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ABSTRACT

This thesis deals with the problem of identification of modal parameters using 

vibration response time histories. Particular attention is given to the identification and the 

refinement of modal parameters through optimization approaches.

The modal identification problem, also called system identification of modal 

properties, has received considerable attention in recent years. The identified modal 

parameters can serve as input to model updating and damage identification in structures, 

and therefore used to analyze and monitor the operational condition and performance of 

structures. Furthermore, it is also the only reliable way to determine the damping in a 

structure.

In this thesis, the modal identification problem is pursued using two different 

optimization approaches. The first approach is a deterministic optimization approach that 

minimizes the output model error in the time domain between a direct solution using the 

modal model and the measured response. Examples of single-input single-output 

identification are used to illustrate this method; it has been shown this approach is robust 

against noise and can be used to fine-tune the modal parameter, especially for the 

damping.

The second approach is based on probabilistic optimization; the objective function is 

defined as the a posteriori probabilistic density of the parameters given 

observations/measurements. The conditional probability density is computed using the 

Bayesian theory of minimum-mean-square-error estimation. Examples of single-output 

under ambient excitation are simulated to demonstrate this approach. This methodology 

allows one to obtain not only the estimated parameters in the form of probabilistic mean 

but also the uncertainties in the form of covariance.

hi
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The optimization approaches works though the minimization of an objective 

function which can be calculated from given set of modal/model parameters. Since there 

is no gradient or Hessian available for the objective functions defined in this thesis, two 

direct optimization methods: Nelder-Mead simplex and the Genetic Algorithm are 

adopted to search the minimum of defined objective functions and thus find the structural 

parameters.

IV
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CHAPTER ONE

INTRODUCTION

1.1 Description of the problem

Modal Identification, also called System Identification o f  Modal Properties, has 

received considerable attention in recent years. Basically, in civil engineering, the task of 

modal identification is to find modal parameters, including the modal frequencies, modal 

shape vectors and modal damping from vibration measurements to build a linear dynamic 

modal model describing the structure’s dynamic behaviours.

This identification of structural dynamic characteristics has a wide range of 

applications, such as: checking the construction quality, validating or improving 

analytical finite element structural models, or conducting health monitoring and damage 

detection. Besides, modal identification is possibly the only reliable way of determining 

damping values for a structural model.

A structure’s health or level of damage can be monitored by identifying the changes 

in structural or modal parameters (Salawu, 1997). These modal parameters can also serve 

as input to model updating and damage identification in the structure, and therefore used 

to analyze and monitor the operational condition and performance of structures (Jaishi, 

2005). The output of identified parameters can be pursued further for the advancement 

and the application of the health monitoring technology.

1.2 Research objectives

Although system identification, in general, is a research field conducted mainly by 

electrical engineers, almost all the main technologies in system identification have their 

application in modal identification. According to Ljung in his classical work “System 

identification, theory for the user” (Ljung, 1999), a simple classification of system 

identification techniques is:

l
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1) Equation solving approaches

2) Minimization approaches (have strong relation with optimization problem)

3) Correlation approaches

4) Subspace approaches (based on the state space innovation model)

The optimization/minimization approaches have their special advantage that the 

optimality of global solution, if found, is defined clearly with respect to some error 

functions, such as, in the least mean square sense, or in the minimum mean square sense. 

Interestingly, the techniques, tools, and algorithms for modal identification are proposed 

at a steady rate, however the optimization approaches seems to be overlooked by the 

engineering community, except the prediction error method (PEM).

Optimization is a general tool in engineering and science; it is the minimization or 

maximization of some cost/objective function. For modal identification problem, the 

application of optimization approach requires the following steps:

1) Define a cost function to be minimized.

2) The cost function must be a function of modal parameters to be identified.

3) Find or develop an optimization algorithm to solve this problem.

It is the objective of this thesis to work through the identification of modal 

parameters using single-output measurements with measured input or ambient excitation 

using optimization approaches. We define two different objective functions: the model 

output error in time domain, and the a posteriori probability of parameters given 

measurements. For both of them, we will need to find an algorithm which optimizes a 

non-linear function generally as follows:

m in J^ J^ # ); B e  9In,J e 9 I

subject to 0, < 0 < 0U, 0t , 0U e 5R" 

where 0, and 0U represents the bounds of parameters that are physically meaningful, or 

user prior knowledge to be respected. This algorithm will, hopefully, find the value of 

parameter 0 for which function J is the lowest and for which all the box-constraints are 

respected. The major difficulty associated with this optimization problem is that we do 

not know the derivatives of the cost function; we have access to the cost function only. 

Besides, there can be a limited noise on the evaluation of the cost function.

2
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One reason that the optimization approaches are not so popular possibly lies in the 

fact that the derivative-based optimization methods are not applicable here; non

derivative-based direct optimization techniques are often problem-specific, and many 

times requires the development of special algorithms.

It is not the objective of this thesis to develop the “best” optimization program for 

modal identification problem. The objective is to demonstrate the capability of 

optimization approach in solving the modal identification problem.

1.3 Organization of the text

Chapter one introduces the thesis by situating the subject, highlighting the objective 

and clarifying the organization of the text.

Chapter two presents a literature review, including classification of current modal 

identification approaches, and a brief description of some popular methods.

Chapter three discusses the three most popular system identification methods: the 

peak-picking based on estimated spectrum plot, the Prediction Error Method and the 

N4SID (Numerical algorithms for Subspace State Space System Identification) subspace 

method. The simulation is done using two examples, one SDOF model and a six-storey 

building model, to illustrate the basic idea of modal identification.

Chapter four discusses the deterministic optimization approach minimizing the 

model output errors in the time domain. Genetic Algorithm and Nelder-Mead simplex 

method are used to search the global minimum. The optimization problem for model 

identification in the time domain is first formulated, followed by a description of 

optimization algorithms. The reasons for choosing the Nelder-Mead simplex method and 

Genetic Algorithm are explained and the two methods are combined to solve the 

nonlinear optimization problem.

Chapter five develops the probabilistic optimization approach that maximizes the 

posterior PDF of the parameters given observation. The system response under ambient 

excitation can be approximated by a Markov process of finite order, then the posterior 

PDF of the Markov process can be expanded as multiplications of conditional PDFs of 

each observation; the conditional PDFs can be computed using the Bayesian Minimum- 

Mean-Square-Error (MMSE) estimator along with a steepest descent iteration scheme.

3
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Chapter six summarizes and concludes the thesis, with recommendations for future 
research.
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CHAPTER TWO

LITERATURE REVIEW

2.1 General

Since Cooley and Tukey proposed the decimate-in-time Fast Fourier Transform 

(FFT) technique in 1965 (Cooley, 1965), it became more efficient to analyze linear time- 

invariant (LTI) systems in the frequency domain than in the time domain; modal models 

are intrinsic to LTI systems, therefore at beginning researchers started to formulate modal 

identification in the frequency domain. Peak-picking on spectrum plot and circle-fitting at 

frequency response function peaks are the first tools available to modal testers (Ewins, 

2000).

The birth of the time domain based methods appeared at a later time, but since then 

they have attracted more research attention. In the 1970s, Ibrahim published the first time 

domain method, now called Ibrahim Time Domain method (ITD) in literature (Ibrahim 

1976). This method uses the free-response data to build eigen-matrices, and thus 

identifies the modal parameters. ITD method offers higher accuracy than the peak-picking 

and circle-fitting in frequency domain, especially for modes with a large damping.

The 1970s also saw the advent of another important time domain method: the Least 

Square Complex Exponential Algorithm (LSCE) also called Prony method; this method 

requires an impact response of a structure, it applies the complex exponential relations 

between the impact response and the residues and poles to identify the modal parameters. 

This method, though obsolete nowadays, inspired the polyreference complex exponent 

method in 1982 which was proposed by Harvard Void in the SDRC company (Structural 

Dynamics Research Company) (Void, 1982). It extends the LSCE to multi-input and 

multi-output case, where impact responses of multiple input and multiple outputs are used 

to build an impact response matrix; modal parameters are identified based on the complex 

exponential relations involved.

The application of ITD, LSCE requires special experimental or testing settings to get 

the free vibration response, thus their applications are limited; however, they can be

5
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applied to transient vibration responses if combined with the Random Decrement Method 

(RDM). The RDM transforms ambient vibration data into free decay responses, and is 

another important advancement made in the 1970s (Ibrahim, 1977).

Modal identification is, actually, an application of a more general subject: system 

identification. This subject has obtained tremendous development in the past twenty years. 

Much of the important contributions to this subject have been made by electrical and 

control engineers, rather than structural engineers.

Modal models are very important and useful models for control of structures. An 

important time domain method, the ERA (Eigensystem Realization Algorithm), originally 

applied for modal reduction in control, was published by Juang and Pappa in 1985 (Juang, 

1985). This method is based on the minimum realization algorithm in control theory (this 

is why it is called eigensystem realization); it finds the eigenvalues and eigenvectors by 

the SVD (Single Value Decomposition) of a Hankel matrix composed from impulse 

response or free response signals. The application of ERA can also be extended to 

ambient vibration cases if  combined with the RDM technique.

Following the idea of ERA, the control researchers worked out another class of 

system identification methods in the 1990s: the subspace identification method, which 

marks a cornerstone in the development of system identification. The subspace has a 

strong relation to the ERA approach; by introducing an Observable Canonical Form (OCF) 

(OCF is another name for innovative state space model) and the corresponding similarity 

transformation, it formulate a Hankel matrix using output data, or using the correlation 

sequences computed from the output data, and do some elegant mathematical operations 

on this matrix to obtain the system matrices. The subspace identification methods are very 

powerful methods; however they suffer from some drawbacks, notably the overestimate 

of damping in higher modes and the poor accuracy with short measurements.

Subspace Identification for Linear Systems is an important reference for all 

researchers in system theory, control theory, signal processing, automization, 

mechatronics, chemical, electrical, mechanical and aeronautical engineering. The 

subspace identification can be considered as a description of a class of related algorithms, 

not a specific algorithm; it is a recipe or meta-algorithm which can be used to devise 

particular algorithms. In the classic work of Overschee and Moor, several variations of

6
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the general subspace algorithm are presented. (Overschee, 1997)

In the context of system identification, modal models, FRF models and innovative 

state space models can be regarded as white-box or grey-box models, that the model 

structure of the system is known or partly known, and have specific physical meanings.

Unlike the control and structural engineers who work with mostly white-box or grey- 

box models, the electrical engineer’s approach to system identification is more involved 

with the so-called black-box models, that is, the model structure of the system is not 

known a priori and the models they build to imitate the system’s behaviour do not 

necessarily have any specific physical meaning. Such black-box models includes: the 

ARMAX or discrete filter model family, and the neural networks.

Based on the historical development of time series, Yule was the first to propose the 

AR (AutoRegressive) model of a single variable in 1927. However, this kind of discrete 

filter model for time series analysis did not gain popularity until the advent and advance 

of computer technology. Since the 1960s and 1970s, the AR model and more elaborated 

ARMA (AutoRegressive Moving Average), ARMAX (AutoRegressive Moving Average 

with exogenous input) models have been studied thoroughly, different methods for 

system identification based on these models are proposed from different point of views, 

including the Least-Squares method, Two Step Least-Square (2SLS) method, instrumental 

variable method, maximum likelihood method, Linear Multi-Stage (LMS) method, and 

many more (Petsounis, 2001).

The culmination this approach for system identification is the Prediction Error 

Method (PEM), sometimes called Ljungian Prediction Error Method to honor the scientist 

Lennart Ljung for his significant contribution in system identification using ARMAX 

type discrete filter models. The PEM estimates model parameters through minimizing the 

optimally determined one-step-ahead output prediction error. Hence, a recursive 

optimization is necessary, and plenty of user interferences are required (Ljung, 2003). In 

applications which require some automation, one has to use some reduced forms of 

ARMAX model, including the AR model, ARX model and ARMA model, which can be 

identified by Least-Square method, Instrumental variable method, two-step-Least-Square 

method or Maximum Likelihood Method.

When attempting to identify a black-box model for a dynamic system it is common

7
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practice to follow the procedure depicted in Figure 2.1:

Experiment

Select model structure

Estimate model parameters

Validate model Not accepted

Figure 2.1: block diagram representing the system identification problem (Ljung 
1999)

A detailed description of each of these steps is given in Ljung’s classic book on 

system identification (Ljung, 1999). In this black-box model approach, usually the 

problem of Systems Identification starts with a time series of observed data and tries to 

determine the simplest model capable of exhibiting the observed behavior. Selecting a 

suitable model structure is usually the most difficult work; experiment should be designed 

to provide enough data for specific model identification, and the estimation methods.

It was not until 1972 that Gersch and his co-workers first applied the time-series 

model to civil engineering (Gersch, 1972). After that, almost every idea developed with 

the ARMAX model family has been applied to structural identifications. Besides, the 

structural engineers made their contributions to adapt the system identification for 

structural modal identification.

Adopting the concept behind Ibrahim's modal identification technique, Huang 

proposed a least-squares approach to determine the coefficient matrices of the AR model 

which is a modification of the LS solution for AR models (Huang, 2001). The 

modification is based on the equivalence between the correlation function matrix for the 

responses of a linear system subjected to white-noise input and the deterministic free 

vibration responses of the system. Thus the input-output LS method to identify an AR 

model is extended to output-only case with the assumption that the input is Gaussian
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white noise.

2.2 Classification of modal identification methods

Actually, each of the methods mentioned above serves as a framework for the 

implementation to different specific problems. There are numerous variations of each of 

them to account for different experimental settings. To walk out the jungle of the prolific 

modal identification methods, several commonly made classifications based on different 

criteria are made in this section.

2.2.1 Time-domain vs. frequency-domain methods

We can group modal identification methods as frequency-domain methods or time- 

domain methods. Frequency-domain methods employ the FFT (Fast Fourier Transform) 

technique to transform experimental data into frequency domain, and identify the modal 

parameters from a FRF model. The peak-picking, curve-fitting, LSCE and polyreference 

are examples of frequency domain based methods.

Frequency-domain methods have wide applications in civil engineering; the 

popularity of the method is partly due to its simplistic implementation simplicity and its 

speed, and partly due to the fact that they have direct physical meanings. However, there 

exist serious drawbacks for traditional frequency-domain methods; they are very difficult 

for systems with close-spaced modes. They are also usually difficult for noise-corrupted 

data (Peeters, 2000).

On the contrast, time domain methods offer more robust performance against noise, 

and they are more successful at identifying closely spaced or repeated natural frequencies. 

Some time domain method, like the subspace identification and ERA, also offer a more 

systematic way of determining the approximate order of a test structure and generally 

able to identify a larger number of natural frequencies than frequency-domain methods do. 

Besides, time domain identification does not need to perform the FFT to transform data 

into frequency domain, and thus avoids some incidental errors.

Time-domain approaches can be divided into non-parametric state-space model 

methods and parametric time series model methods. Ibrahim Time Domain method (ITD), 

which is the first time-domain method in history, along with the ERA and subspace 

methods, are based upon non-parametric state space models. Identification methods using

9
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wavelet transform, neural network are also non-parametric methods. The wavelet-based 

identification methods are also called time-ffequency domain method (Kitada, 1998).

Parametric time-domain identification of vibrating structures refers to the process of 

developing finitely parameterized mathematical time-domain models of such structures 

based upon measured excitation and/or response signals.

Parametric (model-based) identification leads to finitely parameterized 

representations, usually the discrete filter system (the ARMAX model family) models, but 

also includes difference/differential equation and modal models, then different techniques 

such as instrumental variable, maximum likelihood and nonlinear-optimization can be 

employed to estimate the parameters of the system. Usually parametric methods can yield 

higher resolutions than nonparametric methods in cases when the signal length is short.

2.2.2 Input-output identification vs. output-only identification

Identification approaches can be classified by their input data sources. Typical types 

of field tests include: (1) ambient vibration tests, (2) forced vibration tests, (3) free 

vibration tests, and (4) earthquake response measurements. Difference in experiment data 

can have a significant influence upon the selection and implementation of identification 

methods.

In the first method, the structure is excited by artificial means such as shakers or drop 

weights. By suddenly dropping a load on the structure, a condition of free vibration can 

be induced. The disadvantage of artificial excitation methods is obvious that traffic has to 

be shut down for a rather long period of time; this could be a serious problem for the 

intensively used infrastructures.

In contrast, ambient vibration testing is not affected by the disturbances on the 

structures, because it uses the disturbances induced by traffic and wind as natural or 

environmental excitation. The ambient vibration testing is a kind of output-only data 

dynamic test method. The service condition does not have to be interrupted. The output- 

only dynamic testing has an advantage of being inexpensive since no equipment is needed 

to excite the structure. Therefore, the modal parameter identification technique through 

ambient vibration measurements has become a very attractive topic in the area of civil 

engineering structures. In the context of output-identification, the input signals is usually

10
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modeled as stationary white noise, and in this way many output-only identification 

methods have been developed that circumvents the unknown inputs.

Much modal identification is accomplished using both input and output data from the 

structural system. Notably the methods involving the ARMAX model family, including 

the LS, IV, 2SLS, MLE, LMS and PEM. Other methods who develop a transfer function 

between the input and output, such as polyreference and LSCE also requires the input- 

output identification.

Output-only identification methods include the methods that incorporate the random 

decrement method (RDM), such as with the ITD/RDM and LSCE/RDM, in which the 

ambient vibration data are transformed into free decay responses using the random 

decrement technique.

The time-series models, AR and ARMA, can also be used for output-only 

identification if  the input is modeled as white noise, and then attempt to estimate the 

parameters of that linear system.

The subspace methods can be either input-output or output-only, depending on how 

the Hankel matrix is formed and the mathematical operations done on the Hankel matrix.

Some special kinds of excitations: earthquake, ocean swells, wind excitation, usually 

require some special adjustments (Lus, 1999). One should not take for granted that one 

method can be applied for all problems without modification.

2.2.3 Deterministic analysis and stochastic analysis

LS, Prony, ERA, deterministic subspace are called deterministic methods because 

they assume the input and output as deterministic sequences without noise (although 

actually they may be disturbances in the data). These methods generally work well under 

the special noise-free case, or negligible noise, but works poor in output with non- 

negligible noise. For example, the LS and ERA are notoriously prone to generate false 

modes. (Juang, 1986 and Petsounis, 2001)

Stochastic methods (PEM, 2SLS, LMS, stochastic Subspace) are shown to lead to 

potential advantages in non-negligible noise cases, usually achieve lower bias errors and 

good overall accuracy, but at a price of increased complexity (Petsounis, 2001).

In the PEM family stochastic methods are based on the ARMAX (AutoRegressive
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Moving Average with exogenous excitation) or ARX-like (AutoRegressive with 

exogenous excitation) models.

2.3 Combinatorial system identification

In his doctoral thesis, Peeters (Peeters, 2000) deemed that the identification problem 

of linear dynamic structures in civil engineering have been largely solved by the 

introduction of subspace methods and the application of the Ljungian PEM method, and 

not much can be improved, except the applications and implementation to specific 

problems, on the quality of the estimated modal parameters.

Possibly he is right, in that there were not breakthroughs like the introduction of 

subspace identification in recent years; however there is a trend to develop combinatorial 

approaches for modal identification, i.e., combining different methodologies to improve 

the quality of the estimated modal parameters.

A combined subspace-maximum likelihood algorithm has been developed to 

overcome the drawbacks of subspace identification, like overestimation of damping (Koh, 

2003). Pridham and Wilson (Pridham, 2004) uses EM (Expectation-Maximization) 

algorithm to refine subspace identification to improve its performance in short data. For a 

three degree-of-freedom model it shows that the combined EM-subspace algorithm is 

able to circumvent some of the difficulties arising from short data sets while using the 

subspace identification alone, and estimation of damping ratios are also improved. Many 

recent research efforts belong to this class of combining subspace identification with 

another method.

12
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CHAPTER THREE

SPECTRUM ESTIMATION, PEM AND SUBSPACE 
IDENTIFICATION

3.1 General
As a compliment to chapter 2 and a precursor to the optimization approaches in 

chapter 4 and chapter 5, three most popular modal identification techniques: the peak- 

picking from estimated spectrum plot, the Prediction Error Method (PEM), and the 

subspace identification, are briefly described and implemented in this chapter. MATLAB 

system identification toolbox is used for PEM and subspace identification. The simulation 

is done using two examples, the first example is a SDOF oscillator and the second 

example is a six-storey shear building, to demonstrate the general idea of modal 

identification using single measured output.

3.2 Peak-Picking from estimated Power Spectral Density (PSD) plot

3.2.1 Basic idea of peak-picking

The simplest approach to estimate the modal parameters of a structure subjected to 

arbitrary loading is called the peak-picking method. This is a ffequency-domain spectrum 

driven identification method. The structural vibration model involved is the frequency- 

response-function (FRF). Eigenffequencies are picked as the peaks of a spectrum plot. 

Probably because of its simplicity and the capability to be implemented digitally in signal 

processing hardware, it is the most widely used method in civil engineering.

It is based on the fact that the FRFs increases to an extreme around the natural 

frequencies. However, in the context of ambient vibration measurements, the FRFs are 

simply replaced by the auto power spectral densities of the ambient outputs without the 

FRF actually being computed. Due to noises in measurement and sampling effects of the 

Fourier transform, the damping estimates are unreliable.

If the structure is excited by a random input f(t), resulting in the response x(t), then
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we have two simple relations of system transfer function equations in the frequency 

domain:

(3.1) Sa {a»= \H (.a ,fs ir(a>)

(3.2) Sa = H (o ,)S ^m )

where Sa  is the spectrum of the response process x(t) ,S ff is the spectrum of the input

excitation, and Sxf is the cross-spectrum between the input and the output.

In case of acceleration measurement y(t), the complex modal decomposition of the 

acceleration spectrum can be written as (Ewins, 2000):

' ___  , 2  ^ f  N  *2 A

(3-3) S ( s )  =
s

where {v} is the mode shape vector, < />  is the continuous time modal participation 

vector, s is the Laplace domain variable, are the complex eigenvalues, and Ru is the

input covariance matrix in case of white noise inputs. This expression is the product of 

two summations where each term represents the contribution of a certain mode. A term of 

the left factor is proportional to (s -  A;)_1 and reaches a maximum if s approaches one of 

the complex eigenvalues 

(3.4) F

For low damping ratios, this is achieved around s=jojr  If the frequencies are well 

separated, the spectrum at any eigenfrequency coi is dominated by a single mode and can 

be approximated by:

( O ) 2

here the superscript H stands for Hermitian transpose of a complex vector; this formula is 

valid for both proportional damping and non-proportional damping, in the latter case the 

eigenvectors can be complex.

By defining the complex scalar a t as:

(3.6) a , = ^ ^
(£ > /)
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The approximated spectrum at resonance of a response y(t) can be rewritten as:

(3.7) Sy (s = jo )t) = a t {v(. }{vf}

The interpretation of this equation is that at resonance, each column (or equivalently 

each row) of the spectrum matrix can be considered as an estimate of the observed mode 

shape up to some scaling factor. Of course, a mode can not be identified if  the column (or 

row) corresponds to a structural degree-of-freedom that is situated at a node of this mode.

Equation (3.7) is the basis of enhanced frequency-domain identification methods that 

are able to identify not only frequencies and damping, but also the modal vectors; one 

such method is the Complex Mode Indication Functions method (CMIF) which can be

considered as the singular value decomposition (SVD) enhanced peak-picking. However,

for the identification of modal vector multiple-output measurements are required.

Theoretically, the famous half-power bandwidth method can be used to estimate the 

damping ratios corresponding to each frequency. Assume that 0)x and co2 are the two 

frequencies left and right from, and as close as possible to the eigenfrequency coi , where

the magnitude of a certain element of the spectrum matrix is half the resonance magnitude. 

A damping estimate is then obtained as (Ewins, 2000):

(3.8) £  =
2 coi

However this estimate is generally not accurate.

3.2.2 Spectrum estimation

Traditionally, the name Peak-picking is usually given to non-parametric estimation 

methods of power spectrum that use FFT to calculate periodogram as an estimate to the 

PSD, for this reason, they are sometimes called frequency domain estimation, or Fourier 

methods.

However, one should not take for granted that all spectrum estimation must be 

performed in the frequency domain with FFT, there are many parametric methods to 

estimate the PSD of time series in time domain without the use of discrete Fourier 

transform. The concept of Peak-Picking can be extended to all the methods of power 

spectrum estimation. Thus, some methods, such as the Prony method, which are
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traditionally not considered as peak-picking, can be classified into the peak-picking 

family.

Obviously, the accuracy of this method depends on the accuracy of power spectrum 

estimation. There are already a handful of tools available in estimating spectrum from a 

given time series (Hayes, 1996), such as:

1) The Periodogram

2) The windowed periodogram

3) Bartlett’s method: periodogram averaging

4) Welch’s method: averaging windowed periodogram

5) Blackman-Tukey method: periodogram smoothing

6) Minimum Variance spectrum estimation (MV)

7) The Maximum Entropy Method (MEM)

8) ARMA (Autoregressive Moving average) method

9) The Pisarenko’s Harmonic Decomposition method

10) The MUSIC algorithm (Multiple Signal Classification Method)

11) The Eigenvector method (EV)

12) The Principle Components Frequency Estimation using the Blackman-Tukey 

method

13) Neural network spectrum estimation (Zhang, 2002)

And new methods are continued to be proposed at a steady rate.

3.2.3 The periodogram

It is well known that the power spectrum is the Fourier transform of the correlation 

sequence. However, there is another equivalent definition of the power spectral density of 

a time sequence {y(n)}:

r 1(3.9) Sy ( / )  = lim EN—>oo 2N + 1

N

Y , y (n) ' exp(-/2^ i)
i = ~ N

where E[] is the ensemble average. This definition is equivalent to the Wiener-Khinqin 

definition. As an approximation while the data length N is finite, we have the 

periodogram spectrum estimate: let n = 0,........,N ~  1
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(3.10) Sy i f )  =
N - 1
^y(n)exp(-i27tfn)
n =0

Thus, the periodogram is proportional to the squared magnitude of the DFT of 

sequence y(n), and may be easily computed using FFT technique.

Similar to the cross-correlation between multiple sequences corresponding multiple- 

output measurements, the periodogram can be extended to periodogram matrix. For m 

number of discrete time series {yip)(n),....... ,y (m)(«)},n=0,-",N-l; N=2M, the discrete

Fourier transform is
JV—1

(3.11) Y^p\ k )  -  DFT(y^p)(n)) = - = ^ y (p)(n)e
y/N n=o

k=0,....... ,N-1

The periodogram for one single series is

- iz jd m l N P=l,- ’>m;

(3.12)
N ~ \

^  y(n) exp(-i27dcn / N)
n = 0

(3.13)

The cross-periodogram of two series y {p)(n) and y (?)(«)is 

1s (r \ k ) =
N

N - l

^  y {p) (n) exp(-i2nkn / N)
,n=0

JV-1

y  y (9) («) exp(i2^n / N)
n=0

3.2.4 The modified periodograms

The basic idea of modifying periodogram is to apply different windows to the data 

sequence, instead of the original rectangle window for cutting out a finite duration 

sequence. Common choices are the Bartlett window, the Hamming window, etc.

1) The Bartlett’s method: the averaged periodogram

Observing that the expected value of the periodogram converges to the true spectrum 

as the data record length goes to infinity

lim E{S ( f ) }  = S ( f )jV—»co * J

Bartlett proposed the sequence y(n) be partitioned into K non-overlapping sequences 

of length L where N = KL. The Bartlett estimation is then the averaged periodogram
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(3.14) Sy( f )  = J]y (n  + j l ) exp(-i‘2^h) |2
A  i=o «= o

with n = 0,1,...,L-1, and j =0,1,...K-1 

This new estimate is asymptotically unbiased, and the resolution is also increased.

2) Welch’s method

In 1967, Welch proposed two modifications to Bartlett’s method. The first is to allow 

the sequences to overlap, and the second is to allow a data window to be applied to each 

sequence, thereby produce modified periodograms that are to be averaged. This 

modification works well for long data series, but for short duration of measurements, it 

can even decrease the quality of estimate.

3.3 The Prediction Error Method (PEM)

The Prediction Error Method estimates ARMAX (Autoregressive Moving Average 

with exogenous excitation) models in the form:

(3.15) A(g)y(t) = B(q)x(t) + C(q)e(t \ 9)

With x(t), y(t) representing the measured excitation and measured noise-corrupted

response, respectively, e(t) the model residual (one-step-ahead prediction error, which 

should, for an accurate model, form a zero-mean uncorrelated sequence), and A(q), B(q), 

C(q) the AR (AutoRegressive), X(eXogenous) and MA (Moving Average) polynomials, 

respectively, in terms of the backshift operator q, qn (x(t)) = x(t -  nT ). 0 denotes all the 

polynomial coefficients (model parameters) to be identified.

The ARMAX model may be expressed in the time domain as:
Na N b Nc

(3.16) y  (0 + £  a,y(t -  i) = btx ( t - i )  + e{t\9) + Y J cte{t - i \G)
1=1 1=0 i=1

By dividing the polynomial A(q) on both sides, this model can also be written as

(3.17) y(t) = G(q)x(t) + H(t)e(t)

Where G and H are transfer functions.

Prediction Error parameter identification is based on the minimization of the 

quadratic least square criterion, or to minimize the Residual Sum of Squares (RSS) of the 

error between the measured response y(t) and the computed model response y(t \ 9).
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(3.18) RSS(#) = Y j i y ( t ) - y { t \ e ) f
t=0

This is a nonlinear optimization problem due to the nonlinear dependence of the 

model residual upon the model parameter vector. This necessitates the use of an iterative 

optimization such as Gauss-Newton or Levenberg-Marquardt, and requires good initial 

guess of parameter values. Existence of local minima is also a problem for this nonlinear 

optimization problem.

By dropping the noise transfer function term, this problem can be simplified to 

ARMA (AutoRegressive Moving Average) model identification,

(3.19) = B(q)x(t) + e(t \ G)

A simplified optimization problem for minimizing the RSS is obtained, which can be 

solved without iterations using the Instrumental Variable (IV) method or Maximum 

Likelihood method (MLM). If the noise term is totally dropped, we get a linearized 

(noise-free) optimization problem that can be solved directly by solving a normal 

equation using the Least-Squares (LS) method. However, unlike the simpler ARMA or 

ARX (Autoregressive with exogenous excitation) model, the ARMAX model offers a 

noise transfer function capable of representing various types of noise characteristics, so 

that PEM is more robust against noise corruptions than the Least Squares or Instrumental 

Variable methods.

Besides, there are also some approximations of the PEM method to estimate the 

ARMAX model parameters without solving an iterative optimization problem. The most 

important of them are the Linear Multi-Stage (LMS) method and the Two Stage Least 

Squares (2SLS) method. The LMS estimates ARMAX models through a sequence of 

linear Least-Square and deconvolution operations. The 2SLS method consists of two 

linear Least-Squares based stages to approximately solve the original nonlinear 

optimization problem. In many implementations, the parameter identified by these 

methods can serve as an initial guess for the PEM (Ljung, 2004). PEM requires a 

nonlinear non-convex optimization problem to be solved, for which a good initial guess if 

required.

For input-output identification without noise or with negligible noise, Least Squares 

and Instrumental Variable methods usually give good identification; however for noise-
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corrupted data, PEM is currently the more accurate one in that it optimizes the model 

error (Petsounis, 2001).

The determination of a suitable ARMAX model order is crucial for the success of 

PEM. This is basically related to the determination of the number of structural degrees of 

freedom. However, in reality, the two issues are decoupled, as order over-determination is 

generally necessary for accurate identification. Model order determination is based upon 

successive model fitting and examination of criteria such as the RSS (Residual Sum of 

Squares) or output error, the Bayesian Information Criterion (BIC), Akaike’s Final 

Prediction Error (FPE), and the Akaike’s Information Criterion (AIC).

The RSS is a measure of the quality of fit for stochastic models, but not always a 

good order indicator as it typically decreases for increasing model order. The BIC 

overcomes this difficulty by including an additional term that increases model complexity, 

that is:

(3.20) BIC{6) = In RSS(&)
N

ln(AQ
N

here dim( ) stands for dimensionality of the indicated vector, and N for the data record 

length. Usually a minimum BIC indicates the optimal model order. Note that both the 

RSS and BIC may be applied only to those stochastic methods that lead to an 

uncorrelated residual (prediction error) sequence (thus not to the Instrumental Variable 

method).

A measure of quality of fit that focuses on the input-output dynamics, and is thus 

applicable to all methods, is the Output Error (OE),

(3.21)
-W ,=o

Once an estimated model has been validated, its global modal parameters may be 

extracted as follows:

In
damping ratio: £k =

tan 1 Pk_ 
P R\ rk JJ

+ hT
f  \  

1
—il/2
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and frequency: a>l

where At is the sample time step, p[ and p Rk are the imaginary and real parts of the k-th

pole respectively.

3.4 Subspace identification

The subspace identification identifies a full state space model; the most generalized 

state space model is (Overschee, 1997)

where vectors Uk and yu are the observations at time instant k  of respectively the input 

and output of the process. The vector xk e 91" is the state vector of the process at discrete

time instant k and contains the numerical values of n states, v and w are unobserved 

vector signals, usually called the measurement noise and input noise, respectively. It is 

assumed here that they are zero mean, stationary, white Gaussian noise vector sequences. 

8pq is the Kronecker delta that equals 0 if  p ̂  q, and equals 1 if p = q.

One has to note that the role played by the input noise w is different from that of 

measurement noise v: w as an input will have a dynamic effect on the system as well as 

the deterministic input u, while v only affects the output y  directly and therefore is called 

a measurement noise.

The matrix A is called the (dynamical) system matrix. It describes the dynamics of 

the system (as characterized by its eigenvalues). B  is the input matrix, which represents 

the linear transformation by which the deterministic inputs influence the next state. C is 

the output matrix, which describes how the internal state is transferred to the outside 

world in the observations y. Matrix D  is called the direct feed-forward term, generally this 

term is absent in civil engineering structures. The matrices Q, S  and R are the covariance

x(k +1) = Ax(k) + Bu(k) + w(k) 
y{k) = Cx(k) + Du(k) + v(k)

with
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matrices of the noise sequences w and v. They are assumed to be positive definite, as is 

indicated by the inequality sign. In structural dynamics, usually the measurement noise 

process and the input noise process are assumed to be independent, therefore S  is all zeros. 

Besides, the matrix pair {A; C} is assumed to be observable, which implies that all modes 

in the system can be observed in the output y  and can thus be identified. The matrix pair 

{A; [B Q]} is assumed to be controllable, which in its turn implies that all modes of the 

system can be excited by either the deterministic input u and/or the stochastic input w.

This model is the one most widely used linear system model by control engineers. 

Many industrial processes can be described very accurately by this type of model. 

However, not all of the terms are necessary, some of the terms, such as B or D, can be 

ignored in civil engineering applications to get a simpler reduced model.

If the unmeasured input and output noise processes w and v are identically zero, we 

obtain the deterministic subspace identification. The goal is to identify the A, B, C, and D 

system matrices of a deterministic state space model, by solving an input-output 

identification problem

If there is no measured external input u, we get purely stochastic subspace 

identification. Here the goal is to identify the A, C, Q, S, R from given output data only; 

this is an output-only identification problem, or the identification of modal parameters 

under ambient vibration.

However in stochastic identification, “output-only” does not means we know 

absolutely nothing about the system input; we need to make some assumptions, such as 

white noise ambient excitation, about the excitations to the system.

Another variant of subspace algorithms is the so-called combined deterministic -  

stochastic subspace identification algorithm, which identifies A; B; C; D; Q; R; S system 

matrices. This variant can solve an input-output identification problem with noises in both 

the input side and the output/measurement side.
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Table 3.1: variants of subspace identifications (Overschee, 1997)

u is measured, w and v are zeros Deterministic input-output identification

u is measured, w and v are not zeros
Combined deterministic-stochastic input- 1 

output identification

w is the sole input to the system
Stochastic output-only identification or 

ambient vibration identification

Subspace identification algorithms are based on concepts from system theory, control 

theory, numerical linear algebra and statistics. The most important achievement in the 

development of subspace identification is that the Kalman filter states (an estimation of 

the system states) can be obtained directly from input-output data using linear algebra 

tools (QR-decomposition and singular value decomposition) without knowing the 

mathematical model, while the original Kalman filter estimates system states from given 

system matrices.

O rth o g o n a l or
oblique projection 

and SVD

Classical
identification

Kalman
filter

Least
squares

Kalman states

K alm an  sta te
sequence System matrices

Figure 3.1: Comparing the subspace identification and classical control approach 
using Kalman filters. (Overschee, 1997)

Figure 3.1 shows the difference between subspace identification and classical control 

approaches using Kalman filter. Subspace identification aims at constructing state space
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models from input-output data. The left hand side shows the subspace identification 

approach: first the (Kalman filter) states are estimated directly (either implicitly or 

explicitly) from input-output data or from output data only, then the system matrices can 

be obtained. The right hand side is the classical approach in control: first obtain the 

system matrices, and then estimate the states.

The state sequence estimates { xt } of a deterministic system can be found by

computing the intersection of the past input and output and the future input and output 

spaces. For a stochastic model, the state sequence estimate can be obtained in two steps: 

first, the future output space is projected orthogonally into the past output space and next, 

singular value decomposition is carried out. The operation is performed through an 

orthogonal or oblique projection of the row spaces of certain block Hankel matrices 

constructed by measured data, or by covariance computed from data, into the row spaces 

of other block Hankel matrices, followed by singular value decomposition (SVD) to 

determine the order, the observability matrix and /or the state sequence.

Based on the how the projections are performed on the input and output row spaces, 

different algorithms have been proposed. The most popular ones are the N4SID 

(Numerical algorithms for Subspace State Space System Identification) algorithm, which 

performs the projection without any weight, and the CVA (Canonical Variate Analysis), 

MOESP (Multivariable Output-Error State sPace), which use some different weights in 

the projections.

Once these states are known, the identification problem becomes a linear least 

squares problem in the unknown system matrices.

j X/-|-2- * * *
Vi y i + j —\

A B 
C D

X j  X f + i  ]

U j Z/j-f-] ■ ■ • Ut+ y__ ]

known known

State matrices estimates can be computed form the least-square problem.
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And the estimates of the noise covariance matrices follow from the least squares 

residuals.

The above procedures are implemented implicitly using several elegant numerical 

linear algebra tools, for example, the oblique projections can be done using QR algorithm.

Subspace methods for identification of linear multivariable dynamical systems have 

been very successful. The subspace system identification algorithms make full use of the 

well developed body of concepts and algorithms from numerical linear algebra. 

Numerical robustness is guaranteed because of the well-understood algorithms, such as 

the QR-decomposition, the singular value decomposition and its generalizations. 

Therefore, they are very well suited for large data sets and large scale systems. Moreover, 

subspace algorithms are not iterative. Hence, contrary to the PEM, there are no 

convergence problems. Unlike some other methods like PEM and polyreference, which 

either require the user choices on model orders, or need specific implementation for each 

different problem, one significant advantage of the subspace method is that it does not 

require much human interference in the identification process, i.e., it can be automated, 

which makes it very popular in control applications.

One of the disadvantages of subspace methods is the fact that it does not optimize a 

certain cost function. The reason for this is that, contrary to input-output models, we can 

not (as of this moment) formulate a likelihood function for the identification of the state 

space model, that also leads to an amenable optimization problem. So, in a certain sense, 

subspace identification algorithms provide (though often surprisingly good) 

“approximations” of the linear model.

3.5 Examples
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3.5.1 Example 1: SDOF oscillator

In this example, we consider the identification of a single degree-of-freedom (SDOF) 

spring-mass system shown in figure 3.2 using simulated noisy transient acceleration 

response data. Here the excitation is a white-noise with spectral intensity Sq.

►m

►

x
Figure 3.2: Single DOF spring mass system

The stiffness is 10 kN/cm, and damping ratio is 0.05, the mass is taken as 1 

kN’s /cm; for this SDOF system, the modal properties are equivalent to the stiffness and 

damping ratio.

The parameter values used to generate the simulated data are So =1.0 cm2/sec3, and

the noise variance crv2 =0.251 (for the acceleration response). The chosen value of the

noise variance corresponds to a 10 per cent root-mean-square (rms) prediction-error level, 

i.e., the noise is 10 per cent of the rms of the noise-free response. The time step used to 

generate the data is 0.01 sec, which is much smaller than the structure period 2 sec. 

However, a larger sampling time step was chosen (At =0.02 sec) and the total time 

interval is T =50 sec, so that the number of data points is N =2500. This system is 

simulated using MATLAB programs.
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Figure 3.3: Simulated measurement of acceleration response
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Figure 3.4: Periodogram spectrum estimate

Four spectrum estimation methods are used to estimate the spectrum plot from the 

acceleration output for the application of peak-picking method.

Table 3.2: Frequency estimated from PSD plot

I Expected frequency 

(rad/sec)
periodogram

Modified periodogram 

with Hamming window
Bartlett Welch

3.16 3.22 3.37 3.37 3.52

Interestingly, here the modified periodograms do not offer any benefits; this should
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be because the measured time series length is short. For short series, the different average 

and smoothing techniques can not improve the quality, albeit an increase of the bias at 

some occasions.

3.5.2 Example 2: six-storey building

The second example refers to the six-story shear building (see Figure 3.5) subjected 

to a white-noise excitation at the base. The acceleration responses are measured at top 

floor and the third floor. The expected natural frequencies of this system are 6.78, 17.74, 

26.96, 36.74, 45.15 and 54.99 rad/sec (computed using MATLAB). The simulation was 

conducted for 5% of all the modal damping ratios. The measurement error level is 

assumed to be 20% of the root-mean-square (rms) of the noise-free acceleration response 

at corresponding channels.
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Figure 3.5: Six storey building model
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Figure 3.6: The six mode shapes (simulated in MATLAB)

The time step used to generate the data is 0.01 sec; however, the sampling time step 

was chosen (At =0.02 sec), much smaller than the structure’s fundamental period 0.93 sec. 

The total time interval is t =50 sec, so that the number of measured data points is N =2500.
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Figure 3.7: Measured acceleration response at the third floor, top floor and the 
measured base input

The peak-picking methods are tried first. The results are tabulated in table 3.3 and 

table 3.4. Although simple, these methods can give fairly good estimate for the 

frequencies. This is why they are not obsolete while so many advanced methods having 

been developed.
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Table 3.3: Peak picking estimate from measurement at top floor

Expected

frequencies

(rad/sec)

periodogram
Hanning windowed 

periodogram

Bartlett

method

Welch’s

method

6.78 6.90 6.90 7.21 6.90

17.74 18.41 18.41 18.1 17.33

26.96 26.38 25 25.92 25.46

36.74 30.37 29.91 29.91 N/A

45.15 N/A N/A 41.88 N/A

54.99 N/A N/A 51.85 N/A

Table 3.4: Peak picking estimate from measurement at third floor

True

frequencies
periodogram

Hanning windowed 

periodogram

Bartlett

method

Welch’s I 

method

6.78 6.75 7.36 7.52 3.66

17.74 17.79 17.64 18.41 17.95

26.96 27.30 27.77 27.00 24.08

36.74 35.90 35.44 36.66 N/A

45.15 46.48 45.56 46.91 N/A

54.99 N/A 52.15 53.05 N/A

The identified frequencies are good estimates, no damping is identified. It seems that 

the good results for higher modes of Bartlett method comes by a coincidence but not rule. 

The spectrum plot from measurement at third floor gives one more identified mode than 

from the measurement at top floor; this can be explained by viewing the mode shapes 

shown in Figure 3.6, the fifth mode is weak at the top floor, i.e., having a smaller relative 

amplitude, and is strong, i.e., having a relatively larger amplitude at the third floor.
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Next we try the PEM method. The PEM function in MATLAB system identification 

toolbox is used for the identification. The PEM in the system identification toolbox 

adopts a Levenberg-Marquardt algorithm to solve the nonlinear optimization problem 

(Ljung, 2004).

m easured uu ipui ana sim u ia iea  ivioaei uu ipui
3

2

0

■2

■30 5 10 15 20 25 30 35 40 45 50
tim e (sec)

Figure 3.8: Output fitting of the PEM with measurement at the top floor
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Figure 3.9: Output fitting of the PEM with measurement at the third floor
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In using PEM, there is no direct method for finding the optimal model order, instead 

one must solve by trial and error. The model order chosen here is ARMAX(12,8,3), where 

12 is the order for AR (AutoRegressive) polynomial, 8 is for X(eXogenous) polynomial 

and 3 is for MA (Moving Average) polynomial, respectively. This model choice gives a 

small value of FPE and OE; however, we are not going to say it is the best choice. Figure 

3.8 illustrates the fitting between the identified model output and the measured output at 

the top floor, and Figure 3.8 shows the fitting at the third floor. It is observed that the 

output fitting is better at the top floor than at the third floor, thus indicating this choice of 

model order may be good for data measured at top floor.

Table 3.5: Identified modal parameters using PEM

Parameter Reference value Using measurement at 
third floor

Using measurement at top 
floor

(B y 6.78 N/A 6.79
co2 17.74 12.32 18.41
0 ) 3 26.97 31.73 30.51

co4 36.74 31.80 31.368

Ci 0.05 0.077 0.048

c 2 0.05 0.061 0.060

<r3 0.05 0.058 0.077

c< 0.05 0.063 0.065

Next, the N4SID function in MATLAB system identification toolbox is used here to 

illustrate the subspace identification. The identification from the measured 2500 points of 

data can not give any meaningful results, since subspace identification requires a Hankel 

matrix with output blocks, or a Hankel matrix with correlations calculated from output 

data, thus requires very long data for identification. Therefore, a 500 sec, 25000 points of 

measurement of acceleration response is simulated for the system identification using 

subspace method. In reality, it could be difficult to measure a structure’s response for this 

long time unless in some controlled circumstances; this is one difficulty in applying the 

subspace methods. The identified frequencies are good, but there is a trend to 

overestimate the damping. This overestimation of damping is long been criticized as one 

weak point of subspace identification (Pridham, 2004).
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Table 3.6: Identified modal parameters using N4SID subspace identification

1 Parameter Reference
value

Using measurement at 
third floor

Using measurement at top 
floor

a\ 6.78 6.79 6.79
OJ2 17.74 18.41 18.41

a . 26.96 Miss 21.45

co4 36.74 33.55 33.41

Cr 0.05 0.048 0.048

Ci 0.05 0.060 0.060

Ci 0.05 Miss 0.116

C4 0.05 0.170 0.080

3.6 Conclusions

The peak-picking, PEM and subspace identification methods are commonly 

considered as the simplest, the most accurate, and the most powerful tools in modal 

identification. The peak-picking is fast, but its accuracy is poor; and it seems no much 

improvement in its resolution and ability using “advanced” spectrum estimates. The PEM 

is the best tool for input-output measurements, due to the fact it minimized the OE in the 

least squares sense. The selection of ARMAX model order should be done with much 

care. The subspace identification requires long data to run, and it has a trend to 

overestimate the damping.
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CHAPTER FOUR

DETERMINISTIC OPTIMIZATION OF MODEL OUTPUT IN
TIME DOMAIN

4.1 General

This chapter presents a deterministic optimization based procedure to perform modal 

identification from given vibration data. The problem is formulated as a nonlinear least 

square fit problem to minimize the difference between measured and simulated outputs in 

the time domain. This cost function is simple and straightforward, but the resultant 

optimization problem is a nonconvex, nonlinear one, and no gradient is available in 

explicit form.

Following the exploitation/exploration paradigm, genetic and Nelder-Mead simplex 

algorithms are integrated to locate the optimum modal parameters in the search domain: 

when a promising area is detected by the Genetic Algorithm, the Nelder-Mead algorithm 

can be started with initial simplex in the localized domain to exploit this area and obtain 

the optimum. These examples demonstrate that the proposed procedure performs well, 

even the damping ratios can be accurately estimated which is a remarkable feature in the 

identification of civil engineering structures.

4.2 Formulation of the deterministic optimization problem

The equation of motion for a damped dynamic system using the finite element 

method can be formulated as:

(4.1) [M] {*} + [C] {x} + [K] {x} =

Here [M], [C], [K] £  RnXn denote the mass, damping and stiffness matrix, whereas 

n is the degree of freedom, (f(t)} denotes the load vector. The modal matrix O = { k} 

( k= l...n ) consists of the eigenvectors of the system. Due to the orthogonality property of 

the eigenvectors, the modal transformation using matrix <J> transforms the mass and the 

stiffness matrix into diagonal matrices. In most cases, the proportional damping is used,
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and then the damping matrix C is also transformed into a diagonal matrix by modal 

transformation. Thus we obtain a system of uncoupled equations in the modal space.

(4.2) qk(t) + 2£kC0kqk(t) + 6)2kqk(t) = ̂ Q - ,  k= l,...,n
mk

where {gk(t)} = Or {/(;)} and{*(0} = 0{x(t)}.

With the estimated modal parameters, we can calculate the response in the time 

domain using numerical integration. The objective function to be minimized is defined in 

the time domain as:
1 M

(4.3) J ( g ) = - Y i (x ( t , ,6 ) -x 1)2

Where 9 is the vector of unknown modal parameters, including cok and ̂ , if  an

element in the modal vectors is involved in the computation of the response, the modal 

vector element should also be included, tj (j= l.. .M) is the sampling time, M is the number 

of observations, usually a large number, and 9 is the vector of modal parameters to be 

identified. Vector } is the measured accelerations and {x(tp 9)} are the calculated

response using the estimated parameters; here we write {x(tj,9)} to indicate the explicit

dependence on the modal parameters 9 . The measured and the simulated responses are

taken as accelerations, since the acceleration is the most accessible measured response. 

Accelerometers are the cheapest instruments and easier to manipulate.

The objective function expressed in (4.3) can be written as:

i M  i M   ̂ 1

(4.4) = T m Tm
1 M 1 M 2 1

The vector R = { rx,... rM } is called the residual. We see that:

(4.5) W (#) = Rl(9)T R(9) € R m

The necessary conditions for optimality require that

(4.6) V J (9 * )= R \9 * )T R(9*) = 0

This objective function has been used by Dunn (1997) and Koh (2003) in their 

structural identification that the unknown parameters are the structural mass and stiffness, 

instead of modal parameters. Dunn (1997) used a modified Genetic Algorithm to identify 

a model of an aircraft structure with eight unknowns. Koh (2003) proposed a hybrid
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computational strategy combining Genetic Algorithm with a compatible local search 

operator to identify a 3-DOF and a 10-DOF structural system in conditions including 

noise polluted input/output signals and no prior knowledge of mass, damping or stiffness 

of the systems.

The objective function can also be defined in the ffequency-domain; the LSFD 

(Least-Square in Frequency Domain) method implemented in the “Structural dynamics 

toolbox for use with MATLAB” (Balmes, 1997) identifies the modal model properties 

through fitting the frequency-response-function (FRF). Bernstein and Richter (Bernstein, 

2003) used the RSS between the measured and computed FRF as the objective function in 

their genetic algorithm optimization of finite element model identification. In this work 

we will consider a formulation in the time domain.

There are two major difficulties associated with this type of formulation: no direct 

derivative information is available, therefore we must have a code which evaluates the 

cost function only; and that there can be noise in the evaluation of the cost function. 

Therefore solving the above-stated optimization problem is not a trivial task; nonetheless 

this type of optimization problem is not rare in engineering. As an example is the 

optimization of blade shape which requires the computation from CFD (Computational 

Fluid Dynamics) software to form the objective function for optimization of multiple 

parameters (Berghen 20003, Berghen 2004).

In the next section we will review some general optimization techniques including 

global optimization approaches, derivative-based methods and direct search methods. The 

Nelder-Mead and Genetic Algorithm, which are chosen to in our approach will be 

described in detail.

4.3 Selection of optimization algorithms

4.3.1 derivative-based methods

The iterative optimization procedures solving the nonlinear least-square problem fall 

into two general classes, the derivative-based methods and the derivative-free direct 

search methods (Chong, 1996).

Most of the former approaches belong to the quasi-Newton hill-climbing and trust-
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region family and are best for unimodal functions. They are usually fast convergent 

algorithms, but they are not suitable for our problem because of the fact they need the 

gradient or Hessian information in determination of search directions.

4.3.2 Direct search methods

Direct search methods do not require the gradient or Hessian to be computed, they 

use values of the objective function from a set of sample points and use that information 

to continue the sampling and search for the optimum. These kinds of methods were first 

suggested in the 1950s, and continuously improved in the 1960s ad 1970s (Kelley, 1999). 

Initially, these methods were typically motivated by low-dimensional geometric intuition 

rather than mathematical theory. There are two important classes of direct search methods: 

the geometry-based and the model-based methods.

1) Geometry based methods:

In geometry-based methods, the function values are used to create and maintain a 

geometric figure, most commonly a simplex. These methods make minimal assumptions 

about the cost function and do not create any mathematical model for it.

Examples of geometry-based algorithms are the coordinate search method with fixed 

step sizes (Davidon, 1991), the pattern search method based on automata theory (Hooke, 

1961), the multi-directional Parallel Direct Search (PDS) method of Dennis and Torczon 

(Dennis, 1991). Usually, these methods need only the function values.

A simplex-based method constructs an evolving pattern of n + 1 points in 9!" that 

are viewed as the vertices of a simplex. A new simplex is formed at each iteration by 

reflecting the vertex with the largest value of objective function, over the centre of the 

opposite face of the simplex, or by contracting toward the vertex with the smallest value 

of objective function. Among all the geometry based methods adopting the simplex 

concept, the Nelder-Mead method is the most popular one; its robustness has been tested 

in many applications. We will discuss the Nelder-Mead simplex method in detail in 

section 4.4.

2) Model Based Methods
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Model-based methods use the function values to build a convenient model, such as a 

quadratic function, through interpolation or approximation. The underlying assumption in 

defining a model is that the objective function J is, in some sense, “nice”. Recent survey 

of such methods is given in (Conn, 1997). One successful application of this kind of 

method is the CONDOR algorithm (Constrained, Non-linear, Direct, parallel 

Optimization using trust Region method for high-computing load function), which was 

developed for a CFD related optimization problem (Berghen, 2004).

The main difficulty in practice to use this method is that one must retain the 

interpolation point set with certain geometric properties at each iteration. Different 

interpolation functions, mostly polynomials have been used in many development of this 

kind of methods.

There are two essential ingredients of derivative-free methods. The first is to pick 

better points. In geometry-based methods, the algorithm should be designed to exploit the 

next place to sample. In model-based methods, the expectation is that the minimum of the 

surrogate model will predict suitable points. The second important ingredient is to 

determine an appropriate search subspace. Different ways to determine such search 

subspaces result in different algorithms.

4.3.3 Global search methods to avoid local minimum

Another difficulty that arises from the optimization approach defined in this chapter 

is the problem of local minima. Either the geometric or the model-based methods are 

prone to trap into a local minimum and not able to escape. Different strategies have been 

suggested for this problem, the most famous are the Simulated Annealing and 

continuation approach.

1) Simulated Annealing

As its name implies, the Simulated Annealing (SA) exploits an analogy between the 

way in which a metal cools and freezes into a minimum energy crystalline structure (the 

annealing process) and the search for a minimum in a general system. If a physical system 

is melted and then cooled slowly, the entire system can be made to produce the most
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stable (crystalline) arrangement, and not get trapped in a local minimum.

SA’s major advantage over other methods is its ability to avoid being trapped at a 

local minimum. The algorithm employs a random search, which not only accepts changes 

that decrease the objective function f, but also some changes that increase it. The latter are 

accepted with a probability given by:

(  A / 'j(4.7) p  = exp -  —-
\  1 J

where AJ  is the increase in objective function J, T is a control parameter, which by 

analogy, is known as the system “temperature”.

Let us describe briefly how SA works. Simulated Annealing starts at a high artificial 

temperature; while cooling the temperature slowly, it repeatedly chooses a subset of the 

variables and changes them randomly in a certain neighbourhood of the current point. If 

the objective function has a lower function value at the new iterate, the new values are 

chosen to be the initial values for the next iteration. If the function value is higher, the 

new values are chosen to be the initial values for the next iteration with a certain 

probability, depending on the change in the value of the objective function and the 

temperature. The higher is the temperature and the lower is the change, the more probable 

the new values are chosen to be the initial variables for the next iteration. Throughout this 

process, the temperature is decreased gradually, until eventually the values do not change 

anymore. Then, the function is presumably at its global minimum. Since we can always 

choose a higher temperature to start, the temperature is never increased.

2) Continuation Approach

Continuation Approach is another useful strategy in searching of a global minimal. In 

this approach, the original function is gradually transformed into a smoother function 

with fewer local minima. This is illustrated in Figure 4.1, for a one-dimensional non- 

convex objective function.
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Figure 4.1: Continuation approach using transformation

Consider for example the problem: 

min J(x)

where J(x) : 31" 91 is a non-convex objective function with many local minima.

The problem is transformed into

min h(x) = J(x)+ /u q(x)

where q(x) is strictly convex, and u is a positive constant. Thus h(x) is a convex function

for a sufficiently large value of u . Let x( u ) = argmin{/?(x}, be the minimizer of h(x) for

a fixed value of u , then x approaches x° = argmin (J(x)} as u -*■ 0. Here, the objective is 

transformed to be convex by adding a strictly convex term u q(x), and then gradually 

changed back to the original when u -► 0. This is not simulated annealing, but u might 

be considered as a similar control parameter as the temperature T in the simulated 

annealing. Though there are many reports on successful application the continuation 

approach, it cannot succeed for any arbitrary function. The type of local minima and noise 

in the objective function are different for different applications and therefore the success 

is not always guaranteed.

3) Genetic algorithm

Besides those local search techniques, one very powerful derivative-free direct 

search method is the Genetic Algorithm. Genetic algorithms are optimization techniques 

derived from the principles of evolutionary theory. They contain a population of
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individuals; each of them has a known fitness. The population is evolved through 

successive generations until a stopping criterion is satisfied. A genetic algorithm 

represents points in the search space by a vector of discrete (typically) bit values. A new 

child is produced by crossover and mutation parts of the bit vector from its parent. This is 

analogous to the way that chromosomes of DNA (which contains the inherited genetic 

material) are passed to children in nature.

Genetic algorithm (GA) is one of the most widely applied meta-heuristic search 

methods that have the power to well explore the whole feasible search domain. It had 

been applied to Finite Element (FE) update (Jaishi, 2005) and FE structural identifications 

(Dunn, 1997); however, the convergence becomes slow while approaching the solution.

The GA is almost a panacea to solve any direct optimization problem, if coded in the 

correct way and suitable control parameters are chosen. However, it is notoriously slow in 

convergence; the power of Genetic Algorithm is usually associated with parallel 

processing..

4.3.4 Genetic and Nelder-Mead

We propose in our work to combine the Nelder-Mead simplex method and the 

Genetic Algorithm for the solution of an optimization problem minimizing the objective 

function (4.3). The Nelder-Mead direct simplex method is adopted to search the local 

minimum because it is a derivative-free direct method. However, examples shows that the 

Nelder-Mead usually converges to local minima that are not necessarily the true solution 

to the nonlinear least square problem; to overcome this difficulty, a global method, 

Genetic Algorithm, is adopted to explore the whole feasible search domain and localize a 

promising area likely to contain a global minimum. When a promising area is detected, 

the Nelder-Mead algorithm can be started with initial simplex in the localized domain to 

exploit this area and obtain the optimum as accurately and quickly as possible.

The idea of hybridizing global search method and local search method is not new. 

Various combinations of Genetic Algorithm and some hill-climbing algorithm have been 

proposed in the literature. Chelouah et al. proposed a genetic and Nelder-Mead hybridized 

algorithm as one ideal pair for global optimization of many difficult continuous multi-
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minima functions (Chelouah, 2003). A hybrid GA and Least-Square algorithm to identify 

structural parameters has been proposed by Koh et al. (Koh, 2003).

It is noted here that we are not assuming that they are the best choice. The best 

optimization algorithm for our modal identification problem, if exist, should be one 

model-based method that use some interpolation function close to the point of local 

minimum; they are faster than simplex methods, and usually are more powerful in multi

variate optimization. If hybridized with the continuation approach, this method can 

localize the global minimum. However, to apply this method, the choice for interpolation 

functions and the decision for updating direction are usually problem-specific; i.e., the 

model-based optimizer developed for a CFD optimization problem may not work well for 

modal identification problem. One must develop such an algorithm specifically for the 

modal identification problem. The development of such an algorithm requires testing of 

different interpolation functions and search directions as they are usually problem- 

dependent in model-based method. Since the purpose of this thesis is to demonstrate the 

usefulness of optimization approach for modal identification, we would like to leave the 

development of good algorithms to future research.

4.4 Nelder-Mead Simplex Search

The Nelder-Mead simplex search method is possibly the most famous geometry- 

based direct search method. It requires only function values. It is also applicable for non

smooth problems, where the function is not given explicitly.

A “simplex” is a geometrical figure consisting of (n+1) points (x°, x1, . .., xn}, each in 

9V , i.e. the triangle for n = 2 or tetrahedron for n = 3. The shape of a simplex is convex 

with positive volume.

The worst vertex is also called the highest vertex that corresponds to the highest 

objective function value, with an analogous definition of the best point or lowest point. 

Through a sequence of elementary geometric transformations, the initial simplex moves, 

expands or contracts. The method uses only the values of the objective function at the 

considered points.

After each transformation, the current worst point is replaced by a better one. The 

basic operations on the simplex are:
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Reflection: x r = (1 + a)x  -  axn 

Expansion: x e = (1 -  y)x + yxr 

Contraction: x c = (1 - f i ) x  + fix"

Y « - i

where x - ~ y ] x J , and a  , f t  , y  are constants: 0 < a  < 1 reflection factor; 0 < /? < 1
n j=0

contraction factor; 1 <y  expansion factor.

At the beginning the highest vertex which has the maximum objective function value 

is replaced by another point image of the highest vertex. This operation is the reflection.

If the reflected point is better than all the other points, the method expands the simplex in

this direction; otherwise, if it is at least better than the worst, the reflection is performed 

again with the new highest point. While the worst point is at least as good as the reflected 

point, the contraction is performed. If the worst point is better than the contracted point, 

the multi-contraction is performed. At each step, the new point should be checked not 

outside the feasible solution space. Through these operations the simplex finds and adapts 

its way on the function “landscape”, and finally surrounds the optimum.

One Nelder-Mead iteration has two possible outcomes: (1) a single new point 

replaces the worst vertex; or (2) if a shrink is performed, the new simplex contains the 

best point from the previous iteration and n new points closer to the best point than the 

previous ones. A typical iteration of the Nelder-Mead algorithm is outlined by Kelley 

(Kelley, 1999) as follows:

1. Initialization: Let a starting point x be given.

Set parameters 0.5 < or < 1, 1 < y , 0 < /? <1, and 0.25 < a  < 1 as factors for 

reflection, expansion, contraction and shrink, respectively.

2. Ordering: Order the n + 1 simplex vertices to satisfy f(x') ^  f(x2) ^  

f(xn+1), using a consistent tie-breaking rule for the equality cases.

3. Reflection: Compute a reflection point xr from

= x + a (x  -  x n~l), 

where x  is the centroid of the n best vertices (all except xn+1), i.e.,
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and a  is the reflection factor.

Evaluate fr = f(xr).

If f[ ^  fr < fn, accept the reflected point xr, remove xn+i, terminate the iteration 

and goto Step 2.

4. Expansion: If fr < fi, calculate an expansion point xe from

x e = x  + y (xr -  x) 

where y  is the expansion factor.

Evaluate fe = f(xe). If fe ^  fr? accept x j remove x , terminate the iteration and 

goto step 2.

Otherwise (if fe ^  fr), accept xr, remove xn+1, terminate the iteration and goto 

Step 2.

5. Contraction: If fr ^  fn, perform a contraction between x and the better one in

xn+1 and xr. Here the program has two branches.

a) Outside Contraction: If fn ^  fr < fn+i (i.e., xr is strictly better than xn+1),

perform an outside contraction. Calculate

x oc = X  + p {x r - x )  

where fi is the contraction factor, and evaluate foc = f(xoc).

If foc ^  fr, accept x , remove x , terminate the iteration and goto 

Step 2. Otherwise, goto step 6 (perform a shrink).

b) Inside Contraction: If fr ^  fn+i (i.e., xn+1 is better than xr), perform an 

inside contraction. Calculate

X* = x - f i ( x - x n+l) 

where f i  is the contraction factor, and evaluate f c = f(xlc).

If fc ^  fti ■ i, accept x , remove x , terminate the iteration and goto 

step 2. Otherwise goto step 6 (perform a shrink).

6. Shrink: Define n new vertices by

x ‘ = x 1 + cr(x‘ -  x1), i = 2 , . . . ,  n + 1,
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where o is the shrink factor, and evaluate function f  at these points.

If stopping criteria is satisfied, then terminate the algorithm. Otherwise, 

terminate the iteration and goto Step 2.

The formulation implemented in this thesis allows two criteria for termination: the 

first is checking the tolerance of simplex diameter, which is defined as fn+i-fi or f(xn+1)- 

f(x’), is sufficiently small or not; the second is whether a user-specified number of 

function evaluations has been expended.

Unlike the Newton family of search methods, the development of Nelder-Mead 

simplex method is based on geometrical intuitions, rather than mathematical deductions. 

Despite major efforts, only very weak convergence results (Kelley, 1999) have been 

established by mathematicians, and only for the original Nelder-Mead method in one and 

two dimensions (Wright, 1995).

4.5 Examples using the Nelder-Mead method:

4.5.1 SDOF example

As a first example, we consider the single degree-of-freedom (SDOF) spring-mass 

system shown in figure 3.2. A fourth-order Runge-Kutta method is used to integrate the 

system’s response under an impulsive load. The simulated system is treated as the “true 

system”, and the simulated acceleration outputs are taken as the measurements. 

Noise/disturbance is added to the simulated outputs to mimic the measurement noise 

which can not be avoided in real engineering practice. The exact value of stiffness to the 

“true system” is assumed 10 kN/cm, and damping ratio is 0.05, the mass is taken as 1 

kN*s /cm; thus for this SDOF system, the modal properties are equivalent to the stiffness 

and damping ratio.
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Figure 4.2: The loading applied to the structure

In this example, there are only two parameters to be estimated, the stiffness and the 

damping ratio. Then each simplex consists of three vertices, each is a pair of stiffness and 

damping ratio. The iteration of Nelder-Mead search terminates when the diameter of the 

simplex is smaller than the tolerance. While the tolerance for simplex diameter is set to be 

0.001, we obtain the following experimental results:

Table 4.1: Identified parameters with different initial guess and noise level in the 
measurement (the reference parameters are (10,0.05))

Case
Initial guess Identified parameters

Noise level
k £ k £

1 1,2,3 0.04, 0.06, 0.07 fail fail 50%

2 1,2,3 0.04, 0.06, 0.07 0.05 0.03 0%

3 10, 2,3 0.04, 0.06, 0.07 9.9767 0.053 50%

4 8, 9,11 0.04, 0.06, 0.07 9.9752 0.053 50%

5 8, 9,11 0.04, 0.06, 0.07 10.00 0.05 0%

6 8, 9,11 0.04, 0.06, 0.07 10.00 0.049 100%

7 8, 9,11 0.04, 0.06, 0.07 9.87 0.061 200%

8 8, 9,11 0.04, 0.06, 0.07 9.70 0.082 300%

9 8, 9, 11 0.0, 0.01, 0.02 10.01 0.05 0%

10 8, 9,11 0.0, 0.01, 0.02 9.97 0.07 50%

In table 4.1 the last column, level of noise is the percent of noise variance against the 

rms of the noise-free response, i.e., a 50% noise level corresponds to noise with a
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variance that is 50% prediction-error level.

In the first and second row of the table, we see that the identification results are poor 

when the initial guesses for the stiffness are not close to the true value. The 4th and 5th row 

show that the identification procedure leads to good results with good initial guess close 

to the reference solution. In the 6th case, although the noise level is high, the obtained 

results are very close to reference values of the stiffness and damping ratio. In the 7th and 

8th cases, the deteriorating effect of high level of noise on the identification of damping is 

clearly demonstrated, and we see that the identification of damping is more sensitive to 

the noise than the identification of the stiffness. However, this high level of noise, 200% 

(case 7) and 300% (case 8), will definitely make all the conventional system identification 

methods fail, but this deterministic optimization approach can still give some reasonable, 

though not accurate, results. In the last two cases, with good initial guess for stiffness but 

poor initial guess for damping, results demonstrate the additive effect of poor initial guess 

and noise; without noise, the optimizer is able to find the optimal even with a poor initial 

guess of damping, but if there is a relatively high level of noise, the damping 

identification becomes poor. In theory of direct search optimization, this is called the non

smoothness effect: that the noise in the data adds some non-smoothness to the objective 

function, and makes the optimizer difficult to find the valley.

The following observations can be drawn from the shown results:

1) The initial guess is crucial in the performance of the nonlinear LS identification.

2) With a good initial guess, this method performs well, even under a high level of 

noise.

3) Damping is more susceptible to noise. If the noise level is high, the estimation of 

damping is poor, but the stiffness estimation can be acceptable.

4) Good initial guess of damping is more crucial for high level of noise.

5) The proposed method, if successful, is surprisingly robust against measurement 

noise.

In the next step we check whether the biased estimations are due to trapped local 

minimum or poor convergence of global minimum. We use this initial simplex: 10 2 3 for
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stiffness and 0.04 0.06 0.07 for damping, and test the performance of our program using 

different tolerance for Nelder-Mead search algorithm.

Table 4.2: Identified parameters with different tolerance of the Nelder-Mead search 
algorithm

tolerance
Identified parameters

Noise level
k

0.1 9.76 0.07 50%

0.001 9.834 0.063 50%

0.00001 9.77 0.067 50%

We observe that for poor initial guess, the reduction of tolerance does not guarantee 

improvement of the solution. This clearly indicates the bias in estimation is attributed to 

the trap into a local minimum, not unconverged solution.

Figure 4.3 shows the convergence history of the 4th case. Since the objective function 

defined is the RSS of the output error, the function value should approach zero after 

convergence. The simplex diameter, which is one criterion for terminating program, 

should also be close to zero. The simplex gradient is computed as the ratio of the 

maximum Euclidean distance between simplex vertices and the simplex diameter f(xn+1)- 

f(x!); its norm is also a measure of the performance of the Nelder-Mead algorithm, that a 

large number of the norm indicates possibly there is stagnation at a non-optimal point 

(Kelley, 1999). This stagnation is possible to happen if there is a flat region of the 

objective function.
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Figure 4.3: The convergence history of simplices

4.5.2 MDOF example

The second example refers to the six-story building shown in Figure 3.5. This 

structure is excited at the top floor with Gaussian white noise, and the acceleration 

responses are measured at the same floor. The damping ratios are assumed to be 5% for 

all the modes. The measurement error level is assumed to be 20% of the root-mean-square 

(rms) of the noise-free acceleration response at corresponding channels. Sampling rate of 

the data is 50Hz while the system is simulated at a time step of O.Olsec. A measurement 

of 5 sec duration is used for the identification.

As a first step, we try to identify only the lowest mode, with a poor initial guess (50, 

51, 52} for a frequency value 6.7767, and {0.04, 0.05, 0.06} for damping ratio of 0.05. 

The search converges to a local minimum (Figure 4.4), and results in bad estimates.
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Starting from a good initial guess: {5, 6, 7} for the frequency and {0.03 0.05 0.06} 

for damping, the search converges to the global minimum (Figure 4.5), and the results are 

good estimates.
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Table 4.3: Identified parameters of the first mode with different initial guess (The 
exact parameters are (6.78, 0.05))

Initial guess Identified parameters -----  ---------------
Noise level

CO £ CO C

50,51,52 0.04, 0.05, 0.06 237.35 0.807 20%

5, 6 ,7 0.04, 0.05, 0.06 6.78 0.050 2 0 %

We can also identify several modes at the same time by using a larger simplex. While 

providing good initial guesses:
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Table 4.4: Initial guess for the identification of first three modal frequencies and 
damping

mode
Reference value Initial guess (simplex centroid)

CO c 03 c

1 6.78 0.05 6 0.06

2 17.74 0.05 15 0.06

3 26.96 0.05 25 0.04

Here there are six parameters to be identified, each vertices of the simplex has a 

coordinate of six variables, and the simplex has seven vertices in total. The number of 

vertices of a simplex is the number of parameters plus one. On a two dimensional plane 

coordinating two parameters, the simplex is a triangle with three vertices; in the three 

dimensional space with three parameters as coordinates, the simplex is a tetrahedron with 

four vertices, and so on for higher dimensions.

We can generate the initial simplex coordinates manually if the number of 

parameters is small, or the dimension is low; however this manual generation would 

become too tedious if  the numbers of parameters become large, as in this case we need to 

generate seven vertices for a simplex, and each vertices contains six number of coordinate 

values. Therefore, we adopt an automatic generation of initial simplex for this example 

(Kelley, 1999). This method generates a unit simplex of dimension n around the origin 

and then shifts its controid to the initial guess. This way guarantees that the simplex has a 

good geometry.

The converged simplex vertices are given in the following table:
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Table 4.5: Identified parameters of first two modes with good initial guess

Name of parameter Reference value Identified value 1

1st natural frequency 6.78 6.77

2nd natural frequency 17.74 18.12

3rd natural frequency 26.96 27.14

1st mode damping ratio 0.05 0.050

2nd mode damping ratio 0.05 0.058

3rd mode damping ratio 0.05 0.058

A good agreement with the exact solution is obtained. Again, this proves that as long 

as the starting guess is good enough to the final results, the Nelder-Mead algorithm works 

well for our modal identification problem.

4.6 The Genetic Algorithm and its implementation

4.6.1 Basic procedures of the Genetic Algorithm (GA)

Originally proposed by Holland (Holland, 1975), Genetic Algorithm (GA) is a 

general purpose stochastic optimization method that mimics the heuristic concepts of 

natural selection and genetic operation. It belongs to the class of probabilistic algorithms, 

yet it is very different from random algorithms as it combines elements of directed and 

stochastic search. This approach has been shown to provide robust search in complex 

spaces (Michalewicz, 1999).

One important property of GA is that they maintain a population of potential 

solutions; thus it is efficient to explore a wide search space and detect a promising 

“valley”. Besides, it is a self-start method, no need for an initial guess. Despite these 

advantages, GA’s slow convergence in fine-tuning is one of the major known drawbacks. 

The slow convergence of GA before providing an accurate solution is closely related to its 

failure to exploit local information.
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In applying the Genetic Algorithm, the modal parameters to be optimized must be 

coded as chromosomes (genes) like a design vector. The initialization of all chromosomes 

in the population is done randomly. The bit-streams are then translated into floats and the 

corresponding fitness values of the chromosomes are calculated. The rank of every 

chromosome is determined according to its fitness. The stopping criterion is checked and 

the algorithm turns to the selection step. Thereby, a fixed percentage of the chromosomes 

from the population according to their rank are selected to be a part of the set of parents 

of the next generation. Another part of the chromosomes (those with medium-grade 

fitness) has also the opportunity to become parents, while a fixed percentage of the 

chromosomes are killed.

After the selection the evolution procedure is performed, which consists in a 

crossover and a mutation step. In order to generate offspring, in this work the single-point 

crossover method is used: two parents generate two offspring by passing on parts of their 

chromosomes. The method exchanges the bits of the chromosome’s bitstream beginning 

at a single random point and stores them in the chromosomes of the offspring. Besides the 

single-point crossover, there are some different crossover methods, such as shuffle 

crossover or n-points crossover methods.

4.6.2 Mapping objective function values to fitness

Fitness values must be a nonnegative figure of merit to be maximized; it is therefore 

often necessary to map the underlying problem-dependent objective function to a fitness 

function from one or more mappings. For this defined optimization problem for modal 

identification, the objective is to minimize a squared error function of the residues, the 

following error-to-fitness transformation is used:

(4 .7) fitness(x) = m ax(C nBX -  g (x ) ,0 )

where Cmax may be taken as the largest value of squared error observed thus far; in the 

simulations, it is taken as a fixed value based on a cursory estimate; g(x) denotes the 

objective function value computed of each individual x.
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4.6.3 The selection scheme and the elitist strategy

The selection scheme used in this work is the Standard proportional selection for 

maximization problems. The probability of selecting an individual among a population of 

N individuals is given by

(4.8) =
' Z m j )
M

This selection scheme is simple, however it has the potential problem that the best 

individual in the population may fail to reproduce; thus a modified elitist strategy is used 

along the selection to make sure that the best member survives; this strategy uses the best 

individual in the previous generation to replace the worst individual in the current 

generation if  the best member of the current generation is worse then the best member of 

the previous generation.

4.6.4 Implementation of the Genetic Algorithm

At beginning, we need to fix the following parameters:

•  search domain of each modal parameter;

•  chromosome representation of modal parameters;

•  the population size and the randomly generated starting points;

•  the mutation probability and the crossover probability;

•  the maximum number of successive generations.

The search domain of frequency and damping parameters can be defined using a 

lower bound and an upper bound based on a priori knowledge; usually the lower bound is 

defined as zero, and the upper bound of frequency is taken as highest significant 

frequency value, while the upper bound of damping can be taken as a high value that we 

believe to be an upper limit for this kind of structures, say 0.5 for most civil structures. 

One should reduce this range as small as possible, so that the program can converge faster.

This paper adopts a binary encoding of the modal parameters (number of 

chromosome bits controls the resolution of identified parameters).

The initial population is randomly generated in the search domain based on an 

uniform distribution. One benefit of the binary encoding is that each generation of
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chromosomes will always have parameter values in the pre-defined search domain, even 

undergo mutation and crossover.

To avoid missing global minimum, it is preferable to start the genetic process with a 

large population, and to have a bigger variation step for each variable. However, the 

computation load will be increased accordingly, since for every individual in the 

population, we need to run a whole simulation to compute the fitness value. After a fixed 

number of generations, ideally, some of the best individuals in the population will 

accumulate in a small region containing the true solution during evolution, and they can 

be used as the initial simplex for Nelder-Mead search method.

4.7 Examples

4.7.1 SDOF example

Consider the single degree-of-freedom system shown in Figure 3.2. The Genetic 

Algorithm illustrated above is used to solve the identification of this simple model. The 

range for the initial population of k is chosen as 1~100 kN/cm, and the range for the 

initial population of damping ratio is chosen as 0.01~0.20. These are very wide search 

domain; we can safely assume the true values must be within this range. A moderate 

measurement noise level of 20% is assumed, i.e., the prediction error has a covariance 

that is 20% of the root-mean-square of the response.

The parameters used in a Genetic Algorithm to solve this problem are chosen as: 

population size = 50 

crossover rate = 0.8 

mutation rate = 0.15

Using the simulated acceleration responses as the measurement and adding noise, 

after 100 generations, the best member in the last generation: k = 10.306 kN/cm, ^  -  

0.049, corresponding to fitness value 299.096. After sorting, the best three individuals in 

the last generation are:

1) var(l) = 10.306 var(2) = 0.067 fitness = 298.011

2) var(l) = 10.306 var(2) = 0.051 fitness = 299.078

3) var(l) = 10.306 var(2) = 0.049 fitness = 299.096
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var(l) is the stiffness, and var(2) is damping ratio. The best member having the 

largest fitness value is the third one, and it is chosen as the solution given by GA. If we 

want to fine-tune it, this is also a very good initial guess for Nelder-Mead to start with.

In the second test, a high level of noise (100%) is added into the measurement 

acceleration response. After 100 generations, the best member in the last generation: k = 

10.405 kN/cm, £  = 0.045, corresponding to a fitness value 135.210. Although the fitness 

value calculated is much different from the noise-free case, the identified parameters do 

not change much. This example demonstrates the robustness of GA against noise- 

pollution.

For this case, the best three individuals in the last generation are:

1) var(l) = 10.405 var(2) = 0.045 fitness = 135.210

2) var(l) = 10.405 var(2) = 0.040 fitness = 135.124

3) var(l) = 10.405 var(2) = 0.028 fitness = 133.820

We observe that the best member having the largest fitness value is the first one, and 

it is chosen as the solution given by GA. Again, we see if we want to fine-tune it, this is 

also a very good initial guess for Nelder-Mead to start with.

4.7.2 MDOF example

The second example identifies the six degree-of-freedom shear building model. 

Three modal frequencies and damping pairs are to be identified. The range for the initial 

population of all frequencies is chosen as 0.5-100, and the range for the initial population 

of damping ratios are chosen as 0.01-0.20. They are very wide search domain; we can 

safely assume the true values must be within this range. A moderate level of measurement 

noise of 20% is assumed.

The parameters used in a Genetic program to solve this problem are chosen as: 

population size = 500 

crossover rate = 0.8 

mutation rate = 0.15

As a first attempt and using the simulated acceleration responses as the measurement 

and add no noise, after 100 generations, the best member in the last generation
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corresponding to the smallest fitness value are given in Table 4.6.

Table 4.6: Best member in the last generation corresponding to the smallest fitness 
value

Parameter Reference value Identified using 
GA

Refined by 
Nelder-Mead

G\ 6.78 6.33 6.71
(02 17.74 19.81 18.23

oh 26.96 27.92 27.35

Cx 0.05 0.058 0.051

c 2 0.05 0.061 0.051

Cs 0.05 0.043 0.048

As we can see, the solution of GA, though not very accurate, is a very good initial 

guess for Nelder-Mead to start with. The fourth column in Table 4.6 is the refined 

parameter values by Nelder-Mead.

To best hybridize the Genetic and Nelder-Mead algorithm, we can terminate the 

Genetic Algorithm earlier with fewer number of generations.

4.8 Comparison of the proposed approach with PEM and LSFD method

The basic idea of system identification is to produce a model from available response 

data such that when the model and the real system are subjected to the same inputs, the 

differences between the model outputs are the true system outputs should be as small as 

possible.

Literally, the proposed optimization approach can also be called a kind of Prediction 

Error Method, as both this approach and the PEM solve unknown parameters by a 

nonlinear optimization procedure to minimize the output error between the model output 

and the measurement. The difference between the proposed approach and the PEM is that 

this method minimized the prediction error using a direct modal model, rather than 

indirectly through an ARMAX type model.

Besides the PEM, another method which inspired the proposal of the deterministic 

optimization approach is the least square frequency domain method (LSFD) proposed by
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Iwaniec and Uhl (Iwaniec, 2003). The LSFD identifies the modal model properties by 

fitting the FRF (minimize the difference between the frequency response between the 

measurement and the model).

transformation into

modal analysis

opti mization proc edure

objective
function

structure

real

p a r a m e t e r  selection

finite element 

model

measurements

frequency response 

(model)

frequency response 

(real structure)

Figure 4.6: Flowchart of LSFD

The flowchart of LSFD is shown in Figure 4.7. Similarly, we can write the flow chart 

for the proposed deterministic optimization approach.

response

optiroi zation procedure

structure

real

parameter selection

modal model

measurements

Figure 4.7: Flowchart of the proposed optimization approach

The formulation in this approach is more direct and simpler, however there is no 

available information of the derivatives of the objective function; for both PEM and 

LSFD, the derivatives can be computed without difficulty using the parameterized FRF. 

All of them lead to optimization problem to be solved for parameters. Therefore the PEM

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and the LSFD, along with their approximations can also be called optimization 

approaches. Why the PEM family is so popular? The reason is that the ARMAX model in 

PEM and the parameterized FRF in LSFD offer explicit calculation of gradients and 

Hessians of the cost function, and therefore enables the application of general and very 

fast optimization algorithm such as Gauss-Newton and Levenberg-Marquardt methods. 

The PEM function implemented in MATLAB system identification toolbox (Ljung, 2004) 

uses Levenberg-Marquardt algorithms and the LSFD implemented in VIOMA (Virtual in 

Operational Modal Analysis toolbox) toolbox (Iwaniec, 2003) uses Gauss-Newton 

algorithm to solve the involved optimization problems.

4.9 Conclusions and remarks

The proposed deterministic optimization approach that solves modal identification 

problems as a nonlinear Least-Square optimization problem is very robust against noise 

corruption in the measurement; it gives good estimations of modal parameters if  the 

global optimum of the objective function is correctly found by the optimization algorithm, 

and even the damping ratios can be accurately estimated, which is a remarkable feature 

for civil engineering applications. These advantages ensure it is worth trying in the input- 

output identification and is a promising direction for future research.

The solution of the formulated optimization is a very challenging task from 

computational point of view. However, it has been shown that global convergent methods, 

such as the Genetic Algorithm, can be used to search a good initial guess for local 

convergent methods to perform fine-tuning. With good initial iterations, the Nelder-Mead 

direct search method works well in this optimization problem for modal identification.

For a better direct optimization approach, specific optimization codes that combines 

the model-based methods and the continuation techniques, should be developed 

specifically for modal identification problem, as the research work done in many diverse 

research fields that involves a complicated, external non-smooth evaluation of the cost 

functions.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER FIVE

PROBABLISTIC OPTIMIZATION USING BAYESIAN 
ESTIMATION

5.1 General

This statistical optimization approach is an application of the probabilistic Bayesian 

minimum-mean-square-error (MMSE) estimator in the identification of modal parameters. 

Due to the difficulty in evaluating the Bayesian MMSE estimation, a suboptimal 

estimator is sought instead, which is the maximum a posteriori (MAP) estimator. The 

objective function is therefore defined as the a posteriori probability density or its reduced 

likelihood function. A nonlinear optimization problem is then formed to maximize the 

Bayesian a posteriori Probability Distribution Function (PDF), and solved by the Nelder- 

Mead simplex method due to the lack of explicit gradient formulation which is a similar 

difficulty to the deterministic optimization approach described in the last chapter.

The most significant particularity of the Bayesian approach is that the parameter 

vector 6={col,£ l ,co2,£ 2,...} of interest is assumed to be a random variable or a random 

vector whose particular realization must be estimated. This is in contrast with the classical 

approaches of system identification that the parameters are assumed to be deterministic 

but unknown values.

The first significant advantage of the Bayesian approach is that it offers direct 

incorporation of our prior knowledge about the modal properties, if any, into the 

identification process. It is a fundamental rule of estimation theory that the use of prior 

knowledge will lead to an increase of the accuracy in the estimation. However it is 

difficult to make use of any prior knowledge directly in the identification process using 

deterministic approaches. In the Bayesian approach, the prior knowledge is carried out in 

the Bayes’ theorem through a prior PDF, the resultant MMSE estimator is optimal with 

respect to the assumed prior PDF of G.

The second advantage of the statistical approach is that it allows identifying not only 

the modal parameter values in the form of probabilistic means but also the associated
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uncertainties in the form of probabilistic variances. The uncertainties of the identified 

modal parameters can be used in finite element model update based on identified modal 

parameters, where less weight can be associated to the parameters having more 

uncertainties. A widely employed technique in model updating is to use the inverse of the 

covariance of the identified parameters as the weighting matrix. Using non-statistical 

system identification methods, this covariance can only be obtained by Monte Carlo 

simulations, which is a heavy computational procedure.

The Bayesian estimation is based on the conditional PDF of observed parameters. 

Calculating the conditional PDF of the measurement given modal parameters requires the 

inversion of a response covariance matrix, which is computationally prohibitive since the 

number of measured data is usually very large. Two methods are combined to avoid this 

difficulty: one is by using the truncated expansion of the conditional PDF; the other one is 

by using the steepest descent algorithm to solve the inversion a much smaller matrix.

5.2 Parameter estimation using Bayesian approach

The Bayesian approach to parameter estimation assumes that the parameters to be 

estimated are a realization of the random variables. As a consequence, we assign a prior 

PDF, P{9) to it. After some responses Y = {yk, k=0,...N-l} are measured, our state of 

knowledge about the parameter is included into conditional PDF P ( 9 1 Y) (Probability 

density function of 9 given observation Y). Using the minimum-mean-square-error 

(MMSE) estimator, optimal estimation is attempted by minimizing the Bayesian mean- 

square error (BMSE) defined as

(5.1) BMSE(9) = E [ (9 -9 )2].

It should be emphasized that since 9 is a random variable, this is a fundamentally 

different least-square than the deterministic least-square (LS) in some non-probabilistic 

approaches. The optimal solution to this estimator is the conditional mean of the 

parameter given observations Y, or the mean of the a posteriori PDF P(9 \ Y ) .

(5.2) 9 = E (9 \Y )

The expectation operator is with the joint PDF of parameter and observations. The a 

posteriori PDF P{9 \ Y) refers to the PDF of 9 after the observation or measurements
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have been made. The Bayesian idea is that the reduction of out uncertainty about 9 and 

the increase in our knowledge about the parameters to be identified are represented in the 

a posteriori PDF P(9 \ Y).

Using Bayes’ theorem, the posterior PDF of the parameters given the measurement 

series Y = {y(0),y(l),.. .,y(N-l)}T is given by (Kay, 1993)

r i r , m  mnrw mnr\e)(5.3)

The numerator is the a posteriori PDF of 9 , which is a production of the prior 

PDF P{9) and the conditional PDF of Y given a particular set of parameter values. The 

denominator is a normalizing constant to ensure the posterior PDF integrate to unity 

which is necessary for a valid PDF function; it has no effect over the selection of<9. To 

bypass the difficulty in evaluating the integral of P {9 1T) in calculating the mean, we 

seek a suboptimal estimate of the parameters by solving a nonlinear optimization problem:

(5.4) 0 = min J{9) = -  In(P(0)P(Y | d))0

where J denotes the cost function to be minimized, which is equivalent to maximize the a 

posteriori PDF, and therefore it is called MAP estimation in the statistics literature. Once 

the most probable parameter has been obtained by solving this optimization problem, the 

covariance of the parameters can also be computed by the inverse of the Hessian of the

cost function at 9 = 6 , that is:

(5.5) Rd = H - \ j { 0 ) )

The Hessian is computed using a numerical derivative. In other words, the identified 

modal parameters are also Gaussian random variables and have a distribution

(5.6) 0 ~ N ( 0 , R §)

Prior PDF P(0) incorporates any prior knowledge and engineering judgment about 

the parameters to be identified. If no prior knowledge is available, a constant value can be 

assigned indicating that we have no preference over any choice of 6. In this case, the 

remaining term P{Y\0)  is the likelihood function L(9, Y )=P(Y  19), and the solution is 

reduced to the maximum likelihood estimation (MLS).

Based on our Gaussian assumptions of the excitations and response, the term
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P(Y  | 9) follows an N-variate Gaussian distribution with zero mean and covariance 

matrix Ry. Since a Gaussian distribution is defined completely by its mean and covariance, 

one needs only to find the solution of the covariance matrix for P(Y 19) from the given 

parameters.

Given a set of parameter values, the response covariance can be computed from 

stochastic vibration theory. In the next two sections, we present the computation for the 

simple SDOF model, and then extend the formulation to MDOF case.

5.3 Formulations for SDOF system

In the case of SDOF, the parameter vector 0 to be identified is comprised of 

6 = [coq,£ ,S q,<tv] , where we have not only the natural frequency co0, damping ratio £ ,  

but also the input spectral density S0 and spectral density of measurement noise <rv. They

are all needed to calculate the stochastic response. If the input power spectrum So is 

known, we have a parameter vector of three entries.

The differential equation governing the motion of SDOF oscillator is given by:

(5.7) x{t) + 2£co0x(t) + a>lx{t) = f  (t)

where co0 and £  are the natural frequency and damping ratio of the oscillator,

respectively, and f(t) the ambient excitation. Assume that f(t) is a Gaussian white noise 

with constant spectral density:

(5.8) Sf (a>) = S0

From stochastic analysis of structural vibration, we know the displacement, velocity, 

and acceleration responses are also Gaussian random processes with zero-means, and 

auto-correlation functions given by (Lutes, 1997):

(5.9.1)

(5.9.2)

(5.9.3)

Rx(T)=jQLre-to‘ M
2 ^ o

nS,
2 ^

2<r

0

cos (codt)  + sin(&>. Id)
<°d

cos(<z>dr) + -^-2- s i n ^  |zj)
co,,

R s i j )  = ^ A e -c<A cos (codz) + -^2- sin(®rf |r|)
co.
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where cod = a>0̂ \  - 1,2 is the damped natural frequency of the SDOF oscillator.

Assume that measured responses (usually acceleration series) are available at 

discrete times {tk = kAt,k = 0,...,N-1} and that there is measurement noise and

modeling error, meaning there is a difference between the measured response y(k) and the 

model response x(k). That we have a Bayesian linear model

Furthermore, the noise process v is assumed to be white Gaussian noise (WGN) with 

zero mean and covariance Rv.

The PDF of the measurement |y(k), k=0,...,N-l} for the given parameters 6 is also 

Gaussian, given by:

where Y denotes the measurement series {y(k), k =0,...,N-1} in a column vector, and |R| 

denotes the determinant of a matrix R. This is a N-variate Gaussian distribution with 

zero-mean and covariance matrix Ry which is a function of the parameters#. For the 

SDOF problem, we have (Sayed, 2003):

The MATLAB function “Rx=toeplotz(first row of Rx)” can be used to generate the 

whole Toeplitz matrix providing its first row.

5.4 Formulations for the MDOF system
Although the number of vibration modes equals the number of degrees of freedom, 

only the lower modes contribute significantly to the response, we only identify the modal 

parameters corresponding to these modes. The parameter vector 0 to be identified are as 

follows:

1) Modal frequencies coi and modal damping ratios of the lowest Nm number of

(5.10) y(k) = x(k) + v(k) for k=0,.. .,N-1

(5.11) Rv = E [w T] = a 2v

(5.12)

where the autocorrelation Rx is a Toeplitz matrix with the first row as:

{ ^ ( 0 - l ) A r ) , i = l , . . , N }
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modes.

2) The modal shape vector components at observed degrees (one degree of freedom 

must be used as the normalized point which has a component of unity).

3) The parameters defining the forcing spectral Sg (co) , if not known, and the noise

covariance Rv .

In modal analysis, the scaling of each mode shape is chosen such that one of its 

components corresponding to a measured DOF must be equal to unity. Since such scaling 

is arbitrary, the modal vectors can be identified only up to a constant scaling factor in 

system identification of modal properties. Therefore if there is only one single output, the 

mode shape is not presented in the estimation parameter vector.

We need an expression for the response covariance matrix of MDOF systems which 

is counterpart of the SDOF equations (5.9). The equation of motion for a damped 

dynamic system with n-degrees of freedom (DOF) using finite element method can be 

formulated as:

(5.14) M{x} + C{x} + K{x} = {f(t)}

Here M, C, K G RnXn denote the mass, damping and stiffness matrix, whereas |f(t)} 

denotes the load vector. The load vector is modeled by:

(5.15) {f(t)} = T{g{t)}

where T is a force distribution matrix, and g(t) is a Gaussian stationary stochastic process 

with zero mean and spectral density Sg(o)).

The modal matrix O = { 4>k} ( k= l...n ) consists of the normalized eigenvectors that 

are solutions of the eigen-problem K  = AM with respect to the eigenvalues. The modal 

transformation using <£> transforms the mass and the stiffness matrix into diagonal matrices. 

In most cases, the proportional damping is used, and therefore the damping matrix C is 

also transformed into a diagonal matrix by modal transformation. The uncoupled 

equations in the modal coordinates are

(5.16) qk(t) + 2<;kcokqk(t) + (o2kqk(t) = ^ m ,  fc=l,...,n
mk

where {pk(t)} = <&TT{g(t)} is the modal forcing vector, {q(t)\ = ®r {v(f)} is the modal
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coordinate vector, and mk is the modal mass. Now, the modal forcing vector {pk(t)} is a 

Gaussian stationary stochastic process with zero mean and spectral density matrix

(5.17) Sp(0)) = O TM ^T S g(0))TTM - lO

The covariance matrix of the modal force function is the inverse Fourier transform of 

the spectral density matrix

(5.18) Rf  = £ aSf (co)eio*dt

Having the input spectrum in the modal coordinate, we can calculate the response 

spectrum using modal composition method. The spectral density of the response in modal 

coordinates is

(5.19) S r/(o>) =
_____________ Sr/(a>)_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

[(<yr2 - G ) 2 )2 +  2 j C r G) G ) ] [ ( (0 * - C O 2 )2 +  2 j C s (0 s (0

where j  = V -T ; the denominator is the harmonic transfer function for MDOF system.

Since the transformation from the modal coordinates to the physical coordinates is 

given by:

(5.20) {Mt)} = 0{q(t)}

The transformation from the modal response spectrum to the physical response 

spectrum is:

(5.21) Sx(co) = OSq(co)0T

The response spectral density can be expressed as follows (Lutes 1997):

Nm Nm f i r *S ( f i i \
(5.22) S l; k (ffl) = y y  17---------- r=------------- Z - y - --------rr---------------

r-i ,=i - a 2) +2jGra>r<a][(a>] - a 2) +2j £ s6)sco

and the state response correlation function is given by a inverse Fourier transform of the 

state response spectrum.

(5.23) Rf* = f° S fk(co)ejmdt
J-oo

A single-output identification problem is considered, the measured responses are 

available at a single node at discrete times tk =kAt, where k varies between 0 to N-l. 

Usually measurement noise and modeling error are inevitable, meaning that there is a 

difference between the measured response y(k) and the model response corresponding to
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the measurement; we can write the Bayesian linear model that is counterpart to the SDOF 

case equation (5.10):

(5.24) M *)} = #{*(*)}+ M*)}

Where H is the observation matrix consisting of zeros and ones, y(k) is the 

measurement data vector, the noise process v is assumed to be white Gaussian noise 

(WGN) with zero mean and covariance Rv.

(5.25) Rv = E [w T] = a 2v I

where I denotes the unit matrix that is given by I=diag(l,.. .,1).

Since the measured responses or the observations are linear function of the model 

response, the measurements y(k) is zero-mean and the covariance of the measurement is

(5.26.1) Ry = E [ ( y - y ) ( y - y ) T} = E[yyT} = HRxH T +RV

and

(5.26.2) = RXH T

where Rx denotes the covariance matrix of the model response x(t) calculated using 

modal superposition method, and Rv is the covariance of measurement noise.

5.5 Calculating the cost function

The conditional PDF can be computed using the equation (5.12) along with equation

(5.13) for SDOF systems and equation (5.26) for MDOF systems. Nonetheless, there is 

still a difficulty in the calculation of conditional PDF: in the formula of the multi-variate 

Gaussian distribution, we need to calculate the determinant and the inverse of an N-by-N 

covariance matrix Ry. However, the number of measurement points is usually a large 

number, and hence make the computation of PDF expensive, even practically infeasible. 

To overcome this difficulty, a combination of two techniques is adopted to bypass the 

matrix inversion and enable the numerical computation of the cost function. The first is to 

expand the conditional PDF of total response vector as a multiplication of conditional 

PDF of response at each individual time step, and approximate the response process as a 

finite-order Markov process; the second is to use an iterative optimization algorithm to 

solve the conditional mean and covariance of each individual conditional PDF.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5.1 Expansion and truncation of the conditional PDF

Beck and Yuen et al. (Beck, 1998) (Yuen, 2005) developed an approximate expanded 

formulation for the calculation of the conditional PDF; using Bayes’ rule, the likelihood 

function P {9 1 Y) can be written in terms of the transition probability density as:

(5.27) P(Y  | d) = P(y(0),...,y(Np -1 ) | 9 ) \ \P { y ( k )  \ 9 -y {0 \ . . . ,y (k - \) )
k=Np

where Np is chosen as a number much smaller than the total measurement point number N. 

The measurements at different time steps Y = {y(k),k=0,...,N-l} are not independent to 

each other, however, the autocorrelation of the model responses Rx is an oscillatory 

decreasing function, the envelope of this correlation is monotonically decreasing.

acceleration response
2 - - - - - - - - - - - - - - - - - 1---------------- 1---------------- 1---------------- 1----------------- 1---------------- 1-- - - - - - - - - - - - - - - -1---------------- 1---------------- r

'20 5 10 15 20 25 30 35 40 45 50
autocorrelation of acceleration response

3

2

0

0 5 10 15 20 25 30 35 40 45 50
time (sec)

Figure 5.1: Typical acceleration response and its autocorrelation

Therefore, measurement points with a large time interval in between can be regarded 

as independent; in this respect the measurement series can be regarded as a Markov
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process of order k if  Rx(At) = 0 . A process x(t) is Markov of order k if

(5.28) P(xm | *ra_2, . = P(xm | xm_x,xm_2,...,xm_k) for k<m

For the Markov-k process, we can approximate the transition probability density in 

the sense that the data points too far in the past have no effect on the statistical behaviour 

of a present point. Thus the equation of P(Y \ 6) can be greatly simplified as:

P(Y | B) s  P(y(0),...,y(Nr - l ) | ^ ) f l  P(y(k) \ 0-,y(k -  N p\..„ y(k  -1))
k=Np

That is, the conditional probability of current response depending on all the past 

observation data can be approximated by conditional probabilities depend only the last Np 

observation data points. Since the Markov order Np can be chosen as a number much 

smaller than N, the calculation of probability density function would thus require the 

inversion and determinant of a Np-by-Np matrix rather than the original N-by-N one. The 

choice of Npis such that the correlation functions must have decayed to very small values 

over this time lag. Through numerical testing, it has been found that a value of Np of the 

order of (5~10Tmax/ A t ) is sufficient, where Tmax is the fundamental period of the structure, 

and At the sampling time step. Using a larger value of Np gives no improvements in the 

calculation of conditional PDF.

To start the computation, one need to calculate a reduced PDF of the first Np 

observation points P(y(0),...,y(Np -1) 19) in the same way with the complete PDF of N

observation points; the inversion of the Np-by-Np Toeplitz matrix would not then be a 

difficult task..

Next, we need an expression for the conditional probabilities 

P(y(k) | 0;y(k  -  N p),...,y(k -1 )), k=Np,.. .,N-1. Since both the model response x(t) and

the measurement noise v(t) are zero-mean Gaussian processes, y(t) is also a zero-mean 

Gaussian process.

Following the notation used by statistical signal processing literatures (Sayed, 2003), 

we write:

f  d(i) = y(k) is a scalar variable

I  ut = [y{k -  N P),y{k -  N P +1),...,y (k  - 1)] is a row vector

We use i, instead of k, for the index of d and u to avoid confusion. Both of d(i) and u;
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change when we move forward to the end of measurements.

U i+ i d ( i + l )

i
j/(0), y(l),...,y(k -  N P ),y(k: -  N P +1),...,y(k  - l),.y(k)9y(k  + 1),-

V . - .. I ...   -.. ........  N  A- ~ V  T
ih d(i)

For Gaussian processes, the optimal estimator in the mean-square sense is the 

Bayesian minimum-mean-square-error (MMSE) estimator. The mean of y(k) given 

previous Np number of observations (y(k-Np),...,y(k-l)} is ju(k) given by

(5.29.1) m  = E\y(k) I y(k -  N p),...,y(k - 1)] = K 'R JT",

The corresponding mean square error Ji{k) = y(k) -  ju(k) (also called the covariance 

matrix of the prediction error) is

(5.29.2) R~(k) = E[/u{k)Ji{k)r \= R d - R TduR;lRdu

where YNp is the vector {y(k-Np),.. .,y(k-l)}. Ra has a dimension of 1-by-l; and Rau has a 

dimension 1-by-Np and Ru has a dimension Np-by-Np; they are submatrices of the 

covariance matrix of Z={y(k-Np),.. .,y(k)}.

(5.30) Rz = Rdu
R l  K .

Knowing the mean and covariance, the Gaussian distribution can be completely 

defined, that is:

P(y(k )  | 0-,y(k -  N p),. .. ,y(k - 1)) = ----------j-— - ^ e x p j  — J-|>(*) -  ju (k)f R~(k)[y(k) -  ju(k)\
(2x )1/2R- I 2

(5.31) = ------ -1— —  Qnp\-]-Ji{k)r R~(k)ji(k)
(27r)l/2\R-\ I 2

It is worth noting that the error covariance Rp(k)  is actually independent of the 

index k; it is evaluated only once during the analysis.

5.5.2 Steepest descent algorithm for calculating conditional PDF

The expanded form for conditional PDF requires the inversion of matrix Ru at each
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time step. If the fundamental period of structure is low and/or the sampling rate is high, 

the size of the Ru can be large; the numerical error in calculating R~lRdu can jeopardize

the final prediction. The inversion of matrix Ru can be avoided by reworking the recursion 

into a simple optimization form for the MMSE estimation (Sayed, 2003):

(5.32) min E\d -  uw;|2Wii “ 1 J

This optimization problem can be solved iteratively using the steepest descent 

algorithm, and the converged optimal solution is (Sayed, 2003):

(5.33) w° = R~jRdu

This steepest descent algorithm for computing data statistics R~xRdu is the basis for 

Least-Mean-Square (LMS) adaptive filtering (Sayed 2003), it is summarized as follows:

Step-1: let the weight w_, =0 as the initial guess.

Step-2: choose a stepsize p  that 

20 < M < ~—
max

where is the maximum eigenvalue o f  the covariance matrix Ru.

Step-3: iterate for i>  0.

w> = + M(Rdu

With the converged weight w, we can compute the MMSE estimation mean and 

covariance using equation (5.29).

The choice of a prior PDF is critical in Bayesian estimation. In this work, all 

variables are assumed to be Gaussian. Gaussian PDFs are quite useful due to their 

mathematical properties. Furthermore, Gaussian PDFs occur naturally in many practical 

applications according to Kolmogorov’s central limit theory (Lutes, 1997).
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5.6. Examples:

5.6.1 Example-1: Transient response of a SDOF oscillator

In this example, we consider the single degree-of-freedom (SDOF) spring-mass 

system presented in Figure 3.2 in Chapter 3, subjected to white Gaussian noise with 

spectral intensity S0. A fourth-order Runge-Kutta method is used to integrate the system’s 

response under generated noisy input. The parameters to be identified 

arQ0 = [a>0,£ ,S 0,Sv], including natural frequency a>(), damping ratio £ ,  input spectral

density S0 and spectral density of measurement noise crv. The parameter values used to

• 2  3  2generate the simulated data are S0 =1.0 cm /sec , and the noise variance <rv =0.251 for

measured acceleration response. The chosen value of noise variance corresponds to a 10 

per cent root-mean-square (rms) prediction-error level, i.e., the noise is 10% of the rms of 

the noise-free response. The time step used to generate the data is 0.01 sec. However, a 

much larger sampling time step was chosen ( At = 0.1 sec) and the total time interval is T 

=1000 sec, so that the number of data points is N =10000. It is assumed in this 

identification that we have no prior information about the model, and the prior PDF of 

parameters is assumed a non-informative one. As explained in section 5.2, this reduces 

our identification to a Maximum Likelihood estimation.

The Nelder-Mead simplex method is used to solve the formulated optimization 

problem. Figure (5.2) shows a typical simulated acceleration measurement with noise 

added in it. Figure (5.3) shows a typical convergence history of the Nelder-Mead method.
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measured acceleration history (with measurement noise)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
data point

Figure 5.2: The acceleration measurement with noise

x io 4 Nelder-Mead search history for MAP estimation
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Figure 5.3: The convergence history of the Nelder-Mead method

The identified results using one simulated output acceleration series is presented in 

Table 5.1. The standard deviation is the square root of variances of the unknown 

parameters, and the coefficient of variation is the ratio of standard deviation and true 

value. The value Np is chosen as 100 which corresponds to a time lag of twenty times the
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fundamental period.

Table 5.1: Identification results

Standard Coefficient of
Identified meanReference valueParameter

deviation variation

3.17 0.0052 0.00163.16

0.050 0.0017 0.03400.05

1.012 0.1106 0.1106

0.251 0.242 0.0124 0.0255

Figure (5.4) shows the conditional PDF P(co0 \ Y ,g ,S 0,Sv) , and the conditional PDF 

P(£  | Y,co0,S 0,Sv) . They are Gaussian distributions with very small covariance. We can 

take the mean as the identified values for the parameters.

xio4

u_o
CL

0.5

3.1665 3.1665 3.1666 3.1666 3.1667 3.1667 3.1668 3.1668 3.1669 3.1669

Q)0 (rad/sec)

xio-

Li_
Qa

0.5

0.0502 0.0503 0.0503 0.0503 0.0503 0.0503 0.0504

Figure 5.4: The probabilistic distribution of frequency and damping given 
observations
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5.6.2 Example 2: six storey building

The second example refers to the six-story building shown in Figure 3.5 (chapter 3). 

This is the same model used in (Huang, 2001). This structure is excited at its base with 

Gaussian white noise. Acceleration responses are measured at the top floor and the third 

floor. The base excitation is equivalent to application of the same acceleration excitation 

to every floor. The damping ratios are chosen to be 5% for all modes. The measurement 

noise level is assumed to be 10% of the rms of the noise-free acceleration response at 

corresponding channels.

The time step used to generate the data is 0.01 sec. However, a larger sampling time 

step was chosen (At = 0.02sec) and the total time interval is T =100 sec, so that the 

number of measured data points is N =5000. It is assumed in this identification that we 

have no prior information about the model, and the prior PDF of parameters is assumed a 

non-informative one. As explained in section 5.2, this reduces our identification to 

Maximum Likelihood estimation.

The identification using this statistical optimization approach is carried out using a 

single measurement series from the top storey and from the third storey respectively. 

Figure (5.5) and (5.6) shows the spectral density estimated using Bartlett method 

corresponding to the 3rd and 6th floor. Since the spectrum at different floor is different, one 

can expect naturally that the identification results obtained using measurements from 

different floors is also different.

In both cases, the value of the assumed Markov order Np is chosen as 300, which 

covers a time lag six times the fundamental period.
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Bartlett spectrum estimate
100

80

60

40

20

0

Figure 5.5: PSD plot at top floor
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Figure 5.6: PSD plot at third floor
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Table 5.2: Identification results from measurement at the top floor

Parameter Reference value Identified mean
Standard

deviation

Coefficient of 

variation

0, 6.78 6.92 0.343 0.051

co2 17.74 16.95 0.994 0.056

Cl 0.05 0.0545 0.008 0.156

C2 0.05 0.0549 0.007 0.144

s lP 18.51 17.215 3.253 0.176

s 2P 2.44 2.879 0.789 0.324

s ? -6.72 -6.218 1.893 0.282

0.095 0.127 0.030 0.316

Table 5.3: Identification results from measurement at the third floor

Parameter Reference value Identified mean
Standard

deviation

Coefficient of 1 

variation

cox 6.78 6.47 0.512 0.076

a 2 17.74 17.25 0.734 0.0414

Cl 0.05 0.06 0.013 0.254

C2 0.05 0.049 0.005 0.098

s'p 18.51 19.974 3.862 0.209

S 2P 2.44 2.715 0.564 0.231

S r -6.72 -7.317 1.774 0.264

<r2v 0.095 0.105 0.029 0.301
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In both cases, we see that the coefficient of variation of the identified frequencies are 

much smaller than the COV (Coefficient of Variation) of the identified damping ratios, 

this fact indicates that frequencies are identified much better than damping. Similar to 

most identification methods, accurate identification of damping is more difficult than 

frequencies.

In the first case, the COV of the first two identified modes are similar, but in the 

second case, the COV of the second mode is significantly smaller than COV of the first 

mode. This should not be a surprise; the first mode amplitude is larger at the top floor, 

while in the second mode, the third floor amplitude is larger in the second mode than its 

relative amplitude in the first mode. Therefore, the measurement at the third floor should 

contain more information about the second mode. Choosing the measurement point is of 

the most importance if  higher modes identification is of interest.

Figure 5.7: The six mode shapes (simulated in MATLAB)

It is a common sense that the identification of mode shapes requires the measurement 

at multiple nodes. For output-only identification, elements in modal shape vectors can 

only be identified at measured points. If there is only a single output, then it is not 

possible to identify the modal shape, since the depiction of modal shape requires at least
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two points.

For input-output type identification, the situation is a little different, that the shape 

vector at input points can also be identified, since the calculation of the output response 

will require the knowledge of modal shape vectors at the input points also.

In this optimization approach, the identifiability of any parameter depends on 

whether there is a definable functional relationship between the parameter and the cost 

function. From equation (5.22), we see if  the excitation is at the same floor with the 

measurement, then the modal shape is unidentifiable, however in the base-excitation case, 

the input is equivalent to the applied acceleration to all the floors at the same time; this 

problem, though only one single-output is measured, is equivalent to a multi-input-single- 

output problem. One expects that the modal shapes are identifiable using this 

optimization approach. Nonetheless, the identifiability also depends on the power of 

optimization algorithm. Multiple-variate identification problems are usually the most 

difficult task in optimization, and adding a modal vector to the parameter vector 0 would 

increase the size tremendously, especially in the case when the excitation is applied to 

every node of the structure. Therefore, an alternative is used here such that the spectrum 

of modal excitations is sought in the parameter vector instead of a full list of modal 

vectors. We use equation (5.19) instead of (5.22) in computing the objective function of a 

MDOF system. From equation (5.19), we see that the modal excitation, if identified, hide 

all the effects of modal vectors and simplifies the optimization problem considerably.

5.7 Concluding remarks

The presented probabilistic optimization approach, which is an application of the 

Bayesian MMSE estimator, is able to identify the modal parameters with good accuracy. 

It is based on the output measurement only and thus is one output-only identification 

method.

The application of this approach is based on the assumption that the input excitations 

is a Gaussian random process and the response is also a Gaussian random process, the 

structure is linear, the measurement noise and modeling error can also be modeled as 

Gaussian processes. Therefore the unknown modal parameters are also random variables 

with a multi-variate Gaussian PDF.
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The success of this identification procedure depends on the validity of those 

assumptions. Although applicable to most cases, we should always check these 

assumptions carefully before put trust on the identified results; although these 

assumptions are valid in many ambient vibration tests, there are some cases that these 

assumptions are not valid, such as the intermittency in the ocean swell and wind 

excitations on structures (Simiu, 1996). The sensitivity of the results to the deviation of 

Gaussian distribution is unclear at this moment (Sayed, 2003).

This probabilistic approach has two significant advantages over the non-probabilistic 

methods: the first is that the prior knowledge can be incorporated into the identification 

process through in inclusion of the a priori PDF of modal parameters in equation (5.4); in 

some cases, there are a large number of similar structures to be identified (Ghrib, 2004), 

the prior knowledge can be accumulated with increased number of identified structures. 

The second is that the uncertainties can also be obtained through the form of probabilistic 

covariance; this uncertainty can be pursued further in model updating or validations.

Similar to the deterministic optimization approach presented in chapter 4, this 

approach also require the solution of a multi-variable optimization problem. The ability of 

these approaches in identifying a large number of modes is obviously dependent on the 

performance of the optimization technique. The direct solver for optimization problems is 

one current active research subject in many fields of engineering.
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CHAPTER SIX

CONCLUSIONS AND SUGGESTIONS FOR FUTURE 
RESEARCH

6.1 Summary

The identification of modal parameters has attracted much research attention in the 

past twenty years. There is an ever increasing demand for its application in civil 

engineering structures for health monitoring, damage identification and model updating.

An investigation of existing methods for the identification of modal parameters is 

performed, with special attention on the peak-picking method, Prediction Error Method 

and subspace identification methods which are commonly considered as the simplest, the 

most accurate, and the most powerful tools in modal identification.

Two optimization based approaches for modal identification are then presented in 

this thesis. The first one is a deterministic optimization approach for input-output 

identification; it solves modal identification problems as a nonlinear Least-Square 

optimization problem minimizing the Residual Sum of Squares of the error between the 

measured output and the output from a modal model. The second one is a probabilistic 

optimization approach for output-only identification; this approach is an application of 

the Bayesian MMSE estimator to modal identification problem, it solves the modal 

parameters by maximizing the a posteriori PDF of the modal parameters given 

observation/measurements.

These approaches require the solution of nonlinear, nonconvex, multi-variable 

optimization problems, and there is no derivative information available to the formulated 

objective functions. Two direct optimization algorithms that require the evaluation of 

function value only, the Nelder-Mead simplex method and the Genetic Algorithm, are 

combined to solve the optimum. This combination follows the exploration/exploitation 

paradigm, that the global optimizer GA is used to explore the search domain and locate a 

good initial guess for the local optimizer Nelder-Mead method to start with, and find the 

global minimum.
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6.2 Conclusions
The following conclusions are drawn from the present study:

1) The proposed deterministic optimization approach is robust against noise 

corruption in the measurement; it gives good estimations of modal parameters 

if the global optimum of the objective function is correctly found by the 

optimization algorithm; even the damping ratios can be accurately estimated, 

which is a remarkable feature in civil engineering applications.

2) The presented probabilistic optimization approach is able to identify the 

modal parameters with good accuracy.

3) The probabilistic optimization approach has two significant advantages over 

deterministic methods: the first is that the prior knowledge can be easily 

incorporated into the identification process; the second is that not only the 

unknown parameters, but also the uncertainties associated with the 

identification can be obtained.

4) The proposed combined Genetic and Nelder-Mead algorithms are found to be 

efficient in solving direct optimization problems.

6.3 Suggestions for future work

The follow topics are recommended for future research:

1) The development of ad hoc optimization methods for these two optimization 

problems for modal identification. If the proposed optimization approaches are to 

be successful, especially for multi-mode identification, specific optimization 

codes that combine the model-based methods and the continuation techniques 

should be developed.

2) The extension of the probabilistic approach to input-output identifications with a 

measured deterministic sequence of input excitation.

3) Combination of probabilistic identification approach with noise-cancellation 

filtering. Since this approach is based on the idea of Bayesian estimation, there 

are many adaptive filtering tools that can be incorporated; the application of 

those tools in the modal identification problem is yet a field to be explored.
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