (— (Eisz—y) - 2) and p(z,y) = poc — 2exp ((z -;2!’) + 2)

The state equation for this flow is

(%1 =) 1
=P, ¥2 -
P 0 20 P
Comparing this state equation with the equation of the tangent gas, for an isentropic

pressure-volume curve p = kp7, at (;1:, pa), we get

2
Py =po+kyps,  kyplt = (i’l—%z—)-

Therefore, our flow between two plates with the prescribed pressure distribution is
for the tangent gas approximated to the isentropic pressure-volume curve p = kp”

1 —
. 20k T+ A 20k~ T
at the point ([—J—!(wl_wﬂ) ] yPo— kv ['___5(.,,1_%) ] )

AN EXPONENTIAL CHANNEL FLOW WITH GIVEN MASS FLUX

1
The family of curves y ~e* =C, 91 S C < +e— > define a streamline
pattern for a steady plane compressible potential flow in an exponential chaunel

whose walls are given by

and
1
y—e’:e—z+1,b1

where —co < T < ©Q.
Points A (0, 1+ %;) and D (0, 1 4+ e — e~ + ;) are the respective points of

intersection of the walls of the channel and the y-axis as shown in Figure 3.10.
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A (o, 1)
Y—

Figure 3.10. Exponential channel flow.
The curve y — e~ = 1, is orthogonal to the flow streamlines passing through the
point A (0, 1 + ;) on wall y — ¢* = %, and the point C (-1, e + ¥;) on wall
y—e‘=e—%+¢1.

Vector equation
r=r(t)=(h e +e); -15t<L0 (3.102)

gives us the parametric representation of arc AC of the orthogonal trajectory.
Using (3.102), the unit normal vector field » to AC and the differential element

of arc length along AC are given by

et 1
e ) (3109

and

ds = 1/dz? + dy? = /1 + e-2tdt (3.104)
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Assuming that mass influx across the section AC of our channel is known to be m,

then

/ pV -fids =m (3.105)
AC

Since streamlines are a family of monotonically increasing curves in our channel
flow, it follows that the results of section 3.6 obtained for the monotonic streamline
pattern y — f(z) = () = D¢ + Df are valid for our flow. The walls of our
channel have I'(¢p) = ¢, and I'(¢) = e — e~! + 9, respectively. Monotonic function
f(z) is the monotonically increasing function e* in our channel flow.

Using f(z) = € in (3.89) to (3.91), solutions for our flow are given by

— e* - IJ2 _ Do
p= Dz = D18""’ v= D]_ (3106)
and
_, D
P=P =PIz

such that (3.105) is satisfied. Substituting (3.106} in (3.105) and using (3.103) and
(3.104), we have

0

1, ., 1 ( 1)

2 (etye)di=—[e—=])= 3.107
/_IDI(‘E ¢') D\ e/ ™ (_ )

Using Dy = &=t and D, = |Dy}§ = $224 as given by (3.107) and D = D2 in
(3.106), solution for our flow problem is determined.

2
Given mass influx m, p, is given by p2ci = [%n'—el-] . Also, given p,, we can find
e—e”

mass influx m = .
PaCa
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CHAPTER 4

STREAMLINE
PATTERN .. - CONSTANT

4,1 INTRODUCTION.

In this chapter, we determine exact solutions for steady plane irrotational isen-
tropic fluid flows whose streamlines are of the form ;75 = constant in the physical
plane where r and 6 are the polar coordinates and g(f) is a continuously differ-
entiable function. Along these streamlines, r =" g(8)['(¥) is a function of r and
1, where T'(¢) is some function of 3. We choose the curves ¢ = constant to be
@ = constant in the flow equations in (¢,¥)-coordinates given in theorem 2.2. We
obtained all permissible streamline patterns of this form and their exact solutions
by employing the (6,%)-coordinate system.

The governing equations are analyzed in this coordinate net and classified for
this assumed form. This classification leads us to investigate six different types of
possible flows, the first two of which are circular and straight flows. It is found that
the function g(9) is

(a) a solution of g"(8) = 0 for circular or vortex flows,

(b) a solution of g(8)g"(8) — 2¢'*(8) — g*(6) = 0 giving straight parallel flows,

(c) any function such that g'(6) # 0 and g(6)g"(8) - 2¢'%(8) — g%(8) #0,

(d) any solution of equations (4.45) and (4.46),

(e) a solution of g(8)g"(8) +2 (;!; - 1) g%(8) + (-2- - 1) g%(6) = 0 where a; % 0

is an arbitrary constant and
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(f) a solution of g'2(8) — b3g*(8) = 0 where b, # 0 is an arbitrary constant.

For each of the flows above, the flow equations are completely integrated in
the (8,%)-coordinate system giving us the exact solutions for all permissible flow
patterns of the chosen form. The state equations for the gases that allow these
fows are also determined. It is found that the gas that permits vortex flow can be
either a polytropic gas or a tangent gas and the state equation for the straight flow
is that of a tangent gas. It is also found that two solutions of permissible flows are

not valid for a polytropic gas or a tangent gas.

4.2 FLOW EQUATIONS AND CLASSIFICATION OF FLOWS.

To determine all continuously differentiable functions g(#) € C* so that steady
plane irrotational isentropic fluid flows along a family of curves 5{_95 =constant and

to find the exact solutions of the resulting permissible flow patterns, we choose the

(8,%)—coordinates and initiate our study with

T !
ol L(¥), T #0 (4.1)

where T'(3) is an arbitrary function of ¢ and ¥{r,8) is the streamfunction for our
flow such that

dyp(r,8) = —pVadr + rpV1dé, V = Wi(r,8)er + Va(r, 9)29 (4.2)

in polar coordinates.

This choice of coordinates that we have made requires us to choose the curves
¢ =constant to be § —constant curves in the nonlinear system of governing flow

equations in (¢,)-coordinates given in theorem 2.2.
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We use (4.1) in (2.8), (2.10) and have

s0.)=(5) +(5) = F@+s@Irw),

F6.9) = S 5% + S 5 = 9O (NI (),
2 2
I6.9) = | 350 = ~FEOTT W),
and

W(6,9) = VEG - F? = g*(6)IT(%)|II" ()|
where z = g(8)cos(8)I'(¥) and y = g{d)sin(F)'(¢).

J(8,%) = ~W(8,9) = —g*(O)[($)I"(¥) < 0 whenever () and I"(3) are
either both positive or both negative. In this case, fluid flows along the streamlines
}{6_) —constant in the direction of decreasing 8. However, J(8,%) = W(6,¥) =
—g%(6)T(%)T" (%) > 0 whenever one of I'(3) and I(¢} is positive and the other is
negative. In this case, fluid flows along the streamlines in the direction of increasing
f.

Writing equations of theorem 2.2 in (B,Qb.)—coordinates, we use (4.3) to find that
the Gauss equation is identically satisfied and the fluid flowing along the streamlines,

given by (4.1) with ¢ =constant, is governed by the system

o  Op

pagt+ =0 (4.4)
pq% + % =0 (4.5)
3] - g Lm0 oo

p= R(p) (2.5)
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of five equations in five unknowns p(8,%), p(6.%), ¢(8,¥), I'() and g(8). Here R(p)
is some function of p to be determined.

In our search for permissible streamline patterns of the chosen form —(Te-i =constant
and in determination of the exact solutions for the resulting isentropic flows, we do
not make any choice of the gas and, therefore, do not have a state equation for the
study. Equations (4.4) to (4.7) are a system of four equations in five unknowns and
we solve this underdetermined system.

Given a solution of the system (4.4) to (4.7), the state equation is determined
from the solutions p = p(6,%), p = p(8,%) giving us the gas that flows along the
obtained streamline pattern.

Using (4.7) with I'(9) > 0 and eliminating p from (4.4) and (4.5), we get

Vg (6) +92(6) 8¢ Op
SO (9) 96 26

VEO T 970) 0a , B _
FOT@ 0 " o
2 2

Employing the integrability condition 3{; 31:[1 = 33)59’

=0 (4.8)

(4.9)

we eliminate pressure p from

(4.8) and (4.9) and have

8 (VP8 +g%(8)| 0g _ 8 Ve (B) +92(8)| 01 _ (4.10)
PO ) |98 68| O | '

Equations (4.6) and (4.10) are a system of two equations in three unknown functions

T(%), g(6) and g(8,%). Given 2 solution of this system, p(f,%) is determined by
the integration of (4.8), (4.9) and p(#,%) is determined by using (4.7).
Defining

2 9 12 9
_ Y ;’2(( 9))1;' (9 ¢)(| ) _ a(6,9) >0 (4.12)
the two equations (4.6) and (4.10) are rewritten as
6
o | ] 2 Ferwrwee g =0 (1)
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and

O(a.q)| _0aldq Jadg _
0.0~ 985w 0906 " (4.13)

where

Oa _ g'(6)A(8) _ 9'(®)A6)a(b.¥)  Ba _ -T"(¢) ,
% = SO D69~ 70 OO Fo - Ty coov) 414

with

A(8) = 9(0)g"(6) - 29"(8) — ¢*(6)

In the study of ron-uniform flows, (4.13) is identically satisfied if any one of the

following holds true:

a .
1. z—: ag 0, i.e., both-flow intensity and speed are constant along

each individual streamline.
do _ da

2. 50 3 m = 0, l.e., flow intensity is constant in the flow region.
3q da . . .
3. 51,; = % = 0, i.e., flow intensity and speed are constant on each

individual radial line.

4. q = gq{a), ¢'(a) # 0, i.e., curves of constant flow intensity and speed

coincide in the flow region.

Moy, 32 _ 9'0) [0(6)g"(6) — 29°(6) -
TR 7(0)I2(8)a(6, %)

(a) g(f) =constant so that the streamlines — =constant are concentric

9(8)

é
)] = ( if either

circles r =constant,

or (b) g(0)= bglsec(9+b1)|, obtained by solving g(8)g"(8)—2¢"(8)—g¢*(f) = 0,

so that the streamlines —(—9-)- =constant are a family of paraliel straight lines.
Therefore, we classify our flows as follows:
Theorem 4.1. If families of curves of the form —-(-9—) =constant define streamline

patterns in a steady plane isentropic irrotational compressibie fluid flow for some

continuously differentiable function g(6) so that —— = I'(¢), where ¥(r,0) is the

9(9)
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flow streamfunction and I'(#) is some function of ¢ with T'(¢)Z0. then all possible
flows may be classified as
(i) circular flows with g(#) =constant
(i) fows with g(8)g"(6) — 297 (6) — ¢*(8) = A(6) =0
(i) flows with q¢ = g(6) and any g(8) such that g'(8) # 0 and A(f) # 0
Jda Ja

iv) fl ith ¢ = g ch that ¢'(a) # 0, —= # d .
(iv) flows with ¢ = g{a} such that ¢'(a) # 0 aa,—Oan 311’#0

Flows classified in this theorem are studied in the following sections.

4.3 CIRCULAR FLOWS WITH g(¢§) =CONSTANT.

Taking g{#) =constant in (4.14) and using the result in (4.13) and (4.14), we find
that a_c; = 0 and, therefore, we have the following two cases:

1.  ¢(6)=0  and T"(4) = 0

2. g =0 and % =
We now study these two cases.
Case 1 : In this case,
T
g@)=co, TW)i=cap+ec= - (4.15)

where ¢ 3 0, ¢1 # 0and ¢p are arbitrary constants and (4.1) is used. The streamline
pattern for this flow is shown in Figure 4.1.
Using (4.15) and (4.14) in (4.11) to (4.13), equation (4.13) is identically satisfied

and we have
8
leocs!’ oy

Solutions of {4.16) and integration of (4.4) and (4.5) give

pg = a(8,9) = [rg] =0 (4.16)

g(r,6) = f—iﬂ (4.17)
T
p(r,0) = Tealf @) (4.18)
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0 1 2 3 4

=
Figure 4.1. Streamline pattern for vortex flow r =constant.
and
f(6)
r,8) =ps —
P( y ) Po l ¢oCs |1"

where f(8) is a single-valued and positive valued function.

Using (4.15) in (4.2), we obtain

106 18 __lacl f(6)
rp06~" pOr~ cocy T ~

V=

Finally, the state equation for this flow is given by

1
P=po— cﬁcfp

(4.19)

(4.20)

(4.21)

The streamfunction, the potential function and the Mach number for this flow are

given by
Y(r) = l (—r‘ —Cz) s
1 \ ¢
o (coc1)
() =c3 v F(8)
and

=
Il

TR -]
]
[



respectively where F'(8) = f{8). Therefore. this flow is sonic throughout the flow

domain.
Case 2: In this case,

g(f)=do, doT{®) =7, g=q(¥)=gq(r) (4.22)

where dp 3 0 is an arbitrary constant, I'(¢) is an arbitrary function and (4.1) is
used.

Using (4.22) in (4.11) to (4.13), we find that (4.13) is identically satisfied and we
get

alfo1h) = 1 dolT($)T" (%) ] 0

TR @ [ ()]
Solving (4.23), we find p, ¢ and use the results in (4.4), (4.5) to obtain

- _arwl - T0)
[T (%)’ p= d'(4)’ P=Ptp 42 / T2(%) dy (4.24)

where d; # 0 is an arbitrary constant.

(4.23)

Using (4.22) in (4.2), we get

V Va(r, 9)69 = —%%ﬂi eg = —-d—les (4.25)

T ~~ T ~

Solutions given by (4.24) and (4.25) are valid for every choice of I'(3) with the only
requirement that I''(y) # 0.

An Example: We study vortex flow of 2 polytropic gas as an example. The choice

of I'(%) = »*7* is required for this low and we use this choice in (4.22) to obtain

1=

T'(Y) = (4.26)

_ T
"~ do
Using, (4.26), we get
2 L v+1

(7 r= (5= () (7 e
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This equation gives [V{3) < 0 for v > 1. Requiring d; < 0 in (4.25), we study
counter-clockwise vortex flow and using (4.27), (4.24) with do >0, we obtain

2

_ didy _ 4 et (1)_‘.,_1
1=+ T Th-ndNr
and . 2n
- dldo—l 1 :r 9
p=po+ Y (r) (4.28)

Taking po = O and elimipating r between expressions for p and p, we obtain the

state equation given by

(1 -7)”
= Ap? =i
p=4p", A T dE

The streamfunction for this flow is given by (4.27). The potential function and the

Mach number are respectively given by

di

P(0) = —d10 + d d M=
Q)= -aord = (D&

where c, is the sound speed at a stagnation point. Vortex flow studied in Case 2
has been studied by hodograph method in the literature and is well documented in

texts on the subject [c.f. von Mises, 1958].

Theorem 4.2. A family of curves -g%?j =constant, when g(§) =constant in (4.1), is
a permissible streamline pattern for steady plane potential isentropic compressible
fluid flow either of a tangent gas in case T"'(¢) = 0 in (4.1) or of a polytropic gas in
case I'(¢) = ™ T*. The solutions for the two cases are given in the study of these

two cases.

4.4 STRAIGHT FLOWS WITH g(8)g"(6) — 2¢"2(8) — g*(8) =0.
da

20 = 0 and,

Using g(8)g"(8) — 29'*(6) — g°(8) = 0 in (4.14), we find that
therefore, equations {4.13) and (4.14) give the following two cases:
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L g8 O - O -G =0 amd =0

2. g{8)g"(6) — 23'2(9) -g°(6)=0 and M) =0
Since g(8)g"(8) — ¢™%(8) = ¢'*(8) + g°(8) in both cases, it follows that

ol
g(8) —1
g'(8)
e (9)]
and, therefore, we get
g _ tan(f + b1) g(8) = ba|sec(8 + b)) 4.29)
a0 - Vs : ‘ %

where b, and b, # 0 are arbitrary constants.

Using (4.29) in (4.1), the streamline pattern for this section is given by
rcos(8 + by) = £b.T(#) (4.30)

Case 1: (g(B) = bo|sec(d + b1)] and % = 0)

In this case, equation (4.11) yields

o(0,%) = pg = Vi) +g%6) _ 1

= 4.31
FOT@] @) (43D
Using (4.29), (4.31) and g—a = 0 in (4.12), we obtain _35 = 0 as well. This case is
of uniform flow and is, therefore, removed from further consideration.
Case 2: (g(8) = bz|sec(f + by)| and T"(3)=0)
In this case, equation (4.11) yields
JSEOFE 1
a(f,9) =pg= g6 +o10) (4.32)

@O (W) [bellbs]
where I'(3) = b3 # 0 is an arbitrary constant.
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Using (4.29) and (4.31) in (4.12), ¢(6,%) satisfies
5] 8
batan(6 + 61)3—3 — (ba3p + by)sec* (8 + bl)b% =0

where by is an arbitrary constant in T'(p) = bs9p + bs.

Solution of this linear first order partial differential equation is
1 .
a(r,8) = q(8,%) = h(s), s = (bsp +by)ten(f +b1) = igrsm(G +b;) (4.33)

where (4.30) has been used and k(s) is an arbitrary function of s.
Using (4.33) in (4.32), (4.4) and (4.5), we obtain

p(r,6) =po — —1—h(s) (4.34)

1
P8 = o RG)’ 52ba]

where s is given by (4.33).

Also, the polar components of the velocity vector field and the state equation are

given by
V = Tsin( + by )h(s)e, F cos(8 + b1 )}h(s)eq,
A 1 ) i (4.35)
pP=po— %
Taking the flow to be an isentropic flow of a polytropic gas p = Ap?, our state
equation in {(4.35) is that for a tangent gas. Since tangent gas at (p.-, -3'-) for the

polytropic gas is
1
p=(pi + Avp]) — Avpl ™’ (;)

it follows that py and byb; are given by

po = pi + Avp], —— = \/ Ayp;
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Theorem 4.3. A family of curves rcos(8 + by} =constant, when g(8) = ba|sec(8 +
b1)| in (4.1), is a permissible streamline pattern for steady plane compressible isen-

tropic potential flow with solutions given by (4.34) and (4.35).

The potential function, the streamfunction and the Mach number for this flow

are respectively given by

&(r,0) = —b2 H(s) + by,

1 1
P(r,8) = ™ {:tgrcos(G +4) - b;,}

and

vhere H'(s) = h(s). This flow is sonic throughout the flow domain.

4.5 FLOWS SATISFYING ¢ = ¢(8) WITH ¢'(8) # 0.

Taking g = g(8) such that ¢'(#) # 0, we ignore uniform flow and note that (4.13)
is identically satisfied when a =constant or @ = a(8) such that a'(8) # 0. In
the first case, we have % = 0, T{¢) = moy + m; and g(6) = m; or % = 0,
I(¥) = mp¥ +m; and g(8) = mylsec(f + my)| in (4.6), equation (4.6) is satisfied
only if mg = 0 and or m3 = 0 contrary to the restriction that mq # 0, m3 # 0.

Therefore, ¢ = ¢(8), @ = «(f) such that o'(8) # 0 and g(9) is any function such
that g'(8) # 0 and A(6) = g(6)g"(6) — 29'%(6) — g*(8) # 0. Equations (4.1), (4.11),
(4.12) and (4.14), using T'(¥) = a1 ¥ + az, yield

g%(8) + ¢*(6) T .

laalg?(6) 7 9(f)

pq = c(b) = I'(¥)=a1¥ +a;

1dg [g(e) {9(6)"(6) — 29%(8) - 92(9)}] —o (4.36)

qdf 4'(8) {9%(8) + 9%(6)}

where a; # 0, a, are arbitrary constants and a = () such that o'(8) # 0.
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Equations {4.36) and (4.2) give

) _g(0) {5(6)9"(6) — 29”(8) — *(6)}
(f) = esexp U 7O [0 + O] d“’] (430

| JSEOTED .| [ 96 {a0)a"(8) - 267(8) — $*(0)}
P8 = Halasg @) e e o Or T
h o L2 _Cleled® /~g(6){g(e)g"(e)-zg'=(9)— 2O} ,,
! p 30~ a,/q%(6) + 92(6) 9'(8) {¢2(6) + g*(6)}
and

188 —lailes(d) —0(6) {g(6)g"(8) — 26°(8) = g*(9)}
Y N OETE Ol U 76 (70 + 20 d"]

where a3 > 0 is an arbitrary constant and g(@) is any function of 8 that must satisfy
g'(8) # 0 and g(8)g"(8) — 29"2(8) — ¢°(8) # 0 in the flow region.
Using (4.37) and (4.36) in (4.4), (4.5) and integrating, we obtain

_ [0(0)g"(9) = 20%(6) - O] || 0
0=+ [ {|a1|g(9)g'(s) Foroe | O

Theorem 4.4. Ifg'(8) # 0, g(6)g" (€)— 29'2(9)-92(9) = 0 and q is constant on each
individual radial line then every family of curves -(9—) =constant is a permissible

streamline pattern for a steady, plane, potential isentropic flow of some gas with

solutions given by (4.37) and (4.38).

An Example

Taking g(8) = e™, m # 0 is any real number, we note that g'(6) # 0 and
g(8)g"(8) — 29™%(8) — g%(8) # 0. Using our choice of g(8) in (4.37) and (4.38),
solutions for the streamline pattern re™™? =constant are given by

ren(2). r ] (52,

m |2y iaa m
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W = ____"—Iaxiasm exp (i) Vo = ____——Imlﬂ-a exp (ﬁ—)
ay 1+ m* m ) - al\/1+1n= m

and p
v1 2
Po GV m,, exp [(— - m) 9] m # x1
» last (1 — m?)
Po & 1+m-8, m =+l
|a.1[m
The state equation for this flow is given by
2 n
al " (V14 m? mi_y

|aa]” (1 - m?)

_ 4.39
P o [\/H_m (4.39)

- B n|Y I m=x1
Po lay| V1 + m? laliasp}

where n = T_;_%;g

Ttke flow pattern in this example is shown in Figure 4.2

{113

6F

-8k

1% -5 0 5 x 10
Figure 4.2. Streamline pattern for re~™? =constant.

The potential function, the streamfunction and the Mach number for this flow
are given by

_ aylasm L
@(r,ﬂ)——alm_zrexp — + a4,
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$(r,8) = —— (re™™ ~ a2)

and

Vi+m?; m # £1

M= / 2
1+m exp (-m8); m ==l
as

respectively where a4 is an arbitrary constant.

Since for m # %1, the Mach number corresponding to this flow is constant, this
flow is of no physical interest and, therefore, removed from further consideration.

For m = =+1, state equation (4.39) yields '

dp a3 . m? +1 6
— X
dp 1+m? P ™

and

2 2 2
d_?_:_aixp(m +1>6

dp* m
Since %% =¢? >0 and 3—:& > 0 for all real compressible media, it follows that the
solutions obtained in *his example for m = %1 corresponds to some real gas having

p as a simple function of p, equation (4.39), as the state equation provided m = 1.

4.6 FLOWS SATISFYING ¢ = ¢(a) SUCH THAT ¢'(a) # 0, %% #0 and

Oa
e 0.
50 #
Using the assumption ¢ = g(e), the expression for a(8,%) from (4.11) and the
expression for g—z and %boi from (4.14), equation (4.13) is identically satisfied while

equation (4.12) takes the form

g2 (0)A() ' g% (8)A(9) 3 4 ! " 1Y —
[ZOAD )+ [ Ly + <o OROIT T )] (@) =0

- where A(8) = g(6)g"(68) — 29”(8) — g°(8) # 0.
Dividing this equation by I'(%), using (4.11) to eliminate I'"2(4) and simplifying,
we get

#(6)A(0) ag(8)A(9)
[gz(e) +g'2(e)] (o) + [92(9) T 97(6)
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Dividing this cquation by a®¢*(6)q'(a). equation (4.12) for this case when ¢ = g(a)

is

A(8) [ q(a) }+ g (8)A(6)

1 " _
g*(0)[g%(8) + g2 (8)) Lo (a) [—] + (@I () =0

g*(6)1g%(8) + ¢7(6)] Lo?
(4.40)

Differentiating (4.40) with respect to §, we have

(e (S * (arsomm) ]

N {(92(9) [3?5?1 9,2(9)]) [aqéﬁ)] B (94(9)1;(3;1 J(reg)*(e)l) [??]} 5= |

Multiplying this equation by o? and using (4.11) to eliminate %%, we have

A(6) [ gle) g'(6)A%(6) s f gl
[92(9) {92(9)+g'2(9)}] [aq’(a)] * [93(9) {92(8)+g'2(9)}2] [a {aaq'(a)}]

[ g2 (8)A(6) _]’_ 24'3(8) A2(8) ~o
94(8) {g%(8) + g"*(8)} 3%(8) {g*(6) + 92(O)}°

(4.41)
Differentiating (4.41) with respect to 3 and dividing the result by -g—: # 0, we get

A(9) "I gla) V' 7'(6)42(6) ORI
(92(9){g2(9)+g'2(9)}) [aq'(a)] +(g3(9) {92(9)+g'2(6)}2) [“ (oﬂq'(a))] =0
(4.42)

Equations (4.12) and (4.13) forming a system of two equations in three unknowns
a(8,%), T'(¥) and g(#) reduced to one equation (4.40) for flows satisfying ¢ = q(a).
Differentiation of this equation with respect to 8 followed by differentiation with
respect to 1 yielded (4.41) and (4.42). We shall use separation of variables tech-
nique on equation (4.42) to analyze our problem after two cases are studied where
separation of variables cannot be used. In equation (4.42), variables 0 and a are
(e, 0) fa

= —-— = 0 in the flow domain. Knowin
36.9)| - T &

that ¢'(8) A%(8) # 0, equation (4.42) requires us to study the following three cases:

independent variables since
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ale ae) N _
[0“1' ] S (a”ff(a)) ] =0
- al@) \T _
Case 2: (%em%m+¢%m) =0 e Lﬁ(&¢m0}"0
@\
ase 3: [a:‘ (agq_'o(:a-)-) } #0
We consider each of these cases separately.

s [ 23] -0 w0 (551 -

In this case, we integrate the above differential equations and obtain the solution

@)

given by
g(a) = kra*, (4.43)
where kg # 0, kp # 1 and k; > 0 are arbitrary constants.
Using (4.43) and (4.11) in equations (4.40), (4.41) and (4.42), equation (442) is

identically satisfied and we obtain

FOAG) __, _g*OAB) | THME)

B0+ OF | B O) +9?OF W) 0 (4.44)
and
.1_ ( A(G) >' _ _‘_2_ g'(g)Az(a)
ko \ g2(8) [g2(8) + g'*()] ko \ g3(8) [g2(6) +g'2(9)]2
(4.45)

+( () A(8) )' [*wq( g'(6)4%(9) )=
7*(6) [¢%(8) + 9”2(6)] 2(8) 1 \ g3(8) [g%(8) + ¢"2(O))°

Equations (4.44) and (4.45) are a system of two equations in two unknowns g(f)
and T'(¢). The function g(#) is a solution of equation (4.45) and
[9%(6) + kog"*(6)] A(9)
ko [92(6) + g2(O)°

obtained by using separation of variables on (4.44). Also, I'(%) is a solution of

D) _
T72(%) 2
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vhere ko £ 0 is the separation constant in (4.46) and (4.47).
Integrating (4.47) and using (4.1), we have
kz
() = ks D)) = k [L] 4.48
where k3 5 0 is any constant and g(#) is any solution of equations (4.45) and (4.46).
Using (4.48) in (4.11), we obtain

— ofr gy = MI(E) +9%(8)
pg = a(r,f) = s GO | (4.49)
Employing (4.49), (4.43), (4.1), (4.2) and (4.48), we have
y kl 200 + L 9 -l.-kﬂ
g(r,0) = ha*® = LRURE ZEL_)] 7 (4.50)
kar*2 [g(8)]"
2(g 1209 1(1=ko)
p(r.0) = q_gx_) _ % [9%(8) + g (2)]k _ (4.51)
b karke [g(6))
g = LW ___g® ___ kg(0) 56 + g%
rp 00 PP'(¢)92(0) (k;r"’ [g(e)lz-kz) kg ks [9(9)]2—’?:1,:0_1
(4.52)
- S W 1)) R0 i
Wi - ! =T Fo—
P or Pg(g)r (d’) (ks‘l"k" [g(e)]z—k:) lks rka [g(g)]2—k:l 1
(4.53)

Using (4.49) and (4.43) in (4.4), (4.5) and integrating, we obtain

7:_0- kukl (gz(g) +g12(a))‘%(1+k0)
p(r,0)=— [ a(r,f)dg = - 2 dg = po— T
/ / (kl) ° (1 + ko) {Ikar“: [g(a)]z—kn l} .+k

(4.54)

where pp is an arbitrary constant.

The equation of state for every solution function g(6), is given by solutions for
p(r,8), p(r,8) and is

koky'
P=po— 14k

(4.55)
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2 1+ kg
I Ao = .
where A; 1% and Aa T

Summing up, we have

Theorem 4.5. Every family of curves ;5 = constant where g(8) is a solution
of (4.45) and (4.46) is a permissible streamline pattern for steady plane potential
isentropic compressible fluid flow with solutions given by (4.51), (4.52), (4.53)} and
(4.54).

Flow Examples

For every solution g(#) of two non-linear ordinary differential equations (4.45)

and (4.46) in g(8), we have a streamline pattern . —constant and the exact

9(8)
integral for the flow is given by (4.50) to (4.54).

Taking g(8) = e™?, where m # 0 is any real constant in (4.45) and (4.46), (4.45)

is identically satisfied and (4.46) requires m to be a solution of
ko(ka — 1)m? + (koko — 1) =0, ke #1 (4.56)

if chosen g(#) is to be a solution of (4.46).

koks —1

For any choice of kg, k2 such that kp # 0, ko #1,k2#1 and Py < 0, we
0

2 — ko
get

_ [Tz — 1

-

or (4.57)

[ [Reke—1

as a solution of the system of two equations (4.45) and (4.46).

For every permissible choice of kg and k2, a family of flow pattern is defined and
the exact integral corresponding to the flow is given by (4.50) to (4.54) with g(6)
given by (4.57).



Polytropic Gas If the gas is a polytropic gas having the ratio of specific heats to

. -1
be «. then the equation of state in (4.55) requires ko to be R e Flow pattern is
v

) T
given by —— =constant where

g(6)
g{8) = exp L( :r"lf'{{iii *‘r}) 9]

or (4.58)

| 1 (ka+1
9(8) = exp b-( ?:T{kz-1—7}) 9]

v+1
v=-1
Spiral Flow Along re™? = constant for Polytropic Gas p = Ap?

Here k2 # 1 and k2 <

This flow is defined by g(8) = €%. The streamline pattern for this flow is shown
in Figure 4.3.

8%

-10 - .
-10 -5 0 5 *x 10

Figure 4.3. Streamline pattern for re~% = constant.

Equation (4.56) takes the form ko(k2 — 1) + kokz — 1 = 0 and we have

ko + 1
kr = 2kq
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Also, since the state equation (4.55) is p = Ap”, it follows that

ko ) = 1+ ko
=0’ A= - k O’ = 4,59
po (1+ko ! 1k 7 ( )

Solving these equations, we get

=ty i
-1 Al+k)] T [—249]78
L e = B L

Using g(8) = €’, (4.59) and (4.60) in (4.50) to (4.54), we get

. 24~ -k o7t 2 p

p(r,8) = (1__";) |k3|2/7+11.21/(1’—1)exl) ((‘T + 1)(7 - 1))
24y \ 7 ko | 75T 1

Vi(r.8) = — (1 - 7) 3D 2+ D g /1 P (7 n 1) 6

L.

247 \ 7 [k | 7T 1
Va(r6) = - (1 Z 7) D72+ D ey prl T P\ S 1 6
1

1-v (247 ) ™ 27 2y
= F—— & 9
p(r8) == (1 - s f7 i =D P \ [y + 1)(7 — 1)

The potential function, the streamfunction and the Mach number for this flow are

(4.61)

respectively given by

.

(7+1)(2A7)“~i1 ka7 o ( 1 )
&(r,0) = - - T — |0
0= s \T-a B PA\7¥L)”

P(r,0) = 11; [(1 —)r T exp (;%—) 6 — 10]

2l%exp (;_%1-) 8
2.3 _ 12 2
23 = IZ(y — 1)exp ('—F-Ti') 8
where [, is an arbitrary constant, ¢, is the sound speed at a stagnation point and

2/1+y Wyl
2 {24y __l_kal.’_
I - (1_-,) 271 -:-Hka -

M=
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] !

A(8) gla) \
C A = b+ 3 — =
ase 2 (92(9) (4%(8) +g*(9))) 0w [" (af'q'(a)) ] °

In this case, we have

A(9)

= .62
FO@O + @) (4.62)
where ¢ # 0 is an arbitrary constant and
g(a) C1
asq'(a) =2 - -2-35 (4.63)

where ¢; and ¢z are arbitrary constants.

Employing (4.62} and (4.63) in (4.41), we get

N

Using (4.11), (4.62) and (4.63) in (4.40) and separating variables, we obtain

RGOS SN R [ 2

D@+ 2 F O+ T T == oo

where ¢y # 0 is the separation constant.

Equation (4.65) yields

cogz(ﬂ)g'z(ﬁ) - -;-coclg°*(9) -4 (92(9) + g'2(9)) =0 (4.66)
and
L) (¥) _
Ty + cocz 7(3) +c4=0 (4.67)
Since ¢'(6) # 0, (4.64) is satisfied if
g (6)\ _
€ - 2 (ﬁa—)) =0 : .‘ (4.68)

Employing (4.68) in (4.62) and simplifying yields g'(8) = 0 which is contrary to the

assumption of this case and, therefore, from (4.64), we have
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Integrating this equation once, we obtain

9%(8) [c1 — exp (cog®(8) - c3)] = 2g"(8) (4.69)

where ¢3 is an arbitrary constant.

Using (4.69) in (4.62) and simplifying, we have

¢ (1 + 521) g%(6) - %exp (cg?(6) — cs) + (1 + %) =0 (4.70)

Employing (4.69) in (4.66), we get

(cs — cog®(8)) exp (cog?(8) — c3) — e (1 + %) =0 (4.71)

2~

Using (4.71), equation (4.70) yields
9’ (0) —colcs —=1)=0

since g(8) # 0 and 1 + ']..,;81 # 0 from (4.70).
This equation gives g'(§) = 0 which is contrary to the assumption of this case

and, therefore, this case does not yield any solution.

cass [43] 40w [o(H35) | #0

In this case from {4.42), we have

{as [Eg_e(v%]} . \Formes gﬂ(e))}'

- = constant = —a;  (4.72)

[ g(e) ] - g'(8)A%(8)
ag'(a) a3(8) (g%(0) + ¢™2(8))°
Equation (4.72) yields
a(e) 1\ ae) 1
{as [m] } e [aq’(a)] =9 (413)
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and

A(G) }' _ g'(G)Az(e) _ )
{92(9) (g°(8) + g"(6)) “ { 3 (0)(g*(8) + g (6)) } =0 (+.74)

Integrating (4.73), we get

sf _ala) ' q{a)
= a2, 4.
* (oﬁq'(a)) T (aq’(a) a (4.75)
¢ _a 1
as {20 (- D} T @ #2 e A0
2geXp (aas ‘)am—‘.'); a ¢2, G;g=0
gla) = T N Pt (4.76)
 a300%; a; =2, az =0
and o .
{ 3 .
a1_2+aal—2‘ 01#2, a'2?l-‘0
1
— a 2, ao =0
o) g T (4.77)
aq'(a) ﬁ _0'_2 ln(a. aa7) . a _ 9 0 -
a- 8 Y 1 = < az #
1
ay

wherea2#0,0.3#0,&;#0,05#0,:16#0,a7#0,a39&0,ag;&00r1and
@10 # 0 are arbitrary constants.

Various values of the constants a; and a» yield different flows. However, the
cases when a; # 2, a; = 0 and ¢, = 2, az # 0 lead to contradictions and so are not
possible. Therefore, we consider the remaining two cases separately.

a1 #2, a2 #0

Integrating (4.74) once with respect to 8, we obtain

AB) 2446
g*(8) +g2(6)  2an — a19%(6)

(4.78)

where a;; is an arbitrary constant.
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Employing (4.74), (4.75) and (4.78) in (4.41) and simplifying, we obtain
(a2 +2 — a1) g*(8) + 2a11 [¢*(8) +9%(8)] =0 (4.79)
If a1 5 0, then differentiating (4.79) with respect to 8, we get
() = 2=22 =2 g3(6) - (0 (450)

Using (4.80) in the expression for A(8) gives

A(f)=0
which implies that

da

i 0

contrary to the assumption of this case. Therefore, we must have from (4.79)
a;; =0 and az=a1—2 (4.81)

Using (4.81) in (4.78) and integrating the resulting equation, we get

cos {29 + —Eam}] (4.82)

a a1

1
9(6) = [m

where a1z # 0 and e,3 are arbitrary constants.

Employing (4.11), (4.77), (4.78) and (4.81) in (4.40) and separating variables, we

have
g*1*2(6) __1 TIM(#) _ 3] _ _
@) Fgreyiet TN K T () ) ay] T constant = s
This equation gives
2az+2 2 "2 Lag+l
a3 [9(6)] — a4 [¢*(8) + ¢%(O)]*7T =0 (4.83)
and
2D () - [[2(9) + el (#)] =0 (489)
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Using (4.81) and (4.82) in {4.83) and simplifying, we obtain

[as (Vaiz)™' — a14] sec®* A =0 (4.85)

asz az
where A\ = — 8 + —aja.
ai a

Equation (4.84) yields (1) for various values of a;. Choosing a; = 1 and solving
(4.84), we get

I"(‘gb) = b'(“;l"z('gb) — Q14

where by # 0 is an arbitrary constant. Using (4.1), {4.82) and (4.81) with ¢; = 11in

the above equation, we have

o n
a12b37% — ay4costA

’ —
r'(y) = 22X (4.86)
Employing a; =1 in (4.85), we get
las/a1z — aya]secA =0
Since secA # 0, this equation yields
az\/az —a14 =0 (4.87)
Using a; = 1 and (4.87) in (4.82) and (4.11}), we get
(8) = ! cosA (4.88)
I Va2 )
and
v/ 212
= 4.89
o(r,9) a12b3r? — ayscostA (4.89)
respectively where A = -8 — a;3.

The streamlines for this flow are shown in Figure 4.4.
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Figure 4.4. Streamline pattern =constant. (e;3 = 0).

r
cos (8 + aya)

Employing a; = 1, (4.81), (4.87) and (4.89) in (4.76), we get

o(r,6) = —piV22 (4.90)

(112631‘2 + 0.14Sin21\
Employing (4.87), (4.89) and (4.90) in (4.11), the density function is given by

a12b2r?% + a14sin? A

o(r,8) = (4.91)

a..;(a.ncoszk - 0.121)%1‘2)

Using (4.86), (4.87), (4.88) and (4.91), the polar components of velocity are given
by
Vi(r, ) = —oky/Busind (4.92)

Glzbg‘l‘z + G;.;Sinz/\

and

Va(r, ) = — 241208 (4.93)

a4 sinZA + algbﬁrz

The pressure function is given by
1 ay
p(r,6) = po + —a(r,6) = 1nes + aslr, )] (494)
3

where ¢(r,6) is given by (4.90) and po is an arbitrary constant.
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The state equation for this flow is

= Ll % (4.95)
P=Io az p a§ P .

Summing up, we ha.vé

Theorem 4.6. A family of curves rcos™? (8 + a13) = constant when g(8) = cos(6+
ay3) in (4.1) is a permissible streamline pattern for steady plane compressible isen-

tropic pétentia] flow with solutions given by (4.91), (4.92), (4.93) and (4.94).
The potential function and the streamfunction for the above flow are given by

sinAdr + rcosAdd
G.lzb%'l‘z + al.;sinzA

%ﬁhmﬁ&/

and

_ 1 bo\/a12T — \/G14COSA
¢(T,9) - ?.bo\/du [ln (bo\/anr + ,/a.l.;cos)\ - 11

where l; is an arbitrary constant.

We have from (4.95)
dp_ 11 al
dp a3p® a3p
dp_ 21 _asl
dp? a3 p®  aip?
. dp d%p . ) .
Since Ef; > 0 and -&;5 > (0 for all real compressible media, we obtain from the two

equations above the restrictions

2a as
p< -= and p>-—-—
a, ay

Since the density function is positive definite, we conclude that the ratio g3 must
be a negative but arbitrary constant. Therefore, (4.95) is the state equation that
corresponds to some real gas giving p as a simple-valued function of p for every

choice of permissible choice of a3 and a4.
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Figure 4.5. Pressure versus 1/p as given by equation (4.95) with ag = 1.
3
ag = -3

Figure 4.5 shows the isentrope of state equation (4.95) with a3 = 1,e4 = -3

3
b

against that of a polytropic gas p = .23p":%¢. We observed that for a small range of

values of p, the two isentropes are in good agreement. We may, therefore, consider

that the solutions obtained above describe reasonably the behaviour of an ideal gas

within this range.

a1 =2,a=0

Integrating (4.74) once with respect to 8, we obtain

A(8) _ 24%(9)
9%(6) +g"(8) ~ 2Xo — 29%(6)

where Ay is an arbitrary constant.

Employing (4.74), (4.75) and (4.96) in (4.41) and simplifying, we get
2 !
(_9__2.@) =0
9%(9)

9(8) = byexp (b 6)
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(4.96)

(4.97)

(4.98)



where b; # 0 and b, # 0 are arbitrary constants. The flow pattern in this case is

identical to Figure 4.2.

Using (4.98) in (4.96), equation (4.96) yields Ag = 0. Therefore, employing (4.11),

(4.77) and (4.96) with Ay = 0 and (4.98) in (4.40) and separating variables, we have
1+asb; _ T(I(4)
ag (1 + b3) I'(4)
This equation gives

= constant = b3 # 0

1
%= e+ B — 1)
and
I'(p{r, ) = f&r"aexp(-blbse) (4.99).

2
Employing (4.98) and (4.99) in (4.11), we get

by 2
o) = — EWVITE

ba{by|rb3exp (b1 [1 — D3] 6)
The speed, density, components of velocity and the pressure for this flow are given

by

(4.100)

ba| [/ 2 a9
g(r,8) = a1o Lbz V15 ) (4.101)
bzlb.;l'f‘ 3exp (bl [1 - 63] 9)
by Z 1=ap
o(r,8) = - b1yt 5 : (4.102)
aip bzlb.; |1‘ 3exp(b1 [1 - b3l 9)
Vi(r,0) = ——220 b v+ 8 , (4.103)
’ V1+ b2 | ba|bslrbrexp (b [1 — bs]6)
ap
Va(r,8) = ——i LR VAR (4.104)
’ VI+02 | bafbalrboexp(by (1 -8a]6) [
and 1
ag 1 S5 lkag
=ps — _ . : 4.105
pr ) =po— 7~ (am) g = (a) (4.105)
respectively where ¢(r,8) is given by (4.101).
The state equation for this flow is given by
ay T lkea
P=DPo— T+ o Qg Pl (4.106)

Summing up, we have
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Theorem 4.7. A family of curves rexp(—b8) = constant is a permissible flow
pattern for a steady plane potential isentropic flow of a polytropic gas with solutions

given by (4.102), (4.103), (4.104) and (4.105).

The potential function, the streamfunction and the Mach number for the above

flow are given by

ba 5 %
B(r,§) = —medOt 02 VL B3 L amaobs e [aghy (b — 1) 6],
V1482 (1 —aghs) babs|

. ) , 1-b3
P(r,0) = E [(1 — b3) (bzexp (519)) B 12]

and
2

q
M=, —%
- (F) ¢

where I, is an arbitrary constant, ¢, is the sound speed at a stagnation point and
q(r,8) is given by (4.101).

518 — constant of a

As in the example above, we may consider the spiral flow re™
polytropic gas and obtain the relationships between the constants in the solutions

(4.102) to (4.105) and the adiabatic constant 7.
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CHAPTER 5

STREAMLINE
PATTERN ¢-5»n= CONSTANT

5.1 INTRODUCTION.

This chapter deals with a class of flows for which the strearlines in the physical
plane take the form 6 — f(r) = constant where r and 8 are the polar courdinates
and f(r) is a continuously differentiable function. For these flows, § = f(r) + ['(#)
is a function of r and 1 along such streamlines. The coordinate lines ¢ = constant
is chosen to be r = constant in the flow equations in (¢,)-coordinates of theorem
2.2. We determined the permissible streamline patterns of this form and their exact
solutions by employing the (r,9) coordinate system.

Having assumed that streamlines can be expressed as 6 — f(r) = constant, the
flow equations are analyzed and classified for this chosen form. This classification
results in the investigation of six different possible flows. It is found that the function
f(r)is

(a) a solution of r* /() f"(r) =1 =0,

(b) any f(r) such that f'(r) #0,

(¢) any solution of equations (5.44) and (5.51},

(d) the solution of equation (5.66).

(e) any solution of (5.87) and (5.89),

(f) a solution of 7 f'(r) = constant.

The governing equations are completely integrated in the (r,7)-coordinate sys-
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tem. Exact solutions are determined and the state equation for the gas that allows
these obtained solutions are found for each flow. Two of the permissible flows are
valid for a polytropic gas and two more are valid for a tangent gas. It is also found
that the remaining two flows are neither valid for a polytropic gas nor its tangent

approximation.

5.2 FLOW EQUATIONS AND CLASSIFICATION OF FLOWS.
We consider flow streamlines of the form 8 — f(r) =constant where f(r)€ c3
is any continuously differentiable function. Since ¥(r,8) =constant are also the

streamlines for steady plane flows when
dp(r,8) = —pVadr +7pV3d8  and  V=W(r0)E + Va(r0)E  (51)
in polar coordinates, it follows that there exists some function I'(4) such that
6=f(r)+T(¥), T@)#0 (5:2)

Choosing (r,%)-coordinates and using (5.2} in equations (2.8) and (2.10), we have

E(r.¥) = (@)2 + (6_3;)2 =1+72f%(r)
! or ar) ?
0r 8z Oy Oy _

Firg) = Z 22+ L = 2T,
2 2
Gt = (52) + (Z—;f)) =Ty, Jrd) =), W) =)

(53)
where z = rcos[f(r) + I'(%)] and y = rsin[f(r) + T(4)] are used. J(r,%) 20 ac-
cording as I'(1)20. Fluid flows along a streamline in the direction of increasing or
decreasing r according as I'(3)Z0.

Employing (5.3) in equations of theorem 2.2 written in (r,%)-coordinates, we
find that the Gauss equation is identically satisfied and the fluid flowing along our

streamlines, given by (5.2) with ¢ =constant, is governed by the system

bg % _

pQE -+ B 0, (5.4)
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dq , 9p _

Plas T oy T (5.5)
O (PFny) \_ 2 )
&(\/ﬁf—(ﬂ) 55 (VIF 700 =0 (5:8)
IR o R ) o
[T ()] W) -
= R(p) (2.5)

where % sign is taken in (5.7) according as I'(¢)20. that is, according as fluid flows
along a streamline in the direction of increasing or decreasing r.

Equations (5.4) to (5.7) and (2.5) are a system of five equations in five unknowns
p(r, ), p(r, %), g(r.¥), T(¥) and f(r). R(p) is some function to be determined.

In our search for exact solutions, when streamlines are a family of curves of the
form 6 — f(r) =constant, we do not make any choice of the gas and, therefore, do
not have a state equation (2.5) to use. Equations (5.4) to (5.7) are a system of four
equations in five unknown functions and we solve this underdetermined system.

Once a solution for a determined flow is known, the state equation is obtained

from solutions for p(r,%) and p(r,¥). We use (5.7) in (5.4), (5.5) to eliminate p and

81 82
employ z-& = 555 to get

avor
B |1+ )| 8g 6 |1+ fHr) | Og (5.8)
& () or Or T (¥) o .

Equations (5.6) and (5.8) are a system of two equations in three unknown functions
I'(¥), f(r) and g(r,%). Having found a solution of this system, we find p(r,%) from
(5.7) and p(r,) by integrating (5.4) and (5.5).

Defining
V1+7r2f?
pa = alry) = £ ,',},(j:) W >0, (5.9)
system of equations (5.6) and (5.8) can be written as
2 |8 - b =0 (5.10)
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and

da dq Oaldq _
—a-‘r-%— 31,()-6_1"— (5.11)
where
da _PfOfr) -1 O _ _ol"(d) (5.12)
g  rTPe(r,g)’ T '
Equation (5.11) is identically satisfied if any of the following holds true:
(1) %:_!- =0, %3— = 0, i.e., flow intensity is constant throughout the flow
domain.
Oa dq A ) .
(2) > - 0, o 0 . ie., both flow intensity and flow speed are
constant along each individual streamline.
Oa dq

= 0, i.e., flow intensity and speed are constant on

3 — =0, —
(3) o 5%
each individual circle r = constant.

a .
(4) g 0, @ =0, i.e., flow speed is constant throughout the flow
region and, therefore, of no interest and removed from further consideration.

o a9

(8) g = q(a), ¢'(a) # 0, i.e., curves of constant flow intensity and speed
coincide in the flow domain.

The first equation of (5.12) and %2 = 0 yield
r

P2f ) f'(r)-1=0

which has the general solution given by

1
f(r) = V2¢17% = 1 — arccos (\/2_(:}) + ¢

so that the family of streamlines for flows (1) and (2) above is given by 6 —
V2¢,r2 — 1 + arccos (\/..’5c:11r')-1 =constant.

Therefore, we classify the flows above as follows:

Theorem 5.1. If families of curves of the form §— f(r) =constant define streamline

patterns in a steady plane isentropic irrotational compressible fluid flow for various
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continuously differentiable function f(r) so that 8 — f(r) = T(¢) for each f(r),
where ¥(r, 8) is the flow streamfunction and I'(+) is a function of ¥ with I'(¢)Z0,

then all possible flows are classified as
(i) Aows with > f'(r)f"(r) -1 =0,
(ii) lows with ¢ = ¢(r) and any f(r) provided f'(r) # 0,
(iii) flows with g = g(a) such that ¢'(a) # 0, %% # 0 and g% # 0.

Flows classified in this theorem are studied in the following sections.

5.3 FLOWS SATISFYING 2 f'(r)f"(r) = 1 = 0.

Employing 72 f'(r) f“(r) = 1 = 0 in (5.12), we find that ?‘3—: = 0 and, therefore,
equations (5.11) and (5.12) give the following two cases:

1. 2 f'(r)-1=0 and M(¢)=0

2. PfEf'(r)-1=0 ad E=0

Since 7 f(r)f"(r) = 1 = 0 in both cases, we can rewrite this equation as
! " 1
fi(nf (7‘)-1_—3 =0

Integrating the above equation twice, we get

fir) = ———2"":"1 (5.13)

and

f(r) = V2e17% — 1 — arccos (\/21711.) + ¢ (5.14)

where ¢; # 0 and ¢, are arbitrary constants.

Employing (5.14) in (5.2), the streamline pattern for this section is

6 — \/2¢;r2 — 1 + arccos (‘/21?11_) = I'(%) (5.15)

The streamlines for this flow are shown in Figure 5.1.
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Figure 5.1. Streamline pattern 8 — 2¢,r¥ — 1 -+ arccos (\ﬁl_ ) =constant
< r
(Cl = 1).

Case 1:

In this case, using (5.13), equation (5.9) gives

pq = ofr ) = ‘f? (5.16)

where I'(3) = ¢; # 0 is an arbitrary constant.

Employing (5.13), (5.16) and I''(¥) = ¢3 in (5.10), we get
c3 (2c1'r2 - 1) -g-g —~ 217V 20,72 — 1% + 2¢c1c3m7g =0 (5.17)

The general solution of (5.17) is given by

1
) =q(r,0) =h S — 5.18
g(rP) = g(r,6) = h(n) [\/27:?71] (5.18)
where 17 = /2¢;7% — 1 + |es|# = 8 + arccos ( 2c1r)_1.
Using (5.18) in (5.16), we obtain

v2e1
lCa |Q(r! 9)
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Differentiating (5.2) with respect to r and 8 respectively, we have

O flir) 1
o TW) % TH) 520

The radial and axial components of velocity by (5.1) are given by

1 aat Va(r.8) = -2 2% (5.21)

V]_(T,e) p or

Employing (5.13), (5.19) and (5.20) in (5.21), we get

_ esd el V2ari-1 00
e N e ORI

Using (5.16) and (5.18) in (5.4) and (5.5) and integrating, the pressure function is

given by
V21
p(r6) = = [ adg=po = S=totr) (5.23)
where pq is an arbitrary constani. Using (5.19) in (5.23), the (p, p)—relation for this
flow is
2¢ 1
p=po— - (5.24)
G p

The potential function, the streamfunction and the Mach number for this flow are
respectively given by

3(r,0) = 3|f/3|—H( )

1 1 C4
By =— 60— 27% -1 - —
P(r,8) o er + arccos ( 2c1r)] -

and

M=

oD
I
pod

where H'(n) = h(n) and ¢; is an arbitrary constant.
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Case 2:

In this case, using {5.2),

8 — \/2¢;7r? — 1 + arccos ( ) =T{¢) and q = q(¥) (5.25)

1
8/ 2617'
where T'(%) is an arbitrary function.

Using (5.13) in (5.9), we get

261

pq = a(r,¢) = ) (5.26)

Employing (5.13), (5.25) and (5.26) in (5.10) and separating variables, we obtain

1 __1 4()
V2earz—1  T'(¥) o(¥)

since r and 9 are independent variables.

= constant = ¢; # 0 (5.27)

Equation (5.27) yields two equations. the first of which can be written as
2e1¢irt — (L +ci+) =0
For this equation to hold true for all values of 7, we must have
¢ =0 and 14 c§ =0

This gives a non-real f(r) and therefore this case is removed from further consider-
ation.

Summing up, we have

Theorem 5.2. A family of curves § — /2¢c;m2 — 1 + arccos (\/2c1'.r-)—1 = constant
when f(r) = /2¢;72 — 1 — arccos (\/2c1r)_1 +c¢z in (5.2) is a permissible streamline
pattern for steady plane compressible isentropic potential flow with solutions given

by (5.19), (5.22) and (5.23).



5.4 FLOWS SATISFYING ¢ = ¢g(r) WITH ¢'(r) # 0.

Having considered flows with flow intensity @ = constant througout the flow
demain and ignoring flows with constant speed, we observed that equation (5.11)
is identically satisfied when ¢ = ¢(r) such that ¢'(r) # 0 and @ = «(r) such that
a'(r) # 0.

Therefore, employing ¢ = q(r), @ = a{r) with a'(r) # 0 which yields T'(¢) =
d1® + da from (5.12) and any function f(r) such that f'(r) # 0 in equations (5.2),
(5.9) and (5.10), we get

pg=c(r)= Y———>=——=, O-f(r)=T¥)=d¥+d;

ld1|7”
and (5.28)
'(% [icf-r—)q(r)] =0

where d; # 0 and d; are arbitrary constants.

Equations (5.28), (5.9), and (5.21) give

q(,r) = Cﬁmm

|dy |72 f'(r)
1 o
plr) = 'C?‘f (r) (5.29)
and
— s =5
Vi(r,0) = PRI Va(r,8) = ar

where ¢ # 0 is an arbitrary constant and f(r) is an arbitrary function of its

argument.

Employing (5.29) in (5.4) and (5.5) and integrating, we obtain

p(r) =po—

cs (L+72f7%(r)) L / (' (r)f"(r) = 1)
df

() AP0 dr (5.30)

where pg is an arbitrary constant.
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Theorem 5.3. If q is constant on each individual circle 7 = constant then every
family of curves § — f(r) = constant such that f'(r) #0isa permissible streamline
pattern for a steady, plane, potential isentropic flow of some gas with solutions given

by (5.28) and (5.30).

An Example
Choosing f(r) = r, the streamline pattern for this flow is given by -7 =

constant. Employing this chosen function in the solutions (5.29) and (5.30), we

have
(r) = cvl+r? (r) = l.,.
D= dper RPN
c c
B =g V= go
and

Cg 1 21
p(r)=p " E [-+§‘5}
The state equation for this flow is given by

ol 2 1
P=P0— E=~"Tm33
&  3dici s’

The streamline pattern for this flow is shown in Figure 5.2.

The potential function and the streamfunction for this flow are respectively given

by
= C_s _l
$(r,0) = - (0 r)

and

B(r,0) = dll(a-f—dz)

The state equation above gives




L0 -5 0 5 x 10

Figure 3.2 Streamline pattern  — r =coustant.

and

dp_ (2¢7° + 8)
dp? d2c2p®

Since g-% > 0 and %@ > 0 for all real gases, it follows that p is required to satisfy
2p*+2>0 and  c3p?+4<0

Since density is a positive-valued function, the above inequalities cannot be satisfied
for any value of cs. Therefore, we may conclude that compressible flow along the
streamlines 6 — r = constant is only possible for an imaginary gas having the above
state equation.

Figure 5.3 shows the graph of pressure versus density for this state equation with
d, = 71-5, Cg = \/g and py = 5 together with the state equation for a polytropic
gas given by p = 1.3p**%. It can be seen that the isentrope for this state equation

is in close approximation to the ideal gas for a range of values of p. Therefcre, we
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Figure 5.3. Pressure versus deasity for the Sow 8 - r =constant
{Equation {5.30) with d = 1/v3, & = /475, p =5).

may consider the solutions obtained above to be applicable for an ideal gas for this

range of values of p.

5.5 FLOWS SATISFYING ¢ = ¢(2), ¢'(a) #0.
Taking ¢ = ¢(a), equation (5.11) is identically satisfied. Employing this assump-
tion, the expression for (r, ) given by (5.9) and (5.12) in (5.10), we obtain

2f(r) + P2 £0(r) + 7 f(r) P FAR) = F) |, ap
ala) + + raT"(3$

a(l+r2f2(r)) 1+ r2f2(r) )] g{a)=0

Dividing this equation by ra®q'(), equation (5.10) for the case when ¢ = g(a)

is

gq(e) B2 () - Fir) [ 1 .
Alr) [asq'(a)] + r(1+r2f2(r)) [;] +T"(#) =0 (5.31)

where

_2(r) + 2 F3(r) + rf(r)

A= T )

(5.32)
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Differentiating (5.31) with respect to r. we have

, q(a) PR ) - £ 1
A“”LﬁﬂaJ*( T+ 2(0) )[?l

‘I(a) ! ‘-"sf'?'('l")_f"(‘r) _ f'(r) 2 e )
{A(r) [af*q’(a)] + ( T(1+72f3(r)) ) [_E!—i]} % =0

Multiplying this equation by a® and using (5.12) to remove 22 we obtain

Hr "
L «m] s(qm>>' £ @@ -1
()[a¢w)'*3“’“ 2ga)) | T | T raerre)
. (5.33)
_2[f&uﬁfww%ﬂ—1)}=
r (1472 f3(r))’
where
e g ) - )
B(r} = Alr) T T 72 20)) (5.34)
Differentiating (5.33) with respect to 2, we have
. «a)y e «a))"=
A'(r) [aq,(a) + B(r) [a 0a) ] 0 (5.35)

since %‘-‘J; # 0.

The system of two equations (5.10) and (5.11) in three unknowns g(r, %), f(r) and
() reduced to one equation (5.31) for flows satisfying ¢ = g(a). Differentiation
of this equation with respect to r followed by differentiation with respect to ¥
produced (5.33) and (5.35). The separation of variables technique is employed in
(5.35) to determine all flows satisfying ¢ = g{a). The variables r and  in (5.35) are
independent variables since l%!;—;l = ——g—g # 0 in the flow domain. This equation

is satisfied for the following five cases:

Case 1:
A'(r)=0 and B(r)=0 (5.36)
Case 2
[“’(“)] =0 and B(r)=0 (5.37)
ag'(a)
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Case 3:

o do) \] _
A(r) =0 and [a3 (-———asqr(a))} =0
gla) 1" _ ale) \'| _

[aq'(a)] =0 e {“‘%a%’(a))] =9

A(r)£0  and [Q("‘)} £0

ag'(a)

Case 4:

We consider each of these cases separately.
Case 1: A'(r) =0 and B(r) = 0.
In this case, equations (5.32) and (5.34) yield

2f'(r) + 772 (ry + 7 f"(r) =0

since P f(r)f"(r) -1 #0.

Equaiion (5.33) then reduces to

r(1+72f%(r))

[f'(r) (P F(r)f"(r) = 1) ]' s [f'(r) (") - 1)2 _ g

r2(1+72f2(r))*

Employing (5.41) in (5.42), we obtain

FrA+2F2r) =0

which implies that
fiir)=0

since 1 + r2f2(r) £ 0.
Using (5.43) in (5.31), we get

() =0
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Employing this equation in the second equation of (5.12) gives

da

e

which is contrary to the assumption that ¢ = ¢(a). %% # 0.

Case 2: [%‘%] =0 and B(r) = 0. Using B(r) = 0 in (5.34) yields A(r) = 0.
Therefore, equation (5.32) gives (5.41). As in Case 1, equation (5.33) reduces to
(5.42). Employing (5.41) in (5.42) results in —g% = (' and, therefore, this subcase

does not yield any solution when q = q(a).

alg'(a)

Case 3: A'(r) =0 and {as ( glo) ) ] = 0. In this case, we integrate the first

differential equation twice and obtain
1
f(r) + arctan (v f'(r)) = ;)-borz + by (5.44)

where by # 0 and b; are arbitrary constants.

Integrating the second differential equation, we get

3 q(a) ' _
“ (shyter) =* (545
and
_ bqe!P[—'%%]‘, bg=0
9la) = {bs(zbs—ﬁ)"%; ba 0 (546)

where by, b3 # 0, by # 0, bs and bg # 0 are arbitrary constants.
Employing (5.44) and (5.45) in (5.33), we obtain

o [Prorm -] | [FoErore =)
TEL (L2 () (1 + 2 f2(r))
L[ Ermse -1t

72 (1 + r2f12(r))?

(5.47)
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Using (5.9), (5.44) and (5.45) in (5.31) and separating variables, we have

rfi(r) (72 ()} (r) = 1)

1 bsber? _ (T""(4p) + bsbs)
(1+'r2f'2(:f'))2 2 (14 7r2f2(r)) (4}

since 7, ¥ are independent variables.

Equation (5.48) gives

- = constant = b;

(5.48)

P £/ (P F () = 1) = be (1472 F2())? = Shobar? (1 +72£2(r) =0 (5.49)

and

T"(¢) + b7 () + bobs = 0

Employing (5.49) in (5.47), we find that (5.47) is identically satisfied.

Using (5.44) in (5.49) and simplifying, we obtain
2 f3(r) = v® (bor® — bs7) fR{r) + 7 (r) + %bobzrz +b:=0

Therefore, the function f{r) must satisfy equations (5.44) and (5.51).

Integrating (5.50) once yields

I'(¥) =

‘/\i_:’zltan (‘/b—“b_s[bs - b; ) |

where bg is an arbitrary constant.

Integrating (5.52) once more gives

I'(y) = -—E]':ln[sec ( \;ob_fs [bs — b-,-'a,b]) | + by

where bg is an arbitrary constant.

Using (5.53) in (5.2}, we have

sec (V \/_5; fs Ibe -a7¢1) = exp[br (F(r) — 8 + bo)]
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Employing the above equation in (5.52). we get

R e (3 s = 6% F)) 1 (5:54)

I ((r.6]) =

Using (5.54) in (5.9). we have

a(r,0) = = 1+r2f2(r) _ Ve 1+ 72 f3(r)

= 9.55
| T'(%)] Vbobs r+/exp (2b7 by — 8 + F(T)]) - 1 (5:55)
where f(r) is given by (5.44) and (5.51).
Employing (5.46) in (5.9). the density function is given by
1 g a:’-'{'b: '5];
)= — | o .
p(r.9) b (2650:3 —b-_,) (5.56)

where a(r,8) is given by {5.55).

The velocity components in polar coordinates using (5.20) and (5.21) are

S S g = ()
R0 = —t(a), Valnf) = —mmesale) (537

Using (5.9) and (5.46) in (5.4) and (5.5) and integrating, we obtain
p(r,8)=— / ag'(a)da = py — 2bg ] o~ % (Qbsaz - bz)s!;-1 da (5.58)

For b, = 0, the arbitrary function f(r) must also satisfy equations (5.44) and
(5.51) with b, = 0. Equation (5.50} is identical with bybs replaced by 5"5“; Therefore,

the solution set for b, = 0 is given by

a(r,0) = V/2bsbr V1+72f%(r)

sbr V1 , 59
Th rexn @il = 0+ FOD -1 (559
b
p(r.6) = bliaexp (a—z) , (5.60)
Virf) = ot g(a),  Va(n8) = D __ga)  (561)
and
p(r,8) = po — 2b3b4 [a'zexp (—%) de (5.62)

where b, is an arbitrary constant.
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Theorem 5.4. A family of curves 8 — f(r) = constant such that f(r) is a solution
of both (5.44) and (5.51) is a permissible streamline pattern for a steady, plane,
potential isentropic flow of some gas with solutions given by (5.56), (5.57) and
(5.58) or (5.59), (5.60), (5.61) and (5.62).

An Example
For b, # 0, equation (5.58) yields various state equations corresponding to the
flow of different gases for various choices of bz. For example, choosing b, = =2 in

(5.58) and integrating, we get

(r8) = po+ B ——
o) =0T o ohea? + 2

BEmploying b» = —2 in (5.56) gives

p(r,0) = ;—6\,‘ 2bsa? + 2

Therefore, the state equation for this flow is

11
P=pot -7
5P

For every solution f(r) of the two nonlinear ordinary differential equations (5.45)
and (5.51), we have a streamline pattern § — f(r) = constant and the exact integral
for the flow of a tangent gas, obtained by choosing b; = —2, having this streamline

pattern is given by

V2bs /1 -712 +r2f’i('r_)+rzexpLQ£T [f(r) — 8 + bg])

A = Tl Ve @i ) -0 bo]) 7
Vi(r,0) = \/5566 {bsbz (1 + 77 f3(r)) + bobs?[exp (2b7 [f(r) — 6 + bg]) — 1]}%
JEbe

Va(r,8) = Y% 1(5) {bsbr (14 72 £2(r) + bobsrlexp (261 [£() — 6.+ bo]) — 11}

V2

T T Vabs by /T =72 + 12 F2(r) + r2exp (26 [£(r) = 6+ b))
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The potential function and th: streamfunction for this flow are

bs /b7 dr + * f'(r)dé
P(r,0) = R
(r6) V2 / Vsbs (1 + 72 f2(r)) + bobsr*[exp (2b; [f(r) — 6 + bg]) — 1]
P(r,0) = 61_7 {bg - \/\g_:%sa.rccos lexp (bs {8 — f(m)} — b-;bg)]}
respectively.

!
a1 _ 3 _ato) \'| _
Case 4: [ﬁj] =0 and [a (?%T)] =0.

In this case, we have

gla) _ _1
a(a) - constant = /\(sa.y)
This equation gives
gla) = baa®, A #0.1 (5.63)

where 4;, # 0 is an arbitrary constant.

Equation (5.63) identically satisfies the second assumption of this case.

Using (5.63) in (5.33), we get

Hop 1‘3 U F ) — !
é[A,(r)_gB(T)]+[f()( f1(r)f"(r) 1)]

r (1 + 72 f12(r))

\ (5.64)
L [FMEsrmsn -]
Tl ey
Also employing (5.9) and (5.63) in (5.31), we have
r () 2150 +of) | rf) PO 1) W)
X (1 +r2f72(r))? (1 + r2f7%(r))? T2(y)
(5.65)

where b;3 # 0 is the separation constant.

Equation (5.65) gives

2 f (r) + 2 Fr) + P2 (r) + A f () (P F () () - 1) - Abis 1+ #2f%(r)) =0
(5.66)
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and

T(9) + bia "2 (¢) = 0 (5.67)

Employing (5.66) in (5.64), we find that (5.64) is identically satisfied. Therefore,
f(r) is given by (5.66).

Letting u{r) = v f'(), then E%(Tr) = "—(:-)- +7f"(r). Replacing f'(r) and f"(r) by
u(r) and 42 in (5.66), we obtain

du(r)
dr

r (1 + M?(r) + (1 +u) [(1 - Au(r) = Abs(1+2*(r))] =0 (5.68)
This equation is identically satisfied if u(;r) =constant = A;(say) such that

(1= M)A = Abys(1+23) =0 (5.69)
Since u(r) = 7 f'(r), we obtain

f(r) = Mlnr + Az (5.70)

where ), is an arbitrary constant and A, satisfies (5.69). The streamline pattern
for (5.70) with A; = 1 and Az = 0 is shown in Figure 5.4.
If [(1 = Au(r) — Abua(1 + u?(r))] # 0, rewriting (5.68), we obtain

L+ du(r) du = —ar
(T2 - Nulr) = b1 +u2(m))]  r
Integrating the above equation, we get
ha(u); m? <1
r={ ha(u); mi=1 (5.71)
ha(u); m2>1
where u(r) = rf'(r), m = 35> and
hy(u) =d 1+ ex [—I——a.rctan( i )]
W 1\/1:.2—2'm.'u.+1 P Vv1-—m? 1—-m?
ha(u) = da (1 +'u.2) (uF1)7 7 exp [— 7 @Fl) (5.72)
V1 + u?
h3('lL) = d3

(‘U- —ma )‘\3 (u - m-_,)A"
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6r
-8
-10 y :
-10 -5 0 5 > 10
Figure 3.4. Streamline pattern # — inr =constant.

where m;y = m+vVm?-1, my = m—vVm?=-1, A\ = {amizl) Ay =

V(1=2)2=4a283, "
(l—amy) 1=

oo a = 3= and d), d» and d3 are arbitrary constants.

Integrating (5.67) once and using (5.2) in the resulting equation, we get
T'(¥[r, 8]) = brsexp(—b13 {6 - f(r)}) (5.73)

where b4 # 0 is an arbitrary constant.

Employing (5.73) in (5.9), we obtain

1 14 r2f2(r)
|b14]

where f(r) is given by (5.70) or (5.71).

afr,6) = exp (bis [6 = £(r)]) (5.74)

The density function, the velocity components and the pressure function are

given by

14+ 72F2(p (=X
p(r,8) = bulbill-*( a ’; lf,‘)) exp {bis(1 = N[0 - f(r)]}  (5.75)
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1-X 2 12 '-:(A—l)
- bml?;l (1+7 fr(;")) exp(Mbia - F())  (5.76)

Vl(‘f‘, 9)

- 2t 1(A-1)
bl A () (LA PP

Vo(r,8) = bae =% exp (Abys (6 — f(r)]) (5.77)
Al
pr8)=po— —=—9 " (@) (5.78)
14X bl%z

where g(r.8) is given by (5.63) and (5.74).

Employing (5.63) and (5.75) in (5.78), the state equation for this flow is given by

2 L
pP=po- b5 pTY (5.79)
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Theorem 5.5. The streamline pattern defined by a farmily of curves of the form
8- f(r) = constant where f(r) is given by (5.70) or (5.71) is permissible in a steady,
plane, isentropic, irrotational compressible fluid flow with solutions given by (5.75),

(5.76), (5.77) and (5.78).

An Example of a flow for a Polytropic Gas p = Ap”

If we consider a polytropic gas having the state equation p = Ap” where 7 is the

ratio of specific heats, the equation of state (5.79) above requires

A\ 1+ _
p =0, A_-(lH)bm md 2oy
Solving these equations, we get
_7"1 _(1_7) 14y
/\ = m and A = —5‘7——1312

Therefore, for the flow pattern given by 8 — f(r) = constant where f(r) is given

by (5.70) or (5.71), the solution set of a polytropic gas having this flow pattern is
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given by

1 1 14 r2f2(r W
plr,6) = 1= {lbul sas ’exp(bm{e—f(r)l)}

3 P .
albe |77 (1 4+ 72 £72 1 -
Vil g) = D2l [T A4 S5 T (bm"’

)

b14 P 7+
bualbgl T F1(r) (14 72f3(r) ™7 ¢ 1
2 +1 fi(r r=f'*(r)) -
Vo(r, 0) = =222 — exp (bn" -6 - f(r)])
b1s P v+1

F

5.-(1 — 2f2(p 3T
plr,6) = 22 ‘”{Ibll s i ’exp(bm[e—f(r)])}

The potential function and the streamfunction for this flow are given by

o R W
bya|byg|7H 1+ 2 f2(r)) " -1
B(r,8) = _1%_ / dr + f'(r)ag) &F f :;(: D T (bm:; = [e—f(r)])

and
#0.6) = o { explbus (6= F(r))] - A
13 13

respectively where %, is an arbitrary constant.

Case 5 A'(r) # 0 and [42) ] £0.

aq'(a)

In this case, we have

{"3 [?g%]’}' A'(r)

[ oe) ], = —.-B_('r_) = constant = b15 -'f’-' 0 (5.80)
ag'(a)
Equation (5.80) yields
5[ _ate) 1 gla) V' _
{"‘ Erl } - [ k) = (58D
and
A(r)+bisB(r)=0 (5.82)
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Solving (5.81), we get

1 .
gla)  _ b—l;ab”‘qb"’(a); bis # 0 (5.83)
30 .
o] q (a) b]_Tab”); b16 - O
and
r bighis 1 "e ]
(bmbxs - mm) ; bis # —2,b1s # 0
1
(blqu',‘an‘. -+ b16b13)°10 N 615 = —2, 615 -'"é 0
g(a) = (5.84)
broa T bis = =2,b1s =0
1
- ; s # —2bie =
L bagexp ( b (e & g)abm+2> ; bis # e =0

where byg # 0, b7 # 0, big, b1 # 0 and bag # O are arbitrary constants.

We consider the most general case when b5 # —2 and b # 0 é.nd obtain the
exact solution for this case. A similar analysis can be carried out for the remaining
three possibilities.

Employing (5.81) and (5.82) in (5.33). we obtain

{ [ [ ! ' ' 1" _ 2
bieB(r) + [f (r) (£ (r)f (r)—1)] L, [f (r) (B P () 1)

(1 + 2 f12(r)) 2 (1+ T'zf'z(r))z ] =0 (5.85)

Using (5.9) (5.83) and (5.84) in (5.31), we get

(2f'(r) + P2 f2(r) +£"(7)) [515613 (1+ rzf'z(r))%(b“*'z) 1 ]
(5.86)

r(L+7r3f2(r) b D) b2
a1 G 0 R G IO 0) I ') NP
r(1+r2f3(r)) 2 T2(y)

In order to separate variables, we assume byg = 0 in (5.86) and therefore, have

rf(E) (PR =1)  bie T F() +r2RE) +rf() | TV(W) _

=— =b
(+r2fe@)f  bst2 (1+ef) @)
where ba; # 0 is an arbitrary constant. This equation gives
bis

U @F () + 23 1) = rf (1) (P (1)) - 1) (5.87)

+bhn (1472 f2(0) =0



and
T"($) + bnl"(¥) = 0 (5.88)
Employing (5.87) in (5.85) and simplifying. we obtain

Fi(r) (P F () f(r) = 1)

) -1
r3

15 (15 o2 fR(r))2 — by (b1s +2)
72 (1 + 72 f2(r)) ' (5.80)
) EErEsrn =1]
r(1+72f2(r))

Using (5.89) in (5.82), we find that (5.82) is identically satisfied. Therefore, f(r)
must satisfy (5.87) and (5.89).

Integrating (5.88) once yields

I’ (9{r, 6]} = boaexp (—bz [6 — f(7)]) (5.90)

where b2 # 0 is an arbitrary constant and f(r) is given by (5.87) and (5.89).
The solution set for this flow is given by

a(r, 8) = 1 VI+r )exp(bn[a—f(r)l)
|b22] T

1
q(r,0) = Ca;

p(r,8) = claal‘“’f (5.91)

Ca 1

—_— 5.92
JTErr o &%)

V2(Ty 9) = —___C:;T‘f'('l‘) —1—

14+ 1-2f12(7.) 4

Wi(r,8) =

(5.93)

po - 16304 ‘ al—c‘_; C4 # 1
p(r,6) = (1-c4) (5.94)
Po + cacqlna; cg=1

where

bigbi7 \ B1e bis +2
n— ————— d T c——
cg = ( » 2) an 4
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and f(r) is a solution of both (5.87) and (5.89).

The state equation for this flow is

l=¢c
po...ci__c..ipl'Fc.., c_*?él
p= (1—cyq (5.95)
C3Cy
Inp; =1
Po + 1+ec np C4

Therefore, we have

Theorem 5.6. A family of curves § — f(r) = constant such that f(r} is 2 solution
of botI; (5.87) and (5.89) is a permissible streamline pattern for a steady, plane,
potential isentropic flow of some gas with solutions given by (5.91), (5.92), (5.93)
and (5.94).

Flow along § — f(r) =constant for a Polytropic Gas p = Ap”

Consider the flow of a polytropic gas p = Ap” where v is the ratio of the specific
heats along the streamlines § — f(r) = constant where f(r) is given by (5.87) and
(5.89). The equation of state (5.95) for ¢4 # 1 requires

]
b
b
|

Po

Solving these equations, we obtain

1

c.;——l_'y and c—(?dA )T—T
*T\(r-1)

Therefore, the solution set for the flow of a polytropic gas having the streamline
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pattern 8 — f(r) = constant for every f(r) satisfying (5.87) and (5.89) is given by

1 —
_f 2qA N (] 1+ 72 f2(r) B e
P("":- 9) = ((7 . 1)) (Ibzzl - exp (b21 [9 f(f)])) ’

-1 ﬁ; 1 1 1 2§02 %:
it = () = (Ib_ml T cep o 10 - f(r)]))
2 7 -_

2y A 1+72f72(r) \ b2z

pir) = 4 (221 (];ﬁl Ly ”exp(bn[e~—f(r)1))

H,'—, rf! 2 fI2(p ﬁ}
Va(r.6) = (u) f(r) ( 1 \/__1+Tf (™) exp (b [a_f(,,m)

The potential function and the streamfunction for this flow are given by

-1 T W T YRS "ri:
4-]( -— L T + 2 gt r + T 12

1+72f72(7)
and
1 1
P(r,8) = . {B—ech (bay {6 — f(r)}] - 11’2}
22 | b2

respectively where § = 1—;—;‘ and 9 is an arbitrary constant.
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CHAPTER 6

STREAMLINE
PATTERN . - CONSTANT

glz)

6.1. INTRODUCTION.

This chapter deals with determining the permissible streamline patterns and
their exact solutions for a class of flows whose streamlines in the (z,y)-plane can be
expressed in the form ;% = constant, where g{z) is a continuously differentiable
function. Along these streamlines, y = g{z)I'(¢) is a function of =z and ¥ where
I'(#) is some function of 3. We choose the curves ¢ = constant to be z = constant
in the flow equations in {$,%)-coordinates given in theorem 2.2. We employ von
Mises coordinates (z,3) for the investigation of this class of flows.

Given this assumed form for the streamline pattern, the governing equations are
analyzed with von Mises coordinates and classified. This classification results in the
study of three different possible flows. It is found that the first of these flows are
straight parallel flows while the remaining two are non-straight flows. The function
g(z) in the chosen form is shown to be a

(a) a solution of g"(z) = 0 yielding straight flows,

(b) a solution of [1 + d3dsg?(z)] "(2) - 2d3dsg(z)g"*(z) = 0 in the first type of
non-straight flows where dy # 0 and ds # 0 are arbitrary constants,

(c) a solution of A;¢"(z) + m2g(z) = 0 in the second type of non-straight flows
with the additional assumption that I'(3) = e™¥, where A;# 0 and m # 0 are any
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constants.

The flow equations are integrated in the von Mises coordinate system and the
resulting exact solutions are expressed in the physical plane. The state equation
for the gas that permits each of the above flows is also determined. It is found that

the gas is a polytropic gas for straight parallel flows and a tangent gas for both

non-straight flows.

6.2. EQUATIONS OF MOTION AND CLASSIFICATION OF FLOWS.
We investigate compressible fluid flows along families of curves that can be ex-

pressed in the form —¥_ —constant where g(z) € C? is any continuously differen-

()
tiable function. Since ¥(z,y) =constant are also the streamlines in a steady plane
flow, it follows that there exists some function T'(#) such that

vy _ Mo,
L =T ) #0 (1)

We choose the von Mises coordinates (z,) to study these flows and employing this

coordinate system and (6.1) in (2.8) and (2.10), we obtain

Bloh) =1+, Gle) = 2@0)
Flo$) = s @IOIW,  Je) = |32 —gere) 62
W(z,9) = VEG - F7 = g(=I'($)| > 0

Whenever g(z) and I'(3) are both positive or negative, g(z)I'(¥) > 0, it follows
that J > 0 from (6.2) and, therefore, fluid flows along a streamline in the direction
of increasing z. Also, g(z)I'(¥) < 0 whenever one of g(z) or I'(¥) is positive and
the other is negative which yields J < 0 and, therefore, fluid flows in the direction

of decreasing z along a streamline.

To study flow along the curves Y —constant, we employ (6.2) in the equations

g(z)

of theorem 2.2 and write these equations in von Mises coordinates. Gauss equation
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is identically satisfied and the fluid flowing along a streamline is governed by the

system

3q Op

'6— + 3z =0 (6.3)
Bq dp _

31!) + i (6.4)

g(z)g’ (=)L ()T (%) ]

z ﬁ 5 g’“(z)r"w) !

ﬂg”(z @) _ |, VI @)
) IT(P)] 92T (%)

p = R(p) (2.5)

5% [\/ 1+ 9'2($)F2(¢)9] =0 (6.5)

(6.6)

of five equations in five unknowns g(z), I'(#), plz,¥), g¢(z,?) and p(z,4). In (6.6),
the =+ sign is chosen according as I''(3) 2 0, that is, according as fluid flows along
a streamline in the direction of increasing or decreasing z.

In seeking exact solutions of compressible flows whose streamlines are farnilies of

curves of the form 2 —constant, we do not choose a priori a particular gas, and,

I
therefore, do not hg:\re) a specific state equation (2.5) to employ. Equations (6.3)
to (6.6) form a system of four equations in five unknown functions and we solve
this underdetermined system. Having found a solution of this system, the state
equation is determined from solutions for p(z,?) and p(z,v) giving us the gas that
flows along the obtained streamline pattern.

Employing (6.6) in (6.3) and (6.4) to eliminate p and using the integrability
2p
condition &p to eliminate p from the resulting equations , we get

Oz 61!) ooz

VIF @) VITFP@E@D | % o (6
= 92) T ()] a¢ a¢ 9(2) ) ” '

Equations (6.5) and (6.7) form a system of two equations in three unknown functions

g(z), [(%) and g(z.%). Once a solution of this system is found, p(z, ) is determined
from (6.6) and p(z.%) is determined by integrating (6.3) and (6.4).
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Defining

V1+g= () ()

pe= =9 = ol (65)

the system of equations (6.5) and (6.7) can be written as

9 [g'(=)T(#) 9 '
5= [W] - 5{5 [g(2)T'(¥) ez, ¥) gz, %)) = 0 (6.9)
and
da g Oa ¢
,3_35.1;_%55_0 (6.10)
where

bo _ g @W) _ @) %a_ @) @)@
8z gl (z)a(z,p)T2(®)  g9z)’ & gi(a)alz, ) T(¥) T'(%)
(6.12)

Equation (6.10) is identically satisfied if any of the following holds true:
(1) ¢ =gq(a), ¢'(a) # 0. This is the case when the curves of constant speed

and the curves of constant flow intensity coincide in the flow domain.

G} g

(2) £ = -é% = (. This is the case when the flow intensity is constant
everywhere,
da  Oq

(3) Frl 0. This is the case when the streamlines are the curves of
constant flow speed and the curves of constant flow intensity.
da Ogq .. 3 3

(4) % = s = 0. This is the case when the flow speed and the flow intensity
are constant on each individual parallel straight line z =constant.
0¢ Oq .. .

(5) B2 = 5 = 0. This is the case when the flow is of constant speed

everywhere and so is of no interest.
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Flows resulting from cases (2). (3) and (4) are not possible since the assumptions

_g_a = 0 and g—: = 0 give I'() = 0. This can be seen easily by assuming first
T

da

o 0 and employing (6.8) in the first equation of (6.11) which gives
T

§(2)2) _1+g2@) _,
J@T2) S

Since z and v are independent variables, separating variables in the above equation,
we get
1
z)g"(z) — ¢'*(z) = ——= = constant
g(z)g"(z) — ¢"(z) T3
which implies that I’(3) = 0 contrary to the assumption (6.1).
Similarly, assuming g—z = 0 and employing (6.8) in the second equation of (6.11),

we obtain
! 1 — 1 _
T¢I (@) = T2 () (%) = _—g‘z(:n) = constant

Using these equations in (6.5), we obtain I'(¢) = 0.

Summing up, we have

Theorem 6.1. If families of curves of the form ;(% = constant define streamline
patterns in a steady plane isentropic irrotational compressible fluid flow for some
continuously differentiable function g(z) so that ;45 = T'(¢), where ¥(z,y) is the
streamfunction and T'(3) is some function of ¢ with ()20, then all possible flows

are flows with ¢ = q{«a) such that ¢'(a) # 0, %% # 0 and g—; # 0.
Therefore, we study flows when ¢ = g(a) in the next section.

6.3 FLOWS SATISFYING q = ¢(a), ¢'(a) # 0.
Taking g = g(a), equation (6.10) is identically satisfied. Employing this assump-
tion in equation (6.9) and expanding, we obtain

g“(m)r(tb)q +
(44

g’(zlr("ab) [qt(a) _ %Q(Q)} g_: - g(z)I"(d,) [q(a) + O’-g(a)] 'Z_.’:‘-
- g(z)eq(a)T" () =0
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Oa Ja
Using (6-11) to eliminate — and —— from this equation. we obtain

Oz Y

g2 (z)g" (z) [a(@) — ag' (@) T*(¥) — ¢*(z)g" (2)a* g(a)T ()T () .
+ 29(2)g"(2)a’q ()T (#) — ¢ (@)o’ e (@) ($)T3(%) = 0 (612
This equation replaces (6.9) for this case when ¢ = ¢{a). Since g(a) — ag'(a) = 0
implies that ¢ is proportional to « and from equation (6.8). pg = a, it follows that
gla)—aq'(e) # 0 in (6.12) for the compressible flows and, therefore, equation (6.12)

is satisfied if one of the following holds true:

(1) straight flows, that is, g""{(z) = 0 with

2g"%()0(h) — ¢* ()" T"(¢) = 0

since g(z) # 0, & # 0, I'?(3)) # 0 and ¢'() # 0.

(2) non-straight flows with I'"'(%) = 0 and
g

g3 (z)g" (z)e’q(a) — 29(z)g" (z)e’q' () — T(9) ) [9'2 z) {q(a) - ag'(a)}] =0

(3) non-straight flows with ¢"(z) % 0 and I'"'(#} # 0.

We consider each of these flows separately:

Case 1: Straight Flows with ¢"(z) = 0.

In this case, we have

g(z) =diz +d2 (6.13)

and
2¢"%(z)(¥) - ¢*(z)a?T" () =0 (6.14)
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where d; # 0 and d, are arbitrary constants.

Employing (6.8) and (6.13) in (6.14), we obtain

" " I'\H
2d3T(%) - [1 + diT2 ()] r,z(('fb)) =0 (6.15)
Integrating (6.13) once, we get
T'($) = da [1+ diT3(%)] (6.16)

where d3 # 0 is an arbitrary constant.

Using (6.13) and {6.16) in (6.8), we have

1
o) = o T ) VA E BT

Replacing I'(%) in the above equation by (6.1), we get

1

a(z,y) = — — 6.17

) |d3|\/d‘;’(z2+y2)+2d1d2z+d§ ( )
The speed function is given by

oz, y) = g(a) = == 6.18

« q(ldal df(:c2+y2)+2d1dgz+d§) (6.18)

where ¢ is an arbitrary function of its argument. From (6.8), the density function

is given by

a(z,y)
q(z,y)
Differentiating (6.1) with respect to = and y respectively and using (6.1), (6.13) and

pz.y) = (6.19)

(6.14) in the resulting equations, we have

31!) dy

o r - dlz +d2
Oz = d3(d}[z? +y?] + 2d1daz + d3)’

ds (d§[32 + yz] + 2d1d2$ 4 d%)

% _
Oy
Employing the above equations and {6.19) in (2.27), we get

(diz + d2) B
V(@22 + 7] + 2oz + 2 1= (6.20)

u(z,y) =
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and

d1y
d3[x? + y?] + 2d1daz + d3)
Using (6.5) and (6.18) in {6.3) and (6.4) and integrating, we obtain

. 1 d*z + dido) dz + dydy] ¢'(«
P(z,y)=~./aq(a)da=po+—._,/ I — - _,) 1Y y]q(z) (6.22)
d3 J  [d}(z® +y*) + 2dydoz + d3)

v(z.y) = 7 q(z.y) {6.21)

where pg is an arbitrary constant. The state equation for this flow is obtained by
expressing {6.22) in terms of p after choosing the speed function g(z.y).
Therefore, we have

K}
dla: + dz
(6.1) is a permissible streamline pattern for steady plane compressible isentropic

Theorem 6.2. A family of curves =constant where g(z) = dyz + dz In

potential flow with solutions given by (6.19), (6.20}, (6.21) and (6.22

An Example of a Flow for a Polytropic Gas p = Ap”

Choosing q(a) = a= where m # 0 or m # %1, the pressure function for the flow
g

above is obtained by employing this chosen g(a) in (6.22) and is given by

qm+1(a)

P(a)=-/adq=—/q"‘(a)dq=po—m+1

Using g(a) = o™ in (6.19), we get

Therefore, the state equation for our flow above is given by

- 1 mn
P=Dbo m+1P

Consider a polytropic gas having the state equation p = Ap” where 7 is the ratio

of specific heats, the state equation for our flow above requires

1 m+1
= = — d —— =



Solving these equations, we get

1 -1
m= ks and 4=1=
7-1 2y
Therefore, for the flow pattern given by d—-y_’_—d- =constant, the solution set of a
1T 2

polytropic gas having this flow pattern is given by
play) = ol {4 (27 + 47) + 2ades + )T
u(z,y) = lds|:T_3 (drz +da) {di (=° +¥") + 2d1doz + &}
w(z.y) = |15 dyy {@ (22 +97) + 2drdyz + B}

and

¥—1 . 2 7
plz,y) = 5 1dal 77 {d] (= +y ) +2idpz+d3} — =

The potential function, the streamfunction and the Mach number for this flow are

respectively given by

I—» 1 1
B(a,y) = 1o/ L (a2 (2 +47) + 2oz + E} T 4 2o,
1

_ dy d1y
¢umr-@uaw(mm+®) ¥

am
M=
T (D eF

where &, and ) are arbitrary constants, c, is the sound speed at a stagnation point

and a(z,y) is given by (6.17).

Case 2: Non-straight Flows with I''(¢) = 0.

In this case, we have

T(¥) = dstp + ds (6.23)
and
P " 2 9 Lpd I 2 " — r"("l[’) _
a*(z)g"(z)a’ ge) — 29(z)g* (z)a’q (a) — ¢"*(z)g" (z) lg(a) — ag'(a)] 3(5) =0
(6.24)

140



where d; # 0 and d; are arbitrary constants.

Since ¢"(z) # 0 and g(a) — aq'(a) # 0. equation (6.24) gives

glz)a® [g(z)g"(z)a(a) — 20" (x)aq'(a)]  T{(3)

2 [T ! - T2 6.25
()" (@) (@) — o (@] () (6:29)
Differentiating (6.25) with respect to ¢ and using (6.11), we zet
a’gq(a) ]' 29%(z) [__o’q(e) ]'
- - =2 6.26
[9(05) —ag'(a)]  g(z)g"(z) [g(a) — ag'(a) “ (6.26)
Equation (6.26) yields the following two subcases:
Subcase (2a): [—-a—st-l-’-(-ﬂ-—]' =0
—— lala) - eq'(a)]
a*q'(a) ]
Subcase {b): [—————| #0
Subease (o) | 525 | #
We consider each of these subcases separately:
Subcase (a):
In this case, we have
[—"‘3"13)——] = constant = dg # 0 (6.27)
a(a) — aq'(a) ’ '
Integrating (6.27), we get
d:a
= 6.28

where d; # 0 is an arbitrary constant.
Using (6.28), equation (6.26) is identically satisfied. Using (6.23) and (6.28) in
(6.25) and simplifying, we obtain

1+ dideg?(2)] "(z) — 2d3deg(z)g" (2} = 0 (6.29)

Solving (6.29), we have

1
olz) = g—r=tan (d., V& [z + ) (6.30)

where ¢; # 0 and ¢; are arbitrary constants.

141



Figure .1, Stremmline pattern =coustant

¥
T YTAY/N le1s + ed])
(ey=1, e2=0, dy=dy =10

The streamline pattern for this flow is shown in Figure 6.1.
Substitution of (6.1) and (6.23) in (6.8) yields

2 1?2 2
oz,y) = LI (2;(5; )(”)y (6.31)

where g(z) is given by (6.30).
Using (6.31) in (6.28), we get

dr\/g%(z) + ¢g"(z)y?

(z,y) = ————m—m-----—— 6.32
() = e+ Bdeg(2) + 7 (632
Employing (6.31) and (6.32) in (6.8), we obtain
2 2 4 [ 2
plz.y) = Ve(z) + didegiiz) + % (z)y (6.33)

dyd:g%(z)

Differentiating (6.1) with respect to z and y respectively and using the resulting
equations, (6.23) and (6.33) in (2.27) gives

dzg(z)
Vi (z) + Edsg*(z) + g3z )y
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and

dryg'(z)
Vi () + d3deg?(z) + g7 ()
Integrating (6.3) and (6.4), the pressure function is

v(z,y) =

d.;dc,d-g () _
f($)+d' dsgi(z) + g% (=)y?

where pg is an arbitrary constant.

plz.y) =

The state equation for this flow is given by

ds
P=py+—
£

Therefore, we have

davds Y
an (dyVds a1 + )

Theorem 6.3. A family of curves .

(6.35)

(6.36)

(6.37)

=constant is a permissi-

ble streamline pattern for steady plane compressible isentropic potential flow with

solutions given by (6.33), (6.54), (6.35) and (6.36)-

The potential function, the streamfunction and the Mach number of this flow are

g(z)dz + yg'(z)dy __
$(z,y) _/\fZ(z)-i-dzdog"‘(:B +9'2(3)_y_

o) = Ve~ (4Bl + ) - 2

and
dzczsd-g (=)
\/dzde (d: — 1) g*(z) — ¢%(z) - 92(=)y?

respectively.

Subcase (b): Dividing equation (6.26) by [—M], # 0, we have
E— - g(a) — ag'(a) ’

[ a’q(a) ]

gle) —ag'(a)) _ 2¢ _ _24"%(=)
[ alq'(a) }' [ a®q'(a) l' 9(z)g"(z)
g(a) — ag'(a) g(a) — aq'(a)
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Since ggi;; = _g?b' # 0, equation (6.38) yields
o) — oq(e) 22 %%) _ _
g(a) — ag'(a) |.Q(a) — aq'(a)

This equation gives

__ff_q(i)__]'_ 4 [_ciqf;*)_,]=
[q(a)-aq'(a) 2o du | S —ag(a)]

and
2¢"*(z)

@) (z)

Integration of (6.39) with respect to a yields

dragq(e} = [dize + a® —dna®)¢(e) =0

(6.39)

(6.40)

(6.41)

where dy2 is an arbitrary constant. Integrating (6.41) once again with respect to o,

we have
dma

o) = Vdiz + (1 —dn)a?

(6.42)

provided dy; # 1 where dj3 # O is an arbitrary constant. Integrating equation

(6.40) once with respect to z, we get

-
g'(z)g” Ni(z) = diy

(6.43)

where dy4 % 0 is an arbitrary constant. Employing (6.43) and (6.42) in (6.25) and

simplifying the resulting equation, we get

g'(z)=0

. . . d
which contradicts our assumption that ¢ = g(a), 7’3% # 0.
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Suppose now that d;; = 1. then (6.41) gives
dia[gla) — ag'(a)] =0

which implies that

dy2 =0

since g(a) — aq'(e) # 0. Using (6.40) with dy; = 1 and (6.23) in (6.25) and

simplifying the resulting equation, we get

1
PR

which is again a contradiction.

Case 3: Non-straight Flows with ¢"'(z) # 0 and (%) # 0.

In this case, equation (6.12) can be rewritten as

9" (z)g" (=) (q(a) —aQ'(a)) (I‘z(d')) _g"(z) ( g(a) )

F) \ ogle) J\T?@)/ @ \e¢(a)
L 20°%() (2 ) _TW) (64
7 \o?) " T(¥)

Equation (6.44) is a non-linear equation involving three unknown functions g(z),
g(c) and T(3). This equation does not allow the separation of these three unknowns
and, therefore, an assumption on one of these unknowns has tc be made in order
to solve for the other two. We choose to solve (6.44) for g(z) and g(a) and so, we

assume that

L() =™ (6.45)

where m # 0 is an arbitrary constant. Using (6.45) in (6.44) and multiplying the

resulting equation by a®, we obtain

1 g%(=z)g"(=) (q(a) “QQ'(Q)) _g"(=) ( g(a) )+2g'2(=c)

- .
w2 ¢(a) e ) g \ar@)) T w0649
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Differentiating equation (6.46) with respect to ¥, we get

_i_ g'z(:c)g"(z) (q(a) — aq'(a))' _ g”(m) ( Q(a) )' —9m2a =0 (6.47)

m?  g%(z) o*q'(e) 9(z) \ag'(a)
. da - : . e :
since 3 # 0. Dividing equation (6.47) by « and differentiating the resulting

equation with respect to ¢, we have

e e D R COI R

since g"(z) # 0.

Equation (6.48) leads us to the following two subcases:

t t
L f1if e 1 _ YN CORE
W {a R R H iR R
We study these two subcases separately in the following:

Subcase (i): {% [_aiq(%)!_)_]'} =0.

Integrating this equation twice with respect to a, we get

g(a)

— 2
aq'(a) = A]O! + /\2 (6.49)

where A; and A, are arbitrary constants. Using (6.49), equation (6.48) yields
A =1

since ¢'(z) # 0.
Employing (6.49) with A, = 1 in equations (6.46) and (6.47), we obtain

=0

A g%(2)g"(z) _ g'(=) | 20%(=) _ (,\ g"(z) +m2) o?

m? g3(z) o(z) | g%(z) Yolz)

and
Mg'(z) + m?g(z) =0
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Figure 6.2. Streamline pattern yexp (—% .r) =constant (m =k = 1),

respectively. The solution of the above two equations is given by

™m
g9(z) = Agexp (F ) (6.50)
where A; is an arbitrary constant and A; = —k? < 0.

Figure 6.2 shows the flow pattern for this flow.

Using A; = —k? and A; = 1 in (6.49) and integrating "he resulting equation, we

have
(o) = M—m (6:51)
o) = —————me .
! gvieyers
where A4 is an arbitrary constant.
Employing T'(%) = e™¥ and (6.1) in (6.8), we get
2 z) + 2 T 2
myg*(z)

where g(z) is given by equation (6.50). Substitution of (6.51) in pg = a, yields

polz,y) = xl;\/l - k2a? (6.53)
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where a is given by (6.52).
Proceeding as in the previous cases, we find that the velocity components and

the pressure function are given by

1
‘U.(:!:,‘y) = ;P;
zy) = 2L (6.54)

Ag
_1 _ —_— — e —
p(z.y) = po N T

where pg is an arbitrary constant. g(z) and p(z.y) are given by equation (6.50) and
(6.53) respectively.

The state equation for this flow is given by

1
k2p

Therefore, we have

Theorem 6.4. A family of curves iy—exp (— %z) =constant is a permissible stream-
3

line pattern for steady plane compressible isentropic potential flow with the solutions

given by (6.53) and (6.54).

The potential function, the streamfunction and the Mach number of this flow are

1l 9(z) 4
Hey) = m/py /pg(z)

Y(z.9) = =lny = 12— b,

respectively given by

and

o = VO (E) +2g"-’(=)y
myg*(z)

Subcase (ii): {% [ae;(c(xi)]} £0.
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Dividing equation (6.48) by gq(:n) 1 l q(‘a) } # 0. we have
9°(z) | @ lag'(a)

Since Z_E;%% = ——g% # 0, this equation implies that
28°(z) _ 3
S =) 6.55
gz) (6.85)

’ oy Y
(1 [ezera)} a1 [g]] o
where a? # 0 is an arbitrary constant. Integrating equation {6.55) with resnect to
z, we get
g(=) = azexp( ) (6.57)

where a2 # 0 is an arbitrary constant. Integrating equation (6.56) three times with

respect to «, we obtain

(@) —ad'(@) _ » gla)
qaasqfi)(a =df oy et as (6.58)

where a; and a4 are arbitrary constants of integration.

Substitution of (6.57) and {6.58) in equations (6.46) and (6.47) yield
az = G.?., Qg = —20.% (6.59)

Using (6.59) in (6.58) and simplifying the resulting equation, we get

i(c_!)_ =1-= a?az
ag'(a)

17 g(e) 1\ _
{'& [aq'(a)] } =0

!
1 1
contrary to our assumption that {— [ ala) ] } # 0.

which implies that




CHAPTER 7

STREAMLINE
PATTERN q(:,y):CONSTA.NT

7.1 INTRODUCTION.

Re[f(z)] =constant and Im{f(z)] =constant define a streamline pattern for some
steady plane irrotational inviscid incompressible fluid motion when f(z) is some ana-
lytic function of z. This chapter deals with flows when streamlines are Re[f(z)] =constant
or Im[f(z)] =constant for potential steady plane compressible lows for some chosen
analytic functions f(z).

Prim [1949] studied steady plane adiabatic rotational flows and established that
only four flow patterns are possible for gases with product equation of state when
Re[f(z)] =constant or Im[f(z)] =constant define a streamline pattern. No such

restriction exists for isentropic potential flows we investigated in this chapter.

7.2 EQUATIONS OF MOTION.

Curvilinear coordinate systems in the (z,y)-plane or z-plane are transformations
of the rectangular map in the (£, %)-plane or w-plaxze.

Taking an arbitrary function

z = f(w) (71)
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where z = z + 1y and w = { + i7, the Cauchy-Riemann equations

dr Oy Oz Oy

== Z=-Z 7.2
5 ~on’  on - BE (7:2)
apply and the angles are preserved by this transformation.
Separation of (7.1) into real and imaginary parts gives
z==z(§7),  y=y7) (7.3)

Plotting the two families of curves £ =constant and 1 =constant, we have an or-
thogonal curvilinear map in the z—plane for every choice of function f in (7.1).
The squared infinitesimal differential element of arc length along any curve in

the z-plane is

where

s (3 +(2) (3 (2) wenso on

when (7.2) are employed.
A practical application dictates the proper choice of the function f(w) in (7.1)
and the resulting coordinate system.

Since

J=

a(€n) |~ o€dn andE  \BE

it follows that (7.1) and (7.3) can be solved to get

2 2
(z,y)| 8z8y 0z 0y /ar-) +(%%) = R (E,m) £ 0

E+im=w=f(z) = g(z) — (say)

so that
£ = &(z,y), n= 7z, y)
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These functions are harmonic functions and are harmonic conjugates of each other.
Two families of curves defined by &(z.y) = Re[g{z)] = constant and 7(z,y) =
Im[g(z)] = constant are the streamlines and their orthogonal trajectories forming
an isometric curvilinear coordinate net of a steady plane incompressible irrotational
motion when g(z) is some analytic function of z.

Steady plane compressible irrotational isentropic flows when the streamline pat-

tern is defined by a family of curves 7(z,y) =constant, we have

7(z.y) =T(¥), T'(¥)#0 (7.6)

where ¥(z,y) is the streamfunction.

Employing (7.6) in (7.4), we get
ds? = h2(E, %) [de? + T (9)dp’] (7.7)

where A2(£,9) = k* (£, T(¥)).
Comparing (7.7) with (2.7) and (2.8}, we get
E(€,¥) =R2(E¥),  FE9)=0,  G(&¥)=r(E&P)I*(¥)

_NO(z,y)| _10(zy) B(&:m) | _ 42 . 32 ,
J(&,¥) = = | 3G.m) 3¢, ) =K (EP)D(), W P)=h (Eﬂb():‘;;f’)

(¢, ¥)
Choosing T'(¥) > 0, we have J = W > 0 and, therefore, fluid flows along 2

streamline in the direction of increasing §.
Taking the arbitrary family of curves ¢(z,y) =constant to be {(z,y) =constant

and using (7.8), flow equations of Theorem (2.2) in (¢, )-coordinates are

9q 9 _
pqag-i-a&— (7.9)
dq Op
=+t -0 7.10
.oqa¢+a¢ (7.10)
1

M= DT ) (7.13)
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s,

a_d, [h({:*d')‘ﬂ =0 (7.12)

2 | ] + 2 [P o)
& [h(fﬂl’)r'(ll’) 311»] 5 [h(g,,;,) ge| =9 (7.13)
p = R(p) (7.14)

which form a system of six equations in five unknowns q(€,%), p(§,¥), p(€.¢),
h(§, %) and T'(s).

Using (7.11) in (7.9) and (7.10), we eliminate p and employ the integrability
Pr_ &
ey FPpoE

condition to obtain

9 [__1___J 83 8 [__L_] %1 _, (7.15)
& |R(E,9IT' ()] 86 O LA(E,¥(¢¥)] FY
For a chosen orthogonal curvilinear coordinate net (£,7) define by an analytic func-
tion w = £ + in = f(z) and for the chosen streamline pattern 7{z,y) =constant,
the function h(£,%) is known, Gauss equation (7.13) is identically satisfied and we
are left to deal with a system of two equations (7.12) and (7.15) in two unknown
functions g(£,%) and I'(9).
In the following section, we choose various orthogonal curvilinear coordinate sys-
tems (€,7) and, therefore, various streamline patterns and obtain the exact solution

of the flows these streamlines represent.

7.3 STREAMLINE PATTERNS 75(=,y) =CONSTANT.
We investigate various potential compressible flows by choosing specifically sev-

eral orthogonal curvilinear net (£,7) and determine the exact solution of these flows

in the following examples:

Example 1 : Vertical Doublet

Equations ¢
2=3(5,ﬂ)=m3 -0 <{<oo (716
y=y(6,n)=ETi—n;, —00 <7 < 0
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define an orthogonal curvilinear coordinate net in the {z.y)-plane. This coordinate

system is given by the analytic function

g
i
N |~

so that

£(z,y) = Re(w) = ———
z+y? (7.17)
A(z.y) = Im(w) = =~

In this example, we investigate flows when the streamlines are 7(z,y) =constant

and, therefore, we have

n(z,y) = ﬁ; =T(¢), T'($)#£0 (7.18)

The streamline pattern for this flow is shown in Figure 7.1.

A7
2F

3

Figure 7.1. Streamline pattern —.‘-,i— =constant.
2 4yl

We employ the (£,7)—net and the squared differential element of arc length for
this net, using (7.18), is given by (7.7) where h(§,7) = A(§,T'(#)) is
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Using (7.19) in the Gauss equation (7.13). we find that (7.13) is identically satisfied.
Employing (7.19) in (7.11), we get
_E+T3 ()

pe=calé.n) = T (7.20)

Substituting (7.19) and (7.20) in (7.15), we obtain

Oa 0qg Oadq

oy GpTE " (7.2

: da _ _2 8o _ 2T () =(£+TH) T ()
Since FF = —f"T%'j # 0and 353 = 0 # 0 and we do not

consider uniform flow, (7.21) is satisfied only if

g = g(a) (7.22)

Employing (7.19), (7.20) and (7.22) in (7.12) and simplifying, we get

g(a) - aq'(a) + ()

@) T ABT@) (7:23)
Since
Bov)| o _ 2%
B v)| " B Ty
provided £ # 0, (7.23) yields
g@) —aq(e) _ "(¥) = constant = C # 0 (7.24)

afg(e) 2@ (¥)

Equation (7.24) gives two equations in g{a) and I'($). Integrating these equations
once, we obtain

Moa
1+ Ca

gla) = (7.25)

and
() = No — CT* (%) (7.26)
where My # 0 and Ny # 0 are arbitrary constants.
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Substituting (7.17), (7.18) and (7.26) in (7.20), we get

2 2
a(z,y) = No(zzi ;;;J —&n (7.27)
Employing (7.27) in (7.25) and (7.20), we obtain
o(z.y) = = ﬂfo(xzz-i-zyz) -
o(z2 + %)+ Cx (7.28)

No(z? + y*)* + Cz?
Mo[No(z2 +y2)? = C¥?]

p(z,y) =

Differentiating (7.18) with respect toz and y respectively and using (2.27), we have

__L o1 1 o
'u.(ﬂ:,y) - pr'('gb)g;’ v($7y) - pr\'(z‘[)) ax (7.29)
Using (7.18), (7.26) and (7.28) in (7.29} gives
— 'IM'O[:I:2 - y2] _ 2Myzy
U(xsy) - NU(:B?' +y2)2 + sza U(E, y) - Ng($2 + yz)z + Cz? (7-30)

Using (7.20), (7.25) and (7.28) in (7.9), (7.10) and integrating, the pressure is given
by

2 4 4?)2 - Cy? 2 4 L 2\2 _ (2
pz.y) = po + galn MolNo(z® +7) Cyl] 1 [Mo[No(z + )2 - Cy 1]

No(z2 + 922 +Cz2 | C? | No(z? +3?)? + Cz?
(7.31)
The state equation for this flow is given by
My 1 11
oMy, (Iy_ 11 32
r Po+czln(p) & o (7.32)

The potential function and the streamfunction for this flow are respectively given

by

&(z,y) = —%—arcta.n [m (zji y2)]
’ v No\/a \/E:B

1 VCy+ VN +97) | _
¢(z’y) - 2\/mln [\/Ey _ m(mz + yz)] 'lbﬂ
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Figure 7.2. Pressure versus density for the state equation (7.32)

with pg =225, M =035, C=1.

where 1 is an arbitrarv constant.

The state equation {7.32) yields

dp _ 1-Mop

dp_ Czpz
and

Fp _ Mop -2

dpz ~  C2p3

Since %% =¢?> > 0and :}—:@ > 0 for all compressible real media, it follows that

2 1

7 <P< A
which cannot be satisfied for all M > 0. Therefore, we may consider the solutions
obtained in this example as being valid for an imaginary gas with (7.32) as its state
equation. However, Figure 7.2 shows pressure versus density for the state equation
(7.32) for certain values of py, My and C, in particular, p; = 2.25, M, =0.5 and
C = 1.0, as compared to the curve of a polytropic gas p = Ap” where A = 1.3 and

v = 1.33. We observed that the state equation (7.32) is a reasonable approximation
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of the ideal gas for a small range of values of p. Therefore, we can consider the
solutions obtained above to be valid for an ideal gas provided the variations in

density are confined to this range of values for p.

Example 2 : Horizontal Dounblet

4
|
i.

7

W

3F
-4 I i " A i

4 3 2 < 0 1 2 3 x4
Figure 7.3. Streamline pattern e :_ 7 =constant.

The orthogonal curvilinear coordinate system defined by the analytic function

s

i
w= -
Z
Ui
I=I(E,T))=T—'—£, —0 < €<
¢ :” (7.33)
y=y(n) = i —x << 0o
Solving (7.33) for £ and 7, we get
y
,y) = Re(w) = ——2— .
N (7.34)
n(z,y) = Im(w) = =
2 +y?
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The streamlines for this flow are given by the family of curves n(z.y) =constant.

Therefore, we have

T

LYl = 2 2
n{z,y) P

=T@¥). T@#0 (7.35)

The streamlines for this flow are shown in Figure 7.3.

To study this flow, we use the (£,19)—net and the squared differential element of

arc length for this net, using (7.35), is given by (7.7) where

1

h == .
(¢,%) I (7.36)
Equation (7.36) identically satisfies (7.13) and employing (7.36) in (7.11), we get
_ _ e+
pg = c({¥) = T (7.37)

Differentiating (7.37) with respect to { and %, we obtain

fa _ % fa _M@IH) = (E+TONMW) g
5 " T o T2 (%) |

Employing (7.37) in (7.15) yields

Oa 8q Oadq _

Ty Gp I (7.39)

Since g—‘g # 0 and g—; = 0 requires [¥(¢) = 0 and ignoring flows with constant
speed, (7.39) is satisfied only if

g = g{a) (7.40)
Using (7.36), (7.38) and (7.40} in (7.12), we obtain

ge)—agq(e) _ _ T"(¥)
atg'(a) 2r(¥)r(#)

since « and 7 are independent variables provided £ # 0. This equation yields two

= constant = C # 0

equations in g(a) and I'(+) and solving these equations, we get

Mla
1+Ca

qla) = (7.41)
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and

I'(p) = Ny — CT3(%) (7.42)

where My # 0 and N; # 0 are arbitrary constants.
Substituting (7.34), (7.35) and (7.42) in (7.37), we get

22 + 47
a(x?y) - N1($2 + yz)z — C:c2 (7-43)
Using (7.43) in (7.41) and (7.11}, we obtain
(z.y) = Miy(z? + 3°)
T8V = M+ 927 + Cy? (r44)
(2.4) = Ni(z? + %)% + Cy? '
P8I = MLN(z? + 47)? — Ca?
Employing (7.35), (7.42) and (7.44} in (7.29) gives
2M, Ty Mafz® — 4]
=— LY) = 4

Using (7.41), (7.44) in (7.9) and (7.10) and integrating, the pressure is given by

1 [M[Ny(2? + 922 = C2?]] | My, [My[Ni(2? + 4°)* — C2?
p(z,¥) =Po— 73 2 1(: 32) : ] + 5 | 1(:: zyz) 2 |
C*| Ny(z2+y*)P2+Cy C Ni(z?+ 3?2 +Cy
(7.46)
The state equation for this flow is given by
M, 1 1 /1
= uiind ) Y (el R 7.4
P=pt gl (p) C? (p) (7.47)
The potential function and the streamfunction for this flow are given by
/'N' A 2
®(z,y) = __‘Ml_a.rctan 1 (& +y )]
VN VC VCy

_ 1 VCz + VRi(Z® +97) | _
'd’(z’y) - 2\/6'_M1n [\/C_:B _ \/E(:Cz +y2):| '¢1

respectively where 9, is an arbitrary constant.
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Figure 7.4, Streamline patlern y/ /2% + y? - 2 =constant .

The state equation for this flow (7.47) is identical to {7.32) with the exception

of a constant. Therefore, the same analysis applies as in the previcus example.

Example 3 : Parabolic flow

Equations
E€-n%), 0<€<oo
( (7.48)

o1~

z(&,m) =

y(&,m) = &n,

defined by
w= V2

0<n<o0

define an orthogonal curvilinear coordinate system (£,7) in the (z,y)-plane. From

(7.48), we obtain
§(z,y) =Re(w) =\/V2* +y° + = (1.49)

7z,y) =Im(w) = \/szyz -

In this example, we study flows when the streamlines are given by the family of

curves 77(z,y) =constant. Therefore, we have

nz.y) =V +y¥ -z =T(¥), TI'(¥)#0
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The flow pattern for this example is shown in Figure 7.4.
For this study, we employ the (£,%)—net and the squared differential element of

arc length for this net. using (7.50). is given by (7.7) where

h(E.¥) = VE = Vv +T2(¥) (7.51)

Substituting (7.51) in (7.13) results in this equation being identically satisfied.
Using (7.51) in {7.11), we obtain

1
=a(€,¥) = — 7.52
pq = a(£,¥) NS (7.52)
Differentiating (7.52) with respect to £ and i, we get
9o _ ¢ da _ _(TET*() + [ + I T"(5)
% e+ ¥ r2(y) (€2 + 12
(7.53)
Using (7.52) in (7.13), we have
00 0y _ 0 0y
BE 50 31!:36—0 (7.54)

Since ‘g‘g # 0 and g—z £ 0 and we do not consider uniform flow, (7.54) gives

g = g(a) (7.55)

Employing (7.52), (7.53) and (7.55) in (7.12) and separating variables, we obtain

alye) - aq'(e)] _ _T'(9)
q'(a) L) ()
8a.vr)

sinee gy = g—‘s' # 0 when € # 0. Solving the two equations in g(e) and T(¢)-

= constant = C # 0

given by the above equation, we get

gla) = Kveat+C (7.56)
and
R _ 1
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where K = 0 and L = ( are arbitrary constants. Employing (7.50) and (7.57} in
(7.52) yields

a(z.y) = 7.58)
i T + y'.'
Substituting (7.58) in (7.56) and (7.11). we get
( I\\/L-E-C’z-i-C\/:c--’r-J-
q(z.y)
V22 + y?
(7.59)
\/ L- c poc gt :r:]
plz.y)
K\F+ Cz+C\/a+ 9
Employing (7.50}. (7.57} and (7.59) in (7.29) gives
Ky\/L-i- Cz+Cyz* +¥°

u(z.y) =

2 +y Vet yt -z
If(\/m—m) \/J‘f‘%—C..":-'r-C'\/u‘Wy2

1:2+y2~’\/52+'y2—3:

Integrating (7.9) and (7.10) using (7.59), the pressure function is given by
1 1
p(z.y) = po + 5CKIn [K/a? + C + Ka| - 3Kav/a? + C (7.60)

where a(z,y) is given by (7.58).

v(z,y) =

The state equation for this flow is given by

KJVC _K*Cp | 1 _K?Cp
m Ji-K2p?| 21-K?%p?

The changes of pressure with flow intensity a are given by (7.60}.

p=po+ %Cmn [ (7.61)

The potential function for this flow is
/‘ \/L+C:c+C\/:r:2 +y? 4
—dz
242 /et + P -z

K [y Ver+y? —z\/E+Cz+C\/zz+y
E./ V2 +y?

ez y)= 3y
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Fizure 7.3. Pressure versus iensity for the state equaton 1 751

withp=1. C=-2 K=t

The streamfunction for this flow is given by
1 3
Y(z,y) =3 [(\/r2 +y? - z) {L -Vzt+y* + z}]
+ Eléa.rcsin (%:i— vz +y? - ::) - s
where 1, is an arbitrary constant.

From the state equation (7.61), we have

2
ar _ —CK—F
dp (1- K?p?)
and
2 2p (1 + 2K p?
d_lg. - _CK-i P( + pz)
dp (1 - K2p?)

Since %ﬁ =¢*>0and g—;@ > 0 for all real gases, it follows that
C<0

Therefore, the solutions obtained above are valid for some real gas having {7.61) as

the equation of state giving p as a function of p for every permissible choice of C

and K.
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Figure 7.5 shows the plot of state equation (7.61) forpy =1.C = —2and K =1
and the curve of 2 polytropic gas p = 4p™ where 4 = 2.55 and 7 = 1.44. It can be
seen that the state equation (7.61) approximates the ideal gas reasonably well for a
small range of values of p. Therefore, we may restrict the application of the above

solutions to this range of values of p in order to study the behaviour of an ideal gas

1n such a fow.

Example 4 : Reverse Parabolic flow

4
<2
.
uu
L=
un

1a

/

Figure 7.6, Streamline pattern 1/ /23 + 47 + = =conatant.

~10

Equations

1oz g2
T=2M =5 - ) 0<é<cex
&) =3 6 ) 62)
y=y(5,1?)=—57?, 0<n<o
define an orthogonal curvilinear coordinate net in the (z,y)-plane. This coordinate

system is given by the analytic function

w=v3s
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so that

£(z,y) = Re(w) =/ V&® +y* -z
7(z,y) =Im(w) =/ Vz* +3* + 2

The streamline for this flow are given by the curves n(z,y) =constant and from

(7.63)

(7.6) we, therefore, have

Vvat+y2+z=T(%), T@)#0 (7.64)

The streamlines for this flow are shown in Figure 7.6.
We employ the (£,1)—net and the squared differential element of arc length for

this net using (7.64) is given by (7.7) where

b€, %) = V& + T*(¥) (7.65)

Using (7.65) in the Gauss equation (7.13), we find that (7.13) is identically satisfied.
Employing (7.65) in (7.11), we obtain

1
) = — 7.66
V= Ve T W) (799
Substitution of (7.66) in (7.15) yields (7.54) which is only satisfied if
g = q(a) (7.67)

since %% # 0, —g—% # 0 and we do not consider uniform flow.

Since @ and ¥ are independent variables, using (7.65), (7.66) and (7.67) in (7.12),

separating variables and solving the resulting equations, we get

gle)=Kiva?+C (7.68)

and
1

I =——2rw

166

(7.69)



where C # 0. K; # 0 and L; # 0 are arbitrary constants. Using (7.64) and (7.69)
in (7.66) yields

\/Ll—C[ :::2+y2+$]

a(z,y) = (7.70)
Substituting (7.70) in (7.68) and (7.11), we get

- Ki\/Li—Cz+C/a + 42

Ny} = ==

V222 + P

\/L1 —C[ z2+y3+z]
K]\/Ll - C$+C'\/22+y2

Employing (7.64), (7.69) and (7.71) in (7.29) gives

Kly\/Ll —Cz +Cy\/2® +¢°

(7.71)

plz.y) =

u(z,y) =

222 +y? VTPt Ytz
( ) K:[( $2+y2+2) \/Ll—Ca:+C\/:z:2+y2
N, Y)=— -

0TERE T+

Integrating (7.9) and (7.10) using (7.71), the pressure function is given by
‘ 1 v 1
p(z,¥) =po + ;;CK11I1 [K1V a?+C+ K1a] - §K1a\/ a2+ C (7.72)

where a(z,y) is given by (7.70).

The state equation for this flow is given by

K\VC K2/Cp 1 K2Cp
p=pt+5 CKlln [\/__Kf?- \/]_—_T- - El _ K?pz (7.73)

The potential function for this flow is
Yy -Cz+CVz22+9*
$(z,y) = & / \f ——dz
VE+yiy VR itz

fy\/ z2+yi+z L1—0z+C\/z:2+y
\/2:2+y
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The streamfunction for this flow is

o)« 3 [(VETT 2) (2 VT -]

1 . (VC [/ .
+ %arcsm (T/f Vat +y? + 1:) — s

where 73 is an arbitrary constant.
The state equation (7.73) is similar to (7.61). Therefore, we can conclude that
the solutions obtained above are valid for some real gas having (7.73) as its state

equation.

Example 5 : Stagnation-point flow

&\3
%

P 2

"~
<
1
-
o
—
o
1
o

-10

»
W

.20
Figure 7.7, Streamline patiern ry =constant .+
The orthogonal curvilinear coordinate system defined by the analytic function

1
2
W=z
5%

-

z=z(fn) = VVE+7P+§ —o<f<®o (7.74)
y=y&n)=yVE+n-§ —o<<®
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or

(z.y) = Re(w) = .‘].;.(33 _ yz)
) (7.75)
T](I.y) - Im(w) = Iy

In this example, we investigate flows when the streamlines are given by the curves

n{z,y) =constant. Therefore, we have

Me.y)=2y=T($), T #0 (7.76)

The streamline pattern for this flow is shown in Figure 7.7.

For this investigation, we employ the (£,%)—net and the squared differential

element of arc length for this net using (7.76) is given by (7.7) where

1 1
R, )= ——————t 7.77
O g rron N
Equation (7.77) identically satisfies (7.13). Employing (7.77) in (7.11), we get
_Va[e 4 )
a(é,¥) = o) (7.78)
Differentiating (7.78) with respect to £ and 7, we obtain
da _ ¢ Ba _ DWIT°() =2 + PONI'W) (o)
O~ \ari(p)[e? + Ty ¥ VED($) [€2 + T2(3)]*
Using (7.78) in (7.15) yields
q=qla) (7.80)

since g—‘g # 0, g_f; # 0 and we do not consider flows with constant speed.
Employing (7.78), (7.79) and (7.80) in (7.12) and separating variables, we obtain

[oq'(e) — a(e)] _ D) (%)
asq' (@) 2I'(¥)
d(a. )

e = -g—g # 0. This equation yields two equations in g(a) and I'(¥).

= constant =C # 0

since
Integrating these two equations once, we have

C]_C!

gla) = m

(7.81)
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and

1
4

() = [4CT* (%) + 4C=] (7.82)

where Cy # 0 and C; are arbitrary constants. Using (7.76) and (7.82) in (7.78), we

get
/22 © 42
ofz,y) = — L (7.83)
[4Cz2y? + 4C,)*
Employing (7.83) in (7.81), we obtain
q(z,y) = Gryz* +y* . (7.84)
[4Cs +2Cz2y? — Czt — Cyi]*
The density function p from (7.11) and (7.84) is given by
4C, + 2Cz%y® — Cz* — Cyt :
plary) = L2 - o] (7.85)
CI [40::23;' + 402]"
Using (7.76), (7.82) and (7.85) in (7.29) yields
u(z,y) = G - (7.86)
[4Ca + 2Cz?y? — Czt — Cyi*
and
v(z,y) = ~ Gy (7.87)

(4C, + 202242 — Czt — Cyt]*
Employing (7.11), (7.81) and (7.83) in (7.9) and (7.10) and integrating, we get
z [2C; + Czy® — Cy?

[4Cz2y* + 402]% [4C; + 2Cz2y* — Cxt — C’y"]%
201[ ¥ [2102 + Cz%y? - Cz] ]

[4Cz2y? + 4C,)* [4C, + 2C22y® — Czt — Cytl*

dz

plz,y) = 2C; /
(7.88)

dy

The state equation for this flow is given by

1 / 1
=— [ ———=d 7.89
P=T75) 7o P (7.89)

The potential function and the streamfunction for this flow are given by

B(z,y) = / Cizdz — Cydy
’ [4C; +2Cz%y? — Cz* - Cy‘*]%
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Az
¢(m.y)=f z9) ___y,
[4Cz2y? + 4C,|3

respectively where %, is an arbitrary constant.

The state equation (7.89) yields

dp _ 1 1
dp VC p*/1-C}p

and
dp 1 2¢ (1 - 2Cip*)
dp? ~ VO pty/T= Cip* (1 - Cipt)

In order for this state equation to satisfy the requirements of a real gas, that is,

2
%% > 0 and g—PIé > 0, we must have

1 1
C >0, C; >0 and 2%—q<p<a

Therefore, for every permissible value of C' and C,, the solution for the stagnation
flow above is valid for some real gas having (7.89) as the state equation for the
range of values of p given above.

Example 6: Double hyperbolic flow

Equations

$=3=(fﬂ?)=vv€2+7?2+7h —00 < { <@
y=ylm=\VE&+7*-n —0<<x

define an orthogonal curvilinear coordinate net in the (z,y)-plane. This coordinate

(7.90)

system is given by the analytic function

[ N

so that
{(z,y) = Re(w) = zy

(7.91)
2(z,y) = Im(w) = %(zz - ?)
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The streamlines for this flow are given by the curves n{z,y) =constant. Therefore,

we have

(z°-3*)=T@), T #0 (7.92)

Lo

n(z,y) =

The flow pattern for this example is shown in Figure 7.8.

//// %

/-—_-—

~ 33

/

Figure 7.8. Streamline pattern z? ~ y? =constant.

To study this flow, we employ the (£,)—net and have (7.7) where

1

S S— 7.93
f[&Z T2(9))* (7.8

W& 9) =

Equation (7.93) identically satisfies the Gauss equation (7.13). Using (7.93) in
(7.11), we get

VAl + @)t
a(é,9) = ) (7.94)
Employing (7.94) in (7.15) yields
g = q(a) (7.95)



since %-‘g— # 0 and -g—g # 0 as given in (7.79). Employing (7.94), (7.95) and (7.79) in

(7.12) and separating variables, we obtain

[ag'te) — g(e)] _ DRI ()
¢ (a) 2T(9)

= constant = C % 0

since @ and v are independent variables. Solving the two equations in g(a) and

T'(4) obtained from the above equation, we have

gla) = — 22 (7.96)

1 - Cal]?
and

1
+

I'(¥) = [4CT?*(¥) + 4D-] (7.97)

where Dy # 0 and D, are arbitrary constants. Using (7.92} and (7.97) in (7.94),

we get
/22 + 2
o(,y) = it L (7.98)
[C(z® — y*)* +4D,]*
Employing (7.98) in (7.96), we obtain
Dy /22 +
a(z,y) = — L. (7.99)
4Dy — 4Cz2y?)*
The density function p,using (7.98) and (7.99) in (7.11) is
[4D2 - 4C::2y2]%
plz,y) = T (7.100)
Dy [C(z? — y?)? +4D.]*
Using (7.92), (7.97) and (7.100) in (7.29) gives
D
u(z,y) = — . (7.101)
[4D; — 4Cz3y?)3
and
D
v(z,y) = - = (7.102)

(4D, — 4Cz2y?]*
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Employing (7.11), (7.96) and (7.98) in (7.9) and (7.10) and integrating, we get

4, — 20 2.2 2C 4
p(z,y)=91/ z [4D; zly +2Cy?] i
[C(z2 — y2)* + 4D2]* [4D2 — 4Cz2y?]* (7,100
D / y [4D2 — 2Cz%y* + 2Cz%) S :
v oY
1 [C(z? —y?)* + 4D2]* (4D, — 4Cz2y?]*
The state equation for this flow is given by
p= / ——a (7.104)
VCJ p*\/1— Dip* .

The potential function and the streamfunction for this flow are respectively given

by
Dyydz + Dyzdy

[4D2 — 41C'32y2]"li
2 _ 2
Py R

@(z,y) = -

C(z? —y?)? + 4D2]'} B
where 75 is an arbitrary constant.
The state equation (7.104) is identical to (7.89) with the exception of 2 constant.
Therefore, the solutions obtained above are valid for some real gas having (7.104)

as the state equation provided

1
C >0, Dy >0 and —_— < p < =

Example 7 : Hyperbolic flow

The orthogonal curvilinear coordinate system defined by the analytic function

w = cosh™* (lz)
a

z = z(£,n) = acosh{cosn, —x <<

is

(7.105)
y =y(€,n) = asinhésing, O<n<2m
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where a # 0 is an arbitrary constant. Equations (7.105) can be solved for £ and 5

to give
£=E&zy)
(7.106)
n = 7n{z.y)

The streamline pattern for this flow is given by the curves n{z,y) =constant so that

n(z.y) =T}, T'(P)#0 (7.107)

To investigate this flow, we employ the (§,¢)—net and the squared differential

element of arc length for this net with (7.107) is given by (7.7) where

h(€,%) = ay/cosh2{ - cos? () (7.108)

The Gauss equation (7.13) is identically satisfied when (7.108) is used.
Employing (7.108) in (7.11), we get

1
&%) = al(1)+/cosh2€ — cos?L() (7.109)

Differentiating (7.109) with respect to £ and ¢, we obtain

0o coshfsinhf
B T al(¢) [cosh?E — cos?T(9)]F 110
da _ __ cosP()sinD()I'(¥) _ _ rgy (0
g al'(¢) [cosh?E — coszI‘(da)]% al"?(1)y/cosh?€ — cos?T(9)
Using (7.109) in (7.15), we obtain
da 09 Jadq _
550 595 = ° (7.111)

Since %‘E" =0 only if £ = 0 and -g—g- = 0 requires (7)) = 0 and we omit flows where

g =constant, (7.111) is satisfied only if

g = q{a) (7.112)



Employing (7.109). (7.110) and (7.112) in {7.12) and separating variables. we get

afgle) — aq'(a)] _ T (4) — constant —
7@ Pl et = e F0
since g((‘;i')] = ‘3—2‘ # 0. This equation gives two equations in g{a) and I'(¥/) and

solving these two equations, we have

gla)= Eyvat +C (7.113)
and
, _ 1
My) = 2 Ce T (9) 1 25 (7.114)

where E; # 0 and Es are arbitrary constants. Using (7.107) and (7.114) in (7.109),

we get

alz,y) = VaiCeosin(z,y) + 2B, (7.115)
T ay/eosh?E(z,y) — cos*n(z,y)

Employing (7.115) in {7.113), we obtain

Er+/a?Ccosh*E(z,y) + 2E:

yY) = o 7.116
oY) = oo (o) ~ corae.v) (7-116)
The density function p from (7.11) and (7.116) is given by
) 2 )
oz1y) = \a*Ccos n(z.y) +2E; (1117)
E1/e?Ccosh®£(z,y) + 2E,

Using (7.107), (7.114) and (7.117) in (7.29) yields

u(z,y) = El%ﬁzccoshzf(z,y) + 2E, (7.118)
and

v(z,y) = —Erg—z\/achoshzf(z,y) +2E, (7.119)

Employing (7.113) and (7.115) in (7.9) and (7.10) and integrating, we get

EC E 2C cos? 2E, + E 2Ccosh2f + 2E
o(z,9) = po + 2> zn[ 1v/a?Ceos’y + 2B, + By /a*Ceosh?e + 2]-

2 a+/cosh?f — cos?n
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1 E?\/a*C?cosncosh?t + 2E1a*Ccos’n + 2F.a®Ccosh?& + 4E3

7.120
2 a? [cosh?& — cos?n] ( )
The state equation for this flow is given by
EC E;vVC(1 + Eip) 1 EjCp
= po 4 { -= 7.121

The potential furction and the streamfunction for this flow are

b(z,y) = Ey f v a*Ccosh?é(z,y) + 2E- (%dx - g—z-dy)

b(z,y) = / @ Coostn(z,y) + 2E;dn — s

respectively where )¢ is an arbitrary constant.

A
r ;

R J

P:I*T{'?; —|n.(‘{'l;r_:) /

Figure 7.9. Pressure versus density for the state equation (7.121)
withpp=1. C==2 E=1l

The state equation for this flow is similar to (7.61) and so the above solutions for
hyperbolic flow are valid for some real gas possessing (7.121) as its state equation
with C < 0. Figure 7.9 shows pressure against density for state equation (7.121)

with By =1, C =-2and pp =1and anideal gas p = 2'591'“-

177



Example § : Elliptic flow

Equations
z = z(€,n) = asinhfsing. —o <<

(7.122)
y = y(&, 1) = acoshfcosmn. 0<n<<

where a # 0 is an arbitrary constant defined by
z = tacosh(w)

define an orthogonal curvilinear coordinate system (§,7) in the (z,y)-plane Equa-

tion (7.122) can be solved for £ and 7 yielding

€= &(zey)
(7.123)
7 =7(z,y)

In this example, we invectigate flows when the streamline pattern for this flow is

given by the curves 7(z,y) =constant so that

nz,y)=T(%), T #0 (7.124)

For this investigation, we employ the (€, 1%)—net and we have (7.7) where

R(€,%) = ay/cosh?T(3) — cos?{ (7.125)

Using (7.125) in the Gauss equation (7.13), we find that this equation is satisfied.
Using (7.125) in (7.11), we get

1
a(,¥) = T (%) T T (3) = cos’E (7.126)

Employing (7.126) in (7.15) yields

g = gq(a) (7.127)

da

since 57 # 0, £ %3 7 0 and we do not consider uniform flow. Using (7.126) and

(7.127) in (7.12) and simplifying, we obtain :

algle) - ag'(@)] _ I'(4)
q'(a) a2coshI()sinhl(3)T*4 ()

= constant = C # 0
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This equation yields two equations in g(a) and I'(¢). Integrating these equations

once, we have

gla) = Vel +C (7.128)
and
T'(y) = = 7.129
@) \V2F; — a*Ccosh*T () ( )
Using (7.124) and (7.129) in (7.126}, we get
2 F — a2 3
o(zy) = V/2F2 — a*Ccosh®n(z,y) (7.130)
a+/cosh®n — cos®€
Employing (7.130) in (7.128), we obtain
F\/2F —a® 2
q(z,y) = 1y/2F; - a?Ccosié(z, 3) (7.131)
a+/cosh*n(z,y) — cos*é(z,y)
The density function p from (7.11) and (7.131) is given by
/2F, — a2Ccosh?n(z,y)
)= M2 G TS 7.132
plz:9) Fy\/2F; — a2Ccos?t(z,y) ( )
Using (7.124), (7.129) and (7.132) in (7.29) gives
u(z,y) = Flg—z\/‘_’Fg — a2Ccos?é(z,y) (7.133)
and
o(z,3) = ~F 9L /2F; — @ CorE(,4) (7.134)
Employing (7.128) and (7.130) in (7.9) and (7.10) and integrating, we get
rc. | A/2F = a2Ccos?¢ + F11/2F; — a®Ccosh?
p(z,y) =po + ——In 12— a m‘f—z 12 - cos Al -
< a+/cosh?n — cos*§
1 F2,\/4F7 + a*C?cos*£cosh?n — 2F>a?Ceosh?n ~ 9F,a2Ccos?é
- (7.135)
2 a® [cosh?E — cos?n)]
The state equation for this flow is given by
FC, |RVC1+FRp)| 1 FCp
=po+ in — | — =7 5% 7.136
PERT TR [ Ji-F | 2(1-Fie) (7:139)
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The potential function and the streamfunction for this flow are respectively given

by

&(z.y) =R / V2F: — a®Ceos?é(z.y) (g—gdm - %dy)

P(z,y) = / V2F> — a®Ccosh?*n(z,y)dn — e
where g 1s an arbitrary constant.

The state equation for this flow (7.136) is identical to (7.121) and therefore the

same conclusion applies.

Example 9: Radial flow

The orthogonal curvilinear coordinate system defined by the analytic function
w = Inz

is
z = z(£,m) = efcosn, 0<é<

(7.137)
Y= y(fan) = CESiIlT], 0<yp<2r
Solving for £ and 7 from (7.137) yields
1
E(msy) = Re(w) = 3111(:1:2 + yz)
i (7.138)

n(z,y) = Im(w) = tan™ (2)

z

In this example, we investigate flows when the streamlines are the family of curves

7(z,y) =constant. Therefore, we have

7(z,y) =tan™ (2) =T(%), T'(4)#0 (7.139)

The streamline pattern for this flow is shown in Figure 7.10.
For this investigation, we employ the (£,%)—net and the squared differential

element of arc length for this net, using (7.139), is given by (7.7) where

h(€,%) = € (7.140)
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e

Figure 7.10.  Streandine patters tan (i—‘) =constant «

Using (7.140) in (7.13), we find that (7.13) is identically satisfied.
Empioying (7.140) in (7.11), we get

1
a= rr (7.141)

Using (7.141) in (7.15) and simplifying, we obtain

1 8¢ I(Y) 8g _

)0 AR5 (714

This equation is satisfied if one of the following holds true:

() T'@)=0 ad $=0

({) g¢=gle), d(a}#0
In the first possibility, we have

'g)=A and  g=4¢(§) (7.143)

where A # 0 is an arbitrary constant. Using (7.140) and ¢ = ¢(§) in (7.12), we find
that (7.12) is identically satisfied.
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In the second possibility. employing (7.140). (7.141) and ¢ = g(a) in (7.12) gives

() ,

— =0
e
Since ¢'(a) # 0. this equation implies that I'"(¢) = 0 and so T'(3) = A # 0,
« = a(€) = €% and, therefore, ¢ = q[e(£)] = ¢(£). Possibilities (i) and (ii) yield

the same solution and we need to consider only one of these two possibilities.

Using the first equations of both (7.143) and (7.138) in (7.141), we obtain

1

Y= ——— 7.144
oz y) A-\/:!:_z_-i-? ( )

Since ¢ = g(«), we have

q(z, 7.145
where ¢ is an arbitrary function of its argument.
Using (7.144) and (7.145) in (7.11), the density function p is given by
(z,y) = 1 (7.146)
YT e E '
Employing (7.138), (7.146) and I'(%)} = A in (7.29), we get
zd v (7.147)

z,Y) = —, wWz,y) = ——=
Y e N T
Using (7.141), (7.143) and (7.145) in (7.9) and (7.10), the pressure function is given
by

p(zy) = fq(a)da - aq(a) (7.148)

where a(z,y) is given above.

Letting g(a) = a™ where m # 0, £1 in (7.11) and (7.148), we obtained

a=pT% and p(z,¥)=p ——mﬂ—q"'(a)



The state equation for this flow is

m 1tm
pl-m
m+1

pP=po—

The equi, -otential curves for this flow are concentric circles given by £(z,y) =constant.

Employing (7.143) in (7.139), the streamfunction for this flow is

P(z,y) = --j%ta.n_1 (2) - %1— (7.149)

z

where A, is an arbitrary constant.

Example 10: Circular flow

Equations
z = z(§,n) = e"cost, 0<np< >
(7.150)
y=yl(€,n) =¢€"sin, 0<E<2m

define an orthogonal curvilinear coordinate net in the (z,y)-plane. This coordinate

system is given by the analytic function
=ilnz

so that

£(z,y) = Re(w) = tan™? (¥
) (”) (7.151)
7(z,y) = Im(w) = 3ln(z* +¥°)

The streamlines representing this flow are the family of curves n(z,y) =constant

and therefore, we have

n(ey) = 3l +97) =T T'($)#0 (7.152)

The streamline pattern for this flow is shown in Figure 7.11.
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Figure 7.11. Streamline pattern z? + y* =constant.

We employ the (€,%)—net to study this flow and the squared element of arc

length for this net, using (7.152), is given by (7.7) where we have
h(g,p) =¥ (7.153)

Equation (7.153) identically satisfies the Gauss equation (7.13).
Using (7.153) in (7.11), we obtain

1
o(&¥) = T (7.154)
Using (7.154) in (7.15), we get
IwZ(,d,) + rn(w) @ _
(o) 3 = (7:199)

Equation (7.155) is satisfied if one of the following holds true:
(i) =0
(i) )+ M) =0

or
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(iii) =0 and () + () =0

Possibilities (i} and (ii) are considered in the cases %% =0, %E = 0[Case (2)] and

fa _ g Sa

e =053 = 0[Case (1)] respectively below. The solutions presented in these cases

hold true for any orthogonal curvilinear coordinate system satisfying the restrictions
on h(£,%). Using (7.152) and (7.153) in the solutions obtained for Case (1) and
Case (2), we have the solutions for possibilities (ii) and (i) respectively. Therefore,

we need to consider possibility (iii} only. This possibility yields

g =q(¥) (7.156)

and

I'(¢) = Be T | (7.157)

where B # 0 is an arbitrary constant.

Employing (7.156) and (7.157) in (7.12), we get

D
%) = o (7.158)
where D # 0 is an arbitrary constant.
Using (7.152) in (7.158) yields
ley) = s (7.159)
SRRV |
Using (7.152), (7.154), (7.157) and (7.159) in (7.11), we get
1
plz.9) = g5V z? +y° (7.160)
Employing (7.152), (7.157) and (7.160) in (7.29), we obtain
Dy Dz
u(zvy) - $2 + yz » ‘U(zgy) - —.zz + y2 (7-161)
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Integrating (7.9) and (7.10) using (7.159) and (7.160). the pressure function is given
by

D 1
TY) =Py — = ———— 7.162
The state equation for this flow takes the form
= ! 7.163
p = Po sz ( . )

The potential function of this flow is given by £(z,y) and the streamfunction is

P(z,y) = %l - % z? + y* (7.164) -

where B, is an arbitrary constant.
In the following section, we consider flows not satisfying ¢ = ¢(a) but identically

satisfying equation {7.15).

7.4 FLOWS SATISFYING g # g{a).

Equation (7.15) may be written as

da 0q Oalq _

%oy FLIE 0 (7.165)
where o = pq is given by (7.11) and
O 1 Ok Ja 1 oh (%)

%= REOTWE 0% PEITH% I

Equation (7.165) is identically satisfied if ¢ = g() as in Examples 1 to 9 above.

However, this equation is also satisfied if one of the following holds true:

(1) =0 and 22 =0
20 =0 ad §=0
(3) 2=0 and %:0
4 %=0 and =0
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For completeness, we consider Cases (1) to (3) and obtain the solutions of the

system of equations (7.9) to (7.14) for each of these cases. Case (4) yields uniform

flow and is, therefore, removed from further consideration.

Case (1): In this case we have

da

6—6—0
and

Ja

%-0

Employing (7.167) and (7.168) in (7.166), we get

o5
-

_=0

Easd

and
1 Ok "
I'($) 77 + R(& )T (#) =0
G
Equation (7.169) implies that & = k(%) and (7.170) yields

Qo

h{s)

r'(y) =

where a # 0 is an arbitrary constant. Using (7.171) in (7.11), we have

1
a=—
o
Equation (7.12) gives
69 =

where a;(£) is an arbitrary function of §.

Employing (7.172) and (7.173) in (7.11), we get

1 h(¥)
ao a1(§)
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(7.167)

(7.168)

(7.169)

(7.170)

(7.171)
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(7.173)
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Differentiating (7.6) with respect to = and y respectively and using (7.171), (7.174)

and (2.27), we obtain

on o

u(z.y) = Ty ™ (E(z,9)). vlz)=—goa {€(z.y)) (7.175)

dz
Employing {7.172) and (7.173) in (7.9} and (7.10) and integrating, we get

1 ay (£(2.9))

TY)=py — — v T.176
P =P = L R ey r70)
where pg is an arbitrary constant.
The state equation for this flow from (7.174) and (7.176) is
1
Ty
Case (2): In this case, we have
da
— = 7.17
and
9q
— =0 7.179
5 (7.179)
Equations (7.178) and (7.179) give
h = h(%) and q = q(¥) (7.180)
Using (7.180) in (7.11), we get
o) = 7t (7.181)
h()I"(#) '
where I'(3) is an arbitrary function of its argument.
Employing (7.180) in (7.12), we have
a
o(¥) = 7= (7.182)

k(%)
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where a2 # 0 is an arbitrary constant. Using (7.181) and (7.182) in (7.11), we

obtain
1

axI"(%)
Employing (7.181) and (7.182) in (7.9) and (7.10) and integrating, we get the pres-

pl¥) = (7.183)

sure function given by

R'(3
P = o~z [ g (1184)

Differentiating (7.6) with respect to = and y respectively and using (7.183) and
(2.27), we get
_ o __ o
u(z,y) = dga—y', 'U(J:,y) = —as aﬂ: (7185)
The (p, p)-relation for this flow can be obtained from (7.183) and (7.184) for a given
k() and ['(¥).

Case (3): In this case, we have

da

—Eh,b =0 (7.186)
dg _

5;5 =0 (7.187)

Equation (7.187) implies that ¢ = ¢(£) and using {7.186) in the second equation of

(7.166) yields
az(§)

T'(¢) = 7.188
W)= 5. 9) (7-15%)
where a3(€) is an arbitrary function of its argument. Employing (7.187) in (7.12),
we get

Sh

i 0
This equation implies that & = h(£) and therefore, from (7.188), we have

() = ‘::((g)) = constant = a4 # 0(say) (7.189)
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Using (7.189) in (7.11). we get

1
a(§) = aih(E) (7.190)
Employing (7.190) in (7.11), we obtain
1 -
A9 = Chon® (ras1)

where ¢(£) is an arbitrary function of its argument.

Using (7.187) and (7.191) in (7.9) and (7.10}, the pressure is given by

1 laqd

P(£)=Po—; }Tf)-éz

(7.192)

where pg is an arbitrary constant.

Differentiating (7.6) with respect to z and y respectively and using (7.192) and

(2.27), we obtain

1 & —— 1 On
0= Tao s Y T T Ghen o (713

The state equation for this flow can be obtained from (7.192) and (7.193) for a given
h(§) and g(§).
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CHAPTER 8

STREAMLINE
PATTERN ce(z.5) + Daiz,y) =CONSTANT

8.1 INTRODUCTION.
This chapter deals with a class of flows when the streamline pattern is of the

form

Cé(z,y) + Dy(z,y) = constant

where £(z,y) =Re[f(z)], n(z,y) =Im[f(2)], f(z) is an analytic function of z and
C # 0 and D # 0 are arbitrary constants. Having considered whether the family
of curves Re[f(z)] = constant or Im[f(z)] = constant is a permissible streamline
pattern for steady, plane, potential compressible flow, we now investigate whether a
linear combination of these two curves will allow inviscid compressible fluid to flow
along it.

- We adopt the same approach as in the previous chapter, employing the (¢,v)-
coordinate system to determine some possible flows and obtain the exact solutions

of these flows.

8.2. EQUATIONS OF MOTION.
Curvilinear coordinate systems in the (z,y)—plane or z—plane are transforma-

tions of the rectangular map in the (£,n)—plane or w—plane.
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Taking an arbitrary function
z = flw) (8.1)
where z = z + ity and w = £ + in, the Cauchy-Riemann equations

dz _ &y 0z 9y
8 oy’ oy~ ¢ (82)

apply and the angles are preserved by the transformation. Separation of equation

(8.1) into real and imaginary parts gives

z==z(&n), y=ul&m) (8.3)

Plotting the two families of curves £ =constant and 7 =constant, we have an or-
thogonal curvilinear map in the z—plane for every choice of function f in (8.1).
The squared infinitesimal differential element of arc length along any curve in

z—plane is

Oz

2
ds® =dz® + dy* = (a€d5+ ) (aedf+a‘ldr)) =R () [d€* + dn*]

(8.4)

o () + (&)= (§)'+ @) s e

where equations (8.2) are employed.

where

A practical application dictates the proper choice of the function f(w) in (8.1)
and the resulting coordinate system.

Since

J=

o(=,y) _3_33_? _ 08z 0y _ (%)2 (@)2 .
B(¢,q)| 068y OndE  \O¢ %) = RO(€,m)#0, (86)

it follows that (8.1) and (8.3) can be solved to get

£+in=w= f"}(z) = g(z) (say)
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so that

€ = &(z,y), 7 =7(z,¥)

These functions are harmonic functions and are harmonic conjugates of each other.
Two families of curves defined by £(z,y) = Re[g(z)] = constant and 7(z,y) =
Im|g(z)] = constant are the streamlines and their orthogonal trajectories forming
an isometric curvilinear coordinate net of a steady plane incompressible irrotational
motion when g(z) is an analytic function of z.

We investigate steady plane compressible irrotational isentropic flows when stream-

line patterns are of the form
Cé(z,y) + Dn(z,y) = constant

where C and D # 0 are arbitrary constants. Since ¥(z,y)} =constant also defines
the streamline pattern when function #(z,y) is the streamfunction for a flow, it

follows that

Cé(z,y) + Dn(z,y) =T(¥), T'($)#0 (8.7)

Since
a(¢,m)
Nz, y)

we use (8.6), (8.7) and have

- {3(2»:::)}“ LG a(s,d»)l
a(E,n) aE ) 8(=9) |’

13(€,)
8z, y) |’

8(z.y)| _ I'(#)

1 21 - 2
- | =R e 69

EEn P
where £(z,y) =constant, C&(z,y) + D7(z,y) =constant generale a coordinate
net in (z,y)—plane and k3(£,9) = & (5, Iy _ %5). Using (8.7) in (8.4), the

I'(¢)

squared element of infinitesimal differential element of arc lenth along any curve in

(€,%)—coordinates is

ds® =

h3(€,¥)
2

5 [(C? + D?) d€* - 2CT(p) df dyp + I2(4) dy?) (8.9)
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By the choice of our coordinates (&,%). the family of curves ¢{z,y)=constant in

theorem 2.2 are the curves £(z,y)=constant and we have

2
Ben = (1+ %) FEw.  FEd = -5TOREy,
T2 ()R (€. d(z.1 T'(¥),.
Gley = WD) e = SEB - e )
and
W(E, %) = VEG — F2 = TR E %)

D
Taking D > 0 and IV(¢)) > 0, we have J = W > 0 and so fluid flows along a

streamline in the direction of increasing §.

Using equations (8.10) in theorem 2.2 and taking (£,%) coordinates, the flow is

governed by

g  Op _
pqa—E + 5'5' = (8.11)
dq ?_p_ _
pqa¢+a¢—0 (8.12)
./CZ +D2

M= REHTW) (8.13)

a CT' () 8 B

3 [—— eV + 55 [V + D7 hE ) a& )] =0 (8.14)
[ C o pr(v,b)gg] 3[0@ G Dt o
5 | h(E, %) 5%  R(E$) %] 5% |KE¥) 85+—#"(fa¢)1"(¢)3¢J 0 (8.15)

p = E(p) (2.5)

of six equations in five unknown functions p(£,%), p(€,¥), ¢(§, %), h(§,¥) and ().
Using (8.13) in (8.11) and (8.12) to eliminate p and employing the integrability

. Op  &Fp :
condition €00 — BYoE’ we obtain
8adq Oa Og
_____ =0 8.16
5% 56~ O€ 3% (8:16)
where
ol&¥) = 2 DT (817
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For a chosen curvilinear coordinate net (£.7) define by an analytic function w =
£+in = f(z) and for the chosen streamline pattern Cé(z,y)+ Dn{=z,y) =constant so
that Cé(z,y) + Dn(z,y) = T(%), function k(€,¥) is known and the Gauss equation
(8.15) is identically satisfied. The system of equations (8.11) to (8.15) reduces to a
system of two equations (8.14) and (8.16) in two unknowns ¢(£,%) and I'(¥).

In the following section, we study examples for which ¢ = g{a) such that -‘3—‘; #0

a.nd-g-g-#o.

8.3 FLOWS SATISFYING ¢ = ¢(a), ¢'(a) #0.
Example 1: Spiral Flows

Ap -y

0 I 0 B < 10

Figure 8.1. Streamline pattern 1Cln (z? + y*) + Darctan (g) =constant,
Z
(C=D=1)

We know that w = £(z,y) + in(z,y) = Inz is an analytic function of z and the
two families of curves {(z,y) =constant, n(z,y) =constant generate an orthogonal

curvilinear coordinate net. This net and its squared element of arc length are given
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z = ecosy, y = esiny (8.18)

and

ds? = e*¢ [d€* + dn]
Solving equations (8.18) for £ and 7, we have
_1 2, .2 —tan=1{Y
£(z:,y) = 2111 (3 +y ) ' n(zvy) = tan (z) (8'19)
Here, we study a spiral flow when the streamlines are defined by

Cé(z,y) + Dn(z,y) = constant

so that
Cé(z,y) + Dnlz,y) =T(¥), T'($)#0 (8.20)

where I'(¥) is some function of 3 and C, D # 0 are arbitrary constants. The

streamline pattern for this flow is shown in Figure 8.1.

To study these flows, we employ the (£,9)—coordinates and the squared differ-

ential element of arc length for this net is given by (8.9) where

h(€,9) = €t (8.21)

Using (8.21), Gauss equation (8.15) is identically satisfied and (8.14) and (8.16)

become a system of two equations

cr'(:p)g—g + (C* + D?) g—i +Cl'(%)g=0 (8.22)
and
dadg Oadq _
5&)—3—5—_8?% =0 (8.23)
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in two unknown functions I'()) and g(£,%) where

= —— .24
Since %? £ 0 and our flow is not a uniform flow, it follows that (8. 23) is identically
satisfied if either (i) g;j; =0, ["(¢) =0 or (ii) ¢ = g(a), ¢'(a) # 0.
Taking the first case, when -2—4) =T""(¢) = 0, equations (8.22) and (8.13) gives
¢(€) +al§}=0
C? + D? (8.25)
P1= "

where I'(3) = T’y # 0 is some constant. Equations (8.25) hold true only if
p =constant and, therefore, we cannot ha.ve — = T"(3) = 0 for our flow.

3¢

Taking the second case, we get

[C + (C* + D?) 11::;((:?;))] (@) - %Q(a) =

Separating the variables, we get

(02+D2) () _ gle) _
C ) T%@)  aq(a)

=4 (8.26)

where A # 0 is an arbitrary constant. Solving equations (8.26), we get

1

alo) = Az, A1 =1 (8.27)
and
, AC
P$) = Averp | g T (828)
where A, # 0 and Ay # 0 are arbitrary constants. Using (8.19) and (8.28) in (8.24),
we obtain
VvC?* + D? —\’ ACD y
a(z,y) = T (\/-'C +y ) exp [-—mtaﬂ (;)] (8.29)
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AC* +C*+ D?
C? + D?
Using (8.27) in (8.13), the density function is given by

where § = —

1
plz,y) = I-a"‘*‘ (8.30)

where a(z,y) is given by (8.29). Differentiating (8.20) with respect to z and y

respectively and using (2.27), we have

=L (c% i pO ___1L % . o
u(z,y) = 00 (Cay + D3y> . v(z,y) = ST (Cg; + Da) (8.31)

Using (8.19),(8.28) and (8.30) in (8.31), we get

Ax(Cy+Dz)  1-aa

u(z,y) = 8.32
=Y = T e r e (8:32)
and
Aq(Dy — Cxz) 1—AA
v(z,y) = ol AN 8.33
(z,y) Ny N (8.33)
Integrating (8.11) and (8.12), the pressure function is given by
p= —]adq (8.34)
Employing (8.27) in (8.34), we get
A
p(z,y) = po — m——malP N (8.35)

(2+ 4)

where a(z,y) is given by (8.29). The state equation for this flow is

Q:t?A
A4 244

2 A
c+a)

P=po—

If we consider the spiral flow of a polytropic gas p = Agp” where Ao is a known

constant and  is the ratio of specific heats, the above state equation requires

2 2y \™
A=o_7_——]_’ A2=_A0(‘y-1> a.nd p0=0
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The streamfunction and the potential function for this flow are respectively given
by
C* + D? —\ & ACD y
P(z,y) = o — _IAT;C— (\/:B +y ) exp [—m tan (;)]
and
B(z,y) = Az /al-AAz (Cy + Dz)dz + (Dy — Cz)dy
2 Y /C2 +D2 /$2+y2
where g is an arbitrary constant and §; = —-Cw'}‘-_%-_r.

Example 2: Doublet

1
The function w = £(z,¥) + in{z,y) = <

-

is an analytic function of z and the '
two families of curves £(z,y) =constant, 7(z,y) =constant generate an orthogonal

by

curvilinear coordinate net. This net and its squared element of arc length are given

R 1
g YT EeT (8:36)
and
- 1
ds* = ——— de? + dn? (8.37)
(&2 + 72 | ]
Equations (8.36) can be solved for £ and  and we have
T
E(Z'gy) 32 +y2 b 7?(-'5-:'9) - 3:2 + yz (8-38)
We assume that the streamlines are of the form

Cé(z,y) + Dn(z,y) = constant
so that

C&(z,y) + Dn(z,y) =T(¢), T'(¥)#0 (8.39)
where I'(1) is some arbitrary function of ¢y and D # 0 is an arbitrary constant.
The flow pattern in this example is given in Figure 8.2.
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. . Cr+D
Figure 8.2, Streamiine pattern i : .‘y =constant (C =D =1).
3+ 3

To study these flows, we use the (£, )—net. The squared differential element of

arc length for this net is given by (8.9) where

D2

hi€,¥) = [(C? + D)€ — 2CET(¢¥) + T2 (9)]

(8.40)

Employing (8.40), Gauss equation (8.15) is identicé.lly satisfied and (8.14), (8.16)

become a system of two equations

919 2. pn 9 (9 |_
Oz 3]+ €+ D) 5 [ar'(¢)] =0

and
9adq 0Oadq _
HpoE o
in two unknown functions I'(3) and g(£,%) where a(£,v) is given by

0

JOTTD? [(02 + D?)E2 = 2CET(¥) + F2(¢)]

a(6.%) = 5 )

(8.41)

(8.42)

(8.43)



Since we do not consider uniform flow, it follows that equation (8.42) is identically

satisfied if one of the fellowing holds true

) aa_a_g__
Wae=a~
(11)92_201:
oy~ O
o Oo
(111)8—6—31!)—0

(iv) ¢ = g(a), ¢'(a)#0
Cases (i) to (iii) yield D = 0 which is contrary to our assumption that D # 0.

Taking g = q(«) and using (8.43), equation (8.41) yields

2FEL——~1NW+M9+D%MH%£ (8.44)

Separating the variables, we get

— I‘"
e~ T T S A ) (6

Solving equations (8.45), we have

Asa

) = s AT A D) (840
and
I'(y) = 4o — 5AT(%) (8.47)

where As # 0 and Ag # O are arbitrary constants. Employing (8.38), (8.39) and
(8.47) in (8.43), we obtain

WETT DA + 4
a(e,8) = i e AV ) (8.48)
246(2% + y?)? — As(Cz + Dy)
Using (8.46) in (8.13), the density function is given by
1
= = [24+ 4/C7 + D] (8.49)
As b )
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where a(z,y) iz given by (8.48).
Differentiating (8.20) with respect to z and y respectively and using (2.27), we

have

1 8¢ | on o) = — ) % pon
(C ) \ v{z.y) = 0 (Cam + Daz) (8.50)

wey) = Tmy \Cay V5

Employing (8.38), (8.47) and (8.49) in (8.50), we get

u(z,y) = e [D(mz_ye)_ww] 7
V=Tos T @+ [2+ 44T + De]

and
o(z.y) = As {C(a:"' —y2)+2D:r:y] @
VETETDE T @A) 3+ Auv/C? + Da]

The pressure function from (8.34) is given by

(z,y) = ?—ﬁl (2 4+ A7a) +
PIZY)=Po= g T AT o Ava

where A7 =A;VC? +D2.

The state equation for this flow is

24 2
P=rPo— 7 [ln(Asp)+ yorl (8.51)

The state equation (8.51) yields

0

@ _ 1 (2403
dp* ~ A P
Since %% =¢* > 0and g; > 0 for all real compressible media, it follows that

As > 0 and
2 4
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Figure 8.3. Pressure versus density for the state equation (5.31)

with 4y =1, 4+ =2 pg =25,

However, the above restrictions on p cannot be satisfied simultaneously and. there-
fore, we may conclude that the solutions obtained above are valid for some imaginary

gas having the state equation (8.51) giving p as a simple-valued function of p.

However, Figure 8.3 shows the plot of state equation (8.51) with pp = 2.5, 4s =1
and A? = 4 as compared with the state equation of an ideal gas p = 1.5p'-3%. We
observed that (8.51) is a reasonable approximation of the ideal gas for a small range
of value of p. Therefore, we ﬁzé.y consider the solutions above as being valid for an

ideal gas for this range of values of p.

The streamfunction and the potential function for the above flow are

$ay) = 1 In VA (Cz + Dy} + 245 (z* + ¥°) _v
VT VBAA | VA (Cz+Dy) - VA (st +y)|
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B(z.y) = - /[9“’2‘?")‘20”‘1’} i d
VTR D? (a* +9°) R+ AC + D0 |

. As / [C(z"’ - y°) +2D:z:y] a d
= - - —
Cr+ D (=% + ) 2+ A,v/C+ D) |

respectively where 1, is an arbitrary constant.

Example 3:
We let w = v2=. Then w is an analytic function of = = z+iy and the two families

of curves £(z,y) =constant and 7(z,y) =constant form an orthogonal coordinate

system. This system and the squared element of arc length are given by

T =

E+7°). y=& (8.52)

[N

and
ds® = (52 + 172) [a!E2 + drf] (8.53}

Solving equations (8.52) for £(z,¥) and n{z,y), we get

fry)=yVVz2+yi+ez.  nlzy)=yvVz2+yi -z (8.54)

We investigate whether inviscid compressible fluid can flow along the family of

curves C£(z,y) + Dn(z,y) =constant. Therefore, we have

Cé(z,y) + Dn(z,y) =T(¥), T'($)#0 (8.55)

where T'(3) is some arbitrary function of 4. C and D # 0 are arbitrary constants.
The streamlines for this flow are shown in Figure 8.4.
To proceed with our investigation, we employ the (§,%)—net whose squared

differential element of arc length is given by (8.9) with

h(e¥) = 5(CT+ D7) & — 2060(9) + T°(9) (8.56)
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[
ty

Figure 8.4, Streasnline paticon C‘/\/:z + ¥+ 2+ Dyt +y? = 2 scomtan,
{(C=D=1)

Upon substitution of (8.56), Gauss equation (8.15) is identically satisfied and equa-

tions (8.14), (8.16) become a system of two equations

_2_ 2 2 q —
Cag[ |+ + D)a¢[r,(¢)]—0 (8.57)
and
Oadq Ocdq _
5% 5€ ~ O 0 (8:58)
in two unknown functions I'(#) and g(£,) where a(£,%) is given by
al6, ) = bver + D7 (8:59)

Ti(#),/(C? + D?) € — 2CEL(¥) + T(¥)
Equation (8.58) is identically satisfied if ¢ = g(a), ¢'(a) # O since all other cases
lead us to a contradiction as we saw in the previous example. Using ¢ = g(a) and

equation (8.59), equation (8.57) becomes, after some simplification,

I\H(,’l,)

T2 (g) =

[eq(a) — a?¢'(@)] T@)T2(%) - (C* + D2)’ ¢(0) gy
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Separation of variables yields

agle) —o¢la) DY) _
G+ D7 gla) - T — Ot = A R0tw) (00
Solving equations (8.60), we get
213
o) = 4o [0® + 45 (C* + D%y’ (8.61)
and
D'($) = [2410 — AT ($)] (8.62)

where Ay # 0 and A;¢ are arbitrary constants and «(£,%) is given by equation

(8.59). Using (8.61) in (8:13), the density function takes the form

(44

pla) = ; (8:63)

Aq [a2 + A5 (C? + D'—’)z] ’
Employing (8.62), (8.54) and (8.55) in (8.59) and simplifying, we get

VEyd

y) = —————
a(maJ) \/5(32+y2)‘}

M(z,y) (8.64)

where M(2,y) = /2410 — As(C? = D?)z — As(C? + D2)\/2% + 37 — 24sCDy.
Differentiating (8.20) with respect to z and y respectively and using (2.27), we

have

-2 8¢ o 1 3 - on
U = E (C% * Da_y) B = TR (Cax + Daz)

Upon substitution of equations (8.54), (8.62), (8.63) and (8.64), above equations

yield
AQVC!! +A11 [ \/——__ 1
u(z,y) = FICYVat+y?—z+ D z’+y2+=l
V2V/C? + D? (22 + y?)* \/
and
AQVaz +A11 ‘: Y
‘U(.’l:,y):— 3 C 2+\/2:2+y2—D ‘/32+y2__z‘l
V2VCZ + D? (22 +y?)*
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where 411 = As (C* + Dz)z. Integrating {8.11) and (8.12). the pressure function is

a+v‘A11+az) (8.65)

VAL

given by
1 1
P=ps— ;Aga-\/ A+ + ';AgAuln (

where a(z,y) is given by (8.64).

Employing (8.61) and (8.63) in (8.65). the (p, p)-relation for this flow is given by

ASAIIP 1 pAg +1

————— + Ay In | ——=—=
(2220

PP a0 — 4k

r T
Q-.
3-.
ot
1
c N
b 0.2 0.4 0.6 r 2.3 7
Figure 3.3, Pressure versus density for the equation « 3.63+
with Ay = o =1, 4y = =2
The state equation above gives
2
dp 4 P
= BAnT— ooy
P (1 — A30%)

d?p 444 2p (1 + 2A2p%)
—HAgAn 2
(1 - A3p?)

dp?
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2

Since for all real gases, g‘g > 0 and j—p‘é > 0. we have from the two equations above
that 4;; < 0. Therefore, the solutions obtained in this example are valid for some
real gas having the state equation above for all permissible values of Ay and Aj;.
Figure 8.5 shows the graph of pressure versus dexsity for the state equation above
taking Ag = 1, A;; = —2 and py = 1 and the state equation of a polytropic gas
p = 2.55p*%. It can be seen that this state equation is in good agreement with
the ideal gas for a small range of values of p. Therefore, we may conclude that the
solutions obtained above can be employed to study the behaviour of an ideal gas

for this flow provided the variations of p are confined to this range.

The streamfunction and the potential function for this flow are respectively given

by

'l,b(l'-,'y) = %r(zvy) [2A10 - r2($,y)]% + AA_?MCSin (—5\/%1‘(::,3;)) _1:!’27

A vat+ A \/_,,—_ '
ﬂzﬂ):f_\/chﬁ/_i[c \/:c~+y2—-:c+D\/ 32+y2+$}dz

(32 + yE)Tli
Ag / va? + A, [ / '
- ~ |CyVz+ V22 +y2 - Dy vzt + 2—:t:de
V2VCT+ D2 ) (g2 4 y2)% \/ Y
where I'(z,y) is given by (8.55) and % is an arbitrary constant.

Example 4: Oblique Stagnation Point Flow

We let w = &(z,y) +in{z,y) = 3z°. Then w is an analytic function of z = z +1y
and the two families of curves £(z,y) =constant and 7(z,y) =constant form an
orthogonal curvilinear coordinate system. This system and its squared element of

arc length are given by

r= e+ VETTE  y=\-E+VETT (8.66)

and

1
d32 _— -.)—Ez—-il—‘r']; [d&z + dnz] (8.67)



Solving equations {8.66) for £(z.y) and 5{z.y). we have

(22 =33 . nzy) =zy

ol

f(zoy) =
We assume that the streamlines are of the forin

C&(z.y) + Dn(z,y) = constant

so that
Cé&{(z,y) + Dn(=z,y) = ['(¥), T'() # 0

The streamline pattern for this flow is shown in Figure 8.6.

=
NN

(8.68)

(8.69)

o——

Figure 8.6. Stremnline pattern ;C {(z° « ¥*) + Dzy =constant (C = D = 1),

=

!

To study these flows, we employ the (¢, )—net whose squared differential element

of arc length is given by

1 vD

R(§,¥) =

209
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Gauss equation (8.13) is identically satisfied when (8.70) is used and equations

(8.14), (8.16) become a system of two equations

9 14 2 pny 9 (9 |_
Co 2]+ + D% 50 [arfw)] =0 (8.71)
and
Oadq Oadq _
590 0E0v " (&1

in two unknowns I'(3) and ¢(§,%) where a{£,)} is given by

VBVEETDE [(C? + D) — 2CET(3) + T3(¥)]

L) = 8.73
V=75 e (87)
Since our flow is not a uniform flow , equation (8.72) is identically satisfied if one
of the following cases hold true (i) g—;- = g—fb = 0 or (ii) g—z = g—g = 0 or (iii)

%% = -g—: =0 or (iv) ¢ = g(a), ¢'(e)# 0. Cases (i) to (iii) lead us to D = 0 which

contradicts our assumption that D # 0. Therefore, we take ¢ = g(a) in (8.71) and

have
2(C? + D?) [g(a) — aq'(a)] T(#) + a®¢'(a)"($)I"*(¢) = 0
Separating the variables, we obtain

[q(a)—aq’(a)]__ 1 @)
atq'(a) ~C*+ D% T(¥)

= constant = A;; # 0 (say) (8.74)

Solving equations (8.74), we get

Q

= Ajg—m———— 8.75
Q(a) 13(1+A12a4)'} ( )
and
(3 Ld l
I'(¢) = {4411 — 4412(C? + D*)T*(3)] * (8.76)

where A;; # 0 and A;4 # 0 are arbitrary constants. Employing (8.69) and (8.76)
in (8.73), we obtain

z 7 /78 ot
VC? + D2 \/z2 + y 1 (8.77)

a(z,y) = "
{4414 - 4422(C? + D) [3C (2% - y?) + Dy’ |
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where £(z,y) and 7(z,y) are given by (8.68).

Using (8.75) in (8.13), the density function is given by

(1 + Alza.i)%

8.78
™" (8.78)

pla) =

where a(z,y) is given by (8.77). Differentiating (8.20) with respect to z and ¥

respectively and using (2.27), we have

1 a€ on B 1 8 o
e = i (5 <25 e =005 (O +223)

Employing (8.68), (8.69), (8.76) and {8.78) in these equations, we get

A3 {Dz = Cy]
1

u(z,y) = :
(14 Azat)d {4A“ —4415(C? + D?) [C(2? - y?) + Dzy]z}‘

and

A13 [C:c + Dy]
(1+ Arpot)? {441 — 4412(C? + DY) [JC (=2 - 91) + Dzy)’}

vz, y) ==

1
4

Finally, the pressure function is given by

43
p(z,¥) =po - Az f _"——_Tda
[Ama'i + 1]“
Example 5:
The function w = § + 1 = L is an analytic function of z and the curves

V2z

£(z,y) =constant and 7(z,y) =constant generate an orthogonal curvilinear coordi-

nate system. This system and its squared element of arc length are given by

-7 én
R ek, S 1 8.79
ey YT e +wy (8.79)
and
2 L [de + dn?] (8.80)

NGETas
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Solving equations (8.79) for &(z.y) and n(z.y). we have

£(=.y) 22 x,-—2+yz+z (z.¥) - s
qu == - = - 77 I.y =3 L) -
2 a:-.'.y- 2 z.+y-

We investigate whether the family of curves given by C¢(z.y)+ Dn{=z,y) =constant

(8.81)

will allow inviscid compressible fluid to flow along it. Thus, we have

Cé(z,y) + Dn(z,y) =T(#), T'($)#0 (8.82)

The flow pattern for this example is shown in Figure 8.7.
Y 4

>

CJ gi+y2+:+D\/\/zz—+y'—:

Vet + 7 VIt 4yl

Figure 8.7. Streamline pattern

=constaut
(C=D=1},
We employ the (£,%)-net with the squared differential element of arc length given

by

DS
[(C? + D2) €2 — 2C¢T(¥) + T*(¥)]}
Using (8.83), Gauss equation (8.15) is identically satisfied and equations (8.14) and

h(§,¥) = (8.83)

(8.16) are a system of two equations

Ca% [%] + (C? + D?) % [Zﬁ] =0 (8.84)
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%a_&__?&-%_=0 (8.85)
in two unknown functions ¢(£,%) and I'(3) where a(£,) is giver by
VCT+ D? 3

a(é,¥) = DTD) [(C? + D?) € — 2CET(9) + ()] (8.86)

Equation (8.85) is identically satisfied only if ¢ = g¢(a), ¢'(a) # 0 since all other
cases lead us to a contradiction as we mentioned in the previous examples. There-

fore, we take ¢ = g(a) in (8.84) and have

g(a) — og'(a) 2, V3 (o () _
3[————a§ ]I‘(?,b)-i-(c + D*)? ¢'( )———-—r,%w)_o

Separating variables, we have

Q(a): ag'{a) _ 1 (c?+ D2)§ M(¢)
adg(a) 3 )3 (@)

Solving equations (8.87), we obtain

= constant = A;5 # 0 (say) (8.87)

Ama\/l — Ajsa3 + A¥jad

- 8.88
() (1+ Alsa%) VI + A0 (5:59)

and
I'($) = [~ (C* + D)3 2(y) + Ae|” (8.89)

where A,¢ and A;7 are arbitrary constants.

Proceeding as in the previous examples, we find that the density p and the

velocity components are given by

[0
P(a)—am»
V2a
) = _{_(DM, + CN)V=2 + & + 22(DMy — CNy) }
)= e ATy (DM ORIV 2203~ OB}
\/i_Za
T,Y) = 1 (CM; — DN 2 2 _22(CM; + DN
v(z,y) T T D p(a) (2 1 57 {( DV +y (CM + 1)}
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where M; and N, are given by

M, =yVz*+y +=z and Ni=yvVet+y* -2z

Finally, the pressure function is given by

p=po—/adq

where a(z,y) is given by (8.86) and (8.82).
This section dealt with examples of flows satisfying ¢ = g(«) such that g—‘g #0

and ig% # 0. However, eguation {8.16) is also satisfied when ¢ # g¢(@) and this is

considered in the following section for completeness.

8.4 FLOWS SATISFYING g # g(a).

Differentiating (8.17) with respect to £ and 3 respectively, we obtain

da __ VCE¥DT 8h 8o VOTHDE [ 1 @+r"(¢)]
8¢~ A&, P)(Y) 867 8y~ h(EPT(¥) |h(&¥) 3¢ T'(¥)

(8.90)
Equation (8.16) yields the following five cases:
(‘) @. =0 ?E =

VT
%o 01

n 366 =y, ag =

. Oa g _
(3ii) ? =0, ng 0
q q

(iv) % - 0, 5% = 0
(v) g =g(@)

Case (iv) gives flow with constant speed and is of no interest and therefore
removed from further consideration and case (v) was considered in the previous

section. We study cases (i) to (iii) in the following:
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Case(i):g—?=0, %%=O

In this case from (8.90}, we get

oh
5&: = 0 (8.91)
and
1 o  IM(¢)
z = 8.92
RED 5% T T() (8.8
Equations (8.91) and (8.92) yield respectively
h = h(y)
and
oy = B
T'(y) = ) (8.93)

where B; # 0 is an arbitrary constant. Employing & = h(¥) and (8.92) in Gauss

equation (8.15), we get
h'($)=0

which upon integration yields
h(+) = B2y + Bs (8.94)

where B, # 0 and B; are arbitrary constants. Employing (8.91) and (8.93) in

(8.17), we obtain

2 2
ik 22 (85
1

Using (8.91) and (8.93) in (8.14) and simplifying, we obtain

B, 3—2 +(C*+ D?) (Bay + Bz,>-§§,— +(C*+ D) Bag=0  (89)

Solving (8.96) for g(£.%), we get

{2 2
q(é,¥)=F [ln (B2 + Bs) — Ba (C'2 + Dz) E] ea:p{ (C ;’lg ) Bz«’;'} (8.97)
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where F' is an arbitrary function of its argument.

Employing (8.94) and (8.97) in (8.13). we get

VC2 +D%exp [-5-1-5 (C* + D?) B:E]
BiF(ln (B2 + Bs) - B —2(C? + D?*}¢]

pEY) = (8.98)

Differentiating (8.7) with respect to = and y respectively and using (2.27). we have

1 ( 2§-+D@\ o 1 (03£+D6n

W= \Ca TPy T T %) c9

Substituition of (8.93) and (8.98) in (8.99) yields

Bz‘d)'l-BsF[x] e-".‘p{_ (02 +D2) B'_‘ﬁ} (C% +Da77)

and

B- B —(C? + D?) Ba&
=B e (FO D) (o o)

where ¥ = In(B2¢ + B;) — Ba (C'2 + Dz) £.
Employing (8.97) and (8.98) in (8.11) and (8.12) and integrating, the pressure

function is given by

VO + DR - {(C? + D?) B.
p(m»y)=Po—-—+-—F[x]e$p{ (¢?+ D7) 6}

Bl Blc
where pg is an arbitrary constant.

The state equation for this flow is given by

(o

g
Case (i1 =0, ==
(3) E %
Using 5 = 0 in the first equation of (8.90), we get

h = h(%) (8.100)



dq
Since — = 0, then

9
q=ql¥) (8.101)

Using (8.100) in Gauss equation (8.15) and integrating the resulting equation twice

with respect to ¥, we get
h($) = Bs exp[BsT(%)] (8:102)

where B; # 0 and B; # 0 are arbitrary constants and T'(#) is an arbitrary function
of ¥. Employing (8.100) and (8.101) in (8.14). we get

[h{4)q]' =0 (8.103)

where prime denotes differentiation with respect to .

Equation (8.103) yields, after one integration.

Bs

q(¥) = 29

(8.104)

where Bg s 0 is an arbitrary constant and k(¢ is given by equation (8.102).
Using (8.104) in (8.13), the density function is given by

JCTTD?
= —= 8.105
Employing (8.105) in (8.99), we get
By /3 377)
[ = —— | = D—
el VC? + D? ( ay oy
and
B (o)
Wy ===t (Caz + D%
Using (8.104) and (8.105) in (8.11) and (8.12) and integrating, we obtain
p(¢¥) = BsBsVC? + D? / R ¢) (8.106)
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The state equation for this flow can be obtained from (8.106) for a chosen k().

9a _ o Ga _
5 - W

In this case, we have

4]

Case (iil):

q=q(§) (8.107)

and from the second equation of (8.90), we get

Mz (&)

h(€.9) = T'w) (8.108)
where Mo(£) is an arbitrary function. Using (8.108) in (8.17), we obtain
a(f) = % (8.109)
Employing (8.107) and (8.108) in (8.14) and simplifying, we have
¢ M) (C+D)I) _
g(§)  Ma(§) c T2
This equation implies that
qq((g + ﬂig _& *C',D ) 11:2((‘5’) — constant = B: # 0(say) (8.110)
Solving equations (8.110), we get
(6) = gamenp Bt (8.111)
and
I'(¢) = Bal Cziz ngi CB (8.112)

where By # 0 and By are arbitrary constants. Integrating (8.112) once, we get

2 2
€+,

B-C [3.9 (C? + D?) — B1C¥)] (8.113)

I(¢) = Bio -
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where Byg is an arbitrary constant. Using (8.113) in (8.112), we have

Cz +D2
ezp |2 (Buo - T()}]

r'(y) = (8.114)

Using (8.108) and (8.113) in (8.15), we have

[Mé(f)]' _
M2(€)

which upon integration yields
M,(€) = Bizexp(Bu) (8.115)

where By; and Bia # 0 are arbitrary constants. Employing (8.108) and (8.111) in

(8.13), we obtain ' A
Ve + D2

Bgexp (B:§)

Using (8.114) and (8.116) in (8.99), we get

p(&) = (8.116)

Bsexp (B7£) exp [c ¥ {Bio — 'd’)}] On
u(z,y) = + D .
(,9) (C? + D?)* ( 3y 33}) (8141)
and
Bgexp(Bs€) 2 {Bro - T(¥
(C? + D?)} ¢ z

Employing (8.111) and {8.116) in (8.11) and (8.12) and integrating, we obtain

&) = _BsvC + D ‘Mexp(37f)_ B:BsV(C?* 4+ D? / le(s)exP(B7£)dE (8.119)

2M3(£)

The (p, p) relation for this flow can be obtained from (8.116) and (8.119) for M2(€)
given by equation (8.115).



CHAPTER 9

CONCLUSIONS

In the absence of a general theory for solving a system of nonlinear partial dif-
ferential equations, transformations are the most powerful analytic tool available
to obtain solutions of these systems of equations. The use of transformations in
fluid dynamics is almost as old as the subject itself. These transformations result
in simplifications and are used to achieve one of the following:

(a) linearize the system, for example, hodograph and Kirchhoft

transformations,

(b)  reduce the system to a system of ordinary differential equations,

for example, similarity transformations

(c) transform the system to another system which has already been

solved. |

In general, these transformations are classified into three groups: Class I includes
those which are transformations only of the dependent variables; Class II includes
transformations only of the independent variable(s); Class III consists of transfor-
mations of both dependent and independent variables. Ames [1965] has given an
excellent treatment of the various transformations employed in fluid dynamics.

This dissertation involves transformations of the independent variables so that

systems of ordinary differential equations and linear partial differential equations
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are dealt with. New and existing exact solutions in closed form of these equations
are obtained. However, in four cases. specifically in Chapters 4 and 35, the transfor-
mations employed yielded nonlinear ordinary differential equations for which only
particular solutions were obtained. Other solutions of these equations which may
give more new permissible flow patterns are yet to be found.

Some of the new solutions obtained for steady, plane, potential compressible
flows do not correspond to a real gas. In such cases, an attempt has been made to
determine a range of values of p where these gases reasonably approximate an ideal
gas, for example, the solutions corresponding to a tangent gas are valid provided
p and p do not vary significantly from some point ( s ;1:) on the ideal gas curve
when this point corresponds to suitably average thermodynamic flow conditions.
The Mach numbers for all flows having equation of state of a tangent gas have been
obtained using this equation of state. Since the tangent gas is an approximation of
a polytropic gas, it would be more appropriate to determine the Mach numbers for
such flows using the equation of state of a polytropic gas.

It is interesting to observe that three forms of the equation of state given by
A

P=po— —
p

- 2m()- L1
P =Po Bgn p ng

VAB(1+ Bp)} 1  AB?

and

1
p=pg+§ABln|: Si-bp TS U= B )
have appeared frequently in many of the new solutions obtained suggesting a detail
analysis of these equations may shed more light into the nature and usefulness of
the gases represented by these state equations as well as the solutions obtained for
them.

The exact solutions for incompressible, inviscid and irrotational flows can be

easily obtained by the new approach in this dissertation either directly from the
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solutions already obtained for compressible flows by taking p = constant in them
or by removing restrictions in the analysis of the governing equations that led to
incompressible flows. These equations are then solved and the solutions for incom-
pressible fluid flow for the forms chosen in Chapters 3, 4 and 5 are as follows:

1. flows with y — ¢y — ¢ = constant as the streamline pattern

and the velocity components are given by

% = L Vo= C_1
- Dy’ T D
2. flows with y — -,:—lln Isec (k12 + k2)| = constant as the streamlines
with
u=explki(y~ flz) — k)],  v=f(z)expfh:(y— flz} - ks)]
where f(z) = rl;ln |sec (k1z + k2)|.
3. flows with » = constant as the streamline pattern with velocity
components given by
d
I{]. = 09 ‘/2 = ——
T
4. flows with T%T = constant as the streamlines with
_ 1 4,_3'06) R T N
VI——&:T Im, Vz——z‘r 1g 1 (9)
1
Erp
where ¢(6) = [—-V,la—;sec({dl +1}6+ d.;)] o
5. flows with § — Clnr = constant as the streamline pattern with velocity
components given by
1 C1
= 7 V2 = ar



6. flows with 8 — f(r) = constant as the streamlines with

Vi = %exp(—m (6 — (™)), Vo = f'(r)exp(—c1 [ = f(n)])

where f(r) = :—lln [sec(e1lnr + c2}| + 3.
Most of the work done in this dissertation is in obtaining closed form solutions in
unbounded domains. Application of obtained solutions for solving boundary value

problems in bounded domains is still to be carried out.
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