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Abstract

The development and maintenance of distributed software applications that 

support and make efficient use o f heterogeneous networked systems is very challenging. 

One aspect of the complexity is that these distributed applications often need to access 

shared data, and different applications sharing the data may have different needs and may 

access different parts o f the data. Maintenance and modification are especially difficult 

when the underlying structure o f the data is changed for new requirements.

The extensible Markup Language, or XML, has emerged as the universal 

standard for exchanging and externalizing data. It is also widely used for information 

modeling in an environment consisting o f heterogeneous information sources.

CORBA is a distributed object technology allowing applications on 

heterogeneous platforms to communicate through commonly defined services providing a 

scalable infrastructure for today’s distributed systems.

To improve data independence, we propose an approach based on XML standards 

and the notion o f views to develop and modify distributed applications which access 

shared data. In our approach, we model the shared data using XML, and generate 

different XML views o f the data for different applications according to the DTDs o f the 

XML views and the application logic. When the underlying data structure changes, new 

views are generated systematically. We adopt CORBA as the distributed architecture in 

our approach. Our thesis is that: views to support data-independence o f distributed 

computing applications can be generated systematically from application logic, CORBA 

IDL and XML DTD.
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1 Introduction

This thesis is primarily concerned with improving data-independence of distributed 

applications which access shared data through XML views. This chapter gives an 

introduction to this thesis work. It elicits the problems inspiring this work, and 

presents objectives and the thesis statement.

1.1 Motivating problems

An important characteristic o f large computer networks such as the Internet and 

corporate intranets is that they are heterogeneous. However, dealing with 

heterogeneity in distributed systems is not easy, hi particular, the development and 

maintenance o f software applications that support and make efficient use of 

heterogeneous networked systems is very challenging.

One aspect o f the complexity is that these distributed applications often need to 

access shared data, and different applications sharing the data may have different 

needs and may access different parts o f the data. Traditionally, shared data is often 

stored in a  relational database to achieve data-independence and other amenities that 

database management system provides. The capability o f database storage and 

processing is central in most information systems. Earlier, organizations used 

monolithic database management systems. However, nowadays there are often many 

isolated data repositories distributed over personal computers. Those data repositories

- 1 -
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are often heterogeneous because of the differences in the semantics o f data and 

DBMS differences such as different data models and query languages. Moreover, 

much o f the existing electronic data lies outside o f a DBMS. It lies in structured 

documents like HTML and SGML, non-standard data formats, legacy systems, etc. 

The structure of the non-relational data is sometimes irregular, unknown in advance, 

and changed often. This is a significant departure from the traditional database 

framework geared towards highly structured data described uniformly by a rigid 

schema. This makes the complexity of distributed systems more difficult to deal with. 

Figure 1.1 shows the architecture o f a distributed system.

Apptfcatfont
Logic

Shared Data

Figure 1.1 Architecture o f a  distributed system

For example, if  the structure o f the shared data is changed for new requirements, all 

applications accessing the data have to be modified accordingly. For a large system 

with hundreds or thousands o f applications spread all over the world, this is nearly 

impossible.

- 2 -
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1.2 Observations

Research on semistructured data has aimed at extending database management 

techniques to data with irregular, unknown, and often changing structure. The advent 

of the extensible Markup Language (XML) and related technologies addresses this 

problem by providing a neutral syntax for interoperability among disparate systems 

and applying data management technology to documents. XML is a standard 

approved by the World Wide Web Consortium (W3C) that many believe will become 

the de facto data exchange format for the web.

The basic ideas underlying XML are very simple: tags on data elements identify the 

meaning o f the data, rather than, e.g., specifying how the data should be formatted (as 

in HTML), and relationships between data elements are provided via simple nesting 

and references. Yet the potential impact is significant: Web servers and applications 

encoding their data in XML can quickly make their information available in a simple 

and usable format, and such information providers can interoperate easily. 

Information content is separated from information rendering, making it easy to 

process the data. XML supports the electronic exchange o f machine-readable data. 

XML data shares many features o f semistructured data: its structure can be irregular, 

is not always known ahead o f time, and may change frequently and without notice. 

On the other hand it is easy to convert data from any source into XML, which will 

make it attractive for organizations to publish their electronic data in XML, and thus 

make them available to other applications in the system.

- 3 -
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However, XML applications face the similar problem as those built using traditional 

databases: different users sharing XML data may have different needs and may want 

to see the same data differently, and this is not only at the presentation level. For 

XML applications to reach them full potential, we need the same mechanism, views 

as in databases to achieve data-independence at a higher level. The notion o f views is 

essential in databases. It allows various users to see data from different viewpoints. 

When data is represented using XML, the problem o f views is more crucial than in 

standard database applications because the data is often from heterogeneous sources 

and the structure o f the data is changed frequently. Views provide the means to add a 

structured interface on top o f the underlying data, which provides data-independence 

for applications that access the data via the views.

In the relational world, a view is simply specified by a query. A lot of the technology 

developed for relational databases remains meaningful in the context o f views for 

XML data. XQuery is the XML query language the W3C is developing for extracting 

data from XML documents. The XML Stylesheet Language (XSL) also has facilities 

that could serve as a basis for an XML query language.

Therefore, our research is motivated by the idea o f improving data-independence o f 

distributed applications which access shared data by representing the shared data in 

XML and generating higher level abstractions o f the data —XML views.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U  Possible Solutions

CORBA is both a language-independent and a location-transparent framework, which 

means objects at different locations are interchangeable as long as the interfaces to 

the objects remain the same. CORBA itself is an excellent technology for building 

distributed applications involving multiple languages and commercial vendors. 

Therefore, CORBA is adopted in our thesis as the infrastructure to build distributed 

systems. CORBA will be discussed in more detail in later chapters.

The observations above lead to a possible solution based on XML and CORBA. 

Figure 1.2 illustrates the architecture o f the solution. Use CORBA as the middleware 

to build the distributed applications to facilitate the communication between the 

applications; use XML as the neutral syntax to represent the shared data; construct 

XML views on top of the XML data for different applications according to the 

application logic, CORBA DDL and XML DTD.

When the DTD of the XML data is changed for new requirements o f the system, only 

the queries that generate the views for different applications need to be modified in 

this setting.

- 5 -
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Figure 1.2 Architecture o f the possible solution

1.4 The Thesis

The ultimate  goal o f this thesis work is to find a systematic approach to the 

development and maintenance o f distributed applications based on XML data and 

XML views, including how to build the initial distributed system, especially the XML 

views, and how to modify the system when changes to DTD of the XML data occur.

The thesis statement is:

“XML views to support data-independence of distributed computing 

applications can be generated systematically from application logic, CORBA 

IDL and the XML DTD.”

- 6 -
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The following is the work done to support the thesis:

•  Investigate XML, DTD and XQuery.

•  Investigate CORBA and EDL.

•  Propose data modeling approaches using XML.

•  Develop guidelines for systematically generating XML views for the initial 

distributed system.

•  Develop guidelines for systematically modifying the system after the structure 

o f shared data is changed.

•  Develop a prototype system to demonstrate our approaches.

•  Analyze the work done and results.

•  Draw conclusions about the extent to which the thesis has been proven.

1.5 Organization of the Thesis Report

Chapter 2 gives background information about distributed systems and data- 

independence. Chapter 3 introduces XML and some related technologies including 

DTD, DOM, SAX, XPath, XQuery and XSLT. Chapter 4 introduces CORBA and it’s 

DDL. Chapter 5 presents approaches for data modeling using XML. Chapter 6 gives 

details o f the two approaches for improving data-independence o f distributed 

applications accessing shared data. Chapter 7 and chapter 8 present the guidelines for 

systematically generating XML views for the initial distributed system and modifying 

the system after the structure o f shared data is changed. Chapter 9 provides critical 

analysis o f the work done. Chapter 10 gives our conclusions.

- 7 -
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2 Background: Distributed Systems and Data-independence

This chapter primarily deals with some background information about distributed 

system and some generic concerns about the development and maintenance of 

distributed systems.

2.1 Overview of Distributed Systems

A distributed system is a collection o f autonomous computers linked by a network, 

with software designed to produce an integrated computing facility. Software of 

distributed systems can range from the provision o f general-purpose computing 

facilities for groups o f users to automated banking and multimedia communication 

systems. Distributed software coordinates the computers in the system to accomplish 

their tasks and share resources including hardware, software and data of the system. 

The key characteristics o f distributed system software are: support for resource 

sharing, openness, concurrency, scalability, fault tolerance and transparency. The 

design goal o f distributed systems is to achieve high performance, reliability, 

scalability, consistency and security.

2.2 Architectures for Building Distributed Systems

- 8 -
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Today, more and more distributed systems are built on large computer networks such 

as the Internet and corporate Intranets. An important characteristic o f large computer 

networks is that they are heterogeneous. Ideally, heterogeneity and open systems 

enable us to use the best combination o f hardware and software components for each 

portion o f an enterprise. When the right standards for interoperability and portability 

between these components are in place, the integration of the components yields a 

system that is coherent and operational. However, dealing with heterogeneity in 

distributed-computing enterprises is not easy. In particular, the integration of software 

components that support and make efficient use o f heterogeneous networked systems 

is very challenging.

In the mid-eighties, companies began to build distributed computing infrastructures 

using “Remote Procedure Call” such as Sun’s Open Network computing (ONC) and 

OSF’s DCE. In many cases, companies built their own in-house infrastructure 

necessary to support this architecture.

In foe 1990s, a new distributed computing model became widely adopted, built 

around foe concept of “Distributed Component Computing”. While there is no 

universal approach to integrating foe components, a  number o f protocols and 

technologies have emerged: SunSoft's Enterprise JavaBeans, OMG's CORBA, and 

Microsoft's DCOM. These distributed architectures directly address foe technical 

issues o f distribution and heterogeneity that are central to a modem large-scale 

software application. DCOM provides suitable solutions for the Microsoft

- 9 -
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environment and EJB is ideal for Java applications. CORBA has clear advantages in 

terms o f crossing platform and language boundaries, which is truly suitable for large- 

scale applications.

23 Data-independence

Most software systems are subject to changing requirements that often necessitate 

alterations o f the structure o f shared data. However, these modifications imply time 

and money-consuming changes to application programs that run against the shared 

data, hi order to avoid this annoying and costly situation, application programs should 

be independent o f changes in the way data is structured and stored. This quality is 

known as data independence.

The single most significant distinguishing characteristic o f a database is data 

independence. Database systems provide convenient access to shared data for a 

community o f users having assorted requirements and database experience. This is 

accomplished in part by supplying each user with a view o f only the relevant portions 

of the database. Views are tables that are defined in terms o f queries over other tables. 

The view mechanism can be used to create a window on a collection o f data that is 

appropriate for some group o f users. Views are very useful from a security standpoint 

because they allow us to limit access to sensitive data by instead providing access to a 

restricted version o f that data which is defined as a view. It is very important to note 

that views are very useful quite independently o f security considerations because they

- 10 -
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allow us to create several presentations o f the same data, each o f which is tailored to 

the needs o f a different group o f users, without actually replicating the data.

The motivation behind the view mechanism is that we can tailor how users see the 

data. Users should not have to worry about the view versus base table distinction. The 

goal is indeed achieved in the case o f queries on views. A direct consequence is that 

queries are generic; their answers depend only on the logical level of data.

In our approach based on XML data, we adopt the idea o f XML views similar to the 

views in relational databases on top o f the underlying data to achieve data- 

independence at a higher level. XPath, XQuery and XSLT are XML query languages 

that can be used to generate XML views.

-  11 -
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3 Investigation o f XML

The extensible Markup Language (XML) is an emerging open standard in the 

production and consumption o f content managed by the W3C. XML as a text-based 

markup language has become the universal standard for exchanging and externalizing 

data in a platform-, language-, and protocol- independent fashion.

3.1 Overview of XML

XML is a  data-oriented technology, based on a lightweight subset o f the Standard 

Generalized Markup Language (SGML), suitable for the definition, storage, and 

retrieval of structured data. XML is inherently language independent. XML was 

originally created to improve document processing by separating presentation from 

content and by revealing documents’ semantic structure. Now it is widely used as a 

common format for expressing data structure and content to reduce the obstacles to 

sharing data among diverse applications and databases.

XML is a language used to describe and manipulate structured documents. It is a 

flexible mechanism that accommodates the structure o f specific applications. It 

provides a mechanism to encode both the information manipulated by the application 

and its underlying structure. XML lets information providers invent their own tags for 

particular applications and work with other organizations to define shared sets o f tags 

that promote interoperability and that clearly separate content and presentation. XML

- 12 -
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also supports validation in two ways. Application developers can associate an XML 

document with a  document type description (DTD) that describes the structure to 

which the document should conform, hi addition, because DTDs were intended for 

document management and cannot adequately model complex data, the W3C 

subsequently developed the XML schema specification, which adds data types, 

relationships, and constraints. Applications can use off-the-shelf XML parsers to 

validate imported data for conformation to a DTD or schema.

Although a young standard, XML already exerts significant influence on computing 

communities. A vibrant XML marketplace is providing inexpensive tools for 

preparing, validating, and parsing XML data. Application developers praise XML’s 

extensibility; communities that share common data, such as the chemical industry, 

like XML’s support for well-defined, common data representations. Several related 

standards also greatly increase XML’s data sharing and management utility. These 

include Extensible Stylesheet Language (XSL), Document Object Mode (DOM), 

Simple API for XML (SAX), and XML query languages.

3.2 XML Syntax

XML documents are composed o f a structured collection of markup and content. 

Each tag either defines information used to describe how the document is to be 

interpreted or describes data contained within the document. There are six kinds o f 

markup that can occur in an XML document: elements, entity references, comments,

-1 3 -
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processing instructions, marked sections, and document type declarations. Listing 3.1 

is a  small bibliography represented in XML.

1 <?xml version*"1.0" encoding*"UTF-8* ?>
2 <IDOCTYPE bib SYSTEM 'bib.dtd'>
3 <bib>
4 <book year*"1994">
5 < ti tle>TCP/IP 11lustrated</title>
6 <authorxlast>Stevens</lastxf irst>W. </ f irstx/author>
7 <publisher>Addison-Wesley</publisher>
8 <price> 65.95</price>
9 </book>
10 < £—  Unix Book — >
11 <book year*"1992*>
12 <title>Programming in the Unix environment</title>
13 <authorxlast>Stevens</lastxf irst>W. </ f irstx/author>
14 <publisher>Addison-Wesley</publisher>
15 <price>79.95</price>
16 </book>
17
18 <book year**1999">
19 <title>The Economics of Technology for Digital TV</title>
20 <editor>
21 <last>Gerbarg</last><first>Darcy</first>
22 <affiliation>CXTX</affiliation>
23 </editor>
24 <publisher>Kluwer Academic Publishers</publisher>
25 <price>129.95</price>
26 </book>
27 </bib>

Listing 3.1 A bibliography in XML (from http://www.bn.com)

Comments

Comments begin with “< I — ” and end with Line 10 o f Listing 3.1 is an

example o f comments. Comments can contain any data except the literal string “—”. 

Comments are not parsed by XML tools.

XML Declarations
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<?xml version= “versionNumber”, encoding = “encodingFormat” standalone^ “ 

yes/no ” 1>

An XML declaration is used to identify the associated block o f data as an XML 

document; the declaration can have three attributes: “encoding” indicates the text 

encoding format o f the document, “standalone” indicates the dependence on other 

documents defined external to the current document Line 1 o f Listing 3.1 contains 

the declaration indicating the version and encoding o f the XML document.

Elements

<elmentNam£>data value j  other element <JelementNamO

An element acts as a container which contain data values or other XML elements. 

Elements have a case-sensitive name that is defined within < and > characters. Each 

element has a start tag and an aid  tag. An empty element <emptyElementf> 

designates a place in a document where some action should occur. An XML 

document can have only one root element that contains all other elements. In Listing 

3.1, bib, book, title, author, last, first, publisher, editor and price are elements, and bib 

is the root element of the document

Attributes

Attributes are white-space separated name-value pans that occur inside tags after 

“element name” (<elementNdme attribute = “attributeValue?*> ). In XML, all 

attribute values must be quoted. In Listing 3.1, element book has an attribute year.
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33 Document Type Definition

A Document Type Definition (DTD) is a structured collection o f declarations which 

define the semantic constraints that apply to a particular type o f XML document. A 

DTD is essentially a set o f meta-information (includes tags required, relationships 

among tags, valid attribute values, named entities) that defines the required structure 

and characteristics o f an XML document Listing 3 2  is an example DTD for the 

bibliography document (Listing 3.1) introduced in last section.

<?xml version= *1.0" encodings *UTF-8* ?>
<!ELEMENT bib ( book* ) >
<1ELEMENT book ( title, (author|editor)+, publisher, price ) >
<! ATTLIST book year NMTOKEN #REQUIRED >
< i ELEMENT publisher ( #PCDATA ) >
<1ELEMENT affiliation ( #PCDATA ) >
<IELEMENT author ( last, first ) >
<iELEMENT first ( #PCDATA ) >
<!ELEMENT price ( #PCDATA ) >
<2 ELEMENT editor ( last, first, affiliation ) >
<2ELEMENT title ( #PCDATA ) >
<2ELEMENT last ( #PCDATA ) >

Listing 3.2 DTD for the bibliography document

3.3.1 DTD Syntax

The syntax for DTDs is different from the syntax for XML documents. 

DTD H eader

- 1 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A DTD must be declared at the beginning o f an XML document after the XML 

declaration using the form:

<!DOCTYPE RootElementName [...]> 

where root element name is used to identify the XML document type for which the 

DTD defines structure and characteristics. Line 2 o f Listing 3.1 contains a  DTD 

header. A DTD stored at some external URL is referenced with a system identifier 

using the following form:

<!DOCTYPE RootElementName SYSTEM “mySystemUrl” [...]>

For example, the DOCTYPE external subset might look like the following: 

<!DOCTYPE rootElement SYSTEM “http://www.xmlserver.com/dtd/myDTD.dtd”> 

PUBLIC keyword can be used to replace SYSTEM to indicate that the DTD is widely 

used. The following DOCTYPE uses the PUBLIC keyword to reference the well- 

known DTD for HTML version 4.01.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3c.org/TR/html4/strict.dtd”>

Element Declarations

Element declarations identify the names o f elements and the nature of their content. 

Element declarations are defined within <ELEMENT and > characters and can be 

one o f the following forms:

•  Empty Content: the element is defined to have no content.

<!ELEMENT elementName EMPTY>

• Any Content: the element is defined to have any content
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dELEMENT elementName ANY>

•  Parsed character data: the element is defined to contain text 

dELEMENT elementName #PCDATA>

• Content Model: A content model is defined to constrain the contents o f the named 

element with one of die following symbols:

o ? designates that the model is optional

o * designates that the model may contain zero or more of the model elements,

o + designates that the model may contain one or more o f the model elements.

So the basic format for the content model is: 

dELEMENT elementName (content_model) ’ ̂ ̂  >

The content model definition within an element declaration itself can have the 

following formats:

•  sub_element'̂ *  ̂

•  sub elements separated by comma (, )indicate the elements must be contained in 

the sequence specified.

•  sub elements separated by vertical bar (D indicate any one o f the elements can be 

contained within an enclosing element.

Attribute Declarations

Attribute declarations define the characteristics o f attributes that are associated with a 

named element. The attribute name along with an attribute type and default value may 

all be specified for an attribute. Attributes are declared using the following form:
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<!ATTLIST elementName attributedName AttributeType DefaultValue >

Where attribute type may be defined according to one o f the following forms: ID, 

IDREEF, IDREFS, ENTITY, ENTITIES, CDATA, NMTOKEN, or Enumerated- 

type. Optionally, the DTD can specify a default value for the attribute. Default 

attribute values are defined as one o f the following forms: #REQUIRED, #IMPLIED, 

#FEXED or a literal valtie.

3.3.2 DTD As the Content Model

DTD is the content model o f an XML document. DTD encapsulates the hierarchical 

relationship o f content in an XML document, and regulates what content is allowable 

in a conforming XML document DTDs allow XML processing systems to validate 

data content and document structure.

DTDs can have multiple uses in creating views and querying XML data. QBE-style 

query interfaces [BARU99] may use DTDs to display the schema of a view and allow 

users to navigate i t  DTDs may help in the design of the storage structures. 

Semistructured databases can use DTDs to semantically optimize their query plans 

[FERN98]. Finally DTDs may guide the production o f style sheets, such as XSL 

scripts [ADLE01], that translate XML documents into browser-compatible HTML 

documents or other XML documents with different DTDs. It is clear that DTDs will 

be particularly useful. DTDs also guide the generation of XML views in our 

approach.
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3.4 DOM and SAX

DOM and SAX are two dominant APIs for processing XML documents.

3.4.1 The Document Object Model (DOM)

The Document Object Model (DOM) is a platform- and language-neutral object- 

based interface that will allow programs and scripts to dynamically access and update 

the content, structure and style o f documents. The objects in the DOM allow the 

developer to read, search, modify, add to, and delete from a document The DOM 

lays out a standard functionality for document navigation and manipulation of the 

content and structure o f XML and HTML documents.

When the DOM is used to manipulate an XML text file, the first thing it does is to 

parse the file, breaking the file into individual elements, attributes, comments, and so 

on. It then creates a representation o f the XML file as a node tree in memory. 

Developers may then access the contents o f the document through the node tree, and 

make modifications to it as necessary. The DOM provides a  robust set o f interfaces to 

facilitate the manipulation o f the DOM node tree. Figure 3.1 shows the DOM tree for 

our bibliography example from Listing 3.1. The DOM treats every item in the 

document as a node -  elements, attributes, comments, processing instructions, and the 

text that makes up an element or an attribute.
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Figure 3.1 DOM node tree o f bibliography document

DOM has several advantages over other available mechanisms for accessing XML 

documents. First, the DOM ensures proper grammar and well-formedness. Because 

the DOM transforms the text file into an abstract representation o f a node tree, 

problems like unclosed tags and improperly nested tags can be completely avoided. 

Second, the DOM abstracts content away from grammar. The node tree created by the 

DOM is a logical representation o f die content found in the XML file. It shows what
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information is present and how it is related without necessarily being bound to the 

XML grammar. Third, the DOM closely mirrors typical hierarchical and relational 

database structures. This makes it very easy to move information between a database 

and an XML document using DOM. Last, the DOM simplifies internal document 

manipulation. Using DOM, access to any node in a document is a simple task without 

the need to perform a scan o f the whole file. However, the DOM is very memory­

intensive. It builds the node tree for the entire XML document in memory, which 

make it unsuitable for very large files.

3.4.2 The Simple API for XML (SAX)

The Simple API for XML (SAX) is an event-based interface for parsing XML 

documents. SAX is a Java interface, and, virtually, every Java XML parser supports 

SAX. With SAX, the parser sends events as it reads through an XML document. 

These events are related to elements in the XML documents being read. E.g., there 

are events for element start, element end and parsing errors etc. Figure 3.2 shows how 

the parser generates events as it progresses though the document.

Figure 3.2 The SAX parser generate events
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The main advantage o f using SAX is efficiency. Event-based interfaces are lower 

level than object-based interfaces. They give developers more control over parsing, 

which, on the other hand, means programming using SAX is more difficult Another 

advantage is that a SAX parser consumes fewer resources than a DOM one, simply 

because it does not need to load the whole file into memory. The major limitation of 

SAX is that there is no random access to the document Therefore, SAX is 

particularly popular with applications that process large files and for servers which 

process many documents simultaneously.

3.5 The XML Path Language (XPath)

3.5.2 XPath Overview

XPath is a language for accessing parts o f an XML document; it is used by XSLT and 

XQuery. The XML Path Language (XPath) provides a syntax for locating specific 

parts o f an XML document effectively and efficiently. XPath operates on the abstract 

logical structure o f an XML document rather than its surface syntax. XPath gets its 

name from its use o f a path notation, as in URLs, for navigating through the 

hierarchical structure o f an XML document.

In XPath, an XML document is viewed conceptually as a tree in which each part o f 

the document is represented as a  node. The nodes in this tree are similar to those in
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the DOM mentioned in 3.4. XPath uses location-path expressions to specify how to 

navigate a node tree from one node to another. The following two examples show the 

usage o f XPath against the XML document shown in Listing 3.1.

Examplel: /bib/book[@title=‘Data on the Web’]/author

Returns the authors for the book whose title is “Data on the Web”.

Example 2: //book/publisher 

Returns all books' publishers

XPath is intended primarily as a component that can be used by other 

specifications. Therefore, XPath relies on specifications that use XPath (such as 

XSLT and XQuery) to specify criteria for conformance of implementations of 

XPath and does not define any conformance criteria for independent 

implementations of XPath.

3 i 2  XPath as a Query Language

XPath is a prototypical special-purpose XML query language. Originally designed as 

a helper language for XSL, XPath has enjoyed wider acceptance in part because o f its 

compact syntax and ease-of-use. XPath provides ways to select nodes in an XML 

document based on simple criteria such as structure, position, or content

- 2 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Each XPath query is built from two basic components: navigation (using location 

steps) and selection (using filter expressions). The components can be combined in 

variety o f ways to provide a rich expression language from only a few syntactic 

elements.

Navigation involves walking from one part o f the XML document to another. For 

example, the XPath /bib/book consists o f two location steps: one absolute step /bib 

which selects all top-level elements named <bib>, followed by a relative step <book> 

then selects the child elements named <book> o f the current selection.

Selection can be performed either by selecting one node based on its position in the 

current selection, or by removing nodes from the current selection if they do not meet 

a Boolean condition. For example, /bib/book/[@title=‘Data on the Web’] selects only 

those book elements having an attribute title whose string value is ‘Data on the Web’. 

/bib/book/[2] selects the second book element. XPath provides the usual kinds of 

arithmetic and string operations, as well as functions for getting the current node’s 

position or finding a node by XML ID.

3.6 Xquery: An XML Query Language

XML is a versatile markup language, capable o f labeling the information content o f 

diverse data sources. As increasing amounts o f information are stored, exchanged, 

and presented using XML, the ability to intelligently query XML data sources
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becomes increasingly important XQuery is the working draft o f W3C. It is designed 

to be a small, easy to implement language in which queries are concise and easily 

understood.

XQuery is derived from an XML query language called Quilt [CHAM99], which in 

turn borrowed features from several other languages. From XPath [XPath99] and 

XQL [ROBI98] it took a path expression syntax suitable for hierarchical documents. 

From XML-QL [DEUT98] it took the notion of binding variables and then using the 

bound variables to create new structures. From SQL it took the idea of a series of 

clauses based on keywords that provide a pattern for restructuring data (the SELECT- 

FROM-WHERE pattern in SQL). From OQL it took the notion o f a functional 

language composed o f several different kinds o f expressions that can be nested with 

foil generality. Quilt was also influenced by other XML query languages such as 

Lorel [SERG97] and YATL [CLUE99].

XQuery is a functional language in which a  query is represented as an expression. 

XQuery supports several kinds o f expressions, and the structure and appearance o f a 

query may differ significantly depending on which kinds o f expressions are used. The 

various forms o f XQuery expressions can be nested and combined using arithmetic, 

logical and list operators, navigation primitives, function calls, operators like “sort”, 

conditional expressions, element constructors etc.
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The XQuery data models XML documents as labeled trees with references. For 

navigating in a  document, XQuery uses path expressions, whose syntax is borrowed 

from the abbreviated syntax o f XPath. XPath is a notation for navigating along 

“paths” in an XML node tree. The evaluation o f a path expression with respect to an 

XML document returns a list o f information items, whose order is dictated by the 

order o f elements within the document. XQuery provides a range predicate whose 

meaning is also based on order E[range n to p] evaluates the expression E, yielding a 

list, and selects from this list the sub-list o f the n-th to p-th items. The precise 

semantics o f path expressions is still under discussion; in this thesis, we consider a 

snapshot o f the semantics for simple path expressions.

A powerful feature o f XQuery is the presence o f FLWR expressions (for-let-where- 

retum). The for-let clause makes variables iterate over the result of an expression or 

binds variables to arbitrary expressions; the where clause allows specifying 

restrictions on the variables; and the return clause can construct new XML elements 

as output o f the query. The overall flow o f data in a FLWR expression is illustrated in 

Figure 3.3.

| f o r / l e t  C la u se s

O rd e re d  lis t o f  tu p le s  
^  o f  b o u n d  v aria b le*

W H E R E  C tau se~ |

I P ru n e d  lis t o f  tu p le *
^  o f  b o u n d  v a ria b le s

| RETU RN  C la u se

[ In s ta n c e  o f  XML 
I  Q u e ry  d a ta  m odel

Figure 3 3  Flow o f data in a FLWR expression
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The following two examples show the usage o f XQuery. Examplel: list books 

published by Addison-Wesley from the bibliography document, including their year 

and title. Listing 3.3 shows one possible solution in XQuery.

<bib>
{ FOR $b IN document ("bib. xml") /bib/book 

WHERE $b/publisher = "Addison-Wesley* 
RETURN

ebook year={ $b/8year }>
C $b/title }
</book>

>
</bib>

Listing 33  XQuery for Examplel

Expected result o f the query is given in Listing 3.4.

<bib>
ebook year=*1994*>

<title>TCP/IP Illustratede/title> 
e/book>
ebook year=“1992“>

etitle>Programming in the Unix environmente/title> 
e/book>

e/bib>
Listing 3 4  Result o f the XQuery for Examplel

Example2: For each author in the bibliography, list the author's name and the titles of 

all books by that author, grouped inside a "result” element. Listing 3.5 shows one 

possible solution in XQuery. This example shows the nested XQuery expressions.
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<results>
{ FOR $a IN distinct (document ("bib.xml') //author)

RETURN
<result>
{ $a >
{ FOR $b IN document ("bib. xml") /bib/book [author = $a] 

RETURN $b/title
></result>

}</results>
Listing 3.5 XQuery for Example!

This example shows the nested XQuery expressions. Expected result o f the query is 

given in Listing 3.6.

<results>
<result>

<author>
<last>Stevens</last>
<first>W.</first>

</autbor>
<title>TCP/IP Illustrated</title>
<title>Programming in the Unix environment</title> 

</result>
</results>

Listing 3.6 Result of die XQuery for Example2

la  summary, XQuery is designed to support queries against a broad spectrum o f 

information sources. The versatility o f XQuery will help XML to realize its potential 

as a  universal medium for data interchange. In this thesis, XQuery is used to query
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XML documents and define views on top o f XML data. However, Data definition 

facilities for persistent views are not included in XQuery specification, so views must 

be built programmatically in this thesis.

3.7 Extensible Stylesheet Language Transformation

An alternative way to query XML documents is using Extensible Stylesheet 

Language (XSL). XSL is the current W3C Recommendation for expressing 

stylesheets. Although primarily targeted towards presentation, XSL has facilities that 

could serve as a basis for an XML query language. It is an XML-based language 

designed to transform an XML document into another XML document with a 

different DTD or into documents o f other formats such as HTML or PDF. XSL 

Transformations (XSLT) is the part o f XSL for transforming XML documents into 

other XML documents.

A transformation expressed in XSLT describes rules for transforming a source tree 

into a result tree. The transformation is achieved by associating patterns with 

templates. A pattern is matched against elements in the source tree. A template is 

instantiated to create part o f the result tree. The result tree is separate from the source 

tree. The structure o f the result tree can be completely different from the structure o f 

the source tree. In constructing the result tree, elements from the source tree can be 

filtered and reordered, and arbitrary structure can be added. XSLT makes use o f the 

expression language defined by XPath for selecting elements for processing, for
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conditional processing and for generating text [XSLT]. Figure 3.4 illustrates how a 

XSLT processor works

Style sheet XSL

XM.

stylesheet' 
Node Tree 
(Template)

XSLT
Ehgte

Result
Node
Tree

Souce
Node
Tree.

Result
Source

XML
XML

Key:
Some*
Nod*

Figure 3.4 XSLT processor working (modified from [ANDE99] page375)

XSLT operates on the document model not the syntax. Both the source and 

destination formats are applications o f XML, and the underlying structure o f both is a 

tree. In addition, the XSLT script is an XML document, thus it too can be represented 

as a tree. So the XSLT processor holds three trees. The processor goes through the 

source tree, starting with the root, and looks for a matching template in the style sheet 

tree. When it finds one, it uses the rules in the template to write an abstract 

representation of the result into the result tree. Then it moves through the source 

document, node by bode, lead by the XSLT instruction <xsfcapply-template>, looking 

for a match in the style sheet. At last, the result tree is translated into an XML 

document
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Overall, XSLT is a  very flexible language, capable o f performing rather complicated 

queries. However, XSLT requires well-formed XML documents, and it cannot 

operate on XML fragments. XSLT is very hard to optimize; in fact, every 

implementation requires the entire document to be loaded into memory before the 

XSLT can be executed.
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4 Investigation of CORBA

4.1 Overview of CORBA

The Common Object Request Broker Architecture (CORBA) is the product o f the 

Object Management Group OMG. The purpose o f OMG is to create standards 

allowing for the interoperability and portability o f distributed object-oriented 

applications. The CORBA specification includes an Object Request Broker (ORB), 

which is the protocol that enables the seamless interaction between distributed 

components; Object services, which facilitate standard client/server interaction with 

capabilities such as naming, event-based synchronization, and concurrency control; 

and the Interface Definition Language (IDL), which defines the object interfaces 

within the CORBA environment. By providing an object-oriented architecture with 

object interface inheritance, ORB interoperability and platform independence, 

CORBA meets one o f the most essential requirements o f modem computing, which is 

to maximize the portability, reusability and interoperability o f software.

Distributed CORBA components, modeled as business objects, are an excellent fit for 

distributed architectures. They provide scalable and flexible solutions for client/server 

environments and for the Internet and intranets. Business objects, packaged as 

CORBA components, can be naturally decomposed and split across multiple tiers to 

meet an application's need.
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4.2 ORB Core

CORBA ORB connects a client application with, the objects it wants to use. The ORB 

delivers requests to objects and returns responses to the clients making the requests. 

The key feature o f the ORB is the transparency o f how it facilitates communication 

between distributed components/objects. The ORB takes care o f the details of 

locating the object, routing the request, and returning the result. Ordinarily, object 

location, implementation, execution state, and communication mechanisms are 

hidden from the client This feature allows application developers to worry more 

about their own application domain issues and less about low-level distributed system 

programming issues.

To make a request the client specifies the target object by using an object reference. 

When a CORBA object is created, an object reference for it is also created. 

References are valid in the whole system and can thus be passed from one node to 

another. Clients can obtain object references in several different ways: object creation

- a client can create a new object in order to get an object reference; directory service

- a client can invoke a lookup service to obtain object references; convert to string 

and back - an application can ask the ORB to turn an object reference into a string, 

and this string can be stored into a file or a database, and later, this string can be 

retrieved and turned back in to an object reference by the ORB. Objects are not tied to
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a client or server role; they can act in turn as client and as server (peer-to-peer 

communication).

4.3 CORBA Invocations

Client

o  ©

Figure 4.1 The CORBA Architecture ([BARA] page 3)

The CORBA architecture is depicted in figure 4.1. The client IDL stubs provide the 

static interfaces to object services. They define how clients invoke corresponding 

services on remote servers. The Dynamic Invocation Interface (DU) lets the clients 

choose at run-time the operation invoked through a set o f standard APIs. In contrast 

to the static stubs, the DU is independent o f the target object's interface. The server 

IDL stubs, also called skeletons, provide static interfaces to each service exported by 

servers. The Dynamic Skeleton Interface (DSI) provides a run-time binding 

mechanism for servers that do not have static IDL skeletons to handle any request 

dynamically. The Object Adapter accepts requests for service and provides a  run-time 

environment for instantiating server objects, passing requests to them, and assigning
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them object references. The object implementation may call the object adaptor and 

the ORB while processing a  request. The Implementation Repository provides run­

time information about the classes the server supports, the objects that are 

instantiated, and their identifiers.

Figure 4.2 illustrates how a request is performed through the ORB, using either the 

DU or the client IDL stubs. Requests are handled at the server site by the Object 

Adapter, and given to the server’s IDL skeleton.

ObjBct
implementationClient

^ P  ^ p

Figure 4.2 Performing a Request with CORBA ([BARA] page 3)

4.4 OMG Interface Definition Language

An object's interface specifies the operations and types which the object supports and 

thus defines the requests that can be made on the object. Interfaces o f CORBA 

objects are defined in the OMG Interlace Definition Language (IDL). An important 

feature o f OMG IDL is its language independence. Owing to the fact that OMG IDL
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is a specification language, not a programming language, it forces interfaces to be 

defined separately from object implementations. This allows objects to be constructed 

using different programming languages and still communicate with one another. 

Language-independent interfaces are important within heterogeneous systems, since 

not all programming languages are supported or available on all platforms. OMG IDL 

interfaces can inherit from one or more other interfaces. This makes it possible to 

reuse existing interfaces when defining new services. Interface inheritance is very 

important in CORBA. It allows the system to be open for extension while keeping it 

closed for modification, which is called the Open-Closed Principle. This allows 

object references for derived interfaces to be substituted anywhere object references 

for base interfaces are allowed.

OMG IDL provides a set o f types that are similar to those found in a number of 

programming languages. It provides basic types such as long, double, and boolean, 

constructed types such as struct and union, and template types such as sequence and 

string. Types are used to specify the parameter types and return types for operation. 

To define exceptional conditions that may arise during the course o f an operation, 

OMG IDL provides exception definitions. The OMG IDL type system is sufficient 

for most distributed applications, yet at the same time it is minimal. Keeping OMG 

IDL as simple as possible means that it can be used with many more programming 

languages then it could if it contained types that could not be realized in some popular 

programming languages. Given the inevitable heterogeneity of distributed object
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systems, the simplicity o f OMG IDL is critical to the success o f CORBA as a 

protocol and integration technology.

In addition to generating programming-language types, OMG IDL language 

compilers and translators also generate client-side stubs and server-side skeletons. A 

stub is a mechanism that effectively creates and issues requests on behalf of a client, 

while a skeleton is a  mechanism that delivers requests to the CORBA object 

implementation. Stubs are sometimes called proxies because the stub essentially is a 

stand-in within the local process for the actual target object The stub works directly 

with the client ORB to marshal the request. Once the request arrives at the target 

object the server ORB and the skeleton cooperate to unmarshal the request and 

dispatch it to the object Once the object completes the request any response is sent 

back the way it came. Figure 2 shows the positions o f the stub and skeleton in relation 

to the client application, the ORB, and the object implementation.

4.5 Benefits of CORBA

CORBA provides interoperability across programming languages. Interfaces to 

CORBA objects are written in the programming-language-independent notation IDL. 

These IDL interfaces are then mapped to language-specific interfaces, according to 

rules standardized by the OMG, known as language mappings. Standardized 

mappings exist for Java, C, C++, COBOL, Ada, and Smalltalk. De-facto standard 

mappings exist for other popular languages such as TCL, Perl, Delphi, and Python.
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As a result, CORBA objects — servers and their clients can be written in any 

language. It is not abnormal for a CORB A-based distributed application to consist of 

pieces that are written in completely different languages.

CORBA provides Interoperability across platforms. The protocol that CORBA uses 

to allow distributed objects to communicate with each other, is specified by the 

OMG, and is known as HOP. CORBA implementations from multiple vendors can 

interoperate with each other. Different CORBA products can be used on different 

platforms. Most popular ORB products have themselves been ported to multiple 

hardware platforms and operating systems. For example, VisiBroker products are 

available on a number o f platforms -  Windows, Solaris, Linux, HP-UX, SGI, IBM’s 

ADC, Digital Unix, IBM OS/390, and others.

CORBA provides independence from CORBA vendors. Standardized APIs (IDL, 

language mappings, etc.) and the standardized woe protocol(IIOP) together provide 

developers and their customers with independence from the CORBA products and 

vendors. The availability o f interoperable CORBA ORBs from a number o f different 

vendors means that developers do not depend on any single vendor so long as they do 

not use vendor-specific add-on features.

CORBA provides source portability. When the CORBA standards were initially 

released, source portability (the ability to recompile and run existing CORBA 

applications with a different CORBA product, without making changes) was
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promised, but not delivered. Source portability for pure-clients was acceptable. With 

some care, one could write CORBA clients that would port across CORBA products. 

However, source portability for servers was not acceptable. A key server-side API, 

known as the BOA, was heavily under-specified and ambiguous in many places. This 

led CORBA vendors to make incompatible assumptions and extensions, sacrificing 

server-side source portability. A new server-side specification, known as the Portable 

Object Adapter (POA), corrects this problem. In addition to being complete and 

unambiguous, it contains many more features than the old BOA specification. The 

POA reinforces the fact that CORBA is the ideal substrate for most distributed 

applications.

With these benefits, CORBA is adopted in our approach to facilitate the 

communications between distributed applications.
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5 Constructing the XML Document for Storing the Shared 

Data

S.lDesign XML Structure from Scratch

5.1.1 XML Content Modeb

Using the terminology usual in databases, it is possible to view XML as the language 

for data modeling. A well-formed XML document (or a set o f such documents) is 

then a database and the associated Document Type Definition (DTD) is its schema. 

The data modeling o f the XML document for storing the shared data has a direct and 

significant impact on performance, document size, and code size. As we have 

mentioned in Chapter 3, when using a DTD to define the structure of an XML 

vocabulary, there are five possible content modeb for elements: element-only 

content, mixed content, text-only content, the EMPTY model, and the ANY model.

Element-only content is used when elements only contain other elements. For 

example, the following content model is element-only:

<!ELEMENT Invoice (Customer, LineItem+)>

Here, the element Invoice can contain a Customer element, followed by one or more 

Lineltem elements. This structure provides the cleanest way to contain one structure 

inside another. This is a good structure for the nesting of elements.
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la  the text-only content model, elements may only contain text strings. An example o f 

the text-only content model might be:

<!ELEMENT Customer (#PCDATA)>

Using text-only elements is one way to include single data values in XML document. 

However, we could also use attributes, which can have advantages over this method.

In the mixed content model, elements may contain zero or more instances of a list of 

elements, in any order, along with any amount o f text in any position. An example o f 

the mixed content model might be:

<!ELEMENT Invoice (#PCDATA | Lineltem j Customer)*>

This model is not suitable for modeling data because the allowable subelements might 

appear at any point within the element, and any number of times. This makes it very 

difficult to map to data elements, and makes writing code to handle the document a 

nightmare. The use of the mixed content model for data should be avoided.

In the EMPTY content model, an element cannot contain anything at all; it must be 

expressed either as the empty element tag, or as a  start tag followed immediately by 

an end tag. The following is an example o f the empty content model:

<!ELEMENT Customer EMPTY>

This content model will come in useful when the only additional information 

associated with an element is at the data value level. For example, if we have a 

Customer element that only has a Name associated with it, we could use the empty
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content model for the Customer element and represent the Name value as attribute 

(refer to example on page 44).

In the ANY content model, any element or text may appear inside the element when 

defined this way, in any order. So, for this example:

<!ELEMENT Customer ANY>

An example document might be:

<Customer>Kevin WQlians</Customer>

or:

<Customer>

<Customer>

<Customer>Kevin Willians</Customer>

</Customer>

<Customer>

Like the mixed content model, this content model is too permissive for data. Without 

some idea o f what structure might appear, and in what order, operating upon the data 

will be extremely difficult. For this reason, the use o f the ANY content model for data 

should also be avoided.

5.1.2 Modeling data values

The first way data values are represented in XML documents is by using elements. 

For text-only elements, a  <Customer> element might be defined like this:
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< I ELEMENT Customer (firstName, lastName, address, city,
province, country, postalCode) >

< i ELEMENT firstName (#PCDATA)>
< I ELEMENT lastName (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<1ELEMENT city (#PCDATA)>
<!ELEMENT province (#PCDATA)>
<IELEMENT postalCode C#PCDATA)>

Listing 5.1 Definition o f Customer using elements

When representing data in an XML document, any element that is defined as having 

text-only content using the #PCDATA keyword will correspond to a column in a 

relational database.

Another way o f representing data values in XML documents is with attributes. In this 

approach, elements that represent tables have attributes associated with them that 

represent columns:

<IELEMENT Customer EMPTY>
<IATTLIST Customer

firstName CDATA #REQUIRED 
lastName CDATA #BEQUXRED 
address CDATA fREQUIRED 
city CDATA tREQUIRED 
province CDATA #REQUIRED 
postalCode CDATA #REQUIRED>

Listing 5.2 Definition o f Customer using attributes
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5.13 Modeling relationships among elements

To associate groups o f data with other groups o f data, we need to add relationships 

between theses groups. In a relational database, this can be modeled using foreign key 

constraints. For example, we have the following two tables:

Invoice Lineltem
invoicalD ineitemID

invoicelDcustomerlD
orderOate
shipDate

productDescription
quantity
unitPrice

Figure 5.1 Relationship between Invoice and Lineltem

The foreign key on the Lineltem table is the primary key on the Invoice table. One 

invoice can have one or more Iineltems. In XML, one-to-one and one-to many 

relationships are best represented by containment. One possible design would be:

<tELEMENT Invoice (Lineltem+) >
<tATTLIST Invoice

orderDate CDATA #REQUIRED 
shipDate CDATA #REQUIRED>

<IELEMENT Lineltem EMPTY>
<LATTLIST Lineltem

productDescription CDATA tREQUIRED 
quantity CDATA tREQUIRED 
unitPrice CDATA #REQUIRED>

Listing 53  Modeling relationships by containment
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An example o f a document with this structure looks like this:

<Invoice
orderDate='7/23/2000' 
shxpData='2/28/2000'>
<LineItem

productDescription=*Widgets' 
queintity='17' 
unitPrices'0.10,r/>

<LineItem
productDescription='Grommets' 
quantity^'22' 
unitPrice="0.05'/>

<Invoice/>

Listing 5.4 Example o f containment

Here, it is clear that the Lineltem information is part o f the Invoice. Containment is 

best suited for modeling one-to-one and one-to-many relationships. However, it is 

possible to have more complex relationships in applications than can be represented 

with containment alone. If we extend the previous example by adding a Product table, 

and the following are the tables:

Invoice Lineltem

Product

quantity
unitPrice
productID

customerlD
orderOate
shipOate

productOescnption

Figure 5.2 Relationships among Invoice, Lineltem and Product
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In this case, there is a many-to-many relationship between Invoice and Product. Many 

products may appear on one invoice, and one product may appear on many invoices. 

In a relational database, this is expressed through the relating table Lineltem. An 

invoice may have many line items, and a product may appear on many line items. In 

XML, ID/IDREF pairs can be used to model many-to-many relationship. The above 

example can be modeled in XML as following:

< I ELEMENT OrderData (Invoice+, Product+) >
< I ELEMENT Invoice (Lineltem+) >
<IATTLIST Invoice

orderDate CDATA #REQUIRED 
shipDate CDATA #REQUIRED>

<IELEMENT Lineltem EMPTY>
<!ATTLIST Lineltem

productlDREF IDREP #REQUIRED 
quantity CDATA #REQUIRED 
unitPrice CDATA #REQDIRED>

< I ELEMENT Product EMPTY>
<!ATTLIST Product

productID ID tREQUIRED 
productName CDATA iREQUIRED 
productDescription CDATA #REQUIRED>

Listing 5.5 Modeling relationships using ID/IDREF pairs

hi this way, repetition o f information can be avoided. I f  we nested Product inside, 

Lineltem, the product information would have to be repeated for every invoice where 

it appears. The following XML document is an example instance of the structure 

defined in Listing 5.5:
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<OrderData>
<Invoice orderDate=*7/23/2000* shipDate=*7/30/2000*> 

<LineItem
productlDREF=*prodl*
quantity=* 17 *
unitPrice=*0.10’ />

<LineItem
productXDREF=*prod2 * 
quantity=* 22 * 
unitPrice=*0.06* />

</Invoice>
<Invoice orderDate=* 7/25/2000’ shipDate=*8/2/2000"> 

<LineItem
productIDREF= *prod2 * 
quantity="30’ 
unitPrice=*0.05* />

<LineItem
productIDREF=“prod3 ’ 
quantity="19 * 
unitPrice=’0.15* />

</Invoice>
<Product

productID= *prodl * 
productShortName=’Widgets *
productDescription= ”Rubberized Brown Widgets* /> 

<Product
productID=“prod2* 
productShortName= ’Grommets *
productDescription=* Vulcanized Orange Grommets* /> 

<Product
productID=*prod3* 
productShortName= * Sprockets *
productDescr ip tlon=’Anodized Silver Sprockets* /> 

</OrderData>

Listing 5.6 Example o f ID/IDREF pairs
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5.2 Migrating a Database to XML

Relational databases are a mature technology, which has enabled users to model 

complex relationships between data that they need to store. As we have discussed, 

there are a number o f reasons why data stored in databases need to be exposed as 

XML: sharing business data with other systems; interoperability with incompatible 

systems; exposing legacy data to applications that use XML; and business-to business 

transactions. The following steps show how to migrate a database to XML.

Step 1. Choose the data to include. Based on the business requirements the XML 

document will be fulfilling, decide which tables and columns from the relational 

database will need to be included in the XML document

Step 2. Create a root element Create a  root element for the document Add the root 

element to the DTD, and declare any attributes o f that element that are required to 

hold additional semantic information. For example, we might want to add a source 

attribute, so that the users know where the information comes from. Root element 

names should describe their content

Step 3. Model the content tables. Create an element in the DTD for each table that has 

been chosen to model. Declare these elements as EMPTY temporarily.
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Step 4. Model the non-foreign key columns. Create an attribute for each column that 

has been chosen to be included in the XML document except foreign key columns. 

These attributes should appear in the 1ATTLIST declaration o f the element 

corresponding to the table in which they appear. Declare each o f these attributes as 

CDATA, and declare it as #IMPLIED or #REQUIRED depending on whether the 

original column allowed nulls or not.

Step 5. Add ID attributes to the elements. Add an ID attribute to each o f the elements 

in the XML structure with the exception of the root element Use the element name 

followed by ID for the name o f the new attribute to avoid name collisions. Declare 

the attribute type ID, and ^REQUIRED.

Step 6. Add element content to root elements. Add a child element or elements to the 

allowable content o f the root element for each table that models the type of 

information that needs to be represented in the XML document

Step 7. Add relationships through containment. For each one-to-one or one-to-many 

relationship, add the child element as element content o f the parent element with the 

appropriate cardinality.

Step 8. Add relationships using IDREF/IDREFS. For each many-to-many 

relationship, add an EDREF or IDREFS attribute to the element on the parent side of
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the relationship, which points to the ID o f the element on the child side of the 

relationship.

Step 9. Add missing elements. For any element that is only pointed to in the structure 

created so far, add that element as allowable element content of the root element Set 

the cardinality suffix o f the element being added to *.

Step 10. Remove unwanted ID Attributes. Remove ID attributes that are not 

referenced by EDREF or IDREFS attributes elsewhere in the XML structures.

5.3 Transforming from Flat FUes to XML

Flat files store data in a way that is generally specific to the application using them 

and are commonly encountered when working with legacy systems. Flat files can 

vary widely. There are many ways to create a flat file. There are a couple of common 

issues that need to be considered when moving data from flat files to XML 

documents.

The most obvious difference between XML documents and flat files is the level o f 

normalization. Flat files are usually completely un-normalized. Since a well-designed 

XML structure will be fairly normalized, the code for the transformation will have to 

normalize data when moving from flat files to XML documents.
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Another issue commonly encountered with, flat files is the format o f data. Many 

legacy systems, due to size constraints or other concerns, use specific formatting 

schemes that may not be easily understood by users o f the data. A library o f routines 

should be built up to decipher the values.

When transforming flat files to XML, there are a couple o f approaches. First, perform 

file parsing to extract the data from the flat file -  reading the file a line at a time and 

breaking it apart into its individual components. Then, use manual serialization, SAX, 

or the DOM to produce the XML output.

Using manual serialization, the XML document, including all o f the tags and other 

text that goes with an XML document, is created on the fly by appending to a string. 

This approach has relatively small memory consumption, but tends to be error-prone. 

For example, a  start tag could be produced accidentally without a corresponding end 

tag. The other problem with this approach is it forces the information to be written to 

the target in the order prescribed by the target. Objects cannot be appended to the tree 

at will. This requires some more sophisticated parsing approaches to obtain the 

desired output, especially if the target document has many-to-many relationships. 

Traditional I/O functions can be used to generate the output string or file.

Using SAX, a  SAX handler is initialized and a  stream o f events are sent to it, causing 

it to generate an XML document. But, the start and end element events still need to be 

manually generated to send to die SAX event handler. This approach is not much
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better than manual serialization. SAX also requires that the document be serialized in 

the order mandated by its DTD. While this approach does not afford much better 

control o f XML document serialization than creating the document manually, it is 

often a good choice when creating very large XML documents.

In the DOM approach, a document tree is created using an implementation o f the 

XML DOM. This approach tends to consume more memory than a simple 

serialization approach, but is much less error prone. There is no risk o f accidentally 

omitting a start or end tag. The random-access nature of the DOM also allows 

elements to be added to the result document tree as they are processed, rather than 

being required to be cached and written in the order required by the target document. 

Another advantage of using the DOM is the ease o f coding. Therefore, this approach 

is most suitable for most applications without particular performance and memory 

requirements.
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6 Different Approaches for Generating XML Views

6.1Architecture of Distributed Systems for Data-independence

Applications
Logic

App(ication2
Logic

Application!
Logic

CORBACORBACORBA

Network

CORBA
View3View2

(A2)

Viewl

[C2 C3B1

E2 G2]

XML Data 
XML DTD

Figure 6.1 Architecture o f distributed systems for data-independence
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Figure 6.1 shows the architecture o f our solution to the problem o f data-independence 

o f distributed applications that access shared data. There are several distributed 

applications in the system, Applications 1, 2 and 3, and they may be written in 

different languages and reside on different platforms. These applications need to 

access the shared XML data, which is distributed at another location on the network.

For the distributed applications to communicate with each other and each application 

to access the shared data easily, CORBA is used to wrap the applications and the 

data. As we have discussed in Chapter 4, CORBA allows distributed applications to 

interoperate, regardless o f what language they are written in, or where these 

applications reside. The cost o f developing applications is reduced, because the 

complexity of the communication between different applications is taken care o f by 

CORBA.

To improve the data-independence o f the shared XML data, different XML views are 

built on top o f the XML data for different applications. Only the data or structures 

that are needed by an application are selected to compose the view corresponding to 

that specific application. When the structure o f the shared data changes, the views, 

from the applications perspective, remain the same. Thus, the applications accessing 

the shared data through the views are shielded from the changes on the structure of 

the shared data.
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We propose two approaches to generate and support the XML views: the XQery/XSL 

approach and the XPath Mapping approach.

6.2The XQuery/XSL Approach

In this approach, a XML view for the shared data is defined using a single XQuery or 

XSL. The view could be supported by building an object as an interface of the shared 

data. When a client needs to access the shared data, the client sends a request to the 

interface object; this interface object calls the XQuery/XSLT engine to generate the 

XML view against the shared data using the XQuery or XSL predefined for the client, 

and sends the view back to the client The view is simply another XML file possibly 

much smaller than the original shared data file. Then the client can further process the 

XML view document using the DOM or SAX for presentation or other purposes. This 

process is depicted in Figure 62.

:fori

X Q uery/X SL

Figure 6.2 Support XML view using single XQuery/XSL 
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When the structure o f the shared data changes, only the XQuery or the XSL file used 

to define the XML view needs to be modified to m ain tain  the view. The view 

generation is carried out on the server side, so the XQueries and the XSL files to 

support the views are stored on the server side. Nothing on the client applications 

needs to be changed. The cost o f the modification can be minimized. For example, if 

the structures o f the shared data and the view for an application look like this:

r g r \

Structure of XML document for shared data Structure of XML view

Figure 6 3  An example o f XML data and view

The XQuery that defines this view would be:

<books>

{
FOR $b IN document (book.xml) /books/book
RETURN
<book>

t$b/title>
C$b/price>

</book>
>
</books>

Listing &1 Example XQuery to generate XML view
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Using XSL to define the view is also simple:

<xsl:stylesheet xmlns:xsl =
http://www.w3.org/1999/XSL/Transform versions"1.0“ >

<xs 1: output method =“xml"/>
<xsl:template match ="/“>
<books><xsl: apply-templates/x/books>

< /xs 1: template>
<xsl:template match ="book">

<book>
<titlexxsl:value-of select = "title"/x/title> 
<pricexxsl:value-of select = “price"/x/price> 

</book>
</xsl: template>

</xsl:stylesheet>

Listing 6.2 Example XSL to generate XML view

Suppose the price here is in CAD (Canadian dollar). Now if  another application using 

the shared data needs the price information in both USD (US dollar) and CAD, the 

structure o f the shared data may change to:

books]

book

ISBNtffle Authors price

USD CADAuthor*-'

Figure 6.4 Structure o f the XML document after change 
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To maintain the views defined for different applications, we only need to modify the 

XQueries and XSL files that define the views. For the example view shown in Figure 

6.3, the XQuery is modified as follows: (Text in bold is modified)

<books>
{

FOR $b IN document (book.xml) /books/book
RETURN
<book>

C$b/title}
<price>

C $b/price/CAD/text()>
</price>

</book>
>
</books>

Listing 63 Modifying the XQuery

As we can see from this example, since the structure o f the price element is changed 

in the XML document for the shared data, we only need to go straight to the part that 

generates the price element o f the XML view and do the modification accordingly. 

Locating the points in the XQuery that need to be modified is a fairly simple task, and 

the modification is also straightforward.

Similarly the XSL file can also be modified easily: Only one XPath expression (the 

bold text) is modified in this example.
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<xsl:stylesheet xmlns:xsl =
http://www.w3.org/1999/XSL/Transform versions"1.0* >

<xsl: output method =“xml"/>
<xsl:template match =“/">
<booksxxsl: apply-templates/x/books>

</xsl:template>
<xsl: template match ="book“>

<book>
<titlexxsl:value-of select = “title"/></title> 
<price><xsl: value-of select = "price/CAD" /></price> 

</book>
</xsl:template>

</xsl:stylesheet>

Listing 6.4 Modifying the XSL

This approach can generate views with totally different structure compared to the 

structure o f the source data. For example, the view depicted in Figure 6.5 lists each 

author in books, and the titles o f all books by that author.

authors.books

author*book.*

ISBN priceAuthors

Author

Structure of XML viewStructure of XML document for shared data

Figure 6.5 An example of a  view with major difference in structure
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The XQuery that defines this view would be:

<authors>
{
FOR $a IN distinct (document (book.xml)//author)
RETURN
<author>

6.3 The XPath Mapping Approach

In this approach, the views o f the shared data do not physically exist Instead, they are 

logical views defined by mappings between the XPath expressions for each node in 

the structures o f the views and corresponding XPath expressions against the source 

data. For example, the view3 shown in Figure 6.1 can be defined as the following

<name> {$a/text()} </name>
{
FOR $b IN document(book.xml)/books/book[author=$a] 
RETURN $b/title

>
</author>

>
</authors>

Listing 6.5 XQuery to generate XML view with different structure

mapping:
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View Path Source Path

/A3 /A

/A3/B3 /A/B

/A3/C3 /A/C

/A3/B3/D3 /A/B/D

/A3/C3/H3 /A/C/F/H

/A3/C3/I3 /A/C/F/I

When a client sends an XPath query against a view o f the shared data, the query is 

translated into another query using a mapping function according to the source-to- 

view path mapping defined as the view. The new query is then executed against the 

source data, and the result is returned to the client. Therefore, the views can be 

supported by a mapping function, which performs the query transformation. To 

simplify the mapping function, only absolute paths are used in the mapping. The 

following are two examples o f query transformation:

/A3/C3[H3=’valuel’]/I3[2] /A/C/F{H=*vaIuel’]/I[2]

//B3[D3=,value2’] /A/B[D=’vaIue2’]

When the structure o f the shared data changes, only the corresponding source paths in 

the mapping table need to be changed. For example, if  an element X is added between 

A and C, all source paths containing steps /A/C will be changed to paths containing
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/A/X/C. The modification is easy, and it can be done automatically by writing a 

simple function to replace strings on the source paths.

In the above example, only absolute and simple paths are used in the mapping table. 

I f  there is a  major change to the source data, we may need more complicated XPath 

expressions, including relative paths and selections, to define the views. To handle 

these complex XPath expressions, a  more sophisticated view-to-source query 

transformation function must be built.
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7 Guidelines for Systematically Generating XML Views for 

the Initial Data

We will walk through the design o f a prototype system to demonstrate our 

approaches. The prototype system is a  simple Book Catalog System. The structure o f 

the shared data can be depicted as following:

catalog

book

pricetitle isbncategory Authors

Author*

Figure 7.1 Structure o f the shared data for the Book Catalog System

Suppose one o f the distributed applications accessing the shared data answers queries 

about price information o f a book according to the title or the ISBN o f the book.
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7.1Guidelines for the XQuery/XSL Approach

Step 1. Construct the XML document for storing the shared data. Using the methods 

discussed in chapters, design the XML document from scratch or migrate the data 

from databases or flat files according to the system requirements. The DTD for the 

shared XML data o f the Book Catalog System can be constructed as following:

<?xml version="1.0" encoding= “UTF-8 '* ?>
< I ELEMENT catalog ( book ) + >
<£ELEMENT book ( isbn, authors, price ) >
< IATTLXST book title CDATA tREQUIRED

category (fiction.[nonfiction.) "fiction">
<IELEMENT authors ( author )+ >
<IELEMENT isbn ( #PCDATA ) >
<«ELEMENT author ( #PCDATA ) >
<£ ELEMENT price ( # PCDATA ) >

Listing 7.1 DTD for the shared data for Book Catalog System

A sample document for the shared data is shown in Listing 12.
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<?xml version=“ 1.0" encoding="UTF-8"?>
<catalog>

<book category="nonfiction" title="JAVA"> 
<isbn>0-13-028417-3</isbn>
<authors>

<author>Harvey Deitel</author> 
<author>Paul Deitel</author>
<author>Ted Lin</author>

</authors>
<price>85.00</price>

</book>
<book category="fiction" title="Love Story" > 

<isbn>0-13-02343l-5</isbn>
<authors>

<author>John Lee</author>
</authors>
<price>19.99</price>

</book>
</catalog>

Listing 7.2 A sample shared XML data for Book Catalog System

Step 2. Define the application interface using CORBAIDL. This interface includes a 

function that generates XML view documents. The IDL for the prototype system is 

defined in view.idl as follows: 

module XMLView{

interface View {

string generateView(in string viewName);

}; 

};

For different applications, the function generateView will generate different XML 

views according to the input viewName.
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Step 3. Construct the structure o f the XML view for each application according to the 

application logic. For an example application, which needs to answer queries about 

price information o f a book according to the title o f the book, the structure of the 

XML view can be constructed as the following tree:

catalog

item+

unit
Pricetitle isbn

Figure 7.2 Structure o f the view for Book Catalog System 

The DTD for this XML view is shown in Listing 7.3.

<?xml version* "1.0" encodings "tJTP-8" ?>
<1 ELEMENT catalog ( item )+ >
< I ELEMENT item ( title, unitPrice ) >
< I ELEMENT unitPrice ( #PCDATA > >
<£ ELEMENT title ( #PCDATA ) >
< I ELEMENT isbn ( #PCDATA ) >

Listing 7 3  DTD for the view for Book Catalog System
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Step 4. Build XQueries or XSL files to define the XML views against the shared data. 

Because Xquery is still the working draft o f W3C, there is no mature engine for 

XQuery. We use the XSL approach in our prototype system. The XSL file for 

generating the view is shown in Listing 7.4.

<xsl:stylesheet xmlns:xsl =
http://www.w3.org/1999/XSL/Transform version=“1.0w > 

<xsl:output method ="xml"/>
<xsl:template match =*/">
<cat alogxxs 1: apply- templates / >< / cat alog>

</xsl:template>
<xsl:template match =*book">

<item>
<titlexxsl:value-of select = "@title"/x/title> 
<isbnxxsl:value-of select = "isbn"/x/isbn> 
<unitPricexxsl:value-of select = “price"/></unitPrice> 

</item>
</xsl:template>

</xsl:stylesheet>

Listing 7.4 priceViewjul—XSL file for generating the view for Book Catalog System

Step S. Generate client stubs and server skeletons from CORBA IDL. VisiBroker and 

Java are used to implement our prototype system. The interface specification we 

created in IDL is used by VisiBroker’s id!2java compiler to generate Java classes for 

the client program, and skeleton code for the object implementation. The Java classes 

are used by die client program for all method invocations. The view.idl file can be 

compiled with the following command: idI2java viewidl.
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Step 6. Implement the view object on the server side. This object should inherit the 

generated skeleton classes and implement the function to generate XML views. The 

following java code is the important excerpts o f the view server implementation.

public class viewlmpl extends viewPOA{

public String generateView(String title) ( 
try {
Pile stylesheet = new Pile(title+*.xsl*);
Pile datafile = new Pile ("catalog.xml*) ;
BufferedlnputStream bis = new BufferedlnputStream (new 

PilelnputStream(datafile)) ;
InputSource input = new InputSource (bis);
SAXParserFactory spf = SAXParserFactory.newlnsCancel) ;
SAXParser parser = spf.newSAXParser();
XMLReader reader = parser.getXMLReaderl);
SAXTransformerFactory stf =

(SAXTransf ormerPactory) TransformerFactory. newlns tance () ;
XMLPilter filter - stf.newXMLPilter(new StreamSource(stylesheet)); 
filter.setParent(reader);
StreamResult result = new StreamResultO 
Transformer transformer = stf.newTransformer ()
SAXSource transformSource = new SAXSource(filter, input); 
transformer.transformltransformSource, result) ;

> catch (TransformerConfigurationException tee) {

>

Listing 7.5 viewlmpl.java—Java implementation o f the view generating class

Step 7. Implement the client applications. For our example, the priceViewClient class 

implements the client application, which obtains the XML view and processes die 

view document using the DOM. Listing 7.6 is composed o f die excerpts o f the client
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program. The program performs die following steps: initializes the ORB; binds to a 

View object; obtains the XML view by invoking generateView on the View object; 

query the returned view to get the price by title or by isbn.

public class priceViewClient{
price.view.priceView _priceView;
com. borland. cx. OrbConnect orbConnectl;
String _name = “View*;
String view;

public static void main (String[] args) { 
if (Iblnitialized) { 
try {
org.omg.CORBA.ORB orb = null; 
if (orbConnectl != null) { 
orb s orbConnectl.initOrbO ;

}
if (orb == null) {
orb = org.omg.CORBA.ORB.init((String[] )null, 

System.getPropertiesO );
>
_priceView = ViewHelper. bind (orb, */" + _name *_poa*,

_name.getBytes());
bInitialized = true;

}
catch (Exception ex) { 
ex.printStackXraceQ;

>
>

view = _priceView. generateView (“price') ;

/ / further process the string view to query the price by the title or the 
isbn provided by the client using the DOM

}

>
listin g  7.6 priceViewCKentjava -  Java implementation o f the client application
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Step 8. Implement the CORBA server to initialize the ORB, create the POA, activate 

the server objects and wait for the client request. Listing 7.7 is composed of the 

excerpts o f server program.

public class viewServer{

public static void main(String[] args) { 
try {

String name;
System.getPropertiesO . put (‘vbroker. agent, port *, *14000*) ; 
System.getPropertiesC).put ("org.omg.CORBA.ORBClass*,

"com.inprise.vbroker.orb.ORB*);
System.getProperties() .put (* org.omg.CORBA..ORBSingletonClass*, 

"com.inprise.vbroker.orb.ORB*) ;

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, 
System.getPropertiesO );

POA poaRoot =
POAHelper.narrow(orb.resolve_initial_references(* Root POA*)) ; 

name = “View*;
org.omg.CORBA.Policy[IViewPolicies = {
poaRoot. create_lif espan_policy (Lif espanPolicyValue. PERSISTENT)

>;
POA poaView = poaRoot.create_POA(name +■ *_poa*,

poaRoot. the_POAManager (), 
ViewPolicies);

poapriceView.activatei_object_witb_id(name.getBytes(). new 
Viewlmpl ());

poaRoot.the_POAManager().activateC); 
orb.run();

}
catch (Exception ex) {
System, err.println (ex);

}
>

1

Listing 7.7 viewServer.java—Java implementation o f the CORBA server
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7.2Guidelines for XPath Mapping Approach

Step 1. Construct the XML document for storing the shared data. (Same as the 

XQuery/XSL approach)

Step 2. Define application interface using CORBA IDL. The interface includes the 

functions performing the client queries, each o f which corresponds to an XPath query 

to the XML data. The IDL for the prototype system is defined in mappingView.idl: 

module view { 

interface priceView { 

string priceByTitle(in string title); 

string priceByISBN(in string isbn);

}; 

};

Step 3. Construct the structure o f the XML view for each application according to the 

CORBA IDL and the application logic. From the IDL defined in step2, we know that 

the application needs the title, isbn and price information o f the books in the catalog. 

Then we can construct the structure o f the XML view for this application. The tree 

representation o f the view is the same as shown in Figure 7.2.
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Step 4. Define XML view as the mapping between die XPath expressions against the 

source data and those against the view. The mapping for the Book Catalog System 

can be defined as following:

View Path Source Path

/catalog /catalog

/catalog/item /catalog/book

/catalog/item/title /catalog/book/@title

/catalog/item/isbn /catalog/book/isbn

/catalog/item/unitPrice /catalog/book/price

This mapping can be stored as an XML file shown in Listing 7.8.

<?xml versions“1.0* encodings■UTF-8*?>
<mapping>
<mapPair>
<view>/catalog</view> <source>/catalog</source>

</mapPair>
<mapPair>
<view>/catalog/item</view> <source>/catalog/book</source>

</mapPair>
<mapPair>
<view>/catalog/item/title</vie»r> <saurce>/catalog/book/#ticle</source>

</mapPair>
<mapPair>
<view>/cacalog/icem/isim</view> <source>/ catalog/book/ isbn</source>

</mapPair>
<mapPair>
<view>/catalog/ i tem/unitPrice</view> <source>/cacalog/booic/price</source>

</mapPair>
</mapping>

Listing 7.8 priceViewjcml -  XPath mapping stored as XML file

- 7 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Step S. Generate client stubs and server skeletons from CORBA IDL. (Same as the 

XQuery/XSL approach) The mappingViewidl file can be compiled with the 

following command: idl2java mappmgViewidL

Step 6. Implement the view object on the server side. This object should inherit the 

generated skeleton classes and implement the function to transfer XPath expressions 

according to the XPath mapping. The following java code is the priceView server 

implementation for Book Catalog System.

package viewServer. view, server

import java.sql.*; 
import java.util.*,- 
import j ava. math. *

import org.omg.PortableServer.’;

import java.io.*; 
import java.util.*;

import org.w3c.dom.*;
import javax.xml.parsers.*;
import org. apache. crimson. tree. XmlDocument;

import org .xml. sax.*;
import org .xml .sax.helpers .Defaultffandler;

import com, fatdog. text Engine .XmlBngine;
import com. fatdog. textEngine.query.ResultListener;
import com, fatdog. textEngine.exceptions. * ;
import com.borland. jbuilder.xml.database.template.*;
import com. borland. jbuilder .xml. database .xml dims. * ;

public class priceViewImpl extends price.view.priceViewPQA
implements Resul tLi stener{

Document document;
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Hashtable mapping?
final String viewName = “viewVVpriceView.xml* ;

String XML_FXLE = “catalog.xml*;
String query? 
xmiEngine engine? 
int maxHits?
String query Re suit = “No result*?

String _name = "priceView*?

private void tablelnit () { 
mapping = new Hashtable () ?

DocumentBuilderFactory factory = DocumentBui IderPactory. newlnstance () ? 
factory.setValidating(true)?
factory. setlgnoringBlementContentWhitespace (true) ? 
try {
DocumentBuilder builder - factory.newDocumentBuilder () ? 
document = builder, parse (new File (viewName)) ?

} catch (SAXException se){ 
se.printstackTraceO?

}catch (ParserConfigurationBxception pee) { 
pee.printstackTraceO ?

} catch (IOException ioe) {
ioe.printStackTraceO ?

>
Element root = document.getDocumentElement() ?
NodeList mapPairs = root.getElementsByTagNameC’view”);

for (int i=0? i<mapPairs.getLength!) ? i++) (
String view = mapPairs.item(i) -getFirstChildO .getNodeValueO ? 
String source =

mapPairs.item(i) .getNextSiblingO .getFirstChildO .getNodeValueO ? 
mapping.put(view, source)?

}
>

private void enginelnitt) { 
engine = new XmlEngine()?
engine.setListenerType( XmiEngine.STANDARD_LISTENER ) ? 
engine. setMaxHits( 200 )? 
engine.addResul tr,i stener( this )?
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engine.setDoFullText t true ); If Che default 
SAXParserFactory spf = SAXParserFactory. nevlnstance () 
try
{ // Che SAX parser of choice (muse be sec)

SAXParser parser = spf. newSAXParser () ;
XMLReader reader = parser.getXMLReader (); 
engine.setXMLReader t reader );
// index the document(s) of choice 
engine, set Document ( XML_FILE ) ;

}catch (ParserConfiguracionException pee){ 
pee.printStackTrace() ;

)
catch (SAXParseException spe){
System, out. princlnC’Xn** Parsing error*
* *, line * * spe.getLineNumberO 
+ *, uri * spe.getSystemldO);

System.out.printlnC ■ ♦ spe.getMessage() );
Exception x = spe; 
if (spe.getException() •= null) 
x = spe. getException () 

x.princStackTrace() ; ) catch (SAXException sxe) {
Exception x = sxe; 
if (sxe.getException () >= null) 
x = sxe.getException(); 

x. princStackTrace();
)
catch ( MissingOrlnvalidSaxParserException e ) {

System.out .println ( “Missing or invalid SAX parser" ) ; return;
)
catch( FileNotFoundException e ) {

System, out .println ( ’Couldn’t find the XML filet * * e. getMessage () );
return;

1
catch( CantParseDocumentException e ) {

System.out.println( ’Couldn’t parse the XML file: * + e.getMessage() );
return;

)
>
public void results ( String results ) { 

query Result = results;
}
public priceViewImpl() t 

tablelnicP; 
engineZnitO ;

}
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//Method queryToSource is the mapping function, which translates queries to the
view

//into queries to the source data 
private void queryToSource {) {

>

public String priceByTitle (String title) {
query = • /bib/book [titles*1"* + title +• *’1 /price* r 
queryToSource() 
try {

engine. setQuery ( query )
}
catch( InvalidQueryException e )
{

queryResult = e.getMessage!);
i

return queryResult;
>

public String priceByISBN (String last. String first) {

}
)

Listing 7.9 priceViewImpLjava — Java implementation o f the view supporting class

Step 7. Implement the client applications and the CORBA server. (Same as the 

XQuery/XSL approach)
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8 Guidelines for Systematically Modifying the System After 

Changes

8.1Guidelines for XQuery/XSL Approach

In this approach, a view for the shared data is implemented as a single XQuery or an 

XSL file. When the structure o f the shared data changes, we only need to modify the 

XQueries or the XSL files representing the views for the distributed applications. If 

the changes on the structure o f the shared data do not affect the XPath expressions 

used in the XQuery or XSL file for generating a view, that specific view does not 

need to be modified at all. Therefore, to modify the system after changes, first, 

compared the new structure o f the shared data with the original one, and identify the 

views that are affected by the changes on the structure o f die shared data. Then 

modify the Xqueries or XSL files accordingly to generate the same views from the 

changed data as we have discussed in chapter 6.

8.2GuideIines for XPath Mapping Approach

In this approach, a  view for the shared data is represented using a mapping between 

die XPath expressions against the view and those against the source data. Similar to 

die XQuery/XSL approach, first, we need to identify the views that are affected by
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the changes on the shared data. Then for the views that need to be modified, we can 

check the mapping tables representing the views and modify the XPath expressions 

against the source data that are affected by the changes on the shared data 

accordingly. We have given examples o f the modification in chapter 6.
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9 Analysis o f W ork Done and Results

9.1 Comparison of the Two Approaches Proposed

One important advantage o f the single XQuery/XSL approach is its simplicity. The 

idea is straightforward, so it is easy to understand and implement The problem with 

this approach is that the view must be generated in a batch mode — the whole XML 

document must be processed to construct the view each time when a request comes. It 

is very inefficient especially when the size o f the shared data is huge. Moreover, the 

view document is physically generated and being sent to the client through the 

network, so the cost for file transfer would be very expensive if the size of the view 

document is not trivial and the data is accessed frequently.

For some applications (e.g. University Course Information System) that don't require 

high up-to-date concurrency o f the shared data and the shared data is not updated very 

frequently, a  simple improvement can be made to this approach for efficiency. A 

copy of the view document can be stored on the client machine. Instead of waiting for 

the server to generate the view and send it over the network each time a client 

requests the shared data, the client uses the local copy o f the view document directly. 

Then the local copy o f the view document is updated on a schedule (hourly, daily or 

weekly) depending on the requirements o f the applications, or it can be updated each 

time the shared data is updated if  the updated frequency o f the shared data is low.
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However, this approach is not suitable for other applications (e.g. transaction 

applications) that require high accuracy o f the shared data and the shared data is 

updated frequently.

The XPath mapping approach is more efficient compared to the single XQuery/SXL 

approach because no batch transformation is involved. Only the data needed to 

answer the client query is retrieved and sent to the client instead o f the whole view. 

This approach is more suitable for the applications that require high performance.

From the perspective o f software engineering, the XPath mapping approach supports 

stronger data typing than the single XQuery/SXL approach. The CORBA IDL for the 

XQuery/SXL approach exposes very little type information about the data. A client 

only need to provide the name o f the view to get the physical view generated, and the 

data is sent to the client in plain text. Further processing of the view data is performed 

on die client side, while in the XPath approach, strong typing is enforced by more 

specific methods defined in IDL. More data processing is done on the server side, and 

only data points that are o f to the interest o f the client are extracted and sent back to 

the client

After changes to the DTD o f the shared XML data, the XQueries or XSL files 

representing the affected views need to be identified and modified accordingly in the 

XQuery/XSL approach, while in the XPath approach, the affected XPath expressions 

against the original data need to be changed. Since these XPath expressions are all
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gathered in the mapping files defining the views, it is quite easy to make the process 

of identifying the affected expressions and performing the modifications automatic. 

Therefore, making modification after changes is easier in the XPath approach than in 

the XQuery/XSL approach.

9.2 Analysis of Using XML and Views to Improve Data-independence

XML provides a neutral syntax for describing graph-structured data as nested, tagged 

elements. Because developers can transform diverse data structures into such graphs, 

XML along with XPath, XSLT and XQuery provides a means to construct XML 

documents to store shared data for distributed applications and build XML views for 

different applications. With the views on top of the shared data, changes to the DTD 

of the shared data can be made without requiring changes to applications that access 

the data through the views. Hence, the modification the system after changes of the 

structure of the shared data is minimized and data-independence is improved.

One obvious advantage to XML is that it provides a  way to represent structured data 

without any additional information. Because this structure is inherent in the XML 

document rather than needing to be driven by an additional document that describes 

how the structure appears as that in a database or a flat file, it becomes very easy to 

send structured information between systems. Since XML documents are simply text 

files, they may also be produced and consumed by legacy systems allowing these
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systems to expose their legacy data in a way that can easily be accessed by different 

consumers.

Another advantage to the use o f XML is the ability to leverage tools that use XML to 

drive more sophisticated behavior. A vibrant XML marketplace is providing 

inexpensive tools for preparing, validating and parsing XML data. XML’s strong base 

of freeware and commercial tools affords flexibility at greatly reduced development 

costs.

These advantages provide generic operations on XML data, which avoids narrowly 

tailoring software for a given set of data. This in turn reduces the coupling between 

the applications’ logic and the structure of the shared data and improves data- 

independence o f the system.

However, relational databases will perform better than XML documents. This means 

that for many internal uses, if  there are no network or usage barriers, relational 

databases will be a better storage for the data than XML.

93 Element Vs. Attribute in Data Modeling Using XML

This is the issue that has caused the most heated debate m the XML area. We have 

discussed data modeling using XML for the shared data in Chapter 5. Both elements
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and attributes can be used to represent data values when modeling the shared data. 

The following comparisons summarize our findings on this issue in the thesis work.

93.1 Compatibility with databases

In relational database, content (data values), and structure are totally different 

Structure is represented with tables and relationships, and data values are represented 

with columns. In XML, if we use text-only elements to represent data values, we lose 

this clear distinction. Sometimes elements represent structure, and other times they 

represent content. Any code that is parsing these structures must be aware which 

element represents data and which represents structure, and must handle it 

appropriately. However, if we use attributes for data values, structure and content are 

separate and distinct Structure is represented by the elements and the way they are 

nested, while content is represented in attributes.

In addition, attributes are unordered. They are identical from the perspective of an 

XML parser, and the parser does not attach any particular importance to the order in 

which attributes are encountered in the original document. This is similar to the way a 

relational database works, where the meaning o f a  data value is simply indicated by 

its name, and not a combination of its name and location. While element order has 

meaning for documents, it loses importance when representing data. Thus, the 

ordering o f elements just adds unnecessary complexity.
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9 J.2  Data typing

When using DTD to define the content o f XML structures, there is little scope for 

strong data typing. The one exception would be the ability to constrain attributes to a 

particular list o f allowable values. However, if the data value is expressed as an 

element, there is no similar way to limit these allowable values.

9.33 Document size

When an element is used to describe a data value, three things appear in the serialized 

XML document: the start tag, the data value, and the end tag. For example: 

<titIe>Java</title>

However, when an attribute is used to describe a  data value; the attribute name, the 

equals sign, the quotes, and the attribute value are required: 

title=”Java”

It is obvious that repeating the name of the data value in the end element tag increases 

the size o f the document, compared with the size o f the document when an attribute is 

used to represent the data value. As a result, more disk space will be consumed by the 

documents and more network bandwidth will be consumed when transmitting files 

using elements than when using attributes.

Therefore, attributes are better suited to the representation o f data values than text- 

only elements are. Attributes are best suited when only one value is to be expected
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whereas elements are necessity when multiple values are needed. An example is that 

an <authors> element can contain multiple <author> elements.

9.4 Integration of CORBA and XML

In this thesis work, we proposed approaches to build complex distributed software 

system based on the integration o f CORBA and XML. CORBA provides a scalable 

infrastructure to distributed systems, allowing systems on heterogeneous platforms to 

communicate through commonly defined services. CORBA makes the components in 

the systems portable. XML and its related technologies provide a neutral syntax for 

storing the shared data and standard operations for accessing the data. XML supports 

portable data for distributed systems. CORBA and XML are complimentary 

standards; the integration o f than is powerful for building flexible, scalable and low 

maintenance distributed systems.
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10 Conclusions

10.1 The Defense of the Thesis

The thesis statement o f this work is:

“XML views to support data-independence o f distributed computing applications can 

be generated systematically from application logic, CORBA EDL and the XML 

DTD.”

We have proved the thesis statement by providing a framework for building 

distributed computing applications that access shared data, presenting a methodology 

for modeling the shared data using XML, and developing systematic ways for 

generating XML views to support data-independence o f the system and modifying the 

system after changes to the structure o f the shared data according to the application 

logic, CORBA IDL and the XML DTD. A prototype system was implemented to 

demonstrate the effectiveness of our approaches.

The framework and approaches proposed in this thesis work provide distributed 

applications with transparent access to shared data from heterogeneous sources, and 

make it easy to design, implement and maintain the system.
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10.2 Problems and Future work

XML is a rather new standard, and some of the technologies related to it are not 

stable yet As we have mentioned in chapter 3, XPath is intended primarily as a 

component that can be used by other specifications, so there is no independent 

product for processing XPath expressions. XQuery is now the working draft of W3C, 

and it is still changing. A mature XQuery engine product has not come out yet 

Therefore, our prototype system only implemented some very basic functions using 

very simple XPath expressions. However, the importance of the independent 

existence o f XPath has been realized; thus, XPath processors are expected to emerge 

very soon.

The approaches presented in this thesis only deal with queries to the shared data 

because XPath, XSLT and XQuery are all query languages for XML documents, and 

none o f them handle updates to the data. Therefore, the research on the updates o f the 

shared data could be the future direction o f our work.
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APPENDIX: Program List

/ * *
* Copyright (c) 2001
* IDL Source File view.idl
* Abstract: CORBA server application..
* Aversion 1.0 
* /

package viewServer;
import viewServer.view.server.*; 
import javax.swing.UIManager; 
import java.awt.*; 
import org.omg.PortableServer.*;
public class viewServerApp {

boolean packFrame = false;

public viewServerApp() C
ServerFrame frame = new ServerFrame();
if (packFrame) 
frame.packO ; 

else
frame.validateO ;

Dimension screenSize = Toolkit.getDefaultToolkitO .getScreenSizeO ; 
Dimension frameSize = frame.getSizeO ; 
if (frameSize.height > screenSize.height) 
frameSize. height = screenSize. height; 

if (frameSize.width > screenSize.width) 
frameSize. width = screenSize .width; 

frame.setLocation((screenSize.width - frameSize.width) / 2, 
(screenSize.height - frameSize.height) / 2); 

frame.setVisible(true)
}

public static void main(String[] args) { 
try {

UIManager.setLookAndFeel (“ com. sun. java. swing, plaf .windows .WindowsLookAn 
dFeel*);
/ /UIManager. setLookAndFeel (UIManager. getSys temLookAndFeelClassName ()) ;
//UIManager.setLookAndFeel(*javax.swing.plaf .metal.MetalLookAndFeel*);
/ /UIManager. setLookAndFeel ( * com. sun . Java. swing .plaf .motif .Mo tif LookAndF 
eel*);
/ /UIManager. setLookAndFeel (* com. sun . j ava . swing .plaf. windows . WindowsLook 
AndFeel*);

}
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catch. (Exception ex) {
>new viewServerApp (); 
try (
3 ava.util.ResourceBundle res = j ava. util.ResourceBundle.getBundle (“viewServer .view, server. ServerRes our 

ces’);
String name;
//(debug

support) System. getPropertiesO.put("vbroker.agent.debug*, "true");
/ / (debug support) System.getProperties () .put {"vbroker. orb .warn*.

" 2 " )  ;

if (System.getPropertiesO .get("vbroker.agent.port*) == null) { 
System.getPropertiesO.put{*vbroker.agent.port*, *14000");

>if (System.getPropertiesO .get(*org.omg.CORBA.ORBClass") == null)
{ System.getProperties() .put("org.omg.CORBA.ORBClass“,
" com. inprise.vbroker.orb.ORB*);

}i f (System. getProperties () . get (* org. omg. CORBA. ORBSingletonClass •) 
== null) {

System. getProperties () .put (* org. omg. CORBA. ORBSingletonClass *, 
"com.inprise.vbroker.orb.ORB");

}

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args.
System.getPropertiesO );

POA poaRoot =
POAHelper.narrow(orb.resolve_initial_references(*RootPOA")) ; 

name = "priceView";
org.omg.CORBA.Policy □ priceViewPolicies = (
poaRoot.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)

>;POA poapriceView = poaRoot.create_POA(name + *_poa“,
poaRoot. the_POAManager (), 
priceViewPolicies); 

poapriceView.activate_ob3ect_with_id(name.getBytes (), new 
priceViewImpl());
ServerMonitor. log (ServerResources. format (res .getString (" created*), 
"viewServerApp. j ava priceView")) ;

poaRoot. the_POAManager () . activate () ;
ServerMonitor. log (ServerResources. format (res .getString (* isReady*), 
“viewServerApp. j ava view" )) ; 

orb.run() ;
>catch (Exception ex) C 
System.err.println(ex) ;

>

}
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>

/ * *
* Abstract: Server application, frame which, is the container for the 

Server Monitor.
* /

package viewServer. view. server ;
import java.awt.*; 
import java.awt.event.*;
public class ServerFrame extends javax.swing.JFrame {

BorderLayout borderLayoutl = new BorderLayout () ;
ServerMonitor ServerMonitor = new ServerMonitor () ;
public ServerFrame () {

enableEventS(AWTEvent-WINDOW_EVENT_MASK); 
try {
jblnit();

}catch (Exception e) { 
e.printStackTrace{);

>
}

private void jblnit() throws Exception {
this.getContentPane () .setLayout (borderLayoutl);
this.setSize(new Dimension(600, 300));
this.setTitle("view server*);
this.getContentPane() .add(ServerMonitor) ;

}

protected void processWindowEvent (WindowEvent e) { 
super .processWindowBvent (e) ;
if (e.getXDO == WindowEvent.WlNDOW_CLOSING) C 
System.exit(0);

>
>

}

f - k i t

* Abstract: Maintains the server log and is the container for all the 
Server Monitor pages.

* /

package viewServer. view. server;
import java.awt.*; 
inport java.text.*;
public class ServerMonitor extends javax. swing.JPanel { 

static com.borland.dbswing.JdbTextArea myLog = null; 
static ServerMonitor monitor;
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j ava.util.ResourceBundle res = 
j ava.util.ResourceBundle.getBundle(■viewServer.view, server.ServerResour 
ces") ;
BorderLayout borderLayoutl = new BorderLayout ();
BorderLayout borderLayout2 = new BorderLayout () ;
GridBagLayout gridBagLayoutl = new GridBagLayout () ;
javax. swing. JTabbedPane tabPanell = new javax.swing.JTabbedPane() ;
javax.swing.JPanel panell = new j avax. swing. JPanel () ;
BorderLayout moduleBorderLayoutView = new BorderLayout () ; 
javax. swing. JPanel panelView = new j avax. swing. JPanel () ; 
com.borland.dbswing. JdbTextArea textview = new 

com. borland. dbswing. JdbTextArea () ;
javax. swing. JScrollPane scrollView = new j avax. swing. JScro 11 Pane () ; 
j ava. util .Vector pagesToRefresh = new java.util .Vector () ;
public ServerMonitor() { 
monitor = this; 
try C
jblnit();

>catch (Exception ex) { 
ex.printStackTrace() ;

}

private void jblnit() throws ExceptionC 
this.setLayout(borderLayoutl); 
this.add(panell, BorderLayout.CENTER); 
panell. setLayout (borderLayout2) ; 
panell.add(tabPanell, BorderLayout.CENTER );
textview.setEnabled(true) ;
panelView. setLayout (moduleBorderLayoutView); 
scrollView.getViewport() .add(textview) ; 
panelView. add (scrollView, BorderLayout. CENTER); 
myLog = textview;
tabPanell. addTab (ServerResources. format (res. getString {* logTitie ■), 

"view*), panelView) ;
tabPanell. setSelectedComponent (p«uaelView) ;

>

private void addPage(ServerMonitorPage page. String name) { 
tabPanell.addTab(name, page); 
pagesToRefresh.addElement (page) ;
/ /panell. updated () ;
//tcibPanell.setEnabledAt(0, true);

p r iv a t e  s t a t i c  ServerFram e c re a te F ra m e ()  (
ServerFram e fram e = new ServerFram e () ; 
fram e .p a c k  ( )  ;
D im ension  s c re e n S ize  = T o o lk i t .g e t D e f a u l t T o o lk i t ( ) .g e tS c re e n S iz e O  
D im ension  fra m e S ize  = f ra m e .g e tS iz e O  ; 
i f  ( f ra m e s iz e . h e ig h t  > s c re e n S iz e .h e ig h t)  

f ra m e S iz e .h e ig h t  = s c re e n S iz e .h e ig h t;  
i f  ( f ra m e S iz e .w id th  > s c re e n S iz e  .w id th )
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frameSize .width = screenSize.width; 
frame.setLocationt(screenSize.width - frameSize.width) / 2, 

(screenSize.height - frameSize.height) / 2) ; 
frame.setvisible(true);
return(frame);

>

protected static void ensureFrame() ( 
if (ServerMonitor.monitor == null) {
ServerMonitor .monitor = new ServerMonitor {);
ServerFrame frame = createFrame ();
frame.getContentPaneO .add(ServerMonitor.monitor) ;

}
}

public static synchronized ServerMonitorPage addPage(Object obj, 
String name) {

ensureFrame();
ServerMonitorPage page = new ServerMonitorPage (obj) ;
ServerMonitor.monitor.addPage(page, name); 
return page;

>

public static synchronized void log(String str) { 
if (myLog != null) {
DateFormat df = DateFormat. getDateTimelns tance (DateFormat. SHORT, 

DateFormat.LONG);
myLog. append (df. format (new j ava. util. Date {)) + * * + str + 

System.getProperty("line.separator"));
>

}
>

/ * ** Abstract; Implements a Server Monitor page to display interface 
counters.
* /

package viewServer.view.server; 
import java.awt.*;
public class ServerMonitorPage extends j avax.swing.JPanel { 

j ava.util.ResourceBundle res = 
j ava. ut il. ResourceBundle. getBundle (* viewServer. view, server. ServerResour 
ces *);
GridBagLayout gridBagLayoutl = new GridBagLayout ();
GridLayout gridLayoutl = new GridLayout(1, 2, 3, 0); 
javax. swing. JPanel panelOuterl = new j avax. swing. JPanel () ;
javax. swing. JPanel panelObjectsl = new j avax. swing. JPanel (); 
com. borland. dbswing. JdbLabel labelObj ectsl = new 

com. borland. dbswing. JdbLabel () ;
com. borland. dbswing. JdbTextField textObjectsl = new 

com.borland.dbswing.JdbTextFieldO;
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int objectsCounter = 0; 
Obj ect monitoredObj ec t;

public ServerMonitorPage(Object obj) { 
monitoredObject = obj; 
try {
jblnit();

>

catch. (Exception ex) { 
ex.printStackTrace();

>
}

private void jblnit() throws Exception{ 
panelOuterl.setLayout(gridBagLayoutl); 
panelObjectsl.setLayout(gridLayoutl); 
textobj ectsl.setEnabled (false);
labelObjectsl.setText (res.getString( “numberObjects" )) ;

labelObj ects1. set Hori zontalAlignment (j avax. swing. SwingCons tant s. RIGHT) 
panelObjectsl.setvisible(false); 
panelObjectsl.add(labelObjectsl); 
panelObjectsl.add(textobjectsl); 
panelOuterl.add(panelObjectsl,
new java.awt.GridBagConstraints(1, 2, 2, 1, 1.0, 1.0, 

j ava. awt. GridBagConstraints. NORTH, 
j ava. awt. Gr idBagCons traint s. HORIZONTAL, 

new Insets(3, 0, 3, 3), 0, 0));
add(panelOuterl);

}

public void showObjectCounter(boolean bvisible) { 
refresh();
panelObjectsl. setVisible(bvisible) ,-

}

public synchronized void updateObj ectCounter(int n) { 
objectsCounter += n;
textob jectsl. setText (String. valueOf (objectsCounter)) ;

}

public void refresh () {
textob jectsl. setText (String. valueOf (objectsCounter));

y
y

package price;
import j avax. swing. UIManager ; 
import java.awt.*;
public class checkPrice {
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boolean packFrame = false;
/♦♦Construct the application^/ 
public checkPrice C) {

Frame2 frame = new Frame2(); 
frame.setTitle(* Price Client");
//Validate frames that have preset sizes
//Pack frames that have useful preferred size info, e.g. from their 

layout
if (packFrame) {  

frame .pack () ;
>else {
frame.validate();

}//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize(); 
Dimension frameSize = frame.getSizeO ; 
if (frameSize.height > screenSize.height) { 
frameSize. height = screenSize.height;

}if (frameSize.width > screenSize.width) { 
frameSize.width = screenSize.width;

>frame.setLocation((screenSize.width - frameSize.width) / 2, 
(screenSize.height - frameSize.height) / 2); 

frame.setvisible(true);
>
/♦♦Main method^/
public static void main(StringU args) { 

try {
UIManager. setLookAndFeel (UIManager .getSystemLookAndFeelClassName ()) ;

}
catch (Exception e) { 

e.printStackTrace();
}
new checkPrice();

>

}

package price;
import java.awt.^; 
import j ava.awt.event.*; 
import javax.swing.♦; 
import com.borland.jbcl.layout.♦;
import java.io.^;
import org.w3c.dom.♦;
import org.xml.sax.♦;
import javax.xml.parsers.♦;
import org. apache. crimson. tree. XmlDocument ;
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public class Frame2 extends JFrame {
JPanel contentPane;
BorderLayout borderLayoutl = new BorderLayout();
JTabbedPane j TabbedPanel = new JTabbedPane () ;
JPanel byTitle = new JPanel();
JPanel byAuthor = new JPanel ();
JLabel title = new JLabel();
XYLayout xYLayoutl = new XYLayout();
JTextField jTextTitle = new JTextPieldO;
JButton checkPriceByTitle = new JButtonO;
JScrollPane j ScrollPanel = new JScrollPane();
JLabel result = new JLabel();
JTextArea jText Areal = new JTextArea() ;
JLabel first = new JLabel C) ;
XYLayout xYLayout2 = new XYLayout () ;
JTextField jTextFirst = new JTextField{);
JLabel last = new JLabel () ;
JTextField jTextLast = new JTextField () ;
JButton checkPriceByAuthor = new JButtonO;
JScrollPane jScrollPane2 = new JScrollPane();
JLabel result1 = new JLabel();
JTextArea jTextArea2 = new JTextArea()
priceViewClientlmpll pvc;
/♦•Construct the frame*/ 
public Frame2() {

enableEventS(AWTEvent.WXNDOW_EVENT_MASK); 
try {
jblnit();
pvc = new priceViewClientlmpll();

>
catch(Exception e) { 
e.printStackTraceO;

}
}/ * ♦Component ini tialization^ /
private void jblnit () throws Exception {

//setlconlmage(Toolkit.getOefaultToolkit().createlmage(Frame2 .class.get 
Resource(*[Your Icon]*)));

contentPane = (JPemel) this.getContentPane() ; 
contentPeme. setLayout (borderLayoutl) ; 
this.setSize(new Dimension(400. 300)); 
this.setTitie("Frame Title'); 
title.setText{'Title'); 
byTitle.setLayout (xYLayoutl) ; 
checkPriceByTitle.setText('Check Price'); 
checkPriceByTitle. addActionListener (new 

java.awt.event.ActionListenerO £
public void actionPerformed(ActionEvent e) C 
checkPriceByTitle_actionPerformed(e) ;

>
} ) ;result.setText('Result'); 
first.setText('First Name');
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byAuthor. setLayout (xYLayout2) ; 
last.setText(*Last Name*);
checkPriceByAuthor.setText C * Check Price*); 
checkPriceByAuthor. addActiouListener (new 

java.awt.event.ActionListenerO C
public void actionPerformed (ActionEvent e) ( 

checkPriceByAuthor_actionPer£ormed(e) ;
>

}) ;resultl.setText("Result*);
jTabbedPanel.add (byTitle, "ByTitle”};
byTitle.add(title, new XYConstraints(33, 35, 43, -1));
byTitle.add(jTextTitle, new XYConstraints(92, 33, 286, 22));
byTitle.add(checkPriceByTitle, new XYConstraints(132, 74, 132,

25) ) ;
byTitle.add(jScrollPanel, new XYConstraints(38, 131, 331, 115));
byTitle.add(result, new XYConstraints(30, 98, 56, 28)); 
jTabbedPanel.add(byAuthor, 'By Author*); 
j ScrollPanel. getviewport () . add (jTextAreal, null); 
byAuthor. add (first, new XYConstraints(19, 63, -1, -1)); 
byAuthor.add(jTextFirst, new XYConstraints(107, 57, 218, 26)); 
byAuthor.add(last, new XYConstraints(15, 26, 62, 18));
byAuthor.add(jTextLast, new XYConstraints(107, 16, 217, 30)); 
byAuthor.add(checkPriceByAuthor, new XYConstraints(140, 96, 132,

25)) ;
byAuthor.add(jScrollPane2, new XYConstraints(36, 142, 345, 115)); 
byAuthor. add (resultl, new XYConstraints (14, 110, 56, 28)); 
jScrollPane2.getviewport() .add(jTextArea2, null); 
content Pane, add (jTabbedPanel, BorderLayout. CENTER);

/ * * Overridden so we can exit when window is closed*/ 
protected void processWindowEvent (WindowEvent e) { 

super.processWindowEvent(e);
if (e.getlDO == WindowEvent.WINDOW_CLOSXNG) C 
System.exit(0);

>
>

void checkPriceByTitle_actionPerf ormed (ActionEvent e) {
StringReader sr = new 

StringReader(pvc.priceByTitle{ jTextTitle.getTextO )) ;
InputSource is = new InputSource(sr) ;
DocumentBuilderFactory factory =DoeumentBni lderPaetory. ncwTnstanee ( \ ; 
try {
DocumentBuilder builder = factory.newDocumentBuilder () ;
Document document = builder .parse (is) ;
String price =

document.getElementsByTagName(“price") .item(O) .getFirstChildO .getNodeV 
alueO ;

jTextAreal.append (price + *\n");
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}catch (SAXException. se){
se.printStackTraceO ;>catch (ParserConfigurationException pee) { 

pce.printStackTraceO ;
} catch. (XOException ioe) {

ioe.printStackTrace{);
}

}

void checkPriceByAuthor_actionPerf ormed (ActionEvent e) { 
jTextArea2. append (pvc. priceByAuthor (jTextLast. getText () , 

jTextFirst.getTextO ) + "\n") ;
>

}

package price;
import java.awt.*; 
import org.omg.CORBA.*;
public class priceViewClientlmpll { 
boolean blnitialized = false; 
price.view.priceView _priceView; 
com.borland. cx.OrbConnect orbConnect 1;
String _name = ‘priceView*;
public priceViewClientlmpll() { 
try { 
jblnit() ;

}catch (Exception ex) ( 
ex.printStackTraceO ;

}
}

private void jblnit() throws Exception {
}

public boolean initO { 
if (lblnitialized) { 
try C
org.omg.CORBA.ORB orb = null; 
i£ (orbConnect1 1= null) { 
orb = orbConnectl.initOrbO ;

}i£ (orb == null) {
orb = org.omg.CORBA.ORB.init ((String[] )null, 

System.getPropertiesO ) ;
}priceView = price.view.priceViewHelper.bind(orb, */* 

*_poa“, _name.getBytes());
blnitialized = true;

>
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catch. (Exception ex) ( 
ex. print StackTrace () ;

}
}
return blnitialized;

}

public price.view.priceView getCorbalnterface() { 
return _priceView;

>

public void setCorbalnterface (price.view.priceView intf) { 
_priceView = intf;

}

public com.borland.ex.OrbConnect getORBConnect () { 
return orbConnectl;

>

public void setORBConnect(com.borland.ex.OrbConnect orbConnect) { 
this.orbConnectl = orbConnect;

}

public String priceByTitie (String title) { 
init();
return _priceView.priceByTitle{ title);

}

public String priceByAuthor(String last. String first) { 
init();
return _priceView. priceByAuthor (last, first) ;

}
}

package configbib;
inport javax.swing.UIManager; 
import java.awt.*;
public class config {
boolean packFrame = false;
/*‘Construct the application*/ 
public configO {

Framel frame = new FramelO ;
//Validate frames that have preset sizes
//Pack frames that have useful preferred size info, e.g. from their 

layout
if (packFrame) { 
frame.pack();

}else (
frame.validate();
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>//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSizeO 
Dimension frameSize = frame.getSizeO ; 
if CframeSize.height > screenSize.height) { 
frameSize.height = screenSize.height;

>if (frameSize.width > screenSize.width) { 
frameSize. width = screenSize .width;

}frame.setLocation((screenSize.width - frameSize.width) / 2, 
(screenSize.height - frameSize.height) / 2); 

frame.setVisible(true);
}
/♦♦Main method^/
public static void main(String[] args) { 

try {
UIManager. setLookAndFeel (UIManager. getSystemLookAndFeelClassName () ) ;

}catch(Exception e) { 
e.printStackTrace();

}
new configO ;

}
>

package configbib;
import java.io.#;
import org.w3c.dom.A;
import org.xml.sax.♦;
import j avax. xml.parsers.♦;
import org. apache. crimson. tree. Xml Do cument;

import java.awt.♦; 
import java.awt.event.♦; 
import javax.swing.♦; 
import com.borland.jbcl.layout.♦;
public class Framel extends JFrame {
JPanel contentPane;
BorderLayout borderLayoutl = new BorderLayout(); 
JTabbedPane main = new JTabbedPane ();
JPanel mapping = new JPanel() ;
JLabel viewPath = new JLabel();
JTextField jTextVPath = new JTextField () ; 
XYLayout XYLayoutl = new XYLayout () ;
JLabel sourcePath = new JLabel () ;
JTextField jTextSPath = new JTextField () ; 
JButton AddMapping = new JButtonO ;
Document document;
String viewName;
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JButton. M odifyM apping = new J B u tto n O ;  
J L a b e l r e s u l t  -  new J L a b e l( ) ;
J B u tto n  d e le teM ap p in g  = new J B u tto n O ;

/♦ ♦ C o n s tru c t th e  fram e#/  
p u b l ic  F ra m e l() {

enableEventS  (AWTEvent. WINDOW_EVENT_MASK) ;

X M L In it ()  ;

try Cjblnit() ;
>

c a tc h (E x c e p tio n  e) { 
e .p r in tS ta c k T r a c e O ;

>

private void XMLInit(){
viewName = JOptionPane. showInputDialog ( * Please the name of the 

view you want to edit;");
viewName = “viewW" + viewName + ’.xml*;
DocumentBuilderFactory factory = 

DocumentBuilderFactory.newInstanceO ; 
factory.setValidating(true);
factory. setIgnoringElementContentWhitespace (true) ; 
try {
DocumentBuilder builder = factory.newDocumentBuilder() ;

File f = new File(viewName); 
if (if.exists())

{

String init = *<?xml version=\*1.0\* encoding=\*UTF-8 \*?>\n* 
*<iDOCTYPE mapping SYSTEM *conf ig.dtd‘>\n* + 
•<mapping/>\n*;

PrintWriter output = new PrintWriterCnew 
FileOutputStream (viewName));

output .println(init); 
output.flush ();

>

document = builder.parse(f);
} catch (SAXException se){ 

se.printStackTraceO ;
} catch (ParserConfigurationException pee) £ 
pce.printStackTraceO ;

> catch (IOException ioe) {
ioe.printStackTrace();

>
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document .normalize () ;
}

/♦♦Component initialization^/
private void jblnit() throws Exception {

//setlconlmage (Toolkit .getDefaultToolkit {) .createlmage (Framel. class .get 
Resource(*[Your Icon]*))) ;

contentPane = (JPanel) this .getContentPane (); 
contentPane.setLayout(borderLayoutl); 
this.setSize(new Dimension(400, 300)); 
this.setTitie(“Frame Title*); 
viewPatb.setText("View Path :*); 
mapping.setLayout(xYLayoutl); 
sourcePath.setText(“Source Path ;•);
AddMapping.setText(”Add Mapping*);
AddMapping.addActionListener(new java.awt.event.ActionListenerO { 
public void actionPer formed (ActionEvent e) { 
AddMapping_actionPerformed(e);

}
>) ;ModifyMapping.setActionCommand("Modify Mapping*);
ModifyMapping. setText ("Modify Mapping*);
ModifyMapping. addActionListener (new j ava. awt. event. ActionListener ()

{ public void actionPerf ormed (ActionEvent e) { 
ModifyMapping_actionPerformed(e) ;

>
>) ;deleteMapping.setActionCommand( "deleteMapping*) ; 
deleteMapping.setText(”Delete Mapping");
deleteMapping. addActionListener (new j ava. awt. event. ActionListener ()

{ public void actionPerf ormed (ActionEvent e) { 
deleteMapping_actionPerformed(e) ;

}
} ) ;main. add (mapping, * mapping*);
contentPane. add (main, BorderLayout .CENTER) ;
mapping.add(jTextVPath, new XYConstraints(95, 34, 274, 28));
mapping.add(viewPath, new XYConstraints(12, 36, 73, 22)); 
mapping.add(sourcePath, new XYConstraints(9, 92, 73, 22)); 
mapping.add(jTextSPath, new XYConstraints(94, 92, 274, 28)); 
mapping.add(result, new XYConstraints(18, 198, 355, 21)); 
mapping, add (AddMapping, new XYConstraints (11, 150, -1, -1)); 
mapping.add (ModifyMapping, new XYConstraints (128, 150, 118, -1)); 
mapping, add (deleteMapping, new XYConstraints(260, 149, 126, -1));

>
/♦♦Overridden so we can exit when window is closed^/ 
protected void processWindowBvent (WindowEvent e) ( 

super.processWindowEvent(e) ;
if (e.getlDO == WindowEvent.WINDOW_CLOSrNG) (
try{
((XmlDocument) document) .write (new FileOutput Stream (viewName));
}catch (IOException ioe){ 
ioe.printStackTrace() ;
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}System.exit(0);
>

}

void AddMapping_actionPerf ormed (ActionEvent e) {
Element mapPair = document.createElement CmapPair“) ;
Element vPath = document.createElementfview*) ;
Element sPath = document.createBlement(* source•);
vPath.appendChild (document.createTextNode(jTextVPath. getText ())) ; 
sPath. appendChiId (document. createTextNode ( 3 TextSPath. getText ())) ;
mapPair.appendChild (vPath) ; 
mapPair.appendChild (sPath);
Node mapping = document.getElementsByTagName ("mapping*) . item(0); 
mapping.appendChild (mapPair);
result.setText(’New mapping has been added!*);

}

void ModifyMapping_actionPerf ormed (ActionEvent e) {
Element config = document.getDocumentElement();
NodeList views = conf ig. getElementsByTagName ("view* ) ;

// System.out.println (views.getLengthO ) ;
for (int i=0; reviews. getLengthO ; i++) C 
Node v = views.item(i); 
if ( v.getFirstChildO!=null)(
String vad.ue = v.getFirstChildO .getNodeValueO ; 
if (value.equals(jTextVPath.getText())) C 

// System.out.println(v) ;
// System.out.printin(v.getNextSiblingO .getNextSibling()) ;
v.getNextSibling() .getFirstChildO .setNodeValue(3 TextSPath.getText ()) 

result. setText (’Mapping modified! *); 
return;

)
>

>result.setText(’View path not found!*);
}

void deleteMapping actionPerf ormed (ActionEvent e) C 
Element conf ig = document .getDocumentElement () ; 

NodeList views = conf ig. getElementsByTagName (’view*);
for (int i=0; i<views.getLength(); i-n-) C 
Node v = views.item(i) ; 
if ( v.getFirstChildO !=null) {
String value = v.getFirstChildO .getNodeValueO ; 
if (value.equals(jTextVPath.getText()))C
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Node vp = v.getParentNode(); 
vp.getParentNodeO .removeChild(vp); 
result. setText (’Mapping deleted! *) ; 
return;

}
}

}
result.setText(’View path, not found!");

>
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