
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2002

Using XML views to improve data-independence of distributed Using XML views to improve data-independence of distributed

applications that share data applications that share data

Xun Luo
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Luo, Xun, "Using XML views to improve data-independence of distributed applications that share data"
(2002). Electronic Theses and Dissertations. 4489.
https://scholar.uwindsor.ca/etd/4489

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F4489&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/4489?utm_source=scholar.uwindsor.ca%2Fetd%2F4489&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor qualify illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using XML Views to Improve Data-
Independence of Distributed
Applications That Share Data

By
X u n L u o

A Thesis

Submitted to the Faculty of Graduate Studies and Research
through the School o f Computer Science in Partial

Fulfillment of the Requirements for the Degree

of Master o f Science at the
University o f Windsor

Windsor, Ontario, Canada

2002

e 2002 Xun Luo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

National Library
of Canada
Acquisitions and
Bfetiographic Services
305WaMngtonS<rwt
OanwON K1A0N4

BUiotMque
du Canada

rationale

Acquisitions et
satvices bfetiographiques

lO N K1A0N*

raw i

(tori

The author has granted a non­
exclusive licence allowing die
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of die
copyright in this diesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accordd une licence non
exclusive pennettant a la
Bibliothdque nadonale du Canada de
reproduire, pr£ter, distribuerou
vendre des copies de cette thfese sous
la fonne de microfiche/film, de
reproduction sur papier ou sur format
6Iectronique.

L’anteur conserve la propridt£ du
droit d’auteur qui protege cette th&se.
Ni la these ni des extraits substantiels
de celle-ci ne doivent Stre imprimis
ou autrementreproduits sans son
autorisadon.

0- 612- 75797-8

CanadS
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVED BY:

Prof. Philip H. Alexander, External Reader
Department of Electrical and Computer Engineering

\

Dr. Xiaojun Chen, Departmental Reader

School of Computer Science

Dr. Richard A. Frost, Supervisor
School of Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The development and maintenance of distributed software applications that

support and make efficient use o f heterogeneous networked systems is very challenging.

One aspect of the complexity is that these distributed applications often need to access

shared data, and different applications sharing the data may have different needs and may

access different parts o f the data. Maintenance and modification are especially difficult

when the underlying structure o f the data is changed for new requirements.

The extensible Markup Language, or XML, has emerged as the universal

standard for exchanging and externalizing data. It is also widely used for information

modeling in an environment consisting o f heterogeneous information sources.

CORBA is a distributed object technology allowing applications on

heterogeneous platforms to communicate through commonly defined services providing a

scalable infrastructure for today’s distributed systems.

To improve data independence, we propose an approach based on XML standards

and the notion o f views to develop and modify distributed applications which access

shared data. In our approach, we model the shared data using XML, and generate

different XML views o f the data for different applications according to the DTDs o f the

XML views and the application logic. When the underlying data structure changes, new

views are generated systematically. We adopt CORBA as the distributed architecture in

our approach. Our thesis is that: views to support data-independence o f distributed

computing applications can be generated systematically from application logic, CORBA

IDL and XML DTD.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To My Parents and My Family

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to acknowledge my gratitude to my supervisor, Dr. Richard A. Frost, for all

his guidance, valuable advice, and time commitments, without which this work would

never be achieved. I would also like to express appreciation to committee members, Dr.

Jessica Chen, and Prof. Philip Alexander for not only them suggestions, but also

comprehensive feedback.

Many thanks go to secretaries o f the Department o f Computer Science Ms. Mary

Mardegan and Ms. Margaret Garabon for their generous help in the past two years.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Abstract.. Hi

Dedication.. .iv

Acknowledgments.. *v

Table of Contents...*vi

List o f Figures....... •*

List o f Document Listings..

1 Introduction.. I

1.1 Motivating problems.. 1

1.2 Observations... -2

1.3 Possible Solutions..5

1.4 The Thesis..6

1.5 Organization o f the Thesis Report.. 7

2 Background: Distributed Systems and Data-independence.................................... 8

2.1 Overview of Distributed Systems..8

2.2 Architectures for Building Distributed Systems... 8

2.3 Data-independence... 10

3 Investigation of XML..1 2

3.1 Overview of XML..12

3 2. XML Syntax... 13

33 Document Type Definition.. lb

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33.1 DTD Syntax..16

3.33 DTD As the Content Model..19

3.4 DOM and SAX.. 30

3.4.1 The Document Object Model...20

3.43 The Simple API for XML.. 22

3.5 The XML Path Language..23

3.5.1 XPath Overview... 23

3.53 XPath as a Query Language... 24

3.6 Xquery: An XML Query Language..25

3.7 Extensible Stylesheet Language Transformation 30

4 Investigation of CORBA..33

4.1 Overview o f CORBA.. 33

4.2 ORB Core..34

4.3 CORBA Invocations... 35

4.4 OMG Interface Definition Language..36

4.5 Benefits o f CORBA.. 38

5 Constructing the XML Document for Storing the Shared Data......................... 41

5.1 Design XML Structure from Scratch..41

5.1.1 XML Content Models..41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.2 Modeling data values..43

5.1.3 Modeling relationships among elements... .45

5.2 Migrating a Database to XML.. .49

5.3 Transforming from Flat Files to XML.. 51

6 Different Approaches for Generating XML Views... 54

6.1 Architecture o f Distributed Systems for Data-independence............................... 54

6.2 XQuery/XSL Approach..56

6.3 XPath Mapping Approach..61

7 Guidelines for Systematically Generating XML Views for the Initial System....64

7.1 Guidelines for XQuery/XSL Approach.. 65

7.2 Guidelines for XPath Mapping Approach.. 72

8 Guidelines for Systematically Modifying the System After Changes78

8.1 Guidelines for XQuery/XSL Approach.. 78

8.2 Guidelines for XPath Mapping Approach.. 78

9 Analysis o f Work Done and Results..80

9.1 Comparison of the Two Approaches Proposed.. 80

9.2 Analysis o f Using XML and Views to Improve Data-independence................... 82

93 Element Vs. Attribute m Data Modeling Using XML.. 83

93.1 Compatibility with databases.. 84

9.33 Data typing..85

9.3.3 Document size... 85

9.4 Integration o f CORBA and XML... 86

vih

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 Conclusions..87

10.1 The Defense o f the Thesis.. 87

10.2 Problems and Future work... 88

References... 89

Appendix: Program List... 94

Vita Anctoris... 110

K

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1.1 Architecture o f a distributed system ...2

Figure 12 Architecture o f the possible solution..6

Figure 3.1 DOM node tree o f bibliography document...21

Figure 3 2 The SAX parser generate events...22

Figure 3.3 Flow of data in a FLWR expression...27

Figure 3.4 XSLT processor working... 31

Figure 4.1 The CORBA architecture.. 35

Figure 4 2 Performing a request with CORBA... 36

Figure 5.1 Relationship between Invoice and Lineltem...45

Figure 5.2 Relationships among Invoice, Lineltem and Product............................... .46

Figure 6.1 Architecture of distributed systems for data-independence........................54

Figure 6 2 Support XML view using single XQuery/XSL..56

Figure 63 An example o f XML data and view... 57

Figure 6.4 Structure of the XML document after change..58

Figure 6.5 An example o f a view with major difference in structure.........................58

Figure 7.1 Structure o f the shared data for Book Catalog System...............................63

Figure 12 Structure o f the view for Book Catalog System...66

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF DOCUMENT LISTINGS

Listing 3.1 A bibliography in XML.. 14

Listing 3.2 DTD for the bibliography document... 16

Listing 3.3 XQuery for Examplel.. 28

Listing 3.4 Result o f the XQuery for Examplel...2S

Listing 3.5 XQuery for Example2.. 29

Listing 3.6 Result o f the XQuery for Example2.. 29

Listing 5.1 Definition o f Customer using elements.. 44

Listing 5.2 Definition o f Customer using attributes...44

Listing 5.3 Modeling relationships by containment... .45

Listing 5.4 Example o f containment.. 46

Listing 5.5 Modeling relationships using ID/IDREF pairs... 47

Listing 5.6 Example o f ID/IDREF pairs..48

Listing 6.1 Example XQuery to generate XML view .. 57

Listing 6 2 Example XSL to generate XML view ... 58

Listing 6.3 Modifying the XQuery.. 59

Listing 6.4 Modifying the X SL..60

Listing 6.5 Xquery to generate XML view with different structure................................. 60

Listing 7.1 DTD for the shared data for Book Catalog System.. 64

Listing 7 2 A sample shared XML data for Book Catalog System.................................. 65

Listing 73 DTD for the view for Book Catalog System... .66

Listing 7.4 priceView.xsl—XSL file for generating the view for Book Catalog System...67

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Listing 7.5 viewImpLjava - Java implementation o f the view generating class.............. 68

Listing 7.6 priceViewClientjava - Java implementation o f the client application...........69

Listing 7.7 viewServer.java - Java implementation o f the CORBA server..................... 70

Listing 7.8 price View.xml - XPath mapping stored as XML file.................................... 72

Listing 7.9 priceViewImpl.java - Java implementation o f the view supporting class..... 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction

This thesis is primarily concerned with improving data-independence of distributed

applications which access shared data through XML views. This chapter gives an

introduction to this thesis work. It elicits the problems inspiring this work, and

presents objectives and the thesis statement.

1.1 Motivating problems

An important characteristic o f large computer networks such as the Internet and

corporate intranets is that they are heterogeneous. However, dealing with

heterogeneity in distributed systems is not easy, hi particular, the development and

maintenance o f software applications that support and make efficient use of

heterogeneous networked systems is very challenging.

One aspect o f the complexity is that these distributed applications often need to

access shared data, and different applications sharing the data may have different

needs and may access different parts o f the data. Traditionally, shared data is often

stored in a relational database to achieve data-independence and other amenities that

database management system provides. The capability o f database storage and

processing is central in most information systems. Earlier, organizations used

monolithic database management systems. However, nowadays there are often many

isolated data repositories distributed over personal computers. Those data repositories

- 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are often heterogeneous because of the differences in the semantics o f data and

DBMS differences such as different data models and query languages. Moreover,

much o f the existing electronic data lies outside o f a DBMS. It lies in structured

documents like HTML and SGML, non-standard data formats, legacy systems, etc.

The structure of the non-relational data is sometimes irregular, unknown in advance,

and changed often. This is a significant departure from the traditional database

framework geared towards highly structured data described uniformly by a rigid

schema. This makes the complexity of distributed systems more difficult to deal with.

Figure 1.1 shows the architecture o f a distributed system.

Apptfcatfont
Logic

Shared Data

Figure 1.1 Architecture o f a distributed system

For example, if the structure o f the shared data is changed for new requirements, all

applications accessing the data have to be modified accordingly. For a large system

with hundreds or thousands o f applications spread all over the world, this is nearly

impossible.

- 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Observations

Research on semistructured data has aimed at extending database management

techniques to data with irregular, unknown, and often changing structure. The advent

of the extensible Markup Language (XML) and related technologies addresses this

problem by providing a neutral syntax for interoperability among disparate systems

and applying data management technology to documents. XML is a standard

approved by the World Wide Web Consortium (W3C) that many believe will become

the de facto data exchange format for the web.

The basic ideas underlying XML are very simple: tags on data elements identify the

meaning o f the data, rather than, e.g., specifying how the data should be formatted (as

in HTML), and relationships between data elements are provided via simple nesting

and references. Yet the potential impact is significant: Web servers and applications

encoding their data in XML can quickly make their information available in a simple

and usable format, and such information providers can interoperate easily.

Information content is separated from information rendering, making it easy to

process the data. XML supports the electronic exchange o f machine-readable data.

XML data shares many features o f semistructured data: its structure can be irregular,

is not always known ahead o f time, and may change frequently and without notice.

On the other hand it is easy to convert data from any source into XML, which will

make it attractive for organizations to publish their electronic data in XML, and thus

make them available to other applications in the system.

- 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, XML applications face the similar problem as those built using traditional

databases: different users sharing XML data may have different needs and may want

to see the same data differently, and this is not only at the presentation level. For

XML applications to reach them full potential, we need the same mechanism, views

as in databases to achieve data-independence at a higher level. The notion o f views is

essential in databases. It allows various users to see data from different viewpoints.

When data is represented using XML, the problem o f views is more crucial than in

standard database applications because the data is often from heterogeneous sources

and the structure o f the data is changed frequently. Views provide the means to add a

structured interface on top o f the underlying data, which provides data-independence

for applications that access the data via the views.

In the relational world, a view is simply specified by a query. A lot of the technology

developed for relational databases remains meaningful in the context o f views for

XML data. XQuery is the XML query language the W3C is developing for extracting

data from XML documents. The XML Stylesheet Language (XSL) also has facilities

that could serve as a basis for an XML query language.

Therefore, our research is motivated by the idea o f improving data-independence o f

distributed applications which access shared data by representing the shared data in

XML and generating higher level abstractions o f the data —XML views.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U Possible Solutions

CORBA is both a language-independent and a location-transparent framework, which

means objects at different locations are interchangeable as long as the interfaces to

the objects remain the same. CORBA itself is an excellent technology for building

distributed applications involving multiple languages and commercial vendors.

Therefore, CORBA is adopted in our thesis as the infrastructure to build distributed

systems. CORBA will be discussed in more detail in later chapters.

The observations above lead to a possible solution based on XML and CORBA.

Figure 1.2 illustrates the architecture o f the solution. Use CORBA as the middleware

to build the distributed applications to facilitate the communication between the

applications; use XML as the neutral syntax to represent the shared data; construct

XML views on top of the XML data for different applications according to the

application logic, CORBA DDL and XML DTD.

When the DTD of the XML data is changed for new requirements o f the system, only

the queries that generate the views for different applications need to be modified in

this setting.

- 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Application-t V>< a / Applications AppHeaUon3
Logic /< !— |Z \ Logic /S (— ✓V Logic

CORBACORBACORBA

V tew 3 |V io w l

CORBA

XML D ata

XML D T D

Figure 1.2 Architecture o f the possible solution

1.4 The Thesis

The ultimate goal o f this thesis work is to find a systematic approach to the

development and maintenance o f distributed applications based on XML data and

XML views, including how to build the initial distributed system, especially the XML

views, and how to modify the system when changes to DTD of the XML data occur.

The thesis statement is:

“XML views to support data-independence of distributed computing

applications can be generated systematically from application logic, CORBA

IDL and the XML DTD.”

- 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following is the work done to support the thesis:

• Investigate XML, DTD and XQuery.

• Investigate CORBA and EDL.

• Propose data modeling approaches using XML.

• Develop guidelines for systematically generating XML views for the initial

distributed system.

• Develop guidelines for systematically modifying the system after the structure

o f shared data is changed.

• Develop a prototype system to demonstrate our approaches.

• Analyze the work done and results.

• Draw conclusions about the extent to which the thesis has been proven.

1.5 Organization of the Thesis Report

Chapter 2 gives background information about distributed systems and data-

independence. Chapter 3 introduces XML and some related technologies including

DTD, DOM, SAX, XPath, XQuery and XSLT. Chapter 4 introduces CORBA and it’s

DDL. Chapter 5 presents approaches for data modeling using XML. Chapter 6 gives

details o f the two approaches for improving data-independence o f distributed

applications accessing shared data. Chapter 7 and chapter 8 present the guidelines for

systematically generating XML views for the initial distributed system and modifying

the system after the structure o f shared data is changed. Chapter 9 provides critical

analysis o f the work done. Chapter 10 gives our conclusions.

- 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Background: Distributed Systems and Data-independence

This chapter primarily deals with some background information about distributed

system and some generic concerns about the development and maintenance of

distributed systems.

2.1 Overview of Distributed Systems

A distributed system is a collection o f autonomous computers linked by a network,

with software designed to produce an integrated computing facility. Software of

distributed systems can range from the provision o f general-purpose computing

facilities for groups o f users to automated banking and multimedia communication

systems. Distributed software coordinates the computers in the system to accomplish

their tasks and share resources including hardware, software and data of the system.

The key characteristics o f distributed system software are: support for resource

sharing, openness, concurrency, scalability, fault tolerance and transparency. The

design goal o f distributed systems is to achieve high performance, reliability,

scalability, consistency and security.

2.2 Architectures for Building Distributed Systems

- 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Today, more and more distributed systems are built on large computer networks such

as the Internet and corporate Intranets. An important characteristic o f large computer

networks is that they are heterogeneous. Ideally, heterogeneity and open systems

enable us to use the best combination o f hardware and software components for each

portion o f an enterprise. When the right standards for interoperability and portability

between these components are in place, the integration of the components yields a

system that is coherent and operational. However, dealing with heterogeneity in

distributed-computing enterprises is not easy. In particular, the integration of software

components that support and make efficient use o f heterogeneous networked systems

is very challenging.

In the mid-eighties, companies began to build distributed computing infrastructures

using “Remote Procedure Call” such as Sun’s Open Network computing (ONC) and

OSF’s DCE. In many cases, companies built their own in-house infrastructure

necessary to support this architecture.

In foe 1990s, a new distributed computing model became widely adopted, built

around foe concept of “Distributed Component Computing”. While there is no

universal approach to integrating foe components, a number o f protocols and

technologies have emerged: SunSoft's Enterprise JavaBeans, OMG's CORBA, and

Microsoft's DCOM. These distributed architectures directly address foe technical

issues o f distribution and heterogeneity that are central to a modem large-scale

software application. DCOM provides suitable solutions for the Microsoft

- 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environment and EJB is ideal for Java applications. CORBA has clear advantages in

terms o f crossing platform and language boundaries, which is truly suitable for large-

scale applications.

23 Data-independence

Most software systems are subject to changing requirements that often necessitate

alterations o f the structure o f shared data. However, these modifications imply time

and money-consuming changes to application programs that run against the shared

data, hi order to avoid this annoying and costly situation, application programs should

be independent o f changes in the way data is structured and stored. This quality is

known as data independence.

The single most significant distinguishing characteristic o f a database is data

independence. Database systems provide convenient access to shared data for a

community o f users having assorted requirements and database experience. This is

accomplished in part by supplying each user with a view o f only the relevant portions

of the database. Views are tables that are defined in terms o f queries over other tables.

The view mechanism can be used to create a window on a collection o f data that is

appropriate for some group o f users. Views are very useful from a security standpoint

because they allow us to limit access to sensitive data by instead providing access to a

restricted version o f that data which is defined as a view. It is very important to note

that views are very useful quite independently o f security considerations because they

- 10 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allow us to create several presentations o f the same data, each o f which is tailored to

the needs o f a different group o f users, without actually replicating the data.

The motivation behind the view mechanism is that we can tailor how users see the

data. Users should not have to worry about the view versus base table distinction. The

goal is indeed achieved in the case o f queries on views. A direct consequence is that

queries are generic; their answers depend only on the logical level of data.

In our approach based on XML data, we adopt the idea o f XML views similar to the

views in relational databases on top o f the underlying data to achieve data-

independence at a higher level. XPath, XQuery and XSLT are XML query languages

that can be used to generate XML views.

- 11 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Investigation o f XML

The extensible Markup Language (XML) is an emerging open standard in the

production and consumption o f content managed by the W3C. XML as a text-based

markup language has become the universal standard for exchanging and externalizing

data in a platform-, language-, and protocol- independent fashion.

3.1 Overview of XML

XML is a data-oriented technology, based on a lightweight subset o f the Standard

Generalized Markup Language (SGML), suitable for the definition, storage, and

retrieval of structured data. XML is inherently language independent. XML was

originally created to improve document processing by separating presentation from

content and by revealing documents’ semantic structure. Now it is widely used as a

common format for expressing data structure and content to reduce the obstacles to

sharing data among diverse applications and databases.

XML is a language used to describe and manipulate structured documents. It is a

flexible mechanism that accommodates the structure o f specific applications. It

provides a mechanism to encode both the information manipulated by the application

and its underlying structure. XML lets information providers invent their own tags for

particular applications and work with other organizations to define shared sets o f tags

that promote interoperability and that clearly separate content and presentation. XML

- 12 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also supports validation in two ways. Application developers can associate an XML

document with a document type description (DTD) that describes the structure to

which the document should conform, hi addition, because DTDs were intended for

document management and cannot adequately model complex data, the W3C

subsequently developed the XML schema specification, which adds data types,

relationships, and constraints. Applications can use off-the-shelf XML parsers to

validate imported data for conformation to a DTD or schema.

Although a young standard, XML already exerts significant influence on computing

communities. A vibrant XML marketplace is providing inexpensive tools for

preparing, validating, and parsing XML data. Application developers praise XML’s

extensibility; communities that share common data, such as the chemical industry,

like XML’s support for well-defined, common data representations. Several related

standards also greatly increase XML’s data sharing and management utility. These

include Extensible Stylesheet Language (XSL), Document Object Mode (DOM),

Simple API for XML (SAX), and XML query languages.

3.2 XML Syntax

XML documents are composed o f a structured collection of markup and content.

Each tag either defines information used to describe how the document is to be

interpreted or describes data contained within the document. There are six kinds o f

markup that can occur in an XML document: elements, entity references, comments,

-1 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processing instructions, marked sections, and document type declarations. Listing 3.1

is a small bibliography represented in XML.

1 <?xml version*"1.0" encoding*"UTF-8* ?>
2 <IDOCTYPE bib SYSTEM 'bib.dtd'>
3 <bib>
4 <book year*"1994">
5 < ti tle>TCP/IP 11lustrated</title>
6 <authorxlast>Stevens</lastxf irst>W. </ f irstx/author>
7 <publisher>Addison-Wesley</publisher>
8 <price> 65.95</price>
9 </book>
10 < £— Unix Book — >
11 <book year*"1992*>
12 <title>Programming in the Unix environment</title>
13 <authorxlast>Stevens</lastxf irst>W. </ f irstx/author>
14 <publisher>Addison-Wesley</publisher>
15 <price>79.95</price>
16 </book>
17
18 <book year**1999">
19 <title>The Economics of Technology for Digital TV</title>
20 <editor>
21 <last>Gerbarg</last><first>Darcy</first>
22 <affiliation>CXTX</affiliation>
23 </editor>
24 <publisher>Kluwer Academic Publishers</publisher>
25 <price>129.95</price>
26 </book>
27 </bib>

Listing 3.1 A bibliography in XML (from http://www.bn.com)

Comments

Comments begin with “< I — ” and end with Line 10 o f Listing 3.1 is an

example o f comments. Comments can contain any data except the literal string “—”.

Comments are not parsed by XML tools.

XML Declarations

-1 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bn.com

<?xml version= “versionNumber”, encoding = “encodingFormat” standalone^ “

yes/no ” 1>

An XML declaration is used to identify the associated block o f data as an XML

document; the declaration can have three attributes: “encoding” indicates the text

encoding format o f the document, “standalone” indicates the dependence on other

documents defined external to the current document Line 1 o f Listing 3.1 contains

the declaration indicating the version and encoding o f the XML document.

Elements

<elmentNam£>data value j other element <JelementNamO

An element acts as a container which contain data values or other XML elements.

Elements have a case-sensitive name that is defined within < and > characters. Each

element has a start tag and an aid tag. An empty element <emptyElementf>

designates a place in a document where some action should occur. An XML

document can have only one root element that contains all other elements. In Listing

3.1, bib, book, title, author, last, first, publisher, editor and price are elements, and bib

is the root element of the document

Attributes

Attributes are white-space separated name-value pans that occur inside tags after

“element name” (<elementNdme attribute = “attributeValue?*>). In XML, all

attribute values must be quoted. In Listing 3.1, element book has an attribute year.

-1 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33 Document Type Definition

A Document Type Definition (DTD) is a structured collection o f declarations which

define the semantic constraints that apply to a particular type o f XML document. A

DTD is essentially a set o f meta-information (includes tags required, relationships

among tags, valid attribute values, named entities) that defines the required structure

and characteristics o f an XML document Listing 3 2 is an example DTD for the

bibliography document (Listing 3.1) introduced in last section.

<?xml version= *1.0" encodings *UTF-8* ?>
<!ELEMENT bib (book*) >
<1ELEMENT book (title, (author|editor)+, publisher, price) >
<! ATTLIST book year NMTOKEN #REQUIRED >
< i ELEMENT publisher (#PCDATA) >
<1ELEMENT affiliation (#PCDATA) >
<IELEMENT author (last, first) >
<iELEMENT first (#PCDATA) >
<!ELEMENT price (#PCDATA) >
<2 ELEMENT editor (last, first, affiliation) >
<2ELEMENT title (#PCDATA) >
<2ELEMENT last (#PCDATA) >

Listing 3.2 DTD for the bibliography document

3.3.1 DTD Syntax

The syntax for DTDs is different from the syntax for XML documents.

DTD H eader

- 1 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A DTD must be declared at the beginning o f an XML document after the XML

declaration using the form:

<!DOCTYPE RootElementName [...]>

where root element name is used to identify the XML document type for which the

DTD defines structure and characteristics. Line 2 o f Listing 3.1 contains a DTD

header. A DTD stored at some external URL is referenced with a system identifier

using the following form:

<!DOCTYPE RootElementName SYSTEM “mySystemUrl” [...]>

For example, the DOCTYPE external subset might look like the following:

<!DOCTYPE rootElement SYSTEM “http://www.xmlserver.com/dtd/myDTD.dtd”>

PUBLIC keyword can be used to replace SYSTEM to indicate that the DTD is widely

used. The following DOCTYPE uses the PUBLIC keyword to reference the well-

known DTD for HTML version 4.01.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3c.org/TR/html4/strict.dtd”>

Element Declarations

Element declarations identify the names o f elements and the nature of their content.

Element declarations are defined within <ELEMENT and > characters and can be

one o f the following forms:

• Empty Content: the element is defined to have no content.

<!ELEMENT elementName EMPTY>

• Any Content: the element is defined to have any content

- 1 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.xmlserver.com/dtd/myDTD.dtd%e2%80%9d
http://www.w3c.org/TR/html4/strict.dtd%e2%80%9d

dELEMENT elementName ANY>

• Parsed character data: the element is defined to contain text

dELEMENT elementName #PCDATA>

• Content Model: A content model is defined to constrain the contents o f the named

element with one of die following symbols:

o ? designates that the model is optional

o * designates that the model may contain zero or more of the model elements,

o + designates that the model may contain one or more o f the model elements.

So the basic format for the content model is:

dELEMENT elementName (content_model) ’ ̂ ̂ >

The content model definition within an element declaration itself can have the

following formats:

• sub_element'̂ * ̂

• sub elements separated by comma (,)indicate the elements must be contained in

the sequence specified.

• sub elements separated by vertical bar (D indicate any one o f the elements can be

contained within an enclosing element.

Attribute Declarations

Attribute declarations define the characteristics o f attributes that are associated with a

named element. The attribute name along with an attribute type and default value may

all be specified for an attribute. Attributes are declared using the following form:

- 18 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<!ATTLIST elementName attributedName AttributeType DefaultValue >

Where attribute type may be defined according to one o f the following forms: ID,

IDREEF, IDREFS, ENTITY, ENTITIES, CDATA, NMTOKEN, or Enumerated-

type. Optionally, the DTD can specify a default value for the attribute. Default

attribute values are defined as one o f the following forms: #REQUIRED, #IMPLIED,

#FEXED or a literal valtie.

3.3.2 DTD As the Content Model

DTD is the content model o f an XML document. DTD encapsulates the hierarchical

relationship o f content in an XML document, and regulates what content is allowable

in a conforming XML document DTDs allow XML processing systems to validate

data content and document structure.

DTDs can have multiple uses in creating views and querying XML data. QBE-style

query interfaces [BARU99] may use DTDs to display the schema of a view and allow

users to navigate i t DTDs may help in the design of the storage structures.

Semistructured databases can use DTDs to semantically optimize their query plans

[FERN98]. Finally DTDs may guide the production o f style sheets, such as XSL

scripts [ADLE01], that translate XML documents into browser-compatible HTML

documents or other XML documents with different DTDs. It is clear that DTDs will

be particularly useful. DTDs also guide the generation of XML views in our

approach.

-1 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 DOM and SAX

DOM and SAX are two dominant APIs for processing XML documents.

3.4.1 The Document Object Model (DOM)

The Document Object Model (DOM) is a platform- and language-neutral object-

based interface that will allow programs and scripts to dynamically access and update

the content, structure and style o f documents. The objects in the DOM allow the

developer to read, search, modify, add to, and delete from a document The DOM

lays out a standard functionality for document navigation and manipulation of the

content and structure o f XML and HTML documents.

When the DOM is used to manipulate an XML text file, the first thing it does is to

parse the file, breaking the file into individual elements, attributes, comments, and so

on. It then creates a representation o f the XML file as a node tree in memory.

Developers may then access the contents o f the document through the node tree, and

make modifications to it as necessary. The DOM provides a robust set o f interfaces to

facilitate the manipulation o f the DOM node tree. Figure 3.1 shows the DOM tree for

our bibliography example from Listing 3.1. The DOM treats every item in the

document as a node - elements, attributes, comments, processing instructions, and the

text that makes up an element or an attribute.

- 2 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b o o k

bib b o o k

b o o k

Attr: yea •1994"

Elem ent:
title

Elem ent:
a u th o r Hit

 -------------------1 "T C P /IP I llu s tra te ^

fe lem ent:la« tl - -f "S te v e n s"

E lem entrflrs t l I "W ." ~
E lem entd
p u b lish e r "A ddlson-W eslev*

Elem entd
p ric e I "6S.9S"

A ttr: y e a •1992"

E lem ent:
title

E lem ent:
a u th o r

"P ro g ram m in g in ti
U nix e n v iro n m e n t

E lem en tria s tl—

E lem entrH rstl T

" S te v e n s 8"

"W .“
E lem entd
p u b lish e r "A ddlson-W ealev*

E lem entd
p ric e I "79.9S"

A ttr: y e a

E lem ent:
title

E lem en t
e d ito r

"1999"

E le m e n t:la s t I—

E lem en t:tlrs t I—(

T n e E c o n o m ic s
T e c h n o lo g y fo r

D igital TV"
"G erberg"

"parcy"

— I E lem en h afflllatldw-I ■C r r r

E lem ent:
publlshei

"K luw er A cadem ic
P u b lish e rs"

Element
price "129.9&" I

Figure 3.1 DOM node tree o f bibliography document

DOM has several advantages over other available mechanisms for accessing XML

documents. First, the DOM ensures proper grammar and well-formedness. Because

the DOM transforms the text file into an abstract representation o f a node tree,

problems like unclosed tags and improperly nested tags can be completely avoided.

Second, the DOM abstracts content away from grammar. The node tree created by the

DOM is a logical representation o f die content found in the XML file. It shows what

- 21 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information is present and how it is related without necessarily being bound to the

XML grammar. Third, the DOM closely mirrors typical hierarchical and relational

database structures. This makes it very easy to move information between a database

and an XML document using DOM. Last, the DOM simplifies internal document

manipulation. Using DOM, access to any node in a document is a simple task without

the need to perform a scan o f the whole file. However, the DOM is very memory­

intensive. It builds the node tree for the entire XML document in memory, which

make it unsuitable for very large files.

3.4.2 The Simple API for XML (SAX)

The Simple API for XML (SAX) is an event-based interface for parsing XML

documents. SAX is a Java interface, and, virtually, every Java XML parser supports

SAX. With SAX, the parser sends events as it reads through an XML document.

These events are related to elements in the XML documents being read. E.g., there

are events for element start, element end and parsing errors etc. Figure 3.2 shows how

the parser generates events as it progresses though the document.

Figure 3.2 The SAX parser generate events

- 22-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main advantage o f using SAX is efficiency. Event-based interfaces are lower

level than object-based interfaces. They give developers more control over parsing,

which, on the other hand, means programming using SAX is more difficult Another

advantage is that a SAX parser consumes fewer resources than a DOM one, simply

because it does not need to load the whole file into memory. The major limitation of

SAX is that there is no random access to the document Therefore, SAX is

particularly popular with applications that process large files and for servers which

process many documents simultaneously.

3.5 The XML Path Language (XPath)

3.5.2 XPath Overview

XPath is a language for accessing parts o f an XML document; it is used by XSLT and

XQuery. The XML Path Language (XPath) provides a syntax for locating specific

parts o f an XML document effectively and efficiently. XPath operates on the abstract

logical structure o f an XML document rather than its surface syntax. XPath gets its

name from its use o f a path notation, as in URLs, for navigating through the

hierarchical structure o f an XML document.

In XPath, an XML document is viewed conceptually as a tree in which each part o f

the document is represented as a node. The nodes in this tree are similar to those in

- 2 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the DOM mentioned in 3.4. XPath uses location-path expressions to specify how to

navigate a node tree from one node to another. The following two examples show the

usage o f XPath against the XML document shown in Listing 3.1.

Examplel: /bib/book[@title=‘Data on the Web’]/author

Returns the authors for the book whose title is “Data on the Web”.

Example 2: //book/publisher

Returns all books' publishers

XPath is intended primarily as a component that can be used by other

specifications. Therefore, XPath relies on specifications that use XPath (such as

XSLT and XQuery) to specify criteria for conformance of implementations of

XPath and does not define any conformance criteria for independent

implementations of XPath.

3 i 2 XPath as a Query Language

XPath is a prototypical special-purpose XML query language. Originally designed as

a helper language for XSL, XPath has enjoyed wider acceptance in part because o f its

compact syntax and ease-of-use. XPath provides ways to select nodes in an XML

document based on simple criteria such as structure, position, or content

- 2 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each XPath query is built from two basic components: navigation (using location

steps) and selection (using filter expressions). The components can be combined in

variety o f ways to provide a rich expression language from only a few syntactic

elements.

Navigation involves walking from one part o f the XML document to another. For

example, the XPath /bib/book consists o f two location steps: one absolute step /bib

which selects all top-level elements named <bib>, followed by a relative step <book>

then selects the child elements named <book> o f the current selection.

Selection can be performed either by selecting one node based on its position in the

current selection, or by removing nodes from the current selection if they do not meet

a Boolean condition. For example, /bib/book/[@title=‘Data on the Web’] selects only

those book elements having an attribute title whose string value is ‘Data on the Web’.

/bib/book/[2] selects the second book element. XPath provides the usual kinds of

arithmetic and string operations, as well as functions for getting the current node’s

position or finding a node by XML ID.

3.6 Xquery: An XML Query Language

XML is a versatile markup language, capable o f labeling the information content o f

diverse data sources. As increasing amounts o f information are stored, exchanged,

and presented using XML, the ability to intelligently query XML data sources

- 2 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

becomes increasingly important XQuery is the working draft o f W3C. It is designed

to be a small, easy to implement language in which queries are concise and easily

understood.

XQuery is derived from an XML query language called Quilt [CHAM99], which in

turn borrowed features from several other languages. From XPath [XPath99] and

XQL [ROBI98] it took a path expression syntax suitable for hierarchical documents.

From XML-QL [DEUT98] it took the notion of binding variables and then using the

bound variables to create new structures. From SQL it took the idea of a series of

clauses based on keywords that provide a pattern for restructuring data (the SELECT-

FROM-WHERE pattern in SQL). From OQL it took the notion o f a functional

language composed o f several different kinds o f expressions that can be nested with

foil generality. Quilt was also influenced by other XML query languages such as

Lorel [SERG97] and YATL [CLUE99].

XQuery is a functional language in which a query is represented as an expression.

XQuery supports several kinds o f expressions, and the structure and appearance o f a

query may differ significantly depending on which kinds o f expressions are used. The

various forms o f XQuery expressions can be nested and combined using arithmetic,

logical and list operators, navigation primitives, function calls, operators like “sort”,

conditional expressions, element constructors etc.

- 2 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The XQuery data models XML documents as labeled trees with references. For

navigating in a document, XQuery uses path expressions, whose syntax is borrowed

from the abbreviated syntax o f XPath. XPath is a notation for navigating along

“paths” in an XML node tree. The evaluation o f a path expression with respect to an

XML document returns a list o f information items, whose order is dictated by the

order o f elements within the document. XQuery provides a range predicate whose

meaning is also based on order E[range n to p] evaluates the expression E, yielding a

list, and selects from this list the sub-list o f the n-th to p-th items. The precise

semantics o f path expressions is still under discussion; in this thesis, we consider a

snapshot o f the semantics for simple path expressions.

A powerful feature o f XQuery is the presence o f FLWR expressions (for-let-where-

retum). The for-let clause makes variables iterate over the result of an expression or

binds variables to arbitrary expressions; the where clause allows specifying

restrictions on the variables; and the return clause can construct new XML elements

as output o f the query. The overall flow o f data in a FLWR expression is illustrated in

Figure 3.3.

| f o r / l e t C la u se s

O rd e re d lis t o f tu p le s
^ o f b o u n d v aria b le*

W H E R E C tau se~ |

I P ru n e d lis t o f tu p le *
^ o f b o u n d v a ria b le s

| RETU RN C la u se

[In s ta n c e o f XML
I Q u e ry d a ta m odel

Figure 3 3 Flow o f data in a FLWR expression

- 2 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following two examples show the usage o f XQuery. Examplel: list books

published by Addison-Wesley from the bibliography document, including their year

and title. Listing 3.3 shows one possible solution in XQuery.

<bib>
{ FOR $b IN document ("bib. xml") /bib/book

WHERE $b/publisher = "Addison-Wesley*
RETURN

ebook year={ $b/8year }>
C $b/title }
</book>

>
</bib>

Listing 33 XQuery for Examplel

Expected result o f the query is given in Listing 3.4.

<bib>
ebook year=*1994*>

<title>TCP/IP Illustratede/title>
e/book>
ebook year=“1992“>

etitle>Programming in the Unix environmente/title>
e/book>

e/bib>
Listing 3 4 Result o f the XQuery for Examplel

Example2: For each author in the bibliography, list the author's name and the titles of

all books by that author, grouped inside a "result” element. Listing 3.5 shows one

possible solution in XQuery. This example shows the nested XQuery expressions.

- 2 8 -

Note: “@” means
attribute here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<results>
{ FOR $a IN distinct (document ("bib.xml') //author)

RETURN
<result>
{ $a >
{ FOR $b IN document ("bib. xml") /bib/book [author = $a]

RETURN $b/title
></result>

}</results>
Listing 3.5 XQuery for Example!

This example shows the nested XQuery expressions. Expected result o f the query is

given in Listing 3.6.

<results>
<result>

<author>
<last>Stevens</last>
<first>W.</first>

</autbor>
<title>TCP/IP Illustrated</title>
<title>Programming in the Unix environment</title>

</result>
</results>

Listing 3.6 Result of die XQuery for Example2

la summary, XQuery is designed to support queries against a broad spectrum o f

information sources. The versatility o f XQuery will help XML to realize its potential

as a universal medium for data interchange. In this thesis, XQuery is used to query

- 2 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XML documents and define views on top o f XML data. However, Data definition

facilities for persistent views are not included in XQuery specification, so views must

be built programmatically in this thesis.

3.7 Extensible Stylesheet Language Transformation

An alternative way to query XML documents is using Extensible Stylesheet

Language (XSL). XSL is the current W3C Recommendation for expressing

stylesheets. Although primarily targeted towards presentation, XSL has facilities that

could serve as a basis for an XML query language. It is an XML-based language

designed to transform an XML document into another XML document with a

different DTD or into documents o f other formats such as HTML or PDF. XSL

Transformations (XSLT) is the part o f XSL for transforming XML documents into

other XML documents.

A transformation expressed in XSLT describes rules for transforming a source tree

into a result tree. The transformation is achieved by associating patterns with

templates. A pattern is matched against elements in the source tree. A template is

instantiated to create part o f the result tree. The result tree is separate from the source

tree. The structure o f the result tree can be completely different from the structure o f

the source tree. In constructing the result tree, elements from the source tree can be

filtered and reordered, and arbitrary structure can be added. XSLT makes use o f the

expression language defined by XPath for selecting elements for processing, for

- 3 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conditional processing and for generating text [XSLT]. Figure 3.4 illustrates how a

XSLT processor works

Style sheet XSL

XM.

stylesheet'
Node Tree
(Template)

XSLT
Ehgte

Result
Node
Tree

Souce
Node
Tree.

Result
Source

XML
XML

Key:
Some*
Nod*

Figure 3.4 XSLT processor working (modified from [ANDE99] page375)

XSLT operates on the document model not the syntax. Both the source and

destination formats are applications o f XML, and the underlying structure o f both is a

tree. In addition, the XSLT script is an XML document, thus it too can be represented

as a tree. So the XSLT processor holds three trees. The processor goes through the

source tree, starting with the root, and looks for a matching template in the style sheet

tree. When it finds one, it uses the rules in the template to write an abstract

representation of the result into the result tree. Then it moves through the source

document, node by bode, lead by the XSLT instruction <xsfcapply-template>, looking

for a match in the style sheet. At last, the result tree is translated into an XML

document

- 3 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Overall, XSLT is a very flexible language, capable o f performing rather complicated

queries. However, XSLT requires well-formed XML documents, and it cannot

operate on XML fragments. XSLT is very hard to optimize; in fact, every

implementation requires the entire document to be loaded into memory before the

XSLT can be executed.

- 3 2 -

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Investigation of CORBA

4.1 Overview of CORBA

The Common Object Request Broker Architecture (CORBA) is the product o f the

Object Management Group OMG. The purpose o f OMG is to create standards

allowing for the interoperability and portability o f distributed object-oriented

applications. The CORBA specification includes an Object Request Broker (ORB),

which is the protocol that enables the seamless interaction between distributed

components; Object services, which facilitate standard client/server interaction with

capabilities such as naming, event-based synchronization, and concurrency control;

and the Interface Definition Language (IDL), which defines the object interfaces

within the CORBA environment. By providing an object-oriented architecture with

object interface inheritance, ORB interoperability and platform independence,

CORBA meets one o f the most essential requirements o f modem computing, which is

to maximize the portability, reusability and interoperability o f software.

Distributed CORBA components, modeled as business objects, are an excellent fit for

distributed architectures. They provide scalable and flexible solutions for client/server

environments and for the Internet and intranets. Business objects, packaged as

CORBA components, can be naturally decomposed and split across multiple tiers to

meet an application's need.

- 3 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 ORB Core

CORBA ORB connects a client application with, the objects it wants to use. The ORB

delivers requests to objects and returns responses to the clients making the requests.

The key feature o f the ORB is the transparency o f how it facilitates communication

between distributed components/objects. The ORB takes care o f the details of

locating the object, routing the request, and returning the result. Ordinarily, object

location, implementation, execution state, and communication mechanisms are

hidden from the client This feature allows application developers to worry more

about their own application domain issues and less about low-level distributed system

programming issues.

To make a request the client specifies the target object by using an object reference.

When a CORBA object is created, an object reference for it is also created.

References are valid in the whole system and can thus be passed from one node to

another. Clients can obtain object references in several different ways: object creation

- a client can create a new object in order to get an object reference; directory service

- a client can invoke a lookup service to obtain object references; convert to string

and back - an application can ask the ORB to turn an object reference into a string,

and this string can be stored into a file or a database, and later, this string can be

retrieved and turned back in to an object reference by the ORB. Objects are not tied to

- 34-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a client or server role; they can act in turn as client and as server (peer-to-peer

communication).

4.3 CORBA Invocations

Client

o ©

Figure 4.1 The CORBA Architecture ([BARA] page 3)

The CORBA architecture is depicted in figure 4.1. The client IDL stubs provide the

static interfaces to object services. They define how clients invoke corresponding

services on remote servers. The Dynamic Invocation Interface (DU) lets the clients

choose at run-time the operation invoked through a set o f standard APIs. In contrast

to the static stubs, the DU is independent o f the target object's interface. The server

IDL stubs, also called skeletons, provide static interfaces to each service exported by

servers. The Dynamic Skeleton Interface (DSI) provides a run-time binding

mechanism for servers that do not have static IDL skeletons to handle any request

dynamically. The Object Adapter accepts requests for service and provides a run-time

environment for instantiating server objects, passing requests to them, and assigning

- 3 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

them object references. The object implementation may call the object adaptor and

the ORB while processing a request. The Implementation Repository provides run­

time information about the classes the server supports, the objects that are

instantiated, and their identifiers.

Figure 4.2 illustrates how a request is performed through the ORB, using either the

DU or the client IDL stubs. Requests are handled at the server site by the Object

Adapter, and given to the server’s IDL skeleton.

ObjBct
implementationClient

^ P ^ p

Figure 4.2 Performing a Request with CORBA ([BARA] page 3)

4.4 OMG Interface Definition Language

An object's interface specifies the operations and types which the object supports and

thus defines the requests that can be made on the object. Interfaces o f CORBA

objects are defined in the OMG Interlace Definition Language (IDL). An important

feature o f OMG IDL is its language independence. Owing to the fact that OMG IDL

-3 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a specification language, not a programming language, it forces interfaces to be

defined separately from object implementations. This allows objects to be constructed

using different programming languages and still communicate with one another.

Language-independent interfaces are important within heterogeneous systems, since

not all programming languages are supported or available on all platforms. OMG IDL

interfaces can inherit from one or more other interfaces. This makes it possible to

reuse existing interfaces when defining new services. Interface inheritance is very

important in CORBA. It allows the system to be open for extension while keeping it

closed for modification, which is called the Open-Closed Principle. This allows

object references for derived interfaces to be substituted anywhere object references

for base interfaces are allowed.

OMG IDL provides a set o f types that are similar to those found in a number of

programming languages. It provides basic types such as long, double, and boolean,

constructed types such as struct and union, and template types such as sequence and

string. Types are used to specify the parameter types and return types for operation.

To define exceptional conditions that may arise during the course o f an operation,

OMG IDL provides exception definitions. The OMG IDL type system is sufficient

for most distributed applications, yet at the same time it is minimal. Keeping OMG

IDL as simple as possible means that it can be used with many more programming

languages then it could if it contained types that could not be realized in some popular

programming languages. Given the inevitable heterogeneity of distributed object

-3 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems, the simplicity o f OMG IDL is critical to the success o f CORBA as a

protocol and integration technology.

In addition to generating programming-language types, OMG IDL language

compilers and translators also generate client-side stubs and server-side skeletons. A

stub is a mechanism that effectively creates and issues requests on behalf of a client,

while a skeleton is a mechanism that delivers requests to the CORBA object

implementation. Stubs are sometimes called proxies because the stub essentially is a

stand-in within the local process for the actual target object The stub works directly

with the client ORB to marshal the request. Once the request arrives at the target

object the server ORB and the skeleton cooperate to unmarshal the request and

dispatch it to the object Once the object completes the request any response is sent

back the way it came. Figure 2 shows the positions o f the stub and skeleton in relation

to the client application, the ORB, and the object implementation.

4.5 Benefits of CORBA

CORBA provides interoperability across programming languages. Interfaces to

CORBA objects are written in the programming-language-independent notation IDL.

These IDL interfaces are then mapped to language-specific interfaces, according to

rules standardized by the OMG, known as language mappings. Standardized

mappings exist for Java, C, C++, COBOL, Ada, and Smalltalk. De-facto standard

mappings exist for other popular languages such as TCL, Perl, Delphi, and Python.

-3 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As a result, CORBA objects — servers and their clients can be written in any

language. It is not abnormal for a CORB A-based distributed application to consist of

pieces that are written in completely different languages.

CORBA provides Interoperability across platforms. The protocol that CORBA uses

to allow distributed objects to communicate with each other, is specified by the

OMG, and is known as HOP. CORBA implementations from multiple vendors can

interoperate with each other. Different CORBA products can be used on different

platforms. Most popular ORB products have themselves been ported to multiple

hardware platforms and operating systems. For example, VisiBroker products are

available on a number o f platforms - Windows, Solaris, Linux, HP-UX, SGI, IBM’s

ADC, Digital Unix, IBM OS/390, and others.

CORBA provides independence from CORBA vendors. Standardized APIs (IDL,

language mappings, etc.) and the standardized woe protocol(IIOP) together provide

developers and their customers with independence from the CORBA products and

vendors. The availability o f interoperable CORBA ORBs from a number o f different

vendors means that developers do not depend on any single vendor so long as they do

not use vendor-specific add-on features.

CORBA provides source portability. When the CORBA standards were initially

released, source portability (the ability to recompile and run existing CORBA

applications with a different CORBA product, without making changes) was

-3 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

promised, but not delivered. Source portability for pure-clients was acceptable. With

some care, one could write CORBA clients that would port across CORBA products.

However, source portability for servers was not acceptable. A key server-side API,

known as the BOA, was heavily under-specified and ambiguous in many places. This

led CORBA vendors to make incompatible assumptions and extensions, sacrificing

server-side source portability. A new server-side specification, known as the Portable

Object Adapter (POA), corrects this problem. In addition to being complete and

unambiguous, it contains many more features than the old BOA specification. The

POA reinforces the fact that CORBA is the ideal substrate for most distributed

applications.

With these benefits, CORBA is adopted in our approach to facilitate the

communications between distributed applications.

-4 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Constructing the XML Document for Storing the Shared

Data

S.lDesign XML Structure from Scratch

5.1.1 XML Content Modeb

Using the terminology usual in databases, it is possible to view XML as the language

for data modeling. A well-formed XML document (or a set o f such documents) is

then a database and the associated Document Type Definition (DTD) is its schema.

The data modeling o f the XML document for storing the shared data has a direct and

significant impact on performance, document size, and code size. As we have

mentioned in Chapter 3, when using a DTD to define the structure of an XML

vocabulary, there are five possible content modeb for elements: element-only

content, mixed content, text-only content, the EMPTY model, and the ANY model.

Element-only content is used when elements only contain other elements. For

example, the following content model is element-only:

<!ELEMENT Invoice (Customer, LineItem+)>

Here, the element Invoice can contain a Customer element, followed by one or more

Lineltem elements. This structure provides the cleanest way to contain one structure

inside another. This is a good structure for the nesting of elements.

- 4 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

la the text-only content model, elements may only contain text strings. An example o f

the text-only content model might be:

<!ELEMENT Customer (#PCDATA)>

Using text-only elements is one way to include single data values in XML document.

However, we could also use attributes, which can have advantages over this method.

In the mixed content model, elements may contain zero or more instances of a list of

elements, in any order, along with any amount o f text in any position. An example o f

the mixed content model might be:

<!ELEMENT Invoice (#PCDATA | Lineltem j Customer)*>

This model is not suitable for modeling data because the allowable subelements might

appear at any point within the element, and any number of times. This makes it very

difficult to map to data elements, and makes writing code to handle the document a

nightmare. The use of the mixed content model for data should be avoided.

In the EMPTY content model, an element cannot contain anything at all; it must be

expressed either as the empty element tag, or as a start tag followed immediately by

an end tag. The following is an example o f the empty content model:

<!ELEMENT Customer EMPTY>

This content model will come in useful when the only additional information

associated with an element is at the data value level. For example, if we have a

Customer element that only has a Name associated with it, we could use the empty

-4 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

content model for the Customer element and represent the Name value as attribute

(refer to example on page 44).

In the ANY content model, any element or text may appear inside the element when

defined this way, in any order. So, for this example:

<!ELEMENT Customer ANY>

An example document might be:

<Customer>Kevin WQlians</Customer>

or:

<Customer>

<Customer>

<Customer>Kevin Willians</Customer>

</Customer>

<Customer>

Like the mixed content model, this content model is too permissive for data. Without

some idea o f what structure might appear, and in what order, operating upon the data

will be extremely difficult. For this reason, the use o f the ANY content model for data

should also be avoided.

5.1.2 Modeling data values

The first way data values are represented in XML documents is by using elements.

For text-only elements, a <Customer> element might be defined like this:

- 4 3 -

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

< I ELEMENT Customer (firstName, lastName, address, city,
province, country, postalCode) >

< i ELEMENT firstName (#PCDATA)>
< I ELEMENT lastName (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<1ELEMENT city (#PCDATA)>
<!ELEMENT province (#PCDATA)>
<IELEMENT postalCode C#PCDATA)>

Listing 5.1 Definition o f Customer using elements

When representing data in an XML document, any element that is defined as having

text-only content using the #PCDATA keyword will correspond to a column in a

relational database.

Another way o f representing data values in XML documents is with attributes. In this

approach, elements that represent tables have attributes associated with them that

represent columns:

<IELEMENT Customer EMPTY>
<IATTLIST Customer

firstName CDATA #REQUIRED
lastName CDATA #BEQUXRED
address CDATA fREQUIRED
city CDATA tREQUIRED
province CDATA #REQUIRED
postalCode CDATA #REQUIRED>

Listing 5.2 Definition o f Customer using attributes

-4 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.13 Modeling relationships among elements

To associate groups o f data with other groups o f data, we need to add relationships

between theses groups. In a relational database, this can be modeled using foreign key

constraints. For example, we have the following two tables:

Invoice Lineltem
invoicalD ineitemID

invoicelDcustomerlD
orderOate
shipDate

productDescription
quantity
unitPrice

Figure 5.1 Relationship between Invoice and Lineltem

The foreign key on the Lineltem table is the primary key on the Invoice table. One

invoice can have one or more Iineltems. In XML, one-to-one and one-to many

relationships are best represented by containment. One possible design would be:

<tELEMENT Invoice (Lineltem+) >
<tATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<IELEMENT Lineltem EMPTY>
<LATTLIST Lineltem

productDescription CDATA tREQUIRED
quantity CDATA tREQUIRED
unitPrice CDATA #REQUIRED>

Listing 53 Modeling relationships by containment

-4 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An example o f a document with this structure looks like this:

<Invoice
orderDate='7/23/2000'
shxpData='2/28/2000'>
<LineItem

productDescription=*Widgets'
queintity='17'
unitPrices'0.10,r/>

<LineItem
productDescription='Grommets'
quantity^'22'
unitPrice="0.05'/>

<Invoice/>

Listing 5.4 Example o f containment

Here, it is clear that the Lineltem information is part o f the Invoice. Containment is

best suited for modeling one-to-one and one-to-many relationships. However, it is

possible to have more complex relationships in applications than can be represented

with containment alone. If we extend the previous example by adding a Product table,

and the following are the tables:

Invoice Lineltem

Product

quantity
unitPrice
productID

customerlD
orderOate
shipOate

productOescnption

Figure 5.2 Relationships among Invoice, Lineltem and Product

-4 6 -

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

In this case, there is a many-to-many relationship between Invoice and Product. Many

products may appear on one invoice, and one product may appear on many invoices.

In a relational database, this is expressed through the relating table Lineltem. An

invoice may have many line items, and a product may appear on many line items. In

XML, ID/IDREF pairs can be used to model many-to-many relationship. The above

example can be modeled in XML as following:

< I ELEMENT OrderData (Invoice+, Product+) >
< I ELEMENT Invoice (Lineltem+) >
<IATTLIST Invoice

orderDate CDATA #REQUIRED
shipDate CDATA #REQUIRED>

<IELEMENT Lineltem EMPTY>
<!ATTLIST Lineltem

productlDREF IDREP #REQUIRED
quantity CDATA #REQUIRED
unitPrice CDATA #REQDIRED>

< I ELEMENT Product EMPTY>
<!ATTLIST Product

productID ID tREQUIRED
productName CDATA iREQUIRED
productDescription CDATA #REQUIRED>

Listing 5.5 Modeling relationships using ID/IDREF pairs

hi this way, repetition o f information can be avoided. I f we nested Product inside,

Lineltem, the product information would have to be repeated for every invoice where

it appears. The following XML document is an example instance of the structure

defined in Listing 5.5:

-4 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<OrderData>
<Invoice orderDate=*7/23/2000* shipDate=*7/30/2000*>

<LineItem
productlDREF=*prodl*
quantity=* 17 *
unitPrice=*0.10’ />

<LineItem
productXDREF=*prod2 *
quantity=* 22 *
unitPrice=*0.06* />

</Invoice>
<Invoice orderDate=* 7/25/2000’ shipDate=*8/2/2000">

<LineItem
productIDREF= *prod2 *
quantity="30’
unitPrice=*0.05* />

<LineItem
productIDREF=“prod3 ’
quantity="19 *
unitPrice=’0.15* />

</Invoice>
<Product

productID= *prodl *
productShortName=’Widgets *
productDescription= ”Rubberized Brown Widgets* />

<Product
productID=“prod2*
productShortName= ’Grommets *
productDescription=* Vulcanized Orange Grommets* />

<Product
productID=*prod3*
productShortName= * Sprockets *
productDescr ip tlon=’Anodized Silver Sprockets* />

</OrderData>

Listing 5.6 Example o f ID/IDREF pairs

-4 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Migrating a Database to XML

Relational databases are a mature technology, which has enabled users to model

complex relationships between data that they need to store. As we have discussed,

there are a number o f reasons why data stored in databases need to be exposed as

XML: sharing business data with other systems; interoperability with incompatible

systems; exposing legacy data to applications that use XML; and business-to business

transactions. The following steps show how to migrate a database to XML.

Step 1. Choose the data to include. Based on the business requirements the XML

document will be fulfilling, decide which tables and columns from the relational

database will need to be included in the XML document

Step 2. Create a root element Create a root element for the document Add the root

element to the DTD, and declare any attributes o f that element that are required to

hold additional semantic information. For example, we might want to add a source

attribute, so that the users know where the information comes from. Root element

names should describe their content

Step 3. Model the content tables. Create an element in the DTD for each table that has

been chosen to model. Declare these elements as EMPTY temporarily.

-4 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 4. Model the non-foreign key columns. Create an attribute for each column that

has been chosen to be included in the XML document except foreign key columns.

These attributes should appear in the 1ATTLIST declaration o f the element

corresponding to the table in which they appear. Declare each o f these attributes as

CDATA, and declare it as #IMPLIED or #REQUIRED depending on whether the

original column allowed nulls or not.

Step 5. Add ID attributes to the elements. Add an ID attribute to each o f the elements

in the XML structure with the exception of the root element Use the element name

followed by ID for the name o f the new attribute to avoid name collisions. Declare

the attribute type ID, and ^REQUIRED.

Step 6. Add element content to root elements. Add a child element or elements to the

allowable content o f the root element for each table that models the type of

information that needs to be represented in the XML document

Step 7. Add relationships through containment. For each one-to-one or one-to-many

relationship, add the child element as element content o f the parent element with the

appropriate cardinality.

Step 8. Add relationships using IDREF/IDREFS. For each many-to-many

relationship, add an EDREF or IDREFS attribute to the element on the parent side of

-5 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the relationship, which points to the ID o f the element on the child side of the

relationship.

Step 9. Add missing elements. For any element that is only pointed to in the structure

created so far, add that element as allowable element content of the root element Set

the cardinality suffix o f the element being added to *.

Step 10. Remove unwanted ID Attributes. Remove ID attributes that are not

referenced by EDREF or IDREFS attributes elsewhere in the XML structures.

5.3 Transforming from Flat FUes to XML

Flat files store data in a way that is generally specific to the application using them

and are commonly encountered when working with legacy systems. Flat files can

vary widely. There are many ways to create a flat file. There are a couple of common

issues that need to be considered when moving data from flat files to XML

documents.

The most obvious difference between XML documents and flat files is the level o f

normalization. Flat files are usually completely un-normalized. Since a well-designed

XML structure will be fairly normalized, the code for the transformation will have to

normalize data when moving from flat files to XML documents.

-5 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another issue commonly encountered with, flat files is the format o f data. Many

legacy systems, due to size constraints or other concerns, use specific formatting

schemes that may not be easily understood by users o f the data. A library o f routines

should be built up to decipher the values.

When transforming flat files to XML, there are a couple o f approaches. First, perform

file parsing to extract the data from the flat file - reading the file a line at a time and

breaking it apart into its individual components. Then, use manual serialization, SAX,

or the DOM to produce the XML output.

Using manual serialization, the XML document, including all o f the tags and other

text that goes with an XML document, is created on the fly by appending to a string.

This approach has relatively small memory consumption, but tends to be error-prone.

For example, a start tag could be produced accidentally without a corresponding end

tag. The other problem with this approach is it forces the information to be written to

the target in the order prescribed by the target. Objects cannot be appended to the tree

at will. This requires some more sophisticated parsing approaches to obtain the

desired output, especially if the target document has many-to-many relationships.

Traditional I/O functions can be used to generate the output string or file.

Using SAX, a SAX handler is initialized and a stream o f events are sent to it, causing

it to generate an XML document. But, the start and end element events still need to be

manually generated to send to die SAX event handler. This approach is not much

-5 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

better than manual serialization. SAX also requires that the document be serialized in

the order mandated by its DTD. While this approach does not afford much better

control o f XML document serialization than creating the document manually, it is

often a good choice when creating very large XML documents.

In the DOM approach, a document tree is created using an implementation o f the

XML DOM. This approach tends to consume more memory than a simple

serialization approach, but is much less error prone. There is no risk o f accidentally

omitting a start or end tag. The random-access nature of the DOM also allows

elements to be added to the result document tree as they are processed, rather than

being required to be cached and written in the order required by the target document.

Another advantage of using the DOM is the ease o f coding. Therefore, this approach

is most suitable for most applications without particular performance and memory

requirements.

-5 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Different Approaches for Generating XML Views

6.1Architecture of Distributed Systems for Data-independence

Applications
Logic

App(ication2
Logic

Application!
Logic

CORBACORBACORBA

Network

CORBA
View3View2

(A2)

Viewl

[C2 C3B1

E2 G2]

XML Data
XML DTD

Figure 6.1 Architecture o f distributed systems for data-independence

-5 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1 shows the architecture o f our solution to the problem o f data-independence

o f distributed applications that access shared data. There are several distributed

applications in the system, Applications 1, 2 and 3, and they may be written in

different languages and reside on different platforms. These applications need to

access the shared XML data, which is distributed at another location on the network.

For the distributed applications to communicate with each other and each application

to access the shared data easily, CORBA is used to wrap the applications and the

data. As we have discussed in Chapter 4, CORBA allows distributed applications to

interoperate, regardless o f what language they are written in, or where these

applications reside. The cost o f developing applications is reduced, because the

complexity of the communication between different applications is taken care o f by

CORBA.

To improve the data-independence o f the shared XML data, different XML views are

built on top o f the XML data for different applications. Only the data or structures

that are needed by an application are selected to compose the view corresponding to

that specific application. When the structure o f the shared data changes, the views,

from the applications perspective, remain the same. Thus, the applications accessing

the shared data through the views are shielded from the changes on the structure of

the shared data.

- 5 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We propose two approaches to generate and support the XML views: the XQery/XSL

approach and the XPath Mapping approach.

6.2The XQuery/XSL Approach

In this approach, a XML view for the shared data is defined using a single XQuery or

XSL. The view could be supported by building an object as an interface of the shared

data. When a client needs to access the shared data, the client sends a request to the

interface object; this interface object calls the XQuery/XSLT engine to generate the

XML view against the shared data using the XQuery or XSL predefined for the client,

and sends the view back to the client The view is simply another XML file possibly

much smaller than the original shared data file. Then the client can further process the

XML view document using the DOM or SAX for presentation or other purposes. This

process is depicted in Figure 62.

:fori

X Q uery/X SL

Figure 6.2 Support XML view using single XQuery/XSL

- 5 6 -

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

When the structure o f the shared data changes, only the XQuery or the XSL file used

to define the XML view needs to be modified to m ain tain the view. The view

generation is carried out on the server side, so the XQueries and the XSL files to

support the views are stored on the server side. Nothing on the client applications

needs to be changed. The cost o f the modification can be minimized. For example, if

the structures o f the shared data and the view for an application look like this:

r g r \

Structure of XML document for shared data Structure of XML view

Figure 6 3 An example o f XML data and view

The XQuery that defines this view would be:

<books>

{
FOR $b IN document (book.xml) /books/book
RETURN
<book>

t$b/title>
C$b/price>

</book>
>
</books>

Listing &1 Example XQuery to generate XML view

-5 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using XSL to define the view is also simple:

<xsl:stylesheet xmlns:xsl =
http://www.w3.org/1999/XSL/Transform versions"1.0“ >

<xs 1: output method =“xml"/>
<xsl:template match ="/“>
<books><xsl: apply-templates/x/books>

< /xs 1: template>
<xsl:template match ="book">

<book>
<titlexxsl:value-of select = "title"/x/title>
<pricexxsl:value-of select = “price"/x/price>

</book>
</xsl: template>

</xsl:stylesheet>

Listing 6.2 Example XSL to generate XML view

Suppose the price here is in CAD (Canadian dollar). Now if another application using

the shared data needs the price information in both USD (US dollar) and CAD, the

structure o f the shared data may change to:

books]

book

ISBNtffle Authors price

USD CADAuthor*-'

Figure 6.4 Structure o f the XML document after change

- 5 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/1999/XSL/Transform

To maintain the views defined for different applications, we only need to modify the

XQueries and XSL files that define the views. For the example view shown in Figure

6.3, the XQuery is modified as follows: (Text in bold is modified)

<books>
{

FOR $b IN document (book.xml) /books/book
RETURN
<book>

C$b/title}
<price>

C $b/price/CAD/text()>
</price>

</book>
>
</books>

Listing 63 Modifying the XQuery

As we can see from this example, since the structure o f the price element is changed

in the XML document for the shared data, we only need to go straight to the part that

generates the price element o f the XML view and do the modification accordingly.

Locating the points in the XQuery that need to be modified is a fairly simple task, and

the modification is also straightforward.

Similarly the XSL file can also be modified easily: Only one XPath expression (the

bold text) is modified in this example.

- 5 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<xsl:stylesheet xmlns:xsl =
http://www.w3.org/1999/XSL/Transform versions"1.0* >

<xsl: output method =“xml"/>
<xsl:template match =“/">
<booksxxsl: apply-templates/x/books>

</xsl:template>
<xsl: template match ="book“>

<book>
<titlexxsl:value-of select = “title"/></title>
<price><xsl: value-of select = "price/CAD" /></price>

</book>
</xsl:template>

</xsl:stylesheet>

Listing 6.4 Modifying the XSL

This approach can generate views with totally different structure compared to the

structure o f the source data. For example, the view depicted in Figure 6.5 lists each

author in books, and the titles o f all books by that author.

authors.books

author*book.*

ISBN priceAuthors

Author

Structure of XML viewStructure of XML document for shared data

Figure 6.5 An example of a view with major difference in structure

- 6 0 -

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/1999/XSL/Transform

The XQuery that defines this view would be:

<authors>
{
FOR $a IN distinct (document (book.xml)//author)
RETURN
<author>

6.3 The XPath Mapping Approach

In this approach, the views o f the shared data do not physically exist Instead, they are

logical views defined by mappings between the XPath expressions for each node in

the structures o f the views and corresponding XPath expressions against the source

data. For example, the view3 shown in Figure 6.1 can be defined as the following

<name> {$a/text()} </name>
{
FOR $b IN document(book.xml)/books/book[author=$a]
RETURN $b/title

>
</author>

>
</authors>

Listing 6.5 XQuery to generate XML view with different structure

mapping:

-6 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

View Path Source Path

/A3 /A

/A3/B3 /A/B

/A3/C3 /A/C

/A3/B3/D3 /A/B/D

/A3/C3/H3 /A/C/F/H

/A3/C3/I3 /A/C/F/I

When a client sends an XPath query against a view o f the shared data, the query is

translated into another query using a mapping function according to the source-to-

view path mapping defined as the view. The new query is then executed against the

source data, and the result is returned to the client. Therefore, the views can be

supported by a mapping function, which performs the query transformation. To

simplify the mapping function, only absolute paths are used in the mapping. The

following are two examples o f query transformation:

/A3/C3[H3=’valuel’]/I3[2] /A/C/F{H=*vaIuel’]/I[2]

//B3[D3=,value2’] /A/B[D=’vaIue2’]

When the structure o f the shared data changes, only the corresponding source paths in

the mapping table need to be changed. For example, if an element X is added between

A and C, all source paths containing steps /A/C will be changed to paths containing

- 6 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/A/X/C. The modification is easy, and it can be done automatically by writing a

simple function to replace strings on the source paths.

In the above example, only absolute and simple paths are used in the mapping table.

I f there is a major change to the source data, we may need more complicated XPath

expressions, including relative paths and selections, to define the views. To handle

these complex XPath expressions, a more sophisticated view-to-source query

transformation function must be built.

- 6 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Guidelines for Systematically Generating XML Views for

the Initial Data

We will walk through the design o f a prototype system to demonstrate our

approaches. The prototype system is a simple Book Catalog System. The structure o f

the shared data can be depicted as following:

catalog

book

pricetitle isbncategory Authors

Author*

Figure 7.1 Structure o f the shared data for the Book Catalog System

Suppose one o f the distributed applications accessing the shared data answers queries

about price information o f a book according to the title or the ISBN o f the book.

- 6 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1Guidelines for the XQuery/XSL Approach

Step 1. Construct the XML document for storing the shared data. Using the methods

discussed in chapters, design the XML document from scratch or migrate the data

from databases or flat files according to the system requirements. The DTD for the

shared XML data o f the Book Catalog System can be constructed as following:

<?xml version="1.0" encoding= “UTF-8 '* ?>
< I ELEMENT catalog (book) + >
<£ELEMENT book (isbn, authors, price) >
< IATTLXST book title CDATA tREQUIRED

category (fiction.[nonfiction.) "fiction">
<IELEMENT authors (author)+ >
<IELEMENT isbn (#PCDATA) >
<«ELEMENT author (#PCDATA) >
<£ ELEMENT price (# PCDATA) >

Listing 7.1 DTD for the shared data for Book Catalog System

A sample document for the shared data is shown in Listing 12.

- 6 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml version=“ 1.0" encoding="UTF-8"?>
<catalog>

<book category="nonfiction" title="JAVA">
<isbn>0-13-028417-3</isbn>
<authors>

<author>Harvey Deitel</author>
<author>Paul Deitel</author>
<author>Ted Lin</author>

</authors>
<price>85.00</price>

</book>
<book category="fiction" title="Love Story" >

<isbn>0-13-02343l-5</isbn>
<authors>

<author>John Lee</author>
</authors>
<price>19.99</price>

</book>
</catalog>

Listing 7.2 A sample shared XML data for Book Catalog System

Step 2. Define the application interface using CORBAIDL. This interface includes a

function that generates XML view documents. The IDL for the prototype system is

defined in view.idl as follows:

module XMLView{

interface View {

string generateView(in string viewName);

};

};

For different applications, the function generateView will generate different XML

views according to the input viewName.

- 66-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 3. Construct the structure o f the XML view for each application according to the

application logic. For an example application, which needs to answer queries about

price information o f a book according to the title o f the book, the structure of the

XML view can be constructed as the following tree:

catalog

item+

unit
Pricetitle isbn

Figure 7.2 Structure o f the view for Book Catalog System

The DTD for this XML view is shown in Listing 7.3.

<?xml version* "1.0" encodings "tJTP-8" ?>
<1 ELEMENT catalog (item)+ >
< I ELEMENT item (title, unitPrice) >
< I ELEMENT unitPrice (#PCDATA > >
<£ ELEMENT title (#PCDATA) >
< I ELEMENT isbn (#PCDATA) >

Listing 7 3 DTD for the view for Book Catalog System

- 6 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 4. Build XQueries or XSL files to define the XML views against the shared data.

Because Xquery is still the working draft o f W3C, there is no mature engine for

XQuery. We use the XSL approach in our prototype system. The XSL file for

generating the view is shown in Listing 7.4.

<xsl:stylesheet xmlns:xsl =
http://www.w3.org/1999/XSL/Transform version=“1.0w >

<xsl:output method ="xml"/>
<xsl:template match =*/">
<cat alogxxs 1: apply- templates / >< / cat alog>

</xsl:template>
<xsl:template match =*book">

<item>
<titlexxsl:value-of select = "@title"/x/title>
<isbnxxsl:value-of select = "isbn"/x/isbn>
<unitPricexxsl:value-of select = “price"/></unitPrice>

</item>
</xsl:template>

</xsl:stylesheet>

Listing 7.4 priceViewjul—XSL file for generating the view for Book Catalog System

Step S. Generate client stubs and server skeletons from CORBA IDL. VisiBroker and

Java are used to implement our prototype system. The interface specification we

created in IDL is used by VisiBroker’s id!2java compiler to generate Java classes for

the client program, and skeleton code for the object implementation. The Java classes

are used by die client program for all method invocations. The view.idl file can be

compiled with the following command: idI2java viewidl.

- 6 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/1999/XSL/Transform

Step 6. Implement the view object on the server side. This object should inherit the

generated skeleton classes and implement the function to generate XML views. The

following java code is the important excerpts o f the view server implementation.

public class viewlmpl extends viewPOA{

public String generateView(String title) (
try {
Pile stylesheet = new Pile(title+*.xsl*);
Pile datafile = new Pile ("catalog.xml*) ;
BufferedlnputStream bis = new BufferedlnputStream (new

PilelnputStream(datafile)) ;
InputSource input = new InputSource (bis);
SAXParserFactory spf = SAXParserFactory.newlnsCancel) ;
SAXParser parser = spf.newSAXParser();
XMLReader reader = parser.getXMLReaderl);
SAXTransformerFactory stf =

(SAXTransf ormerPactory) TransformerFactory. newlns tance () ;
XMLPilter filter - stf.newXMLPilter(new StreamSource(stylesheet));
filter.setParent(reader);
StreamResult result = new StreamResultO
Transformer transformer = stf.newTransformer ()
SAXSource transformSource = new SAXSource(filter, input);
transformer.transformltransformSource, result) ;

> catch (TransformerConfigurationException tee) {

>

Listing 7.5 viewlmpl.java—Java implementation o f the view generating class

Step 7. Implement the client applications. For our example, the priceViewClient class

implements the client application, which obtains the XML view and processes die

view document using the DOM. Listing 7.6 is composed o f die excerpts o f the client

- 6 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program. The program performs die following steps: initializes the ORB; binds to a

View object; obtains the XML view by invoking generateView on the View object;

query the returned view to get the price by title or by isbn.

public class priceViewClient{
price.view.priceView _priceView;
com. borland. cx. OrbConnect orbConnectl;
String _name = “View*;
String view;

public static void main (String[] args) {
if (Iblnitialized) {
try {
org.omg.CORBA.ORB orb = null;
if (orbConnectl != null) {
orb s orbConnectl.initOrbO ;

}
if (orb == null) {
orb = org.omg.CORBA.ORB.init((String[])null,

System.getPropertiesO);
>
_priceView = ViewHelper. bind (orb, */" + _name *_poa*,

_name.getBytes());
bInitialized = true;

}
catch (Exception ex) {
ex.printStackXraceQ;

>
>

view = _priceView. generateView (“price') ;

/ / further process the string view to query the price by the title or the
isbn provided by the client using the DOM

}

>
listin g 7.6 priceViewCKentjava - Java implementation o f the client application

- 7 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 8. Implement the CORBA server to initialize the ORB, create the POA, activate

the server objects and wait for the client request. Listing 7.7 is composed of the

excerpts o f server program.

public class viewServer{

public static void main(String[] args) {
try {

String name;
System.getPropertiesO . put (‘vbroker. agent, port *, *14000*) ;
System.getPropertiesC).put ("org.omg.CORBA.ORBClass*,

"com.inprise.vbroker.orb.ORB*);
System.getProperties() .put (* org.omg.CORBA..ORBSingletonClass*,

"com.inprise.vbroker.orb.ORB*) ;

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
System.getPropertiesO);

POA poaRoot =
POAHelper.narrow(orb.resolve_initial_references(* Root POA*)) ;

name = “View*;
org.omg.CORBA.Policy[IViewPolicies = {
poaRoot. create_lif espan_policy (Lif espanPolicyValue. PERSISTENT)

>;
POA poaView = poaRoot.create_POA(name +■ *_poa*,

poaRoot. the_POAManager (),
ViewPolicies);

poapriceView.activatei_object_witb_id(name.getBytes(). new
Viewlmpl ());

poaRoot.the_POAManager().activateC);
orb.run();

}
catch (Exception ex) {
System, err.println (ex);

}
>

1

Listing 7.7 viewServer.java—Java implementation o f the CORBA server

-71 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2Guidelines for XPath Mapping Approach

Step 1. Construct the XML document for storing the shared data. (Same as the

XQuery/XSL approach)

Step 2. Define application interface using CORBA IDL. The interface includes the

functions performing the client queries, each o f which corresponds to an XPath query

to the XML data. The IDL for the prototype system is defined in mappingView.idl:

module view {

interface priceView {

string priceByTitle(in string title);

string priceByISBN(in string isbn);

};

};

Step 3. Construct the structure o f the XML view for each application according to the

CORBA IDL and the application logic. From the IDL defined in step2, we know that

the application needs the title, isbn and price information o f the books in the catalog.

Then we can construct the structure o f the XML view for this application. The tree

representation o f the view is the same as shown in Figure 7.2.

- 7 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 4. Define XML view as the mapping between die XPath expressions against the

source data and those against the view. The mapping for the Book Catalog System

can be defined as following:

View Path Source Path

/catalog /catalog

/catalog/item /catalog/book

/catalog/item/title /catalog/book/@title

/catalog/item/isbn /catalog/book/isbn

/catalog/item/unitPrice /catalog/book/price

This mapping can be stored as an XML file shown in Listing 7.8.

<?xml versions“1.0* encodings■UTF-8*?>
<mapping>
<mapPair>
<view>/catalog</view> <source>/catalog</source>

</mapPair>
<mapPair>
<view>/catalog/item</view> <source>/catalog/book</source>

</mapPair>
<mapPair>
<view>/catalog/item/title</vie»r> <saurce>/catalog/book/#ticle</source>

</mapPair>
<mapPair>
<view>/cacalog/icem/isim</view> <source>/ catalog/book/ isbn</source>

</mapPair>
<mapPair>
<view>/catalog/ i tem/unitPrice</view> <source>/cacalog/booic/price</source>

</mapPair>
</mapping>

Listing 7.8 priceViewjcml - XPath mapping stored as XML file

- 7 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step S. Generate client stubs and server skeletons from CORBA IDL. (Same as the

XQuery/XSL approach) The mappingViewidl file can be compiled with the

following command: idl2java mappmgViewidL

Step 6. Implement the view object on the server side. This object should inherit the

generated skeleton classes and implement the function to transfer XPath expressions

according to the XPath mapping. The following java code is the priceView server

implementation for Book Catalog System.

package viewServer. view, server

import java.sql.*;
import java.util.*,-
import j ava. math. *

import org.omg.PortableServer.’;

import java.io.*;
import java.util.*;

import org.w3c.dom.*;
import javax.xml.parsers.*;
import org. apache. crimson. tree. XmlDocument;

import org .xml. sax.*;
import org .xml .sax.helpers .Defaultffandler;

import com, fatdog. text Engine .XmlBngine;
import com. fatdog. textEngine.query.ResultListener;
import com, fatdog. textEngine.exceptions. * ;
import com.borland. jbuilder.xml.database.template.*;
import com. borland. jbuilder .xml. database .xml dims. * ;

public class priceViewImpl extends price.view.priceViewPQA
implements Resul tLi stener{

Document document;

- 7 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hashtable mapping?
final String viewName = “viewVVpriceView.xml* ;

String XML_FXLE = “catalog.xml*;
String query?
xmiEngine engine?
int maxHits?
String query Re suit = “No result*?

String _name = "priceView*?

private void tablelnit () {
mapping = new Hashtable () ?

DocumentBuilderFactory factory = DocumentBui IderPactory. newlnstance () ?
factory.setValidating(true)?
factory. setlgnoringBlementContentWhitespace (true) ?
try {
DocumentBuilder builder - factory.newDocumentBuilder () ?
document = builder, parse (new File (viewName)) ?

} catch (SAXException se){
se.printstackTraceO?

}catch (ParserConfigurationBxception pee) {
pee.printstackTraceO ?

} catch (IOException ioe) {
ioe.printStackTraceO ?

>
Element root = document.getDocumentElement() ?
NodeList mapPairs = root.getElementsByTagNameC’view”);

for (int i=0? i<mapPairs.getLength!) ? i++) (
String view = mapPairs.item(i) -getFirstChildO .getNodeValueO ?
String source =

mapPairs.item(i) .getNextSiblingO .getFirstChildO .getNodeValueO ?
mapping.put(view, source)?

}
>

private void enginelnitt) {
engine = new XmlEngine()?
engine.setListenerType(XmiEngine.STANDARD_LISTENER) ?
engine. setMaxHits(200)?
engine.addResul tr,i stener(this)?

-7 5 -

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

engine.setDoFullText t true); If Che default
SAXParserFactory spf = SAXParserFactory. nevlnstance ()
try
{ // Che SAX parser of choice (muse be sec)

SAXParser parser = spf. newSAXParser () ;
XMLReader reader = parser.getXMLReader ();
engine.setXMLReader t reader);
// index the document(s) of choice
engine, set Document (XML_FILE) ;

}catch (ParserConfiguracionException pee){
pee.printStackTrace() ;

)
catch (SAXParseException spe){
System, out. princlnC’Xn** Parsing error*
* *, line * * spe.getLineNumberO
+ *, uri * spe.getSystemldO);

System.out.printlnC ■ ♦ spe.getMessage());
Exception x = spe;
if (spe.getException() •= null)
x = spe. getException ()

x.princStackTrace() ;) catch (SAXException sxe) {
Exception x = sxe;
if (sxe.getException () >= null)
x = sxe.getException();

x. princStackTrace();
)
catch (MissingOrlnvalidSaxParserException e) {

System.out .println (“Missing or invalid SAX parser") ; return;
)
catch(FileNotFoundException e) {

System, out .println (’Couldn’t find the XML filet * * e. getMessage ());
return;

1
catch(CantParseDocumentException e) {

System.out.println(’Couldn’t parse the XML file: * + e.getMessage());
return;

)
>
public void results (String results) {

query Result = results;
}
public priceViewImpl() t

tablelnicP;
engineZnitO ;

}

- 7 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//Method queryToSource is the mapping function, which translates queries to the
view

//into queries to the source data
private void queryToSource {) {

>

public String priceByTitle (String title) {
query = • /bib/book [titles*1"* + title +• *’1 /price* r
queryToSource()
try {

engine. setQuery (query)
}
catch(InvalidQueryException e)
{

queryResult = e.getMessage!);
i

return queryResult;
>

public String priceByISBN (String last. String first) {

}
)

Listing 7.9 priceViewImpLjava — Java implementation o f the view supporting class

Step 7. Implement the client applications and the CORBA server. (Same as the

XQuery/XSL approach)

- 7 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 Guidelines for Systematically Modifying the System After

Changes

8.1Guidelines for XQuery/XSL Approach

In this approach, a view for the shared data is implemented as a single XQuery or an

XSL file. When the structure o f the shared data changes, we only need to modify the

XQueries or the XSL files representing the views for the distributed applications. If

the changes on the structure o f the shared data do not affect the XPath expressions

used in the XQuery or XSL file for generating a view, that specific view does not

need to be modified at all. Therefore, to modify the system after changes, first,

compared the new structure o f the shared data with the original one, and identify the

views that are affected by the changes on the structure o f die shared data. Then

modify the Xqueries or XSL files accordingly to generate the same views from the

changed data as we have discussed in chapter 6.

8.2GuideIines for XPath Mapping Approach

In this approach, a view for the shared data is represented using a mapping between

die XPath expressions against the view and those against the source data. Similar to

die XQuery/XSL approach, first, we need to identify the views that are affected by

- 7 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the changes on the shared data. Then for the views that need to be modified, we can

check the mapping tables representing the views and modify the XPath expressions

against the source data that are affected by the changes on the shared data

accordingly. We have given examples o f the modification in chapter 6.

- 7 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 Analysis o f W ork Done and Results

9.1 Comparison of the Two Approaches Proposed

One important advantage o f the single XQuery/XSL approach is its simplicity. The

idea is straightforward, so it is easy to understand and implement The problem with

this approach is that the view must be generated in a batch mode — the whole XML

document must be processed to construct the view each time when a request comes. It

is very inefficient especially when the size o f the shared data is huge. Moreover, the

view document is physically generated and being sent to the client through the

network, so the cost for file transfer would be very expensive if the size of the view

document is not trivial and the data is accessed frequently.

For some applications (e.g. University Course Information System) that don't require

high up-to-date concurrency o f the shared data and the shared data is not updated very

frequently, a simple improvement can be made to this approach for efficiency. A

copy of the view document can be stored on the client machine. Instead of waiting for

the server to generate the view and send it over the network each time a client

requests the shared data, the client uses the local copy o f the view document directly.

Then the local copy o f the view document is updated on a schedule (hourly, daily or

weekly) depending on the requirements o f the applications, or it can be updated each

time the shared data is updated if the updated frequency o f the shared data is low.

- 80 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, this approach is not suitable for other applications (e.g. transaction

applications) that require high accuracy o f the shared data and the shared data is

updated frequently.

The XPath mapping approach is more efficient compared to the single XQuery/SXL

approach because no batch transformation is involved. Only the data needed to

answer the client query is retrieved and sent to the client instead o f the whole view.

This approach is more suitable for the applications that require high performance.

From the perspective o f software engineering, the XPath mapping approach supports

stronger data typing than the single XQuery/SXL approach. The CORBA IDL for the

XQuery/SXL approach exposes very little type information about the data. A client

only need to provide the name o f the view to get the physical view generated, and the

data is sent to the client in plain text. Further processing of the view data is performed

on die client side, while in the XPath approach, strong typing is enforced by more

specific methods defined in IDL. More data processing is done on the server side, and

only data points that are o f to the interest o f the client are extracted and sent back to

the client

After changes to the DTD o f the shared XML data, the XQueries or XSL files

representing the affected views need to be identified and modified accordingly in the

XQuery/XSL approach, while in the XPath approach, the affected XPath expressions

against the original data need to be changed. Since these XPath expressions are all

- 81 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gathered in the mapping files defining the views, it is quite easy to make the process

of identifying the affected expressions and performing the modifications automatic.

Therefore, making modification after changes is easier in the XPath approach than in

the XQuery/XSL approach.

9.2 Analysis of Using XML and Views to Improve Data-independence

XML provides a neutral syntax for describing graph-structured data as nested, tagged

elements. Because developers can transform diverse data structures into such graphs,

XML along with XPath, XSLT and XQuery provides a means to construct XML

documents to store shared data for distributed applications and build XML views for

different applications. With the views on top of the shared data, changes to the DTD

of the shared data can be made without requiring changes to applications that access

the data through the views. Hence, the modification the system after changes of the

structure of the shared data is minimized and data-independence is improved.

One obvious advantage to XML is that it provides a way to represent structured data

without any additional information. Because this structure is inherent in the XML

document rather than needing to be driven by an additional document that describes

how the structure appears as that in a database or a flat file, it becomes very easy to

send structured information between systems. Since XML documents are simply text

files, they may also be produced and consumed by legacy systems allowing these

- 82 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems to expose their legacy data in a way that can easily be accessed by different

consumers.

Another advantage to the use o f XML is the ability to leverage tools that use XML to

drive more sophisticated behavior. A vibrant XML marketplace is providing

inexpensive tools for preparing, validating and parsing XML data. XML’s strong base

of freeware and commercial tools affords flexibility at greatly reduced development

costs.

These advantages provide generic operations on XML data, which avoids narrowly

tailoring software for a given set of data. This in turn reduces the coupling between

the applications’ logic and the structure of the shared data and improves data-

independence o f the system.

However, relational databases will perform better than XML documents. This means

that for many internal uses, if there are no network or usage barriers, relational

databases will be a better storage for the data than XML.

93 Element Vs. Attribute in Data Modeling Using XML

This is the issue that has caused the most heated debate m the XML area. We have

discussed data modeling using XML for the shared data in Chapter 5. Both elements

- 8 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and attributes can be used to represent data values when modeling the shared data.

The following comparisons summarize our findings on this issue in the thesis work.

93.1 Compatibility with databases

In relational database, content (data values), and structure are totally different

Structure is represented with tables and relationships, and data values are represented

with columns. In XML, if we use text-only elements to represent data values, we lose

this clear distinction. Sometimes elements represent structure, and other times they

represent content. Any code that is parsing these structures must be aware which

element represents data and which represents structure, and must handle it

appropriately. However, if we use attributes for data values, structure and content are

separate and distinct Structure is represented by the elements and the way they are

nested, while content is represented in attributes.

In addition, attributes are unordered. They are identical from the perspective of an

XML parser, and the parser does not attach any particular importance to the order in

which attributes are encountered in the original document. This is similar to the way a

relational database works, where the meaning o f a data value is simply indicated by

its name, and not a combination of its name and location. While element order has

meaning for documents, it loses importance when representing data. Thus, the

ordering o f elements just adds unnecessary complexity.

- 8 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 J.2 Data typing

When using DTD to define the content o f XML structures, there is little scope for

strong data typing. The one exception would be the ability to constrain attributes to a

particular list o f allowable values. However, if the data value is expressed as an

element, there is no similar way to limit these allowable values.

9.33 Document size

When an element is used to describe a data value, three things appear in the serialized

XML document: the start tag, the data value, and the end tag. For example:

<titIe>Java</title>

However, when an attribute is used to describe a data value; the attribute name, the

equals sign, the quotes, and the attribute value are required:

title=”Java”

It is obvious that repeating the name of the data value in the end element tag increases

the size o f the document, compared with the size o f the document when an attribute is

used to represent the data value. As a result, more disk space will be consumed by the

documents and more network bandwidth will be consumed when transmitting files

using elements than when using attributes.

Therefore, attributes are better suited to the representation o f data values than text-

only elements are. Attributes are best suited when only one value is to be expected

- 8 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

whereas elements are necessity when multiple values are needed. An example is that

an <authors> element can contain multiple <author> elements.

9.4 Integration of CORBA and XML

In this thesis work, we proposed approaches to build complex distributed software

system based on the integration o f CORBA and XML. CORBA provides a scalable

infrastructure to distributed systems, allowing systems on heterogeneous platforms to

communicate through commonly defined services. CORBA makes the components in

the systems portable. XML and its related technologies provide a neutral syntax for

storing the shared data and standard operations for accessing the data. XML supports

portable data for distributed systems. CORBA and XML are complimentary

standards; the integration o f than is powerful for building flexible, scalable and low

maintenance distributed systems.

- 86 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 Conclusions

10.1 The Defense of the Thesis

The thesis statement o f this work is:

“XML views to support data-independence o f distributed computing applications can

be generated systematically from application logic, CORBA EDL and the XML

DTD.”

We have proved the thesis statement by providing a framework for building

distributed computing applications that access shared data, presenting a methodology

for modeling the shared data using XML, and developing systematic ways for

generating XML views to support data-independence o f the system and modifying the

system after changes to the structure o f the shared data according to the application

logic, CORBA IDL and the XML DTD. A prototype system was implemented to

demonstrate the effectiveness of our approaches.

The framework and approaches proposed in this thesis work provide distributed

applications with transparent access to shared data from heterogeneous sources, and

make it easy to design, implement and maintain the system.

-8 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.2 Problems and Future work

XML is a rather new standard, and some of the technologies related to it are not

stable yet As we have mentioned in chapter 3, XPath is intended primarily as a

component that can be used by other specifications, so there is no independent

product for processing XPath expressions. XQuery is now the working draft of W3C,

and it is still changing. A mature XQuery engine product has not come out yet

Therefore, our prototype system only implemented some very basic functions using

very simple XPath expressions. However, the importance of the independent

existence o f XPath has been realized; thus, XPath processors are expected to emerge

very soon.

The approaches presented in this thesis only deal with queries to the shared data

because XPath, XSLT and XQuery are all query languages for XML documents, and

none o f them handle updates to the data. Therefore, the research on the updates o f the

shared data could be the future direction o f our work.

- 88 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[ABIT97] S. Abiteboul, BL Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views for

Semistructured Data. Proceeding? o f the Workshop on Management o f

Semistructured D ata Tucson, Arizona, May 1997.

[ABIT98] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wiener. Incremental

Maintenance for Materialized Views over Semistructured Data. Proceedings o f the

Twenty-Fourth International Conference on Very Large Databases, New York,

August 1998.

[ADLE01] S. Adler and A. Bergiund. Extensible Stylesheet Language (XSL) 1.0, W3C

Recommendation. http://www.w3.org/TR/xsI/

[ANDE99] R. Anderson, M. Birbeck, M. Key and S. Livingstone. Professional XML.

Wrox Press Ltd., 1999.

[BARA97] A. Baratloo, M. Karaul, H. Karl, and Z. Kedem. KnittingFactory: An

Infrastructure for Distributed Web Applications. Technical Report TR 1997-748,

Deptartment of Computer Science, New York University, New York, NY, November

1997.

[BARU99] C. Bara et aL XML-based Information Mediation with MDC. In

Demonstrations Program ofAC M SIGMOD C orf, 1999.

-8 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/xsI/

[BERG98] K. Bergner, A. Rausch, M. Sihling, and A. Vilbig. An integrated view on

componentware - concepts, description techniques, and development process. In

Roger Lee, editor, Software Engineering : Proceedings o f the LASTED Conference

'98. ACTA Press, Anaheim, 1998.

[CHAM99] D. Chamberlin, J. Robie, and D. Florescu. Quilt: an XML Query Language

for Heterogeneous Data Sources. See

“http://www.almaden.ibm.com/cs/peopIe/chamberlin/quilt_lncs.pdf’.

[CHAW98] S. Chawathe, S. Abiteboul, and J. Widom. Representing and Querying

Changes in Semistructured Data. Proceedings o f the Fourteenth International

Conference on Data Engineering, Orlando, Florida, February 1998.

[CHUN97] E. Chung, Y. Huang S. Yajnik, D. Liang J. C. Shih, C. Wang and Y. Wang

DCOM and CORBA Side by Side, Step by Step and Layer by Layer. November

1997, http://www.bell-labs.com/~emeraId/dcom-corba/PaperJitml.

[CLUE99] S. Cluet, S. Jacqmin, and J. Simeon. The New YATL: Design and

Specifications. Technical Report, ENRIA, 1999.

- 9 0 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.almaden.ibm.com/cs/peopIe/chamberlin/quilt_lncs.pdf%e2%80%99
http://www.bell-labs.com/~emeraId/dcom-corba/PaperJitml

[DEUT98] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query

Language for XML. See http://www.research.att.com/~mfFfiles/final.html

[EWAL96] Alan Ewald and Made Roy. Choosing Between CORBA and DCOM. Object

Magazine 6 ,8 (October 1996): 24-30.

[GAMM94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements o f Reusable Object-Oriented Design. Addison-Wesley, 1994.

[GOLDOO] R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML:

Migrating the Lore Data Model and Query Language. Markup Languages: Theory &

Practice, 2(2), 2000.

[KRIE98] David Krieger and Richard M. Adler. The Emergence of Distributed

Component Platforms. Computer, Vol. 31, No. 3, March 1998, pp. 43-53 .

[LAHI99] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrating Structured and

Semistructured Data. Proceeding o f the Seventh International Conference on

Database Programming Languages, Kinloch Rannoch, Scotland, September 1999.

[MATJ99] MaQ'az B. Juric, Ivan Rozman and Marjan Hericko. A Method for Integrating

Legacy Systems within Distributed Object Architecture. Proceeding? o f the

- 9 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.research.att.com/~mfFfiles/final.html

international conference on enterprise information systems, Setubal, Portugal, March

27-30,1999

[MCHU99] J. McHugh and J. Widom. Query Optimization for XML. Proceedings o f the

Twenty-Fifth International Conference on Very Large Data Bases, pages 315-326,

Edinburgh, Scotland, September 1999.

[MERL96] P. Merle, C. Gransart, and J.Geib. CorbaWeb: A WWW and Corba Worlds

Integration. In The 2th COOTS, Workshop on Distributed Object Computing on the

Internet, Toronto, Canada, June 1996.

[ORFA96] R. Orfali, D. Harkey, and J. Edwards, The Essential Client/Server Survival

Guide. Wiley and Sons, 1996.

[POUR98] G. Pour. Developing Web-Based Enterprise Applications with Java,

JavaBeans, and CORBA. Proceedings o f the 3 ’ World Conference o f the Www,

Internet, and Intranet (WebNet), 1998.

[ROBI98] J. Robie, J. Lapp, D. Schach. XML Query Language (XQL). See

http://www.w3.org/TandS/QL/QL98/pp/xqI.htmI.

[SERG97] Serge Abiteboul, Dalian Quass, Jason McHugh, Jennifer Widom, and Janet L.

Wiener. The Lorel Query Language for Semistructured Data. International Journal

- 9 2 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TandS/QL/QL98/pp/xqI.htmI

on Digital Libraries* l(l):68-88, April 1997. See http://www-

db.stanford.edu/~widom/pubsJitnil

[SUZU99] J. Suzuki and Y. Yamamoto. Toward the Interoperable Software Design

Models: Quartet o f UML, XML, DOM and CORBA. Proc. fourth IEEE International

Software Engineering Standards Symposium* IEEE Press, to appear, 1999.

[STEV97] Steve Vinoski, CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments, IEEE Communications Magazine* vol. 14, no. 2,

February 1997.

[XMLOO] World Wide Web Consortium. Extensible Markup Language (XML) 1.0

(Second Edition). W3C Recommendation* 6 October 2000. See

http://www.w3.org/TR/2000/WD-xml~2e~20000814.

[XPath99] World Wide Web Consortium. XML Path Language (XPath) Version 1.0.

W3C Recommendation* Nov. 16,1999. See http://www.w3.arg/TR/xpathJitml

[XSLT99] World Wide Web Consortium. XSL Transformations (XSLT). W3C

Recommendation. Available at http://www.w3.org/TR/xsit.

[YANG96] Z. Yang and K. Duddy. CORBA: A Platform for Distributed Object

Computing Operating System Review* ACM, 30(2):pages4—31, April 1996.

-9 3 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
http://www.w3.org/TR/2000/WD-xml~2e~20000814
http://www.w3.arg/TR/xpathJitml
http://www.w3.org/TR/xsit

APPENDIX: Program List

/ * *
* Copyright (c) 2001
* IDL Source File view.idl
* Abstract: CORBA server application..
* Aversion 1.0
* /

package viewServer;
import viewServer.view.server.*;
import javax.swing.UIManager;
import java.awt.*;
import org.omg.PortableServer.*;
public class viewServerApp {

boolean packFrame = false;

public viewServerApp() C
ServerFrame frame = new ServerFrame();
if (packFrame)
frame.packO ;

else
frame.validateO ;

Dimension screenSize = Toolkit.getDefaultToolkitO .getScreenSizeO ;
Dimension frameSize = frame.getSizeO ;
if (frameSize.height > screenSize.height)
frameSize. height = screenSize. height;

if (frameSize.width > screenSize.width)
frameSize. width = screenSize .width;

frame.setLocation((screenSize.width - frameSize.width) / 2,
(screenSize.height - frameSize.height) / 2);

frame.setVisible(true)
}

public static void main(String[] args) {
try {

UIManager.setLookAndFeel (“ com. sun. java. swing, plaf .windows .WindowsLookAn
dFeel*);
/ /UIManager. setLookAndFeel (UIManager. getSys temLookAndFeelClassName ()) ;
//UIManager.setLookAndFeel(*javax.swing.plaf .metal.MetalLookAndFeel*);
/ /UIManager. setLookAndFeel (* com. sun . Java. swing .plaf .motif .Mo tif LookAndF
eel*);
/ /UIManager. setLookAndFeel (* com. sun . j ava . swing .plaf. windows . WindowsLook
AndFeel*);

}

-9 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

catch. (Exception ex) {
>new viewServerApp ();
try (
3 ava.util.ResourceBundle res = j ava. util.ResourceBundle.getBundle (“viewServer .view, server. ServerRes our

ces’);
String name;
//(debug

support) System. getPropertiesO.put("vbroker.agent.debug*, "true");
/ / (debug support) System.getProperties () .put {"vbroker. orb .warn*.

" 2 ") ;

if (System.getPropertiesO .get("vbroker.agent.port*) == null) {
System.getPropertiesO.put{*vbroker.agent.port*, *14000");

>if (System.getPropertiesO .get(*org.omg.CORBA.ORBClass") == null)
{ System.getProperties() .put("org.omg.CORBA.ORBClass“,
" com. inprise.vbroker.orb.ORB*);

}i f (System. getProperties () . get (* org. omg. CORBA. ORBSingletonClass •)
== null) {

System. getProperties () .put (* org. omg. CORBA. ORBSingletonClass *,
"com.inprise.vbroker.orb.ORB");

}

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args.
System.getPropertiesO);

POA poaRoot =
POAHelper.narrow(orb.resolve_initial_references(*RootPOA")) ;

name = "priceView";
org.omg.CORBA.Policy □ priceViewPolicies = (
poaRoot.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)

>;POA poapriceView = poaRoot.create_POA(name + *_poa“,
poaRoot. the_POAManager (),
priceViewPolicies);

poapriceView.activate_ob3ect_with_id(name.getBytes (), new
priceViewImpl());
ServerMonitor. log (ServerResources. format (res .getString (" created*),
"viewServerApp. j ava priceView")) ;

poaRoot. the_POAManager () . activate () ;
ServerMonitor. log (ServerResources. format (res .getString (* isReady*),
“viewServerApp. j ava view")) ;

orb.run() ;
>catch (Exception ex) C
System.err.println(ex) ;

>

}

-9 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>

/ * *
* Abstract: Server application, frame which, is the container for the

Server Monitor.
* /

package viewServer. view. server ;
import java.awt.*;
import java.awt.event.*;
public class ServerFrame extends javax.swing.JFrame {

BorderLayout borderLayoutl = new BorderLayout () ;
ServerMonitor ServerMonitor = new ServerMonitor () ;
public ServerFrame () {

enableEventS(AWTEvent-WINDOW_EVENT_MASK);
try {
jblnit();

}catch (Exception e) {
e.printStackTrace{);

>
}

private void jblnit() throws Exception {
this.getContentPane () .setLayout (borderLayoutl);
this.setSize(new Dimension(600, 300));
this.setTitle("view server*);
this.getContentPane() .add(ServerMonitor) ;

}

protected void processWindowEvent (WindowEvent e) {
super .processWindowBvent (e) ;
if (e.getXDO == WindowEvent.WlNDOW_CLOSING) C
System.exit(0);

>
>

}

f - k i t

* Abstract: Maintains the server log and is the container for all the
Server Monitor pages.

* /

package viewServer. view. server;
import java.awt.*;
inport java.text.*;
public class ServerMonitor extends javax. swing.JPanel {

static com.borland.dbswing.JdbTextArea myLog = null;
static ServerMonitor monitor;

- 9 6 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j ava.util.ResourceBundle res =
j ava.util.ResourceBundle.getBundle(■viewServer.view, server.ServerResour
ces") ;
BorderLayout borderLayoutl = new BorderLayout ();
BorderLayout borderLayout2 = new BorderLayout () ;
GridBagLayout gridBagLayoutl = new GridBagLayout () ;
javax. swing. JTabbedPane tabPanell = new javax.swing.JTabbedPane() ;
javax.swing.JPanel panell = new j avax. swing. JPanel () ;
BorderLayout moduleBorderLayoutView = new BorderLayout () ;
javax. swing. JPanel panelView = new j avax. swing. JPanel () ;
com.borland.dbswing. JdbTextArea textview = new

com. borland. dbswing. JdbTextArea () ;
javax. swing. JScrollPane scrollView = new j avax. swing. JScro 11 Pane () ;
j ava. util .Vector pagesToRefresh = new java.util .Vector () ;
public ServerMonitor() {
monitor = this;
try C
jblnit();

>catch (Exception ex) {
ex.printStackTrace() ;

}

private void jblnit() throws ExceptionC
this.setLayout(borderLayoutl);
this.add(panell, BorderLayout.CENTER);
panell. setLayout (borderLayout2) ;
panell.add(tabPanell, BorderLayout.CENTER);
textview.setEnabled(true) ;
panelView. setLayout (moduleBorderLayoutView);
scrollView.getViewport() .add(textview) ;
panelView. add (scrollView, BorderLayout. CENTER);
myLog = textview;
tabPanell. addTab (ServerResources. format (res. getString {* logTitie ■),

"view*), panelView) ;
tabPanell. setSelectedComponent (p«uaelView) ;

>

private void addPage(ServerMonitorPage page. String name) {
tabPanell.addTab(name, page);
pagesToRefresh.addElement (page) ;
/ /panell. updated () ;
//tcibPanell.setEnabledAt(0, true);

p r iv a t e s t a t i c ServerFram e c re a te F ra m e () (
ServerFram e fram e = new ServerFram e () ;
fram e .p a c k () ;
D im ension s c re e n S ize = T o o lk i t .g e t D e f a u l t T o o lk i t () .g e tS c re e n S iz e O
D im ension fra m e S ize = f ra m e .g e tS iz e O ;
i f (f ra m e s iz e . h e ig h t > s c re e n S iz e .h e ig h t)

f ra m e S iz e .h e ig h t = s c re e n S iz e .h e ig h t;
i f (f ra m e S iz e .w id th > s c re e n S iz e .w id th)

- 9 7 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frameSize .width = screenSize.width;
frame.setLocationt(screenSize.width - frameSize.width) / 2,

(screenSize.height - frameSize.height) / 2) ;
frame.setvisible(true);
return(frame);

>

protected static void ensureFrame() (
if (ServerMonitor.monitor == null) {
ServerMonitor .monitor = new ServerMonitor {);
ServerFrame frame = createFrame ();
frame.getContentPaneO .add(ServerMonitor.monitor) ;

}
}

public static synchronized ServerMonitorPage addPage(Object obj,
String name) {

ensureFrame();
ServerMonitorPage page = new ServerMonitorPage (obj) ;
ServerMonitor.monitor.addPage(page, name);
return page;

>

public static synchronized void log(String str) {
if (myLog != null) {
DateFormat df = DateFormat. getDateTimelns tance (DateFormat. SHORT,

DateFormat.LONG);
myLog. append (df. format (new j ava. util. Date {)) + * * + str +

System.getProperty("line.separator"));
>

}
>

/ * ** Abstract; Implements a Server Monitor page to display interface
counters.
* /

package viewServer.view.server;
import java.awt.*;
public class ServerMonitorPage extends j avax.swing.JPanel {

j ava.util.ResourceBundle res =
j ava. ut il. ResourceBundle. getBundle (* viewServer. view, server. ServerResour
ces *);
GridBagLayout gridBagLayoutl = new GridBagLayout ();
GridLayout gridLayoutl = new GridLayout(1, 2, 3, 0);
javax. swing. JPanel panelOuterl = new j avax. swing. JPanel () ;
javax. swing. JPanel panelObjectsl = new j avax. swing. JPanel ();
com. borland. dbswing. JdbLabel labelObj ectsl = new

com. borland. dbswing. JdbLabel () ;
com. borland. dbswing. JdbTextField textObjectsl = new

com.borland.dbswing.JdbTextFieldO;

-9 8 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int objectsCounter = 0;
Obj ect monitoredObj ec t;

public ServerMonitorPage(Object obj) {
monitoredObject = obj;
try {
jblnit();

>

catch. (Exception ex) {
ex.printStackTrace();

>
}

private void jblnit() throws Exception{
panelOuterl.setLayout(gridBagLayoutl);
panelObjectsl.setLayout(gridLayoutl);
textobj ectsl.setEnabled (false);
labelObjectsl.setText (res.getString(“numberObjects")) ;

labelObj ects1. set Hori zontalAlignment (j avax. swing. SwingCons tant s. RIGHT)
panelObjectsl.setvisible(false);
panelObjectsl.add(labelObjectsl);
panelObjectsl.add(textobjectsl);
panelOuterl.add(panelObjectsl,
new java.awt.GridBagConstraints(1, 2, 2, 1, 1.0, 1.0,

j ava. awt. GridBagConstraints. NORTH,
j ava. awt. Gr idBagCons traint s. HORIZONTAL,

new Insets(3, 0, 3, 3), 0, 0));
add(panelOuterl);

}

public void showObjectCounter(boolean bvisible) {
refresh();
panelObjectsl. setVisible(bvisible) ,-

}

public synchronized void updateObj ectCounter(int n) {
objectsCounter += n;
textob jectsl. setText (String. valueOf (objectsCounter)) ;

}

public void refresh () {
textob jectsl. setText (String. valueOf (objectsCounter));

y
y

package price;
import j avax. swing. UIManager ;
import java.awt.*;
public class checkPrice {

- 9 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

boolean packFrame = false;
/♦♦Construct the application^/
public checkPrice C) {

Frame2 frame = new Frame2();
frame.setTitle(* Price Client");
//Validate frames that have preset sizes
//Pack frames that have useful preferred size info, e.g. from their

layout
if (packFrame) {

frame .pack () ;
>else {
frame.validate();

}//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSizeO ;
if (frameSize.height > screenSize.height) {
frameSize. height = screenSize.height;

}if (frameSize.width > screenSize.width) {
frameSize.width = screenSize.width;

>frame.setLocation((screenSize.width - frameSize.width) / 2,
(screenSize.height - frameSize.height) / 2);

frame.setvisible(true);
>
/♦♦Main method^/
public static void main(StringU args) {

try {
UIManager. setLookAndFeel (UIManager .getSystemLookAndFeelClassName ()) ;

}
catch (Exception e) {

e.printStackTrace();
}
new checkPrice();

>

}

package price;
import java.awt.^;
import j ava.awt.event.*;
import javax.swing.♦;
import com.borland.jbcl.layout.♦;
import java.io.^;
import org.w3c.dom.♦;
import org.xml.sax.♦;
import javax.xml.parsers.♦;
import org. apache. crimson. tree. XmlDocument ;

- 100-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

public class Frame2 extends JFrame {
JPanel contentPane;
BorderLayout borderLayoutl = new BorderLayout();
JTabbedPane j TabbedPanel = new JTabbedPane () ;
JPanel byTitle = new JPanel();
JPanel byAuthor = new JPanel ();
JLabel title = new JLabel();
XYLayout xYLayoutl = new XYLayout();
JTextField jTextTitle = new JTextPieldO;
JButton checkPriceByTitle = new JButtonO;
JScrollPane j ScrollPanel = new JScrollPane();
JLabel result = new JLabel();
JTextArea jText Areal = new JTextArea() ;
JLabel first = new JLabel C) ;
XYLayout xYLayout2 = new XYLayout () ;
JTextField jTextFirst = new JTextField{);
JLabel last = new JLabel () ;
JTextField jTextLast = new JTextField () ;
JButton checkPriceByAuthor = new JButtonO;
JScrollPane jScrollPane2 = new JScrollPane();
JLabel result1 = new JLabel();
JTextArea jTextArea2 = new JTextArea()
priceViewClientlmpll pvc;
/♦•Construct the frame*/
public Frame2() {

enableEventS(AWTEvent.WXNDOW_EVENT_MASK);
try {
jblnit();
pvc = new priceViewClientlmpll();

>
catch(Exception e) {
e.printStackTraceO;

}
}/ * ♦Component ini tialization^ /
private void jblnit () throws Exception {

//setlconlmage(Toolkit.getOefaultToolkit().createlmage(Frame2 .class.get
Resource(*[Your Icon]*)));

contentPane = (JPemel) this.getContentPane() ;
contentPeme. setLayout (borderLayoutl) ;
this.setSize(new Dimension(400. 300));
this.setTitie("Frame Title');
title.setText{'Title');
byTitle.setLayout (xYLayoutl) ;
checkPriceByTitle.setText('Check Price');
checkPriceByTitle. addActionListener (new

java.awt.event.ActionListenerO £
public void actionPerformed(ActionEvent e) C
checkPriceByTitle_actionPerformed(e) ;

>
}) ;result.setText('Result');
first.setText('First Name');

- 101 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

byAuthor. setLayout (xYLayout2) ;
last.setText(*Last Name*);
checkPriceByAuthor.setText C * Check Price*);
checkPriceByAuthor. addActiouListener (new

java.awt.event.ActionListenerO C
public void actionPerformed (ActionEvent e) (

checkPriceByAuthor_actionPer£ormed(e) ;
>

}) ;resultl.setText("Result*);
jTabbedPanel.add (byTitle, "ByTitle”};
byTitle.add(title, new XYConstraints(33, 35, 43, -1));
byTitle.add(jTextTitle, new XYConstraints(92, 33, 286, 22));
byTitle.add(checkPriceByTitle, new XYConstraints(132, 74, 132,

25)) ;
byTitle.add(jScrollPanel, new XYConstraints(38, 131, 331, 115));
byTitle.add(result, new XYConstraints(30, 98, 56, 28));
jTabbedPanel.add(byAuthor, 'By Author*);
j ScrollPanel. getviewport () . add (jTextAreal, null);
byAuthor. add (first, new XYConstraints(19, 63, -1, -1));
byAuthor.add(jTextFirst, new XYConstraints(107, 57, 218, 26));
byAuthor.add(last, new XYConstraints(15, 26, 62, 18));
byAuthor.add(jTextLast, new XYConstraints(107, 16, 217, 30));
byAuthor.add(checkPriceByAuthor, new XYConstraints(140, 96, 132,

25)) ;
byAuthor.add(jScrollPane2, new XYConstraints(36, 142, 345, 115));
byAuthor. add (resultl, new XYConstraints (14, 110, 56, 28));
jScrollPane2.getviewport() .add(jTextArea2, null);
content Pane, add (jTabbedPanel, BorderLayout. CENTER);

/ * * Overridden so we can exit when window is closed*/
protected void processWindowEvent (WindowEvent e) {

super.processWindowEvent(e);
if (e.getlDO == WindowEvent.WINDOW_CLOSXNG) C
System.exit(0);

>
>

void checkPriceByTitle_actionPerf ormed (ActionEvent e) {
StringReader sr = new

StringReader(pvc.priceByTitle{ jTextTitle.getTextO)) ;
InputSource is = new InputSource(sr) ;
DocumentBuilderFactory factory =DoeumentBni lderPaetory. ncwTnstanee (\ ;
try {
DocumentBuilder builder = factory.newDocumentBuilder () ;
Document document = builder .parse (is) ;
String price =

document.getElementsByTagName(“price") .item(O) .getFirstChildO .getNodeV
alueO ;

jTextAreal.append (price + *\n");

- 102 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}catch (SAXException. se){
se.printStackTraceO ;>catch (ParserConfigurationException pee) {

pce.printStackTraceO ;
} catch. (XOException ioe) {

ioe.printStackTrace{);
}

}

void checkPriceByAuthor_actionPerf ormed (ActionEvent e) {
jTextArea2. append (pvc. priceByAuthor (jTextLast. getText () ,

jTextFirst.getTextO) + "\n") ;
>

}

package price;
import java.awt.*;
import org.omg.CORBA.*;
public class priceViewClientlmpll {
boolean blnitialized = false;
price.view.priceView _priceView;
com.borland. cx.OrbConnect orbConnect 1;
String _name = ‘priceView*;
public priceViewClientlmpll() {
try {
jblnit() ;

}catch (Exception ex) (
ex.printStackTraceO ;

}
}

private void jblnit() throws Exception {
}

public boolean initO {
if (lblnitialized) {
try C
org.omg.CORBA.ORB orb = null;
i£ (orbConnect1 1= null) {
orb = orbConnectl.initOrbO ;

}i£ (orb == null) {
orb = org.omg.CORBA.ORB.init ((String[])null,

System.getPropertiesO) ;
}priceView = price.view.priceViewHelper.bind(orb, */*

*_poa“, _name.getBytes());
blnitialized = true;

>

-103-

+ _name +•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

catch. (Exception ex) (
ex. print StackTrace () ;

}
}
return blnitialized;

}

public price.view.priceView getCorbalnterface() {
return _priceView;

>

public void setCorbalnterface (price.view.priceView intf) {
_priceView = intf;

}

public com.borland.ex.OrbConnect getORBConnect () {
return orbConnectl;

>

public void setORBConnect(com.borland.ex.OrbConnect orbConnect) {
this.orbConnectl = orbConnect;

}

public String priceByTitie (String title) {
init();
return _priceView.priceByTitle{ title);

}

public String priceByAuthor(String last. String first) {
init();
return _priceView. priceByAuthor (last, first) ;

}
}

package configbib;
inport javax.swing.UIManager;
import java.awt.*;
public class config {
boolean packFrame = false;
/*‘Construct the application*/
public configO {

Framel frame = new FramelO ;
//Validate frames that have preset sizes
//Pack frames that have useful preferred size info, e.g. from their

layout
if (packFrame) {
frame.pack();

}else (
frame.validate();

-1 0 4 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSizeO
Dimension frameSize = frame.getSizeO ;
if CframeSize.height > screenSize.height) {
frameSize.height = screenSize.height;

>if (frameSize.width > screenSize.width) {
frameSize. width = screenSize .width;

}frame.setLocation((screenSize.width - frameSize.width) / 2,
(screenSize.height - frameSize.height) / 2);

frame.setVisible(true);
}
/♦♦Main method^/
public static void main(String[] args) {

try {
UIManager. setLookAndFeel (UIManager. getSystemLookAndFeelClassName ()) ;

}catch(Exception e) {
e.printStackTrace();

}
new configO ;

}
>

package configbib;
import java.io.#;
import org.w3c.dom.A;
import org.xml.sax.♦;
import j avax. xml.parsers.♦;
import org. apache. crimson. tree. Xml Do cument;

import java.awt.♦;
import java.awt.event.♦;
import javax.swing.♦;
import com.borland.jbcl.layout.♦;
public class Framel extends JFrame {
JPanel contentPane;
BorderLayout borderLayoutl = new BorderLayout();
JTabbedPane main = new JTabbedPane ();
JPanel mapping = new JPanel() ;
JLabel viewPath = new JLabel();
JTextField jTextVPath = new JTextField () ;
XYLayout XYLayoutl = new XYLayout () ;
JLabel sourcePath = new JLabel () ;
JTextField jTextSPath = new JTextField () ;
JButton AddMapping = new JButtonO ;
Document document;
String viewName;

-1 0 5 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JButton. M odifyM apping = new J B u tto n O ;
J L a b e l r e s u l t - new J L a b e l() ;
J B u tto n d e le teM ap p in g = new J B u tto n O ;

/♦ ♦ C o n s tru c t th e fram e#/
p u b l ic F ra m e l() {

enableEventS (AWTEvent. WINDOW_EVENT_MASK) ;

X M L In it () ;

try Cjblnit() ;
>

c a tc h (E x c e p tio n e) {
e .p r in tS ta c k T r a c e O ;

>

private void XMLInit(){
viewName = JOptionPane. showInputDialog (* Please the name of the

view you want to edit;");
viewName = “viewW" + viewName + ’.xml*;
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstanceO ;
factory.setValidating(true);
factory. setIgnoringElementContentWhitespace (true) ;
try {
DocumentBuilder builder = factory.newDocumentBuilder() ;

File f = new File(viewName);
if (if.exists())

{

String init = *<?xml version=*1.0* encoding=*UTF-8 *?>\n*
*<iDOCTYPE mapping SYSTEM *conf ig.dtd‘>\n* +
•<mapping/>\n*;

PrintWriter output = new PrintWriterCnew
FileOutputStream (viewName));

output .println(init);
output.flush ();

>

document = builder.parse(f);
} catch (SAXException se){

se.printStackTraceO ;
} catch (ParserConfigurationException pee) £
pce.printStackTraceO ;

> catch (IOException ioe) {
ioe.printStackTrace();

>

- 106-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

document .normalize () ;
}

/♦♦Component initialization^/
private void jblnit() throws Exception {

//setlconlmage (Toolkit .getDefaultToolkit {) .createlmage (Framel. class .get
Resource(*[Your Icon]*))) ;

contentPane = (JPanel) this .getContentPane ();
contentPane.setLayout(borderLayoutl);
this.setSize(new Dimension(400, 300));
this.setTitie(“Frame Title*);
viewPatb.setText("View Path :*);
mapping.setLayout(xYLayoutl);
sourcePath.setText(“Source Path ;•);
AddMapping.setText(”Add Mapping*);
AddMapping.addActionListener(new java.awt.event.ActionListenerO {
public void actionPer formed (ActionEvent e) {
AddMapping_actionPerformed(e);

}
>) ;ModifyMapping.setActionCommand("Modify Mapping*);
ModifyMapping. setText ("Modify Mapping*);
ModifyMapping. addActionListener (new j ava. awt. event. ActionListener ()

{ public void actionPerf ormed (ActionEvent e) {
ModifyMapping_actionPerformed(e) ;

>
>) ;deleteMapping.setActionCommand("deleteMapping*) ;
deleteMapping.setText(”Delete Mapping");
deleteMapping. addActionListener (new j ava. awt. event. ActionListener ()

{ public void actionPerf ormed (ActionEvent e) {
deleteMapping_actionPerformed(e) ;

}
}) ;main. add (mapping, * mapping*);
contentPane. add (main, BorderLayout .CENTER) ;
mapping.add(jTextVPath, new XYConstraints(95, 34, 274, 28));
mapping.add(viewPath, new XYConstraints(12, 36, 73, 22));
mapping.add(sourcePath, new XYConstraints(9, 92, 73, 22));
mapping.add(jTextSPath, new XYConstraints(94, 92, 274, 28));
mapping.add(result, new XYConstraints(18, 198, 355, 21));
mapping, add (AddMapping, new XYConstraints (11, 150, -1, -1));
mapping.add (ModifyMapping, new XYConstraints (128, 150, 118, -1));
mapping, add (deleteMapping, new XYConstraints(260, 149, 126, -1));

>
/♦♦Overridden so we can exit when window is closed^/
protected void processWindowBvent (WindowEvent e) (

super.processWindowEvent(e) ;
if (e.getlDO == WindowEvent.WINDOW_CLOSrNG) (
try{
((XmlDocument) document) .write (new FileOutput Stream (viewName));
}catch (IOException ioe){
ioe.printStackTrace() ;

-107 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}System.exit(0);
>

}

void AddMapping_actionPerf ormed (ActionEvent e) {
Element mapPair = document.createElement CmapPair“) ;
Element vPath = document.createElementfview*) ;
Element sPath = document.createBlement(* source•);
vPath.appendChild (document.createTextNode(jTextVPath. getText ())) ;
sPath. appendChiId (document. createTextNode (3 TextSPath. getText ())) ;
mapPair.appendChild (vPath) ;
mapPair.appendChild (sPath);
Node mapping = document.getElementsByTagName ("mapping*) . item(0);
mapping.appendChild (mapPair);
result.setText(’New mapping has been added!*);

}

void ModifyMapping_actionPerf ormed (ActionEvent e) {
Element config = document.getDocumentElement();
NodeList views = conf ig. getElementsByTagName ("view*) ;

// System.out.println (views.getLengthO) ;
for (int i=0; reviews. getLengthO ; i++) C
Node v = views.item(i);
if (v.getFirstChildO!=null)(
String vad.ue = v.getFirstChildO .getNodeValueO ;
if (value.equals(jTextVPath.getText())) C

// System.out.println(v) ;
// System.out.printin(v.getNextSiblingO .getNextSibling()) ;
v.getNextSibling() .getFirstChildO .setNodeValue(3 TextSPath.getText ())

result. setText (’Mapping modified! *);
return;

)
>

>result.setText(’View path not found!*);
}

void deleteMapping actionPerf ormed (ActionEvent e) C
Element conf ig = document .getDocumentElement () ;

NodeList views = conf ig. getElementsByTagName (’view*);
for (int i=0; i<views.getLength(); i-n-) C
Node v = views.item(i) ;
if (v.getFirstChildO !=null) {
String value = v.getFirstChildO .getNodeValueO ;
if (value.equals(jTextVPath.getText()))C

- 108 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Node vp = v.getParentNode();
vp.getParentNodeO .removeChild(vp);
result. setText (’Mapping deleted! *) ;
return;

}
}

}
result.setText(’View path, not found!");

>

-1 0 9 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V IT A A U C TO R IS

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

XunLuo

Hunan, China

1974

Guangdong University o f Technology Guanzhou,

China
1990-1994 B. Sc. in Computer Science

University o f Windsor, Windsor, Ontario

1999-2002 M. Sc. in Computer Science

- 110*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Using XML views to improve data-independence of distributed applications that share data
	Recommended Citation

	tmp.1619622162.pdf.HqMrE

